
Retrospective Theses and Dissertations

2007

The study of electromagnetic wave propagation in
photonic crystals via planewave based transfer
(scattering) matrix method with active gain
material applications
Ming Li
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/rtd

Part of the Condensed Matter Physics Commons, and the Optics Commons

This Dissertation is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in
Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please
contact digirep@iastate.edu.

Recommended Citation
Li, Ming, "The study of electromagnetic wave propagation in photonic crystals via planewave based transfer (scattering) matrix
method with active gain material applications" (2007). Retrospective Theses and Dissertations. 15867.
http://lib.dr.iastate.edu/rtd/15867

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15867&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15867&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15867&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15867&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=lib.dr.iastate.edu%2Frtd%2F15867&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=lib.dr.iastate.edu%2Frtd%2F15867&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd/15867?utm_source=lib.dr.iastate.edu%2Frtd%2F15867&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


The study of electromagnetic wave propagation in photonic crystals via planewave 

based transfer (scattering) matrix method with active gain material applications 

 

 

by 

 

 

Ming Li 

 

 

 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

 

 

Major: Condensed Matter Physics 

 
Program of Study Committee: 
Kai-Ming Ho, Major Professor 

Gary Tuttle 
Jianwei Qiu 

Joseph Shinar 
Joerg Schmalian 

 
 

Iowa State University 

Ames, Iowa 

2007 

Copyright © Ming Li, 2007. All rights reserved. 



3304206
 

3304206
 2008



 ii

 

 

To my grand father and grand mother 

 

 



 iii

 

Table of Contents  
 

Chapter 1. General introduction 1 

1.1 History of photonic crystal 1 

1.2 Comparison between crystal and photonic crystal 3 

Chapter 2. The planewave based transfer (scattering) matrix method - core algorithms 5 

2.1 Maxwell’s Equations 5 

2.2 Fourier space expansion 8 

2.3 Transforming partial differential equations to linear equations 11 

2.4 Fourier space Maxwell’s Equations for uniform medium 17 

2.5 Building the transfer matrix and scattering matrix 19 

2.6 Using scattering matrix for various applications 22 
2.6.1 Spectrum from S matrix 23 
2.6.2 Band structure from S matrix 25 
2.6.3 Field mode profile from S matrix 27 

Chapter 3. Interpolation for spectra calculation 32 

3.1 Why interpolation works? 33 

3.2 An example of application of interpolation 35 

3.3 Origin of Lorentzian resonant peaks 42 

Chapter 4. Higher-order planewave incidence 47 

4.1 Planewave incidence 47 

4.2 Comparison between oblique incidence and fixed k  value incidence 53 

4.3 Higher-order incidence 56 
4.3.1 C2v  Group 56 
4.3.2 Higher-order planewave and its symmetry 58 
4.3.3 Possible propagation modes for higher-order incidence 63 

4.4 Example of application of higher-order incidence 66 

Chapter 5. Perfectly matched layer used in TMM 74 

5.1 Motivation of introducing perfectly matched layer 74 

5.2 Theory of perfectly matched layer and Z axis PML 75 



 iv

5.2.1 Background of PML 75 
5.2.2 Performance of simple parameter approach 77 
5.2.3 Two strategies to improve the performance 80 
5.2.4 Application of PML to periodic 1D waveguide 81 

5.3 Perfectly matched layer for ,X Y  axis and its application to 1D waveguide 83 
5.3.1 Analytical solutions of 1D dielectric slab waveguide 84 
5.3.2 Numerical results of TMM with side PMLs 87 

5.4 PML application example:  dispersive sub- λ  aluminum grating 89 

Chapter 6. TMM extension to curvilinear coordinate system 94 

6.1 Transform into curvilinear coordinate 94 

6.2 Curved waveguide simulation 97 

Chapter 7. Application of TMM to diffractive optics 104 

7.1 Finding phase by TMM 104 

7.2 Confirmation by Snell’s Law 106 

7.3 Case study: box spring structures for electromagnetic wave deflection 108 
7.3.1 Geometry of box spring structures 109 
7.3.2 Simulation results of box spring structures 111 

Chapter 8. TMM algorithm with active gain material extension 116 

8.1 Rate equation, the starting point 116 

8.2 Defining the electric field dependent dielectric constant for gain material 119 

8.3 Gain-TMM algorithm for laser device simulation 121 

8.4 1D DBR laser, an example of GTMM application 123 

8.5 3D woodpile photonic crystal laser, an example of GTMM application 126 

Chapter 9. Microwave experiments for woodpile photonic crystal cavities 130 

9.1 Instrument setup for microwave experiments 130 

9.2 Resonant frequency and Q value for fixed length cavity 132 

9.3 Effects of cavity size on resonant frequencies 136 

Chapter 10. Future developments and applications of TMM 140 

10.1 Go beyond planewave basis – the localized light orbital 140 

10.2 Future applications of photonic crystal concepts 142 



 v

 

Acknowledgments 
 

Six years have been passed since my first day at the lovely mid-west small town Ames, and 

twelve years since my first day at Department of Physics, Xiamen University. It is so long 

and lonely journey to reach the goal that it is mission impossible without my family’s 

financial and spiritual supports. I am grateful in heart to my grandparents, parents and aunt.  

 

During my PhD study at Iowa State University, my adviser Dr. Kai-Ming Ho gives me 

enormous help and valuable advices not only in academic research but also in personal life. I 

have learnt a lot from his deep understanding and sharp vision at photonic crystal research 

fields, as well as his broad knowledge at other areas. Here I would like to sincerely thank him. 

 

Also during my PhD study, I learnt a lot from my study committee faculties: Dr. Joerg 

Schmalian taught me four graduate courses which made the foundation of my physics 

knowledge; Dr. Gary Tuttle taught me one graduate course and many microwave 

experiments skills; Dr. Joseph Shinar’s OLED presentations gave me a lot of hints for 

applications of my research; and Dr. Jianwei Qiu’s advices made me think deeper and more 

fundamental in the theory of my research. I would like to thank my study committee 

members for their help. I would also like to thank Dr. Dave Turner for valuable discussion 

and help at parallel computation.  

 

Sometimes doing research is frustrating, and you will need buddies to back you up. Dr. 

Jiangrong Cao (Canon USA) and Dr. Xinhua Hu (Ames Lab) are two such good buddies to 

discuss with. Their help and friendship are very important to me; and the TMM/GTMM 

package will not be possible to finish without their help. Last I would like to thank all my 

friends at Ames who make my life not so boring, especially my girl friend Ruixue who 

always encourages me and supports my study. 



 vi

 

This work was performed at Ames Laboratory under Contract No. DE-AC02-07CH11358 

with the U.S. Department of Energy.  The United States government has assigned the DOE 

Report number IS-T 2889 to this thesis. 



 vii

 

Abstract 
 

In this dissertation, a set of numerical simulation tools are developed under previous work to 

efficiently and accurately study one-dimensional (1D), two-dimensional (2D), 2D slab and 

three-dimensional (3D) photonic crystal structures and their defects effects by means of 

spectrum (transmission, reflection, absorption), band structure (dispersion relation), and 

electric and/or magnetic fields distribution (mode profiles). Further more, the lasing property 

and spontaneous emission behaviors are studied when active gain materials are presented in 

the photonic crystal structures. Various physical properties such as resonant cavity quality 

factor, waveguide loss, propagation group velocity of electromagnetic wave and light-current 

curve (for lasing devices) can be obtained from the developed software package. 

 

First, the planewave based transfer (scattering) matrix method (TMM) is described in every 

detail along with a brief review of photonic crystal history (Chapter 1 and 2). As a frequency 

domain method, TMM has the following major advantages over other numerical methods: 

(1) the planewave basis makes Maxwell’s Equations a linear algebra problem and there are 

mature numerical package to solve linear algebra problem such as Lapack and Scalapack (for 

parallel computation). (2) Transfer (scattering) matrix method make 3D problem into 2D 

slices and link all slices together via the scattering matrix ( S  matrix) which reduces 

computation time and memory usage dramatically and makes 3D real photonic crystal 

devices design possible; and this also makes the simulated domain no length limitation along 

the propagation direction (ideal for waveguide simulation). (3) It is a frequency domain 

method and calculation results are all for steady state, without the influences of finite time 

span convolution effects and/or transient effects. (4) TMM can treat dispersive material (such 

as metal at visible light) naturally without introducing any additional computation; and 

meanwhile TMM can also deal with anisotropic material and magnetic material (such as 

perfectly matched layer) naturally from its algorithms. (5) Extension of TMM to deal with 



 viii

active gain material can be done through an iteration procedure with gain material expressed 

by electric field dependent dielectric constant. 

 

Next, the concepts of spectrum interpolation (Chapter 3), higher-order incident (Chapter 4) 

and perfectly matched layer (Chapter 5) are introduced and applied to TMM, with detailed 

simulation for 1D, 2D, and 3D photonic crystal examples. Curvilinear coordinate transform 

is applied to the Maxwell’s Equations to study waveguide bend (Chapter 6). By finding the 

phase difference along propagation direction at various XY  plane locations, the behaviors of 

electromagnetic wave propagation (such as light bending, focusing etc) can be studied 

(Chapter 7), which can be applied to diffractive optics for new devices design. 

 

Numerical simulation tools for lasing devices are usually based on rate equations which are 

not accurate above the threshold and for small scale lasing cavities (such as nano-scale 

cavities). Recently, we extend the TMM package function to include the capacity of dealing 

active gain materials. Both lasing (above threshold) and spontaneous emission (below 

threshold) can be studied in the frame work of our Gain-TMM algorithm. Chapter 8 will 

illustrate the algorithm in detail and show the simulation results for 3D photonic crystal 

lasing devices.  

 

Then, microwave experiments (mainly resonant cavity embedded at layer-by-layer woodpile 

structures) are performed at Chapter 9 as an efficient practical way to study photonic crystal 

devices. The size of photonic crystal under microwave region is at the order of centimeter 

which makes the fabrication easier to realize. At the same time due to the scaling property, 

the result of microwave experiments can be applied directly to optical or infrared frequency 

regions. The systematic TMM simulations for various resonant cavities are performed and 

consistent results are obtained when compared with microwave experiments. Besides scaling 

the experimental results to much smaller wavelength, designing potential photonic crystal 

devices for application at microwave is also an interesting and important topic. 



 ix

Finally, we describe the future development of TMM algorithm such as using localized 

functions as basis to more efficiently simulate disorder problems (Chapter 10). Future 

applications of photonic crystal concepts are also discussed at Chapter 10. 

 

Along with this dissertation, TMM Photonic Crystal Package User Manual and Gain TMM 

Photonic Crystal Package User Manual written by me, Dr. Jiangrong Cao (Canon USA) and 

Dr. Xinhua Hu (Ames Lab) focus more on the programming detail, software user interface, 

trouble shooting, and step-by-step instructions. This dissertation and the two user manuals 

are essential documents for TMM software package beginners and advanced users. Future 

software developments, new version releases and FAQs can be tracked through my web 

page: http://www.public.iastate.edu/~mli/ 

 

In summary, this dissertation has extended the planewave based transfer (scattering) matrix 

method in many aspects which make the TMM and Gain-TMM software package a powerful 

simulation tool in photonic crystal study. Comparisons of TMM and GTMM results with 

other published numerical results and experimental results indicate that TMM and GTMM is 

accurate and highly efficient in photonic crystal device simulation and design.  
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Chapter 1. General introduction 
 

1.1 History of photonic crystal 

 

The history of human development is the history of how people can utilize and control the 

properties of materials, nature or man made. At the very beginning age of civilization, human 

being learnt how to use and manipulate with the mechanical property of stone to make 

stereotype tools for everyday life. We call this period Stone Age. Later on, people studied 

how to get metal and alloy from ore. Metal and alloy have better mechanical properties and 

the application of those materials towards agriculture made the human society development 

possible. Even more recent invention of steam locomotive was based on how to improve the 

mechanical movement which made modern civilization possible. In most of the mankind 

history, we are improving on how to control or utilize the mechanical properties of materials. 

 

Although the electrical and optical properties were noticed by us long time ago, the 

theoretical study of fundamental electrical and optical phenomena is not done until around 

two hundred years ago due to the tiny size of electron, photon and atomic structure.   

 

Maxwell introduced his famous equations at 1864 to systematically describe the behavior of 

electromagnetic wave. In 1926, Schrödinger published his quantum mechanics paper to 

describe how electrons behave. In the middle of 20th century, with the efforts of both 

theoretical and experimental physicists, we can control the motion of electrons by 

introducing defects into pure crystals or semiconductors. After we had the ability to control 

the electrical properties, the electrical engineering industry development is possible and it has 

profound impact on our daily life. 1-5 
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Nature crystal is a periodic arrangement of atoms which gives periodic potential to electrons 

inside the crystal. Block’s theory can be applied to Schrödinger’s equation and the solution 

of Schrödinger’s equation reveals the possible ways to control the motion of electrons. 

However there are no nature available "photonic" crystals to provide a similar way to control 

photon or electromagnetic wave as crystal to electrons. Can you image it that it is not until 

1987, more than 100 years after Maxwell’s Equation, that the concept of photonic crystal was 

introduced by Eli Yablonovitch6 and Sajeev John7? And it is only after three years for the 

concept to be finally confirmed by K.M. Ho8 and coworker. But after the 1987 concept 

breakthrough and 1990 concept confirmation, both theory and experiment are booming based 

on the idea of photonic crystal. Various applications, such as low-loss waveguide and high Q 

resonant cavity, are proposed in recent years and some are close to the stage of mass 

production. The application of photonic crystal devices will be tremendous in people’s 

everyday life. Even the simplest way to control light propagation, the internal refraction, has 

already changed the entire communication industry via the invention of optical fiber. With 

the new concept of photonic crystal, the better quality photonic crystal fibers are on the 

market. 

 

Now let’s look back what people were doing after the 1987 concept breakthrough. A lot of 

physicist both from theoretical and experimental joined the research field of photonic crystal. 

But at the first a few years, people were struggling to prove the photonic crystal concept by 

obtaining consistent results of experimental and numerical simulation. Experimental 

physicists first adopted the cut-and-try method which basically depends on the lucky of the 

proposed geometry structure. But after many tedious works, the so called full band gap 

structures were still illusions. At the same time, theoretical physicists adopted the method to 

solve scalar wave functions for electrons to study electromagnetic wave. Due to the vector 

nature of electromagnetic wave and Maxwell’s Equations, the scalar wave approaches failed. 

At 1990, Kai-Ming Ho9 and coworker introduced planewave expansion methods to solve the 

vector Maxwell’s Equations and successfully predicted that diamond structure will have full 
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band gap. Later on, Eli Yablonovitch made the first photonic crystal at microwave region 

based on the predicted diamond structure. The concept of photonic crystal then was firmly 

established and numerous fabrication techniques and numerical simulation methods were 

introduced in this fast developing research field. 

 

Now it is already twenty years after the 1987 concept breakthrough, photonic crystal has 

been studied intensively. However, with the exception of photonic crystal fibers, very few 

concepts have been able to pass from the scientific research stage to high throughputs 

mainstream products. Besides the challenges in manufacturing, one of the main reasons 

behind this situation is the lack of efficient and versatile numerical computation tools for 

photonic crystal devices simulation, especially three-dimensional structures with defects. Our 

planewave based transfer (scattering) matrix method is proved to be an efficient and accurate 

numerical simulation tool for photonic crystal through this thesis via various structures and 

applications.  

 

1.2 Comparison between crystal and photonic crystal 

 

The status of photons in photonic crystal and the status of electrons in crystal have many 

similarities: both systems are eigenvalue problem; the geometry periodicity in both systems 

leads to the application of Bloch Theorem which leads to the concept of band and band 

structure; in both systems the introduction of defects makes possible of controlling the 

corresponding electric or optical properties. Based on those similarities, many concepts and 

strategies in quantum mechanics and solid state physics can be borrowed to the research field 

of photonic crystal, such as reciprocal lattice and Brillouin zone. However, there are two 

major differences between electron and photon: (1) there is no interaction between photons 

(for linear optics) while there are electron-electron interaction; (2) there is no characteristic 

length for photons and the band structure can be scaled to any length scale while there is a 

nature length scale for electrons.1-2 
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In principle, photonic crystals are periodic arrangement of dielectric material in one direction, 

two directions or all three directions in space, and we call them 1D, 2D or 3D photonic 

crystal correspondingly. In general cases periodic structures do not guarantee the existence of 

full photonic band gap in which no propagating modes exist for any directions. In later part 

of this thesis, we use planewave based transfer (scattering) matrix method to study the 

spectrum, band structure and mode profiles for various photonic crystal structures. With the 

extension of transfer (scattering) matrix method to active gain materials, lasing and 

spontaneous emission with the present of photonic crystal background can be studied. 
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Chapter 2. The planewave based transfer (scattering) matrix 
method - core algorithms 

 

This chapter contains very detailed derivation of how to get the scatter matrix (S matrix) for 

general 3D structures from the Maxwell’s Equations and acts like a literature review part. 

Most of the content has been published by Dr. Zhi-Yuan Li at a set of journal papers which 

are listed at the reference part of this chapter. After the S matrix is ready, transmittance, 

reflectance and absorptance can be obtained directly through the scattering matrix algorithm. 

Photonic crystal band structure and electric and magnetic field distribution (mode profile) at 

any given location can also be obtained with a few more steps. The first several sections on 

how to get the S matrix may be looked through quickly and those sections of how to use 

calculated S matrix to get spectrum, band structure or mode profile may be focused in detail 

first. Then topics on how to get the S matrix can be revisited in more detail.1-10 

 

2.1 Maxwell’s Equations  

 

The most general case of macroscopic Maxwell’s Equations in Gaussian Unit is Eq. (2.1) and 

(2.2) where field vectors E , D , H , and B  are function of time and space. In most of this 

thesis, we only deal with passive and non-magnetic material, i.e. there are no free charge and 

no free current (Eq. (2.3)) and ( ) 1μ =r . With this simplification we can get the Maxwell’s 

Equations only involve E  and H  field (Eq. (2.4)). Further more, with the assumption that E  

and H  field are harmonic in time (Eq. (2.5)), we can separate the space variable and time 

variable and focus on the space variation of E  and H  field at given frequency (Eq. (2.6)). 

Now we introduce wave vector 0k  (Eq. (2.7)) and the first two Maxwell’s Equations 

becomes Eq. (2.8). The angular frequency or wave vector is then acting like one input 

parameter and every angular frequency follows the identical calculation procedure. This is 



 6

the feature of frequency domain method: there will be no relation across different frequencies 

and no time dependence which will lead to the steady status solutions. 
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Eq. (2.8) are actually vector differential equations and there are altogether six equations 

when we write the field vector out with respect to their components (Eq. (2.9)).  
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We can express zH  and zE  in term of xE , yE , xH and yH  (Eq. (2.10)) and eliminate zH  

and zE  from Eq. (2.9) and get equations involving  xE , yE , xH and yH only (Eq. (2.11)) 
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Equation set (2.11) is our starting point to solve the macroscopic Maxwell’s Equations at 

periodic dielectric medium (i.e. photonic crystal structures) via the planewave based transfer 

(scattering) matrix method. To solve this partial differential equation set, our approach is to 

expand the field components and dielectric function into reciprocal space (Fourier space) 

which makes a set of difficult partial differential equations into relatively easier linear 

algebra problems; or we call it planewave based approach.  
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2.2 Fourier space expansion 

 

Now let’s suppose electromagnetic wave is propagating along Z axis towards a trunk of 

photonic crystal. Inside the photonic crystal, the dielectric distribution at any XY plane 

(perpendicular to Z axis) is periodic in both X and Y directions (for 3D photonic crystal) or 

uniform in one direction and periodic in the other direction (for 2D photonic crystal) or 

uniform in both X and Y directions (for 1D photonic crystal). Actually uniform distribution 

at any direction is equivalent to have arbitrary periodicity along this direction, and in 

principle the dielectric distribution functions have double periodicity along X and Y 

directions in any Z axis positions (Figure 2-1). 

 

Then the XY unit cell is defined as the minimum repeat area in the XY plane, and if the 

dielectric constant is uniform along X or Y axis, the length of XY unit cell along that 

direction can be arbitrary. The edge of unit cell is defined as the lattice constant ( 1a , 2a ) with 

the lattice points represent by 1 2m m= +1 2R a a  where 1m and 2m are integers. The reciprocal 

lattice points are then defined as 1 2n n= +1 2G b b where 1n and 2n are integers and ( 1b , 2b ) the 

reciprocal lattice constant. With the requirement of 1e =iG Ri or 2Nπ=G Ri (Block’s 

Theorem),  12 /π=1b a  and 22 /π=2b a  can be obtained. Then any periodic function 

( ) ( )f f= +r r R can be expressed as ( )f f e= ∑ iG r
Gr i  where fG  is the Fourier coefficient 
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for each reciprocal lattice G . Or write in more detailed way at Eq. (2.12). Here we assume 

1a  and 2a are along X and Y axis respectively (orthogonal lattice constant), but in general 1a  

and 2a can be along any directions.  

 

 

 
Figure 2-1: Dielectric distribution function of double periodicity along X 
and Y directions 
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The reciprocal of dielectric distribution function 1/ ( )ε r  is a periodic function and can be 

expressed in Fourier space (Eq. (2.13)). In the real calculation, the sum over m  and n  must 

be truncate to finite terms, for example: ,x x y yN m N N n N− ≤ ≤ − ≤ ≤  with 

0 (2 1)(2 1)x yN N N= + +  called the total number of planewave. 

 

When a plane electromagnetic wave is incident from the left hand side on a photonic crystal 

slab with incident wave vector 0 0 0( , , )x y zk k k=0k . The electromagnetic field at any arbitrary 

point r  can be written into the superposition of plane waves with vector mnE  and mnH  the 

unknown expansion coefficients (Eq. (2.14)); or expressed in term of scalar field components 

, , , ,, , ,mn x mn y mn x mn yE E H H and truncated to finite total planewave numbers at Eq. (2.15). 
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2.3 Transforming partial differential equations to linear equations 

 

With Eq. (2.13) and (2.15) ready, we plug them into the Maxwell’s Equations for each 

component (Eq. (2.11)). Here, we will derive the first equation at Eq. (2.11) to Fourier space; 

the other three equations at Eq. (2.11) can be derived similarly.  

 

First, we write out a set of equations of partial derivative of xE , yH , xH  in Fourier space (Eq. 

(2.16)) and with the last two equations at Eq. (2.16) we can obtain Eq. (2.17).  

 
( )

( )

( )

, ,

, ,

, ,

,

, ,
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                                        (2.16) 
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, , ( )( ), ,

, , ( )( ), ,
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mn y ij y m i n j y m n y
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+ = =

+ = =

′ ′= + = +
′−∞ < < ∞ ⇔ −∞ < < ∞

′−∞ < < ∞ ⇔ −∞ < < ∞

   (2.19) 

 

With Eq. (2.17) and Eq. (2.13) ready, we can rewrite the term under the partial derivative of 

right hand side of the first Maxwell’s Equation (Eq. (2.11)) into Fourier space notation (Eq. 

(2.18)). With redefined indices of Eq. (2.19), Eq. (2.18) can be rewritten as Eq. (2.20). 
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  (2.22) 

 

With further redefined indices at Eq. (2.21), we can reach Eq. (2.22). So the right hand side 

of the first Maxwell’s Equations (Eq. (2.11)) can be expressed as Eq. (2.23). Finally, 

according to the first equation at Eq. (2.11), we can get the relation between ,ij xE  and ,ij xH , 
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,ij yH , 1
ijε −  (Eq. (2.24)). Similarly, all four equations at Eq. (2.11) can be transformed into the 

,i j  components equation set (Eq. (2.25)) with , 1im jnδ = for i m= , and , 0im jnδ =  otherwise. 
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, , 1

, , . , , 0 ,
0

( )ij x ij x
i m j n mn y mn x mn x mn y ij y
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E k
H k H k k H

z k
ε −

− −

∂
= − − +
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i   (2.24) 

 

Now we define two column vectors (Eq. (2.26)) to represent the unknown coefficients of 

,ij xE , ,ij yE , ,ij xH  and ,ij yH  at Eq. (2.25). Then the equation set of unknown coefficients (Eq. 

(2.25)) can be expressed in a concise format (Eq. (2.27)) where matrix 1T  and 2T  are defined 

at Eq. (2.28). 
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(... , , , ...)
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T
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    (2.26) 
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∂ ∂
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∂ ∂
    (2.27) 

 
1 1 2

, , , , , , 0 ,,
1 1 2 1

, , , 0 , , , ,0

2
, , , , , , 0 ,,

2 2
, , , 00

ij x i m j n mn y ij x i m j n mn x im jnij mn

ij y i m j n mn y im jn ij y i m j n mn x

ij x im jn mn y ij x im jn mn x i m j nij mn

ij y im jn mn y i m

k k k k k
T

k k k k kk

k k k k k
T

k k kk

ε ε δ

ε δ ε

δ δ ε

δ ε

− −
− − − −

− −
− − − −

− −

−

− +
=

− −

− −
=

− +

⎛ ⎞
⎜ ⎟
⎝ ⎠

i
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⎜ ⎟
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  (2.28) 

 

If we use finite planewave number: ,x x y yN i N N j N− ≤ ≤ − ≤ ≤  , we can define several 

planewave related variables: 0 (2 1)(2 1)t x yN N N N= = + + , 2p tN N=  and 4s tN N= . The 

dimension of the unknown coefficient vector E  and H is 1pN × ; and the dimension of 

matrix 1T  and 2T  is p pN N× . From Eq. (2.27), we can get a single 2nd order differential 

equation (Eq. (2.29)) with dimension of matrix P  and Q  p pN N× . As Q  is a matrix of 

dimension p pN N× , the eigenvalue and eigenvector of Q  can be found by linear algebra 

through Eq. (2.30). With the eigenvalue 2β  calculated, Eq. (2.29) can be expressed by Eq. 

(2.31) with each element of the unknown coefficients in vector E  function of coordinate z . 

 

( )
2

1 22

1 2:

E T T E PE QE
z

with P T T Q

∂
= = = −

∂
= = −

   (2.29) 

 
2QE Eβ=      (2.30) 

 
2

2
2 0E E

z
β∂

+ =
∂

    (2.31) 

 
2

2
2 0l l lE E

z
β∂

+ =
∂

    (2.32) 
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( ) ( ) ( )l lz z

l l l l lE z E e E e E z E zβ β+ − + −= + = +i -i   (2.33) 

 

Typically, for a matrix of dimension p pN N× , there are will be pN  eigenvalues and pN  set 

of eigenvectors. So 2β  and E  will have pN  different set and we distinguish them by a 

subscript l with [1, ]pl N=  (Eq. (2.32)). The solution of each eigenvector (from Eq. (2.32)) 

has two propagating modes and can be written as Eq. (2.33). The pN  eigenvalues and pN  

set of eigenvector of Q  can be arranged as Eq. (2.34) and the p pN N×  matrix S  is defined. 

 

, ,1 , ,2 , , 1 , ,

, ,1 , ,2 , , 1 , ,

2 2 2 2 2

1 2 1( )

p p

p p

p p

ij x ij x ij x N ij x N
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S NE E E E

β β β β β
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−

−

↑

=

↓
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←

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

pN →

   (2.34) 

 

Now we have a bunch of information inside the matrix S. First electric field components xE  

and yE can be obtained through the Fourier coefficients (i.e. pN  element column vector E ). 

While E  satisfies Eq. (2.29) and matrix Q ’s elements are function of Fourier components of 

ε  and 1/ε  (i.e. the real space structure of the macroscopic medium) with Q ’s eigenvalues 

and eigenvectors listed at Eq. (2.34). In general, any field Fourier coefficient at vector E  is 

the superposition of all the eigenvectors and there are two propagating directions for each 

eigenvector (Eq. (2.33)). So E  can be expressed in term of the superposition of two set of 

propagation eigenvectors (Eq. (2.35)) or in a more concise form Eq. (2.36). Here ( )E z+  and 

( )E z−  are both 1pN ×  vectors of unknown coefficients which represents the weight of each 

of pN  sets of eigenmodes or eigenvectors. Those coefficients are kept unknown until we 

have an initial incident condition for 0z = , for example a planewave incident is defined as 
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one of the eigenmodes in the uniform medium. With the initial incident condition set, those 

coefficients can be obtained for other locations in stead of the incident surface and in turn the 

field vector can be obtained through those coefficients and the eigenmodes (eigenvectors) of 

the medium by transfer or scattering matrix which will be discussed later. 

 

, ,1 , ,2 , ,2 0 1 , ,2 0

,

, ,1 , ,2 , ,2 0 1 , ,2 0

,
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⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟
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 (2.35) 

 

( )( ) ,
E

E S E E S S
E

+
+ −

−

⎛ ⎞
= + = ⎜ ⎟

⎝ ⎠
   (2.36) 

 

The magnetic field’s Fourier coefficient vector H (Eq. (2.26)) can be expressed in term of 

E +  and E−  via the first equation of Eq. (2.27)  after one step transformation (Eq.(2.37)). 

Here in the equation, the operation of 1
1T − ⊗β  means the thl  column of 1

1T −  will multiple lβ  

for each column.  

 

( )
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1 1
1 1

1
1
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E
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z z E

E E
T S S T T

E E

+
− −
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−

− −

∂ ∂
= =

∂ ∂

= ⊗ − = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i β

  (2.37) 

 

Then we can combine Eq. (2.36) and (2.37) to get a more concise expression of relation 

between field Fourier coefficient and the weight of eigenmodes in Eq. (2.38).  
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( ) ( )
( ) ( )

E z S S E z
H z T T E z

+

−

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

    (2.38) 

 

We agree it is a lengthy and boring derivation to get Eq. (2.38), but there are still a few steps 

from here to the final transfer (scattering) matrix algorithm.  

 
( ) ( )0
( ) ( )0

h

h

E z h E ze
E z h E ze

+ +

− −−

⎛ ⎞ ⎛ ⎞⎛ ⎞+
=⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠ ⎝ ⎠

i

i

β

β
   (2.39) 

 

The left hand side and right hand side of Eq. (2.38) are for the same z  position. If the 

macroscopic medium is uniform along z  axis, then the eigenmodes (eigenvectors) (i.e. S  or 

T ) remain the same and weight of the each eigenmode will remain the same but with 

additional phase factor which is illustrated at Eq. (2.39). We usually set the incident surface 

position as the 0z =  and the incident wave vector is a set of numbers, for example the zero 

order planewave incidence only have 0, 0i j= =  elements nonzero and all other elements are 

set to zero. 

 

2.4 Fourier space Maxwell’s Equations for uniform medium 

 

At previous section, we discussed in detail on how to get the relation (Eq. (2.38)) between 

the field Fourier coefficients ( E  and H ) and the weight of eigenmodes ( E +  and E − ) for any 

XY double-periodic structures while uniform along z  axis direction.  Now in this section, we 

are going to deal with an easier case, the structure of XY plane is uniform medium. For 

uniform medium, we do not need to do Fourier transformation to the dielectric function. The 

Maxwell’s Equations (Eq. (2.8)) for uniform medium can be written as Eq. (2.40) where ε  is 

the dielectric constant of the uniformed medium. Now with one step further (Eq. (2.41)), we 
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can get the vector wave equation expressed as Eq. (2.42) where n ε= , the refractive index 

of the uniform medium. Then the planewave solution can be found from Eq. (2.42). 
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If the same definition of column vector of E  and H  (Eq. (2.26)) is used, then the relation of 

E  and H are expressed at Eq. (2.43), with 0S unit matrix and 0T  block diagonal matrix.  
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 (2.43) 

 

After the above relation is obtained, we can go to the next stage of building transfer and 

scattering matrix along the propagation direction for uniform or XY double periodicity 

structures. 
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2.5 Building the transfer matrix and scattering matrix 

 

The transfer (scattering) matrix method is based on the linkage between neighborhood 

tangential field vectors. For any arbitrary 3D problem, we can always cut the 3D problem to 

2D slices along the propagation direction and assume the dielectric distribution is only a 

function of coordinate x  and y  within each 2D slice (i.e. the dielectric material along z  

direction is constant). Some structures can satisfy this assumption exactly and naturally, for 

example: the layer-by-layer woodpile structure in which each layer has the same dielectric 

distribution along z  direction. Some structure can approximately satisfy this assumption if 

the slices are thin enough along the z  direction, for example: those structures with 

continuous change dielectric distribution along z  direction. 

 

At Figure 2-2 the scheme of transfer matrix method is illustrated. For each 2D slices, we 

assume there are two infinitely thin air (or any other uniform medium) films around it. These 

artificial air films will make no impact on the problem because the thickness of them is set to 

be zero. The purpose of those artificial air films is to connect tangential component of the 

electromagnetic field throughout the whole structure. And in turn get the transfer matrix and 

scattering matrix of the whole structure. 

 

The fact that the tangential components of electric and magnetic field are continues is the key 

to get the field vector connected between neighbors. At the air films and within the slices of 

left hand side of slice i  (position 1iz − ), we have the boundary condition matched at Eq. (2.44). 

At the air films and within the slices of right hand side of slice i  (position iz ), we have the 

boundary condition matched at Eq. (2.45).  Also there is a connection between the vector 

within the slice’s left and right boundary Eq. (2.46) in which the thickness of the slice is h . 
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Figure 2-2: Scheme of transfer (scattering) matrix method 
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From the above three equations, we can eliminate iE +  and iE − , and get a relation between the 

left air film and the right air film at Eq. (2.47).  We can define iT  as the transfer matrix for 
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the i th slice. And the overall transfer matrix ( T matrix) for the whole structure is given by 

Eq. (2.49). 
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n n-1 n-2= 1T T T T Tiii     (2.49) 

 

But the T  matrix has been proved to be numerically unstable when the structure along the 

propagation direction is thick, which is due to the fact that the evanescent wave components 

in the planewave expansion will increase exponentially if entire T matrixes are multiplied. 

In other word, the exponential increase term accumulation makes the poor numerical stability 

for T matrix.  

 

One solution to the T matrix problem is adopting the scattering matrix (S matrix) method 

expressed at Eq. (2.50). The overall S matrix can be found by connecting S matrix at each 

slice through an iteration algorithm. Suppose the first 1n −  S matrix is n-1S  and the 

S matrix for the n th slice is ns , then the S matrix for the total n  slices will be nS  which is 

given by Eq. (2.51). In the real calculation, we first set S matrix to be I , the identity matrix, 

which represents S matrix of an air slice, then use the iteration algorithm to get the total 
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S matrix of the first slices and I . Then apply the iteration algorithm to all the other slices to 

get the total S matrix for the whole structure. 
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Finally, we obtained a numerical stable scattering matrix S for the whole structure. And the 

S matrix has the internal electrodynamics properties of this particular structure. Tile now, 

we are only transforming the Maxwell’s Equations with certain dielectric distribution. There 

are still no initial conditions or boundary conditions (except the XY double periodicity) 

applied to our structure. For different purpose, such as spectrum, band diagram or mode 

profile, we can apply desired initial condition and boundary condition to the S matrix.  

 

2.6 Using scattering matrix for various applications 

 

In this section, we will discuss several direct applications from the calculated S matrix to get 

the spectrum, the band structure and the electric and magnetic field distributions (mode 
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profiles). Detailed derivations are supplied with actual calculation examples from published 

results. More applications can be added to this transfer (scattering) matrix scheme for  future 

development. 

 

2.6.1   Spectrum from S matrix 

 

Now let’s review Figure 2-2 and suppose that the S matrix for the whole structure is known. 

Then we have relation Eq. (2.52) which connects the field column vector at left and right side 

of the photonic crystal structure. To get the spectrum, we need a boundary condition: the 

incident electromagnetic wave 0E  can be expressed by 0
+Ω  (for a simple planewave incident 

only the center element ( 0, 0i j= = ) is set to 1 and all the other elements are set to 0) and 

n
−Ω  is set to zero because there are no propagating waves to the structure from left hand side. 

With this boundary condition and the knowledge of S matrix, we can get the column vector 

n
+Ω  and 0

−Ω  which represent the transmission and reflection field component vectors.  

 

0

0

11 0 21 0,

n

n

t rE S E E S E

+ +

− −

⎛ ⎞ ⎛ ⎞Ω Ω
=⎜ ⎟ ⎜ ⎟Ω Ω⎝ ⎠ ⎝ ⎠

= =

S
    (2.52) 

 

After the transmission and reflection coefficient are obtained, we can get the electric field 

and magnetic field. The transmittance or reflectance rate is the ratio of energy flux of 

transmission wave or reflection wave toward incident wave.  

 

The energy flux is proportional to the Poynting vector = ×P E H . The ratio of Poynting 

vector magnitude gives the transmittance or reflectance. The absorptance is defined as one 

minus the transmittance minus the reflectance. Those relations are summarized at Eq. (2.53) 

with the summation of ij  for lateral wave vector 2 2 2
, , 0ij x ij yk k k+ ≤  in which all the modes are 

propagation mode. 
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To show an example of our transfer (scattering) matrix calculation result, we select one text 

book structure: 10 layers of alternating slabs, one has dielectric constant 13 and the other has 

dielectric constant 1, both has thickness 0.5a  where a  is the lattice constant. 

 

Figure 2-3 is our transfer (scattering) matrix result which shows a band gap between 

normalized frequencies around 0.15 to 0.25 which is consistent with the text book result. 
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Figure 2-3: Spectrum of 1D photonic crystal 
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2.6.2 Band structure from S matrix 

 

There are several methods to get band structure from the S matrix, Dr. Zhi-Yuan Li 

mentioned three different schemes. Here I only discuss the one which is used in my transfer 

(scattering) matrix simulation package. To get the photonic band structure, we need impose a 

periodic boundary condition along the stacking direction (i.e. the selected wave propagation 

direction) to simulate infinite structure,. According to Bloch’s theorem, the relation of field 

components at position r  and position +r R  satisfies Eq. (2.54) with R  the periodicity.   

 
( ) ( )u e u+ = ik Rr R ri     (2.54) 

 

If we take the desired direction alone 3a  as the role of R  to calculate the band diagram alone 

this particular direction, then the S matrix between point r  and point +r R  can be obtained 

according previous sections. After the S matrix is ready, we can write out the field 

components at position r  and 3+r a  as in Eq. (2.56) from the Bloch’s theorem. Rearrange 

Eq. (2.55) and Eq. (2.56), we can get Eq. (2.57) which is a standard generalized eigen-

problem Ax Bxλ=  with A  and B are both square matrices.  
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In this approach, normalized frequency ω  and lateral Bloch’s vector xk  and yk  are given 

explicitly as input parameters, while zk  is left to be determined; or in function form: 

( , , )z x yk f k kω= .  To find zk , we adopted a widely used  “on shell” approach: for 

propagating mode, zk  must be a real number which imply that the eigenvalue of 3eik ai  must 

be a complex number of unity modulus.  In the calculation, first we solved the eigenvalue 

problem Eq. (2.57), then pick up all the eigenvalues of  module equals one, and then get zk  

from corresponding eigenvalues.  

 

When we solve the band diagram by this approach, the material to build the photonic crystal 

can be dispersive which due to the fact that each solution is for individual frequency point. 

One disadvantage of this approach is that: for each direction along the Brillouin Zone, we 

need calculate S matrix and solve eigenvalue problem individually which means we need to 

cut the 3D photonic crystal through different directions to get a complete band diagram. To 

illustrate the usage of our simulation package, we repeat the calculation of 1D photonic 

crystal with alternating material slab: one layer with dielectric constant 13 and thickness 

0.2a and the other layer with dielectric constant 1 and thickness 0.8a where a  is the lattice 

constant. Consistent result is obtained when compared with our TMM results. 
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Figure 2-4: Band diagram of 1D photonic crystal 
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2.6.3 Field mode profile from S matrix 

 

One other property we are interested in is the field mode profile across the photonic crystal 

structures. To get the electromagnetic field distribution at any intermediate plane within the 

photonic crystal structure, we need to use the two-side S matrix formulation. For any given 

intermediate plane aZ , the whole photonic crystal structure is divided into two parts: the 

front part and the back part with each part have one S matrix: 1S for front part and 2S for 

back part. Figure 2-5 gives a sketch of the two-side S matrix scheme. 

 

We can find that the arbitrary intermediate field vectors aE +  and aE−  are related to the 0E , 

tE and rE  through Eq. (2.58) from which we can get Eq. (2.59). 

 

 
Figure 2-5: Two-side S matrix scheme 
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Combining first and forth equation of Eq. (2.59), we can get the first equation of Eq. (2.60) 

which is a standard linear algebra problem ( Ax B= ) and can be solved easily. After getting 

aE + , we can use the second equation of Eq. (2.60) to calculate aE − . 
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aE +  and aE −  are the column vectors of ,ij xE ±  for the desired slices, or the plane perpendicular 

to the propagation direction. Then we can use Eq. (2.61) to calculate the electric field of x  

and y  components which are at the infinite thin air film adjacent to the desired plane. 

According to the boundary condition, the tangential component is continuous, the electric 

field of x  and y  components at the photonic crystal structure are the same as in the infinite 

thin air film.  
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  (2.61) 

 

To get electric field z  component at the air film, we need use Maxwell’s Equations 

0 0ε∇ = ∇ =D Ei i  which leads to 0∇ =Ei . So ,ij zE  can be found easily by Eq. (2.62). 
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But ( )zE r  inside the photonic crystal structure is not same as in the infinite air film. To get 

correct ( )zE r  inside the photonic crystal structure we need apply the boundary condition of 

the continuity of zD  field: 
1

1
0 1 0 0 1 1 1 0 0z z z z z zD D E E E Eε ε ε ε−= ⇒ = ⇒ = .  But we can not 

apply this condition directly in real space; instead we need to apply it to the Fourier space. 

Here we use the Fourier expansion of 1
ij

ε −  instead of 
ij

ε  for this problem. Finally we can get 

the electric field z  component vector as the last equation of (2.63), then we can apply the last 

equation of (2.61) to get the electric field distribution of ( )zE r  inside the photonic crystal 

structures. 

 

For magnetic field H ,  we can first try to obtain the H  field vector of ,x y  components at 

air film through the E  field vector by Eq. (2.64). Then the z  component can be figured out 

by 0∇ =Hi  or Eq.  (2.65). Then follow the similar procedure as Eq. (2.61) to get the 

magnetic field distribution inside the photonic crystal of all three components. 
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Now I am going to close this review chapter of introduction for transfer (scattering) matrix 

method. It is only the core knowledge of this numerical tool. There are a lot of other aspects 

to make this method a good simulation tool, such as applying structure symmetry, 

introducing perfectly matched layer boundary condition instead of periodic boundary 

condition, pre calculation analysis and post calculation analysis, various input waves instead 

zero order plane wave (for example higher-order plane wave, Gaussian wave, waveguide 

eigenmode etc.) and the flexibility to deal with different materials (such as dispersive, 

anisotropic, or magnetic materials). Some of those topics will be discussed in this thesis and 

some are not. It is still a developing method, and new concepts and strategies are very likely 

to be introduced soon. 
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Chapter 3. Interpolation for spectra calculation 
 

One of the most important applications of photonic crystal is introducing point defects (i.e. 

cavity) into the pure photonic crystal structure to make a photonic crystal resonant cavity 

which can be widely used in solid state laser (acting as the resonant cavity) and 

communication industry. The advantage of photonic crystal resonant cavity compared with 

conventional resonant cavity is: first due to the present of photonic crystal background, the Q 

value can be very large; second the size of the resonant cavity can be very small and compact. 

Those two properties is the key to improve the solid state laser performance and properties.  

And how to efficiently and accurately get the exact resonant peak frequency, the Q value and 

electric field mode profiles are essential for laser resonant cavity design. 

 

The planewave based transfer (scattering) matrix method is a frequency domain method and 

spectra can be calculated at any arbitrary resolutions, i.e. arbitrary small or large frequency 

steps. There are maybe several resonant peaks inside the photonic band gap frequency region, 

and we have no idea where those resonant modes located and what is the Q value before the 

whole spectra is obtained. To get all possible resonant modes, very high spectra resolution is 

required, ideally continues spectra are preferred. The calculation for each frequency data 

point is almost identical, so increase the resolution will increase the calculation time linearly. 

We can not get continues spectra due to the calculation time limitation. Typically, getting 

around less than 100 frequency data points in the band gap range of the spectra is acceptable 

in term of time consumption for 3D structures.  

 

For a typical transmission spectrum through a GaN woodpile photonic crystal structure with 

the band gap ranges from around 0.50 mμ  to 0.60 mμ , if the resonant mode of Q value is 

around 10,000 and resonant frequency 0.55 mμ , then we need at least the spectrum to have a 
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resolution of  55.5 10−×  mμ  or 1818 data points to barely see this resonant peak. A Q value 

of 10,000 is only moderate in photonic crystal cavities, recently S. Noda reported a photonic 

crystal cavity with Q value as large as 1,000,000. To get a way out of this challenge, we 

introduced interpolation into our planewave based transfer (scattering) matrix method. In this 

chapter, the theoretical foundation is discussed with one example of application of this 

concept to the woodpile layer-by-layer photonic crystal cavities. 
 

3.1 Why interpolation works? 

 

As we have already known that all the spectra from Maxwell’s Equations are Lorentzian 

shape which can be determined by several parameters, one naturally asked question is can we 

use as few as possible spectrum data points to get an acceptable estimate of those parameters 

and in turn get the analytical form of the spectrum? There are two types of methods to 

answer the above question, one is interpolation and the other is regression.  

 

Regression is a statistic way to figure out the unknown parameter by minimizing the fitting 

error. Typically a large set of data is required to get good results. In our case, we know the 

spectra are Lorentzian and we have to use the so called non-linear regression strategy. It may 

help a little bit in the analysis with adequate data points, but this is not we want to do.  Can 

we just use a few data points while still get accurate results? The answer goes to interpolation. 

Interpolation uses only very few data points but with the knowledge of what the function 

form (with a few undecided parameters). It just like solve a function with unknown variables: 

for example if there are 2 unknown parameters ( , )a b  in one function ( , , )y f a b x=  with the 

form ( , , )f a b x  explicit, we can only use two set of ( , )x y  to get the unknown parameter. But 

this is only true for those two set of ( , )x y  are exactly acquired from experiments or 

calculation. Error is usually introduced for experiments and certain numerical simulations. 

The biggest difference between regression and interpolation is: the interpolated function will 

go through each data points while the regressed function may or may not go through each 
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data points. There are two key points to use interpolation for the planewave based transfer 

(scattering) matrix method spectra data points: first we know the exact spectra functions form 

(Lorentzian shape); second each data points are accurate enough.  

 

Now let’s start from the most general form of the superposition of multiple peak Lorentzian 

functions Eq. (3.1) with { }, , ,i i i ia b c d  total 4m independent unknown parameters. With a few 

steps, the multiple peak Lorentzian function can be written in term of rational function Eq. 

(3.2) with total of 4 1m +  unknown parameters. With one additional redundancy parameter, 

we can adopt a widely used, robust and efficient interpolation / extrapolation algorithm for 

diagonal rational functions. The Bulirsch-Stoer algorithm of the Neville type produces the so 

called diagonal rational function with the degrees of numerator and denominator equal (if m 

is even) or with the degree of the denominator larger by one (if m is odd).  

 

One other advantage of using the diagonal rational function interpolation is that in real 

transmission spectra, there are may be some non-Lorentzian feature which can be handled by 

rational function instead of Lorentzian function (detailed discussion will be on later sections).  
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3.2 An example of application of interpolation 

 

This section is modified from a paper published at Optics Letters Vol. 31. No. 2 (page 262) at 

January 2006 with title: "High-efficiency calculations for three-dimensional photonic crystal 

cavities", by M. Li, Z. Li, K. Ho, J. Cao, and M. Miyawaki. 

 

Experimental and numerical studies of photonic crystals (PC) have been experiencing 

exponential growth for more than a decade and numerous scientific and engineering 

advances have been made. However, with the exception of PC fibers,1 very few concepts 

have been able to pass from the scientific research stage to high throughputs mainstream 

products. Besides the challenges in manufacturing, one of the main reasons behind this 

situation is the lack of efficient and versatile numerical simulation tools for PC structures, 

especially defective three-dimensional (3D) PC structures which can be used for 

waveguides2,3,4 and resonant cavities.5,6 There are already established numerical simulation 

methods.7,8,9
 However, serious consideration of the trade-off between the targeted result 

accuracy (e.g. resolutions etc.) and the projected computation time is still a daily dilemma 

faced by researchers working on 3D PC devices. In this letter, we present methods that can 

minimize this trade-off for cavity embedded 3D PCs. The approach includes a planewave-

based transfer matrix method (TMM)10 and a robust rational function 

interpolation/extrapolation implementation.11,12 A significant increase in speed with high 

numerical accuracy for modeling 3D PC cavity modes was demonstrated based on this 

approach. 

 

When an incident electromagnetic wave is directed toward a slab of 3D PC, the transmission 

rate through it should be exponentially attenuated across the whole frequency range of the 

directional band gap, which contains the full photonic band gap.13 When there is a cavity 

mode in the 3D PC slab, the resonant transmission through the cavity will result in a 
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Lorentzian shape peak in the transmission power spectrum. The peak frequency corresponds 

to the cavity mode’s frequency, and the ratio between the peak frequency and the FWHM 

(full-width half-maximum) of the peak corresponds to the mode’s Q value.14,15 The stationary 

electromagnetic field distribution through out the volume is the cavity mode shape, when the 

incident light is set at the cavity mode’s resonant frequency. Therefore, one can in principle 

characterize every aspects of individual cavity modes based on such transmission 

calculations. At first sight, however, since we do not know the number of cavity modes and 

their frequency positions, it appears that for high Q cavity modes corresponding sharp 

transmission spectral peaks, a large number of frequencies have to be calculated to resolve all 

the modes in the band gap. 
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Figure 3-1: A 5-by-5 sized PC cavity supercell structures (left) and cross-
section of the cavity layer (right)  

 

To solve this practical challenge, an interpolation/extrapolation strategy was deployed. 

Unlike the complex frequency domain root searching approach employed before (e.g. 

reference 16, and similar method has been used in 2D slab PC cavity structures), we utilized 

a fully global deterministic real frequency domain rational function 

interpolation/extrapolation formalism: the Stoer-Bulirsch algorithm which does not require 

explicit initial conditons.11,12 A sum of Lorentzian peaks which is the general form that any 
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resonant transmission spectrum should follow is simply a sub-class of diagonal rational 

functions. Therefore, ideally one can analytically extract every spectral detail at any 

resolution, once the spectral values at M=4N+1 frequency points are known, for a spectrum 

that contains equal or less than N resonant peaks. The sampling of those M frequency points 

can be arbitrary. This fact eliminates the great practical challenge of searching narrow 

bandwidth resonant peaks across the wide bandwidth span of a photonic band gap.  

 

As a demonstration, we performed numerical simulation for a 3D layer-by-layer PC 

structure17 illustrated in Figure 3-1. The refractive index of the rod material is set at 3.015. 

Both w/a and d/a ratios are 0.3019, where w is the width of each rod in the x-y plane, d is the 

thickness of each rod along the z-orientation, and a is the pitch between rods in each layer or 

is referred as lattice constant in some literatures.10 The left side of Figure 3-1 is a 3D 

illustration of a 5-by-5 sized supercell embedded with an optical cavity, where the supercell 

size is 5a×5a in the x-y plane. In this study, to characterize the numerical influences of finite 

supercell sizes, we calculated multiple supercell sizes, including 3-by-3, 4-by-4, 5-by-5 and 

6-by-6. All structures in this study (except otherwise specified) have 22 layers along the z-

orientation and the optical cavity is formed by removing a section of rod in exactly one 

lattice constant (a) in the 12th layer, which is illustrated by a cross-section diagram shown on 

the right side of Figure 3-1. 

 

The transmission spectrum for the 3-by-3 unit cells with a z-oriented incident beam (both x- 

and y- polarizations) at 21 discrete sampling frequencies was calculated by TMM, shown as 

the scattered square symbols in Figure 3-2. Firstly, 13 evenly spaced frequency points were 

calculated, and the estimated error term from the interpolation of those 13 points indicated 

more data points were required around normalized frequency 0.44 and 0.445. Then 8 

additional frequency points were calculated around 0.44 and 0.445, and interpolation 

repeated with a total of 21 frequency points. The y-polarization incident does not show any 

resonant feature throughout the whole directional band gap. The solid blue line in Figure 3-2 
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is the result of the 100,000 output points for the x-polarization from the 21 data interpolation. 

The green line in Figure 3-2 is the estimated error term generated by the interpolation routine 

itself. 11,12 This estimated error term not only provides a direct gauge of the reliability of each 

interpolation, but also provide a direct indication of where to add more input data points if 

necessary. 
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Figure 3-2: The z-directional transmission spectrum (blue line) across the 
full bandgap range with its estimated error term (green line). The upper-
left inset shows a zoom-in linear plot of the Lorentzian resonant 
transmission peak, with its peak frequency and Q value labeled. The upper-
right inset shows a zoom-in view of an asymmetric transmission feature, 
with 26 confirmation TMM frequency points (purple crosses). 
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The upper-right inset of Figure 3-2 is a zoom-in view of a sharp and non-Lorentzian feature 

near the normalized frequency 0.4454. It also shows 26 independent confirmation frequency 

points (purpule crosses) calculated by TMM. The numerically perfect match between these 

26 confirmation data points and the 100,000-point high resolution spectrum (blue line) is a 

direct proof of the accuracy of the rational function interpolation procedure. This non-

Lorentzian feature is not a localized cavity mode which is confirmed by its mode shape 

calculated in TMM.18 Namely, its mode shape reveals strong concentration of the 

electromagnetic field at the two air/PC interfaces, instead of the cavity itself. Although we 

don’t have definite analysis of this specific resonance yet, these non-Lorentzian resonant 

features are not rare and are also observed in other simpler grating systems.19  

 

Such numerically stable and high accuracy performance of the interpolation routine is 

partially due to the fact that TMM is a frequency domain calculation method. Unlike time 

domain simulation methods (e.g. Finite-Difference Time-Domain (FDTD)), the individual 

power spectrum data point calculated from frequency domain methods is the stationary result 

after the evolution of infinitely long time, without the influences of finite time span 

convolution effects and/or transient effects. This is the reason why such interpolation can 

numerically work across a wide bandwidth (e.g. covering the full band gap range in one run), 

while methods such as the Pade approximation used in conjunction with FDTD programs can 

only cover much smaller bandwidth for each run in order to correct the convolution effects.20 

The upper-left inset of Figure 3-2 shows a zoom-in view of the Lorentzian peak near 

normalized frequency 0.4402, which corresponds to a localized cavity mode of interest. 

Plotted in linear scale at the spectral resolution Δf=6×10-7, the exact details of the cavity 

mode are resolved and characterized as its resonant frequency f0= 0.440194 and Q value of 

1.98×104 as labeled in the inset. 

 

To characterize the influences of the finite supercell sizes prescribed by TMM, we also 

calculated the transmission spectra when increasing the supercell size from 3×3 unit cells 



 40

through 6×6 unit cells. Figure 3-3 shows high resolution (Δf=6×10-7) spectra for the 4 

different supercell sizes. The cavity mode properties (resonant frequency and Q value) 

extracted from the spectra (in Figure 3-3) are shown in Figure 3-4 (a). For supercell sizes 

larger than 4×4 unit cells, the cavity mode resonant frequency has already stabilized within 

an uncertainty range of ±0.1%. Also shown in Figure 3-4(a) is the Q value which stabilizes 

between 1×104 and 5×104 even quicker than the resonant frequency. Due to the periodic 

boundary condition used in TMM, the change of the super cell size is a change of the cavity 

layer’s specific geometry. Figure 3-4 (a) shows that the Q value is not sensitive to the 

specific geometries of optical cavities embedded in 3D PCs. This result is in agreement with 

results reported in reference 6 and 21: the Q values of cavities with different sizes and shapes 

embedded in the same 3D PC structure do not change too much.  
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Figure 3-3: The spectra for varying supercell sizes 
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This is quite different from the usual behavior of 2D membrane PC cavities where radiation 

loss into the light cone plays a pivotal role in the cavity loss.22,23 In 3D layer-by-layer PC 

cavities, the most significant factor determining the Q values is the number of cladding layers 

along the z-orientation.6,21 Figure 3-4 (b) shows the Q value of cavity mode increase 

monotonically and almost exponentially as the number of cladding layers increasing along 

the z-orientation. 

 

 
Figure 3-4: (a) Extracted from the spectra in Figure 3-3, the cavity 
resonant mode frequency and Q value vary and stabilize, as supercell size 
increases. (b) The cavity mode resonant frequency and Q value are plotted 
as functions of total number of layers along the z direction. 

 

Our method uses relatively moderate computer resources. For instance, the whole high 

resolution spectrum through the 5-by-5 structure shown in Figure 3-3 can be obtained in less 

than three hours with a 24-CPU (Intel XeonTM 3.0 GHz) computer cluster. The interpolation 

takes less than one second. Another advantage is that increasing the total number of layers 

along the z-direction does not increase the computation effort very much due to the repeating 

layer structure pattern. In conclusion, we have proposed and numerically demonstrated a 

highly efficient numerical modeling method for 3D PC cavity structures, based on a 

combination of TMM and rational function interpolation, which can be used at other 2D or 

3D PC structures.  
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3.3 Origin of Lorentzian resonant peaks  

 

Although it is well known that the resonant peaks of electromagnetic wave inside photonic 

crystal are Lorentzian form. It is not trivial from first sight; actually it is the property of 

general wave equations. When there is interference between continuous modes and localized 

modes, more complicate Fano peaks may be present.  

 

Both Lorentzian peaks and Fano peaks can be interpolated through our rational function 

interpolation discussed in the first section of this chapter. In this section, detailed derivation 

of the origin of Lorentzian resonant peaks is discussed.  

 

We start from general wave propagation case. The loss (i.e. lifetime, quality factor, Q) of a 

resonant mode can be understood as the summation of the coupling of this resonant mode to 

all radiation modes outside the cavity (Eq. (3.3)) where n  is summarizing over all radiation 

modes, which include the outward propagating waveguide modes, if waveguides are used in 

the vicinity of the cavity. 

 
1 1

ntot nQ Q
= ∑     (3.3) 

 

In a coupling Q experiment, the right hand side of Eq.(3.3) can be divided into two parts 

which are expressed at Eq. (3.4) where the first term stands for all of the injection channels 

(modes) being used in the coupling Q experiment, and the second term stands for all other 

radiation modes, where no injection are presented.  
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So, let’s simplify the notations and rewritten as Eq. (3.5) where cQ  and recQ  are injection 

channels coupling Q and the Q for rest of the radiation modes. 

  

1 1~

1 1 1 1 1c

n n ctot n n c recQ Q Q Q Q= ≠

= + = +∑ ∑   (3.5) 

 

Therefore, according to the general definition of Q, without any injection, the energy in a 

cavity resonant mode decays with time (Eq. (3.6)) where ( )W t  is the energy in the resonant 

mode, 0ω  is the central frequency of the resonant mode itself with the combined effect of all 

coupling loss mechanisms.  
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It can be proven that the power spectrum coupled into the cavity mode will be Eq.(3.7) which 

is a Lorentzian line with peak value expressed at Eq. (3.8) and FWHM expressed at Eq. (3.9). 
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Now let’s go back to prove Eq. (3.7) by starting from the general oscillation problem 

expressed at Eq. (3.10) where S+  is the injection channels’ amplitude. 2S+  is the normalized 

power flow delivered by this supermode, for example in the unit of Watt. Then we use letter 

a  to represent the amplitude of the resonant mode we are coupling to. Or, it’s the peak value 

on the resonant mode profile. And it’s normalized that 2a  equals the total energy in the 

mode in the unit of Joule. Eq. (3.10) is a lossy oscillator (1/ totτ ), driven by an external source 
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( +⋅ Sκ ) where κ  is the coupling strength between the injection channels and the resonant 

mode. When the driven term is turned on at frequency ω  with the time dependence of tje ω , 

the solution of equation Eq. (3.10) is found at Eq. (3.11) 
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Then Eq. (3.10) can be simplified to Eq. (3.12) given the arbitrary constant phase difference 

between ( )S t+  and ( )a t  can be fixed to make the constant κ  be a real number. 

Simultaneously, the phase constant for ( )S t−  is also fixed due to this choice. With the energy 

conservation relation (Eq. (3.13)) and Eq. (3.14), we can obtain Eq. (3.15). 
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Finally with Eq. (3.11) and Eq. (3.15), the reflection coefficient of the resonator system can 

be written as Eq. (3.16) and the power spectrum coupled into the cavity system can be found 

as Eq. (3.17), i.e. we proved Eq. (3.7). 
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Chapter 4. Higher-order planewave incidence 
 

Photonic crystal itself is a structure with high symmetries due to its repeating pattern. The 

planewave input may also have certain symmetries. Then the solution of the Maxwell’s 

Equations via the planewave based transfer (scattering) matrix method may have symmetry 

properties and it can lead to degeneracy phenomena. For example if we use the zero order 

plane wave incidence to excite photonic crystal cavity with certain symmetry, not all the 

resonant modes can be excited. In this chapter, we apply the general group theory to our 

method to study this problem and introduce the concept of higher-order incidence as a 

solution. One detailed example of the higher-order incidence is applied towards our classical 

layer-by-layer woodpile photonic crystal cavity array. 

 

4.1 Planewave incidence 

 

As discussed at the section 2.6.1 to get spectra from the calculated S  matrix, we must use 

certain incidence wave as input. And this incidence wave is represented by a column vector 

0E  of pN  elements (Eq. (2.52)). The simplest and widely used incidence is the zero order 

planewave incidence with two polarizations – s polarization (or called e polarization) and p 

polarization (or called h polarization). The zero order e polarization is defined as 
0 0
00, 00,1, 0x yE E= − =  and all other elements are zero at vector 0E . The zero order h 

polarization is defined as 0 0
00, 00,0, 1x yE E= =  and all other elements are zero at vector 0E . 

 

Even with zero order incidence towards three dimensional photonic crystals, the relationship 

between the incident angles ( ,θ ϕ ), polarization angle ( α ) and the physical position of 

photonic crystal is usually complex. To make those relations clear, we define the convention 

used in our method in this section. 
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First, the physical real space coordinate is defined at Figure 4-1; the rod of the layer-by-layer 

woodpile photonic crystal structure has its rods parallel to X  or Y  axis according to 

different layers. The origin point O  should be at the center of the first layer of the photonic 

crystal, but to illustrate more detail, I shift the photonic crystal to the first quadrant of XY  

plane.) The Z  axis is the cladding layer (through origin O  and point out the paper in Figure 

4-1). In the illustration figure the woodpile layer-by-layer photonic crystal structure has all its 

layers with Z  axis position larger than zero.  

 

 
 

Figure 4-1: Coordinate system (Real object) 

 

Second, define the incident angle based on the geometry coordinate ( XYZ ) illustrated at 

Figure 4-1. We adopt the convention widely used at various physics systems: the azimuthal 
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angle ( ,θ ϕ ) is defined in Figure 4-2.  The wave vector k  defines the incident direction. Line 

Ok  projects on XOY  plane giving OB . 

 
 

Figure 4-2: Coordinate system (XYZ axis) 

 

Third, for each incident direction k , there are two independent polarization directions for the 

electric field vector. To uniquely define the two independent polarization directions, we first 

define an incident plane. The incident plane is the plane which contains the vector k  and axis 

OZ  which is the normal direction of the first photonic crystal layers (or the XOY  plane). In 

Figure 4-2, the incident plane is plane ZOBk . (Note: incident plane is always perpendicular 

to XOY .) Now, we can define the two independent polarization direction: 1e  which is 

perpendicular to the incident plane and 2e  which is in the incident plane and perpendicular to 

1e  and k . In fact 1e , 2e and k  are orthogonal to each other and composes a right hand 

Cartesian coordinate.  After we define the two independent polarization angles, we can 

define the polarization direction when the polarization angle equals to α  where α  is rotating 

counter-clockwise from the 1e  axis (in Figure 4-3).  

 

Note: the k  direction points out of 1 2'Oe e  plane. We can use 1e , 2e and α  to express any 

polarizations via 21 )(sin)(cos eee ααα += . The h  polarization means its electrical field is 

parallel to 1e . And, the e  polarization means its electrical field is parallel to 2e . 

X

Y

O

Z

θ  

ϕ

k

B
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Figure 4-3: Polarization angle 

 

Fourth, now we have defined the incident angle ( ,θ ϕ ) and polarization angle α  and the 

relationship between them to the physical position of photonic crystal at real space 

coordinate ( XYZ ). Now we can express any incidence in term of the components at the 

XYZ  coordinate system.  We can realize this by two steps; first find the three components of 

1e  and 2e   by Eq. (4.1) and then apply 21 )(sin)(cos eee ααα += . Finally we can get the 

, ,x y z  components of arbitrary planewave incidence eα  (Eq. (4.2)) at the XYZ  coordinate 

system. 

 

  1

2

ˆ ˆ( sin ) (cos )
ˆ ˆ ˆ( cos cos ) ( sin cos ) (sin )

e x y
e x y z

ϕ ϕ
ϕ θ φ θ θ

= − +
= − ⋅ + − ⋅ +

 (4.1) 

 

  
,

,

,

sin cos cos cos sin
cos cos sin cos sin
sin sin

x

y

z

e
e
e

α

α

α

ϕ α ϕ θ α
ϕ α φ θ α

θ α

= − ⋅ − ⋅ ⋅

= ⋅ − ⋅ ⋅

= ⋅

  (4.2) 

 

e1   (i.e. the h polarization case)

e2   (i.e. the e polarization case)

'O  
α
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Now, to get a feeling or what is really looks like, here I also post some real pictures: the 

pencil represents the incident light, at the end of the pencil, we can see there are three arrows: 

the red arrow is 1e , the red arrow with black head is 2e  and the blue arrow is electric field 

direction for a certain polarization angle α .  

 

 
 

Figure 4-4: Incident angle (Real object) 

 

Here is some special case of the incident angle: Figure 4-5 shows the normal incident case in 

which the origin O  and 'O  are at the same position; Figure 4-6 shows a special case where 

0θ = . 

 

For each pair of incident angle, there are two independent polarizations can be chosen 

according to the convention of 2D photonic crystal: TE or TM mode. But the definition of 

TE and TM is not clear for 3D or 1D photonic crystal, even for 2D photonic crystal, people 

usually have different conventions for different geometry cases. In our planewave based 
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transfer (scattering) matrix algorithm, the incident electric magnetic wave is defined by 

incidence angles ( , )θ ϕ  and polarization angle ( )α .  

 

 
 

Figure 4-5: Special case, normal incident 

 

 

 
 
 

Figure 4-6: Special case, theta = 0 

0, 0,θ ϕ α= ≠

X 

Y 

O 

Z  ● 

e1 

e2 

α  

ϕ
E 

Photonic crystal plane: XOY 

X

Y

O  

Z  ● 

EM polarization plane e1 and e2 

e1 

0, 0,θ ϕ α= =  

e2 Z  ● 
α

E 

'O
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The normal incidence e and h polarization have very high symmetry, for example rotate 180 

degree and X  axis mirror symmetry and  Y  axis mirror symmetry which will lead to mode 

degeneracy and normal incidence calculation only will miss some modes. Although oblique 

incidence can break any geometry related symmetry and can excite all possible modes in the 

spectra, the interpolation results is bad due to the reason we are going to discuss in the next 

section. The way to keep the good interpolation result of normal incidence while extracting 

all possible modes is our recently introduced higher-order normal incidence.  

 

Under some circumstances oblique incidence is prohibit (for example: the symmetric transfer 

matrix method which utilize the symmetry property of the geometry and input plane wave to 

reduce memory usage and calculation time dramatically), and higher-order normal incidence 

is the only choice to extract all possible resonant modes from the planewave based transfer 

(scattering) matrix algorithm. 

 

4.2 Comparison between oblique incidence and fixed k  value incidence 

 

As we mentioned in the last section, the spectra interpolation result from data points of 

oblique incidence is bad but the spectra interpolation result from data points of higher-order 

normal incidence is good. In this section, we explain why the oblique incidence interpolation 

is bad and introduce the theoretical foundation of fixed k  value incidence.  

 

Let’s take a typical point defect embedded in the photonic crystal for example. The 

planewave based transfer (scattering) matrix method adopts super cell configuration, i.e. the 

periodic boundary condition for both X  and Y directions (Figure 4-7). The relationship 

between the super cell configuration and actual finite size photonic crystal with cavity 

embedded can be justified as: when the size of the super cell is large enough that the 

interaction across neighborhood cavity is negligible, then the result of the super cell 

approximates the result of the finite photonic crystal with cavity.  
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Figure 4-7: Illustration of the concept of super cell 

 

The related extended Brillouin Zone of a super cell cavity embedded photonic crystal is 

conceptually illustrated at Figure 4-8 with the purple region representing the band gap and 

green line representing the defect mode.  

 

Typically, the defect mode (cavity mode) resonant frequency is slight changed while the k  

value various. The frequency at Γ  points is corresponding to the normal incident case. If a 

few normal incidence data points is used to interpolate the spectrum, we are going to get 

good interpolation results with the resonant frequency exactly as the frequency at Γ  point 

which is confirmed by the detailed example at section 3.2. But as we mentioned at last 

section that modal degeneracy may happen due to the symmetry configuration while the 

X 

Y 
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oblique incidence can extract all possible modes. However the oblique incidence has bad 

convergence on spectra interpolation.  

 

 
 

Figure 4-8: Extended Brillouin Zone for super cell configuration: the y 
axis is frequency and x axis is the k vales.  

  

If we look close to the extended Brillouin Zone (Figure 4-8) with the dotted line represents 

an oblique incidence for fixed angle, then we can realize that for oblique incidence, the 

resonant frequency is not actually one fixed value but a small range of frequency. Trying to 

interpolate several data points belong to different resonant frequencies (although the 

difference is very small) into fixed peak Lorentzian curve is for sure not a good approach and 

the bad performance of oblique incidence is explained. 

 

One way to preserve the good interpolation performance while breaking the symmetry 

related modal degeneracy is using the fixed non-zero k  value normal incidence. We still use 

the normal incidence (set the azimuthal angle θ  to zero), but when we calculate the transfer 

matrix and scattering matrix we use the nonzero fixed k  value. The dashed line of Figure 4-8 

is exactly this situation. In this case, the resonant frequency is one fixed value which is slight 
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different to the Γ  points resonant value.  Because the non-symmetric property of the non-

zero fixed k , all possible resonant modes can be extracted while all data points belong to one 

fixed resonant peak so the interpolation works well. One directly application of the fixed k  

value is to obtain a detailed variation of resonant frequency verses the k  value or the detailed 

dispersion relation for photonic crystal devices. One example of this application is discussed 

at section 4.4. 

 

But how about if someone wants exactly all the Γ  point resonant values while there is indeed 

model degeneracy? The answer is we can use higher-order incidence when the super cell 

configuration is used.  

 

4.3 Higher-order incidence 

 

Usually only the zero order planewave is propagation mode in vacuum and higher-order 

planewaves are evanescent mode below a frequency threshold (detailed explanation at later 

part of this section). But for higher-order planewave incidence, there exists propagation 

modes within the band gap frequency range which is the most interested frequency range to 

researchers. In this section, the concept of higher-order propagation planewave is discussed 

in very detail with symmetry consideration. We suppose the photonic crystal cavity has X  

axis mirror symmetry and Y axis mirror symmetry (i.e. belongs to 2vC  group); and we are 

going to apply higher-order normal incidence to break this symmetry while still take 

advantage of the normal incidence and symmetry properties of photonic crystal.  

 

4.3.1 C2v  Group  
 

Typical symmetries involved in photonic crystal are X  mirror symmetry and/or Y  mirror 

symmetry. For structures with both X  and Y  mirror symmetry, they belong to 2vC  group. 

The most important property of  2vC  group is that there are 4 irreducible representations: 1A , 
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2A , 1B  and 2B . And the electric field and magnetic field eigen mode should belong to one of 

the irreducible representations. There are 4 operations for 2vC  group: 2
ˆˆ ˆ ˆ, , ,x yE C σ σ  defined at 

Eq. (4.3). 

 
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2

ˆ , , , ,
ˆ , , , ,

ˆ , , , ,

ˆ , , , ,
x

y

E x y z x y z

C x y z x y z

x y z x y z

x y z x y z

σ

σ

=

= − −

= −

= −

   (4.3) 

 

ˆ
R R

R

lP P
h

χ= ∑     (4.4) 

 

To determine which representation a function belongs, we need to apply the project operator 

(Eq. (4.4)) into that function for each representation. If the result is zero, then this function is 

not belonging to this representation, and if the result is nonzero, then this function is 

belonging to this representation. For any functions, it should belong to at least one of four 

representations. In Eq. (4.4), h  is the group size (i.e. how many operations, for 2vC  it is 4); 

χ  is the number in the character table of the group; R̂P  is the operators and l  is  the 

dimension of the group. The character table of 2vC  group is listed at Table 4-1. 

 
Table 4-1: Character table of C2v group 

 

 Ê  2Ĉ  ˆ xσ  ˆ yσ  

1A  1 1 1 1 

2A  1 1 -1 -1 

1B  1 -1 1 -1 

2B  1 -1 -1 1 
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4.3.2 Higher-order planewave and its symmetry 
 

The order of planewave is defined by the index ( ),i j  in the column vector of incidence (Eq. 

(4.5) here cln  is the refractive index of cladding material). For any order, the e polarization 

(e-pol.) has , ,1, 0ij x ij yE E= − = , and the h polarization (h-pol.) has , ,0, 1ij x ij yE E= = . The 

corresponding magnetic field components can be found through electric field components via 

Eq. (4.6). 

 

  

( ) ( )

( ) ( )

, ,

, ,

,

,

2 2 2
0 , , 0

, ,

, ,

: ;

ij x ij y ij

ij x ij y ij

k x k y z
x ij x

ij

k x k y z
y ij y

ij

ij ij x ij y cl

E x y z E e e

E x y z E e e

with k k k k n
c

β

β

ωβ

+

+

=

=

= − − =

∑

∑

i i

i i   (4.5) 

 
2 2

, , , , ,
2 2

, , , , ,0

1ij x ij x ij y ij x ij ij x

ij y ij y ij ij x ij y ij yij

H k k k E
H k k k Ek

β
ββ

⎛ ⎞ ⎛ ⎞⎛ ⎞− −
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− +⎝ ⎠ ⎝ ⎠⎝ ⎠

 (4.6) 

 

Now let’s consider the zero order ( )0, 0i j= =  incidence, and consider air cladding, i.e. 

1cln = . Then the electric field X  and Y components for both e-pol. and h-pol. can be found 

through Eq. (4.5) and expressed in Eq. (4.7). And the corresponding magnetic field can be 

found through the magnetic components which can be calculated through Eq.  (4.6), and the 

result is expressed at Eq. (4.8).  

 
( ) ( )
( ) ( )
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0

00 00

00 00

: , , ; , , 0

: , , 0; , ,

k z
x y

k z
x y
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0 0

1( , , ) y x
z

H HE x y z
ik x yε

∂⎛ ⎞∂
= −⎜ ⎟∂ ∂⎝ ⎠

  (4.9) 

 

After obtaining the electric field X  and Y  components, the Z  components can be found by 

Eq. (4.9). For zero order normal incidence, the electric field Z  components turn out to be 

zero for both e-pol. and h-pol.. So the zero order normal incidence e-pol. ( )0ˆ( ) k ze= − iE r x , 

there is only X  component; and the zero order normal incidence h-pol. ( )0ˆ( ) k ze= iE r y , 

there is only Y  component. 

 

Now let’s analysis the ( )1, 0i j= =  order incidence with 10, 1 10,2 / , 0x yk a kπ= =  (here 1a  is 

the lattice constant along the Y  direction of the super cell). According to Eq. (4.5), we have 

( ) ( )2 22 2 2
01 0 01, 01, 1/ 2 /x yk k k c aβ ω π= − − = −  and the corresponding X  and Y  electric field 

components of both e-pol. and h-pol. can be found through Eq. (4.5) and is expressed in 

Eq.(4.10). 

 

The X  and Y  magnetic field components of both e-pol. and h-pol. is expressed in Eq. 

(4.11). The electric field Z  components can be found through Eq. (4.9) with the already 

known X  and Y  components of magnetic field (Eq. (4.11)). And it turns out to be Eq. (4.12) 

with 1 2,C C  and 3C  three nonezero constants.  
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The similar procedure can be applied to all other orders; and the all three components of 

electric field can be found for each order. After we get the electric field for each order, we 

can apply the group theory analysis discussed at section 4.3.1 to find the symmetry properties 

of the electric field of each order. 

 

Let’s start with the simplest zero order ( )0, 0i j= =  incidence of e-pol.: ( )0ˆ( ) k ze= − iE r x . 

Apply the project operator (Eq. (4.4)) to ( )E r  to each of the four irreducible representations. 

If the result is zero then ( )E r  is not belonging to this representation and if the result is none 

zero, then ( )E r is belonging to this representation. ( )E r  should belong to at least one of the 

representations. By the definition of the four symmetry operations at Eq. (4.3), we can get the 

symmetry transformed ( )E r  expressed at Eq. (4.13).  To test whether ( )E r  belongs to 

1A irreducible representation, we need apply the projection operator to ( )E r  with the 

coefficient in the character table of  2vC  group’s first line. Then we get ( 1) 0AP =  which 

means ( )E r  does not belong to 1A  irreducible representation. The same procedure can be 

applied to 2A , 1B  and 2B  irreducible representations and result is put at Eq. (4.14). The 

conclusion is that the zero order e-pol. incidence belongs to 1B  representation.  
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The similar procedure can be applied the zero order incidence with h-pol.: ( )0ˆ( ) k ze= iE r y  

with the four symmetry operation listed at Eq. (4.15) and the projection operation to each 
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irreducible representation at Eq. (4.16). And the result indicates that the zero order h-pol. 

incidence belongs to 2B  representation.  

 

( )
( )
( )
( )

1

2

1

2

( )
2

( )
2

( )
2

( )
2

1 ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0
4
1 ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0
4
1 ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0
4
1 ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0
4

A
x y

A
x y

B
x y

B
x y

P E C

P E C

P E C

P E C

σ σ

σ σ

σ σ

σ σ

= + + + =

= + − − =

= − + − ≠

= − − + =

E r E r E r E r E r

E r E r E r E r E r

E r E r E r E r E r

E r E r E r E r E r

 (4.14) 

 

( )
( )
( )

( )

0

0

0

0

2

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( )

k z

k z

k z
x

k z
y

E e

C e

e

e

σ

σ

=

= −

= −

=

i

i

i

i

E r y

E r y

E r y

E r y

    (4.15) 

 

( )
( )
( )
( )

1

2

1

2

( )
2

( )
2

( )
2

( )
2

1 ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0
4
1 ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0
4
1 ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0
4
1 ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0
4

A
x y

A
x y

B
x y

B
x y

P E C

P E C

P E C

P E C

σ σ

σ σ

σ σ

σ σ

= + + + =

= + − − =

= − + − =

= − − + ≠

E r E r E r E r E r

E r E r E r E r E r

E r E r E r E r E r

E r E r E r E r E r

 (4.16) 

 

Now we have the information of the zero order incidence of both polarizations: e-pol. 

belongs 1B  representation and h-pol. belongs to 2B  representation. The physics meaning of 

the above information is: the zero order e-pol. incidence can only excite resonant modes 

belong to 1B  representation and any other possible modes of 1A , 2A  or 2B  can not be excited 

by the zero order e-pol. incidence (or in other words, there will be no such resonant mode in 

the spectrum of zero order e-pol. incidence); the zero order h-pol. incidence can only excite 

resonant modes belong to 2B  representation and any other possible modes of 1A , 2A  or 1B  
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can not be excited by the zero order h-pol. incidence (or in other words, there will be no such 

resonant mode in the spectrum of zero order h-pol. incidence).  

 

In actual photonic crystal cavity, the resonant modes may belong to any of the 4 irreducible 

representations, so we need analysis higher-order incidence to make sure all of four 

irreducible representations are covered.  

 

Now let’s do the similar analysis to the 1, 0i j= =  higher-order incidence with the electric 

field expressed in Eq. (4.17). By applying the 4 symmetry transformation operation Ê , 2Ĉ , 

ˆ xσ  and ˆ yσ  and using the projection operator, we can get the results that e-pol. belongs to 1A  

and 1B  irreducible representations (Eq. (4.18)) and h-pol. belongs to 2A  and 2B  irreducible 

representations (Eq. (4.19)).  

 

So higher-order ( )1, 0i j= =  incidence with e-pol. and h-pol. can cover all four 

representations and all possible resonant modes can be excited if both h-pol. and h-pol. of 

( )1, 0i j= =  order incidence are used. 
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Further analysis shows that higher-order incidence ( )1, 0i j= − =  has the same results as 

higher-order incidence ( )1, 0i j= = . Similarly, the higher-order incidence ( )0, 1i j= = ±  

covers 2A  and 1B  irreducible representations for e-pol. and 1A  and 2B  irreducible 

representations for h-pol. Each polarizations of any higher-order with ( )1, 1i j≥ ≥  can cover 

all four irreducible representations. Those results are summarized at Table 4-2 with 1i ≥ .  

 
Table 4-2: Irreducible repressions coved by high order incidence 

 

4.3.3 Possible propagation modes for higher-order incidence 

 

As we mentioned at the beginning of this section, not all the higher-order planewave are 

propagation mode for all frequency ranges. We need pay close attention to the wave vector 

zk  expressed in Eq. (4.20). When zk  is real number, it is propagation mode; and when  zk  is 

imaginary number, it is evanescent mode which will decay exponentially with respect to the 

propagating distance. The resonant cavity modes can only be excited by propagation modes.  

 
2 2 2
0 , , 0;z ij ij x ij y clk k k k k n

c
ωβ= = − − =     (4.20) 

( )0,0  ( )0, i±  ( ),0i±  ( ),i i± ±   

e h e h e h e h 

Rep. 1B  2B  2A 1B  1A 2B  1A 1B  2A 2B  all 4 all 4 
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For zero order incidence ( )0, 0i j= =  , , 0ij x ij yk k= = , 0zk k=  and it is real number for any 

frequency. So zero order incidence is propagating mode for all frequency range. Now let’s 

take ( )0, 1i j= =  order incidence for example:  , , 20, 2 /ij x ij yk k aπ= =  and zk  is real number 

only for 2/ 2 /cln c aω π≥  or ( )22 / clc n aω π≥ .  There is a cut-off frequency for propagation 

modes. Below that cut-off frequency, it is evanescent wave and can not be used to excite 

resonant cavity modes. Luckily, the frequency range we are interested in (within the band 

gap range) is usually above this cut-off frequency.  

 

Based on our experience, the first band gap lower frequency edge is usually above 0.2 

normalized frequency. If we set the normalized cut-off frequency to be 0.2, then the cut-off 

frequency ω  takes the larger value of ω  in 1 / 2 0.2A cω π ≥  and 2 / 2 0.2A cω π ≥ . Here 1A and 

2A is the lattice constant of the super cell, while 1a  and 2a  are the length of the unit cell 

along X  and Y  direction. Usually we have 1 1A ma=  and 2 2A ma=  with m  and n  integers 

(for example: 5, 5m n= = ; we call it 5x5 super cell).  

 

Now let’s setup a lower frequency boundary ( 0c  in Eq. (4.21)) and suppose all calculation is 

above this boundary. Based on this lower frequency boundary, we can find which higher 

order incidence are propagation modes and which order are evanescent modes.  

 
1

0 0
1

2,
2

ac c
c c a

ω ω π
π

= =     (4.21) 

 

, ,
1 2

2 2;ij x ij yk i k j
ma na

π π
= =     (4.22) 

 

For order ( ),i j  incidence with m n×  super cell configuration, ,ij xk  and ,ij yk  can be expressed 

in Eq. (4.22). With our pre-set lower frequency boundary 0c ,  the order ( ),i j  incidence is 

propagation mode only if the relation of Eq.(4.23) is satisfied.  For fixed ,m n  and 1 2,a a , the 

maximized order propagation incidence can be determined.  
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   (4.23) 

 

If we draw all the higher-order ( ),i j  into a diagram with xk  and yk  as the X  and  Y  axis 

and keep 1 2a a=  and m n= , they are isolated points of square grid. All the grid points within 

the circle with center at origin and radius of 0clmn c  are propagation modes, which is 

illustrated at Figure 4-9: Propagation modes in k space. 

 

kx (2π/L)(0,0) (1,0)

(1,1)(0,1)

ky (2π/L) L=5×a1

Light-line with low frequency edge

 
 

Figure 4-9: Propagation modes in k space 

 

All the above discussion is based on normal higher-order incidence with fixed incidence 

wave vector 0 0x oyk k= = , i.e. the 0Γ  point at Figure 4-8. In case of other fixed incidence 

wave vector 0 ,x oyk k , the propagation mode is still with in the circle with radius 0clmn c , but 

the center of the circle is now 0( , )x oyk k . 
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4.4 Example of application of higher-order incidence 
 

This section is modified from a paper published at Optics Letters Vol. 31, No. 23 (page 

3498) at December 2006 with title: "Higher-order incidence transfer matrix method used in 

three-dimensional photonic crystal coupled-resonator array simulation", by M. Li, X. Hu, Z. 

Ye, K. Ho, J. Cao, and M. Miyawaki. 

 

Photonic crystals (PCs), periodic dielectric media, can inhibit electromagnetic (EM) wave 

propagation in certain frequency ranges called photonic band gaps (PBGs).1,2 Introducing 

point or line defects into PCs can create highly localized defect modes within the PBGs,3 

resulting in resonant cavities of high quality factor Q and low loss waveguides.4,5,6 Recently, 

coupled PC cavity arrays have received much attention due to their potential application in 

integrated optical circuits.7,8,9,10 However, most of these structures are based on two-

dimensional (2D) PCs or 2D PC slab. There exist few studies8 on resonant cavity arrays in 

three-dimensional (3D) PCs due to difficulties in fabrications and numerical simulations. In 

this letter, we theoretically study periodic resonant arrays in 3D PCs by using the planewave 

based transfer-matrix methods (TMM)11,12 with higher-order planewave incidence and 

rational-function interpolation13 techniques. As an example, both the quality factor and 

dispersion relation are obtained very efficiently for a resonant cavity array based on the 

layer-by-layer woodpile PCs. An interesting ultra-slow negative group velocity is observed in 

this structure. To our knowledge, this is the first time that dispersions are calculated for 

coupled resonant cavity arrays in 3D woodpile PCs in all directions. 

 

The 3D layer-by-layer woodpile14 PC is composed of 25 layers (in the z direction) of square 

dielectric rods of refractive index 4.2=n  and width 0.35a0, with the cladding material at 

both ends along z direction of refractive index cln . Here the lattice constant a0 is the distance 

between two neighbored rods (shown in Figure 4-10(a)). The cavities are located in the 13th 
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layer and of double periodicities of 5a0 in both x and y directions. Each cavity is created by 

filling a volume of a0 by a0 by 0.35a0 with the rod material ( 4.2=n ) (shown in Figure 4-10 

(b)).  

 

 
 

Figure 4-10: The X-Y-plane-periodic array of 3D woodpile PC (with cavity in 
the 13th layer): (a) the 5-by-5 super cell of total 25 layers along z 
direction with dielectric cladding of refractive index ncl (the cladding is 
not shown); (b) top view of the 13th layer with the cavity of volume of a0 
by a0  by 0.35a0 and n = 2.4; and (c) the irreducible Brillouin zone of (qx, 
qy). The 3D woodpile PC is composed of dielectric square rods of n = 2.4 
and width 0.35a0, where a0 is the distance between two neighbored rods (i.e. 
the lattice constant). 

 

The related reciprocal lattice ( )0 02 /(5 ), 2 /(5 )x yG i a G j aπ π= =  and irreducible Brillouin 

zone of the Bloch wave-vector ( )yx qq ,  for this periodic cavity array are shown in Figure 

4-10(b) and Figure 4-10 (c), respectively. Since the resonant cavity array has x-axis and y-

axis mirror symmetry, the cavity modes belong to the C2v group with four irreducible 

representations (A1, A2, B1, and B2) and the character table of the C2v group is listed in 

Figure 4-10  (c).15 

 

We consider the incidence of planewaves with wave-vector 

( )2 2 2 1/ 2
0, , ( )x x x y y y z x yk q G k q G k k k k= + = + = − −  upon the above resonant cavity array, where  
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cnk cl /0 ω=  with c the speed of light and ncl the cladding substrate refractive index. 
2 2 2

0x yk k k+ <  and 2 2 2
0x yk k k+ >  corresponds to propagating and evanescent waves, respectively 

(shown in Figure 4-11 (a) and (b)). In our TMM algorithm,11,10 the Bloch boundary condition 

with ( )yx qq ,  is used for a 5 5×  supercell. 

 

 
Figure 4-11: (a) Incidence of a planewave with wave-vector ( xxx Gqk +=  ,  

yyy Gqk +=  and ( ) 2/1222
0 yxz kkkk −−= ) upon the 3D PC cavity array (periodic in 

the X-Y plane); solid (dashed) arrows stand for the propagating 
(evanescent) waves. (b) The reciprocal lattice for the 5-by-5 super cell PC 
cavity array; the G points inside (outside) the dashed circle (with radius 

cnk cl /0 ω= and center (-qx, -qy), shown for ( ) 43.02/ =ca πω ,  0.1=cln  and 

0== yx qq ) stand for the propagating (evanescent) waves. (c) The C2v group 

character table for the PC cavity array with E, C2, •x and •y symmetry 
operation.15 (d) The irreducible representations for the e- and h- polarized 

incident planewaves of order (i, j), i.e. ( )05/2 aiGx π=  and ( )05/2 ajGy π= . 

 

The electric field coefficient vector ( ), ,,ij x ij yE E of planewaves with 

)5/(2),5/(2 00 ajGaiG yx ππ ==  (named as order ( , )i j  in the following) can be transferred 

from layer to layer in the z direction by a transfer matrix. Here , ,...0,1,...i j N N= −   and a 

favorable convergence is found using 25N =  for the present 5 5×  supercell. Previously13, 

normal incidence with 0x yk k= =  (i.e. order (0,0)  with 0== yx qq ) was used to study the 

PC cavities. However, not all the cavity modes could be excited with (0,0)  incidence with 

0== yx qq  (as shown in Figure 4-12) because of group symmetry considerations.  To excite 
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all the cavity modes of PC cavities, we performed higher-order ( , )i j  planewave incidences 

with both e- and h- polarizations defined by 0,1 0
,

0
, =−= yijxij EE  and 1,0 0

,
0
, == yijxij EE  

respectively, where the superscript index 0 represents the electric field components before 

entering the photonic crystal structure. 

 

The incidence of planewaves with 0== yx qq  is firstly considered. The irreducible 

representations that the order ( , )i j  could cover can be found through the projection 

operation,15  and the results are shown in Figure 4-11 (d). Clearly, if the zero order 

( 0== ji ) (i.e. normal incidence) is used alone, only the B1 or B2 representation is excited 

(for e- and h- polarizations, respectively) and any resonant modes belonging to A1 or A2 

representation will not be excited. Actually for this particular photonic crystal cavity array 

structure there is indeed one resonant mode (mode A) belongs to A2 representation at 

normalized frequency 0.43948; and the other resonant mode (mode B) belongs to B1 

representation at normalized frequency 0.44763. The mode shape profiles for both modes are 

also calculated by TMM with higher-order incidence and are illustrated in Figure 4-13 (a). 

Based on the projection operation15, any higher order ( , )i j  incidence with 1≥i  and 1≥j  

will cover all the representations and both resonant modes can be excited.  

 

To find the frequency and quality factor of the resonant modes, the nearly continuous 

transmission spectra are obtained accurately from the rational function interpolation of 21 

individual frequencies ranging in the first band gap13. Figure 3 shows the transmission results 

for the planewave incidence of the first four orders.  Although the transmission amplitude for 

different orders and polarizations varies dramatically, the resonant frequency and Q value for 

each resonant mode are practical identical: 0.43948Af = , 11910AQ =  and 0.44763Bf = , 

6900BQ =  (the relative difference of f and Q  for different incidences is less than 510−  and 
410− , respectively). The excited resonant peaks for each order ( , )i j  incidence agree well 

with the above group theory analysis. For example, the group theory analysis indicates that 

the (1,0)  order incidence with e-polarization covers the irreducible representations of A1 and 
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B1, and hence the mode B (belonging to B1) instead of mode A (belonging to A2) appears in 

the calculated transmission spectrum for the (1,0)  incidence. There is also a third resonant 

mode found by TMM at normalized frequency ( ) 4635.02/ =ca πω . 

 

 
Figure 4-12: Transmission spectra for the planewaves incidence of 

0== yx qq  and order (i, j) upon the 3D PC cavity array with e-pol and h-

pol defined by 0,1 0
,

0
, =−= yijxij EE  and 1,0 0

,
0
, == yijxij EE  respectively. The 

resonant mode A and B are also labeled. The first band gap in the z 

direction (i.e. the (0, 0) incidence) opens from ( ) 395.02/ =ca πω  to 

( ) 515.02/ =ca πω . There is the third resonant mode at normalized frequency 

( ) 4635.02/ =ca πω which is not shown in this figure. 

 

The transmission spectra are calculated for planewave incidence with different ( )yx qq , .  We 

note that all the cavity modes can be excited for the case of ( )0, 0x yq q≠ ≠  due to the broken 

symmetry of non-zero qx and qy. The frequencies of resonant cavity modes can be extracted 

from the spectra and the related dispersion relations are illustrated at Figure 4-13 (b). The 
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slopes of the dispersions are very flat, indicating ultra-slow group velocities in the woodpile 

PC cavity array structure. 

 

The average group velocity (calculated by finding the slope of the straight line connecting 

two high symmetry points) of mode A in the Γ-X(X') direction is 
50.0012 3.6 10 /g c m sυ = = ×  ( 60.0048 1.4 10 /g c m sυ = = × ) and that of mode B in the Γ-X' 

direction is 60.0056 1.7 10 /g c m sυ = = × . It is interesting that a negative group velocity of 
50.0009 2.7 10 /g c m sυ = − = − ×  can be achieved for mode B in the Γ-X direction.  

 

 
Figure 4-13:(a) Electric field mode profiles for the cavity modes A and B 

at • point ( 0== yx qq ); (b) dispersion relation of both cavity modes in 

the 3D PC cavity array with black curve corresponds for •-X-M and red 
dashed curve for •-X'-M. Please note •-X-M and •-X'-M represent different 
(qx, qy) direction as shown at Figure 4-10(c). 
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In conclusion, we have developed a higher-order planewave incidence concept for the 

planewave based transfer matrix method with rational function interpolation algorithm to 

efficiently simulate three-dimensional photonic crystal devices. As an example, the 

dispersion relations and quality factors were calculated for the resonant cavity array 

embedded in layer-by-layer photonic crystal structure. An interesting ultra-slow negative 

group velocity is observed in this structure. One other advantage of TMM is that there is no 

limitation on the length of photonic crystal structure along the propagation direction making 

the TMM ideal for waveguide simulation. One other direct application of this paper is to find 

out the wave guide loss by means of finding the resonant Q value for different ( , )x yk k . 
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Chapter 5. Perfectly matched layer used in TMM 
 

In numerical simulations, absorption boundary condition is very useful to define finite 

calculation domain which is extremely important in finite-difference time-domain method 

(FDTD)1. And numerous approaches have been introduced by FDTD exporters, in which the 

perfectly matched layer (PML) absorbing boundary condition2,3,4,5 can be naturally adapted to 

our planewave based transfer (scattering) matrix method (TMM). As mentioned in previous 

chapters, TMM’s key assumption is periodic boundary condition. In order to achieve finite 

size isolated calculation domain, we must put a finite thickness absorption boundary such as 

perfectly matched layer, which will absorb all the incoming waves and act like infinite 

boundary enclosed a finite size domain. One other application of perfectly matched layer is 

to put it at the end of the wave guide to simulate infinite long waveguide structures. The 

mode profile of one dimensional dielectric waveguide and the optical properties of sub-

wavelength aluminum grating with semi-infinite substrate are examples of PML applied to 

TMM which illustrate the accuracy and power of the application of perfectly matched layer. 

 

5.1 Motivation of introducing perfectly matched layer 
 

The intrinsic boundary condition used in TMM is Bloch periodic boundary condition. For 

perfect photonic crystals (PC) simulation, the periodic boundary condition reveals the 

periodic nature of photonic crystal and TMM returns the properties (such as spectrum, band 

structure and mode profile) for the infinitely large PC structures. For more interested 

defective PC structures, the supercell concept and periodic boundary condition (i.e. an 

infinite array of defects) are adopted to approximate a single defect embedded in the infinite 

or finite large PC. The convergence of increasing the size of the supercell for a resonant 

cavity within layer-by-layer woodpile PC has been studied at section 3.2. Periodic boundary 
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conditions are also used in FDTD and other popular numerical methods to simulate infinitely 

large periodic PC structures.  

 

In experiments and real applications the PC structures are all finite in size, and it is usually 

important to study the defect structure within a finite size PC. The perfectly matched layer 

absorption boundary condition first introduced in FDTD can be adapted to TMM to simulate 

finite size PC structures. Although the performance of PML has been extensively studied in 

FDTD, there are very few reports on PML applications to TMM method. In this chapter the 

theoretical foundation and detailed benchmark results of perfectly matched layer will be 

discussed along with several application examples. 

 

5.2 Theory of perfectly matched layer and Z axis PML  

 

5.2.1 Background of PML 

 

The concept of PML was first introduced at 1994 by J.P. Berenger to improve the 

performance of absorption boundary conditions in FDTD methods. Later Sacks discussed in 

his 1995 paper that an anisotropic uniaxial material with both permittivity (dielectric 

constant) and magnetic permeability diagonal tensor can act as perfect match interface. The 

uniaxial PML is directly derived from the Maxwell Equations to realize the perfectly 

matched conditions. Such material can absorb all the incoming electromagnetic energy for all 

incidence angles, i.e. there is absolutely no reflection and transmission through this medium. 

Although we can not find this kind of material in nature or man-made material tile now, but 

we can use physical parameters to describe this special medium.  

 

Our planewave based transfer (scattering) matrix method can treat anisotropic material 

naturally, which makes the anisotropic uniaxial material our ideal candidate to realize the 

perfectly matched absorbing condition.6,7  
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The illustration of PML of two polarizations e-pol (or called s wave) and h-pol (or called p 

wave) for Z -axis is at Figure 5-1 (a) and Figure 5-1 (b). The propagation direction is along 

Z  axis, and the interface ( XY  plane) is perpendicular to Z  axis. The isotropic region at the 

left side of the interface has dielectric constant 1ε  and magnetic permeability 1μ . 

 

The anisotropic PML region right to the interface will be perfectly matched to the isotropic 

region if the dielectric constant tensor 2ε  and magnetic permeability tensor 2μ  are given by 

Eq. (5.1) with zs a b= + i , any complex number. For ideal Z -axis PML, there will be no 

reflection for planewave of any incidences at all frequencies and the transmitted wave in the 

PML is exponential extenuated by factor exp( )α−  with cos /bzα θ λ∼  (with b  imaginary 

part of zs , z  thickness of PML, λ  wavelength, and θ  incident angle).  
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Figure 5-1: (a) e-pol (s wave) oblique incidence upon Z-axis PML, (b) h-pol 
(p wave) oblique incidence upon Z-axis PML: E for electric field and H for 
magnetic field. (c) 3x3 supercell illustration at XY plane of PC structure 
with a defect located at the center with s and p wave shown for normal 
incidence; three PML regions are labeled: 1 for X-axis side PML, 2 for Y-
axis side PML, and 3 for XY corner PML. 
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In FDTD simulation with finite spatial sampling, to get the ideal PML performance, fine 

tuning of zs  is required and sometimes multiple layers of different zs  are used, such as 

polynomial-graded PML. But in our TMM method, for the Z  axis perfectly matched layer, a 

single layer with thickness half of the unit cell and 4 4zs = + i  is good enough (detail at 

section 5.2.2). 

 

5.2.2 Performance of simple parameter approach 

 

The following are the performance of the Z -axis perfectly matched layer of 4 4zs = + i  with 

thickness of 00.5a  ( 0a  the unit cell lattice constant) for the normal incidence case ( 0θ = ). At 

Figure 5-2, the reflection rate of a long frequency range (0 to 10 normalized frequency) is 

plotted: for both e and h polarizations the reflection rate is below -250dB and excellent 

match condition is observed. At Figure 5-3, the transmission rate after the 00.5a  thick 

perfectly matched layer is plotted: for both e and h polarizations the transmission is 

decreasing exponentially when the normalized frequency increases.  

 

The larger the normalized frequency, the shorter the wave length and more number of 

wavelength in the 00.5a  thickness, so the more absorption (less transmission) from the 

perfectly matched layer is observed. But even with normalized frequency 0.2, the 

transmission is less than 1%. To make better performance of the perfectly matched layer at 

lower frequency range, we can increase the thickness of layer. With the increase of the 

thickness, the reflection rate remains the same while the transmission rate is decreased 

exponentially.  
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Figure 5-2: Reflection from perfect match interface 
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Figure 5-3: Transmission rate after the perfect match layer 

 

In the formulation, the result is independent of incident angles; but in the real work numerical 

simulation, the performance of the perfectly matched layer is indeed depending on the 



 79

incidence angle and there are a lot of studies on how to improve the large angle incidence 

perfectly matched layer performance in FDTD research fields.  

 

Fortunately, our TMM method does not require much attention on that issue. Although, the 

performance do vary when the incidence angle changes, the overall performance is still 

excellent: at Figure 5-4 the reflection rate is calculated for incidence angle range from 0  to 

89  degree for normalized frequency 0.4 and perfectly matched layer thickness 00.5a  and 

4 4zs = + i . Even for very high incidence angle 89 degree, the refection is below 190 dB for 

both polarizations. The transmission rate is also calculated for various angles and the result is 

plotted at Figure 5-5 for normalized frequency 0.4 and perfectly matched layer thickness 

00.5a  and 4 4zs = + i . We can see that the performance is OK for smaller incidence angle 

(for example around 0.1 transmission rate at 80 degree). But the transmission is larger than 

0.5 when the incidence angle approach to 90 degree. Although the electromagnetic wave 

maybe in a distribution of incidence angles and high incidence angle components is rare, we 

still need to be very careful when apply the perfectly matched layer and assume the 

transmission is purely zero case.  
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Figure 5-4: Reflection rate vs. incidence angle 
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Figure 5-5: Transmission rate vs. incidence angle 

 

5.2.3 Two strategies to improve the performance 

 

Two strategies are studied to improve the performance of PML in term of attenuating the 

transmission: one is to increase the imaginary part of zs  and the other is to increase the 

thickness of the PML. Both approaches have the same effect to increase of the attenuation 

factor cos /bzα θ λ∼ . The transmittance and reflectance of both methods are illustrated at 

Figure 5-6 with both cases: double the thickness of PML and double the imaginary part of  

zs . As shown Figure 5-6 (a), the performance of PML is improved for all incident angles, but 

when the incident angle approaches to 90 degree, the transmittance is always approaching to 

100%; while the perfectly matched condition (no reflection) still remains valid for all angles 

(Figure 5-6 (b)).  

 

Further studies such as grading of PML are required to further improvement of the 

transmittance attenuation performance. Even without grading, the reflectance is already 

below 2010−  which is much better than the complicated grading PML in FDTD.  
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Figure 5-6: Two approaches to improve the performance of Z-axis PML -- 

double the thickness of PML and double the imaginary part of zs : (a) 

transmittance is attenuated more for every incidence angle but still 
approaches to 100% as incidence angle approaches 90 degree, (b) reflectance 
is still perfectly matched for all incidence angles. Only s wave shows, p 
wave presents the same behaviors.  

 

5.2.4 Application of PML to periodic 1D waveguide 

 

Now we can apply the Z  direction perfectly matched layer to one dimensional waveguide 

structure illustrated at Figure 5-7: the blue region represents dielectric material ( 5.76ε = ) 

and the background is air; the width of the waveguide is 
0

0.25d a=  and the length of the 

waveguide is 03L a=  with 0a  the lattice constant along x  direction. The planewave is 

incident from left and propagating along Z  direction. We choose the normalized frequency 

0 / 0.4a λ = .  
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Figure 5-7: 1D wave guide (without perfect match layer) 

 

The planewave based TMM adopts the periodic boundary condition at Y  direction. Due to 

the air-dielectric material interface termination at the end of the waveguide, a standing wave 

is formed which is shown clear in the mode profile plot from TMM (Figure 5-8). Those 

results are typical for finite length waveguide. While FDTD software can also do this task; 

but when it comes to infinite waveguide case, FDTD has some difficulties. We can simulate 

infinite long 1D waveguide by putting a layer of PML at the end of the waveguide and the 

mode profile distribution of electric field is plotted at Figure 5-9. The standing wave feature 

disappeared and guided wave presents within the waveguide slab. The PML has thickness of 

00.5a  with 4 4zs = + i . There are very little energy penetrated into the PML and energy is 

absorbed exponentially as it propagates into the PML. The detailed comparison of TMM 

results with the analytical results will be discussed in section 5.3.2.  

 

ε=5.76 

Plot of |Ey(x,z)|

incident

 
Figure 5-8: Electric field distribution within the unit cell of 1D 
waveguide (without putting perfect match layer at the end).  

 

z

x 
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Figure 5-9: Electric field distribution within the unit cell of 1D 
waveguide (without putting perfect match layer at the end). 

 

5.3 Perfectly matched layer for ,X Y  axis and its application to 1D 
waveguide 

 

To get perfectly matched in the X  or Y  boundary within the XY  plane (for example 

eliminating the crosstalk between neighborhood in plane supercells), we can adopt the 

similar relation as the Z -axis PML: to match X  boundary Eq. (5.2) should be used; to 

match Y  boundary Eq. (5.3) should be used; and to match the corner of XY  boundary the 

product of Eq. (5.2) and Eq. (5.3) should be used. 

 

Figure 5-1 (c) illustrates three types of XY  plane PMLs applied to a 3x3 supercell structure 

with a defect embedded at center. It is tricky to get direct performance benchmark of the X - 

or Y -axis side PML because in TMM we can only collect spectra information in the 

propagation direction ( Z -axis), while the structure is periodic along the X  and Y  axis 

direction. To get an idea of the performance of X  or Y  side PML, the indirect approach of 

electric field distribution comparison with analytical results will be utilized. 

 
1/ 0 0
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0 0

x

x x

x

s
s s

s
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    (5.2) 
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Now we apply those perfectly matched layer at X -axis and Z -axis direction to 1D 

waveguide to see the difference between the numerical calculation and analytical results. But 

before the comparison, we need first derive the analytical results of the 1D infinite 

waveguide.   

 

5.3.1 Analytical solutions of 1D dielectric slab waveguide 
 

The one dimensional dielectric slab waveguide is discussed in many text books, such as 

Optical Waves in Crystals by Yariv and Yeh8. Here in this section, I outline the key steps of 

the derivation and list the result for our later comparison purpose.  The geometry of the 1D 

wave guide is illustrated in Figure 5-10: the thickness of the wave guide is d  and centered at 

0x = ; the waveguide is uniform along y  and z  direction; the dielectric constant at region I 

and III is 0ε  while the dielectric constant at region II is 1ε ; the guided wave will propagate 

along z  direction. 

 

 
Figure 5-10: 1D wave guide analytical derivation illustraton 
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x 
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-d/2
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The Maxwell’s Equations Eq. (2.6) needs to be solved in this particular structure. As along 

the propagation direction the whole dielectric structure is homogeneous, so the solution can 

be expressed as Eq. (5.4).  

 

And the wave equation through the Maxwell’s Equations can be written as Eq. (5.5) which 

are valid in each of the three regions (within each region ε  is constant instead of function of 

coordinate).  
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There is no variation along y  direction, so any derivative with respect to y  is zero. So plug 

Eq. (5.4) to Eq. (5.5) we can get the relations for all three regions (Eq. (5.6)). The magnetic 

field ( )xH  satisfies the same equation set with ( )xE  replaced by ( )xH . 
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   (5.6) 

 

There are two different modes in this case: TE mode and TM mode. For TE mode, yE , xH  

and zH  are non-zero; for the TM mode, yH , xE  and zE  are non-zero. We are going to solve 

these two modes separately. For guided mode, we need the electric field magnitude to vanish 

as x → ±∞  which implies 0 0 0 1k n k nβ< < . 
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Now let’s take TM mode into detail consideration which has yH , xE  and zE  non-zero. We 

can take yH  (Eq.(5.7)) as the independent variable and xE  and zE  can be derived 

accordingly by Eq.(5.8).  

 
( ) ( ) ( ), , , z t

yH x y z t H x e β ϖ−= i     (5.7) 
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1 ( )
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∂
i

    (5.8) 

 

The solution of ( )yH x  to the three regions can be expressed as Eq. (5.9) with 
2 2 2

1 0 0k n kβ= − , 2 2 2
2 1 0k n kβ= − , 0 /k cω=  and , ,A B C undetermined constant. The 

solution of ( )zE x  can be found from Eq. (5.8) and expressed at Eq. (5.10).  

 

Using the continuities of ( )yH x  and ( )zE x , we can obtain the following relations: 

2cos( / 2 )A B k d α= − + ,  ( )2cos / 2C B k d α= + , ( )2 2
1 1 2 2 2/ / sin / 2Ak n Bk n k d α= − − +  and 

( )2 2
1 1 2 2 2/ / sin / 2Ck n Bk n k d α= + , which is simplified and listed at Eq. (5.11).  
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For the lowest TM mode of 0n = (with ( )20, 1, cos / 2B A C k dα = = = = ), the dispersion 

relation is given by ( )2 2
1 1 2 2 2/ / tan / 2k n k n k d=  and ( )2 2 2 2 2

1 2 2 1 0k k n n k+ = − . Finally we get the 

field components expressed at Eq. (5.12). 
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Similar approach can be applied to the TM mode and ,y xE H and zH  at three regions can be 

found.  

 

5.3.2 Numerical results of TMM with side PMLs 
 

After we get the analytical results for the 1D infinitely long dielectric waveguide, detailed 

quantified comparison with TMM calculation can be done. The mode profile of 1D dielectric 

waveguide with z  axis only PML has been plotted at Figure 5-9. Due to the periodic 

boundary condition along x  axis, this result is a set of infinite parallel dielectric waveguide 

array. Although the interaction between neighborhood waveguide is small, the result at 

Figure 5-9 is still not identical to the analytical solution. To eliminate the cross talk between 

neighborhood waveguide, the side wall PMLs are added as shown at Figure 5-11. To get 

detailed comparison, we take layer #48 shown as blue dashed line at Figure 5-11 and plotted 

at Figure 5-12 which is for TE mode with yE  non zero. Without the x-sidewall PML, the 
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magnitude of electric field y  component is larger than the analytical result at the edge of the 

unit cell ( 0.5x a= ± ) due to the interaction between neighborhood waveguides; the results 

within the waveguide’s dielectric material region is very close. With the x -sidewall PML, 

the performance is improved and the TMM calculation results are more consistent with 

analytical results at the edge of the unit cell boundary.  
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Figure 5-11: Mode profile of 1D dielectric waveguide with side PML 
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Figure 5-12: Detailed comparison of electric field magnitude with 
analytical solutions 
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5.4 PML application example:  dispersive sub-λ  aluminum grating 
 

As the experimental technique improved in recent years, the proposed future devices used in 

optics and laser are getting smaller and smaller. Those recently proposed devices are so small 

that sometimes much smaller than the wavelength of interested electromagnetic wave. TMM 

can be applied directly to sub- λ  components such as resonant cavity, waveguide, grating etc. 

In this section, the sub- λ  aluminum grating is studied with the application of PML to 

simulate infinite thick substrate at visible light frequency.  

 

The geometry of the grating is illustrated at Figure 5-13. It is periodic along x  direction and 

uniform along y  direction. The incident planewave is from top and propagates along the z  

direction with azimuthally incident angle 07θ = . The aluminum width is 0.068 mμ , and the 

air width is 0.102 mμ . So the lattice constant along  x  direction is 0.17 mμ  and the filling 

ration is 40 %. The thickness of the grating is 0.136 mμ . The substrate is made by SiO2 with 

refractive index 1.55subn = . We calculate two cases of different substrate thickness: one with 

finite thickness of 0.5 mm  and the other with infinite thickness by applying PML at the end 

of the substrate. The refractive index of dispersive aluminum is listed at Table 5-1 with 

n n ik= + .  

 
Figure 5-13: Geometry sub-wavelength of metal grating 

Substrate 

Al Air 

x

z 
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Table 5-1: refractive index of Aluminum at visible wavelength 

 

wavelength 

( mμ ) 

n k wavelength 

( mμ ) 

n k 

0.344389 0.364 4.17 0.550044 0.95 6.69 
0.350028 0.375 4.24 0.551022 0.96 6.7 
0.354229 0.385 4.3 0.563545 1.02 6.85 
0.364647 0.407 4.43 0.576651 1.08 7 
0.375697 0.432 4.56 0.590381 1.15 7.15 
0.387438 0.46 4.71 0.600097 1.2 7.26 
0.399935 0.49 4.86 0.604781 1.22 7.31 
0.413267 0.523 5.02 0.6199 1.3 7.48 
0.427517 0.558 5.2 0.635795 1.39 7.65 
0.442786 0.598 5.38 0.64979 1.47 7.79 
0.450018 0.618 5.47 0.652526 1.49 7.82 
0.459185 0.644 5.58 0.670162 1.6 8.01 
0.476846 0.695 5.8 0.688778 1.74 8.21 
0.49592 0.755 6.03 0.700056 1.83 8.31 
0.499919 0.769 6.08 0.708457 1.91 8.39 
0.506041 0.789 6.15 0.729294 2.14 8.57 
0.516583 0.826 6.28 0.75003 2.4 8.62 
0.527575 0.867 6.42 0.751394 2.41 8.62 
0.539044 0.912 6.55 0.774875 2.63 8.6 

 

There are two polarizations for this case: TE polarization (s wave) has the electric field 

vector perpendicular to the incident plane and TM polarization (p wave) has the electric field 

vector in the incident plane.  

 

First the sub- λ grating with finite thickness of 0.5 mm  is calculated; the reflection rates of 

both polarizations are plotted at Figure 5-14 (a). For TE mode, the reflection is very high 

(around 90%) and it is almost a constant in the whole visible light frequency range. But for 

TM mode, it is quiet different. The most obvious different feature compared with TE mode is 

the oscillations in the whole spectrum which is due to the interference with the strong 

reflection from the interface of the substrate end to the air. The reflection rate of TM mode 

change a lot within the visible light range and at around 0.45 mμ  the reflection is almost zero. 

This can be used as the polarization light splitter to separate different polarizations.  
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Figure 5-14: Reflection rate of finite thickness sub-wavelength grating 
Reflectance of sub-wavelength grating for both s and p planewave with 
incident angle 7 degree at visible frequencies: (a) with finite SiO2 
substrate, and (b) with infinite SiO2 substrate by applying Z-axis PML at 
the end of substrate. 

  

Next, we did a calculation on infinite substrate case. Here we used the z  axis PML discussed 

at section 5.1 with 4 4zs = + i . The reflection rate for both TE and TM polarization are 

plotted at Figure 5-14 (b). For TE mode, there is not much difference compared with the 

finite thickness substrate case. But for TM mode, the oscillation disappears for the infinite 

thickness of substrate. This is easy to explain because for infinite substrate, there will be no 

reflection from other end of the substrate and hence no interference. At wavelength of 

0.45 mμ , the TM mode’s reflection rate is nearly zero,  and it is perfect for polarization beam 

splitter.  

 

To get better understanding of the behaviors at wavelength of 0.45 mμ , the electric 

magnitude mode profiles are plotted for both TE and TM waves at Figure 5-15. The TE 

mode is Ey dominated, and strong reflection occur at the front of the grating which 
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corresponding to the high reflectance. On the other hand, the TM mode is Ex dominated and 

the electromagnetic energy can propagate through the grating and substrate. 
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Figure 5-15: Electric field mode profiles of sub-wavelength grating for the 
infinite substrate case at wavelength 4.5um: (a) TE mode (s wave) incidence, 
Ey is dominate and electromagnetic energy is highly reflected, (b) TM mode 
(p wave) incidence, Ex is dominate and electromagnetic energy is 100% 
transmitted. 

 

One of our recent research shows that a coordinate transformation can be applied to TMM to 

simulate curved waveguide structure. The result of the coordinate transformation is very 

similar to the PML we applied in this chapter except that the parameter of zs  is a real 

function of coordinate.9 Although PML is an artificial material first introduced for numerical 

simulation purpose, researchers are enthusiastic to seek PML-like materials or structures of 

controllable electric permittivity and magnetic permeability.10,11 With those two parameters 

well controlled, EM wave cloaking, or invisible material can be achieved.11 TMM can also 

be used in the design of such permittivity and permeability controllable materials just like the 

implementation of PML absorption boundary condition. 
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Chapter 6. TMM extension to curvilinear coordinate system 
 

The planewave based transfer (scattering) matrix method is developed in curvilinear 

coordinates to study the guided modes in curved nanoribbon waveguides. The problem of a 

curved structure is transformed into an equivalent straight structure with spatially-dependent 

tensors of dielectric constant and magnetic permeability. We investigate the coupling 

between the eigenmodes of the straight part and those of the curved part when the waveguide 

is bent. We show that curved sections can result in strong oscillations in the transmission 

spectrum similar to the recent experimental results in reference 1. This chapter is modified 

from a paper published at Applied Physics Letters 89, 241108 (2006) with title: "Propagation 

of guided modes in curved nanoribbon waveguides", by Z. Ye, X. Hu, M. Li, K. Ho and P. 

Yang.  

 

6.1 Transform into curvilinear coordinate 

 

In previous chapter, the planewave based transfer matrix method (TMM) is mainly used in 

Euclidian coordinate system ( , ,x y z ). The unit cells for any applicable structures are all 

rectangular in xy  plane and straight at the propagation direction ( z  axis). Although non-

orthogonal lattice can be taken in the xy  plane; it is not possible to deal with any structure 

that has any curvature along the propagation direction ( z  axis).  To study the properties of 

curved photonic crystal structures, we need to re-develop the TMM algorithm in curvilinear 

coordinate system ( ', ',x y s ) following previous work on curvilinear coordinate system.2 

 

The relation between the Euclidian coordinate system and the curvilinear coordinate system 

is illustrated at Figure 6-1. For Euclidian coordinate system, , ,x y z  are perpendicular 

parewisely and the propagation direction is z  axis; for curvilinear coordinate system, s  is 
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the propagation direction and x  axis is always pointing to the center of the curvature of 

radius R.  The relation between the Euclidian system and curvilinear system can be expressed 

by Eq. (6.1). Let ( )1 2 3, ,x x x  be the coordinates of Euclidian system and ( )1 2 3, ,q q q  be the 

coordinates of curvilinear system. The new coordinate system can be characterized by its 

covariant basis vector ia  and metric ijg  defined by Eq. (6.2). In our curvilinear system case, 

the covariant basis vector and metric is expressed at Eq. (6.1) and Eq. (6.2). 

 

 
 
 

Figure 6-1: Coordinate system (a) Euclidian (b) curvilinear 
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Now we can apply the coordinate transformation toward Maxwell’s Equations in terms of 

differential equations relating to the transverse components of fields (Eq.(6.5) with some 

parameters defined at Eq. (6.6)). 
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So the arc structure can be viewed as a straight one with effective ε  and μ  tensors 

depending on the transverse coordinate 'x  with the relation displayed at Eq. (6.7). Giving a 

close look toward Eq. (6.7), we can notice that they have the same formation as the uni-axial 

perfect match layer discussed at reference 2 but with the elements 1 2 3 1 2 3, , , , ,ε ε ε μ μ μ  function 

of coordinate. One other difference between perfect match layer and curvilinear coordinate 

transformation is that: for PML, each element is a complex number in which the imaginary 

part plays the role of absorption; for curvilinear coordinate transformation, each element is a 

real number. The curved part of the waveguide is perfectly matched with the straight part in 

the s  direction, but not it the ', 'x y  directions.  

 

1 1

2 2

3 3

0 0 0 0
0 0 , 0 0
0 0 0 0

ε μ
ε ε μ μ

ε μ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (6.7) 

 

When the curved waveguide is effectively considered as a straight one with ε  and μ  given 

by Eq. (6.6) and Eq. (6.7), we can apply the well-developed planewave TMM to calculate the 

dispersion relations and eigenmode profiles in the curved waveguide. Semiconductor 

nanowires can nanoribbons have many promising optoelectronic applications such as 

waveguide1,3, lasers4-6, optical switches, and sensors7. 

 

6.2 Curved waveguide simulation 

 

With the knowledge of the curvilinear coordinate transformation for TMM, we can study the 

curved waveguide structure in detail. The geometry used in this section is similar to the 

experiment done in reference 1. The refractive index of the background, square waveguide, 

substrate is: 0 1.0n = , 1 2.1n = , 2 1.5n =  respectively. The cross-section of the square 

nanoribbon waveguide is ( ) ( )360 ' 250 'nm x nm y× , shown as Figure 6-2.  
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The dispersion relations can be calculated for both the straight waveguide (a) and the arc one 

with 2R mμ=  (b) which are shown in Figure 6-3; the insets give the | |xE  distribution for 

the first mode and | |yE  distribution for the second mode at 600 nm . 

2.1=nm

n2=1.5

n1

n0=1

360nm

250

  

 

 
Figure 6-2: Geometry illustration of nanoribbon waveguide 
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Figure 6-3: Dispersion relations of straight (a) and curved waveguide (b) 
with the supercell lattice constant 1a mμ= . The dashed line is the light 

line in substrate: ( )2 0 0, 2 /sk n k k π λ= = . The left inset is the | |xE  

distribution of the first mode and the right inset is the | |yE  

distribution of the second mode at 600nmλ = . 
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The guided modes move downwards for a bent waveguide and the modal field shifts 

outwards from the center of curvatures ( 'x−  direction)8,9. The first and fourth modes are xE  

polarized, and the second and third modes are yE  polarized. Modes after the fifth mode are 

not as highly polarized as the first four modes. 

 

We consider the transmission coefficients for a curved waveguide joint between two straight 

waveguides. Here we only present the self transmission coefficients of guided eigenmode 

( )1,2,...i i = , which is defined as the ratio of the transmission energy flux of particular mode 

i  and the incident energy flux (only mode i  incident). 

 

The reason for doing this is that in propagation along the straight waveguide, we expect some 

guided modes are much more sensitive to waveguide imperfections (such as sidewall 

roughness) than others. These sensitive modes are much more likely to disappear during 

propagation. 

 

We start from a simple "U" shape structure, made of two semi-infinite straight waveguides 

connected by a semicircular waveguide (see the inset in Figure 6-4 (a)). First we set 

10R mμ= . The self transmission of the first six guided eigenmodes is shown in Figure 6-4 

(a). One can see regular fluctuations in transmission like in reference 1 but with much weaker 

amplitude. The reflection is very small ( 410−< , not shown here). That agrees well with the 

above analysis of ε  and μ  given by Eq. (6.6) and Eq. (6.7).  

 

Then we try an "L" structure, made of two semi-infinite straight waveguides connected by a 

quarter-circular waveguide with 20R mμ= . The result is shown in Figure 6-4 (b). The 

amplitude of transmission fluctuation is even weaker; but the position of the transmission 

peaks and bottoms of the first four modes are about the same compared to Figure 6-4 (a). It is 

interesting that the first two xE  polarized modes (the 1st and 4th modes) have almost the 

same period, and the first two yE  polarized modes (the 2nd and 3rd modes) also do so.  
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We tested structures with different curvatures and different span lengths. We found that: (i) 

the amplitude of transmission fluctuation decreases as R  is increased and (ii) the period of 

transmission fluctuation is only related to the span length of the arc part and decreases as we 

extend the arc part. The first rule is natural to understand. Smaller radius of curvature 

enlarges the perturbation to the system, causing the transmission to fluctuate more 

intensively (see Figure 6-4 (c), where R  is set to be 4 mμ ). The second rule can be explained 

by mode conversion.  

 

Let us begin from a simple model. Suppose there are two modes in the waveguide marked i  

and j  for the straight part and 'i  and 'j  for the curved part. If the arc part has length L , we 

can write down the self-transmission of mode i  when the reflection is very small: 

( )'' 2 4 4 2 2 '
' ' ' ' ' ' ' '| | | | | | 2 | | | | cosji ik Lik L

ii i i ij j i ii ij ii iit e t t e t t t t t k L+ = + + Δ  where ' ' '
j ik k kΔ = − ; 

' ' ' ', , ,ii i i ij j it t t t  are the convention coefficients from mode i  to 'i , 'i  to i , i  to 'j  and 'j  to i  

respectively, and * *
' ' ' ',ii i i ij j it t t t= = . Because 'kΔ  is not very sensitive to R , the period of 

transmission fluctuation is mainly related to the span length L  of the arc part. The 

conversion between modes with the same polarization is much stronger than between 

different polarization modes. So the 1st , 4th  modes have similar self-transmission periods 

and the 2nd , 3rd modes also have similar periods. However, higher order modes are not 

highly polarized in either x  or y  direction. The conversion rates between different polarized 

modes are not small. So their self-transmissions do not show fluctuations as regular as the 

first four modes (see the bottom plots of Figure 6-4 (a) and (b)). 

 

Our numerical results suggest a possible explanation for the strong regular oscillation in the 

output spectrum observed by Law et al. The observed oscillations can be caused by a rippling 

section of nanoribbon (as shown in Figure 6-5 inset), which has a small bending radius for 

the curved part. We calculate the structure in Figure 6-5 inset for different parameters, and 

one of the results is shown in Figure 6-5. The parameters are: 3R mμ= , 1 1L mμ= , 

2 5L mμ=  and 2  periods of fluctuations (Figure 6-5 inset only shows 1  period). The self-
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transmission diagram exhibit similar strong oscillations in the 3rd, 4th and 5th modes as in 

reference. 1. 
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Figure 6-4: Self-transmission of the first six modes numbered from 1 to 5 
for: (a): “U” structure of 10R mμ= , (b): “L” structure of 20R mμ= , and 

(c): “U” structure of 4R mμ= . Mode 1 and mode 3 have the similar pattern; 
while mode 2 and mode 4 have the similar pattern. 
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Figure 6-5: Self-transmission of the first six modes for the structure in 

the inset but of two periods of fluctuation, when 3R mμ= , 1 1L mμ=  and 

2 5L mμ= . Inset: illustration of a waveguide containing a rippling section. 

 

In summary, we have developed an improved TMM method in curvilinear coordinates to 

study curved nanoribbon waveguides. Our method can be applied to any shape of curved 

waveguides. From our results we can extract and explain two rules concerning the period and 

multitude of the transmission fluctuations. We finish by calculating a rippling waveguide 

structure and obtain oscillations in transmission similar to those observed in experiments. 
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Chapter 7. Application of TMM to diffractive optics 
 

Besides the magnitude of the electromagnetic wave transmission or reflection rate, the 

planewave based transfer (scattering) matrix method (TMM) can also calculate the phase 

information of the electric or magnetic field. When the phase at every point of a plane is 

determined by the geometry (shape of a structure) and composition (material with different 

refractive indices), the properties of electromagnetic wave or light (such as bending, 

focusing) can be determined.1 Photonic crystal structure can be designed to meet certain 

purpose in controlling the behaviors of electromagnetic wave. For example, dielectric grating 

(1D photonic crystal) has been proposed to apply to camera lens to eliminate chromatic 

aberrations.2 In this chapter, TMM is developed to calculate the phase difference and in turn 

to design novel photonic crystal structures for various applications. 

 

7.1 Finding phase by TMM 

 

The spectrum can be obtained by finding the Poynting vector through Eq. (2.53) at Section 

2.6.1. Before the Poynting vector is calculated, TMM has already obtained the electric field 

in term of complex vector ( tE , rE ) for transmission and reflection wave by Eq. (2.52). The 

information of the complex electric field vectors is used to calculate the spectrum, and the 

phase factor information of this complex electric field vectors is used to obtain the phase of 

the electric field in the range of ( ),π π− .  

 

Let’s denote the imaginary and real part of the tE  or rE  at Eq. (2.52) to be Im  and Re  

respectively and the mode (or absolute value) of tE  or rE  at Eq. (2.52) to be Ab , then the 

phase of the electric field ( tE  or rE ) can be found by Eq. (7.1).  
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arcsin 0 0

arcsin 0 0

arcsin 0 0

arcsin 0 0

Im if Im and Re
Ab

Im if Im and Re <
Ab

-Im if Im < and Re <
Ab

-Im if Im < and Re
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ϕ

ϕ π

ϕ π

ϕ

⎛ ⎞= ≥ ≥⎜ ⎟
⎝ ⎠

⎛ ⎞= − ≥⎜ ⎟
⎝ ⎠

⎛ ⎞= − + ⎜ ⎟
⎝ ⎠

⎛ ⎞= − ≥⎜ ⎟
⎝ ⎠

  (7.1) 

 

Cautions must be aware when calculating the phase of photonic crystal devices, because we 

only have the information of phase within the range of ( ),π π− ; and there is no information 

of how many 2π  has already passed. In the real situation, those 2π  periods are essential to 

determine the phase difference and we have to recover this information. One way to recover 

the 2π  period is to first calculate one repeat pattern along the propagation direction (one 

geometry period along z  axis); and if the phase of this one geometry period is less than 2π  

then the phase from TMM is the “real” phase of one geometry period. For multiple geometry 

periods, we can simply multiply the number of geometry periods and the “real” phase of one 

geometry period. Please note we can not cut one geometry period into small portions to 

calculate the phase of each portion individually to get the phase of one geometry period. By 

doing so, we have destroyed the internal properties of the structure.  

 

One other approach to get the “real” phase of arbitrary periods is to start calculate the phase 

from very low frequency (around zero  normalized frequency) which correspond to very long 

wavelength. For very long wavelength, the phase difference between the two ends of the 

structure is less than 2π . By increasing the frequency gradually, we can track each jump of 

phase which indicates the number of periods (or 2π s).  Then we can obtain the “real” phase 

of any frequency. By the way, the phase change of a uniform medium with refractive index 

n , normalized frequency α  and thickness t  (in the unit of normalized length) can be 

calculated as: (2 ) /zk t n t cϕ α π= =  which can be used as a rough reference value for the 

phase. 
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7.2 Confirmation by Snell’s Law 

 

The law of refraction (Snell’s Law) is a good example to confirm our idea of modeling the 

propagation properties by finding the phase difference through TMM. The law of refraction 

can be used in any interface between two uniformed medium with the mathematical form Eq. 

(7.2) with 1n  and 2n  the refractive index of those two uniformed medium and 1α  and 2α  the 

incident angle and refraction angle. 

 
1 1 2 2sin sinn nα α=     (7.2) 

 

One of the simplest ways to steer the electromagnetic wave is to use an incline of dielectric 

material with the incline angle θ  and refraction index 1n ; and the background is air with 

refractive index 0n . Now let’s suppose the electromagnetic wave incidents vertically as 

shown at Figure 7-1. The deflection angle is defined as the variation of refracted wave with 

respect to the incidence wave (shown as α  at Figure 7-1). Given fixed incline angle θ  and 

background refractive index 0n , the deflection angle α  is a function of refractive index 1n .  

According to law of refection, we have 1 0sin sin( )n nθ θ α= + ; and the deflection angle α  

can be expressed as Eq. (7.3).  For a set of parameter of:  1 3.0n = , 0 1.0n =  and 010θ = , the 

deflection angle is 021.396α = . Here we have the deflection angle twice as large as the 

incline angle. By changing the incline angle, we can reach certain range of deflection angles. 

But there is several shortage of this simplest design: first it is not easy to change the incline 

angle θ  for solid inclines (high refractive index liquid may solve this problem); the 

transmission rate is low due to the contrast of the two mediums (i.e. strong reflection occurs 

at the dielectric material air interface). 

 

1 1

0

sin sinn
n

α θ θ− ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
   (7.3) 
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Figure 7-1: Deflection of angle of a simple incline by Law of refraction 

 

On the other hand, we can deal the same problem by using the phase difference approach. 

The same structure is re-plotted at Figure 7-2 with the incline’s length L  and height d . The 

deflection angle α  can be expressed as / 2α π β θ= − − .  The angle β  can be determined 

from the relation of wave vector ABk  and 0k  which can be calculated from the phase 

difference (Eq. (7.4)). From Eq. (7.4), we can get the expression of ABk  in term of  0k  at Eq. 

(7.5). Then angle β  can be found through Eq. (7.6). So ( )1
1/ 2 sin sinnπ β θ−− = . Finally, 

we get the same result ( )1
1sin sinnα θ θ−= −  as the law of refraction.  

 

 
 

Figure 7-2: Deflection of angle of a simple incline by phase difference 
approach. The deflection angle α  can be determined by the phase difference 
of arbitrary two horizontal locations.  
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AB AB

AB

k AB

k d k n d

ϕ

ϕ

Δ =

Δ = =
    (7.4) 

 

0 1 sin
/ sin

AB
ABk k n

d
ϕ θ

θ
Δ

= =    (7.5) 

 
( ) ( )1 1

0 1cos / cos sinABk k nβ θ− −= =   (7.6) 

 

With the idea of phase difference, we confirm the result of the law of refraction. It is easy to 

calculate the phase difference in uniform medium, but this is not true for photonic crystal 

structures. Our TMM method can calculate the phase difference of any structures for any 

given frequency and in turn find the deflection angle. At the same time the transmission rate 

can be also figured out via TMM. 

 

We can apply this approach to our box spring case (detail at next section) to find the phase 

difference between the compressed and un-compressed part and then figure out the deflection 

angle for certain geometry configuration.  

 

7.3 Case study: box spring structures for electromagnetic wave 
deflection  

 

In this section, we are going to use the concept of “phase difference” from TMM to 

determine the deflection angle of electromagnetic wave through a photonic crystal structure. 

Our purpose is to easily control the direction of electromagnetic wave propagation by 

adjusting the photonic crystal structure, mean while the transmission rate is still acceptable. 

As we mentioned in last section, the law of refraction used in two uniform medium interface 

is lack of flexibility to change the deflection angle and the transmission through the interface 

is affected by the high refractive index contrast. One advantage of the two uniform medium 

interface is that the response of the reflection angle is broad band (the deflection angles are 
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the same for any frequency if the material is non-dispersive). For photonic crystal structures, 

the frequency responses is usually non linear; and it may only work for a short frequency 

range, for example in the vicinity of band gaps. In certain application, a narrow bandwidth is 

still acceptable. There are several ways to control and adjust the response of photonic crystal 

structure, for example: mechanical, electrical or optical response. The most direct way to 

change the photonic crystal structure is mechanically change its shape and geometry. One 

candidate for such purposes is box springs which are easily modified by different comparison 

rates. The box spring photonic crystal has been studied by other researchers and the existence 

of band gap has been confirmed.3,4  

 

7.3.1 Geometry of box spring structures 
 

Box spring is a rather complicate photonic crystal structure. The box spring is periodic in xy  

plane and there are maybe overlaps across neighborhood springs. Figure 7-3 shows an 

example of overlapped 5x5 period box springs. The box spring can be compressed to achieve 

desired properties.  The most compressed situation is the overlap of a set of box rings and the 

most uncompressed situation is a set of parallel rods in xy  plane. 

 

 
 

Figure 7-3: 3D view of 5x5 periods of box spring 
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The top view and side view of the box spring photonic crystal structure are shown at Figure 

7-4. The overlap detail can be observed. Along the z  direction there are four equivalent 

segments which have the same lift angle (shown at Figure 7-5) and length. Those four 

equivalent segments are perpendicular to each other. The lattice constant along x  or y  

direction is the length between two neighbor rods (shown at Figure 7-5).  

 

 
 

Figure 7-4: Top view (a) and side view (b) of the box spring photonic 
crystal structure. Overlap feature can be observed in detail. For one 
period along the z direction, there are four equivalent segments. 

 
 

 
 

Figure 7-5: Detail of one segment along the z direction 
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For the calculation of uncompressed box spring photonic crystal structures, we use the 

following parameters: lattice constant (in plane rod to rod distant) a ; rod length 1.6a ; rod 

radius 0.06a ; lift angle 08.9893 ; refractive index of the rod material 3.45n = . 

 

7.3.2 Simulation results of box spring structures 
 

First, we studied the band structure of uncompressed box spring (parameters listed on the end 

of last section) and three cases of compressed box spring with the 0/C C  ratio 0.02, 0.04 and 

0.06 where C  is the length of one period compressed box spring along z  direction and 0C  is 

the length of one period uncompressed box spring along z  direction. The band structures of 

all four cases are plotted at Figure 7-6.  
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Figure 7-6: Band structure for uncompressed and compressed box spring 
photonic crystals. 

 

With the information of each case (uncompressed and compressed), we can study the relation 

between deflection angle ( β ) and compressed angle (θ ) based on the illustration of Figure 

7-7. The left side is the uncompressed box spring and right ride is the compressed box spring 

with compression ration 0/C C  and the box spring is compressed gradually between the left 
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side and right side and form an incline. The length between the left and right box spring is set 

to a  and the vertical length is 5 periods.  

 
 
 

 
 
Figure 7-7: Illustration of how to deflect electromagnetic wave through 
uncompressed and compressed box spring photonic crystal. 
 

Then we apply the strategy develop at section 7.2 to get the deflection angle by phase 

difference at left and right side. Here, we assume we can calculate the phase for each box 

spring individually without the interaction across neighborhood box springs and then get the 

phase difference of left and right side.  

 

We first calculate the phase for the uncompressed box spring (left side) and then calculate the 

phase of the compressed box spring (right side). Then the phase difference is obtained just 

like the procedure to confirm the Snell’s Law (Eq. (7.7) with / 2kaα π=  the normalized 

frequency).  
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 (7.7) 

 

After the phase difference obtained by TMM, we can get the relationship of deflection angle 

for different normalized frequency at fixed compression ratio. The result of compression 

ration 0.06 at right side is shown at Figure 7-8 (in this result, the distance between the 

uncompressed and compressed spring is one lattice constant). The deflection angle is 

oscillating and remains small for a large frequency range below the first band gap. But very 

large deflection angle can be achieved at the vicinity of first band gap (Figure 7-9); at the 

same time the transmission rate is still acceptable (Figure 7-10): at normalized frequency 

/ 0.60725a λ = , the deflection angle is 016.6  and the transmission of both uncompressed and 

compressed box spring is around 70%. 
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Figure 7-8: Deflection angle for all frequency with transmission for both 
uncompressed and compressed case. 
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Figure 7-9: Detailed deflection angle at the vicinity of first band gap 
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Figure 7-10: Detailed transmission at the vicinity of first band gap 

 

The non-linear effect at the photonic band edge makes possible the large deflection angle. 

But the bandwidth for this large deflection angle is quite small. The deflection angle can be 

positive (deflected to the left) or negative (deflected to the right) which corresponds to 

normal refraction and negative refraction respectively. In this example, although we have 

found the deflection angle and transmission rate as functions of normalized frequency, the 

design of device of certain function is far from completed. Optimization is needed to get 

large bandwidth and more flexible deflection angle responses. But the idea of analyzing 
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phase at the position of xy  plane from TMM can be generalized and applied to future device 

design and simulation. 
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Chapter 8. TMM algorithm with active gain material extension 
 

Photonic crystal cavity has been long proposed to be a good candidate for low-threshold laser, 

while current available numerical methods based on rate equations are not efficient and not 

accurate for simulation such small scale devices and for situations well above the threshold. 

Our previous chapters discussed the planewave based transfer (scattering) matrix method 

(TMM) mainly focus on passive material and the simulation results such as spectra, mode 

profiles for cavity embedded photonic crystal are only valid for “cold cavity”. However, our 

TMM algorithm is not limited to the passive material only; in this chapter detailed algorithm 

extension with capability for direct modeling active gain material is included along with 

several simulated active photonic crystal devices. The major advantage of Gain material 

TMM (GTMM) is to provide more precise lasing spectra, mode shape information and light-

current (L-I) curve due to the fact that optical solution in GTMM is obtained in “hot cavity” 

condition which is self-consistent with laser pumping intensity.  Eventually, GTMM can be 

used to solve complex 3D photonic crystal laser and light emitting diode (LED) structures. 

 

8.1 Rate equation, the starting point 

 

Rate equation is the fundamental simulation technique used in laser and LED device design 

which connects the electric property and optical property together by a set of differential 

equations. The gain medium layer is typically embedded in the middle of the structure; 

Figure 8-1 shows a schematic picture of a diode laser. The middle gain layer has width w , 

thickness d , length L , and a refractive index higher than the top and bottom layers, 

supporting a guiding mode with average width of /d Γ . When a current with density of J is 

injected downward, the middle layer can present a gain factor g  to amplify light.1,2,3 
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Figure 8-1: Schematic of a photonic crystal laser 

 

To simplify the derivation and show the main idea of how rate equation works, we use the 

simple mode rate equation (Eq. (8.1)) with quantum dot gain relation (Eq. (8.2)) with the 

average carrier density N , the average photon density P , and gain factor g . The inject 

current I  and the light output outL  are given by Eq. (8.3). The physical meanings of 

iη , q ,τ , gv , cα , 0A , 0N  etc. are listed and explained at Table 8-1 with a set of typical values 

of a diode laser.  
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Table 8-1: Physical meanings of parameters in rate equation with typical 

numerical values for a diode laser 

 

Physical meaning Typical numerical values 

Vacuum speed of light:                            c 3×1010 cm/s 

Single electron charge:                            q 1.6×10-19C 

Plank’s constant:                                      h 6.625×10-34 J·s 

Differential gain:                                     A0
 2.5×10-16 cm2 

Transparent carrier density:                     N0 4.5×1017 cm-3 

Optical group index:                                ng 3.5 

Effective velocity:                                    vg vg = c/ng 

Facet reflectivity:                                     R1, R2 R1= R2 = (ng -1) 2 (ng +1)-2 

Absorption loss:                                       α0 20 cm-1 

Facet loss:                                                 αr αr = (1/2L)Ln[1/(R1R2)] 

Total optical loss:                                     αc αc =αr+α0 

Carrier spontaneous emission lifetime:    τs 3×10-9 s 

Carrier non-radioactive decay lifetime:        τnr 3×10-6 s  

Total carrier lifetime:                                 τ τ =(τs
-1+ τnr

-1) -1 

Photon out-coupling lifetime:                    τp τp=1/( vg αr) 

Lasing wavelength in vacuum:                  λ0 1.3×10-4 cm 

Thickness of active layer:                          d 2.0×10-5 cm 

Frequency:                                                 ν ν = c/λ0 

Single photon energy:                                E p E p = hν = hc/λ0 

Confinement factor:                                   Γ  0.5 

Spontaneous emission factor:                     β 1×10-4 

Cavity width:                                              w 5×10-4 cm 

Cavity length:                                              L 0.025 cm 

Cavity active volume:                                 Vc   d×w×L 
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At the steady state (i.e. the constant wave output with a single lasing frequency), the average 

carrier density and average photon density for fixed inject currents should not change (Eq. 

(8.4)). For a given inject current, the steady state quantities can be obtained from Eq. (8.1) to 

Eq. (8.4). With large inject current approximation ( 1
cg α −≈ Γ ), the results are expressed at Eq. 

(8.5).  

 

( )1 1 1 1
0 0

( )p i r
out th

c

th c c i

p i rout

c

E
L I I

q

I A N q V

EdL
dI q

η α
α

α η τ

η α
α

− − − −

≈ −

= Γ + ⋅ ⋅ ⋅ ⋅

=

    (8.5) 

 

The first equation of Eq. (8.5) indicates there is a lasing threshold, and the third equation of 

Eq. (8.5) indicates one additional carrier will generate ηiαr/αc photon when the inject current 

is above the threshold. The plot of the first equation of Eq. (8.5) illustrates the relation 

between the output light intensity (in unit of Watt) and input current (in Ampere) which is 

usually called the L-I curve.  

 

8.2 Defining the electric field dependent dielectric constant for gain 
material 

 

In the single mode rate equation algorithm (section 8.1), the second equation of Eq. (8.1) is 

used to describe the light in the cavity by using averaged parameters cα  and Γ . Those two 

parameters are difficult to define if the gain material has complex structure and the 

dimension of the cavity is comparable with lasing wavelength (such as 2D PC slab cavity 

laser and 3D photonic crystal laser). Even if the definitions of averaged parameters are given, 

the calculations can only be performed for the cold cavity case without gain (i.e. below the 

threshold). 
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To avoid the difficulties, we will not use the second equation of Eq. (8.1) with averaged 

parameters to describe the light in laser cavity. Instead, we will use rigorous GTMM 

formulism and electric field dependent dielectric constant for gain materials. The dielectric 

constant of gain material can be written as Eq. (8.6) with iniε  the dielectric constant when the 

electric field at the gain material is zero.  
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With the first equation of Eq. (8.1), Eq. (8.2) and Eq. (8.4), we can express the average 

carrier density and gain factor in Eq. (8.7). With photon density P  in term of electric field 

and single photon energy (Eq. (8.8)), the gain factor can be further rewritten as Eq. (8.9). 
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To consider the spontaneous emission, the second equation of Eq. (8.1) is rewritten as Eq.  

(8.10), and the gain factor with spontaneous emission can be expressed as  Eq. (8.11). It 

should be mentioned that the spontaneous emission factor β  is the coupling factor between 

the total emission of dipole and the lasing cavity mode and depends on the exact coordinates 

and polarization of dipole. Spatially dependent β  should be used if we would like to know 
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the exact behavior below the lasing threshold. But for simplicity, we will use an averaged β  

for the gain materials. 
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8.3 Gain-TMM algorithm for laser device simulation 

 

In last section, we have expressed the dielectric constant of gain medium and gain factor in 

term of electric field intensity. Various photonic crystal lasers have been proposed 

recently.4,5,6,7,8 Now in this section the gain transfer (scattering) matrix algorithm (GTMM) is 

presented with iterations to simulate laser devices. 

 

Same as the TMM algorithm assumed, periodic boundary condition is applied to the XY  

plane and the planewave in defined as the usual way. We use 1pN ×  vector iA  and iB  to 

represent the electric field Fourier coefficient at each slice i , and from our previous chapters 

the outgoing waves can be obtained from the incidence wave by the scattering matrix S  as 

expressed at Eq. (8.12). The schematic of GTMM structure is presented at Figure 8-2. The 

lasing status is when there is no light input while there is still continues light output.  
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Figure 8-2: Schematic of Gain-TMM with the whole photonic crystal structure 
divided into n slices and the outgoing planewaves are found by the S matrix 
and incidence planewaves. 
 

Mathematically to simulate a laser problem, we set (1)
0 0( ,0, ,0)A A= ⋅⋅ ⋅  and 1 (0, ,0)nB + = ⋅ ⋅ ⋅  

solving (1)
0A  for a given output ,out rightL  by Eq. (8.13) where 0jp =  for all evanescent waves. 

When (1)
0A  is obtained, we can use the TMM algorithm to calculate the field distribution. 

With the calculated field distribution, the new dielectric constant for gain medium can be 

obtained through Eq. (8.6). In turn, with the updated dielectric constant of gain medium a 

new S  matrix can be found. With the new S  matrix, a new (1)
0A  can be obtained.  
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Repeat the iteration, until the steady (1)
0A  is finally achieved for given inject current I  and 

output power ,out rightL . Then we will calculate (1)
0A , the incident planewave, for various 

,out rightL  and incident frequencies. When the inject current is above threshold ( thI I> ), a zero 
(1)
0A  can be found for non-zero ,out rightL  at certain incident frequency which indicates a steady 

finite light output exists for zero input light or lasing. The frequency where a zero (1)
0A  is 

found is the lasing frequency and the light output power for certain current makes the L-I 

curve. The detailed procedures will be illustrated through an example of 1D DBR laser at 

next section. 
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8.4 1D DBR laser, an example of GTMM application 

 

The multilayer 1D DBR cavity structure is illustrated at Figure 8-3. Based on the mentioned 

parameters at the figure caption, there will be a resonant mode at 0.98 mμ  which is obtained 

from TMM spectrum calculation and the results are also shown at Figure 8-3. 
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Figure 8-3: Schematic of 1D DBR laser with a multilayer structure 
(AB)24EGE(BA)24, where G is the Gain material layer. The refractive indices 

and the layer thicknesses are as following: , , 3.526A E Gn = , 3.077Bn = , and 

64.49Ad nm=  79.63Bd nm= , 137.78Ed nm= , 2Gd nm= . The transition rate shows 

a single resonant peak at 0.98 mμ . 

 

As mentioned at last section, for fixed incident frequency and light output with the presence 

of active gain material inside the structure, the required light input can be obtained through 

the iteration process until a steady light input value is reached. By varying the light output 
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value with fixed inject current and incident frequency, the light output vs. light input graph 

can be obtained. Three light output vs. light input relations are plotted at Figure 8-4: basically 

there are two saddle points for each curves. Above threshold the saddle point located at the 

larger light output region reaches zero which corresponds to lasing, while below threshold, 

the saddle point located at the smaller light output region reaches zero which corresponds to 

spontaneous emission, and just at the threshold those two saddle points come together and 

reaches zero at lasing frequency. For light output vs. light input relations, if the incident 

frequency is not the lasing frequency, neither of those two saddle points reaches zero, i.e. no 

lasing or spontaneous emission are found. 
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Figure 8-4: Light input vs. light out graph at lasing frequency for three 
different inject currents: above threshold, below threshold, and just at 
threshold. 

 

For each inject current, by iteration for various incident frequencies, eventually there will a 

saddle point reaches zero which corresponds one (light output, current) point located at the 

L-I curve. When the inject current is above threshold, it is lasing case, otherwise it is a 
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spontaneous case. The light output intensity is several orders larger at lasing case than the 

spontaneous emission. The L-I curve of the 1D DBR laser is illustrated at Figure 8-5.  
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Figure 8-5: Light output power vs. inject current (L-I curve) for 1D DBR 
laser. Three typical inject currents are selected to show the difference 
across above threshold, below threshold and just at threshold with 
corresponding light input vs. light out graphs shown at Figure 8-4. 

 

The lasing frequency is found to be almost the same as the resonant frequency of passive 

cavity with little dependence on inject currents. This is reasonable because of the small 

thickness of the gain medium layer and the small change of the dielectric constant of the gain 

medium (for the 1D DBR case, the imaginary part of dielectric constant is only around -0.23). 

But to show the little difference of lasing frequency, the 1D DBR lasing frequency for 

various inject currents are present at Figure 8-6. 
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Figure 8-6: Lasing frequency for various inject current, here Lω  is in 

unit of normalized frequency: 1 /mμ λ  

 

8.5 3D woodpile photonic crystal laser, an example of GTMM application 

 

To test the performance and the capacity of GTMM, we applied it to a 3D photonic crystal 

laser. The gain medium is located at the center of the cavity layer embedded in the classical 

layer-by-layer woodpile photonic crystal structure. The cross sections of 3-by-3 super cell of 

the woodpile structure are illustrated at Figure 8-7 (a) with the gain medium layer has the 

same geometry as the cavity layer. From the TMM spectra results, there are two resonant 

modes (for the passive cavity) inside the band gap from two different polarizations (shown 

on Figure 8-7 (b)). We are going to focus on the x-polarization mode which has resonant 

frequency 980nm  with Q  value around 18000 and transmittance around 5%. 
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Figure 8-7: (a) Cross sections of the 3D woodpile photonic crystal laser 
(ABCD)2EGE(BCDA)2 composed of rectangular dielectric rods in air, where G is 

the gain medium layer. The structure has a periodicity of 03a  along both X 

and Y directions, where 0 = 436.5 nma . The rods have thickness 

A,B,C,D 0d 0.3a= , G d 2nm= , E d 64.48 nm =  and width 0w 0.25a= , and refractive 

index of 3.526. (b) Transmission spectra for normal incidence of two 
polarized. The insect shows the photonic crystal laser structure with red 
layer the gain medium layer.  

 

With the assumption of uniform pumping current in the gain medium, the total lasing output 

and lasing frequency can be found for different inject currents and the results are shown at 

Figure 8-8 (a). Above threshold, the “hot cavity” electric field mode profile shows strong 

spatial dependence which in turn causes the strong spatial hole burning effects of non-

uniform imaginary part of gain material dielectric constant and non-uniform gain factor at 

different locations of the gain medium layer (Figure 8-8 (b)). Due to the large change of 

imaginary part of  dielectric constant at gain medium layer, the deviation of lasing frequency 

form the passive cavity resonant frequency is large and strongly depends on the inject current.  
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Figure 8-8: (a) light output power vs. inject current (L-I curve) of 3D 
woodpile laser; (b) electric field distribution and imaginary part of 
dielectric constant inside the gain medium layer when lasing at inject 
current 40nA. 
 

The L-I curve, lasing mode profile and lasing frequency chirping effect can be calculated 

from the gain material transfer (scattering) matrix method. The 1D DBR laser case confirms 

the accuracy of GTMM and the 3D woodpile laser case shows the power of GTMM. In the 

future, the GTMM algorithm can be applied efficiently and accurately to simulate and design 

future photonic crystal laser devices. 
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Chapter 9. Microwave experiments for woodpile photonic crystal 
cavities 

 

Photonic crystal devices for visible light or infrared are usually difficult to fabricate due to 

the small size and complex procedures. But structures at microwave region are large enough 

for easy design, fabrication and measurement. One important property for photonic crystal is 

scaling: the phenomenon at different length scale are the same.1 So we can take advantage of 

the easy manipulation aspect at large scale to design, fabricate and measure the response of 

photonic crystals working at microwave region, and then extend our knowledge to small 

length scale domains. In this chapter, resonant cavities embedded in the woodpile layer-by-

layer photonic crystal structures2,3,4 are systematically studied at the microwave region.  

 

9.1 Instrument setup for microwave experiments 

 

The photonic crystals at microwave region we studied are 3D layer-by-layer woodpile 

structures with square cross-section dielectric rods made of pure alumina.5,6,7 These rods 

(measured refractive index around 3.0) are commercially available and have a width of 

0.32cm. The dimensions of the whole crystal are 15.24cm by 30.48cm in width and length 

with height determined by the number of layers of dielectric rods stacked on top of each 

other (shown at Figure 9-1 (a)).  

 

We define the XY  plane as the plane of each layer in this structure. The stacking sequence 

repeats every four layers, corresponding to a single unit cell in the stacking direction. The 

center-to-center spacing between rods is 1.07 cm, giving a filling ratio of 30%. The defect 

cavity was located in the layer that was almost equally clad above and below in the Z  

direction. The cavity size is measured in term of /d a  ratio where d  is the length of rod 
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removed to form the cavity and a  is the center-to-center spacing between adjacent rods 

(Figure 9-1 (b)). If the structure had 15 layers stacked on top of each other then the defect 

was made in the 8th layer, we will call it the 7-1-7 configuration. 
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Figure 9-1: (a) Shows the design of three dimensional photonic crystal; (b) 
Illustrates the defect layer, the removed part has a width d  and center to 
center spacing between rods is a ;(c) is the experimental setup. 

 

Transmission properties are measured by a Hewlett Packard 8510A network analyzer with 

standard gain horn antennas to transmit and receive electromagnetic radiation. Figure 9-1 (c) 

shows the experimental setup. The electric field is polarized in the XY  plane for all these 

measurements. Only X -axis polarized electric field has the resonant feature while Y -axis 

polarized electric field does not have any resonant mode which is consistent with the TMM 

calculation result. The loss in the cables and the horns was normalized by calibrating all 

measurements up to the ends of the horn antennas. The Q value is determined for all the 

configurations using measured values of peak frequency and full width half maxima (-3dB) 

points, i.e. /peakQ f f= Δ . 

 



 132

 

9.2 Resonant frequency and Q value for fixed length cavity 

 

The woodpile photonic crystal with the parameter defined at section 9.1 has directional band 

gap between around 11 GHz to around 15 GHz. With the introduction of cavity with size 

/ 1d a = , both microwave experiments and TMM calculation confirmed there will be a 

resonant mode around frequency 12.3GHz with X -axis polarized incident planewave. Figure 

9-2 shows the spectrum of pure woodpile crystal and the resonant peak for 9-1-8 

configuration.  
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Figure 9-2: The spectrum of 9-1-8 structure as an example: the gray line is 
the transmission for the perfect photonic crystal with directional band gap 
between around 11GHz and around 15GHz; the red line is the experimental 
result and the dashed blue line is the TMM computation result. The inset is 
the zoom in view of the resonant peaks. 
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Now we study the trends when the number of cladding layers above and below the cavity 

layer changes. The resonant frequency increases slightly when stacking layers are increased 

from 10 to 14 and oscillates and approaches to constant at higher number of stacking layers. 

The difference between the frequencies is so small that the experimental setup can not give 

us consistent results on resonant peak values for those configurations over 18 layers. There is 

a systematic lower resonant frequencies in the calculation compared with experiment (Figure 

9-3) which is due to the uncertainty of the refractive index of the rods. In the calculation, the 

refractive index is set exactly as 3.0, while the refractive index of the alumina rods is 

measured to be close to 3.0 with uncertainty 0.1± . A slightly change in the refractive index 

will result in substantial change in the resonant peak frequency from TMM calculation.  
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Figure 9-3: Trends of resonant frequencies found experimentally (red solid 
lines with error bar) and calculated numerically using TMM (blue dotted 
lines). Resonant frequencies increase slightly and then oscillate 
approaching to a constant as stacking layers in z-direction increase. 
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Both experiments and TMM calculations show an exponential increase of Q  value when the 

number of cladding layers increases. The largest overall Q  value of 6190 is measured at the 

22-layered crystal from experiments, and around 16000 for TMM calculations. The measured 

Q  values are much lower than the calculated Q  values. One main reason is the effect of loss 

in the lateral direction since the cavity is confined by only 6 lattice constants on width and 12 

lattice constants in length.  This loss is not present in TMM calculation as it considers an 

infinite photonic crystal in the lateral direction with periodic defects in the super cell lattice. 
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Figure 9-4: Trends in Q values found experimentally (red solid lines with 
square) and calculated numerically using TMM (blue dotted lines with 
square): Q value increases exponentially as stacking layers in z-direction 
increase. 

 

A set of measurements are done to estimate the effect of the sideways loss. It is found that as 

the cavity moves closer to the edges of the crystal the Q  factor reduces almost exponentially. 

Figure 9-5 shows the Q  factor data as cavity moves towards the edge of the crystal for the 
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22-layered crystal. The red line with squares is the inverse of the measured Q  value and the 

blue line is the exponential increase fit. 
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Figure 9-5: The measured Q values decreases exponentially as the cavity is 
moved closer to the edge of the crystal. XΔ is the cavity’s center 
position away from the photonic crystal’s XY  plane’s center. The gray 

line is an exponential decay fitting with fitted result: 12000Q⊥ = . 

 

Based on Eq. (9.1) with the fitted data, we can get an estimated of  12000Q⊥ =  which is 

corresponding to the calculated Q  value from TMM. This value is still less than the 

calculated value of 16000 for this structure but it can be considered a very good match. Loss 

in the material of the dielectric rods, the mis-alignment in the photonic crystal structure and 

cavity could be the factors responsible for the lower estimated Q⊥ . 
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9.3 Effects of cavity size on resonant frequencies 

 

In this section, the cladding layer is fixed to 7-1-6 configuration while the cavity size varies. 

For microwave experiments, the cavity size is increased from 0.5a  to 8a  in steps of 0.25a . 

There was no visible mode for a cavity size smaller than 0.5a . The photonic crystal is very 

robust regarding the resonant frequencies for microwave experiments. They do not change 

with slight tilting of the crystal or movement of the horns.  
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Figure 9-6: Graph showing increasing peak frequencies with defect size. It 
also shows the diminishing modes and their counterparts arising at a lower 
frequency and then following the same increasing trend that flattens out 
for higher cavity sizes. (Courtesy from Preeti Kohli) 

 

The peak frequencies with increasing cavity size do not follow a simple regular pattern. 

Modes split and reinforce at regular intervals as shown in Figure 9-6. All points in the figure 

correspond to a resonant peak and points shown in squares are peaks with highest 

transmission for a particular cavity size. It can be clearly seen that resonant frequencies 

increase as the defect size increases. Considering defect size increase from 2a  to 5.5a for 
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example, we can see increasing dominant modes up to defect size 3.5a  after which the 

dominant peak shifts to a lower frequency and again starts increasing for size up to 5.5a .  

 

Before the shifting of the dominant mode at 3.5a , we can see the new modes arise and 

becomes dominant gradually. Also as the cavity size increases the rate of increase of resonant 

frequency reduces and becomes almost flat for defect size close to 7a . The maximum 

change in higher transmission peak frequencies on changing defect size from 0.5a  to 8a  is 

only 3.5%. Lower transmission peaks (10-30 db below) vary by 8% over the entire range. 

The Q  values of modes in this configuration range from 500-1000. 
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Figure 9-7: calculation results (curves) and microwave experiments 
(symbols) for increasing cavity size up to 2.8a : the second mode comes out 

when the cavity size increases to around 1.6a , and the trend of TMM 
calculation agrees well with microwave experiments. 
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The TMM calculations on the 5 by 5 super cell are done for cavity sizes up to 2.8a . When 

the cavity size is larger than 2.8a , the interference between neighbor cavities are not neglect 

able due to the periodic boundary condition used in TMM. The trend for frequency increase 

is same as experiments shown at Figure 9-7. To get a detailed view of the different resonant 

modes, the electric field mode profiles for those two resonant modes (A and B indicated at 

Figure 9-7) are plotted at Figure 9-8 for the cavity size of 2a .  
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Figure 9-8: Electric field mode profile of two resonant modes with cavity 
size equals 2a  

 

An interesting phenomenon should be pointed out for those varying cavity size experiments 

and calculations. For usual resonant cavity (without the present of photonic crystal as 

background), the resonant frequency should decrease (or wave length should increase) when 

the cavity size increases. But with the present of photonic crystal as background, the opposite 

trend appears: the resonant frequency increases and approaches a constant when the cavity 

size increased (Figure 9-7) which may due to the interaction of the resonant modes with the 

photonic crystal background. 
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Chapter 10. Future developments and applications of TMM 
 

The planewave based transfer (scattering) matrix method core algorithms (TMM) with 

spectrum interpolation, higher-order incidence, perfectly matched layer absorption boundary 

condition, curvilinear coordinate transformation, and active gain material extension have 

been discussed in the previous chapters. As mentioned in a recently published review article 

by K. Busch: “there is no single numerical method capable of solving all problems related to 

periodic nanostructures for photonics”.1 There are many research areas that can not be 

simulated by TMM. But we can borrow ideas from other fields and try to apply them to our 

current TMM/GTMM algorithm to extend simulation functions and ability. In this chapter, 

we briefly discussed what will be the next step expansion of our TMM/GTMM algorithm, 

and we also briefly predict what areas that photonic crystal concepts can be eventually 

applied. 

 

10.1 Go beyond planewave basis – the localized light orbital 

 

The planewave based transfer (scattering) matrix method is actually a combination of 

planewave expansion method2 and real space transfer (scattering) matrix method3. To expand 

the 3D photonic crystal structure into Fourier space by planewave expansion method requires 

a total planewave number of N N N× ×  which will soon incapable by current computer 

hardware as N  gets larger and larger to simulate more complicated 3D structures. To reduce 

the 3D structure into 2D structure, the real space transfer (scattering) matrix method slices 

the whole structure alone the propagation direction. With the idea of “slicing” and the idea of 

“Fourier expansion”, the planewave based transfer (scattering) matrix is introduced to study 

photonic crystal with total planewave number reduced to N N× . The similar ideas have been 

introduced in the diffractive optics community as well, where it is called rigorous coupled 

wave analysis method.  
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Even with the planewave number reduced to N N× , to study the photonic crystal with 

defects where super cell is used, the current computer hardware is still limiting. That is the 

reason why several strategies have been introduced to improve the performance of TMM 

such as spectrum interpolation. The other limitation of periodic boundary condition assumed 

by TMM can be compromised by perfectly matched layer absorption boundary conditions. 

But when comes to disorder systems where much larger super cells are required, our TMM 

package can not handle them due to both the computer memory limitation and computation 

time length.  

 

0.0

0.2

0.4

0.6

0.8

1.0

ΓMX

 N
or

m
al

iz
ed

 F
re

qu
en

cy
 (ω

a/
2π

c)
 

 

 

Γ
 

Figure 10-1: The excellent match between band structure generated by 
localized light orbital basis (dot) and planewave expansion method (solid 
line) indicates the accuracy of localized light orbital basis. 

 

One solution to above limitation is to replace the planewave basis with more localized basis. 

Just like in complex electron structure calculations, localized electron orbital is used as basis, 

we will use the so called localized light orbital as our basis in TMM calculation. Preliminary 

results have been demonstrated that the localized light orbital is working while there are still 
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several issues to be tackled. Figure 10-1 shows the band structure of a classical 2D photonic 

crystal composed by square lattice dielectric cylinders, the localized light orbital basis results 

agree well with the planewave expansion method.  

 

Similar approaches such as Wannier-function method and Green’s function method have 

been proposed to study localized defects photonic crystal structures (for example: resonant 

cavity and waveguide).  

 

10.2 Future applications of photonic crystal concepts 

 

In the section, various possible applications from photonic crystal concept are discussed, for 

example: energy saving solution, novel optical instrument, and special light sources. Some of 

those applications may need several years or decades to become reality, while others are 

already round the corner to debut into our everyday life. 

 

Energy is a hot topic and also a hard topic in current research. With the consumption of fossil 

fuel, we are damaging our fragile environments. Global warming is not just a theory; it is 

already coming to us. Energy is essential to a nation as well as to an individual person. But 

our current energy source (fossil fuel) is not unlimited and is not clear to our environments 

either. Photonic crystal devices can play into this area by two means: saving energy and 

finding alternatives. 

 

One part of the energy consumption is used at everyday light sources, for example household 

light and traffic light. Currently, the efficiency (ratio of light energy generated to electrical 

energy used) is very low, for example: less 10% for tungsten filament light and around 20% 

for halogen bulbs. The rest of the electric energy is used to generate electromagnetic wave 

with wavelength other than visible light (such as infrared) and eventually turns to heat. We 

know that photonic crystal can provide a band gap, and no electromagnetic wave within the 
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band gap can propagate through. One way to apply this idea is to design a photonic crystal 

thin film with the band gap at the wavelength longer than visible light. Then the thin film can 

be deposited at the inner surface of the light bulb. For visible light, there will be no effect at 

all, but all infrared radiations are reflected to the filament and re-absorbed by the filament. 

By this way, we can recycle those infrared radiations to heat the filament and in turn 

increases the light bulb efficiency.  

 

Besides increasing the light bulb efficiency, photonic crystal can also be used to improve the 

light source quality. Human eyes have different response sensitivity to visible light of 

different wavelengths (or colors). A photonic crystal structure can be designed with the 

consideration of human eyes response to generate special tailored spectrum for light bulbs. In 

fact, the tungsten filament with layer-by-layer structure has been reported from Sandia 

National Laboratory to have the ability to convert heat into light which could raise the 

efficiency of an incandescent electric bulb from 5 percent to more than 60 percent.5,6 

 

Now let’s come to the applications of photonic crystal for alternative energy sources. The 

ultimate energy source for the earth is from the sun by means of electromagnetic radiation. 

Direct solar energy is a promising alternative energy source to fossil fuel. But there are still 

some difficulties for solar cell research and industry, and solar energy currently only 

accounts a very small portion of total energy consumption. One difficulty lays in the 

efficiency of the solar cell which is very low in term of the practical application. Or the cost 

measured in unit of dollar per watt for solar cell is too high and we simply can not afford it. 

The plants have much better ability to harvest sun light than our solar cells. The photonic 

crystal can be designed to effectively collect sun light to increase the efficiency of solar cells 

and in turn drop the cost and make solar energy possible for everyone and everywhere. One 

proposed idea is to design a film like photonic crystal solar cell which can be painted at the 

outside the building to provide electricity for the building. 
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As we discussed at Chapter 7, photonic crystal structures can be used in optics to control the 

propagation of light just as conventional optical instruments such as optical lenses. One 

revolutionary idea is to use photonic crystal as conventional lenses to control light, but with 

better performance and more compact size. The professional photographers usually carry 

huge cameras, and the major part of those cameras is the lens. To get vivid detail in the 

picture, a set of conventional lenses must be used to correct the chromatic and other 

aberrations which make the camera huge and expensive. Canon has applied diffractive optics 

components on its professional cameras to reduce the chromatic aberrations and reduce 

lenses weight and cost.7 In the future, the digital camera lenses and projector lenses maybe 

flat and very compact with the advantage of photonic crystal design. 

 

The concept of photonic crystal can be used in other area to provide special light sources and 

as waveguide. Low threshold laser may be commercially fabricated within the photonic 

crystal cavity. Photonic crystal fiber has already in commercially production with its better 

performance compared with conventional fiber. The ultimate integrated optical circuits 

maybe achieved one day with the photonic crystal structures as the building block. I believe 

the 21st century will be a century of photons, and photonic crystal will be a breakthrough in 

our everyday life. 
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