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ABSTRACT

This thesis aims to provide better understanding of mass loss and outflows from asymptotic

giant branch stars using the Bowen code. There are 3 projects involved in this thesis. The main

project presented here is on the morphology of the outflow when disturbed by a super Jupiter

size companion. There exists resonant modes between the pulsation period and orbital period.

At different resonant modes, multiple spiral arms with different spiral arm periods form in the

outflows. A simple formula gives the spiral arm period as a function of pulsation and orbital

periods. Since the resonant modes appear in close orbits, the decay time scale and spiral arm

morphology are also presented. These results may explain asymmetry in the outflows that form

planetary nebulae. It also explains the origin of the spiral arm structure around some late AGB

stars. A 3-D code will ultimately be need to resolve some questions unanswered by the current

1-D models. The paper on the outflow morphology has been submitted to ApJ.

In this thesis, ongoing mass loss studies using the Bowen code are also briefly explained.

I generated a large grid of models with varying mass, luminosity, metallicity, mixing length

and Bowen model parameters in order to find correlations between the mass loss rate and

these parameters. Since dust abundance is an important factor for mass loss, for the third

project I tested dust formation in the refrigeration zone which is closer to the photosphere

than normal dusty regions. In this test, I assumed that the dust temperature equals to the

gas kinetic temperature which is lower than the radiative equilibrium temperature. Since dust

temperature is close to the radiative temperature when the dust grain is large, this assumption

brings excessive dust into the refrigeration zones. The detailed treatment of dust formation

will be refined in future studies.
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CHAPTER 1. From AGB stars to Planetary Nebulae

1.1 Overview

Asymptotic Giant Branch (AGB) stars are the final stage in stellar evolution for low and

intermediate mass stars. These stars develop very dense cores and vigorous burning shells which

greatly increase the size of the stars. Therefore the surface gravity is very low compared to their

main sequence counterparts. As the core grows bigger, a series of thermonuclear flashes occur.

The flashes change the size of the star temporarily and cause the deepening of the convective

zones to bring up the heavy elements, so the abundance of the surface elements changes as

well. At the same time, due to the instability in the H and He ionization regions, the stellar

atmosphere starts to pulsate at a period on the order of 1 year. Energy is transferred into the

atmosphere by shocks generated through pulsation. This results in the levitation of gaseous

materials to cooler regions up in the atmosphere. When gas is significantly cooled down,

molecules and dust grain are formed. Dust grains are very efficient in absorbing radiations and

transferring momentum into the gas. This further pushes the material out of the gravitational

trap of the star and forms a mass-losing outflow. When the mass loss rate is low, it does not

change the evolution of the star significantly and the luminosity and the radius of the star keep

increasing. This in turn stimulates the mass loss rate. Eventually the moderate mass outflow

becomes a ”superwind” (Bowen & Willson, 1991) that terminates the stellar evolution.

After the envelope is removed, the surface temperature increases dramatically to above

10000K. The blue light from the central star ionizes the escaping envelope and turns the latter

into a spectacular planetary nebula. Planetary nebulae, unlike their spherically symmetric

progenitors, always appear in a wide variety of shapes. Therefore the morphology of the

planetary nebulae is of great interest to astronomers. Magnetic fields, close companions and
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central disks are often thought to be the origin of this asymmetry.

The above is a short story of this transition stage between AGB stars and white dwarfs.

Most of my studies focused on the mass loss of this stage. Since mass loss phase is only part

of the AGB evolution, most of the modeling are based on late AGB stars. The questions I am

trying to answer are: Why do stars lose mass after choosing not to for a billion years? What

mechanisms dominate the mass loss process? How much can a small companion contribute

to the planetary nebula morphology? Chapter 1 is a general overview of the properties of

AGB stars, which set stages for this mass outflow. In Chapter 2, I talk about studies of

mass loss and grain formation. Our mass loss formula covers a large parameter space and is

intended to find the intrinsic dependence of mass loss on the stellar parameters and physical

processes. In Chapter 3, morphology of the outflow when disturbed by a small companion is

presented. We find interesting multiple spiral arms patterns caused by the resonance between

the pulsation period and orbital period. Chapter 4 presents a new set of equations suitable for

3-D simulations, which is more likely to solve more puzzles in the outflow morphology.

1.2 The state of AGB stars

It’s important to discuss the general properties of AGB stars first. It helps us to understand

why it is fit to have mass loss at this stage. In this section, only the general behavior of an

AGB star is considered. Low mass stars have a mass range from 0.8-1.0 M� to 2-2.3 M� (Iben

& Renzini, 1983). Chabrier & Baraffe (2000) sets an even lower limit 0.08 M� to distinguish

low mass stars from brown dwarfs. Nevertheless low mass stars consists most of the stellar

population in the universe (Kroupa, 2002). Intermediate mass stars have a mass range from

2.5-3 M� to 8-9 M�. They have common phases like red giant branch (RGB) and asymptotic

giant branch (AGB) when stars are big and surface gravity is low. Mass loss has been detected

for both phases (Origlia et al., 2002; Dupree, 1986), but the mechanisms for RGB mass loss is

not clear. This thesis focuses on the AGB mass loss stage.

First of all, an AGB star is very big. Figure 1.1 shows the Hertzsprung-Russell diagram

(logTeff vs logL, HR diagram) of a star with initial mass 2.0 M�. For comparing the size of the

star, some mid-ranged values are picked at the corresponding regions for Main-sequence, RGB
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and AGB stars shown in Table 1.1. As we can see, the size of the star keeps increasing along

the evolution with main sequence phase smallest and AGB phase largest. Thus the weakest

gravitational attraction occurs during the AGB phase.

Figure 1.1 Hertzsprung-Russell diagram of a 2 M� evolutionary track from the main sequence

to a white dwarf. The values in Table 1.1 are picked from the middle of the shaded

regions. The numbers beside the shaded regions indicate the log evolution time

scales. The blue track shows a possible born-again evolution triggered by a very

late thermal pulse. It has been shifted by ∆logTeff ∼ −0.2 and ∆logL/L� ∼ −0.5

for clarity. The graph is from Herwig (2005)
.

Table 1.1 Comparison of Radius, Luminosity, Temperature and surface gravity for the star in

Figure 1.1 at different evolutionary phases.

Evolutionary phases T (K) L/L� R/R� g/g�
Main Sequence 6300 30 4.6 0.1

RGB 4000 1000 70 4× 10−4

AGB 3100 3000 200 5× 10−5

Pioneering works proved that dust and pulsations are very important for generating mass

loss in the 70’s (Wood, 1979; Hill & Willson, 1979; Willson & Hill, 1979). Pulsating stars

are also observed as dust factories and experiencing heavy mass loss (Knapp & Morris, 1986;
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Monnier et al., 1998). Later on Bowen (1988); Gail & Sedlmayr (1987) provided basic methods

for modeling of mass loss on M and C stars.

The modeling of the interior has been explored by plenty of authors (Wood, 1979; Ostlie et

al., 1982; Ostlie & Cox, 1986). The driving zones are located at the hydrogen ionization zone

and the first helium ionization zone. The energy transport becomes radiative from the driving

zone outside the driving zone. In the Bowen code, the formula from Ostlie & Cox (1986) have

been adopted.

logP0 = −1.92− 0.73logM + 1.86logR (1.1)

logP1 = −1.60− 0.51logM + 1.59logR (1.2)

These are linear radial fundamental and first overtone pulsation periods. M and R are in

units of the Sun. P is in the unit of days. The nonlinearity of the stellar pulsations does not

dramatically change the structure of the star (Barthes, 1998; Ya’Ari & Tuchman, 1996). So

the linear equations used here are considered suitable.

The pulsations create shocks in the upper atmosphere. This mechanism enhances the

density around the star. Without additional momentum input, this ends up being a ballistic

motion. Most material returns to the star (Hill & Willson, 1979; Willson & Hill, 1979; Bowen

& Willson, 1991). Near the top of the ballistic motion, radiation pressure plays a important

role in supporting the outflow.

Besides having the lowest surface gravity, stars at AGB phase also have the most heavy

elements in the atmosphere (Herwig, 2005). Starting from the main sequence phase, a stellar

surface consists of mostly hydrogen and helium. These two elements are transparent to radiation

in most of the temperature range. The surface material feels negligible radiation pressure at

this stage. As a star becomes a red giant following the exhaustion of the hydrogen in the core,

the size of the star changes dramatically. This change in size causes the base of the convective

envelope to extend into the zones where materials experienced hydrogen nuclear burning. This

process is called “first dredge-up”; it produces a change in the surface CNO abundance from

C:N:O =1/2:1/6:1 to C:N:O ∼= 1/3:1/3:1(Iben, 1967; Iben & Renzini, 1983). Similarly when

central helium is exhausted and a denser electron degenerate C and O core is formed for an
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intermediate mass star, second dredge-up occurs. Initially more C is brought up to the surface,

but after C is processed through the H-burning shell, the final CNO abundances become C:N:O

∼= 0.29:0.52:0.86 (Iben & Renzini, 1983). Low mass stars do not go through second dredge-up.

Instead, they experience core helium flash which also assists the element-mixing process. At

this stage, the star has more oxygen than carbon on the surface. After an AGB star reaches

certain luminosity, it starts the thermal pulse phase (TP-AGB). The helium shell burning and

hydrogen shell burning take place alternatively, causing a regular change in the size of the star

on a time scale of 1000 - 10,000 years. The TP-AGB experiences multiple third dredge-ups

as thermal pulses repeat. Depending on the dredge-up efficiency, more C is brought to the

outer envelope. The hydrogen shell burning can not convert C into N fast enough. So the

surface C abundances keeps increasing and turn the star into S star (C/O∼1) and finally C

star (C/O>1) as illustrated in Figure 1.2. Figure 1.3 shows the deepening of the convective

zones during different dredge-ups. The material that was once below the hydrogen burning shell

containing more heavy elements is mixed into the upper envelope during the third dredge-ups.

These heavy elements are in the gaseous state in the atmosphere where the temperature is

above 2000k (Gail & Sedlmayr, 1999). When lifted to cooler regions by the pulsation, they start

to condense into dust grains. Dust is very effective in absorbing the radiation and transferring

the momentum into the outflow (Willson, 2000; Höfner, 2009). So it is important to study the

chemistry in the AGB atmosphere.

According to Figure 1.2, there are three different phases for surface compositions. Early

work done by Gilman (1969) provided a wide range of dust species. Recent works by Gail

& Sedlmayr (1999); Ferrarotti & Gail (2001, 2002) suggests the dominating dust species are :

M-star (C<O): olivine-, pyroxene- and quartz-type silicate dust grains and metallic iron dust

grains; S-star (C∼O): metallic iron and quartz-type dust grains; C-star (C>O): carbon, SiC

and metallic iron dust grains.

The surface temperature of a AGB star is around 3000K which is a bit high to form a lot

of dust. According to Gail & Sedlmayr (1987, 1999), strong condensation only happens below

1500K where the density and radiation are both low in stationary atmosphere. Bowen models

produce pulsation induced refrigeration zone which could meet dust condensation condition
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Figure 1.2 This figure shows the relative abundances of C and O in three different phases

during AGB evolution. In Chemical equilibrium, the less abundant elements are

completely bound in CO, the excess O (M star) or C (C star) is available for

molecule and dust grain formations. This graph is from Höfner (2009)
.

around 2-3 RAGB as shown in Figure 1.4. Gail & Sedlmayr (1999); Nuth & Ferguson (2006)

suggested nucleation onto seeds from high-temperature condensates as a way of generating dust

close to the star. Details of dust condensation will be discussed in Chapter 4.

In this section, I have reviewed some characteristics of AGB stars: low surface gravity,

pulsation due to self instability and rich dust content to absorb radiation. With these conditions

ready, the low- and intermediate-mass AGB stars will eject their envelopes and end up as white

dwarfs.

1.3 Studies on Mass Loss

Mass loss is very important to AGB evolution. Without mass loss, a large fraction of 1.4-10

M� stars would blow up as a supernova. Mass loss from intermediate mass stars changes the

population distribution of the end product (Willson, 2000). It also has a deep connection with
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Figure 1.3 The convective regions of 7M� between 5th and 6th thermal pulses. The shaded

region indicates the convective dominated zones. The dashed lines indicate the

hydrogen-helium interface before corresponding dredge-ups. This graph is from

Iben (1976)
.

studies of the interstellar medium (ISM). It plays an important role in the chemical evolution

of galaxies (Dwek, 1998). Here I limited my discussion only to cool stars, because the models

involved in my study focuses on AGB stars. For a more complete overview, check Willson

(2000); Kudritzki & Puls (2000); Lamers & Cassinelli (1996).

Due to the low temperature in the atmosphere of AGB star, it is hard to directly measure

the hydrogen and helium gas around them. Instead, observers detect certain elements from low

energy emissions to find out certain characters of the outflow, such as the size of the envelope,

the column density of the detected element and the speed of the outflow, etc. From there, they

make assumptions about the density or the ratio between the gas and the detected element to

calculate the mass loss outflow. These assumptions introduce uncertainties.
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Figure 1.4 This figure shows the pulsation of the atmosphere from the Bowen code. The

shaded region has kinetic temperature lower than the radiative equilibrium tem-

perature due to rapid expansion. This provides a region with gas pressure larger

than the saturation pressure for dust condensation. Dust may form in this region

close to the star. This graph was created by Bowen and appeared in Willson (2000)
.

In optical band, CaII H and K lines absorption can be used to measure the mass loss rate.

But the ionization structure of Ca is complicated and can lead to large uncertainties. Early

studies using this technical resulted in the famous Reimers formula(Reimers, 1975, 1977):

Ṁ = −η × 4× 10−13
L

gR
M�yr

−1, (1.3)

Reimers equation has been widely used in evolutionary codes for cool stars. But it may not

reveal the true of stellar mass loss due to selection effect from observation data (Willson, 2000).

Infrared spectrum is also a good tool to detect dust. Dust shows an infrared excess in the

spectrum from 1 - 12µm wavelength (Rowan-Robinson & Harris, 1983a,b). The IRAS catalog

provides useful color plots in diagnosing dusty winds. Some important works have been done

by Jura (1986, 1987); Knapp et al. (1995) to study mass loss using dust emissions. More

recently, Origlia et al. (2002) provided a survey on mass loss from red giants in Tuc 47 using
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similar techniques. In M stars, the excessive O forms H2O which is abundant around these

stars. When H2O flows into the interstellar medium, it is photodissociated by the interstellar

ultraviolet radiation and produces OH. Due to self-shielding of H2O on the OH abundance, the

OH concentrates in a shell at a certain distance depending on the mass loss rate and outflow

speed (Huggins & Glassgold, 1982; Netzer & Knapp, 1987). Thus by measuring the OH shell

density and location and outflow velocity, one can estimates the mass loss rate. By monitoring

OH masers, Baud & Habing (1983) developed another empirical mass loss law based on the

Reimers equation. CO is another abundant molecules in AGB atmosphere. Due to its high

bounding energy, it is common in all three types of AGB stars in section 1.1. Its rotational

line emission is very reliable and has been detected from many evolved stars (Knapp & Morris,

1985). It is one of the best indicator of mass loss.

As the variety of the observational data increases, other empirical relations were found

by fitting different stellar parameters. Nieuwenhuijzen & de Jager (1990) investigated the

dependence of mass loss on M, R and L with a sample of 247 stars and found the following

relation:

− Ṁ = 9.6310−15(L/L�)1.42(M/M�)0.16(R/R�)0.81M�yr
−1. (1.4)

Vassiliadis & Wood (1993) developed another empirical relation based on the pulsation periods.

For M < 2.5M�,

logṀ(M�yr
−1) = −11.4 + 0.0123P (days). (1.5)

For M > 2.5M�,

logṀ(M�yr
−1) = −11.4 + 0.0123(P (days)− 100(M/M� − 2.5)). (1.6)

The four empirical equations for mass loss are plotted in Figure 1.5. They all fit to their

corresponding data set, but they are all different by a lot in certain regions. This implies

dependence on more stellar parameters which are not showing up in the empirical equations.

Empirical relations usually suffer from selection effects Bowen & Willson (1991); Willson (2000).

But the mass-losing stars are always obscured by dust shells, and their sizes constantly changing

due to pulsations. It’s really hard to get accurate measurement of M, L and R for these stars.
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Figure 1.5 Mass loss rate vs. luminosity for four empirical relations. In the first 3 panels,

M= 0.1, 1, 1.4, 2, 2.8 and 4M�. In the fourth panel, M = 5, 6 and 8M� are added

since the equation is suitable for more massive stars. The line cross the curves

shows the location of deathline, which is described in Figure 1.7. This graph is

from Willson (2000)
.

On the other hand, astronomers have made great progress in predicting stellar parameters in

AGB evolutions. These parameters can be connected to the mass outflows in theoretical studies.

Early works done by Parker in 1960’s provide a solid background for stationary solar type winds.

But it has been long proven out of connection with giant star outflows. Theoretical works all

proved that the dust and pulsation can potentially input momentum into the atmosphere

and enhance the outflows. At the same time, most mass losing cool stars are pulsating and

surrounded by dust. So the pulsation and dust driven wind theory is the main stream (Willson,

2000; Höfner, 2009).

Wood (1979); Hill & Willson (1979); Bowen (1988) studied time dependent dynamical
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models of pulsating atmosphere and dust driven winds. These models use parameterized dust

and gas opacities without considering the detailed chemistry in the atmosphere. They are good

for predicting mass loss rates giving reasonable conditions but weak in distinguish dust types

in M-, S- and C-stars. Bloecker (1995) took models from Bowen (1988) and fitted to a power

law to estimate mass loss rates for AGB evolution studies. Arndt et al. (1997) used the code

of Fleischer et al. (1992) to calculate mass loss rate for C stars. The corresponding mass loss

formulas are plotted in Figure 1.6.

Figure 1.6 Mass loss rate vs. luminosity for theoretical mass loss relations. The deathline is

shown in the middle as in Figure 1.5. This graph is from Willson (2000)
.

We can define a deathline by Ṁ/M = L̇/L, where the mass loss starts to dominate the AGB

evolution. The deathzone is a range of luminosities around deathline with the corresponding

mass loss rate 0.1× Ṁdeath < Ṁ < 10× Ṁdeath. The deathzone is a transition region between

the normal AGB evolution and mass loss phase. Before the deathzone, the mass loss rate is very
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low and does not affect the evolution. After the deathzone, stars lose most of their envelope,

then evolve towards white dwarfs. The deathline for Bowen models is presented in Figure 1.7.

Figure 1.7 The evolution of mass and luminosity for solar composition stars experiencing

heavy mass loss. There is a sharp “corner” where stars change their evolution

phase. This graph is from Willson (2000)
.

Mass loss models with dust species are also of great interest to astronomers. They provide

a population of elements and molecules which is very useful for spectrum studies. C-type

stars have been most extensively modeled because lots of lab data are available for carbon

condensation. Early studies focused on dust formation and chose a stationary wind (Gail

& Sedlmayr, 1988; Gauger et al., 1990). This quickly turned into time-dependent radiative

hydrodynamics with pulsation in dust formation models (Fleischer et al., 1992). These models

showed an instability due to exterior κ mechanism, which could generate multiple circumstellar

shells (Fleischer et al., 1995; Hoefner & Dorfi, 1997; Dreyer et al., 2011). Another instability

caused by grain drifting velocity and dust formation was also investigated by Simis et al. (2001)

as a possible mechanism for forming large scale structures. ‘ M-stars have been less studied

due to the complications of the dust chemistry. Gail & Sedlmayr (1999) and Ferrarotti &

Gail (2001, 2002) made important suggestions about the dust species available in oxygen rich

stars. Woitke (2006a) found that the radiative acceleration of O-rich dust is too weak to give

significant dust driving, but Höfner (2008) solved this problem by introducing micron-sized

iron-free olivine-type grains. Her results yielded satisfactory mass loss for M stars. S stars are

rarely considered in theoretical studies due to the expected lack of dust; the expectation for
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dust species in S stars were studied by Ferrarotti & Gail (2002).

Using a mass loss formula, AGB evolution studies can take the mass variation into consid-

eration (Wachter et al., 2002; Marigo & Girardi, 2007) for a better understanding of the final

product. In chapter 2, we present a mass loss study covering a wide range of parameters using

the Bowen code. This improved mass loss formula will give astronomers better insight into this

mass loss phenomenon.
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CHAPTER 2. The Bowen code and mass loss

In this chapter, the Bowen code and its setup are briefly described. The ongoing modeling

of mass loss for a large grid of pulsating stars and modeling parameters is discussed. Finally,

a study of the dust grain life cycle through shocks is carried out using this code.

2.1 The Bowen code

The Bowen code is built on a Lagrangian grid. There is no mass transfer between grid cells

and the grid size can change dynamically. The radiative equilibrium temperature is calculated

based on a spherically grey atmosphere approximation. The gas temperature is determined

by the dynamics of the gas, the hydrogen cooling at high temperature, the dust heating and

cooling and the density-dependent heating and cooling. The critical density is defined by

Q
QRE

= 1
1+ρcrit/ρ

. Q and QRE are the actually and equilibrium heating and cooling of the

gas. At low density, cooling and heating by radiation are both inefficient. Beside pressure

and gravity, dust and molecules also absorb radiation and transfer momentum into the gas.

The dust and molecular opacities are considered grey opacities with parametrized temperature

dependence. The advantage of the Bowen code is that it is easy to adjust and fast to run, but it

lacks details of the dust formation process and can not be used to compute the spectrum from

the outflow. It has also been suggested (Höfner, private communication) that (a) the mean

opacity we have used for most models is too low, giving an atmosphere that is too massive; (b)

the grey approximation does not take into account essential physics of the wind mechanism.

In our large grid, we test the effects of varying the opacities.

The Bowen code is a 1-D code, dividing the atmosphere into concentric spherical zones

at specific position R. Rotation and magnetic effects are assumed negligible. Standard finite-
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difference methods are used following the equations in Ritchmyer & Morton (1967). The

zones are set up based on Lagrangian coordinates and solved by explicit integration. Time

steps are calculated in each step by taking the smallest of 3 constraints. (1) ∆t <P/200, (2)

∆t < 0.6 ∗ (∆r/vsound), (3) Volume change ∆V/V < 0.2.

The ideal gas law is used with a constant mean molecular weight µ = 1.26. It is assumed

that γ=5/3. The radiative equilibrium temperature TRE is calculated using the spherical

Eddington approximation for a gray atmosphere Chandrasekhar (1934). The gas opacity, κ,

has been assumed to be uniform. The radiative equilibrium temperature is found for all zones,

even those out of radiative equilibrium, because dynamical cooling is handled as a relaxation

towards TRE . We expect to be able to use more detailed information to improve the treatment

of the gas opacity.

The energy treatment for the gas includes density dependent heating and cooling by ra-

diation, temperature changes due to compression and expansion, and heating or cooling by

interaction of the gas with the dust. The dust is assumed to be at the appropriate radiative

equilibrium temperature taking into account the albedo function for silicates. (So far, we have

not consider carbon-based dust.) This leads to the different temperatures for dust and gas.

Even though shock waves may dramatically increase the gas temperature, shocks do not nec-

essarily destroy the dust within the gas; this leaves more dust in the post-shock material and

helps accelerate the mass loss.

Recent discussions (Höfner, 2009) suggest that the composition of dust in both carbon and

oxygen-rich Mira atmospheres is a mixture of carbon-based and silicate grains. We expect to

be able to use the Bowen code to explore the effects of various non-equilibrium mixtures of

dust parameters on the winds.

2.1.1 Mass loss rate study

In collaboration with Lee Anne Willson, I have generated a large grid of models using

the Bowen code to test the mass loss rate. These models cover a parameter space shown in

Table 2.1.

The condensation temperature is the temperature when half of the heavy elements condense
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Table 2.1 The parameter space used to test mass loss rate.

Mass (M) 0.8, 1.0, 1.2, 1.4, 1.7, 2.0 M�
Metallicity (Z) 0.02, 0.002, 0.0002 0.00002 Zodot
Mixing Length (l/H) 0.7, 0.9, 1.1

gas opacity (κ) 0.0004, 0.004, 0.04 cm2/g

critical density (ρcx) 10−10,10−11,10−12g/cm3

condensation temperature (Tcond) 1150, 1250, 1350, 1450 K

Piston power adjustment (Pp) 0.9, 1.0 , 1.1

into dust grains. These temperatures are used to fit the Si dust behavior in O stars. The piston

power adjustment is variation the piston power in the Bowen code. This parameter space gives

us a better understanding of how mass loss rate depend on properties of the star (L, M, R,

Z) and the physical processes in the models (ρcx, Tcond, κ, Pp). The results will be published in

Willson et al. (2011).

2.2 Life cycle of dust in a pulsating atmosphere

In a pulsating atmosphere, the conditions in the refrigerated zone fits the conditions ex-

pected to lead to dust formation as mentioned in Chapter 1. Here I did some preliminary tests

on the carbon dust life cycle using the Bowen code to determine the density, kinetic temper-

ature as a function of the phase and radial pulsation. The model parameters are shown in

Table 2.2.

Table 2.2 The stellar parameters used to test the dust life cycle.

Mass 1 M�
Luminosity 3000 L�
R 189 R�
Teff 3105K

Period 207 days

Amplitude 2.2 km/s

This model satisfies Eqn. 1.1 . The resulting mass loss calculated from Bowen’s code is

10−9M�/yr. Four zones (21, 46, 71, 96) are plotted in Figure 2.1. Zone 21 is set to be the

photosphere of the star. Zone 96 is where R = 2Rstar. The middle zones are evenly placed.

The first figure shows the gas temperature and dust temperature evolution in each zone. Since
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dust is considered a blackbody, it carries the equilibrium temperature. The gas temperature

is dynamic. Near the photosphere, the density is high and the non-LTE effect is weak, so the

temperature difference is small. At zone 46, the density has dropped by an order of 2 (1% of

photosphere), and the difference between gas temperature and dust temperature is significant.

A refrigerated zone is created after a strong shock, generating the lowest kinetic temperature

of the 4 test zones. In zone 76 and 96, the kinetic temperature is obviously higher than the

equilibrium temperature. This is due to the mechanical heating by the shocks and the lack of

cooling in thin gas.

Figure 2.1 This figure shows the gas temperature (Tkin) and dust temperature (TRE) oscilla-

tions vs. time in 4 test zones.

The time scale for dust to form under conditions similar to those obtaining near 2 Rstar is

about 106 sec, about 0.1 of the pulsation time scale. Thus, the dust grains have enough time to

form in the refrigerated zone. Once the grains form they will tend to stay in equilibrium with

the radiation field, with T ∼ TRE , but will be losing material from collisions with the gas. The

net evaporation rate will depend on both Tdust and Tkin in the gas. The non-LTE temperature

structure produces a refrigerated region where the grains can form easily and quickly, but also
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produces high gas kinetic temperatures for longer than in the LTE models. The question we

are investigating is under what conditions, if any, do the grains in a non-LTE model survive

from one cycle to the next.

Figure 2.2 shows the carbon density and critical cluster size evolution in zone 46 during the

same time span as shown in Figure 2.1. All the quantities are calculated using the moment

methods described in Chapter 4. The carbon density is normalized to its initial value for

better demonstration of condensation percentage. The carbon density shows a wide window

where dust is available in the refrigerated zone. The transition between no dust and complete

condensation is very narrow, consistent with the critical temperature approach to the onset of

nucleation used in the Bowen code.

Figure 2.2 The top panel shows the normalized carbon density vs. time. The bottom panel

is the critical cluster size vs. time.

This work shows that carbon dust can only survive briefly in the pulsating star atmosphere.

Since carbon grains are the toughest grains among other species Ferrarotti & Gail (2002). No

dust could survive the shocks and grow very large. But since they are close to the star, they

absorb more radiation and better accelerate the outflow. I hope improve the modeling as

described in Chapter 4 for a better picture.
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CHAPTER 3. Multiple spiral arms around AGB stars

The phenomenon of multiple spiral arms was discovered by accident. The addition of a

small mass companion was originally designed to induce more mass loss, since the gravitational

attraction of the companion can also lift the surface material. The over all impact on the

surface of the star is quite small and a super Jupiter mass companion does not stimulate a lot

of mass loss. However, an interesting resonance pattern was discovered as a result from their

interaction. This is the excitement of scientific research.

3.1 Introduction

One of the great puzzles associated with AGB and post-AGB evolution is the presence of

multiple shells and rings in planetary nebulae (PNe) halos and around some AGB stars. With

the help of Hubble Space Telescope (HST), more details in the halos of PNe have been revealed.

Rings with time scales ranging from decades up to hundreds of years are stunningly clear in CRL

2688 (Sahai et al., 1998) and IRAS 17150-3224 (Kwok & Su, 1998). For short reviews, check

Corradi et al. (2004) and Terzian & Hajian (2000). The mechanism that produces these time

scales remains a challenge. The intrinsic fundamental pulsation periods and thermal pulsing

time scales (helium shell flash time scale) are either too small or too large for this purpose.

While the Kelvin-Helmholtz time scale has the right order, no mechanism operating on that

time scale has been found. A lot of effort has been expended trying to explain this phenomenon,

for a review, check Bond (2000) and Balick & Frank (2002) for reviews. Most of the previous

models could generate discrete shells, but the computed structures are not periodic. Successful

modelings are binary perturbation mechanisms by Mastrodemos & Morris (1999) and Harpaz

et al. (1997) for periodic structures, multi-fluid modeling with dust instability by Simis et al.
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(2001) and exterior κ mechanisms by Dreyer et al. (2011). The binary models done to date

involve study large companions that are relatively far away. The effects of small companions

(several MJupiter, m/Mstar < 0.1) have remained unexamined. The purpose of our study here

is to investigate the influence of a small and close companion on the outflow.

In this paper, we present a new set of models computed with the hydrodynamic atmosphere/

mass loss code by Bowen (Bowen, 1988). In these models, the atmosphere outflow is generated

by a combination of pulsation and radiative acceleration. Pulsation leads to the formation

of shocks above the photosphere. Without a companion, the shocks becomes insignificant at

about 10 stellar radii (∼10AU) (Willson et al., 2011). When perturbation by a small companion

is introduced, these shocks cluster into longer periodic spiral arms. These spiral arm periods,

which equals to the spatial separation of spiral arms divided by the wind speed, can be different

from either pulsation period of the central star or the orbital period of the companion. The

details of the period coupling are discussed in section 4. In most models, both orbital period

and pulsation period are smaller than the spiral arm period.

3.2 Modeling methods

3.2.1 The Bowen code

The Bowen code (Bowen, 1988) was originally designed to model mass loss from oxygen-

rich AGB stars. It assumes spherical symmetry for both the interior (not computed) and the

atmosphere (included to a few scale heights below the photosphere). The code applies 1-D

zoning to this spherically symmetric atmosphere. The hydrodynamic model assumes an ideal

gas equation of state and the first law of thermodynamics. Due to the low density of the gas

in the stellar outflow, thermal relaxation is not very effective, and the gas kinetic temperature

(Tkin), the radiative equilibrium temperature (TRE), ionization and excitation temperature can

all differ. The code uses a density-dependent thermal relaxation equation to treat the non-LTE

coupling of the gas and the radiation field. Dust and molecules are available in cool regions for

absorbing radiation and transferring momentum to the outflow (Gilman, 1972). A sinusoidal

piston is set below the photosphere to simulate the pulsation of the star. Artificial viscosity
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is also used to treat shocks. The dust and molecular formation are instantaneous functions

of TRE and Tgas assuming the time scales to form dust and molecules are much smaller than

the dynamical time scale. The maximum dust and molecular opacities are set to 2cm2/g and

0.4cm2/g.

The parameters of the central star used in theses calculations are listed in Table 3.1. These

correspond to 1-M� near the tip of AGB (Willson, 2000). Given luminosity Lstar, mass of the

star Mstar, and metallicity Z, we can use a formula from Iben (1984) to find the radius:

Rstar = 312(Lstar/104)0.68(1.175/Mstar)
0.31S(Z/0.001)0.088/(l/H)0.52, (3.1)

where Lstar and Mstar are in solar units, Z equals abundance by mass of heavy elements and

S equals 0 when Mstar≤1.175M� and S equals 1 otherwise. The mixing-length parameter l/H

affects the size of the star at a given Lstar, Mstar, Z; we have used l/H = 0.9 as was used for

prior models (Bowen & Willson, 1991). The effects of varying l/H on the mass loss rate are

considered in Willson et al. (2011). The pulsation period is taken from the formula by Ostlie

& Cox (1986) for fundamental mode,

Ppuls = 0.012M−0.73star R1.86
star, (3.2)

where Mstar and Rstar are in solar units. We selected the pulsation amplitude to give an average

piston power 0.01 of Lstar. This is a reasonable assumption since it is easy for the star to drive

the pulsation at its current luminosity. Vterminal is the terminal velocity of the wind without a

companion; for all models calculated here, it is constant beyond 12Rstar. For more details of

the modeling, see Bowen (1988); Willson et al. (2011).

3.2.2 The properties of the companion

We assume the companion revolves in a circular orbit with a fixed distance to the center of

the star. For the purpose of this simulation, the companion is small (Mcomp = 10MJupiter =

0.01Mstar). Since Mcomp/Mstar is much less than 1, in order to influence the outflow in a major

way, the companion’s orbit must be close to the photosphere. With low mass and low orbital

altitude, the effect of the companion is very localized, both spatially and in time at a given
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Table 3.1 The central star parameters

Mstar 1M�
Lstar 5000L�
Teff 2966K

Rstar 267.8R�
Pulsation period 394days

Pulsation Amp. 4.0km/s

Vterminal 9.35km/s at 18Rstar
Ṁstar 1.25× 10−6M�/yr

location (C. Struck and L. Willson, in prep.). However, the orbital radius cannot be constant

in reality and is influenced by three factors: the decreasing mass of the central star, gas drag

and tidal force. See section 4 for discussion on balancing these factors.

We estimated the companion’s size from its mass and the mean density of Jupiter. This

gives Rcomp = (
Mcomp

4/3πρJup
)1/3, about 10% of the width of the smallest computational zone that the

companion passes through. Thus, the companion acts primarily like a point source of gravity

even when it is inside a zone. Its size only matters when the distance between the center of

the companion and the center of a zone is smaller than its radius. In that case, we calculate

a reduced gravity using g = (4/3)πGD3ρJup/D
2, where D is distance between the center of

the companion and the center of the zone; this prescription avoids singularity at D =0. In

the model, we only include the momentary vertical component of the gravitational force from

the companion on each computational zone, as the horizontal components before and after the

companion passes must cancel out for the 1-D model.

Table 3.2 below lists all the models with different properties of the companions. Psa is the

spiral arm period which is discussed later.

3.3 Results

In the following subsections, we show the effects of the companion and the origin of the

spiral arms. A comparison of slices of atmospheres at various times reveals that the structures

of the shocks are dependent upon the mass of the companion. The equatorial outflows of

different models show the multiple spiral arms.
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Table 3.2 The companion parameters

Model Mcomp(MJupiter) Distance(Rstar) Porb(days) Spiral arms Psa/Ppuls
1 2 1.019 522.43 4 60

2 5 1.019 522.43 4 60

3 5 1.1 586.1 3 60

4 8 1.1 586.1 3 60

5 10 1.1 586.1 3 60

6 12 1.1 586.1 3 60

7 10 1.325 775.08 2 60

8 10 1.339 786.94 2 60

9 20 18.187 39400 1 100

3.3.1 The effect of the companion

When the companion passes a particular region on the stellar surface, the atmosphere below

is temporarily pulled upward. This stretching of the atmosphere causes the gas kinetic temper-

ature, Tkin, to decrease in the expanding zones. Figures 3.1 and 3.2. show the differences in

this refrigeration effect between stronger shocks and weaker shocks. The star itself is pulsating,

creating motion in the atmosphere. When the companion approaches while the shock wave is

going up, the companion works on the dense post shock material creating stronger shocks. For

example in Figure 3.1, the companion passes at time = 251.12 cycles, right in the middle of

the rising wave. On the other hand, in the weaker shock region, the companion’s attraction

is strongest where the atmosphere is most extended with low density. Since the companion

passes at constant speed, these regions receive similar acceleration from the companion and

end up with similar speed. So the region behind a weak shock carries less momentum than

that behind strong shocks . The weak shocks decelerate more quickly than strong shocks when

they go through the atmosphere and collect infalling material. For example in Figure 3.2, at

time = 291.23 cycles, the pull of the companion only creates a tiny tail which falls back very

quickly. Behind each shock, the lighter region indicates a cooler zone where Tkin is lower than

TRE . The strong shocks have a much long-lasting cooling effect than the weak shocks do. Right

behind the shock front, where the gas is most compressed, the dark color represents high Tkin

up to 10,000K.
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Figure 3.1 Kinetic temperatures in the vicinity of the stronger shocks for Model 5. Contours

of kinetic temperatures are superimposed on tracers of computational zones in

the models. Zones cluster tightly where shocks appear. Gaps in the zone tracers

occur where the model has been rezoned, and dots along the shocks are artifacts

of limited sampling in the output file. The contour map is only provided above

2× 1013cm while the mass motions are traced to deeper levels, hence the artificial

boundary of the contour plot. Figure 3.5 shows a more extended region of the

same model, Model 5.

3.3.2 The origin of the spiral arms

The shocks create refrigeration zones that increase the abundance of molecules in the lower

atmosphere but not the amount of dust in this code. Figure 3.3 shows the relationship between

shocks and molecular acceleration in the atmosphere. Since molecules are sensitive to Tkin,

molecules are destroyed along the hot shocks and reformed below the shock in the refriger-

ated zones. Periodic patterns in molecular acceleration are caused by the periodic change in

the radiation intensity as the star pulsates, which leads to varying radiation pressure on the

molecules. The dark regions indicate high molecular acceleration; these regions are close to the
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Figure 3.2 Kinetic temperatures in the vicinity of the weaker shocks for Model 5 as Figure 3.1

and Figure 3.5. Because the planet passes at a different pulsation phase, the shocks

are not as strong as in Figure 3.1.

photosphere in the post shock regions where Tkin is lower than TRE . Strong molecular acceler-

ation only occurs above 2AU; no significant molecular acceleration exists near the origin of the

shocks. On the other hand, dust is more effective than molecules at absorbing and emitting

energy in the form of radiation. The code assumes that the dust stays at TRE even inside the

shocks and thus is not destroyed. We neglect the dust destruction in the hot shocks for 2 rea-

sons: 1) hot shocks occur mostly below 2Rstar while dust grains exist above that (Figure 3.4);

2) We assumes instantaneous dust formation depending on TRE . The narrow shocks appear

every couple years do not reduce the dust significantly in our simulation. In Figure 3.4, the

dust acceleration also varies as the star pulsates and this acceleration continues above 3AU. So

molecular acceleration and dust acceleration do not help to initiate shocks. It is the pulsation

of the star and gravity from the orbiting companion that shape the initial shocks.

After the shocks are initiated, radiative acceleration acting on grains and molecules transfer
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Figure 3.3 Molecular acceleration for the same model vs. times as Figure 3.1. The low

molecular acceleration between cycles 250 and 251 near 2.5× 1013cm is due to the

destruction of molecules by the rising shock. Additional molecules also show up at

the same time below the shock due to extra cooling by expansion. Note the sim-

ilarity with Tkin (Figure 3.1). The periodic pattern in the molecular acceleration

between cycles is caused by luminosity variations as the star pulsates.

momentum into the outflow. Figures 3.5 and 3.6 show the difference between outflows with

different dust and molecular opacities. Figure 3.5 shows the results for the normal values among

all models while Figure 3.6 shows the results when dust opacity and molecular opacity have

1/5 and 1/2 of their standard values. Both figures carry the same color map. On the left side

of Figure 3.5, the strong shocks all move out together and later cluster into a spiral arm. On

the right hand side, the weak shocks leave only a very faint mark in the upper atmosphere. In

Figure 3.6, the strong shocks decelerate significantly below 1×1014cm, and most of the mass is

confined below that height. Clearly, dust and molecules play a crucial role in generating these

outflows.

To determine the propagation speed of the shocks at a given height, we looked at the arrival
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Figure 3.4 Dust acceleration for the same model vs. times as Figure 3.1 and Figure 3.3. Dust

appears above 2AU and maintains a periodic pattern as the radiation strength

varies. Dust acceleration is more stable than molecular acceleration with time. It

provides continuing acceleration from 4× 1013cm - 8× 1013cm.

time of the maximum density spike vs. height, as is illustrated in Figure 3.7 for a region of 11

layers around R = 1.45 to 1.55 × 1014 cm. In the figure, an additional vertical separation in

logρ has been introduced to separate the curves. Table 3.3 lists shock speeds and maximum

density for the layer at 1.5× 1014 cm obtained by this method.

In Figure 3.8, we show why strong shocks travel a lot further than weak shocks. It is a plot

of post shock density and shock velocity vs. time. In the strongest shock region the density is

more than 2 orders of magnitude higher than the density in the weakest shock region. Even

though the shock speed of the weak shock region can be twice as much as the shock speed of

the strong shock region, the momentum carried by the material behind the strong shocks is

still about 100 times larger. The strong shocks can plow into the in-falling gas without losing

too much of their speed, while the weak shocks can not survive and significantly slow down. In
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Figure 3.5 Density variation over a spiral arm period (60 cycles). The stronger shocks show

up as higher densities to the left. Note that the density contrast persists beyond

2× 1014cm.

addition, given similar composition, the denser outflows associated with the strong shocks tend

to have higher optical depths than weak shocks. The optical depth determines the efficiency

with which the radiation is converted into momentum of the outflow.

The periodic spiral arm is the result of the clustering of strong shocks. Figure 3.9 contains

a density contour map that shows the time evolution of the atmosphere. The spikes on the

contours represent shock locations. By connecting the tips with thin lines, we can track the

motion of each shock. The slopes of the lines are Vshock = dRshock/dt. The bold line shows

the spiral arm location where shocks cluster together. To the left of the spiral arm, the weak

shocks slow down due to the material that is falling back onto the star. To the right of the

spiral arm, the shocks are strong and the leftmost shock gets pressure support from its nearby

shocks and keeps going to meet the weak shocks at the spiral arm location. The rightmost

strong shock decelerates by losing material to the low pressure region below it. This material
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Figure 3.6 The same as Figure 3.5 but for a model with artificially low dust and molecular

opacity. With less radiative acceleration the large-scale flow is smoother, and near

the star, material fails to escape.

in turn decelerates the next generation of weak shocks and starts another cycle of clustering.

3.3.3 Spiral arm structure and morphology

The structure of the shocks is influenced by both the companion mass and its orbital period.

In this section, we describe how the shocks in Models 3 - 6 reveal the relation between the shock

structures and the companion masses. Models 1 and 2 show the effect of a companion in a really

close orbit. Since Model 1 has the weakest density contrast, we argue that any companion with

mass less than 2 MJupiter is not going to show any trace of interaction in observations. Models

7 and 8 show relation between the spiral arm period and the equatorial disk structure. Model

9 has the largest companion mass and longest orbital period and gives us a clue as to how this

mechanism can produce a single spiral arm.

There is a steady trend of narrower and faster spiral arm speed with increasing Mcomp.
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Figure 3.7 Density vs. time for eleven layers of the model 5. The central layer has radius

R = 1.5 × 1014cm and the separation of the layers is 1012cm. The density curves

are offset by an arbitrary constant C = 0 to 10 from bottom to top. The shock

speed can by calculated by tracing the density peaks across the 1013cm displayed

here. All numbers are listed in Table 3.3.

Comparing the number of gaps, the faster spiral arms may also show more windings. This is

demonstrated in Figure 3.10 showing slices of the atmosphere at cycle 600 for Models 3 - 6.

The time is chosen to make sure that spiral arms are clear in that slice. The vertical offset

is artificial in order to separate different series. In this figure, the lowest curve for Model 3

Mcomp = 5MJupiter keeps its real value. The separation between curves is ∆log(ρ) = 1. The

average properties of each segment are listed in Figure 3.4.

Each spiral arm is a combination of two groups. The rear group shows a dominating

strength early on. It is the group of fast-moving strong shocks in Figure 3.9. The front group

is the decelerating weak shocks as described. The front shock is defined as the density drop on

the front boundary of a spiral arm. The rear shock is defined as the density drop on the rear

boundary. Both of them are shown in detail in Figure 3.10. The density drops on the cliffs

of front shocks and rear shocks show similar values between different models. The front shock
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Table 3.3 The properties of shocks between cycle 240 - 300 of Model 5

Shocks Speed(km/s) log(ρ) (gm/cm3) T(cycle)

1 8.813 -14.704 241.6

2 8.813 -13.735 245.4

3 13.219 -13.508 248.6

4 13.219 -13.027 250.9

5 13.219 -12.868 253.8

6 8.813 -12.825 256.9

7 8.813 -12.853 260

8 13.219 -13.158 263.8

9 8.813 -13.389 266.3

10 6.61 -14.348 275

11 13.219 -14.597 277.8

12 13.219 -14.644 280

13 13.219 -14.666 283.5

14 13.219 -14.926 286.9

15 25.44 -15.03 290.2

16 13.219 -15.27 297.6

Table 3.4 The average properties of shocks of models 5, 8, 10, 12

Mcomp shock front speed shock rear speed shock front shock rear

(MJupiter) (cm/s) (cm/s) dlog(ρ)(gm/cm3) dlog(ρ)(gm/cm3)

5 1.26× 106 1.07× 106 0.670 0.535

8 1.32× 106 1.11× 106 0.668 0.583

10 1.28× 106 1.13× 106 0.623 0.498

12 1.33× 106 1.18× 106 0.638 0.540

density drop is a little more than a factor of 4 indicating some energy lost to radiation. The

density drop for rear shocks is less than 4, appropriate for adiabatic shocks. As the spiral arms

move out and grow wider, the difference in density between the two parts starts to disappear

around 1× 1016cm. Then the spiral arms begin to overlap with each other after 1.5× 1016cm

for Mcomp = 5MJupiter.

Interesting spikes in density appear after the spiral arms combine. This behavior is best

illustrated in Figure 3.11, which tracks a very extended atmosphere from Model 5 at a time =

1200 cycles. We set the outer boundary of the simulation to about 4.5× 1016cm (∼ 3000AU).

The spiral arm structures first disappear at 2× 1016cm due the widening. But after the spiral
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Figure 3.8 Peak density and shock speed vs. cycle number for Model 5. The numbers are

listed in Table 3.3. The dotted line gives the density and the solid line, the shock

speed computed as illustrated in Figure 3.7. The strong shocks are found before

cycle 270 and weaker ones after 270.

arms merge, spikes with the same periodicity begin to develop. These spikes are weak compared

to the spiral arms and show the widening around 4× 1016cm again.

In the following pictures, we construct 2-D images of the outflows in the equatorial plane

from the 1-D models. For the whole star, different positions on the surface are always experi-

encing the same pulsation phase but a different orbital phase of the companion. From the 1-D

calculation, we select instances with the same pulsation phase and different orbital phases and

distribute these around the center according to orbital phase. This then represents a snapshot

of what the equatorial distribution of material may be like in a full 2-D model, noting that we

have not allowed the material to interact other than radially in these models. If we have long

enough runs and the outflow is stable, we can get enough pieces to create the whole surround-

ings. But this is limited by the reservoir of material available in the model and the rate of

depletion of this reservoir by mass loss. In most runs, we stop the model at 1000 cycles when
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Figure 3.9 This picture traces the positions of mass shells during cycles 200 - 240 with the

density coded by the color. The interval shown in Figure 3.5 occurs in the middle

of this plot, with more than two spiral arm periods shown here. The straight

line segments trace shock trajectories; they converge towards the heavy line. This

convergence produces the spiral arms.

the spiral arms are getting faster because the density is lower after mass loss; this leads to two

artifacts in the graphs: (a) spikes on the spiral arms in the plot due to higher speed in some

phases, (b) the gaps in the graph due to missing some phases.

Models 3 - 6 all produce three spiral arms. Figure 3.12 shows the density color map of the

extended outflow of Model 5. In the central region, three spiral arms are clear until they become

wide and their density profiles even out at about 2×1016cm. Then the spiral pattern reappears

close to 3 × 1016cm as seen in Figure 3.11. Figure 3.13 is the Tkin contour map of the inner

region (< 1 × 1016cm). Since non-LTE is assumed for the thin outflow, no accurate spectral

information can be derived from Tkin alone in this picture; however, molecular formation is

sensitive to Tkin. The spiral arms may cut through the molecular shell and give it a non-

spherical shape perhaps explaining the observation by Ragland et al. (2008). The spikes on the



34

Figure 3.10 Density vs. height at cycle 600 for Models 3-6. The companion mass increases

with increasing model numbers. There is an artificial offset of C = 1 to 3 for

Models 4-6. The front shock is defined as the density drop between position 1

and 2 indicated on Model 5. The rear shock is defined as the density drop between

position 3 and 4. The positions of front shocks and rear shocks are chosen to be

the same as positions 2 and 4. The density differences are compared between 1

and 2 , 3 and 4 for different cliffs. Similar analyses are done to all cliffs in all

models. Numbers are listed in Table 3.5.

contour are caused by the non-stable atmospheric conditions at the end of the run as discussed

above.

Models 1 and 2 have 4 spiral arms. The companions are very close to the stellar surface

(see Table 3.2). They may even be inside the photosphere for some of the time. Since the

photosphere is defined at optical depth τ = 2/3 for spherical symmetry, a significant amount of

mass still resides below the photosphere between the piston and the photosphere in the model.

The companion is well above the piston where the artificial boundary is located. Because these

companions are very close to the surface, the gravitational effects of the companions are as large

as they reasonably can be. Figure 3.14 shows the density color map for Model 1. The spiral

arms are wide from the beginning. They start to merge at around 4× 1015cm. The gaps in the



35

Table 3.5 The detailed properties of shocks of models 5, 8, 10, 12

shocks 1 2 3 4 5

M05 FS(cm) 2.95× 1015 5.54× 1015 8.06× 1015 1.07× 1016 1.33× 1016

RS(cm) 4.62× 1015 7.04× 1015 9.02× 1015 1.12× 1016

RSdlog(ρ)(gm/cm3) 0.53 0.55 0.54 0.52

FSdlog(ρ)(gm/cm3) 0.69 0.64 0.70 0.65

gap(cm) 1.67× 1015 1.50× 1015 9.60× 1014 5.20× 1014

shock width(cm) 9.22× 1014 1.02× 1015 1.64× 1015 2.07× 1015

M05 FS(cm) 3.16× 1015 5.83× 1015 8.54× 1015 1.11× 1016 1.39× 1016

RS(cm) 5.13× 1015 7.36× 1015 9.67× 1015 1.19× 1016

RSdlog(ρ)(gm/cm3) 0.54 0.67 0.62 0.50

FSdlog(ρ)(gm/cm3) 0.67 0.65 0.70 0.65

gap(cm) 1.97× 1015 1.53× 1015 1.13× 1015 8.10× 1014

shock width(cm) 6.94× 1014 1.18× 1015 1.43× 1015 1.99× 1015

M05 FS(cm) 3.26× 1015 6.01× 1015 8.58× 1015 1.13× 1016 1.39× 1016

RS(cm) 5.27× 1015 7.62× 1015 9.83× 1015 1.22× 1016

RSdlog(ρ)(gm/cm3) 0.52 0.50 0.49 0.48

FSdlog(ρ)(gm/cm3) 0.63 0.60 0.69 0.57

gap(cm) 2.01× 1015 1.61× 1015 1.25× 1015 8.40× 1014

shock width(cm) 7.40× 1014 9.60× 1015 1.51× 1015 1.70× 1015

M05 FS(cm) 3.35× 1015 6.10× 1015 8.90× 1015 1.15× 1016 1.43× 1016

RS(cm) 5.34× 1015 7.91× 1015 1.03× 1016 1.26× 1016

RSdlog(ρ)(gm/cm3) 0.50 0.57 0.59 0.50

FSdlog(ρ)(gm/cm3) 0.59 0.69 0.64 0.63

gap(cm) 1.98× 1015 1.81× 1015 1.42× 1015 1.05× 1015

shock width(cm) 7.59× 1014 9.95× 1014 1.20× 1015 1.69× 1015

radial direction are artifacts due to limited running time; similar patterns are common among

these models. On the density profile in Figure 3.15, the lowest mass companion produces very

poor density contrast between the spiral arm and inter-arm region. The clustering of the shocks

looks chaotic. The density profile only shows the merging spikes after spiral arms converge.

This model has the weakest spiral arms for the model in the closest orbit. Since the star in

Model 1 is already losing mass fast (∼ 10−6M�/yr), any companion with a mass smaller than

2 MJupiter is not expected to produce strong spiral arm patterns.

Figure 3.16 for Model 2 is similar to Figure 3.14 but with an increasing companion mass

from 2 MJupiter to 5 MJupiter. The spiral arms of Model 2 are prominent according to the

density profile at cycle = 900 in Figure 3.17, but the four spiral arms are not very clear due
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Figure 3.11 Density vs. height for Model 5 extending to R = 4.5× 1016cm, showing the spike

structure that forms after spiral arms merge.

to artificial spikes. This indicates that the atmospheric conditions changes quickly during the

run. The 5MJupiter companion causes greater mass loss and makes the atmosphere thinner

than that a more stable model would require.

Models 7 and 8 show 2 spiral arms. The companions are relatively far away compared to

the previous models. Because the orbital periods for these two models are different, they have

different spiral arm periods. Comparing Figures 3.18 and 3.20, we see that the short spiral

arm period gives more windings within the same distance. In Figure 3.19, the density profile

for Model 7 shows similar spiral structures compared to the previous short Psa models. For

the long spiral arm period picture in Figure 3.20, the clustering is not established within the

region calculated, but the bipolar structure is similar to the central region in the density color

map in Figure 3.18. The slow clustering is also reflected in the density profile in Figure 3.21.

The two bumps represent the rear shock and front shock. They have not become narrow yet,

so no steep density drop exists on the edges.
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Figure 3.12 Density vs. position in the equatorial plane for Model 5, constructed from the

1D model as described in the text.

In Model 9, the spiral arm period is the same as the orbital period. In previous models,

since the orbital period is smaller than the spiral arm period, multiple shocks are created during

one spiral arm period. In that case, it is possible for the clustering to occur that strengthens

the density contrast. Model 9 does not show the clustering of multiple shocks. The spiral

arm is a single shock created by the companion while it moves through the outflow. Since the

disturbance by the companion in the atmosphere is small, it does not enhance the mass loss

much. In Figure 3.22, unlike in previous models there is no spike at the location of spiral arms.

In Figure 3.23, the density profile shows almost no difference at the spiral arm location. Model

9 matches periodicity of the recent observations of a single-spiral outflow (Mauron & Huggins,

2006) but with a very low contrast. To get something more like what is observed, one would

need a higher mass companion, and would then need to consider distortion of the star and tidal

spin-up, neither of which are included in our code.
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Figure 3.13 Contour map of the gas kinetic temperature for Model 5. Tkin is affected by both

the shocks (expansion, compression) and the radiation field. Due to the treatment

of non-LTE in the code, Tkin does not translate easily into intensity of emission.

3.4 Discussion

3.4.1 Spiral arm period

From the models and some analytic considerations, we have found the following formula

relating to resonance of the pulsation and orbital period (Struck, private communication):

For N > 1,

Psa =
PpulsPorb

|NPorb −MPpuls|
,M = 1, . . . , N − 1 (3.3)

For N = 1,

Psa = Porb (3.4)

where Psa is the spiral arm period, Porb is the orbital period, Ppuls is the pulsation period,

and N is the number of spiral arms, M is the resonance mode. To understand the origin of
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Figure 3.14 Density vs. position in the equatorial plane for Model 1. The dark spiral arms

are wide and catch up with each other at around 4×1015cm. The radial gaps are

artifacts of the method we used to construct the map.

this expression, consider what happens in Model 5. The companion will encounter the same

phase of the pulsation after intervals of Ppuls/Porb ∼ 2/3 of its orbital phase. If a strong

shock is generated at phase 0, then this will happen again at 2/3 and 4/3 (= 1/3 in the next

orbit). So the difference in orbital phase between nearest strong shocks is 1/3. Three arms

are seen around the star in the equatorial plane. When N is 1, Psa equals to Porb. This is

the same relation as shown in Model 9. In Figure 3.24, we plot the relation between Psa/Ppuls

and Porb/Ppuls from Eqns. 3.3 and 3.4 for several values of N. For resonance mode, we choose

M = N -1. These resonance modes have closer orbits than M<N-1, which means stronger

influence by the companion. Since we can not determine the distance at which the companion

influence is negligible, we choose only the close orbit companions. The large orbit resonance

modes are omitted in the following discussion. We did not model N = 5 in this paper either

because the companion falls inside the photosphere. Figure 3.24 reveals that it is very hard
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Figure 3.15 Density vs. height for Model 1 at cycle 900. The spiral arms in this case merge

near 4 × 1015cm. The spikes above 6 × 1015cm are not the results of clustered

spiral arms.

to get over Psa/Ppuls = 100. It is also hard to drop below Psa/Ppuls = 10 in the near orbit

(Porb < 2.2Ppuls). Since one can relate Porb to the orbital radius, only close companions are

capable of generating multiple spiral arms. Any system with Porb > 3Ppuls is going to have a

single dominant spiral arm.

When the radius of a late type star increases, its fundamental pulsation period increases as

well, while the orbital period of the companion remains the same. So for a close companion (e.g.

the Jupiter in our solar system), Porb/Ppuls will eventually match multiple spiral arm relations

as the central star grows bigger and bigger at the end of its AGB evolution. We estimate the

duration of the effective interaction as below. We examine the evolution of X = Porb/Ppuls as

a result of mass loss, tidal drag and gas drag on the planet. The angular momentum of the

planet in orbit for Mcomp � Mstar is L = Mcompvcomprorb with vcomp = (GMstar/rorb)
−1/2 for

a circular orbit, so we get

rorb = (GM2
comp)

−1L2/Mstar, (3.5)
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Figure 3.16 Density map for Model 2. The spiral arms are tighter than for model 1 and do

not merge inside of 6× 1015cm.

where Mstar is the mass of the star, rorb is the orbital radius of the companion, Mcomp is

the mass of the companion, vcomp is the velocity of the companion and L is its the angular

momentum. We can combine Eqn. 3.5 with Kepler’s third law to get

Porb = 2πG−2M−3compM
−2
starL

3. (3.6)

All quantities in Eqn. 3.6 are in cgs units. The pulsation period for fundamental mode Ppuls

(Ostlie & Cox, 1986) is

Ppuls = 0.012M−0.73star R1.86
star, (3.7)

where Ppuls is in days, Mstar and Rstar are in solar units. The ratio of Porb and Ppuls controls

the spiral arm period and is

X =
Porb
Ppuls

= 166.7CπG−2M−3compM
−1.27
star R−1.86star L3. (3.8)
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Figure 3.17 Density profile of the atmosphere of Model 2 at cycle 900 showing strong density

contrast for the spiral arms located at about 3.5×1015cm, 7×1015cm and 1016cm.

Since the units in Eqns. 3.6 and 3.7 are different, we introduced C to balance the equation; it

is canceled in Eqn. 3.9. The rate of evolution of lnX, the inverse of the characteristic e-folding

time, in terms of evolution of M, R and orbital angular momentum L is

1

X

dX

dt
=
Ẋ

X
= −1.27

Ṁstar

Mstar
− 1.86

Ṙstar
Rstar

+ 3
L̇

L
. (3.9)

The radius of the star changes for two reasons: the mass loss of the star

Ṙstar
Rstar

= −0.2
Ṁstar

Mstar
(3.10)

and the nuclear evolution of the star

Ṙstar
Rstar

= 2× 10−7yr−1. (3.11)

These results are from our evolutionary models. Substituting Eqns. 3.10 and 3.11 into Eqn. 3.9,

we get

Ẋ

X
= −0.898

Ṁstar

Mstar
+ 3

L̇

L
− 3.72× 10−7yr−1. (3.12)
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Figure 3.18 Spiral density map for Model 7.

Using the dynamical models, we can estimate the angular momentum evolution L̇/L from

two processes - gas drag and tidal drag. For model 5, the mass loss rate is Ṁstar/Mstar =

−1.27× 10−6/yr. Gas drag is given by

Fdrag = 1/2ρgasv
2
compCdA, (3.13)

where ρgas is the gas density, vcomp is the velocity of the companion, Cd = 1.0 is the drag

coefficient for a sphere moving super sonically, and A is the cross-section of the companion.

To estimate the effect of the gas drag on the change of angular momentum, we take the

numbers from Model 5 and average the drag force over 60 cycles (1 spiral arm period). The

change in angular momentum L̇/L from gas drag for Model 5 is −2.6× 0−6yr−1. We estimate

the tidal drag by summing all gravitational attractions from all zones in Model 5 averaged

over 60 cycles. Since the mass of the companion is low, the deformation of the surface is local.

Since the 1-D model does not provide enough spatial information to calculate the gravitational

attraction, we assume that the companion affects an area of approximately its own size at the
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Figure 3.19 Density profile of the atmosphere of Model 7 at cycle 900. It shows good den-

sity contrast for the spiral arms located at about 3 × 1015cm, 6 × 1015cm and

8.5× 1016cm.

photosphere. We then assume that the area increases as the radius of the zone increases, keeping

a fixed solid angle. With the width and density of the zones from our 1-D model and the areas of

the zones, we can calculate the gravitational pulling from each zone to the companion. Due to

the shear force between the disturbed and normal outflows, the disturbed outflows may not be

able to travel as far as predicted in our 1-D model, so the tidal drag calculated here is probably

an upper limit. The change in angular momentum L̇/L from tidal drag is −3.44 × 10−5yr−1.

Thus the overall rate of change expected for Model 5 is Ẋ
X = −1.1 × 10−4yr−1. For Psa/Ppuls

changing from 10 - 100 in Model 5, the change in the ratio of Porb/Ppuls is about 4%, and we

expect that the decadal pattern will persist for about 400 years. To get constant X, one would

require a mass loss rate of Ṁstar = −1.2 × 10−4Mstar/yr (possibly more since the tidal and

gas drag would also increase). For mass loss rate of these models, we would expect the system

to evolve away from the condition that produces well-separated spiral arms on a timescale of

a few hundred years. Figure 3.25 is a demonstration of a companion with orbital decay time
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Figure 3.20 Spiral density map for Model 8. While spiral arm stays broad to the edge of the

graph, the central region is similar to that of Figure 3.18.

scale of 104 using a simplified relation based on Eqn. 3.3.

A similar analysis for Y = rorb/Rstar yields,

Ẏ

Y
= 1.2

Ṁstar

Mstar
+ 2

L̇

L
− 2× 10−7yr−1. (3.14)

For model 5, Ẏ
Y is −7.3 × 10−5yr−1. We can visualize the change in the companion orbit

with this time scale. To maintain a fixed Y, the mass loss rate would need to be more than

˙Mstar = −5× 10−5Mstar/yr. Since the companion orbital radius in Model 5 is approximately

median among all models, we expect a fast decay of orbital radius for a closer companion and

a slower decay for a farther companion. Because it is difficult to get Ẏ
Y and Ẋ

X to be 0, we

conclude that a stable long term structure is unlikely to occur. These planets will spiral in on

a time scale of 104 to 105 years. For comparison, the “superwind” phase of a solar AGB star

lasts 2× 105 years.
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Figure 3.21 Density profile of Model 8 at cycle 900, showing one wide spiral arm near

R = 8× 1015cm.

3.4.2 Observational considerations

These models suggest that some interesting outflows, including three-armed spirals, may

occur when a large planet is close to a pulsating, mass-losing star. In this section, we consider

how such spirals may be observed. In what follows, the reader should keep in mind that

the present models are 1-dimensional, and thus do not include bow shocks, the horizontal

interactions between the planet and the atmosphere features, and the freedom that a 2-D or

3-D structure has to spread out in these additional dimensions. Thus, the estimates are at best

order-of-magnitude.

A comparison between the column density along the central plane and through the un-

perturbed wind the rest of the outflow is presented in Figure 3.26 for a pole-on view. The

unperturbed outflow is the outflow without the companion and is uniform in all directions.

The distances from the lines of sights to the central star range from 2 - 150 Rstar. To esti-

mate the column density in the central plane, we assume the outflow starts with the size of
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Figure 3.22 Density map for Model 9. We expect the smooth spiral arms where the atmo-

sphere does not lose mass to fast and maintain a steady outflow.

the companion on the photosphere and grows larger with a fixed solid angle; it is a thin disk

with a thicker edge. With this assumption, we calculate the column densities at different lines

of sights. The lines of sight for central disk cover the same range as the normal flow does,

perpendicular to the central plane. At 2 Rstar, the normal outflow column density is more

than 2.5 orders of magnitude larger than the central plane column density. The central plane

column density goes further down in the post spiral arm region. At about 150Rstar, where

shocks cluster into spiral arms, the column density in the undisturbed outflow is only a little

over 1 order of magnitude higher than that of the developing spiral arm in the central disk.

Considering that the width of the central plane at 150Rstar is only ∼ 0.15 Rstar, the density

increase is quite significant in the equatorial plane. The spiral arm may still be weak, if we

observe from above; the optical depth along the equatorial plane is much larger. However, with

an edge-on view we will not be able to determine the number of spiral arms.

From Figure 3.24, we can see that the structure of multiple arms is very sensitive to the
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Figure 3.23 Density profile for Model 9 at cycle 900, showing weak contrast in the spiral arms

located near R = 4× 1015cm and R = 8× 1015cm.

orbital radius. Small orbital changes may result in large changes in the spiral arm period. The

variation in time scales matches the result of IRC-10216 (Mauron & Huggins, 1999, 2000). If

this is the case, the spiral arms in IRC-10216 are broken into many segments with different time

scales ranging from smallest near the star to longest far out. Simis et al. (2001) also produced

the quasi-periodic shells models matching the varying time scale.

We would not expect to see very many late AGB stars with close super-Jupiter companions

at any moment, because the duration of this phase is short. A recent discovery that may be

relevant is that of material around LL Pegasi (Mauron & Huggins, 2006), but the large contrast

and single spiral structure suggest higher companion masses than we are considering here, as

was confirmed by Morris et al. (2006). The models of Mauron & Huggins (1999) may be more

appropriate to that case.

The full spiral structure may not be developed since the spiral arm time scale may be longer

than the stable orbit time scale. But if we can resolve the very inner region, multipolar outflow
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Figure 3.24 Spiral arm period as a function of orbital period from Eqn. 3.3. The vertical

dashed lines indicate the periods of Models 1, 5 ,7 and 8. One dotted line is

placed at Psa/Ppuls = 10 to show the results with Psa/Ppuls > 10. N is the

number of spiral arms for a given spiral arm period. Line N=1 is close to the

bottom and intersects with line N = 2 at Psa/Ppuls = 3.

may be detectable with timescales of hundreds of years. A tripolar enhancement (Figure 3.25)in

the outflow is unique to our models.
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Figure 3.25 Companion on a decay orbit. The orbital period is in the vicinity of the Model

5. The decay time scale of the orbital period is 104 years. The turn in the shape

of spiral is caused by crossing the resonance maximum at NPorb = MPpuls. This

is plotted using a simplified equation based on Eqn. 3.3 not from actual model

calculations.
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Figure 3.26 Column densities in the central plane (thin line), estimated as described in the

text, compared with the column density in the unperturbed wind (thick line).

Column density alone is not likely to make the spiral arms visible in this example,

but they may become visible if the opacity coefficient is higher in the central disk

(for example in molecular lines or in the UV).
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CHAPTER 4. Conclusions and Future perspectives

In this chapter, I discuss the interpretations and limits of the models in Chapter 3. Some

future perspectives are also presented . Since the Bowen code is constructed using a Lagrangian

grid; it is limited to 1-D calculation. In order to simulate the outflow in 3-D, an Eulerian grid

will be needed. I present the equations for calculations using an Eulerian code with 2 fluid dust

treatment. Some applications are discussed at the end.

4.1 Conclusions

We have shown that multiple spiral arms can result from the interaction of a low-mass,

low-altitude companion with a pulsating, mass-losing AGB star. The most striking and unique

result is the possibility of 2, 3 and 4-armed spirals for such close companions. A simple formula

relates the spacing of features (via period of spiral arms and the outflow velocity) to the number

of spiral arms and the ratio of the orbital period to the pulsation period.

The spiral arms develop a high contrast in gas density as a result of the clustering of shocks

with different speeds. The companion passes different parts of the surface at different pulsation

phases as it orbits the star. The gravity of the companion couples with pulsation of the star to

create shocks of different speeds. In the outer region, the dust and molecules absorb radiation

and transfer momentum to the outflows. Finally, these shocks catch up with each other to form

periodic spiral arms. This seems to mix two things : (a) this mechanism leads to spiral arm

spacing corresponding to a wide range of time scales. (b) However, the orbit of the companion

orbit may also be evolving quickly if the star is losing mass fast that the spiral arm structure

will typically be incomplete. Close to the star, multipolar outflows should be observable with

enhancement in certain directions.
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At this stage, these models are only valid for low mass companions, Mcomp � Mstar.

Deformation of the star by the companion will add complexity to the dynamics. The simple

numerical relation relies on a stable pulsation period. The spherically symmetric condition

of 1-D models ignores the shear between the normal outflow and spiral arms, which weaken

faster than presented in the model. An enhancement in the equatorial plane with multipolar

structure is a general prediction.

4.2 Basic equations for AGB atmosphere modeling

There are two basic types of modeling: Lagrangian and Eulerian zoning. In Lagrangian

zoning, the mass inside each grid is fixed. There is no mass transfer between grid cells during

the calculation, and only changes of grid size. In Eulerian zoning, the grid is fixed and mass

can move between grids. So it is easier to trace the non-LTE properties without the mixing of

material in Lagrangian code than in Eulerian code. This makes Lagrangian code more popular.

But there are a couple of advantages of Eulerian codes: (1) they have well defined boundaries.

(2) Only Eulerian codes allow turbulent flow and arbitrary deformations. The newly developed

adaptive mesh codes from Eulerian zoning have the flexibility to adjust locally when conditions

change. It’s proven to be a better way than Lagrangian zoning in 2-D and 3-D simulations. In

1-D coding, Lagrangian and Eulerian codes are both useful. The Bowen code is still suitable

for the purpose of treating mass loss. If one wants to get to higher dimension, Eulerian zoning

is OK. In the next section, Eulerian radiative hydrodynamic equations in preparation for a new

generation of modeling are presented. One can remove the terms governing the flow between

grids and add in the equations for grid sizes to get the equations for Lagrangian zoning.

There are 3 classes for treating dust and gas in the outflow. Gilman (1972) showed that on

the stellar surface where density is high enough, dust and gas are both position and momentum

coupled. Thus the combination of the two can be treated as a single fluid. But in cool star

environments, the density varies quickly, and the condition is not met through out a large

area, so it is not always ideal to apply single fluid model. The second class assumes that there

is always an equilibrium between the gas drag and the radiation pressure on the dust. The

dust moves at its drift velocity without strict position coupling, so the dust speed is the gas
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speed plus the drift velocity. The third class makes no assumption about the dust velocity and

position. Everything is determined dynamically. So it is a more general treatment and good

for more complicated situations. Potentially, one can treat each dust grain size as a fluid, but

this is numerically impossible. The equation set here assumes two fluid models.

The equations describing the physics in the model are:

(1), equations of continuity (mass conservation):

∂ρg
∂t

+∇ · (ρgvg) = −Sd (4.1)

∂ρd
∂t

+∇ · (ρdvd) = Sd (4.2)

Sd is the dust source function indicating the dust generated per unit volume in the gas. It’s

treated in the dust formation section.

(2), equations of motion (momentum conservation):

∂

∂t
(ρgvg) +∇ · (ρgv2g) = ∇P +Hκgρ+ fdrag,g − fgrav,g − vgSd (4.3)

∂

∂t
(ρdvd) +∇ · (ρdv2d) = Hκdρ+ fdrag,d − fgrav,d − vdSd (4.4)

The drag forces on gas and dust are action and reaction. They are the same in ampli-

tude and proportional to collision rate between dust and gas particles. fdrag,d = −fdrag,g =

AdngndµmHvD|vD|. µ is the mean molecule weight. vD is the drift velocity. κd and κg are

dust and gas opacities. There is dust pressure.

(3) equations of internal energy (energy conservation):

∂

∂t
(ρgeg) +∇ · (ρgegvg) = −P∇ · v + 4πρ(κg,J − κg,SSg) (4.5)

∂

∂t
(ρdvd) +∇ · (ρdedvd) = 4πρ(κd,J − κd,SSd) (4.6)

κg,J , κg,S , κd,J , κd,S are the mean opacities for each source function. They are Planck mean

opacity depending on the efficiency of line absorption and scattering. In most conditions, dust

is in radiative equilibrium. The energy change within a dust grain is negligible.

(4) zeroth momentum of radiation field (radiative energy conservation)

1

c

∂

∂t
J +

1

c
∇ · (Jv) = −∇ ·H − 1

c
K∇ · v+

u

c

3K − J
r

− ρ(κg,JJ − κg,SSg + κd,J − κd,SSd) (4.7)
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(5) first momentum of radiation field (radiative momentum conservation)

1

c

∂

∂t
H +

1

c
∇ · (Hv) = −∇K − 3K − J

r
+

1

c
H∇v − (κg + κd)ρH (4.8)

Equations 4.7 and 4.8 can be solved to get the radiation field intensity J and flux H. J, H, K

are the zeroth, first and second moments of the radiation field,

J =

∫
IdΩ (4.9)

H =

∫
Icos(θ)dΩ (4.10)

K =

∫
Icos2(θ)dΩ (4.11)

I is the field intensity from a specific direction. θ is the direction of the line of sight. κg can be

obtained from studies of opacity in gas (Alexander & Ferguson, 1994; Ferguson et al., 2005).

κdust is related to the dust formation and will be discussed next.

4.3 Dust formation

The effort of modeling dust mainly goes into two groups. (1) The brute force numerical solu-

tion of the master equation. this traces the full particle size spectrum and all possible reactions.

It is widely used to calculated grain formation of small particles, e.g. how the nucleation starts

from supersaturated vapor (Yamamoto & Nishida, 1977; Chesnokov & Krasnoperov, 2007).

But it is not practical for very large grains as expected in cool star atmospheres. (2) The dust

moment method developed by Gail et al. (1984); Gail & Sedlmayr (1985, 1987, 1988). This

method considers that when the grain is large enough, the surface of the grain is relatively flat.

So the addition of any molecules to the grain results in linear increase in the grain energy. This

is of course only suitable for macroscopic grains and fit for the purpose of the dust calculation

in cool star mass outflows. Macroscopic grains are such that the energy change is constant

when adding an additional monomer into the grain.

The moments with respect to the size spectrum f(N, t) of dust grains (N is the number of

monomers in the dust grain, t is the time):

Ki(t) =

∫ ∞
N∗

dNN i/3f(N, t) (4.12)
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Ki(t) is the ith moment of the dust. A number of quantities about the dust can be derived

from the moments.

a) number density of grains in the gas, Ngrain:

Ngrain =

∫ ∞
N∗

dNf(N, t) = K0. (4.13)

b) number of density of monomers condensed into the grains, nmono,

nmono =

∫ ∞
N∗

dNNf(N, t) = K3. (4.14)

c) average number of monomers in a grain,

< N >= K3/K0. (4.15)

d) average surface area,

< A >= 4πr20K2/K0. (4.16)

r0 is the radius of a monomer,

r0 = (3Watommp/4πρgrain)1/3. (4.17)

e) average radius,

< rgrain >= K3/K0. (4.18)

The dust moments in the Eulerian gird,

∂K0

∂t
+∇ · (K0vd) = Jd (4.19)

∂Ki
∂t

+∇ · (Kivd) =
j

d

1

τ
Ki−1 +N

i/d
l Jd (4.20)

These two equations combined with the equations in Section 1 make a whole set of equations

for 2 fluid radiative hydrodynamic modeling. Jd is the nucleation rate of the dust. τ is the time

scale of dust formation. These two quantities are discussed in detail in Gauger et al. (1990).

Another group of moment equations deal with heterogeneous growth of dust grains have

been developed by Dominik et al. (1993); Helling & Woitke (2006). This allows so called “dirty

grains” with higher formation rates. This is another interesting direction of exploration.
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Numerous researchers have shown instabilities in the outflow. Popular mechanisms, such as

exterior κ back warming effect and instability in the dust grain formation, were all calculated

using the equations above. Woitke (2006) has shown a 2-D simulation with unique behaviors

beyond the capability of 1-D codes. Higher dimension simulations can provide more realistic

results. I have recently been granted the access to 3-D code Flash. It is the state of art 3-D

code from University of Chicago ASC flash center. I am planning to implement the above

equations in Flash code and realize a 3-D simulation of the dusty outflow.
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