
University of Kentucky
UKnowledge

Theses and Dissertations--Civil Engineering Civil Engineering

2012

A NEW SIMULATION-BASED CONFLICT
INDICATOR AS A SURROGATE MEASURE
OF SAFETY
Chen Wang
University of Kentucky, chen.wang2013@yahoo.com

Click here to let us know how access to this document benefits you.

This Doctoral Dissertation is brought to you for free and open access by the Civil Engineering at UKnowledge. It has been accepted for inclusion in
Theses and Dissertations--Civil Engineering by an authorized administrator of UKnowledge. For more information, please contact
UKnowledge@lsv.uky.edu.

Recommended Citation
Wang, Chen, "A NEW SIMULATION-BASED CONFLICT INDICATOR AS A SURROGATE MEASURE OF SAFETY" (2012).
Theses and Dissertations--Civil Engineering. 3.
https://uknowledge.uky.edu/ce_etds/3

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu
https://uknowledge.uky.edu/ce_etds
https://uknowledge.uky.edu/ce
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been
given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright
permissions. I have obtained and attached hereto needed written permission statements(s) from the
owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic
distribution (if such use is not permitted by the fair use doctrine).

I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make
accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the
document mentioned above may be made available immediately for worldwide access unless a
preapproved embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future
works (such as articles or books) all or part of my work. I understand that I am free to register the
copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of
the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we
verify that this is the final, approved version of the student’s dissertation including all changes required
by the advisory committee. The undersigned agree to abide by the statements above.

Chen Wang, Student

Dr. Nikiforos Stamatiadis, Major Professor

Dr. Kamyar C. Mahboub, Director of Graduate Studies



 

 

 

 

 

 

A NEW SIMULATION-BASED CONFLICT INDICATOR AS A 

SURROGATE MEASURE OF SAFETY 

 

 

 

DISSERTATION 

 

 

A dissertation submitted in partial fulfillment of the 

requirements for the degree of Doctor of Philosophy in the 

College of Engineering 

at the University of Kentucky 

 

By 

Chen Wang 

Lexington, Kentucky 

 

Director: Dr.Nikiforos Stamatiadis, Professor of Civil Engineering 

Lexington, Kentucky 

 

2012 

 

 

 

 



 

 

 

 

 

 

 

 

 

A NEW SIMULATION-BASED CONFLICT INDICATOR AS A SURROGATE 

MEASURE OF SAFETY 

 

Traffic safety is one of the most essential aspects of transportation engineering. However, 

most crash prediction models are statistically-based prediction methods, which require 

significant efforts in crash data collection and may not be applied in particular traffic 

environments due to the limitation of data sources. Traditional traffic conflict studies are 

mostly field-based studies depending on manual counting, which is also labor-intensive 

and oftentimes inaccurate. Nowadays, simulation tools are widely utilized in traffic 

conflict studies. However, there is not a surrogate indicator that is widely accepted in 

conflict studies. 

The primary objective of this research is to develop such a reliable surrogate measure 

for simulation-based conflict studies. An indicator named Aggregated Crash Propensity 

Index (ACPI) is proposed to address this void. A Probabilistic model named Crash 

Propensity Model (CPM) is developed to determine the crash probability of simulated 

conflicts by introducing probability density functions of reaction time and maximum 

braking rates. The CPM is able to generate the ACPI for three different conflict types: 

crossing, rear-end and lane change.  

A series of comparative and field-based analysis efforts are undertaken to evaluate the 

accuracy of the proposed metric. Intersections are simulated with the VISSIM micro 

simulation and the output is processed through SSAM to extract useful conflict data to be 

used as the entry into CPM model. In the comparative analysis, three studies are conducted 

to evaluate the safety effect of specific changes in intersection geometry and operations. 

The comparisons utilize the existing Highway Safety Manual (HSM) processes to 

determine whether ACPI can identify the same trends as those observed in the HSM. The 

ACPI outperforms time-to-collision-based indicators and tracks the values suggested by 

the HSM in terms of identifying the relative safety among various scenarios. In field-based 

analysis, the Spearman’s rank tests indicate that ACPI is able to identify the relative safety 

among traffic facilities/treatments. Moreover, ACPI-based prediction models are well 

ABSTRACT OF DISSERTATION 

 



 

fitted, suggesting its potential to be directly link to real crash. All efforts indicate that ACPI 

is a promising surrogate measure of safety for simulation-based studies.  
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1 INTRODUCTION 

1.1 BACKGROUND AND CONTEXT 

Traffic safety is one of the most essential aspects of transportation engineering. The planning, 

design, and maintenance of transportation facilities should consider the impact of crashes when 

designing or evaluating alternative designs. Since crashes are a direct measure of traffic safety, 

the development of crash prediction models is able to give policy-makers, planners and traffic 

engineers a clear insight into past, current and future safety. Hence, crash prediction models 

play a very important role in safety study and need to be carefully examined to ensure their 

accuracy and reliability. 

Most of the traditional crash prediction models depend heavily on historical crash data. In 

order to develop reliable and accurate models, crash databases need to be large enough 

requiring decades of data accumulation and maintenance. The recently published Highway 

Safety Manual (HSM) proposed Safety Performance Functions (SPF) along with crash 

modification factors (CMF) for crash prediction, the development of which took 

approximately twenty years (Haas, 2009).  However, the reliability and validity of the models 

need to be further investigated and improved. One important question deals with the issue of 

whether SPFs can be useful at any locations around the world. Most of the SPFs and CMFs are 

developed based on data from the United States and therefore, calibration is essential to apply 

these in other locations or countries. Since traditional safety studies are timely and require 

significant efforts to collect and maintain the appropriate data, the development of surrogate 

measures is necessary for predicting crashes and evaluating traffic safety due to the difficulty 

of crash data collections. Tarko et al. (2009) stated two basic requirements for surrogate 

measures. The first is that a surrogate measure should be derived from observable non-crash 

events which can be correlated with crashes. The second is that the relationship between 

non-crash events and related crash frequency and/or severity can be quantified by some 

practical method. Hence, surrogate measures of safety are expected to be developed for crash 

predictions instead of the traditional crash data collection. 

Amundsen and Hyden (1997) defined traffic conflict as “an observable situation in which 

two or more road users approach each other in space and time to such an extent that there is a 

risk of crash if their movements remain unchanged.” 
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Hyden (1987) addressed two advantages of traffic conflict as a surrogate measure.  

Firstly, traffic conflicts are more frequent traffic incidents compared with traffic crashes. Thus, 

the difficulty of observing traffic conflicts is much lower than collecting traffic crashes. 

Secondly, traffic conflicts have been proved to share the approximate severity distribution with 

crashes. Till now, traffic conflicts are still believed to be the best surrogate measure for crashes. 

    Studies on traffic conflicts are expected to be a supplementary method of traditional 

statistical-based safety studies. Traditionally, traffic conflicts are observed based on manual 

counting and estimation, which are time-consuming, labor-intensive and sometimes inaccurate 

(due to the bias introduced by different observers). Recently, video techniques have been 

introduced to reduce the labor cost and improve the data accuracy due to its automatic data 

collection mechanism. With this improvement, a number of methods have been developed and 

some have shown potential to become “promising approaches” such as the Extreme Value 

Method (Tarko et al., 2009). However, as Tarko et al. (2009) concluded that reliable safety 

surrogates still need to be developed. They addressed that traditional field-based surrogates 

like speed and deceleration rate are not able to explain the complexity of crash causality and 

other explanatory variables need to be incorporated. Moreover, such field-based methods 

mostly require the identification of dangerous conditions (conflicts or near-crashes) by human 

judgment and thus could lead to bias and decrease the data accuracy. 

In recent years, simulation tools have been utilized for traffic studies. With the 

development of computer technology, the simulated traffic environments are being close to the 

real world due to the rich set of input variables including traffic conditions, geometric layout 

and human factors. Simulation tools have the capability of automatically collecting simulated 

traffic data and determining potential traffic conflicts at the initial moment they occur. Lately, 

the Surrogate Safety Assessment Model (SSAM) has been developed which is capable of 

extracting the information of simulated traffic conflicts from trajectory outputs from 

simulation tools (FHWA, 2008). This development has enhanced the capability of studying 

traffic conflicts. 

However there are still no appropriate methodologies and reliable surrogates for 

simulation-based conflict studies, although SSAM can be used to analyze every single conflict. 

Some researchers have developed dedicated simulation-based surrogates but none of them are 

extensively accepted and utilized (Ozbay et al., 2007; Cunto, 2008). These surrogates are 

limited to certain conflict types, which hinder them from being applicable to all case studies. In 
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the final report of SSAM, a simple traditional conflict indicator (the conflict number with 

Time-to-Collision (TTC) less than 1.5 seconds) is still used as the primary surrogate while 

disregarding other conflict information (FHWA, 2008). Moreover, the use of the 

Time-to-Collision (TTC) has produced some unexpected results limiting its wider acceptance. 

The authors emphasized the need of developing a compound surrogate metric taking advantage 

of the rich conflict information available through the simulation models (FHWA, 2008).  

Therefore, an appropriate method and a new simulation-based surrogate need to be developed 

and validated in order to fill the gap.   

1.2 OBJECTIVES AND CONTRIBUTIONS 

The primary objective of this study is to develop a new conflict indicator for simulation-based 

studies. This traffic conflict indicator is expected to take advantage of the data-processing of 

VISSIM and SSAM and explain traffic safety as a surrogate measure.  The following specific 

objectives are to be accomplished: 

1. Introduce a compound traffic conflict indicator, which is associated with traffic crash 

frequency, based on the characteristics of traffic conflicts; 

2. Introduce the process of deriving the proposed traffic conflict indicator; 

3. Validate the proposed conflict indicator as a qualified surrogate measure of crash 

frequencies for simulation-based conflict studies; 

In this paper, all three objectives are accomplished. For the third objective, both 

theoretical validations and field validations are conducted and the results are considerably 

positive. The major contribution of this work is to provide a qualified traffic indicator that can 

well indicate traffic safety based on traffic simulations, instead of traditional crash prediction 

methods. This paper also presents the process of developing another conflict indicator that is 

associated with severe crash frequency. 

1.3 OVERVIEW OF DISSERTATION 

This dissertation is organized into six chapters.  

Chapter 1 addresses the background, problem statement, research objectives, contribution 

of research, and the organization of the dissertation. 
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Chapter 2 includes a literature review of previous work on conflict study methods and 

identifies the areas where additional research is needed. 

Chapter 3 introduces the new proposed conflict indicator, presents the basic concept of 

the new methodology, shows the entire process for estimating the indicator, and provides a 

simple example. 

Chapter 4 presents three comparative analyses by examining safety among different 

scenarios. The purpose is to show the advantage of the proposed conflict indicator over 

traditional surrogate indicator in identifying safety effectiveness of traffic treatments.  

Chapter 5 presents a field-based analysis to show the ability of the proposed conflict 

indicator to differentiate the safety among transportation facilities and be very highly 

correlated with real crash frequencies. Twelve four-leg signalized intersections are calibrated 

and simulated.  

Chapter 6 presents a process of acquiring a surrogate indicator of crash severity through 

CPM model. DeltaV is introduced into the CPM model to determine the crash probability of a 

conflict turning into a severe crash (injury/fatal). 

At last, conclusions, recommendations and future efforts are addressed in Chapter 7. 
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2 LITERATURE REVIEW 

Over the past three decades, substantial efforts have been completed on determining and 

developing surrogate measures with the purpose of linking conflicts to real crashes in a decent 

manner. Various methodologies and indicators have been identified in previous research and these 

are described in the following sections.  

2.1 TIME-BASED INDICATORS 

2.1.1 Time-to-Accident 

The Time-to-Accident (TA) indicator was initially proposed by Perkin and Harris (1967) and 

then was given a generally accepted definition by Amundsen and Hyden (1977) as “the time 

that passes from the moment that one of the road users reacted and starts braking or swerving 

until the moment the involved road user had reached the point of collision if both road users 

had continued with unchanged speed and direction”. 

Time-to-Accident value is calculated with estimated distance and speed when the evasive 

action is initially identified by field observers. Traffic conflicts were determined as severe and 

non-severe and they are mapped in a two-dimensional conflict diagram with TTA value and 

maximum speed (Hyden, 1987).  

  Figure 2.1 shows the two-dimensional conflict diagram of conflict severity levels. In 

this figure, conflicts are categorized into six groups based on uniform severity level that is 

decided by the required deceleration rates, which are associated with TA and speed in a 

non-linear manner. The severity increases as the category goes from 1 to 6.  
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Figure 2.1 Time-To-Accidents versus Conflict Speed (Archer, 2005) 

The bold line delineates the boundary of “severe” conflict and “non-severe” conflict. TA 

is a time-based indicator that also takes into account the impacts of speed-based indicator 

(speed and deceleration rate).  

However, when looking into the definition of TA, the “evasive action” is initially 

identified by observers. Since different observers have different knowledge and understanding 

of “evasive actions”, the TA may vary by observers. This bias could be decreased to some 

extent by training observers. However, a new bias could also arise due to the different 

judgments of speed and distance (Hauer and Per Garder, 1986). This can be considered as the 

major drawback of this indicator because the bias in determining the speed and distance at the 

initial moment of “evasive actions” can directly affect the accuracy of TA. 

2.1.2 Time-to-Collision 

Time-to-collision (TTC) is a time-based surrogate indicator which was initially proposed by 

Hayward in 1972 (Hayward, 1972). It refers to “the time that remains until a crash between two 

vehicles would have occurred if the crash course and speed difference are maintained.” TTC 

was utilized by many researches for safety evaluation (Hyden, 1987; Hayward, 1972; Sayed et 

al., 1994; Hyden, 1996). 

For vehicles maneuvering in the same direction, the TTC can be calculated by  

  TTC =
(       )   

       
                                                      (2.1) 
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Where, 

P: position of the vehicles (i=leading vehicle; i-1=following vehicle) 

L: vehicle length 

V: velocity 

For vehicles crossing with each other, the TTC can be derived by 

TTC= 
    

    
                                                               (2.2) 

Where,  

Di,t: distance between the project collision point and the initial point of vehicle i at time t; 

Vit: the speed of vehicle i at time t 

TTC is measured at the beginning of the conflict occurrence instead of the start of the 

“evasive action that can only be captured after the driver reacts. Compared to TA, TTC directly 

measures conflicts instead of traffic incidents with particular driver reactions. For instance, a 

drunk driver can make a conflict with a very high TTC (e.g. 5 seconds) into an incident with a 

very low TA (e.g. 1 second). To most road users, this conflict would be not dangerous 

according to the high TTC, despite of the low TA in this case.  

Although TTC is a very simple time-based indicator and used widely, it still has obvious 

drawbacks. Using TTC threshold to identify conflicts could lead to a simple result that all 

conflicts with the same TTC are equally dangerous or could result in similar severity levels 

when TTC is the only safety indicator to measure the crash potential. TTC does not consider 

the potential evasive actions after the conflict occurrence. The fact is that drivers have varied 

reaction times and vehicles have varied braking abilities under different speed levels and traffic 

conditions. By admitting this fact, different conflict types can have different levels of crash 

potentials even with the same TTC. Even for the same conflict type, different speeds can pose 

different levels of difficulty for drivers to avoid the conflict as well as different levels of crash 

severity.  

Another problem is that TTC requires a continuous measure of vehicle interactions. 

Observers need to keep observing the vehicles’ trajectory, speed, distance and decide if the 

potential conflicts occur.  This work is very labor-intensive when field observations are taken. 

Video-techniques also have problems in identifying TTC because “safety critical events can be 

difficult to detect in two-dimensional imagery” as Archer (2005) suggested.   
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Nowadays, simulation packages are widely used in studying conflicts and this problem 

may be resolved using the automatic “observation” and recording of conflicts through the 

simulation. 

2.1.3 Post-Encroachment Time 

Post-Encroachment Time (PET) is another time-based surrogate indicator. PET refers to the 

time lapse from the moment that the first vehicle departs a conflict point to the moment that 

second vehicle approaches that point (Songchitruksa and Tarko, 2006). This indicator has also 

been extensively utilized (Hyden, 1987; Hyden, 1996; Cooper, 1983; Van der Horst and Kraay, 

1986).  

The advantage of PET is that it has no speed and direction assumption like TTC. The 

measure of TTC requires the existence of a collision course assuming that both speed and 

direction of a vehicle are maintained.  Without the assumption of the collision course, the PET 

appears to be relatively simple by not considering speed and distance. 

The disadvantages of PET are the lack of consideration of speed and distance and 

therefore it neglects the influence of speed on traffic conflicts. The accuracy of this indicator is 

therefore reduced in terms of estimating crash frequency and resulting crash severity. PET 

performs better in analyzing crossing conflicts because it requires a certain conflict point being 

captured (Archer, 2005). When dealing with rear-end and sideswipe conflicts, the dynamic 

conflict points make it difficult to capture the minimum PET by traditional field observation 

and video techniques. 

2.2 SPEED-BASED INDICATORS 

Some researchers argued that determining conflict severity simply by time-based indicators 

neglects the impact of speed-based indicators (Kruysse, 1991; Tiwari et al., 1995). The 

variance of speed reduction in a conflict may have significantly different impacts on its crash 

probability and crash severity. However, by applying only time-based indicators such as TTC, 

the influences of speed-related factors can be underrated or even neglected.  

2.2.1 Deceleration Rate to Avoid the Crash (DRAC) 

Cooper and Ferguson (1976) proposed a deceleration rate to avoid the crash (DRAC) in traffic 

conflict study in order to determine the conflict severity. DRAC is the minimum required 
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braking rate to be applied for a vehicle attempting to avoid the crash with other vehicles. 

Actually, the calculation of DRAC requires the assumption that one vehicle takes evasive 

actions while the other retains its speed and direction. For vehicles with the same direction, the 

expression of DRAC is: 

      DRAC     =
(           )

 

  (           )        
                                             (2.4) 

Where, 

T: time interval; 

P: position of the vehicles (i=the following vehicle, i-1=the leading vehicle); 

L: vehicle length; 

V: velocity. 

McDowell et al. (1983) classified conflicts into five severity groups based on the values of 

DRAC.  The DRAC increments are intuitively determined as the same (1.5 m/s2) between 

severity grades and the DRAC of 3.0 m/s2 is considered as a boundary between severe and 

non-severe conflicts. 

Hyden (1996) proposed another classification standard for traffic conflicts. The DRAC is 

calculated based on the expected driver reaction, vehicle speed, vehicle distance and so on. He 

classified conflicts into 6 groups. Table 2.1 shows the conflict levels, related DRAC and 

required reaction descriptions. The first two groups are determined as “no conflict” groups. 

From conflict level 1 to level 4, the DRAC is increasing and level 4 is the highest level that 

requires emergency reactions. 
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Table 2.1 DRAC and Conflict Levels 

Conflict Level DRAC Description 

No conflict 0 Evasive action not necessary 

No conflict 0 to 1 Adaption necessary 

1 1 to 2 Reaction necessary 

2 2 to 4 Considerable reaction necessary 

3 4 to 6 Heavy reaction necessary 

4 ≥6 Emergency reaction necessary 

 

However, the current use of DRAC has some shortcomings. The first one is that the 

calculation of DRAC entails the detailed information of conflicts such as speed, reaction time, 

vehicles distance and so on. If real conflicts are studied, a significant effort is required for data 

collection and field observations. This may also lead to inaccurate or biased estimations of 

conflict information. Another downside is that the traffic conflicts are still intuitively divided 

into groups based on DRAC (Cunto, 2008). The development of the boundary values can be 

questioned, since additional evaluation may be needed to determine their accuracy. 

2.2.2 Other speed-based indices 

Other speed-based indicators have been developed in the past including Deceleration Rate 

(Malkhamah, Tight, and Montgomery, 2005), Deceleration-to-Safety Time (Topp, 1998), 

Speed Variance (Garber and Gadiraju, R., 1988; Evans, 1991), and Standard Deviation of 

Lateral Position (Vogel, 2003). However, none of them are developed aiming at directly 

estimating the real crash frequency.  

2.3 OTHER INDICATORS  

Other indicators have also been identified like queue length and stop-bar encroachments. 

However, no quantified relationship has been built between those indicators and conflict 

severity, although some of their research showed potential to deal with traffic safety (Perkins 

and Bowman, 1982; Thompson and Perkins, 1983; Fitzpatrick et al., 2000). 
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Noticeably, most of the research focused on the probability of a conflict turning into a 

crash without realizing that a conflict needs to be determined not only for its possibility to be a 

crash but also, and more importantly, for the potential to be an injury or even a fatal crash. 

Therefore, additional conflict characteristics need to be identified and investigated to allow for 

estimating the severity of a conflict once it becomes a crash. To be more specific, a conflict 

with a small possibility to be a crash but a very high likelihood to be a fatal crash requires more 

attention than a conflict with a larger possibility to be a crash but a very low likelihood to be a 

severe crash. However, limited research has been completed to develop indicators explaining 

the severity potential of a conflict. Only one composite indicator was identified to measure that 

characteristic using kinetic energy (Ozbay et al., 2008). They used inverse of Modified 

Time-to-Collision as the probability of crash and kinetic energy to represent the severity of 

crash. They developed a compound indicator by multiplying the two and provide a field 

validation. The indicator was able to explain the safety in a similar manner like real frequency 

does. However, the accuracy of the inverse of modified TTC that could explain the crash 

probability is unknown and the physical meaning of the combined indicator was not explained. 

Also only one field validation may not be sufficient enough to prove the reliability of this 

indicator since there are no following validation efforts afterwards. Finally, this indicator only 

deal with rear-end conflicts with the neglect of other conflict types. 

2.4 METHODOLOGIES 

In order to measure the indicators mentioned above, various methodologies also have been 

identified. 

Traditional traffic conflict technique (TCT) classifies conflicts as severe and non-severe, 

using a “speed versus time to accident” graph. This graph (Figure.2.1) demonstrates a 

reasonable association among conflicts, time-to-accident (TA) and speed (Hyden, 1996). 

Conflicts with observed TA and speed can be mapped in this graph and severity can be 

determined. Although this graph is based on large amount of data collected, the reliability 

could be weakened due to the variability of observers’ perception on speed and distance (Hauer 

and Per Garder, 1986). More importantly, this graph fails to show the crash probability of a 

conflict quantitatively but provides an ordinal value associated with a specific level instead. 

Therefore, the application of this technique can be limited due to the lack of quantitative 

measure. Another methodology of traditional TCT uses TTC and PET instead of TA to analyze 
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conflicts (Archer, 2005). A threshold needs to be set up firstly to exclude conflicts exceeding 

the threshold and then the Required Braking Rate (RBR) is considered as an alternative 

surrogate measure of conflict severity based on a graph “Speed versus Required Braking Rate” 

(Figure 2.2). However, different thresholds for TTC have been identified in the literature 

(FHWA, 2008; Minderhoud and Bovy, 2001; Ozbay et al., 2008; Archer, 2005), including two 

studying simulated-based conflicts (FHWA, 2008; Ozbay et al., 2008). The variance of TTC 

thresholds may lead to different results. Besides, there is no guarantee that conflicts within a 

specific threshold all turn into crashes while those above the threshold do not. More 

importantly, the crash probability of each conflict cannot be derived precisely, for they are only 

classified into two categories: severe or non-severe. Therefore, this technique appears to be 

incapable of showing the linkage between simulated conflicts and real crashes.  

 

Figure 2.2 Speed Versus Required Braking Rate (Archer, 2005) 

A probabilistic methodology also was introduced as a surrogate measure of safety by 

Davis, et al. (2008). The term named “near-crash” was introduced instead of conflicts. 

Near-crash refers to a traffic event which requires a sign of a strong evasive maneuver to avoid 

a crash. A strong evasive maneuver is determined as control behaviors which reach the limit of 

the vehicle capabilities. Near-crash events were observed on a freeway and initial vehicle 

speeds, distances, reaction times and deceleration rates are collected and extracted by video 

trajectory data. A function between crash probability and deceleration rates is developed based 

on the residual uncertainty of those estimates. Then, by applying the emergency braking 

distribution developed by Fambro et al. (1997), the probability of each event can be derived. 
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This methodology is able to estimate the probabilities of near-crash events, which appears to be 

more reasonable and promising than setting up a threshold for TTC or other indicators. The 

deficiency of this study is that the definition of near-crash itself is vague because the “strong 

evasive maneuver” is difficult to determine. If some deceleration threshold is set up for 

determining the “strong” magnitude, the same problem could occur similar with that identified 

using the TTC threshold. Besides, it only considers rear-end events that are only one conflict 

type. However, this study is very important because the idea of using a probabilistic model to 

deal with the danger of events provides an insight in conflict study. In real world, it is very 

difficult to decide when the conflict course occurs. However, in simulation environment, the 

computer is able to record all vehicles’ trajectory information automatically which allows the 

recognitions of conflict occurrence and further the development of probabilistic models. 

Saunier and Sayed (2008) also present a probabilistic framework for determining the 

crash probability of conflicts. This framework is also based on field data by using an automated 

system that can extract detail information of vehicle movement and interactions from video 

trajectory dataset. This method needs to be further validated (Tarko et al., 2009). 

Another noticeable methodology is called extreme value method (EVM) which has been 

widely utilized in estimating events with extreme low or high probabilities in other research 

areas. It was firstly introduced in 2004 in order to estimate the frequency of crashes 

(Songchitruksa and Tarko, 2004). Then, they applied this method to estimate right-angle 

crashes at signalized intersections (Songchitruksa and Tarko, 2006). Crossing conflicts with 

post-encroachment more than 6 seconds were observed and selected by video technique. In this 

case, EVM performed well with the frequency of crashes falling in the estimated confidence 

interval (95 percent) and showing its strength and potential to capture the relationship between 

conflicts and real crashes. However, EVM requires a large amount of field data to ensure its 

reliability although it appears to be a promising field-based conflict method. 

2.5 SIMULATION-BASED ANALYSIS  

With the rapid development in computing science, traffic simulation tools have been more 

extensively utilized. Traditional observation study and video techniques are costly and time 

consuming and are not able to provide accurate data (FHWA, 2008; Hyden, 1996; Minderhoud 

and Bovy, 2001; Ozbay et al., 2008; Archer, 2005; Davis, Hourdos, and Xiong, 2008; Fambro, 

Fitzpatrick, and Koppa, 1997; Songchitruksa and Tarko, 2004). Simulation tools are able to 



- 14 - 

 

build a roadway environment similar to that of the real word and collect a variety of data easier. 

Therefore, simulation tools have great potential in traffic conflict study (Archer, 2005).  

A number of surrogate measures were developed recently for simulation-based conflict 

studies. Some measures are TTC-based composite indicators such as Time Exposed 

Time-to-Collision (TET) (Minderhoud and Bovy, 2001), Time Integrated Time-to-Collision 

(TIT) (Minderhoud and Bovy, 2001) and Crash Index (CI) (Ozbay et al., 2008). All these 

metrics utilize a TTC threshold which should be problematic due to its arbitrary setting. Some 

measures are only able to deal with particular conflict types such as Unsafe Density (UD) for 

rear-end conflicts (Barcelo et al., 2003), Potential Index for Collision with Urgent Deceleration 

(PICUD) for rear-end conflicts (Uno et al., 2002), An Accumulative Safety Indicator (J-value) 

for rear-end and lane change conflicts (Pham et al., 2007), Deceleration rate to avoid the crash 

(DRAC) for rear-end conflicts (Saccomanno et al., 2008), Crash Potential (CP) for rear-end 

conflicts (Saccomanno and Cunto, 2006), Criticality Index (CI) for left-turn conflicts (Chan, 

2006), Crash Index (CI) for rear-end conflicts (Ozbay et al., 2008) and Crash Propensity 

Index(CPI) for angle and rear-end conflicts (Cunto, 2008). 

Recently, the Surrogate Safety Assessment Model (SSAM) was developed to 

automatically calculate surrogate indicators utilizing the trajectory data generated by 

simulation tools. SSAM outputs two major types of surrogate indicators: indicators for conflict 

severity and indicators for severity of resulting crashes (FHWA, 2008). Time-to-Collision 

(TTC), Post Encroachment Time (PET), and Deceleration Rate (DR) are used as indicators for 

conflict severity while Maximum of the speeds of the two vehicles (MAXS) and Maximum 

relative speed (DeltaS) are indicators for determining severity of resulting crashes. 

A recent report assessed and validated the SSAM outputs based on the data from 

simulation tools (FHWA, 2008). Field validation tests were conducted to compare the conflicts 

derived from SSAM with crashes. Eighty three four-leg signalized intersections in British 

Columbia and Canada were simulated using VISSIM and analyzed by SSAM. The significant 

correlations between predicted conflicts and real crashes were evaluated by several statistical 

tests including safety ranking by total incidents and incident types, regression model tests, and 

identification of incident prone locations. Total conflicts and conflict types were separately 

used to determine intersection rankings. Two rankings based on total conflicts and conflict 

types were respectively compared with the rankings based on the real crashes and crash types. 

Regression models were developed to establish a relationship between average hourly conflict 
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frequencies derived by SSAM and the estimated average hourly crash frequencies. Standard 

GLM procedures were also incorporated to establish conflict prediction models and crash 

prediction models. The results gave a correlation rate (R=0.41) between total conflicts and total 

crashes. The study also noted that based on the comparison between conflicts and crashes, 

conflict-to-collision ratios may vary by different types.  

However, the analysis conducted by SSAM is based on a traditional traffic conflict 

technique methodology that is setting a threshold to determine conflict characteristics. This 

methodology encountered several problems: 

1. Conflicts were filtered based on the threshold of TTC/PET which was 

arbitrarily determined in this study. The threshold of TTC/PET may overestimate or 

underrate some potential conflicts, because conflicts over the threshold may also be 

crashes while those within the threshold may not be crashes. 

2. In reality, each conflict has a probability to be a crash. The probability of each 

conflict turning into a crash cannot be determined by the current methodology used. 

3. Although some indicators have been provided to analyze the resulting crash 

severity, no quantified relationships had been proposed among these indicators and crash 

severity by current methodology used.  

4. The correlation value (R=0.41) was lower than that between total crashes and 

traditional ADT based prediction models (R=0.68). Moreover, when SSAM was utilized 

to compare various design scenarios, controversial outputs led to inconclusive results. The 

comparison between two design scenarios appeared to be inconsistent between conflict 

severity and severity of resulting crashes.  

Therefore, simply utilizing thresholds to determine conflicts is questionable and may not 

be capable of explaining the association between simulated conflicts and crashes. New 

methodology and surrogate indicators are expected to be developed for simulation-based 

studies, taking advantage of simulation tools and conflict data derived from SSAM.  

2.6  SUMMARY 

Previous research shows that significant efforts have been undertaken to estimate crash 

surrogate measures and a number of valuable results have been achieved. However, there are 

still some weaknesses and potential improvements can be identified: 
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1.  Most of traditional surrogate methodologies are based on field observation and 

video technique, which are time-consuming, labor-intensive and often inaccurate; 

2. The emerging simulation tools and SSAM have the potential to collect useful 

information for most of surrogate methodologies. The development and improvement of 

simulation tools can aid in collecting data more accurately and quickly. SSAM is a tool 

providing data extracted from traffic conflicts generated from simulation tools. However, 

current methodology utilized in simulated conflict analysis can be improved over the 

simple setting of time thresholds. Therefore, a more appropriate methodologies and a 

reliable surrogate indicator need to be developed for the simulation-based conflict studies. 

Moreover, the surrogate indicator should be able to deal with multiple conflict types in 

order to fill current gaps; 

3. Reliable quantitative relationships have rarely been established between conflicts 

and crashes. That is, no reliable prediction models based on surrogate indicator have been 

developed so far. 

  Tarko et al. (2009) concluded that reliable safety surrogates need to be developed by 

incorporating explanatory factors into traditional indicators. In the final report of SSAM, the 

importance of developing a compound safety surrogate for simulation-based conflict studies is 

also demonstrated (FHWA 2008).  To fill the gap, this research focused on developing an 

appropriate indicator (along with the methodology) for simulation-based conflict studies. The 

indicator and methodology will be presented and testified in the following chapters. Also, the 

prediction models based on the proposed indicator will be established and examined. 
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3 AGGREGATE CRASH PROPENSITY INDEX AND 

CRASH PROPENSITY MODEL 

In this chapter, a new traffic conflict indicator named Aggregate Crash Propensity Index 

(ACPI) and a new model named Crash Propensity Model (CPM) will be introduced.  CPM is 

a multi-step process that is able to use information from simulated traffic conflicts and 

compute ACPI that is a surrogate measure of real crash frequency.  

3.1 BASIC CPM CONCEPT 

As addressed in Chapter 2, simulation tools have become more and more powerful in 

developing traffic environments very similar to the real world. Moreover, computer science 

makes it easier, faster and more precise for data collection, compared to traditional field 

observation and manual counting. Hence, simulation tools have been extensively utilized in 

traffic operation studies, such as travel time and delay time collection.  

However, problems arise when researchers apply simulation tools in traffic safety studies 

that simulation tools are basically designed for normal/safe traffic operations. In a microscopic 

simulation environment, drivers and vehicles are defined by and follow certain rules 

(acceptance gap, look ahead distance and fixed/zero reaction time etc.) and they always follow 

these rules (SSAM can get “simulated crash” but those are mainly caused by the internal 

malfunction of VISSIM (FHWA, 2008). For instance, drivers always react immediately (no 

reaction time considered) when they perceive the dangerous situation in VISSIM (some other 

simulation packages (e.g. Paramics) have reaction settings but only allow fixed values). 

However, it is not always the case in the real world. In the real world, some drivers react 

quickly while others react slowly. Even for the same driver, the reactions to conflicts may vary 

by time and space. Besides, vehicles have different braking limitations. Sometimes drivers 

escape the crash due to their vehicles’ braking capabilities while others are not able to do that. 

Crashes often happen because of driver’s fault (inattention) and vehicle’s poor performances. 

Those variations are not able to be reflected in simulation packages due to their design 

purposes for traffic operations. 

To fill this gap, a simulation-based probabilistic model, called Crash Propensity Model 

(CPM), is developed to answer the question as to what is the crash probability of a simulated 
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conflict, without ignoring those significant variances such as reaction time and braking 

limitations. The CPM takes into account human/vehicle distinctions in conjunction with the 

simulated conflicts to decide how dangerous these simulated conflicts would be if they happen 

in the real world. 

The CPM only focuses on conflicts between two vehicles. For each potential conflict, the 

vehicle which is supposed to reach first the conflict point will retain its speed during the 

process while the following vehicle (which is supposed to be the second vehicle arriving at the 

crash point) will apply the maximum braking once the driver reacts. This approach applies to 

most of rear-end and lane change conflicts, since drivers in the front do not realize the dangers 

behind. For crossing conflicts, it may not be clear whether the driver of the first vehicle (that 

arriving first at the conflict point) decelerates or accelerates. This study assumes that the first 

driver maintains the speed judging that he will cross first the conflict area and other vehicles 

should notice that and give him right-of-way. Since CPM only considers conflicts with short 

durations and high speed, drivers are believed to hit the brakes as much as they can in most of 

cases.  

There can be countless scenarios for a single conflict, with various combinations of driver 

and cars going through it. In order to identify how many combinations can finally turn this 

conflict into a crash, CPM first separates drivers into Group A and Group B based on the 

minimum TTC of the conflict from SSAM. This TTC is unique for each conflict (i.e. no 

specific threshold is defined for all conflicts) and is equal to the one that could lead to a crash if 

no evasive actions are taken. Notably in SSAM, conflicts are continuously analyzed by the 

conflict courses and the derivation of minimum TTC is based on the assumption that “no 

reaction” is considered (FHWA, 2008). Figure 3.1 is a diagram of reaction time distribution 

which is determined to follow a log-normal distribution (See Chapter 3.2). It shows that drivers 

are divided into two groups by the boundary line which represents a TTC value. This boundary 

line is subject to change based on the unique TTC that each conflict has. Drivers in group A 

have reaction time larger than TTC and those in group B have reaction time less than TTC. 

Collisions will certainly happen for Group A because drivers are not able to perform any 

evasive actions during that conflict process. The number in group A is determined by the 

reaction time distribution of all drivers in the real world. The percentage of group A of all 

drivers can be calculated based on the reaction time distribution and TTC: 
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  𝑒𝑟𝑐𝑒𝑛 (𝐺𝑟𝑜𝑢𝑝𝐴):  (𝑅𝑇 ≥ 𝑇𝑇𝐶) ∗  00% = {  (
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Where, 

Erf(): the error function encountered in integrating the normal distribution; 

 𝜇   and 𝜎  : parameters of reaction time distribution which is assumed to be a 

log-normal distribution; 

RT: reaction time; 

TTC: time-to-collision; 

The reaction time distribution (RTD) was determined as log-normal distribution in 

previous research which is addressed in 3.2. 

 

Figure 3.1 Group A and Group B (the RTD follows a lognormal distribution) 

In group B, drivers can then be subdivided into two groups: Group B-1 and Group B-2 

(Figure3.2). Suppose a conflict would happen in 3 seconds (TTC=3 seconds) and a driver 

reacts 1 second after the conflict sequence begins. The driver then has 2 seconds to perform the 

evasive maneuver and avoid the crash. During this time (i.e. 2 seconds), the driver breaks and 

his vehicle performs as expected and avoids the crash. This calculating process is given in the 

following section. In this case the driver belongs to Group B-1. However, if the vehicle fails to 

perform as expected, i.e. does not meet the required braking rate (RBR), the conflict will turn 

into a crash and the driver will be in Group B-2. RBR is subject to change according to the 

unique characteristics of conflicts and reaction time of drivers. That is, the RBR is actually a 

function of reaction time. The calculation process of RBR function is discussed in 3.3.Simply, 

when the maximum available braking rate (MADR) of the vehicle exceeds the required 
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braking rate, drivers are in B-1 group or verse versa. Therefore, we need to examine Maximum 

Available Braking Rate Distribution (MADRD) of cars in real world. Maximum Available 

Braking Rate for each car brand and type can be derived based on the MOV’IT database which 

records more than 500 hundred different types of automobiles. The distribution is inferred to be 

a truncated normal distribution with the mean and variance calculated by data in MOV’IT 

database. The lower and upper limits of MADR were also determined in order to avoid 

unrealistic MADR values. 

Of interest here is to define the percentage of B-2 in all drivers, since only possible 

crashes are considered:  

    𝑒𝑟𝑐𝑒𝑛 𝑎𝑔𝑒(𝐺𝑟𝑜𝑢𝑝 𝐵 ) =  𝑒𝑟𝑐𝑒𝑛 𝑎𝑔𝑒 (𝐺𝑟𝑜𝑢𝑝 𝐵) ∗  (𝑀𝐴𝐷𝑅 < 𝑅𝐵𝑅|)*100% 

  = ∫
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Where, 

μ     and σ    : the parameters of maximum braking rate distribution (MADRD) 

which is assumed to be a truncated normal distribution; 

𝐿     and 𝑈    : the lower limits and upper limits of MADR; 

x: the reaction time of a driver; 

y: the required braking rate (RBR) for a driver as a function of his/her reaction time (x); 

Φ(∙): the cumulative distribution function of the standard normal distribution. 

 

Figure 3.2 Group B-1 and Group B-2(the MADR follows a truncated normal 

distribution) 
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So the total percentage of Group A and Group B-2 is 
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The total percentage of Group A and Group B-2 represents how many drivers in all would 

be involved in a crash when a particular conflict occurs. The percentage can be transformed 

into the proposed Crash Propensity Index (CPI) that indicates the crash probability of a conflict. 

For example, if a conflict has percentage of 87%, its CPI is 0.87. The Aggregate Crash 

Propensity Index is the aggregation of CPI of the conflicts belonging to the same category. For 

example, if an intersection has two crossing conflicts, with one CPI=0.5 and another CPI=0.2, 

the ACPI for crossing conflicts at that intersection is 0.5+0.2=0.7.  

Notably, since the function is complicated, Monte-Carlo Integration methods will be 

introduced. In mathematics, Monte-Carlo integration method is an approach 

for integration by utilizing random numbers. This method is particularly useful for 

higher/complicated dimensional integrals. The basic concept of the Monte-Carol integration is 

randomly distributing points over a simple domain D’ (that is a superset of D) and counting the 

number(proportion) of points falling within D (Caflish, 1998). Consider the set D’, subset of 

D on which the multidimensional definite integral 

                                I = ∫ 𝑓(𝑥̅)
  

𝑑𝑥̅                              (3.4) 

is to be calculated with known volume of D′ 

                                 V = ∫ 𝑑𝑥̅
  

                                 (3.5) 

Then sampling points on D′: given N samples, x ̅,…,x ̅̅ ̅ ϵ D′, I can be approximated by 

                              I ≈ V
 

 
∑ 𝑓(x ̅)

 
                                 (3.6) 

In this study, Matlab will be utilized to conduct this random process (Appendix A). For 

every single conflict, the Monte-Carol Integration method takes one million repetitions 

(randomly assigning one-million points) to solve the integration (Equation 3.3) and derive its 

CPI. 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Numerical_quadrature
http://en.wikipedia.org/wiki/Pseudorandomness
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3.2 CPM PROCEDURES 

The development of CPM requires five steps: 

1. Identify the Reaction Time Distribution from real world data; 

2. Identify the Maximum Braking Distribution of various vehicle types as currently 

exist; 

3. Identify the situation to be evaluated and perform simulation runs in VISSIM to 

obtain the trajectory output file; 

4. Utilize SSAM to derive basic information of simulated traffic conflicts; 

5. Employ CPM model to analyze traffic information, transform every single 

conflict into the new CPI indicator, and then aggregate them to get ACPI. 

Step 1 and Step 2 are the fundamental parts of the process. The accuracy of distributions 

can affect the performance of the CPM model. In this research, the reaction time distribution is 

borrowed from existing research due to the limitation of data collection.  

 

Step 1. Identify the Reaction Time Distribution from real world data. 

The RTD was determined as log-normal distribution in previous research (Triggs and Harris, 

1982; Taoka, 1989; Summala, 2000). This distribution will not be retested here because it 

needs to be derived either by driving simulators or field observations, both of which cost a lot 

of time and effort. Therefore, the results in the previous research were reviewed and 

appropriate log-normal distributions are assigned to different conflict types. Green (2000) 

suggested that the log-normal distributions for crossing and lane change conflicts are set to be 

with mean 1.3 sec and standard deviation 0.6 sec for the unexpected reaction distribution for 

drivers. The reason is that there is no dedicated reaction time distribution identified for both 

types. For rear-end conflicts, the log-normal distribution is utilized with mean 0.92 sec and 

standard deviation 0.28 sec, documented as a car-following reaction distribution by Triggs and 

Harris (1982).  

 

Step 2. Identify the Maximum Braking Rate Distribution as currently exists.  

Cunto (2008) examined the Maximum Braking Rates Distribution (MADRD) and derived a 

truncated normal distribution with a mean of 8.5m/s2 and a standard deviation of 1.4 m/s2 for 

cars, by using MOV’IT database. The MOV’IT database contains the data of braking 
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performance for over five hundred different types of automobiles. Based on the data it provides, 

the maximum braking rate can be calculated by its braking distance (BD) from 100 km/h 

(27.8m/s) to 0 km/h (0 m/s) and MADR can be inferred. A 2011 update of the database revised 

these to a mean of 9.7 m/s2 and a standard deviation of 1.3 m/s2.  The lower and upper limits 

were determined as 4.2 m/s2 and 12.7 m/s2 as suggested by Cunto (2008), in order to avoid 

unrealistic MADR values (e.g. negative numbers). Figure.3.3 shows the part of data provided 

by this database. 

 

Figure 3.3  Maximum Available Braking Distance Database (Source: MOV’IT) 

 

Step 3. Identify the situation to be evaluated and perform simulation runs in VISSIM to obtain 

the trajectory output file. 

Figure 3.4 shows an example of VISSIM simulation. The models are to be developed using 

available data and several runs, i.e. repetitions of the model with different random numbers, 

should be conducted. The trajectory files for simulated vehicles are generated after the 

completion of the model runs.  
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Figure 3.4 The Run of a VISSIM model 

 

Step 4：Utilize SSAM to obtain basic information of simulated traffic conflicts 

SSAM is a tool analyzing trajectory files generated from traffic simulations. SSAM is able to 

provide various data items for each conflict including TTC, PET, and DeltaV. Before 

conducting the CPM process, these data need to be extracted from the SSAM output. First, 

conflicts having TTC with 0 seconds need to be excluded because those are situations where 

the simulation tool fails to “accurately and completely represent the physical possibility of a 

particular maneuver” (FHWA, 2008). Then, TTC, FirstVMinTTC (the velocity of the first 

vehicle when the conflict occurs), SecondVMinTTC (the velocity of the second vehicle when 

the conflict occurs), and FirstLength (the length of the first vehicle), need to be extracted from 

the output. The final report of SSAM notes: “TTC is the minimum time-to-collision value 

observed during the conflict. This estimate is based on the current location, speed, and future 

trajectory of two vehicles at a given instant. A TTC value is defined for each time step during 

the conflict event.” This definition basically follows the traditional definition of TTC 

according to the analysis on collision courses. 

With these data, additional important information regarding the vehicle positions and 

movements can be directly calculated. For example, there is a right angle crossing conflict.  
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Two vehicles are assumed to collide at the middle of the conflict area at TTC since there is no 

detailed information of projected collision position in SSAM With the known FirstVMinTTC 

and FirstLength, the time duration that first vehicle occupies the conflict point can be derived. 

𝑇 =
           ℎ

 ∗            
.                                                              (3.7) 

If a conflict has TTC=1.5s, FirstVMinTTC =8m/s, SecondVMinTTC=10m/s, 

FirstLength=5m, 

𝑇 =5/ (2*8) = 0.3125s;  

TTC+T=1.5+0.3125=1.8125s; 

Therefore, the second vehicle needs to take evasive action to ensure it will not reach the 

conflict point within 1.8125 s. If the vehicle arrives the conflict point after 1.8125 seconds, the 

crash could be avoided, while if it arrives within a shorter time, then there is a probability for a 

crash. The output of SSAM is shown in Figure 3.5.  

 

Figure 3.5 Surrogate Safety Assessment Model 

 

Step 5: Employ CPM model to analyze SSAM results, transform every single conflict into the 

new CPI indicator, and then aggregate them. 

With the known conflict information, reaction time distributions and maximum braking 

distributions, CPM can be applied to determine the crash probability of each conflict. The 

CPM is a Monte-Carlo process randomly assigning one driver (with a randomly selected 
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reaction time according to the RTD) and one vehicle (with a randomly selected maximum 

braking ability based on the MADRD) to a conflict as one possible scenario and repeats it for 

millions of times. The CPM counts all scenarios leading to a crash and gets a proportion of all 

scenarios, which is CPI. Noticeably, some extreme cases (such as a drunk driver with reaction 

time more than 5 seconds or an older car with very poor braking performance) are also possible 

to be included since this is an overall random process based on the log-normal distributions for 

RT and normal distributions for MADR. The Monte-Carlo process will not only generate most 

of normal cases but also produce some extreme cases (e.g. there are about 95% of normal cases 

lying within 2 standard deviations of the mean and 5% of extreme cases out of that range for 

normal distribution, according to basic statistical knowledge.) Therefore, the CPI looks into 

each conflict and provides a general knowledge about crash potential. The CPI for each 

conflict will be automatically computed and aggregated by Monte-Carlo method (Monte-Carlo 

Code is shown in Appendix A). The Monte-Carlo Methods randomly distribute points 

according to the RT and MADRD distributions and repeat this process for millions of times. 

The CPI of each conflict reveals the proportion of points finally falls into the restricted area 

which represents the area of the integration domain of Equation 3.3. 

3.3 REQUIRED BREAKING RATE 

This section presents how to determine the RBR for each conflict type based on SSAM outputs. 

In order to simplify the calculation process, some clarifications and assumptions need to be 

addressed here. Firstly, the vehicle that is projected to be reaching the conflict point first is 

named Vehicle 1 while the second one is called Vehicle 2. Secondly, two vehicles are assumed 

to collide at the middle of the conflict area at TTC (for crossing and lane change) since there is 

no detailed information of projected collision position in SSAM. Thirdly, Vehicle 1 is assumed 

to have constant speed during the conflict. Finally, Vehicle 2 decelerates by its maximum 

braking rate once the driver reacts. 

Conflicts can be classified into many types. The SSAM output categorizes conflicts into 

three major groups: crossing conflict, rear-end conflict and lane change conflict. Since 

conflicts vary by type, it is imperative to address the question whether two different conflict 

types would both lead to a crash when they have the same conflict attributes. It is very 

important to recognize that different types of conflicts need to be carefully examined and 

differentiated. Thus, the three types will be analyzed separately.  
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Notably for 3.3.1 to 3.3.3, li and wi are the length and width of the vehicle I, Vi is the speed 

of vehicle I, D is the distance; and 𝜃 is the conflict angle. 

3.3.1 Crossing Conflict 

Figure 3.6 illustrates an on-going crossing conflict. Vehicle 2 must decelerate in order not to 

reach the conflict point before Vehicle 1 completely clears that point. The total time that 

Vehicle 1 occupies the conflict point is:  t =
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. The critical condition for a 

crossing conflict is that the two are infinitely close to each other, which can be represented by 

the equation: 
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The left side of (3.8) represents the distance that Vehicle 2 will travel at the last moment 

when Vehicle 1 is leaving the conflict point while the right side shows the distance between 

the two vehicles when the conflict occurs. This equation demonstrates the condition that 

Vehicle 2 will just reach the conflict point while Vehicle 1 just leaves it. According to the 

critical condition, the required braking rate (RBR) can be derived as: 

𝑅𝐵𝑅(𝑐𝑟𝑜𝑠𝑠 𝑛𝑔) = 𝑎 ≥
  ∗ 

(    
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                                                     (3.9) 

If a*(TTC+t-x)>V2, this condition shows that actually Vehicle 2 has been travelling at a 

negative speed at some point, which is impossible to happen. So the critical condition turns to: 

when Vehicle 2 reaches the conflict point, it stops. The required braking rate (RBR) turns into: 

  ∗ 𝑥  
  

 
∗ (

  

  )    ∗ 𝑇𝑇𝐶                                                         (3.10) 

The left side of (3.10) represents the distance that Vehicle 2 will travel when it stops and the 

right side of shows the distance between the two when the conflict occurs. 

𝑅𝐵𝑅(𝑐𝑟𝑜𝑠𝑠 𝑛𝑔)′ = 𝑎 ≥
  

 ∗(     )
                                                    (3.11) 

If the maximum braking rate of the Vehicle 2 fulfilled the minimum required braking rate, 

the crash would be prevented. Since for each case only x (reaction time) is the variable, the 

required braking rate is the function of reaction time (x). 
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Figure 3.6 The process of a Crossing Conflict 

 

3.3.2 Rear-End Conflict 

Rear end conflicts are different from crossing conflicts because they have a series of conflict 

points instead of one single conflict point. Therefore, to prevent a rear end conflict, it is not 

enough to consider the initial conflict point. The critical condition of rear-end conflict is that 

two vehicles are infinitely close to each other while the Vehicle 2 behind slows down its speed 

to the same as that of Vehicle 1. 

Figure 3.7 Shows the way rear-end conflict could take place. Vehicle 2 (following) and 

Vehicle 1 (leading) are in the same lane with distance headway V2*TTC. First of all, Vehicle 2 

should decelerate in order not to reach the conflict point when Vehicle 1 occupies the conflict 

point. Moreover, if Vehicle 2 still keeps a larger speed than Vehicle 1 has after Vehicle 1 clears 

the initial conflict point, the rear-end crash is still possible to happen. Therefore, the critical 

condition is that when Vehicle 2 reduces its speed to be the same as Vehicle 1 and therefore, 

their distance headway reduces to zero. Suppose the reaction time is x and the required braking 

rate is α The time is t = x  
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⇒𝑅𝐵𝑅(𝑟𝑒𝑎𝑟  𝑒𝑛𝑑) = 𝑎 ≥
((     )

 ∗(     )
                                                      (3.12) 

Where, 

D1 and D2 : the distances which Vehicle 1 and Vehicle 2 travels when the critical 

condition happens;  

 D1-2: the distance between Vehicle 1 and Vehicle 2 when the conflict occurs. 

The minimum required braking rate is thus 
((     )

 ∗(     )
. This is also a function of reaction 

time x as it was the case for the crossing conflict. 

 

Figure 3.7 The process of a Rear-End Conflict 

 

3.3.3 Lane Change Conflict 

Lane change conflict may lead to either side-swipe crash or rear-end crash. Thus, it needs to be 

divided into two sub-conflicts: potential side-swipe conflict and potential rear-end conflict. 

Figure 3.8 shows the process of a lane change conflict. If two vehicles retain their velocity, the 

conflict will turn into a side-swipe crash at time TTC with angle θ. To avoid the side-swipe 

crash, Vehicle 2 needs to decelerate. Suppose Vehicle 1 keep its speed and the constant turning 

rate. At time T, when the conflict angle between the two vehicles turns to 0o, the sideswipe 

conflict ends and the rear-end conflict begins.  
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Figure 3.8 The Process of A Lane Change Conflict 

During the lane change process, Vehicle 1 keeps its speed and constant turning rate. 

Figure 3.9 shows the changes of the longitudinal component of velocity and the lateral 

component of velocity during the lane changes conflict process. To calculate the turning time, 

the longitudinal distance is divided by the longitudinal velocity component. 

 

Figure 3.9 The Change of Lateral/Longitudinal Speed during A Lane Change Conflict 

The time that Vehicle 1 uses to complete the lane change is t = (
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The critical condition for lane change crash (sideswipe) is that Vehicle 2 and Vehicle 1 are 

infinitely close at the moment when Vehicle 1 completes the lane changing movement. 
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the lane change. 
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The critical condition for rear-end crash is that the Vehicle 2 reduces its speed to the same 

as Vehicle 1 when they are infinitely close. D 
  V ∗ TTC  D  D ′  

(     )

 
 

Where D2’ is the distance travelled by Vehicle 2 at the time Vehicle 2 decelerates its speed 

to the same as Vehicle 1; 

D1’ is the distance travelled by Vehicle 1 at the time Vehicle 2 decelerates its speed to the 

same as Vehicle 1; 

The required braking rate for this condition is: 
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Thus, if the MADR<α, the lane change conflict would happen; if the MARD> max(α’, α ), 

no crash would happen; α<MADR<α’, the rear-end crash would happen. Both α and α’ are the 

function of reaction time(x). 

3.4 EXAMPLE APPLICATION OF ACPI DERIVIATION 

The following example demonstrates the process of transforming a single rear-end conflict into 

CPI applying the process described in the previous sections (3.2 and 3.3). 

 Step 1. Identify the Reaction Time Distribution from real world data 

In order to analyze a rear-end conflict, the lognormal distribution for car-following 

reaction time distribution will be used with mean 0.93s and standard deviation 0.28s (see 3.2).  

Step 2: Identify the Maximum Braking Distribution of various vehicle types as 

currently exists 

The MADR has been addressed in 3.2 as a normal distribution with a mean of 9.7 m/s2 

and a standard deviation of 1.3 m/s2. 

Step 3: Identify the situation to be evaluated and perform simulation runs in 

VISSIM to obtain the trajectory output file 

This step is used to conduct the simulation runs for a case study which requires the 

establishment and calibration of VISSIM models. Hence, Step 3 will not be discussed here but 

in the next chapters where a series of validation efforts are presented and this step is shown as a 

part of it. 
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Step 4:  Utilize SSAM to derive basic information of simulated traffic conflicts 

A rear-end conflict (conflict A) extracted from SSAM has TTC=0.5s, FirstVMinTTC=8 

m/s, and SecondVMinTTC=7.5m/s. With the known data items, the following parameters can 

be derived: 

V1=8m/s; V2=7.5m/s; and TTC=0.5s. 

Notably, different parameters may be needed to derive required braking rate for different 

conflict types, according to 3.3. 

Step 5: Employ CPM model to analyze traffic information, transform every single 

conflict into the new CPI indicator, and then aggregate them to get ACPI. 

Those parameters will be input into CPM model. For Group A which has all drivers 

unable to react before the collision, the percentage can be calculated by equation (3.1): 

          𝑒𝑟𝑐𝑒𝑛 𝑎𝑔𝑒(𝐺𝑟𝑜𝑢𝑝 𝐴):  (𝑅𝑇 >= 𝑇𝑇𝐶) ∗  00% = {  (
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])} ∗

 00%=50% 

This number indicates that 50 percent of drivers (Group A) are having a reaction time 

greater than 0.5s and they will be certainly involved in a crash without an evasive reaction.  

For Group B, which has drivers taking evasive actions, the RBR can be written as the 

following with known MaxTTC, V(SecondVMinTTC) and L based on equation (3.12):  

RBR (x) =a ≥
((     )

 ∗(     )
  

= 0.25/ (0.5-x) 

Here, x represents the reaction time variable. Then, the percentage of Group B-2, in 

which the RBR exceeds the braking capabilities, can be calculated based on equation (3.2):   
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𝑑𝑥 * 100%= 41.71%                           

Therefore, total percentage of Group A and Group B-2 is 50%+41.71%=91.71%. This 

percentage indicates that approximately 92% drivers will be involved in the crash if this 

conflict occurs. In this case, the CPI of this rear-end conflict is 0.9171 meaning that 91.71% of 

points finally falls within the restricted area according to Monte-Carol method. 
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If a simulation-based case study generate three rear-end conflicts and they have CPI 0.42, 

0.64, and 0.12, the rear-end ACPI is the aggregation of CPI, that is 0.42+0.64+0.12=1.18. 

3.5 CPI AND TTC 

Time and speed are considered as the two basic factors contributing to the crash probability of 

conflicts. However, most of the previously used time- or speed-based conflict indices are only 

associated with time or speed. This can generate bias because only one factor is considered 

while the influence of the other is unknown and cannot be interpreted properly.  

One can anticipate that a crossing conflict and a lane change conflict with the same 

Time-to-Collision (TTC) are not equally dangerous. However, if using a time-based indicator, 

the difference between the two conflicts cannot be detected, since they have the same TTC. 

On the other hand, one can more easily estimate that two conflicts are equally dangerous if they 

have the same speed but different TTC. The basic concern here is that the level of 

dangerousness of conflicts varies with both TTC values and speeds and therefore, time and 

speed both play very important roles in conflicts. Hence, a good conflict indicator should 

consider the impacts of the two basic factors at the same time. 

To better demonstrate the point that a good conflict indicator needs to be associated with 

both time and speed in a proper manner, a simple example is discussed below.  

The example deals with comparing two rear-end conflicts with the same TTC and 

different speeds in order to determine the level of dangerousness of each conflict.  For conflict 

A, the first vehicle drives at 10 m/s while the second vehicle drives at 20 m/s. For conflict B, 

the first vehicle has a 15m/s speed while the second vehicle has a 20m/s speed. The TTC for 

both conflicts are 1.5 seconds.  

A simple examination of the TTC value will indicate that the two conflicts are exactly the 

same in regards to crash probability. However, the application of CPM indicates that their CPIs 

(based on equation 3.3) are different: 

Conflict A: CPIa =0.3666 

Conflict B: CPIb =0.1285 

According to this, conflict A has a greater probability to become a crash because 36.66 

percent of drivers will have the potential to be involved in a crash without an evasive action as 

compared to only 12.85 for conflict B.  This indicates that even though both conflicts have the 
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same TTC, their likelihood to become a crash is different given their reaction of the drivers and 

the braking abilities of the vehicles. 

The main question in this case is whether the results based on CPI are more reasonable 

than those based on TTC. To examine this, the required braking rate for both conflicts can be 

calculated based on the Equation (3.3), assuming that the reaction time for the following 

vehicles in both conflicts is 1s and that all vehicles have a 5m length: 

For conflict A: RBR= (20-10) ^2/ (2*(20*1.5+10*1-5-20*1) =3.33m/s2 

For conflict B: RBR= (20-15) ^2/ (2*(20*1.5+15*1-5-20*1) =0.625 m/s2

 

These values indicate that for the two cases, the required braking rate is different. One can 

tell that the conflict A is more dangerous than the conflict B for it requires a greater emergency 

braking rate and therefore it has a larger probability to exceed the braking capabilities of the 

vehicle. This example shows that although two conflicts have the same TTC, they have 

different levels of turning into a crash: a fact that TTC alone could not detect.  Compared to 

TTC, CPI considers multiple factors such as time, speed, reaction time and braking rate, which 

at least identify the safety differences that TTC cannot detect. 

According to the example demonstrated above, two conflicts with the same TTC can have 

different CPI. CPI is expected to show the crash probability of a conflict. Since TTC is a 

frequently used indicator (Archer, 2005) to explain the time factor of a conflict and CPI is the 

proposed indicator, a question arises as to whether there are any linkages between the two. 

A simple four-leg signalized intersection (permitted left turn) was built in VISSIM model 

with all default parameters. This model is simulated with twenty-six repetitions with random 

seeds to gather sufficient traffic conflicts (at least more than 1000 for each conflict type). 

Conflicts are all analyzed by CPM in order to get the CPI and the CPI-versus-TTC graphs for 

each conflict type were developed. Figures 3.10, 3.11 and 3.12 show the CPI versus TTC for 

crossing, rear-end and lane change conflict types.  
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Figure 3.10 CPI versus TTC for Crossing Conflicts 

 

Figure 3.11 CPI versus TTC for Rear-End Conflicts 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

C
P

I 

TTC(sec) 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

C
P

I 

TTC(sec) 



- 36 - 

 

 

Figure 3.12 CPI versus TTC for Lane Change Conflicts 

In general, the CPI decreases with the increase of TTC for all conflict types. The common 

knowledge is that higher TTC lead to lower crash probability. Traditional conflict studies 

extensively utilized TTC or TTC-based indicators to measure safety. A TTC threshold of 1.5 

seconds was mostly applied in previous research (Archer, 2005, FHWA, 2008; Ozbay, et al. 

2008). In the final report of SSAM, TTC of 1.5 seconds was set as a criterion to select 

dangerous simulated conflicts (FHWA 2008). The total count of the selected conflicts is used as 

a surrogate indicator that is expected to identify safety. However, the surrogates based on TTC 

selection criteria in simulation-based studies appeared to be unable to explain the real safety in 

a reliable way as it was noted by the FHWA that the count of rear-end conflicts are always 

much more than other conflict types, leading to unreasonable results compared to common 

knowledge (FHWA, 2008). A lot of identified rear-end conflicts with low TTC are actually 

low-speed events according to SSAM. Drivers may react more quickly during low-speed 

following events in the real world because they are expected to follow others with frequent 

braking actions, compared to those unexpected crossing conflicts. Therefore, a large number of 

rear-end conflicts cannot explain the true safety by neglecting other important factors such as 

speed and reaction time.  

However, the CPI is a compound indicator including all those factors. The CPI versus 

TTC graphs could easily demonstrate that CPI can detect safety variances among different 

conflict types at the same TTC. According to CPI versus TTC graphs, rear-end conflicts could 
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be safer than other conflict types are, under the same TTC value. For instance, a crossing 

conflict with TTC=1.5 seconds has CPI ranging from 0.29 to 0.82, a rear-end conflict with the 

same TTC has a CPI range from 0.03 to 0.20 and a lane change conflict has CPI from 0.29 to 

0.86. It is apparent that, rear-end conflicts with TTC=1.5 seconds could be safer than other 

conflict types for the minimum CPI of rear-end types is smaller. In general, the CPI of 

TTC=1.5 seconds has a broad range indicating that a conflict with TTC=1.5 seconds can be 

either safe (CPI=0.03 for a rear-end conflict) or very dangerous (CPI= 0.82 for a crossing 

conflict). All the variations are caused by the uncertainties of reaction time and braking 

limitations, which are very important but are not considered in TTC. Therefore, TTC has 

problem in correctly recognizing crash potential as a simple criteria. 

Although these graphs cannot conclusively indicate that CPI is the most appropriate 

safety surrogate for simulation-based studies, it shows an advantage over TTC and thus has the 

potential to become a more reliable surrogate than TTC-based indicators.  

3.6 SUMMARY 

In this chapter, a surrogate indicator called CPI is introduced with the purpose of determining 

the crash probability of simulated conflicts. Due to the variances of drivers and vehicles in real 

world, a number of different conditions could happen when a certain conflict occurs. To 

explore the uncertainties, two important distributions are introduced: reaction time (RTD) and 

maximum braking (MADRD). The RTD is utilized to address that different drivers could have 

different reaction time facing the same condition, due to complicated  internal and external 

factors. The MADRD is used to demonstrate that vehicles have various braking performances, 

which can be significantly influence the outcome of a conflict. By applying Monte-Carlo 

Integration Method, a conflict can be analyzed in millions of possible scenarios by randomly 

assigning combinations of drivers (each has different reaction time based on RTD) and 

vehicles (each has various braking limitations based on MADRD). The CPI is derived from 

this process, indicating that how many scenarios of all can contribute to a crash.  

An issue to be noted here is that this process does use a single TTC value to develop the 

CPI and the TTC for each potential conflict is calculated with the process described above. 

This is a significant departure from past research and provides a significant advantage over 

other efforts, since unique estimates are obtained for each specific conflict as obtained through 

simulation.  
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Moreover, the CPI is compared to TTC to show its capability of differentiating between 

conflict types with same TTC and allows for a better identification of potential crashes. The 

aggregation of CPI for each conflict type, i.e. ACPI, can be used to determine the total safety of 

a particular conflict type. It is expected that the ACPI could be directly linked to real crash 

frequency for each crash type.  
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4 SIMULATION-BASED COMPARATIVE ANALYSIS  

4.1 OVERVIEW 

The objective of this chapter is to evaluate and examine the capability of the ACPI in 

differentiating the safety level on different traffic conditions. In this chapter, three theoretical 

validation efforts are undertaken: the safety comparison between intersections with protected 

left turns and with permitted left turns; the safety comparison between intersections with and 

without exclus78ive right turn lanes; and the safety comparison between intersections with and 

without exclusive left turn lanes. The safety implication of those design scenarios have been 

analyzed based on field data and explicitly addressed in Highway Safety Manual (HSM) 

(AASHTO, 2010). Both proposed CPM and traditional Traffic Conflict Techniques methods 

are applied to determine the ACPI and TTC-based conflict indicator for multiple traffic 

scenarios/treatments. The ACPI and TTC-based indicator (TTC<1.5seconds) are compared 

with the predicated crash frequencies that are based on the HSM procedures. It should be 

noted that in each validation the geometry of the intersections evaluated are different but this 

does affect the conclusion, since each evaluation is based on the same simulated intersection 

that was used for the estimation of the ACPI, the TTC numbers, and the crash modification 

factor (CMF) analysis. Moreover, the HSM does not consider the number of approach lanes in 

their CMF and safety performance function (SPF) and therefore, the variation in the number of 

approach lanes used here is not considered as having any effect on the results. 

4.2 SAFETY COMPARISON BETWEEN PROTECTED/PERMITTED 

LEFT TURNS 

The CMF in the HSM for protected left turn per lane is 0.93 versus 1.00 for permitted left turn 

(AASHTO, 2010). Based on HSM, protected left turn is considered to be safer in terms of 

crash data. To examine and evaluate this assumption, a VISSIM model of a signalized 

intersection is developed. The geometry is one through lane and one dedicated left turn lane for 

each direction on the major road approaches and one shared lane for each direction on minor 

road approaches. Major street volumes range from 400 to 1000 vehicles per hour per direction 

with 100 vehicles per hour increments (800 to 2000 for both directions) with 30% left turn and 

15% right turn. Minor street volumes are 150, 250 and 350 for each direction (300, 500, and 
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700 for both directions) with 15% left turn and 15% right turn. A total of 21 combinations (7 

for major streets and 3 for minor streets) were examined. Each combination is simulated with 

both protected left turn phase and permitted left turn phase for ten repetitions. All signal timing 

plans are calculated based on the Highway Capacity Manual (HCM) procedures (TRB, 2000). 

Then, SSAM is used to extract conflict information and Matlab is utilized to generate the CPI 

for each conflict and ACPI for each combination. These ACPI will be compared with 

traditional TTC-based conflict indicator and predicted annual crash frequency (based on the 

SPF/CMF in HSM). The base SPF for urban/rural signalized intersections is: 

   D=CMF*e(-C+A*LN (ADT1) +B*LN (ADT2))                                                (4.1) 

Where, 

D: the annual crash frequency; 

C, A and B: coefficients; 

CMF: the crash modification factor; 

ADT1 and ADT2: average daily traffic volumes for major approaches and minor 

approaches, respectively. 

 Since two major approaches have a protected left turn phase, the CMF for protected left 

turn is 0.93*0.93=0.88. The traditional TTC-based conflict indicator represents the total 

number of conflicts under a particular TTC threshold. The TTC threshold was suggested to be 

1.5 seconds in previous research and this is the value used here (Sayed, 1994; Hayward, 1972; 

Minderhoud and Bovy, 2001; FHWA, 2008). The derivation of this TTC-based conflict 

indicator is by counting the total number of simulated conflicts with the certain TTC 

threshold (TTC=1.5 seconds) from the SSAM outputs. In this comparative analysis, the 

traditional TTC-based conflict indicator is compared with ACPI. 

Table 4.1 shows the ACPI for each combination. Notably, the ratios between protected 

and permitted for rear-end conflict type increase drastically with the increment of traffic 

volume. The similar results can be also found in the final report of SSAM (FHWA, 2008) and 

the default driver behavior parameters of the simulation tools are considered as a possible 

reason of showing the high rates of the rear-end type for protected left turn design



 

  

 

- 4
1

 - 

Table 4.1 ACPI for Protected/Permitted Left Turn Volume Combinations by Conflict Type 

 

1. Prot=Protected Left Turn; Perm=permitted Left turn; 

2. RE=Rear-End conflict; LC=Lane Change conflict; 

3. Ratio= ACPI (pro)/ACPI (Per). 

Minor V 

 

Major V 

300   500  700 

       Total Crossing RE LC  Total Crossing RE LC  Total Crossing RE LC 

800 Prot 4.39  0.49  2.26  1.63   7.26  0.55  3.45  3.27   8.91  0.28  6.17  2.47  

Perm 6.13  1.44  2.63  2.07   7.53  1.24  3.52  2.77   9.78  1.60  4.90  3.27  

Ratio 0.72  0.34  0.86  0.79   0.96  0.44  0.98  1.18   0.91  0.17  1.26  0.75  

1000 Prot 6.30  0.43  3.52  2.35   8.15  0.61  4.84  2.70   12.37  1.00  8.17  3.20  

Perm 6.75  1.59  2.60  2.56   10.84  3.34  4.51  3.00   13.07  3.46  6.45  3.15  

Ratio 0.93  0.27  1.35  0.92   0.75  0.18  1.07  0.90   0.95  0.29  1.27  1.02  

1200 Prot 8.93  0.37  5.89  2.67   11.14  0.52  6.53  4.10   17.40  1.82  11.56  4.02  

Perm 17.17  6.28  6.33  4.57   14.92  4.72  5.69  4.50   20.96  6.33  9.56  5.08  

Ratio 0.52  0.06  0.93  0.58   0.75  0.11  1.15  0.91   0.83  0.29  1.21  0.79  

1400 Prot 10.77  0.67  6.56  3.55   14.99  0.79  10.18  4.02   22.02  1.39  15.90  4.72  

Perm 14.17  4.96  4.90  4.32   21.59  6.22  9.00  6.38   25.02  7.27  11.54  6.21  

Ratio 0.76  0.14  1.34  0.82   0.69  0.13  1.13  0.63   0.88  0.19  1.38  0.76  

1600 Prot 14.28  1.14  9.29  3.85   19.90  0.57  14.88  4.45   31.74  1.20  25.27  5.28  

Perm 21.00  7.97  6.52  6.50   25.23  10.07  8.68  6.48   32.81  11.59  14.16  7.06  

Ratio 0.68  0.14  1.42  0.59   0.79  0.06  1.71  0.69   1.09  0.10  2.03  0.82  

1800 Prot 17.63  0.80  12.11  4.72   31.00  0.70  23.81  6.49   49.35  0.90  41.72  0.67  

Perm 25.34  9.96  7.75  7.63   34.24  11.41  13.44  9.39   43.34  14.22  19.48  9.63  

Ratio 0.70  0.08  1.56  0.62   0.91  0.06  1.77  0.69   1.14  0.06  2.14  0.07  

2000 Prot 30.05  0.53  23.11  6.41   45.05  0.47  36.46  8.11   61.14  0.00  53.80  7.34  

Perm 31.85  12.31  10.88  8.67   43.30  14.55  18.81  9.95   67.66  17.80  35.05  14.81  

Ratio 0.94  0.04  2.12  0.74   1.04  0.03  1.94  0.82   0.90  0.00  1.54  0.50  
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4.2.1 Ratio Comparison 

Table 4.2 demonstrates the safety ratio (protected versus permitted) based on ACPI and 

traditional TTC-based conflict indicator. The safety ratio of ACPI ranges from 0.52 to 1.13 

with mean 0.85, median 0.88 and standard deviation 0.14. The safety ratio of traditional 

TTC-based conflict indicator ranges from 0.77 to 1.35 with mean = 1.1, median = 1.13 and 

standard deviation=0.14. The data indicates that the ratio based on ACPI is more frequently 

close to the CMF value of 0.88 which is obtained from the HSM (Notably. 0.88 is also included 

in the 90% significance interval of ACPI ratio). Although the ratios based on ACPI are also 

larger than 1 for the two combinations (1800/700 and 2000/500), it should be noted that these 

two are at capacity (volume/capacity=0.99) and in such conditions traffic is possible to 

becomes unstable and congestion conditions may skew the results. On the contrary, most of 

the traditional TTC-based conflict values have mean and median larger than 1 indicating 

protected left turns would be more dangerous than permitted left turns which is opposite to the 

anticipated safety performance based on the HSM values. Therefore, ACPI has a performance 

that follows the anticipated HSM performance according to the ratio comparison. 
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Table 4.2 Ratio Comparison between ACPI, TTC-Based (<1.5s), and Predicted Crash Frequency (HSM2010) 

 

1. S.D=standard deviation; 

2. Ratio=prot/perm. 

Total    ACPI     TTC-Based (<1.5s) HSM 2010     

Major Minor  pro per Ratio pro per Ratio pro per Ratio 

800.00  300.00   4.39  6.13  0.72  11.6 12.1 0.96  1.32  1.50  0.88  

  500.00   7.26  7.53  0.96  17.1 16.8 1.02  1.48  1.68  0.88  

  700.00   8.91  9.78  0.91  25 21.3 1.17  1.60  1.82  0.88  

1000.00  300.00   6.30  6.75  0.93  16 14.2 1.13  1.67  1.90  0.88  

  500.00   8.15  10.84  0.75  22.9 23.4 0.98  1.88  2.14  0.88  

  700.00   12.37  13.07  0.95  35.2 29.7 1.19  2.03  2.31  0.88  

1200.00  300.00   8.93  17.17  0.52  24.9 32.2 0.77  2.03  2.31  0.88  

  500.00   11.14  14.92  0.75  27.5 28.9 0.95  2.28  2.60  0.88  

  700.00   17.40  20.96  0.83  44.8 44.8 1.00  2.47  2.81  0.88  

1400.00  300.00   10.77  14.17  0.76  30.2 22.34 1.35  2.40  2.72  0.88  

  500.00   14.99  21.59  0.69  40.8 41.6 0.98  2.69  3.06  0.88  

  700.00   22.02  25.02  0.88  59.7 51.7 1.15  2.91  3.31  0.88  

1600.00  300.00   14.28  21.00  0.68  39.6 35 1.13  2.76  3.14  0.88  

  500.00   19.90  25.23  0.79  53.4 46.4 1.15  3.11  3.53  0.88  

  700.00   31.74  32.81  0.97  80.5 65.9 1.22  3.36  3.82  0.88  

1800.00  300.00   17.63  25.34  0.70  45.1 42.1 1.07  3.13  3.56  0.88  

  500.00   31.00  34.24  0.91  71.1 64.6 1.10  3.53  4.01  0.88  

  700.00   49.35  43.34  1.14  110.4 85.2 1.30  3.81  4.33  0.88  

2000.00  300.00   30.05  31.85  0.94  69.3 54.9 1.26  3.51  3.99  0.88  

  500.00   45.05  43.30  1.04  98.8 79.4 1.24  3.95  4.48  0.88  

  700.00   61.14 67.66  0.90  125.6 133.6 0.94  4.26  4.85  0.88  

Statistics   Mean=0.85,Median=0.88, s.d.=0.14 Mean=1.1,Median=1.13, s.d.=0.14 Mean=0.88 
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4.2.2 Rank Comparison 

Safety study often requires safety comparison among various transportation facilities and 

traffic treatments. Hence, a qualified surrogate indicator is also required to be able to 

differentiate relative safety in a manner similar to that of real crashes. 

Rank tests were introduced to examine reliability of surrogate indicators in 

differentiating safety variance among different traffic treatments in the final report of SSAM 

(FHWA, 2008). Rank tests are nonparametric statistical tests which determine the 

associations between two variables. When the relationship between two variables is not linear, 

the relationship can sometimes be transformed into a linear one by ranking each item and 

using ranks instead of actual values. The advantage of the rank test is that no assumptions 

about the nature of the populations are required. 

Here, two commonly used rank tests are performed to compare ACPI with traditional 

TTC-based indicator: Spearman Rank test and Kendall Tau_b Rank test.  

The Spearman rank correlation coefficient (ρs) can be calculated as: 

  ρ =   
 ∑  

 

 (    )
                                                            (4.2) 

Where, 

   𝑑 : The differences between the rank based on HSM and the rank based on ACPI/TTC 

for the ith volume combination; 

n: total number of volume combinations. 

The Kendall Tau_b rank correlation coefficient can be derived as: 

  τ =
(                          ) (                          )

 /  (   )
                       (4.3)  

Where, 

N: total number of pairs; 

A Concordant pair means that rank order based on ACPI or TTC-based is consistent with 

that based on HSM for a pair of volume combinations. A discordant pair indicates that the rank 

order based on ACPI/TTC-based is inconsistent with that based on HSM for a pair of volume 

combinations. A correlation coefficient with a score of 1.0 indicates a perfect correlation 

between the tested two variables and a score of 0 means no correlation.  

Table 4.3 shows the rank comparison between ACPI, traditional TTC-based indicator and 

predicted crash frequency. The pair ranks based on ACPI perform well in determining safer 
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combinations (19 of 21) between protected/permitted left turns except for 1800/700 (v/c=0.99 

for protected left turn) and 2000/500 (v/c=0.99 for protected left turn). Those two 

combinations are a capacity and it is possible that in such conditions traffic becomes unstable 

and congestion conditions may skew the results. In all, ACPI shows its capabilities to 

determine safety between protected/permitted left turns. 

Ranks based on TTC<1.5s only perform well in 6 pairs of 21 combinations (“+” indicates 

protected has higher rank (more conflicts) than permitted for that volume combination).This 

indicates that the traditional TTC-based conflict indicator is far from accurate in some volume 

scenarios due to the failure of deciding which conditions are more “dangerous” than others. 

The two rank tests also give the same result. The spearman rank correlation between 

ACPI and predicted crash frequency is 0.929, which is larger than 0.802 between TTC-based 

indicator and predicted crash frequency (HSM). The Kendall Tau-b rank correlation between 

ACPI and real crash frequency is 0.849 which is higher than 0.758 for TTC-based indicator. In 

all, CPM model outperforms the traditional TTC in terms of rank comparison results. 
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Table 4.3 Ratio Comparison between ACPI, TTC-Based (TTC<1.5s), and Predicted Crash Frequency (HSM 2010) 

1. “-“indicates protected left turn is safer than permitted left turn in the same volume combination; 

2. “+” indicates permitted left turn is safer than protected left turn in the same volume combination; 

3. R indicates the Tau_b correlation and R’ indicates the Spearman correlation; 

4. Red colors indicate those ACPI or TTC fails to correctly analyze according to predicted crash frequency;

Total  ACPI TTC-Based (TTC<1.5s) Predicted Crash (HSM 2010) 

  prot R perm R Sign prot R perm R Sign prot R perm R Sign 

800.00  300.00  4.39  1 6.13  2 - 11.6 

17.1 
1 12.1 2 - 1.32  1 1.50  3 - 

 500.00  7.26  5 7.53  6 - 6 16.8 5 + 1.48  2 1.68  6 - 

 700.00  8.91  8 9.78  10 - 25 12 21.3 7 + 1.60  4 1.82  7 - 

1000.00  300.00  6.30  3 6.75  4 - 16 4 14.2 3 + 1.67  5 1.90  9 - 

 500.00  8.15  7 10.84  12 - 22.9 9 23.4 10 - 1.88  8 2.14  12 - 

 700.00  12.37  14 13.07  15 - 35.2 19 29.7 15 + 2.03  10 2.31  14 - 

1200.00  300.00  8.93  9 17.17  20 - 24.9 11 32.2 17 - 2.03  11 2.31  15 - 

 500.00  11.14  13 14.92  18 - 27.5 13 28.9 14 - 2.28  13 2.60  18 - 

 700.00  17.40  21 20.96  24 - 44.8 24 44.8 24 0 2.47  17 2.81  22 - 

1400.00  300.00  10.77  11 14.17  16 - 30.2 16 22.34 8 + 2.40  16 2.72  20 - 

 500.00  14.99  19 21.59  26 - 40.8 21 41.6 22 - 2.69  19 3.06  24 - 

 700.00  22.02  27 25.02  28 - 59.7 31 51.7 28 + 2.91  23 3.31  28 - 

1600.00  300.00  14.28  17 21.00  25 - 39.6 20 35 18 + 2.76  21 3.14  27 - 

 500.00  19.90  23 25.23  29 - 53.4 29 46.4 27 + 3.11  25 3.53  32 - 

 700.00  31.74  36 32.81  34 + 80.5 37 65.9 33 + 3.36  29 3.82  35 - 

1800.00  300.00  17.63  22 25.34  30 - 45.1 26 42.1 23 + 3.13  26 3.56  33 - 

 500.00  31.00  32 34.24  35 - 71.1 35 64.6 32 + 3.53  31 4.01  38 - 

 700.00  49.35  40 43.34  38 + 110.4 40 85.2 38 + 3.81  34 4.33  40 - 

2000.00  300.00  30.05  31 31.85  33 - 69.3 34 54.9 30 + 3.51  30 3.99  37 - 

 500.00  45.05  39 43.30  37 + 98.8 39 79.4 36 + 3.95  36 4.48  41 - 

 700.00  85.13  41 67.66  42 - 125.6 41 133.6 42 - 4.26  39 4.85  42 - 

R=0.849 R’=0.929 R=0.758 R’=0.802       
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4.3 SAFETY COMPARISON BETWEEN INTERSECTIONS 

WITH/WITHOUT RIGHT TURN LANES 

Based on the HSM, the CMF for an intersection approach without right turn lanes on the major 

roads (NRB) is 1.00 versus 0.83 for with right turn lanes on both approaches of the major road 

(WRB). Therefore, WRB is believed to be safer in terms of historical crash data. A signalized 

intersection was built in VISSIM with two through lanes and one dedicated right turn lanes per 

approach on the major roads and one shared lane for each direction on minor roads. Left turn 

traffic and through traffic share the inside lane. Major street volumes range from 400 to 1200 

vehicles per hour per direction with 200 vehicles per hour increments (800 to 2000 for both 

directions). Both left turn percentage and right turn percentage are set as 25%. Minor street 

volumes are 150, 300 and 450 for each direction (300, 500, and 700 for both directions) with 10% 

left turn and 10% right turn. A total of 15 combinations are used in this analysis. 

Each combination is conducted one-hour simulation for both NRB and WRB for ten 

repetitions. All signal timing plans are calculated based on HCM procedures (TRB, 2000). 

Then, SSAM is used to filter out all conflicts for each combination and Matlab is used to apply 

CPM model to generate CPI for each conflict and ACPI for each combination.  

Table 4.4 gives the ACPI for each combination. These ACPI will be compared with 

traditional TTC-based conflict indicator (TTC<1.5s). 

The calculation process of annual crash frequency is based on HSM. The base SPF 

function (Equation 4.1) has been discussed in 4.2.For intersection with right turning lanes on 

major approaches under no specific condition (no volume constrains), the CMF is 0.83. 
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Table 4.4 ACPI for With/Without Right Turn Volume Combinations by Conflict Type 

    Minor Volume 

 

Major Volume 

300    600    900    

Total CS RE LC Total CS RE LC Total CS RE LC 

800            NRB 9.94  3.91  3.46  2.57  13.32  3.57  5.90  3.86  17.56  4.58  8.52  4.46   

 WRB 7.31  1.02  3.43  2.85  10.36  0.96  5.57  3.83  15.71  1.14  9.81  4.75  

 Ratio 1.36  3.82  1.01  0.90  1.29  3.72  1.06  1.01  1.12  4.00 0.87  0.94  

1200 NRB 13.08  3.52  5.52  4.05  19.14  4.22  8.79  6.13  28.33  5.28  14.57  8.48  

 WRB 12.17  1.95  5.04  5.18  15.98  2.66  7.49  5.82  23.93  3.12  12.17  8.65  

 Ratio 1.07  1.80  1.09  0.78  1.20  1.59  1.17  1.05  1.18  1.70  1.20  0.98  

1600 NRB 21.50  5.08  8.59  7.83  31.81  7.01  15.12  9.67  47.15  7.06  28.75  11.34  

 WRB 20.56  3.78  8.37  8.41  26.05  3.61  12.85  9.59  42.65  7.63  24.37  10.65  

 Ratio 1.05  1.34  1.03  0.93  1.22  1.94  1.18  1.01  1.11  0.93  1.18  1.06  

2000 NRB 32.39  32.39  32.39  32.39  32.39  32.39  32.39  32.39  32.39  32.39  32.39  32.39  

 WRB 28.20  5.58  11.66  10.96  45.36  9.87  21.14  14.34  68.03  10.65  42.62  14.76  

 Ratio 1.15  5.80  2.78  2.95  0.71  3.28  1.53  2.26  0.48  3.04  0.76  2.19  

2400 NRB 58.40  10.71  30.18  17.51  113.64  15.56  78.16  19.91  246.78  14.74  209.29  22.75  

 WRB 44.73  9.30  18.43  17.00  63.69  12.94  31.01  19.74  125.08  14.03  92.94  18.10  

 Ratio 1.31  1.15  1.64  1.03  1.78  1.20  2.52  1.01  1.97  1.05  2.25  1.26  

1. NRB indicates scenarios without right turn lanes; 

2. WRB indicates scenarios with right turn lanes; 

3. RE=Rear-End conflicts; LC=Lane Change conflicts; CS=Crossing conflicts. 
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4.3.1 Ratio Comparison 

Table 4.5 demonstrates the safety ratio (WRB versus NRB) based on ACPI, traditional 

TTC-based conflict indicator, and predicted crash frequency (HSM). The safety ratio of ACPI 

ranges from 0.51 to 0.96 with the mean of 0.80, the median of 0.83 and the standard deviation 

0.13. The safety ratio of TTC-based indicator ranges from 0.49 to 1.03 with the mean of 0.73, 

the median of 0.74 and the standard deviation of 0.15. The data indicates that the ratio based on 

ACPI is better than that based on TTC since the mean and median are both very close to 0.83 

which is obtained from CMF factor. Moreover, 0.83 is also included in the 95% significance 

interval of ACPI ratio. Since ACPI has mean 0.80 and standard deviation 0.13, the 95% 

confidence interval of ACPI is from 0.73 to 0.86. However, the 95% confidence interval of the 

TTC-based conflict indicator is from 0.65 to 0.80 Moreover, the ratio based on TTC-based 

indicator includes some values larger than 1, showing that WRB is dangerous than NRB which 

is opposite to the safety estimates from HSM2010. Therefore, ACPI could be considered a 

better safety surrogate than Traditional TTC-based
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Table 4.5 Ratio Comparison between ACPI, TTC-Based (<1.5s), and Predicted Crash Frequency (HSM 2010) 

Total  ACPI   TTC-Based(<1.5s) Predicted Crash(HSM2010) 

Major Minor WRB NRB Ratio WRB NRB Ratio WRB NRB Ratio 

800.00  300.00  7.31  9.94  0.74  122.00  185.00  0.66  1.46  1.75  0.83 

 600.00  10.36  13.32  0.78  199.00  251.00  0.79  1.71  2.06  0.83 

 900.00  15.71  17.56  0.89  352.00  362.00  0.97  1.87  2.26  0.83 

1200.00  300.00  12.17  13.08  0.93  173.00  232.00  0.75  2.25  2.71  0.83 

 600.00  15.98  19.14  0.83  295.00  366.00  0.81  2.64  3.18  0.83 

 900.00  23.93  28.33  0.84  463.00  589.00  0.79  2.89  3.49  0.83 

1600.00  300.00  20.56  21.50  0.96  276.00  268.00  1.03  3.06  3.68  0.83 

 600.00  26.05  31.81  0.82  472.00  622.00  0.76  3.59  4.32  0.83 

 900.00  42.65  47.15  0.90  846.00  1000.00  0.85  3.94  4.74  0.83 

2000.00  300.00  28.20  32.39  0.87  366.00  531.00  0.69  3.88  4.68  0.83 

 600.00  45.36  48.83  0.93  711.00  999.00  0.71  4.55  5.48  0.83 

 900.00  68.03  96.67  0.70  1329.00  1976.00  0.67  5.00  6.02  0.83 

2400.00  300.00  44.73  58.40  0.77  583.00  992.00  0.59  4.72  5.68  0.83 

 600.00  63.69  113.64  0.56  1102.00  2236.00  0.49  5.53  6.67  0.83 

 900.00  125.08  246.78  0.51  2554.00  5222.00  0.49  6.07  7.32  0.83 

Statistics Mean=0.80,Median=0.83, s.d.=0.13 Mean=0.73,Median=0.74, s.d.=0.15 Mean=0.83  
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4.3.2 Rank Comparison 

The data in Table 4.6 indicate that both ACPI and traditional TTC-based indicator perform well 

in differentiating safety between NRB and WRB under same volume combination. TTC-based 

indicator only misreports one combination for major volume of 1600 and minor volume of 300. 

In 4.2.2, two rank tests have been introduced to conduct rank comparisons. In this case, ACPI 

and TTC both perform well in two rank tests.  

The Kendall tau_b rank test results in 0.783 for TTC and 0.880 for ACPI. Although both 

values are very high, the ACPI still shows the advantages due to the higher value. The higher 

R-square indicates that the ACPI can better determine the ranks of design combinations.  

The spearman rank tests also show very high values for both indicators. Still, the R-square 

based on ACPI are higher than that based on TTC (0.978 versus 0.933). 

Based on rank comparison, the ACPI outperforms TTC in both rank tests. It shows that 

ACPI is more capable of differentiating relative safety among various scenarios which is 

similar to the anticipated results according to the HSM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

- 5
2

 - 

Table 4.6 Ratio Comparison between ACPI, TTC-Based (<1.5s) and Predicted Crash Frequency 

1.  “-“indicates protected left turn is safer than permitted left turn in the same volume combination; 

2. “+” indicates permitted left turn is safer than protected left turn in the same volume combination; 

3. R indicates the Tau_b correlation and R’ indicates the Spearman correlation; 

4. Red colors indicate those ACPI or TTC fails to correctly analyze according to predicted crash frequency.

Total  ACPI TTC-Based (TTC<1.5s) Predicted Crash (HSM 2010) 

  WRB R NRB R Sign WRB R NRB R Sign WRB R NRB R Sign 

800.00  300.00  7.31  1 9.94  2 - 122.00  

199.00  

1 185.00  3 - 1.46  1 1.75  3 - 

 600.00  10.36  3 13.32  6 - 199.00 4 251.00  6 - 1.71  2 2.06  5 - 

 900.00  15.71  7 17.56  9 - 352.00  10 362.00  11 - 1.87  4 2.26  7 - 

1200.00  300.00  12.17  4 13.08  5 - 173.00  2 232.00  5 - 2.25  6 2.71  9 - 

 600.00  15.98  8 19.14  10 - 295.00  9 366.00  12 - 2.64  8 3.18  12 - 

 900.00  23.93  13 28.33  16 - 463.00  14 589.00  18 - 2.89  10 3.49  13 - 

1600.00  300.00  20.56  11 21.50  12 - 276.00  8 268.00  7 + 3.06  11 3.68  15 - 

 600.00  26.05  14 31.81  17 - 472.00  15 622.00  19 - 3.59  14 4.32  18 - 

 900.00  42.65  19 47.15  22 - 846.00  21 1000.00  24 - 3.94  17 4.74  22 - 

2000.00  300.00  28.20  15 32.39  18 - 366.00  12 531.00  16 - 3.88  16 4.68  20 - 

 600.00  45.36  21 48.83  23 - 711.00  20 999.00  23 - 4.55  19 5.48  24 - 

 900.00  68.03  26 96.67  27 - 1329.00  26 1976.00  27 - 5.00  23 6.02  27 - 

2400.00  300.00  44.73  20 58.40  24 - 583.00  17 992.00  22 - 4.72  21 5.68  26 - 

 600.00  63.69  25 113.64  28 - 1102.00  25 2236.00  28 - 5.53  25 6.67  29 - 

 900.00  125.08  29 246.78  30 - 2554.00  29 5222.00  30 - 6.07  28 7.32  30 - 

R=0.880 R’=0.978 R=0.783 R’=0.933       
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4.4 SAFETY COMPARISON BETWEEN INTERSECTIONS 

WITH/WITHOUT DEDICATED LEFT TURN LANES 

Based on the HSM, the CMF for and intersection approach without left turn lanes on major 

road  (NLB) is 1.00 versus 0.81 for approaches with left turn lanes on both major-road 

approaches (WLB) for four-leg signalized urban intersections. Therefore, WLB is believed to 

be safer in terms of historical crash data. A signalized intersection was built in VISSIM with 

three through lanes and one dedicated left turn lanes per approach on major roads and one 

shared lane for each direction on minor roads. The right turn traffic and through traffic share 

the rightmost lane on each major approach. Major street volumes range from 800 to 1600 

vehicles per hour per direction with 200 vehicles per hour increments (1600 to 3200 for both 

directions). The left turn percentage is 25% and the right turn percentage is 15%. Minor street 

volumes are 150, 300 and 450 for each direction (300, 500, and 700 for both directions) with 15% 

left turn and 15% right turn. A total of 12 combinations are used in this analysis with permitted 

left-turn phase plans that is determined based on HCM procedures (TRB, 2000). 

Each combination is conducted one-hour simulation for both NLB and WLB for ten 

repetitions. All signal timing plans are calculated based on HCM procedures (TRB, 2000). 

Then, SSAM is used to filter out all conflicts for each combination and Matlab is used to apply 

CPM model to generate CPI for each conflict and ACPI for each combination. 

Table 4.7 gives the ACPI for each combination. These ACPI will be compared with 

traditional conflict indicator (conflict numbers with TTC<1.5s). 

The calculation process of annual crash frequency is based on HSM. The base SPF 

function is Equation 4.1. For intersection with right turning lanes on major approaches under 

no specific condition (no volume constrains), the CMF is 0.81. 
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Table 4.7 ACPI for With/Without Left Turn Volume Combinations by Conflict Type 

Minor V 

Major V 
 

 300    600    900    

ACPI  Total CS RE LC Total CS RE LC Total CS RE LC 

1600 NLB 14.32 2.19 6.24 5.89 22.97 5.88 9.43 7.65 30.64 7.26 13.07 10.31  

 WLB 13.23 1.46 6.02 5.75 21.31 3.16 9.11 9.03 28.36 4.37 13.65 10.34 

 Ratio 1.08 1.50 1.03 1.02 1.08 1.86 1.04 0.85 1.08 1.66 0.96 1.00 

2000 NLB 24.38 4.45 9.94 10.00 34.45 7.26 14.68 12.51 44.36 8.86 21.92 13.57 

 WLB 22.03 3.94 9.87 8.23 31.48 6.19 13.57 11.71 40.52 6.34 19.81 14.37 

 Ratio 1.06 1.13 1.00 1.22 1.08 1.17 1.05 1.07 1.09 1.40 1.11 0.94 

2400 NLB 32.32 7.55 11.84 12.94 48.03 9.68 20.23 18.12 78.06 15.91 39.11 23.03 

 WLB 28.76 6.35 12.23 10.19 39.05 7.21 17.66 14.18 66.62 8.50 36.90 21.21 

 Ratio 1.12 1.19 0.97 1.27 1.23 1.34 1.15 1.28 1.17 1.87 1.06 1.09 

3200 NLB 68.40 14.03 28.83 25.54 123.35 22.50 62.72 38.13 307.50 24.16 241.89 41.45 

 WLB 57.29 12.86 24.14 20.28 103.78 15.55 59.48 28.74 186.90 11.78 130.36 44.75 

 Ratio 1.19 1.09 1.19 1.26 1.19 1.45 1.05 1.33 1.65 2.05 1.86 0.93 

1. NLB indicates scenarios without left turn lanes; 

2. CS= Crossing conflicts; RE=Rear-End conflict; LC=Lane-Change conflicts; 

3. WLB indicates scenarios with left turn lanes;
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4.4.1 Ratio Comparison 

Table 4.8 demonstrates the safety ratio (WLB versus NLB) based on ACPI, traditional 

TTC-based conflict indicator, and predicted crash frequency. The safety ratio of ACPI ranges 

from 0.61 to 0.93 with the mean of 0.87, the median of 0.91 and the standard deviation 0.09. 

The safety ratio of TTC-based indicator ranges from 0.59 to 1.00 with the mean of 0.90, the 

median of 0.93 and the standard deviation of 0.11. The data indicates that the ratio based on 

ACPI is better than that based on TTC since the mean and median are relatively more close to 

0.81 which is obtained from CMF factor. Moreover, 0.81 is also included in the 95% 

significance interval of ACPI ratio. Since ACPI has mean 0.86 and standard deviation 0.09, the 

95% confidence interval of ACPI is from 0.81 to 0.91. However, the 95% confidence interval 

of the conflict indicator based on TTC<1.5s is from 0.84 to 0.96. Moreover, the ratio based on 

TTC includes some values very close to 1, showing that WRB is as safe as NRB which is 

opposite to the safety estimates from HSM. Therefore, ACPI could be considered a better 

safety surrogate than the TTC-based indicator.
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Table 4.8 Ratio Comparison between ACPI, TTC-Based (<1.5s), and Predicted Crash Frequency (HSM 2010) 

Total  ACPI  TTC-Based (TTC<1.5s) Predicted Crash(HSM 2010) 

Major Minor WLB NLB Ratio  WLB NLB Ratio WLB NLB Ratio 

1600.00  300.00  13.23 14.32 0.92  24.2 24.1 1.00 3.68 2.98 0.81 

 600.00  21.31 22.97 0.93  42.2 39.5 0.94 4.32 3.50 0.81 

 900.00  28.36 30.64 0.93  58.2 54.2 0.93 4.74 3.84 0.81 

2000.00  300.00  22.03 24.38 0.90  39.1 39 1.00 4.68 3.79 0.81 

 600.00  31.48 34.45 0.91  60.0 57.1 0.95 5.48 4.44 0.81 

 900.00  40.52 44.36 0.91  81.1 77.2 0.95 6.02 4.88 0.81 

2400.00  300.00  28.76 32.32 0.89  49.6 46.5 0.94 5.68 4.60 0.81 

 600.00  39.05 48.03 0.81  80.7 70.8 0.88 6.67 5.40 0.81 

 900.00  66.62 78.06 0.85  146.4 131.4 0.90 7.32 5.93 0.81 

3200.00  300.00  57.29 68.40 0.84  106.2 89.6 0.84 7.73 6.26 0.81 

 600.00  103.78 123.35 0.84  212.1 192.3 0.91 9.07 7.35 0.81 

 900.00  186.90 307.50 0.61  608 357.5 0.59 9.96 8.06 0.81 

Statistics Mean=0.86,Median=0.90, s.d.=0.09  

 

Mean=0.90,Median=0.93, s.d.=0.11 Mean=0.81  
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4.4.2 Rank Comparison 

The data in Table 4.9 show that both ACPI and TTC perform well in differentiating safety 

between NLB and WLB under same volume combination. TTC misreports two combinations 

with the indication showing two scenarios are equally safe. In 4.2.2, two rank tests have been 

introduced to conduct rank comparisons. In this case, ACPI and TTC both perform well in two 

rank tests.  

The Kendall tau_b rank test results in 0.797 for TTC and 0.855 for ACPI. Although both 

values are very high, the ACPI still shows the advantages due to the higher value. The higher 

R-square indicates that the ACPI can better determine the ranks of design combinations.  

The spearman rank tests also show very high values for both indicators. Still, the R-square 

based on ACPI are higher than that based on TTC (0.970 versus 0.936). 

As it was the case in the previous section, the ACPI outperforms TTC in both rank tests. It 

shows that ACPI is more capable of differentiating safety among various scenarios in a manner 

similar to that of the HSM. 
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Table 4.9 Rank Comparison between ACPI, TTC-Based (TTC<1.5s), and Predicted Crash Frequency (HSM 2010) 

1.  “-“indicates protected left turn is safer than permitted left turn in the same volume combination; 

2. “+” indicates permitted left turn is safer than protected left turn in the same volume combination; 

3. “0” indicates permitted left turn is as safe as protected left turn in the same volume combination; 

4. R indicates the Tau_b correlation and R’ indicates the Spearman correlation; 

5. Red colors indicate those ACPI or TTC fails to correctly analyze according to predicted crash frequency.

Total  ACPI TTC-Based (TTC<1.5s) Predicted Crash (HSM 2010) 

  WLB R NLB R Sign WLB R NLB R Sign WLB R NLB R Sign 

1600.00  300.00  13.23 1 14.32 2 - 24.1 1 24.2 1 0 2.98 1 3.68 3 - 

 600.00  21.31 3 22.97 5 - 39.5 5 42.2 6 - 3.50 2 4.32 6 - 

 900.00  28.36 7 30.64 9 - 54.2 9 58.2 11 - 3.84 5 4.74 10 - 

2000.00  300.00  22.03 4 24.38 6 - 39 3 39.1 3 0 3.79 4 4.68 9 - 

 600.00  31.48 10 34.45 12 - 57.1 10 60 12 - 4.44 7 5.48 13 - 

 900.00  40.52 14 44.36 15 - 77.2 14 81.1 16 - 4.88 11 6.02 17 - 

2400.00  300.00  28.76 8 32.32 11 - 46.5 7 49.6 8 - 4.60 8 5.68 14 - 

 600.00  39.05 13 48.03 16 - 70.8 13 80.7 15 - 5.40 12 6.67 18 - 

 900.00  66.62 18 78.06 20 - 131.4 19 146.4 20 - 5.93 15 7.32 19 - 

3200.00  300.00  57.29 17 68.40 19 - 89.6 17 106.2 18 - 6.26 16 7.73 21 - 

 600.00  103.78 21 123.35 22 - 192.3 21 212.1 22 - 7.35 20 9.07 23 - 

 900.00  186.90 23 307.50 24 - 357.5 23 608 24 - 8.06 22 9.96 24 - 

R=0.855 R’=0.970 R=0.797 R’=0.936       
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4.5 CONCLUSION 

In this chapter, three simulation-based comparative analysis were conducted: the first one is on 

the safety comparison between intersections with protected left turns and with permitted left 

turns, the second is on the safety comparison between intersections with and without right turn 

lanes, the last one is on the safety comparison between intersections with and without right turn 

lanes. In each validation, ACPI were calculated and compared with a TTC-based indicator for 

their capabilities of identifying safety of traffic treatments under various volume scenarios. In 

all comparisons, ACPI outperformed the TTC-based indicator in determining anticipated 

safety based on the procedures suggested in the HSM. The SPF base model and CMF for the 

three types of traffic treatments are applied to predict the crash rates for each scenario. The 

ratio tests and the rank tests both show that ACPI is a more qualified surrogate measure, 

compared to the TTC-based indicator. This was based on the fact that the 95% confidence 

intervals of ratios based on ACPI include the ratios based on SPF/CMF. In addition, all ACPI 

have very high rank values indicating that they have a very strong agreement with SPF/CMF in 

identifying relative safety. 

It should be noted here that the CMFs used in this chapter are applied to all crash types. 

This could be viewed as a limitation of the current HSM procedures, since they do not allow for 

safety comparison of different crash types. On the other hand, ACPI is originally designed for 

evaluating multiple conflict types and therefore, the ACPI has the potential to be used to 

address this limitation of the HSM.  
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5 FIELD DATA-BASED ANALYSIS 

5.1 OVERVIEW 

This chapter presents an analysis based in field data in order to examine if the ACPI is a 

qualified surrogate measure of safety. Data for three major arterials including traffic volume, 

lane usage, traffic signal, traffic control type and turning percentage is collected. Based on the 

data, simulation models were developed and calibrated using VISSIM and conducted with an 

one-hour simulation for ten repetitions for each. The trajectory outputs are analyzed by SSAM 

and then CPM to derive CPI and ACPI (the aggregation of CPI) for each VISSIM model. 

Then, ACPI are compared with the historical crash data for each type for each intersection. 

Statistical analyses are conducted to examine how well the ACPI can explain historical crash 

data. This will demonstrate and validate the proposed approach and allow for the use of the 

ACPI method for estimating and predicting crash potential based on simulated values. 

5.2 DATA COLLECTION 

The field validation efforts utilized 12 intersections along three major arterials in Kentucky. 

The three urban arterials are US31E in Bardstown, US31W in Elizabethtown and KY74 in 

Middleboro. Figure 5.1, 5.2, and 5.3 shows the three arterials which are marked with the bold 

lines.  

 

Figure 5.1 the US31E in Bardstown, Kentucky 
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Figure 5.2 the KY74 in Bardstown, Kentucky 

 

Figure 5.3 the US31W in Elizabethtown, Kentucky 

The VISSIM models were developed based on existing data (i.e. geometric layout, traffic 

turning counts, traffic compositions, and control rules), were calibrated based on travel times 

utilizing parameters for behavior models such as desired speed, minimum headway, and lane 

change distance, and were validated by maximum and average queue length. Table 5.1 

demonstrates the characteristics of the selected intersections.  
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For each model one-hour simulations were conducted with ten repetitions to account for 

the stochastic nature of the simulation. The trajectory data from each of the ten repetitions was 

analyzed with SSAM to develop the required data for entry into the model and estimate the 

hourly ACPM for each intersection. Among the 12 intersections, 11 were randomly selected as 

the reference group for statistical analysis and the development of prediction models. The 

remaining intersection was considered as the compare group with the purpose of evaluating the 

ACPM-based prediction models. This process was repeated for all 12 combinations, i.e. a 

leave-one-out cross validation was utilized, to develop the most appropriate model. Actual 

crash histories for these intersections for the 2007 to 2009 period were collected to estimate the 

Annual Crash Frequency (ACF). The crashes were filtered to include only those that are 

similar to the conflicts evaluated here.  
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Table 5.1 Selected Intersections Characteristics and Three-Year Crashes 

Arterial Intersection No Major/Minor 

Peak Volume 

Major/Mi

nor Thru 

Lanes 

MALT/

MILT 

MART/

MIRT 

Total 

Crash 

Crossing Rear-End Lane 

Change 

US31

E 

John 1 2223/1553 4/4 4/2 2/2 39 5 31 3 

Halstead 2 1604/62 4/2 0/0 0/0 10 6 1 3 

Daughterly 3 1611/181 4/2 0/0 0/0 21 13 8 0 

KY74 19th 4 1520/350 4/2 0/0 0/0 11 5 4 2 

18th 5 1519/389 4/2 2/0 0/0 9 1 7 1 

15th 6 1597/218 4/2 2/0 0/0 25 10 7 8 

22th 7 1489/218 4/2 0/0 0/0 11 1 4 6 

US31

W 

St.John 8 1725/682 4/2 2/1 1/2 19 10 5 4 

Mantle 9 1510/286 4/2 0/0 0/1 19 11 8 0 

Miles 10 1350/530 4/2 2/2 0/0 17 14 2 1 

Mubery 11 1076/1060 4/2 2/2 0/2 18 11 6 1 

New Glendae 12 1436/386 4/2 2/0 0/1 10 7 3 0 

1. MALT/MILT: Major Exclusive Left Turn Lane/Minor Exclusive Left Turn Lane; 

2. MART/MIRT: Major Exclusive Right Turn Lane/Minor Exclusive Right Turn Lane. 
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5.3 STATISTICAL COMPARISONS 

In this section, the HSM procedures utilizing the safety performance functions (SPF) and crash 

modification factors (CMF) were used to acquire predicted annual crash frequency (PACF) for 

all 12 intersections (AASHTO, 2010). The HSM provides estimation procedures for various 

types of intersections and also addresses the proportions for each collision type. In this study, 

head on and angle collisions are considered as the crossing type, rear-end collision as the 

rear-end type, and sideswipe collision as the lane change type. After the estimation of the 

PACF for each intersection, both correlation tests and Spearman rank tests were conducted to 

examine how the ACPI and PACF are associated with the real crash data (ACF). Table 5.2 

lists the ACPI, PACF that is based on HSM, and ACF that is derived from three-year crash 

data for each intersection. 
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Table 5.2 ACPI, PACF (HSM) and ACF (Historic) of the twelve intersections 

No. 

ACPI PACF (HSM) ACF (annual crashes) 

Total CS RE LC Total CS RE LC Total CS RE LC 

1 21.30 1.00 15.67 4.63 3.75 1.15 1.78 0.19 13.00 1.67 10.33 1.00 

2 6.79 0.70 1.19 4.90 3.42 1.05 1.62 0.17 3.33 2.00 0.33 1.00 

3 10.94 3.43 4.66 2.85 2.84 .87 1.35 0.14 7.00 4.33 2.67 0.00 

4 8.03 0.13 3.44 4.46 2.58 .78 1.22 0.13 3.67 1.67 1.33 0.67 

5 10.39 0.04 4.35 5.99 1.20 .37 .57 0.06 3.00 0.33 2.33 0.33 

6 16.38 0.61 6.33 9.45 5.76 1.77 2.73 0.29 8.33 3.33 2.33 2.67 

7 6.09 0.00 1.02 5.06 3.30 1.01 1.57 0.16 3.67 0.33 1.33 2.00 

8 13.50 0.57 8.24 4.69 2.77 0.85 1.31 0.14 6.33 3.33 1.67 1.33 

9 9.59 1.00 7.31 1.28 3.00 0.92 1.42 0.15 6.33 3.67 2.67 0.00 

10 8.18 1.95 3.38 2.85 3.61 1.11 1.71 0.18 5.67 4.67 0.67 0.33 

11 9.07 0.40 6.06 2.61 3.17 0.97 1.50 0.16 6.00 2.00 3.67 0.33 

12 6.56 0.30 3.69 2.58 3.75 1.15 1.78 0.19 3.33 2.33 1.00 0.00 

1. CS=crossing; RE=rear-end; LC=lane change. 
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Correlation tests were conducted to directly link ACPI and PACF to ACF. High and 

positive correlation values are noted in Table 5.2 indicating a strong relationship between the 

proposed ACPI and real crash frequency. This was the case for all crash types with correlation 

values of 0.900 for total, 0.749 for crossing, 0.897 for rear-end, and 0.822 for lane change. All 

these correlations were significant at the 0.01 level. It should be also noted that ACPI has much 

higher correlation to real crash frequency than the estimated PACF values. 

      Rank tests were introduced to examine ability of the surrogate indicators in 

differentiating relative safety among different traffic treatments/facilities in the final report of 

SSAM (FHWA, 2008). Rank tests are nonparametric statistical tests which determine the 

associations between two variables. When the relationship between two variables is not linear, 

the relationship can sometimes be transformed into a linear one by ranking each item and using 

ranks instead of actual values. The advantage of the rank test is that no assumptions about the 

nature of the populations are required. A correlation coefficient with a score of 1.0 indicates a 

perfect correlation between the tested two variables and a score of 0 means no correlation. All 

Spearman rank tests in Table 5.3 show high R values for ACPI: 0.788 for crossing, 0.777 for 

rear-end, 0.801 for lane change and 0.756 for total. The high Spearman correlations indicate 

that ACPI is able to identify very large proportions of rank orders based on real crash frequency. 

The correlation is significant at the 0.01 level. However, PACF has much smaller Spearman 

correlations across all types. Consequently, this tests show that ACPI can better identify the 

relative safety ranking among intersections as compared to PACF. 

Table 5.3 Statistical Results of Correlation and Spearman Rank Correlation for ACPI 

and PACF 

Test Predictor Total Crossing Rear-End Lane Change 

Spearman  PACF 0.301 0.203 -0.133 0.252 

 ACPI 0.756 0.788 0.777 0.801 

Correlation PACF 0.736 -0.092 0.833 0.061 

 ACPI 0.900 0.749 0.897 0.822 
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5.4 ACPI-BASED PREDICTION MODELS FOR FOUR-LEG 

SIGNALIZED INTERSECTIONS 

Linear and non-linear regression models were tested by the leave-one-out cross validation 

(LOOCV) which randomly selects 11 intersections into the reference group, develops models 

and compares the prediction with the remaining one in the compare group. The LOOCV is 

repeated in such manner that each intersection in the sample is used as the testing data. Table 

5.4 displays the selected models for each conflict type. The selection of the final model was 

based on mean square errors (MSE). 

Table 5.4 ACPI-based Regression Models 

Conflict Type Equation MSE R
2
  

Total ACF = 0.553(Total ACPM)
0.986

 2.196 0.70 

Crossing ACF = 3.070 (Crossing ACPM)
0.496

  0.870 0.83 

Rear-End ACF= 0.483(Rear-End ACPM)
0.893

 3.968 0.62 

Lane Change ACF= 0.041*( Lane Change ACPM)
1.846 

0.324 0.67 

 

Figure 5.4 indicates that most of the crash frequencies fall within the 95 percent 

confidence intervals of the predicted values according to the cross validation. The data 

indicates that the prediction provides reasonable estimates of the real crashes and, in general, 

the models perform well. It should be emphasized here that this is a very limited sample for 

both the reference and comparison groups and the results could be viewed only as indications 

of the potential of the ACPM to predict the number of crashes. 
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(b) Crossing Type 

(c) Rear-End Type 

 

(d) Lane Change Type 

Figure 5.4 the crash predictions (95% confidence interval) and the actual crash 
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5.5 DISCUSSION AND SUMMARY 

The analysis performed here showed very strong positive correlations between ACPI and 

historical crash frequency (ACF). The Spearman rank tests show that ACPI is able to assign 

and evaluate the safety rank order of traffic facilities (i.e. relative safety) and is supported by 

historical crash data (ACF). Prediction ACPI-based regression models are well fitted with high 

R2 values indicating a potential to directly link real crash frequency with the surrogate measure. 

The reliable prediction performance of ACPI for all conflict types allows for considering ACPI 

as a promising surrogate measure of safety. 

Although the results are very encouraging, there are some issues that need to be 

mentioned here. The VISSIM simulation software generates very few crossing conflicts at 

signalized intersections. This is due to the fact that the simulation is developed assuming that 

the drivers will follow all traffic rules correctly. In the real world, crossing crashes mostly 

happen because of drivers’ lack of attention or improper following of right of way rules. Even 

though VISSIM has a parameter that can control the percentage of inattentive drivers, it is very 

difficult to alter this parameter and thus the default value is used. Another reasonable 

explanation is that the use of a default PET threshold of 5.0 seconds may also have contributed 

to under represent crossing conflicts as the final report of SSAM noted (FHWA, 2008). These 

could explain the relatively low correlations for crossing incident types.  

An issue that could be of concern is the different times over which the comparisons are 

made. The ACPI is based on hourly simulations and as such it reflects an hourly metric of 

safety of the location. Historical crash data are collected over long periods and as such reflect a 

variety of climatic and traffic patterns. The comparisons under the same time-frame and 

conditions can be considered as one of the future research of interests. However, this work did 

not consider this distinction and the aggregation of crashes was utilized. Such a research could 

be very difficult to be conducted due to the need to simulate each crash. Finally, there is no 

recalibration of the VISSIM variables to reflect environmental conditions, but all models used 

to predict the ACPI for each of the intersections were calibrated to reflect the driver behavior in 

VISSIM.  

Another aspect that could affect the reliability of the result is the small number of 

intersections used in the validation and prediction models. It is apparent that additional 

intersections are needed to be examined to determine the ability and power of the proposed 

surrogate to predict crashes. Another aspect that should also be considered is that the models 
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developed here are only for four-leg regular signalized intersections.  Further study is 

recommended with more intersections and various intersection types to further examine and 

evaluate the relationships between ACPI and real crashes. It should be noted though, that the 

regression models developed here are promising and have the potential to be used to predict the 

number of crashes based on ACPI and allow for evaluating other intersection designs and 

unique treatments.  ACPI can be acquired by simulations and the number of crashes can be 

estimated for those cases when traditional crash prediction models cannot be applied. 

Intersections also need to be very carefully calibrated. Based on the current result, ACPI based 

on calibrated simulation models is a very reliable surrogate indicator of safety for it is well 

correlated with real crash frequency. 

The current procedures outlined in the HSM may not be able to deal with all crash 

predictions and analysis, since some transportation facilities have unique characteristics that 

are very important but not considered by SPF and CMF. The use of simulation to develop the 

ACPI has the potential to improved such predictions and provide an alternative to fill this need.   
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6 ESTIMATION OF CRASH SEVERITY THROUGH CPM 

6.1 OVERVIEW  

In 3.1, 3.2 and 3.3, the CPM has been addressed to identify the crash probability of a conflict. 

The ACPI, which is the crash probability of a conflict, has been proved as a promising 

surrogate indicator of crash frequency, by comparative analysis and field-based analysis. 

Crash frequency and crash severity are both important for safety studies. In order to 

decide the resulting crash severity of a conflict, a surrogate indicator that is associated with 

injury severity needs to be incorporated into CPM. This indicator is required to estimate the 

injury/fatal probability and can be derived from available traffic information from SSAM. 

6.2 THE PROCESS OF ACQUIRING A SURROGATE INDICATOR OF 

CRASH SEVERITY THROUGH CPM MODEL 

      Delta-V is the total change in vehicle velocity before and after the crash event and it has 

been identified as a surrogate indicator used as a metric of crash severity (Warmbrog, 2005). 

DeltaV is used by most of the past research reviewed to explain the influence of speed on crash 

injury severity. Warmbrog (2005) proposed a logistic curve for speed and fatality probability 

by different types of crash in 2005. Gabauer and Gabler (2006) utilized logistic regression to 

explore the relationship between injury risk and DeltaV, based on the vehicle kinematics data 

from Event Data Recorders (EDR). In 2009, Richards and Cuerden (2009) also developed 

logistic regression models to address the relationships between DeltaV and different level of 

impacts (fatally, seriously and slightly injured) by different crash types. 

The logistic model of DeltaV can be interpreted by: 

𝑓(𝐷𝑒𝑙 𝑎 ) =
 

    (     ∗      )                                                 (6.1)                         

Where, 

f (DeltaV) : the injury probability of a crash; 

b0 and b1 : parameters which entail calibration based on real world data. 

Therefore, before applying DeltaV into CPM, the logistic model of DeltaV needs to be 

identified (many researchers have conducted this work as mentioned above). The presence of 

such relationship would then allow for utilizing Delta V as a surrogate indicator of crash 

severity.  
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SSAM provides the DeltaV for each conflict. However, this DeltaV is calculated without 

the consideration of reaction time and maximum deceleration rate. For Group A in which 

drivers having a specific reaction x which is larger than TTC, the crash probability can be 

calculated based on equation (3.1):  

  (RT >= TTC)  =   (
 

 
 

 

 
erf  
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 )                                              

For this condition, the DeltaV reported by SSAM since the speed stays the same (no 

evasive actions) before the crash can be directly utilized. Therefore, the injury probability can 

be derived by multiplying the crash probability and f(DeltaV) representing the injury 

probability of the resulting crash. 

Injury Probability= Crash Probability* f (DeltaV) 
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For Group B-2 in which RBR exceeds the MADR, the crash probability can be calculated 

based on equation (3.2): 
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For a x and a y randomly selected, there is a corresponding Delta V. 

At time x, a driver realizes the potential danger and reacts. At that moment, the required 

braking rate is a=RBR=
 ( ∙     )

(     ) 
. 

However, the maximum braking rate for this driver is only y. When the crash happens, the 

post velocity is PostV=V0-y*(TTC-x). Suppose another car has PostV=V’ (This velocity can 

also be calculated), utilizing the theorem of momentum: 

     M ∗  ostV  M ∗  ostV  =  (M  M ) ∗ V                                                        (6.3) 

Where, 

M1, M2: mass of each car; 

V: the velocity after crash for both cars; 

Then, DeltaV for each car can be computed. Therefore, the probability for a driver being 

involved in a severe crash with specific RT(x) and MADR(y) in this particular conflict 

condition is 
 

    (     ∗       )
 according to Equation (6.1). 

For drivers with various reaction time and different vehicles, the total injury severity for a 

conflict with a specific TTC can be written as: 
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Injury Severity 
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Although mentioned here, the process and indicator will not be discussed and validated in 

the following chapters because the main objective of the research focuses on developing the 

CPI. It is therefore recommended to examine the injury severity indicator in future research. 

6.3 CONCLUSION 

In this chapter, the process of acquiring a surrogate indicator for injury severity is 

discussed here to show the potential of the CPM in expanding its capabilities to deal with crash 

severity in additional to crash probability of simulated conflicts. DeltaV is an indicator 

commonly used to determine the injury probability. Since one particular combination of a 

driver and a car can produce a DeltaV for a specific scenario, there is an injury probability 

assigned to that combination. By conducting Monte-Carol process, an aggregation of injury 

probability for a conflict can be derived. This aggregation of injury probability is suggested as 

a surrogate indicator for injury severity. However, this process need to be further examined 

and validated. 
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7 CONCLUSIONS AND FUTURE RESEARCH 

7.1 CONCLUSIONS 

Traffic safety is one of the most essential aspects of transportation engineering. The planning, 

design, and maintenance of transportation facilities should consider the impacts of crashes 

when designing or evaluating alternative designs.  Since crash frequency is a direct measure 

of traffic safety, the development of crash prediction models is able to give policy-makers, 

planners and traffic engineers a clear insight into past, current and future safety. Hence, crash 

prediction models play a very important role in safety study and need to be carefully 

examined to ensure their accuracy and reliability. However, most crash prediction models are 

statistically-based methods requiring significant efforts on crash data collections. Moreover, 

the statistical-based prediction methods may not be applied in particular traffic environments 

due to the limitation of data sources.   

Therefore, it is necessary to find surrogate metric instead of traffic crashes. Compared to 

traffic crash that is an infrequent incident in real world, traffic conflict is considered to be a 

more frequent incident type and share the similar distribution to traffic crash. The studies on 

traffic conflicts have been conducted for years with the purposes of developing a qualified 

safety surrogate. Traditional traffic conflict studies are mostly field-based studies depending on 

manual counting, which is also labor-intensive and inaccurate. The video-techniques can help 

eliminate the work on field observation but still difficult to extract accurate data due to its 

two-dimensional nature. Nowadays, simulation tools are more and more utilized in traffic 

studies. With the development of computer science, they are capable of establishing a 

simulated traffic environment similar to the real world. Moreover, due to its automatic 

recording mechanism, the data can be derived easily and more accurate. However, there is not 

a qualified surrogate indicator that is widely accepted in conflict studies. Most existing 

indicators are not able to identify the crash potential of conflicts in a quantified way. 

The primary objective of this research is to develop an indicator as a qualified surrogate 

measure for simulation-based conflict studies. This indicator is expected to be able to quantify 

the crash potential of conflicts, by considering multiple factors including conflict 

characteristics, human differences and vehicle variances. 

This research provides the following major contributions.  
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A Conflict Propensity Index (CPI) was developed aiming at determining the crash 

probabilities of traffic conflicts. The CPI incorporates the human reaction times and braking 

limitations, which are the two most important factors affecting crashes. The Aggregated 

Conflict Propensity Index (ACPI) can be derived by aggregating the CPI for each conflict to 

determine the safety of this particular type. 

A Conflict Propensity Model (CPM) was developed for deriving the CPI and ACPI. The 

CPM is able to provide ACPI for three different conflict types: crossing, rear-end and lane 

change. This achievement allows the full safety examination of intersections which includes 

various conflict types. Besides, the CPM is also addressed its potential of expanding the 

capability of studying on injury severity of crash, by combining a surrogate indicator of injury 

severity. 

A series of efforts were conducted on examining the reliability of ACPI. Three 

simulation-based comparative studies were conducted to examine how ACPI identified the 

safety of special traffic treatments. ACPI outperformed the traditional TTC indicator and 

provided similar results to SPF/CMF. The field-based analysis showed that ACPI was highly 

correlated with real crash frequency and able to explain the safety rank orders among multiple 

traffic facilities. ACPI-based prediction models for signalized intersections were also well 

fitted. All tests provided encouraging results showing that ACPI is a promising surrogate 

indicator based on simulation conflict studies and ACPI-based prediction models have the 

potential to be utilized as a supplementary method of SPF/CMF in the future. 

7.2 RECOMMENDATIONS AND FUTURE RESEARCH 

Though this dissertation provides several contributions to simulation-based conflict studies 

and surrogate measure of safety, there are still some work needs to be done in the future. 

First of all, this dissertation only conducted validation efforts on ACPI, which is a 

surrogate indicator of crash frequency. Although in the dissertation a surrogate indicator of 

injury severity was introduced, no validation efforts were conducted. This work needs to be 

finished in the future. 

Secondly, the distribution of drivers’ reaction times was borrowed from other research. 

One drawback is that crossing and lane change conflict types lack a dedicated reaction time 

distribution. This gap is expected to be filled in order to improve the CPM model and thus 

make CPI more accurate. 
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Thirdly, the criteria of categorizing traffic conflicts were borrowed from the previous 

research. When looking into the simulation outputs, there are still some conflicts identified to 

be categorized into wrong conflict types. Hence, the criteria of classifying conflict types need 

to be future examined and improved. The current version of SSAM also needs to update the 

algorithm when new researches are performed. 

Fourthly, only twelve signalized intersections were incorporated in the field validation. 

The small number of validation points may limit the findings of this validation. Further study 

is recommended with more intersections to develop the relationship between crashes and ACPI. 

Intersections also need to be very carefully calibrated. 

Finally, the ACPI perdition models for four-leg signalized intersections developed in this 

research need to be further validated and improved due to the limited sample size. Also, other 

ACPI prediction models for specific usage (e.g. unsignalized intersections, roundabout, and 

interchanges) need to be developed and validated in the future research. 
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APPENDIX A: MATLAB CODE 

clear all 

a=load ('J:\1.txt'); 

[Y,Z]=size(a); 

for  j=1:Y; 

N=10000; 

m=0; 

n=0; 

l=0; 

v=0; 

p=0; 

e(j,2)=abs(a(j,2)); 

t(j)=(a(j,3)+a(j,4)/tan(e(j,2)*pi()/180)+a(j,7)/sin(e(j,2)*pi()/180))/(2*a(j,5)); 

if a(j,5)==0; 

    t(j)=0; 

end 

k(j)=a(j,3)/a(j,5); 

if a(j,5)==0; 

    k(j)=0; 

end 

r= lognrnd (0.1629, 0.4461, N, 1); 

s= lognrnd (-0.1277, 0.2976, N, 1); 

y= normrnd (9.7, 1.3, N, 1); 

low=find(y<4.2); 

y(low)=4.2; 

upp=find(y>12.7); 

y(upp)=12.7; 

if a(j,9)==1; 

for i=1:N; 

if 

a(j,5)==0&&r(i)<a(j,1)&&y(i)>a(j,8)^2/(2*a(j,8)*a(j,1)-a(j,8)*r(i))||a(j,5)>0&&(2*a(j,8)*(t(j
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)-a(j,1))/(t(j)-r(i))^2)*(t(j)+a(j,1)-r(i))>a(j,5)&& r(i)<a(j,1)&& 

y(i)>a(j,8)^2/(2*a(j,8)*a(j,1)-a(j,8)*r(i))||a(j,5)>0 &&  r(i)<a(j,1)&& 

y(i)>2*a(j,8)*(t(j)-a(j,1))/(t(j)-r(i))^2; 

    m=m+1; 

end 

end 

 I(j)=(N-m)/N; 

 G(j)=(N-m)/N; 

     elseif a(j,9)==2; 

        for q=1:N; 

       if s(q)<a(j,1)&& y(q)>(a(j,8)-a(j,5))/(2*(a(j,1)-s(q))); 

    n=n+1; 

       end 

        end 

        I(j)=(N-n)/N; 

        L(j)=(N-n)/N; 

   elseif a(j,9)==3; 

       for w=1:N; 

 if 

r(w)<a(j,1)&&y(w)>max((a(j,8)-a(j,5))^2/(2*(a(j,8)*(a(j,1)-r(w))+0.5*cos(e(j,2)*pi()/180)*a

(j,3)+a(j,5)*r(w)-a(j,3)-0.5*a(j,6))),(2*k(j)*a(j,8)-a(j,6)+a(j,3)*cos(e(j,2)*pi()/180))/(a(j,1)+k

(j)-r(w))^2); 

    l=l+1; 

 elseif 

r(w)<a(j,1)&&y(w)<(2*k(j)*a(j,8)-a(j,6)+a(j,3)*cos(e(j,2)*pi()/180))/(a(j,1)+k(j)-r(w))^2||r(

w)>a(j,1); 

        v=v+1; 

end  

       end   

T(j)=v/N; 

I(j)=v/N; 

K(j)=(N-l)/N; 

end 
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end 

B=I'; 

E=K'; 

F=T'; 

A=sum(G(:))/10 

C=sum(L(:))/10 

D=sum(K(:))/10 

H=sum(T(:))/10 

M =[A+C+D,A,C+D-H,H,C,D] 
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