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CHAPTER 1. Introduction

In 2008, Kamihara et al. [1] discovered superconductivity in LaFeAsO (1111) compounds

and Rotter et al. [2] found superconductivity in the BaFe2As2 (122) compounds. They are often

called the FeAs-based superconductors or the iron pnictide superconductors and also include

the Li-Fe-As system and the Fe-Te system.[3, 4] Superconductivity in materials containing “Fe”

has been known but “Fe” in such materials are non-magnetic.[4] The significance of the FeAs-

based superconductors is that Fe carries a moment and, in general, the presence of magnetic

moments is detrimental to superconductivity because of spin-flip scattering (further discussion

in the following section). The superconducting transition temperatures (Tc) of the FeAs-based

superconductors are somewhat lower (< 60 K) compared to the cuprate superconductors, and

the critical field in these superconductors is high (on the order of 50 - 100 T).[3, 4] Except

the ceramic compounds such as RFeAsO (R = rare earth) superconductors, the FeAs-based

superconductors are mechanically metals and feature malleability, weldability, ductility and so

on. However, further studies are needed to fully characterize the mechanical properties before

these materials can be applied for practical uses.

One of the major scientific concerns is the superconducting transition temperature. Naively

speaking, if a room temperature superconductor would be found, it would change every way

of using electricity. The ultimate goal of world-wide investigations on various properties of

superconductors is to understand how superconductivity occurs so that one will be able to

design materials that will superconduct at the room temperature or temperatures near room

temperature. Therefore, understanding various properties of superconductors is necessary.
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1.1 “Conventional” and “Unconventional” superconductors

Superconducting materials may be cast in two categories: (1) materials such as the ele-

ments [5, 6], NbTi, and Nb3Sn alloys [6–9], and (2) other systems including the cuprate su-

perconductors [10–14], heavy fermion superconductors [15, 16], some organic compounds [17],

and now the FeAs-based superconductors. The former group has come to be termed as “con-

ventional” superconductors while the latter group is generally accepted to be “unconventional”

superconductors. This categorization is based on our current understanding of how conven-

tional superconductivity occurs - the “BCS” theory of superconductivity.

The BCS theory was proposed by J. Bardeen, L. N. Cooper, and J. R. Schrieffer (BCS)

in 1957.[18, 19] According to BCS, electrons in superconductors condense into pairs, “Cooper

pairs”,[18–20] which are bosons, consisting of one spin-up electron and one spin-down elec-

tron, that can occupy the same ground state (see Bose-Einstein condensation [21, 22]). This

condensation state is highly collective so an energy to break a single pair or multiple pairs

can not break the superconducting state unless the energy is high enough to break all Cooper

pairs.[18–20] Therefore, Cooper pairs do not experience any resistance provided by energies

that may break few pairs but are not sufficiently large to break all the pairs - zero electric

resistivity. Because the Cooper pair consists of one spin-up and one spin-down electrons, any

internal field supplied by local moments or external field supplied by magnets is detrimental

to superconductivity. Internal/external fields flip spins of electrons to be parallel to the field

direction of moments or magnets, which break the Cooper pairs.

In BCS theory, electrons can pair when an attractive potential exists, independent of the

kind and strength of the attractive potential.[18, 19] The attractive potential in the “conven-

tional” superconductors is provided by lattice vibration (phonon). Electrons attract positively

charged ions in the lattice, which causes a more positively charged area in the lattice which,

in turn, attracts another electron. Two electrons are bound to each other and it is called the

Cooper pair.[18–20] This process is schematically shown in Figure 1.1. The coupling between

electrons and lattice vibration (phonon) is important for Cooper pairing in the “conventional”

superconductors and the BCS theory can predict many properties of the “conventional” super-
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Figure 1.1 Electron-lattice interaction. (a) Electron entering in the lattice. The lattice is

composed of positively charged ions. (b) Coulomb attraction brings electron and

adjacent positive charges close together. (c) The attraction creates a more posi-

tively charged area (green circle) that attracts another electron. The two electrons

are paired up as the Cooper pair. After Ref. [18, 19].

conductors including superconducting transition temperatures by knowing the electron-phonon

coupling.[18, 19] The importance/effect of electron-phonon coupling has been confirmed by ex-

periments, for example isotopic substitutions where a “heavier” isotope element, that is more

difficult to be displaced in the lattice than the lighter one, results in weaker electron-phonon

coupling and lower Tc.[23, 24]

“Unconventional” superconductivity can be understood on the basis of Cooper pairing.

However, the origin of the potential may not be a lattice vibration (it can even be a re-

pulsive potential). The BCS prediction of Tc based on the electron-phonon coupling fails

in the “unconventional” superconductors, and the effect of isotope substitution is small or

nonexistent.[3, 4, 25] The origin of the attractive potential is not completely known for the

“unconventional” superconductivity, but it has been suggested that the spin fluctuations may

play a key role in the FeAs-based superconductors.[26, 27] One of the simplest pairing process

via spin fluctuations is illustrated in Fig. 1.2 for a localized antiferromagnetic system. Lo-

calized moments, m1 and m2 (blue arrows), are aligned anti-parallel (antiferromagnetically)

through spin exchange coupling, I. Conduction electron, e1, couples to a localized moment,

m1, through exchange coupling J and is polarized with spin-down in Fig. 1.2. Through spin

exchange coupling, I, another conduction electron, e2, is favorable to be polarized spin-up. In
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Figure 1.2 Illustration of one of the simplest mechanism of spin fluctuations mediated pair-

ing. (a) Local moment, m1 and m2 (blue arrows), are aligned anti-parallel through

spin fluctuations exchange coupling I. A conduction electron, e1, is polarized as

spin-down (red arrow). (b) When another electron, e2, enters, spin fluctuations

exchange coupling polarizes a local moment, m2, which favors a spin-up polariza-

tion of an electron, e2. Therefore, e1 (spin-down) and e2 (spin-up) can pair via

spin fluctuations. After Ref. [28]

this way, the conduction electrons e1 and e2 can form a Cooper pair.[28]

1.2 Phase diagrams of “unconventional” superconductors

The best known “unconventional” superconductors to date are the heavy fermion super-

conductors (e.g. CeCu2Si2, CeRhIn5, URu2Si2, etc.), [15, 16] the cuprate superconductors

(e.g. La2−xSrxCuO4, YBa2Cu3O7, etc) [11–14], and now, the newly discovered FeAs-based

superconductors.[3, 4] The phase diagrams of the aforementioned “unconventional” super-

conductors display interesting similarities. Figure 1.3 shows the phase diagrams of (a) the

heavy fermion superconductors, (b) the cuprate superconductors, and (c) the FeAs-based

superconductors.[29] First, I note that superconductivity exists in a dome-like region over a

finite range in pressure or doping. For the heavy fermion superconductors, superconductivity

is induced most efficiently by applying external pressure if superconductivity is not present

at ambient conditions. In the cuprate and the FeAs-based superconductors, electron or hole

doping is frequently used to induce superconductivity. Typical superconducting transition tem-

peratures are on the order of few degrees Kelvin in the heavy fermion superconductors, but on

the order of > 100 K in the cuprate superconductors. The Tcs of the FeAs-based superconduc-
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Figure 1.3 Representative schematic phase diagrams of (a) heavy fermion superconductors,

(b) the cuprate superconductors, and (c) the FeAs-based (iron pnictide) super-

conductors. All phase diagrams show a close approximate occurrence of different

ground states (e.g. antiferromagnetic ordering and superconductivity). After Ref.

[29].

tors are approximately between 20 K and 60 K which locate the FeAs-based superconductors

between the heavy fermion and the cuprate superconductors.[3, 4, 11–16, 30]

A second general characteristic of “unconventional” superconductors is the presence of

an antiferromagnetic ground state in the “parent phase” materials. The “parent phase”

materials are compounds without pressure or doping. For example, parent compounds in

Figs. 1.3 (a) − (c) are CeRhIn5 without pressure, YBa2Cu3O6 without doping on the Y, Ba,

Cu, or O sites, and LaFeAsO without doping on the La, Fe, As, or O sites, respectively. The

antiferromagnetic ordering occurs as temperature is lowered in many of these materials as

shown in Fig 1.3. In the heavy fermion superconductors [Fig 1.3 (a)], as the external pressure

is increased, the antiferromagnetic ordering is suppressed continuously but extends into the

superconducting dome (coexistence of antiferromagnetism and superconductivity), and the an-

tiferromagnetism is identified with the rare-earth ions and is usually localized (one example of

non-localized magnetism is Ce in which the magnetism is originated from quite extended and hy-

bridized 4f band).[15, 16] In the cuprate superconductors where the undoped parent compounds

are insulators[Fig 1.3 (b)], with doping, the antiferromagnetism is completely suppressed be-

fore superconductivity emerges (exclusion of antiferromagnetism and superconductivity) and

the antiferromagnetic ordering is well understood in terms of the Heisenberg approximation so

the cuprate superconductors are best characterized as localized moment systems.[11–14] Both
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Figure 1.4 Representative crystal structure of (a) heavy fermion CeCu2Si2 superconduc-

tor, (b) the cuprate La2−xSrxCu2O4 superconductors, and (c) the FeAs-based

BaFe2As2 superconductors. See the text for details. After Ref. [14, 16].

the coexistence and exclusivity of antiferromagnetism and superconductivity are observed in

the FeAs-based superconductors [Fig 1.3 (c)]. In some materials (LaFeAsO1−xFx as shown in

the figure), antiferromagnetism is completely suppressed before the superconductivity emerges

whereas in other materials (Sr1−xKxFe2As2 as shown in the figure), the antiferromagnetism

coexists with superconductivity over some finite range of doping.[30] The antiferromagnetism

in the FeAs-based superconductors, which the undoped parent compounds are metallic, derives

from the conduction electrons that are not localized.[3, 4, 30]

Finally, although it is not evident in the phase diagrams in Fig. 1.3, all systems are tetrag-

onal or orthorhombic as shown in Fig. 1.4 and anisotropy in these unconventional supercon-

ductors seems important. Many measurements including resistivity, magnetization, and in-

elastic neutron scattering observed that these superconductors exhibit directionally different

properties in the ~a~b plane and along the ~c axis. The anisotropy in the heavy fermion super-

conductors is small but they seem to exhibit higher Tc when the anisotropy is larger.[15, 16]
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The cuprate superconductors are the well-known example of a two dimensional system and

have large anisotropy,[11–14] and inelastic neutron scattering measurements have shown that

the FeAs-based superconductors change their character from three dimensional to quasi-two

dimensional as doping increases (moderate anisotropy compared to the heavy fermion and

cuprate superconductors).[30] Figure 1.4 displays typical crystal structures of those systems:

(a) the tetragonal I4/mmm ThCr2Si2 type structure (CeCu2Si2) frequently found in heavy

fermion superconductors[16], (b) the tetragonal I4/mmm structure for La2−xSrxCuO4 com-

pound which is a common structure among the cuprate superconductors[11–14] and, (c) the

tetragonal I4/mmm ThCr2Si2 type structure found in BaFe2As2 compound.[3, 4, 30] The

cuprate and FeAs-based superconductors feature layered structures - CuO layers in the ~a~b

plane stacked along the ~c axis and FeAs layers in the ~a~b plane stacked along the ~c axis, respec-

tively. The heavy fermion superconductors were not viewed as a layered structure but some of

them have the same ThCr2Si2 type structure as in the FeAs-based superconductors [Fig 1.4 (a)

and (c)]. Hence the anisotropy found in the “unconventional” superconductors may be closely

related to the layered structures.

Why are the FeAs-based superconductors interesting to study? As I discussed previously,

these materials have very high critical fields and, unlike the cuprates, have mechanical prop-

erties that may be amenable to practical applications. The antiferromagnetism in the FeAs-

based superconductors is derived from the conduction electrons that also participate in Cooper

pairing below Tc so that the antiferromagnetism and superconductivity compete for the same

electrons whereas, in the cuprate superconductors and some of the heavy fermion supercon-

ductors, localized electrons carrying moments seem to contribute to either Cooper pairing

or antiferromagnetism. This difference, in other words itinerant system versus localized sys-

tem, implies that the underlying physics may be different in those materials. Based upon the

quasi-two dimensional character of the FeAs-based superconductors with relatively high Tc, the

FeAs-based superconductors seem to locate between the heavy fermion superconductors (small

anisotropy with low superconducting transition temperatures) and the cuprate superconductors

(high anisotropy with high superconducting temperatures). Hence, studying AFM, SC, and

interplay between AFM and SC as well as AFM, structure, and connection to dimensionality in
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the FeAs-based superconductors are not only intriguing but also prerequisite for understanding

the superconductivity in these materials. Ultimately, understanding the properties of the FeAs-

based superconductors may lead to an understanding of various properties of “unconventional”

superconductivity.

1.3 Purpose of dissertation

The purpose of my dissertation is to understand the structural and magnetic properties

of the newly discovered FeAs-based superconductors and the interconnection between super-

conductivity, antiferromagnetism, and structure. X-ray and neutron scattering techniques are

powerful tools to directly observe the structure and magnetism in this system. I used both x-

ray and neutron scattering techniques on different transition substituted BaFe2As2 compounds

in order to investigate the substitution dependence of structural and magnetic transitions and

try to understand the connections between them. Experimental results presented in this dis-

sertation were collected at several places: x-ray diffraction data at the Ames Laboratory, IA,

x-ray resonant magnetic scattering data at the Argonne National Laboratory, IL, and neutron

diffraction data at the Oak Ridge National Laboratory, TN and at the University of Missouri

Research Reactor, MO.

The organization of my dissertation is as follows: In Chapter 2, I briefly summarize what has

been reported about superconductivity, crystal structure, phase transitions, phase diagrams,

and interplay between superconductivity, antiferromagnetism and structure of the FeAs-based

superconductors in literature. Chapter 3 provides overviews of experimental techniques of x-

ray and neutron scattering focusing on the practical aspect. Next, in Chapter 4, I will discuss

my experimental results of structural and magnetic properties of transition metal (Co, Rh, Ru,

and Mn) substituted BaFe2As2 compounds, and commensurate/incommensurate antiferromag-

netic ordering in transition metal (Ni and Cu) substituted BaFe2As2 compounds in Chapter 5.

Conclusions and outlook is given in Chapter 6.
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CHAPTER 2. Introduction to the FeAs-based superconductors

In 2008, the FeAs-based superconductors (fluorine substituted LaFeAsO1−xFx compounds,

1111 compounds) were discovered by Kamihara et al.[1] and invigorated the field of supercon-

ductivity once again. The substitution of 4% fluorine for the oxygen in LaFeAsO1−xFx induced

superconductivity at Tc ∼ 25 K.[1] Superconductivity in this compound is not only realized by

fluorine substitution on the oxygen site but also by oxygen deficiency or element substitutions

on the La site, the Fe site, and/or the As site.[31–60] When other rare earth elements were

used as a starting element instead of La, it was found that Tc rises rapidly and reached ∼ 56

K in Gd1−xThxFeAsO.[44]

Later that year, the BaFe2As2 compound (122 compound) was introduced as a possible

candidate material for superconductivity, similar to RFeAsO compounds (R = rare earth

elements).[2, 61] Indeed, K substitution on the Ba site of BaFe2As2 compounds showed Tc = 38 K

for 40 % K substitution.[2] Substitutions on the AE site, the Fe site, and/or the As site of

AEFe2As2 (AE = Ca, Sr, and Ba) also induces superconductivity, but the highest Tc in this

family of compounds remains at 38 K.[62–105]

Much effort was put to search for other FeAs-based superconductors resulting in the dis-

covery of the so-called 111 compounds and 11 compounds, LiFeAs and FeSe1−xTex, respec-

tively. Among the 111 compounds, the stoichiometric LiFeAs compounds show the highest

Tc ≈ 20 K.[106–117] The 11 compounds do not contain As but Te, Se, and/or S, and have a

very similar crystallographic structure as other FeAs-based superconductors. The highest Tc

was found in FeSe1−xTex (x = 0.5) and FeSe1−xSx (x = 0.2) at ∼ 15 K.[118–130]

An understanding of similarities and differences between each family of compounds is pre-

requisite to an understanding of the underlying physics of the FeAs-based superconductors.

Therefore, in this chapter I provide a basic introduction to the essential features of these com-
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pounds. This chapter is organized as follows. In Section 2.1, the superconductivity of each

family compound will be summarized. Then, the commonalities of the crystallographic struc-

tures (Section 2.2), and the common structural and magnetic phase transitions (Section 2.3)

will be introduced. Lastly, the interplay between superconductivity, magnetism, and struc-

ture together with origins of the antiferromagnetic ordering and structural transition will be

discussed in Section 2.4.

2.1 Superconductivity

2.1.1 1111 family

The discovery of superconductivity in FeAs based superconductors originated from unceas-

ing work in quaternary oxypnictides in Hosono’s group. Hosono’s group found superconduc-

tivity at ∼ 4 K and ∼ 3 K in LaFePO in 2006 and LaNiPO in 2007, respectively.[131, 132]

The same group found superconductivity at ∼ 25 K in 4 % F substituted LaFeAsO in 2008,[1]

opening a new chapter in the area of unconventional superconductivity that has dominated the

literature on superconductivity for the past four years.

After the initial discovery of superconductivity in fluorine substituted samples, it was shown

that superconductivity can also be induced in other RFeAsO compounds by fluorine substitu-

tion with R = La, Ce, Pr, Nd, Sm, and Gd.[1, 33–35, 37–39] The highest Tc in various 1111

compounds discussed in this section is summarized in Table 2.1. Secondly, not only fluorine

substitution, but also a deficiency of oxygen can produce superconductivity in the 1111 family

(RFeAsO1−y).[40–42, 50] Third, it has also been reported that certain transition metal sub-

stitutions on the Fe site results in superconductivity. Transition metal elements, TM = Co,

Ni, Rh, and Ir, in RFe1−xTMxAsO induce superconductivity [45–48, 52–55, 57–60] whereas

TM = Mn, Cr, Zn, and Ru do not result in superconductivity.[52, 55, 133–135] Fourth, ele-

ment substitutions on the R site or on the As site can also introduce superconductivity. It

was first reported that Sr substitution on the La site in LaFeAsO compounds did not induce

superconductivity by Kamihara et al.[1] However, other groups found superconductivity intro-

duced by substitutions on the R site. Among all of the superconducting 1111 compounds and,
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Table 2.1 The highest Tc in various 1111 compounds. x is substitution levels in given com-

pounds.

Compound x Tc (K) Reference Note

LaFeAsO1−xFx 0.11 26 [1]

CeFeAsO1−xFx 0.16 41 [38]

PrFeAsO1−xFx 0.11 44 [34]

NdFeAsO1−xFx 0.11 49 [35]

SmFeAsO1−xFx 0.10 53 [37]

GdFeAsO1−xFx 0.17 37 [39]

LaFeAsO1−x 0.15 31 [40]

CeFeAsO1−x 0.15 47 [40]

PrFeAsO1−x 0.15 51 [40]

NdFeAsO1−x 0.15, 0.50 54 [40, 42]

SmFeAsO1−x 0.15 55 [40]

GdFeAsO1−x 0.55 52 [41]

TbFeAsO1−x 0.30 53 [50] under pressure, 5 GPa

DyFeAsO1−x 0.30 52 [50] under pressure, 5.5 GPa

SmFe1−xCoxAsO 0.10 15 [46]

SmFe1−xNixAsO 0.06 11 [58]

NdFe1−xRhxAsO 0.10 15 [59]

GdFe1−xIrxAsO 0.20 19 [60]

La1−xSrxFeAsO 0.13 25 [32]

Pr1−xSrxFeAsO 0.20 16 [51]

Nd1−xSrxFeAsO 0.20 14 [49]

Gd1−xThxFeAsO 0.20 56 [44]

LaFeAs1−xPxO 0.11 11 [56]
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perhaps, all FeAs-based superconductors, the highest superconducting transition temperature

Tc is achieved by substitution on the R site at 56 K (R = Gd with 20% Th [44]). Finally, it

was also found that P substitution on the As site brings superconductivity at 11 K in R = La

with 11% P. Because the valence of P is the same as the valence of As (P3− and As3−), but the

ionic radius of P (0.44 Å) is smaller than the ionic radius of As (0.58 Å)[136], P substitution on

the As site in RFeAsO compounds has been considered as isoelectronic doping and introducing

internal(chemical) pressure.[56] Superconductivity under external pressure is beyond the scope

of my dissertation so that it will not be discussed.

Although the 1111 family has been widely studied, readers should be cautious about the

compositions stated in the literature. For example, Köhler and Behr measured the compositions

of their polycrystalline samples using the electron beam micro-probe analysis method, with

both an energy dispersive x-ray detector and a wavelength dispersive x-ray detector, and found

that the actual compositions in their LaFeAsO1−xFx and SmFeAsO1−xFx compounds were

significantly different from the nominal compositions.[137] Since the most of the compositions

in the literature were reported with nominal concentrations, one can not exclude that the real

compositions may be very different from the reported values.

2.1.2 122 family

Since the 122 family compounds have the well-known ThCr2Si2 type structure (Section 2.2),

the first member of this family, non-superconducting BaFe2As2 compound, was quickly discov-

ered by Johrendt’s group.[61] It was soon realized that this family forms large and homogeneous

single crystals,[63, 66, 67, 69–71] and the availability of large single crystals has fostered many

detailed studies of the 122 family.

Superconductivity in the 122 family was first observed for K substitution on the Ba site

of BaFe2As2 compounds. Polycrystalline Ba1−xKxFe2As2 shows a superconducting transition

temperature, Tc, at 38 K for x = 0.4.[2] SrFe2As2, CsFe2As2, KFe2As2, EuFe2As2 and CaFe2As2

compounds were studied, with Tc = 3.8 K in polycrystalline KFe2As2 compound and 2.6 K in

polycrystalline CsFe2As2 compound[64], and these studies showed that SrFe2As2[62, 66, 68],

EuFe2As2[68, 69], and CaFe2As2[70, 71] compounds are other parent compounds like BaFe2As2,
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Table 2.2 The highest Tc in various 122 compounds. x is substitution levels in given com-

pounds.

Compound x Tc (K) Reference Note

KFe2As2 - 3.8 [64] polycrystalline

CsFe2As2 - 2.6 [64] polycrystalline

Ba1−xKxFe2As2 0.40 38 [2] polycrystalline

Ca1−xNaxFe2As2 0.40 26 [72] polycrystalline

Sr1−xKxFe2As2 0.40 37 [64] polycrystalline

Sr1−xCsxFe2As2 0.40 37 [64] polycrystalline

Eu1−xKxFe2As2 0.50 32 [78] polycrystalline

Ca(Fe1−xCox)2As2 0.03 17 [79] single crystal

Ca(Fe1−xNix)2As2 0.03 15 [94] single crystal

Ca(Fe1−xRhx)2As2 0.075 19 [104] polycrystalline

Ca(Fe1−xIrx)2As2 0.065 22 [105] single crystal

Sr(Fe1−xCox)2As2 0.10 19 [73] polycrystalline

Sr(Fe1−xNix)2As2 0.09 10 [90] single crystal

Sr(Fe1−xRux)2As2 0.35 14 [87] polycrystalline

Sr(Fe1−xRhx)2As2 0.125 22 [85] polycrystalline

Sr(Fe1−xPdx)2As2 0.075 9 [85] polycrystalline

Sr(Fe1−xIrx)2As2 0.125 24 [85] polycrystalline

Sr(Fe1−xPtx)2As2 0.125 17 [101] polycrystalline

Ba(Fe1−xCox)2As2 0.08 22 [75] single crystal

Ba(Fe1−xNix)2As2 0.05 21 [80] single crystal

Ba(Fe1−xRux)2As2 0.375 22 [86] polycrystalline

Ba(Fe1−xRhx)2As2 0.057 24 [91] single crystal

Ba(Fe1−xPdx)2As2 0.043 19 [91] single crystal

Ba(Fe1−xIrx)2As2 0.10 28 [95] polycrystalline

Ba(Fe1−xPtx)2As2 0.05 24 [99] single crystal

BaFe2(As1−xPx)2 0.32 30 [93] polycrystalline

EuFe2(As1−xPx)2 0.30 26 [84] polycrystalline
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which have a possibility to induce superconductivity with substitutions. Indeed, it was found

that substitutions on the AE site of AEFe2As2 (AE = Ca, Sr, Ba, and Eu) compounds intro-

duce superconductivity [64, 64, 72, 78]). The highest Tc in various 122 compounds discussed

in this section is summarized in Table 2.2.

Transition metal substitutions on the Fe site also induce superconductivity and are the main

topic of my dissertation. AE(Fe1−xTMx)2As2 compounds exhibit superconductivity with AE

= Ca, Sr, and Ba and TM = Co, Ni, Ru, Rh, Pd, Ir, and Pt.[73, 75, 79, 80, 85–87, 90, 91, 94,

95, 99, 101, 104, 105] TM = Cr [88], Mn [97], Cu [89, 92] and Mo [138] are also studied and

do not show superconductivity.

P substitution on the As site is also found to induce superconductivity as in P substituted

1111 family compounds. The superconductivity occurs at Tc ≈ 26 K (polycrystalline, AE =

Eu, 30% P [84]) and 30 K (polycrystalline, AE = Ba, 32% P [93]).

I have loosely used the terms “polycrystalline” and “single crystal” since there are discrep-

ancies in literature between Tc in compounds produced by different groups as well as between

Tc in polycrystalline and single crystal samples. Unfortunately, the reason is not known.

2.1.3 111 family

LiFeAs and NaFeAs are two compounds in the 111 family. The most astonishing and im-

portant aspect of this family is that those compounds exhibit superconductivity without the

introduction of substitutions. However, every reported compound shows excessive/deficient

amounts of either Li/Na or Fe. Hence it has also been argued that these excessive/deficient

concentrations act in a manner similar to doping.[106–109, 111] It was also found that super-

conductivity in this family is extremely sensitive to the amounts of excessive/deficient element,

nearly stoichiometric compounds enhance superconductivity.[112] The highest superconducting

transition temperatures are reported at 18 K in LiFe1.03As [113] and 12 K in Na0.9FeAs [113].

Transition metal substitution is also observed to enhance superconductivity. When Co and

Ni are introduced in NaFeAs compound (Tc = 9 K), an increase of Tc was observed (Tc = 12 K

with 1% Co).[114] However, Co and Ni substitutions in LiFeAs compounds do not enhance

superconductivity but reduce Tc gradually.[116]
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2.1.4 11 family

The 11 family does not contain FeAs layers but FeTe or FeSe layers. However, due to the

similarities between the FeTe/Se and the FeAs layers (Section 2.2), it is considered as a member

of FeAs-based superconductors. From its chemical formula (1:1) and crystallographic structure

(Section 2.2), it is considered as the simplest FeAs-based superconductor. However, the sub-

tleties of the physical properties, which are dependent on delicate changes in concentration,

make this family more complex.

This complexity comes first from the existence of three different phases. FeSe can crystallize

in: (a) a tetragonal α-PbO type structure (β phase which is widely called α phase in literature

[123]); (b) various structures from hexagonal to monoclinic NiAs type structure (α phase),

and; (c) a FeSe2 phase.[118] Due to these three stable phases, secondary phases are almost

always present in samples. The second complexity arises from the intercalation of excess Fe

atom (Section 2.2). The intercalated Fe atom possesses a magnetic moment and the effect of

the moment is not well understood. Nevertheless, the 11 family has attracted a great deal of

attention due to a wide range of structural and magnetic properties which are resulted from

the aforementioned complexity as well as the availability of large single crystals. I will keep

the discussion of the 11 family as simple as possible throughout this chapter.

Stoichiometric FeSe and FeTe are non-superconducting. It was first observed that a de-

ficiency of Se or excess of Fe induces superconductivity in FeSe compounds (not in FeTe

compounds).[118, 120, 123, 125] Keeping in mind that the subtle difference in Se or Fe con-

centration changes the superconducting properties, FeSe0.88 and Fe1.01Se shows Tc = 8 K [118]

and 9 K [123], respectively. Superconductivity is also induced when Si, S, Se, Sb, or Te are

introduced on the Se or Te site. The superconducting transition temperatures were reported

at 10 K in FeSe0.8Si0.1 [130], 16 K in FeSe0.8S0.2 [122], 9 K in Fe0.98Te0.9S0.15 [128], 11 K in

FeSe0.8Sb0.1 [130], and 15 K in FeSe0.5Te0.5 [119]. Transition metal substitution on the Fe site

was attempted with Co, Ni, and Cu and a continuous decrease of Tc [122, 126] was reported

for all substitutions, and a solubility limit (30%) was reported for Cu [126].
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2.2 Commonalities of the Crystallographic Structure

One of the interesting properties of FeAs-based superconductors is the similarity of the

crystallographic structures of different families of compounds: they all contain FeAs or FeTe/Se

layers (in tetrahedral coordination) and their high temperature structure is tetragonal.

The 1111 family compounds have a tetragonal P4/nmm, ZrCuSiAs type structure.[1] The

representative crystal structure is shown in Figure 2.1 (a), and can be viewed as the alternating

stacking of FeAs layers and R-O (R = rare earth) layers.

Similarly, for the 122 family compounds [shown in Figure 2.1 (b)], there are alternating

FeAs layers and AE(= Ca, Sr, Ba) atoms (instead of R-O layers), and the high temperature

crystal structure is the tetragonal I4/mmm, ThCr2Si2 type structure.[61]

The simpler 111 family compounds have a tetragonal P4/nmm, PbFCl type structure

at high temperature [106–108] and feature Li or Na atoms between the FeAs layers as in

Figure 2.1 (c). The simplest 11 family compounds form a high temperature tetragonal P4/nmm,

α-PbO type structure with no additional layers nor atoms in between FeTe/Se layers [Fig. 2.1 (d)].

However, it was soon realized that growth of exact stoichiometric 11 compounds is extremely

difficult and intercalation of Fe atoms [Fe(2) in Figure 2.1 (d)] in between FeTe/Se layers is

unavoidable.[118–121, 123]

2.3 Phase Transitions : Structural and Magnetic Transitions

In addition to the superconducting phase transition, most FeAs-based superconductors

undergo structural and/or magnetic phase transitions. As I showed in Figure 1.3, unconven-

tional superconductors show different ground states (structural, magnetic, and superconduct-

ing) which are close to each other and sometimes compete to each other. Therefore, under-

standing the intriguing structural and/or magnetic phase transitions is important. I will first

briefly introduce how we can detect the phase transitions using x-ray and neutron scattering

techniques. Then I will discuss structural/magnetic properties, nature of phase transitions,

and phase diagrams of each family studied by scattering techniques.
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Figure 2.1 High temperature crystallographic structures: (a) the 1111 family compounds

(P4/nmm),[147] (b) the 122 family compounds (I4/mmm),[167] (c) the 111 family

compounds (P4/nmm),[106] and (d) the 11 family compounds (P4/nmm).[120]

See the text for details.

Orthorhombic Distortion: structural phase transition

As will be discussed in the following subsections, many of the compounds of interest exhibit

a tetragonal-to-orthorhombic structural phase transition. A tetragonal structure has the same

length of the lattice parameters a and b (= a) whereas the lattice parameters a and b (6= a) are

different in an orthorhombic structure. For example, the (2, 0, 0) and (0, 2, 0) Bragg reflections

from a tetragonal structure are indistinguishable in diffraction experiments, but they are dis-

tinguishable and appear at slightly different diffraction angles from an orthorhombic structure

since a 6= b (see Section 3.1.1). By measuring the difference in the peak positions, one can de-

termine the respective lattice parameters and observe a tetragonal-to-orthorhombic structural

phase transition. A typical measure of the tetragonal-to-orthorhombic phase transition is the

distortion, δ, defined as δ = a−b
a+b and is generally termed the order parameter for the structural

transition. Please refer to Sec. 4.1.2 for relations between a tetragonal and an orthorhombic

structures.

Antiferromagnetic Order Parameter: magnetic phase transition

In diffraction experiments, Bragg peaks appear when the diffracted beam from parallel

planes interfere constructively (see Section 3.1.1). The Bragg peaks depend on the periodicity
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Figure 2.2 (a) Periodic 1-D mono-atomic arrangement. A, B, C, D ... are identical. (b)

Introduction of an AFM ordering in the same 1-D arrangement. For instance, A

and C became no longer identical due to different spin orientations noted with red

arrows.

of the crystal structure.[139] In the vicinity of an antiferromagnetic (AFM) phase transition, the

AFM ordering gives rise to a magnetic structure which has different symmetry elements (usually

a subgroup of the crystallographic space group) from the crystal structure. For instance, in

a 1-dimensional mono-atomic arrangement in Figure 2.2 (a), the A, B, C, and D sites are

identical. When antiferromagnetic ordering is introduced as shown in Figure 2.2 (b), a new

magnetic periodicity is introduced, introducing a new set of Bragg diffraction peaks associated

with that periodicity. A measure of intensities of AFM Bragg peaks as a function of a control

parameter, such as temperature, is termed the AFM order parameter.

A first-order phase transition is characterized by (1) a sudden change in the order parameter,

(2) thermal hysteresis, and/or (3) coexistence between two different phases (e.g. a coexistence

of tetragonal and orthorhombic structures). In contrast, a second-order phase transition is

signaled by a continuous change in the order parameter and the absence of hysteresis and

coexistence.

2.3.1 1111 family

Parent RFeAsO compounds

The 1111 family compounds undergo a structural phase transition from a high temperature

tetragonal P4/nmm to an orthorhombic Cmma at low temperature. The structural transi-

tion was first noticed in macroscopic measurements. Kamihara et. al. found, in polycrystalline

LaFeAsO1−xFx compounds, that there were anomalies in the resistance and magnetization
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Figure 2.3 Low temperature crystallographic structures: (a) the 1111 family compounds

(Cmma),[147] (b) the 122 family compounds (Fmmm),[167] (c) the 111 family

compounds (Cmma),[109] and (d) the 11 family compounds (Pnmm).[120] The

color scheme for different atoms is the same as in Figure 2.1. Only Fe atoms

are shown with spin orientation with black arrows in (e) the 1111 family, (f) the

122 family, (g) 111 family, and (h) the 11 family compounds.[30] See the text for

details.

data at around 150K,[1] which implied a possible onset of magnetic or structural phase tran-

sition. These anomalies disappear for samples with higher fluorine concentration. X-ray and

neutron experiments quickly followed and showed that the anomalies in the bulk measurement

correspond to a spin density wave antiferromagnetic transition in addition to a tetragonal-to-

orthorhombic structural transition. The first diffraction measurements were done on polycrys-

talline LaFeAsO1−xFx compounds and it was claimed that the parent LaFeAsO compound

transforms from a tetragonal (P4/nmm) to a monoclinic (P112/n) phase at 155 K (= TS, a

structural transition temperature), closely followed by a spin density wave (SDW) or antifer-
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romagnetic (AFM) transition at 137 K (= TN).[140] They also proved that there is no longer

either a structural or SDW (AFM) transitions in the x = 0.8 compound.[140] However, it was

later realized that a more accurate description of the low temperature structure is orthorhom-

bic Cmma[141] as shown in Figure 2.3 (a) [P112/n is the primitive cell of an orthorhombic

Cmma].[140] All undoped parent RFeAsO compounds undergo the similar structural and mag-

netic transitions.[140–159]

Several neutron diffraction measurements determined the magnetic structure for Fe ordering

and found that the antiferromagnetism is commensurate.[140, 144, 145, 148, 149, 153, 156–158]

As shown by arrows in Figure 2.3 (e), the Fe moments point along the orthorhombic ~a axis,

and align antiferromagnetically along the orthorhombic ~a axis and ferromagnetically along the

orthorhombic ~b axis (a > b).[140, 144, 145, 148, 149, 157, 159] Because stripes of parallel

spins alternate antiferromagnetically along the orthorhombic ~a axis, this has become known

as the “stripe” AFM structure. The correlation of Fe moments along the orthorhombic ~c

axis differ in different RFeAsO compounds: antiferromagnetic alignment for R = La, Nd, and

Sm[140, 144, 153, 159] and ferromagnetic alignment for R = Ce, Pr[145, 149]. Therefore, the

antiferromagnetic ~Q vectors, sometimes called AFM propagation vectors, for Fe ordering are

~QAFM=(1
2 , 1

2 , 1
2)T in the tetragonal structure notation [≡ (1, 0, 1

2)O in orthorhombic structure

notation] for La, Nd, and Sm compounds [140, 144, 153, 159] and ~QAFM=(1
2 , 1

2 , 0)T ≡ (1, 0, 0)O

for Ce and Pr compounds.[145, 149]

Ordering of rare earth elements has also been observed. Some rare earth elements, such as

Nd and Sm, display complex interplay with the Fe ordering: the effect of rare earth magnetism

on the Fe moment direction and additional magnetic ordering temperatures.[157, 159] The

structural transition temperatures (TS), AFM (SDW) transition temperatures of Fe (TNFe
),

magnetic transition temperatures of rare earth elements (TNR
), and the ordered moment sizes,

M , of Fe and rare earth elements in the parent 1111 compounds are listed in Table 2.3. In

general, TS and TN are split (TS > TN) in the parent 1111 compounds and the small ordered

magnetic moments measured (< 1µB) for both the Fe and rare earth elements indicates that

the system is itinerant.

Whether the phase transition is first-order or second-order is another point of interest in the
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Figure 2.4 Antiferromagnetic order parameter of (a) LaFeAsO (nuclear peak splitting is shown

in the inset),[140] (b) NdFeAsO,[144] (c) CeFeAsO [the bottom panel; temperature

evolution of a nuclear peak intensity is shown on the top panel of (c)] [145] and

(d) PrFeAsO [the bottom panel; temperature evolution of a nuclear peak intensity

is shown in the top panel of (d)].[149]

FeAs-based superconductors. A second-order transition can be described by a critical exponent

of the order parameter in a power law relation. The critical exponent of structural or magnetic

order parameters are related to the critical exponents of thermodynamic order parameters,

such as heat capacity. Second-order transitions can be categorized within a universality class

which have the same value of critical exponent within a given model. For example, the critical

exponents, β, of the magnetic order parameter are 1
8 for Ising model with 1-dimensional (D)

lattice and 1-D spin, 0.326 for Ising model with 1-D lattice and 3-D spin, 0.367 for Heisenberg

model with 3-D lattice and 3-D spin, and 1
2 for Mean-field with any dimensions of lattice and
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Table 2.3 Structural transition temperature TS and antiferromagnetic (spin density wave)

transition temperature TN in the parent RFeAsO compounds. In the superscript in

the second, third, and fourth columns, “N” means that it was measured with neu-

trons and “X” means that x-ray measurements were used. “NO” = “no ordering”

and “NR” = “not reported”.

R TS (K) TNFe
(K) TNR

(K) MFe (µB) MR (µB) Reference

La 155N 137N NO 0.36 @ 8 K NO [140]

∼ 160X 145N NO NR NO [143]

Ce ∼ 155N ∼ 140N NR 0.94(3) @ 1.7 K 0.83(2) @ 1.7 K [145]

Pr 136N 85N 12N 0.53(20) @ 1.4 K 0.83(9) @ 1.4 K [148]

153N 127N 14N 0.48(9) @ 4 K 0.84(4) @ 4 K [149]

154(2)X NR NR NR NR [151]

Nd 141(6)N NR NR 0.25(7) @ 30 K NR [144]

∼ 150N NR 2N 0.9(1) @ 0.3 K 1.55(4) @ 0.3 K [146]

∼ 142X ∼ 137N 15N 0.54(3) @ 30 K NR [157]

Sm 130X NR NR NR NR [150]

144X NR NR NR NR [152]

NR NR NR NR 0.60(3)N @ 1.6 K [153]

140X 110X 5X, 110X NR NR [159]

Gd 135X NR NR NR NR [152]

Tb 126X NR NR NR NR [152]

spin.[160] Within a certain universality class, materials exhibit similar behavior at a transition.

In contrast, a first-order transition does not have such a universality class and the properties

differ by materials. Therefore, knowing the nature of transitions is interesting and important.

As shown in Figure 2.4, the structural and antiferromagnetic transitions are continuous, sec-

ond order in the 1111 family compounds.[140, 144, 145, 149, 150] Further careful studies on

critical exponents of the order parameters in different materials are called for to decide which

universality class the 1111 compounds would fit in.

Substitution effect on TS, TN, and Moment size - Phase Diagram

The general behavior of TS, TN, and ordered moment size M is that their values decrease

as the amount of substitution increases and disappear when substitution is sufficient enough,

as presented in the phase diagrams in Figure 2.5. For example, in the phase diagram of
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Figure 2.5 Phase diagrams of (a) CeFeAsO1−xFx,[145] (b) LaFeAsO1−xFx,[147] (c)

PrFeAsO1−xFx,[151] (d) SmFeAsO1−xFx,[150] and (e) NdFeAsO1−xFx [155] com-

pounds. (f) Different phase lines of actual(gray and violet symbols) and nominal

(black symbols) concentrations in LaFeAsO1−xFx compounds.[137]

CeFeAsO1−xFx shown in Figure 2.5 (a) [145], the structural transition temperature TS, and

the AFM transition temperature TN, in the parent CeFeAsO compound are suppressed to

lower temperatures and remain split when fluorine is introduced. However the suppression

of TS is slower than that of TN so when the AFM transition is completely suppressed at

x ≈ 0.06, TS has still a finite value. The moment sizes also decrease with increasing fluorine

concentration as depicted in the inset of Figure 2.5 (a), and superconductivity emerges after a

complete suppression of antiferromagnetic ordering. That is, superconductivity and magnetism

appear to be mutually exclusive. It is also shown that superconductivity exists not only in the
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orthorhombic structure, but also in the tetragonal structure.

However, it seems that the phase diagrams for the 1111 family differ somewhat in different

compounds. For example, the phase diagram of the LaFeAsO1−xFx compounds looks similar to

that for CeFeAsO1−xFx compounds although there is uncertainty of whether or not supercon-

ductivity emerges in the orthorhombic structure [Figure 2.5 (b)].[147] In case of PrFeAsO1−xFx

compounds in Figure 2.5 (c), superconductivity emerges only when the structural and AFM

transitions are completely suppressed.[151] It should be noted that the disappearance of TS

and TN are very abrupt in PrFeAsO1−xFx compounds whereas it is more continuous in the

CeFeAsO1−xFx compounds.[151] It is difficult to tell in LaFeAsO1−xFx compounds where the

disappearance of TS and TN occur due to the paucity of data points.[147] For SmFeAsO1−xFx

compounds, even though the microscopic measurement of the AFM ordering has not been done

for a wide range of compositions, x-ray measurements show that the orthorhombic structure

persists in the superconducting compositions as shown in Figure 2.5 (d).[150, 154] A partial

phase diagram (which means, no TN was reported from a microscopic measurement) was also

reported for NdFeAsO1−xFx. The authors determined the real compositions and found that

NdFeAsO1−xFx behaves rather different than any other compounds: the structural transition

temperature is almost independent of changes in fluorine concentration and disappears suddenly

as shown in Figure 2.5 (e).[155]

One must be careful in understanding the above-mentioned phase diagrams. As mentioned

in Section 2.1.1, the actual compositions of studied materials can be very different from the

reported nominal compositions. This is shown in Figure 2.5 (f). When the actual compositions

are taken into account, the known slow suppression rates of TS and TN can become relatively

fast suppression.[137] Nevertheless, it seems that the importance of real concentrations in the

1111 family compounds has been overlooked.

2.3.2 122 family

Parent AEFe2As2 compounds

The anomaly observed in macroscopic measurements on the parent BaFe2As2 compound

appears at ∼ 140 K as temperature is lowered.[61] Powder x-ray diffraction measurements
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were used to determine that a structural transition from a tetragonal I4/mmm structure to an

orthorhombic Fmmm structure occurs at the same temperature where the anomaly appears.[2,

61] The low temperature orthorhombic structure is shown in Figure 2.3 (b). Single crystals of

SrFe2As2, CaFe2As2, and EuFe2As2 compounds were also found to have the same tetragonal-

to-orthorhombic structural transition at ∼ 200 K [62, 69, 161–166], ∼ 170 K [70, 167–171], and

∼ 190 K [69, 172, 173], respectively.

Several neutron diffraction measurements showed that the structural and AFM transitions

are coincident in temperature, unlike the split transitions for the 1111 family compounds.[162–

164, 167–169, 173–180] The magnetic structure of Fe was found to be commensurate as in

the 1111 family compounds.[162, 163, 165, 167, 173, 174] Fe moments point along the or-

thorhombic ~a axis, and align antiferromagnetically along the orthorhombic ~a axis and along

the orthorhombic ~c axis, and arrange ferromagnetically along the orthorhombic ~b (< a) axis

(the “stripe” AFM structure). The AFM propagation vector ~QAFM is ~QAFM=(1
2 , 1

2 , 1)T, in

tetragonal notation, which is equivalent to (1, 0, 1)O in orthorhombic notation as displayed in

Figure 2.3 (f).[162, 163, 167, 174] For EuFe2As2 compounds, the Eu ions also order antiferro-

magnetically at ∼ 19 K with a propagation vector ~QAFM(Eu) = (0, 0, 1).[173] No interplay

between the Fe moments and the Eu moments has been reported.

I have summarized the structural transition temperatures (TS), AFM (SDW) transition

temperatures of Fe (TNFe
), AFM transition temperatures of Eu (TNEu

) for the EuFe2As2 com-

pound, and the ordered moment sizes, M , of Fe (and M of Eu) in the parent 122 compounds

in Table 2.4.

The structural and AFM transitions in the parent AEFe2As2 (AE = Ca, Sr, Ba, and Eu)

compounds are concomitant in temperature.[162–164, 167–169, 173–180] However, the nature

of the phase transitions varies in different compounds. For CaFe2As2 and SrFe2As2, the struc-

tural and AFM transitions are found to be first-order.[62, 70, 161–164, 166, 167] As seen in

Figure 2.6 (a) and (b), these two compounds exhibit (1) discontinuous changes in the mag-

netic order parameters and the orthorhombic distortions, (2) hysteresis in temperature, and

(3) the coexistence of two phases, which are all characteristics of a first-order phase transition.

For BaFe2As2, it has been argued by some groups that the structural and AFM transitions
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Table 2.4 Structural transition temperature TS and antiferromagnetic (spin density wave)

transition temperature TN in the parent AEFe2As2 compounds. For EuFe2As2

compound, the values in the chevrons are the values for Eu atoms. In the super-

scription, “N” means that it measured in neutron measurements and “X” means

that x-ray measurements were used. “NA” means “not available”.

AE TS (K) TN (K) M (µB) Reference

Ca ∼ 170X NA NA [70]

∼ 173N ∼173N 0.80(5) @ 10 K [167]

Sr ∼ 190X NA NA [62]

203(1)X NA NA [69]

∼ 210X NA NA [161]

220(1)N 220(1)N 0.94(4) @ 10 K [162]

NA 205N 1.01(3) @ 1.5 K [163]

201.50(25)N 201.50(25)N NA [164]

NA NA 1.04(1) @ 10 K [165]

Ba ∼ 140X NA NA [61]

∼ 85X NA NA [63]*

∼ 142N 143(4)N 0.87(3) @ 5 K [174]

∼ 90X ∼ 90N NA [175]*

NA 136N NA [178]

NA ∼ 136N 0.93(6) @ 3 K [179]

Eu 190(1)X NA NA <NA> [69]

NA ∼ 190 <∼ 19>N NA <NA> [172]

NA ∼ 190 <∼ 19>N 0.98(8) <6.8(3)> @ 2.5 K [173]
*: Sn incorporation on the Ba site during a single crystal growth using Sn flux has been reported.

are second-order by showing that the transition is continuous, [174, 179, 180] while first-order

behavior such as a large hysteresis has been observed by other groups [177, 178] [Figure 2.6

(c)]. It is not yet clear whether the structural and AFM transitions in the parent BaFe2As2

compound are first-order or second-order and this is one of the issues addressed in this disser-

tation. The situation for the parent EuFe2As2 compound is similar to the parent BaFe2As2

compound: some neutron measurements observed a continuous transition[172, 173] while x-ray

diffraction measurements display a (discontinuous) jump in the orthorhombic distortion with

no hysteresis in the specific heat measurement.[69]

Therefore, studies of the nature of structural and antiferromagnetic transitions in the parent
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Figure 2.6 (a) Temperature dependent orthorhombic distortion and AFM order parameter of

CaFe2As2 compound.[167] Open symbols are data measured during cooling and

closed symbols are data measured during warming. (b) Temperature dependent

AFM order parameter and evolution of a nuclear peak intensity of SrFe2As2 mea-

sured during cooling.[162] (c) AFM order parameter of BaFe2As2 compounds. In

the right panel, red symbols are data measured during warming and blue symbols

are measured during cooling.[177, 178]

BaFe2As2 and EuFe2As2 are important in order to understand the 122 family compounds

as a whole.

Substitution effect on TS, TN, and Moment size - Phase Diagram

In a similar manner as the substitution effect in the 1111 family compounds, TS, TN, and

ordered moment size, M , decrease as the level of substitution increases, and disappear with

sufficient substitution. This is demonstrated in Figure 2.7 (a) for Co substituted BaFe2As2

compounds.[181–187] The structural and AFM transitions occur at the same temperature in

the parent compound. When Co is introduced, TS and TN decrease and split (TS > TN). It

should be noted that TS and TN track closely to each other. Then superconductivity emerges
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at Co substitutions when TS and TN are sufficiently suppressed. The reduction of the moment

size with increasing Co levels has been also observed. Unlike in the 1111 family compounds,

however, superconductivity coexists with AFM. The same effects have also been observed in

various transition metal Ni, Rh, and Ir substitutions in the BaFe2As2 compound.[188–191]

It is widely believed that the transition metals on the right side of Fe in the periodic table

introduce additional electrons and follow a simple band filling picture with e.g. +1 electron

for Co and +2 electrons for Ni substitutions.[92, 192] Whether a simple band filling picture

is valid for transition metal substitutions on the right side of Fe is another interesting issue

to be discussed in this dissertation. For transition metal substituted CaFe2As2 compounds,

the aforementioned behaviors are also present, but it has been shown in Ca(Fe1−xTMx)2As2

(TM = Co and Ni) compounds that the disappearance of TS and TN is abrupt [Figure 2.7

(b)].[94, 193] It seems that AFM and SC may coexist but the superconductivity appears in a

very narrow concentration range.

To the left of Fe in the periodic table, Cr and Mn substitutions, which have been considered

as hole doping, do not induce superconductivity at any substitution levels.[88, 194–197] Only

few x-ray measurements had been done in Cr substituted BaFe2As2 compounds which gener-

ated contradictory results about the existence of a structural transition in the lightly doped

compounds.[88, 194] Later, the same group performed systematic neutron[196] and x-ray [197]

diffraction measurements and found that Ba(Fe1−xCrx)2As2 compounds exhibit coupled struc-

tural/magnetic transitions and a monotonic suppression of TS/TN up to x ≈ 0.375. They

also found that above x ≥ 0.375, a G-type antiferromagnetic ordering of Cr appears while

the antiferromagnetic ordering of Fe is suppressed [Figure 2.7 (c)].[196] At the same time,

Ba(Fe1−xMnx)2As2 compounds were studied in our scattering group as one of my projects and

will be discussed later.

Ru substitution on the Fe site, or P substitution on the As site, has also attracted attention

since they are effectively isoelectronic substitutions. I utilized both x-ray and neutron diffrac-

tion measurements and studied the effects on the structural, magnetic, and superconducting

properties by Ru substitution in BaFe2As2. What has been known for Ru substitution prior

to my study and the result will be presented later in Sec. 4.3. However, the limitation of sam-
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Figure 2.7 (a) The phase diagram of Ba(Fe1−xCox)2As2 compounds. The inset is ordered

moment sizes as a function of Co concentrations x.[182] (b) (Top) The phase di-

agram of Ca(Fe1−xCox)2As2 compounds. (Bottom) Ordered moment sizes versus

Co concentrations x (stars) and the orthorhombic distortion as a function of Co

concentrations (circles).[193] (c) The phase diagram of Ba(Fe1−xCrx)2As2 com-

pounds.[196] (d) The phase diagram of Ba1−xKxFe2As2 compounds. See the text

for details.[201]
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ple sizes for P substituted compounds hinders microscopic studies of structural and magnetic

transitions. Growing interest in the quantum criticality for P substitution [93, 198] calls for

measurements of microscopic structural and magnetic properties.

As superconductivity is induced by substitution of AE site elements with, namely, K (Sec-

tion 2.1), K substitution on the Ba site of BaFe2As2 compound also behaves as transition metal

substituted compounds: suppression of TS and TN, reduced moment sizes, and induction of su-

perconductivity with increasing level of K.[2, 63, 199–202] However, K substitution does not

split the structural and AFM transitions (TS = TN in all concentrations) as displayed in Fig-

ure 2.7 (d).[201, 202] There have been handful of discussions about whether the superconductiv-

ity and AFM coexist in Ba1−xKxFe2As2 compounds. It was initially believed that the supercon-

ductivity and AFM occur in different parts of the sample (phase separation),[199, 202, 203] but

recently, it was argued that they are microscopically coexisting in superconducting samples.[204]

Rare earth substituted CaFe2As2 compounds have also been reported that they behave in a

similar way to transition metal substituted CaFe2As2 compounds: abrupt disappearance of TS

and TN.[205] It is also believed that the substitution on the AE site gives additional carriers.

Probably due to the wide belief that the structural and magnetic behaviors are similar

with substitutions in all 122 family compounds, there have been less microscopic studies of

substitution on the Fe site or the AE site in SrFe2As2 and EuFe2As2 compounds. Although

there are phase diagrams formed by macroscopic measurements, it is important to study the

microscopic properties and to determine the phase diagram.

2.3.3 111 family

Parent AFeAs compounds

As we saw in Section 2.1.3, there are only two kinds of compounds in this family: LiFeAs

and NaFeAs. LiFeAs does not have structural and magnetic phase transitions [107] whereas the

parent NaFeAs undergoes a tetragonal-to-orthorhombic transition from P4/nmm [Figure 2.1

(c)] to Cmma [Figure 2.3 (c)] at TS ≈ 55 K and AFM emerges at ∼ 37 K.[206] The AFM

structure in NaFeAs compound is found to be the same “stripe” structure [Figure 2.3 (g)] as in

the 122 family compounds. The ordered moment in NaFeAs is 0.09(4) µB at T = 5 K, which is
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Figure 2.8 (a) Order parameters of structural (top panel) and AFM (bottom panel) phase

transitions.[206] (b) The phase diagram of NaFe1−xCoxAs.[114] See the text for

details.

the smallest among the FeAs-based superconductors.[206] Measurements of the ordered moment

size was not possible from powder neutron diffraction measurements, but was achieved from

single crystal neutron diffraction measurement.[206]

Powder neutron diffraction and powder x-ray diffraction measurements indicate that both

antiferromagnetic and structural transitions are second order and split in temperature.[206]

This is shown in Figure 2.8 (a). The top panel is the change of the Full Width at the Half

Maximum (FWHM) of the (1, 1, 0)T Bragg peak as a structural order parameter. A measure

of the change of FWHM is not a strong proof of the nature of the structural phase transition

but it, at most, implies that the structural phase transition is likely smooth as in a second-

order transition. The bottom panel is the AFM order parameter at the (1, 0, 3)M magnetic

Bragg peak considering the magnetic structure and clearly shows a second-order transition.(See

Ref. [206] for details)

Substitution effect on TS, TN, and Moment size - Phase Diagram

Systematic x-ray and neutron diffraction measurements on Co or Ni substituted NaFeAs
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compounds have been performed. However, the small ordered moment in the parent compound

restricts the range of systematic studies, focusing on the structural transitions.[114, 207] As

Co or Ni is substituted in NaFeAs, the structural transition temperatures are suppressed very

rapidly so that a little more than 2% of Co substitution suppresses the structural transition

completely.[114, 207] Due to the lack of the microscopic data, it is difficult to say how TN

and the ordered moment size change with substitution. However, it appears that TN and the

ordered moment size likely decrease with increasing level of Co or Ni substitution based on

local-probe measurements.[114] Neutron diffraction measurement on single crystals is required

for definite answers. Figure 2.8 (b) is a phase diagram of NaFe1−xCoxAs, composed with data

taken from neutron and µSR measurements:[114, 207] TS and TN are split in all concentration

range; and SC and AFM coexist in a finite substitution range.

2.3.4 11 family

Parent FeTe or FeSe compounds

There are two ways to describe the stoichiometry of these compounds − Fe rich or Te/Se

deficiency, for example, Fe1.141Te ≡ FeTe0.82,[120] and both ways have been confusingly used in

literature, even in one report. The structural transitions are affected by subtle differences in the

stoichiometry. A transition from a tetragonal P4/nmm to a monoclinic P21/m in Fe1.125Te,

Fe1.068Te and FeTe0.9[120, 208], from a tetragonal P4/nmm to an orthorhombic Pmmn in

FeTe0.82[120], from a tetragonal P4/nmm to a triclinic P 1̄ in FeSe0.88[118], and from a tetrag-

onal P4/nmm to an orthorhombic Cmma in FeSe0.92[209, 210] all have been observed. The

low temperature orthorhombic structure is shown in Figure. 2.3 (d). For monoclinic/triclinic

structures, the crystal structure is almost identical to the orthorhombic structure shown in Fig-

ure. 2.3 (d) with the angle β ≈ 89.254◦[208] for the monoclinic structure, and γ ≈ 90.3◦[118]

for the triclinic structure.

The parent 11 compounds also show an antiferromagnetic transition which is different,

and complicated, for different compounds. Bao et. al. first found that slight changes in the

stoichiometry alter the magnetic structure in the 11 family compounds.[120] They observed that

FeTe0.9 compounds exhibit a commensurate antiferromagnetic order with ~QAFM = (1
2 , 0, 1

2)T
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Table 2.5 Structural transition temperature TS and antiferromagnetic (spin density wave)

transition temperature TN, and the ordered moment sizes M of Fe in the FeTe or

FeSe layers in the parent FeTe or FeSe compounds. In the superscription, “N” means

that it measured in neutron measurements and “X” means that x-ray measurements

were used. “NA” means “not available”.

TS (K) TN (K) M (µB) Reference

Fe1.125Te NA NA 2.07(7) @ 4.2 K [212]

FeSe0.88 ∼ 105X NA NA [118]

FeSe0.92 ∼ 70X NA NA [209]

FeTe0.82 ∼ 63N ∼ 63N 0.76(2) @ 8 K [120]

FeTe0.90 ∼ 75N NA NA [120]

Fe1.068Te ∼ 67N ∼ 67N 2.25(8) @ 5 K [208]

FeTe0.92 NA NA 1.86(2) @ 10 K [210]

in a tetragonal notation while Fe1.141Te compounds show incommensurate AFM order with

~QAFM = (0.38, 0, 1
2)T. Moreover, they also showed that the incommensurability ε in ~QAFM =

(ε, 0, 1
2)T can be tuned with changes of stoichiometry.[120] Details of the magnetic structure

were also studied and are shown in Figure 2.3 (h). The important difference between the

antiferromagnetic structure in the 11 family compounds, compared to 1111, 122, and 111

compounds, is that there are two rows of parallel Fe spins alternating antiferromagnetically to

form the so called “double-stripe” AFM structure.[120, 208, 211]

As mentioned in Section 2.2, intercalation of Fe atoms brings another complication in that

the intercalated Fe atoms may possess a considerable moment. Canted Fe moments in the

FeTe or FeSe layers along the c axis have been observed and are thought to result from the

intercalated Fe moment.[208] However, there exist other reports that did not find canting of Fe

moments.[210]

The structural transition temperatures (TS), AFM (SDW) transition temperatures of Fe

(TN), and the ordered moment sizes M of Fe in the FeTe or FeSe layers in the parent 11

compounds are summarized in Table 2.5.

The nature of structural and antiferromagnetic transitions in the 11 family compounds
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Figure 2.9 (a) Order parameters of structural and AFM phase transitions in Fe1.141Te (top

panel) and Fe1.076Te (bottom panel).[120] (b) Change of a lattice parameter in

FeSe compound. See the text for details.[214]

is not clear. In FeTe0.82(≡ Fe1.141Te) compounds, both the structural and antiferromagnetic

transitions were observed at the same temperature and showed coexistence of the two phases

and hysteresis in temperature [first-order. see Figure 2.9 (a)].[120] First-order phase transitions

were also reported in Fe1.068Te[208] and Fe1.03Te [213]. Although a change of the a lattice pa-

rameter as a function of temperature was also measured in FeSe by x-ray powder measurements,

as shown in Figure 2.9 (b) [214], the temperature steps were too large to allow any conclusion

about the nature of the structural phase transition. Within the reported information, it is

likely that both the structural and antiferromagnetic phase transitions are first-order.

Substitution effect on TS, TN, and Moment size - Phase Diagram

In the 11 family compounds, it can be seen that the excessive Fe content or the deficient

Te or Se content act as self-doping even in the parent compounds. For example, TS ≈ TN ≈

75 K in FeTe0.90 and TS ≈ TN decrease to 63 K in FeTe0.82.[120, 123]

As discussed in Section 2.1, substitution is usually achieved by Se for Te or Te for Se. As

for other FeAs-based superconductors, the phase transition temperatures are suppressed as the

level of substitution increases [120, 210, 211, 213–219], and a complete suppression of phase
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Figure 2.10 The phase diagram of FeTe1−xSex.[216] See the text for details.

transitions enhances superconductivity(see Section 2.1.4).

For an easier description of substitution effects, I choose FeTe as the reference parent com-

pound so that Se is a substitution element. The most interesting property of the 11 family

compounds is that it exhibits a short-range incommensurate magnetic order which has not

been observed in other FeAs-based superconductors. In Fe1.08Te0.67Se0.33, Fe1.07Te0.75Se0.25,

Fe1.03Te0.75Se0.25, Fe1.02Te0.85Se0.15, Fe1.04Te0.90Se0.10, and Fe1.10Te0.75Se0.25, short-range anti-

ferromagnetic order has been observed with correlation lengths ranging from 3.3 to 24 Å at

~QAFM = (ε, 0, 1
2)T (ε = 0.438 ∼ 0.47 reciprocal lattice units). These values are much smaller

than the correlation lengths found for the commensurate AFM peak that is resolution limited, in

all other compounds with Se concentration less than approximately 10%.[120, 213, 215, 216, 219]

Katayama et al. [216] studied details of the short-range AFM ordering using both macroscopic

and microscopic techniques, and argued that the short-range AFM transition is a spin-glass

transition by observing apparent difference (≈ 17 K) in the ordering temperature measured by

neutron measurement (40 K) and magnetization measurement (≈ 23 K), which is common in

spin-freezing systems. Their phase diagram is the most complete and up-to-date (Figure 2.10)

summarizes the effect of substitution in the 11 family compounds.[216]



36

Figure 2.11 Fermi surface nesting in simple quasi 1-D (sheets), 2-D (cylinders), and 3-D

(spheres) and the response function for each case. After Ref. [220, 221].

2.4 Interplay between Superconductivity, Antiferromagnetism,

and Structure

Unprecedented interconnections between superconductivity and antiferromagnetism and be-

tween superconductivity and structure were found and have been widely-studied subjects in

the FeAs-based superconductors. Since large and high-quality single crystals can be grown for

BaFe2As2 compounds, most of work has been performed on various substitutions in BaFe2As2

compounds. In this section I will discuss the interplay between superconductivity, antifer-

romagnetism, and structure which has been found in various element substituted BaFe2As2

compounds.

2.4.1 Interplay between superconductivity and antiferromagnetism

Fermi surface nesting: the origin of AFM order

The antiferromagnetic ordering in the FeAs-based superconductors is believed to arise from

the Fermi surface nesting driven spin-density-wave order (when parallel sheets of the Fermi
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Figure 2.12 (Left) Sinusoidal quasi-one-dimensional Fermi surfaces. (Right) The response

function of the Fermi surface on the left panel at various temperature. After Ref.

[221].

surface can be translated by a nesting vector, ~q, and superposed). A particular topology of

Fermi surface results in a response to an external perturbation and the response of the charge

or spin density can be written as [220]

ρ(~q) = χ(~q)Φ(~q) (2.1)

where Φ(~q) is a time independent potential and χ(~q) is the so-called Lindhard response function.

The Lindhard response function is given in D dimensions by [220, 221]

χ(~q) =

∫
d~k

(2π)D
fk − fk+q

εk − εk+q
(2.2)

where fk = f(εk) is the Fermi function. The most important contribution to the integral

of the response function comes from pairs of states which are separated by ~q at the same

energy.[220] The response function is drawn in Fig. 2.11 for simple 1-D, 2-D, and 3-D Fermi

surfaces. [220, 221] Another readily evaluative example is a sinusoidal quasi 1-D topology that
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is considered at a finite temperature as shown in Fig. 2.12.[220] The Equation 2.2 can be

evaluated and give

χ(Q,T ) = −e2n(εF) ln
1.14ε0
kBT

(2.3)

where ε0 is an arbitrarily chosen cutoff energy (usually to be the Fermi energy εF).[220] For

different ε0
kBT

, the response function is shown in Fig. 2.12.[220]

If we consider a 2-D cylinder (Fig. 2.11) with a sinusoidal modulation (Fig. 2.12) of the

cylinder wall, which looks similar to the Fermi surfaces of the FeAs-based superconductors in

Fig. 5.1, the modulated cylinder-shaped Fermi surface can give rise to a peak in the response

function whereas a cylinder-shaped Fermi surface (without modulation) does not result in a

peak (Fig. 2.11).[221] In the FeAs based superconductors, it has been widely accepted that

when the hole Fermi surface is translated by a nesting vector ~q = ~QAFM, it leads to a peak in

the response function and drives a spin density wave antiferromagnetic order.[222]

Coexistence of superconductivity and antiferromagnetism

In most of the FeAs-based superconductors (the 1111, 122, 111, and 11 families), supercon-

ductivity (SC) emerges when the structural and antiferromagnetic transitions are suppressed

to low temperatures together with sufficiently smaller ordered moment sizes (M) as seen in

Sections 2.1 and 2.3. Nevertheless, coexistence between superconductivity and magnetism as

shown in the phase diagrams in Sections 2.3.1 - 2.3.4 has been observed in several different

compounds.[223–228] Since antiferromagnetism in the FeAs-based superconductors originates

from conduction electrons that also form the Cooper pairs below Tc, it is intriguing that super-

conductivity and antiferromagnetism compete for the same electrons which was not expected,

especially when it is known that the magnetism is generally detrimental for superconductivity.

One might simply argue that superconductivity and antiferromagnetism occur in different

volumes of a specimen. This was indeed thought to be the case in K doped BaFe2As2 as many

reports claimed microscopic phase separation in K doped BaFe2As2 compounds,[199, 202, 203]

which has been later argued that SC and AFM are microscopically coexisting in K substituted

superconducting samples (Section 2.3.2).[204] In contrast, Co doped BaFe2As2 compounds were

studied by local probe measurements (NMR, µSR, etc.) for possible phase separation and it

was concluded that superconductivity and antiferromagnetism coexist microscopically in the
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the structural and magnetic phases in the underdoped
region. It is also interesting to study how the AFM order-
ing, if present, evolves into the SC phase. Diffraction
experiments were performed on single crystals of under-
doped BaðFe0:953Co0:047Þ2As2 that were grown under iden-
tical conditions as those samples used in the bulk
measurements in Figs. 1(a) and 1(b) and described in detail
in Ref. [4]. Neutron diffraction measurements were per-
formed on the HB1A diffractometer at the High Flux
Isotope Reactor at Oak Ridge National Laboratory on a
sample weighing approximately 700 mg and having a
crystal mosaic width of <0:3 degrees. The experimental
configuration was 480-400-400-1360 with Ei ¼ 14:7 meV.
The sample was aligned in the tetragonal ½HHL% plane and
mounted in a closed-cycle refrigerator for low temperature
studies. The temperature dependence was studied at sev-
eral nuclear Bragg peak positions and at QAFM ¼

ð12 1
2 L ¼ oddÞ positions corresponding to the AFM order-

ing in the parent BaFe2As2 compound [17].
Figure 1(c) shows the evolution of the integrated inten-

sity of the (220) nuclear reflection with temperature. The
(220) intensity starts to increase at about 80 K and grows
gradually over a range of 20 K before increasing sharply at
TS ¼ 60 K. This increase in intensity is ascribed to ex-
tinction release that occurs due to the formation of O twin
domains at the structural transition. Although the resolu-
tion of neutron diffraction experiments was insufficient to
determine the O splitting, we were able to confirm the
orthorhombicity by performing high-energy single-crystal
x-ray diffraction experiments using MUCAT sector 6-ID-D
at the Advanced Photon Source at Argonne National
Laboratory with an incident photon energy of 99.5 keV.
X-ray diffraction measurements of the (220) reflection
above and below TS (Fig. 2) clearly show a very small O
splitting [ða& bÞ=ðaþ bÞ ¼ 0:12%] and twinning in the
x ¼ 0:047 sample. Given the full penetration of the x-rays,
the results suggest that single phase O structure exists
throughout the crystal.
To confirm the single phase O structure, a slightly lower

composition of x ¼ 0:038 was studied. This composition
also shows a split transition and superconductivity, and the
larger O splitting of 0.2% allows for clearer separation of
twin reflections. Figure 2 shows the temperature evolution
of the ð1 1 10Þ reflection for x ¼ 0:038 measured using a
Rigaku rotating Cu-anode RU-300 system. The O splitting
grows continuously below 76 K, and there does not appear
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FIG. 2 (color online). (Right) Images of the x-ray diffracted
intensity of the (220) peak for x ¼ 0:047 showing a single spot
above TS and two spots below TS due to orthorhombic splitting.
(Left) The temperature evolution of the ð1 1 10Þ reflection for
x ¼ 0:038, showing T-O phase transition.

FIG. 1 (color online). (a) The magnetization (dots) and its
temperature derivative (line), and (b) the resistivity and its
temperature derivative for single-crystal BaðFe0:953Co0:047Þ2As2
as a function of temperature. (c) The integrated intensity of the
(220) nuclear reflection (circles) and the ð12 1

2 1Þ magnetic re-

flection (squares) as a function of temperature. Hollow symbols
indicate warming and filled symbols cooling. The solid line
shows the power law fit to the magnetic order parameter.
Vertical lines through all three panels indicate the structural
(TS), magnetic (TN), and superconducting (TC) transitions.
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Neutron diffraction data were collected on a 0.2 g crys-
tal. For the inelastic neutron scattering measurements, four
single crystals of BaFe1:92Co0:08As2 with a total mass of 2 g
were coaligned with a mosaic of !1

"
in the (HHL) plane.

The data in Fig. 1(b) were collected using the HB1A triple-
axis spectrometer at the High Flux Isotope Reactor con-
figured with collimations of 480-400-400-1360. The remain-
der of the data presented here were collected with the HB-3
triple-axis spectrometer at the High Flux Isotope Reactor
configured with collimations of 480-600-800-1200 with a
fixed final energy of 14.7 meV using pyrolitic graphite
monochromator and analyzer crystals.

Figure 1 shows neutron diffraction data as a function of
temperature for BaFe1:92Co0:08As2. Figure 1(a) shows the
temperature dependence of the ð12 1

2 3Þ magnetic Bragg
peak. Fits to a power law over a limited range of tempera-
tures ð30 K< T < 80 KÞ yield an ordering temperature,
TN ¼ 58ð0:6Þ K. Figure 1(b) indicates a significant reduc-
tion in intensity below TC for both ð12 1

2 1Þ and ð12 1
2 3Þ. The

intensity at 1.6 K is reduced by 6% relative to that of the
maximum intensity found at TC. The change in intensity of
both peaks occurs in the same manner so that the effect
cannot be explained by a change in magnetic structure or a
spin reorientation. Transverse and longitudinal scans were
made through ð12 1

2 1Þ and ð12 1
2 3Þ to ensure that the ob-

served change is due to a reduction in the integrated
intensity rather than a change in peak position or line
width. The full width at half maximum (FWHM) and
peak positions extracted from fits to the ð12 1

2 3Þ peak are
shown in Figs. 1(c) and 1(d). A Gaussian line shape was

used for the longitudinal and a Lorentzian squared line
shape was used for the transverse scans. Together these
graphs show neither the FWHM (resolution limited) nor
the peak position changes significantly through TC. The
background extracted from fits to the peak position and
FWHM as well as measurements at ð12 1

2 2:7Þ (not shown)
indicate no change in the background through TC. Thus,
there is either a reduction in the ordered magnetic moment
or a reduction in the fraction of the sample that is mag-
netically ordered that is coincident with the onset of super-
conductivity in BaFe1:92Co0:08As2. A somewhat larger
reduction in magnetic Bragg peak intensity has also been
seen by Pratt et al. [22] for a sample with a slightly higher
Co doping and consequently a higher TC and lower TN.
Together these results show that competition between
magnetism and superconductivity is robust in the under-
doped region of these materials in samples with different
TC and synthesized by different groups.
Naturally the question arises, What happens to the spec-

tral weight associated with the reduced Bragg peak inten-
sity below TC? As we discuss below, the spin excitations
may provide the answer. Figure 2(a) shows a constant-Q
scan at the ð12 1

2
!1Þ wave vector at 1.6 (T < TC) and 20 K

(T > TC). For comparison, we show the background esti-

FIG. 1 (color). (a) Peak intensity of the ð12 1
2 3Þ magnetic

Bragg peak. The solid line is the result of a power law fit as
described in the text. (b) Peak intensity of the ð12 1

2 1Þ and ð12 1
2 3Þ

magnetic peaks through TC. The FWHM (c) and peak
position (d) extracted from transverse and longitudinal scans in
terms of ! (squares) and 2! (circles) for the ð12 1

2 3Þ peak through
TC. The solid lines in (c) and (d) represent the weighted average.

FIG. 2 (color). (a) Constant-Q scans, Q ¼ ð12 1
2
!1Þ, for tem-

peratures above and below TC. For comparison the background
scattering determined as described in the text is also shown.
(b) The temperature dependence of the inelastic intensity at
ð12 1

2
!1Þ and E ¼ 5 meV. The solid line is a power law fit

yielding TC ¼ 11ð1Þ K. L dependence (c) and H depen-
dence (d) of the inelastic intensity near Q ¼ ð12 1

2
!1Þ and E ¼

5 meV at 1.6 and 20 K. The solid lines are guides to the eye, and
the horizontal bars represent instrumental resolution. The unit
r.l.u. denotes reciprocal lattice units. In (d) a scan around ð32 3

2
!1Þ

is included to emphasize the magnetic origin of the scattering.
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Figure 2.13 Suppression of AFM order parameter below the superconducting transition tem-

perature Tc in 4.7% Co and 4.0% Co substituted BaFe2As2 compounds.[182, 183]

same volume of the compound.[182, 184, 203]

Competition between superconductivity and antiferromagnetism

Intriguing observations were reported by Pratt et al. [182] and Christianson et al. [183] They

observed that the AFM ordering in approximately 4% Co substituted BaFe2As2 compounds

is suppressed below the superconducting transition temperature Tc as shown in Figure 2.13.

The authors noted “in Ba(Fe0.953Co0.047)2As2, the observed reduction in the ordered moment

below Tc is substantially larger than that observed for UPt3 or UNi2Al3, demonstrating an

unusually strong interaction between AFM and SC in the iron arsenides.” [182] A systematic

study of reduction of the AFM ordering below Tc with increasing Co substitution by the same

group revealed that not only the unconventional pairing in the FeAs-based superconductors

but also competition between AFM and SC for the same conduction electrons.[186] The sup-

pression of the AFM order parameter below Tc shown in Fig. 2.13 can be modeled by the mean

field theory considering s± pairing symmetry of Co substituted BaFe2As2 which explains the

coexistence and competition between superconductivity and antiferromagnetism (see Pratt’s

Ph. D. dissertation [229] for theoretical consideration and further reading). The suppression of

AFM order below Tc is also reported in Ni and Rh substituted BaFe2As2 compounds.[188–190]

Recent neutron diffraction measurement on K substituted BaFe2As2 compounds [201] and µSR

measurement on Co substituted NaFeAs compounds exhibit the reduction in the AFM order
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a single peak was sufficient, as demonstrated in Fig. 2. The
open symbols in Fig. 3 represent an upper limit on ! based
on the residual broadening of a single peak fit to the data,
with respect to the peak width determined from scans well
above TS.

The relative decrease in the orthorhombicity below Tc is
pronounced and increases with increased doping. Indeed,
the x ¼ 0:063 sample exhibits reentrant behavior, within
experimental uncertainty, where the low-temperature
structure returns to tetragonal symmetry below Tc. For x ¼
0:066, no transition to the orthorhombic structure was
observed, defining an upper Co concentration limit for
the tetragonal-to-orthorhombic phase transition. To place
the magnitude of the suppression of the orthorhombicity in
some context, we note that ultrahigh-resolution thermal
expansion measurements on untwinned single crystals of
YBa2Cu3O7"! also found a change in the orthorhombic
distortion at Tc, but smaller than the present case by
approximately 2 orders of magnitude [23].

With these results in hand, we have refined the phase
diagram, shown in Fig. 4, to indicate how the phase line
representing the tetragonal-to-orthorhombic transition
bends back below Tc. We also plot, in Fig. 1(a), both the
temperature, T!

max, at which the orthorhombic distortion
for a given sample is at a maximum, and !ð0Þ, the T ¼ 0
extrapolated value for ! determined from a power law fit to
the data above Tc. We find that T!

max is coincident with Tc

for all samples, and the monotonic decrease in !ð0Þ with
increasing Co doping is consistent with the decrease in TS

for each sample. Furthermore, an extrapolation of the
dashed line to x ¼ 0 finds agreement with the value of
!ð0Þ for the parent BaFe2As2 compound.
The strong suppression of the structural order parameter

at low temperatures is highly unusual and clearly con-
nected to the onset of superconductivity. The leading cou-
pling in a Landau expansion of the free energy between the
orthorhombic distortion ! and the superconducting order
parameter j!j is "!

2 !2j!j2. In principle, one could ration-
alize our results as arising from a strong competition
between orthorhombic order and superconductivity. This
would then be reflected in a coupling constant "!, suffi-
ciently large to suppress ! below Tc but sufficiently small
to avoid a first order transition between both states. The
temperature variation of ! is, however, very reminiscent of
the behavior of the ordered magnetic moment, which has
been shown to be strongly suppressed below Tc in
Refs. [14,15]. Understanding both phenomena would re-
quire the simultaneous fine-tuning of the phase competi-
tions, i.e., of "! and the corresponding coupling constant
"m, describing the interaction between magnetism and
superconductivity via "m

2 ðm2
1 þm2

2Þj!j2, where m1 and
m2 are the staggered magnetizations corresponding to the
two Fe sites in the basal plane.
An intriguing alternative explanation of our results is

rooted in the unusual magnetoelastic coupling of the iron
arsenides and the competition between superconductivity
and magnetism. First, we again note that commensurate
antiferromagnetic fluctuations, of the kind seen in the iron
arsenides, have been shown to lead to an emergent, nematic

FIG. 4 (color online). The T-x phase diagram for
BaðFe1"xCoxÞ2As2 compiled from data in Refs. [22] (open
symbols), [24] (filled symbols for TN), and the present study
(filled symbols for TS and Tc). The extension of the tetragonal-
to-orthorhombic phase line into the superconducting dome is
represented by the dashed line.

FIG. 3 (color online). The measured orthorhombic distortion !
as a function of temperature. Filled symbols represent the dis-
tortion determined from the positions of two peak fits to the data.
The open symbols represent an upper limit on the distortion
extracted from the line broadening of a single peak fit to the data
relative to the peak width well above TS. Labeled arrows denote
the measured TN for several samples.
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Figure 2.14 Suppression of orthorhombic distortion below the superconducting transition tem-

perature Tc in Ba(Fe1−xCox)2As2 compounds. After Ref. [185].

parameter below Tc.[207] It seems that the coexistence and competition between AFM and SC

are universal in the FeAs-based superconductors.

2.4.2 Interplay between superconductivity and structure

Anomalous reduction in the orthorhombic distortion below Tc

Right after the observation of the suppression of AFM order in Co substituted BaFe2As2

compounds, a former graduate student Dr. Shibabrata Nandi and I measured orthorhombic dis-

tortions, δ (= a−b
a+b), in a series of Co substituted BaFe2As2 compounds using the high-resolution

x-ray diffraction technique. We found an anomalous suppression of the orthorhombic distor-

tion below superconducting transition temperatures as represented in Figure 2.14. Moreover, it

turns out that the superconducting state stabilizes in a tetragonal structure at low temperature

for a high Co concentration (∼ 6%) as well as in an orthorhombic structure at low temperature

for a lower Co concentrations (∼ 5%). With the highest Tc occurring in a tetragonal structure

(> 6% Co), superconductivity may favor a tetragonal structure.[185]

Nematic order: the origin of orthorhombic distortion

The suppression of the orthorhombic distortion, δ, can be understood as a direct intercon-
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nection between superconductivity and the orthorhombic distortion. Similar to the free energy

expansion described in Equation (4) in Ref. [186], the free energy can be written in terms of

the superconducting order parameter Ψ and the distortion δ

F =
a

2

(
|Ψ|2 + δ2

)
+
u

2

(
|Ψ|2 + δ2

)2
+
γδ
2
δ2|Ψ|2 (2.4)

here, γδ is a coupling constant. It can be rationalized as in Ref. [186] that the suppression of

orthorhombic distortion below Tc arises from a strong competition between orthorhombic order

and superconductivity since the temperature variation of the distortion δ is reminiscent of the

behavior of the ordered magnetic moment as shown in Section 2.4.1. However, it requires a

fine tuning of a coupling constant γδ, sufficiently large to suppress δ below Tc, but sufficiently

small to avoid a first order transition between both states.[185]

For an alternative explanation of the observed behavior, nematic order ϕ has been intro-

duced. The commensurate antiferromagnetic fluctuations, of the kind seen in the iron arsenides,

have been shown to lead to an emergent, nematic order parameter ϕ = ~m1 · ~m2.[230] Here, ~m1

and ~m2 are sub-lattice magnetizations as shown in Figure 2.15 (a). The free energy expansion

can be written as [231]

F =
a

2

(
ϕ2 +m2

)
+
u

2

(
ϕ2 +m2

)2
+
Cs
2
δ2 − g0ϕ ( ~m1 · ~m2) + λδϕ (2.5)

where Cs is the bare shear modulus, λ is the magneto-elastic coupling, g0 is the coupling between

two sub-lattices, and the orthorhombic distortion is related to δ = − λ
Cs
ϕ.[185, 230] ~m1 and ~m2

are weakly coupled, and are fluctuating randomly above transition temperatures so that the

time-averaged 〈 ~m1 · ~m2〉 = 0 and 〈 ~m1〉 = 〈 ~m2〉 = 0, which means no net magnetic moment [top

of Figure 2.15 (b)]. When the nematic order sets in at TS, their relative orientation is fixed

so that while 〈 ~m1〉 = 〈 ~m2〉 = 0 (no net magnetic moment), the time-averaged 〈 ~m1 · ~m2〉 6= 0.

When 〈 ~m1 · ~m2〉 = 1, at a time-averaged instance, the two nearest-neighbor sub-lattice moments

are fluctuating in a ferromagnetically correlated way. And antiferromagnetically correlated

fluctuations of two nearest-neighbor moments occur when 〈 ~m1 · ~m2〉 = -1 at a time-averaged

instance. Therefore, when λδ 〈ϕ〉 > 0, lattice contraction happens and λδ 〈ϕ〉 < 0 causes lattice

expansion as displayed in Figs. 2.15 (c) and (d).[230] An emergent nematic order at TS leads to a



42

Figure 2.15 (a) Two magnetic sub-lattices. (b) Random fluctuation. (c, d) Degenerate ne-

matic fluctuations. After Ref. [230].

broken Ising symmetry that chooses either (c) or (d) lattice configuration for the orthorhombic

distortion. And when the magneto-elastic coupling, λ, is finite, the antiferromagnetic order

occurs in the chosen orthorhombic lattice (refer to Sec. 4.1.4, 4.2.1, and 4.2.2 for locked or split

structural and AFM transitions). Easily seen from the relation δ = − λ
Cs
ϕ, the nematic order

and the orthorhombic distortion occur simultaneously at TS.
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CHAPTER 3. Overview of Experimental Techniques

X-ray and neutron scattering are the techniques used to identify the crystallographic and

magnetic structures of materials. X-ray scattering has been used mostly for the determination

of crystallographic structures, sometimes complemented by neutron scattering. Until the dis-

covery of x-ray resonant magnetic scattering, neutron scattering has been used for identification

of magnetic structures since the neutron has a moment which directly interacts with magnetic

dipoles in the materials.

X-rays are electromagnetic waves with an energy range from 0.1 keV approximately to more

than 100 keV. X-rays with energies up to ∼ 5 keV are termed “soft” and above ∼ 5 keV, “hard”.

The primary interaction between x-rays and electrons, known as Thomson scattering (scatter-

ing by charged particles), makes it possible to be used for determination of crystallographic

structures. Due to the wave nature of x-ray and not having a magnetic moment, it had been

long believed that the electromagnetic interaction between magnetism and x-rays is too weak

to be detected, which had been true for conventional laboratory x-ray sources. With a tech-

nology breakthrough, synchrotron radiation provides about 8-17 orders of magnitude brighter

x-ray than laboratory sources and enables the detection of the interaction between x-ray and

magnetism.

Neutrons are spin 1
2 particles with a mass of 1.675 x 10−27 kg, a magnetic dipole moment

of -1.913 µN , and no charge. Useful energy for scattering ranges from 0.1 to 500 meV which is

equivalent to wavelengths from 0.4 to 30 Å. Neutrons with energies less than 1 meV are called

“cold” neutrons, between 1 meV and 0.025 eV are called “thermal” neutrons, between 0.025 eV

and 10 keV are called “epithermal” neutrons, and above 10 keV are called “fast” neutrons.

Because the neutron is not charged, it can overcome the Coulomb barrier of electrons and nuclei,

and interact directly with the atomic nuclei (particle-particle interaction), and this makes
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the neutron scattering one of the important techniques in crystallography. However, neutron

scattering has not been used as much as x-ray for crystallographic structure determination since

the probability of nuclear interaction is low, the brightness of neutrons from their source is about

2 orders of magnitude smaller than laboratory x-ray sources, and also neutron experiments

involve large facilities (e.g. High Flux Isotope Reactor at Oak Ridge National Laboratory

located at Oak Ridge, TN) that require advanced planning (i.e. those facilities are not readily

usable). Since the neutron has a spin, it can directly interact with magnetic dipole moments

of unpaired electrons in magnetic materials which can easily be detected. In addition, the

energy scale of neutrons is in the order of energy of elemental excitations, such as phonon and

spin excitations so inelastic neutron scattering techniques are often used to study excitations

in materials. Neutron scattering is, therefore, a powerful technique to study magnetism in

materials.

However, the neutron scattering experiments require a large mass (order of a gram), and

neutron scattering is not an element specific technique. Also, it is difficult and sometimes

impossible when the material contains neutron absorbing elements such as cadmium. On the

other hand, x-ray resonant magnetic scattering is an element specific technique which employs

the tuning of the incident energy of the x-ray to an absorption edge of an element. Therefore

it permits multiple magnetic species to be studied. It also has a higher intrinsic resolution

than the neutron scattering, and a small sample (order of several micron meters square of the

surface area) can be studied.

3.1 X-ray Scattering Technique

3.1.1 High Resolution X-ray Diffraction

The x-ray charge scattering (the “charge scattering” is an intuitive term due to the interac-

tion between charge density of electrons in materials and x-ray) has been the main workhorse

in the crystallography since Bragg’s law. Bragg’s law is summarized in the relation nλ =

2d sin θ where n is an integer, λ is the wavelength of x-ray, d is the interplanar distance, θ is

the scattering angle. Bragg’s law may also be described in terms of the Laue equations, ∆~k =
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Figure 3.1 Illustration of resolution in x-ray diffraction experiments for two peaks located

very closely. Diffraction on a perfect single crystal with (a) ideal incident x-ray as

a delta function, (b) incident x-ray with a finite angular width, (c) higher incident

x-ray resolution in angle after a slit. Diffraction on a mosaic crystal with (d) high

incident x-ray resolution with slit and (e) higher diffracted x-ray resolution after

a slit.

~G where ∆~k = ~ki − ~kf is the scattering vector and ~G = h~a∗+k~b∗+l~c∗ with reciprocal vectors

~a∗, ~b∗, and ~c∗ and Miller indices h, k, and l.

When a material undergoes a structural change under a condition of temperature change,

pressure change, etc. the structural symmetry of a material is lowered. As a result of lowering

symmetry, the interplanar distances, d, change and result in changes in different or new peaks,

or Bragg reflections. In this case, observing the appearance of additional peaks and/or shifts

of peaks at/to new scattering angles, one realizes a structural change in a material.

Instrument Resolution - Incoming X-ray

The observation of a structural transition is sometimes difficult, for example, when the
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Figure 3.2 (a) Angular θ (red square), 2θ (blue circle), θ− 2θ (green triangle), and χ (brown

up-side-down triangle) and [H, H, 0] (gray line) scans around ~Q = (1, 1, 10) (pink

arrow). Open symbols and dashed lines for each color are projections onto HK

plane. (b) Seen from a side ([H, -H, 0] direction). The view is perpendicular to

the scattering plane defined by [0, 0, L] and [H, H, 0]. Note that the figures are

enlarged around (1, 1, 10) so the Q is not going through the origin of the plot.

changes of scattering angles are very small. Under ideal conditions, it should be possible to

detect any changes of scattering angles as shown in Figure 3.1 (a). However, x-rays generated in

the laboratory and synchrotron source have a finite divergence, which can make the observation

difficult [Figure 3.1 (b)]. Moreover, the laboratory x-rays contain undesired components of

the characteristic radiation. For example, the characteristic radiation from a Cu target has

both Kα and Kβ components. One must cut off the undesired radiation Kβ by the means of

filters (intensity reduction of Kβ) or monochromators (angular discrimination of Kβ). After

getting rid of Kβ, there remains Kα1(desired) and Kα2(undesired) radiations which are very

closely located. Using both a monochromator and a slit, one can effectively cut away the Kα2

radiation by utilizing the fact that the scattering angle for Kα2 is slightly different from Kα1

(see Ref. [232] for details of the characteristics of laboratory x-ray radiation). Slits are also

used for synchrotron x-ray radiation to define the divergence of the incoming beam. Figure 3.1

(c) illustrates how high resolution of the incoming x-ray achieved by slits enables observation

of a structural transition.
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Mosaicity of Sample

In addition to an instrument resolution, the mosaicity of a specimen is an another important

factor. The illustration in Figure 3.1 (a)-(c) was made under the assumption of a perfect crystal.

A mosaic crystal is composed of small single crystals with a typical size of ∼1000Å.[232] Those

mosaic crystals are slightly misaligned to each other. If the distribution of misalignment is

within ε degree, then the intensity of a charge peak at θ in a perfect crystal would be distributed

between θ and θ+ ε in a mosaic crystal.[232] Therefore, the term mosaicity describes how close

the crystal is to a perfect crystal and mosaicity is determined by an angular θ scan, a rocking

scan.

The mosaicity of a specimen can be very important. To measure the tetragonal-to-orthorhombic

structural distortion in the 122 system, two domains, one domain which is characterized by

the longer orthorhombic ~a and another by the shorter orthorhombic ~b, are probed in a [H, H,

0] scan using the four-circle diffractometer in our lab (see Fig. 3.3). A [H, H, 0] scan at ~Q =

(1, 1, 10) is shown with a gray solid line in Fig. 3.2. A [H, H, 0] scan was chosen since it is close

to the angular θ scan which has the best instrumental resolution in our setup of instrument.

Because the [H, H, 0] scan is close to the θ scan, the measurement is sensitive to the mosaicity

of a specimen. As shown in Figure 3.1 (d) with the same condition for the incoming x-ray as

Figure 3.1 (c), a mosaic crystal broadens the width of the diffracted x-ray (mosaic spread) in

θ and so does the [H, H, 0] scan, then it makes the observation of peak splitting difficult.

Instrument Resolution - Diffracted X-ray

Even for perfect, monochromatic radiation, since the incoming x-ray beam from both labo-

ratory sources and synchrotrons is not perfectly parallel, the diffracted x-ray is also not parallel.

The divergence of diffracted x-ray and can worsen the resolution. This can be improved by

slits. One can select as much parallel x-rays by placing slits in front of the detector to improve

the instrument resolution as illustrated in Figure 3.1 (e). However, care must be taken that

the slits are not cutting too much signal by adjusting the size of slits in the diffracted x-ray.

Figure 3.3 displays the configuration for x-ray diffraction measurements at the Ames Lab-

oratory. Each component discussed above is shown in the schematic diagram and photos that

are connected with dashed lines.
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Figure 3.3 Schematic diagram showing configuration of instruments in the x-ray lab at Ames

Laboratory and pictures of each part. The black dashed lines connect the equiva-

lent parts in the diagram and the photos.

3.1.2 X-ray Resonant Magnetic Scattering (XRMS)

In addition to the x-ray charge scattering, x-ray as an electromagnetic wave also interacts

with magnetism in materials. X-ray magnetic scattering was first reported by de Bergevin and

Brunel with a laboratory x-ray source in 1972.[233] Because the interaction is so small, it had

been practically impossible to employ the x-ray magnetic scattering until recently.

Synchrotron radiation was first recognized by R. V. Langmuir and co workers in 1947.

Synchrotron radiation is photons emitted when charged particles accelerate. Until 1980s, syn-

chrotron x-ray radiation was achieved as a parasitic operation mode from bending magnets of

synchrotron operated for the experimental nuclear/high-energy physics which accelerates elec-

trons and positrons. In 1980’s, the first generation synchrotrons dedicated to producing x-rays

were built world-wide from bending magnets. Then, an insertion device called a wiggler was

developed. A wiggler is an array of oppositely polarized magnets. As electron passes through

a wiggler, it experiences multiple accelerations due to a frequent change of magnetic fields and

more radiation is emitted. So many of the first generation synchrotrons were evolved to the
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Figure 3.4 Illustration of resonant process in 4f elements. Incident x-ray with a suitable

energy excites unpaired electrons in 2p3/2 level to an empty 4f level above the

Fermi level. Spin polarized excited electrons are de-excited to its initial state and

emit x-ray. After Ref. [245].

second generation synchrotron (e.g. National Synchrotron Light Source, NY). In 1990’s, an

undulator as an insertion device was developed (an undulator is similar to a wiggler in its

form but with more number of magnets closely located and with, generally, slightly smaller

magnetic field than wiggler. Sine the number of magnets, magnetic field strength, and distance

between magnets are finely tuned in undulator, electrons oscillate with smaller amplitude and

the emitted radiation interferes strongly which results in an intense beam with a narrow energy

bandwidth) and lead to the third generation synchrotron (e.g. Advanced Photon Source, IL).

X-ray magnetic scattering has since flourished with the development of synchrotron technology.

The interesting history of synchrotron and the properties of synchrotron x-ray radiation are

discussed in many books including Refs. [234, 235].

In 1990’s, Gibbs et al. observed an enhancement of the diffracted signal in an antiferro-
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magnetic Ho sample when the x-ray energy was tuned to an absorption edge of Ho [236]. The

enhancement occurs because there is an emittance of elastically scattered photons when the

electrons are de-excited to the core level after an appropriate energy of x-ray excites electrons

from the core levels to the unoccupied states above the Fermi level. This is called a resonant

process and illustrated in Figure 3.4 for 4f rare-earth elements. The theories of resonant/non-

resonant magnetic scatterings (XRMS/XNRMS) are well developed and described in many

textbooks including Ref. [237]. The essence of the non-resonant x-ray magnetic scattering is

that the scattering amplitude depends on the Fourier transform of orbital and spin angular

momentum densities [237]. For the x-ray resonant magnetic scattering, Hannon et al. explains

that the resonance enhancement is determined by (1) the matrix elements for the transition,

(2) the virtual core hole lifetime, and (3) the spin polarization of states [238], and they pre-

dicted much larger enhancements at M4 and M5 edges of actinides and it was soon confirmed

experimentally.[239] It is noteworthy that the absolute relation between a resonance enhance-

ment and the magnetic moment size of a material is not known which makes the XRMS unable

to determine an absolute moment size of a material. Here, keeping the resonance process in

mind, I will focus on the polarization analysis, an important tool in the XRMS measurement.

Then I will review the XRMS measurements on 3d/4d/5d transition metals and their resonance

enhancements.

3.1.2.1 Polarization Analysis

Synchrotron x-ray radiation is almost completely linearly polarized in the plane of the

storage ring. The polarization of synchrotron x-ray is described by PL:

PL =
A2 −B2

A2 +B2

where

A =

(
1

γ2
+ Ψ2

)
K2/3 (ξ)

B =

(
1

γ2
+ Ψ2

) 1
2

ΨK1/3 (ξ)

γ =
E

m0c2
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and Ψ is the angle (in radian) between the tangential direction of electrons’ velocity and the

direction of radiation, and K1/3 and K2/3 are the second-rank Bessel functions [234, 235, 240].

When Ψ ≈ 0, A ≈ finite and B ≈ 0, so PL ≈ 1. For example, PL = 0.999 at Advanced

Photon Source in Argonne National Laboratory (one of the third generation synchrotron)

which operates at 7 GeV (γ = 1.4× 10−4).

The polarization property of synchrotron x-rays is of great benefit for the XRMS since the

polarization of the scattered x-ray can be modified by the magnetic scattering process. The

polarization of the x-ray is not changed during charge scattering process. Therefore it is possible

to discriminate magnetic scattering from charge scattering by analyzing the polarization of the

scattered x-ray with respect to the polarization of the incoming x-ray. This also can be used

to provide information concerning the magnetic moment direction in materials. Analyzing the

polarization of scattered x-ray is similar to what we observe in reflected sunlight by the rear

window of a car. On a sunny day, if the sun shines right above a car and one looks at the

rear window of the car with polarized sunglasses, one can see dark patterns because reflected

sunlight is linearly polarized parallel to the surface of the rear window (perpendicular to the

scattering plane. See the definition of scattering plane in the next page). The polarization

component in the scattering plane is completely suppressed when tan(θi−θs)
tan(θi+θs)

=0 where θi and

θs are incident and scattered angles, respectively. The equation is satisfied when θi + θs=90◦.

Therefore, in a specular reflection condition, when the scattering angle, 2θ becomes 90◦, one

can select/analyze polarization of the scattered x-ray. In the following, I will discuss how the

polarization of the x-ray can be changed in the electric dipole transition and how it determines

the components of magnetic moments.

Electric Dipole Transition (E1)

The resonant dipole scattering amplitude can be written in matrix form:
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fXRESE1 = F (0)

 1 0

0 cos 2θ

 (3.1a)

− iF (1)

 0 z1 cos θ + z3 sin θ

z3 sin θ − z1 cos θ −z2 sin 2θ

 (3.1b)

+ F (2)

 z2
2 −z2 (z1 sin θ − z3 cos θ)

z2 (z1 sin θ + z3 cos θ) − cos2 θ
(
z2

1 tan2 θ + z2
3

)
 (3.1c)

where F (i)s are the strength of resonance [241]. The first term (Eqn. 3.1a) contributes to

the charge scattering. The second term (Eqn. 3.1b) contributes to the first-harmonic satellite

peaks and the third term (Eqn. 3.1c) contributes to the second-harmonic satellite peaks in

incommensurate antiferromagnets (in commensurate antiferromagnets, this term contributes

magnetic intensity at the charge scattering peak position). In commensurate antiferromagnets,

the second term (Eqn. 3.1b) describes the polarization dependence of the resonant scattering

amplitude with respect to the magnetic moment directions in the scattering geometry shown

in Figure 3.5 (a) [241]. Here, the scattering plane is defined by the incoming and outgoing

(scattered) x-ray, the σ polarization is a linear polarization perpendicular to the scattering

plane, and the π polarization is a linear polarization parallel to the scattering plane.

The matrix element in Equation 3.1b is

 Mσ→σ Mπ→σ

Mσ→π Mπ→π

 =

 0 z1 cos θ + z3 sin θ

z3 sin θ − z1 cos θ −z2 sin 2θ

 . (3.2)

Therefore, utilizing a polarization analyzer which selects a desired polarization from the scat-

tered x-ray [Figure 3.5 (b) and (c)], one can determine the scattering amplitudes. Mσ→σ = 0

means that the magnetic scattering amplitude is zero in the σ−σ channel. The magnetic scat-

tering amplitude can be detected in σ−π, π−σ, and/or π−π channels due to non-zero matrix

elements. Each non-zero matrix element is uniquely related to the directions of magnetic mo-

ment: Mσ→π and Mπ→σ are sensitive to moment directions in the scattering plane (components

along the z1 and z3 axes), and Mπ→π is sensitive to the moment direction perpendicular to the

scattering plane (a component along the z2 axis).
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Figure 3.5 (a) Scattering geometry and definition of axes, ~zi. Orange arrows are the incoming

and outgoing x-ray. Blue arrows are the directions of polarization. (b) σ − π

channel. (c) π − σ channel. After Ref. [245].

Azimuth Dependence

The polarization properties of magnetic scattering amplitudes provide a possibility of an

explicit determination of a magnetic moment direction in a matter. For the simplest example,

imagine an antiferromagnet with a magnetic moment direction parallel to the sample surface

as shown in Figure 3.6 (a). When the moment lies in the scattering plane as in Figure 3.6 (a),

the magnetic scattering amplitude in the σ − π or π − σ channels are minimum or maximum,

respectively. When the antiferromagnet is put by 90 degrees as in Figure 3.6 (b), the moment

lies perpendicular to the scattering plane then the scattering amplitude becomes zero in the
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Figure 3.6 Illustration of an azimuth scan. (a) Magnetic moments (black arrow) are parallel

to the surface and in the scattering plane. (b) Magnetic moments are parallel to

the surface and perpendicular to the scattering plane. (c) Rotating the moment

around the red arrow (azimuth angle) gives the sinusoidal change of scattering

amplitude.

σ−π (π−σ) channel. If one rotates the antiferromagnet with respect to an axis perpendicular

to its surface, one will effectively rotate the moment direction and will observe a sinusoidal

modulation of the magnetic scattering amplitude as shown in Figure 3.6 (c). This method is

called azimuthal scans and are often written in matrix form:

 0 z′1 cos θ + z′3 sin θ

z′3 sin θ − z′1 cos θ −z′2 sin 2θ

 (3.3)

where z′1 = z1 sinα cosψ, z′2 = z2 sinα sinψ, and z′3 = -z3 cosα with an angle α between the

magnetic moment and the scattering vector and the azimuthal angle ψ [242].

3.1.2.2 XRMS on 3d/4d/5d Transition Metal Elements

Despite the fact that the XRMS has been employed widely for investigations of the mag-

netism of 4f and 5f elements (lanthanides and actinides, respectively), there are only small

number of reports of the XRMS on 3d, 4d, and 5d transition metal elements. This is largely due

to a weak non-resonant scattering amplitude and a small resonant enhancement at the K edge

of transition metal elements: electric dipole transitions (E1) at the K edge are from 1s to 4p

and there is a small spin-orbit coupling in the p states leading to a weak spin polarization (the

resonant enhancement depends on the spin polarization of the states [238]). It is also expected

that the resonant enhancement will be large at L2,3 edges of transition metal elements since

the transitions are from p states to d states, where d states are highly polarized. However, L2,3
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edges of most transition metal elements lie in the“soft” x-ray regime. The soft x-ray is usually

bad for diffraction experiments because (1) the soft x-ray is highly absorbed by air so that

all the instruments should be placed in vacuum, (2) absorption by the sample is problematic,

and (3) the wavelength of the soft x-ray is inevitably long so that there is a limited access

to the reciprocal lattice. In this section, I will briefly review the XRMS on 3d, 4d, and 5d

transition metal elements and their resonant enhancement (see references [243–245] for details

about XRMS on 4f and 5f elements).

3d and 4d Transition Metal Elements

Although many of the studies of resonant enhancements in the x-ray resonant magnetic

scattering have been done on 4f and 5f elements, interestingly, the first x-ray magnetic scat-

tering was performed on a 3d element, Ni in NiO, by F. De Bergevin and M. Brunel [233]. Since

then, the x-ray magnetic scatterings on 3d transition metal elements, Cr, Mn, and Fe, were

mainly exercised with the non-resonant scattering technique [246–248]. Even though there are

different types of resonant experiments such as resonant charge scattering, I will mainly focus

on the x-ray resonant magnetic scattering on antiferromagnetic materials. In 1985, Namikawa

et al. first observed a small resonant enhancement at the Ni K edge in a ferromagnetic Ni

single crystal [249]. Kao et al. studied a ferromagnetic Fe film at the Fe L2 and L3 edges

and observed a large enhancement. Their experiment was not a diffraction experiment but a

measurement of a reflectivity utilizing the resonance due to the limitation related to a small

Ewald sphere in the soft x-ray regime [250]. Soon, much attention was paid to find the res-

onant enhancements at K and L2,3 edges of 3d elements. It resulted in observations of the

resonant enhancements at the Ni L3 edge in antiferromagnetic Ag-Ni multilayers [251], the

Ni K edge in antiferromagnet NiO [252], the Co K edge in antiferromagnet CoO [253], the

Mn K edge in antiferromagnetic RbMnF3 [254], the Cu K edge in antiferromagnetic cuprate

PrBa2Cu3O6.92 [255] and the antiferromagnetic Mott-Hubbard insulator KCuF3 [256], and the

Mn L2,3 edges in the antiferromagnetic bilayer manganite La2−2xSr1+2xMn2O7 [257, 258]. As

shown in Figure 3.7, the resonant enhancement at K edges of 3d transition metal elements is

sometimes absent or small (factor of 2∼3) while the enhancement at L2,3 is considerably larger

(up to 3 orders of magnitude). [259]
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Figure 3.7 Examples of the resonant enhancement at K or L edges of 3d, 4d, and 5d elements.

(Top Left) No resonant enhancement at the Cr K edge.[246] (Bottom Left) Strong

enhancement at the Ru L2 edge.[261] (Top Right) Small enhancement at the Cu

K edge.[255] (Middle Right) Strong enhancement at the Mn L2,3 edges.[258] (Bot-

tom Right) Strong enhancement at the Ir L2 edge.[266]
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Table 3.1 Magnitude of the resonance enhancement for XRMS on d and f elements. “weak”

corresponds to a factor of about “100”, “medium” to about “102” and “strong” to

“≥103”.

Elements Edge Transition Energy Range (keV) Resonance

Strength

Reference

3d K 1s→4p 5-9 Weak [259]

3d L1 2s→3d 0.5-1.2 Weak [259]

3d L2, L3 2p→3d 0.4-1.0 Strong [259]

4d L2, L3 2p→4d 2.5-3.5 Strong [242, 260, 261]

5d L2, L3 2p→5d 10-13 Strong [262–267]

4f K 1s→4p 40-63 Weak [259]

4f L1 2s→5d 6.5-11.0 Weak [259]

4f L2, L3 2p→5d, 2p→4f 6.0-10.0 Medium [259]

4f M1 3s→5p 1.4-2.5 Weak [259]

4f M2, M3 3p→5d, 3p→4f 1.3-2.2 Medium to

strong

[259]

4f M4, M5 3d→4f 0.9-1.6 Strong [259]

5f M4, M2 3d→5f 3.3-3.9 Strong [259]

XRMS on 4d elements in antiferromagnetic materials has been found only in Ruthenium

compounds. The large resonant enhancement was found at the Ru L2,3 edges of antiferromag-

netic Ca2RuO4, Ca3Ru2O7, and RuSr2GdCu2O8 [242, 260, 261].

5d Transition Metal Elements

Unlike 3d and 4d transition metal elements, the L2,3 edges of 5d elements lie in the hard

x-ray regime. This is a huge advantage to study 5d elements with XRMS since the resonant

enhancement at L2,3 edges is expected to be large and a large volume of reciprocal lattice is

measurable. The resonant enhancement was observed at the Pt L3 edge of the ferromagnet

CoPt [262] and of UPtGe as induced moments [263], the Re L3 edge of an antiferromagnet

K2ReCl6 [264], and the Ir L2,3 edges of Iridates such as Sr2IrO4, Na2IrO3, and CaIrO3 [265–

267]. The resonant enhancement is very large as shown in Figure 3.7.

For completeness, I present Table 3.1 summarizing resonance strength of d and f elements.
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One should note that the resonant enhancement (the resonance strength) is a relative term

between the resonant amplitude and the non-resonant amplitude so that a large resonant en-

hancement does not guarantee a large absolute resonance amplitude. For example, if the

non-resonant amplitude was ∼10−3 counts per second and the resonant enhancement was 103,

the observable resonant amplitude would be ∼1 counts per second.

3.2 Neutron Scattering Techniques

As mentioned at the beginning of this chapter, the neutron is not charged so it scatters with

the atomic nuclei. For this reason, the Bragg peaks are called nuclear peaks in neutron scat-

tering. Due to the wave-particle duality, neutrons scatter as a wave satisfying the Bragg’s law

with neutrons’ wavelength λ = h√
2mE

and E ∼ kBT where kB is the Boltzmann’s constant and

T is the temperature of a material that moderates the neutrons. This makes the neutron scat-

tering a powerful technique to study crystallographic structures. What also makes the neutron

scattering a preeminent technique is that neutron possesses a spin, which provides an ability to

interact with dipole moments of unpaired electrons in a matter. The amplitude of the neutron

magnetic scattering is comparable to the amplitude of nuclear scattering, and the scattering

rate is efficient enough to provide measurable scattering by the magnetic structures [268–271].

Neutrons used in scattering experiments are generated mainly in two ways: nuclear fission

and spallation. While the basic idea of the production of neutrons is to boil off neutrons from

nuclei, the mechanisms are clearly different as their names indicate. Nuclear reactors pro-

vide a continuous flux of cold, thermal, and ephithermal neutrons with a brightness of ∼1015

s−1m−2ster−1 for thermal neutrons whereas spallation sources produce pulsed neutrons of a

wide range of energies up to on the order of GeV with ∼1017 s−1m−2ster−1 in the pulse for

thermal neutrons. It is difficult to say which neutron sources are better for various scatter-

ing experiments because different types of instrumentation with a given neutron source can

provide different capabilities. For example, the time structure in the neutron pulse provided

by spallation neutron sources is sometimes beneficial to diffraction experiments, i.e. different

energies of neutrons in the pulse, together with a large area detector provide other types of

experiments such as a one-shot experiment (all wavelengths can be used simultaneously). In
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contrast, although monochromatic continuous neutrons from nuclear reactors will take longer

time to gather the similar data to the data from a one-shot measurement, it provides better

detailed information at a particular Q position. There are excellent books on neutron sources,

scattering techniques, and principles of neutron scattering [268–273] so further readings should

refer to those books. Here, I will focus on neutron diffraction (elastic scattering).

3.2.1 Aspects of Neutron Diffraction Experiment

Typical neutron diffraction instruments at nuclear reactors are shown in Figure 3.8: (a)

is the double-axis diffractometer and (b) is the triple-axis spectrometer. Neutron diffraction

experiments use the double-axis diffractometer but a triple-axis spectrometer can also be used.

Neutrons from nuclear reactors come into a monochromator through a collimator with a width

of α0. The monochromator uses Bragg’s law and selects an energy (wavelength) of interest

then neutrons go through a collimator with a divergence angle of α1 to the sample.

Double-axis Diffractometer

When the incident flux of neutrons coming to the monochromator is ΦI, the width α0 of the

collimator before the monochromator, α1 of the collimator after the monochromator before the

sample, and the mosaicity of the monochromator ηM play important roles in the determination

of the flux, the instrumental energy resolution, and the instrumental spatial Q resolution of

the neutron beam going to a sample.

The flux of the neutron beam to the sample, ΦS, is [269]

ΦS =
ΦI

4π
cot θM

α0α1ηM(
α2

0 + α2
1 + 4η2

M

) 1
2

PM (3.4)

where θM is a scattering angle of the monochromator and PM is a reflectivity of the monochro-

mator. The energy resolution, δE, is [269]

δE

E
= 2 cot θM

(
α2

0η
2
M + α2

1η
2
M + α2

0α
2
1

α2
0 + α2

1 + 4η2
M

) 1
2

. (3.5)

The Q resolution, δQ, is [273]

δQ

Q
=

√
a22 − 2a12 cot θS + a11 cot2 θS

2(a11a22 − a2
12)

(3.6)
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where

a11 = tan2 θM

(
4

α2
0

+
1

η2
M

)
a12 = |tan θM|

(
2

α2
0

+
1

η2
M

)
a22 =

1

α2
0

+
1

α2
1

+
1

η2
M

.

For example, with α0 = α1 = 40′ ≈ 0.0116 radians, θM = 45◦ = 0.785 radians, and ηM ≈ 68′ ≈

0.0198 radians, δE = 0.644 meV for E = 14.7 meV from Equation 3.5. When the collimators

are changed to the half of the previous ones α0 = α1 = 20′ ≈ 0.00582 radians, the change of

flux at the sample,
Φ
α0=α1=20′
S

Φ
α0=α1=40′
S

≈ 0.265 using Equation 3.4 whereas the change of the spatial

resolution δQα0=α1=20′

δQα0=α1=40′ ≈ 0.507 by Equation 3.6. An improvement of the Q resolution by a

factor of two with tightening collimators by half results in a reduction of the neutron flux by a

factor of 4.

Then, neutrons with ΦS are diffracted by a sample (S) with θS, going through a collimator

α2, and are counted in a detector (DET). The flux, energy resolution and spatial resolution

of neutrons reaching to a detector are also influenced by collimators α1 and α2, the sample

scattering angle θS and the mosaicity of the sample ηS. This can be easily realized from

Equations 3.4 - 3.6 by substituting corresponding parameters.

Triple-axis Spectrometer

In the triple-axis spectrometer, the diffracted neutrons from the sample go through one

more component, an analyzer which selects an energy (wavelength) of the scattered neutron.

The ability in a triple-axis spectrometer to analyze an energy of the scattered neutron is used

for inelastic neutron scattering experiments. Nevertheless, it complicates the determination of

the flux, energy resolution, and spatial resolution. For instance, the energy resolution (Eqn. 3.5)

for the triple-axis spectrometer becomes

δE =

√
E2
i

(
δEi
Ei

)2

+ E2
f

(
δEf
Ef

)2

(3.7)

where

δEf
Ef

= 2 cot θA

(
α2

2η
2
A + α2

3η
2
A + α2

2α
2
3

α2
2 + α2

3 + 4η2
A

) 1
2

. (3.8)
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and δEi
Ei

is Equation 3.5 [273]. Therefore, when α0 = α1 = α2 = α3 = 0.01164 radians, ηM = ηA

= 0.01978 radians, and θM = θA = 0.7854 radians, then δE ≈ 0.9113 meV for Ei = Ef =

14.7 meV.

For diffraction experiments both double-axis diffractometers and triple-axis spectrometers

can be used. Whereas double-axis diffractometers can provide accurate integrated intensities

in both rocking (θ) and θ − 2θ scans, integrated intensities measured by the triple-axis spec-

trometers were found to be accurate only in θ−2θ measurements since the energy resolution of

diffracted neutrons is limited which often causes underestimation of intensities of Bragg peaks

in triple-axis spectrometer measurements.[273] On the other hand, the limited (selected Ei and

Ef ) energy resolution provided by triple-axis spectrometers results in a better signal-to-noise

ratio which is usually smaller in double-axis diffractometer measurements.[273] However, care

must be taken in using triple-axis spectrometers for diffraction experiments since (1) when the

sample size or beam size is comparable to or smaller than the size of collimators, collimator

blades can screen some of neutrons, cause distorted neutron intensity distribution, and result

in non-uniform, non-Gaussian peak shapes, (2) when the sample mosaic is roughly larger than

60’, the Lorentz factor, 1
sin 2θS

, can become no longer valid, and (3) when two collimators were

mistakenly placed in a row (for example, two parallel collimators α2 and α3 without an ana-

lyzer), slight misalignment between those collimators can cause larger uncertainty in measured

intensity.[273]

3.2.1.1 Neutron Magnetic Diffraction

In contrast to XRMS, neutron diffraction is able to measure a magnetic moment size of

a material when the integrated intensity is measured accurately. The intensity in neutron

diffraction experiments is measured by the differential cross section

dσ

dΩ
=

C

ΦdΩ

where C is the neutron count rate, Φ is the incident neutron flux, and dΩ is a small solid angle.
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Figure 3.8 (a) Schematic diagram of the double-axis diffractometer and (b) of the triple-axis

spectrometer. Red arrow indicates the neutron path. “S” notes the sample posi-

tion. αi denote collimation widths. Φ shows the flux at noted positions. Black

bars are a monochromator or an analyzer. After Ref. [273].

The differential cross section from a magnetically ordered material is

dσ

dΩ
=

1

NM

(2π)3

v0

∑
~τ~M

δ(~Q− ~τ~M)
∣∣∣~F~M⊥

(~τ~M)
∣∣∣2 (3.9a)

~F~M⊥
= Q̂× ~F~M × Q̂ (3.9b)

~F~M(~Q) = γr0

∑
~d

fd(~Q)
〈
~µ~d
〉
ei
~Q·~de−W (~Q) (3.9c)

where ~F~M⊥
is the magnetic structure factor, ~F~M(~Q) is often called the magnetic unit-cell struc-

ture factor, ~τ~M is the reciprocal lattice vector of the magnetic structure, γ is the gyromagnetic

constant, r0 is the electron radius (0.28179 × 10−12 cm), f(~Q) is the magnetic form factor,

~µ is the magnetic moment, ~d is the atomic position, and e−W (~Q) is the Debye-Waller fac-

tor [269, 271, 273]. “〈 〉” means averaging over domains.
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The Equations (3.9b) and (3.9c) show that the component of the magnetic moment which

is perpendicular to the scattering vector ~Q contributes to the diffracted neutron intensity.

The Equations (3.9a) and (3.9c) indicate that dσ
dΩ ∝

∣∣∣~F~M⊥
(~τ~M)

∣∣∣2 ∝ 〈
|~µ|2

〉
, in words, the

intensity is proportional to the square of the magnetic moment size. Therefore, the differen-

tial cross section, dσ
dΩ , contains information of both magnetic moment direction and the size

of the moment in a magnetically ordered material:
〈
|~µ|2

〉
= µ2

(
1−

〈
cos2 η

〉)
where η is

the angle between ~µ and ~Q. The expression
〈
cos2 η

〉
are known for different kind of unit-

cells in the literature [273]. For instance, in an orthorhombic magnetic unitcell,
〈
cos2 η

〉
=(

h2a∗2 cos2 φa + k2b∗2 cos2 φb + l2c∗2 cos2 φc
)
d2

4π2 where ~Q = h~a∗ + k~b∗ + l ~c∗ and φa,b,c are an-

gles between ~µ and each crystallographic axis. For the stripe antiferromagnetic structure found

for the FeAs-based superconductors with ~Q = (1, 0, 1) and the moment direction along (1,

0, 0) in the orthorhombic magnetic unit cell (a = 5.564 Å, b = 5.542 Å, and c = 12.96 Å),〈
cos2 η

〉
= 0.8444 and

〈
|~µ|2

〉
= 0.1556µ2. Therefore, measuring the integrated intensity of

magnetic Bragg peaks provides information of the magnetic structure and the moment size.

Another example of using the relation dσ
dΩ ∝

〈
|~µ|2

〉
= µ2

(
1−

〈
cos2 η

〉)
is that when one knows

the magnetic moment size in a particular material (say, the parent compound), one can esti-

mate the moment size of the daughter compound which a magnetic element of the material is

substituted with another nonmagnetic element. A comparison of integrated intensities of the

same magnetic Bragg peaks of both compounds is essentially the same as a comparison of the

magnetic moments square:
Iparent

Idaughter
≈ µ2parent

µ2daughter
.
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CHAPTER 4. Structural and Magnetic properties of Transition metal

(TM = Co, Rh, Ru, and Mn) substituted BaFe2As2 compounds

In the previous chapters, 2 and 3, I described the progress in the study of the structural

and magnetic properties of the FeAs-based superconductors and the experimental considera-

tions for x-ray and neutron scattering measurements. Particularly, in chapter 2, I described:

(1) the ambiguity in the nature of phase transitions in the parent BaFe2As2 compound, (2)

the substitution effects on TS, TN, and ordered moment size M in Ru substituted BaFe2As2

compounds, and (3) the substitution effects on TS, TN, and ordered moment size M in Mn

substituted BaFe2As2 compounds.

In this chapter, I will first discuss measurements of the various phase transitions in the

parent BaFe2As2 compounds (Section 4.1) and how the nature of phase transitions changes

with transition metal substitution. I will discuss my findings on the change of the nature of

phase transitions with a small amount of substitution (electron-doping) in Section 4.2. Then, in

Section 4.3, my observation of the effect of Ru substitution (isoelectronic-doping) in BaFe2As2

will be presented in comparison to the materials discussed in Section 4.2. Lastly, I will present

the results of my study on Mn substituted (hole-doped) BaFe2As2 in Section 4.4, and the

discussion and summary follow in Section 4.5.

4.1 Nature of Phase Transitions in the parent BaFe2As2 compound

4.1.1 Experimental Details

Temperature-dependent, high-resolution, single-crystal x-ray diffraction measurements were

performed on a four-circle diffractometer using Cu Kα1 radiation from a rotating anode x-ray

source, selected by a germanium (1, 1, 1) monochromator. For these measurements, the plate-
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like single crystals (see Refs. [274] for growth and characterization) with typical dimensions of

3× 3× 0.5 mm3 were attached to a flat copper sample holder on the cold finger of a closed-

cycle displex refrigerator with the tetragonal (H, H, L) plane coincident with the horizontal

scattering plane [(0, 0, 1) - (1, 1, 0) scattering geometry]. The mosaicity of the BaFe2As2 single

crystals was less than 0.02◦ full-width-at-half-maximum (FWHM) as measured by the rocking

curves of the (1, 1, 10)T reflection at room temperature. The diffraction data were obtained

as a function of temperature between room temperature and 8 K, the base temperature of the

refrigerator.

The x-ray resonant magnetic scattering measurements were performed on the 6ID-B undu-

lator beamline with top-up operation mode at the Advanced Photon Source (APS), Argonne.

The 6ID-B beamline uses a double-crystal Si (1, 1, 1) monochromator and the incident beam

was 99.9% linearly polarized parallel to the storage ring plane with the resolution (∆E/E) ∼

1 × 10−4 (approximately 0.8 eV energy resolution at the Fe K-absorption edge). The spatial

cross section of the incident beam was 1.0 mm (horizontal) × 0.2 mm (vertical). Temperature-

dependent single-crystal x-ray diffraction measurements were performed using the same exper-

imental configuration. Three beryllium domes were used to ensure a well-defined temperature

of the sample down to 4 K, the base temperature of the refrigerator. The inner Be dome is to

maintain the sample temperature using an exchange gas (He). The middle Be dome serves as a

radiation heat shield and the outer Be dome maintains vacuum inside of the displex unit. The

temperature was measured at a sensor mounted to the copper block holding the sample, and

was stable within ± 0.002 K. Care was taken to minimize heating effects associated with the

incident x-ray beam by measuring charge and magnetic reflections in close proximity and using

the appropriate incident beam attenuation. The attenuations were 10 or less (approximately

0.31 % or higher percentage of the synchrotron x-ray transmits to the sample) for the x-ray

resonant magnetic scattering measurement at the Fe K-edge and 10 or more (approximately

0.31 % or lower percentage transmission) for the measurement of the structural transition. The

difference in the attenuation for XRMS and charge peak scattering is necessary since the charge

scattering is much stronger than XRMS and over-exposure of the detector occurs when the at-

tenuation for XRMS was used for the charge scattering. However, using different attenuations
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can cause a change in the measured sample temperature due to the additional heating by the

x-rays. Therefore, for simultaneous measurements of XRMS and charge scattering, I used the

same attenuation between 0 (full transmission) and 4 (9.6 % transmission) for both measure-

ments but rotated the detector by some angle (2∼10◦) when I measured the charge peak. In

this way, particles consisting the air scatter intense diffracted x-ray so that the intensity of the

scattered beam from the sample decreases. Using the air-scattering over-illumination of the

detector was prevented.

For XRMS, we used the σ − π polarization analysis. In the σ − π channel, the incoming

beam is linearly polarized perpendicular to the scattering plane and the component of the

outgoing beam with a polarization parallel to the scattering plane is measured. Polarization

analysis in the σ − π channel was performed using a Cu crystal. The (2, 2, 0) reflection of the

Cu analyzer crystal (2d = 2.553 Å) yields a diffraction angle of 2θ = 86.1◦ at the Fe K-edge. A

suppression of the charge and fluorescence background by a factor of 200 was achieved relative

to the magnetic scattering signal due to the analyzer crystal.

4.1.2 Orthorhombic twin domains and the AFM Bragg peak

The BaFe2As2 compounds undergo a high-temperature tetragonal to a low-temperature or-

thorhombic structural transition. The orthorhombic structure is related to the tetragonal struc-

ture in the following way. The basal ~a - ~b plane of the orthorhombic structure is rotated by 45◦

with respect to the ~a - ~b plane of the tetragonal structure so the lattice parameter aO (aO > bO)

of the orthorhombic structure is approximately
√

2×aT (aT = bT) of the tetragonal structure.

The Miller indices (H, K, L)O in orthorhombic notation are given by (h + k, h - k, l)O with

(h, k, l)T in tetragonal notation [e.g. (2, 0, 8)O = (1, 1, 8)T]. I will use both notations here

since, in some cases, one notation is more straight-forward than another. For example, the

orthorhombic notation is more straight forward when the AFM order is discussed because the

AFM order occurs in the orthorhombic structure. In the orthorhombic phase, twin domains

are formed due to the orientation degeneracy of the orthorhombic distortion (see Fig. 2 in

Ref. [275]). For some peaks, this yields four Bragg peaks in close proximity as illustrated

in Fig. 4.1 (a) where the two left peaks with H ∼ 2.00 are related to (2, 0, 8)O reflections
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Figure 4.1 (a) Representative map of charge Bragg peaks related to four orthorhombic twin

domains in Ba(Fe1−xCox)2As2 with x = 0.047 below TS. (b) ~Q scan through cut

“A” marked in (a) for the undoped BaFe2As2 at T = 6 K. (c) Scattering measured

in the σ- π channel at the magnetic Bragg position. Note that the figures are

presented in the orthorhombic notation.

and the larger lattice parameter aO, whereas the two right peaks are related to (0, 2, 8)’O

reflections which arise from other domains and are related to the smaller lattice parameter

(bO < aO).[174, 177, 179] In cuts through the charge peak positions both types of Bragg peaks

occur as shown in Fig. 4.1 (b). However, in the corresponding cuts through magnetic peak

positions only peaks on the left side related to the enlarged lattice parameter aO are seen as

demonstrated by the (1, 0, 7)O Bragg peak in Figs. 4.1 (c). This is consistent with previous

neutron measurements of the magnetic propagation vector ~QAFM = (1, 0, 1)O in BaFe2As2.[167]

The moment direction along the ~aO direction is supported by the observation of large dipole

resonant magnetic scattering for the (1, 0, 7)O Bragg peak in the σ − π XRMS channel.[238]

Therefore, the observation of scattering at (1, 0, 7)O and the absence of scattering at (0, 1, 7)O

is consistent not only with the propagation vector but also with the moment direction along

~aO in the magnetic structure of BaFe2As2.
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Figure 4.2 (a) Measured fluorescence spectrum. (b) Energy scan through the (1, 0, 7)O mag-

netic peak above (filled triangles) and below (filled circles) TN, and at low temper-

ature away from (1, 0, 7)O (open squares). (c) Antiferromagnetic order parameter

as a function of temperature measured by XRMS at the Bragg position (1, 0, 7)O

(filled circles) and measured with neutrons at the Bragg position (1, 0, 3)O (open

circles). (d) Calculated fluorescence spectrum. (e) Calculated XRMS due to the

dipole (black line) and the quadrupole (red line) transitions. Note that the inten-

sity from quadrupole transition is about 5 orders of magnitude smaller than dipole

transition. (f) Theoretical XRMS spectrum (line) which is a sum of spectra from

dipole and quadrupole transitions and corrected for interference. The experimen-

tal XRMS spectrum is corrected for absorption and the background is subtracted

(close circles).



69

4.1.3 XRMS spectra

To ensure that the observed Bragg peak at the ~QAFM = (1, 0, 7)O is magnetic in nature, we

measured the energy spectrum associated with the resonant scattering from BaFe2As2 and the

intensity at this ~Q position as a function of temperature. In Fig. 4.2 (b) we show the raw data

from energy scans at constant ~QAFM = (1, 0, 7)O at T = 6 K, well below TN. To determine

the background at this scattering vector, energy scans were also performed at (1, 0, 7)O for T

= 140 K, just above TN, and at ~Q = (0.9, 0, 7)O, away from the magnetic peak, at T = 6 K.

The shape of the background in the vicinity of the Fe K-edge is consistent with an increase

in the fluorescence from the sample [Fig. 4.2 (a)]. We subtracted the background from the

energy scan measured at T = 6 K, corrected the energy scan for the absorption, and display it

with closed circles in Fig. 4.2 (f). There are three distinctive features in the energy spectrum.

First, an energy-independent contribution is most clearly visible below the absorption edge

which arises from nonresonant magnetic scattering. Second, there is a noticeable dip in the

scattering intensity just below the absorption edge, due to interference between the nonresonant

and resonant magnetic scattering as the phase of the resonant scattering changes across the

absorption edge. Third, we observed a sharp feature close to the absorption threshold and

broad scattering that extends to energies more than 20 eV above the absorption edge. This

broad energy spectrum is similar to what was observed in previous XRMS measurements in

the σ - π scattering channel at the Ni K-edge for NiO[252, 276] and can be attributed to the

dipole channel from the 1s initial state to the unoccupied 4p states that are weakly polarized

through hybridization with 3d states near the Fermi energy. The sharp feature close to the

absorption threshold may also contain a contribution from quadrupole allowed channel from

the 1s to 3d states, and our calculations suggest that the dipole contribution is the dominant

one. However, an unambiguous separation of the dipole and quadrupole contributions will

require further measurements of the angular dependence of the scattering as well as the σ - σ

scattering channel.

Figure 4.2 (c) shows the magnetic order parameter as a function of temperature, measured at

(1, 0, 7)O. It shows that as the sample temperature increases, the intensity of the magnetic peak
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decreases until it can no longer be observed above background at TN ≈140 K, in agreement with

previous neutron-scattering measurements[174] and our neutron measurement [Fig. 4.2 (c)].

Together with the energy spectrum through the Fe K-absorption edge and the temperature

dependent AFM order parameter, we conclude that the Bragg peak at (1, 0, 7)O is magnetic

in nature.

To model the resonant scattering spectra, Lee and Harmon used a full-potential linear-

augmented plane-wave (FLAPW) method [277] with a local density functional.[278] To obtain

a self-consistent charge and potential, they chose 810 ~k points in the irreducible Brillouin zone

(IBZ), and set RMT × kmax = 8.0, where RMT is the smallest muffin-tin radius and kmax is the

basis set cutoff (the maximum value of |~k+ ~Ki| included in the basis). The muffin-tin radii are

2.4 a.u., 2.2 a.u., and 2.2 a.u. for Ba, Fe, and As, respectively. The self-consistent calculation

was iterated until the total energy convergence reached 0.01 mRy/cell. For the x-ray absorption

spectra [Fig. 4.2 (d)] and XRMS [Figs. 4.2 (e) and (f)] they calculated empty states up to 40 eV

above the Fermi energy with 1320 ~k points in the IBZ and with the calculated self-consistent

potential. To model the interference between the resonant and nonresonant scattering close

to the absorption edge, an energy-independent scattering amplitude, which is equal to the

resonant scattering contribution, was added to the real part of the resonant scattering, based

upon previous XRMS K-edge measurements which note a resonant enhancement of the mag-

netic scattering equal to the nonresonant magnetic scattering.[252, 276] The calculated energy

spectrum was broadened with a 1.25 eV Lorentzian[279] to account for the core-hole lifetime,

and a 1 eV Gaussian for the instrumental resolution. The calculated absorption and resonant

scattering spectra are displayed in Figs. 4.2 (d) - (f). Seen in Fig. 4.2 (e), the quadrupole

contribution to the sharp feature close to the absorption threshold is much smaller than the

dipole contribution. The total XRMS in Fig. 4.2 (f) captures the essential features of the

measurements including the three features discussed above.

4.1.4 Nature of Phase transitions

In Fig. 4.3(a), I display [ξ, ξ, 0]T scans through the (1, 1, 10)T charge peak, obtained using

the laboratory source, for the parent BaFe2As2 compound measured with temperature steps
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Figure 4.3 (a) X-ray diffraction scans, measured using the laboratory source, along the [ξ, ξ, 0]

direction through the position of the tetragonal (1, 1, 10)T reflection for selected

temperatures in the parent BaFe2As2 upon cooling. The lines present the fitted

curves using a Lorentzian-squared line shape. The two-component fit to broad-

ened peaks is illustrated for T = 134.25 K. The arrows denote the positions of

peaks associated with Ort-AFM as discussed in the text. At this temperature, the

integrated intensity of the Ort-AFM peaks are approximately 5% of the Ort-PM

diffraction peaks. (b) The orthorhombic distortion as a function of temperature

upon cooling and warming determined from fits to the (1, 1, 10)T Bragg diffraction

peak.
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of 0.25 K. Above the structural transition temperature, TS = 134.5 K, a single sharp peak

is observed, consistent with the tetragonal structure. Upon cooling below TS, the (1, 1, 10)T

charge peak continuously broadens and, then, clearly splits at T = 133.75 K, concomitant

with the abrupt appearance of two additional peaks at this temperature [vertical arrows in

Fig. 4.3(a)] bracketing the two inner peaks. Upon further cooling, the splitting of the two inner

peaks evolves continuously as their intensities decrease, whereas the positions of the outer

peaks change only slowly as their intensities increase. Below T = 133.0 K, the two inner peaks

disappeared leaving only the outer peaks in evidence. Please note that these observations

are qualitatively consistent with similar diffraction measurements on an annealed sample of

BaFe2As2 recently reported by Rotundu et al.[280] although the transition temperatures for

their annealed sample were approximately 5 K higher.

Having described the temperature evolution of the diffraction peaks qualitatively, it is useful

to introduce some labeling of the corresponding phases. The tetragonal paramagnetic phase

is denoted as Tet-PM. Anticipating the results of our XRMS study, I label the orthorhombic

phase that evolves continuously over a very narrow temperature range below TS [corresponding

to the inner pair of peaks in Fig. 4.3(a)] as Ort-PM. I further label the orthorhombic phase

that abruptly appears at T = 133.75 K [corresponding to the two outer bracketing peaks

in Fig. 4.3(a)] as Ort-AFM. Structurally, I assume that Ort-PM and Ort-AFM differ only

with respect to the values of their lattice constants and orthorhombic distortion at a given

temperature.

Figure 4.3(b) describes the temperature evolution of these phases. Upon cooling, a second-

order transition from Tet-PM to Ort-PM occurs at TS = 134.5 K followed by a first-order

transition to Ort-AFM at TN = 133.75 K. There is a region of coexistence between Ort-AFM

and Ort-PM from 133.75 K to 133.0 K, and only the Ort-AFM phase is observed below this

temperature. Upon warming, Ort-PM appears at 133.0 K and coexists with Ort-AFM up to T ′N

= 134.0 K, where Ort-AFM disappears. The orthorhombic distortion associated with Ort-PM

decreases continuously up to TS = 134.5 K, where Tet-PM is recovered. I find no hysteresis

in the transformations from Tet-PM to Ort-PM and ≤ 0.25 K hysteresis associated with the

appearance/disappearance of Ort-AFM.
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Figure 4.4 (a) The measured (1, 1, 8)T charge diffraction peak above the structural/magnetic

transitions. Panels (b) and (c) show the (1, 1, 8)T charge peak and (1
2 , 1

2 , 7)T

magnetic peak at T = 130 K, well below the transition region. Panels (d) and

(e) show the measured intensities at the (1, 1, 8)T charge peak and (1
2 , 1

2 , 7)T

magnetic positions at T = 133.3 K. The arrows in (c) and (e) indicate the calculated

magnetic peak positions corresponding to each of the charge peaks in (b) and (d),

respectively. The fitted value for the width of the charge and magnetic peaks are

the same.
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In order to investigate the relationship between the structural transition and AFM order-

ing in this system I have performed a combined study using high-resolution x-ray diffraction

and XRMS measurements. These simultaneous measurements eliminate concerns regarding

disparities in the temperature calibration of sensors for different experiments. Using the con-

figuration at the APS described in Section 4.1.1, I measured the scattering at both the charge

and magnetic Bragg peak positions for several temperatures close to the structural transition.

In Fig. 4.4(a) I show a [ξ, ξ, 0]T scan through the (1, 1, 8)T charge Bragg peak at T =

137 K, well above the structural transition temperature. At T = 130 K, below TN and TS,

two well-separated peaks were observed [Fig. 4.4(b)]. These are the (2, 0, 8)O and (0, 2, 8)O

charge Bragg peaks of the orthorhombic phase. The difference in intensity arises from differ-

ent populations of the domains within the illuminated volume of the sample. At this same

temperature, a single peak is found at the (1
2 ,

1
2 , 7)T[ ≡ (1, 0, 7)O], magnetic peak position for

the orthorhombic phase, [Fig. 4.4(c)] in agreement with previous measurements of a magnetic

propagations vector given by ~QAFM = (1
2 , 1

2 , 1)T [(1, 0, 1)O] with lattice constants aO > bO,

keeping in mind that the magnetic peaks are displaced from ξ = 1
2 because of the orthorhombic

distortion. [174, 177–179]

The principal result conveyed in Figs. 4.4(b) and (c) is that the expected AFM order exists

in the Ort-AFM phase. The question, however, is whether this AFM order is also associated

with the Ort-PM intermediate phase. Figures 4.4(d) and (e) show [ξ, ξ, 0]T scans through the

(1, 1, 8)T charge and (1
2 , 1

2 , 7)T magnetic peak positions at T = 133.3 K. Similar to what was

found in our laboratory-based measurement [Fig. 4.3(a)] we observed four charge peaks [two

outer peaks from Ort-AFM and two inner peaks from Ort-PM]. However, Fig. 4.4(e) shows only

a single magnetic peak. The arrows in this panel denote the expected positions for magnetic

peaks associated with each of the charge peaks in Fig. 4.4(d) and we see that the magnetic

peak is found at a position that corresponds to one of the two outer peaks associated with the

Ort-AFM phase. This allows us to conclude that the magnetic order is associated only with

the Ort-AFM phase. Taken together, the x-ray diffraction and XRMS measurements suggest

that: (1) The orthorhombic distortion at TS is best described as a second-order transition;

(2) the structural and AFM transitions in the as-grown BaFe2As2 compound are separated
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in temperature by approximately 0.75 K and; and (3) a first-order magnetic transition at TN

drives the discontinuity in the structural order parameter at 133.75 K.

4.2 Evolution of the Nature of Phase transition in Co and Rh substituted

BaFe2As2 compounds

4.2.1 High-resolution x-ray diffraction and resistance measurements of

Ba(Fe1−xCox)2As2 and Ba(Fe1−xRhx)2As2

To further substantiate the conclusions from Section 4.1.4, I now turn to a study of the

evolution of the structural transition in lightly Co or Rh substituted (electron-doped) BaFe2As2

compounds.

I have performed high-resolution x-ray diffraction measurements on four different lev-

els of substitutions in BaFe2As2 samples: Ba(Fe1−xCox)2As2 for x = 0.018 and 0.047, and

Ba(Fe1−xRhx)2As2 for x = 0.012 and 0.040. Figures 4.5 and 4.6 display the raw diffraction

data, the orthorhombic distortion (δ) and diffraction peak widths derived from fits to the data,

and the electrical resistance measured as a function of temperature. Temperature-dependent

ac electrical resistance data (f = 16 Hz, I = 3 mA) were collected by A. Thaler using a Quan-

tum Design Magnetic Properties Measurement System (MPMS) with a Linear Research LR700

resistance bridge. Electrical contact was made to the sample using Epotek H20E silver epoxy

to attach Pt wires in a four-probe configuration.

Turning first to the compounds at lower substitution concentrations, Ba(Fe0.982Co0.018)2As2

and Ba(Fe0.988Rh0.012)2As2 (Fig. 4.5), below TS both samples manifest a lattice distortion that

evolves continuously as temperature is lowered, until the onset of magnetic ordering where a

step-like feature in the structural order parameter (δ) is observed. At TN a distinct broadening

of the split orthorhombic diffraction peaks is evident over a narrow range in temperature. In

contrast, the temperature dependence of the order parameter and peak widths for the higher

substitution concentrations, Ba(Fe0.953Co0.047)2As2 and Ba(Fe0.960Rh0.040)2As2 (Fig. 4.6), is

decidedly different near TN. For these samples, the structural distortion evolves continuously,

with only a mild kink in evidence at TN and without the attendant peak broadening at TN.
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Figure 4.5 (a) X-ray data, (b) resistance (black line) and its temperature derivative (blue line),

(c) orthorhombic distortion and (d) FWHM of the split (1, 1, 10)T Bragg peaks

measured for Ba(Fe1−xCox)2As2 with x = 0.018. For Ba(Fe1−xRhx)2As2 with x

= 0.012, (e) x-ray data, (f) resistance (black line) and its temperature derivative

(blue line), (g) orthorhombic distortion and (h) FWHM of the split (1, 1, 10)T

Bragg peaks measured. In panel (c) and (g) the structural and magnetic transition

temperatures are marked.
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Figure 4.6 (a) X-ray data, (b) resistance (black line) and its temperature derivative (blue line),

(c) orthorhombic distortion and (d) FWHM of the split (1, 1, 10)T Bragg peaks

measured for Ba(Fe1−xCox)2As2 with x = 0.047. For Ba(Fe1−xRhx)2As2 with x

= 0.040, (e) x-ray data, (f) resistance (black line) and its temperature derivative

(blue line), (g) orthorhombic distortion and (h) FWHM of the split (1, 1, 10)T

Bragg peaks measured. In panel (c) and (g) the structural and magnetic transition

temperatures are marked.
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Figure 4.7 Diagram showing the nature of the structural and magnetic phase transitions for

Ba(Fe1−xCox)2As2 at TS and TN, respectively. The thick line denotes a first-order

transition whereas the thinner lines represent second-order transitions. The crosses

denote values for TS and TN determined from our measurements. The open circle

denotes the approximate position of a tricritical point as described in the text.

The differences between the lower and higher substitution concentrations are consistent with

a change in the nature of the magnetic transition from first-order for low substitution, to second-

order for higher substitution levels. At low-substitution, as for the parent BaFe2As2 compound,

there is a second-order transition from the Tet-PM to the Ort-PM structure as temperature

is decreased below TS. The step in the orthorhombic distortion (δ) at TN is a consequence

of the abrupt appearance of Ort-AFM coincident with a first-order AFM transition. I note

that throughout this temperature range only two broadened peaks are observed in contrast

to what was shown above for the parent compound. This is expected, however, since the

larger separation of TS and TN allows δ to evolve to a value for the Ort-PM phase that is

close to its magnitude for the Ort-AFM phase. The anomalous increase in the widths of the

x-ray diffraction peaks at TN arises from the coexistence and near coincidence in position of

the Ort-AFM and Ort-PM diffraction peaks over a narrow temperature range. For the higher
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substitution levels, within our experimental resolution, the absence of a distinct step in δ or

peak broadening at TN is consistent with second-order AFM and structural transitions as found

previously.[185, 186]

The results are summarized in Fig. 4.7 which displays a phase diagram for Ba(Fe1−xCox)2As2

focusing on the concentration range of the present study. The structural transition, over the

entire range is second-order, whereas the magnetic transition changes from first-order to second-

order at a tricritical point as discussed below. By definition, a tricritical point is the point where

a second-order phase line meets with a first-order phase line (in addition, when two second-

phase lines cross, the crossing point is a tetra-critical point and when two second-order phase

lines meet with a first-order phase line at a point, it is a bi-critical point).[281]

4.2.2 Discussion

To understand the existence, and estimate the location of a magnetic tricritical point in

the phase diagram of Ba(Fe1−xCox)2As2 one can, at first, rationalize the interplay between the

magnetic and elastic degrees of freedom in terms of a simple Ginzburg-Landau model as shown

in Section 2.4.2. R. Fernandes and J. Schmalian re-wrote the effective free energy in Eq. (2.5)

as:

Feff =
(aδ

2
δ2 +

uδ
4
δ4
)

+
(am

2
m2 +

um
4
m4
)
− λδ m2 (4.1)

with aδ = aδ,0 (T − TS,0), am = am,0 (T − TN,0), and positive constants uδ, um, λ. Here, m is

the antiferromagnetic order parameter and TS,0, TN,0 denote the bare structural and magnetic

transition temperatures respectively. For TS,0 < TN,0, this model describes a simultaneous

magnetic/structural first-order transition. However, for TS,0 > TN,0, this model describes

a second-order structural transition at TS = TS,0, followed by a magnetic transition at TN

(TN,0 < TN < TS), which can be either first-order or second-order. Considering that TN

and TS change with substitution (doping), the magnetic tricritical point takes place at the

concentration xtri where umaδ,0 (TS − TN) = λ2. Experimentally, we know that (TS − TN)

increases with substitution, x. Therefore, it is straightforward to conclude from the mean-field

solution of Eq. (4.1) that, close to the magnetic tricritical point, the jump in the orthorhombic

order parameter across the first-order magnetic transition changes with substitution as ∆δ ≡
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Figure 4.8 Jump of the orthorhombic order parameter ∆δ ≡ δOrt−AFM − δOrt−PM across

the first-order magnetic transition, as function of x. The linear relationship

∆δ ∝ (x− xtri) (dashed line) follows from the mean-field solution of Eq. (4.1).

δOrt−AFM− δOrt−PM ∝ (x− xtri). Extrapolating this linear relation and using the values of ∆δ

from Figs. 4.3 and 4.5, we estimate that the magnetic tricritical point is located at xtri ≈ 0.022,

as shown in Fig. 4.8.

The main issue with the model in Eq. (4.1) is that it requires a fine tuning of the independent

structural and magnetic transition temperatures TS,0 and TN,0 across the phase diagram. In all

of the phase diagrams of the FeAs-based compounds, it is observed that the two transition lines

track each other very closely, even within the superconducting dome (see phase diagrams in

Section 2). This suggests that these two states are strongly coupled, rather than independent,

as assumed by the previous model. To address this issue, it has been proposed that the particu-

lar magnetic structure of the FeAs-based superconductors gives rise to emergent Ising-nematic

degrees of freedom that couples to the lattice, inducing the tetragonal-to-orthorhombic phase

transition [230, 282, 283]. In the magnetically ordered phase, there are two degenerate ground

states characterized by in-plane spin stripes along each of the two orthogonal Fe-Fe bond direc-

tions. These ground states can be described in terms of two interpenetrating AFM sublattices
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with staggered magnetization ~m1 and ~m2, such that ~m1 is either parallel or antiparallel to ~m2

(Section 2.4.2 and see Fig. 2.15).

Within this description, the magnetic free energy of the system Fmag has contributions from

each sublattice Fi and from the coupling between them, F12. The former is given by:

Fi =
1

2

∫
d3q

(2π)3 χ
−1
i (~q) ~mi (~q) · ~mi (−~q) +

u

4

∫
d3x

v
~m4
i (4.2)

where χi (~q) = χ0

(
r0 + q2

‖a
2 − 2ηz cos q⊥c

)−1
is the static susceptibility of each sublattice,[230]

u is a positive coupling constant, and the momentum ~q is measured relative to the magnetic

ordering vector. Here, χ−1
0 is a magnetic energy scale, r0 measures the distance to the magnetic

tricritical point, a and c are the lattice parameters of the unit cell of volume v containing two

Fe atoms, and ηz is the inter-plane AFM coupling. The coupling between the two sublattices

is given by:

F12 = −g
2

∫
d3x

v
(~m1 · ~m2)2 (4.3)

with g > 0, favoring configurations where ~m1 and ~m2 are either parallel or antiparallel. In a

description of the magnetically ordered phase in terms of localized moments, this term originates

from quantum and thermal spin fluctuations [284]. On the other hand, within an itinerant

approach, where the magnetic moments arise from the conduction electrons, the same term

appears as a consequence of the ellipticity of the electron pockets [285].

As shown in the discussion of interplay between superconductivity and structure in Sec-

tion 2.4.2, the coupling in Eq. (4.3) between the sublattices gives rise to an emergent Ising-

nematic degree of freedom ϕ = ~m1 · ~m2 [284], which may be finite even in the absence of

magnetic order (i.e. 〈ϕ〉 6= 0, but 〈~mi〉 = 0) as long as the magnetic fluctuations are strong

enough [230]. A finite value, 〈~m1 · ~m2〉 6= 0, breaks the Ising symmetry embedded in Eq. (4.3)

and, consequently, the tetragonal symmetry. This can be seen explicitly through the magneto-

elastic term:

Fmag−el = λ

∫
d3x

v
δ (~m1 · ~m2) (4.4)

where λ > 0 is the magneto-elastic coupling and δ is the orthorhombic distortion. From the

bilinear coupling of δ and ϕ in Eq. (4.4), both the nematic and structural transitions are si-

multaneous. This mechanism for the tetragonal-to-orthorhombic transition explains why the
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magnetic and structural transitions track each other closely in all the phase diagrams of the

FeAs-based superconductors. Furthermore, it also explains several experimental observations,

such as the softening of the lattice in the tetragonal phase and its hardening in the super-

conducting state,[230] as well as the suppression of the orthorhombic distortion below the

superconducting transition temperature.[185]

In the case where the elastic free energy is harmonic, Fel = Csδ
2/2 (where Cs is the

shear modulus) the only effect of the elastic degree of freedom is to renormalize the sublattice

coupling constant g in Eq. (4.3), yielding g → g + λ2/Cs [230]. In a mean-field approach, this

implies that the two transitions remain split and second order. Although fluctuations could

induce a simultaneous first-order transition [286, 287], it is unclear whether they could explain

a second-order structural transition split from a first-order magnetic transition, as our data for

low substitution levels in BaFe2As2 suggests.

To account for my observations, R. Fernandes and J. Schmalian moved beyond the harmonic

lattice approximation to consider the effects of anharmonic elastic terms (for more details on

the formalism, see Ref. [288]). In the tetragonal phase, the most general form of the free

energy can be written as Fel = 1
2 C̄ijεiεj + 1

6 C̄ijkεiεjεk, where C̄ij are given in terms of the six

independent elastic constants and the strain components εi are:

ε1 = uxx + uyy + uzz ; ε4 = 2uyz

ε2 = (uxx + uyy − 2uzz) /6 ; ε5 = 2uxz

ε3 = (uxx − uyy) /
√

2 ; ε6 = 2uxy (4.5)

with uij = (∂iuj + ∂jui) /2 and ~u = (ux, uy, uz) denoting the displacement vector. In this

notation, the orthorhombic distortion δ = ε6/2 and the shear modulus Cs ≡ 4C̄66. To describe

the transition from the tetragonal to the orthorhombic phase, they retain only the essential

anharmonic terms that contain ε6 because ε6 is the elastic stiffness in [1, 0, 0]T and [0, 1, 0]T

directions [289]:

Fel =
1

2
C̄11ε

2
1 +

1

2
C̄22ε

2
2 + C̄12ε1ε2 +

1

2
C̄44

(
ε24 + ε25

)
+

1

2
C̄66ε

2
6 +

1

2

[
C̄166ε1 + C̄266ε2

]
ε26 + C̄456ε4ε5ε6 (4.6)



83

Minimization with respect to the other strain components yields an effective elastic free

energy in terms only of ε6 = 2δ:

Fel [δ] =
1

2
Csδ

2 +
1

4
Uδ4 +

1

6
Wδ6 (4.7)

where the sixth-order term W > 0 is included to ensure stability of the functional. Note that

since:[288]

U

16
= U0 −

(
C̄22C̄

2
166 − 2C̄12C̄166C̄266 + C̄11C̄

2
266

)
2
(
C̄11C̄22 − C̄2

12

) (4.8)

the fourth-order coefficient can be negative, depending on the magnitudes of the anharmonic

terms C̄ijk. Here, U0 is the bare coefficient coming from higher-order quartic anharmonic terms.

In what follows, they consider all elastic coefficients to be temperature independent, and

that the only minimum of Eq. (4.7) is at δ = 0. Thus, different from the model in Eq. (4.1),

the system has no intrinsic structural instability, and the elastic phase transition results solely

from the magneto-elastic coupling in Eq. (4.4). In the case of a harmonic lattice, it was shown

that nematic fluctuations renormalize the shear modulus in the tetragonal phase, making it

vanish when the magnetic correlation length achieves a threshold value[230]. Here, not only

Cs will be renormalized by nematic fluctuations, but also the anharmonic term U in Eq. (4.7),

which gives rise to a much richer phase diagram.

To calculate the total free energy of the system, the ‘mean-field 1/N approach’ is used [230,

282]. Basically, it assumes that the magnetic order parameter ~mi hasN components and expand

to leading order for large N . Then self-consistent equations involving the magnetic correlation

length ξ, the nematic order parameter ϕ, the magnetic order parameter m = |〈~m1〉| = |〈~m2〉|,

and the orthorhombic distortion δ are obtained. The latter is obtained by minimizing the

effective elastic free energy Feff = Fel + F̃ , where F̃ is an implicit function of δ, arising from

the 1/N solution of the magnetic problem with free energy Fmag + Fmag−el. Thus, F̃ describes

how magnetism changes the elastic free energy.

Parameters were chosen to yield relative temperatures and jumps comparable to those ob-

served experimentally (see Section 4.1.4). They are ηz = 2×10−3, λ = 0.3χ−1
0 , U ≈ −2×107χ−1

0 ,

and W ≈ 2× 1012χ−1
0 . The relative orders of magnitude between Cs ∼ 102χ−1

0 , U , and W are

associated with the equilibrium value of the orthorhombic distortion, δ ∼ 10−3. To illustrate
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Figure 4.9 Phase diagram of the system with anharmonic elastic terms. T denotes tempera-

ture, Cs is the bare shear modulus, and χ−1
0 is a magnetic energy scale. Thin (thick)

lines refer to second-order (first-order) phase transitions, with the red (blue) lines

denoting magnetic (structural) transitions; the simultaneous first-order transition

line is denoted by the double line. We use the notation Ort’ to emphasize that

the orthorhombic distortion jumps across the first-order magnetic transition. The

orange dotted line signals the occurrence of a jump in both the magnetic and or-

thorhombic order parameters, without symmetry breaking. The open circle refers

to the magnetic tricritical point, while the arrow indicates the value of Cs for which

we calculate the temperature dependence of both the magnetic and orthorhombic

order parameter (see Fig. 4.10).

the richness of the resulting phase diagram, in Fig. 4.9 I show the results obtained after fixing

all parameters but the bare shear modulus Cs. For smaller values of Cs, the system undergoes

a simultaneous first-order structural/magnetic transition from the tetragonal/paramagnetic

phase to the orthorhombic/antiferromagnetic phase. This corresponds to a direct first-order

transition from the Tet-PM phase to the Ort-AFM phase, which has not been observed in the

experiments in Section 4.1.4, however, has been observed e.g. in CaFe2As2.[167]

As the bare shear modulus increases, the two transitions split: at higher temperatures, the

system undergoes a second-order structural transition and then a first-order magnetic transition

at lower temperature. The latter is accompanied by a discontinuity in the orthorhombic order

parameter δ due to the magneto-elastic coupling. This is precisely the sequence observed in my

experiments described in Section 4.1.4 for the parent BaFe2As2 and substituted compounds for
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Figure 4.10 Magnetic (m, open symbols) and orthorhombic (δ, filled symbols) order parame-

ters as function of temperature T (in units of the structural transition temperature

TS) for the system indicated by the green arrow in the phase diagram of Fig. 4.9.

low concentrations (Tet-PM→ Ort-PM→ Ort-AFM). Note that this is not another structural

phase transition, but a consequence of the first-order character of the magnetic transition. To

show this explicitly, in Fig. 4.10, both δ and m are plotted as function of temperature for the

value of Cs indicated by the arrow in Fig. 4.9. Not only is the relative size of the step comparable

to that measured experimentally for BaFe2As2, but also the relative temperature at which the

step occurs (see Fig. 4.3(b), where TS ≈ 134.6 K and TN ≈ 134 K). The discontinuity in

the orthorhombic distortion accompanying the first-order magnetic transition is a very general

feature that holds regardless of the specific values of the parameters. Thus, it supports the

interpretation that the experimental data in Fig. 4.3 on the parent compound, BaFe2As2,

describe a second-order structural transition followed by a first-order magnetic transition.

Returning to the phase diagram of Fig. 4.9, as the shear modulus is increased even fur-

ther, the transitions remain split but the magnetic transition becomes second-order, as it is

observed for higher doping concentrations in Ba(Fe1−xCox)2As2 and Ba(Fe1−xRhx)2As2. At

low temperatures, there is another line that marks a simultaneous jump in both the magnetic

and the orthorhombic order parameter, without any symmetry breaking, and a magnetic tri-
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critical point. However, it should be pointed out that in the 1/N approach, a key feature of

the magnetically ordered state, i.e. the reconstruction of the Fermi surface, has not been taken

into account. For instance, xtri ≈ 0.02 is close to the composition where evidence for a Lifshitz

transition, below TN, in Ba(Fe1−xCox)2As2 has been reported by thermoelectric power, Hall

coefficient measurements and angle-resolved photoemission.[92, 290] Therefore, features in the

model deep in the magnetically ordered phase, such as this extended line, are likely to change

once the reconstruction of the Fermi surface is considered. For instance, one possibility is that

this extended line terminates at a finite temperature and leaves a magnetic tricritical point.

Furthermore, although in the phase diagram of Fig. 4.9 only the bare shear modulus was

changed, it is unlikely that this is the only modified parameter as substitution (doping) is

introduced in the parent compound. In particular, the increase in the splitting between the

transitions is much more modest in Fig. 4.9 than found experimentally (Fig. 4.7). It is possible,

then, that other parameters controlling the splitting are also changed, such as the magneto-

elastic coupling, λ, and the inter-plane magnetic coupling, ηz. The main objective of the phase

diagram presented here is to illustrate the various possible phase transitions once anharmonic

elastic terms are taken into account. It is interesting to note that, in the simple phase diagram

in Fig. 4.9, systems with softer lattices are more likely to display simultaneous first-order

transitions. Indeed, CaFe2As2, which is significantly softer than BaFe2As2, presents relatively

strong simultaneous first-order transitions.[167]

4.3 The Effect of Ru substitution on the parent BaFe2As2 compounds

I have so far presented the nature of the phase transitions in the parent BaFe2As2 com-

pounds and its evolution with electron doping by Co or Rh substitution. I have also shown

in Section 2.3.2 that the substitution of Co, Ni, or Rh for Fe in the parent BaFe2As2 com-

pound results in new and interesting behavior.[181–183, 185, 186, 188–190, 274, 291] As dop-

ing is increased, both the structural and magnetic transitions are suppressed and split, with

the structural transition occurring at higher temperature. In Ba(Fe1−xCox)2As2, for Co con-

centrations 0.03 ≤ x ≤ 0.06, we enter a region of the phase diagram where magnetism and

superconductivity coexist and compete.[186, 274] Within this region, the magnetic and struc-
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tural transitions are well-separated in temperature, and continuous in nature (see for example,

Figs. 2.13 and 2.14).

Whereas all of the studies above describe measurements performed on electron-doped ma-

terials, it is also important to consider the response of these systems to isoelectronic doping.

For example, superconductivity is observed with a maximum Tc ∼ 30 K by the isoelectronic

doping of P at the As site in BaFe2As2.[93] Furthermore, Klintberg et al.[292] have discussed

the equivalence of chemical and physical pressure in BaFe2(As1−xPx)2 by showing that the

temperature-pressure phase diagrams are similar, but shifted for different x. Nevertheless, the

maximum superconducting transition temperatures are identical. It is believed that supercon-

ductivity in this compound originates from steric effects arising from the smaller ionic radius

of P. Only small modifications of the Fermi surface were observed.[293] Superconductivity has

also been reported in Sr(Fe1−xRux)2As2 compounds with Tc up to 20 K, but at much higher

doping levels than required for the electron-doped series (e.g. Co, Ni, Rh).[87] Ru substitution

on the Fe site in Ba(Fe1−xRux)2As2 was recently reported to exhibit properties similar to the

electron-doped BaFe2As2 series but, again, at higher doping compositions.[86, 102, 294] The

structural and AFM transition temperatures are suppressed with increasing x and supercon-

ductivity occurs at x ≈ 0.16.

Thaler et al. [102] have made an interesting comparison between the phase diagrams of Ru-

doped BaFe2As2 and the parent BaFe2As2 compound under pressure. Although the unit cell

volume increases with Ru doping, they found a striking similarity between the phase diagrams

for Ru doping and physical pressure when scaled by the lattice parameter c/a ratio. Only a

single feature corresponding to a magnetic, structural, or joint magnetic/structural transition

has been observed in resistance and magnetization data for Ba(Fe1−xRux)2As2 (x ≤ 0.37),

quite different from the behavior of electron doped BaFe2As2. Interestingly, I note that in the

case of P doping on the As site, a splitting between the structural and magnetic transitions,

that increases with P concentration, was noted in resistance measurements.[96] It is, therefore,

particularly important to clarify the microscopic nature of the magnetic and/or structural

transitions for the case of isoelectronic doping on the Fe site in Ba(Fe1−xRux)2As2, as well as

the interaction between magnetism, structure and superconductivity in this series.
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4.3.1 Experimental Details

Temperature-dependent, high-resolution, single-crystal x-ray diffraction measurements were

performed on a four-circle diffractometer as described in Section 4.1.1. Temperature-dependent

ac electrical resistance data were collected using a Quantum Design Magnetic Properties Mea-

surement System (MPMS) as in Section 4.2.1. Magnetization data were also measured using a

MPMS. The measurements using MPMS were done by Thaler.

Neutron diffraction measurements were performed on the HB1A spectrometer at the High

Flux Isotope Reactor at Oak Ridge National Laboratory using samples with a typical mass of

approximately 25 mg. The beam collimators before the monochromator-between the monochro-

mator and sample-between the sample and analyzer-between the analyzer and detector were

48’-40’-40’-136’. HB1A operates at a fixed incident neutron energy of 14.7 meV, and two

pyrolytic graphite filters were employed to effectively eliminate higher harmonics in the inci-

dent beam. The samples were aligned such that the (H,H,L)T reciprocal lattice plane was

coincident with the scattering plane of the spectrometer, and were mounted in a closed-cycle re-

frigerator. The temperature dependence of the scattering was studied at several nuclear Bragg

peak positions and at ~QAFM = (1
2 , 1

2 , L=odd)T positions corresponding to the AFM order in

the parent and electron-doped BaFe2As2 compounds.

4.3.2 Effects on TS, TN, and ordered moment

Figures 4.11 (a) and (b) show neutron and x-ray data for Ba(Fe1−xRux)2As2 with x =

0.073 at selected temperatures. Above TS = TN = 109±1 K, no scattering is observed at

~QAFM = (1
2 , 1

2 , 3)T, but as the temperature is lowered below TN, the scattering increases

smoothly. The magnetic wave vector is identical to that for BaFe2As2 compounds indicating

that the magnetic structure is the same “stripe” AFM structure observed for all AFM ordered

AEFe2As2 compounds (AE = Ca, Sr, and Ba), with AFM alignment of the moments along the

orthorhombic ~a and ~c axes and FM alignment along the ~b axis. Analysis of the intensity ratios

of different AFM reflections at selected temperatures confirmed that the moment direction is

along the elongated orthorhombic ~a direction. From the high-resolution x-ray measurements,
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Figure 4.11 Temperature evolution of (a) the neutron diffraction rocking scans through the

(1
2 , 1

2 , 3)T magnetic peak and (b) high-resolution x-ray diffraction [ξ, ξ, 0]T−scans

through the (1, 1, 10)T peak in Ba(Fe0.927Ru0.073)2As2. For this sample TS = TN

= 109±1 K. The data are shown with arbitrary offsets.

it is shown [Fig. 4.11 (b)] that the (1, 1, 10)T Bragg peak exhibits a sharp single peak above

TS = TN = 109±1 K consistent with a tetragonal structure and splits into two peaks below TS,

characteristic of the tetragonal-to-orthorhombic transition.

Figures 4.12 (a) and (b) summarize the magnetization and resistance measurements on

Ba(Fe1−xRux)2As2 with x = 0.073. A sharp feature attributed to TS/TN is observed at 107 K

in the derivatives of magnetization and resistance. In Fig. 4.12 (c) and (d), the orthorhombic

distortion, δ = a−b
a+b , and the integrated magnetic scattering intensity, measured from rocking

scans through ~QAFM = (1
2 , 1

2 , 3)T, are plotted as a function of temperature for x = 0.073.

These measurements show that TS = TN = 109±1 K, in reasonable agreement with the ther-

modynamic and transport measurements given the inherent uncertainty in assigning transition

temperatures to features in the magnetization and resistance. Figures 4.12 (e) and (f) sum-
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Figure 4.12 Plots of magnetization (MH ) and its temperature derivative,
d(M
H

)

dT , the resis-

tance ratio ( R
R300 K

) and its temperature derivative, the measured orthorhom-

bic distortion (δ = a−b
a+b), and the integrated magnetic intensity at (1

2 , 1
2 , 3)T

for Ba(Fe0.927Ru0.073)2As2 in panels (a)-(d) and Ba(Fe0.795Ru0.205)2As2 in panels

(e)-(h). For x = 0.073 the measured magnetization, resistance and their deriva-

tives show sharp signatures at TS = TN = 107 K, close to the value (109±1 K)

measured by the x-ray and neutron scattering measurements. For x = 0.205, the

signatures at TS = TN are significantly broader. The maxima of the derivatives

of the magnetization and resistance are found at 49 K whereas the x-ray and

neutron scattering value is 52±1 K.
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Figure 4.13 (a) Temperature dependence of the ordered magnetic moment calculated

from the integrated intensity of the (1
2 , 1

2 , 3)T magnetic Bragg peak from

Ba(Fe1−xRux)2As2. (b) The extrapolated ordered moment at zero temperature

as a function of Ru concentration, x.

marize the magnetization and resistance measurements on Ba(Fe1−xRux)2As2 with x = 0.205.

The reason why x = 0.205 was chosen is because it is the highest concentration studied, that

shows structural and magnetic transitions as well as superconducting transition. Here, the

characteristic features are much broader. According to the criteria of Ref. [102], TS/TN is as-

signed to the maxima of the derivatives of magnetization and resistance, which is 49 K. The

x-ray and neutron data of Figs. 4.12 (g) and (h) display the orthorhombic distortion δ and the

magnetic integrated intensity at ~QAFM = (1
2 , 1

2 , 3)T for x = 0.205 and yield TS = TN = 52±1 K.

The transition temperatures derived from the criteria of Ref. [102] are up to 3 K lower than the

observed transition temperatures derived from the x-ray and neutron diffraction measurements.

Most importantly, however, I find that, within experimental error, the structural and magnetic
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transitions remain locked together with increasing Ru doping and this behavior clearly differs

from that found for the electron-doped compounds.

Ba(Fe1−xRux)2As2 crystals with x = 0, 0.048, 0.126, and 0.161 were also examined by neu-

tron diffraction and the results for the entire series are summarized in Fig. 4.13. The magnetic

integrated intensities were, again, determined from rocking scans through the magnetic peak

at (1
2 , 1

2 , 3)T as a function of temperature and put on an absolute basis using the known mass

of the samples and the magnetic diffraction from the parent compound, BaFe2As2, measured

under identical conditions.[186] The ordered moment as a function of temperature for each sam-

ple is presented in Fig. 4.13(a), and the ordered moments extrapolated to T = 0 are shown in

Fig. 4.13(b). As the Ru concentration increases, the ordered moment decreases monotonically.

4.3.3 Effect of Superconductivity on AFM ordering and Structural distortion

Turning now to the effects of superconductivity on the AFM ordering and structural distor-

tion, we first note that for the x = 0.205 sample, the resistance and magnetization data show

the existence of superconductivity below Tc ≈ 13 K in Figs. 4.12 (e) and (f). For this sample,

in Fig. 4.12 (h), I observed a suppression of the AFM order below Tc similar to what was re-

ported previously for Co, Ni, and Rh substituted BaFe2As2,[182, 188–190] where the presence

of both AFM and superconductivity has been attributed to microscopically coexisting states

that compete for the same itinerant electrons. It has also been established that the onset of

superconductivity leads to a suppression of the orthorhombic distortion in the electron-doped

compounds. Refs. [185] and [189], for example, described this effect below Tc for both Co

and Rh substituted BaFe2As2, respectively. Because Tc
TN

for Ba(Fe0.795Ru0.205)2As2 is approxi-

mately half the value of Tc
TN

for Ba(Fe0.953Co0.047)2As2, the magnitude of suppression of AFM

order at the base temperature of our measurement is correspondingly smaller [Fig. 4.14 (a)],

and the reduction of the orthorhombic distortion is not clearly observed [Figs. 4.12 (g) and

4.14(b)]. Therefore, I have also studied an additional concentration, x = 0.246±0.005 (Tc ≈

14 K), by high-resolution x-ray diffraction and, as shown in Fig. 4.14 (b), see the suppression

of the orthorhombic distortion below Tc.

In contrast to electron doped BaFe2As2 in which the suppression of transition temperatures
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Figure 4.14 (a) Comparison of the suppression of AFM order below Tc between the 20.5%

Ru (filled circles) and the 4.7% Co (open triangles) (from Ref. [186]) substituted

BaFe2As2 samples. Intensities are normalized for comparison. (b) Orthorhombic

distortion for Ba(Fe1−xRux)2As2 with x = 0.205 (circles) and 0.246 (stars). The

reduction in the distortion below Tc is not clearly observable for x = 0.205 but it

is evident for x = 0.246. The gray dashed lines are guides for eyes.

(TS, TN, and Tc) can be understood by carrier doping or shift of the chemical potential [186],

Ru substitution is isoelectronic, which does not introduce extra carrier, but the reason why

Ru substitution behaves similar to electron doping is arguable. Some groups argued that Ru

substitution strongly modifies the electronic structure by increasing both the number of carriers

and their mobility by reducing correlation effects based on their Hall effect and angle-resolved

photoemission spectroscopy measurements.[294, 295] Other groups observed no change in nei-

ther chemical potential nor the shape of Fermi surface in their angle-resolved photoemission

spectroscopy measurements [296] and argued that magnetic dilution by Ru substitution plays

a crucial role in suppression of TS and TN.
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4.4 The Effect of Mn substitution on the parent BaFe2As2 compounds

I have shown how similar/different the structural and magnetic properties are in electron-

doped and isoelecton-doped BaFe2As2 by changing the substitution elements from Co, Ni, or

Rh (on the right side of Fe in the periodic table) to Ru (in the same column as Fe) [see Sec 2.3.2].

In strong contrast to what is found for the electron-doped AEFe2As2 (AE = Ca, Sr, and

Ba) compounds, hole doping on the Fe site through the introduction of Cr [88, 194] and

Mn [97] has, so far, failed to produce superconducting samples for any doping level, although

superconductivity is realized by hole doping through the substitution of K for the AE. [2, 63]

This indicates that the number of additional electrons or holes is not the sole controlling

factor for superconductivity. Furthermore, unlike the suppression and eventual elimination

of magnetic ordering with increasing x found for electron-doped compounds, recent neutron

studies of Ba(Fe1−xCrx)2As2 indicate that, for x ≥ 0.30, the “stripelike” AFM structure is

replaced by the G-type “checkerboard-type” structure (collinear antiferromagnetic alignment

between nearest neighbor spins in the ~a−~b plane and also antiferromagnetic alignment between

the plane along the ~c axis) as found for BaMn2As2 [195] and proposed for BaCr2As2.[297] Given

the strong coupling between structure, magnetism, and superconductivity already established

for the FeAs-based superconductors, such differences in magnetic and structural behavior in

hole-doped materials demand attention.

4.4.1 Effects on TS, TN, and ordered moment

Temperature-dependent ac electrical resistance data were collected using a Quantum De-

sign Magnetic Properties Measurement System (MPMS) by A. Thaler as in Section 4.2.1. In

Fig. 4.15 I show the resistance data (solid symbols) normalized to their room-temperature

values, and their temperature derivatives (open symbols) for a representative subset of three

compositions, x = 0.074, 0.102, and 0.118. A sharp anomaly, characteristic of all samples for

x ≤ 0.074 is found at approximately 80 K for x = 0.074, which broadens and shifts to lower

temperature for x = 0.102 and then to higher temperature for x = 0.118. If I associate these

features with magnetic and/or structural transitions,[182, 274, 291] the nonmonotonic behavior
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Figure 4.15 Resistance, normalized to the value at T = 300 K, and the temperature derivative

of the resistance ratio for the Ba(Fe1−xMnx)2As2 samples with x = 0.074, 0.102,

and 0.118. Lines are guides to the eyes.

of the characteristic temperature is highly unusual for the iron arsenides. Only a single feature

is observed in the derivative curve indicating that the magnetic and structural transitions are

likely coincident in temperature, and superconductivity is absent in all samples for T ≥ 2 K.

The principal results of my scattering studies are summarized in Figs. 4.16 and 4.17 for a

representative subset of the compositions, x = 0.074, 0.102, and 0.118. The neutron diffraction

data in Figs. 4.16 (a) and (b) show the magnetic Bragg peak at (1
2 , 1

2 , 3)T for both x = 0.102

and x =0.118, consistent with the “stripelike” AFM order found for the FeAs-based compounds.

However, the x-ray data in Figs. 4.16 (c) and (d) demonstrate that the orthorhombic distortion,

evident from the splitting of the (1, 1, 10)T charge peak for the x = 0.102 composition, was

not observed for x = 0.118. Figure 4.17 displays the temperature evolution of the magnetic

order, measured by neutron diffraction, and the orthorhombic distortion, measured by x-ray

diffraction, for these same compositions as described in Secs. 4.1.1 and 4.3.1. The integrated

intensities of the magnetic scattering (filled circles) were measured at the (1
2 , 1

2 , 3)T magnetic
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Figure 4.16 Neutron diffraction rocking scans through the (1
2 , 1

2 , 3)T magnetic Bragg peak

above (open squares) and below (filled circles) the AFM transition for (a)

Ba(Fe0.898Mn0.102)2As2 and (b) Ba(Fe0.882Mn0.118)2As2. Panels (c) and (d) show

x-ray diffraction scans along the [ξ, ξ, 0]T direction through the (1, 1, 10)T charge

reflection above (open squares) and below (filled circles) the structural transition

for these samples. Note the splitting for the x = 0.102 sample and its absence for

x = 0.118.

Bragg position as the sample angle was scanned [see Figs. 4.16 (a) and (b)]. The orthorhombic

distortion, δ, was calculated from the splitting of peaks observed in (ξ, ξ, 0)T scans through

the (1, 1, 10)T Bragg peak [see Figs. 4.16 (c) and (d)]. For samples with x ≤ 0.074 [Figs. 4.17

(a)], I observed a well-defined AFM and structural transitions that are, within our resolution,

coincident in temperature. For x = 0.102 [Fig. 4.17 (b)], a weak “tail” of magnetic scattering

extends to temperatures above the structural transition and, for x ≥ 0.118, the structural

transition is absent (the sample remains tetragonal down to at least T = 6.4 K within our

resolution for δ of 1 × 10−4) and the temperature evolution of the AFM order is quite different
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Figure 4.17 Temperature dependence of the integrated intensities of the (1
2 , 1

2 , 3)T magnetic

Bragg peak (filled circles) and the orthorhombic distortion (open circles) mea-

sured at (1, 1, 10)T charge peak positions for (a) x = 0.074, (b) x = 0.102, and

(c) x = 0.118 of Ba(Fe1−xMnx)2As2. The insets to each panel show the tem-

perature dependence of the broadening of the (1
2 , 1

2 , 3)T magnetic peak and the

definition of T ∗.

from what is observed for x = 0.074. For x ≥ 0.118, a distinct broadening of the magnetic peak

beyond the resolution of the measurement is observed for temperatures above T ∗, as defined

below and in the insets of Figs. 4.17 (b) and (c).

In Fig. 4.18 (a) I have used the neutron, x-ray and resistance data to construct a phase

diagram in the low Mn substitution regime for Ba(Fe1−xMnx)2As2. The phase line between the

paramagnetic/tetragonal and AFM/orthorhombic phase for x ≤ 0.074 was easily determined

from the well-defined onset of the distortion and the appearance of a resolution limited magnetic

Bragg peak at (1
2 , 1

2 , 3)T. For x ≥ 0.102, however, the onset of long-range magnetic order is more
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Figure 4.18 (a) The compositional phase diagram for Ba(Fe1−xMnx)2As2 determined from

neutron and x-ray diffraction measurements. Closed circles denote TN and open

circles represent T ∗ as described in the text. Crosses denote the temperature

corresponding to minima of dR
dT found in Fig. 4.15. The shaded region denotes

the extent of the magnetic scattering above T ∗. The vertical dashed line marks

the approximate composition for the change from an orthorhombic to tetragonal

structure. (b) The magnetic moment and structural distortion as a function of

Mn-concentration. The dashed line represents the value of the magnetic moment

per Fe atom rather than Fe/Mn site as a function of Mn substitution.
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difficult to identify. Therefore, I have defined a characteristic temperature, T ∗, which denotes

the temperature below which the width of the magnetic peak is limited by the instrumental

resolution (approximately 0.3◦ FWHM). The values of T ∗ follow the same trend seen for the

maxima in dR
dT in Fig. 4.15. The gray band in the phase diagram represents the temperature

range, above T ∗, where magnetic scattering at (1
2 , 1

2 , 3)T persists [see Figs. 4.17 (b) and (c)].

In Fig. 4.18 (b) I plot the measured structural distortion and the magnetic moment per Fe/Mn

site, extrapolated to T = 0, as a function of substitution concentration.

From the aforementioned results, I first note that the data for Ba(Fe1−xMnx)2As2 for x ≤

0.074 unambiguously show that the structural and magnetic transitions remain locked together,

unlike the separation of the structural and AFM transitions found for Co, Ni, and Rh substitu-

tion (Section 2.3.2). Furthermore, at x = 0.102, I find a broadened magnetic peak at (1
2 , 1

2 , 3)T

above the structural transition and, for x ≥ 0.118, I observe the magnetic Bragg peak at

(1
2 , 1

2 , 3)T in the absence of an orthorhombic distortion, a surprising observation that will be

discussed below. Finally I note that the magnetic moment per Fe/Mn site as well as the mag-

nitude of the structural distortion vary only weakly with composition for x ≤ 0.102 whereas,

for Co substitution, the suppression of the magnetic moment and structural distortion with

doping is much more severe.

4.4.2 AFM order in Ba(Fe1−xMnx)2As2 for x ≥ 0.118

The observation of the AFM ordering at (1
2 , 1

2 , 3)T in the absence of an orthorhombic dis-

tortion is unprecedented in the FeAs-based compounds. To understand this, it is useful to com-

pare these results to what has recently been found for an another hole-doped Ba(Fe1−xCrx)2As2

compounds.[196, 197] At much higher Cr concentrations, x ≥ 0.30, Ref. [196] reports that the

“stripelike” magnetic structure is replaced by a G-type, checkerboard, magnetic order as shown

by polarized and unpolarized neutron diffraction measurements of the integrated intensity of

the (1, 0, 1)T Bragg peak (Fig. 3 in Ref. [196]). G-type AFM order has been proposed for the

parent BaCr2As2 compound,[297] and measured for BaMn2As2,[195] so it is not unreasonable

to expect this change in magnetic structure at high enough Cr, or Mn, substitution. However,

my unpolarized neutron diffraction measurements of the (1, 0, 1)T peaks for the highest Mn
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Two-Q AFM structure : alternate explanation

• Two Q magnetic structures considered by Eremin et al [PRB 81, 024511 (2009)]

• When the structure remains tetragonal below TN, magnetic domains are present 
in the tetragonal phase, magnetic peaks for the stripelike and two-Q AFM structures
cannot be distinguished.

“stripelike” possible “two Q”

Figure 4.19 Two-Q structure for ~∆1 ⊥ ~∆2 and
∣∣∣ ~∆1

∣∣∣ =
∣∣∣ ~∆2

∣∣∣. See the text for details.

concentrations, x = 0.147 and 0.176, find no evidence of G-type ordering below T = 300 K. More

specifically, I find no significant change (less than 5 % change) in the (1, 0, 1)T peak between

12 and 300 K. I cannot exclude G-type ordering that develops well above room temperature

given the high ordering temperature of the parent compound [195] but view this as unlikely

in light of the substantial dilution of Mn in the samples. For both Cr and Mn substitution,

the moment per Fe-site remains constant (Cr) [196], or decreases only weakly (Mn) [Fig. 4.18

(b)] with increasing concentration up to x = 0.20. Indeed, as the dashed line in Fig. 4.18 (b)

shows, the decrease in the measured moment is consistent with the decreasing Fe concentration

implying that the Mn moment does not contribute to the magnetic AFM order characterized

by the (1
2 , 1

2 , 1)T propagation vector. Furthermore, for Mn substitution I find an increase in

the characteristic temperature (T ∗) associated with magnetic ordering with this propagation

vector for x > 0.102 whereas for Cr substitution, the ordering temperature for this propagation

vector continues to decrease until the transition is completely suppressed at x = 0.335, where

the G-type AFM structure is observed.[196] All of this points to interesting differences in the

phase diagrams between Ba(Fe1−xMnx)2As2 and Ba(Fe1−xCrx)2As2.

Models for “stripelike” AFM order in the FeAs-based superconductors anticipate an atten-
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dant orthorhombic distortion due to magneto-elastic effects.[185, 282, 283] Furthermore, this

observation is difficult to reconcile with current theories that promote orbital ordering [298, 299]

as the driving force for the “stripelike” magnetic phase and the orthorhombic distortion. A

second key result of this study is the qualitative change in the temperature dependence of the

magnetic ordering for compositions in excess of x = 0.102 and the distinct broadening of the

magnetic peak for T > T ∗. At this point it is not clear whether the scattering above T ∗ for

x > 0.102 is purely elastic or has a quasi-elastic component within the finite energy window of

our neutron measurements, a point that should be investigated further.

The change in the temperature dependence of the magnetic peak points to a strong perturba-

tion of the magnetic ordering, perhaps through disorder effects associate with the introduction

of the more localized Mn moments. Furthermore, the abruptness of this change with compo-

sition (over a narrow range of ∆x < 2%) offers the intriguing possibility that the magnetic

structure of Ba(Fe1−xMnx)2As2 is modified for x > 0.102. In recent theoretical work, Eremin

and Chubukov [285] point out that a generic spin configuration for the magnetic iron layers

has the form, ~∆1e
~iQ1·R + ~∆2e

~iQ2·R, where ~∆1 and ~∆2 correspond to two order parameters for

ordering at wave vectors ~Q1 = (0, π) and ~Q2 = (π, 0), respectively, in the unfolded Brillouin

zone. The observed “stripelike” magnetic structure occurs when ~∆1 = 0 and ~∆2 ‖ ~Q2. How-

ever, when they consider a coupling between the second hole pocket at the Γ point with the

elliptical electron pocket at (0, π), a two- ~Q structure with both ~∆1 6= 0 and ~∆2 6= 0 can

emerge. For ~∆1 ⊥ ~∆2 and
∣∣∣ ~∆1

∣∣∣ =
∣∣∣ ~∆2

∣∣∣, this two- ~Q structure (Fig. 4.19) does not break the

tetragonal symmetry and, therefore, does not yield an orthorhombic distortion of the lattice,

consistent with our results.

4.5 Discussion and Summary

To compare the effect of Ru substitution (isoelectronic-doping) and Mn substitution (hole-

doping) with the effect of Co, Ni, or Rh substitution (electron-doping), I present the phase

diagrams of Co, Ru, and Mn substituted BaFe2As2 compounds in Fig. 4.20. Summarizing

the trends illustrated in Fig. 4.20 (a), for the Co-substituted series at low substitution, the

magnetic and structural transitions split with increasing Co concentration, superconductivity
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Figure 4.20 Compositional phase diagrams for (a) Ba(Fe1−xCox)2As2 from Nandi et al. [185],

(b) Ba(Fe1−xRux)2As2 from the present work and Thaler et al. [102], and (c)

Ba(Fe1−xMnx)2As2. The gray open triangles and open circles denote data taken

from resistance and magnetization data respectively. The gray open squares de-

note bulk measurements of Tc. Filled red triangles denote TS measured by x-ray

diffraction, filled blue circles denote TN measured by neutron diffraction, and

the filled orange squares represent values for Tc from the x-ray and neutron data.

Filled magenta circles denote T ∗ determined for the Mn doped sample by neutron

measurements.



103

emerges over a finite compositional range and coexists with AFM order over an even more lim-

ited range of Co substitution. The back-bending of the AFM and structural distortion phase

lines in the superconducting region identify the reentrance of the paramagnetic and tetragonal

phases at low temperature. Figs. 4.20 (a) and (b) display both the similarities and differences

between Ba(Fe1−xCox)2As2 and Ba(Fe1−xRux)2As2. As found for Co substitution, Ru substi-

tution results in the suppression of the AFM and structural transitions and superconductivity

emerges over a finite range of Ru concentration. The suppression of both the AFM order and

orthorhombic distortion in the superconducting region suggests that reentrance of the para-

magnetic tetragonal phase may also be found at some Ru substitution concentration as well.

However, for Ru substitution, the AFM and structural transitions remain locked together over

an extended compositional range with respect to the phase diagram for Co substitution. In

Fig. 4.20 (c), the compositional phase diagram for Mn substitution is re-drawn for a close com-

parison, which is quite different from what is found for either Co or Ru substitution on the

Fe site. To recapitulate, superconductivity is not in evidence at any Mn concentration and,

while the AFM and structural transitions remain locked together with increasing Mn concen-

tration, as found for Ba(Fe1−xRux)2As2, the structural distortion abruptly disappears for Mn

substitution in excess of x > 0.102 although the AFM Bragg peak characteristic of “stripelike”

ordering persists. I have proposed that the scattering at ~QAFM = (1
2 , 1

2 , L=odd)T positions

may also be explained by the presence of a two- ~Q magnetic structure that is again consistent

with tetragonal symmetry.

For electron doping on the Fe site, a rigid band picture appears to be applicable, at least

to first order, in explaining the phenomenology of magnetism, structure and superconductivity

(Section 2.3.2). Substitution with Mn, however, clearly introduces strong perturbations on both

the electronic and chemical structure, likely as a consequence of the more localized nature of

the Mn magnetic moment. Substitution with Ru provides a new interesting case study where,

nominally, no electrons or holes are added to the system although the first band-structure cal-

culations indicated that Ru substitution introduces additional electron carriers.[86] However,

Hall effect and angle-resolved photoemission spectroscopy measurements[294, 295] have shown

that the Ru substitution does not induce electron or hole doping, but does strongly modify the
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electronic structure by increasing both the number of carriers and their mobility by reducing

correlation effects. It is clear that the interactions associated with structural, magnetic and su-

perconducting instabilities in the AEFe2As2 compounds are not simple but finely balanced and

can be readily tuned through chemical substitution, evident in my experimental observations.
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CHAPTER 5. Commensurate/Incommensurate antiferromagnetic order in

transition metal substituted BaFe2As2 compounds

5.1 Introduction

The parent 122 compounds exhibit a commensurate antiferromagnetic order (see Sec-

tion 2.3.2). The Fermi surface nesting between electron and hole pockets occurs at the an-

tiferromagnetic propagation vector ~QAFM and is shown by detailed band structure calcula-

tions [300, 301] and angle resolved photo-emission data [290, 302, 303]. The Fermi surface for

the parent BaFe2As2 is shown in Fig. 5.1 [304]. Taking one electron and one hole pocket, I

draw sets of schematics to elucidate the Fermi surface nesting assuming two dimensional Fermi

surfaces (ignoring the ~c direction) for simplicity in Fig. 5.2 [222]. If the size of electron pocket

(blue) and hole pocket (red) are the same, they nest perfectly as shown in Fig. 5.2 (a) and

results in a commensurate AFM order with ~QAFM [222]. When the shapes of electron and hole

pockets are different but two pockets have the same size in one of the directions as in Fig. 5.2

(b), it still results in a commensurate AFM order.[222] However, when the sizes of electron

and hole pockets are different as in Figs. 5.2 (c) and (d), the nesting becomes imperfect with

a commensurate AFM vector ~QAFM that causes a shift of the Fermi surface for more nesting

and results in an incommensurate AFM order with ~τ = ~QAFM+~ε.[222]

In the scattering experiment, the difference between a commensurate antiferromagnetic

(C-AFM) order and an incommensurate antiferromagnetic (IC-AFM) order is whether the

periodicity in the magnetic structure coincides with the periodicity in the crystallographic

structure. Examples of a commensurate AFM order are displayed in Fig. 2.2 (b) and Fig. 5.3

(a). The directions of spins alter on each site but the periodicity (black solid line) matches

with the periodicity in the crystallographic structure (red dashed line). One example of an
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Figure 5.1 Fermi surface of BaFe2As2 for the LDA internal coordinates, shaded by band

velocity. The nesting vector is the same as ~QAFM. After Ref. [304].

Figure 5.2 Schematic diagrams of Fermi surface nesting. Hole (red) pockets are shifted by
~QAFM. (a) Perfect nesting between electron (blue) and hole (red) pockets. (b)

Imperfect nesting due to different shapes of electron and hole pockets. In one

direction (from lower-right to upper-left), both sides of electron and hole pockets

are partially nested. (c) Imperfect nesting due to different sizes of electron and

hole pockets. The hole pocket is shifted with ~ε for more nesting. (d) Imperfect

nesting due to different sizes and shapes of electron and hole pockets. The hole

pocket is shifted with ~ε for more nesting. After Ref. [222].
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Figure 5.3 (a) Example of a commensurate AFM order. (b) Example of an incommensurate

AFM order. The arrows indicate spin directions. The crystallographic (red dashed)

and antiferromagnetic (balck solid) periodicities are displayed with sinusoidal lines.

Two lines are overlaid in (a) but not in (b).

incommensurate AFM order is that the varying magnitude of the spins (the periodicity) does

not match with the periodicity of the crystallographic structure as in Fig. 5.3 (b).

Either C-AFM order or IC-AFM order are predicted by detailed band structure calcula-

tions, [305, 306] and several local probe measurements such as 75As nuclear spin resonance [184],

57Fe Mössbauer [307, 308], and muon spin resonance measurements [309] showed that it is prob-

able that it is indeed an IC-AFM structure in Ba(Fe1−xTMx)2 (TM = Co and Ni) compounds.

Therefore, it is interesting to investigate the details of AFM order, C-AFM or IC-AFM, in

different transition metal substituted BaFe2As2 compounds.

This chapter is organized as follows. First I will explain another important experimental

detail to investigate C/IC-AFM order in Section 5.2. Secondly, in Section 5.3.1, I will present

my XRMS data on 4.7% Co substituted BaFe2As2 compounds and make clear that the AFM

order is commensurate in this compound. Then I will show that IC-AFM occurs in higher Co

substituted BaFe2As2 compounds in Section 5.3.2. Fourth, in Section 5.3.3, I will present the

similarities and differences in Ni and Cu substituted BaFe2As2 compounds compared to Co

substituted BaFe2As2 compounds. Lastly, I will summarize.

5.2 Experimental details

To investigate an incommesurability in transition metal substituted BaFe2As2 compounds, I

utilized both XRMS and neutron diffraction measurements. As I discussed in Chapter 3, XRMS
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Figure 5.4 (a) Sample mounted in the (H, 0, 0)O-(0, 0, L)O zone. Representative directions

are color-coded. The [1, 0, 0]O direction (blue) is in the plane of the sample and

the [0, 0, 1]O direction (red) is perpendicular to the surface of the sample. (b)

Sample mounted in the (0, K, 0)O-(H, 0, nH)O zone. Representative directions

are color-coded. The gray dashed line indicates a line perpendicular to the ground.

The [0, 2, 0]O direction (blue) is in the plane of the sample and the [2, 0, 6]O
direction (red) is perpendicular to the gray dashed line.

measurements have an intrinsically better resolution than the resolution provided by neutron

diffraction measurements. However, as shown in Sections 3.1.2 and 4.1.3, XRMS signal from

the Fe K edge is weak. In consequence, only limited substitution levels that give practically

measurable signals can be studied with the XRMS measurement. I chose 4.7% Co substituted

BaFe2As2 compound since XRMS signals are anticipated to be measurable and local probe

measurements claimed an IC-AFM structure in compounds close to 4.7% Co substitution.

Technical details of the XRMS measurement are discussed in Sec. 4.1.1.

For neutron measurements, in addition to the experimental consideration discussed in Chap-

ter 2, the geometry of the sample with respect to the scattering geometry is important in order

to study the incommensurate AFM order. Previously, samples were mounted on a sample

holder (Al plate) as shown in Fig. 5.4 (a) so that [0, 0, L]T,O directions are perpendicular to

the sample surface (red arrow) and [h, h, 0]T = [H(=h+h), 0, 0]O directions are in the scatter-

ing plane (in horizontal direction, blue arrow). In this sample geometry, the neutron scattering



109

plane is in the (H, 0, 0)O-(0, 0, L)O zone [≡ (h, h, 0)T-(0, 0, L)T zone] and the measurements

have, generally speaking, the best resolution in scans in the scattering plane (the worst resolu-

tion in scans out of the scattering plane). Therefore, in this sample geometry it is the best to

investigate a potential incommensurability along the [H, 0, 0]O and [0, 0, L]O directions (in the

scattering plane) but not along the [0, K, 0]O direction (out of the scattering plane). In order

to have the best resolution in the [0, K, 0]O direction, it is necessary to bring the [0, K, 0]O

direction in the scattering plane. Figure 5.4 (b) displays the sample geometry that brings the

[0, K, 0]O direction in the scattering plane. With respect to the gray dashed line drawn per-

pendicular to the ground in the figure, the [H, 0, nH]O (n=odd integer) (≡ [h, h, nh]T with

n=2×{odd integer}) direction (red arrow) is perpendicular to the gray line and the [0, K, 0]O

(≡ [h, -h, 0]T) direction in the scattering plane (blue arrow). In this sample geometry, the

neutron scattering plane is in the (0, K, 0)O-(H, 0, nH)O zone [≡ (h, -h, 0)T-(h, h, nh)T

zone]. It gives the best resolution along the [0, K, 0]O and [H, 0, nH]O directions (in the

scattering plane) which is suitable to investigate an IC-AFM along the [0, K, 0]O direction.

5.3 Commensurate to Incommensurate transition

5.3.1 Commensurate AFM order: XRMS on Ba(Fe0.953Co0.047)2As2 compound

Local probe studies such as muon spin relaxation (µSR) and 75As nuclear magnetic reso-

nance (NMR) measurements have proposed that the magnetic order is, in fact, incommensurate.

NMR measurements [184, 308, 310] by some groups on underdoped Ba(Fe1−xCox)2As2 (x =

0.02, 0.04)[310] and (x = 0.06)[184] found a strong broadening of the 75As lines attributable

to the appearance of a distribution of internal fields at low temperatures in the magnetically

ordered state. A strong anisotropy was also observed, with the broadening more pronounced

for H ‖ ~c than for H ‖ ~a~b.[184] A quantitative comparison of the line broadening for the two

field directions led to the conclusion that there is a small incommensurability in the magnetic

structure such that the commensurate wave vector (1
2 , 1

2 , l)T (with l odd) in the undoped

parent compound is given by (1
2 − ε,

1
2 − ε, l)T, with ε estimated to be approximately 0.04

reciprocal lattice units (rlu), in the lightly Co-doped compounds.[184]
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In contrast to the observations of local probe measurements, neutron diffraction mea-

surements display a sharp commensurate peak in 4.7% Co substituted BaFe2As2 compounds

which FWHM was limited by the resolution given by the instrument.[182, 186] To resolve

the discrepancy between local probe and neutron measurements, I performed high-resolution

x-ray resonant magnetic scattering measurements at the Fe K edge for the 4.7% Co doped

Ba(Fe0.953Co0.047)2As2 compound. I find that the magnetic Bragg peaks are commensurate

and scans along the [h, h, 0] and [h, -h, 0] directions allow me to place limits on the magnitude

of a potential incommensurability that are much smaller than any value proposed previously.

Figure 5.5 shows scans along the [h, h, 0]T and transverse [h, -h, 0]T directions through the

(1
2 , 1

2 , 7)T magnetic Bragg peak position. For the [h, h, 0]T scan, the position of this peak is

referenced to the (1, 1, 8)T charge peak and is displaced from h=1
2 because of the orthorhombic

distortion. Along the [h, h, 0]T direction [Figs. 5.5 (a) and (c)] below TN=47 K, I observe a

single peak, whereas an incommensurability of magnitude ε would result in two peaks split by

2ε. The solid bar beneath the data in Figs. 5.5 (a) and (c) describes the measured FWHM

of the (1, 1, 8)T charge peak and represents the experimental resolution along [h, h, 0]T.

Therefore, the FWHM of 0.0007(1) rlu for the (1
2 , 1

2 , 7)T magnetic Bragg peak along this

direction places an upper limit on the potential incommensurability (ε ≈ 3.5 × 10−4) which

is two orders of magnitude smaller than the value proposed in Ref. [184]. I have also checked

along the transverse [h, -h, 0]T direction for any evidence of incommensurability as shown

in Figs. 5.5 (b) and (d). However, for the present experimental configuration, the resolution

along this direction is coarser [0.0067(15) rlu]. Nevertheless, these data still allow me to place

an upper limit on the incommensurability (ε ≈ 3.3 × 10−3) that is more than an order of

magnitude smaller than that proposed.[184] Furthermore, a comparison of the scans at 20 and

4.5 K shows that there is no evidence of additional line broadening for this compound below

the superconducting transition (Tc=17 K).

The dashed bars in Figs 5.5 (a) and (c) represent the experimental resolution for the pre-

vious neutron diffraction measurements by Pratt et al. [182] on the Ba(Fe0.953Co0.047)2As2

compound along the [h, h, 0]T direction. Even with the poorer resolution of this measurement,

an incommensurability of ε ≈ 0.04 rlu would have been clearly observed in scans performed
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Figure 5.5 (a) [h, h, 0]T scan through the magnetic Bragg peak position of the stripelike

AFM phase at above (55 K) and below (20 K) TN for the Ba(Fe0.953Co0.047)2As2

compound. The solid bar represents the experimental resolution for the x-ray

measurements along this direction while the dashed bar denotes the resolution of

the previous neutron measurements along this direction.(Pratt et al.) (b) [h, -h, 0]T
scan through the magnetic Bragg peak position below TN. The solid bar represents

the experimental resolution along this direction of the x-ray measurement. The

resolution width for neutron measurements along the [h, -h, 0]T is a factor of ten

larger. (c) and (d) correspond to (a) and (b), respectively, at the base temperature

of 4.5 K. The difference in the vertical scale between panels (a), (b) and (c), (d)

arises from small differences in the beam conditions for measurements performed

several months apart.
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along the [h, h, 0]T direction. The XRMS measurements, however, now place a strong limit

on the magnitude of any incommensurability for the Ba(Fe0.953Co0.047)2As2 compound. In this

light, the broadened line shapes observed in local measurements [184, 308, 310] must arise from

other causes. Density-functional-theory (DFT) calculations by Kemper et al. [311] indicate that

although the nonmagnetic scattering potential associated with Co doping in the FeAs planes

is relatively well localized, the magnetic potential significantly perturbs the spin-density-wave

state over much longer length scales. This, in turn, leads to a large distribution of hyperfine

fields, as pointed out by Dioguardi et al. [312] who suggest that the origin of the broadening

in their NMR studies of Co and Ni doped BaFe2As2 is consistent with doping induced disorder

in the AFM state rather than incommensurate order.

5.3.2 Incommensurate AFM order in Ba(Fe1−xTMx)2As2 compounds (TM=Co)

Knowing that the AFM ordering in the Ba(Fe0.953Co0.047)2As2 compound is commensurate,

D. Pratt and I measured a series of Ba(Fe1−xCox)2As2 compounds with x ≥ 0.054 using neu-

tron diffraction measurements in the sample geometry shown in Fig. 5.4 (b). (From now on, I

exclusively use the orthorhombic notation and I drop the subscript “O” noting the orthorhom-

bic notation.) We found that IC magnetic order does indeed develop near optimally doped

compositions of Ba(Fe1−xCox)2As2 with x ≥ 0.056, just before long-range magnetic ordering

is completely suppressed at x ≈ 0.06. The IC propagation vector ~τ = ~QAFM+(0, ε, 0) with

~QAFM = (1, 0, 1) corresponds to a transverse splitting (ε ≈ 0.02 − 0.03) whose value depends

on composition.

Fig. 5.6 (b) shows a typical transverse [0, K, 0] neutron diffraction scan for the x =

0.059 sample at T ≈ Tc < TN where magnetic Bragg intensity is at maximum. We observed

that a pair of Bragg peaks appear symmetrically at positions (0, ±ε, 0) around ~QAFM in the

transverse scan. Therefore, a clear IC magnetic order with propagation vector ~τ = (1, ε, 1) =

~QAFM+(0, ε, 0), as illustrated in Fig. 5.6 (a), exists in this compound (x = 0.059). No splitting

is observed in the longitudinal [H, 0, 0] neutron diffraction scan as shown in Fig. 5.6 (c).

Turning to the compositional and temperature dependences of the incommensurability,

Figure 5.7 shows the transverse [0, K, 0] scans through (1, 0, 3) for the Ba(Fe1−xCox)2As2
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Figure 5.6 (a) Reciprocal space plane with L = odd indicating commensurate (C, empty

circles) and incommensurate (IC, filled circles) magnetic Bragg peak positions at
~QAFM = (1, 0, L = odd) and ~τ = (1, ε, L = odd), respectively, in orthorhombic

notation. The size of the incommensurability parameter is exaggerated for clarity.

Shaded points labeled C∗ and IC∗ show the location of magnetic Bragg peaks that

are present due to orthorhombic twinning. Dashed arrows illustrate the direction

of longitudinal [H, 0, 0] and transverse [0, K, 0] neutron diffraction scans. Raw

(b) transverse and (c) longitudinal scans for Ba(Fe0.941Co0.059)2As2 at T = 23 K

≈ Tc. The lines are Gaussian fits to the data.

compounds. The background was estimated from scans performed at temperatures above TS.

We observed only a single resolution-limited peak for the x = 0.054 sample in the transverse

[0, K, 0] scans and, combined with x-ray resonant magnetic diffraction results (see Sec. 5.3.1),

establish “stripe” C-AFM order at ~QAFM for all Co compositions below approximately 0.054.

Broad peaks split in the transverse direction are observed in [0, K, 0] scans for x = 0.056,

0.057, and 0.059, clearly establishing the transition to an IC magnetic phase with propagation

vector ~τ . For the x = 0.056 sample, both C and IC peaks are observed, suggesting that

the transition is first-order in its dependence on Co concentration with the phase boundary
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Figure 5.7 Transverse neutron diffraction scans at temperatures T < Tc (blue circles), T ≈
Tc (green squares), Tc < T < TN (red triangles), and T > TS (empty circles) for

Ba(Fe1−xCox)2As2 with x = (a) 0.054, (b) 0.056, (c) 0.057, and (d) 0.059. Scans

with T > TS are an estimate of the background. All scans are performed through

the (1, 0, 3) position except the empty green squares in (b), which are measured

through (1, 0, 1) and with the intensity divided by a factor of 0.36. The lines are

Gaussian fits to the data.

close to x = 0.056. The coexistence of C and IC phases could arise from a small spread

in the Co concentration across the sample. However, the sharpness of the superconducting

transition, predictable evolution of TS and TN with relatively small changes in composition,

and uniformity of the actual concentration at multiple locations on the crystals confirm good

chemical homogeneity with compositional spread ∆x
x < 5%.[274] Figure 5.7 (b) shows that

the lineshapes at (1, 0, 3) and (1, 0, 1) positions are equivalent with an integrated intensity

ratio of 0.36(9), close to that expected for collinear C-AFM order with the magnetic moment

pointing along the ~a axis. No signatures of higher harmonics have been observed, indicating a

sinusoidal modulation of the moment size along the ~b direction. For x = 0.054 [Fig. 5.7 (a)],
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Figure 5.8 (a) Experimental phase diagram for Ba(Fe1−xCox)2As2 showing commensurate

(C) and incommensurate (IC) antiferromagnetic order below TN. Tetragonal (Tet)

and orthorhombic (Ort) phases are separated by the phase line at TS. Supercon-

ductivity (SC) appears below Tc and can coexist with both commensurate (C/SC)

and incommensurate (IC/SC) magnetic order. Open squares represent the mag-

netic phase transition temperatures determined in this study. (b) Background

subtracted transverse neutron diffraction scans at T ≈ Tc. Scans are offset ver-

tically and scaled (where noted) for clarity. Integrated intensity (squares) and

incommensurability parameter ε (circles) (c) as a function of Co concentration at

T ≈ Tc and (d) as a function of temperature for x = 0.056. Open squares in (d)

represent the total magnetic intensity where C and IC peaks cannot be separated.

the suppression of the integrated intensity (magnetic order parameter) below Tc was observed

and indicates the competition of C-AFM with superconductivity, as reported previously.[182,

183, 186] The magnetic intensity in Figs. 5.7 (b) - (d) show a similar suppression below Tc

implying that the IC-AFM state also competes with superconductivity.

Figure 5.8 (a) shows the experimental phase diagram of Ba(Fe1−xCox)2As2 delineating

regions of magnetic order, superconductivity, and structural phases as based on the phase

diagram (Fig. 4.20) shown in Section 4.5. This work, summarized in Figs. 5.8 (a) - (d), has

allowed us to outline regions of C and IC magnetic order in the phase diagram. Fig. 5.8

(b) shows the evolution from C (at x = 0.054) to IC-AFM order (from x = 0.056 − 0.059) in
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transverse scans performed at T ≈ Tc. The x = 0.062 sample has no detectable magnetic order.

The composition dependence of both the integrated magnetic intensity and incommensurability

is plotted in Fig. 5.8 (c) at T ≈ Tc, again highlighting that the transition to IC magnetic order

occurs at x ≈ 0.056 in the limit where the magnetic intensity (moment size) is very small.

The incommensurability grows slightly at higher compositions, reaching a value of 0.030(2) at

x = 0.059. Figure 5.8 (d) displays the temperature dependence of the integrated intensity of

IC-AFM Bragg peaks for the x = 0.056 sample, which has the characteristic suppression in

the superconducting state, as alluded to above. Figure 5.8 (d) shows the incommensurability

parameter, ε, of the x = 0.056 sample remains relatively constant below Tc.

The magnetic phase diagram shown in Fig. 5.8 (a) contains a first-order C-to-IC transi-

tion with electron doping in Ba(Fe1−xCox)2As2 that bears a strong similarity to the alloys

of the canonical spin-density-wave (SDW) system, Cr. Pure Cr orders into an IC-SDW state

that is driven by nesting between electron and hole Fermi surfaces whose areas are slightly

mismatched.[313] Electron doping of Cr (in this case by alloying with Mn [314] or Ru [315])

equalizes the Fermi surface areas and results in a first-order transition to C-SDW order. This

simple picture considers only the Fermi surface topology and the free energy of competing C

and IC-SDW states and has led to a detailed theoretical understanding of the magnetic phase

diagram of Cr alloys.[316]

The development of C-SDW or IC-SDW order has also been studied in the iron arsenides

using an effective two-dimensional, two-band Ginzburg-Landau approach.[222, 300] In a spirit

similar to Cr, IC-SDW order is favored when nesting occurs between electron and hole pockets

having circular cross-sections of unequal area at the Fermi level. The introduction of more

realistic elliptical electron pockets favor C-SDW order as long as the electron and hole pocket

areas are not too strongly mismatched, as is the case for the parent BaFe2As2 compounds.

However, even with elliptical electron pockets, doping detunes the two pockets and eventually

results in a mismatch that favors IC-SDW order. This analysis suggests that Fermi surface

nesting is a crucial factor in stabilizing both C and IC phases in the magnetic phase diagram

of the BaFe2As2 compounds.

Unlike Cr, the doped iron arsenides are superconductors, and both C and IC-SDW order
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Figure 5.9 Phase diagrams of Ba(Fe1−xTMx)2As2 for (a) TM = Co,[63, 182, 185, 186] (b)

Ni,[317] and (c) Cu.[317] For Co substitution, the phase diagram was completed

with x-ray/neutron data together with bulk data. For Ni and Cu substitutions,

bulk measurement data were used for the data points on the phase diagram. The

red vertical lines indicate the substitution level that were compared in this disser-

tation.

are observed to coexist with superconductivity. Ginzburg-Landau models [222, 300] indicate

that the competition and coexistence of superconductivity with either C or IC-SDW order is

much more likely with an unconventional s± pairing symmetry. Thus, a simple two-band ap-

proach appears to capture many of the essential features of the phase diagram of the BaFe2As2

arsenides in terms of Fermi surface nesting, C and IC-SDW order, and unconventional s± su-

perconductivity. The resulting theoretical phase diagram in Ref. [222] bears close resemblance

to the experimental diagram in Fig. 5.8 (a).

5.3.3 Incommensurate AFM order in Ba(Fe1−xTMx)2As2 compounds

(TM=Ni, Cu)

I now discuss the incommensurability for other transition metal substitutions, Ni and Cu.

Motivated by similarities in the phase diagrams of Co substituted and Ni substituted BaFe2As2

compounds and differences in Co (Ni) substituted and Cu substituted compounds, it is interest-

ing to investigate the incommensurability in Ba(Fe1−xNix)2As2 and Ba(Fe1−xCux)2As2 com-

pounds. The phase diagrams of Ba(Fe1−xTMx)2As2 compounds are established by others and

shown in Figure 5.9: (a) for TM = Co, (b) for Ni, and (c) for Cu.[63, 182, 185, 186, 317] The
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Figure 5.10 (a) Phase diagrams as a function of extra electrons per Fe/TM site. Black,

red, and green lines indicate the antiferromagnetic transition temperature for

Co, Ni, and Cu substitutions, respectively. Black, red, and green symbols

are data points for Co, Ni, and Cu substitutions obtained from bulk measure-

ment, respectively.[89] Note that the AFM transition temperatures and super-

conducting domes for Co and Ni substitution are nearly on top of each other

whereas Cu substitution does not match with Co and Ni substitution. (b)

Phase diagram of Ba(Fe0.978−yCo0.022Cuy)2As2 compounds.[317] With y=0 in

Ba(Fe0.978Co0.022)2As2 compound is non-superconducting. As Cu concentration

y increases, superconductivity is first promoted and then suppressed.

two phase transitions are suppressed and split as the substitution levels increase. Superconduc-

tivity emerges in a dome-like region for Co and Ni substitutions whereas Cu substitution does

not support superconductivity[89, 291] except, perhaps, below 2 K over a very narrow range

in composition.[317] However, for Co/Cu co-substitutions in BaFe2As2, Ni et al. reported that

at a fixed non-superconducting Co concentration, the addition of Cu first promotes and then

suppresses Tc as shown in Figure 5.10 (b).[317] Canfield et al. [89] and Fernandes et al. [318]

have suggested that previously neglected impurity effects play an important role in this behav-

ior. Canfield et al. [89] showed the phase diagrams of Co and Ni substitutions as a function

of extra electrons per Fe/TM site [Fig. 5.10 (a)], the phase transition temperatures and su-

perconducting dome of Co and Ni substitutions match quite well , but the Cu substitution

does not. Therefore, a simple rigid-band picture for at least TM = Co and Ni substitutions
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seems to adequately account for the evolution of phase transition and superconducting tran-

sition temperatures as well as angle-resolved photoemission spectroscopy (ARPES) (by Liu

et al.[192]), Hall effect, and thermoelectric power measurements (by Mun et al.[92]) with con-

centration. The rigid-band model has also been used successfully to model the suppression of

the AFM transition temperature and ordered moment in Ba(Fe1−xCox)2As2 for “underdoped”

samples, shown by Fernandes et al.[186] Nevertheless, this approach now faces strong challenges

from recent theoretical and experimental studies (by Wadati et al.[319], Bittar et al.[320], and

Levy et al.[321]). Further comparative studies of Co, Ni and Cu substitutions are needed and

may provide clues regarding both the nature of unconventional superconductivity in the iron

pnictides and clarify the effects of TM substitutions.

I performed single crystal neutron diffraction measurements of the magnetic ordering in

Ba(Fe1−xTMx)2As2 with TM either Ni or Cu. Observations of incommensurate spin-density-

wave order, in particular, are a very sensitive probe of the nature of Fermi-surface nesting

in the iron pnictides and, therefore, may be used to study impurity effects as a function of

the TM doping. I find that, like the Co-substituted compound in Sec 5.3.2, Ni substitution

also manifests incommensurate (IC) AFM order over a narrow range of x. However, the AFM

ordering for Cu substitution remains commensurate (C) up to x ≈ 0.044, where AFM order is

absent.

Neutron diffraction measurements were done on the TRIAX triple-axis spectrometer at the

University of Missouri Research Reactor employing an incident neutron energy of 14.7 meV

with 2 pyrolytic graphite filters and 60’-40’-40’-80’ collimation. Samples were studied in the

vicinity of ~QAFM = (1, 0, 3) in the (ζ, K, 3ζ) plane which is similar to what is shown in Fig. 5.4,

allowing a search for incommensurability along the ~b axis (transverse [0, K, 0] direction) as

found for Ba(Fe1−xCox)2As2.

Figures 5.11 (a) and (b) show the low-T scattering for transverse [0, K, 0] scans through

the (1, 0, 3) magnetic Bragg point for several Ni and Cu compositions. For Ba(Fe1−xNix)2As2,

a transition from a C-AFM order for x < 0.035 (with resolution limited magnetic Bragg peaks)

to an IC-AFM order for x ≥ 0.035 is clearly demonstrated by the symmetric pair of peaks at

(1, ±ε, 3). For x > 0.037, no long-range AFM order was observed. These data show that, as
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Figure 5.11 Scattering near the (1, 0, 3) magnetic Bragg point for Ba(Fe1−xMx)2As2 where M

is (a) Ni and (b) Cu. (c) Temperature dependence of the scattering near the (1,

0, 3) magnetic Bragg point for Ba(Fe0.963Ni0.037)2As2. Intensities are normalized

by mass of the samples to facilitate comparisons. Lines are fits to the data, as

described in the text.

previously observed for Co substitution, Ni substitution results in an abrupt change from C

to IC-AFM order at xc = 0.035 ± 0.002. The ratio (≈ 0.6) of this critical concentration to

xc = 0.056 for Co in Sec. 5.3.2, seems consistent with a rigid-band filling where Ni “donates”

roughly twice the number of electrons as Co. As discussed previously for Co substitutions

(see Sec. 5.3.2), the abrupt transition between C and IC magnetic structures is similar to

what has been observed for dilute substitutions of Mn or Ru in the canonical SDW system,

Cr.[322] Detailed theoretical studies of the nesting and free energy of the competing C-SDW

and IC-SDW states in BaFe2As2 may shed further light on this behavior.

The lines in Fig. 5.11 (a) are fits to the data using a single Gaussian for x = 0.029, a

convoluted Gaussian + Lorentzian line shape for x = 0.031, three Gaussians for x = 0.035 (to
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account for the presence of the dominant IC and residual C components), and two Gaussians

for x = 0.037. The detailed description of the IC structure based on these fits is very similar

for Co and Ni substitution. The incommensurability, ε, derived from fits to these data was

0.033 ± 0.003 reciprocal lattice units (r.l.u.), close to the value found of ε for Co samples.

Also, there is a significant broadening of the IC magnetic diffraction peaks as compared to the

C magnetic peaks indicating a much reduced magnetic correlation length (ξ ∼ 60 Å), again

consistent with the broadening found for the Co substituted samples (Sec. 5.3.2). The peak

widths obtained from these fits are given in Fig. 5.12 (a) and show that the C component

remains resolution limited, whereas the IC peaks are more than 5 times broader. Recent

measurements on Ni substituted samples by Luo et al.[323] are consistent with my results. The

temperature dependence of the transverse [0, K, 0] scans through the magnetic Bragg peaks for

superconducting Ba(Fe0.963Ni0.037)2As2 is illustrated in Fig. 5.11(c). The integrated intensity

of the magnetic scattering increases below TN, reaches a maximum at the superconducting

transition temperature (Tc), and decreases monotonically below Tc as observed previously for

Co substituted samples,[182, 183, 186] demonstrating, again, that magnetic order competes

with superconductivity. The positions and widths of the IC magnetic peaks appear to be

temperature independent within the resolution of our measurement.

In striking contrast to the data for Co substituted samples (Sec. 5.3.2) and here for Ni substi-

tuted, Figure 5.11 (b) shows no evidence of a C-to-IC transition versus x for Ba(Fe1−xCux)2As2.

Instead, the C magnetic Bragg peak is well described by a single Lorentzian lineshape that

broadens strongly for x ≥ 0.039 [see Figs. 5.11(b) and 5.12(a)], and no AFM long-range order

is found for x ≥ 0.044. To further emphasize the differences between Co, Ni and Cu sub-

stitutions, Fig. 5.12(b) displays the maximum ordered magnetic moment (at Tc for Co and

Ni substitution and at our base temperature, 5 K for Cu substitution) as a function of extra

electron count under the often-used assumption that Co, Ni, and Cu donate 1, 2, and 3, re-

spectively, to the d-bands. The maximum ordered moment was estimated from the integrated

intensity of the magnetic Bragg peaks using the commensurate magnetic structure factor nor-

malized by the mass of the samples, as described previously.[186] Under the stated assumption,

Co and Ni act similarly to suppress the moment over a range of x that mimics a rigid-band
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Figure 5.12 Trends in the FWHM and maximum ordered moment for M substitution. (a)

Evolution of the FWHM of the magnetic peaks vs. concentration. The solid(open)

circles represent the FWHM of the C-AFM(IC-AFM) peaks. (b) Measured or-

dered moment derived from the integrated intensity of the magnetic Bragg peaks

as a function of the extra electron count, assuming that Co donates 1, Ni 2, and

Cu 3, extra-electrons to the d-band. The data for Ba(Fe1−xCox)2As2 are taken

from Pratt et al.[182] and Fernandes et al.[186].

picture. This is clearly not the case for Cu substitution (although rescaling the electron count

by 1.5 would move the results on top of Co and Ni). Nevertheless, the IC-AFM order found

for Ni and Co substitutions in this regime is not found for Cu substitution.

5.4 Discussion and summary

First, in order to show that the observed IC-AFM order in Co and Ni substituted BaFe2As2

compounds can be understood as a spin density wave (SDW) driven Fermi surface nesting, Lee

and Harmon performed ab initio density functional calculations of magnetic susceptibility.[322]

Previous calculations show maxima in the generalized spin susceptibility away from a commen-

surate magnetic propagation vector ~QAFM in doped AEFe2As2 compounds and therefore point

to a tendency for IC-SDW order.[306, 324] To gain insight into potential incommensurabil-

ity at doping levels where it was observed in Co substituted BaFe2As2,[187] Lee and Harmon

performed calculations of the generalized bare susceptibility employing the full-potential lin-

earized augmented plane wave (FPLAPW) method,[277] with a local density functional.[278]
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Figure 5.13 Ab initio calculations of the generalized susceptibility in the (a) transverse and

(b) longitudinal directions through QAFM

They used RMT × K max = 8.0 and RMT = 2.4, 2.2 and 2.2 for Ba, Fe and As, respectively. To

obtain self-consistency we chose 550 ~k-points in the irreducible Brillouin zone and used 0.01

mRy/cell as the total energy convergence criteria. The virtual crystal approximation was used

to consider Co-doping effects and the whole reciprocal unit cell is divided into 80 × 80 × 80

parallelepipeds, corresponding to 34061 irreducible ~k-points. The calculations of the general-

ized susceptibility for electron doping with x = 0.05 show splitting in the transverse direction

and a single peak in the longitudinal direction in Figs 5.13 (a) and (b), respectively, consistent

with other doping dependent calculations.[306, 324] The ab initio calculations, therefore, show

a tendency for IC-SDW order with propagation vector ~τ ≈ ~QAFM + (0, ε, 0) in agreement with

experimental observations.

Next, in order to elucidate the differences between Co/Ni and Cu doping in BaFe2As2,

Khan, Lee, Alam, Harmon, and Johnson employed two electronic-structure methods: full-

potential linear augmented plane waves[277] with supercells and, in the parent compound unit

cell, the Korringa-Kohn-Rostoker method using the Coherent-Potential Approximation (KKR-

CPA) to address the effects of substitution on the density of states (DOS), and solute disorder

(impurity) scattering on the Fermi surfaces (i.e., the Bloch spectral functions A(~k;EF) at the

Fermi energy EF).[325–327]

Figure 5.14 (a) shows that the KKR-CPA d-band partial DOS of Co and Ni are common-

band-like (e.g. overlap with the Fe d-bands), whereas Cu exhibits split-band behavior with its

d-states located ∼4 eV below EF. Only s-p states participate at EF and, therefore, Cu behaves
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Figure 5.14 For Ba(Fe1−xTMx)2As2, the KKR-CPA (a) site-projected DOS versus E − EF

at 6% Co, 3% Ni (fixed e−/Fe), and 2% Cu (the Fe DOS changes negligibly

with TM); and Bloch spectral functions, A(~k;EF), along specific ~k-directions

versus at. % TM for (b) electrons, and (c) holes. Insets: ~k-direction of the cut

across electron (centered at X) and hole (centered at Z) states. Peak locations

of electron/hole states are compared to the ”rigid-band” expectations (vertical

dashed lines) from parent compound at fixed e−/Fe and three at. % Cu values.

almost as a +1 s-p valence with very different scattering behavior from Co and Ni. I note that

these results are consistent with ordered DFT calculations at large x.[319] Figures 5.14 (b) and

(c) illustrate the behavior of the Fermi-surfaces for “electrons” and “holes” at a fixed solute

concentrations for Co (6%) and Ni (3%) [red and green lines] compared to the “rigid-band”

expectation [vertical dashed lines] from the parent compound at a fixed e−/Fe (0.06). These

solute concentrations are close to the respective xc for the observed C to IC magnetic ordering.

As the solute concentration increases, the electron(hole) surfaces expand(contract) and the

spectral broadening due to chemical disorder scattering is evident. Due to common d-band

behavior for Co and Ni, spectral peaks for the electrons clearly mimic rigid-band behavior at

fixed e−/Fe, but the holes less so. However, with the split d-band behavior for Cu, rigid-band
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Figure 5.15 (a) Sharply defined Fermi surface topology for electron pocket (blue) and hole

pocket (red) with a circular topology. (b) Broadened Fermi surface due to the

impurity scattering. Blurring of each pocket indicates broadening. As electrons

are introduced, the sizes of hole and electron pockets changes, and mismatching

of Fermi surfaces leads IC AFM ordering with ~τ = ~QAFM + ~ε in Co and Ni sub-

stitution. With Cu substitution, strong impurity scattering broadens the Fermi

surface and leads a sufficient overlapping between electron and hole pockets as in

(b).

concepts are invalid. To emphasize this we show results for Cu doping up to the 4% substitution

measured in our experiments. As a stronger scatterer than Fe, Co, or Ni, 1.33% Cu (rather

than 2% Cu assuming a +3 valence) acts like 6% Co or 3% Ni [see also Fig. 5.12 (b)]. Most

importantly, the Cu hole states are especially sensitive to doping, with a rapid loss of intensity

and increased disorder broadening evident. This dramatically diminishes the contributions

of Fermi-surface nesting (between the electron- and hole-like Fermi surfaces) to the magnetic

susceptibility measured at ∼4% Cu substitution.

We propose that the absence of IC AFM order in Ba(Fe1−xCux)2As2 arises from enhanced

impurity scattering effects associated with the stronger potential for Cu. The small incom-

mensurability measured for Co and Ni substituted BaFe2As2 requires relatively well-defined

features in the Fermi surface topology. Figure 5.15 displays a schematic diagram showing how

impurity scattering would affect the Fermi-surface nesting [Fig. 5.15 (b)]. Disorder due to im-

purity scattering introduces spectral broadening in both energy and momentum to the extent

that the magnetic structure remains C rather than IC. This is in substantial agreement with

recent work by Berlijn et al.,[328] who point out that TM substitution in the iron pnictides
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leads to the loss of coherence and a smearing of the Fermi surface that is relatively weak for

Co substitution, but much stronger for Zn.

Finally, I note that such impurity effects are expected to impact superconductivity in the

iron pnictides as well. Essential elements of the under-doped regions of the phase diagram

for electron-doped BaFe2As2 are captured by considering both inter- and intra-band impurity

scattering.[318, 329] Although impurity scattering introduced by TM substitution causes pair

breaking and suppresses Tc, it can be even more damaging for spin-density-wave ordering so

that TN is suppressed more rapidly, allowing superconductivity to emerge at finite substitution

levels. Interestingly, the phenomenological model by Fernandes et al.[318] indicates that the

behavior of Tc for s± pairing is a non-monotonic function of impurity concentration, depending

on the strength of the impurity potential and the ratio of the intra-band (Γ0) to inter-band

(Γπ) impurity scattering, which may vary strongly between Co and Cu. Indeed, they find

a range in Γ0
Γπ

where Tc first increases and then decreases with impurity concentration, very

similar to that observed for Co/Cu co-substitutions in BaFe2As2. It should also be noted that

Zn substitution in the 1111 compounds does not induce superconductivity. However, similar

to Co/Cr co-substitution, Zn first enhances superconductivity slightly when it was introduced

into a superconducting fluorine doped R = La compound then suppresses Tc.[55]
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CHAPTER 6. Conclusions and Outlook

6.1 Conclusions

High-resolution x-ray diffraction, x-ray resonant magnetic scattering, and neutron diffrac-

tion measurements have been used to study structure, magnetism, and the interplay between

them in transition metal (TM) substituted BaFe2As2 compounds. High-resolution x-ray diffrac-

tion measurements are sufficient to observe the small orthorhombic distortion that is generally

difficult to be seen in neutron diffraction measurements because of its poorer resolution. X-ray

resonant magnetic scattering measurements at the Fe K edge add another example of reso-

nance enhancement at the K edge of 3d element (in this case Fe) and definitely show that no

incommensurate (IC) magnetic ordering exists in < 5.4% Co substituted BaFe2As2 compounds.

Neutron diffraction measurements were employed to study the antiferromagnetic order param-

eter, the commensurate(C)-to-incommensurate(IC) transition seen in > 5.4% Co substitution,

the origin of incommensurability, and its relation to the impurity scattering effect in different

transition metal substituted BaFe2As2 compounds.

The structural and antiferromagnetic transitions are split in the parent BaFe2As2 compound

with structural transition temperature (TS) higher than the AFM transition temperature (TN)

in contrast to the coupled transitions in the parent AEFe2As2 (AE = Ca and Sr). I also showed

that the structural transition is second-order (TS = 134.5 K) but the AFM transition is first-

order with a small but finite temperature hysteresis (∼ 0.25 K), which drives a jump in the

orthorhombic distortion. Upon substitutions by Co and Rh, which are considered as electron

doping, the structural and AFM transition temperatures are suppressed to lower temperature

and split further. The AFM transition changes its nature from first-order to second-order

with substitutions and the magnetic critical point in Co substituted compounds was found
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around 2.2% Co concentration whereas the structural transition is second-order in the whole

composition range. This observation is consistent with the view of nematic order: the structural

transition is derived by the “stripe” antiferromagnetic ordering and fluctuations. Together with

the earlier observation by Nandi et al. [185] of superconductivity existing in both orthorhombic

and tetragonal structures, the structural transition may purely be a side effect of the “stripe”

AFM ordering and fluctuations, and not be prerequisite for superconductivity in the FeAs-

based superconductors. In addition, the structural anisotropy (orthorhombicity) seems not

important but the underlying anisotropy due to the “stripe” AFM ordering might have a close

relation to other anisotropic physical properties, such as anisotropic resistivity, observed in the

FeAs-based superconductors.

In contrast to the electron doping, in isoelectronic Ru substituted BaFe2As2 compounds,

the structural and AFM transitions are locked at the same temperature, and superconductiv-

ity emerges with higher doping concentrations than Co doping. I showed that Ru substitution

also exhibits the coexistence and competition between AFM and superconductivity (SC) based

on the observation of suppression of orthorhombic distortion and AFM ordering below the

superconducting transition temperature (Tc). On the other hand, similar to electron doping,

suppression of the “stripe” AFM ordering induces superconductivity. Together with the al-

ready established observations, which show that the suppression of the “stripe” AFM ordering

by means of electron doping (Co and Rh) enhances AFM fluctuations in the FeAs-based su-

perconductors, [30] suppression of the “stripe” AFM ordering by means of internal pressure or

magnetic dilution in Ru doping also induces superconductivity. This implies that if one can en-

hance the “stripe” AFM fluctuations or eliminate AFM order by any means, superconductivity

can emerge in the FeAs-based superconductors.

In the hole doping case, the Mn substituted Ba(Fe1−xMnx)2As2 compound, which do not

show superconductivity at all substitution levels, the TS and TN occur at the same temperature

up to approximately x = 0.102. Above x ≈ 0.11, the orthorhombic distortion is not observed

while the AFM signal from the antiferromagnetic propagation vector ~QAFM of the “stripe” AFM

structure remains. I also showed that the AFM signal persists even at higher temperatures than

TN of x≤ 0.102. This observation is surprising because models for “stripelike” AFM order in the
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FeAs-based superconductors anticipate the orthorhombic distortion. Therefore, my observation

offers a possibly different magnetic structure in Ba(Fe1−xMnx)2As2 compounds for x ≥ 0.11.

I proposed that my observation can be understood in terms of a two- ~Q structure discussed

by Eremin and Chubukov.[285] This observation supports the nematic order for the structural

transition and provides an additional evidence that the “stripe” AFM ordering or fluctuations

are crucial for superconductivity but other magnetic ordering (possible two- ~Q or the G-type

structure) or fluctuations (recent observation of spin fluctuations at the G-type AFM gamma

point in the presence of “stripe” AFM ordering and fluctuations by Tucker et al. [330]) are

detrimental to superconductivity.

One of the longstanding issues in the FeAs-based superconductors is the possible occurrence

of incommensurate AFM ordering. I showed that the AFM ordering is commensurate for x

= 0.047 in Ba(Fe1−xCox)2As2 compound, and Pratt et al. [187] found that the AFM ordering

changes abruptly (first-order) to incommensurate for x ≥ 0.056. In addition, I observed that

Ni substituted Ba(Fe1−xNix)2As2 compounds also develop first-order C-to-IC transition at a

composition x = 0.035. The ab initio calculation done for Co doped BaFe2As2 by Lee and

Harmon showed that the observed IC-AFM order can be understood as a spin density wave

(SDW) driven Fermi surface nesting. Moreover, in terms of extra electrons per Fe/TM site

provided by Co and Ni, the critical concentrations for C-to-IC transitions for Co and Ni intro-

duce approximately same amount of extra electrons, which fit within the rigid-band picture.

However, Cu substitutions do not develop incommensurate AFM ordering at all concentrations

and the ordered moment size, when scaled with extra electrons per Fe/TM site, do not match

with Co and Ni. The rigid-band picture fails to explain the difference in Cu substitution. The

difference between Co, Ni and Cu can be understood with (1) different character of bands and

(2) enhanced impurity scattering. First, due to common d-band behavior for Co and Ni, the

band structure calculations by Khan et al. show that spectral peaks for the electrons clearly

mimic rigid-band behavior at fixed e−/Fe, but the holes less so. However, with the split d-band

behavior for Cu, rigid-band concepts are invalid. Next, disorder due to impurity scattering

introduces spectral broadening in both energy and momentum to the extent that the magnetic

structure remains C rather than IC. Therefore, enhanced impurity scattering in Cu substitution
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than Co and Ni substitutions broadens the Fermi surface topology and leads to C-AFM order

because the small incommensurability observed in Co and Ni substitutions requires a relatively

well-defined Fermi surface topology. This new experimental observations reveal the crucial role

of impurity scattering effect on incommensurate AFM ordering and superconductivity.

In conclusion, I have studied the effect of transition metal substitution on BaFe2As2 com-

pounds and determined the nature of phase transitions, phase diagrams as well as impurity

scattering effect on incommensurate AFM ordering. Although the studies of structural and

magnetic properties in transition metal substituted BaFe2As2 do not explicitly explain “uncon-

ventional” superconductivity in the FeAs-based superconductors, these studies reveal (1) the

“stripe” antiferromagnetic ordering or fluctuations as a driving force for the structural tran-

sition, (2) an indirect evidence of the significance of the “stripe” antiferromagnetic ordering

and fluctuations for superconductivity, and (3) the significance of impurity scattering effects

on incommensurability and superconductivity. Considering that transition metal substituted

BaFe2As2 compounds exhibits many general features appearing in different families of the

FeAs-based superconductors, the experimental observations presented in this dissertation will

help to understand physical properties and “unconventional” superconductivity in the entire

FeAs-based superconductors.

6.2 Outlook

Over the past few years, a spin excitations (fluctuations) mediated pairing mechanism has

been proposed based on inelastic neutron scattering studies together with theories of supercon-

ductivity in the FeAs-based superconductors.[30] Large numbers of inelastic neutron scattering

experiments have been performed and revealed intriguing spin excitations and the supercon-

ducting resonance (the redistribution of magnetic intensity from low energies to high energies

below Tc) which are reminiscent of heavy fermion and cuprate superconductors. I have shown

the incommensurate AFM order in Co and Ni substituted BaFe2As2 which is also reminiscent

of IC-AFM in the cuprate superconductors. A naturally arising question is: Will the super-

conducting resonance in spin excitations in the FeAs-based superconductors be similar to the

cuprate superconductors? In a spirit of two itinerant and localized pictures, someone can expect
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Figure 6.1 Schematic dispersion diagram for a model system (a) Cr metals and (b) cuprate

superconductors. For Ba(Fe1−xTMx)2As2 (TM = Co, Ni), ~Q = (1, 0, 1)O and ~ε ≈
(0, 0.03, 0)O.

in these two limits that the dispersion of spin resonance resembles as either a model system (1)

Cr metals [Fig. 6.1 (a)] or (2) cuprate superconductors [Fig. 6.1 (b)]. Therefore, it is of great

interest to investigate how the dispersion of spin resonance along the orthorhombic ~b direction

changes with energy transfer and how the resonance appears in a momentum transfer ~Q scan

performed along the orthorhombic ~b direction. Figure 6.2 displays preliminary results on the

spin excitations in 3.7% Ni doped BaFe2As2. The observed spin resonance is dispersive in the

FeAs-based superconductors. Further studies of the dispersive spin resonance are necessary and

in progress. Another interesting aspect of the dispersive spin resonance observed in 3.7% Ni

doped BaFe2As2 is whether the dispersion is originated from the incommensurate AFM Bragg

point, which is the case in the cuprate superconductors. Studies of the low energy (below 2

meV energy transfer) spin excitations in both normal and superconducting state should provide

an answer. However, the required high Q resolution to observe the small incommensurability

in the spin excitations would make the observation difficult. Alternatively, investigation on the

occurrence of a dispersive spin resonance in a compound which exhibit a commensurate AFM

order would answer whether the dispersion is originated from the IC-AFM Bragg point.

Moreover, in the cuprate superconductors, IC-AFM order is accompanied by charge ordering

[charge density wave (CDW)]. When the IC-AFM order is described by ~QAFM = ~Q ± n~ε with

n = odd integers and incommensurability ~ε, CDW appears at m~ε with m = even integers.
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Figure 6.2 (a) Imaginary part of the dynamic susceptibility measured by inelastic neutron

scattering experiments at 20 K (solid red circles) and 4 K (open blue circles). The

black line at 12 meV data is the sum of the normal state spin excitation (20 K)

and the spin resonance appearing as red line in (b). The black line for the normal

state data at 6 meV is from calculations using a diffusive model. (b) Resonance

intensities obtained by subtracting the normal state (20 K) intensity from intensi-

ties in the superconducting state (4 K). Red line at 20 K is from calculations using

a spin wave model. The data were collected at HB3 triple-axis spectrometer at the

High Flux Isotope Reactor at the Oak Ridge National Laboratory with 14.7 meV

final energy and 48’-60’-80’-120’ collimation.
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Motivated by IC-AFM order in Co and Ni substituted BaFe2As2 compounds, I have investigated

the occurrence of CDW in 5.4% and 5.7% Co substituted BaFe2As2 compound. The 5.4% Co

substitution shows C-AFM at ~QAFM = (1
2 ,

1
2 , 1)T [≡ (1, 0, 1)O] while 5.7% Co substitution shows

IC-AFM order at ~QAFM = (1
2 ,

1
2 , 1)T ± (ε,−ε, 0)T [≡ (1, 0, 1)O ± (0, ε, 0)O with ε = 2ε (I will

keep this relation from now on)]. If there is CDW, I expect to see additional scattering intensity

at ~QT± (2ε,−2ε, 0)T [≡ ~QO± (0, 2ε, 0)O] where ~QT (≡ ~QO) is charge Bragg peak positions [e.g.

(2,−2, 0)T ≡ (0, 4, 0)O]. However, I observed additional scattering intensities at ~QT± (ε, ε, 0)T)

[≡ ~QO±(ε, 0, 0)O] as shown in Fig. 6.3 (a). Since the positions of additional scattering intensities

do not match with conventional knowledge of CDW, I studied a 5.4% Co substituted compound,

which shows a commensurate AFM ordering, to test whether the observed intensities in 5.7%

Co substitution are related to IC-AFM ordering and found that additional scattering intensities

in 5.4% Co substitution appear at similar positions [Fig. 6.3 (b)]. I also measured temperature

dependence of intensities of the additional peaks. The intensities remain finite above TN, closely

follow the temperature dependence of the orthorhombic distortion, and disappear at TS [Fig. 6.3

(b)]. Taken together, the observed additional scattering intensities are likely not related to the

IC-AFM ordering but possibly to the structural transition. Further investigation will help to

understand the observation and may lead to deeper understanding of the structural properties.

As shown in the previous chapter, the enhanced impurity scattering in Cu substitution, than

Co and Ni substitutions, broadens the Fermi surface topology and leads to C-AFM order. If the

Fermi surface topology alters, I would expect to observe changes in spin fluctuations. Earlier

inelastic neutron scattering measurements on low Cu (2.9%) and Co (4.7%) doped BaFe2As2

compounds, which have C-AFM ordering and similar TS, TN and ordered moment sizes, show

that the normal state spin fluctuations are both qualitatively and quantitatively similar. It is of

great interest to study spin fluctuations in high Cu (∼ 4.4%) and Co (∼ 5.7%) or Ni (∼ 3.7%)

substituted BaFe2As2, which may shed a light on understanding impurity scattering effects.
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Figure 6.3 (a) Contour map around a charge peak (2, -2, 0)T measured by x-ray on 5.76% Co

doped BaFe2As2 (TS ≈ 43 K, TN ≈ 30 K, and Tc ≈ 21 K). Central intensities at (2,

-2, 0)T are from orthorhombic twin domains. Additional scattering intensities are

denoted with dotted circles which are nearly symmetric. The intensity at approx.

(2.015, -1.985, 0) is spurious and remains at all temperatures. (b) Contour map

at selected temperatures for 5.4% Co doped BaFe2As2 (TS ≈ 50 K, TN ≈ 36 K,

and Tc ≈ 19 K). Additional scattering intensities are denoted by dotted circles and

they become closer to the charge Bragg peak position (2, -2, 0)T as temperature

increases and vanishes above TS. The data were collected at 6ID-B at the Advanced

Photon Source at the Argonne National Laboratory with 16.2 keV incident x-ray

energy, 2 mm × 0.5 mm (horizontal × vertical) beam size and without analyzer.
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Corkett, D. R. Parker, D. G. Free, F. L. Pratt, P. J. Baker, S. J. Clarke, and S. J. Blundell.

Gradual destruction of magnetism in the superconducting family NaFe1−xCoxAs. Physical

Review B, 85:054503, 2012.

[208] Shiliang Li, Clarina de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, Jiangping Hu, Yi-

Lin Huang, Fong-Chi Hsu, Kuo-Wei Yeh, Maw-Kuen Wu, and Pengcheng Dai. First-



161

order magnetic and structural phase transitions in Fe1+ySexTe1−x. Physical Review B,

79:054503, 2009.

[209] Serena Margadonna, Yasuhiro Takabayashi, Martin T. McDonald, Karolina

Kasperkiewicz, Yoshikazu Mizuguchi, Yoshihiko Takano, Andrew N. Fitch, Emmanuelle

Suard, and Kosmas Prassides. Crystal structure of the new FeSe1−x superconductor.

Chemical Communications, pages 5607–5609, 2008.

[210] Satoshi Iikubo, Masaki Fujita, Seiji Niitaka, and Hidenori Takagi. Antiferromagnetic

fluctuations in Fe(Se1−xTex)0.92 (x = 0.75, 1) observed by inelastic neutron scattering.

Journal of the Physical Society of Japan, 78:103704, 2009.

[211] A. Martinelli, A. Palenzona, M. Tropeano, C. Ferdeghini, M. Putti, M. R. Cimberle, T. D.

Nguyen, M. Affronte, and C. Ritter. From antiferromagnetism to superconductivity in

Fe1+yTe1−xSex (0 ≤ x ≤ 0.20): Neutron powder diffraction analysis. Physical Review B,

81:094115, 2010.

[212] D. Fruchart, P. Convert, P. Wolfers, R. Madar, J.P. Senateur, and R. Fruchart. Struc-

ture antiferroma gnetique de Fe1.125Te accompagnee d’une deformation monoclinique.

Materials Research Bulletin, 10:169 – 174, 1975.

[213] R. Khasanov, M. Bendele, A. Amato, P. Babkevich, A. T. Boothroyd, A. Cervellino,

K. Conder, S. N. Gvasaliya, H. Keller, H.-H. Klauss, H. Luetkens, V. Pomjakushin,

E. Pomjakushina, and B. Roessli. Coexistence of incommensurate magnetism and super-

conductivity in Fe1+ySexTe1−x. Physical Review B, 80:140511, 2009.

[214] Kazumasa Horigane, Haruhiro Hiraka, and Kenji Ohoyama. Relationship between struc-

ture and superconductivity in FeSe1−xTex. Journal of the Physical Society of Japan,

78:074718, 2009.

[215] Jinsheng Wen, Guangyong Xu, Zhijun Xu, Zhi Wei Lin, Qiang Li, W. Ratcliff, Genda

Gu, and J. M. Tranquada. Short-range incommensurate magnetic order near the super-

conducting phase boundary in Fe1+δTe1−xSex. Physical Review B, 80:104506, 2009.



162

[216] Naoyuki Katayama, Sungdae Ji, Despina Louca, Seunghun Lee, Masaki Fujita, Taku J.

Sato, Jinsheng Wen, Zhijun Xu, Genda Gu, Guangyong Xu, Ziwei Lin, Masanori Enoki,

Sung Chang, Kazuyoshi Yamada, and John M. Tranquada. Investigation of the spin-glass

regime between the antiferromagnetic and superconducting phases in Fe1+ySexTe1−x.

Journal of the Physical Society of Japan, 79:113702, 2010.

[217] Nathalie C. Gresty, Yasuhiro Takabayashi, Alexey Y. Ganin, Martin T. McDonald,

John B. Claridge, Duong Giap, Yoshikazu Mizuguchi, Yoshihiko Takano, Tomoko Ka-

gayama andYasuo Ohishi, Masaki Takata, Matthew J. Rosseinsky, Serena Mar-

gadonna, and Kosmas Prassides. Structural phase transitions and superconductivity in

Fe1+δSe0.57Te0.43 at ambient and elevated pressures. Journal of the American Chemical

Society, 131:16944–16952, 2009.
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Langeheine, M. Reehuis, E. Schierle, Ph. Leininger, T. Herrmannsdörfer, J. C. Lang,

G. Srajer, C. T. Lin, and B. Keimer. Magnetic structure of RuSr2GdCu2O8 determined

by resonant x-ray diffraction. Physical Review Letter, 102:037205, 2009.



167

[262] F. de Bergevin, M. Brunel, R. M. Galèra, C. Vettier, E. Elkäım, M. Bessière, and
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Ch. Niedermayer, A. J. Drew, M. Willis, T. Wolf, and C. Bernhard. Coexistence and

competition of magnetism and superconductivity on the nanometer scale in underdoped

BaFe1.89Co0.11As2. Physical Review Letter, 105:057001, 2010.

[310] F. L. Ning, K. Ahilan, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and

D. Mandrus. 59Co and 75As NMR investigation of lightly doped Ba(Fe1−xCox)2As2

(x=0.02,0.04). Physical Review B, 79:140506, 2009.

[311] A. F. Kemper, C. Cao, P. J. Hirschfeld, and H.-P. Cheng. Effects of cobalt doping and

three-dimensionality in BaFe2As2. Physical Review B, 80:104511, 2009.

[312] A. P. Dioguardi, N. apRobertsWarren, A. C. Shockley, S. L. Bud’ko, N. Ni, P. C. Canfield,

and N. J. Curro. Local magnetic inhomogeneities in Ba(Fe1−xNix)2As2 as seen via 75As

NMR. Physical Review B, 82:140411, 2010.

[313] E. Fawcett et al. Spin-density-wave antiferromagnetism in chromium alloys. Reviews of

Modern Physics, 66:25, 1994.

[314] B. J. Sternlieb et al. Magnetism in the spin-density-wave alloy Cr1−xMnx (x=0.007).

Physical Review B, 50:16438–16443, 1994.



173

[315] R. S. Eccleston et al. Calorimetric and neutron diffraction studies of the commensurate

- incommensurate spin-density-wave phase transition of Cr+0.3 at.% Ru alloy. Journal

of Physics: Condensed Matter, 8:7837, 1996.

[316] R. S. Fishman and S. H. Liu. Free energy and phase diagram of chromium alloys. Physical

Review B, 48:3820–3829, 1993.

[317] N. Ni, A. Thaler, J. Q. Yan, A. Kracher, E. Colombier, S. L. Bud’ko, P. C. Canfield, and

S. T. Hannahs. Temperature versus doping phase diagrams for Ba(Fe1−xTMx)2As2 (TM

= Ni, Cu, Co, Cu/Co) single crystals. Physical Review B, 82:024519, 2010.

[318] R. M. Fernandes, M. G. Vavilov, and A. V. Chubukov. Enhancement of Tc by disorder

in underdoped iron pnictide superconductors. Physical Review B, 85:140512, 2012.

[319] H. Wadati, I. Elfimov, and G. A. Sawatzky. Where are the extra d electrons in transition-

metal-substituted iron pnictides? Physical Review Letter, 105:157004, 2010.

[320] E. M. Bittar, C. Adriano, T. M. Garitezi, P. F. S. Rosa, L. Mendonça-Ferreira, F. Garcia,

G. de M. Azevedo, P. G. Pagliuso, and E. Granado. Co-substitution effects on the Fe

valence in the BaFe2As2 superconducting compound: A study of hard x-ray absorption

spectroscopy. Physical Review Letter, 107:267402, 2011.

[321] G. Levy, R. Sutarto, D. Chevrier, T. Regier, R. Blyth, J. Geck, S. Wurmehl, L. Harnagea,

H. Wadati, T. Mizokawa, I.S. Elfimov, A. Damascelli, and G.A. Sawatzky. Probing the

role of Co substitution in the elctronic structure of iron-pnictide. arXiv:1203.5814v1,

2012. unpublished.

[322] D. K. Pratt, M. G. Kim, A. Kreyssig, Y. B. Lee, G. S. Tucker, A. Thaler, W. Tian,

J. L. Zarestky, S. L. Bud’ko, P. C. Canfield, B. N. Harmon, A. I. Goldman, and R. J.

McQueeney. Incommensurate spin-density wave order in electron-doped BaFe2As2 su-

perconductors. Physical Review Letter, 106:257001, 2011.

[323] Huiqian Luo, Rui Zhang, Mark Laver, Zahra Yamani, Meng Wang, Xingye Lu, Miaoyin

Wang, Yanchao Chen, Shiliang Li, Sung Chang, Jeffrey W. Lynn, and Pengcheng Dai.



174

Coexistence and competition of the short-range incommensurate antiferromagnetic order

with the superconducting state of BaFe2−xNixAs2. Physical Review Letter, 108:247002,

2012.

[324] J. T. Park et al. Symmetry of spin excitation spectra in the tetragonal paramagnetic and

superconducting phases of 122-ferropnictides. Physical Review B, 82:134503, 2010.

[325] D. D. Johnson, D. M. Nicholson, F. J. Pinski, B. L. Gyorffy, and G. M. Stocks. Density-

Functional Theory for Random Alloys: Total Energy within the Coherent-Potential Ap-

proximation. Physical Review Letter, 56:2088–2091, 1986.

[326] Aftab Alam and D. D. Johnson. Optimal site-centered electronic structure basis set from

a displaced-center expansion: Improved results via a priori estimates of saddle points in

the density. Physical Review B, 80:125123, 2009.

[327] Aftab Alam, Brent Kraczek, and D. D. Johnson. Structural, magnetic, and defect prop-

erties of Co-Pt-type magnetic-storage alloys: Density-functional theory study of thermal

processing effects. Physical Review B, 82:024435, 2010.

[328] Tom Berlijn, Chia-Hui Lin, William Garber, and Wei Ku. Do transition-metal substitu-

tions dope carriers in iron-based superconductors? Physical Review Letter, 108:207003,

2012.

[329] M. G. Vavilov and A. V. Chubukov. Phase diagram of iron pnictides if doping acts as a

source of disorder. Physical Review B, 84:214521, 2011.

[330] G. S. Tucker, D. K. Pratt, M. G. Kim, S. Ran, A. Thaler, G. E. Granroth, K. Marty,

W. Tian, J. L. Zarestky, M. D. Lumsden, S. L. Bud’ko, P. C. Canfield, A. Kreyssig, A. I.

Goldman, and R. J. McQueeney. Competition between stripe and checkerboard magnetic

instabilities in Mn-doped BaFe2As2. Physical Review B, 86:020503, 2012.



175

ACKNOWLEDGMENTS

Foremost, I am deeply grateful to my advisors Alan I. Goldman and Andreas Kreyssig;

working with them has been an invaluable experience. They continuously stimulate my curios-

ity; motivate new ideas; enable me to test my ideas; encourage me to participate in intense

discussion; guide and enlighten me when lost in physical, intellectual, and reciprocal spaces.

I have been very privileged to get to know them and to be trained by them. My time as a

Ph.D. student was sometimes very tough and painful but ultimately successful and worthwhile;

I could not imagine a better experience.

Second of all, I would like to thank Robert J. McQueeney, the Ames Laboratory FWP leader.

He guided me through inelastic neutron scattering. Whenever I struggled with interpreting

inelastic neutron data, he took his time and explained everything to me in great detail. These

discussions provided me with a deeper understanding of neutron scattering experiments.

I can not thank enough the people who helped me with my experiments. I would like

to thank Paul C. Canfield and his pirates in Zaffarano Hall − Sergey Bud’ko, Ni Ni, Alex

Thaler, and Sheng Ran − for their excellent single crystals. I especially thank Alex Thaler and

Sheng Ran for their immediate help with characterization of samples and sample preparation.

I also would like to thank Jerel Zarestky and Wei Tian for their help with neutron diffraction

experiments. Without a wide variety of help from Jerel Zarestky and Wei Tian, I would have

failed all the experiments that I performed at the High Flux Isotope Reactor. In addition, I

would like to thank Mark Lumsden, Andrew Christianson, and Karol Marty for their assistance

with inelastic neutron scattering experiments at the Oak Ridge National Laboratory. Their

contribution to my work was indispensable. I would like to thank Jong-Woo Kim, Douglas

Robinson, Phillip Ryan, and Jonathan Lang for their enthusiastic help with x-ray resonant

magnetic scattering experiments at the Advanced Photon Source. I appreciate all discussion

that I had with Jong-Woo Kim and his advice on life as a Ph.D. student. I also thank Thomas



176

Heitmann at the University of Missouri Research Reactor for excellent experimental support

at TRIAX.

Theoretical contributions and calculations have been performed by several people at the

Ames Laboratory: Raphael Fernandes, Jörg Schmalian, Yongbin Lee, Bruce N. Harmon, Suffian

Khan, and Duane Johnson. I have benefited from their expertise and gained a more profound

understanding of the underlying physics.

I am thankful to Bruce N. Harmon, James Cochran, and Ralph E. Napolitano for serving

on my program of study committee, providing useful discussion, and allowing me to see outside

of a box called “condensed matter physics”.

I thank to my fellow group members: Shibabrata Nandi, Daniel K. Pratt, Gregory S. Tucker,

and Gustav E. Rustan. I very much enjoyed working with them and I learned many different

things from them; not only about research and physics but also about friendship and life in

the US. I also thank the new members of our group: Jing han Soh, Wageesha Jayasekara, and

Aashish Sapkota. Although the time we have shared is short, watching them endeavoring to

learn lab work has made me recall my first-time in the lab and has reminded me why I chose

this path.

I thank my friends Sarah Willis, Bert Pablo, Gustav E. Rustan, Gregory S. Tucker, Eundeok

Mun, Sung-Ju Kang, Stella Kim, Hyunsoo Kim+Halyna Hodovanets, Kyuil Cho, Joong-Mok

Park, Youngsoo Seol, Hyuntae Na, Nakheon Sung, Bongkyu Song, Donghan Shin, and Woosung

Jung. I would like to add special thanks to Lei Ding.

Last but not least, I would like to thank to my father, mother, sister and brother-in-law for

their infinite support, encouragement, and belief in me. I could not have done this without my

family.

This work was supported by the Division of Materials Sciences and Engineering, Office of

Basic Energy Sciences, U.S. Department of Energy. Ames Laboratory is operated for the U.S.

Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.

Work at the High Flux Isotope Reactor, Oak Ridge National Laboratory, was sponsored by

the Scientific User Facilities Division, DOE/OBES. Use of the Advanced Photon Source was

supported by the US DOE under Contract No. DE-AC02-06CH11357.


	2012
	Structural and magnetic properties of transition metal substituted BaFe2As2 compounds studied by x-ray and neutron scattering
	Min Gyu Kim
	Recommended Citation


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. Introduction
	1.1 ``Conventional" and ``Unconventional" superconductors
	1.2 Phase diagrams of ``unconventional" superconductors
	1.3 Purpose of dissertation

	2. Introduction to the FeAs-based superconductors
	2.1 Superconductivity
	2.1.1 1111 family
	2.1.2 122 family
	2.1.3 111 family
	2.1.4 11 family

	2.2 Commonalities of the Crystallographic Structure
	2.3 Phase Transitions : Structural and Magnetic Transitions
	2.3.1 1111 family
	2.3.2 122 family
	2.3.3 111 family
	2.3.4 11 family

	2.4 Interplay between Superconductivity, Antiferromagnetism, and Structure
	2.4.1 Interplay between superconductivity and antiferromagnetism
	2.4.2 Interplay between superconductivity and structure


	3. Overview of Experimental Techniques
	3.1 X-ray Scattering Technique
	3.1.1 High Resolution X-ray Diffraction
	3.1.2 X-ray Resonant Magnetic Scattering (XRMS)

	3.2 Neutron Scattering Techniques
	3.2.1 Aspects of Neutron Diffraction Experiment


	4. Structural and Magnetic properties of Transition metal (TM = Co, Rh, Ru, and Mn) substituted BaFe2As2 compounds
	4.1 Nature of Phase Transitions in the parent BaFe2As2 compound
	4.1.1 Experimental Details
	4.1.2 Orthorhombic twin domains and the AFM Bragg peak
	4.1.3 XRMS spectra
	4.1.4 Nature of Phase transitions

	4.2 Evolution of the Nature of Phase transition in Co and Rh substituted BaFe2As2 compounds
	4.2.1 High-resolution x-ray diffraction and resistance measurements of Ba(Fe1-xCox)2As2 and Ba(Fe1-xRhx)2As2
	4.2.2 Discussion

	4.3 The Effect of Ru substitution on the parent BaFe2As2 compounds
	4.3.1 Experimental Details
	4.3.2 Effects on TS, TN, and ordered moment
	4.3.3 Effect of Superconductivity on AFM ordering and Structural distortion

	4.4 The Effect of Mn substitution on the parent BaFe2As2 compounds
	4.4.1 Effects on TS, TN, and ordered moment
	4.4.2 AFM order in Ba(Fe1-xMnx)2As2 for x  0.118

	4.5 Discussion and Summary

	5. Commensurate/Incommensurate antiferromagnetic order in transition metal substituted BaFe2As2 compounds
	5.1 Introduction
	5.2 Experimental details
	5.3 Commensurate to Incommensurate transition
	5.3.1 Commensurate AFM order: XRMS on Ba(Fe0.953Co0.047)2As2 compound
	5.3.2 Incommensurate AFM order in Ba(Fe1-xTMx)2As2 compounds (TM=Co)
	5.3.3 Incommensurate AFM order in Ba(Fe1-xTMx)2As2 compounds(TM=Ni, Cu)

	5.4 Discussion and summary

	6. Conclusions and Outlook
	6.1 Conclusions
	6.2 Outlook

	BIBLIOGRAPHY
	ACKNOWLEDGMENTS

