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CHAPTER 1. OVERVIEW

Solidification of liquid is a very rich and complicated field, although there is always a fa-

mous homogeneous nucleation theory in a standard physics or materials science text book.

Depending on the material and processing condition, liquid may solidify to single crystalline,

polycrystalline with different texture, quasi-crystalline, amorphous solid or glass (Glass is a

kind of amorphous solid in general, which has short-range and medium-range order). Tradi-

tional oxide glass may easily be formed since the covalent directional bonded network is apt

to be disturbed. In other words, the energy landcape of the oxide glass is so complicated that

system need extremely long time to explore the whole configuration space. On the other hand,

metallic liquid usually crystalize upon cooling because of the metallic bonding nature. How-

ever, Klement et.al., (1960) reported that Au-Si liquid underwent an amorphous or “glassy”

phase transformation with rapid quenching. In recent two decades, bulk metallic glasses have

also been found in several multicomponent alloys[Inoue et al., (2002)]. Both thermodynamic

factors (e.g., free energy of various competitive phase, interfacial free energy, free energy of

local clusters, etc.) and kinetic factors (e.g., long range mass transport, local atomic position

rearrangement, etc.) play important roles in the metallic glass formation process.

Metallic glass is fundamentally different from nanocrystalline alloys. Metallic glasses have

to undergo a nucleation process upon heating in order to crystallize. Thus the short-range and

medium-range order of metallic glasses have to be completely different from crystal. Hence a

method to calculate the energetics of different local clusters in the undercooled liquid or glasses

become important to set up a statistic model to describe metalllic glass formation.

Scattering techniques like x-ray and neutron have widely been used to study the structues

of metallic glasses. Meanwhile, computer simulation also plays an important role, as it may
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directly track the movement of every atom. Simulation time is a major limit for molecular

dynamics, not only because of “slow” computer speed, but also because of the accumulation

error in the numerical treatment of the motion equations. There is also a great concern

about the reliability of the emperical potentials if using classical molecular dynamics. Ab

initio methods based on density functional theory(DFT) do not have this problem, however,

it suffers from small simulation cells and is more demanding computationally. When crystal

phase is involved, size effect of the simulation cell is more pronounced since long-range elastic

energy would be established. Simulation methods which are more efficient in computation

but yet have similar reliability as the ab initio methods, like tight-binding method, are highly

desirable.

While the complexity of metallic glasses comes from the atomistic level, there is also a

large field which deals with the complexity from electronic level. The only “ab initio” method

applicable to solid state systems is density functional theory with local density approxima-

tion(LDA) or generalized gradient approximation(GGA) for the exchange-correlation energy.

It is very successful for simple sp element, where it reaches an high accuracy for determining

the surface reconstruction. However, there is a large class of materials with strong electron

correlation, where DFT based on LDA or GGA fails in a fundamental way. An “ab initio”

method which can generally apply to correlated materials, as LDA for simple sp element, is

still to be developed.

The thesis is prepared to address some of the above problems, which is arranged as follows:

Chapter 2: We have calculated the T0 curves for several Al-Rare Earth (RE) binary alloys

and compared the results with reported observations of glass formation (T0 curve is defined

as a trjectory in temperature-composition space where the liquid phase and solid phase have

same Gibbs free energies), in order to assess the importance of the transport-based resistance

to crystallization in the overall glass formation process. Our results show that the experimen-

tally observed glass forming compositions for Al-(Ce,Gd,Ho,Nd,Y,Dy) alloys strongly correlate

with the composition range bounded by the T0 curves associated with the relevant crystalline

phases. This agreement indicates that sluggish material transport is a key factor governing
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glass formation in these systems, a behavior that differs substantially from the more common

oxide glasses, where directional bonding constraints may stabilize the glassy network based on

topological considerations.

Chapter 3: A jellium-passivated cluster model is developed to study the energetics of

short-range ordering in supercooled liquid and glass systems. Calculations for single atoms

embedded in jellium yield results in good agreement with bulk values for the cohesive energy,

atomic volume as well as angular-momentum-projected electronic density of states. The energy

difference between icosahedral clusters and FCC embryos in jellium is found to correlate with

the glass-forming ability of liquid Al alloys. The model will be useful for studying the short-

range order tendency with minor chemical additions in metallic glass formation, without the

use of large unit cell calculations.

Chapter 4: We demonstrate an efficient and accurate first-principles method to calculate the

electronic structure of a large system using a divide-and-conquer strategy based on localized

quasi-atomic minimal basis set orbitals recently developed. Tight-binding Hamiltonian and

overlap matrices of a big system can be constructed by extracting the matrix elements for a

given pair of atoms from first-principles calculations of smaller systems that represent the local

bonding environment of the particular atom pair. The approach is successfully applied to the

studies of electronic structure in graphene nano-ribbons. This provides a promising way to do

the electronic simulation for big systems directly from first-principles.

Chapter 5: We have developed a new density functional theory incorporating the corre-

lated electronic effects into the kinetic energy via Gutzwiller approximation. All the Coulomb

integrals are determined self-consistently without any adjustable parameters. In addition to

the set of one-electron Schrödinger equations analogous to the standard LDA approach, we

get another set of linear equations with respect to the probabilities of local configurations as

the solution of the many body problem. A preliminary Fortran90 code has been developed

with an interface to VASP. We applied our method to several systems with important electron

correlation effects and got encouraging results.
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CHAPTER 2. THERMODYNAMIC LIMITS OF CRYSTALLIZATION

AND THE PREDICTION OF GLASS FORMATION TENDENCY

2.1 Introduction

Metallic alloys which resist crystallization in their undercooled states sufficiently well to

become amorphous solids or “metallic glasses” have emerged as a very interesting and poten-

tially useful class of materials. However, the criteria for glass-formation in metallic systems

are still poorly understood. Unlike traditional topological or network glass systems where

structural frustration promotes the formation of the glass state and thus may be formed even

for pure element systems, metallic glasses are only found in multicomponent alloy systems.

This indicates that restriction of material transport is a dominant factor in the glass formation

process.

To date, a great deal of effort has been concentrated on (i) the quantification of the diverse

and unusual physical and mechanical properties afforded by glass forming metallic alloys, (ii)

the identification of compositional ranges that give rise to amorphous solids in various alloy

systems, and (iii) the development of alloys and processing techniques capable of yielding glassy

alloys in quantities or geometries that permit engineering application, i.e. “bulk” metallic

glasses. A number of excellent reviews[Inoue et al., (2002); Inoue (1998); Greer (1995)] are

available, and we forego a comprehensive discussion of these topics here.

More fundamentally, considerably less effort has been devoted to understanding the ther-

modynamic and kinetic implications of the glassy state exhibited by many metallic systems.

Differing substantially from the more common oxide glasses, where directional bonding con-

straints may lead to static glassy network structures, glass formation in metallic systems cannot

be reasonably justified in terms of simple topological considerations. Clearly, the transition to



5

the glassy state in a metallic system must be described as kinetic in nature, where relaxation to

an energetically favorable crystalline state becomes sufficiently sluggish to effectively prevent

its existence. Thus, the fundamental question to be answered with regard to this transition is:

“What are the critical kinetic contributors which limit the crystallization process in a metallic

system, and how are these influenced by temperature and chemical composition?” Indeed, a

substantial amount of work has been reported pursuant to the second part of this question, and

composition ranges where glass formation is practically achievable have been experimentally

determined for a number of metallic systems. However, the more fundamental, first, part of the

question has not been sufficiently addressed, and the suppression of structural and chemical

relaxation processes contributing to the kinetic transition have not been distinguished or well

described.

Following the earliest observations of amorphous or “glassy” phase formation, reported in

1960 for a rapidly quenched Au-Si alloy[Klement et.al., (1960)] and in 1965 for a Pd-Si al-

loy[Duwez et al., (1965)], researchers looked to quantify the inherent glass formation tendency,

commonly termed glass forming ability (GFA), for metallic systems. Various relationships were

proposed, suggesting that parameters such as the melting temperature, the cohesive energy, the

Debye temperature, the reduced liquidus temperature, and linear combinations of pure compo-

nent melting temperatures may correlate with the glass transition temperature, Tg [Marcus et

al., (1976); Donald et al., (1978); Turnbull et al., (1961); Kauzmann (1948); Turnbull (1969);

Davies et al., (1975)]. (Tg may be defined as the temperature at which the heat capacity

changes abruptly.) Such correlations offered only limited utility, but reasonable success was

achieved for several systems through the use of GFA maps constructed with two thermody-

namic parameters. For example, Giessen et al., (1980) compared the GFA for several binary

alloys by plotting the heat of formation for the liquid phase versus the atomic radius ratio of

the two alloy components. Also, plots of reduced liquidus temperature (TLR =
(
T̄ 0

L − TL

)
/T̄ 0

L,

where TL is the liquidus temperature and T̄ 0
L is a linear combination of the pure component

melting temperatures) versus reduced eutectic composition ((Ce − Cs) /Ce, where Ce is the

eutectic composition and Cs is the solidus composition for the solvent-rich phase at the eutec-
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tic temperature) were employed by Whang (1983) to compare the GFA for Ti, Zr, Si, and Al

alloys.

Work by Lu et al., (2000) suggests that the reduced glass transition temperature (Trg =

Tg/TL) may be a reasonable indicator of the GFA in Zr, La, Mg, Pd, and rare earth alloys

(all containing at least three components), while other experimental reports suggest that the

freezing range, ∆Txg, is a more reliable indicator in several multicomponent Fe-base, Mg-base,

and Pd-Ni-base alloys[Inoue et al., (1993); Shen et al., (1998, 1999); Murty et al., (2000);

Inoue et al., (2001)]. Lu et al., (2002) examined this issue and proposed a parameter, defined

as γ = Tx/(Tg +TL), that describes the ease of devitrification for a metallic glass and correlates

with GFA better than both Trg and ∆Txg. They go on to relate this parameter to a critical

cooling rate, Rc, and an associated critical section thickness[Lu et al., (2002, 2003)].

Beyond these rudimentary correlations, several approaches have been used for describing

the behavior of undercooled metallic liquids and predicting glass formation in metallic al-

loys[Egami (2002)]. Beginning with Cohen et al., (1959), free volume theories have been used

with reasonable success to describe some aspects of molecular motion and the associated glass

transition[Turnbull et al., (1961); Cohen et al., (1959); Turnbull (1970); Taub et al., (1980)].

Continuum mode-coupling theories[Jacle (1986); Gotze et al., (1992)] have been useful in

describing high temperature behavior of liquids, but these break down at lower temperatures

where atomistic mechanisms become important for transport processes[Egami (2002)]. Egami

used local topological considerations to explain how the glass transition may occur at the

nanoscale, giving rise to glassy clusters[Egami (2002)]. By modifying a treatment for oxide

glasses, Takeuchi et al., (2001) calculated critical cooling rates, Rc, for glass formation in

Ni, Co, and Pd-Cu based alloys, showing a dramatic reduction in Rc with increasingly neg-

ative enthalpy of mixing in the liquid and with increasing atomic radius mismatch. Fecht

et al., (2004) have summarized the requirements for the formation of bulk metallic glasses

(i.e. Rc ≥ 1 K/s) with the following five conditions: (i) steep liquidus boundaries meeting

at a low temperature eutectic, (ii) atomic radius mismatch > 15%, (iii) reduced driving force

for crystallization, (iv) Trg > 0.65, and (v) complete miscibility in the liquid at the relevant
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temperatures. While structural “confusion” must play a role in suppressing the kinetics of

crystallization[Greer (1995)], these general conditions suggest that observed glass formation

tendency is fundamentally linked to the thermodynamic properties of the system.

In this chapter, we examine the hypothesis that the dominant mechanism for “confusion” in

metallic glass formation comes from the limitation of material transport at the compositional

scale and that the reduced diffusional burden associated with partitionless crystallization pro-

vides a temporally competitive avenue for relaxation and, thus, a fundamental thermodynamic

and kinetic limit to the glass formation range. We employ a solution thermodynamics approach

to compute the chemical limits of partitionless crystallization for several Al-RE binary alloys,

chosen because their glass formation compositions have been well characterized by experiment

and the reported glass formation ranges deviate substantially from the eutectic compositon.

More specifically, we calculate the T0 temperature as a function of composition and assert that

glass formation is unlikely for compositions where Tg < T0, suggested by Boettinger (1982),

since the partitioning and chemical transport requirements for crystallization vanish below this

temperature. In this case, the intersection between the Tg and T0 curves for the two (or more)

crystalline phases involved in a eutectic reaction would indicate a reasonable composition range

for glass formation.

2.2 Calculation Method

T0 is defined as the temperature for which the liquid phase and the crystalline phase

have equal Gibbs free energies. Fig. 2.1 schematically shows the Gibbs free energy(G) versus

composition(x) curves of one liquid phase and two solid solution phases at 500K for A-B binary

system. From the intersections of the curves we may read that T0(x = 0.4) = 500K for solid-I

and liquid, and T0(x = 0.7) = 500K for solid-II and liquid. One may get the T0 versus x curve

by scanning the whole temperature and composition domains. Fig. 2.2 shows the typical T0

curves for A-B binary system with a single eutectic point.

In practice, the T0 calculations are performed using the CALPHAD (CALculation of PHAse

Diagrams) methodology, with missing parameters generated by ab initio calculations. Thus,
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x 0.7

Solid−II

liquid
Solid−I

0.4

G

A B

Figure 2.1 Schematic illustration of Gibbs free energy curves of solid and
liquid phases for A-B binary system at a fixed temperature T.
The intersection of the curves gives the T0 temperature(=T) at
compositions of x=0.4 and x=0.7.

C C1 2A B

T

T
T

0
0

Tg

Figure 2.2 Schematic illustration of the simple eutectic phase diagram of
A-B binary alloys with T0 curves. The partition zone (C1−C2)
bounded by the T0 curves around Tg may serve as a reasonable
lower limit for glass formation.
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each phase is treated as a solution whose Gibbs free energy is expressed analytically over

a certain composition and temperature range. In our treatment, binary solution phases are

modeled with a single-sublattice, with a molar Gibbs free energy given as

GΦ = (1− x)GΦ,0
Al + xGΦ,0

RE +RT ((1− x) ln (1− x)− x lnx) +GΦ,xs (2.1)

Where GΦ,0
A is the molar Gibbs free energy of the pure element A in structure Φ, taken from

Dinsdale (1991). The excess Gibbs free energy GΦ,xs is expressed as

GΦ,xs = (1− x)x
n∑

j=0

LΦ,j
Al,RE (1− 2x)j (2.2)

Where the interaction parameters LΦ,j
Al,RE take the form AΦ,j +BΦ,jT , including both enthalpic(

AΦ,j
)

and entropic
(
−BΦ,j

)
contributions to each mixing term.

Typically, binary intermetallic phases are described using a two-sublattice model(which is

independent of real crystal structure), with each component occupying one sublattice without

mixing. The Gibbs free energy has the form

GAlaREb = aGΦ,0
Al + bGΦ,0

RE +AAl,RE +BAl,RET (2.3)

Where AAl,RE and −BAl,RE represent the enthalpy and entropy of formation for the stoichio-

metric compound. (For the Al-RE alloys studied in this paper, the coefficients A and B are

taken from reference[Cacciamani et al., (2001, 2003); Gröbner et al., (1995)]. Some of the

model coefficients have been tested in ternary systems[Cacciamani et al., (2003); Gröbner et

al., (1995)].)

We here treat the intermetallic phases as solutions, rather than simple stoichiometric com-

pounds assumed in usual CALPHAD calculations. We approximate the Gibbs free energy of

the intermetallic solution as

GAl1−xREx = (1− x)GΦ,0
Al + xGΦ,0

RE + ∆HAl1−xREx (2.4)

Where the formation enthalpy is estimated by interpolating ab initio total energy calculation

results for alloys at selected nearby compositions. As an example, the resulted Gibbs free

energy curve for Al3Y phase at 300 K was shown in Fig.2.3. We ignore the formation entropy,
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assuming that its contribution is relatively small in the temperature range where the metallic

glasses usually form. In fact, for all the intermetallic compounds under investigation, the

contribution of the formation entropy is one order smaller than that of formation enthalpy

near 500 K, based on fitted and experimental data, as shown in Table 2.1. Furthermore, the

formation entropy is negative in all the intermetallic compounds investigated, which would

only raise the corresponding intermetallic Gibbs free energy at the particular composition,

forcing the T0 curve to be steeper. This would not affect our conclusions.

-6

-5

-4

-3

-2

-1

0

G
(x

1
0
  
J

/m
o

l)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X(Y)

Al-Y

T=300

FCC
HCP

Liquid

~Al Y3

Figure 2.3 Gibbs free energy(G) versus composition(X) of Y curve forAl3Y
phase at 300 K. The Gibbs energy curves for liquid, fcc and hcp
are also shown for reference. The intersection between Gibbs
energy curve of Al3Y and that of liquid give the specific com-
position with T0 = 300K.

The first-principles calculations were done using VASP[Kresse et al., (1996)] with a plane-

wave basis set. Projector augmented wave (PAW) method[Kresse et al., (1999)] were em-

ployed and the exchange-correlation potential was based on the generalized gradient corrections

parametrized by Perdew et al., (1996).
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Table 2.1 Comparison between the contributions from formation en-
thalpy ∆Hf and formation entropy −T∆Sf based on the fitted
and experimental data[Cacciamani et al., (2003); Gröbner et
al., (1995)]. T=500K is used in the table. The contribution
from formation entropy to the total Gibbs free energy is one
order of magnitude smaller that that from formation enthalpy.

Intermetallic
compound

∆Hf

(kJ/mol)
∆Sf

(J/K/mol)
−T∆Sf

(kJ/mol)
−T∆Sf/Hf

αAl11Ce3 -41.5 -9.68 4.84 12%
Al3Ce -45.0 -10.3 5.16 11%
αAl11Nd3 -39.1 -9.35 4.68 12%
Al3Nd -45.0 -11.7 5.84 13%
Al3Gd -41.2 -7.40 3.70 13%
Al3Ho -43.0 -7.53 3.77 9 %
Al3Dy -37.5 -6.46 3.23 9 %
Al3Y -47.5 -10.6 5.31 11%

2.3 Results and discussions

The calculated T0 curve results, plotted with the truncated Al-rich part phase diagrams for

Al-Ce, Al-Gd, Al-Ho, Al-Nd, Al-Y, and Al-Dy, are shown in Fig.2.4. The compositional depen-

dence of structure for the corresponding rapidly solidified Al-RE binary alloys are also shown

as insets. Two right-side T0 curves are shown for Al-Ce and Al-Nd since there exist two com-

peting phases with similar compositions. The shaded regions are the experimentally observed

glass-forming composition ranges[Inoue (1998)]. Though the glass transition temperature, Tg,

is not given, it is reasonable to assume that it is above 300K. Down to 300K, the partitioning

zone defined as the composition range bounded by the relevant T0 curves matches very well

with the experimentally observed glass-forming range. For comparison, GFA predicted by Trg

and TLR is peaked around the eutectic composition, while Takeuchi’s Rc criterion [Takeuchi

et al., (2001)] favors the composition near 40 at.% of RE. Thus only our T0 criterion gives

a reasonable prediction in the systems investigated here. It should be pointed out that the

above-mentioned Trg, ∆Txg and γ criteria are generally not good for GFA prediction since Tg

and Tx are unknown for new systems, although GFA could still be predicted by assuming that

the compositional dependence is dominated by TL.
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Figure 2.4 Calculated T0 curves with the truncated Al-rich part phase
diagrams for Al-Ce, Al-Gd, Al-Ho, Al-Nd, Al-Y, and Al-Dy.
Inset: compositional dependence of structure in the corre-
sponding rapidly solidified Al-RE binary alloys taken from
Ref.[Dinsdale (1991)]. Shaded regions: amorphous, A: Al solid
solution, B: Amorphous + Al, C: Amorphous +X (unidentified
phase), D: Al +X (unidentified phase), E: Al + Al11RE3, F:
Al +Al3RE.
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Considering that partitionless crystallization requires only short range atomic motion and

that such a transition may occur at extremely high rates [Aziz et al., (2004)], we view the

T0 criterion as an upper bound (i.e. a zero driving force) temperature limit for partitionless

crystalline solidification, and, therefore, view the two relevant T0 curves in an eutectic system

as operational inner bounds for the glass formation range. Accordingly, we offer the present

analysis as a means for assessing the importance of chemical partitioning in the resistance

to crystal phase formation. Instead of the traditional eutectic composition, around which it

is often presumed that the glass-forming ability is particularly high, our results suggest that

the partitioning range, bounded by the T0 curves, may offer a more relevant thermodynamic

criterion for metallic glass formation tendency. It is interesting to note that the partitioning

ranges for the systems we investigated here are all clearly off the eutectic compositions. Our

theoretical predictions agree well with experiment that glass forming ranges have been severely

shifted to hypereutectic compositions.

Indeed the concept of purely thermodynamic criteria for glass formation is not a new

one[Nash et al., (1988)]. However, the T0 criterion for metallic glass formation has not been

thoroughly investigated partly because previous solution-based models have not been adequate

for accurate prediction of the T0 temperature for metallic alloys. Our present study demon-

strates that by combining a CALPHAD approach with first-principles methods for reliable

computation of energies, more accurate and comprehensive description of alloy phases can be

achieved.

While rudimentary thermodynamic treatments have shown promise in this regard, it should

be noted that the above analysis does not account for the kinetics of partitionless solidification.

Several investigators have combined thermodynamic models with models for crystallization

kinetics to assess critical cooling rates[Uhlmann (1972)] and composition ranges for glass

formation[Nash et al., (1988); Saunders et al., (1986)]. Zhu et al., (2004) incorporated

existing thermodynamic treatments into analytical kinetic models to quantify nucleation and

growth rates as a function of alloy composition for four Al-RE alloys. In each case, they assume

equilibrium chemical partitioning and compute the time (τ) required for transformation of a
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“minimal” (10−6) volume fraction as a function of composition. For the Al-Ce and Al-Gd

systems, their results for T=500K show a strong correlation between long transformation

times and experimental observation of glass formation. Less agreement is observed for Al-

Y, and rather poor agreement for Al-Nd. The good agreement between our results based on

simple T0 considerations with these more elaborate calculations and the observed experimental

glass formation compositions indicates that the dominant factor affecting glass formation is the

limitation of material diffusion in the liquid in these systems. If this premise, supported here by

our results for several Al-RE alloys, turns out to be true for a large class of materials, favorable

glass formation composition ranges could be estimated using purely thermodynamic models.

Extension of our calculations into alloys with more components would be very interesting to

test this hypothesis.

2.4 Conclusion

In conclusion, while accurate modeling of crystallization kinetics will ultimately be es-

sential for reliable prediction of glass formation tendency over wide ranges of composition,

it is scientifically prudent to examine, more completely, the implications of thermodynamic

treatments before attempting to apply rigorous kinetic models. Indeed, any reliable kinetic

treatment must include accurate thermodynamic descriptions of the relevant phases, including

the undercooled liquid, and must account for the formation of the crystalline phase(s) over a

continuous range of permissible compositions. Moreover, we must recognize that relaxation

kinetics are integrally linked to the phenomenon of phase selection itself and that the compo-

sition of the crystalline phase is a degree of freedom that nature may explore in her quest for

more efficient transitions. From a temporal viewpoint, the T0 condition defines a completely

partitionless limit to this behavior where the requirement for long range diffusion vanishes.

Clearly, as a fundamental limit in terms of both system thermodynamics (∆G = 0) and sys-

tem kinetics, we assert that accurate calculation of such limits should precede more convoluted

treatments, where the natural selection of the dynamical transformation path, itself, becomes

a critical variable.
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CHAPTER 3. CLUSTER-IN-JELLIUM MODEL FOR METALLIC

GLASSES

3.1 Introduction

Short range order in undercooled metallic liquids plays an essential role in glass formation

in these systems. Many experiments using scattering and absorption techniques have been

employed to study this problem. Meanwhile, computer simulations have also been widely

used to track the atomic structure evolution in liquid metallic alloys. As a result of these

efforts, local cluster structures for some model binary systems have been demonstrated[Sheng

et al., (2006)]. Experimentally, it has been observed that the glass-forming ability of various

systems are quite sensitive to their chemical compositions. This implies that the energetics

and packing of local clusters may be a dominant factor in the glass-formation process. With

the fast development of computational capabilities, calculations of isolated clusters is now a

mature procedure. However, the energies and local structures of clusters in supercooled liquid

or glass could be very different from isolated clusters due to the different environments. For

instance, the structures of Si clusters with hydrogen passivation are tremendously different

from those of free Si clusters[Tang et al., (2006)]. In fact, the passivation of metallic clusters

is still an unresolved problem[Garzón et al., (2000)].

In this paper, we use a mean field approach to calculate the energetics of local clusters

in supercooled metallic liquid or glass by studying clusters embedded in an effective jellium

background. There are many studies on bonding properties of elemental metals using jellium

approaches [Puska et al., (1981); Utreras-Diaz et al., (1984); Perdew et al., (1990); Shore et

al., (1991); Rose et al., (1991); Puska et al., (1991)]. The difference of our present approach

from previous jellium studies (e.g. Puska’s atom-in-jellium model[Puska et al., (1981, 1991)])
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is that, in our embedding scheme, we consider a volume around the atom or cluster where the

jellium background is excluded. The size of the excluded volume is determined by minimizing

the total system energy. Our jellium-passivation calculations yield good agreement with the

cohesive energies and atomic volumes obtained from bulk calculation. The site- and angular-

momentum- projected density of states (PDOS) from the jellium-passivation approach are also

in good agreement with bulk results. Calculations for clusters with increasing size show that

jellium-passivation gives good estimates for the bulk limit of large clusters. We believe the

jellium-passivation approach to be a promising method to provide useful energetic information

about the glass formation tendency of various liquid metal systems. It may be further improved

for incorporation in local molecular dynamics simulations which can concentrate on the evo-

lution of short-range or medium-range order in such systems while maintaining a reasonable

simulation size.

3.2 Model and Formalism

A local cluster in supercooled liquid or glass is modeled as a cluster surrounded by jellium

corresponding to the liquid metal environment in a mean-field approach, as illustrated in

Fig.3.1(A). The central circle represents the cluster, surrounded by an empty space representing

the optimized volume occupied by the cluster. The most outside region is the effective jellium

background representing the electron sea coming from the liquid metal environment. Following

the notations of the classic paper by Ihm et al., (1979), the total energy for the jellium-

passivated cluster under DFT pseudopotential framework in Rydberg units can be expressed

as (~ = 2me = e2/2 = 1 from Gaussian units to Rydberg units)

Etot = T + V +
∫
Exc(r)d3r−m0εjel(n0) (3.1)

where T is the kinetic energy of the whole system,

T =
∑

n

∫
fnψ

∗
n(r)(−∇2)ψn(r)d3r (3.2)
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V is the electrostatic potential energy,

V =
∑
n,i,l

∫
fnψ

∗
n(r)Ups,l(r−Ri)P̂lψn(r)d3r

+
1
2

∫∫
2ρ(r)ρ(r′)
|r− r′|

d3rd3r′ +
∫
v(r)ne(r)d3r

+
1
2

∑
i,j
i6=j

2Z2

|Ri −Rj |
+
∑

i

∫
2Znb(r)
|r−Ri|

d3r (3.3)

and Exc is the exchange-correlation energy. m0 is the total number of electrons contributed by

the jellium. εjel(n0) gives the energy per electron in bulk jellium with density of n0, which can

be expressed analytically[Perdew (2003)]. n is the index for both wavevector k and band. Index

i and j run over all the atomic lattice sites.
∑

l Ups,l(r−Rµ)P̂l is angular momentum-dependent

pseudopotentials, where P̂l is the projection operator on angular momentum l. fn specifies the

occupancy of quantum state n. v(r) = v0γ (r). v0 is the constant electron chemical potential

shift for the jellium background. γ (r) is a step function which is one in jellium and zero outside.

nb(r) = n0
bγ (r). n0

b is the positive background charge density, nb(r) is position-dependent

because of the excluded volume in our model. ne(r) =
∑

n fnψ
∗
n(r)ψn(r) is the total electron

density including the contributions from the cluster and jellium, and ρ(r) = ne(r) − nb(r).

The first term in Eq.3.3 describes the interaction between total electron ne and ion cores. For

simplicity, the formalism is given for a single-element cluster. It can be easily generalized to

multi-element clusters. Assuming that the positive background charge does not overlap with

the pseudopotential’s core region where the Coulomb potential is smoothed, the expression for

V can be written as

V =
∫
Vion+jel(r)ne(r)d3r

+
∑
n,i,l

∫
fnψ

∗
n(r)U ′

ps,l(r−Ri)P̂lψn(r)d3r

+
1
2

∫∫
2ρ(r)ρ(r′)
|r− r′|

d3rd3r′

−
∫
V loc

ion(r)nb(r)d3r +
1
2

∑
i,j

i6=j

2Z2

|Ri −Rj |
(3.4)
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Where Vion+jel = V loc
ion + v(r). V loc

ion is the pure local pseudopotential. U ′
ps,l denotes the angular

momentum-dependent nonlocal part of the pseudopotential. The corresponding one-particle

Schrödinger equation is (
−∇2 +

∑
i,l

U ′
ps,l(r−Ri)P̂l + Vion+jel(r)

+
∫

2ρin(r′)
|r− r′|

d3r′ + µin
xc(r)

)
ψn(r) = εnψn(r) (3.5)

Where µxc is the exchange-correlation potential. Based on the solution of the Schrödinger

equation, the total energy can be expressed as a variational functional of the output electron

density only[Pickett (1989)]:

Etot =
∑

n

fnεn −
∫

2ρin(r)nout
e (r)

|r− r′|
d3rd3r′

−
∫
µin

xcn
out
e (r)d3r +

1
2

∫
2ρout(r)ρout(r)

|r− r′|
d3rd3r′

+
∫
εout
xc (r)nout

e (r)d3r−
∫
Vion,loc(r)nb(r)d3(r)

+
1
2

∑
i,j

i6=j

2Z2

|Ri −Rj |
−m0εjel(n0) (3.6)

In the momentum space representation, the total energy is

Etot =
∑

n

εnfn + Ω
(
−
∑
G

V in
Coul(G)nout

e (G)

−
∑
G

µin
xc(G)nout

e (G) +
1
2

∑
G

V out
Coul(G)ρout(G)

+
∑
G

εout
xc (G)nout

e (G)−
∑
G

Vion,loc(G)nb(G)
)

+
1
2

∑
i,j

i6=j

2Z2

|Ri −Rj |
−m0εjel(n0) (3.7)
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where VCoul = 8πρ(G)/G2. By the same argument as Ihm et al., (1979), finally the total

energy per unit cell can be expressed as

Etot,cell =
1
N

∑
n

εnfn + Ωcell

(
−
∑
G

V ′in
Coul(G)nout

e (G)

−
∑
G

µin
xc(G)nout

e (G) +
1
2

∑
G

V ′out
Coul(G)ρout(G)

+
∑
G

εout
xc (G)nout

e (G)−
∑
G

V ′
ion,loc(G)nb(G)

)
+ α1Z + γEwald −

m0

N
εjel(n0) (3.8)

V ′ indicates the term with G = 0 set to be zero, which is equivalent to a constant shift of the

potential.

The above formalism is incorporated into our pseudopotential mixed-basis code[Louie et

al., (1979); Ho et al., (1992)]. Norm-conserving pseudopotentials are generated with the

method by Troullier et al., (1991). For transition metals, the localized character of d electrons

can be efficiently expressed by including truncated atomic pseudo-wavefunctions in the basis

set in addition to plane waves. The exchange-correlation potential is based on the generalized

gradient corrections parametrized by Perdew et al., (1996). The calculations are done in the

supercell approach with a cubic unit cell of length 20 Bohr. The plane wave cut-off energy is

20 Ry. A Gaussian smearing width of 0.06 eV is used for the Brillouin zone integration on a

6 × 6 × 6 Monkhorst-Pack grid. The jellium boundary is smoothed by Fermi smearing with

width of 0.05 Bohr to remove high Fourier components.

3.3 Results and discussion

3.3.1 Single atom embedded in jellium

The excluded volume occupied by an atom in our model can be understood by considering

the pair distribution function g(r) in liquid or glass. Fig.3.1(B) shows a typical pair distribution

function of liquid Al(dark grey area), which describes the average environment of an Al atom

in the liquid. In a mean field approach, the environment can be approximated as an effective
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Figure 3.1 (A) Schematic representation of the our cluster-in-jellium
model. (B) Dark grey area: pair distribution function of liquid
aluminum; light grey area: uniform jellium as an approximation
for the liquid metallic environment.

jellium(light grey area). The optimised atom-jellium spacing, ro
aj , must be smaller than the

first peak position of the pair distribution function, r1, from mass conservation.

The jellium density parameter could be obtained from the average interstitial electron

density from LDA calculations [Moruzzi et al., (1978)]. It was known that bare jellium model

failed qualitatively to describe the energetics of metals, e.g., the predicted surface energy could

be negative for large electron density[Lang et al., (1970)]. Utreras-Diaz and Shore showed that

this shortcoming of the jellium model can be corrected by adding a constant shift, v0, to the

electron potential of the jellium background[Utreras-Diaz et al., (1984)]. We follow the simple

procedure outlined in ref.[Shore et al., (1991); Rose et al., (1991)] to estimate v0 from jellium

density, v0 = −n0

[
∂εjel

∂n

]
n0

. In the case of Aluminum, using the chemical potential shift of

-0.17 Ry from ref.[Rose et al., (1991)], we obtained 2.92 Bohr for the optimized atom-jellium

distance. This is fairly close to the Wigner-Seitz radius of bulk Al (2.99 Bohr). Fig.3.2 shows
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Figure 3.2 The total energy of Al atom passivated by jellium as a function
of the distance between the atom and the jellium boundary, raj .

a typical result of the total energy of an Al atom embedded in jellium with respect to the

atom-jellium spacing, raj , which is well fitted by a third order polynomial function. A good

correlation between ro
aj and Wigner-Seitz radius, RW.S., for nine simple metals is shown in

Fig.3.3. The cohesive energies of the simple metals from the jellium passivation approach, Ej ,

are also compared with the bulk results, EB, as shown in Fig.3.4. Similar trend was observed

from other jellium approach[Rose et al., (1991); Puska et al., (1991)]. Such good agreement

suggests that the jellium background is a good approximation of the bulk environment for

simple metals.

In order to gain deeper insight into jellium passivation, we also compared the angular-

momentum projected DOS of Al in jellium passivation approach with the bulk result, as shown

in Fig.3.5. 2.99 Bohr is selected to be the radius of the atomic sphere for the integration of

the wave functions and yields 3.0 electrons in both cases. The fairly good match reveals the

essential physical justification of jellium passivation for Al.

3.3.2 Clusters embedded in jellium

To generalize the treatment of single atom in jellium to clusters in jellium we need to

determine the shape and position of the jellium boundary. In the case of a single atom, the
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Figure 3.5 Angular momentum-projected density of states (PDOS) for Al
in FCC crystal structure (solid line) and embedded in jellium
(dots).

shape of the jellium boundary is taken to be spherical. In our calculations, we want the

jellium to represent the embedding environment and want the jellium background to be kept

away from the “inside” region of the cluster. The simplest generalization of the treatment

for single atom in jellium is to empty a spherical region with optimized atom-jellium radius

centered at each atom in the cluster. However, because the volume per spherical region is

similar to the volume per atom and there are significant overlaps in the spheres centered on

different atoms in the cluster, this approach does not remove enough space from inside the

cluster and allows some pockets of jellium to persist inside the cluster, as shown in Fig.3.6(a).

Also the resulting boundary exhibits sharp cusps at the spherical intersections leading to high

Fourier components not easy to remove. We found an approach which works better is to

follow a “push-pull” strategy, which is physically motivated by the pair distribution function

in Fig.3.1(B): jellium is first pushed outward to a nearest-neighbor distance (corresponding to

r1 the nearest-neighbor peak position in g(r)) from each atom in the cluster and then pulled

inward ∆r = r1 − raj from the initial boundary, as shown in Fig.3.6(b). The advantages of

the “push-pull” strategy are: (a) smooth jellium boundaries good for Fourier transform; (b)

no jellium inside the cluster; (c) jellium boundary reflects the morphology of cluster’s surface
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Figure 3.6 Schematic illustration of the jellium boundaries for an
Al-trimer. (a) Simplest generalization of single atom in jel-
lium treatment results in pockets and cusps. (b) “Push-pull”
strategy for jellium boundary construction. Shaded (light-blue
online) area corresponds to the region where jellium is excluded.

which is desired physically.

Five-fold icosahedral local order has been linked with the short range and medium range

order in metallic glass system[Sheng et al., (2006)]. Local icosahedral clusters may serve

as competitors against possible nuclei for crystallization. Thus, an interesting question is

the relative stability of the icosahedral cluster and a crystal nucleus inside an undercooled

liquid metal system and how well it correlates with the glass forming ability (GFA) of the

metallic liquid. Here we choose a series of Al-X (X=Na, K, Mg, Ca, Sr, Al, Si, Ge, Sn, Ni,

Mo, Zn, Zr, Pt, Pd, Cu, Ag, and Au) binary alloys and examine the energy difference of

local icosahedral clusters and FCC embryos in a jellium environment approximating liquid Al.

The local icosahedral cluster for Al-X liquid is an Al13 icosahedral cluster with central atom

replaced by a solute atom X. Similarly, the FCC embryo is a pure solvent Al13 FCC fragment

with central atom replaced by a solute atom X. Fig.3.7 shows the energy difference between the

icosahedral clusters and FCC fragments of Al-X liquid with jellium passivation. The energy

differences for free clusters with one shell of Al (Al12 + X) and two shells of Al (Al54 + X),

are also shown. Spin polarization effects are found to be negligible for the systems studied

in this paper. Good correlation exists between the jellium-passivation results, EI−F,jel, and

those by adding one more shell of Al atoms, EI−F,2−shell shown in Fig.3.8. The free clusters
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ments of Al with central atom replaced by X (Ni, Mo, . . . )
with jellium passivation, which is a good estimate of the bulk
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Figure 3.9 The energy difference as a function of the distance between the
central atom, X, and outer shell Al atom.

calculation results show that the behavior of the energy difference approaches the clusters-in-

jellium results as the free clusters increase in size. This suggests the jellium-passivated result

is a good estimate of the energy behavior of the cluster inside a liquid metal system.

Looking at the trend of the energy differences for the various choices of X, we found a

good correlation with the size of the center atom (Fig.3.9). This suggests that smaller atoms

allow for a more efficient packing for the icosahedral cluster[Ashman et al., (1997)] relative to

the fcc embryo structure. Experimentally, coexistent amorphous and crystalline phases have

been observed in Al-Si[Predecki et al., (1965)], Al-Ge[Ramachandrarao et al., (1972)], Al-

Cu[Davies et al., (1972)], Al-Ni[Chattopadyay et al., (1976)] and Al-Pd[Sastry et al., (1978)],

corresponding to a region of negative EI−F,jel in Fig.3.7. Thus, the energy difference between

icosahedral cluster and FCC embryos with jellium passivation may serve as an indication for

GFA of Al-rich liquid metallic alloys.

In many cases, the glass transformations of liquid metal alloy systems are very sensitive

to the addition of small amounts of impurity atoms [Wang Wei Hua (2007)]. A fundamental

understanding of the role of the small amount of added material is critical for a successful theory

of glass transformation. Our cluster-in-jellium model could be further developed to study

the effects of low-concentration impurity atoms on the energetics, structures and dynamical
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behavior of important local clusters without the use of large unit cell calculations.

3.4 Conclusion

We have used a model of clusters embedded in jellium to study short-range ordering in

supercooled liquid and glass systems in a mean field approach. The model was first verified by

the good agreement between the single atom in jellium results and those from bulk calculations.

The PDOS of Al atom embedded in jellium matches very well with bulk result. Application

of the model to Al-X metallic liquid shows that cluster passivated by jellium is a reasonable

estimate for the bulk limit. Furthermore, the energy differences between icosahedral clusters

and FCC embryoes are related with the GFA of the metallic liquids. The model may be

further developed to study a critical issue of glass formation–the effect of minor addition of

other chemical elements on the glass behavior of liquid metal alloys system.
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CHAPTER 4. AB INITIO TIGHT-BINDING CALCULATIONS

4.1 Introduction

First-principles methods based on density functional theory(DFT)[Kohn et al., (1964)] and

plane wave basis[Ihm et al., (1979); Payne et al., (1992)] have been well developed over the

past four decades and very successful in calculating the electronic structure and total energy

of many systems. Nevertheless, due to the complexity of the algorithms and the fact that a

large number of basis functions is required in the calculation, many complex structures and

materials that require a computational unit cell containing thousands of atoms are still beyond

the reach of the first-principles plane-wave based DFT methods.

On the other hand, considerable work have been tried to use localized orbitals as basis[Galli

et al., (1992); Mauri et al., (1993); Ordejon et al., (1993); Kim et al., (1995); Hernandez et

al., (1995); Koepernik et al., (1999); Soler et al., (2002)] in order to reduce the dimension of the

Hamiltonian matrix, so that a large number of atoms can be handled in the calculation. It has

also been shown that O(N) scaling in the first-principles calculations (i.e., the computational

work load scales linearly with the number of atoms in the calculation) can be achieved by

using a set of well-localized orbitals as basis[Galli et al., (1992); Mauri et al., (1993); Ordejon

et al., (1993); Kim et al., (1995); Hernandez et al., (1995); Soler et al., (2002)]. However,

the efficiency and accuracy of the calculations in this approach strongly depend on the choice

of basis orbitals. In many cases, accurate calculations would require a basis set consisting of

a large number of localized orbitals which slow down the calculations considerably[Soler et

al., (2002)]. Thus it is highly desirable to have a set of localized minimal basis orbitals that

can faithfully produce the converged electronic structure.

Recently two independent approaches, i.e., the maximally localized Wannier functions ap-
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proach by Marzari et al., (1997) and the quasi-atomic minimal basis set orbitals(QUAMBOs)

approach by Lu et al., (2004); Wang et al., (2004); Qian et al., (2008) demonstrated that

highly localized minimal basis set orbitals can be constructed through unitary transformations

of the wavefunctions obtained from fully self-consistent first-principles calculations with large

basis set. These minimal basis set orbitals are atomic-like but deform according to the bond-

ing environment, and can span exactly the same preserved electronic subspace as the full-basis

first-principles calculations. These minimal basis sets would serve as a promising platform for

developing an efficient yet accurate method for large scale electronic calculations.

In this chapter, we show that accurate tight-binding Hamiltonian and overlap matrix ele-

ments can be calculated by first-principles methods through the QUAMBO representation of

electronic structure at different local bonding environments. By sampling various local bond-

ing environments of a large complex system from a series of first-principles calculations of

smaller systems, the “exact” environment-dependent tight-binding matrix of the large system

can be assembled directly from a first-principles approach without resorting to the usual fitting

procedure to generate tight-binding parameters.

4.2 Method and formalism

A set of free atomic orbitals {|Aα〉} (may be modified) are first chosen, which has a one-

to-one correspondence to the quasiatomic orbitals
{∣∣∣Ãα

〉}
. α is a composite label for the

orbital type (s, px,py,pz, etc.,) for each atom in the unit cell. {|ψkµ〉} is a complete set of Bloch

eigenstates obtained from first-principles calculations using a large basis set of dimension NBS ,

with the eigenstates being labeled by the wave vector k in the Brillouin zone and the band

number µ, we want to construct a set of quasiatomic orbitals
{∣∣∣Ãα

〉}
by linear combinations

of the Bloch eigenstates. For each wave vector k, we have a total of NBS bands, with nocc(k)

of them intended to be preserved and the rest nvir(k) are of no interest. However, only a

subspace of the rest bands is needed and this subspace should be optimized in order to enhance

the localization of the QUAMBOs when combined coherently with the preserved bands. This
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optimal subset of virtual bands |ψkp〉 may be obtained by a linear transformation:

|ψkp〉 =
NBS∑

µ=nocc+1

Tµk
p |ψkµ〉 , p = 1, 2, ..., np(k) < nvir(k), (4.1)

where T-matrix is rectangular to be determined later (see Appendix B) which satisfies T ·T † = I

since |ψkp〉 is an orthonormal set.

Let the total number of QUAMBOs be Nq. We have Nq = nocc (k)+np (k). To simplify the

notations, we define a new set of Bloch wavefunctions {|φkµ〉} as the collection of the preserved

bands and the optimized virtual bands.

|φkµ〉 =

 |ψkµ〉 · · · if 1 ≤ µ ≤ nocc (k)

|ψkp〉 · · · p = µ− nocc (k) , if nocc (k) < µ ≤ nq

(4.2)

Thus {|φkµ〉} spans the chosen subspace and the quasiatomic orbitals may be expressed as

their linear combinations. ∣∣∣Ãα

〉
=
∑
kµ

Ckµ
α |φkµ〉 (4.3)

We require each QUAMBO
∣∣∣Ãα

〉
to be as close as possible to its corresponding free-atom

orbital |Aα〉. The minimization of the mean square deviation 〈Ãα − Aα|Ãα − Aα〉 under the

norm-conserving constraint 〈Ãα|Ãα〉 = 1 yields(see Appendix A)∣∣∣Ãα

〉
= D−1/2

α

∑
kµ

|φkµ〉 〈φkµ|Aα〉 =
∑
k

∣∣∣Ãk
α

〉
(4.4)

where

Dα =
∑
kµ

|〈φkµ|Aα〉|2 (4.5)

∣∣∣Ãk
α

〉
= D−1/2

α

∑
µ

|φkµ〉 〈φkµ|Aα〉

and is related to the root-mean-square deviation of the optimized
∣∣∣Ãα

〉
from the corresponding

free-atom |Aα〉 by

∆α = 〈Ãα −Aα|Ãα −Aα〉1/2 = [2(1−D1/2
α )]1/2 (4.6)

Equation (4.6) suggests that the key step to obtaining quasiatomic localized orbitals is to

select a virtual band subset φkp(r) that maximizes the sum
∑

αDα, i.e. maximizing the overall
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overlap between the virtual bands and the free-atom orbitals. With the subset of virtual bands

chosen according to this criteria, QUAMBOs can be constructed through equation (4.4). The

details for constructing optimised virtual bands may be seen in Appendix B.

Once QUAMBOs are obtained, the real space hopping(HR
αα′) and overlapping elements(SR

αα′)

may be calculated as follows

HR
αα′ =

〈
Ãα |H| ÃR

α

〉
=
∑
k

〈
Ãk

α |H| Ãk
α′

〉
eik·R (4.7)

SR
αα′ =

〈
Ãα|ÃR

α

〉
=
∑
k

〈
Ãk

α|Ãk
α′

〉
eik·R

where 〈
r|ÃR

α

〉
= ÃR

α (r−R) (4.8)

In our scheme for large scale electronic calculation, an overlap or tight-binding Hamiltonian

matrix of a big system is built by filling in a set of n × m “exact” sub-matrices of all pairs

of atoms in the system, where n and m are the numbers of minimal basis orbitals for the two

atoms in the pair respectively. These n × m “exact” sub-matrices are calculated from first-

principles following the QUAMBO procedure described above. Note that the QUAMBOs and

hence the n ×m sub-matrices of tight-binding are dependent of the environment around the

pair of atoms, and in principle the n×m “exact” sub-matrices has to be calculated for every

pair of atoms in the system. This can be done by first performing first-principles calculations

for a relatively small system which keeps the dominant local environment of the pair of atoms

in the big system, then the n×m tight-binding matrix for this pair of atoms can be constructed

following the QUAMBO scheme. This approach will break the first-principles calculations of

a big system into many much smaller sub-system calculations. In many cases of interest (e.g.,

defects in crystals), the bonding environments of many different atom pairs in the big system

are essentially the same, therefore, in practice first-principles calculations are needed only for

a limited number of smaller systems and an accurate tight-binding overlap and Hamiltonian

matrices for the big system can be constructed. The scheme was illustrated with a study of

the electronic structure of graphene nano-ribbons.
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4.3 Results
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Figure 4.1 (a) Na=7 A-GNR was chosen to be the training sample for
perfect A-GNR. Dotted rectangle indicates the primitive unit
cell. The left arrow gives the periodical direction. Atom a, b
and c are treated to be three different atoms according to their
local environment. (b) Additional training sample for studies
on A-GNRs with edge defects.

We first applied our scheme to calculate the electronic structure of perfect armchair-

graphene nano-ribbons (A-GNRs) of different widths, where three different types of atoms

in the nano-ribbons have been identified as shown in fig.4.1(a): atom a represents a carbon

atom inside the ribbon, atom b represents a carbon atom at the edge, and atom c is a hy-

drogen atom for passivation. The number of minimal basis orbitals for a carbon atom is 4

(one s and three p) and that for a hydrogen atom is one. Only one training cell of Na =7

A-GNR as shown in fig.4.1(a) and a single first-principles calculation is needed to extract all

the necessary “exact” 4×4 or 4×1 tight-binding matrices for each pair of a-a, a-b, b-b, and b-c

atoms from these three types of non-equivalent atoms, respectively. We notice that the same

type of atom-pair by our definition (i.e., a-a, a-b, b-b, and b-c) can appear more than once at

different locations in the same training cell (or in different training cells) and, strictly speaking,

their bonding environments are not exactly the same. But we found the tight-binding hopping

elements of the same type of pair are different only on the order of several meV, while the

overlapping elements are almost the same. Therefore, we assign the matrix elements to each

type of atom-pair in the system by taking an algebraic average over the same type of pairs in



33

-5
-4
-3
-2
-1
0
1
2
3
4

Na=13

 

k 

 

E-
E f

 (e
V)

Na=7

0 0

 

 k

 

Figure 4.2 Band structures based on the QUAMBO-TB scheme (solid line)
compared with DFT results (circle) for A-GNR with Na=7 and
13.
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Figure 4.3 TB band gap (solid lines) of A-GNR with different size com-
pared with DFT results (symbols).
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the training cells. All the occupied states and some π∗-antibonding states upto 4 eV above

the fermi level are preserved in the QUAMBO construction. Fig.4.2 shows the band structures

for A-GNRs with width Na = 7 and 13 (solid lines) from the QUAMBO-tight-binding scheme

using small 4 × 4 and 4 × 1 tight-binding matrices generated from the Na =7 training cell as

described above. The results from full first-principles calculations (circle) were also shown for

comparison. One can see that the QUAMBO-TB band structures agree very well with the full

first-principles results in the targeted energy window. One may observe some additional DFT

bands between 3 eV and 4 eV above fermi level. These bands are dominated by higher angular

momentum characters, so they are not covered by the tight-binding results with minimal ba-

sis(s,p). (However, one can always include more orbitals in QUAMBO construction to capture

these relatively higher-energy bands if desired.) The electronic band gap variation of a perfect

A-GNR as a function of the width of the nanoribbon has also been studied. Fig.4.3 shows the

oscillation of the band gap with a period of Na =3 obtained from our QUAMBO-TB scheme,

which agrees very well with the results from first-principles calculations[Son et al., (2006)].

The efficiency of the QUAMBO-TB scheme enables us to calculate the electronic structure of

much wider graphene nano-ribbons, as one can also see from fig.4.3, where the band gap of

nanoribbons up to 100 Å in width has been calculated with our QUAMBO-TB method.

The QUAMBO-TB scheme also enables us to study the electronic structure of graphene

nano-ribbons with random defects. For the purpose of illustration, we have studied the elec-

tronic structures of Na=6 A-GNR with random edge defects on one edge of the ribbon at

different concentrations. We first constructed a supercell of Na=6 A-GNR by repeating the

primitive unit cell 100 times(containing 1200 carbon atoms). The edge defects were gener-

ated by randomly removing pairs of carbon atoms on one side as shown in fig.4.4(a). The

new structures were passivated with hydrogen atoms. For this defect system, some additional

QUAMBO-TB matrix elements around the edge defects are needed. We used another training

cell as shown in fig.4.1(b) to obtain these additional matrix elements, where the curved arrows

indicate the new matrix elements between these sites to be added to the existing QUAMBO-

TB matrix elements database from the Na = 7 training cell as discussed above. Based upon
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(a)

(b)

Figure 4.4 (a) Schematic view of a part of a supercell of Na=6 A-GNR
containing more than one thousand atoms with edge defects
randomly distributed on one side. Small arrows indicate the
edge defetcts. (b) Band gap behavior of the defected Na=6
A-GNR with increasing edge defects ratio. The perfectNa=6(5)
A-GNR corresponds to a defect ratio of 0%(100%). Crosses are
the results from supercells (containing 100 primitive unitcells of
perfect A-GNR) with random edge defects. Squares(circles) are
TB(DFT) results from smaller supercells (containing 10 prim-
itive unitcells of perfect A-GNR) with regular edge defects by
removing pairs of carbon atoms successively on one side.
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this set of QUAMBO-TB matrix elements from first-principles calculations performed on two

small unit cells as shown in fig.4.1, actual tight-binding overlap and Hamiltonian matrices for

the defected graphene nano-ribbons at various defect concentrations can be constructed, and

the electronic structure of A-GNRs with random edge defects can be studied. The results of

the band gap as a function of defect ratio in the Na=6 A-GNR are shown in fig.4.4(b). The

random distribution of the edge defects gives some variation of the band gap at each defect

concentration, however, there exists a general trend of the band gap with increasing defect

concentration. The band gap reaches its minimum (which is quite small) at a defect ratio

of 70%. This implies that edge defects have a significant effect on the electronic structures

of A-GNRs, which is consistent with observations from experiments[Han et al., (2007)]. In

order to verify the accuracy of our QUAMBO-TB approach for studying the A-GNR with

edge defects, we compared the QUAMBO-TB and DFT results of band gap as a function of

the edge defect ratio for a Na=6 A-GNR with the edge defects regularly arranged in a much

smaller supercell (so that DFT calculations can be easily performed). The lattice vector along

the ribbon direction is only 10 times that of the primitive unit cell of a Na=6 A-GNR. The

edge defects were constructed by removing pairs of carbon atoms successively on one side of

the ribbon so that all the edge defects stay together in the supercell. The results are also

shown in fig.4.4(b) where the open squares represent the results from our QUAMBO-TB and

the open circles represent the results from full-basis DFT calculations. The results from the

TB and the DFT agree with each other very well, indicating that the QUAMBO-TB approach

we used in this study should be accurate for studying graphene nanoribbons with defects. It

is also interesting to note from fig.4.4(b) that randomly distributed edge defects tend to have

smaller band gaps as compare to the case of regularly distributed defects at the same defect

ratio.

Furthermore, the QUAMBO-TB scheme may also be applied to studies with spin-polarization,

where two sets of TB parameters (for spin-up and spin-down) are needed[Qian et al., (2008)].

For demonstration, we applied it to zigzag-graphene nano-ribbons (Z-GNRs) which have a

ground state with a spin configuration of FM-A, i.e., the coupling of spins is of ferromagnetic
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Figure 4.5 (a) The training sample for Z-GNRs. (b) TB band gap (solid
lines) of Z-GNR with different size compared with DFT results
(symbols).

type at each edge and of antiferromagnetic type between the two edges[Nakada et al., (1996);

Son et al., (2006); Martins et al., (2007)]. Five different types of atoms in the nano-ribbons

have been identified as illustrated in fig.4.5(a), where atom a(b) represents a carbon atom in-

side the ribbon with spin-down(up) majority, atom c(d) represents a carbon atom at the edges

with spin-up(down) majority, and atom e is a hydrogen atom for passivation. Only one training

sample ofNz =5 Z-GNR as shown in fig.4.5(a) and a single first-principles calculation with local

spin density approximation are needed to extract all the spin-up and spin-down tight-binding

matrices for these five types of non-equivalent atom. Fig.4.5(b) shows the band gap hehaviour

of Z-GNRs with width up to 100 Å. Lines are QUAMBO-TB results, which are consistent

with DFT calculations indicated by circles[Son et al., (2006)]. It is very straightwforward and

advantageous to use our method to study the electronic structures of doped graphene nanrob-

bons[Martins et al., (2007)] or grephene with adatom adsorption[Duplock et al., (2004); Mao

et al., (2008)].

4.4 Discussion

The success of our QUAMBO-based tight-binding divide-and-conquer approach relies on

several fundamental physical concepts: local environment-dominance of physical properties,
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good localization and enviroment-adaptedness of the minimal basis set orbitals(QUAMBOs).

The first locality property in materials is the physical foundation, upon which the order-N

methods may be developed[Goedecker (1999)]. For example, in Yang’s density-based divide-

and-conquer approach, the physical system may be divided into a few subsystems[Yang (1991)].

And the charge density of each subsystem can be calculated separately. In our approach, the

locality property ensures that a small training cell which keeps local environment of certain

atom pairs in big systems may be constructed. However, the exact size of the training cell

depends on the specific systems. The training cell is expected to be relatively big for metallic

systems.

The good localization and environment-adaptedness of QUAMBOs makes the derived tight-

binding parameters short-ranged as well as exact. Namely, the converged electronic structure

with respect to basis set may be exactly downfolded into a short-ranged tight-binding repre-

sentation, which is pioneered by O. K. Andersen in his Muffin-tin orbitals approach[Andersen

et al., (1984)]. Therefore only smaller number of atom pairs and training cells need to be

considered. In the case of perfect A-GNRs, one training cell actually contains all the necessary

tight-binding parameters.

Our scheme does not explicitly include the atomic relaxation. However, the lattice distor-

tion effect is readily taken care of by proper choice of training cells. The current scheme is

mainly focused on the electronic structure calculation of big systems. The total energy and its

derivatives can not be obtained. Hence the total energy calculations and molecular dynamics

may not be handled. However, the scheme may be further developed following the way of

traditional tight-binding potential development.

4.5 Conclusion

We have demonstrated an efficient and accurate method for calculating the electronic struc-

ture of a large system using a divide-and-conquer strategy. First-principles calculations are

needed only for small number of atoms around the pairs, yet an accurate QUAMBO-TB matrix

can be constructed for the whole system. Such an approach has proved quite successful for
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the studies of electronic structures in graphene nano-ribbons. This “QUAMBO-on-demand”

approach opens a promising avenue to do electronic-structure simulations and total energy

calculations for big systems directly from first principles.
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CHAPTER 5. NEW DENSITY FUNCTIONAL THEORY

DEVELOPMENT FOR SYSTEMS WITH STRONG ELECTRON

CORRELATION

5.1 Introduction

Density functional theory (DFT) with local density approximation (LDA) or generalized

gradient approximation (GGA) has been successfully applied to many solid state systems in

several decades[Kohn et al., (1964); Perdew et al., (1996); Chelikowsky et al., (1996); Kresse

et al., (1996, 1999)]. However, the predictive capability of DFT with LDA/GGA becomes

limited or completely fails for systems with significant electronic correlation effects, such as

materials containing transition metal or rear-earth element with f-electron. Quite a few meth-

ods which try to go beyond LDA/GGA have been proposed and studied intensively in the

last two decades. Based on the idea of merger of two seemingly different approaches, tra-

ditional DFT-LDA and model Hamiltonian approach, Anisimov et al., (1991) proposed the

LDA+U method. It takes into account the onsite Coulomb repulsion in a static mean-field

way. LDA+U method turns out to be very useful for materials with strong electron correla-

tion, but fails for materials with intermediate correlation effect. LDA plus Dynamical Mean

Field Theory(LDA+DMFT)[Kotliar et al., (2004); Kotloiar et al., (2006); McMahan (2005);

Savrasov et al., (2001)] behaves correctly from weakly correlated materials to strongly cor-

related materials, but the evaluation of frequency-dependent electron self-energy makes the

method very demanding in computation time. It should be pointed out that both LDA+U

and LDA+DMFT have a parameter U, which is manually added in an ad hoc manner. There

are also methods which deal with the parametrized exchange-correlation potential directly, like

self-interaction-correction LDA[Petit (2002)] and hybrid-functionals[Martin (2003); Martin
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et al., (2005)]. Although these methods may address the problem stemming from electron

correlation to some extent, a generally accepted predictive theory for materials with impor-

tant electron correlation effect is still lacking. Here we propose a new density functional theory

which maps a correlated electron system to a solvable electron system with exact onsite Hamil-

tonian. Additional set of self-consistent equations are obtained for the solution of this many

body problem. All the interactions are treated in a self-consistent manner and there are no

adjustable parameters in our method.

5.2 Method and formalism

5.2.1 Many electron problem

In a solid state system, the many body Hamiltonian for electrons may be written as

H =
∑

i

(
− ~2

2m
∇2

i

)
+
∑
il

(
− e2

4πε0
Zl

|ri −Rl|

)
+

1
2

∑
i6=j

e2

4πε0
1

|ri − rj |
(5.1)

where Born-Oppenheimer approximation has been adopted to separate the degerees of freedom

of fast electrons from slow ions. The first term
∑

i

(
− ~2

2m∇
2
i

)
describes the kinetic energy

of electrons. The second term describes electron-ion Coulomb attraction. The third term

decsribes electron-electron Coulomb repulsion, which correlates the motions of the electrons.

It is because of the existence of the third term that the exact analytic solution of electron-

ion system only exists for hydrogen atom. Furthermore, this Hamiltonian may be exactly

solved numerically only for very few electrons. The quantum states increase exponentially

with the number of electrons, thus any method which tries to exactly solve many electron

Hamiltonian is doomed to fail. There are two main streams to solve the many-electron problem

approximately. One is quantum chemistry group based on the Hartree-Fock approximation;

another is condensed matter physics group based on density functional theory. However, the

only method which can be successfully applied to solid is density functional theory.
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5.2.2 Density functional theory

It is very difficult to solve the full electronic spectrum of many-electron systems. However,

the ground state energy of the many electron system (and its derivatives) can already determine

many important physical properties. Thus it is physically desirable to have a method to solve

for the ground state of the many-electron system. The Hohenberg-Kohn theorem[Kohn et

al., (1964)] states that the ground state energy of a many-electron system is a functional of

the electron density.

E0 [ρ] = T0 [ρ] + VH [ρ] + E0
xc [ρ] +

∫
Vion (r) ρ (r) d3r (5.2)

where

VH [ρ] =
1
2
e2

4πε0

∫∫
ρ (r) ρ (r′)
|r− r′|

d3rd3r′ (5.3)

The dimension of the many electron problem is therefore greatly reduced to 3 from 3Ne in

the quantum chemistry wavefunction approach. Unfortunately, the form of the total energy

functional may not be given by the theory, i.e., the functional of kinetic energy and exchange-

correlation energy is not known. Based on Virial theorem, the kinetic energy of a stable system

is of the same order of the total energy, while the exchange-correlation energy is much smaller.

Hence the kinetic energy functional must be carefully devised to high accuracy. Starting from

Thomas-Fermi’s approximation of the kinetic energy functional based on free electron gas,

many efforts have been devoted to improve it, yet without great success. Kohn and Sham[Kohn

et al., (1964)] took a different way and made a significant progress in approximating the kinetic

energy functional by expressing it as the sum of kinetic energy of fictitious non-interacting

electrons which keeps the same density as real system. In terms of formula

T0 [ρ] =
∑

i

− ~2

2m
〈
ψi

∣∣∇2
i

∣∣ψi

〉
(5.4)

with

ρ (r) =
∑

i

|ψi (r)|2 (5.5)

The difference between the true total energy, E0 [ρ], and the sum of non-interacting kinetic en-

ergy T0 [ρ], the Hartree energy VH [ρ], the external potential energy
∫
Vion (r) ρ (r) d3r is called
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exchange-correlation energy, E0
xc [ρ]. As a result, Kohn and Sham abandoned the attracting

advantage of dimension reduction by introducing the single particle wavefunctions. However,

the Kohn-Sham approach with LDA for the exchange-correlation energy is unexpectedly suc-

cessful. The main reason is that the only approximate term, the exchange-correlation energy

Exc [ρ], in Kohn-Sham approach is very small compared with the total energy; while in the

orbital-free DFT, the kinetic energy functional is also an approximation as we discussed. LDA

is based on the homogeneous electron gas, which is a fairly good approximation for metals.

Thus it is reasonable that LDA-DFT also behaves well for electron density with small spatial

variation. For systems with strongly localized charges, e.g., transition metal oxides, rear-earth

materials, the results from LDA-DFT may be suspecious, sometimes completely wrong. This

casts a great challenge to the computational physics community.

5.2.3 Model Hamiltonian and Gutzwiller approximation

Another different approach to address the physical properties of solid state systems is

based on parametrized model Hamiltonian. While quantum chemistry or DFT tries to solve

the many-electron problem by including all the relevant degrees of freedom, model Hamiltonian

is focused on the most essential interactions governing the low temperature physics, i.e., the

quantum states near the Fermi-level. Model Hamiltonian is very successful to explain the com-

plicated problems, like Mott metal-insulator transition, Kondo effect, and superconductivity.

Although model Hamiltonian has been greatly simplified, the exact solutions only exist for very

few cases in 1-dimention or infinite-dimension limit. Generally, certain approximations need

to be employed. Gutzwiller (1963,1965) proposed a Jastrow-type correlated wavefunction

of the electrons and an approximation to simplify the counting procedures in the problem of

ferromagnetism. Jastrow-type wave function has a general form of

|ΨJ〉 = F̂ |Ψ0〉 (5.6)

where F̂ is a correlation operator. |Ψ0〉 is a non-interacting wavefunction which corresponds

to a single Slater determinant.
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We will first apply the Gutzwiller approximation to the widely used Anderson lattice model,

and then show that it may be naturally incorporated in the DFT framework.

5.2.3.1 Non-degenerate Anderson lattice

We consider the Anderson lattice with no orbital degeneracy[Dorin et al., (1992)]. We

focus on the paramagnetic solution. The Hamiltonian is

H =
∑
kσ

εkc
†
kσckσ +

∑
kσ

εff
†
kσfkσ

+V
∑
iσ

(
f †iσciσ + h.c.

)
+ U

∑
i

n
(f)
i↑ n

(f)
i↓ (5.7)

where the first term accounts for the normal non-interacting conduction electrons. The second

term accounts for the localized orbital. The third term accounts for the onsite hybridization

between the localized orbital and and the extended orbital with strengh V . The fourth term

accounts for the onsite Coulomb repulsion between the localized orbitals. Also for convenience,

εk = ε0k−µ and εf = ε0f −µ. Here ε0k is the conduction band energy, ε0f is the localized orbital

level energy, and µ is the chemical potential for the whole electron system.

With Gutzwiller approximation, the effective Hamiltonian may be written as

Heff =
∑
kσ

εkc
†
kσckσ +

∑
kσ

(εf + µ1σ) f †kσfkσ

+V
∑
iσ

(
ziσf

†
iσciσ + h.c.

)
(5.8)

where the renormalization factor

zσ =
b1σb0 + b2b1−σ√
nf

σ

(
1− nf

σ

) (5.9)

with the local orbital occupation

nf
σ =

〈
f †iσfiσ

〉
(5.10)

The total energy to be minimized is:

E/N = 〈Heff〉 /N + µ0

(
1−

(
b20 + b21↑ + b21↓ + b22

))
+ Ub22

−
∑

σ

µ1σ

(
b21σ + b22

)
(5.11)
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This gives a set of equations:

1 = b20 + b21↑ + b21↓ + b22 (5.12)

nf
σ = b21σ + b22 (5.13)

0 =
∑

σ

2V b1σ√
nf

σ

(
1− nf

σ

) 〈f †iσciσ〉− 2µ0b0 (5.14)

0 =
2V b0√

nf
σ

(
1− nf

σ

) 〈f †iσciσ〉+
2V b2√

nf
−σ

(
1− nf

−σ

) 〈f †i−σci−σ

〉
(5.15)

−2 (µ0 + µ1σ) b1σ (5.16)

0 =
∑

σ

2b1−σV√
nf

σ

(
1− nf

σ

) 〈f †iσciσ〉+ 2 (−µ0 + U − µ1↑ − µ1↓) b2 (5.17)

The solutions of the above set of equations may be formulated as an eigen-value problem as

0 V (↑) V (↓) 0

V (↑) −µ1↑ 0 V (↓)

V (↓) 0 −µ1↓ V (↑)

0 V (↓) V (↑) U − µ1↑ − µ1↓





b0

b1↑

b1↓

b2


= µ0



b0

b1↑

b1↓

b2


(5.18)

with conditions of

b21σ + b22 = nf
σ (5.19)

where V (σ) = Vr
nf

σ

“
1−nf

σ

” 〈f †iσciσ〉. This is in fact a standard problem which may be solved

iteratively by, for instance, Broyden mixing method and its variants.

In order to find the expectation values of the operators in the Hamiltonian, we need to

analyze the propagators w.r.t. the mean field Hamiltonian Heff , which is expressed as

Heff =
∑
kσ

εkc
†
kσckσ +

∑
kσ

ε̃ff
†
kσfkσ

+zV
∑
iσ

(
f †kσckσ + h.c.

)
(5.20)
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where ε̃f = εf + µ1σ. In momentum space, the equation of motion for the local-electron

propagator is

(ω − ε̃f )
〈〈
fkσ; f †kσ

〉〉
ω

= 1 + zV
〈〈
ckσ; f †σ

〉〉
ω

(5.21)

(ω − εk)
〈〈
ckσ; f †kσ

〉〉
ω

= zV
〈〈
fkσ; f †kσ

〉〉
ω

(5.22)

(ω − εk)
〈〈
ckσ; c†kσ

〉〉
ω

= 1 + zV
〈〈
fkσ; c†kσ

〉〉
ω

(5.23)

(ω − ε̃f )
〈〈
fkσ; c†kσ

〉〉
ω

= zV
〈〈
ckσ; c†kσ

〉〉
ω

(5.24)

The above set of equations give〈〈
fkσ; f †kσ

〉〉
ω

=
1

ω − ε̃f − (zV )2

ω−εk

(5.25)

〈〈
ckσ; c†kσ

〉〉
ω

=
1

ω − εk − (zV )2

ω−ε̃f

(5.26)

and 〈〈
ckσ; f †kσ

〉〉
ω

=
zV

ω − εk

〈〈
fkσ; f †kσ

〉〉
ω

=
zV

(ω − εk) (ω − ε̃f )− (zV )2

=
1

ω − ε̃f

zV

ω − εk − (zV )2

ω−ε̃f

(5.27)

The single particle Green functions may be also written as

Gff
σ (k,ω) =

〈〈
fkσ; f †kσ

〉〉
ω

=
u2
k

ω − E+ (k)
+

v2
k

ω − E− (k)
(5.28)

Gcc
σ (k,ω) =

〈〈
ckσ; c†kσ

〉〉
ω

=
v2
k

ω − E+ (k)
+

u2
k

ω − E− (k)
(5.29)

where

E± (k) =
1
2

(
εk + ε̃f ±

√
(εk − ε̃f )2 + 4 (zV )2

)
(5.30)

and

2u2
k = 1−

εk − εf√
(εk − εf )2 + 4 (zV )2

2v2
k = 1 +

εk − εf√
(εk − εf )2 + 4 (zV )2

. (5.31)
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We also have

Gcf
σ (k,ω) =

〈〈
ckσ; f †kσ

〉〉
ω

=
zV

ω − εk

〈〈
fkσ; f †kσ

〉〉
ω

=
zV

ω − ε̃f

〈〈
ckσ; c†kσ

〉〉
ω

(5.32)

From the last equation follows

− 1
π
ImGfc

(
k,ω + i0+

)
= bδ (ω − εf )ReGcc

(
k,εf + i0+

)
+P

(
b

ω − εf

)
ρcc (k,ω) (5.33)

where ρcc (k,ω) = − 1
π ImG

cc (k,ω + i0+). And we use

lim
η→0

∫ b

a
dx

f (x)
x− x0 ± iη

= P
∫ b

a
dx

f (x)
x− x0

∓ iπf (x0)

where

P
∫ b

a
dx

f (x)
x− x0

= lim
δ→0

(∫ x0−δ

a
dx

f (x)
x− x0

+
∫ b

x0+δ
dx

f (x)
x− x0

)
thus

1
x− x0 ± iη

= P 1
x− x0

∓ iπδ (x− x0)

Gcc
m (k,ω) =

1
ω − εk − b2

ω−εf

(5.34)

The first term in Eqn.5.33 vanishes for zV 6= 0 because

lim
γ→0+

Gcc (k,λ+ iγ) = lim
γ→0+

1
λ− εk + iγ − b2

iγ

= lim
γ→0+

1
λ− εk + i b

2

γ

= lim
γ→0+

γ2 (λ− εk) + iγb2

b4
= 0 (5.35)

Thus

− 1
π
ImGfc

(
k,ω + i0+

)
= P

(
b

ω − εf

)
ρcc (k,ω) (5.36)

The conduction electron density of states can be expressed in terms of the bare density of

states ρ0 (ω) =
∑

k δ
(
ω − ε0k

)
via:

ρcc (ω) =
∑
k

ρcc
m (k,ω) = ρ0 (Ω (ω)) (5.37)
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with:

Ω (ω) = ω + µ− (zV )2

ω + µ−
(
ε0f + µ1

) (5.38)

Similarly, it follows:

ρfc (ω) = − 1
π

∑
k

ImGfc
(
k,ω + i0+

)
= P

(
zV

ω − ε̃f

)
ρ0 (Ω (ω))

= P

 zV

ω + µ−
(
ε0f + µ1

)
 ρ0 (Ω (ω)) (5.39)

To determine the density of states for the localized orbital, we use that ρff (ω) = ρtot (ω) −

ρcc (ω) where

ρtot (ω) =
∑
k

(δ (ω − E+ (k)) + δ (ω − E+ (k)))

=

1 +
(zV )2(

ω + µ−
(
ε0f + µ1

))2

 ρ0 (Ω (ω)) (5.40)

Here we used the general formula for Dirac Delta function

δ (g (x)) =
∑

i

δ (x− xi)
|g′ (xi)|

(5.41)

xi is the ith solution of g (x) = 0.

Thus it holds

ρff (ω) =
b2

(ω − ε̃f )2
ρ0 (Ω (ω)) . (5.42)

At T = 0, we have 〈
f †iσciσ

〉
=

∫ 0

−∞
ρfc (ω) dω

nf =
∫ 0

−∞
ρff (ω) dω

ntot =
∫ 0

−∞
ρtot (ω) dω (5.43)

In practice, the total number of electrons, ntot, the local orbital level energy, ε0f , and the

bare density of states of the conduction electrons should be given, then Eqn.5.18, 5.19, 5.43

are solved iteratively.
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5.2.4 Gutzwiller density functional theory

In this part we give the detailed formalisms to show that the above Gutzwiller approxima-

tion may be naturally incooperated in the DFT framework.

5.2.4.1 Choice of reference system

Instead of choosing the non-interacting electron reference system in the Kohn-Sham ap-

proach, we choose our simplified interacting electron reference system to be represented by the

following Hamiltonian

Ĥs = T̂ + V̂s + Ûs (5.44)

where

T̂ =
∑

i,j,α,β,σ

〈
φiασ

∣∣∣T̂ ∣∣∣φjβσ

〉
c†iασcjβσ (5.45)

V̂s =
∑

i,j,α,β,σ

〈
φiασ

∣∣∣V̂s

∣∣∣φjβσ

〉
c†iασcjβσ (5.46)

Ûs =
1
2

∑
(α,β,γ,δ)∈L,σ,σ′

Uασβσ′;γσδσ′c
†
iασc

†
iβσ′ciδσ′ciγσ (5.47)

with

Uασβσ′;γσδσ′ =
e2

4πε0

∫
dr
∫
dr′φiα (r)φiβ

(
r′
) 1
|r− r′|

φiγ (r)φiδ

(
r′
)

(5.48)

{φiα} is a complete set of orbitals for the system, a subset L of which represents non-overlapping

localized orbitals at the various sites in the system. Thus Ûs is the projection of the two-particle

Coulomb repulsion operator onto the localized orbital subspace, including only on-site terms.

The remaining part of the two-body Coulomb repulsion term is assumed to be represented in

a mean-field fashion in V̂s.



50

5.2.4.2 Exact treatment for on-site Hamiltonian

We will treat exactly the on-site correlations between our localized orbitals by projecting

Ĥs onto the localized orbitals at the ith site to give

Ĥi =
∑

(α,β)∈L,σ

〈φiασ|
(
T̂ + V̂s

)
|φiβσ〉 c†iασciβσ (5.49)

+
1
2

∑
(α,β,γ,δ)∈L,σ,σ′

Uασβσ′;γσδσ′c
†
iασc

†
iβσ′ciδσ′ciγσ (5.50)

We can exactly diagonalize the on-site Hamiltonian (including all relevant on-site interactions,

like spin-orbit interaction, crystal field effect, magnetic exchange, Hund’s rule coupling etc.)

to obtain all possible electronic configurations at the site i.

We can introduce the boson operator biΓ to create the configuration |Γi〉 at site i. Ĥs may

be reformulated as

Ĥs = T̂ + V̂s −
∑

i,(α,β)∈L,σ

〈
φiασ

∣∣∣T̂ + V̂s

∣∣∣φiβσ

〉
c†iασciβσ +

∑
i,Γ

EiΓb
†
iΓbiΓ (5.51)

Having treated the on-site localized-localized electron correlations in an exact manner,

we turn our attention to the effects these correlations have on the electron hopping between

different sites in the system.

5.2.4.3 Gutzwiller treatment of intersite hopping

Following Bünemann et al., (1998,2007), we introduce a unitary transformation among the

localized orbital basis at each site such that the local density matrix is diagonal. The rotated

set of local orbitals, {hiγσ}, are called local natural orbitals.

h†iγσ =
∑
α∈L

u∗i,γαφ
†
iασ (5.52)

〈
Ψ0

∣∣∣h†iγσhiγ′σ

∣∣∣Ψ0

〉
= n0

iγσδγγ′ (5.53)

In the local natural basis, we have

Ĥs = T̂ + V̂s −
∑

i,α,β,σ

〈
hiασ

∣∣∣T̂ + V̂s

∣∣∣hiβσ

〉
h†iασhiβσ +

∑
i,Γ

EiΓb
†
i,Γbi,Γ (5.54)
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Let {H} of be a complete Fock states generated by
{
h†iασ

}
|H〉 = h†iα1σ1

h†iα2σ2
· · · |Vacuum〉

Local configuration |Γ〉 may be expressed in terms of these Fock states

|Γ〉 =
∑
H

〈H|Γ〉 |H〉

We realise that the choice of the Gutzwiller operator is by no means unique. Here we

introduce a simplest form, and we may need to examine the some other forms in the future.

Gutzwiller operators for site i is chosen to be the projection over Fock states

Ĝi =
∑
H

giH |Hi〉 〈Hi| (5.55)

and

Ĝ =
∏

i

Ĝi (5.56)

For any uncorrelated wavefunction |Ψ0〉 =
∏
nkσ

ψ†nkσ |Vacuum〉, we can construct a Gutzwiller

trial wavefunction

|ΨG〉 =
Ĝ |Ψ0〉√〈

Ψ0

∣∣∣Ĝ2
∣∣∣Ψ0

〉 (5.57)

To evaluate expectation values in this trial subspace, we follow the results of Bünemann et

al., (1998,2007) which are exact in the limit of infinite dimensions. And we have〈
ΨG

∣∣∣∣∣∣
∑
i,Γ

Ei (Γ) b†iΓbiΓ

∣∣∣∣∣∣ΨG

〉
=
∑
i,Γ

pi,ΓEiΓ (5.58)

pi,Γ =
∑
H

g2
iH |〈Γ|H〉|2m0

iH =
∑
H

piH |〈Γ|H〉|2 (5.59)

with

m0
iH =

∏
γσ(occ)

n0
iγσ

∏
γ′σ′(unocc)

(
1− n0

iγ′σ′
)

(5.60)

For intersite hopping

〈
ΨG

∣∣∣h†iασhjβσ

∣∣∣ΨG

〉
= ziασzjβσ

〈
Ψ0

∣∣∣h†iασhjβσ

∣∣∣Ψ0

〉
(5.61)
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ziασ =
1√

n0
iασ

(
1− n0

iασ

) ∑
H,H′

√
piHpiH′

∣∣∣〈H ∣∣∣h†iασ

∣∣∣H ′
〉∣∣∣2 (5.62)

We need to comment on the effect of the choice of Gutzwiller operator here. We observe

that Eqn. 5.58 may be rewritten as〈
ΨG

∣∣∣∣∣∣
∑
i,Γ

Ei (Γ) b†iΓbiΓ

∣∣∣∣∣∣ΨG

〉
=
∑
i,H

piHEiH (5.63)

As a result, this particular choice of Gutzwiller operator removes all the inter-Fock state

correlation effect. We believe it would have big effect if we have many local electrons. However,

in some systems of interest, e.g., Ce, where local electrons are supposed to be around one, we

assume such inter-Fock state correlation effect to be small.

5.2.4.4 Definition of density functional for ground state energy

We can now define our density functional for the ground state energy of our many-electron

system

E0 [ρ] = T [ρ] +
∫
ρVion +

1
2

∫∫
ρvρ+ Exc [ρ] + Eion−ion (5.64)

In this functional, the kinetic energy functional and the exchange-correlation energy func-

tional are defined with respect to the reference interacting electron system system defined

above. We define our exchange-correlation functional as

Exc [ρ] =
〈
ΨG

∣∣∣Ûs

∣∣∣ΨG

〉
− 1

2

∫∫
ρlvρl +

∫
ρεxc (ρ)−

∫
ρlεxc (ρl) (5.65)

The kinetic energy functional is

T [ρ] =
〈
ΨG

∣∣∣Ĥs − V̂s − Ûs

∣∣∣ΨG

〉
(5.66)

Then

T [ρ] + Exc [ρ] =
〈
ΨG

∣∣∣Ĥs

∣∣∣ΨG

〉
−
∫
ρVs −

1
2

∫∫
ρlvρl (5.67)

+
∫
ρεxc (ρ)−

∫
ρlεxc (ρl) (5.68)

E0 [ρ] =
〈
ΨG

∣∣∣Ĥs

∣∣∣ΨG

〉
−
∫
ρVscr +

1
2

∫∫
ρvρ− 1

2

∫∫
ρlvρl (5.69)

+
∫
ρεxc (ρ)−

∫
ρlεxc (ρl) + Eion−ion (5.70)
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where

Vscr = Vs − Vion (5.71)

Ĥs is chosen to have the same electron density as the exact many body ground state. Thus

ρ (r) =
∑

iαjβσ

φ∗iα (r)φjβ (r)
〈
ΨG

∣∣∣c†iασcjβσ

∣∣∣ΨG

〉
(5.72)

and the local charge density is defined as

ρl (r) =
∑
iαβσ

h∗iα (r)hiβ (r)
〈
ΨG

∣∣∣h†iασhiβσ

∣∣∣ΨG

〉
(5.73)

It is computationally convenient to introduce the local projectors

P̂h =
∑
i,α,σ

|hiασ〉 〈hiασ| (5.74)

Q̂h =
∑
i,α,σ

ziασ |hiασ〉 〈hiασ| (5.75)

Then

ρ (r) =
∑
nkσ

fnkσ 〈ψnkσ|
((

1− P̂h

)
+ Q̂h

)
|r〉 〈r|

((
1− P̂h

)
+ Q̂h

)
|ψnkσ〉

+
∑
iασ

(
1− z2

iασ

)
ρiασ (r)

(∑
nk

fnkσ 〈ψnkσ|hiασ〉 〈hiασ|ψnkσ〉

)
(5.76)

ρl (r) =
∑
nkσ

fnkσ 〈ψnkσ| Q̂h |r〉 〈r| Q̂h |ψnkσ〉

+
∑
iασ

(
1− z2

iασ

)
ρiασ (r)

(∑
nk

fnkσ 〈ψnkσ|hiασ〉 〈hiασ|ψnkσ〉

)
(5.77)

where

ρiασ (r) = 〈hiασ|r〉 〈r|hiασ〉 (5.78)

5.2.4.5 Variational parameters and self-consistent equations

In addition to the non-interacting Hartree wavefunction |Ψ0〉(equivalently {ψnkσ}), we

have a set of local Fock state occupation probability {piH} as the variational parameters.

Furthermore, we have the following constraints

n0
iασ −

∑
ασ∈H

piH = 0 (5.79)



54

1−
∑
H

piH = 0 (5.80)

Consider the Lagrange function to be minimized

L = E0 [ρ] + µ0

(
1−

∑
H

piH

)
+
∑
iασ

µασ

n0
iασ −

∑
H:ασ(occ)

piH

 (5.81)

δL = δ
〈
ΨG

∣∣∣Ĥs

∣∣∣ΨG

〉
+δ
{
−
∫
ρVscr +

1
2

∫∫
ρvρ− 1

2

∫∫
ρlvρl

+
∫
ρεxc (ρ)−

∫
ρlεxc (ρl) + Eion−ion

}
+δ

{
µi0

(
1−

∑
H

piH

)}

+δ

∑
iασ

µiασ

n0
iασ −

∑
H:ασ(occ)

piH

 (5.82)

Note that

〈
ΨG

∣∣∣Ĥs

∣∣∣ΨG

〉
=
∑
i,H

pi,HEiH

+
∑
n,k,σ

fnkσ 〈ψnkσ| (1− Ph) (T + Vs) (1− Ph) |ψnkσ〉 (5.83)

+
∑
n,k,σ

fnkσ (〈ψnkσ| (1− Ph) (T + Vs)Qh |ψnkσ〉+ c.c.) (5.84)

then we have for the 1st term

δ
〈
ΨG

∣∣∣Ĥs

∣∣∣ΨG

〉
=
∑
i,H

δpi,HEiH (5.85)

+
∑
n,k,σ

fnkσδ 〈ψnkσ|
(
1− P̂h

)
(T + Vs) (1− P̂h) |ψnkσ〉 (5.86)

+
∑
n,k,σ

fnkσ

(
δ 〈ψnkσ|

(
1− P̂h

)
(T + Vs) Q̂h |ψnkσ〉+ c.c.

)

+
∑
n,k,σ

fnkσ

(
〈ψnkσ|

(
1− P̂h

)
(T + Vs)

(∑
iα

δziασ |hiασ〉 〈hiασ|

)
|ψnkσ〉+ c.c.

)
(5.87)
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2nd term

δ

{
−
∫
ρVscr +

1
2

∫∫
ρvρ− 1

2

∫∫
ρlvρl +

∫
ρεxc (ρ)−

∫
ρlεxc (ρl) + Eion−ion

}
=
∫ {

δρ [−Vscr + VH + µxc]− δρl

[
V l

H + µl
xc

]}
(5.88)

VH =
∫
ρ
(
r′
)
v
(
r, r′

)
d3r′ (5.89)

V l
H =

∫
ρl

(
r′
)
v
(
r, r′

)
d3r′ (5.90)

µxc =
∂

∂ρ
[ρεxc (ρ)] (5.91)

Let’s choose

Vscr = VH + µxc − P̂h

(
V l

H + µl
xc

)
P̂h (5.92)

then 2nd term vanishes.

3rd term

δ

{
µi0

(
1−

∑
H

piH

)}
= −µi0

∑
H

δpiH (5.93)

4th term

δ

∑
iασ

µiασ

n0
iασ −

∑
H:ασ(occ)

piH


=

∑
iασ

µiασ

δn0
iασ −

∑
H:ασ(occ)

δpiH

 (5.94)

=
∑
iασ

µiασ

∑
n,k,σ

fnkσδ
〈
ψnkσ|h†iασhiασ|ψnkσ

〉
−

∑
H:ασ(occ)

δpiH

 (5.95)

Derivative w.r.t. ψnkσ gives

Ĥeffψnkσ = λnkσψnkσ (5.96)

Ĥeff =
(
1− P̂h

)
(T + Vs) (1− P̂h) +

((
1− P̂h

)
(T + Vs) Q̂h + h.c.

)
(5.97)

+
∑
iα

εiασh
†
iασhiασ (5.98)

εiασ = µiασ +
∂ziασ

∂n0
iασ

eiασ (5.99)
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with

eiασ =
∑
n,k

fnkσ

(
〈ψnkσ|

(
1− P̂h

)
(T + Vs) |hiασ〉 〈hiασ|ψnkσ〉+ c.c.

)
(5.100)

Derivative w.r.t. piH gives

µi0 +
∑

ασ∈H

µiασ = EiH +
∑
α,σ

∂ziασ

∂piH
eiασ (5.101)

Derivative w.r.t. µ gives

n0
iασ −

∑
ασ∈H

piH = 0 (5.102)

1−
∑
H

piH = 0 (5.103)

Using
∂ziασ

∂n0
iασ

=
ziασ

2

(
1

1− n0
iασ

− 1
n0

iασ

)
(5.104)

√
piH

∂ziασ

∂piH
=

1

2
√
n0

iασ

(
1− n0

iασ

)∑
H′

√
piH′

(∣∣∣〈H ∣∣∣h†iασ

∣∣∣H ′
〉∣∣∣2 +

∣∣∣〈H ′
∣∣∣h†iασ

∣∣∣H〉∣∣∣2) (5.105)

Eqn. 5.101 may be written as

0 =

(
EiH − µi0 −

∑
ασ in H

µiασ

)
√
piH

+
∑
H′

√
piH′

∑
α,σ

eiασ

2
√
n0

iασ

(
1− n0

iασ

) (∣∣∣〈H ∣∣∣h†iασ

∣∣∣H ′
〉∣∣∣2 +

∣∣∣〈H ′
∣∣∣h†iασ

∣∣∣H〉∣∣∣2)(5.106)

Equivalently we have a set of homogeneous linear equations

∑
H′

M
(i)
H,H′

√
piH′ = µi0

√
piH (5.107)

where

M
(i)
H,H′ =

∑
α,σ

eiασ

2
√
n0

iασ

(
1− n0

iασ

) (∣∣∣〈H ∣∣∣h†iασ

∣∣∣H ′
〉∣∣∣2 +

∣∣∣〈H ′
∣∣∣h†iασ

∣∣∣H〉∣∣∣2)

+δHH′

(
EiH −

∑
ασ∈H

µiασ

)
(5.108)

Thus it turns our to be an eigen-value problem with constraints of Eqn.5.102.
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5.2.4.6 Implementation in VASP

The code for Gutzwiller-DFT consists of two parts. One is analogous to the traditional

LDA-DFT, where the Hartree wavefunction is solved iteratively. The other is to solve the onsite

Hamiltonian and find the local configuration probabilities, {piH}. The two parts are indepen-

dent in principle. For the first part, we choose the most widely used Vienna Ab-initio Simu-

lation Package (VASP)[Kresse et al., (1996)]. It uses ultrasoft pseudopotential or projected-

augmented wave(PAW) method and planewave basis[Vanderbilt (1990); Blöchl (1994); Kresse

et al., (1999)]. For the simplicity of coding, we choose our local orbital confined in the aug-

mentation sphere in the PAW method.

In PAW method, the true wavefunction |ψnkσ〉 and the pseudowavefunction
∣∣∣ψ̃nkσ

〉
are

related in the following way

|ψnkσ〉 =

(
1 +

∑
Λ

|φΛ〉 〈p̃Λ| −
∑
Λ

∣∣∣φ̃Λ

〉
〈p̃Λ|

)∣∣∣ψ̃nkσ

〉
(5.109)

where Λ is a composite index for atomic site i, angular momentum numbers L = (l,m), and

reference energy εl. The charge density ρ (r) (Eqn. 5.76) may be readily decomposed into

three parts(see Kresse et al., (1999) for details).

ρ (r) = ρ̃ (r)− ρ̃1 (r) + ρ1 (r) (5.110)

with

ρ̃ (r) =
∑
nkσ

fnkσ

〈
ψ̃nkσ|r

〉〈
r|ψ̃nkσ

〉
(5.111)

ρ̃1 (r) =
∑
Λ,Λ′

ρΛ,Λ′Φ̃Λ,Λ′ (r) (5.112)

ρ1 (r) =
∑
Λ,Λ′

ρΛ,Λ′ΦΛ,Λ′ (r) (5.113)

Φ̃Λ,Λ′ (r) =
〈
φ̃Λ|r

〉〈
r|φ̃Λ′

〉
(5.114)

ΦΛ,Λ′ (r) = 〈φΛ|
((

1− P̂h

)
+ Q̂h

)
|r〉 〈r|

((
1− P̂h

)
+ Q̂h

)
|φΛ′〉

+
∑
iασ

(
1− z2

iασ

)
ρiασ (r) 〈φΛ|hiασ〉 〈hiασ|φΛ′〉 (5.115)
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ρΛ,Λ′ =
∑
nkσ

fnkσ

〈
ψ̃nkσ|p̃Λ

〉〈
p̃Λ′ |ψ̃nkσ

〉
Local charge density ρl (r) may be written as

ρl (r) =
∑
nkσ

fnkσ 〈ψnkσ| Q̂h |r〉 〈r| Q̂h |ψnkσ〉

+
∑
iασ

(
1− z2

iασ

)
ρiασ (r)

(∑
nk

fnkσ 〈ψnkσ|hiασ〉 〈hiασ|ψnkσ〉

)

=
∑
Λ,Λ′

ρΛ,Λ′

(
〈φΛ| Q̂h |r〉 〈r| Q̂h |φΛ′〉+

∑
iασ

(
1− z2

iασ

)
ρiασ (r) 〈φΛ|hiασ〉 〈hiασ|φΛ′〉

)

(5.116)

Now the expectation values of Ĥs may be written as

〈
ΨG

∣∣∣Ĥs

∣∣∣ΨG

〉
= Ep + Ẽ + E1 − Ẽ1 (5.117)

where

Ep =
∑
i,Γ,H

pi,H |〈Γ|H〉|2EiΓ (5.118)

Ẽ =
∑
n,k,σ

fnkσ

〈
ψ̃nkσ

∣∣∣ T̂ ∣∣∣ψ̃nkσ

〉
+
∫
ṽeff (ρ̃+ ρ̂s) (5.119)

ṽeff = VH [ρ̃+ ρ̂+ ρ̃Zc] + µxc [ρ̃+ ρ̂+ ρ̃c] (5.120)

E1 =
∑
Λ,Λ′

ρΛ,Λ′ 〈φΛ|
(
T̂ + v1

eff

)
+ Ph

(
T̂ + v1

eff

)
Ph

+
((
T̂ + v1

eff

)
(Qh − Ph)− Ph

(
T̂ + v1

eff

)
Qh + c.c.

)
|φΛ′〉 (5.121)

v1
eff = VH

[
ρ1 + ρZc

]
+ µxc

[
ρ1 + ρc

]
(5.122)

Ẽ1 =
∑
Λ,Λ′

ρΛ,Λ′

〈
φ̃Λ|T̂ |φ̃Λ′

〉
+
∫
ṽ1
eff (ρ̃1 + ρ̂s) (5.123)

ṽ1
eff = VH

[
ρ̃1 + ρ̂+ ρ̃Zc

]
+ µxc

[
ρ̃1 + ρ̂+ ρ̃c

]
(5.124)

Derivative with respective to ρ̄=
∑

nkσ fnkσ

∣∣∣ψ̃nkσ

〉〈
ψ̃nkσ

∣∣∣ gives the effective Hamiltonian

for the Hartree wavefunction.

dẼ

dρ̄
= T̂ + ṽeff +

∑
Λ,Λ′

|p̃Λ〉 D̂ΛΛ′ 〈p̃Λ| (5.125)
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with

D̂ΛΛ′ = D̂v
ΛΛ′ + D̂z

ΛΛ′ (5.126)

D̂v
ΛΛ′ =

∑
L

∫
ṽeff (r) Q̂s,L

ΛΛ′ (r) (5.127)

Q̂s,L
ΛΛ′ (r) = qs,L

ΛΛ′gl (|r−R|)YL

(
r̂−R

)
(5.128)

qs,L
ΛΛ′ =

∫
Ωr

Qs
ΛΛ′ (r) |r−R|l Y ∗

L

(
r̂−R

)
dr (5.129)

Qs
ΛΛ′ (r) = Φs

Λ,Λ′ (r)− Φ̃Λ,Λ′ (r) (5.130)

Φs
Λ,Λ′ (r) = 〈φΛ| (1− Ph |r〉 〈r| 1− Ph)

+ (1− Ph |r〉 〈r|Qh + c.c.) |φΛ′〉 (5.131)

D̂z
ΛΛ′ =

∑
iασ

∂ziασ

∂n0
iασ

〈φΛ|h†iασhiασ |φΛ′〉 êiασ (5.132)

êiασ =
∑

(λ,λ′),L

ρλλ′

(∫
ṽeff (r) gl (|r−R|)YL

(
r̂−R

)
dr

)

×
∫

(〈φλ|hiασ〉 〈hiασ|r〉 〈r| (1− Ph) |φλ′〉+ c.c.) |r−R|l Y ∗
L

(
r̂−R

)
dr(5.133)

and
dE1

dρ̄
=
∑
Λ,Λ′

|p̃Λ〉D1
ΛΛ′ 〈p̃Λ| (5.134)

with

D1
ΛΛ′ = D1,v

ΛΛ′ +D1,z
ΛΛ′ (5.135)

D1,v
ΛΛ′ = 〈φΛ|

(
T̂ + v1

eff

)
+ Ph

(
T̂ + v1

eff

)
Ph

+
((
T̂ + v1

eff

)
(Qh − Ph)− Ph

(
T̂ + v1

eff

)
Ph + c.c.

)
|φΛ′〉 (5.136)

D1,z
ΛΛ′ =

∑
iασ

∂ziασ

∂n0
iασ

〈φΛ|h†iασhiασ |φΛ′〉 e1iασ (5.137)

e1iασ =
∑

(λ,λ′),L

ρλλ′ 〈φλ|
(
(1− Ph)

(
T̂ + v1

eff

)
|hiασ〉 〈hiασ|+ c.c.

)
|φλ′〉 (5.138)

and
dE1

dρ̄
=
∑
Λ,Λ′

|p̃Λ〉 D̃1
ΛΛ′ 〈p̃Λ| (5.139)
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D̃1
ΛΛ′ = D̃1,v

ΛΛ′ + D̃1,z
ΛΛ′ (5.140)

with

D̃1,v
ΛΛ′ =

〈
φ̃Λ|T̂ + ṽ1

eff |φ̃Λ′

〉
+
∑
L

∫
ṽ1
eff (r) Q̂s,L

ΛΛ′ (r) (5.141)

D̃1,z
ΛΛ′ =

∑
iασ

∂ziασ

∂n0
iασ

〈φΛ|h†iασhiασ |φΛ′〉 ẽ1iασ (5.142)

ẽ1iασ =
∑

(λ,λ′),L

ρλλ′

(∫
ṽ1
eff (r) gl (|r−R|)YL

(
r̂−R

)
dr

)

×
∫

(〈φλ|hiασ〉 〈hiασ|r〉 〈r| (1− Ph) |φλ′〉+ c.c.) |r−R|l Y ∗
L

(
r̂−R

)
dr(5.143)

From the Lagrange multiplier {µi0, µiασ},

Dµ
ΛΛ′ =

∑
iασ

〈φΛ|h†iασhiασ |φΛ′〉µiασ (5.144)

Thus the effecitve Hamiltonian is

Heff = T̂ + ṽeff +
∑
Λ,Λ′

|p̃Λ〉
(
D̂ΛΛ′ +D1

ΛΛ′ − D̃1
ΛΛ′ +Dµ

ΛΛ′

)
〈p̃Λ| (5.145)

We also have

eiασ = êiασ + e1iασ − ẽ1iασ (5.146)

The double counting ∆E to total energy is treated in the following way.

∆E = Ep + Ẽ + E1 − Ẽ1 −
〈
Ψ0

∣∣∣Ĥeff

∣∣∣Ψ0

〉
−
∫
ρVscr +

1
2

∫∫
ρvρ− 1

2

∫∫
ρlvρl

+
∫

(ρ+ ρc) εxc [ρ+ ρc]−
∫
ρlεxc [ρl] + Eion−ion (5.147)
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It may be expressed in a variational form

∆E = Ep +
∫
ṽout
eff ρ̃

out +
∑
Λ,Λ′

ρout
Λ,Λ′

(
D̂v,out

ΛΛ′ +D1,v,out
ΛΛ′ − D̃1,v,out

ΛΛ′

)
−
∫
ṽin
eff ρ̃

out −
∑
Λ,Λ′

ρout
Λ,Λ′

(
D̂in

ΛΛ′ +D1,in
ΛΛ′ − D̃1,in

ΛΛ′ +Dµ,in
ΛΛ′

)
−EH [ρ̃+ ρ̂]− EH [ρ1] + EH [ρ̃1 + ρ̂] + EH [ρl]

−
∫
µxc [ρ̃+ ρ̂+ ρ̃c] (ρ̃+ ρ̂) dr+

∫
µxc [ρ̃1 + ρ̂+ ρ̃c] (ρ̃1 + ρ̂) dr

−
∫
µxc [ρ1 + ρc] ρ1dr +

∫
µl

xc [ρl] ρldr

+Exc [ρ̃+ ρ̂+ ρ̃c]− Exc [ρ̃1 + ρ̂+ ρ̃c] +
∫

(ρ+ ρc) εxc (ρ+ ρc)− Exc [ρl](5.148)

+Eion−ion

The charge density here should be output part if not indicated.

5.3 Application and preliminary results

5.3.1 Non-degenerate Anderson lattice

To get some sense of the Gutzwiller approximation, we first applied it to the paramag-

netic Anderson lattice without orbital degeneracy. We assume a flat density of states for the

conduction electrons

ρ0 (ω) =


1
D if −D < ω < D

0 otherwise
(5.149)

5.3.1.1 Symmetric case

We look at the symmetric case with

ε0f = −U
2

(5.150)

ntot = 2 (5.151)

D = 10V (5.152)

Fig. 5.1 shows the density of states with different onsite Coulomb repulsion U . We can

see that the hybridization gap between the local orbital and the delocalized orbital decreases
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with increasing the onsite repulsion U . It is reasonable since the hybridization strength V

is renormalized to zV with Gutzwiller approximation. Fig. 5.2 shows the variation of the

hybridization energy gap, Eg, and renormalization factor, z, as functions of onsite U . As onsite

U becomes stronger, the renormalized hybridization strength(zV ) becomes weaker. Therefore

the energy gap becomes smaller. In the limit of no hybridization, the energy gap closes. Note

that in the symmetric case with total 2 electrons, the local orbital (f) occupation is always 1,

one may wonder how onsite U affect the renormalization factor z. To investigate this issue,

we need to look at the occupation probability of the local doubly occupied state, where the

onsite U matters. Fig. 5.3 shows that the local doubly occupied state probability decreases

as the onsite U increases. We may see a competition picture between the hybridization effect

and onsite Coulomb repulsion effect. While the hybridization tends to lower the total energy,

it needs to pay an energy penalty (∝ U) for the local doubly occupied state. The ground state

of the system is a trade-off between these two effects.

-0.2 -0.1 0.0 0.1 0.2

 U/V=0
 U/V=2
 U/V=4
 U/V=6

 

 

D
O

S

E/V

Figure 5.1 Density of states of the nondegenerate Anderson lattice in sym-
metric case with different onsite Coulomb repulsion U .
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Figure 5.2 Variation of the hybridization energy gap, Eg, and renormaliza-
tion, z, with increasing onsite U for symmetric nondegenerate
Anderson lattice.
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Figure 5.3 The local doubly occupied state occupation probability as a
function of onsite U for symmetric nondegenerate Anderson lat-
tice.
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5.3.1.2 Non-symmetric case

It is also interesting to examine how the non-symmetric Anderson lattice will deviate from

the symmetric case. As we can see in the symmetric case, there are three parameters (local

orbital level ε0f , total number of electrons ntot, and conduction electron band width D) which

determine the symmetry properties of the model. We first want to see how the total number

of electrons (ntot) will affect the results. We choose U = 6V for the analysis below. Fig. 5.4

shows the density of states with different filling electrons. The model exhibits a particle-hole

symmetry with respect to total number of electrons about ntot = 2. Fig. 5.5 shows that the

energy gap Eg hehavior is again consistent with the renormalization factor z. Fig. 5.6 shows

the local configuration probabilities with a particle-hole symmetry.

-4 -3 -2 -1 0 1 2 3 4

ntot=3

ntot=2.5

ntot=2

ntot=1.5

 

 

D
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E/V

ntot=1

Figure 5.4 Density of states of the nondegenerate Anderson lattice at
ε0f = −U

2 with increasing total filling electrons.

We next investigated how the particle-hole symmetry would be affected by the local orbital

level. We choose ε0f = −U
2 − 7V for the analysis followed. Thus the center of the local

orbital levels, εcf =
2ε0

f+U

2 , would be at −7V . Fig. 5.7 shows the consistency between the

energy gap Eg and the renormalization factor z at different filling electrons, however, both

curves lost the mirror symmetry. We also nitice that the local orbital is always half-filled
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Figure 5.5 Variation of the hybridization energy gap, Eg, and renormal-
ization factor, z, with increasing total filling electrons for non-
degenerate Anderson lattice at ε0f = −U

2 .
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Figure 5.6 The local configuration probabilities with increasing total filling
electrons for nondegenerate Anderson lattice at ε0f = −U

2 .
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when the renormlization factor z reaches its minimum with the variation of filling electrons,

as shown in fig. 5.8. It is physically reasonable since the system would have best degrees of

freedom to redistribute the local electrons into local configurations. In the limit of empty or full

occupation, the local configuration probability is fixed by the occupation with renormalization

factor z = 1.
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Figure 5.7 Variation of the hybridization energy gap, Eg, and renormaliza-

tion, z, with increasing total filling electrons for nondegenerate
Anderson lattice at ε0f = −U

2 − 7V .

5.3.2 FCC Ce

Ce is a rear earth element with 1 f-electron. Fig. 5.9 shows the phase digram for Ce,

which is unexpectedly rich and puzzling. The most famous and yet unresolved problem of Ce

is the isostructural γ → α phase transformation with a volume change of 17% [Gschneider et

al., (1978)].

While such big volume collapse was observed more than three decades ago, theoretical

explanantions are still under debating. There are two promising models which might be able

to address the volume collapse transition for Ce: Kondo volume collapse (KVC) model[Allen

et al., (1982,1992); Lavagna et al., (1982)] and Mott transition (MT) model[Johansson et

al., (1974,1995)]. The KVC model assumes that the 4f orbitals hold the local property

in both α and γ phase. It is the conduction electron screening effect that drives α → γ
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Figure 5.8 The behaviour of the renormalization factor, z, with increas-
ing local orbital occupation, nf , for nondegenerate Anderson
lattice.

Figure 5.9 P-T phase diagram of pure Ce.



68

transition. However, in the MT model, the conduction electrons have no contribution at

all. It is the 4f − 4f hybridization effect that drives phase transition. Both models are

based on model Hamiltonian approach. The important parameters are obtained by fitting

procedure with the experimental data, where some uncertainties are involved. The recently

developed LDA+DMFT have been applied to investigate this problem, yet controversial results

are reported[Held at al., (2001); Amadon et al., (2006)]. Note that even in LDA+DMFT

method, parameters like onsite repulsion U are not self-consistently determined. Thus Ce

provides an ideal playground to test our new DFT method where all the interactions are

treated self-consistently.

0 1 2 3 4
0.0

0.4

0.8

1.2

1.6
 chosen local orbital
 isolated atom f-orbital

 

 

rR
f(r

)

r (A)

Figure 5.10 Radial function for the chosen local orbital and isolated atomic
f-orbital.

We choose our local orbitals to be confined in the augmentation sphere as we discussed

in the previous methodology part. Fig.5.10 shows the radial function of our local f−orbital.

The radial function of the f−orbital for an isolated Ce atom is also shown for reference. We

understand that the choice of local orbitals for Gutzwiller projector may be critical. Strictly

speaking, the set of local orbitals must be expanded until convergence. However, it is still

physically interesting to see how the choice of confined local orbitals affect the calculation

results.

Fig. 5.11 shows the total energy (E) versus volume (V ) curve of Ce with our Gutzwiller-
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Figure 5.11 Total energy of FCC-Ce versus unit cell volume calculated with
Gutzwiller-DFT method.

DFT method. The first derivative of E with respect to V is also plotted. Under the current

choice of local orbitals and Gutzwiller projectors, we do not find double minimums in the

curve. However, we find that the E−V curve gives a minimum which is closer to the α−phase

than conventional LDA results. Table 5.1 listes the equilibrium lattice constant (a0) and

the bulk modulus (B) of FCC-Ce obtained from LDA-DFT, Gutzwiller-DFT and experiment.

Gutzwiller-DFT gives much closer results to experiment.

Table 5.1 Equilibrium lattice constant and bulk modulus of α−Ce obtained
from LDA, Gutzwiller-LDA calculations and experiment.

a0(Å) B (GPa)
LDA 4.52 57.4
G-LDA 4.88 34.7
Expt. 4.83 27.0

In the Gutzwiller-DFT calculations, local natural orbital occupation (n0
iγ), local-nonlocal

hopping (eiγ) and the renormalization factor (ziγ) are important quantities. Fig. 5.12 shows

that local natural orbital occupation as a function of unit cell volume. In cubic symmetry,

the seven-fold degenerate f−levels split to three different levels: two levels with degeneracy

of three (fa (3), fb (3)), and one nondegenerate level (fc (1)). When the unit cell volume is

small, i.e., the crystal field effect is strong, we have very different three sets of local natural
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orbital occupations. When the unit cell expands, the crystal field becomes weaker, the local

natural orbital occupations tend to merge. The variation of local-nonlocal hopping and the

renormalization factor with the unit cell volume is shown in fig. 5.13 and fig.5.14. Generally

they are consistent with each other. As the lattice expands, the hybridization effect becomes

weaker, the renormalization factors become smaller, and the local-nonlocal hoppings decrease.

However, one may spot that the behaviour of the local-nolocal hopping term in fig.5.13 seems

somehow weird. The top curve is more or less flat, and all the curves seem to converge to a

value which is smaller than −0.3eV . We believe it is the evidence that the current confined

local orbital choice need to be improved.
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Figure 5.12 Variation of local natural orbital occupation with increasing
unit cell volume.

5.4 Conclusion

We have developed an ab initio theoretical method which is targeted to solve the many-

electron systems with electron correlation effect. We treat all the interactions in a self-

consistent manner. Preliminary application to FCC Ce seems encouraging. Several aspects

of the method need to be further studied, e.g., choice of Gutzwiller operator, choice of local

orbitals, proper way to subtract the part which is treated exactly in the new DFT theory from

LDA.
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Figure 5.13 Variation of local-nonlocal hoppings with increasing unit cell
volume.
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Figure 5.14 Variation of the renormalization factors with increasing unit
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APPENDIX A. CONSTRAINED MINIMIZATION FOR QUAMBO

We need to minimize

L =
∑
αi

(
〈Ãα −Aα|Ãα −Aα〉+ λα

(
〈Ãα|Ãα〉 − 1

))
(A.1)

where ∣∣∣Ãα

〉
=
∑
kµ

Ckµ
α |φkµ〉 (A.2)

w.r.t. the set of coefficients {C} and Lagrange multipliers {λ}.

We look at the terms in the Eq.A.1 one by one.

〈Ãα|Ãα〉 =
∑
kµ

Ckµ
α

(
Ckµ

α

)∗
(A.3)

〈Ãα|Aα〉 =
∑
kµ

(
Ckµ

α

)∗
〈φkµ|Aα〉 (A.4)

〈Aα|Aα〉 = 1 (A.5)

Taking derivatives of L,

∂L

∂
“
Ckµ

α

”∗ gives:

(1 + λα)Ckµ
α − 〈φkµ|Aα〉 = 0 (A.6)

∂L
∂λα

gives: ∑
kµ

Ckµ
α

(
Ckµ

α

)∗
− 1 = 0 (A.7)

Solving the two equations gives

Ckµ
α =

〈φkµ|Aα〉
1 + λα

(A.8)

(1 + λα)2 =
∑
kµ

|〈φkµ|Aα〉|2 (A.9)
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i.e., ∣∣∣Ãα

〉
= D−1/2

α

∑
kµ

|φkµ〉 〈φkµ|Aα〉 (A.10)

with

D−1/2
α = 1 + λα

=
∑
kµ

|〈φkµ|Aα〉|2 (A.11)
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APPENDIX B. METHODS FOR GENERATING OPTIMISED

VIRTUAL BANDS

Generally we have the optimised virtual band expressed as a linear combination of the

virtual bands

|φkp〉 =
NV B∑
µ=1

Tµk
p |ψkµ〉 (B.1)

we want to maximize

L =
∑
k

∑
p

Nq∑
α=1

〈φkp|Aα〉 〈Aα|φkp〉+
∑
kp

λkp (1− 〈φkp|φkp〉)

The resulted optimised virtual bands are automatically orthogonal to the preserved bands

since we are constructing them in a subspace spanned by all the rest virtual bands, which

is orthogonal to the space spanned by the preserved bands. Here Nq is the total number of

atomic orbitals. NV B is the total number of virtual bands involved. Usually Nq � NV B.

∂L
∂〈φkp| gives  Nq∑

α=1

|Aα〉 〈Aα|

 |φkp〉 = λkp |φkp〉 (B.2)

which turns out to be an eigen-value problem.

Mathematically, matrix
∑Nq

α=1 |Aα〉 〈Aα| only has Nq non-zero eigen-values. In the con-

struction of QUAMBO, we may choose Nq − nocc (k) eigen-vectors with biggest eigen-values

to get the T -matrix.

In practice, the number of virtual bands, NV B, is determined by the dimension of the basis

we used in the electronic structure calculation. It is usually very expensive to solve for all the

eigen-vectors of the Hamiltonian matrix. Thus we may truncate the eigen-vectors according

to the eigen-energy criteria, i.e., we may choose lowest N∗
V B bands at each k-point for the
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construction of QUAMBOs. It works very well for simple elements and simple structures, e.g.,

Si in diamond structure. However, such implementation of the scheme becomes very expensive

for complicated elements(like transition metals) and structures, where many more(hundreds

or even thousands) bands need to be calculated for the construction of QUAMBO. It is very

time-comsuming to calculate so many virtual bands in iterative way in standard DFT codes.

Furthermore, it will also take a lot of disk space (several gigabyte or even tens of gigabyte) to

store the wavefunctions.

The problem must be solved by a way without using virtual bands. It is true that the

basis set(e.g., plane waves) of the DFT calculation already have all the information the virtual

bands carry. Thus an improved algorithm of the QUAMBO scheme is that we may proceed

directly from the DFT basis set. The solution may be formulated as follows.

Let the DFT basis set be {κνk}. The optimise virtual band may be expressed as

|φkp〉 =
NBS∑
ν=1

T νk
p |κνk〉 (B.3)

where NBS is the dimension of the basis set. We want to maximize

L =
∑
k

∑
p

Nq∑
α=1

〈φkp|Aα〉 〈Aα|φkp〉+
∑
kp

λkp (1− 〈φkp|φkp〉)−
∑
k

nocc(k)∑
µ=1

λkµ 〈φkp|ψkµ〉 (B.4)

the additional constraints come from the fact that the optimised virtual band |φkp〉 is not

guaranteed to be orthogonal to the preserved bands since it is now constructed in the whole

space spanned by the basis set in the DFT calculation.

∂L
∂〈φkp| gives  Nq∑

α=1

|Aα〉 〈Aα|

 |φkp〉 −
nocc(k)∑

µ=1

λkµ |ψkµ〉 = λkp |φkp〉 (B.5)

By applying 〈ψkµ| on Eq.B.5 we get

λkµ = 〈ψkµ|

 Nq∑
α=1

|Aα〉 〈Aα|

 |φkp〉

Substituting it bacl to Eq.B.51−
nocc(k)∑

µ=1

|ψkµ〉 〈ψkµ|

 Nq∑
α=1

|Aα〉 〈Aα|

 |φkp〉 = λkp |φkp〉 (B.6)
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This turns out to be an eigen-value problem for a non-hermitian square matrix. Note that

we are solving the problem with a large dimension of basis set. The mature iterative solvers

are usually for Hermitian matrix. We may simplify the above method by the following way.

Mathematically, matrix
(
1−

∑nocc(k)
µ=1 |ψkµ〉 〈ψkµ|

)(∑Nq

α=1 |Aα〉 〈Aα|
)

also only has Nq non-

zero eigen-values. And we need to choose Nq −nocc (k) eigen-vectors with biggest eigen-values

to get optimised virtual bands. The original way to optimised the virtual band is to maximise

the overlap between it and all the atomic orbitals. And we notice that space spanned by the

atomic orbitals have “preserved bands-like” part and “virtual bands-like” part. The “preserved

bands-like” part should have trivial overlap with the virtual bands. Thus we may choose only

the “virtual bands-like” part to be our target to optimise the virtual. This approach in fact is

much simpler in algebra and computation. Also it gives unique solution for QUAMBO.

The decomposition of the space spanned by the atomic orbitals into “preserved bands-

like” part and “virtual bands-like” part may be proceeded in the following way. First we may

construct a matrix Mk
αβ

Mk
αβ =

nocc(k)∑
µ=1

〈Aα|ψkµ〉 〈ψkµ|Aβ〉 (B.7)

Note that nocc (k) ≤ Nq. The Nq × Nq matrix Mk only has nocc (k) non-zero eigen values.

The nocc (k) eigen-vectors with non-zero eigen values, |λkµ〉, span the “preserved bands-like”

subspace, while the rest Nq − nocc (k) eigen-vectors,
∣∣λ̄kµ

〉
, span the “virtual bands-like” sub-

space. Thus we have
〈
ψkµ|λ̄kµ

〉
= 0 for µ = 1, . . . , nocc (k). Replace

∑Nq

α=1 |Aα〉 〈Aα| in Eq.B.6

with
∑Nq−nocc(k)

µ=1

∣∣λ̄kµ

〉 〈
λ̄kµ

∣∣ and we get the simpler eigen-value problemNq−nocc(k)∑
µ=1

∣∣λ̄kµ

〉 〈
λ̄kµ

∣∣ |φkp〉 = λkp |φkp〉 (B.8)

This method has been successfully applied to BCC Mo and graphene system.

The above algorithm solved the problem of demanding too many virtual bands in the

QUAMBO construction by taking the optimised virtual bands directly from space spanned by

the basis set of the DFT calculation. However, iteratively solving for |φkp〉 in a large basis

set still takes some time. Qian et al., (2008) realize that atomic orbitals themselves already
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contain all the relevant virtual bands information. The optimised virtual may be obtained

in a much smaller subspace. The subspace is spanned by the atomic orbitals, subtracting the

overlapping part with the preserved bands, i.e., |Aα〉−
∑nocc(k)

µ=1 |ψkµ〉 〈ψkµ|Aα〉. The dimension

of the subspace is Nq. Thus the eigen-value problem is very trivial to be solved.

By comparing the above two methods, we may find that
∣∣λ̄kµ

〉
in the first method actually

also spans a subspace within which the optimised virtual bands may be obtained. We tried

these two versions of “QO” and get successful results in both cases.
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