
Understanding and Improving Personal File Retrieval

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Doctor of Philosophy

in the

University of Canterbury

by

Stephen Fitchett

Supervision and Examination Committee

Professor Andy Cockburn Senior Supervisor

Professor Tim Bell Associate Supervisor

Professor Mark Apperley Internal Examiner

Dr. Ofer Bergman External Examiner

Department of Computer Science and Software Engineering

University of Canterbury

2013

Abstract

Personal file retrieval – the task of locating and opening files on a computer –

is a common task for all computer users. A range of interfaces are available to

assist users in retrieving files, such as navigation within a file browser, search

interfaces and recent items lists. This thesis examines two broad goals in file

retrieval: understanding current file retrieval behaviour, and improving file

retrieval by designing improved user interfaces.

A thorough understanding of current file retrieval behaviour is impor-

tant to the design of any improved retrieval tools, however there has been

surprisingly little research about the ways in which users interact with com-

mon file retrieval tools. To address this, this thesis describes a longitudinal

field study that logs participants’ file retrieval behaviour across a range of

methods, using a specially developed logging tool called FileMonitor. Results

confirm findings from previous research that search is used as a method of

last resort, while providing new results characterising file retrieval. These

include analyses of revisitation behaviour, file browser window reuse, and

interactions between retrieval methods, as well as detailed characterisations

of the use of navigation and search.

Knowledge gained from this study assists in the design of three improve-

ments to file navigation: Icon Highlights, Search Directed Navigation and

Hover Menus. Icon Highlights highlight items that are considered the most

likely to be accessed next. These highlights are determined using a new algo-

rithm, AccessRank, which is designed to produce a set of results that is both

accurate and stable over time. Search Directed Navigation highlights items

that match, or contain items that match, a filename search query, allowing

users to rehearse the mechanisms for expert performance in order to aid fu-

ture retrievals, and providing greater context than the results of a traditional

search interface. Hover Menus appear when hovering the mouse cursor above

a folder, and provide shortcuts to highly ranked files and folders located at

any depth within the folder. This allows users to reduce navigation times by

skipping levels of the file hierarchy.

These interfaces are evaluated in lab and field studies, allowing for both

precise analysis of their relative strengths and weaknesses, while also provid-

ing a high degree of external validity. Results of the lab study show that

all three techniques reduce retrieval times and are subjectively preferred by

participants. For the field study, fully functional versions of Icon Highlights

and Search Directed Navigation are implemented as part of Finder High-

lights, a plugin to OS X’s file manager. Results indicate that Icon Highlights

significantly reduce file retrieval times, and that Search Directed Navigation

was useful to those who used it, but faces barriers to adoption.

Key contributions of this thesis include a review of previous literature

on file management, a thorough characterisation of file retrieval behaviour,

improved algorithms for predicting user behaviour and three improved inter-

faces for file retrieval. This research has the potential to improve a tedious

activity that users perform many times a day, while also providing general-

isable algorithms and interface concepts that are applicable to a wide range

of interfaces beyond file management.

Publications Arising from this Thesis

The peer-reviewed publications listed below are based on work completed

as part of this thesis. Chapters on which they are based are noted in brackets.

1. Fitchett, S. and Cockburn, A. AccessRank: Predicting What Users

Will Do Next. In CHI ’12: SIGCHI Conference on Human Factors

in Computer Systems, 2012, (Austin, Texas, USA), ACM, 2239–2242.

CHI Honorable Mention Award. (Chapter 6).

2. Fitchett, S., Cockburn, A., and Gutwin, C. Improving Navigation-

Based File Retrieval. In CHI ’13: SIGCHI Conference on Human

Factors in Computer Systems, 2013, (Paris, France), ACM, 2329–2338.

CHI Best Paper Award. (Chapter 7).

3. Fitchett, S., Cockburn, A, and Gutwin, C. Finder Highlights: Field

Evaluation and Design of an Augmented File Browser. In CHI ’14:

SIGCHI Conference on Human Factors in Computer Systems, 2014,

(Toronto, Canada), ACM. To appear. CHI Honorable Mention

Award. (Chapter 8).

Additionally, the following publications are based on work conducted dur-

ing my doctoral studies, but not directly part of the thesis. The second is the

result of a three month internship at Microsoft Research Asia in late 2010.

4. Cockburn, A., Quinn, P., Fitchett, S. and Gutwin, C. Improving

Scrolling Devices with Document-Length-Dependent Gain. In CHI ’12:

SIGCHI Conference on Human Factors in Computer Systems, 2012,

(Austin, Texas, USA), ACM, 267–276.

5. Edge, D., Fitchett, S., Whitney, M. and Landay, J.. MemReflex:

Adaptive Flashcards for Mobile Microlearning. In MobileHCI ’12: Pro-

ceedings of ACM MobileHCI ’12, 2012, (San Francisco, CA, USA),

ACM, 431–440. MobileHCI Best Paper Award.

v

Technical Acknowledgements

The work contained in this thesis is my own, except where stated oth-

erwise. My senior supervisor, Andy Cockburn, provided inspiration, ideas,

and proofreading, and his contributions are weaved throughout the thesis.

Publications 1 to 3 were all written in collaboration with Andy Cockburn.

While they were primarily my work, he contributed to the ideas and editing

of all the papers.

The research for Chapter 7 was substantially done at The Interaction Lab

at the University of Saskatchewan, and Professor Carl Gutwin provided much

of the inspiration for this work. He was also involved in editing publications

2 and 3. The study in Chapter 7 was conducted in The Interaction Lab by

Roxanne Dowd and Jared Cechanowicz.

My thanks go to all those who were involved in research collaborations

that contributed to this thesis.

vi

Ethical Considerations

The studies performed as part of this thesis involved human participants.

Every care was taken to ensure their privacy and comfort was maintained at

all times. Participants maintained the right to withdraw their participation

or data at any point.

The studies undertaken in Chapters 5 and 8 are covered by the Univer-

sity of Canterbury’s Human Ethics Approval application HEC2012/06. The

study in Chapter 7 was undertaken at The Interaction Lab at the Univer-

sity of Saskatchewan, and was covered by Professor Carl Gutwin’s ethics

approval.

All participants signed paper consent forms or agreed to online consent

forms before any log data, demographic information or survey responses were

collected. Copies of these forms are reproduced in the appendices.

vii

Acknowledgements

I would like to thank the following people and groups for their support

during this thesis.

First, thanks to my supervisor, Professor Andy Cockburn, for his invalu-

able guidance, support, inspiration, wisdom, patience and advice throughout

my research, without which this thesis would not exist. Thanks also to my

associate supervisor, Professor Tim Bell, for his guidance and always-positive

attitude.

Thanks to Professor Carl Gutwin at the University of Saskatchewan, who

kindly hosted me in his lab for several months in 2012 and provided valu-

able guidance during that time. Thanks also to the faculty and students

who hosted me as part of brief visits to the University of Calgary and the

University of British Columbia.

Thank you to my colleagues in the HCI lab (Joey, Philip, Sylvain, Mathieu

and Joshua) for the lively discussions, and for providing me with some much-

needed human contact at some of the busier points of my PhD. Thanks also to

the staff and other postgraduate students in the computer science department

for all the discussions and assistance over the years.

Thanks to my friends for having more confidence in my ability to finish

my thesis than I did, and for understanding when they did not see me for

long periods.

Finally, thanks to all my anonymous participants, without which the

studies in this thesis would not have been possible, for volunteering their

time and data.

This thesis was financially supported by the Canterbury Scholarship,

awarded to the top eight applicants for a University of Canterbury Doc-

toral Scholarship each year. Additional funding was provided by the New

Zealand Royal Society Marsden Grant 10-UOC-020. Visits to labs in Canada

were financially supported by the Natural Sciences and Engineering Research

Council of Canada and the GRAND NCE.

viii

Table of Contents

List of Figures vii

List of Tables x

Chapter 1: Introduction 1

1.1 Problem Statement . 3

1.2 Research Approach . 4

1.3 Research Contributions . 6

1.4 Structure of the Thesis . 8

1.5 Glossary of Terms . 10

1.5.1 Files . 10

1.5.2 File structure . 10

1.5.3 Opening files . 11

1.5.4 Retrieval methods . 11

1.5.5 Scores . 11

I File Retrieval and Retrieval Tools 12

Chapter 2: File Retrieval Methods 13

2.1 Classification of Retrieval Methods 13

2.2 Support for File Retrieval Features 16

2.3 File Navigation . 18

2.4 Search . 21

2.4.1 Saved Searches . 22

2.4.2 Faceted Search . 23

2.4.3 Research Systems . 24

2.4.4 Launchers . 25

2.5 Recommender Interfaces . 26

2.6 Bookmarks . 28

2.7 Conclusion . 30

Chapter 3: An Overview of Organisation and Retrieval Be-

haviour 31

3.1 Comparison of Domains . 31

3.2 Refinding on the Web . 34

3.3 Email Management . 37

3.4 Management of Paper Documents 39

3.5 Electronic File Management 41

3.5.1 Summary of File Management Studies 42

3.5.2 Types of Information 44

3.5.3 Representation of Structure 46

3.5.4 Organisation and Maintenance 51

3.5.5 The Desktop and Spatial Locations 56

3.5.6 Memory of File Attributes 57

3.5.7 Retrieval Behaviour . 59

3.6 Conclusion . 63

II Characterising File Retrieval 65

Chapter 4: FileMonitor: A Tool To Understand File Retrieval

Behaviour 66

4.1 An Overview of FileMonitor 68

4.2 FileMonitor Implementation 69

4.2.1 Logging . 69

4.2.2 Finder Usage . 70

4.2.3 Spotlight Usage . 71

4.2.4 Recent Documents . 73

4.3 FileMonitor Logs . 75

4.4 Discussion . 79

4.5 Conclusion . 81

Chapter 5: How Do Users Retrieve Files? An Empirical Char-

acterisation of File Retrieval 82

ii

5.1 Background . 84

5.2 Study Method . 85

5.2.1 Limitations of Log Analysis 87

5.3 Analysis Part 1: Retrieved Files 88

5.3.1 How often are files revisited? 88

5.3.2 Are the same items often accessed in each folder? . . . 90

5.3.3 What types of files are retrieved? 92

5.3.4 What are the characteristics of filenames? 94

5.3.5 How deep in the hierarchy are retrieved files? 95

5.3.6 Summary of Retrieved Files 98

5.4 Analysis Part 2: File Retrieval Methods 98

5.4.1 How does use compare between retrieval methods? . . 99

5.4.2 Do users use different methods to retrieve the same files?102

5.4.3 Navigation in the File Browser 106

5.4.4 Search . 115

5.4.5 Recent Items . 119

5.4.6 Open Dialogs . 119

5.4.7 Other Methods . 120

5.5 Analysis Part 3: File Management 120

5.6 Discussion . 121

5.6.1 Comparison with Prior Work 123

5.6.2 Implications for Design 124

5.6.3 Implications for Evaluation 126

5.7 Conclusion . 127

III Predicting User Interaction 128

Chapter 6: AccessRank: Predicting What Users Will Do Next129

6.1 Overview of Prediction Algorithms 130

6.1.1 Menus . 130

6.1.2 Cache Algorithms . 132

6.1.3 Web Browser Suggestions 134

6.1.4 Web Pages . 135

6.1.5 Summary of Predictive Algorithms 137

iii

6.2 AccessRank . 138

6.2.1 AccessRank Score . 138

6.2.2 Time Weighting . 139

6.2.3 Switching Threshold 139

6.3 Converting Logs for Analysis 140

6.3.1 Standardised Log Format 141

6.4 Measures Used to Compare Algorithms 146

6.4.1 Prediction Measures 147

6.4.2 Stability Measures . 148

6.4.3 Data Characterisation Measures 151

6.5 Analysis of Algorithm Performance 151

6.5.1 Results . 152

6.6 Discussion . 167

6.6.1 Improving AccessRank 168

6.6.2 Optimisation Attempts for File Retrieval Predictions . 168

6.6.3 Applications . 170

6.7 Conclusion . 172

IV Improving File Retrieval 174

Chapter 7: Preliminary Design & Evaluation of Improved

Navigation-Based File Retrieval Interfaces 175

7.1 The Performance Impact of Structure 177

7.2 Improved File Navigation: Goals and Interfaces 178

7.2.1 Design Goals . 179

7.2.2 File Navigation Interfaces 181

7.3 Interface Evaluation . 186

7.3.1 Participants and Apparatus 187

7.3.2 Procedure . 188

7.3.3 Experimental Design 190

7.4 Results . 191

7.4.1 Part 1: Spatially Stable Icons 191

7.4.2 Part 2: Maximally Unstable Icons 195

7.4.3 Subjective Results . 197

iv

7.4.4 Characterisation of Use 198

7.5 Discussion and Future Work 199

7.5.1 Combining the Interfaces 200

7.5.2 Interface Refinements and Implementation 201

7.5.3 Limitations . 202

7.6 Conclusion . 205

Chapter 8: Finder Highlights: Design and Evaluation of an

Augmented File Browser 206

8.1 Finder Highlights . 209

8.2 Design and Implementation of Icon Highlights 210

8.2.1 Interface Design . 211

8.2.2 Extending AccessRank for use with Icon Highlights . . 214

8.3 Design and Implementation of Search Directed Navigation . . 219

8.3.1 Interface Design . 219

8.3.2 Search Directed Navigation Algorithm 223

8.4 Field Evaluation of Finder Highlights 233

8.4.1 Procedure . 233

8.4.2 Log File Data Analysis 234

8.4.3 Retrieval Times and Step Times 235

8.4.4 Questionnaire Responses 237

8.5 Design of Unimplemented Techniques and Features 242

8.5.1 Hover Menus . 242

8.5.2 Highlight Edge Indicators 245

8.6 Discussion . 247

8.6.1 Methodology – Lab versus Field 248

8.6.2 Overcoming Barriers to Adoption 249

8.6.3 Predictive Highlighting More Broadly 250

8.6.4 Prediction Versus Interaction 250

8.6.5 Purpose of Stability in Predictions 251

8.6.6 Highlighting Aesthetics and Effectiveness 251

8.7 Conclusion . 251

v

V Discussion, Further Work and Conclusions 253

Chapter 9: Discussion and Further Work 254

9.1 Progress on Research Objectives 254

9.2 Context of This Thesis . 256

9.3 Research Generalisability . 257

9.3.1 Characterisation of File Retrieval 257

9.3.2 AccessRank . 257

9.3.3 Predictive Interfaces 258

9.4 Future Work . 259

9.4.1 Shared Data . 259

9.4.2 Multiple Devices . 260

9.4.3 Changing Paradigms 261

Chapter 10: Conclusion 263

References 266

Appendices 289

Appendix A: Characterisation Study Material 290

Appendix B: Improved File Retrieval Interfaces – Lab Study

Material 298

Appendix C: Improved File Retrieval Interfaces – Field Study

Material 306

vi

List of Figures

1.1 Components of this thesis . 2

2.1 Venn diagram categorisation of retrieval methods 15

2.2 Tensions faced by retrieval methods 16

2.3 File navigation interfaces . 19

2.4 File navigation views in Mac OS X 10.6 20

2.5 Search interfaces . 22

2.6 Cost of errors when using a recommender interface 26

2.7 Interfaces for recent items . 27

2.8 The ‘All My Files’ view in OS X 10.8 29

2.9 Bookmarking features in the Finder in Mac OS X 10.6 30

2.10 Customisable application launching interfaces 30

3.1 Labels in Mac OS X 10.6 . 55

4.1 Simplified class diagram of the FileMonitor plugin 68

5.1 Distribution of files’ retrieval counts 89

5.2 Reuse of ancestors of retrieved files 90

5.3 Frequency rank of files and subfolders within their parent folders 91

5.4 Average structural, absolute retrieval, and incremental retrieval

depths . 97

5.5 Average number of items accessed in folders at each level of

the hierarchy . 97

5.6 Average step times at each level of the hierarchy 102

5.7 Average step times based on the number of steps away from

the target file . 103

5.8 Retrieval methods and their relationships 104

5.9 Radar diagrams for interactions between retrieval methods . . 105

5.10 Retrieval times for Finder views 108

vii

5.11 Number of browsers windows open at the time of navigation

retrievals . 111

5.12 Window lifespans and times between new window and window

close events . 113

5.13 Occurrences of window close events that shortly follow other

window closes . 114

5.14 The combined search usage patterns of participants 117

5.15 Consecutive file management events without a retrieval occur-

ring . 122

6.1 Process to compare ranking algorithms 141

6.2 Percentage of revisitations that are included in a prediction

list of a given size, across three datasets 155

6.3 Percentage of revisitations that are the top match when fil-

tered by a prefix of a given size, across three datasets 155

6.4 Variation in algorithm accuracy for file navigation retrievals

based on the size of the recorded retrieval history 157

6.5 RBO versus Average Rank, averaged over all datasets 159

6.6 RBO versus Percentage Revisitations Predicted, averaged over

all datasets . 159

6.7 Accuracy vs stability for various domains 161

6.8 Accuracy vs stability for file retrievals 162

6.9 The effect of recency and frequency on the probability that an

item will be accessed next . 164

6.10 Expected versus actual retrievals when assuming that Access-

Rank scores determine the probability of revisitation 166

6.11 Mockup of a file browser giving suggestions with and without

a hint . 171

6.12 Mockup of a terminal giving suggestions 172

7.1 Icon Highlights and Hover Menus 182

7.2 Search-based highlighting in OS X System Preferences 184

7.3 Experiment setup showing Search Directed Navigation 185

7.4 Retrieval times by repetition number 192

7.5 Step times during retrieval by depth in the hierarchy 193

viii

7.6 Error rates by repetition number 194

7.7 Task times for retrieval and follow up standard-retrieval phases

after removing the augmentations. Error bars ± 1 st. err. . . . 195

7.8 NASA TLX scores and subjective rankings 197

7.9 Percentage of tasks where SDN and Hover Menus were used,

by repetition number . 198

8.1 High-level architecture of Finder Highlights 210

8.2 Icon Highlights shown in different views 212

8.3 Search Directed Navigation highlights shown in different views 220

8.4 The Finder toolbar’s search field, used to enter the SDN query 222

8.5 The search field, using the placeholder text to indicate the

current search mode . 222

8.6 An overview of how Search Directed Navigation results are

determined . 225

8.7 Example of exhaustive SDN search with items of different pri-

orities . 229

8.8 Non-search retrieval and step times with and without Finder

Highlights . 236

8.9 Edge highlight designs for Icon Highlights 246

9.1 Research context of this thesis 256

ix

List of Tables

2.1 File retrieval methods . 14

2.2 Support for file retrieval features in commercial operating sys-

tems . 17

3.1 Properties that influence retrieval methods in different domains 32

3.2 Summary of studies on file management 43

4.1 Example recent items list comparison 75

4.2 FileMonitor log event descriptions 77

4.3 FileMonitor log event details 79

5.1 Types of content in filenames of retrieved files 94

5.2 Example of how different depth measures change as a result

of navigation actions . 96

5.3 Retrieval methods used during the study period, based on logs 99

5.4 Retrieval methods used by participants, based on interviews . 99

5.5 Use of navigation features in the Finder 109

5.6 Use of file management features in the Finder 121

6.1 Average rank of items in prediction lists 154

6.2 Percentage of the time revisitations were the top prediction of

an algorithm . 154

6.3 RBO values of prediction lists 158

7.1 Properties of retrieval methods discussed in this chapter . . . 201

8.1 Participant agreement with statements about Icon Highlights

and Search Directed Navigation 238

x

Chapter I

Introduction

Retrieving files is an extremely common tasks for all computer users,

performed many times a day [102]. Accordingly, a variety of techniques

have been developed to assist with this task, including sophisticated search

tools and ‘Open Recent’ menus. However, navigating to files by traversing

through a file hierarchy in a file browser remains the most common method

to retrieve files [25]. Nevertheless, navigation is often slow, with retrievals

taking an average of 12-17 seconds each [30].

While the tools available to retrieve files have advanced, file hierarchies

have become larger. As an example, the original Macintosh File System,

introduced in 1984, supported a maximum of 4094 files and two hierarchy

levels, while its successor, Hierarchical File System (HFS), supported 65535

files. In comparison, modern personal computers commonly hold millions of

files. While a considerable proportion of these files are system files or appli-

cation data that users do not normally interact with, the increasing hierarchy

size nevertheless increases the importance of efficient retrieval mechanisms.

Advances in the user interfaces used to retrieve files have provided some

assistance to users. Search tools have become faster and more sophisticated,

while other features facilitate access to recent and frequent files. Improve-

ments have also been made to file browsers, which is particularly important

given user preferences towards navigation. For example, aliases, shortcuts

and symbolic links allow users to create multiple paths to a single location.

Many file browsers allow users to apply tags or labels to files. More recently,

features such as virtual folders and saved searches present dynamic content

based on pre-determined rules. However, all these file browser features re-

quire organisational effort in advance, while research has shown that users

dislike manual organisational strategies [155, 52]. Difficulties in imagining

1

future retrieval requirements can also make organisation overwhelming [185].

Considering the frequency with which people retrieve files, any improve-

ments in retrieval times have the potential to be hugely beneficial. However,

surprisingly little is known about how users retrieve their files and why they

do so in a particular way. Such understanding is important to the design of

any new or improved techniques that aim to reduce file retrieval times.

This thesis is therefore focused on understanding and improving personal

file retrieval. This objective is split into two parts: first, understanding

how people currently retrieve their files, and second, creating new interfaces

(including their underlying algorithms) to assist users in retrieving their files

more efficiently.

Characterisation of
File Retrieval

Improving Personal File Retrieval

Prediction
Algorithms

Improved Retrieval
Interfaces

Understanding Personal File Retrieval

Logging Tools

Evaluation Evaluation

Figure 1.1: Components of this thesis

These goals are illustrated in Figure 1.1. The first goal, understanding

personal file retrieval, was achieved with the creation of a logging tool that

unobtrusively monitors file retrieval behaviour. This logging tool was in-

stalled on 26 participants’ computers for four weeks, and analysis of the logs

produced by this study, combined with interview responses, allowed for a

comprehensive characterisation of personal file retrieval. This characterisa-

tion helps to answer important questions such as when and why users choose

to use particular retrieval methods, as well as potential areas for improve-

ment. The second goal, improving personal file retrieval, was achieved by

building on the knowledge gained from this characterisation to provide three

new techniques that augment the standard navigation interface to facilitate

2

faster file retrievals: Icon Highlights, Search Directed Navigation and Hover

Menus. These techniques also use advanced back-end predictive algorithms

described as part of this thesis.

The remainder of this chapter formally defines the research goals, methods

and primary research contributions of this thesis, followed by an outline of

the content of the thesis. It concludes with a glossary of common terms used

throughout the thesis.

1.1 Problem Statement

The two primary goals of this thesis are to understand and improve personal

file retrieval. These two goals are interlinked: in order to improve file retrieval

tools, it is important to first understand how users currently retrieve their

files and the deficiencies in current methods.

The two primary goals are further broken down into the following subgoals

that aim to understand and then improve personal file retrieval. Criteria for

judging their successful completion are also provided.

1. Understand the methods with which users can currently retrieve files,

and understand retrieval behaviour in the context of existing knowledge

about file management. Successful completion of this goal will result

in a description and categorisation of commonly available file retrieval

methods and an analysis of how people use them based on existing

literature.

2. Form an empirical characterisation of file retrieval behaviour based on

how users retrieve their files in a natural setting. Successful completion

of this goal will result in a complete description of retrieval behaviour

over a range of retrieval methods, and include both precise quantitative

analysis as well as qualitative comments from participants that help to

frame the quantitative results.

3. Develop and evaluate a prediction algorithm that can accurately pre-

dict future user actions, including file retrievals, while also providing

a relatively stable set of results to facilitate spatial stability in user

3

interfaces that use it. This goal will be successful if this new algorithm

outperforms existing algorithms when considering both the accuracy

and stability of results.

4. Using the knowledge gained from the first two subgoals, and predic-

tion algorithms from the third subgoal, design, implement and evaluate

improved file retrieval methods that allow users to retrieve their files

more efficiently. Successful completion of this goal will result in re-

trieval methods that empirically and subjectively outperform existing

methods in a natural setting.

1.2 Research Approach

File retrieval is a frequent activity that occurs both with paper files and in a

range of electronic settings. This thesis is focused on electronic file retrieval

performed on personal computers using a hierarchical file structure.

The literature provides a broad background of file management activi-

ties. This prior work is reviewed, along with that of other domains where

users must also organise and retrieve large amounts of data, such as email

management and webpage retrieval. Comparing properties of these domains,

and discussing how differences in these properties affect organisation and re-

trieval behaviour in each, highlights the challenges that are unique to the file

retrieval domain.

This work aims to further understand these challenges and describe more

precisely the ways in which users retrieve their files. Previous researchers

have described file retrieval by conducting interviews, observing users inter-

acting with their files (in person or using video), using questionnaires and

performing lab experiments. While all these approaches are valuable, none

of them allow for precise, objective, externally valid quantitative data on

retrieval behaviour: interviews provide qualitative data only; observation is

time consuming, does not allow for precise measurement, and participants

may act differently when they know they are being observed; questionnaires

provide subjective data only; and it is difficult to ensure external validity

when performing lab experiments.

4

To overcome this problem, a logging tool is implemented that monitors

file retrieval behaviour in OS X. This tool is deployed in a four-week longi-

tudinal study, providing precise, objective quantitative data on file retrieval.

Participants reported that they quickly forgot it was running, suggesting a

high degree of external validity.

The main limitation of logging tools is that they only report what users

have done, not why they did it. To ease this limitation, the file retrieval logs

are supplemented by open-ended interviews that allow users to put their file

retrieval behaviour in context.

The data gained from this improved understanding of file retrieval be-

haviour helps to shape the design of new file retrieval interfaces. These

interfaces rely on new prediction algorithms, which are evaluated and cali-

brated using simulations. By using real user interaction logs from a variety of

domains, these simulations provide a fast and accurate way of quantitatively

assessing the algorithms’ predictive power.

Three new file retrieval interfaces are developed, which are initially eval-

uated with a lab study that uses simulated file retrieval tasks to assess their

potential performance and the relative benefits of each interface. This allows

for precise analysis of their strengths and weaknesses, such as the differing

effect of spatial stability and visit counts on retrieval times for each interface.

Although the tasks and experimental system are designed to approxi-

mate real world retrieval behaviour, for example by using similar folder sizes

and retrieval depths as have been found in previous research, there are still

substantial differences between simulated file retrievals in a lab setting and

real-world file retrieval behaviour. The potential performance improvements

shown by the lab study are therefore further tested by the development of

Finder Highlights, which includes fully functional versions of two of the new

retrieval interfaces as part of a popular file browser. Finder Highlights is

then evaluated in a four-week longitudinal field study, demonstrating how

the interfaces are used in natural settings. The combination of lab and field

studies therefore illustrates both the precise strengths and weaknesses of

each interface, as well as whether they are successful overall at improving

file retrieval. Both the lab and field studies are complemented with surveys,

providing subjective feedback from participants.

5

1.3 Research Contributions

This thesis makes six primary contributions to the research knowledge of

personal file retrieval. These are:

1. A review of file retrieval methods and file management. This review al-

lows other researchers to more quickly assess current retrieval methods

and opportunities for further research.

2. The development of FileMonitor, a tool that logs file retrieval behaviour

on OS X. FileMonitor enables accurate and automated collection of

large amounts of file retrieval data, enabling researchers to charac-

terise file retrieval or collect data with which to evaluate file retrieval

interfaces or prediction algorithms. Previously, file retrieval research

was limited to other techniques such as surveys, lab studies or video

analysis, which provides a more limited view of overall file retrieval

behaviour. The description of FileMonitor’s implementation is also of

use for researchers developing similar logging tools.

3. An empirical characterisation of file retrieval behaviour. FileMonitor

was installed on the personal computers of 26 participants for a four

week period, followed by 30 minute interviews about their file retrieval

and organisation behaviour. FileMonitor logs and interview responses

provide a detailed characterisation of file retrieval behaviour, with spe-

cific analyses of file revisitation, filename content, hierarchy depth, in-

teractions between retrieval methods, use of different file browser views,

use of navigation features, file browser window reuse, search behaviour,

use of other retrieval methods, and file management tasks. Findings

from this characterisation have implications for both the design and

evaluation of file retrieval tools.

4. The development and evaluation of AccessRank, a prediction algorithm

designed for use in a range of user interfaces. AccessRank is designed

with both the accuracy and stability of results in mind, with stability

6

particularly important in user interfaces where spatially stable inter-

faces allow users to utilise their spatial memory to improve perfor-

mance. Simulations on a range of datasets compare various configura-

tions of AccessRank against existing algorithms, showing that Access-

Rank outperforms existing algorithms when considering the combina-

tion of accuracy and stability, and also demonstrating the strengths of

different algorithms across different datasets.

5. The design and evaluation of three prototype interfaces that augment a

standard file browser to aid file retrieval tasks: Icon Highlights, Search

Directed Navigation, and Hover Menus. Icon Highlights facilitate visual

search by highlighting items that are likely to be accessed next, using

the AccessRank prediction algorithm. Hover Menus allow users to re-

duce the number of navigation steps to reach target items by providing

a menu containing shortcuts to likely files and folders within a particu-

lar folder. Search Directed Navigation highlights items that match, or

contain items that match a filename query, bridging the gap between

navigation and search. A lab study of 16 participants shows that each

improve file retrieval performance and are subjectively preferred over

a standard browser.

6. The design and evaluation of fully functional implementations of Icon

Highlights and Search Directed Navigation, implemented as part of a

plugin to a real-world file browser and evaluated in a four-week field

study with 19 participants. The implementations include design and

algorithmic enhancements to enable the techniques to work in a real-

world setting, including a specialised version of AccessRank to predict

future file retrievals for Icon Highlights, and a search algorithm to de-

termine filename matches for Search Directed Navigation. Results of

a four-week field study confirm the performance benefits provided by

Icon Highlights and highlight the advantages that field studies can offer

over lab studies.

7

1.4 Structure of the Thesis

The thesis is divided into five parts: a review of the current knowledge about

file organisation and retrieval; an empirical characterisation of file retrieval;

the development of prediction algorithms for user interfaces; new interfaces to

improve navigation-based file retrieval; and a discussion of the topics raised

in this thesis and directions for future work.

To begin, Part I provides an overview of existing knowledge of file re-

trieval. Chapter 2 describes current file retrieval methods, including navi-

gation, search, and recent items interfaces, and discusses the properties of

each. The chapter has a particular focus on widely used commercial sys-

tems. Chapter 3 takes a more user-centric focus on file management, re-

viewing existing literature on how users organise their hierarchies and use

the retrieval methods described in the preceding chapter. It also describes

how file management differs from similar domains, such as email and book-

mark management, and discusses how these differences affect relative use of

different retrieval methods.

Part II is focused on characterising current file retrieval behaviour. Un-

derstanding how users currently retrieve their files is an important first step

to designing any improved file retrieval tool. This research is divided into

two parts, described below: the first describes the FileMonitor logging tool,

a tool that monitors file retrieval behaviour, and the second describes the re-

sults of a four-week field study using FileMonitor, providing a comprehensive

characterisation of file retrieval.

FileMonitor is described in Chapter 4. FileMonitor runs on OS X, and

silently monitors usage information about three types of interaction: Finder

usage, describing detailed interaction within OS X’s primary file browser,

such as opening folders, renaming files, and creating new windows; Spotlight

usage, detailing interaction with OS X’s system-wide search menu, including

query changes and results selections; and external file retrievals, providing

the paths of all files opened with any method not directly observed (such

as ‘Open Recent’ menus). The chapter describes the implementation de-

tails of FileMonitor, as well as comprehensive details about the content of

FileMonitor log files.

8

Chapter 5 describes the results of a four-week field study in which File-

Monitor was deployed. Participants ran FileMonitor on their personal com-

puters and took part in 30 minute interviews following the study. Log analy-

sis, combined with participant comments from interviews, provides a detailed

characterisation of file retrieval. Broadly, the characterisation includes results

about the files that participants retrieved, such as revisitation patterns, file

types, and hierarchy depths, as well as results about the methods used to

retrieve files, including reasons for using particular methods, interaction be-

tween retrieval techniques, and in depth analysis of file navigation within the

file browser.

Part III steps back from file retrieval to examine the larger topic of pre-

dicting future user interactions based on their usage history. While relevant

to predicting future file retrievals, the focus is on predictions that are not

tied to a specific domain. Chapter 6 describes AccessRank, a new prediction

algorithm designed for use in user interfaces, where accuracy and the stabil-

ity of results over time are both important. The chapter first summarises

existing prediction algorithms, then describes AccessRank, a framework for

evaluating prediction algorithms for use in user interfaces, and the results of

a simulation showing that AccessRank produces a superior combination of

accuracy and stability in a range of datasets.

Part IV is focused on the second goal of the thesis – improving personal

file retrieval. Building on findings from Parts II and III, it introduces new

file navigation augmentations to reduce file retrieval times.

Chapter 7 introduces three improved file navigation techniques: Icon

Highlights, Hover Menus and Search Directed Navigation. An initial lab

study demonstrates that the techniques have the potential to substantially

reduce file retrieval times, particularly when the file browser provides a low

degree of spatial stability.

This work is extended in Chapter 8 to investigate whether the potential

improvements found in the initial lab study are realised in real-world retrieval

tasks. The chapter begins by describing Finder Highlights, a plugin for the

OS X Finder that adds support for Icon Highlights and Search Directed

Navigation. Finder Highlights includes refined interface designs and back-

end algorithms for the two techniques. In particular, AccessRank is extended

9

to better support hierarchical file data for Icon Highlights predictions, and a

new search algorithm is described to support quick highlighting for use with

Search Directed Navigation. The chapter also introduces Benefit Weighted

AccessRank to support predictions for Hover Menus, although Hover Menus

is not itself implemented as part of Finder Highlights. The chapter concludes

by reporting the results of a four-week field study that confirms the effec-

tiveness of Icon Highlights and Search Directed Navigation, but finds poor

adoption rates for Search Directed Navigation. The study also highlights the

potential advantages that field studies offer over lab studies, suggesting that

greater use of field studies in HCI would be beneficial.

Part V discusses the broader findings of the research presented in this

thesis and provides direction for future work.

1.5 Glossary of Terms

While terms are rarely strictly defined in the field of human computer inter-

action, this section outlines the definitions used within this thesis.

1.5.1 Files

A file is a collection of data with a specific location in the file system, and

with a specified filename. A document is normally associated with a single

file, and can be created, edited, or viewed in an applicable application. Other

types of files include, for example, applications and system files.

A folder is a container in the file system which can contain other files or

folders. A folder may also be referred to as a directory. More generically, an

item in the file system may refer to either a file or a folder.

1.5.2 File structure

A file hierarchy refers to the structure of the file system. The file hierarchy

may be represented as a tree, with the root of the file hierarchy corresponding

to the root of the tree. The nodes in the tree are the files and folders in the

file hierarchy, with leaf nodes corresponding to the files. Files or folders may

also be referred to as nodes in the context of other data structures, such as

queues.

10

Portions of the file hierarchy, rooted at a particular folder, are referred to

as either a subtree or sub-hierarchy.

1.5.3 Opening files

A retrieval is any direct user action that results in a file being opened, for

example double clicking its icon in a file browser, selecting it from a menu

of recent items, or launching an application. An application opening its own

datafile in the background does not count as a retrieval, since it is not in

response to a direct user action.

An access is an equivalent term to a retrieval, but is domain independent.

Where the term retrieval is used for only some domains such as personal files,

an access may also refer to a web page visit in the domain of web browsers,

a window switch in the domain of window management, or any other use of

an item in other domains. An access may also be referred to as a visit. A

revisitation refers to accessing an item that has previously been accessed.

1.5.4 Retrieval methods

Navigation or browsing refer to any movement through the file hierarchy by

traversing through a series of folders. This is typically performed through a

file browser, such as File Explorer on Microsoft Windows or the Finder on

OS X. Search refers to an interface that requires a text query before showing

any candidate items.

These retrieval methods, and others, are described in detail in Chapter 2.

1.5.5 Scores

An algorithm may product numerical data for items for use for comparison

purposes. This may be either a score or a weight, however a weight is nor-

mally used for a preliminary or partial calculation that leads, or can lead, to

the calculation of a final score.

11

Part I

File Retrieval and Retrieval

Tools

12

Chapter II

File Retrieval Methods

Files can be accessed in a range of contexts: looking for a photo taken

several years ago, opening a document from an active project at the start

of a day, or retrieving a previous version of a currently open document, to

give a few examples. Unsurprisingly, considering these diverse contexts and

the importance of file retrieval, there are a range of different file retrieval

methods offered by modern operating systems.

To provide context to this thesis, this chapter describes the kinds of re-

trieval methods commonly available to users, with examples of specific im-

plementations for each. It begins by providing a classification of retrieval

methods. This is followed by detailed descriptions of each method. Although

reference is made to some research systems, the chapter is predominately fo-

cused on techniques deployed in commercial systems – file retrieval literature

is more extensively reviewed in Chapter 3.

2.1 Classification of Retrieval Methods

For the purposes of this thesis, file retrieval is defined as any process which

results in accessing a document, application, or other file on a computer in

response to an explicit user request. Table 2.1 categorises file retrieval meth-

ods at a high level based on two properties: whether content is presented

in a hierarchical fashion, and whether the underlying content is static, auto-

matically generated based on algorithms or defined properties, or generated

based on a specific query or other user input.

File navigation – the act of traversing through the file hierarchy to reach

a target file – is the most frequently used retrieval method [25]. Although the

hierarchy changes over time as files and folders are created, deleted, moved

13

Hierarchy No hierarchy
Static content Navigation Bookmarks

Dynamic content
(automatically generated)

Saved search Recommender interfaces

Dynamic content
(manually generated)

Faceted search Search

Table 2.1: File retrieval methods

or renamed, the content is otherwise completely predictable, in which case

the same navigation steps will yield the same files. Navigation is normally

performed in a dedicated file browser, however application ‘Open’ dialogs

typically present a similar interface.

Search interfaces provide dynamic results based on a user query and usu-

ally present results in a flat list. Modern file search interfaces allow users

to search based on a large number of attributes, such as filename, content,

type, author, tags or modification date. Some third party launcher tools

allow users to quickly open items in response to a short input string, and

are often specialised for certain types of items, such as applications. These

essentially act as a specialised form of search.

Some systems allow searches to be saved as saved searches, where the

search results are generated implicitly on each successive activation, without

the need to re-enter a query. While these search results are still presented

in linear form, these saved searches act like folders themselves and can be

integrated with navigation as a single navigation step as part of a longer

traversal.

File browsers, as well as system-wide features such as the Windows taskbar

and the OS X Dock, offer bookmarking features to manually create quick

shortcuts for applications, folders, or documents. These shortcuts provide

a way to bypass the hierarchy for frequent items. In other cases, systems

use algorithms to predict which items are most likely to be retrieved next.

These are referred to in this thesis as recommender interfaces, with the most

common form being the ‘Open Recent’ menus that are available in most

applications.

14

Techniques that appear to be very different often have surprising simi-

larities. For example, search and navigation are shown at opposite positions

in Table 2.1. However, consider a file system where every file has a series of

tags, representing their ancestor folder names. Navigation can then be seen

as a highly specialised form of search where the search query is an ordered

sequence of these search tags. The difference lies in the techniques’ presen-

tation methods, which have a large effect on their use cases; for example, by

presenting the possible options at each step, navigation offers a crucial re-

minding feature [19] that removes the requirement for users to have a perfect

memory of file locations, filenames or even which files exist.

The benefits of this reminding feature and the flexibility of search have in-

spired systems that use faceted search (e.g., [14]). Faceted search allows users

to branch on arbitrary attribute values, providing navigation-like interfaces

to an underlying search algorithm.

R

Query
interfaces

Dynamic
interfaces

Retrieval
interfaces

Figure 2.1: Venn diagram categorisation of retrieval methods

Figure 2.1 presents an alternate categorisation of retrieval methods, loosely

based on the property of static versus dynamic content presented above. Dy-

namic interfaces include all interfaces that present a dynamically generated

subset of results, in response to a set of either implicit or explicit param-

eters, and are a subset of retrieval interfaces. Dynamic interfaces include

those such as ‘Open Recent’ menus (with an implicit parameter of recently

15

accessed items) as well as search interfaces (with explicit search parameters).

Those dynamic interfaces that require an explicit query, such as search, are

further defined as query interfaces.

As retrieval methods become more specialised in this model, the set of

items they present becomes potentially more relevant and likely to have the

target item readily available. However, there is a tension between specificity,

accuracy and the amount of active effort required from the user to correctly

configure the interface. This tension is illustrated in Figure 2.2: navigation

has high accuracy (the target is always present in the hierarchy) and low

cognitive effort (no explicit query is required, and navigation’s reminding

ability reduces cognitive load [19]) but is not specific (all files are available);

search is accurate (results match a tailored search query) and specific (only

items that match the query are presented) but requires more effort (to de-

vise a suitable query); and automatic recommender interfaces such as ‘Open

Recent’ menus are specific (small set of likely candidates) and require little

effort (no query needs to be devised) but are inaccurate (as results are not

tailored to a task-specific query).

Accuracy

Specificity
Low

Cognitive
Effort

Search

Open Recent

Na
vig

at
io

n

Figure 2.2: Tensions faced by retrieval methods

2.2 Support for File Retrieval Features

Modern operating systems support a diverse set of file retrieval methods and

features. Table 2.2 summarises support for these in three popular operating

systems (Windows 7, OS X 10.8 and Fedora 18), indicating broad similarities

16

between the methods available on each system. The remainder of this chapter

describes details of this support, with sections on each of the main types

of retrieval methods: navigation, search (including saved searches, faceted

search, search-based research systems and launcher utilities), recommender

interfaces and file bookmarking tools.

Retrieval feature Windows 7 OS X 10.8 Fedora 18 w/ Cin-

namon and nemo

Navigation

Folder hierarchies X X X
Shortcuts X X X
Back and forward buttons X X X
Recent folders X(where files opened) X(all navigated to) 7

Manually arrange items X(desktop only) X(desktop/icon view) X(desktop/icon view)

Automatically sort items X X X
Editable path field X 7 X
Colour labels 7 X 7

Keywords X X 7

Views

Icon view X X X
List/details view X X X
Tree view X(sidebar only) X X(sidebar only)

Column view 7 X 7

Dynamic locations

Saved searches X X X
Multiple folders in single view X(libraries) 7 7

Previews

In-icon preview X X X
Same window preview X X 7

New window preview 7 X 7

Editable preview 7 7 7

Search

Integration in file browser X X X
System-wide search menu X X X
Metadata searches X X ± (limited)

Boolean searches X X 7

Search in open and save dialogs X X ±
Recommender interfaces

Recent documents (per app) X X X
Recent documents (system-wide) X(not by default) X X
Recent apps (system-wide) 7 X 7

Non-recency recommendations X(applications only) 7 7

Recent places in open dialogs X X X(save dialog only)

Bookmarks

System-wide app bookmarks X(taskbar) X(Dock) X(taskbar)

System-wide doc bookmarks ± (tied to app) X(Dock) 7

System-wide folder bookmarks ± (tied to Explorer) X(Dock) X(Cinnamon menu)

Bookmarks in file browser X X X
Bookmarks in open dialogs X X X

Table 2.2: Support for file retrieval features in commercial operating systems

17

2.3 File Navigation

Navigation involves recursively opening folders in a file hierarchy until reach-

ing a target file. Sometimes the user will have perfect recall of a target’s

location, and each step of the hierarchy traversal involves only scanning the

view for an intermediary target and selecting it. Other times, the contents of

each intermediary folder will provide reminders that assist users in reaching a

target. Lansdale [121] identified two distinct psychological processes involved

in navigation retrievals: recall-directed search, followed by recognition-based

scanning. Recall-directed search involves using memory about the target item

to get close to the document, while recognition-based scanning is the fallback

option users resort to when recall fails, and uses reminders provided from

recognising files and folders to help complete the retrieval.

Navigation interfaces have changed substantially since their inception.

Before the advent of the graphical user interface, navigation occurred only

in a command line interface (Figure 2.3a). One of the first graphical file

managers, Finder 1.0, is shown in Figure 2.3b. While it supported folders,

they could only exist at the top level of the hierarchy, and did not appear in

‘Open’ dialogs (where all files were shown in a flat list).

Modern file managers provide a range of view types and navigation fea-

tures. Figure 2.3c shows the Details view of Windows 7, with an expandable

tree view on the left. Selecting a folder in the left pane shows its contents

in the right pane. Additional features include an address field, navigation

buttons and a preview of the selected item.

Figure 2.4 shows four view types in the Finder on OS X. Icon view displays

items in a grid, similar to the view used in the original Finder. Items can

be manually moved to custom locations, or automatically sorted, giving this

view more flexibility than others. List view is similar to the Details view

of Windows Explorer, except that folders can be expanded or collapsed like

in the tree view in the left pane of Windows Explorer (Figure 2.3c). Both

List view and Details view feature sortable columns for various attributes.

Column view adds a new pane to the right for each folder that is selected,

showing the contents of the selected folder. When a file is selected, an extra

column shows a preview along with various file metadata. Cover Flow view

18

(a) File navigation using a command line (b) Finder 1.0 (1983)1

(c) Windows Explorer in Windows 7, showing folders on the left with
details view on the right

Figure 2.3: File navigation interfaces

is similar to List view, but shows file previews in an extra pane at the top of

the window.

The most common types of modern file managers are spatial and navi-

gational file managers. Spatial file managers, such as Finder versions 5 to

9, use a metaphor representing files and folders as physical objects. Browser

windows are tied to a particular folder; opening a folder will open a separate

1 Image adapted from http://en.wikipedia.org/w/index.php?title=File:
Finder10.png&oldid=467701828.

19

http://en.wikipedia.org/w/index.php?title=File:Finder10.png&oldid=467701828
http://en.wikipedia.org/w/index.php?title=File:Finder10.png&oldid=467701828

(a) Icon view (b) List view

(c) Column view (d) Cover Flow view

Figure 2.4: File navigation views in Mac OS X 10.6

window corresponding to that folder, and only one window can exist for each

folder. Folders also preserve their spatial state, such as window position and

size.

Conversely, navigational file managers, such as File Explorer on Win-

dows and the Finder on OS X, use a navigational metaphor similar to a web

browser. Users can navigate between different folders within a single browser

window, and there are typically navigational controls such as back and for-

ward buttons. Navigational file managers allow multiple windows to show

the same location.

20

2.4 Search

Search interfaces are incorporated into most modern operating systems, such

as Windows Search [139] (Figures 2.5a and 2.5b) and OS X’s Spotlight [7]

(Figures 2.5c and 2.5d).

Though early search tools only searched filenames or simple attributes,

many modern tools also search file content and a wide range of file metadata

[162]. Current versions of both Windows and OS X provide at least two

search interfaces: one showing a list of results in a menu, broken down by

type and searching the entire system (Figures 2.5a and 2.5c), and another

embedded in the file manager that can search specific locations and where

the presentation of the results can be modified (Figures 2.5b and 2.5d).

Raskin [154] described two strategies for search interfaces: delimited

search and incremental search. Delimited search involves the user speci-

fying the entire search pattern before performing an action (such as pressing

the enter key) to initiate the search. Delimited search is common in editor

applications and on the internet. In contrast, incremental search systems

begin searching immediately when the user starts typing, further refining

the search results once more of the search pattern has been specified. Raskin

identified a number of advantages of incremental search over delimited search;

for example, the user need not guess how much of the pattern is required to

locate their target, as they can observe the results in real time as they type.

Additionally, the user will immediately know if their pattern produces no re-

sults or if it contains an error, without needing to spend more time entering

a complete search pattern or waiting for a search to complete. While incre-

mental search has traditionally been less common than delimited search, its

numerous usability advantages have led to its adoption in a larger number

of interfaces, and it is used with all the search interfaces in Figure 2.5.

Although search is most commonly associated with interfaces like those

described above, variations on search interfaces include saved searches, faceted

search, launcher utilities and research systems designed as replacements for

file hierarchies. These are described below.

21

(a) Searching in the Start menu
on Windows 7

(b) Searching in Windows Explorer on Windows 7

(c) Spotlight menu on Mac
OS X 10.6

(d) Searching in the Finder on Mac OS X 10.6

Figure 2.5: Search interfaces

2.4.1 Saved Searches

Many modern file browsers, such as Windows and OS X, include the ability

to save searches. The saved search (also known as Smart Folders on OS

X) includes details about the search configuration, rather than the set of

results, meaning that subsequent accesses produce up-to-date results that

incorporate changes to files since the last time the search was used.

22

Windows 7 also includes support for libraries. Libraries are configured

with multiple folder locations, and accessing them shows the content of all

these locations together. While not as flexible as saved searches, libraries

provide another means of providing dynamic content without the constraints

of a strict tree structure.

2.4.2 Faceted Search

Search involves substantially different psychological processes than naviga-

tion. While navigation is predominantly recognition-driven, search is primar-

ily recall-driven as it simply presents a subset of data in response to a search

query.

Faceted search [114, 151, 91] aims to bridge this gap, allowing users to

progressively filter a dataset by branching on attribute values. For example,

starting at root level, a user could branch on files of type ‘presentation’, then

branch again on files modified today, and then choose the target item from

the resulting list. This approach improves flexibility by providing multiple

paths to each item. Additionally, it solves a limitation of search by allowing

users to explore a dataset; Koren et al. [114] state that “While conventional

keyword search queries no doubt have their place, they are not very conducive

to exploration, since they require the user to possess some knowledge about

the contents of the file system and relevant files in order to issue effective

queries”.

While faceted search is common on the web (e.g., [151, 90, 187]), it has

not been adopted in any mainstream file retrieval tools. However, several

researchers have created specialised file systems designed for faceted search.

LISFS, or Logical Information System File System [149], uses logical formu-

las to filter data based on both intrinsic and extrinsic properties of objects.

Similarly, Gifford et al. [79] describe a semantic file system that uses vir-

tual directories to filter by attribute values. Intrinsic properties are com-

puted from objects’ content, while extrinsic properties are provided by the

user. XMLFS [14] is a file system specifically designed for XML files, which

branches on XML attributes in any order.

23

2.4.3 Research Systems

Many search-based systems have been proposed as alternatives to hierar-

chical file systems, typically to address deficiencies such as requirements to

maintain a folder hierarchy and to store each file in a unique location. Sev-

eral of these systems are heavily based on time attributes, demoting the

importance of location. For example, Lifestreams [72] uses a timeline as its

underlying metaphor. ‘Streams’ of files, ordered by time, can be searched

to create smaller substreams. Lifestreams is based on a number of princi-

ples and observations, including that filenames and locations should not be

required, documents should belong in as many places as seems reasonable,

computers should make ‘reminding’ convenient and that systems should be

able to summarise large groups of related documents in a concise overview.

MyLifeBits [77] is also heavily based on time attributes and is intended as

a replacement for a file hierarchy. It focuses heavily on multimedia files and

support for rich annotations. It uses a range of visualisations, particularly

those based on time.

In TimeSpace [115], users create a set of activities. A primary view

shows an overview of these activities, with recent files visible within each.

An activity view shows all the files in a particular activity, ordered by time

in the x-axis, and by type in the y-axis. Users have some flexibility to move

items slightly in order to group related items together.

Placeless Documents [57] focuses on user-derived rather than system-

derived properties. It assumes documents will be used by many users, and

allows people to add personal properties specific to them. It also distin-

guishes between organisation for the purposes of grouping related files and

document management for other purposes such as backup and sharing, not-

ing that existing hierarchy systems assume one hierarchy can suit both pur-

poses. Documents can have active properties containing code to achieve these

goals, for example to backup, summarise the document after changes, or to

log document accesses. Presto [58] is a prototype implementation of part of

the functionality of Placeless Documents. It uses combinations of queries,

inclusion lists and exclusion lists to return document collections.

Stuff I’ve Seen [61] is a search system focused on retrieving previously

24

accessed documents. It gives particular emphasis to filtering and sorting by

the date documents were modified, and integrates files, email messages and

web pages into its results. A precursor study to the Stuff I’ve Seen system

found that the inclusion of landmarks on a timeline reduced retrieval times

compared to a normal timeline that only provides dates [157].

Phlat [54] acknowledges the advantages of recognition over recall-based

interfaces, and attempts to combine some of the benefits of navigation and

search. After providing an initial text query, a range of filters can be used

to iteratively filter results. File management events can be performed within

search results – a feature lacking in most search interfaces.

Timescape [156] aims to replace the traditional file hierarchy by taking

incremental snapshots of the file system. Users can specify a particular time,

and they are presented with a view of what the desktop looked like at that

time. The design encourages users to delete information that is not related to

a current task, but allows users to retrieve deleted information by returning

to an earlier snapshot. Users can also travel to a future time, for example

to set reminders. While Timescape is designed as a document organisation

system, it has many similarities to OS X’s Time Machine backup feature.

While these systems are potentially beneficial, most require fundamental,

potentially disruptive changes in users’ workflows [121], and they have not

been shown to be superior to existing hierarchy-based systems [35]. Never-

theless, they provide interesting insights into potential future directions for

file retrieval interfaces.

2.4.4 Launchers

A number of third party launcher tools include functionality to type a query

or command in order to quickly retrieve files (e.g., [31, 83, 100, 148, 161]).

These tools – which often offer integration with a range of services, of which

file retrieval is just one – are generally activated by a hotkey, after which users

can type a few letters from a filename to launch the corresponding item or

view a list of candidates. However, they are often restricted to certain types

of files, such as applications, or data sources, such as recent items. As a

result, they are optimised for certain subsets of files, and cannot usually be

25

used for all file retrievals.

Aceituno and Roussel [2] describe the Hotkey Palette, which allows users

to assign hotkeys to particular files. The Hotkey Palette supports both global

and contextual hotkeys. With contextual hotkeys, the hotkey is available

only when a particular project is currently active, inferred by the active

document’s path. This feature allows the same hotkey to launch different

files based on the current context.

2.5 Recommender Interfaces

Recommender interfaces automatically select a subset of files to present as

candidate items to the user. The most common of these consider recency or

frequency to determine their content. These interfaces are typically highly

efficient for files that are contained within the subset, but of no use for files

that are not. They work best when users can accurately predict whether an

item will be in the subset; there is a high cost when these user predictions

are incorrect, as illustrated in Figure 2.6.

Time with specialist interface Time with generic interface

Time with generic interface Cost of error

Time with specialist interface

Time with generic interface

Cost of error

Type I error
(false positive)

Type II error
(false negative)

Figure 2.6: Cost of errors when attempting to use a recommender interface
when the target item is not present (type I error for the hypothesis that use
of the interface will be successful) and when not using it when it is present
(type II error). Comparative task times are illustrative only.

Recommender interfaces differ from each other in which items they present,

as well as how they present them – for example, how they are sorted or organ-

ised. The choice of both the selection algorithm and presentation method are

important in reducing the probability of errors and allowing users to quickly

determine if a target item is present.

The most common form of recommender interfaces are Open Recent menus

(e.g., Figure 2.7a). Though they are sometimes presented in different forms

26

(a) Application’s Open Recent menu (b) Recent Items menu in OS X’s Apple menu

(c) Document Gallery in Microsoft Office for Mac 2011,
which shows recent documents

(d) Start menu in Windows 7

Figure 2.7: Interfaces for recent items

– the Word Document Gallery (Figure 2.7c) providing one example – they

all allow quick access to recent items and are present in most document-

based applications. While recency may not be the most accurate predictor,

it allows for a relatively high degree of predictability for users, since users

will generally have a good memory of which files they have most recently

interacted with.

OS X also provides a system-wide recent items menu (Figure 2.7b). It

differs from the Open Recent menu in several ways: (1) it includes items

opened in any application; (2) it includes separate lists for applications, doc-

uments, and servers, rather than documents only; and (3) it sorts items in

alphabetical order, rather than by recency as in Open Recent menus. This

27

last difference is perhaps motivated by the difference in context; with users

often involved with multiple projects simultaneously, it may be difficult to

remember the relative order of document accesses across multiple applica-

tions, whereas this task might be easier in a single application where there is

a lower probability of interleaving tasks. In other words, the easiest attribute

for scanning the lists for a target item likely differs based on context, with

recency easiest within a single application, and filename in a global context.

Windows 7 also includes a global recent items list in the Start menu (Fig-

ure 2.7d, submenu visible on right), although it is not available by default

and must be specifically enabled. The Start menu also includes a list of

suggested applications on its left side, determined by an algorithm that in-

corporates both recency and frequency. This difference in selection method

may again be inspired by context. Selecting items based on a combination of

recency and frequency is likely to improve the probability that a target ap-

plication is present in comparison to a pure recency algorithm, however this

greater prediction accuracy might come at a cost of lower predictability for

users – the use of a more complex algorithm means that users cannot easily

guess whether a particular item will be included. Normally, this reduction

in predictability would have a considerable cost (see Figure 2.6). However,

the suggested applications appear in the same context that applications may

ordinarily be accessed – accompanied by an “All Programs” submenu and

search field – greatly reducing the cost of an error. With this lower error cost,

the increase in prediction accuracy may outweigh the loss in predictability.

As another recommender interface, OS X provides a special “All My

Files” view in Finder (Figure 2.8). By default, it categorises all the user’s

documents by type, sorting them by recency within each type. This effec-

tively acts as a set of system-wide recent items lists for each document type.

2.6 Bookmarks

Many file retrieval tools include features that allow users to manually specify

files that they want easy access to. These require effort to maintain, but

potentially provide a more stable and relevant set of items than automatically

generated sets.

28

Figure 2.8: The ‘All My Files’ view in OS X 10.8

As an example, the OS X Finder provides several bookmarking features,

two of which are shown in Figure 2.9. Folders can be dragged to or from

a sidebar on the left of file browser windows. Less commonly, both files

and folders can be added to the window’s toolbar. However, the toolbar

is primarily used for commands, and toolbar item names (such as folder or

file names) are not shown by default. Folder bookmarking is supported in a

similar way in Windows 7 (Figure 2.5b), with support for including folders

in a ‘Favorites’ section in the sidebar.

Other bookmarking interfaces are designed specifically for applications.

These include the Quick Launch toolbar (Windows XP, Figure 2.10a) and

its successor, the Superbar (Windows 7), the Start menu (Windows 95 to

Windows 7) and the OS X Dock (Figure 2.10b). The Superbar and Dock

also double as application switchers, and provide indicators as to which ap-

plications are running.

29

Figure 2.9: Bookmarking features in the Finder in Mac OS X 10.6

(a) Quick Launch toolbar in
Windows XP

(b) Mac OS X 10.6 Dock

Figure 2.10: Customisable application launching interfaces

2.7 Conclusion

This chapter provided an overview of existing file retrieval methods. This

included a review of navigation-based methods, interfaces that recommend

items (such as ‘Open Recent’ menus), interfaces that provide fixed access to a

set of custom items, and a variety of search interfaces. As well as traditional

search systems that provide a list of results in response to a query, the chapter

described alternatives that provide greater integration with navigation-based

methods, such as saved searches and faceted search, research systems that

aim to replace the hierarchical paradigm, and third party launcher tools such

as those activated by a hotkey. File retrieval is further explored in Chapter

3, which examines the broader topic of organisation and retrieval behaviour.

30

Chapter III

An Overview of Organisation and Retrieval Behaviour

Chapter 2 described the range of file retrieval methods available to users,

with the focus on the tools rather than the users. Conversely, this chap-

ter focuses on the users: how do they organise and retrieve their files, and

how do organisation and retrieval strategies for files compare to other do-

mains such as email management and webpage retrieval? Section 3.1 begins

by comparing the properties of common domains in Personal Information

Management: personal files, the web, and emails. Sections 3.2 and 3.3 then

describe web and email management strategies in detail. Section 3.4 briefly

reviews research on the management of paper documents – in many ways a

precursor domain to electronic file management.

Section 3.5 then provides a detailed review of electronic file management.

This review includes literature related to each of the file management sub-

tasks described by Barreau [18]: acquisition of items, organisation of these

items, maintenance of information, and information retrieval. The section

discusses a range of topics, including: different types of information, each

with different temporal properties; representations of structure, including

differences between user and system conceptualisations of information and

debate about whether files should be able to be stored in multiple locations;

organisation and maintenance strategies; and retrieval behaviour, with ref-

erence to underlying psychological principles.

3.1 Comparison of Domains

The methods that people use to retrieve their files are strongly influenced

by properties of the file management domain. These properties differ from

those of similar domains, such as email management and webpage retrieval.

31

Property Personal Files Emails Web
Exhaustive hierarchy X 7 7

Familiar hierarchy X X 7

Specific target X X 7

Interlinked 7 7 X

Communal access 7 7 X

Frequent revisitations X 7 X

Table 3.1: Properties that influence retrieval methods in different domains

Table 3.1 summarises properties of these domains that affect retrieval strate-

gies.

Familiar and exhaustive hierarchies encourage use of navigation. Without

them, users must resort to other methods (when hierarchies are not available)

or to guessing a target’s location in a hierarchy (if they are unfamiliar). For

personal files, users are forced to place every new file in a specific location

of their choice, so the hierarchy is both exhaustive (every file exists in the

hierarchy structure) and familiar. New emails arrive in an inbox, and are

not filed into a hierarchy unless the user specifically chooses to do so or

has set up filters in advance; emails thus have a familiar hierarchy, but it

is unlikely to be exhaustive due to the considerable effort required to create

such hierarchies [185] relative to the benefits they offer [184]. Web content

is fundamentally different; the content is maintained by others, and is thus

largely unfamiliar. While some web directories are available, they are not

exhaustive. Hierarchical navigation is therefore not feasible for web content

except within limited contexts, and unfamiliar content encourages the use of

search [25, 155].

Specific targets demand precise retrieval. Retrieval tasks for personal files

and emails typically involve a specific file or email, such as a document to

edit or an email that specifies the details of a meeting. It is not sufficient

to find similar files as they will not satisfy the user’s goal. On the web,

however, users are often (though not always) looking for a particular piece

of information rather than a particular web page – for example, a weather

forecast or product advice. In these cases, many different webpages will

contain this information, and the user will complete their goal by retrieving

32

any one of them. This provides a greater level of flexibility to retrieval tools.

Another property that aids retrieval with web content is that websites

are often interlinked. This provides greater flexibility again; if no search re-

sults contain the desired information or content, one with related information

might link to a page that does. Websites also have communal access – unlike

personal files and emails, large numbers of people are accessing the same

items. While this does not directly affect retrieval, it allows for optimisation

of search and prediction algorithms based on aggregate patterns of retrieval,

providing another advantage to web search features. Neither personal files

or emails have these properties.

Finally, revisitation frequency affects the ease in which items can be found.

If an item is frequently retrieved, people learn the physical mechanisms re-

quired to retrieve it, and improve in efficiency [117]. These mechanisms

could include hierarchy locations, search terms, web URLs, screen locations

or other information. Revisitation is common for personal files, which are

often edited over time. Web pages are often revisited to see new content [3],

or increasingly, to interact with other users. Revisitation rates for web pages

have been found to be between 58% and 81% [174, 47]. On the other hand,

revisitation is less common for email; Elsweiler et al. [64] found that only

6-15% of interaction chains involved revisiting an email, and that the largest

cluster of users revisited an email only once every four days.

These important differences mean that the choices that users make when

selecting an appropriate retrieval method are fundamentally different de-

pending on the domain. Organisational strategies are also dependent on

anticipated future retrieval behaviour [185]. Accordingly, properties that in-

fluence retrieval behaviour also affect how users organise their content in

each domain – for example, when revisitation is rare, users will spend less

effort creating a comprehensive hierarchy structure. Boardman and Sasse

[34] found large differences between the hierarchy structures in different do-

mains. Only 3% of files were not filed into hierarchy locations (instead being

left in some default location, such as the desktop), compared to 39% of book-

marks and 42% of email messages. Similarly, the average depth of files in

their hierarchy was 3.3, compared to only 1.7 for email messages and 1.3 for

bookmarks. Users were most likely to organise their files, followed by emails

33

and then bookmarks; none of Boardman and Sasse’s participants organised

emails who did not also organise files, nor did any organise bookmarks who

did not also organise files and emails.

Several researchers have examined what Bergman et al. call the Project

Fragmentation Problem [23, 104, 155] – that is, the forced maintenance of

multiple hierarchies based on format (i.e., for files, emails and bookmarks)

when there is content corresponding to particular projects distributed across

them. Bergman et al. [23] noted that users were more likely to refer to their

content in relation to a project, rather than a format. Furthermore, they

found that 20% of folders had another folder relating to the same project

in a different hierarchy. Similarly, Boardman et al. [35] found a 21% folder

overlap between files and emails, and Boardman and Sasse [34] found an

average overlap of 7.0 folders between file and email hierarchies, compared

to 2.9 between file and bookmark hierarchies and 2.8 between email and

bookmark hierarchies. An average of 40% of these overlapping folders were

based on projects (e.g., ‘PhD’) with 27% based on role (e.g., ‘Teaching’).

Boardman [33] speculates that these overlaps would be even larger if users did

not have the overhead of managing parallel hierarchies. Accordingly, several

approaches have been suggested that use a single hierarchy [23, 33, 35]. It

remains to be seen whether they would be effective in practice, however, in

light of the significant differences between properties of the domains.

This research on hierarchy fragmentation shows that there is considerable

overlap between hierarchies from different domains. An understanding of

retrieval behaviour in each domain can therefore provide useful insights that

are relevant to file management strategies. To assist in this, the following

sections detail web and email retrieval, followed by detailed discussion of file

organisation and retrieval.

3.2 Refinding on the Web

Accessing websites is an important activity in Personal Information Man-

agement. These website accesses can be categorised as either finding, which

involves exploratory activity to find relevant content that has not previously

been accessed (involving recognition only), or refinding, which involves both

34

recognition and recall to access a previously visited website [39]. Refinding

(another term for revisitation) is particularly common on the web; it has a

44-81% revisitation rate [174, 136, 147, 135], partly as a result of websites

which offer changing content over time (such as news websites). In terms of

relevancy to personal file retrieval, refinding is also of the most interest, as

it is the subset of website accesses that – like personal file retrieval – deals

with familiar content.

The web has evolved tremendously over just a couple of decades. In one

of the first studies of website retrieval, conducted in 1994 before the advent

of search engines, there were only 7300 web servers in existence, and users

averaged just 14 page accesses per day [42]. This latter figure grew to 21 in

1996 [174], 41 in 2000 [136, 47], 90 in 2005 [147, 182], and is undoubtedly

even higher today. It is therefore important that users are provided the tools

they need to efficiently visit – and revisit – this increasing amount of content.

Web browsers and specialist websites over a range of features to assist

users in revisiting web pages. Browsers include features such as bookmarks

and history lists, as well as providing back and forward buttons to navigate

through the most recently visited pages. These buttons are especially impor-

tant considering that three quarters of revisits are to the ten most recently

accessed pages [174] and 73% are for pages visited in the last hour [147];

indeed, the back button is used for 31% of page revisits [147]. Web browsers

also include autocompletion features when typing in their address fields, as

well as often providing a list of suggested locations. Finally, users can re-

find previously accessed pages, as well as discover new pages, using search

engines.

Bookmark collections – the area of web refinding most analogous to or-

ganisation of personal files – are of particular interest. Average bookmark

collections have been shown to contain close to 200 bookmarks [136], with

new bookmarks added every 4-5 days, on average [136, 1], but bookmarks

deleted only an average of once every 32 days [136].

Abrams et al. [1] analysed the way users organise their bookmarks. They

found a strong relationship between organisational tendencies and the size of

bookmark collections. Few users with under 35 bookmarks organised their

collections. Those with 101-300 bookmarks were most likely to have a sin-

35

gle level of folders, while 44% of those with over 300 bookmarks had col-

lections with multiple hierarchy levels. Roughly half of all users organised

their bookmarks sporadically, with 26% never organising them and 23% fil-

ing bookmarks as soon as they were created; this latter figure rose to 67%

of users with over 300 bookmarks. Bookmarks were often also organised for

quick retrieval of the most useful bookmarks, for example by placing them

at shallower locations in the hierarchy. Users created bookmarks for several

reasons – most commonly for archival purposes, but also to create short-

term reminders or shortcuts to frequent locations. Boardman and Sasse [34]

found that users employed multiple bookmark management strategies, often

based on the purpose for the bookmark. For example, bookmarks created as

short-term reminders were less likely to be filed.

Users face substantial problems maintaining bookmark collections [105].

Their contents frequently becomes outdated, both because of changing in-

formation needs [1] and changes in the underlying data that bookmarks link

to – a quarter of all bookmarks are no longer valid, and 5% are duplicates

[136]. Further complicating maintenance, default bookmark titles are often

poor descriptors of their content, yet few users go to the effort of chang-

ing them [1]. Users also face challenges maintaining consistency between

hierarchies of bookmarks and other content, such as files and emails [107].

Perhaps as a result of these challenges, bookmarks are rarely used to

revisit websites [35, 105]. The most optimistic rate of use is 18% of web

revisitations, achieved in a lab study [106]; field studies have provided much

lower figures, in the low single digits [42, 147, 174]. One reason for these low

usage rates is that bookmarks provide no reminding function, limiting their

utility for a common use case; some users instead opt for other approaches

such as to send themselves the page URL in an email [105]. On the other

hand, Abrams et al. reported that 96% of bookmarks had been accessed in

the last year [1].

Obendorf et al. [147] found that direct access methods, including book-

marks, history tools and autocompleted URLs, are the most common browser

features used to revisit pages last accessed between an hour and a day ago,

while the back button is most common for short-term revisitations (those

visited in the last hour) and hyperlinks are most common for long-term re-

36

visitations (last visited over a week ago). Of these methods, history tools

– which provide a list of previous page accesses, ordered by recency – are

the least used, with several researchers finding that users rarely use them in

practice [105, 38, 174].

External to the functionality offered by a particular web browser, search

engines provide powerful functionality for discovering new content, but are

often commonly used for revisitation [13]. Capra and Pérez-Quiñones [39]

found no significant difference between frequency of use of search engines

for finding compared to refinding, and Teevan et al. [175] found that up to

40% of search engine queries were conducted for the purposes of refinding

and nearly 30% of URLs clicked in search results were clicked multiple times

by the same user. Furthermore, 24% of queries were navigational queries,

defined as queries where a single result is selected and where both the search

query and result selection are identical to that of an earlier query. Repeat

page accesses were less likely, however, when item ranks changed, indicating

the importance of stability in search results. In addition to these navigational

queries, Tyler and Teevan [180] found that many refinding queries are often

shorter than their initial finding queries and rank the target item higher,

suggesting that people learn information about the pages they visit that

helps them when they later search for them again.

3.3 Email Management

Email management is a topic of considerable importance, with users dealing

with increasing amounts of incoming email that consumes a significant por-

tion of their time to process. The size of email archives increased ten-fold

between 1996 and 2006 [185, 69], with many users receiving close to a hundred

emails each day [69]. However, there is considerable variation in management

strategies, with low revisitation rates making it difficult to justify complex

organisational schemes for many users; Elsweiler et al. [64] found that only

3.6% of messages were ever revisited. Additionally, users often find it difficult

to maintain a suitable folder structure due to the difficulty in imagining fu-

ture retrieval requirements [185], with 35% of email folders containing fewer

than three messages, and duplicate folders also common [185]. Another bar-

37

rier to organisation is that tasks often involve the participation of others and

cannot be actioned until a response is obtained [21].

Several researchers have investigated common strategies for email organ-

isation. Mackay [124] identified two strategies, which are not mutually ex-

clusive: prioritisers, who use a set of rules (either manual or automatic) to

sort email messages based on priority, and archivers, who maintain a large

number of folders that are subject-based, rather than priority-based. Whit-

taker and Sidner [185] classified email users as either no filers (who do not

sort emails into folders, instead relying on opportunistic retrieval methods

such as search), frequent filers (who minimise the size of their inbox by fre-

quently filing messages into folders) and spring cleaners (who periodically

sort their inbox into folders). Elsweiler et al. [64] found users were split

roughly evenly between these strategies. Fisher et al. [69], however, found

that although there was substantial variation between users in terms of use of

folders and inbox size, there was no clearly discriminable groups, with most

users clustered in the middle. Similarly, Boardman and Sasse [34] found that

most users employed multiple management strategies and could not easily

be categorised using the strategies identified by Whittaker and Sidner.

While many users make substantial use of folders to sort email [185, 69],

the effort required to maintain this organisation is significant [16], with the

time spent organising email messages more than the time spent later retriev-

ing them [21]. In fact, despite the organisational effort required, organis-

ing emails into folders provides little benefit; Whittaker et al. [184] found

that those who frequently file emails are no more likely to revisit emails or

successfully find them when they do, and are slower to revisit items over-

all than those who do not file extensively. Indeed, it is common for users

to spend significant time filing messages which are never viewed again [34].

Bälter [16] found that using no folders is the most efficient strategy for many

users, particularly those with over a thousand stored messages. Despite this,

most email revisitation involves the use of folders (often in combination with

search) [64]. Regardless of the amount of email organisation involved, oppor-

tunistic retrieval behaviours (such as search) dominate [184], implying that

the benefits provided by the maintenance of folders are minimal.

Elsweiler et al. [64] explored sequences of events that formed refinding

38

chains, the purpose of which was to revisit previously read emails. They

found that just 36% of revisitations were for emails more than an hour old.

Users often became ‘lost’, viewing single messages multiple times in two-

thirds of refinding chains, and single folders multiple times in 30% of chains

that made use of folders.

Use of search is more common in email than for files [34], with high success

rates [184] and use in over 90% of refinding chains, though it is largely used to

narrow down the search space rather than to immediately find a result [64]:

indeed, many emails are viewed for each query as part of an orienteering

strategy used subsequent to search [64, 176], contrasting with results for

web searches where most attempts to search for the purposes of revisitation

involve the selection of a single result [180]. This behaviour perhaps explains

why advanced search is rarely used to retrieve emails [64], as users prefer

to browse through a narrowed-down search space (for example, filtered by

sender) rather than set up elaborate queries. Email, where a combination

of search and orienteering are often used, therefore sits in a middle ground

between file retrieval, where navigation is preferred [25], and the web, where

search is preferred [106].

Though the low benefits and high costs of email organisation, combined

with its adoption by only a subset of users, are partly an artefact of the

retrieval properties of emails (discussed earlier in this chapter), findings on

email management still have implications for file retrieval. In particular, they

demonstrate that when organisation is optional, it is not necessarily adopted,

nor beneficial. These findings are similar to those that have found users do

not like to manually annotate their files [52], and adds support for those who

argue that users should not be forced to name and file documents on creation

[72]. These topics are discussed in greater detail later in this chapter.

3.4 Management of Paper Documents

Many researchers have examined how office workers manage paper docu-

ments (e.g., [118, 41, 125, 183, 127]). While the domain of paper document

management does not offer the same organisational and retrieval features as

are possible in an electronic setting, it does share many properties with its

39

electronic equivalent. In particular, the only significant difference between

the two domains, in terms of the properties listed in Table 3.1, is that paper

documents are freed of the strict requirement so be sorted into a file hierar-

chy. Instead, they can be stored loosely, with spatial location serving a much

greater role than exists in an electronic environment. Paper documents can

be organised in piles [121], with the order of the items in the pile potentially

serving an informative role, whereas items in an electronic folder do not gen-

erally possess an inherent order property and can normally only be sorted by

the value of some attribute [108]. Additionally, electronic files can be stored

in a hierarchy of arbitrary depth, while it is rare (due to physical constraints)

for paper folders to contain further folders.

Despite these organisational differences, there are nevertheless substantial

similarities between the two domains – in particular, because the content is

similar across domains, with the primary difference being only its form. As

an example of one similarity, Malone [127] found that an important purpose

of desk organisation is to remind about current tasks, similar to the way in

which users use computer desktops (discussed later in this chapter). Paper

document management strategies also help inform how people manage their

documents when unconstrained by certain limits imposed by an electronic

environment.

Whittaker and Hirschberg [183] conducted a study of the paper document

collections of workers who were shifting offices. They found that 49% of doc-

uments were unique, while 36% were copies of publicly available documents.

These latter documents were kept for several reasons: so that they were read-

ily available; as reminders; due to a lack of trust that they would remain in

external stores (for example, they could be removed from a website); and

sentiment. The remaining 15% of documents were unread.

Though participants were aware that the value of particular information

decreased over time as circumstances changed, they ended up with large

archives deliberately, and not because of a lack of time to sort through their

information. Archives were rarely cleaned up spontaneously, with 84% re-

sulting from external events such as job changes or office moves. During these

clean-ups, almost a quarter of discarded items remained unread; Whittaker

and Hirschberg concluded that people often engaged in deferred evaluation,

40

resulting in large amounts of data that is not discovered to be superfluous

until circumstances such as an office move require them to return to it. This

was in part an exercise of risk management: though people often perceive

information as being of low value, they retain it just in case it later turns

out to be useful.

This issue is likely to be exacerbated in the domain of electronic files,

for several reasons. First, information can be filed away at arbitrarily large

depths in the hierarchy, making it easy to file and forget. Second, the in-

formation takes up no physical space, making large collections of files less

obvious, particularly with ever-expanding disk capacities. Third, electronic

storage increases the portability of information, meaning that there are po-

tentially fewer extrinsic events that necessitate the kind of clean-up that

Whittaker and Hirschberg describe. As a result, electronic file collections

have the potential to grow increasingly large, creating significant challenges

for organisation and retrieval of electronic documents. These challenges are

described over the remainder of this chapter.

3.5 Electronic File Management

The dominant file organisation system in modern computer systems is that of

a file hierarchy – files and folders nested inside other folders. Some systems

and devices, in particular mobile devices, use more constrained organisa-

tion schemes, such as those that maintain separate sandboxed areas for each

application. Other approaches that try to replace file hierarchies, such as

faceted search, are described in Chapter 2. However, the primary focus of

this thesis is on retrieval in file hierarchies, as these remain the predominant

system for managing large repositories of personal files.

File collections on personal computers are maintained primarily by a sin-

gle person, unlike on the internet where individual users have little or no con-

trol over structure. This difference has a large effect on how people organise

their files, as people consciously organise their files for easy retrieval [19]. In

particular, users give careful attention to file naming, but primarily for the

purpose of jogging their memory during recognition rather than for recalling

the name when searching [18, 145].

41

This section begins with a summary of previous studies of file manage-

ment. Section 3.5.2 discusses the types of information that users work with,

and how organisational and retrieval behaviour differs for each. Section 3.5.3

discusses the structure of personal file collections, including a description of

the conventional hierarchical structure, debate about support for storing files

in multiple locations, and how system models differ from users’ conceptual

models of their information. This is followed by Section 3.5.4, which describes

different strategies for organisation and maintenance of file collections. Sec-

tion 3.5.5 details how users make use of the desktop and other locations that

allow (or can be set to allow) spatially consistent item locations. Finally,

Sections 3.5.6 and 3.5.7 discuss the memorability of different file properties

and users’ retrieval preferences and behaviour.

3.5.1 Summary of File Management Studies

There have been a considerable number of studies on file management be-

haviour. Table 3.2 summarises 28 previous studies, outlining the aspect of

file management they investigated (e.g. organisation or retrieval), the data

collection techniques used (e.g. interviews, system snapshots or lab studies),

the platforms or mediums under investigation, and the sample size. The

majority of these studies focused of file organisation, while just 10 included

analysis of retrieval behaviour. Many of these studies had retrieval as only

a partial focus (e.g., [145, 155]) or focused on particular aspects of retrieval

(e.g., [26]).

Owing to the methodological difficulties in evaluating and characterising

use of personal information management tools [104], the predominant data

collection methods used in these studies were interviews and surveys, used

in 23 of the 28 studies. Screenshots and system snapshots were used in

eight of the organisation studies, although this technique was not amenable

to studying retrieval behaviour. Instead, studies of retrieval often relied on

lab studies or use of controlled retrieval tasks (five out of ten studies). Four

studies used observation (for analysis of both organisation and retrieval), and

just one study made use of a logging tool [102].

42

Study Aspect Data Source Medium Sample

Barreau (1995) [18] Organisation &

retrieval

Interview &

observation

Electronic (various) 7

Bergman et al. (2006) [23] Organisation

(fragmentation)

Interview &

screenshots

Electronic (Win/Mac) 20

Bergman et al. (2008) [25] Retrieval Questionnaire Electronic (Win/Mac) 78/47/589

Bergman et al. (2011, 2012) [29, 30] Retrieval Experiment Electronic (Win/Mac/Linux) 296

Bergman et al. (2013) [26] Organisation &

retrieval (folders

vs. tags)

Interview, snap-

shot & con-

trolled tasks

Electronic (Win) 23

Bergman et al. (2013) [27] Retrieval Lab study Electronic (Win) 62

Blanc-Brude & Scapin (2007) [32] Retrieval Interview &

lab study

Electronic & paper 14

Boardman (2001) [33] Organisation

(fragmentation)

Interview Electronic (Win/Mac/Linux) 10

Boardman & Sasse (2004) [34] Mixed

(fragmentation)

Interview &

snapshot

Electronic (Win/Mac/Linux) 31/8

Boardman et al. (2003) [35] Mixed

(fragmentation)

Interview Electronic (Win/Mac/Linux) 25

Case (1986) [41] Organisation Interview Paper 36

Golemati et al. (2007) [80] Retrieval Interview &

lab study

Electronic (Win) 18/15

Gonçalves (2002) [81] Organisation Questionnaire Electronic 88

Gonçalves & Jorge (2003) [82] Organisation Snapshot Electronic (Win/UNIX) 11

Henderson (2005) [92] Organisation Interview &

Snapshot

Electronic 6

Henderson (2009) [94] Organisation Interview Electronic 115

Henderson & Srinivasan (2009) [95] Organisation Snapshot Electronic (Win) 73

Jensen et al. (2003) [102] Organisation

(provenance)

Survey, logging

& observation

Electronic (Win) 24

Jones et al. (2005) [108] Organisation Interview &

snapshot

Electronic 14

Kaptelinin (1996) [112] Organisation Interview Electronic (Mac) 12

Kwasnik (1989, 1991) [118,

119]

Organisation Interview &

observation

Paper 8

Malone (1983) [127] Organisation Interview Paper 10

Mander et al. (1992) [128] Organisation Interview Paper 13

Nardi et al. (1995) [145] Organisation &

retrieval

Interview Electronic (Mac) 15

Ravasio et al. (2004) [155] Organisation &

retrieval

Interview Electronic (Win/Mac) 16

Tang et al. (2007) [173] Organisation

(commonality)

Snapshot Electronic (Win/Linux) 15

Teevan et al. (2004) [176] Retrieval Interview &

observation

Electronic 15

Whittaker & Hirschberg (2001) [183] Organisation Survey Paper 50

Table 3.2: Summary of studies on file management

43

3.5.2 Types of Information

The ways in which people interact with their files depends in part on the role

of the information contained within them. For example, Cole [49] noted the

following types of information in a study of paper documents, while Nardi et

al. [145] observed the same types in their study of file organisation:

Ephemeral information is temporary information such as “to do” lists,

memos and news articles. In their study, Nardi et al. found that

users tended to keep this information either immediately visible or very

loosely filed, for example by placing files on the desktop. Often infor-

mation would be created as ephemeral information but would persist

for longer than expected and clutter the user’s filing system. This may

be because the cognitive difficulty of deciding how to classify informa-

tion acts as a barrier to filing it [127], resulting in more information

being classed as ephemeral than perhaps should.

Working information is frequently used information related to current

work needs, with a shelf life of weeks or months. It is typically organ-

ised fairly well in the file hierarchy. Users have little difficulty finding

such information as it is frequently accessed and they can therefore

easily remember its location.

Archived information is infrequently accessed and has a shelf life of months

or years. It would typically represent completed work. Barreau and

Nardi [19] argue that it is often not filed well, since the effort to cre-

ate elaborate filing schemes is deemed higher than the information is

worth. Boardman and Sasse [34] also found that items were rarely

archived, but found that the information did have worth – albeit er-

ratically. Extensive hierarchy maintenance was most often conducted

during significant life changes, such as starting a new job. Fertig et al.

[66] also contend that situations occur when old information is essen-

tial and Cook [50] argues for the importance of archiving information

in organisational settings.

44

Boardman and Sasse [34] argue that these classifications are misleading

– particularly archived information, as many users do not explicitly archive.

They propose an alternate classification based on two dimensions:

Information usefulness – classified as active (including both ephemeral

and working information), dormant (inactive information that is po-

tentially useful), not useful and un-assessed (new items that have not

yet been inspected).

Information ownership – classified as mine or not-mine. The former in-

cludes not just user-created items, but also those to which the user has

attached value, such as filed emails. The latter includes those items

which the user does not have direct ties to – for example, information

on the internet. This classification has a strong relationship with the

familiarity property of the domain classification earlier in this chapter.

As Nardi et al. [145] found, these different types of information often

require different organisational structures. However, this creates a tension

between organisation for current use and for later reuse, as files often move

between these categories [108]. Files currently under frequent active use

should ideally be easy to retrieve (e.g., at a shallow hierarchy location), while

archived files that are likely to be accessed only infrequently may require

better organisation in order to assist users in finding them. These uses imply

different organisation structures, which can result in complex hierarchies that

require an increased level of maintenance as information needs change.

Files classified as archived information (Nardi et al.’s classification) or as

dormant or not useful (Boardman and Sasse’s classification) are often the

most difficult to retrieve, since users are less likely to remember their exact

locations or filenames. Navigating to these files is troublesome as a lot of

trial and error is involved, while search is even more difficult since users

must remember a file’s name or properties to search for it. In his study

of physical organisational systems, Malone [127] probed study participants

to find documents with descriptions given by coworkers. In two thirds of

these probes, the documents were not filed under the dimensions (such as

title, author or person it was about) used to describe them. Furthermore,

45

he observed that the cognitive difficulty of classifying information acted as a

barrier to filing.

3.5.3 Representation of Structure

File hierarchies are the predominant way to organise files on modern com-

puter systems. Though they face several limitations – discussed throughout

this section – users have generally favourable opinions of them. For example,

Jones et al. [108] asked participants whether they would prefer a hierarchical

system with folders, or a flat system where files could be accessed using a

search-based mechanism, with only one participant responding positively to

the potential removal of folders. Similarly, Bergman et al. [26] showed a

preference towards hierarchical storage for both files and emails, and found

that only 4% of files were stored in default locations (e.g., “My Documents”

on Windows).

Several studies have examined how people structure their file hierarchies.

In general, hierarchies are broad, shallow, and often unbalanced [158, 33].

Gonçalves and Jorge [82] analysed the structure of file hierarchies of 11 par-

ticipants, examining only portions containing user documents. Users aver-

aged about 8000 files within these, however there was considerable variation.

They found folders contained an average of 13 files, had a branching factor

(the average number of subfolders at a given tree level) of 1.84, and that the

hierarchies were fairly well balanced. The hierarchies had an average depth of

8.45. In an analysis of filenames, they found that 60% of filenames contained

numbers, but only 0.33% contained dates. Filename lengths averaged 12.6

characters, however they are likely longer in modern systems as file systems

no longer impose tight constraints on filename lengths.

Henderson and Srinivasan [95] ran a more recent and larger scale study

of Windows XP users, again analysing portions of hierarchies that contained

user documents. They found similar results to Gonçalves and Jorge: 5850

documents per user, an average tree depth of 9.65, folders containing an

average of 11.1 files and a branching factor of 1.93. They also found that 74%

of folders did not contain any subfolders, but the folders that did averaged 4.1

subfolders each. 7.9% of folders were completely empty. When performing

46

name comparisons, 21.8% of filenames were duplicates, as well as 23.5% of

folder names. Although the average maximum tree depth was 9.65, average

depths within the trees were a considerably smaller 3.4.

The Role of Folders

While an important function of folders is to organise files with the goal of

aiding later retrieval, they have additional uses. Jones et al. [108] found that

folders provide information in their own right, such as the decomposition

of a project, and that facilitating revisitation is not necessarily the primary

purpose of folder organisation. They also identified several limitations of

folder hierarchies. For example, while folders can be sorted within a view

based on common properties such as name or modification date, they do

not typically support any manual ordering, and users often include leading

characters in folder names to force a particular order.

The folder metaphor is based on a physical folder, containing a set of

paper documents and typically with an assigned name. However, paper doc-

uments can also be grouped into more informal piles – a stack of documents

with no attached name. Piles can be an effective organisational tool for pa-

per documents [127, 121], however they are not commonplace in electronic

systems. Lansdale [121] expressly dismisses the idea of electronic piles, stat-

ing that the use of piles is used as a “compensating strategy for the prob-

lems of classification” and implying that the benefits offered by computing

environments negate any benefits that piles offer in a paper setting. Nev-

ertheless, Malone [127] advocates the use of piles in an electronic setting as

a way to ease the cognitive burden of classifying information. This view

is supported by Mander et al. [128], who found that users are sometimes

dissatisfied with the requirement to make explicit categorisation decisions.

They explored possible support for piles in an electronic setting, and argued

that piles are more suitable than hierarchical folders for items that do not

require detailed categorisation, as might be the case for some ephemeral or

working information. They found that the ability to reorder items in a pile

provided significant utility; for example, users could order items based on

priority. Another benefit of paper piles is that they provide an indicator of

47

their contents just by looking at them. This benefit is implemented in OS

X’s Stacks feature, which replaces the icons of folders in its Dock with those

of their contained files, drawn in a stack formation. However, these stacks

retain the traditional requirements of folders, such as requiring an explicit

name. A more complete piling metaphor was implemented in BumpTops [4],

a pen-based desktop designed to more closely resemble the physical desktop.

User Versus System Representations

Users can most easily recall file locations and retrieve files when their con-

ceptual model of their files is consistent with the system’s representation. By

organising their files themselves, they are able to approximate some level of

consistency. However, there remain differences between the way users think

of information and how systems represent it [155, 22]. In particular, several

aspects of system design create barriers to full compatibility between the two

representations:

Structural hints – Systems typically create an initial hierarchy, hinting to

a user how they should organise their files. For example, both Windows

and OS X provide separate folders for a user’s documents, pictures,

and movies, suggesting that users organise based on file type, whereas

organisation based on type is normally quite rare [92] and users are

more likely to think of their content in terms of project or role rather

than format [23, 118]. While these initial hierarchies do not neces-

sarily force a particular structure, they strongly suggest it, making it

less likely that the eventual hierarchy will match the user’s concep-

tual model and impacting their sense of ownership over the hierarchy

structure [93, p. 233].

Forced dimensions of organisation – Systems often impose constraints

on organisation in order for certain behaviour to occur. For example,

dedicated folders may be shared with other users or backed up [57].

Again, this forces users to organise by dimensions that may be incon-

sistent with their conceptual models [23]; for example, they may wish

to share only some files from a particular project, requiring them to

split the project amongst multiple locations.

48

Forced model - The hierarchical file structure assumes that users think

of their content in a strict hierarchical fashion. While users generally

prefer file hierarchies to alternative representations [108, 26], it prevents

or limits other representations, such as those where files are classified

along multiple dimensions (further discussed in the following section).

Lansdale [121] emphasises this point, stating that “information does

not fall happily into neat categorisation structures which can then be

implemented on a system by using simple labels”.

Bergman et al. [22, 24] advocate the User-Subjective Approach, which

suggests that Personal Information Management systems should be designed

to better relate to subjective attributes. In particular, the approach includes

three generic principles: the subjective classification principle, which states

that items should be grouped by subjective topic rather than technological

format; the subjective importance principle, which states that an item’s sub-

jective importance should determine its level of salience and accessibility;

and the subjective context principle, which states that information should be

retrieved and viewed in the same context as it was previously. In particular,

the first principle suggests that the first two barriers outlined above impose

unnecessary technological constraints, with a design that does not consider

a user’s conceptual representation of their files.

Multiple Storage Locations

There has been considerable debate amongst researchers about the require-

ment imposed by hierarchical-based systems of storing files in a single lo-

cation. Though this is representative of the constraints that exist in a

paper-based system, many researchers have noted limitations in this strategy

[37, 72, 58, 114, 127, 153]. Referring to physical storage in 1945, Bush [37]

stated that “[data] can be in only one place, unless duplicates are used; one

has to have rules as to which path will locate it, and the rules are cumber-

some”, noting that the human mind does not work that way. More recently,

Freeman and Gelernter [72] argued that breaking the desktop metaphor to

allow for documents to be stored in multiple places would be beneficial. They

stated that “paper can’t be in more than one place, but electronic documents

49

can (or can appear to be)” and “documents should belong to as many [di-

rectories] as seems reasonable, or to none”. Dourish et al. also commented

on the limitation, stating that it limits files to a single spot in the semantic

structure [58] and arguing that documents are often relevant to multiple roles

and activities [57]. Koren et al. [114] argue that there are often multiple rea-

sonable places to file a document, especially as their diversity increases. If

a user is to come up with a different answer to the question “where should

this file be located?” at saving and retrieval times, locating the file will be

difficult. Quan et al. [153] demonstrated many of the potential benefits of a

system that supports multiple classification, showing that a bookmark man-

agement system with such support resulted in both faster organisation and

retrieval times.

While major operating systems do not provide a way to physically store

files in multiple locations, they do provide mechanisms to work around this

limitation [133]. Microsoft Windows offers shortcuts, UNIX offers symbolic

links, and OS X offers both aliases and symbolic links. Fundamentally, while

they have different names and implementations, they all achieve the same

goal: they point by reference to the original item, allowing multiple paths

to a target file or folder. This differs from filing items in different locations,

however; for example, deleting a reference simply deletes the link to the

original, while deleting the original file breaks all links to the file. While

these help with developing more logical file hierarchies, they are rarely used

in practice [82, 155], in part because they require effort to create and main-

tain [112]. Their most common use is to link to applications and folders from

the desktop [112].

Bergman et al. [26] performed a comprehensive comparison of the use

of folders (which require items to have a single location) and tags (which

allow for multiple classification) in email and file domains. They found that

few participants used tags, even after a two week period when they were

forced to categorise files using them. Those who did use tags tended to only

apply a single tag to each file or email. Bergman et al. concluded that the

low use of tags, and the tendency to apply single tags when they were used,

indicated that there is little enthusiasm for systems that support multiple

classification. They provided potential reasons for this preference based on

50

participant comments, including that the extra effort to apply multiple tags

was difficult, time consuming and redundant, that single classification was

sufficient in most cases, and that multiple categorisation makes it less efficient

to exhaustively explore the file system.

3.5.4 Organisation and Maintenance

Organisation and maintenance of file collections are important tasks that

facilitate easier retrieval in the future. Naturally, people dedicate different

amounts of effort into organising their hierarchies. This section begins by

describing classifications of organisational strategies. It then discusses the

difficulties of archiving information, attempts at automatic filing, difficul-

ties in deciding when to delete information, and the role of annotations to

supplement hierarchy classification.

Filers and Pilers

Malone [127] described two types of people based on their document man-

agement strategies for paper documents, later referred to as filers and pilers

[176]. Filers are more organised, quickly classifying new documents and plac-

ing them in an appropriate location. Pilers spend less effort organising their

documents, and their collections may appear to be less orderly. This reduced

level of organisation means that it can be harder to remember document lo-

cations. Boardman and Sasse [34] created a similar classification, with total

filers, who file most documents on creation, extensive filers, who file most

items on creation but also manage a large set of unfiled items (typically clas-

sified as working or ephemeral information), and occasional filers, who leave

most items unfiled, have few folders, and do not consider filing to be a prior-

ity. Most of Boardman and Sasse’s participants were classified as total filers,

with few occasional filers. Henderson [94] described another similar categori-

sation of document management strategies: piling, where the file hierarchy

is broad and shallow, folders are used primarily for dumping large groups of

old documents, and files accumulate in certain locations such as on the desk-

top; filing, where the hierarchy has medium width and depth and folders are

created as needed; and structuring, where the hierarchy is narrow and deep

51

and folders are often created before they are needed. Similar classifications

to these have also been noted for emails [185] and bookmarks [1].

Researchers have identified differences between pilers and filers in almost

every aspect of file management, including acquisition of documents, organ-

isation, maintenance and retrieval. Whittaker and Hirschberg [183] found

that filers amassed more information than pilers. Filers were also more re-

luctant to discard information, due to the large amount of effort invested

in organising it. Despite these larger document collections, filers accessed

information less frequently than pilers. Teevan et al. [176] found that filers

reported higher use of search than pilers, although they speculate that pil-

ers likely underreported their search usage due to differences in definitions

stemming from how the two groups normally use navigation. Henderson [94]

found that those with structuring strategies (an extreme form of filing) found

the lack of hierarchical context in search interfaces irritating, suggesting that

search is less useful to filers. The different approaches of those with differ-

ent organisational strategies suggests that a range of retrieval methods is

necessary to satisfy everyone’s preferences.

Archiving and Classification

File hierarchies develop over time through the process of classifying and

archiving documents. While this is an important process to users [155], it has

large overheads [183] and requires significant effort [155]. The most signifi-

cant problem is the difficulty in determining the most appropriate location to

store an item. Although people tend to organise in a way that facilitates easy

retrieval [19], Whittaker and Hirschberg [183] found that people often forgot

the categories they had already created, leading to duplicate categories that

meant files were often overlooked when attempting to retrieve all the infor-

mation on a topic. Errors made when classifying documents can result in

items being far from their ‘correct’ locations [162]. Classification accuracy is

made increasingly difficulty by changing information requirements that lead

to ongoing changes in organisational structures [162, 155]. Unsurprisingly,

users often feel that they have failed to effectively manage their hierarchies,

impacting their self-image [35]. Barreau and Nardi [19] found that users of-

52

ten give up on elaborate filing systems because they do not yield sufficient

value, with hierarchy structure more often determined in an ad hoc manner

based on current tasks.

Ravasio et al. [155] also studied the process of classification. They found

that classification was an ongoing process, with no structure considered per-

manent, but that maintenance efforts were most common following mile-

stones such as at the end of a project. Subfolders were often created when

3-7 documents were related to the same topic, while the age of archived files

typically ranged from six months to eight years. While differences in organ-

isational strategy affect archiving behaviour [34], there are also differences

based on the source of the information: self-created documents are normally

archived immediately, whereas documents from an external source are more

likely to be initially stored in temporary locations such as the desktop [155].

Automatic and Manual Filing

The previous section described the challenges users face in filing information.

As a result of these difficulties, Malone [127] has suggested that automatic

classification could ease this burden. Ravasio et al. [155] also found that users

would like files to be filed automatically, albeit with the ability to adjust the

result when they disagreed with it.

Sinha and Basu [167] describe Gardener, a system that suggests locations

to save a file based on analysis of the filename entered by the user. How-

ever, this approach assumes that a filename would contain all the necessary

information to enable this classification, when it is common for identifying in-

formation to instead be stored in the names of ancestor folders [108]. Barreau

and Nardi [19] found that filenames were generally named for the purpose of

reminding when scanning files at a particular location, rather than for use in

search, suggesting that users are unlikely to specify all the information in a

filename that would be required to fully classify the file.

Bao et al. [17] propose an alternate system that aims to minimise the

number of navigation steps required when opening or saving a file by pre-

dicting the eventual folder. It relies on users first setting a current task, with

task-specific folder predictions based on frequency and recency of past folder

53

use. In addition to using these predictions to set the default location for an

open or save dialog, the system also provides several other folder predictions

in case its top prediction is incorrect. A preliminary evaluation found that

the system reduced navigation ‘clicks’ in open and save dialogs by about

50%.

Despite the potential benefits offered by these systems, automatic filing

aids are not necessarily beneficial. Lansdale [121] noted that users have much

stronger memory of the organisation that they have performed manually,

commenting that users either have to file manually, creating a disincentive

to do so and thus causing retrieval problems, or have filing automated, in

which case users remember less and will also not be able to retrieve as well. To

resolve this dilemma, automatic filing tools would need to find a mechanism

in which they can facilitate retention of item locations in memory.

Keeping and Deleting

A difficult decision for users is often which information to keep, and which to

delete [103]. This problem arises from the difficulty in evaluating the value

of information and envisaging future needs [112]. Keeping information can

be beneficial if it might be useful in the future, but deleting it reduces the

overall size of the file hierarchy, potentially making it easier to retrieve other

files. As the value of information decreases over time [183], information often

needs to be re-evaluated.

Barreau [18] identified several common reasons for people to delete files.

These include other versions of the document existing in another format,

the user being finished with the document, the document being old, a lack of

available disk space, new information becoming available, or having unknown

content.

Bergman et al. [28] observed that files were often kept because users were

hesitant about deleting them, even when they were unlikely to be useful in the

future. To address this, they developed a system called GrayArea as a way

of demoting unimportant files. Demoted items are displayed in a separate

area at the bottom of the folder.

54

Annotations and Labels

Annotations are used in a variety of organisational systems. They can be

used to aid search tools by providing additional properties to filter search

results, or as visualisation aids to help find items within a folder.

Most modern operating systems, such as Windows and OS X, support

comments and other manual annotations on files. OS X supports labels

(Figure 3.1). These labels apply a background colour to files and folders when

viewing them in the Finder, and allow for another dimension of organisation

beyond hierarchies. As an example, a set of papers could be organised in a

hierarchy based on topic, with labels used to indicate which have been read.

Labels can be given custom names to facilitate this. OS X 10.9 adds the

ability to apply multiple colour labels (renamed as ‘tags’) to items, allowing

for further dimensions. Kaptelinin [112] found that this labelling feature

was used to denote importance or project status, however it was not used

extensively in practice.

Figure 3.1: Labels in Mac OS X 10.6

55

Taking the definition of annotations to an extreme, they could include

filenames and even locations themselves, as they are information manually

added by users that are supplementary to the file content. Freeman and Gel-

ernter [72] view the requirement of creating this data as unneeded overhead

when creating files, noting that “when you grab a piece of paper and start

writing, no-one demands that you bestow a name on the sheet or find it a

storage location”. Indeed, if annotations are used primarily to aid in finding

files at a later time, filenames serve as a compulsory form of this.

The use of tags allow users to better express their own internal con-

ceptualisation of file organisation, providing greater control and flexibility

[44, 155]. However, while these annotations can be helpful for both organi-

sation and retrieval, people seldom take the time to create or maintain them

[133]. Bergman et al. [26] found that users considered tagging to be time

consuming, and that it was slower to retrieve files using tags than navigating

normally. Cruz and Xiao [52] found that users preferred computers to classify

their information automatically rather than add manual annotations, even if

the classifications were less accurate.

3.5.5 The Desktop and Spatial Locations

The desktop – as a metaphor for a physical desktop – serves an important

role, providing permanent access to a customisable set of items, often at

predictable spatial locations. This convenient access, the fact that users

organise to facilitate easy retrieval [19], and the reminding function served

by placing items so visibly [155], make the desktop a common location to

store ephemeral and working information [112, 155, 19].

While system support for persistent spatial locations of icons within

folders is mixed (see Table 2.2 in Chapter 2), the desktop supports user-

customisable locations – either all the time or as an option – on all major

systems. Users commonly make use of this feature to group related items

together [155]. Ravasio et al. [155] found that users ordered and retrieved

items spatially when there was support for it, while Dumais and Jones [62]

found that names provided greater benefit to file retrieval, but that location

information did provide limited utility. Moon and Fu [142] showed that users

56

compensate for a lack of spatial stability by using more of their memory on

filenames, suggesting that interfaces that support consistent spatial locations

– such as the desktop – can ease cognitive load.

The desktop does have some disadvantages [112]. As it exists below all

other windows, its content is often obscured, and it cannot be brought to the

front as easily as traditional windows (although some systems offer features to

temporarily hide all windows or otherwise expose the desktop). Additionally,

its permanent presence means that users are unable to close it to protect

privacy, and this may impact which items they place on it.

3.5.6 Memory of File Attributes

Users have mixed memory of their files and those files’ attributes. For exam-

ple 10-17% of file locations are not remembered correctly [25, 80], and 8% of

files are not recognised when prompted with their filenames [40]. Nardi et

al. [145] found that users often remember where a file is but not its name.

Memory of files is worse than that of folders, potentially because users pay

more attention to naming folders than files [80].

Blanc-Brude and Scapin [32] ran a study to find which document at-

tributes are most often recalled and how precisely they are recalled. They

found that file type and visual elements within the documents could usually

be recalled accurately, while size and date of last access were often recalled

inaccurately. Results are summarised below, along with additional analysis

on the relative usefulness of each attribute for file retrieval tools. These re-

marks make reference to precision and recall, common metrics in information

retrieval [163]. Precision is a measure of the proportion of the result set that

is relevant, while recall is a measure of how much of the relevant data in the

search space is included in the result set.

Location – Locations were at least partially recalled 96% of the time, al-

though only completely correctly 36% of the time. For the partially

correct cases, the earlier portions of the paths were more likely to be

remembered than the later portions. These findings suggest tools which

have some leniency towards imperfect memory of file locations are likely

to be more effective than those that require perfect recall.

57

Type or format – File types were correctly recalled 93% of the time, mak-

ing them the most reliably recalled attribute. Participants often re-

called high level types such as “a presentation” rather than low level

types such as “.ppt”. However, file types are not sufficient to uniquely

identify files; Blanc-Brude and Scapin themselves stated that “[the] rel-

ative capacity of attributes to discriminate documents from each other

and to express queries that will return small sets of results is also an im-

portant dimension to address in order to design efficient search tools”.

File types are therefore more likely to be useful as a supplementary

filter to narrow down an initial set of results.

Filename – Filenames were at least partially recalled 92% of the time, but

only completely correctly 25% of the time. An overwhelming major-

ity of partial recalls consisted of a portion of the name, rather than

erroneous text. This indicates that tools which can facilitate retrieval

based on partial filenames are likely to be effective.

Title – Document titles were at least partially recalled 80% of the time, how-

ever partial recalls often contained erroneous portions of text (43%).

Titles are therefore likely to help in locating files in many cases, but

have low precision and recall relative to some other attributes.

Size – Document sizes (such as number of pages) were falsely recalled over

50% of the time, making size an unreliable attribute to use in file re-

trieval tools, and one which should have its use discouraged to prevent

low recall.

Time – Like document size, the date that an item was last accessed was

falsely recalled about half the time, suggesting its use as a filter should

be deprioritised by file retrieval tools in order to encourage use of at-

tributes with higher recall.

Keywords – Keywords, defined as meaningful words within a document,

were recalled 32% of the time and partially the remaining 68% of the

time. All partial recalls were the result of at least one recalled keyword

58

that was not contained in the document. This suggests that tools which

use a naive ‘AND’ operator of search keywords are likely to have low

accuracy. Additionally, examining the entire contents of each document

results in a much larger search space for file retrieval tools, whereas

filenames (for example) contain only a short amount of text. As a

result, content searches are likely to have considerably more irrelevant

results, and thus lower precision.

Visual elements – Visual elements of documents were the most reliably

recalled attributes of documents after file types, with correct recalls

76% of the time and partial recalls the remaining 24% of the time.

Unfortunately, due to the non-textual nature the the attribute, there

are numerous problems with designing retrieval tools which use visual

elements as the primary retrieval attribute. The result does suggest,

however, that features such as thumbnails in retrieval results may fa-

cilitate selection of the correct file in the final stages of the retrieval

process.

3.5.7 Retrieval Behaviour

The unique combination of properties of personal file collections, described in

Section 3.1, mean that a range of retrieval methods can be used. Exhaustive

and familiar hierarchies mean that navigation is a feasible method, while spe-

cialised methods such as ‘Open Recent’ menus are effective in many cases due

to the influence of recency in file management [19]. Search is still important

when hierarchy locations are unknown or cannot be correctly recalled.

Jones [104] described a four step process for finding items: (1) remember-

ing to look; (2) recalling information about the item as input to a retrieval

method; (3) recognising the desired item; and (4) repeating as needed for

the set of items required. The second and third were introduced by Lansdale

[121], however Jones notes that users often forget to perform tasks or reuse

information (step 1), and that multiple items may be required for a single

task (step 4).

Nardi et al. [145] noted user preferences towards navigation, and de-

scribed the predominant retrieval pattern as looking in a location, looking

59

in a different location, then resorting to search tools. This section explores

this preference towards navigation in the first instance, while also separately

detailing findings related to the use of navigation and search.

Navigation Versus Search

Navigation- and search-based methods are the predominant retrieval meth-

ods that can be used to retrieve an arbitrary file. Substantial research has

compared relative use of the two techniques, as well as the underlying cog-

nitive reasons for user preferences. There is a general consensus that most

users prefer navigation to search, with search being used only as a method of

last resort [19, 32, 34, 145, 25, 155, 26, 104, 176]. However, search still offers

important benefits in certain situations.

Early studies on search interfaces were based on primitive systems that

were slow to return results, produced inaccurate results, or could only match

results based on limited metadata, such as filenames. These technological

obstacles were often cited as the cause of low usage rates, with speculation

that improvements might improve adoption (e.g., [145, 155]). Bergman et al.

[25], however, showed that improvements to search systems had little effect

on perceptions or usage rates. In a survey of Windows and Mac users, they

found a strong preference towards navigation over search regardless of the

sophistication of the underlying search tool. They concluded that search was

used mainly as a last resort, and was rarely used when the location of a file

was known.

Bergman et al.’s findings are explained by the relative cognitive require-

ments of the two techniques. Users prefer orienteering (that is, taking small

steps towards a target using partial information and contextual knowledge)

to teleporting (that is, jumping directly to the target) [155, 176]. Naviga-

tion uses an orienteering approach, with users able to use recognition at each

step of a retrieval to identify the next folder [25]. Orienteering offers sev-

eral advantages over keyword search, including decreased cognitive load, a

sense of location, and a better understanding of the result [176]. Bergman

et al. [25] also note that, with navigation, “users can continue to think of

the project they are working on at the time”, even if search might be faster.

60

They conclude by stating “perhaps it is time to explore alternative [Personal

Information Management] design directions which focus on navigation and

the improvement of human computer interface based on users’ perceptions

and preferences”.

Search interfaces, on the other hand, typically use a teleporting approach

that shows an immediate list of results with little or no context [176]. Search

also relies on users recalling attributes of a target file in order to devise a

search query [19, 25], which is more cognitively demanding than recognition

[179]. Furthermore, search offers no reminding feature. This means that

users are unlikely to encounter an item through search if they have forgotten

they have it or how it is described in the file system, resulting in a lower sense

of control [19]. A final potential limitation of search-based file access is that

it provides minimal support for learning and rehearsing the location-based

retrieval mechanics that users are likely to use for future accesses. Search

queries either succeed (and yield the desired target in a small set of candi-

dates) or they fail. When successful, the user is likely to proceed working

with the file rather than study and memorise the location, and consequently

when the file is next required the user’s location knowledge will not have

improved.

These differences between search and navigation have been confirmed by

other studies. Bergman et al. [27] showed that users were better at perform-

ing a secondary task while navigating than when using search, demonstrating

that navigation is less cognitively demanding. They also found that search

was slower than navigation and more vulnerable to failure. Ravasio et al.

[155] note that users are more likely to perform manual searches by exhaus-

tively exploring their hierarchy using navigation. Their participants would

first attempt a Direct Access Strategy, followed by exploring nearby folders

in a logical order, then exhaustively searching all possible locations. While

these participants acknowledged that this was often slow, it was generally

successful. Search interfaces were only used when participants were close

to considering information lost or had no indication of a file’s location, but

these interfaces were both cognitively and mechanically demanding.

61

Navigation

Several studies have examined the use of navigation. In a large-scale study

with 289 participants, Bergman et al. [30] examined the effect of operating

system, view and hierarchy depth on navigation retrievals. Their method

involved statically recording the state of participants’ recent documents list,

then asking them to navigate to each of those files using a file browser, while

video captured their actions. By analysing the video they found that Mac and

Windows users structured their files in different ways, with Windows users

containing more files in each folder than Mac users, but fewer subfolders.

As a result, retrieved files were deeper in the file hierarchy on Windows (2.9

levels deep, compared to 2.4 levels on Mac OS X), and file retrieval times

were slower (17.3 seconds on Windows, 12.6 seconds on Mac OS X). They also

found that on both Windows and Mac OS X, icon view had the lowest step

durations (the time spent at each level of the hierarchy) of all the available

view types. Finally, they found that folder depth did not affect step duration,

which contrasts Laundauer and Nachbar’s findings [120] of hierarchical menu

traversal, which showed lower step times when selecting a hierarchy leaf.

In an earlier analysis of the same data, Bergman et al. analysed the effect

of folder structure on navigation [29]. They found that participants could

successfully locate 94% of their recent documents, though 21% of these re-

trievals included a navigational error en route to the file. Folders at higher

levels of the hierarchy contained both more files and subfolders; overall, fold-

ers contained a mean of 10.6 subfolders and 11.8 files. 12% of all folders

contained only files, and 20% contained only folders. They also found that

errors were more likely in larger folders, as well as for files deeper in the file

hierarchy, and developed a predictive model for retrieval time based on the

file depth and average folder size.

Others have also examined the use of particular file browser views. In

a 1995 Mac study, Nardi et al. [145] found that icon view was common at

the top level of the disk when users could set spatial locations. At deeper

levels, it was less common, but was used when icons or thumbnails were im-

portant. Alphabetic list views were used in folders with many similar files.

On Windows, Golemati et al. [80] found that a tree view, featuring expand-

62

able folders but omitting files, was not used by most users, and users disliked

having to switch attention between it and a separate view that showed the

content of the selected folder.

Other findings on navigation include that files stored deeper in the hier-

archy require more cognitive effort to retrieve [27] and that the use of unique

icons for each file and folder decreases retrieval times even when the icons

have no relation to the items they represent [123].

Search

Despite preferences towards navigation, search remains an important tool for

file retrieval, particularly when item locations are unknown [25]. Search has

many attractive features for file retrieval: any file attribute can be searched,

rather than requiring memory of the item’s location [121]; it does not depend

on a hierarchy, relieving users of the need to recall semantic groupings; and it

enables retrieval in a single step [25], potentially allowing for faster retrievals

in some cases.

Many of the limitations of search arise from the lack of context provided

by most search interfaces [176]. Soules and Ganger [169] attempted to partly

alleviate this by combining both content and context analysis to produce file

search results. Context analysis was performed using a graph of temporal

file access relationships. This combined approach triggered improvements to

both recall and accuracy of search results. Hearst [91] also advocated the

inclusion of context in search results by organising results into meaningful

groups. Käki [111] found that categorising web search results proved bene-

ficial, making it easier to find poorly ranked items and allowing for simpler

queries.

3.6 Conclusion

This chapter provided a review of existing organisation and retrieval litera-

ture. While the focus was on file management, it began with a comparison of

the properties of several domains in which items are regularly retrieved, pro-

viding insights into how these property differences affect the ways in which

people interact with their information. This was followed by brief summaries

63

of the management of web bookmarks, emails and paper documents, provid-

ing context for file management.

The remainder of the chapter detailed file management literature. To

summarise, files are stored in a hierarchy structure where files have a sin-

gle unique location. While there are many conceptual advantages to files

existing in multiple locations (e.g., [57]), there is little enthusiasm for such

systems [26]. People interact with ephemeral, working and archived infor-

mation [145], organising and retrieving them in different ways. There are a

range of document management strategies, with people often being classi-

fied as either filers or pilers based on their tendency to organise information

[176]. People have good, but not perfect memory of file locations and names

[32], and prefer to navigate to files rather than search for them, due to the

reminding features offered by navigation interfaces [19].

This review, combined with the overview of file retrieval methods in Chap-

ter 2, provides an important initial review of file retrieval in the larger context

of Personal Information Management. The following chapters expand this

understanding to further characterise the ways in which people retrieve their

files.

64

Part II

Characterising File Retrieval

65

Chapter IV

FileMonitor: A Tool To Understand File Retrieval

Behaviour

A thorough understanding of how people use existing file retrieval tools

is important to designing improved tools. Such information tells us what dif-

ferent types of retrieval behaviour users exhibit, what features and methods

are most often used, and what inefficiencies exist that can be remedied with

better interface design.

The domain of file retrieval exhibits several challenges in achieving ex-

ternal validity in studies aimed at gaining this understanding. File retrieval

involves large, familiar file hierarchies that are difficult to simulate accurately

in a lab study, and there are a range of retrieval techniques that have complex

interactions with each other that influence their suitability for a particular

task.

Numerous studies have previously attempted to gather data on file re-

trieval or organisation. Several studies have used snapshots of file hierarchy

organisation [82, 95, 173], however such data cannot be used to describe file

retrieval, or to provide any temporal understanding beyond that provided by

file metadata. Others have involved questionnaires or interviews [25, 145],

but such approaches are limited in the amount of data they can provide for

the purposes of detailed analysis, and actual usage behaviour may not match

user estimates. Bergman et al. [29] recorded video of participants retrieving

recent files on their own computers, but recording and analysing sufficient

footage to analyse long-term patterns of behaviour is not feasible, and par-

ticipants may behave differently when they know they are being filmed.

The limitations of these approaches suggest that full external validity may

be best achieved by observing user behaviour using a logging tool. While such

66

tools are challenging to implement, they can silently monitor user behaviour

over an extended period without interfering with the way users use their

computers.

Previous tools have been developed to log user behaviour in other con-

texts. Software from major vendors often includes features, such as Mi-

crosoft’s Customer Experience Improvement Program, that automatically re-

port usage information to the vendor. These tools have the advantage of

integration within the main codebase, allowing for simpler implementation

and increased stability, but results gathered from these tools are rarely dis-

closed publicly. Researchers have also developed tools that run independently

of the software they are observing. For example, AppMonitor [6] observes

application usage of Microsoft Word and Adobe Reader, and PyLogger [172,

p. 37] observes window switching behaviour on Microsoft Windows. The

authors highlight the need for these tools to maintain existing system per-

formance and stability; such properties are important both because slow or

unstable software might affect how participants use their computers, and

because they allow participants to forget their are being observed, further

minimising any changes in user behaviour.

This chapter describes FileMonitor, a tool that monitors file retrieval be-

haviour on OS X. Like AppMonitor and PyLogger, it observes user behaviour

without requiring users to change the software that they use, and logs be-

haviour without noticeably affecting system performance or stability. The

description of FileMonitor is provided in order to assist other researchers in

developing similar tools in the future – a task that is made difficult by the

lack of standard APIs or methods to monitor other applications.

The chapter first provides an overview of FileMonitor and the mechanisms

it uses to observe file retrieval behaviour. Next, it discusses the implemen-

tation of FileMonitor, along with the associated challenges of developing it.

Finally, it describes the logs that FileMonitor generates, including specific

details of the possible types of log entries.

67

4.1 An Overview of FileMonitor

FileMonitor is a plugin for the Finder, the default file browsing application on

OS X. It silently monitors and logs user behaviour, while remaining invisible

to users.

FileMonitor records three types of behaviour:

1. Finder usage: file browsing behaviour within the Finder, such as

file browser window management, opening folders, opening files and

performing searches. This is achieved by intercepting method calls in

the Finder runtime to trigger FileMonitor’s logging code.

2. Spotlight usage: use of Spotlight, OS X’s search technology. File-

Monitor records search terms and which search results are selected in

the system-wide Spotlight menu, using OS X’s accessibility API.

3. Other file open events: any file opened using any method other

than those above, such as open dialogs, “Open Recent” menus or third

party tools. In such cases, it can only be determined that the files were

opened, not how they were opened. To record this information, File-

Monitor observes changes to the system’s record of recent documents.

FRSPlugin

NSObject (FRSFinderAdditions)
(Finder usage)

FRSAccessibilityManager
(Spotlight usage)

FRSFileEventManager
(Recent documents)

FRSProcessUtilities

Figure 4.1: Simplified class diagram of the FileMonitor plugin

68

4.2 FileMonitor Implementation

FileMonitor was implemented as a SIMBL [168] plugin for the Finder, im-

plemented in Objective-C. It is injected into the Finder on launch, and is

compatible with Mac OS X 10.6 (Snow Leopard) and 10.7 (Lion).

A simplified class diagram of the plugin is shown in Figure 4.1. The

FRSPlugin class sets up the various logging components, and also handles

the logging itself. Details of the logging implementation are described in

Section 4.2.1. FRSFinderAdditions is a category of NSObject (Cocoa’s root

object class) and monitors Finder usage, described in Section 4.2.2; note

that an Objective-C category is an extension of an existing class that adds

functionality to all objects of that class. FRSAccessibilityManager monitors

Spotlight usage using the Accessibility API, described in Section 4.2.3, and

uses FRSProcessUtilities to get information about the frontmost process.

FRSFileEventManager monitors the system’s recent items file, described in

Section 4.2.4.

4.2.1 Logging

All logging is handled by the FRSPlugin class, with logging methods called

by other components. Log files are created and stored locally on the user’s

computer. One file is created for each day that FileMonitor is running.

Log files are in plain text format encoded in UTF-8, and contain one line

for each log entry. Each line is formatted as follows:

[date/time] [event name] Params: [param1] [param2], Windows: [win-

dow1] [window2], View: [view]

The two event parameters param1 and param2 are enclosed in quotes,

and any quote or backslash characters within the parameter are escaped

with a backslash. In some cases, the parameters are lists, in which case the

list is formatted as a comma separated list enclosed in brackets, with each

component enclosed in quotes as above. The window and view parameters

are specific to Finder usage. When a parameter is not specified, it is logged

as “0”, or “Unknown” for the view parameter.

69

4.2.2 Finder Usage

The majority of logging in FileMonitor occurs as a result of actions performed

in the Finder. This is achieved using a technique known as method swizzling

[48], which uses the Objective-C runtime to substitute an existing method

implementation for another – in FileMonitor, this is used to substitute ex-

isting method implementations in the Finder with custom implementations.

Typically, FileMonitor’s implementations simply log the event, then call the

Finder’s original implementation, so that the net effect is an injection of

logging code.

Method Discovery

Swizzling Finder’s code required some knowledge of the internal structure of

Finder’s architecture, as well as the specific methods in each of its classes.

Several tools helped to gain this information.

• class-dump [171] generates header files for Mach-O files, such as the

Finder executable file. The Finder header files provide information

about the structure of the Finder, i.e. the classes it contains and the

methods contained within them. Except for primitive types, it does not

provide information about the types of method parameters or return

values.

• The instrumentObjcMessageSends() function enables logging of

every Objective-C message sent (Objective-C messages are similar to

method calls in other languages). Enabling it before a method is called,

then disabling it immediately after, provides some information about

the internal behaviour of the Finder, especially when combined with

swizzles of low level methods such as mouse down event handlers. These

log files can be extremely long, however, and tend to only provide clues

for further exploration. They are also limited to Objective-C messages

and do not include C function calls.

• F-Script [152] can inject itself into applications and provides a hier-

archical browser of the views within an application’s interface. It can

70

inspect specific instantiations of these views to examine property val-

ues, providing further information as to what properties and methods

are of relevance.

Even with these tools, large amounts of experimentation were required,

especially when dealing with proprietary data types. In many cases, separate

code had to be used on Mac OS X 10.6 and 10.7, due to internal changes in

the Finder between releases. This is a common problem in the development

of logging tools, and some pootential solutions are discussed in Section 4.4.

Finder Usage Log Content

Details of all the log events are included in Section 4.3. Each entry includes

some common information:

• A unique identifier of the source window for the event, allowing window

use to be tracked over time. Some events also log identifiers for new

windows that are created in response to the event, such as opening a

folder in a new window. For the purposes of logging, the desktop counts

as a window, and log entries are created when the desktop window is

first “opened” (i.e., on launch).

• The type of view in the source window, where applicable. Examples

include icon view, list view, column view and the desktop.

4.2.3 Spotlight Usage

The Spotlight menu in OS X is controlled by the SystemUIServer process,

which cannot have code injected into it in the same way as the Finder. In-

stead, the OS X Accessibility API [8] provides access to its interface elements.

This functionality is enabled when the “Enable access to assistive devices”

option is set in the Universal Access system preference pane.

Observation

To record Spotlight events, FileMonitor creates observers that fire notifica-

tions when certain events are triggered. For the purposes of event logging,

71

these events are search query changes and results selections.

Search query changes are observed with a value changed observer at-

tached to the search field. However, this observer cannot be created when

FileMonitor is launched, as the Spotlight menu needs to be active to retrieve

a reference to the search field. Instead, FileMonitor creates a system-wide

observer for key down and mouse up events which checks Spotlight menu

visibility. Once it observes that the menu has been activated, it adds a value

changed observer to the search field, which remains attached until the process

is restarted.

To detect results selections, FileMonitor adds application-wide observers

to SystemUIServer on launch. On Mac OS X 10.6, selecting a result (i.e.,

clicking it or using the keyboard to open an item) is detected by observing

menu item selected events. However, the Spotlight menu does not trigger

these events on Mac OS X 10.7. As a workaround, FileMonitor also registers

observers for menu selection change and menu close events. When the former

event is triggered (e.g., by hovering over a menu item so as to highlight it,

but before clicking it), FileMonitor records the path of the file represented

by the menu item, as well as the identifier of the frontmost application.

When the menu is closed, after a small delay, FileMonitor compares the new

frontmost application to the most recently recorded one. If they are different,

it is assumed that the previously recorded path was selected, rather than the

menu being closed without making a selection. If they are the same, it is

assumed that no selection was made. While this would not be true in all cases

(i.e., if a search result is opened in the application that is already active), it

is likely to be generally true. This method is only used as a fallback when

no menu item selected events are triggered.

Spotlight Log Content

When Spotlight search text changes, FileMonitor logs SpotlightSearch events,

which record the new search text. When a result is selected, it logs Spotlight-

Selection events, which record the path of the selected item.

72

4.2.4 Recent Documents

Given the large number of methods that can be used to open files, many

involving third party software, it was impractical to write specific logging

code for each. However, OS X maintains a file that lists recently opened

documents, applications and servers. FileMonitor can determine which files

have been opened by monitoring changes to this file, stored at ∼/Library/

Preferences/com.apple.recentitems.plist, subject to limitations described be-

low.

The recent items document contains separate ordered lists of recent doc-

uments, applications and servers. Items that occur earlier in the lists have

been accessed more recently. The total number of items in each list is capped

at a level determined by settings in the Appearance (Mac OS X 10.6) or Gen-

eral (Mac OS X 10.7) preference panes, but defaults to 10 each. In order for

FileMonitor to be able to determine recent items, these settings must not be

set to ‘None’, however it is rare for users to select this option.

Files are only recorded in this file if they are opened in response to user

events. For example, a settings files would not be recorded if it was opened

in the background rather than in response to a direct user request, how-

ever it would if it were opened using an “Open” dialog. In some cases, it

is impossible to distinguish between a file being opened, and the window of

an already-open document being activated, which are also recorded in some

applications. There are also some other variations between applications; for

example, in the Xcode IDE, switching between source code files within a

project would cause a file to be recorded on each switch. In the Mail appli-

cation, however, opening emails (represented as individual files on disk) is

not recorded. As no details apart from the file path are recorded in the recent

items file, FileMonitor cannot detect this application-specific behaviour.

When a file is opened, it is not immediately recorded in the recent items

file. Instead, there is a delay of up to a few minutes before it is updated.

The recent items file is up-to-date when updated, so a single change in the

file often corresponds to multiple file open events.

73

Observation

To monitor changes in the recent items file, FileMonitor sets up a file system

event stream (FSEventStream) for the file, which notifies it of any changes

to the file. As the file does not record times that the files were opened,

FileMonitor records a copy of the recent items on its initial launch, and from

then on compares the lists of recent documents and applications to the lists

from the previous update to deduce which files have been opened. Recent

documents are processed separately from recent applications.

Lists of documents and applications are stored in descending order of the

time of last access. When comparing lists, items are considered new until

reaching two consecutive items that appear in the same order in the previous

list, with intermediary items allowed in the previous list only if they have

already been observed in the new list. This guarantees no false positives,

although false negatives are possible in rare cases. Roughly, the algorithm

works as follows:

1. For each item I in the new list:

(a) If I was in the previous list, there is a held item H, and I appears

in the previous list immediately after H (excluding any intermedi-

ary items that have already been accepted), reject both and skip

to step 2.

(b) If there is a held item, accept it.

(c) If I was not in the previous list, accept it and continue to the next

item.

(d) Otherwise (if I appears in a previous list), hold I.

2. Process accepted items in reverse order.

Table 4.1 illustrates an example, with comments for what action is per-

formed for each item in the new list. In this case, the first three items are

accepted, and processed in the order Bag, Hand, Car.

As the recent items file includes items opened through any method, it

compares accepted items to those directly observed through Finder or Spot-

light search. Any files that were part of directly observed retrievals since the

74

Previous list: Apple, Bag, Car, Dog, Egg, Frog
New list: Car, Hand, Bag, Apple, Dog, Egg

New Item Action
Car Held (appears in previous list), later accepted
Hand Accepted (does not appear in previous list)
Bag Held (appears in previous list), later accepted
Apple Held (appears in previous list), later rejected
Dog Rejected (appears after Apple in previous list, with only

accepted items in between)
Egg Not examined

Table 4.1: Example recent items list comparison

last change to the recent items file are ignored, since they have already been

logged.

Recent Documents Log Content

Documents and applications from the recent items file are logged as Open-

FileExternal events, which include the path of the file. The event time is

when the file was processed, with may be delayed up to several minutes from

when the file was opened.

4.3 FileMonitor Logs

FileMonitor produces a variety of log events. Table 4.2 lists the names of all

log events, along with a description of each. Table 4.3 lists actions from a

user point of view, with details of the log events that are triggered by these

actions. Finally, Listing 4.1 provides an example excerpt from a FileMonitor

log file.

75

Log Event Description
Opening items

OpenFile A file has been opened in response to explicit user interaction
within the Finder.

QuickLook A file has been previewed in a popup window using OS X’s “Quick
Look” feature.

OpenFileExternal A file has been opened in an application other than the Finder, as
described in Section 4.2.4. These entries usually occur a minute
or two after the file has been opened.

OpenFolder The current path of a file browser window has changed. This can
have a number of causes, such as opening a folder, opening an
enclosing folder, selecting a folder from the sidebar or toolbar, or
using back and forward buttons. The second parameter is used to
distinguish between these (and other) cases.

OpenFolderNewWindow A folder has been opened in a new window, rather than changing
the location of an existing one. This has similar causes to Open-
Folder and is sometimes done by holding down modifier keys when
performing an action. For these events, identifiers for both the
source window (where the event was triggered) and new window
(created in response to the event) are provided.

CloseFile A file has been closed. These entries can only be logged in Mac
OS X 10.7, and only when the folder that contains the file is still
open, so is of limited use.

Window management
NewWindow A new Finder window has been created, with or without a direct

request for a specific path, but not due to a specific action in
another window (in which case an OpenFolderNewWindow event
will occur instead). Causes include the user using the “New Finder
Window” command, a window being opened on launch, a search
window opening, or a location being selected from the “Go” menu.
The second parameter is used to distinguish between these cases.

CloseWindow A Finder browser window has been closed.
Other file tasks

RenameFile A file has been renamed. Parameters include the old and new
path. Rename events occur when renaming a file in a browser
window or info/inspector window.

RenameFolder Identical to RenameFile, except when applied to a folder.
NewFolder A folder has been created as a result of direct user interaction.

The parameter is the initial path of the folder, before renaming,
such as “untitled folder”. As such, this event is often coupled with
a RenameFolder event.

Move Files or folders have been moved as a result of direct user inter-
action, such as drag and drop. Parameters provide both the old
and new path or paths.

Delete Files or folders have been moved to the trash as a result of direct
user interaction, such as drag and drop or with the “Move to
Trash” command. No events are logged if items are later moved
out of the trash, or when the trash is emptied.

Continued on next page

76

Log Event Description
SetLabel A colour label has been changed for an item, including the re-

moval of a label. Parameters provide the path of the item and an
identifier for the new label.

Search
SearchScope The scope of a search has changed, or an initial scope is deter-

mined. This event occurs when a new search is created or when
the users changes whether the search is to take place across the
whole computer of just within the current location.

Search A search parameter has changed, including the primary query or
any other search criteria. The text query is included with this
event.

SearchQuery A search query has changed. Similar to Search, but provides the
raw Spotlight query provided to the Spotlight engine. This query
includes all search criteria, beyond just the primary query. Search-
Query events will always immediately follow Search events and
correspond to the same query.

SearchCancelled A search has been explicitly cancelled, for example by clicking the
search field’s cancel button. Navigating away from the search, for
example by clicking on a folder in the sidebar or using the “Back”
button, will not trigger a SearchCancelled event. While cancelling
a search often returns the window to its previous target, in some
cases it just results in an empty search (such as when the window
was created as a search window). In these cases, a new search
may not be preceded by an initial SearchScope event as is typical
of most searches.

SearchSaved A search has been saved as a saved search. Parameters specify the
search name and whether it was added to the sidebar.

OpenSavedSearch A saved search has been opened in a browser window. This will
generally be followed by a SearchScope event after the search is
loaded.

SpotlightShowAll The “Show All in Finder” command has been selected in the Spot-
light menu after performing a search. This is generally preceded
by a NewWindow event corresponding to the created results win-
dow in Finder.

SpotlightShortcut A new search window has been created in response to the system-
wide Spotlight window keyboard shortcut. As with Spotlight-
ShowAll, this is generally preceded by a NewWindow event.

SpotlightSearch The text in the Spotlight menu’s search field has been changed.
Usually occurs multiple times in succession, as it produces a log
entry for each key press.

SpotlightSelection A search result has been opened from the Spotlight menu. This
will typically be immediately preceded by a SpotlightSearch entry,
which provides the search query.

Table 4.2: FileMonitor log event descriptions

77

User Action Log Event Parameters Windows
Opening files

Open single file OpenFile 1: File path 1: Source
Open multiple files OpenFile 1: File path array 1: Source
“Open With” OpenFile 1: File path/array

2: OpenWith
1: Source

“Open With Other” OpenFile 1: File path/array
2: OpenWithOther

1: Source

Open file from toolbar OpenFile 1: File path
2: Toolbar

1: Source

Open file from search
(Open with/Open with
other)

OpenFile 1: File path
2: Search (Search-OpenWith

/Search-OpenWithOther)

1: Source

Quick Look file QuickLook 1: File path 1: Source
Opening file in other ap-
plication

OpenFileExternal 1: File path N/A

Close file (10.7 only) CloseFile 1: File path N/A
Opening folders

Opening in same window OpenFolder 1: Folder path 1: Source
Opening in new window OpenFolderNewWindow 1: Folder path 1: Source

2: New
Open enclosing (same
window)

OpenFolder 1: Folder path
2: Enclosing

1: Source

Open enclosing (new
window)

OpenFolderNewWindow 1: Folder path
2: Enclosing

1: Source
2: New

Opening from sidebar
(same window)

OpenFolder 1: Folder path
2: Sidebar

1: Source

Opening from sidebar
(new window)

OpenFolderNewWindow 1: Folder path
2: Sidebar

1: Source
2: New

Opening from toolbar OpenFolder 1: Folder path
2: Toolbar

1: Source

Show package contents OpenFolderNewWindow 1: Package path
2: PackageContents

1: Source
2: New

Open recent folder (in
new window)

OpenFolder
(NewWindow)

1: Folder path
2: Recent

1: Source

Back OpenFolder 1: Folder path
2: Back

1: Source

Forward OpenFolder 1: Folder path
2: Forward

1: Source

Show original OpenFolder 1: Folder path
2: ShowOriginal

1: Source

Go to folder (in new win-
dow)

OpenFolder
(NewWindow)

1: Folder path
2: Goto

1: Target

Go to specific folder X
(in new window)

OpenFolder
(NewWindow)

1: Folder path
2: GoToX

1: Target

Other file tasks
Rename file RenameFile 1: Initial path

2: New path
1: Source

Rename folder RenameFolder 1: Initial path
2: New path

1: Source

Continued on next page

78

User Action Log Event Parameters Windows
New folder NewFolder 1: New path 1: Source
Move item(s) Move 1: Old file path/array

2: New file path/array
1: Source

Delete item(s) Delete 1: File path/array 1: Source
Set label SetLabel 1: Label identifier 1: Source

Window management
New window NewWindow 1: Initial path 2: New
Initial window on launch NewWindow 1: Initial path

2: Initial
2: New

Close window CloseWindow None 1: Source
Search

Search scope change SearchScope 1: Scope 1: Source
Search changed Search

SearchQuery

1: Search text
2: Contents/Filenames
1: Spotlight query

1: Source

1: Source
Search cancelled SearchCancelled 1: New path 1: Source
Save search SearchSaved 1: Saved search path

2: Added to sidebar?
1: Source

Use saved search OpenSavedSearch 1: Saved search path 1: Source
Show all (Spotlight) NewWindow

SpotlightShowAll

1: N/A
2: Spotlight
1: Search query
2: New/Existing

1: New

1: New

New Spotlight search (in
Finder)

NewWindow

SpotlightShortcut

1: N/A
2: Spotlight
1: N/A
2: New/Existing

1: New

1: New

Search text changed
(Spotlight menu)

SpotlightSearch 1: Search text N/A

Result selected (Spot-
light menu)

SpotlightSelection 1: File path N/A

Table 4.3: FileMonitor log event details

4.4 Discussion

This chapter described FileMonitor, a tool that monitors file retrieval be-

haviour on OS X. Logging tools such as FileMonitor help to provide valuable

information about usage behaviours, and the description of FileMonitor in-

cluded details of three different data-collection techniques which may be of

use to researchers designing similar tools.

Unfortunately, logging tools typically require significant engineering re-

sources due to the difficulties involved in observing existing software. Includ-

ing support for multiple versions of the observed software can be particularly

challenging, as logging tools often have to rely on the internal architecture

79

1 2012-06-03 10:28:28.902 CloseWindow, Params: 0 0, Windows: 124064 0, View: Column

2 2012-06-03 10:28:46.187 NewWindow, Params: "/" 0, Windows: 0 127255, View: Column

3 2012-06-03 10:28:47.260 OpenFolder, Params: "/Videos" 0, Windows: 127255 0, View: Column

4 2012-06-03 10:28:49.210 OpenFolder, Params: "/Videos/Unwatched" 0, Windows: 127255 0, View:

Column

5 2012-06-03 10:29:05.899 Delete, Params: "/Videos/Unwatched/Keynote.mov" 0, Windows: 127255

0, View: Column

6 2012-06-03 10:38:07.913 CloseWindow, Params: 0 0, Windows: 127255 0, View: Column

7 2012-06-03 10:38:17.505 Move, Params: "/Users/home/Downloads/handbook13-optimized.pdf" "/

Users/home/Downloads/Unsorted/handbook13-optimized.pdf", Windows: 124038 0, View:

Column

8 2012-06-03 10:38:19.764 OpenFile, Params: "/Users/home/Downloads/googlechrome.dmg" 0,

Windows: 124038 0, View: Column

9 2012-06-03 10:38:21.752 NewWindow, Params: "/Volumes/Google Chrome" 0, Windows: 0 127426,

View: Icon

10 2012-06-03 10:38:26.050 OpenFile, Params: "/Volumes/Google Chrome/Google Chrome.app" 0,

Windows: 127426 0, View: Icon

11 2012-06-03 10:38:50.601 CloseWindow, Params: 0 0, Windows: 127426 0, View: Icon

12 2012-06-03 10:39:00.494 Delete, Params: "/Users/home/Downloads/F-Script.ML.universal.zip"

0, Windows: 124038 0, View: Column

13 2012-06-03 10:39:12.182 Delete, Params: ("/Users/home/Downloads/CHI-paper-format-LaTeX", "/

Users/home/Downloads/CHI-paper-format-LaTeX.zip") 0, Windows: 124038 0, View: Column

14 2012-06-03 11:21:37.856 NewWindow, Params: "/" 0, Windows: 0 127767, View: Column

15 2012-06-03 11:21:39.198 OpenFolder, Params: "/Users/home/Documents/Programming/Projects/

SquiggleDemo" "Sidebar", Windows: 127767 0, View: Column

16 2012-06-03 11:21:41.458 OpenFolder, Params: "/Users/home/Documents/Programming/Projects/

SquiggleDemo/Files" 0, Windows: 127767 0, View: Column

17 2012-06-03 11:21:44.662 OpenFolder, Params: "/Users/home/Documents/Programming/Projects/

SquiggleDemo/Files/Notes" 0, Windows: 127767 0, View: Column

18 2012-06-03 11:21:52.284 OpenFolder, Params: "/Users/home/Documents/Programming/Projects/

SquiggleDemo/Files/Miscellaneous" 0, Windows: 127767 0, View: Column

19 2012-06-03 11:21:55.760 Move, Params: "/Users/home/Downloads/linedraw.m" "/Users/home/

Documents/Programming/Projects/SquiggleDemo/Files/Miscellaneous/linedraw.m", Windows:

124038 0, View: Column

20 2012-06-03 11:21:59.943 OpenFile, Params: "/Users/home/Documents/Programming/Projects/

SquiggleDemo/Files/Miscellaneous/linedraw.m" 0, Windows: 127767 0, View: Column

21 2012-06-03 11:30:52.268 RenameFile, Params: "/Users/home/Documents/Programming/Projects/

SquiggleDemo/Files/Miscellaneous/linedraw.m" "/Users/home/Documents/Programming/

Projects/SquiggleDemo/Files/Miscellaneous/SDLine.m", Windows: 127767 0, View: Column

22 2012-06-03 11:30:56.319 QuickLook, Params: "/Users/home/Documents/Programming/Projects/

SquiggleDemo/Files/Miscellaneous/fractal.m" 0, Windows: 127767 0, View: Column

Listing 4.1: Sample excerpt from a FileMonitor log file

or behaviour of the software they are observing, and this will often change

between releases.

Major software vendors could better support the research community in

two ways. First, they could provide information gathered from their own re-

porting tools to researchers. Although this data is generally anonymised, they

could further protect privacy by providing an API through which analysis

can be performed at an aggregate level, without exposing data from any par-

ticular individual. Second, operating system vendors could include standard

80

APIs that provide extensive support for third party developers to monitor

user interaction performed in other applications. While limited APIs are al-

ready available (for example, the Accessibility API on OS X), these could be

expanded significantly. To alleviate security concerns, the system could ask

for user permission to allow an application to make use of this API. These

changes would be beneficial both for the research community, as well as for

the vendors themselves; for example, it would allow vendors to utilise the

findings of external researchers in order to improve their products, reducing

research and development costs.

4.5 Conclusion

This chapter described the design and implementation of FileMonitor, soft-

ware that silently monitors and logs file retrieval behaviour. By running as

a plugin to OS X’s file manager, the Finder, FileMonitor is always running,

but is invisible to the user. This enables it to monitor retrieval behaviour

without affecting it, resulting in a high degree of external validity.

FileMonitor uses three mechanisms to observe user behaviour: injecting

code into the Finder to observe specific user actions, such as navigating

through the file hierarchy and opening files; using OS X’s accessibility API

to observe searches within the system-wide Spotlight menu; and monitoring

changes to the system’s recent items file to deduce files that have been opened

with other methods. This range of techniques provides both a broad overview

of all file retrieval activity across the system, as well as detailed activity of

files retrieved with specific methods (i.e., navigation and search).

While FileMonitor provides comprehensive logs of file retrieval behaviour,

it is unable to provide context around them, such as why users choose to re-

trieve files in a particular way. Combining FileMonitor with other techniques,

such as user interviews, can fill this gap and provide a detailed understanding

of file retrieval behaviours and motivations. Chapter 5 reports the results of

a study that uses both of these techniques, with FileMonitor installed on

participants’ computers for a month, and follow-up interviews that provide

context for the content of the logs. Such characterisation is an important aid

to the informed design of next-generation file retrieval interfaces.

81

Chapter V

How Do Users Retrieve Files? An Empirical

Characterisation of File Retrieval

Conducting work on computer systems is normally preceded by an explicit

user action to open or retrieve a file, such as a word processing document, a

spreadsheet, or PDF document. Unsurprisingly, for an action that is a critical

prerequisite to accomplishing tasks, many alternative tools are available to

assist users with file retrieval. These tools often form an elemental part of

the operating system, including hierarchical file browsers that support user

controlled traversal of the file system (such as Windows’ File Explorer and the

OS X Finder), tools to view recently accessed files, and search utilities such

as OS X’s Spotlight. Individual software applications also provide tools for

accessing files, normally through an “Open” command or using application-

dependent recent file lists. Finally, third party vendors also offer tools for

assisting file retrieval, such as specialised application launchers.

As expected for such an important user activity, there has been exten-

sive research into how people manage their file systems and retrieve their

files (reviewed in Chapter 3). The primary purpose and utility of this pre-

vious research is that it provides an understanding of current activities and

patterns of behaviour that reveal opportunities for improving file retrieval

performance in next generation interfaces – for example, they show bottle-

necks in performance and can highlight frequently repeated activities that

could benefit from new tools.

While the results of studies to date provide a good introduction to file

retrieval activities, their findings are limited due to the necessary constraints

imposed by their experimental methodologies. Specifically, most prior stud-

ies have one or more of the following limitations: (1) temporal snapshot –

82

they involve a very limited time period of analysis, often a single experi-

mental session; (2) out of context – the file retrieval activities are analysed in

response to specific requests from the experimenter, rather than as they arise

in response to work requirements; and (3) small scope – direct observation

and controlled experiments are labour intensive, and consequently they often

involve a limited number of participants or amount of data per participant.

Several prior studies have observed similar limitations in the analysis

methods used to understand other important areas of computer use, and this

has motivated the development and deployment of logging tools to record

data describing users’ actual activities as they occur. Log-based analyses

have been used to examine Unix command use [85], web navigation activities

[174], window switching behaviour [172], and navigation within electronic

documents [5].

However, although one previous log study examined the flow of file re-

sources between applications [102], there are no prior publicly available log

studies specifically describing file retrieval. Reasons for this are suggested by

Bergman et al. [29]: first, there are privacy concerns in monitoring file use

that can act as a disincentive for participation as well as a barrier for human-

ethics approval processes; and second, developing robust logging software is

a non-trivial software engineering exercise that, when done poorly, results in

unacceptable instability in the users’ computing environment.

The previous chapter described the implementation of FileMonitor, a tool

to monitor file retrieval behaviour on OS X. This chapter describes the results

of a four week study in which FileMonitor was deployed on the personal

computers of 26 participants. Interviews with the participants following the

log study helped to cross-validate the findings derived from the log analysis

and clarify any unexpected or anomalous observations.

Results provide a rich characterisation of actual file use, presented in three

sections focusing on each of the following: (1) retrieved files – describing the

types of files used, their locations, frequency of access, etc.; (2) retrieval

methods – characterising the tools used to retrieve files, such as search, file

browsers, recent items tools, etc.; and (3) file organisation – briefly charac-

terising use of organisation features such as moving and renaming files. The

chapter finishes by discussing implications for design of next generation tools

83

for retrieving files, such as file browsers.

The characterisation is focused on retrievals of discrete files that are in-

dividually named and explicitly retrieved by users (such as word processing

documents, spreadsheets, etc.), rather than files that are accessed implicitly

through specific applications (such as email messages selected within a mail

client). Applications are themselves files, and discussion is included that

characterises their retrieval, although they are not a primary focus.

5.1 Background

An overview of file retrieval techniques is described in detail in Chapter 2.

While there is extensive similarity in methods available between platforms,

those offered on OS X are briefly summarised below to aid in interpreting

the results.

The Finder is the navigational file browser offered on OS X, equivalent

to File Explorer in Windows. It allows users to traverse through their file

hierarchy to reach target files, and provides shortcut buttons for common

navigation actions such as traversing “Back” to previously visited locations.

The Finder also features a sidebar with customisable links to common loca-

tions, and a “Go” menu facilitating access to common locations and recently

viewed folders. Naturally, the efficiency of file retrieval by navigating through

the file hierarchy is influenced by the structure and clarity of the user-created

file hierarchy.

The OS X Dock contains a single row of icons, most of which represent

applications. The Dock serves a dual function, as both a method of switching

between applications (all launched applications appear in the Dock) as well

as a way to launch them. It can also store shortcuts to common folders and

provides features to quickly access items within them.

OS X also provides a powerful search utility, called Spotlight. A Spot-

light menu is available from within any application (including the Finder)

and provides a listing of system-wide search results in response to a query,

grouped by type (example types include documents, applications, folders,

email messages, events, webpages, images and dictionary definitions). Spot-

light searches all file metadata, such as filename, content, keywords, authors,

and many other properties. A large number of search criteria and boolean

84

searches are available by using special keywords, however these are mostly

undocumented and are not obvious to the user; for example, searching for

“kind:folder date:today” shows all folders that were opened today. As of Mac

OS X 10.7, Spotlight results show previews when hovering over a result, but

do not show item locations.

The Finder also includes a search feature, powered by Spotlight. Once an

initial search query has been entered, it provides an explicit user interface to

filter the results based on many criteria – most obviously the search location

and whether to search all content or just filenames, but also based on any

other metadata. This interface can be shown via the Spotlight menu, by

selecting a “Show All in Finder” menu item from its list of results.

Two additional methods are available to open files from within most ap-

plications: an open dialog, which provides a navigation interface similar to

the Finder, and an “Open Recent” menu, listing the most recent documents

opened in that application. A global “Recent Items” menu is also available as

a submenu of the Apple menu, and lists recent applications and documents

across the whole system.

Chapter 3 included a review of previous file retrieval and organisation

studies. To summarise, key findings are that users average 6000-8000 thou-

sand documents, but with large variation between users [82, 95], that there

are strong preferences towards navigation-based retrieval [25], and that re-

trieving a file using navigation takes an average of 13-17 seconds [30]. How-

ever, none of these studies have directly observed retrieval behaviour in a

natural setting over a prolonged time period.

5.2 Study Method

26 Mac users (11 female, mean age 31.9) participated in the study: five

undergraduate students, twelve graduate students, five university staff mem-

bers, and four employed outside universities. 14 studied computer science

and 12 studied or worked outside computer science. Three reported that

they used computers for 1-2 hours each day, four for 2-4 hours, nine for 4-8

hours, and ten for more than 8 hours each day. FileMonitor was installed

on participants’ primary personal computers; 8 were desktops and 18 were

85

laptops, split evenly between Mac OS X 10.6 and 10.7. Participants were

offered a shopping voucher as thanks for participation.

At the start of the study, participants provided demographic information

and completed an informed consent form (reproduced in Appendix A). To

address privacy concerns related to the logging of file paths and filenames,

they were assured that log files would be processed only by a computer pro-

gram that produced aggregate data, and that no one would directly observe

the contents of their logs. Logs were stored on participants’ computers un-

til collected, and participants could view their contents. This approach was

preferable to concealing filenames (for example, using hash codes), as it al-

lowed for analysis of filename information, and no participants declined to

participate in the study after learning the details of what would be logged.

FileMonitor was installed for about a month, with four weeks of data

being included in the analysis for each participant, starting on the day after

installation; logged events that occurred on the day FileMonitor was installed

were ignored as participants may have been more conscious that they were

being observed. After the four week period, individual arrangements were

made to uninstall the software, collect data, and conduct post-study inter-

views.

The interview was semi-structured and conducted along with participants’

computers so that they could demonstrate their retrieval behaviours in re-

sponse to questions. Sample questions included asking the participants to

describe three files they had been working with over the last week, to demon-

strate the ways in which they accessed them, to recall any file retrieval prob-

lems they had encountered recently, and to describe how they resolved any

such difficulties. Participants were also probed on their usage of a wide

range of file retrieval tools and methods. Questions were designed to encour-

age participants to offer information, rather than prompting for it directly.

Interviews usually took about 30 minutes. The interview template is repro-

duced in Appendix A.

86

5.2.1 Limitations of Log Analysis

Logs were analysed by computer program to produce aggregate results. Due

to limitations of FileMonitor, some assumptions were made while processing

the results.

The most important limitations related to the way recent items were

recorded. Recall that the system-wide recent items document was moni-

tored to detect file retrievals that were not triggered by use of the Finder

or Spotlight search. For such retrievals, these limitations were: (1) the ‘re-

cent items’ file is not updated immediately, so the logged timestamps can be

slightly delayed – this delay is normally less than a couple of minutes, but

means that the order of retrievals can be unclear, and time-based retrieval

measurements cannot be performed; (2) it is impossible to determine the ex-

act retrieval method used, except that it was not navigation in the Finder or

search (possibilities include recent items menus, open dialogs, and the Dock,

among others); (3) it is possible, though unlikely, that some retrievals will

not be observed – for example, if more files are retrieved between updates

to the recent items file than the length of its access history; and (4) some

applications trigger updates to this file when an already open document is

brought into focus, overestimating the number of retrievals. This behaviour

is not universal across all applications.

Two assumptions were used when processing the logs to reduce the impact

of these limitations. First, that a non-application file was opened by dragging

it from a Finder window to an application icon in the Dock if (1) it was

recorded as opening while visible in a Finder window used in the last two

minutes; and (2) that window has not recorded a retrieval since its last

navigation event. In such cases, the retrieval was marked as one triggered

by navigation within the Finder (limitation 2). Such retrievals are excluded

from time based measures, since the timestamps are not accurate. Second,

retrievals from this method for any non-application file within six hours of

a prior retrieval of the same file were ignored if they were not coupled with

an associated close file event (limitation 4). Close file events were only sent

in limited circumstances: on Mac OS X 10.7 only, and only for files opened

from the Finder where the file was still visible in the window from which it

87

was opened. As an example, if retrievals were recorded for a single file with

this method at hours 1, 2, 4, 7, 14, 18, with a close file event at hour 16,

then only the retrievals at hours 1, 14 and 18 would be included. Due to the

limited accuracy of this approach, including both false positives and false

negatives, only limited analysis was done using this data.

5.3 Analysis Part 1: Retrieved Files

The analysis results are reported in three parts. Part 1, reported here, ex-

amines characteristics of retrieved files such as their type, hierarchy depth,

and revisitation patterns, as well as analyses of filenames. Part 2 discusses

the tools used to retrieve files. While these two parts, which analyse file

retrieval, are the focus of the work, Part 3 briefly discusses file management

to provide additional context.

Across the 26 participants, 18473 retrieval events were recorded. The

cross-participant range of retrieval events was from 27 (a casual computer

user) to 3889, with a mean of 711 (s.d. 860). The 18473 retrieval events

contained a total of 19288 files, with the discrepancy explained by single

retrieval events sometimes opening multiple files (e.g., multiple selections in

the Finder). The total number of unique files accessed was 8218, ranging

from 20 to 1251 per participant (mean 316, s.d. 314).

5.3.1 How often are files revisited?

Figure 5.1 shows a breakdown of files by retrieval count, showing that 60.8%

of files were only retrieved once (accounting for 26.6% of all retrievals), and

98.0% were retrieved 10 or fewer times. Half the participants accessed at

least one file more than 20 times, and the maximum number of revisits to a

file was 280 times.

Prior log analyses in other domains have shown strong patterns of revis-

itation, similar to that exhibited by Zipf’s Law [189], with retrieval counts

to distinct items following a power-law with their rank. These findings have

been replicated for command use [85], web page visits [174], window use [172]

and email messages [64]. It was therefore useful to investigate whether file

revisitations follow a similar distribution; such knowledge is beneficial, for

88

0%#
10%#
20%#
30%#
40%#
50%#
60%#
70%#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

Pe
rc
en

ta
ge
)o
f)fi

le
s)

Retrieval)Count)

Figure 5.1: Distribution of files’ retrieval counts, across all participants

example, when simulating file retrievals in controlled lab studies.

This was tested by using the regression log(r) = a− b log(n), where n is

retrieval count, r is the file’s rank by retrieval count, and a and b are constants

where the data is Zipfian when the Zipf’s parameter s ≈ 1 (where s = 1
b
).

The analysis included the top 25 most frequently retrieved files of the 17

participants who retrieved more than 100 different files. Results showed good

coefficients of determination (mean R2 of 0.93, with individual’s R2 values

ranging from 0.81-0.98), with s averaging 0.62 (range: 0.32-0.97), indicating

a near Zipfian distribution. Restricting analysis to just those participants

who accessed more than 500 files (6 participants) gave an even better fit:

mean s = 0.68, mean R2 = 0.952.

Therefore, people’s patterns of file retrieval are strongly repetitive, with a

small number of frequently revisited files, and a large number of infrequently

visited ones. They are also approximately Zipfian, albeit with a longer tail

than typical and with large variation between participants. The obvious

design implication is that there are promising opportunities for interface

methods that improve performance in revisiting files.

There is also evidence that users work in related areas of the hierarchy

over limited time periods. For example, while 37.6% of retrieved files had

been visited in the previous 24 hour period (51.8% in the previous week),

83.0% of their parent folders contained files (at any depth) that had been

(90.1% for the previous week). Going further, 91.4% of their grandparent

89

0%#

20%#

40%#

60%#

80%#

100%#

Retrieved#
file#

Parent# Grandparent# 2nd#
grandparent#

3rd#
grandparent#

Pe
rc
en

ta
ge
)o
f)R

et
ri
ev
al
s)

Ancestor)of)retrieved)file)

Previous#day# Previous#week#Descendant#retrieved#in:#

Figure 5.2: Percentage of ancestors of retrieved files that contained descen-
dant files that were retrieved in the last day or week (including the retrieved
file itself), as an indicator of reuse in parts of the file hierarchy.

folders contained files that had been (95.9% for the previous week). These

figures, as well as those for further ancestors are shown in Figure 5.2.

5.3.2 Are the same items often accessed in each folder?

While the previous section shows that file revisitation is common, a relevant

question for the design of potential file retrieval interfaces is this: given a

particular folder, what is the distribution of retrievals amongst its items? Do

a few items represent the majority of retrievals within a folder, or is there a

more even distribution? Interfaces that support revisitation may act globally

(for example, OS X’s system-wide ‘Recent Items’ menu), however others may

be specific to a folder (for example, an interface that highlights likely items

in a folder). The latter type is most effective when revisitations are skewed

to a small number of items in each folder.

This was examined by recording the frequency rank of each item within

its parent folder at the time it is accessed, treating files and folders indepen-

dently. For example, suppose a folder called Documents contains subfolders

Finance, Coursework and Projects. Projects is accessed at one point of time,

90

0%#

1%#

10%#

100%#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11+#

Pe
rc
en

ta
ge
)o
f)r
et
ri
ev
al
s)

Frequency)rank)of)accessed)item)

Folders#
Files#

0.1%#

Figure 5.3: Frequency rank of files and subfolders within their parent folders,
at the time they are accessed. Y-axis uses a log scale.

when only Coursework has been accessed more often in the past – thus, the

folder with frequency rank 2 was accessed. Later, Projects is accessed again,

but this time it has been accessed more than any other folder in the past, and

has frequency rank 1. Figure 5.3 shows the distribution of such frequency

ranks for folders and files across all participants. The first access of each

type (file or subfolder) is excluded for each folder, since there is no access

history. The first access of a particular item, where other items in that folder

of the same type have previously been accessed, are included in the total

percentages but not shown.

Notably, the frequency distribution for files has a much longer tail than

for folders. Files and folders with frequency rank 1 account for 24% of file

retrievals, but 44% of folder retrievals. At the other extreme, 5.0% of file

retrievals are for files with frequency ranks of 11 or more, compared to just

0.3% of folder retrievals. Additionally, in folders with previous access history,

47% of file retrievals are for previously unvisited files, while only 32% of folder

retrievals are for previously unvisited folders. These results are perhaps to

91

be expected, given that folders generally contain more files than subfolders

[29].

These findings suggest that usage data is a useful predictor for future

accesses within folders, and especially so for subfolders. Over 60% of folder

retrievals (and 90% of folder revisitations) are for a folder with a frequency

rank of 3 or better. Almost 40% of file retrievals (73% of file revisitations)

are for files with rank 3 or better. For comparison, previous studies have

found an average of 11-13 files per folder [29, 82, 95], while Bergman et al.

found an average of 10.6 subfolders in the folders most commonly visited

[29]. While this metric essentially tested the predictive accuracy of the Most

Frequently Used method (MFU), other algorithms have been shown to be

more accurate still (see Chapter 6).

5.3.3 What types of files are retrieved?

File types were deduced based on file extensions and grouped into categories.

Types were counted for every retrieval of each item, however each type was

counted a maximum of once per retrieval event, in the case of multiple se-

lected items. Using this method, 91.1% of file retrievals could be classified.

Common types of retrieved files were: applications (24.1%, including those

opened indirectly by opening one of its documents), images (13.3%), text

or word processing documents (12.7%), PDFs (12.5%), movies (12.2%) and

source code (8.5%). All other types were less than 2% each. These results

differed considerably from those found by an earlier study by Gonçalves and

Jorge [82]. One explanation is the difference between the distribution of

types amongst retrieved files (as in this study) compared to all files (as in

Gonçalves and Jorge’s study) – for example, applications are likely to have

higher revisitation rates than other file types. It may also represent chang-

ing trends in computing since their analysis, with multimedia files now likely

more common.

There were large differences between retrieval methods for different types

of files. With the Finder, text documents accounted for 26.2% of file re-

trievals, movies 20.4%, PDFs 14.8% and images 9.0%. With Spotlight, ap-

plications accounted for 70.5% of retrievals, PDFs 10.4% and text documents

92

3.0%. With Finder search, PDFs accounted for 40.8%, source code 17.4%

and text documents 14.3%. For Quick Look, image retrievals accounted for

33.9%, movies 19.3%, PDFs 16.2% and text documents 9.0%.

In summary, the predominant method for retrieving media files was navi-

gation through the hierarchy using the Finder, and navigation-based retrieval

with Quick Look was often used for images. Spotlight was used mostly to

launch applications, and Finder searches were most often for PDF documents

or other non-media documents. Possible reasons for these differences include:

(1) media files are difficult to search for, as they do not have text-based con-

tent, so navigation is preferred; (2) when images only need to be viewed,

Quick Look is often ideal since it does not require a dedicated image viewer

to be launched and the full image can be easily viewed in a preview. Ad-

ditionally, it provides an ideal way to quickly scan through multiple image

files, either to browse a number of images, or to search for a specific one;

(3) applications are well suited to Spotlight searches because the application

name provides an easy-to-recall search query that has low cognitive load, and

because application results are given high prominence in the search results;

and (4) PDFs and other documents are suited to Finder search when search

is the preferred method, as more advanced search criteria are often required

than are provided in the Spotlight menu in order to produce a small list of

candidate results, such as location restrictions.

Application retrieval behaviour was considerably different to that of other

files, as should be expected given the various shortcut methods to retrieve

them. All participants either used the Dock (most participants), Spotlight, or

third party applications as their primary method of launching applications.

Navigation was rarely used for accessing applications.

While some of these results are specific to the retrieval tool implemen-

tations on OS X, this important interaction between retrieval method and

file type emphasises the need to consider the use cases of a new technique,

and tailor its features to best support the types of files it is best suited to

retrieve. The use of retrieval tools is more fully analysed in Part 2 of the

analysis.

93

5.3.4 What are the characteristics of filenames?

Understanding how people name their files is useful for text based retrieval

systems. For example, a keyword based system might need to accurately

decompose the tokens of a filename, regardless of whether it is called ‘My

filename.txt’, ‘MyFilename.txt’ or ‘My filename.txt’. Knowing what naming

approaches are actively used is important for such systems.

Filenames of retrieved files averaged 18.8 characters in length (median 16,

s.d. 12.67), including any file extension. Participant means ranged from 13.9

to 32.0, and averaged 19.7 (s.d. 4.6). These values were considerably larger

than those found by Gonçalves and Jorge’s 2003 study [82], who noted at

the time that their lower value (mean 12.6 characters, s.d. 8.1) seemed to be

a legacy from when filenames were limited to 8 characters on some systems.

Table 5.1 summarises statistics for the content of filenames, excluding any

extensions. On average, 42.8% of participants’ retrieved files contained num-

bers in their filenames, less than the 60% that Gonçalves and Jorge found.

However, this varied considerably, with a standard deviation of 17.1% be-

tween participants, and a range from 21.2% to 72.5%. An average of 30.1%,

21.1%, 14.4% and 8.4% of retrieved files contained spaces, hyphens, under-

scores and periods, respectively. These figures also varied considerably be-

tween participants, and it was clear different people used different conven-

tions for naming their files. While the majority of participants most often

used spaces as word delimiters, four used hyphens most often, three used

Component Mean percentage S.D. Min Max
Numbers 42.8% 17.1% 21.2% 72.5%
Space 30.1% 14.9% 6.4% 58.9%
Hyphen 21.1% 14.6% 3.3% 53.3%
Underscore 14.4% 10.9% 2.5% 49.7%
Period 8.4% 6.8% 0% 24.8%
lower case 20.0% 13.5% 2.8% 52.2%
UPPER CASE 8.8% 10.6% 0.4% 36.4%
CamelCase 18.9% 10.0% 9.3% 45.4%
Other Mixed Case 51.3% 17.3% 28.3% 74.3%

Table 5.1: Types of content in filenames of retrieved files (minimum and
maximum values exclude participants who retrieved fewer than 100 files).

94

underscores most often, and one used periods most often. There were also

variations in the cases used in filenames. Mixed case (excluding camel case)

was by far the most common (average 51.3%), but lower case (20.0%), upper

case (8.8%) and camel case (18.9%) were still common for some partici-

pants; three participants had all upper case filenames for more than 25% of

retrievals, as did ten with lower case filenames. On the other hand, 13 par-

ticipants had fewer than 5% of retrievals with upper case names, and three

had fewer than 5% with lower case names.

5.3.5 How deep in the hierarchy are retrieved files?

Two definitions of depth are used in line with Bergman et al. [29]. For com-

parisons between different methods, structural depth is the number of folders

in the file’s path, rooted at either the desktop (depth 0), home folder (depth

1) or root level of a disk (depth 1). For retrievals completed by traversing

through the hierarchy using the Finder, retrieval depth is the number of steps

traversed by the user to reach the folder containing the file, with a first step

of opening a Finder window. For example, a retrieval of depth two might

involve: (1) opening a new Finder browser window; and (2) following an alias

to a folder that contains the target file. Entering a search query in the file

browser is counted as a single step. The effect of navigation errors is filtered

out using three approaches: (1) use of sidebar or toolbar links resets the

depth to two (i.e., opening a Finder window and clicking a link); (2) revisit-

ing a folder during a single retrieval resets the depth to that folder’s original

depth d; and (3) navigating to the child of such a folder while bypassing the

folder itself (e.g. moving between children in column view) sets the depth to

d+ 1.

Retrieval depth can be further broken down into absolute and incremental

retrieval depth. These are identical for the initial retrieval in a new Finder

window. For reused Finder windows, however, a full traversal is not needed;

the incremental retrieval depth is then the number of additional steps re-

quired to reach the next file, using the same navigation error corrections

as above (but resetting folder depth history after each retrieval), and with

window selection constituting an initial step. The absolute retrieval depth

95

is the retrieval depth of an additional file as if it was the first retrieval in

its window. That is, any additional steps continue to increase the retrieval

depth, but folder depth history is not reset after each retrieval. Both ab-

solute and incremental retrieval depths are 0 for retrievals of items on the

desktop. Table 5.2 provides an example of how the three depth measures

work in practice.

Action
Structural Retrieval depth

depth Absolute Incremental
Open new window at home folder 1 1 1
Open Documents folder 2 2 2
Open alias to ∼/Documents/Finances/2013/ 4 3 3
Open Budgets folder 5 4 4
Open file Budget.xls 5 4 4
Open file Old Budget.xls 5 4 1
Go back (to 2013) 4 3 2
Open enclosing folder (Finances) 3 3 3
Open enclosing folder (Documents) 2 2 4
Go back (to Finances) 3 3 3
Open file Trends.xls 3 3 3
Open sidebar folder ∼/Documents/Downloads/ 3 2 2
Open file inflation.xls 3 2 2

Table 5.2: Example of how different depth measures change as a result of
navigation actions.

These three definitions of depth cover various use cases for such statistics.

Structural depth is an analysis of hierarchy structure, absolute retrieval depth

analyses the navigation effort to reach files under the assumption that a

new window must be used for each retrieval, and incremental retrieval depth

analyses the navigation effort actually performed in realistic settings (i.e.,

when windows can be reused).

Figure 5.4 summarises the average depths for retrieved items for all three

types of depth. The most obvious finding is the large difference between

absolute and incremental retrieval depths (means 3.1 and 1.3 respectively),

especially considering they are the same for the first retrieval in each window.

This suggests that navigation retrievals using existing windows is a common

and efficient use case and that an exclusive focus on initial retrievals as in

other studies (e.g., [29]) can be misleading. Window reuse is further explored

in Part 2 of the analysis.

96

0"

1"

2"

3"

4"

5"

6"

Structural"depth"

D
ep

th
&

Total"
Naviga:on"
Search"

Absolute"depth" Incremental"depth"

Total"
Naviga:on"(opening"a"file)"
Naviga:on"(Quick"Look)"
Finder"search"

Figure 5.4: Average structural, absolute retrieval, and incremental retrieval
depths. Error bars show standard error.

0"

1"

2"

3"

4"

5"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9"

N
um

be
r'
of
'R
et
ri
ev
ed

'It
em

s'

Hierarchy'Depth'

Files"

Folders"

Figure 5.5: Average number of items accessed in folders at each level of the
hierarchy. Error bars ± 1 st. err. for participant means.

Previous studies investigated the number of items at each level of the hi-

erarchy tree [29, 82, 95]. Figure 5.5 shows a similar analysis, but where a tree

was constructed from only the retrieved files and folders of each participant;

files that were not retrieved, and folders that did not contain descendants

that were retrieved, do not exist in the tree. Tree level 0 included the disks

the participant used (mean 3.4 disks, s.d. 2.3 – note that this includes all

mountable disks, including internal and external disks, USB sticks and net-

work drives), and level 1 was the root level of these disks. The figure shows

the average number of files and folders at each depth across all folders in the

97

retrieval trees.

There is a noticeable and consistent decreasing trend in the average num-

ber of subfolders retrieved per folder as depth increases, averaging 1-2 for

depths 2-4, and less than 1 for higher depths. The number of retrieved files

per folder, on the other hand, has a slightly less clear trend. Few files were

accessed at depths 1 and 3, corresponding to the root level of disks and the

depth of the home folder, both of which largely consist of subfolders. There

were noticeable spikes one level deeper than each of these, however. At higher

depths, they followed the same decreasing trend as folders. Overall, these

numbers show that although folders average over 20 items each [29], most

of these are rarely retrieved. Interfaces that take advantage of this fact to

reduce visual search times could greatly reduce navigation times for common

files.

5.3.6 Summary of Retrieved Files

Part 1 of the analysis examined characteristics of the files that participants

retrieved during the study. Participants frequently revisited files, with re-

visitation patterns following a near-Zipfian distribution, and they typically

accessed one of only a few items in each folder. There were large differences

between the types of files retrieved with different retrieval methods. Partici-

pants used varying naming schemes for their files, with different preferences

for word delimiters and cases, and average filename lengths have increased

substantially in the last decade. Perhaps most importantly, a new measure

of depth, incremental retrieval depth, showed that much less navigation effort

is required to retrieve files in natural settings than traditional measures used

in previous studies would indicate, as a result of significant window reuse.

Part 2, below, further explores this, while also describing details about the

ways that participants used each retrieval method.

5.4 Analysis Part 2: File Retrieval Methods

The analysis of files in Part 1 only examined quantitative data stemming

from the log analysis. This section reviews the methods used to retrieve files,

which is amenable to both log-based analysis and contextual interpretation

98

based on the subjective interview comments (e.g., why particular techniques

were used and their perceived effectiveness).

Participants used a range of retrieval methods based on the type of the

file, their memory of file attributes, and their current context. This section

first gives a brief comparison of their use, before detailing the specifics of how

each of navigation, search, recent items, open dialogs and other methods were

used.

5.4.1 How does use compare between retrieval methods?

All of the participants retrieved files via navigation in a Finder window dur-

ing the log study period and 85% used some form of search at least once,

though only 46% used the Spotlight menu to search. 27% reported using

the command line at some point, and 19% reported using a third-party file

retrieval tool.

Tables 5.3 and 5.4 summarise methods participants used during the study

period and reported using more generally.

Feature Navigation Spotlight Finder search Any search
participants 26 12 20 22

Table 5.3: Retrieval methods used during the study period, based on logs

Feature Recent items Open Dock Cmd. line 3rd party
participants 21 22 22 7 5

Table 5.4: Retrieval methods used by participants, based on interviews

On average, participants opened files in the Finder for 33% of retrievals

(s.d. 20.8) and used Quick Look for 15% (s.d. 20.9), totalling 48% for

navigation-based retrieval. Spotlight was used for 3.2% (s.d. 6.2) and Finder

search for 1.0% (s.d. 1.0), totalling 4.2% for search. Other methods such

as recent items, the Dock and open dialogs made up the remaining 48.2%

(27.0% applications, 21.2% others), though these figures include applications

launched implicitly by opening documents and assumptions about other doc-

ument retrievals as previously outlined.

99

These other methods include specialised methods that are highly efficient

for a small number of files (e.g. the Dock and recent items menus), as well

as the navigation-based Open dialog. It is therefore clear that for files not

available to these specialised methods, navigation is used the majority of

the time (and likely a majority overall), while search is rarely used despite

significant developments in recent years. These percentages are mostly con-

sistent with user estimates in previous studies [25], although the actual search

usage observed (4.2%) was considerably lower than the user estimates that

Bergman et al. reported just for Mac users (13-15%), indicating that users

likely overestimate their search usage.

How quickly do users retrieve files?

Non-controlled studies, such as this, necessarily have some ambiguity when

performing quantitative measurements – in this case, in determining the

start time for a file retrieval. The start of a retrieval in the Finder was

determined as the later of (1) the time a browser window was opened; (2)

the time of the first navigation event after either another retrieval, use of

another browser window, or a file management task (e.g. moving or deleting

an item); and (3) a navigation event that was more than 30 seconds after

the previous one. For the Spotlight menu, it was defined as the first query

change following a previous retrieval, any Finder use, clearing a query, or

if the previous change was more than 30 seconds ago. The retrieval ended

when the first item was retrieved. Retrieval times of any subsequent retrievals

without intermediate navigation events or query changes were not considered.

Quick Look retrievals were also excluded, as it was not possible to distinguish

between its use to browse multiple items and as a substitute for opening files

– both of which participants cited as reasons for using it. Though these times

exclude any time before the first event is recorded (including the cognitive

time involved in deciding which method to use, deciding a search query etc.,

as well as the time involved in physically triggering the initial event), ignore

the effect of interruptions, and do not consider failed retrievals, they give a

good overall estimate of retrieval times.

Using this analysis, the mean time to retrieve files using file browser

100

navigation was 10.2 s (s.d. 12.2, n = 2367). Spotlight searches averaged

5.7 s (s.d. 6.5, n = 396), including a mean of only 2.9 s for applications (s.d.

3.3, n = 179) and 8.0 s for other items (s.d 7.5, n = 217). Finder searches,

however, took substantially longer, averaging 16.5 s (s.d. 13.4, n = 45). A

possible explanation of this difference is that Finder search was often used for

harder to find files, where more complex search criteria needed to be set up,

or where it took longer to scan the results, whereas Spotlight was typically

used to quickly access items when there was less ambiguity between results.

Note that searching in the Spotlight menu, then using the “Show All in

Finder” menu item to perform a Finder search for the same query, would be

counted as a Finder search using the time of the “Show All” menu selection

as the start time.

Navigation retrieval times can be further broken down by analysing indi-

vidual steps. As with retrieval times, there was some ambiguity as to what

constituted a step. Analysis of step times used a conservative definition to

reduce the amount of noise: it included events within a single window that

navigated to a deeper level of the hierarchy by opening a file or folder without

the aid of additional features such as the Finder sidebar or history buttons.

Steps were excluded if the user used search, performed a file management

task or changed the window’s view type, used another Finder window or if

the step took longer than 30 seconds (likely indicating an external distraction

or use of another application).

Figure 5.6 shows step times at different structural depths. There is little

variation based on depth, except that very deep locations have lower average

step times. There are three possible explanations for this: (1) users who have

deep hierarchies may be faster at navigating through hierarchy steps, either

through greater levels of expertise or due to deeper, narrower hierarchies

reducing visual search time at each step; (2) that deeper locations contain

fewer items [29], reducing visual search time; and (3) that deeper locations

are more likely to involve the final selection of an item; Landauer and Nachbar

[120] found lower step times for the last step of a retrieval in menu trees.

Investigating the first explanation, the effect indeed mostly disappeared

when performing an analysis of just those participants who accessed files at

depth 9 or more. The third explanation could be checked by performing a

101

0"

1"

2"

3"

4"

5"

1" 2" 3" 4" 5" 6" 7" 8" 9"

St
ep

%T
im

e%
(s
)%

Hierarchy%Depth%

Figure 5.6: Average step times across all users at each level of the hierarchy.
Error bars ± 1 standard error for global means.

separate analysis that examined step times based on the number of steps the

user is away from the target file. This was assessed in hindsight after the

target file was opened, and steps were numbered based on actual navigational

steps rather than differences in structural depth. Steps that were part of

extraneous intermediate navigation were ignored. These results, shown in

Figure 5.7, actually showed higher step times for steps closer to the target

file, and especially for the final step (i.e. opening the file), suggesting that the

effect that Landauer and Nachbar found does not apply for file navigation. A

possible explanation is that the number of subfolders in a folder is typically

lower than the number of files [29]; if users know whether they are targeting

a file or subfolder in a particular step and can quickly filter out items that do

not match this criteria, then the set of potential target items is potentially

larger for the last step when the target is a file. It is therefore likely that this

contributed to higher step times at deep locations where file retrievals are

more likely than subfolder selection, but that explanations 2 and 3 cancelled

each other out to some degree.

5.4.2 Do users use different methods to retrieve the same files?

While participants reported that they each used a range of methods to re-

trieve files, a question remains as to whether particular files are always re-

trieved using a single method, or whether they are accessed using different

102

0"

1"

2"

3"

4"

5"

6"

1" 2" 3" 4" 5" 6"

St
ep

%T
im

e%
(s
)%

Steps%from%Target%

Figure 5.7: Average step times across all users based on the number of steps
away from the target file (1 = target selection). Error bars ± 1 standard
error for global means.

methods in different situations. Participant interviews indicated that fac-

tors such as the active application had some influence over the method used.

The following analysis provides quantitative data about how often different

methods were used for the same files.

Figure 5.8 shows interactions between the four methods that could be

directly observed: use of the Finder to navigate to and open files (Finder

navigation), to preview items (Quick Look), or to search for and open files

(Finder search), as well as search within the Spotlight menu. The figure

shows both the relative use of the four methods, as well as which methods are

used to retrieve files following the use of a previous method for the same files.

Figure 5.9 provides more detail for each of the four retrieval methods, showing

the percentage of files retrieved with each technique that were previously or

subsequently retrieved with other methods. Of particular note:

1. Files retrieved using navigation (either opened directly or accessed us-

ing Quick Look) were rarely also retrieved using search, but some were

retrieved using other methods.

2. Similarly, files retrieved using Spotlight were rarely also retrieved using

navigation, but were sometimes used using other methods – especially

for applications. As search is primarily used as a method of last resort

103

5

13

212

309

1

2

2

1

19
11 10

5

Finder navigation
(3263)

Finder navigation
(3263)

Quick Look
(2310)

Spotlight
menu
(246)

Spotlight
menu
(246)

Finder
search

(82)

Finder
search

(82)

Figure 5.8: Retrieval methods and their relationships. Retrieval method
numbers show number of retrieved files across all participants. Arrows show
the number of files that were first retrieved with the source method, then
later retrieved with the destination method. Sphere and line sizes shown to
scale in three dimensions.

(see Section 5.4.4 for a discussion on the use of search), an implication

of this is that when file locations are unknown, Spotlight does not

facilitate location learning for later retrieval through navigation.

3. Quick Look and the Spotlight menu were rarely used for the same files.

This is likely because Quick Look is commonly used for multimedia

files, and rarely for applications – the opposite use cases to Spotlight

search.

4. Navigation was more likely to be used for a file following an earlier

retrieval of it in the Spotlight menu than vice versa, perhaps due to a

104

0.0%$

0.1%$

0.4%$

1.6%$

6.3%$

25.0%$
Quick$Look$

Spotlight$

Finder$search$Other$
(applicaAon)$

Other$
(document)$

Used$before$Finder$navigaAon$
Used$aHer$Finder$navigaAon$

(a) Finder navigation

0.0%$
0.0%$
0.1%$
0.4%$
1.6%$
6.3%$
25.0%$

Finder$
(naviga5on)$

Spotlight$

Finder$search$Other$
(applica5on)$

Other$
(document)$

Used$before$Quick$Look$
Used$aHer$Quick$Look$

(b) Quick Look

0.1%%

0.4%%

1.6%%

6.3%%

25.0%%

Finder%
(naviga5on)%

Quick%Look%

Finder%search%Other%
(applica5on)%

Other%
(document)%

Used%before%Spotlight%
Used%aHer%Spotlight%

(c) Spotlight

0.0%$
0.0%$
0.1%$
0.4%$
1.6%$
6.3%$
25.0%$

Finder$
(naviga5on)$

Quick$Look$

Spotlight$Other$
(applica5on)$

Other$
(document)$

Used$before$Finder$search$
Used$aHer$Finder$search$

(d) Finder Search

Figure 5.9: Radar diagrams for various retrieval methods, showing the per-
centage of files retrieved with them (averaged across participants) that were
first retrieved with each other method (blue lines) and later retrieved with
each other method (red lines). Diagrams use log scale.

transition towards navigation for commonly access files. However, the

opposite was true for Finder search: it was considerably more common

to use Finder search to retrieve a file following an earlier retrieval using

navigation than vice versa. This discrepancy can possibly be explained

by the differing use cases of the two search interfaces, whereby Finder

search is more often used to locate hard-to-find files whereas Spotlight

search is more often used for quick retrievals (discussed later in this

105

chapter); files in the former category are likely to be rarely retrieved,

perhaps resulting in little opportunity or incentive to rehearse naviga-

tion through the hierarchy to retrieve them. It is likely that transi-

tioning from search to navigation is more common for more frequently

retrieved files.

5. 17% of files were retrieved using multiple methods (grouping together

all other methods such as open dialogs and recent items menus), or 44%

of files which were retrieved multiple times. Grouping together the nav-

igation methods (Finder navigation and Quick Look) and the search

methods (Spotlight and Finder search), 11% of files were retrieved with

multiple methods, or 28% of files which were retrieved multiple times.

These relatively low figures suggest there is room for retrieval inter-

faces to better promote transitions to, and from, other methods where

appropriate; for example, search interfaces could promote learning of

file locations, and file browsers could directly incorporate support for

revisitation to facilitate switching between navigation and specialised

revisitation methods.

5.4.3 Navigation in the File Browser

All participants used navigation to retrieve files. In interviews, participants

indicated that navigation provided improved context for their tasks, that

recognition of file and folder names helped to locate items, that file manage-

ment tasks could be performed at the same time as retrieval (e.g., copying a

file prior to editing it), and that it was convenient to use when an existing

file browser window was open and showing a folder in the same hierarchical

vicinity as the target. However, not all comments were positive, with some

participants stating that they found it tedious to use (P2 : “I find a lot of

navigation to be tedious... I just find it a pain to go through the hierarchy

every time”).

Several features of the Finder were either very lightly used, unknown,

or unpopular. Only one participant used the “Recent Folders” submenu

during the study period, and only used it a single time. However, another

complained that there was no way to undo closing a browser window, perhaps

106

not realising that they could use “Recent Folders” as an alternative to this.

The “All My Files” feature was unpopular. This feature groups docu-

ments by type, and provides a horizontal scrollable list of files ordered by

access date, with the most recently accessed files of each type initially vis-

ible. It became the default view when creating a new browser window in

Mac OS X 10.7, but participants made only negative comments about it. P6

complained that it just gives “a whole bunch of junk” and that he “[does not]

really understand how it works”, and P10 said that “there doesn’t seem to

be any logic to it”. These comments stress the importance of intuitive user

interfaces; in this case, the feature was useless to many participants because

they did not understand how it worked, could never foresee how to use it to

reach any target file, and therefore did not use it.

The sections below describe how participants used various navigation

features, including view types, the desktop and window reuse.

How are different views used?

The Finder provides four views: icon (a grid of icons), list (similar to the

details view in File Explorer on Windows, with a row for each file and columns

for various attributes), column (showing each new level of the hierarchy in a

new list to the right of its parent) and Cover Flow (list view with a separate

section showing file previews). Files can also be accessed from the desktop’s

icon view.

On average, participants used icon view for 12.3% of navigation retrievals,

list view for 28.6%, column view for 42.8%, Cover Flow view for 5.3%, and the

desktop for 11.1%. However, there was considerable variation in preferences.

Preferred views based on usage (excluding desktop usage) were column view

(12 participants), list view (9 participants), icon view (3 participants) and

Cover Flow view (2 participants), with participants using their preferred view

for 84.0% of retrievals (s.d. 17.2%). Most participants used column view (22

participants), list view (18) and icon view (17) for at least one retrieval,

though only four ever used Cover Flow view (P25 called it “useless”). In

interviews, four participants specifically offered that they liked column view,

though four others complained that narrow columns sometimes concealed

107

0"
5"

10"
15"
20"
25"
30"

Icon" List" Column" Cover"Flow"

Re
tr
ie
va
l)*

m
e)
(s
))

View)

137.4" 68.0" 116.6" 50.1"

Figure 5.10: Retrieval times for Finder views. Whiskers show extremities.
Crosses show means.

filenames. Overall, although participants occasionally changed views, they

tended to have a strong preference for a particular one, with little consistency

in preferences between participants.

Figure 5.10 shows retrieval times for the four view types. Mean retrieval

times were lowest for list view (mean 10.0 s, s.d 10.3, n = 554) and column

view (10.0 s, s.d. 11.9, n = 765), followed by Cover Flow view (12.9 s, s.d. 10.6,

n = 46) and icon view (14.1 s, s.d. 15.9, n = 203). This difference can

partially be explained by differences in incremental retrieval depths using

each view; these were lowest for list view (2.3, s.d. 0.9, n = 3712), followed

by column view (2.5, s.d. 1.1, n = 5304), icon view (2.9, s.d. 1.5, n = 489) and

Cover Flow view (3.2, s.d. 1.2, n = 96). An analysis of step times showed that

step times were lowest for column view (3.1 s, s.d. 3.7, n = 3320), followed

by list view (4.4 s, s.d. 5.0, n = 1183), icon view (4.5 s, s.d. 4.5, n = 622) and

Cover Flow view (5.3 s, s.d. 5.4, n = 153).

These results are perhaps somewhat intuitive. Cover Flow view would

be expected to have slower step times than list view, since it provides the

same view in a smaller area, requiring additional scrolling. Icon view requires

visual search in two dimensions, and does not necessarily sort items, so may

be expected to be slower than list and column views which are always sorted

and only require scanning in one dimension.

However, the finding that column view was both the fastest per step and

fastest equal overall, while icon view was the slowest of the three main views

108

per step and the slowest overall, is the opposite finding of previous research.

Bergman et al. [30] found that icon view was significantly faster than other

views on both Windows and Mac OS X. It is not clear whether the difference

in incremental retrieval depths for each view were due to the types of retrieval

tasks they were used for, or whether they better promoted efficient navigation

(for example, column view facilitates navigation up the hierarchy, while a user

of icon view might be more likely to restart a traversal from a sidebar link).

The strong preferences that participants had for particular views limits the

statistical power of such analysis, and neither this study nor Bergman et al.’s

controlled for different types of retrieval tasks or folder structures. As such,

further investigation is required to show which views are most efficient, and

why.

What other navigation features are used?

The Finder includes a wide range of other features to assist navigation. Ta-

ble 5.5 summarises how frequently these were used, showing that most are

largely ignored. Only the sidebar was used by all participants, with most

participants customising which folders appeared inside it. Of those that had

done so, interview responses suggested that for most users these customisa-

tions were stable and seldom updated; a few participants, however, stated

that they regularly updated the customisations to reflect changing needs. Six

participants had also added items to the Finder toolbar, that logs showed

Feature Never Seldom Frequent
Sidebar 0 4 22
Toolbar (for retrieval) 20 6 0
Back 7 8 11
Forward 21 5 0
Recent Folders 25 1 0
Go to Folder (type in path) 23 2 1
Go menu (specific folder) 17 7 0
Show Original (for aliases) 20 6 0
Enclosing Folder 22 2 2

Table 5.5: Use of navigation features in the Finder. Frequently used items
were used more than 10 times in the study period.

109

were used during the study period. Navigation features available from the

main Finder menubar such as shortcuts in the Go menu and the Go to Folder

dialog that allows users to type a path were rarely used, perhaps because they

have clear alternative methods (i.e., the sidebar and navigation). While the

specific implementations of these features were specific to OS X, they trans-

late well to features in other systems, and these findings indicate that menu

items that aid navigation are rarely used, largely unknown and easily forgot-

ten; instead it is preferable for navigation aids to be directly integrated into

the main navigation interface.

How is the desktop used?

As reported above, on average the desktop accounted for 11.1% of navigation

retrievals by participants (s.d. 20.2%). 20 of the 26 participants retrieved

files from the desktop. Excluding one outlier (529 desktop retrievals), these

participants averaged 14.4 desktop file retrievals each (s.d. 14.0). 11 par-

ticipants opened disks from the desktop (mean 29.8 for these 11, s.d. 35.0)

and 16 opened folders (mean 21.5, s.d. 38.6). Overall, the three activi-

ties occurred with similar frequencies; the main difference was in how many

participants performed them.

Nearly all participants used the desktop for temporary storage, either for

files that either were yet to be organised or would eventually be deleted. A

smaller group stored items there for convenient access, such as for active

projects. Some had screenshots automatically saved to the desktop. Several

participants stated that they put items on the desktop with the intention

that they would be there temporarily, but that the items would often remain

for months or even years. Only one participant maintained a clean desktop

with no items. These findings are consistent with previous work by Nardi et

al. [145].

How are navigation windows reused?

Part 1 of the analysis found a large difference between incremental and abso-

lute retrieval depths, indicating that window reuse is common. This section

expands on this finding to further characterise window reuse.

110

0%#

5%#

10%#

15%#

20%#

25%#

30%#

0# 1# 2# 3# 4# 5# 6# 7# 8# 9# 10+#

Pe
rc
en

ta
ge
)o
f)R

et
ri
ev
al
s)

Number)of)Windows)Open)at)Retrieval)Time)

Figure 5.11: Number of browsers windows open at the time of navigation
retrievals.

It is worth noting that as a navigational file manager, the Finder gener-

ally opens new folders in the same window, and that spatial file managers,

which open new folders in new windows, likely exhibit different window usage

behaviour. For example, they may average more windows open at once since

more are created when traversing the hierarchy; on the other hand, they do

not allow multiple windows to be open for the same folder. However, spatial

file managers are becoming increasingly uncommon – current versions of all

major operating systems use navigational file managers.

An analysis of window usage showed that participants had an average

of 2.5 navigation windows open (s.d. 1.6) at the time of each navigation

retrieval. There was a wide range in participant means; several participants

averaged fewer than one window open at the time of retrieval (many re-

trievals were for items on the desktop when no windows were open), while

others averaged close to six windows open at a time. Figure 5.11 shows

the distribution of window counts at retrieval time, showing a long tail with

many retrievals still performed with large numbers of open windows.

The next part of the analysis investigated whether multiple open windows

led to significant reuse. In fact, 85.3% of navigation retrievals reused existing

windows, with little variation based on the number of open windows except

for a slight decrease with eight or more open windows (78.7%, covering 6%

of retrievals). A possible explanation is that having a large number of open

windows is an effect of being more likely to create a new window for a new

111

retrieval, rather than reuse an existing one. Alternatively, a large number of

open windows may make it harder to find a relevant window to reuse.

Similarly, excluding windows which recorded no retrievals or were still

open at the end of the study period, participants averaged 7.0 retrievals per

window (s.d. 6.8). While most (17) participants had averages in the range

of three to eight, five had much larger means of 11 to 31 (significant reuse),

and five had much lower means which were close to one (infrequent reuse).

While reusing windows was common, it serves little benefit if it does not

reduce navigation times compared to using a new window. Lower incremental

retrieval times found previously show that window reuse was clearly benefi-

cial. This is backed up by analysing how many path components (ancestor

folders) consecutive retrievals in each window share in comparison to the

same metric for all navigations. For this metric, the root of every disk, the

home folder and the desktop were all treated as initial components. Within

windows, average participant means were 3.5 folders in common between

each pair of consecutive retrievals within the same window (s.d. 1.6). This

compares to 2.8 folders in common for all navigation retrievals (s.d. 1.5),

and 2.0 for retrievals performed with any method (s.d. 1.1).

The above results indicate that users gain considerable benefit from reusing

windows, however a secondary question is then whether users reuse windows

in the most efficient way, especially when they have lots of open windows.

This was determined by calculating the percentage of the time that an opti-

mal window was used when a window was reused; that is, how often, out of

all open windows, they used a window that required the fewest navigation

steps up or down the hierarchy to reach the target file (ignoring sidebar links,

aliases, etc). Of all reuses where multiple windows were open, 94% of them

used an optimal window. Surprisingly, this figure did not vary noticeably as

the number of open windows increased; the optimal window usage remained

between 93 and 96% when 8-10 windows were open, for example.

The average distance between consecutive retrievals in a window (i.e.,

the number of steps up or down the hierarchy required, including selection

of the target item) was 1.48 (s.d. 1.23). The average optimal distance was

1.37 (s.d. 1.06), just 0.11 steps (s.d. 0.55) less. As these metrics ignore the

possibility that participants deliberately avoided using an optimal window,

112

0%#

5%#

10%#

15%#

20%#

25%#

30%#

Pe
rc
en

ta
ge
)o
f)w

in
do

w
s)

Time)(hours))

Window#life#
Time#between#new#window#events#
Time#between#window#close#events#

583# 582# 581# 1# 5# 52# 53# 54#584#0#

Figure 5.12: Window lifespans and times between new window and window
close events, grouped into buckets and shown on a log scale. Total range is
0 to approximately 26 days.

which may have involved navigating away from a folder they would want to

reuse later, this difference can be viewed as an upper bound. Combined with

the high optimal window usage rate, this suggests that users reused windows

efficiently even with a large number of windows open.

The final part of the analysis involved investigating how long users kept

windows open, and whether they tended to close windows individually as

they were done with them, or in bulk in a clean-up phase. Browser windows

were open for a mean of 14.0 hours, but with an extremely large standard

deviation of 46.4 hours and a large skew. In fact, the median time for a

window to be open was just 10 minutes. Figure 5.12 shows the distribution

of window lifespans, as well as inter-arrival times between user initiated new

window and window close events. All three were fairly evenly distributed

logarithmically. Of note, however, is the spike for window close events in the

first time bucket; that is, 20.3% of window closes occurred within 5.76 seconds

of the previous window close. This was much higher than the corresponding

percentage for new windows (4.5%). This discrepancy can likely be explained

by clean-up behaviour, with participants rapidly closing multiple windows in

quick succession. Figure 5.13 shows the percentage of window closes in the

first bucket (less than 5.76 seconds) by participant, indicating a wide range

in behaviour; while a few participants never closed multiple windows in quick

113

0%#
5%#
10%#
15%#
20%#
25%#
30%#
35%#
40%#
45%#

W
in
do

w
'C
lo
se
s'
W
it
hi
n'
5.
76
s'
of
'

Pr
ev
.'W

in
do

w
'C
lo
se
'(%

ag
e)
'

Par;cipants'
Infrequent#clean#ups#Closes#when#done#

Figure 5.13: The percentage of occurrences of window close events in the (0,
5−4) hour time bucket for each participant.

succession, others closed close to half shortly after another.

To summarise window reuse behaviour, participants often had multiple

file browser windows open at once, reused them extensively, and did so ef-

ficiently. However, there were substantial differences between participants.

Particular window usage behaviours were often linked together, leading to

four clear categories of behaviour that participants could be grouped by:

Minimalists (5 participants) keep as few file browser windows open as

possible and rarely reuse them. Most windows are not kept open for long.

Minimalists tend to retrieve files less frequently.

Reusers (5 participants) keep file browser windows open and frequently

reuse them – potentially for over 100 retrieval events in some windows. While

they might create some temporary windows, most retrievals are done through

the longer term ones. Reusers do not reuse windows as efficiently as other

users, as signified by lower optimal window usage rates – target items often

have little in common with the starting locations of the windows they are

retrieved in. Reusers average two or three windows open at a time, preferring

to reuse existing windows than create new ones.

Hoarders (3 participants) have large numbers of windows open at a time.

114

While they frequently reuse windows, they often create new ones rather than

navigating away from existing window locations that might be useful in the

future, or when a relevant window is difficult to find amongst the other

windows. Once open, they are hesitant to close folders, but when they do

they have a tendency to close multiple folders at once as part of a clean-up

phase. Hoarders tend to retrieve a lot of files, though not all those that

retrieve a lot of files are hoarders.

Optimisers (12 participants) sit between the extremes of the other cate-

gories. They use multiple windows, but not a large number of them. They

reuse windows, but not excessively. When they do reuse windows, they do so

more efficiently than those of the other categories, perhaps keeping a better

mental model of the open windows and their locations.

5.4.4 Search

22 participants used search during the study, but for relatively few retrievals.

Only one participant used it for more than 8% of their retrievals, and all

used it less than navigation. This quantitative-based comparison matches

the personal preferences expressed during the interviews: when comparing

search to navigation, only two participants stated a preference for search; five

stated that they preferred navigation to search, but would use search when

navigation was likely to fail; and 16 indicated that they only used search as

a tool of last resort, supporting prior findings [145, 25].

Why is search seldom used?

Participants gave many reasons for avoiding search unless necessary. Several

mentioned the difficulty in differentiating document versions or items with

similar names. This stems from the design of the particular search interfaces,

which do not clearly show result locations; this is a common trait of many

(though not all) search interfaces on other systems. Others mentioned the

difficulty in using text queries to retrieve files with predominantly non-text

content (such as multimedia files), automatically named files (such as images

downloaded from a camera), or explicitly assigned file attributes (such as

coloured labels).

115

A common complaint was that participants felt overwhelmed by search re-

sults, with too many results to be considered and insufficient ranking to assist

rapid identification; in particular, they commented that there were too many

obscure content matches or email messages (those who searched specifically

for email would do so within their mail clients rather than with system-wide

search). It was often difficult for participants to think of sufficiently specific

queries to avoid an overwhelming results list, and most typically searched for

filenames, possibly as an artefact of this. These issues dissuaded participants

from using search; P23 had “no confidence” in it and “[has not] been able to

use it successfully”, P26 said “I’ll use Spotlight, but I generally just find it

frustrating”, and P1 concluded “I know [navigation’s] not the fastest way...

but I don’t really care”, echoing a common sentiment that reliability was

more important than efficiency.

Several participants complained about the lack of discoverability of var-

ious features in the Spotlight menu. In particular, few realised they could

open the parent folder of a result by holding down the command key while

selecting it, but three mentioned that they desired such a feature, not be-

ing aware of it themselves. Another wanted to be able to perform advanced

queries based on various metadata, but did not know the correct syntax.

For searches within the Finder, some found it slow and found initial results

for searches to be inaccurate, while one commented that he did not use it

because it took him away from the current window location.

When is search used?

Despite these perceptions, participants recognised that search fills an impor-

tant niche and offers many advantages in certain tasks. Participants indicated

that they would use search when locations were unknown, for old documents,

or when files were poorly organised. They also stated that search queries were

normally based on filenames, especially when they thought the names were

unique. Some of the participants stated that they were unconvinced of the

practicality of content-based search: P23 stated “I don’t think of it that way.

I think of the search as being for the file or the folder”. Other uses for search

that participants mentioned included generic searches about a topic without

116

Spotlight menu
Finder search

"Show All" (1.8%)

Calculator
usage

Successful
retrieval

Unsuccessful
retrieval

Successful
retrieval

Unsuccessful
retrieval

88.4%

23.1% 9.9%65.2%43.7%56.3%

Other fileApplication

57.9% 23.3%

Other fileApplication

1.6% 98.4%

11.6%

All searches

Other result

18.9%

Figure 5.14: The combined search usage patterns of participants

a specific target in find, to find duplicates, to check if they had a file, or to

search for a folder in order to create a browser window that they could reuse

for multiple retrievals.

Six participants indicated that the Finder’s search facilities provided a

greater sense of control than Spotlight’s. This was largely because the

Finder’s search provided an explicit interface to adjust search criteria based

on various metadata, file management tasks could be performed on the search

results, and that it was perceived as more easily accessible when transition-

ing to search after a failed navigation-based retrieval. Spotlight’s most cited

benefit was fast and predictable application launching.

How is search used?

Figure 5.14 shows the usage of the two search tools – Spotlight and search

within the Finder – and whether they resulted in successful retrievals. The

majority of searches (88.4%) used the Spotlight menu, although a small per-

centage of them (1.8%) transitioned to Finder searches by selecting the “Show

All in Finder” item in the Spotlight menu.

Six participants extensively used Spotlight’s calculator feature, where the

result of an equation is provided as the top search result, accounting for

117

9.9% of total Spotlight searches. 73.8% of remaining searches resulted in

retrievals; of these, 18.9% were non-file results (e.g. contacts, emails, system

preferences or dictionary definitions), while most others were for applica-

tions. This confirms that many participants used Spotlight primarily as an

application launcher, with search only a secondary function. Finder search,

in contrast, was rarely used to retrieve applications, and was primarily used

to search for other files. Logs indicated that 43.7% of these searches suc-

cessfully retrieved a file, and 56.3% did not – a lower success rate than the

Spotlight menu, but perhaps more indicative of the types of file searched for,

rather than the search medium.

Despite Spotlight searching a range of file attributes, 89.7% of files re-

trieved with it had filename matches. Finder search allowed participants to

specifically choose whether to search filenames or contents. Of these, 85.2%

defaulted to, and remained, contents searches, while participants specifically

changed it from a contents search to a filename search in another 13.4% of

searches, with seven participants complaining about the default. The re-

maining searches defaulted to, and remained, as filename searches.

Finder search also provided an option for searching the whole computer

(global) or just the current folder (local). Ten participants preferred local

searches, compared to two who preferred global searches. Participants noted

that their motivation for using Finder search instead of the Spotlight menu

was often to search in a particular folder, though some changed the setting

only if they could not find the target item in the initial search results across

the whole computer. Indeed, 66.9% of Finder searches were global, and this

was the default setting in 82.4% of searches; 19.7% of searches that were

global by default were explicitly changed to local, while the reverse was the

case in only 4.0% of local searches.

These findings have several implications. Participants rarely changed de-

fault search settings even when they knew the settings were there and wanted

different settings, indicating the importance of sensible defaults. In this case,

the result was less relevant search results, likely leading to lower success rates

and slower retrievals. Defaults should also be tailored towards the likely use

case of a particular interface – for example, even if most searches are intended

to be system-wide, many of these searches are performed using the Spotlight

118

menu; when using Finder search, on the other hand, local searches are more

likely and would make a more sensible default. Finally, while there has been

much focus in recent years on content-based file search tools, participants

overwhelmingly preferred filename searches for most search retrievals.

5.4.5 Recent Items

Of the recent items interfaces, the File I Open Recent menu in document-

based applications was most commonly used, though others such as the

system-wide Recent Items menu, applications’ Dock menus, and application-

specific interfaces were used by some participants.

Several participants indicated that they liked the Open Recent menu’s

relative speed compared to other retrieval methods. Participants typically

used it when the application was already active or following a restart or re-

launch, though some participants would switch to the application specifically

to use it. Participants mentioned several problems associated with the menu,

such as its perceived lack of reliability when working with many files: P15 :

“I use a lot of different things, and by the time I get back to them they’re not

there anymore”, P13 : “most only show what’s currently open”. Other per-

ceived problems included the difficulty in distinguishing between document

versions, a lack of location context, and separate histories when working on

multiple computers.

Only two participants used the system-wide Recent Items submenu, both

for launching recent applications. About half did not know it existed, with

several commenting enthusiastically that they would use it now they knew

about it. A few participants mentioned that they used application-specific

recent documents interfaces other than the Open Recent menu, and one men-

tioned accessing recent documents by selecting them from the application’s

Dock menu.

5.4.6 Open Dialogs

Nearly all participants used application Open dialogs at some point, mostly

when already using an application or after failing to find a target item in

the Open Recent menu. A stated reason for doing so over Finder-based nav-

119

igation was that it often provided quick access to the last used folder or to

the application’s default storage location. However, some participants noted

a reluctance to open files this way, and used it only when other methods

were particularly cumbersome or unavailable – for example, when the ap-

plication was not the default for the target file’s type, when importing, or

for web applications. P6 called the dialogs “completely obnoxious”, with

others complaining that it gave too small a view of the folder content. Two

participants noted that they used open and save dialogs by dragging folders

from the Finder to set the location, rather than navigating within the dialog,

with P6 calling this “completely backwards” in save dialogs, arguing that he

should instead be able to drag a document to a Finder browser window to

directly save it there.

5.4.7 Other Methods

Nearly all participants used the Dock to launch applications or to access

folders such as Applications and Downloads. Seven participants infrequently

used the command line to retrieve files, typically only for accessing hidden

locations, or when already using the command line for other tasks. Third

party retrieval tools were only used for application launching.

5.5 Analysis Part 3: File Management

While the focus of the study was on file retrieval, this section briefly discusses

file organisation behaviour. Table 5.6 summarises the file management fea-

tures participants used. Renaming, moving and deleting items were common,

while creating new folders or giving items colour labels were less so. Ex-

cluding those who did not use a particular feature, participants renamed an

average of 53.2 items, moved items an average of 27.8 times, deleted items an

average of 74.6 times, created 9.6 new folders and labelled items 24.6 times.

File management events were most often performed in isolation, as shown

in Figure 5.15. However, there was a tendency towards multiple such events

occurring at once, with considerably higher probabilities in practice than

what would theoretically occur given independent events, and given that file

management events were about a third as common as the combined retrieval

120

Feature Never Seldom Frequent
Rename file 7 9 10
Rename folder 6 8 12
Create new folder 15 7 4
Move file or folder 1 11 14
Delete file or folder 1 9 16
Set label 19 4 3

Table 5.6: Use of file management features in the Finder. Frequently used
items were used more than 10 times in the study period.

events of the Finder and Spotlight menu. The (unsurprising) implication

is that participants often performed a series of successive file management

operations to reorganise their file hierarchy or delete files.

Those who put effort into maintaining their file structures rarely had prob-

lems retrieving files, though some noted their dislike for the time required

for this maintenance. Others felt they had bad organisation, and large, un-

sorted downloads folders were common (P6 : “I’m not encouraged to organise

[downloads] with the current interface”). Downloaded files, screenshots and

audio recordings often had unusual names and were hard to locate later if

not renamed; two participants admitted that they often just downloaded files

again if they could not find them (P18 : “I do that all the time with lecture

notes”). Others noted issues when they had multiple versions of documents,

when they accidentally saved files in default locations without paying atten-

tion to where those locations were, or when they used shared repositories

where others controlled the structure (P24 referring to this as “really awk-

ward”).

5.6 Discussion

The results provide a characterisation of the files users retrieve and the meth-

ods used to do so. The main findings about the retrieved files relate to fre-

quent file revisitation, with retrieval patterns that are approximately Zipfian,

and that different types of files are accessed more frequently with different

methods – for example, media files are typically opened using navigation,

and PDF files are often accessed using search.

121

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10+#

Pe
rc
en

ta
ge
)o
f)S

eq
ue

nc
es
)

Consecu1ve)File)Management)Events)Without)a)Retrieval)

Observed#

Expected#(assuming#independence)#

Figure 5.15: Consecutive file management events without a retrieval occur-
ring, as a percentage of all file management sequences, averaged across par-
ticipants. The blue line show the observed results from participants, while
the red line shows the expected distribution if file management and retrieval
events occur independently of each other.

The main findings on retrieval methods are that users have strong pref-

erences for navigation-based file retrieval, and that users vary substantially

in the ways that they use file browser windows. In particular, the anal-

ysis suggests that users broadly adhere to one of four characterisations of

file browser window use: minimalists, who quickly dismiss windows; reusers,

who maintain a small number of file browser windows; hoarders, who keep

lots of windows open; and optimisers, who lie between the extremes. Spot-

light’s powerful search utilities were predominantly used as a quick method

for launching applications.

Interview responses helped clarify why these patterns of behaviour were

observed, as well as revealing perceptions of efficient and inefficient compo-

nents of the interface (e.g., a strong dislike of the small view of folder content

provided by the ‘Open’ file dialog).

The following sections compare the findings with those derived from prior

studies that used other methodologies, and then discuss implications for de-

sign.

122

5.6.1 Comparison with Prior Work

Gonçalves and Jorge [82] previously analysed the proportion of files modified

over various time periods by inspecting a static snapshot of file timestamp

data. This provides a useful characterisation of the age of the files and the

range of accesses through history, but it provides only a single data point for

each file, thus hiding critical information about the frequency and temporal

pattern of retrievals prior to the most recent one. Thus, the results in this

chapter extend theirs with observations such as the near Zipfian distribution

of accesses and the interaction between retrieval methods and file types.

Additionally, the results show a substantially different distribution of file

types compared to theirs, which is easily explained by changes and extensions

to the range of purposes to which computers are applied in the decade since

their study (e.g., media files are now more likely to form a large portion of

retrievals) and the differences between the sets of all files and those actually

retrieved.

Bergman et al. [30] found an average folder depth of 2.35 for Mac users,

whereas the comparable figure for absolute retrieval depths was 3.1. The

discrepancy is likely attributable to the difference in methods, with Bergman

et al.’s study involving batched retrieval of a series of files contained in a

snapshot of the recent documents list, whereas the study in this chapter

involved real retrievals executed in pursuance of actual work over a month

of interaction. The results related to incremental retrieval depths and a

characterisation of window reuse go beyond those in Bergman et al.’s study,

and would not have been possible without the dynamic data provided by

longitudinal logs of behaviour.

The study also found lower retrieval times for navigation (10.2 s) com-

pared to Bergman et al. [30] (12.6 s), however there were several differences

in measurement; they started timing earlier (i.e., at the first mouse move-

ment), included failed retrievals, and did not allow for window reuse. Future

work will be needed to explain the discrepancy between step durations of dif-

ferent view types in the two studies. Nevertheless, the results confirm their

findings that file retrieval is a time consuming task for such a frequent and

important action.

123

The findings on search, namely that it was used by most participants

as a last resort, echo several previous studies (e.g., [145, 25]). However,

this study provides new insights into the relative benefits and usage of two

different search interfaces (Spotlight and Finder search) which could help

guide the design of future search tools.

5.6.2 Implications for Design

The primary aim of the log analysis presented in this chapter is to provide a

broad characterisation of file use and file retrieval methods, and to provide a

rich dataset that can be put to use by designers with varied intentions and

needs. While it would be impossible to anticipate all the possible uses of

the results, this section outlines broad recommendations for the design of file

retrieval interfaces.

General Recommendations

Focus on worst case performance As illustrated by preferences towards

navigation rather than search, users prefer reliability over efficiency,

and will avoid interfaces that have a chance of failure or bad perfor-

mance, even if they are faster on average. Interfaces should provide

a convenient fallback in case of failure. Ideally, this fallback option

should provide equivalent performance and cognitive load to alterna-

tive techniques available to them.

Provide sensible defaults Defaults should be tailored to the specific use

cases of an interface manifestation. For example, even though most file

searches may be intended to be system-wide, searches within the Finder

are more often intended to be specific to the current window location.

Interviews of search habits showed that users seldom change defaults

even while complaining about them; 89.7% of Spotlight searches had

filename matches, and 98.6% of Finder searches defaulted to content

search, yet only 13.6% of these were changed to search only filenames

even with the option easily accessible to users. Incorrect defaults there-

fore have the potential to have strong negative effects on both user

experience and performance.

124

Avoid hidden features Features hidden in menus or otherwise out of view

will generally be forgotten or never discovered. Useful features should

be incorporated into the core interface, if this can be done in a simple,

intuitive way. As an example, the Finder’s “Recent Folders” submenu

was only used by one participant, but several stated that such a feature

would be useful. Features to facilitate switching between Finder loca-

tions, including recently closed locations, could be built into browser

windows.

Recommendations for File Search Interfaces

Facilitate differentiation of items with similar names A limitation of

search was that it was difficult for participants to distinguish between

items with similar or identical names, an artefact of results being pro-

vided as a list, whereas in navigation distinguishing based on location

is implicit. Search interfaces should provide a quick, intuitive way to

distinguish between items based on location or other attributes.

Focus on attributes with high specificity Users are overwhelmed by large

sets of irrelevant results when they are looking for one particular item.

Searching a range of attributes, especially file content, leads to large

result sets. Searches should instead focus on attributes with high speci-

ficity, such as filenames, which users are more likely to base their queries

around; other results should be omitted unless specifically requested,

or otherwise deprioritised.

Facilitate location learning Most participants indicated that they only

use search as a last resort when other methods fail, yet navigation was

rarely used after search for the same file, especially for harder to find

items. This indicates a greater need for search interfaces to facilitate

location learning to enable users to transition from search-based “last

resort” interfaces to those that they prefer to use, such as navigation.

125

Recommendations for Navigation Interfaces

Aid revisitation, but only in context 90% of folder revisitations and 73%

of file revisitations were amongst the top three most frequently visited

folders or files inside their parent folder, despite previous research show-

ing that folders average over 20 items each [29]. Interfaces that aid these

revisitations could greatly improve performance. However, revisitation

aids must be in context. Global revisitation interfaces, such as All My

Files, were poorly understood and rarely used. Revisitation aids must

be integrated into the core view, and provide a suitable fallback to

ensure they are used (see Focus on worst case performance above).

Support window reuse Windows are often reused, greatly improving ef-

ficiency by eliminating the need to repetitively navigate to the same

locations. File browsers should further embrace this paradigm, more

heavily integrating features that facilitate location reuse.

Facilitate version control Participants often made their own backup copies

of files, but found it difficult to manage multiple versions of a file. Fea-

tures that facilitate differentiation between versions of files, as well as

those that enable better ways to create or manage multiple file versions,

could improve productivity and reduce the chance of lost data.

5.6.3 Implications for Evaluation

Retrieval interfaces are often evaluated in controlled lab studies, allowing

for simpler evaluation methods and greater internal validity. However, it is

important that such evaluations make correct assumptions in order for results

to be generalisable to real world usage. The following provides guidance on

several points based on the log analysis performed in this study.

File retrievals are near-Zipfian File retrievals can be approximated by a

Zipfian distribution in lab studies that simulate file retrieval behaviour.

A low s value should be used where possible, however participants vary

considerably in their retrieval patterns, and a fixed s value should not

necessarily be assumed.

126

Tasks do not happen in isolation Today’s computers can handle count-

less simultaneous tasks, and multitasking by users is now the norm.

Tasks often follow on from previous tasks, improving efficiency. As-

suming that this is not the case, as in some previous studies (e.g.,

[30]), can lead to results that significantly differ from real world usage

and miss important aspects of user behaviour.

5.7 Conclusion

File retrieval is an essential task for all computer users, and any improvements

will result in considerable benefits. A thorough understanding of how people

retrieve their files, and the reasons for doing so, aids the design of such

improvements. The study described in this chapter is the first real world log

study of file retrieval, and provides new insights into areas such as navigation

window reuse and revisitation behaviour. Together with previous studies, the

findings provide a detailed understanding of file retrieval behaviours that will

be invaluable to the design of future retrieval interfaces.

Future studies will need to confirm that the findings generalise to other

platforms, such as Microsoft Windows. However, the underlying retrieval

methods are similar between platforms, and it is likely that insights based

on the findings are generally applicable to all of them.

127

Part III

Predicting User Interaction

128

Chapter VI

AccessRank: Predicting What Users Will Do Next

Many forms of interaction with computer systems are repetitive – as well

as frequently revisiting files, users also use the same commands [85], visit the

same websites [174], return to previously visited document regions [5], and

so on. To improve the efficiency of accessing previously used items, many

diverse interactive techniques and systems have been developed, with exam-

ples including command histories [86], web page recency lists [110], scrollbar

marks showing previous areas of document use [5], and menu adaptations

that emphasise probable upcoming selections [67, 68, 11].

While there are plentiful examples of research and commercial systems

that provide support for retrieving previously used data, there is much less

previous research on the design and evaluation of the underlying algorithms

that support the predictions presented to users. Improving the performance

of these algorithms would have a strong impact on many areas of interaction.

For example, Firefox’s AwesomeBar uses the Places Frecency algorithm [143]

to populate recommendations in a drop-down list alongside its URL bar, and

membership of this list is progressively pruned and presented to users as they

type characters, allowing predicted items to be rapidly selected.

This chapter introduces AccessRank, a new prediction algorithm designed

for use in user interfaces. Rather than focusing purely on prediction accuracy,

AccessRank is also designed to consider the stability of results over time – an

important property in user interfaces, where spatial consistency can provide

significant performance benefits.

The chapter begins by describing existing predictive algorithms and tech-

niques from diverse areas of computer science that can be used to predict

upcoming user actions. It then describes AccessRank and its calculation,

combining two previous algorithms and adding new components to incorpo-

129

rate time of day information and to enhance stability of results over time.

In order to evaluate AccessRank, its performance was analysed across

four domains: command use, web navigation, window switching and file re-

trievals. To achieve this, datasets for these domains were first converted to

a standardised format. Next, a simulation compared the predictions of a

range of AccessRank configurations and existing algorithms on these stan-

dardised datasets. Results of this simulation provide a detailed comparison

of the accuracy and stability of these algorithms. Analysis also compares

predictive properties of these domains and the effect these have on relative

algorithm performance. The chapter concludes by discussing deployment of

AccessRank in user interfaces.

6.1 Overview of Prediction Algorithms

Prediction is used in a variety of user interfaces, such as recent file inter-

faces, web page recommendations in an address field, and dynamic menus.

The underlying prediction algorithms are often specialised for the particular

domain they are used in, however many have common properties that can

suggest useful elements of a domain-independent prediction algorithm. This

section provides an overview of existing prediction algorithms in four con-

texts: menus, cache algorithms and two types of web prediction algorithms

– those made locally in a user’s web browser, and those that incorporate

aggregate usage information from multiple users.

6.1.1 Menus

While menus normally present static lists of commands, many attempts have

been made at incorporating dynamically ordered content. ‘Open Recent’

menus, for example, often include a list of recent files ordered by recency.

These were more fully reviewed in Chapter 2.

Cockburn et al. [46] developed a mathematical model for predicting menu

item selection time, taking into account Fitts’ Law [70], the Hick-Hyman Law

[101, 97] and user expertise. They noted the importance of stability in the

context of human computer interaction. While efficiency for a computer

might mean having items as close to the start of a list as possible, humans

130

who have gained expertise with a list are inclined to look for an item where

they have previously found it. Sorting by frequency inherently provides more

stability than doing so by recency, and consequently Cockburn et al. found

that user performance was considerably better when sorting in this way.

They also found that completely stable menus – those with static content

– outperformed those ordered by recency, emphasising that low levels of

stability can impede performance.

In another study examining relative performance of different techniques

for ordering menu items, Findlater and McGrenere [67] compared three types

of split menus. In all three, up to four items from the menu appeared in the

top section, with the remainder in the bottom section and with a separator

between the groups. They tested static menus, where the top four items were

the four most frequently selected items, adaptable menus, which allowed users

to customise which four items appeared in the top section and what their

order was, and adaptive menus, which selected two frequent items and two

recent items to place in the top section. They found that the frequency-

based static menu performed better than the adaptive menu, with mixed

results for the adaptable menu – consistent with Cockburn et al.’s finding

that the inherent stability of frequency-based selections results in improved

performance. Nevertheless, the algorithm used to generate the adaptive menu

content can be generalised as Split Recency and Frequency (SR&F), with

parameter n. SR&F selects the n most recently accessed items and orders

them using Most Recently Used, then orders the remaining items using Most

Frequently Used.

More complex algorithms have been incorporated into commercial soft-

ware. For example, Microsoft Office 2000 implemented Adaptive Menus [11],

which initially show only commonly used items but can be expanded to a full

list by waiting several seconds or by selecting a menu item that explicitly ex-

pands the list. The underlying algorithm to select these items stores a usage

count for each item, which is incremented each time the item is selected. To

reduce the effect of older menu item activations, it also stores a last session

count for each menu item, which is set to zero when the item is selected and

incremented at the start of each new session. When the last session count

reaches certain values (3, 6 and 9), the usage count is decremented by one.

131

At a higher value (12), the usage count is decremented by the larger of 2

or 25%, while for a higher value still the command usage record is deleted

completely. Items with positive usage counts are shown in the shorter com-

monly used items list, while other items have their usage record deleted and

are only part of the full list. The algorithm combines both frequency and

recency; the usage count is a measure of frequency, while the last session

count, a measure of recency, is used to impose an aging effect on the usage

count.

6.1.2 Cache Algorithms

Cache algorithms are used to determine the most efficient set of items to

maintain in a cache of a fixed size, in order to increase the probability that an

accessed item can be quickly retrieved. These algorithms have the opposite

goal of many prediction algorithms; instead of predicting the most likely

item, they aim to predict the least likely, which is removed from a cache

in order to make room for a new item. Despite these opposing goals, an

algorithm that can estimate which item will be unused for the longest can

often be adapted to estimate which items are likely to be accessed soon.

One family of cache algorithms is Least Recently Used (LRU) (e.g., [131]),

which, as the name suggests, discard the items that are least recently used.

In reality, approximations are often used due to the implementation costs of

an exact implementation. In contrast to LRU, Most Recently Used (MRU)

is another family of cache algorithms designed for use with cyclic access

patterns [177], where older items are more likely to be accessed.

Least Frequently Used (LFU) algorithms remove items that are used the

least. Generally they use LRU in the case of ties. Variations of LFU take

into account recency by applying an aging policy that reduces the reference

counts of items over time [159, 188]. Zhang et al. [188] identified several

different categories of aging algorithms. Explicit aging involves periodic di-

rect modification of item weights, and these algorithms effectively act as an

add-on to an existing algorithm. Value aging algorithms, on the other hand,

have aging factors built into the main weight calculations. Explicit aging can

again be broken down into two subcategories. For uniform aging, the only

132

input is the original weight of each item and aging is applied in the same

manner for all items. An example is α-aging, with uses the aging function

f(v) = αv, 0 ≤ α ≤ 1. Differential aging also considers the distinct access

patterns for each item, meaning that the relative ordering of items could

potentially change when weights are modified.

Adaptive Replacement Cache (ARC) [137] takes account of both frequency

and recency, resulting in better performance than LRU [138]. It uses two lists,

one for recently accessed items and one for frequently accessed items, and

also tracks ghost entries for each list. Ghost entries have had their actual

data removed from the cache, but still contain the attached metadata. Hits

on recently accessed items, regardless of whether they are ghost entries or

not, result in the item being moved to the frequently accessed items list.

While this algorithm cannot be directly adapted to predicting which item is

most likely to be accessed next, it could be used to produce a set of items

which is likely to contain subsequently accessed items.

Another algorithm that combines recency and frequency is Least Recent-

ly/Frequently Used (LRFU) [122]. It gives each item a Combined Recency

and Frequency (CRF) value which is calculated based on the timing of all

previous accesses. Parameters to the CRF function, shown in Equation 6.1,

determine how much weighting is given to frequency versus recency, so it can

be adapted for different situations. wf is the item’s weight, n is the number

of past accesses, t is the current time and ti is the time of access i (where

time is in terms of discrete events).

wf =
n∑
i=1

1

p

λ(t−ti)
(6.1)

Typical metrics for comparing the performance of cache algorithms are

hit rate and byte hit rate. The hit rate is the percentage of requests that

are found in a cache, while the byte hit rate is the percentage of data found

in a cache. These metrics are often inversely correlated [160] – strategies

optimised to increase the byte hit rate are more likely to cache large items,

reducing the hit rate as fewer items are stored in the cache overall. In the

context of determining which items will most likely be accessed next, hit

133

rate is the most appropriate metric since item size is not a relevant variable.

However, care must be taken interpreting results of performance studies for

cache algorithms for application in other domains, since certain strategies

give preference to small files, creating an artificially higher hit rate.

Several studies have compared the performance of cache algorithms. Ro-

mano and ElAarag [160] evaluated a large number of cache algorithms on

several data sets. While most of the algorithms could not be adapted for

predicting item accesses, there were still some relevant findings. They cat-

egorised algorithms into three groups: recency, frequency and recency/fre-

quency. Within each group, there were large variations between algorithms.

Comparing the results for the best algorithms in each group using the hit rate

metric, frequency performed the worst, followed by recency, and algorithms

using a combination performed the best. In another study, Arlitt et al. [12]

found that frequency-based algorithms performed better than recency-based

ones.

6.1.3 Web Browser Suggestions

Most web browsers feature some form of autocompletion when entering URLs

in their address bars. In simpler implementations, they suggest URLs which

are prefixed by the text entered by the user (excluding standard prefix strings

such as ‘http://’ and ‘www’). Modern browsers such as Firefox [144] and

Safari [10] provide more advanced suggestions. Firefox’s AwesomeBar, for

example, suggests URLs based not only on prefixes, but matches throughout

page titles and URLs of visited pages. It gives higher ranking to pages

where the search term is the start of a token, for example in the URL

http://www.mozilla.org/firefox/, some tokens would be ‘mozilla’, ‘org’ and

‘firefox’. This feature helps to recall URLs when a keyword is not contained

in the website’s domain.

Unfortunately, a lot of queries typed into address fields will match a large

number of results, and it is therefore important that they are suitably ranked.

Firefox’s AwesomeBar uses the Places Frecency algorithm [143], which ranks

URLs by a frecency score, taking into account both recency and frequency.

To calculate this frecency score, the algorithm first samples the most recent

134

ten visits to a URL. For each, it gives a weight from 10 to 100 based on how

recent the visit was, then multiplies this weight by a percentage bonus based

on the type of visit, such as whether it was typed in the address bar, clicked

as a link on a webpage, or selected as a bookmark. The algorithm then takes

the average of the weights for each sampled visit and multiplies the result by

the total visit count to calculate a final frecency score. These frecency scores

are quick to calculate and result in a reasonably accurate ranking. However,

counterintuitively, unsampled visits (by definition, those older than the most

recent ten visits of an item) increase the frecency score of an item more than

sampled visits that are below the average sample weight. While designed for

use in predicting URL visits, the Places Frecency algorithm can be adapted

for general use by ignoring the visit type bonus.

6.1.4 Web Pages

Web page use can be analysed from either client-level history or server log

data. The previous section focused on client-level predictions. This section

examines server-level predictions, which can be used both for predictions

about what a specific user will access next, such as for prefetching and rec-

ommendation (e.g., [99, 116]), and for predictions about what pages are most

likely to be accessed by any user, which is useful for server optimisation. In

both cases, aggregate data across all users can be used to improve prediction

accuracy by analysing general access patterns. On the other hand, server-

level data has several disadvantages: not every request will be logged due

to client-side caching; servers generally identify users by IP addresses which

do not necessary have a one-to-one mapping with users; server logs can be

contaminated with data from non-human users such as web crawlers; and it

can be difficult to obtain and analyse cross-website data.

A common approach to server-level analysis of log data is known as web

usage mining. Cooley et al. [51] define web usage mining as “automatic

discovery of user access patterns from Web servers”. Gry and Haddad [78]

evaluated several web usage mining approaches across several datasets to

predict users’ next requests, identifying the following three approaches:

135

Association rules [36, 73] – Given sets of items that are frequently visited

together by users, association rules detect partial subsets that have

been visited by a particular user, and infer that the unvisited items

in that set are likely to be accessed. This approach ignores time as a

factor.

Frequent Sequences [141] – These consider N-Grams in time-ordered se-

quences of URL visits by past users, and predict a URL k if the user’s

recent history exactly matches all but the last item k of an existing N-

Gram. This was found to give the best accuracy of the three approaches

when the correct prediction was required to have a high prediction rank.

Frequent Generalised Sequences [76, 129] – Similar to the Frequent Se-

quences approach, these also allow for wildcards in sequences rather

than simple N-Grams. Wildcards can match one or more URLs.

These approaches share in common the property that they use aggregate

history across multiple users to make predictions for a particular single user

– a technique that is possible on the web, but difficult in many other domains

where aggregate data is not available. However, techniques such as analysis

of N-Grams are still possible in domains with a large access history and high

revisitation rate.

Markov models can also be used to predict web page accesses [56]. These

models assume that page accesses are memoryless – that is, the probability

that a particular page will be accessed next is based only on the current

web page and not on other browsing history. Such a model makes particular

sense for web pages, since each page contains a set of links to other pages.

Chances are high that the next page accessed will be one of these links, while

the chance that the next page will be a link from a previously visited page

is much lower. However, this assumption is less realistic when users have

multiple tabs or windows open simultaneously, as server-side Markov models

will not be able to detect which page the user is currently interacting with.

Sarukkai also used Markov chains for link prediction [164], but recognised

that noise like the above exists. To rectify this, he incorporated a user’s link

136

history into his model by using weighting coefficients to give some influence

to transition matrices of previous states.

Other research has examined clustering of accesses. For example, Perkowitz

and Etzioni [150] calculate co-occurrence frequencies between pages to create

a similarity matrix, which is used to semi-automatically improve the organi-

sation of websites by learning users’ access patterns. For each pair of pages p1

and p2, P (p1|p2) is the probability that a user will visit p1 if they have already

visited p2. The co-occurrence frequency is defined as min(P (p1|p2), P (p2|p1)).

Clustering techniques can be adapted for prediction, and are loosely related

to association rules, described above.

6.1.5 Summary of Predictive Algorithms

This section introduced a range of prediction algorithms and techniques from

several areas of computer science. In particular, the following algorithms have

been described which are used as part of the evaluation later in this chapter:

• Most Frequently Used (MFU) and Most Recently Used (MRU – not to

be confused with the family of cache algorithms of the same name).

These are the most primitive prediction algorithms.

• Split Recency and Frequency (SR&F) [67], which selects n items with

MRU, then the rest with MFU. The evaluated implementation uses

n = 5.

• Combined Recency and Frequency (CRF) [122], originally used as part

of a cache algorithm. The evaluated implementation uses parameters

(p, λ) = (2, 0.1), a configuration that performed well in initial testing

on a subset of the datasets described in this chapter.

• The Adaptive algorithm [11], used to filter menus in software such as

Microsoft Office 2000. The evaluated implementation orders item by

usage count, using MRU to determine ties.

• The Places Frecency algorithm (PF) [143], used by Firefox’s Awesome-

Bar to rank URL suggestions. The evaluated implementation excludes

137

features specific to web page prediction, enabling prediction in other

domains.

• A Markov chain [132], adapted to make predictions using the following

formula:

P (Xn+1 = x|Xn = xn) =
|xn → x|
|xn|

(6.2)

Here, |xn| is the number of previous occurrences of state xn and |xn → x|
is the number of previous transitions from state xn to x. Xi represents

the state at time i. Given the most recent access xn, the calculated

probabilities provide a ranking, and MRU can be used to break ties.

Variations that use higher order chains or that weight multiple chains

together were investigated, but they had a negative effect on prediction

accuracy in comparison to the above approach.

6.2 AccessRank

AccessRank’s goals are twofold: first, to accurately predict the next action

based on past ones; and second, to maximise list stability. The importance

of prediction accuracy is obvious, but the need for stability is also important

because it allows users to learn item locations over time, facilitating expertise

with the interface used for list presentation [46].

AccessRank has two components, described below. First, a raw Access-

Rank Score is calculated, combining the Combined Recency and Frequency

(CRF) cache algorithm (an algorithm with reasonable accuracy and stabil-

ity), a Markov chain (a technique that produces high accuracy but low sta-

bility) and a Time Weighting (which weights items based on the current time

and day). Second, a Switching Threshold improves results stability. Comput-

ing AccessRank is fast, as its model can be updated in O(1) time, all scores

can be updated in O(n) time, and predictions made in O(n log n) time.

6.2.1 AccessRank Score

A raw AccessRank score wn is calculated for each previously accessed item

n using Equation 6.3. wmn is the Markov weight, wcrfn is the CRF weight

138

(parameters {p, λ} = {2, 0.1}) and wtn is a time weighting. The AccessRank

parameter λ > 0 determines the blend between the Markov and CRF algo-

rithms, and can be adjusted based on whether accuracy or stability is more

important or based on particular properties of the domain; Markov weights

often provide better accuracy, at the expense of lower stability.

wn = wmn
λwcrfn

1
λwtn (6.3)

The Markov weight is altered from Equation 6.2 to always give non-zero

weights:

wmn =
|xn → x|+ 1

|xn|+ 1
(6.4)

6.2.2 Time Weighting

The time weighting wtn gives higher weighting to items that have historically

been more frequently accessed at the current time of day or day of week.

Informal observations indicate that many aspects of interaction are tempo-

rally predictable, for example habitually accessing a news webpage on arrival

at work. Let ch be the current hour of the day. For item n, let rh be the

ratio of the number of previous accesses of n in hours in the three hour range

[ch − 1, ch + 1], compared to the average number of previous accesses of n

for a three hour slot. Similarly, let rd be the ratio of the number of previous

accesses of n on the current day of the week to the average across all days

of the week. rh and rd are set to one if fewer than 10 accesses in total have

occurred in the corresponding slot. The time weighting is then calculated as

in equation 6.5:

wtn = max(0.8,min(1.25, rhrd))
0.25 (6.5)

6.2.3 Switching Threshold

The switching threshold improves stability. Consider items A and B at po-

sitions rA < rB in the previous prediction list, where a lower position corre-

sponds to a more confident prediction. Pairwise comparisons between item

weights are made during sorting to generate a new prediction list. If A and

B are compared and their new weights wA and wB are such that wB > wA,

139

then B will only be ranked higher than A if wB > wA + T , where T is the

switching threshold (defined below). An item k not in the previous list is

assumed to have rk =∞.

In the original version of AccessRank, T = δ, where δ ≥ 0 is an Ac-

cessRank parameter. Here the switching threshold is uniform for all items,

making it relatively difficult for low weighted items to change positions, while

making it relatively easy for higher weighted items to change. In a later ver-

sion (AccessRank 2), T = wAδ, making the switching threshold relative to

the weight of the items involved. In comparison to the original switching

threshold, this makes it harder for highly ranked items to change positions,

but easier for lower ranked items.

The switching threshold comparison is not transitive; for example, con-

sider items A, B and C, where rA < rB < rC . Let δ = 0.5, wA = 1.1,

wB = 1.5 and wC = 1.9. Now, regardless of whether the original AccessRank

or AccessRank 2 is used, wB < wA +T and wC < wB +T , but wC > wA +T .

The prediction list will differ depending on the comparison order, in turn

determined by which sorting algorithm is used. Merge sort was used in the

evaluated implementations of AccessRank. Variations that satisfied the tran-

sitivity property did not perform as well.

6.3 Converting Logs for Analysis

To evaluate AccessRank against other prediction algorithms, several log

datasets were collected and converted to a standard form ready for analysis:

Window switching Logs were used from a longitudinal study on window

switching behaviour run by Tak [172].

Web browsing Logs were used from a 6 week web browsing study by Tauscher

and Greenberg [174].

UNIX logs Logs were used from command-line usage data from a study by

Greenberg involving 168 csh users [84].

File browsing Logs were used from the longitudinal study on file browsing

described in Chapter 5.

140

Window
switching logs

Web browsing
logs

UNIX
command logs

Converter ConverterConverter

Standardised
logs

Window switching log

Application switching log

Prediction
algorithms

Results

Domain log

File browsing
logs

Converter

Full URL log

Navigation & search log

Full retrieval log

Command log

Command line log

Figure 6.1: Process to compare ranking algorithms

Figure 6.1 shows a high level overview of how the algorithm comparison

was done. The first step was to convert the logs into a standardised format, as

each was in a format specific to its study. Each dataset was converted into two

sets of logs based on particular semantics of the domain: window switching

into logs of window switches and application switches, web browsing into logs

of website visits (full URLs) and web domain visits, UNIX logs into command

line logs and logs of just the command names used, and file browsing into

full retrieval logs and logs of just retrievals performed through navigation

and search. Details of this conversion process are provided below.

6.3.1 Standardised Log Format

In order to be able to easily compare different logs, they were converted to a

standardised XML log format. Each log file is specific to a particular user.

This log format consists of a list of log entries, with each log entry consisting

of a set of key-value pairs.

Log entries are broken down into three primary events (visits, additions

and removals) as well as an optional one (sessions):

141

Visit The main action in a log depends on the context. For example, in

a window switching log this would be a window switch, while in a

file browsing log it would be opening a file. While the specific action

depends on the type of log, in the standardised log format they are all

classed as visits to simplify processing.

Addition As the logs are used to evaluate prediction algorithms, a set of

possible action targets must be maintained. The algorithms must as-

sign probabilities to each possible target immediately before each visit.

An addition adds a target to the set of targets so that it will have

its own assigned probability. This would normally appear immediately

after the first visit entry for a target, so that the target does not have

an assigned probability when it is first observed.

Removal In some datasets, targets can be removed from the set of possible

action targets. For example, for window switching logs, closing a win-

dow removes it from the set. Such an event results in a removal entry,

resulting in the target no longer getting a specifically assigned prob-

ability. Note that in some cases, targets can be added and removed

multiple times in a single log, for example in window switching logs

when a document is opened and closed multiple times.

Session In datasets that explicitly record new sessions, a session event is

added at the start of each session.

Additionally, the first log entry in each converted log is a special entry

contains summary statistics, often specific to the type of log:

Log type The type of log, for example “Window switching”.

Visits The number of Visit entries in the log.

Additions The number of Addition entries in the log.

Removals The number of Removal entries in the log.

142

SessionDataIncluded True if sessions are explicitly recorded in the log.

Assumed to be false if omitted.

Domain specific entries Entries specific to the type of log, for example

the number of items that were excluded during the conversion process

for a particular domain specific reason.

All subsequent entries correspond to events, ordered by time, as described

above. The structure of these entries is given below:

Type The type of log entry; “Visit”, “Removal”, “Addition” or “Session”

ID A unique identifier representing the object that was the target of the

event, for example a window ID, file path, or website URL (depending

on the log type). The ID property is excluded for Session entries.

Time The timestamp of the event.

Window Switching Logs

Tak [172] ran a three week longitudinal window switching study on Mi-

crosoft Windows with 25 participants. Logs from this study recorded window

switches (changes in which window was topmost), window resize events, the

cause of these events (i.e. mouse clicks, key presses or system events), and a

list of all open windows at the time of each event. They also included both

unique window identifiers, as well as the application owning the windows.

These logs were converted into two sets of logs: the first consisted of

window switches, while the second consisted of application switches, ignoring

switches between windows of the same application. The conversion process

was otherwise the same, and is summarised below, interpreting a window

switch as an application switch for the purposes of the application switching

log:

• Window switches and new windows were generally recorded as a Visit

event for the new window, with a few exceptions detailed below. Resize

events were ignored.

143

• A window switch W1 → W2 was ignored if W2 appeared without user

interaction, was a child window of another window, or was the login

window. Additionally, the next window switch (W2 → W3) was ignored

if W1 = W3; if W1 6= W3, it would still be processed, therefore appearing

in the processed log as W1 → W3.

• If a sequence of window switches W1 → W2,W2 → W3, ...,Wk−1 → Wk

occurred for k ≥ 3 such that Ti+1 − Ti < 1 for all 1 ≤ i ≤ k − 2, where

Ti is the time, in seconds, at which the window switch Wi → Wi+1

occurred, the sequence was reduced to W1 → Wk. In other words,

window switches were ignored if another window switch occurred within

a second, under the assumption that the incorrect window had been

activated. If W1 = Wk, no switches were recorded since a window

switch W1 → W1 would have no meaning.

• Addition events were added after observing a new window that had

not been excluded for one of the reasons described above, and Removal

events were added when a window was no longer included in the window

list at the time of an event.

Web Browsing Logs

Tauscher and Greenberg [174] ran a six week study which recorded detailed

usage data of a web browser. Although this dataset is relatively old (1997)

and therefore possibly not descriptive of modern web browsing behaviour, it

is still useful in a more general sense to evaluate prediction algorithms over a

range of domains. The logs from this study included time, URL, information

about actions performed and other information.

These were converted into two types of converted logs:

1. Logs of full URLs, where each URL was treated independently, regard-

less of domain or even if it was just a different anchor on the same page.

If the same URL was visited twice in a row, it would still be included

twice in the converted log.

144

2. Logs of domains only. Consecutive accesses of multiple pages within

the same domain would be collated into one entry in the converted logs.

Accessing a website over a different port counted as the same domain.

The log conversion process was similar for these two types, and is outlined

as follows:

• If a log entry did not relate to opening a URL, it was ignored.

• For log entries that were not ignored, a Visit entry was added to the

converted log, followed by an Addition entry if it was the first time the

URL was observed. Such events included manually entering a URL,

clicking on a link, or choosing an item from history.

• No Removal entries were added to the converted log as all URLs could

potentially be revisited.

UNIX Logs

Greenberg [84] collected command-line usage data from 168 users of the

UNIX csh command interpreter [109] in 1987. These users had varying lev-

els of experience ranging from non-programmers to experienced programmers

and computer scientists. The logs include each command line entered, the

current working directory, any alias the command line invoked, if the his-

tory mechanism was used and any errors that occurred. They also indicate

the start of each login session. The only timestamps included are the start

times, and sometimes end times, for each session; there are no timestamps

for individual commands entered.

As with the other datasets, two types of converted logs were generated.

The first includes full command lines, while the second includes just the

commands used. In both cases, consecutive repetitions of the same command

or command line are included in the converted logs.

The log conversion process was similar to other log types such as the

web browsing logs, whereby Visit entries were added for each command or

command line executed and Addition entries were added following these if

the command or command line had not previously been used by that user.

145

Since timestamps were not included for command uses, the login session’s

start time was used to approximate the timestamp for each command.

File Retrieval Logs

Chapter 5 described the results of a four week study of file retrieval. Logs

from this study include a variety of information, include details of when and

what files were opened.

These logs were converted into two sets; one containing all file retrievals,

and another containing just those retrievals that were directly observed (i.e.

through use of Finder navigation or search). The former set consists of a

more complete, diverse set of retrievals, however those retrieved outside the

directly observed methods were only observed after a slight time delay, mean-

ing that some retrievals could be incorrectly ordered. Additionally, they may

have been misclassified in some cases – see Chapter 5 for a full discussion.

The latter set consists of a limited set that contains fewer revisitations per

file, on average, since retrievals are not included after transitioning, for exam-

ple, from navigation to a recent items interface. However, it is more suitable

to assess predictive algorithms for use within a particular retrieval interface.

The same assumptions and filters discussed in Chapter 5 were used; for ex-

ample, entries on the first day of the study were omitted, and some indirectly

observed retrievals were omitted when it was suspected that they were likely

just activations of already open documents.

The log conversion process was again similar to other domains; Visit

entries were added for each file retrieval and Addition entries were added

following these for previously unobserved file paths. The direct-retrievals

set counted every OpenFile, QuickLook and SpotlightSelection event as a

retrieval, while the all-retrievals set also included OpenFileExternal events.

6.4 Measures Used to Compare Algorithms

Prediction algorithms can be compared using a range of measures, cate-

gorised as either prediction measures, which assess how well an algorithm

is at predicting what will happen next, and stability measures, which assess

how stable an algorithm’s prediction lists are over time. Additionally, data

146

characterisation measures provide information about the datasets as a whole,

rather than measuring the effects of an algorithm.

The sections below describe the particular measures used in the analysis

of the algorithms.

6.4.1 Prediction Measures

The most obvious characteristic of a good prediction algorithm is that it

ranks relevant items highly, however there are many ways to measure this.

Those considered as part of this analysis are as follows.

Percentage Revisitations Predicted records the percentage of all revis-

itations that are at the top of the prediction list generated by an algo-

rithm immediately prior to the event. Items that have not previously

been accessed are not considered.

Average Rank records the average position of items in the prediction lists

generated by an algorithm immediately prior to the visits. In cases

where the item is not in the prediction list, for example if it has never

previously been accessed, it is excluded from the calculation.

Percentage Revisitations Predicted With Hint is the same as Percent-

age Revisitations Predicted, but is calculated for varying hint sizes. This

hint is the first characters of the identifier of the next access, after re-

moving common prefixes such as ‘http://’ for web logs. This measure

indicates how well the algorithm might work in a real world setting for

interfaces that allow users to type in the start of the identifier for the

item they are looking for (as in many web browsers).

Percentage Included In List records the percentage of revisitations that

are included in prediction lists of size n generated by an algorithm, for

varying values of n. This facilitates investigations of the distribution

of list rankings for items and suitable list sizes for a dataset. When

n = 1, this measure is identical to Percentage Revisitations Predicted.

147

6.4.2 Stability Measures

There are significant advantages to algorithms providing stability in the pre-

diction lists they provide, to reduce the time users spend searching a list for a

target item. If the item is at a consistent location, they will learn to quickly

select it.

There are a number of measures to compare list similarity. Webber et al.

classify these measures based on two main properties [181]:

Conjointness: Measures on conjoint rankings involve both lists consisting

of the same items, but not necessarily in the same order. Non-conjoint

rankings do not necessarily involve the same items and are also known

as top-k rankings.

Weightedness: Unweighted measures give the same importance to an item

regardless of rank in a list. Weighted measures typically give greater

importance to higher ranked items.

For the purposes of user interfaces, top-weighted measures are of most

relevance as the top of a prediction list is the most important; for example,

the further down a list someone must look to find a relevant item, the more

likely they are to give up, and many interfaces provide particularly quick

access to the top item in a list (for example, many web browser URL sug-

gestion interfaces). Additionally, since the set of items being ranked changes

over time, it is important for measures to handle non-conjoint rankings. The

first two stability measures below satisfy these properties, while the third,

Learnability, is non-conjoint but unweighted.

While list similarity measures calculate the similarity of two lists, a full

analysis of stability must measure how much the prediction lists change over

time. Let Pi be the ranked prediction list for a particular algorithm that

corresponds to the ith visit event in a log file with n total visits. Let F (P1, P2)

be a list similarity measure. A stability measure S can be determined as

follows:

S =
1

n− 1

n−1∑
i=1

F (Pi, Pi+1) (6.6)

148

This formula is used for each of the similarity measures outlined below.

Note that for each measure, the list similarity score will generally be in the

range [0, 1], where 0 indicates no similarity and 1 indicates perfect similarity.

Average Overlap

Average overlap is a top-weighted non-conjoint measure of list similarity.

Independently invented as average accuracy by Wu and Crestani [186] and

as intersection metric by Fagin et al. [65], it is also known as weighted

overlap [87] and average overlap [181].

Let S and T be two ranked lists, and let Si be the i top ranked items of

S. Let Oi be the number of items in both Si and Ti and define agreement at

depth i as Ai = Oi
i

. The average overlap AOk for Sk and Tk is calculated as

follows:

AOk =
1

k

k∑
i=1

Ai (6.7)

Webber et al. discuss several properties of average overlap that are dis-

advantageous [181]. Deeper evaluation can result in the average overlap

moving in the opposite direction of what is intuitive, i.e. AOk and Ak do

not necessarily increase and decrease together as k increases. For example,

AOk+1 > AOk if Ak+1 > AOk, regardless of whether the (k + 1)th elements

of S and T are in Tk+1 or Sk+1 respectively. Furthermore, they show that

AOk is non-convergent as k → ∞, as its infinite tail always dominates the

finite prefix that has been examined.

In the implementation used in this study, k = min(|S|, |T |, 20), as it would

be a rare use case for more than 20 items to be evaluated in a predictive user

interface before either filtering results or abandoning it for a more reliable

method (such as file navigation or entering a more complete web URL).

Rank-Biased Overlap

Webber et al. created rank-biased overlap (RBO) [181], which solves the

issues of average overlap described above. It does so by assigning decreasing

weights at each depth, based on a parameter p where 0 < p < 1. It is

calculated as follows for lists S and T :

149

RBO(S, T, p) = (1− p)
∞∑
d=1

pd−1Ad (6.8)

They also describe several formulae for estimating RBO values based on list

prefixes. In particular, they include a calculation for an extrapolated point

estimate of list similarity based on Sk and Tk:

RBOEXT (S, T, p, k) = pkAk +
1− p
p

k∑
d=1

pdAd (6.9)

The implementation used for this study uses k = min(|S|, |T |, 50) and p =

0.9, a configuration which Webber et al. suggest gives an almost exact es-

timate of the true RBO score. Later references to Rank-Biased Overlap or

RBO refer exclusively to the RBOEXT score.

Learnability

Learnability is an estimate of stability developed by Cockburn et al. to

measure how easy it is to remember item locations in a list over time [46].

They describe it as follows: “[Learnability] can be estimated for different

interfaces by calculating one minus the average distance that items move as

a proportion of half of the total menu length – e.g., random items will on

average move half of the menu length l per selection, hence L = 1− 0.5l
0.5l

= 0.”

In the study implementation, prediction lists were kept to a maximum

size of 10. While suitable list sizes depend on the domain, a fixed maximum

ensured that comparisons between algorithms and datasets were valid, and is

a suitable compromise for the lack of weightedness in the measure; people are

more likely to use an alternative approach such as providing a larger hint if

the result is not near the top of the list. To satisfy the non-conjoint property,

items that were in only one list were treated as having a distance moved of

half the total menu length. The average distance was taken across all items

that appeared in at least one list.

150

6.4.3 Data Characterisation Measures

While the above measures are calculated for each algorithm, the measures

below are independent of the algorithms and help characterise the data.

Revisitation Rate is the percentage of accesses that are of items previ-

ously accessed. Alternatively, subtracting this rate from 100% gives

the percentage of accesses that are to previously unvisited items.

Time Between Visits is the average time between visit events.

Number of Sessions is calculated in one of two ways. If the original logs

include session information, the number of sessions is just tallied from

this data. Otherwise, as an estimate, a new session starts when the

time between two visits exceeds two standard deviations of the mean;

the large skew in the data (with clumping within a session) ensures that

this is normally an appropriate time requirement. This is calculated

using the results of the Time Between Visits measure, and used by the

Adaptive algorithm.

6.5 Analysis of Algorithm Performance

Once the log datasets were converted to a standard format, algorithm per-

formance was analysed with a specialised log processor. This takes as input

a series of datasets, and it dynamically loads prediction algorithms and eval-

uates them against various measures. At a high level, log processing is done

as follows:

1. Dynamically load algorithms and measures based on a configuration

file

2. For each subject in each dataset:

(a) For each data characterisation measure:

i. Iterate through the events in the subject’s log file, and update

the data characterisation measure after each one.

151

(b) For each event in the subject’s log file:

i. For each prediction algorithm:

A. Make predictions

B. Update each accuracy and stability measure based on pre-

dictions

Algorithms from a variety of domains, described earlier in this chapter,

were used in the analysis. The factors under study were as follows:

Algorithm ∈ {MRU, MFU, Adaptive, Places Frecency, Split Recency &

Frequency, Combined Recency and Frequency, six Access-

Rank variations (λ = 0.8 and 1.65, δ = 0, 0.2 and 0.5) and

15 AccessRank 2 variations (λ = 0.8, 1.65 and 2.5, δ = 0.5,

1, 2, 3 and 5)}
Log dataset ∈ {window switching, application switching, web URLs, web

domains, Unix command lines, Unix commands, file re-

trievals (directly observed), file retrievals (all)}

6.5.1 Results

The results of the log processing simulation are provided below. The results

first give a brief overview of dataset revisitation properties. Next, accuracy

and stability results are described independently, after which the combination

of the two measures is analysed in detail. The remainder of the results provide

more in-depth analysis on differences in predictive properties of the datasets

under investigation and properties of AccessRank scores that allow for future

expansion of the algorithm.

Revisitations

The level of revisitation differed substantially by dataset. For file retrieval

data, 48% of directly observed visits revisited a previously observed file, while

55% of all visits (directly or indirectly observed) were revisitations. For web

data, 26% of visits were revisiting an exact URL, while 43% were revisiting a

domain. For window switching data, 51% of visits were revisiting a window,

152

while 78% were revisiting an application; for this data, closing and reopening

a window or application did not count as a revisitation. For UNIX data, 72%

of command lines were exactly the same as a previous line, while 93% invoked

a previously used command.

Accuracy

Average Rank and Percentage Revisitations Predicted were the primary mea-

sures of accuracy. The former is of particular importance for ranked interfaces

that are a primary access mechanism, as it is important that items are ac-

cessible and minimising the average search distance is essential. The latter

is of greater importance for supplementary interfaces that are used mainly

for commonly accessed items, especially when accessing the top result is

substantially easier than other results (for example, in an auto-completion

interface).

Tables 6.1 and 6.2 show the results for Average Rank and Percentage

Revisitations Predicted, respectively. It is clear from these that the algorithms

vary considerably by dataset, and that no algorithm is superior in all datasets.

However, the Markov algorithm and AccessRank with parameters λ = 1.65

and δ = 0 generally performed best in terms of accuracy alone (note that

AccessRank and AccessRank 2 are identical when δ = 0).

Accuracy was also affected by the size of prediction lists and by providing

a ‘hint’ of varying size – that is, when filtering the predictions based on a

known prefix of the next item’s title. An analysis of this was limited to

one domain per dataset: window switching, Unix command lines, directly

observed file retrievals and web URLs. Figure 6.2 shows the percentage of

all revisitations for which the revisited item occurs in a list of size n. Results

show that even without any hint as to what the user wants to do next,

there is a reasonable chance of the desired item being placed highly in a

prediction list. There are differences between domains in terms of how well

some algorithms perform; for example, Most Recently Used is worst for Unix

commands and for the top prediction for window switching, but is amongst

the best for file retrievals and for longer prediction lists for window switching.

A similar pattern emerges for hint size, shown in Figure 6.3, with the

153

Algorithm Avg. File File* Win App CmL Cmd URL Dom
MRU 19.3 24.0 42.8 2.1 2.2 32.2 9.0 32.4 10.1
MFU 26.7 63.1 65.6 2.9 2.6 30.1 8.5 32.7 8.4
Adaptive 25.4 37.6 60.3 2.9 2.6 46.4 9.1 35.0 9.2
Places Frecency 25.4 59.4 62.7 2.9 2.6 27.2 8.1 31.7 8.2
Markov 15.4 18.0 36.7 1.8 1.7 26.0 6.3 24.3 8.5
CRF (0.1) 18.3 24.5 42.7 2.0 2.1 27.4 7.1 31.7 8.9
AccessRank (0.8, 0) 17.7 23.8 42.0 1.9 1.7 26.5 6.5 30.7 8.4
AccessRank (1.65, 0) 16.9 22.5 40.6 1.8 1.7 25.5 6.1 28.8 7.9
AccessRank (0.8, 0.2) 18.2 24.6 42.8 1.9 1.8 27.4 7.1 31.7 8.6
AccessRank (1.65, 0.2) 18.9 25.7 43.7 1.9 1.8 28.4 8.4 32.5 8.9
AccessRank (0.8, 0.5) 19.6 26.6 45.4 1.9 1.8 29.8 8.6 33.5 9.1
AccessRank (1.65, 0.5) 20.9 30.1 47.0 2.1 2.0 30.1 9.7 36.0 9.9
AccessRank 2 (0.8, 0.5) 17.9 24.6 42.3 1.9 1.8 26.5 6.5 31.3 8.5
AccessRank 2 (0.8, 2) 18.6 26.1 43.1 2.1 2.0 26.7 6.7 32.7 9.1
AccessRank 2 (0.8, 5) 19.2 27.7 44.1 2.2 2.1 27.0 7.0 34.2 9.7
AccessRank 2 (1.65, 0.5) 17.3 24.1 41.2 1.9 1.8 25.4 6.1 30.0 8.4
AccessRank 2 (1.65, 2) 18.6 27.0 42.7 2.1 1.9 25.8 6.2 33.2 9.5
AccessRank 2 (1.65, 5) 19.9 30.6 44.7 2.3 2.1 26.4 6.5 36.1 10.3
AccessRank 2 (2.5, 0.5) 16.9 23.5 40.1 1.9 1.8 24.7 5.9 29.0 8.3
AccessRank 2 (2.5, 2) 18.6 27.6 42.2 2.2 2.0 25.1 6.0 33.4 10.1
AccessRank 2 (2.5, 5) 20.2 31.8 44.6 2.4 2.1 25.7 6.2 37.7 11.0

Table 6.1: Average rank of items in prediction lists. Dark grey denotes
the algorithm with the best rank, while light grey denotes the second best.
Dataset abbreviations are File=Directly observed file retrievals, File* =All
file retrievals, Win=Windows, App=Applications, CmL=Command lines,
Cmd=Commands, URL=Web URLs, Dom=Web domains.

Algorithm Avg. File File* Win App CmL Cmd URL Dom
MRU 15.6 26.0 11.9 30.1 18.0 8.5 14.0 15.9 -
MFU 19.3 7.6 8.3 30.3 32.9 17.6 22.1 12.1 23.3
Adaptive 19.4 8.5 8.6 30.4 33.0 17.7 22.0 11.8 23.5
Places Frecency 19.5 7.8 8.6 30.3 32.9 18.3 22.3 12.2 23.5
Markov 36.8 38.1 23.8 57.4 63.3 29.9 35.4 27.4 19.1
CRF (0.1) 23.9 16.3 11.2 43.4 37.3 23.2 25.2 13.8 21.0
AccessRank (0.8, 0) 33.9 22.6 15.8 55.1 62.5 33.5 35.7 17.4 28.5
AccessRank (1.65, 0) 37.3 27.8 19.0 60.3 64.1 36.0 37.6 21.5 32.1
AccessRank (0.8, 0.2) 33.1 21.1 15.0 54.8 61.4 32.8 35.1 15.4 29.1
AccessRank (1.65, 0.2) 33.8 25.0 16.0 55.8 59.7 32.9 34.5 17.2 29.0
AccessRank (0.8, 0.5) 31.7 19.8 14.0 52.9 59.8 31.4 33.9 13.5 28.3
AccessRank (1.65, 0.5) 29.8 20.8 13.5 50.5 54.6 29.8 30.0 13.1 25.8
AccessRank 2 (0.8, 0.5) 31.7 19.5 14.6 52.1 58.7 32.2 34.1 14.3 27.9
AccessRank 2 (0.8, 2) 27.2 14.9 12.1 46.3 51.8 28.5 29.8 11.2 23.1
AccessRank 2 (0.8, 5) 24.5 12.2 10.5 41.7 46.2 25.3 27.0 10.5 22.5
AccessRank 2 (1.65, 0.5) 35.1 26.1 18.0 56.0 59.4 35.5 37.2 18.4 30.3
AccessRank 2 (1.65, 2) 31.0 21.1 15.3 47.8 52.6 32.9 35.3 16.0 27.0
AccessRank 2 (1.65, 5) 26.9 15.6 12.5 42.1 47.7 30.1 31.9 12.5 22.5
AccessRank 2 (2.5, 0.5) 35.1 28.7 19.7 54.7 57.7 35.2 37.2 19.4 28.6
AccessRank 2 (2.5, 2) 32.1 26.7 18.2 47.1 52.0 33.3 36.4 18.8 24.4
AccessRank 2 (2.5, 5) 29.6 21.0 15.6 43.3 48.5 32.0 34.8 15.6 25.7

Table 6.2: Percentage of the time revisitations were the top prediction of an
algorithm. Dark grey denotes the algorithm with the best accuracy, while
light grey denotes the second best. Dataset abbreviations as in Table 6.1.

154

0%#
5%#

10%#
15%#
20%#
25%#
30%#
35%#
40%#
45%#
50%#

List%Size%
AccessRank#(1.65,#0)# Markov# CRF#(0.1)# MRU#

1# 6# 11# 16# 21#

Unix#Commands#

1# 6# 11# 16# 21#

File#Retrieval#

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

1# 2# 3# 4# 5#

Pe
rc
en

ta
ge
%o
f%T

im
e%
It
em

%In
cl
ud

ed
%

Window#Switching#
1# 6# 11# 16# 21#

Web#Browsing#

Figure 6.2: Percentage of revisitations that are included in a prediction list
of a given size, across three datasets.

0%#
5%#
10%#
15%#
20%#
25%#
30%#
35%#
40%#
45%#
50%#

Hint%Size%
AccessRank#(1.65,#0)# Markov# CRF#(0.1)# MRU#

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

0# 1# 2# 3# 4#

%
ag
e%
of
%T
im

e%
It
em

%is
%T
op

%P
re
di
c7
on

%

Window#Switching#
0# 1# 2# 3# 4#

Unix#Commands#
0# 1# 2# 3# 4#

File#Retrieval#
0# 1# 2# 3# 4#
Web#Browsing#

Figure 6.3: Percentage of revisitations that are the top match when filtered
by a prefix of a given size, across three datasets.

AccessRank and Markov algorithms generally performing best. For all algo-

rithms, almost all windows can be immediately acquired with a three char-

acter hint. For file retrievals, the hint was used to match the filename, rather

than full path, as many paths would have the same common prefix. However,

155

this meant that some files would never be the top prediction regardless of

hint size (for example, when multiple files have the same filename). For web

browsing, even with a four character hint, less than half of revisitations can

be predicted by any algorithm. This is likely because while a domain can

be quickly determined using a hint, it takes a substantially larger hint size

to deduce any information about what page on that domain is of interest.

Other approaches, such as using the first character of each URL component

as a hint, may be more effective, though less intuitive.

The Effect of History Size on Accuracy

Algorithms’ individual properties affect how prediction accuracy changes

with the size of the access history. For example, some algorithms, such as

Most Recently Used, rely almost exclusively on recent accesses, while others

continue to improve as they gain new information.

Figure 6.4 shows the effect of access history size on prediction accuracy

for file navigation retrievals. As expected, MRU quickly reaches and main-

tains its peak level of accuracy. MFU, however, initially performs well but

quickly deteriorates in performance. This is likely due to changes in the most

commonly accessed files over time, combined with MFU ’s lack of time-based

weighting. Initially, the most frequently visited items are also recently vis-

ited, whereas this is not true as the history size increases. CRF, which does

include a time weighting, does not deteriorate as much.

The Markov algorithm continues to improve in accuracy as the amount

of information available to it increases. This is consistent across datasets.

AccessRank variations, which incorporate both the Markov and CRF algo-

rithms, show a similar pattern, though show a slightly smaller improvement

than the Markov algorithm due to the latter’s influence. Algorithm perfor-

mance, as observed across different datasets, varies little when history sizes

increase beyond about 2000 accesses.

These results, in conjunction with the earlier accuracy results, indicate

that recency is a much stronger predictor than frequency in the domain of file

navigation retrievals. Algorithms that weigh recency more highly are likely

to outperform others, and hybrid algorithms such as CRF and AccessRank

should be configured accordingly.

156

0%#

2%#

4%#

6%#

8%#

10%#

12%#

14%#

16%#

18%#

20%#

0#

10
0#

20
0#

30
0#

40
0#

50
0#

60
0#

70
0#

80
0#

90
0#

10
00
#

11
00
#

12
00
#

13
00
#

14
00
#

15
00
#

16
00
#

17
00
#

18
00
#

19
00
#

20
00
#

21
00
#

Pe
rc
en

ta
ge
)o
f)F
ile
s)
Pr
ed

ic
te
d)

History)size)

Markov# AccessRank#2#(λ=1.65,#!=0.5)# MRU# AccessRank#(λ=1.65,#!=0.2)# CRF# MFU#

Figure 6.4: Variation in algorithm accuracy for file navigation retrievals based
on the size of the recorded retrieval history. Accuracy is measured by the
percentage of retrievals that match the top prediction of the algorithm.

Stability

The three stability measures (Average Overlap, Rank-Biased Overlap and

Learnability) all gave similar results. Average Overlap and Rank-Biased

Overlap ranked the algorithms in an identical order, while the Learnability

algorithm ranks were on average less than one different. All three measures

ranked Most Frequently Used as most stable, followed by the Places Frecency

algorithm, and ranked the Markov algorithm as the most unstable. Stability

for AccessRank and AccessRank 2 was low when δ was set to 0, but increased

significantly for larger deltas. Similarly, low values of λ (indicating greater

reliance on CRF compared to Markov weights) corresponded to high stability

for AccessRank 2, although the trend is less clear for the original AccessRank.

As all three measures produced similar results, the rest of the analysis

only considers Rank-Biased Overlap (RBO). This measure was selected as it

157

Algorithm Avg. File File* Win App CmL Cmd URL Dom
MRU 0.84 0.81 0.79 0.85 0.87 0.94 0.96 0.77 0.77
MFU 0.97 0.98 0.98 0.93 0.97 0.996 0.997 0.97 0.94
Adaptive 0.97 0.96 0.97 0.93 0.97 0.993 0.996 0.96 0.94
Places Frecency 0.97 0.98 0.98 0.93 0.97 0.995 0.996 0.96 0.94
Markov 0.67 0.74 0.62 0.82 0.80 0.49 0.62 0.70 0.61
CRF (0.1) 0.90 0.88 0.86 0.90 0.95 0.92 0.95 0.84 0.89
AccessRank (0.8, 0) 0.86 0.86 0.83 0.88 0.89 0.85 0.87 0.83 0.85
AccessRank (1.65, 0) 0.79 0.82 0.77 0.86 0.84 0.73 0.78 0.80 0.74
AccessRank (0.8, 0.2) 0.91 0.90 0.90 0.90 0.91 0.93 0.93 0.89 0.92
AccessRank (1.65, 0.2) 0.92 0.90 0.91 0.90 0.92 0.93 0.95 0.90 0.91
AccessRank (0.8, 0.5) 0.94 0.93 0.94 0.91 0.92 0.95 0.96 0.93 0.95
AccessRank (1.65, 0.5) 0.95 0.94 0.95 0.93 0.94 0.96 0.98 0.95 0.96
AccessRank 2 (0.8, 0.5) 0.91 0.91 0.90 0.91 0.92 0.91 0.92 0.91 0.93
AccessRank 2 (0.8, 2) 0.95 0.95 0.94 0.93 0.94 0.96 0.96 0.94 0.96
AccessRank 2 (0.8, 5) 0.96 0.96 0.96 0.94 0.96 0.97 0.98 0.96 0.97
AccessRank 2 (1.65, 0.5) 0.86 0.89 0.86 0.89 0.87 0.82 0.82 0.90 0.86
AccessRank 2 (1.65, 2) 0.92 0.94 0.93 0.92 0.91 0.91 0.89 0.95 0.94
AccessRank 2 (1.65, 5) 0.95 0.96 0.96 0.94 0.93 0.95 0.94 0.97 0.97
AccessRank 2 (2.5, 0.5) 0.83 0.88 0.82 0.89 0.86 0.75 0.77 0.89 0.80
AccessRank 2 (2.5, 2) 0.89 0.92 0.89 0.91 0.89 0.84 0.83 0.94 0.89
AccessRank 2 (2.5, 5) 0.93 0.95 0.93 0.93 0.91 0.90 0.88 0.96 0.95

Table 6.3: RBO values of prediction lists. Dark grey denotes the algorithm
with the highest stability, while light grey denotes the second most stable.
Dataset abbreviations as in Table 6.1.

is top-weighted and does not feature the previously described deficiencies of

Average Overlap. It is worth noting, however, that the original AccessRank

performs relatively better with the Learnability measure, since its use of the

δ parameter is biased towards stability at low ranked list positions, which

are weighted less by the other two stability measures. Table 6.3 summarises

RBO results across different datasets.

Comparing Accuracy and Stability

While it is useful to investigate accuracy and stability independently, pre-

diction algorithms used in user interfaces are most useful when they have

high scores in both. For the purposes of this section, performance refers to

a combination of high accuracy and high stability.

Figure 6.5 shows the relationship between Rank Biased Overlap and Aver-

age Rank averaged over all datasets, while Figure 6.6 shows the relationship

between Rank Biased Overlap and Percentage Revisitations Predicted. Ac-

cessRank variants perform well in both cases, though particularly so for the

latter. This is advantageous as it indicates that a strength of AccessRank

158

0.65%

0.70%

0.75%

0.80%

0.85%

0.90%

0.95%

1.00%

15% 17% 19% 21% 23% 25% 27%

Ra
nk

%B
ia
se
d+
O
ve
rl
ap

+

Average+Rank+

AccessRank%

AccessRank%2%(λ=0.8)%

AccessRank%2%(λ=1.65)%

AccessRank%2%(λ=2.5)%

Exis;ng%Methods%

Figure 6.5: RBO versus Average Rank, averaged over all datasets. Ac-
cessRank 2 used δ ∈ {0.5, 1, 2, 3, 5} (shown from low to high RBO values).
AccessRank parameters are λ ∈ {0.8, 1.65}, δ ∈ {0.2, 0.5}.

0.65%

0.70%

0.75%

0.80%

0.85%

0.90%

0.95%

1.00%

14%% 19%% 24%% 29%% 34%% 39%%

Ra
nk

%B
ia
se
d+
O
ve
rl
ap

+

Percentage+Revisita5ons+Predicted+

AccessRank%

AccessRank%2%(λ=0.8)%

AccessRank%2%(λ=1.65)%

AccessRank%2%(λ=2.5)%

Exis=ng%Methods%

Figure 6.6: RBO versus Percentage Revisitations Predicted, averaged over
all datasets. AccessRank parameters are as in Figure 6.5.

159

is correctly determining the most likely item to be accessed next, which is

particularly useful in many user interfaces as users need not spend time or

keystrokes selecting alternative items. When comparing RBO and Average

Rank, the Combined Recency and Frequency algorithm also performs well.

Notably, the relative performance of AccessRank and AccessRank 2 vary

based on the accuracy measure. AccessRank outperforms AccessRank 2 when

using Percentage Revisitations Predicted, likely because its use of the δ pa-

rameter makes rank changes relatively easier for highly ranked items com-

pared to lowly ranked items. However, when Average Rank is considered,

some AccessRank 2 configurations outperform AccessRank (in particular,

with λ = 0.8). Decisions on which AccessRank variant to use should there-

fore depend on the type of interface – i.e. whether the top prediction or

average rank are of most importance.

The graphs also illustrate the flexibility of AccessRank, in that it can

be tailored to optimise either accuracy or stability as required, while still

outperforming other algorithms. In particular, AccessRank 2 allows for more

predictability about how its parameters affect the tradeoff between accuracy

and stability. In effect, the λ parameter determines the shape of the accuracy-

stability tradeoff curve, while δ determines the position on the curve. Higher

values of λ (indicating greater influence of the Markov component) generally

allow for better accuracy, however accuracy deteriorates more quickly as δ

increases relative to increases in δ at lower values of λ. Low values of λ are

thus more suitable when stability is important.

While the above discussion relates to average performance over all datasets,

there was substantial variation between them, indicating that parameter cal-

ibration is best performed in a domain-specific context. Figure 6.7 shows

comparisons for command usage, application switching and web domains,

each showing noticeably different patterns. For command usage, there was

little different between AccessRank 2 λ-curves, although lower λ values still

corresponded to greater stability. AccessRank 2 significantly outperformed

AccessRank using the Average Rank measure (though not using Percent-

age Revisitations Predicted). For application switching, higher AccessRank

2 λ values offered little, if any, accuracy advantage, and AccessRank per-

formed as well or better than the top AccessRank 2 configurations regardless

160

0.60$

0.65$

0.70$

0.75$

0.80$

0.85$

0.90$

0.95$

1.00$

5$ 6$ 7$ 8$ 9$ 10$

Ra
nk

%B
ia
se
d+
O
ve
rl
ap

+

Average+Rank+

AccessRank$

AccessRank2(λ=0.8)$

AccessRank2(λ=1.65)$

AccessRank2(λ=2.5)$

Exis:ng$Methods$

10%$ 15%$ 20%$ 25%$ 30%$ 35%$ 40%$
Percentage+Revisita6ons+Predicted+

(a) Commands

0.75%

0.80%

0.85%

0.90%

0.95%

1.00%

1.6% 1.8% 2.0% 2.2% 2.4% 2.6% 2.8%

Ra
nk

%B
ia
se
d+
O
ve
rl
ap

+

Average+Rank+

AccessRank%

AccessRank%2%(λ=0.8)%

AccessRank%2%(λ=1.65)%

AccessRank%2%(λ=2.5)%

Exis;ng%Methods%

10%% 20%% 30%% 40%% 50%% 60%% 70%%
Percentage+Revisita6ons+Predicted+

(b) Application switching

0.60$

0.65$

0.70$

0.75$

0.80$

0.85$

0.90$

0.95$

1.00$

8.0$ 8.5$ 9.0$ 9.5$ 10.0$ 10.5$ 11.0$ 11.5$

Ra
nk

%B
ia
se
d+
O
ve
rl
ap

+

Average+Rank+
18%$ 20%$ 22%$ 24%$ 26%$ 28%$ 30%$ 32%$

Percentage+Revisita6ons+Predicted+

AccessRank$
AccessRank2(λ=0.8)$
AccessRank2(λ=1.65)$
AccessRank2(λ=2.5)$
Exis=ng$Methods$

(c) Web domains

Figure 6.7: Accuracy vs stability for various domains. AccessRank parame-
ters are as in Figure 6.5.

161

0.70$

0.75$

0.80$

0.85$

0.90$

0.95$

1.00$

15$ 25$ 35$ 45$ 55$ 65$

Ra
nk

%B
ia
se
d+
O
ve
rl
ap

+

Average+Rank+

AccessRank$

AccessRank2(λ=0.8)$

AccessRank2(λ=1.65)$

AccessRank2(λ=2.5)$

Exis<ng$Methods$

7%$ 15%$ 23%$ 31%$ 39%$
Percentage+Revisita6ons+Predicted+

(a) Directly observed file retrievals

0.60$

0.65$

0.70$

0.75$

0.80$

0.85$

0.90$

0.95$

1.00$

35$ 40$ 45$ 50$ 55$ 60$ 65$ 70$

Ra
nk

%B
ia
se
d+
O
ve
rl
ap

+

Average+Rank+

AccessRank$

AccessRank2(λ=0.8)$

AccessRank2(λ=1.65)$

AccessRank2(λ=2.5)$

Exis<ng$Methods$

7%$ 12%$ 17%$ 22%$ 27%$
Percentage+Revisita6ons+Predicted+

(b) All file retrievals

Figure 6.8: Accuracy vs stability for file retrievals. AccessRank parameters
are as in Figure 6.5.

of accuracy measure. For web domains, AccessRank variations offered little

performance advantage using the Average Rank measure, with some other

algorithms outperforming them. However, they offered greater benefits for

the top prediction. Notably, the adapted Places Frecency algorithm had the

lowest average rank for web domains while still maintaining high stability,

highlighting its suitability for use in web browsers (its actual performance is

likely higher still since the adapted version was stripped of domain-specific

considerations such as the effect of different access measures). However, it

was outperformed in predicting the top result, an important feature in URL

162

suggestion interfaces, and it did not perform as well for predicting full URLs

as opposed to just web domains.

Figure 6.8 shows accuracy vs stability comparisons for both directly ob-

served file retrievals and all file retrievals. AccessRank variants did not

perform as well as other algorithms relative to other domains, but still

showed modest improvements over existing algorithms when considering the

accuracy-stability tradeoff. Both the Markov and MRU algorithms achieved

high accuracy for directly observed files (albeit with low stability), indicating

the importance of recency as a predictor for file retrievals.

Variation in the Predictive Power of Recency and Frequency

Differing performance of algorithms such as MRU and MFU indicated the

presence of different predictive properties in each domain. This was con-

firmed by visualising the effect of recency and frequency on the probability

that an item will be accessed next, shown in Figure 6.9. Each cell of the vi-

sualisations represents the observed probability that an item will be accessed

next given both the number of times it has previously been accessed and the

number of events since its last access.

There are noticeable differences between domains. In general, there are

clear influences of both recency and frequency, although the influence of re-

cency is typically greater. For window switching (Figure 6.9b), the influence

of frequency is less clear. Importantly, there is a quick drop-off in accuracy

for less recent items for directly observed file retrievals (Figure 6.9d), espe-

cially for those with low frequencies. The implication of this is that recency is

an important predictor for file retrievals, as indicated in the previous section,

but that its benefit as a predictor quickly diminishes as further retrievals oc-

cur. Also of note is that for some domains, such as command lines (Figure

6.9a), the second most recent item is a better predictor of the next item than

the most recent item. The same is the case for window switching, but in that

case it is because it would be impossible to switch to the same window twice

in a row without switching to an intermediate window.

163

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32
Recency

Fr
eq
ue
nc
y

0.0% 1.8% 7.1% 16.0% 28.4%

(a) Command lines

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32
Recency

Fr
eq
ue
nc
y

0.0% 4.4% 17.8% 40.0% 71.1%

(b) Window switching

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32
Recency

Fr
eq
ue
nc
y

0.0% 1.4% 5.6% 12.5% 22.2%

(c) Web URLs

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32
Recency

Fr
eq
ue
nc
y

0.0% 2.4% 9.7% 21.9% 38.9%

(d) Directly observed file retrievals

Figure 6.9: The effect of recency and frequency on the probability that an
item will be accessed next, across several domains. Recency is expressed as
the number of accesses since the item’s previous access. All cells contains at
least 20 samples; those with fewer are automatically merged into larger ones.
Colour spectrum uses a quadratic scale.

164

AccessRank Scores as an Estimate of Probability

AccessRank produces a score for each previously visited item that is indica-

tive of the likelihood that that item will be the next accessed item. However,

in some situations it is useful to map this score onto an actual probability.

For example, potential AccessRank extensions might incorporate other fac-

tors not considered by the core algorithm. Supposing one of these factors

doubles the likelihood that a particular item will be accessed, how should its

score be modified? The score could be doubled, however this would not be

appropriate if, for example, a doubling of an AccessRank score corresponded

in general with only a 50% increase in probability.

To aid in future extensions, the following analysis tests the assumption

that an item’s AccessRank score, in relation to scores of other items at a

particular point in time, is proportional to the probability it will be accessed

next. This was tested with a simulation of each dataset. Before each revis-

itation, the AccessRank score of each item in the dataset’s set of possible

action targets was converted to an assumed probability by dividing its score

by the sum of all scores.

Next, the simulation collected data on the likelihood, according to the

assumed probabilities, of the items that were actually accessed. These are

shown in the graphs in Figure 6.10 as a cumulative percentage of revisitations

across item probability. For example, in Figure 6.10a, the ‘Actual’ line shows

that about two third of revisitations of files within the Finder were of items

with assumed probabilities of less than 10%, whereas only 9% of window

revisitations were in the same category (Figure 6.10d).

If the tested assumption is correct, the distribution of assumed proba-

bilities of retrieved items should match the expected distribution of such

probabilities for a particular dataset. For example, if a dataset averages

50 items each with a 1% chance of being accessed, and 1 item with a 50%

chance of being accessed, it would be expected to observe as many accesses

of items with a 1% probability than of items with a 50% probability, since

50× 1% = 1× 50%. To determine the expected distribution of probabilities,

the simulation recorded the assumed probabilities of all items at each point

in time, not just those which were actually accessed.

165

0%#

20%#

40%#

60%#

80%#

100%#

0%
#

10
%
#

20
%
#

30
%
#

40
%
#

50
%
#

60
%
#

70
%
#

80
%
#

90
%
#

10
0%

#

Re
vi
si
ta
(
on

s+
(c
um

.+%
)+

Assumed+Item+Probability+

Expected#
Actual#

(a) File retrievals within the Finder

0%#

20%#

40%#

60%#

80%#

100%#

0%
#

10
%
#

20
%
#

30
%
#

40
%
#

50
%
#

60
%
#

70
%
#

80
%
#

90
%
#

10
0%

#

Assumed'Item'Probability'

Expected#
Actual#

(b) All file retrievals

0%#

20%#

40%#

60%#

80%#

100%#

0%
#

10
%
#

20
%
#

30
%
#

40
%
#

50
%
#

60
%
#

70
%
#

80
%
#

90
%
#

10
0%

#

Re
vi
si
ta
(
on

s+
(c
um

.+%
)+

Assumed+Item+Probability+

Expected#
Actual#

(c) Command lines

0%#

20%#

40%#

60%#

80%#

100%#
0%

#
10
%
#

20
%
#

30
%
#

40
%
#

50
%
#

60
%
#

70
%
#

80
%
#

90
%
#

10
0%

#
Assumed'Item'Probability'

Expected#
Actual#

(d) Window switching

0%#

20%#

40%#

60%#

80%#

100%#

0%
#

10
%
#

20
%
#

30
%
#

40
%
#

50
%
#

60
%
#

70
%
#

80
%
#

90
%
#

10
0%

#

Re
vi
si
ta
(
on

s+
(c
um

.+%
)+

Assumed+Item+Probability+

Expected#
Actual#

(e) Web URLs

Figure 6.10: Expected versus actual retrievals when assuming that Access-
Rank scores determine the probability of revisitation.

166

Figure 6.10 compares these expected and actual probability distributions.

Notably, they are close to each other for file retrievals (either when limited

to just those retrievals performed in a file browser, or when including all

file retrievals), window switching, and web URLs. The distributions differ,

however, for command lines, where low probability items are revisited more

often than predicted by items’ assumed probabilities. These results show

that for most domains, AccessRank scores, as a proportion of total scores

across all items, provide a reasonable approximation of the probability an

item will be next visited. This result allows for simple extensions to the

algorithm when additional factors have known effects on item probabilities.

However, exceptions exist, and the assumption should be verified with data

from the domain or domains in question, if not shown here.

6.6 Discussion

AccessRank is a flexible algorithm that outperforms existing algorithms in a

variety of contexts when considering both accuracy and stability. There was

significant variation between domains and, ideally, it should be calibrated

within a domain before using it. However, when this cannot be done, the

following general recommendations apply:

• When designing for user interfaces where both high accuracy and high

stability are necessary, AccessRank (with λ = 1.65 and δ = 0.2 or sim-

ilar) or AccessRank 2 (with λ = 0.8 and δ between 1 and 5, depending

on the exact accuracy/stability tradeoff required) are best. The Ac-

cessRank 2 configurations are best when minimising the average list

position is the most important measure of accuracy, while the Access-

Rank configurations are best when maximising the accuracy of the top

prediction is more important.

• When stability is of no importance, and accuracy of the top prediction

is most important, setting λ to 1.65 or 2.5 and δ to 0 usually results in

the best accuracy.

The sections below discuss potential improvements to AccessRank, as

well as some possible applications.

167

6.6.1 Improving AccessRank

While AccessRank is a powerful algorithm, there are still improvements that

can be made to it. Comparisons of results with and without its time weight-

ing suggest that while beneficial, these benefits are relatively minor. The

weighting is currently based exclusively on the absolute time, but might be

more powerful if, for example, events were considered relative to when the

computer is first used for the day. Additionally, location awareness could be

incorporated to improve predictions; for example, if a user is at work, they

are likely to access different items than if they are at home.

6.6.2 Optimisation Attempts for File Retrieval Predictions

AccessRank considers factors that are common to all domains to make its

predictions. This allows it to be used in a wide range of contexts, how-

ever specialised algorithms have the potential to further improve accuracy in

specific domains. Several factors specific to the file retrieval domain are de-

scribed below, although they ultimately did not prove successful in improving

prediction accuracy.

Path Components

Chapter 5 found considerable reuse within parts of the file hierarchy. For

two paths, p1 and p2, let pA be their deepest common ancestor, and g(pa, pb)

be the difference between the number of path components of pa and pb. Let

d(p1, p2) be the hierarchical distance between p1 and p2, calculated as follows:

d(p1, p2) = max(g(p1, pA), g(p2, pA))

Let di(p) = d(p, fi), where fi is the path accessed i retrieval events in

the past, such that f1 is the previously retrieved path. It is therefore con-

ceivable that di(p) affects the probability that path p will be accessed next,

for low values of i – this would imply that accessing a file affects the chance

that nearby files in the hierarchy will be accessed. However, simulations and

analysis showed that it provided little predictive power, using either hard-

coded weightings or weightings that self-adjusted based on access history,

and considering either a range of i values or just i = 1.

168

Retrieval Method

The Places Frecency algorithm [143] considers the way a link is accessed

in a web browser. For example, a link that is typed in the URL field will

carry more weight than one that is clicked on a page. Similarly, files can be

retrieved using different methods, such as using navigation or search.

Simulations using different weightings for different retrieval methods, even

self-adjusting weightings, failed to improve accuracy. In fact, for the purposes

of predicting navigation retrievals, accuracy was higher for a dataset that

only included past navigation retrievals, compared to a dataset with all file

retrievals that included dynamic method weightings. This suggests that there

is little overlap between the sets of files retrieved using different retrieval

methods. Furthermore, it suggests that when predicting retrievals with a

particular method, retrievals made with other methods offer little, if any,

predictive power, and that only considering retrievals made using the method

in question may result in better accuracy.

Browser Windows

Chapter 5 found considerable window reuse in file browsers, with different

users exhibiting different patterns of behaviour. When restricting predic-

tions to just those performed within a file browser, the path locations of

inactive browser windows (those other than the one being used for the cur-

rent retrieval) could potentially influence which items are most likely to be

accessed next. For example, users who exhibit hoarder behaviour often create

new windows instead of reusing existing ones that have the potential to be

useful in the future, and may end up with redundant windows that suggest

that retrievals of items in their locations may be more likely. On the other

hand, other users may use windows more efficiently, and retrievals for items

stored in or nearby inactive browser window locations may be less likely, else

those windows would have been used for the retrieval instead.

Paths were classed as one of four categories: (1) visible in an open, inac-

tive window (the active window will always contain the retrieved file immedi-

ately before it is opened); (2) a descendent of an inactive window’s location;

(3) in a folder that is an ancestor of an inactive window’s location; or (4) all

169

other cases. Simulations were performed using these categories as a factor

when performing predictions, using self-adjusting weights to acknowledge the

different behaviours exhibited by different classes of users. While the final

weights did suggest that the locations of open windows had some correlation

to retrieved files, and that there were large differences between participants,

the amount of noise meant that the window locations offered little predictive

power.

6.6.3 Applications

AccessRank could be incorporated into any user interface containing patterns

of reuse. Some examples are:

• A file browser, to assist with the often tedious task of finding files.

Sometimes files’ exact locations are unknown, which makes finding

them slow, and even when they are known, it can be a slow process

getting to them if they are deep in the folder hierarchy. Search can

help, but is unreliable and often only used as a last resort [19]. Figure

6.11 shows a mockup of AccessRank incorporated into a web browser-

like path field at the top of a file browser. In the example, the user has

typed ‘so’, and a list of recommendations of relevant files has appeared.

This makes accessing common files as easy as typing in just a couple of

characters. Additionally, AccessRank is incorporated in a second way,

shown at the bottom left of the mockup. Suggestions are provided for

files and folders that the user might be looking for, without using a hint.

These suggestions are provided in a separate view, without affecting the

core parts of the interface, an approach that previous research has sug-

gested is effective [74]. These suggestions could be narrowed down by

only suggesting items in the folder hierarchy subtree rooted at the cur-

rent location. Other interfaces that utilise AccessRank to aid with file

retrieval are introduced in Chapter 7 and extended in Chapter 8.

• While most modern command line interfaces allow users to acquire

previous commands using the up and down arrow keys, they could be

improved by incorporating AccessRank. Figure 6.12 shows one possible

170

Figure 6.11: Mockup of a file browser, based on OS X’s Finder, giving
suggestions with a hint (top) and without (bottom left).

way of doing this, by displaying a drop-down list of suggestions as the

user types. If the desired command is at the top of the list, the enter

key would execute it, making common but long commands a lot simpler

to enter. Domain specific improvements could be implemented, such as

taking into account the current directory or by incorporating a Markov

model based on just commands rather than the entire command line

(for example, a ‘javac’ command to compile a Java application will

often be followed by a ‘java’ command to run it).

• Web browsers could incorporate AccessRank to improve their rankings

of suggestions when typing in the URL field. Domains specific factors

such as those in the Places Frecency algorithm could also be incorpo-

rated into AccessRank.

• Expert users often have a lot of windows open at once. Most window

switching interfaces do not cater for this, and distinguishing between

windows can become difficult. While ordering windows using Access-

Rank could be confusing to people who are used to a predictable order-

ing, it could be of use to augment visualisations. For example, items

which are more likely to be relevant could be highlighted in a brighter

colour or have a larger preview.

171

Figure 6.12: Mockup of a terminal giving suggestions.

• Elsweiler et al. [64] found that emails that have previously been revis-

ited are significantly more likely to be revisited again. They argue that

there could be considerable benefits to interfaces that predict email re-

visitation, and suggest that highlighting likely emails could greatly aid

revisitation.

6.7 Conclusion

This chapter introduced AccessRank, a new prediction algorithm designed

for user interfaces, with a focus on both predictive accuracy and the stability

of prediction lists over time. AccessRank incorporates aspects of existing

algorithms, with the addition of a stability component that restricts ranking

changes. AccessRank was compared to existing algorithms by converting logs

from a range of domains into a standardised format, and running simulations

with each algorithm while measuring results with a range of accuracy and

stability measures. Results show that AccessRank variations outperform

existing algorithms when considering a combination of accuracy and stability,

and that AccessRank is therefore well-suited to use in user interfaces.

Analysis also provided insights into the relative performance of algorithms

in different domains, providing guidance for appropriate domain-specific algo-

rithm selection. In particular, the benefits that AccessRank offers compared

172

to existing algorithms vary considerably based on the domain it is used in.

In the domain of file retrievals – the focus of this thesis – recency was an

important predictor, and the benefits that AccessRank offered were smaller

than in some other domains. However, it still provided the best accuracy-

stability tradeoff when appropriately configured. Further discussion about

the use of AccessRank for file retrievals is discussed in later chapters; Chapter

7 describes new file retrieval techniques that incorporate AccessRank, and

Chapter 8 describes real world implementations of these techniques which

incorporate several specialised modifications to AccessRank.

173

Part IV

Improving File Retrieval

174

Chapter VII

Preliminary Design & Evaluation of Improved

Navigation-Based File Retrieval Interfaces

The characterisation of file retrieval behaviour described in Chapter 5

confirmed previous results that navigation-based file retrieval is the preferred

form of file retrieval [19, 25, 34]. By allowing users to locate files using recog-

nition rather than recall, it has a lower cognitive load than other methods

such as search [25, 176].

Despite users’ preference towards it, results of the characterisation study

showed that search often resulted in lower retrieval times than navigation-

based techniques. Specifically, mean retrieval times were 5.7 s when searching

in the Spotlight menu, but 10.2 s when using navigation. Bergman et al. [30]

found similar navigation retrieval times of 12 seconds per retrieval for Mac

users and more than 17 seconds for Windows users. This is a long time

to retrieve a file, given that selecting a ready-to-hand file icon would take

no more than a second or so. There are two main reasons for these long

retrieval times: people may not know where a file is, resulting in extra time

to explore the file system; and there are numerous navigation actions required

(remembering folder names, finding icons in the current display, and clicking

folders to open them). Regardless of the cause, it is clear that reducing

retrieval time for hierarchical file browsers could result in large aggregate

time savings.

The general problem of improving file retrieval has received substantial

research attention. Researchers have studied several aspects of the problem:

the ways that users choose to organise information [127, 29], the performance

implications of different hierarchical structures [120], potential improvements

to file access using search [53], and visualisations that provide shortcut access

175

to files [170]. Commercial systems have also iteratively refined their facilities,

with tools such as “Open Recent” menus, full text searching, and aliases or

shortcuts now standard in most operating systems.

Although some alternative retrieval techniques have been shown to be

faster than standard navigation [170], the performance improvement is of-

ten the result of specialised interfaces that can not be used for all files (e.g.,

“Open Recent” menus). Other times, they come at the cost of switching to

a completely different retrieval paradigm. This is a problem, due to peo-

ple’s continued preference for hierarchy-based file navigation over alternative

methods. Bergman et al. [25] give four explanations for this preference:

first, the locations and mechanisms of navigation-based retrieval remain con-

sistent and reliable, whereas the organisation and content of search results

can vary from one retrieval to the next; second, navigation reduces cognitive

load because users can rely on recognition of the steps toward the target

rather than needing to recall file attributes; third, the mental and physical

mechanisms used for retrieval may become partially automated due to their

consistency, allowing users to remain focused on their work; and fourth, the

location-based mechanisms of hierarchical containment are familiar from the

real world, which may serve an important sense-making function. In con-

trast, research has shown that search, although an essential tool for some

retrievals, is used mainly as a method of “last resort” [145, 25], called upon

when users cannot remember the location of files in the hierarchy.

These preferences imply that performance improvements to navigation-

based file retrieval would be highly beneficial to users. To explore possible

improvements, this chapter presents three new techniques that work within

the existing presentation styles and interaction models of the standard hi-

erarchical file browser. The new techniques are based on design goals for

overcoming three performance constraints in navigation-based retrieval (de-

scribed in greater detail later in the chapter):

1. Overcome the visual search constraint: minimise the time spent at each

hierarchical level, by reducing exploration and visual search;

2. Overcome the levels constraint: reduce the number of levels traversed,

by facilitating shortcuts;

176

3. Overcome the practice constraint: improve navigation expertise, by

promoting rehearsal of the retrieval mechanics.

The three new techniques work by tightly integrating results into the

interface and interaction paradigm of the file browser. To reduce step times

during file navigation (goal 1), Icon Highlights (Figure 7.1a) predict which

items in the current folder are most likely to be accessed, and give them

greater visual prominence. Hover Menus (Figure 7.1b) provide quick access

to commonly accessed items inside folders, in order to reduce the number

of steps required in many cases (goal 2). Search Directed Navigation guides

users through a file hierarchy based on a filename query. This is designed to

bring some of the advantages of search to file navigation, while facilitating

the development of expertise when compared to search (goal 3).

A two-part experiment validates the new techniques. The first part of

the study examines user performance and preference with the techniques in

comparison to standard file browsers, using tasks that involve retrieving both

previously-visited and unvisited files; it also examines how well users learn

file locations with the techniques. The second part of the study examines the

effects of spatial stability of the folder contents on the relative performance

of the techniques, which is important when folder content varies and when

view modes change. The study’s results show that the new techniques provide

substantial performance improvements over a standard file browser, and that

they are strongly preferred by users. The chapter concludes with a discussion

of how the techniques could be combined into a single file browsing interface,

future refinements, and limitations of the study.

7.1 The Performance Impact of Structure

The influence that hierarchical structure has on navigation time has been ex-

tensively researched, and is broadly encapsulated by the question “broad and

shallow or narrow and deep?” [140, 120]. Cockburn and Gutwin [45] provide

a review of thirty years of empirical research on the topic, which shows di-

verse results. Several studies show that plots of navigation time against depth

follow a “U-shape”, while others show that time increases with depth. Cock-

burn and Gutwin also present a simple mathematical performance model,

177

called “Search/Decision and Pointing” (SDP), that explains the result’s di-

versity: broadly, a U-shape occurs if users must visually search for items at

each level of the hierarchy, while shallow structures perform best when users

can anticipate target locations at each level.

The SDP model inspired the design goals presented in this chapter, and

so it is briefly summarised here. SDP predicts the time taken to select an

item at one level of a hierarchy by combining three factors: the time to

visually search for the target; the time to decide about target location; and

the time to point to it. Pointing time is modelled using Fitts’ Law [70].

Visual search is modelled as a calibrated linear function of the number of

candidate items, and it is employed when users have no basis for anticipating

a target’s location (e.g., the user is a novice or the interface is unpredictable).

Decision time is modelled as a calibrated logarithmic function of the number

of candidate items, and is employed when users can anticipate target location

(e.g., the user is experienced with a stable display, or the interface presents

a predictable dataset, such as an alphabetic list of items). The model uses

a power-law to predict the user’s transition from search-based strategies to

decision-based ones when interfaces offer consistent access methods across

retrievals. Finally, the model sums the predicted time for each level across

hierarchical levels.

The SDP model suggests three promising opportunities for improving per-

formance in hierarchical navigation, detailed later: (1) reduce visual search

time, which can be a performance bottleneck due to its linear function of can-

didate items; (2) reduce the number of hierarchical steps required through

the hierarchy; and (3) help users transition from relatively slow search-based

strategies to faster decision-based ones.

7.2 Improved File Navigation: Goals and Interfaces

Previous work suggests several opportunities for improving human perfor-

mance in navigation-based file access. This section distills these opportu-

nities into three design goals, and then presents three interfaces aiming to

satisfy the goals. It is important to note that any file retrieval mechanism

will have three parts: an underlying algorithm for deciding which items to

178

present, a presentation approach for making items visible and salient, and a

set of interaction techniques with which the user can select items and specify

targets. The primary focus is on the presentation aspects of the techniques,

but some elements of the algorithms and interaction techniques will also be

discussed as needed.

7.2.1 Design Goals

The design goals stem from insights within the “Search Decision and Point-

ing” model [45] which predicts hierarchical navigation time based on the time

taken at each hierarchical level (“step duration”), the number of levels tra-

versed (“step count”), and the potential for the user to make a transition

from novice to expert behaviour.

Goal 1: Minimise time spent at each hierarchical level

The SDP model suggests three possibilities for reducing step duration, by

improving human performance in (a) searching for targets, (b) deciding about

them, and (c) pointing to them. Extensive prior literature has investigated

improved pointing techniques ((c), see [15] for a review), and Goal 3 addresses

the transition to decision-based methods (b). In Goal 1, therefore, the focus is

on mechanisms that improve visual search (a). This is particularly important

because visual search can be a performance bottleneck [45].

Reducing visual search time involves two activities. First, the primary

job of the retrieval technique’s underlying algorithm is to determine a small

set of likely candidates for the current retrieval task. Second, the technique’s

presentation approach must make those candidates visible and salient, to

reduce the number of objects that need to be visually inspected.

Prior work on methods for improving the presentation of candidates in-

cludes a variety of highlighting mechanisms that enhance the visual salience

of likely targets without changing their layout, such as ephemeral adaptation

[68]. Other techniques segment the visual presentation across space or time,

by moving salient items into prominent positions (e.g., split menus [166]), by

segmenting images (e.g., [71]), or by rapidly presenting images across time

(e.g., [55, 71]).

179

Icon Highlights, described below, use AccessRank to predict probable

items at each level of the hierarchy, and uses in-place highlighting to increase

their visual salience.

Goal 2: Provide shortcuts to reduce levels traversed

The SDP model also suggests that efficiency gains can be achieved by reduc-

ing the number of hierarchical levels traversed en route to the target. Users

might achieve this by creating flatter hierarchies or by creating shortcut links

to important files and folders, but both require a-priori knowledge of the fu-

ture need to retrieve particular files, as well as an understanding of the file

structure’s implications on retrieval times.

Hover Menus, described below, also uses AccessRank to determine a set

of likely candidates. It creates separate candidate sets for each of the folders

at the current level, thus indicating what is most likely within that folder’s

sub-hierarchy. The candidates are presented in a context menu associated

with each folder, allowing users to skip one or more levels and get shortcut

access directly to the most probable descendant targets in any branch of the

sub-hierarchy.

Goal 3: Promote rehearsal to facilitate expertise

Kurtenbach [117] argues that expert performance is best facilitated when the

actions that a novice uses for an interaction are a physical rehearsal of the

mechanisms used when expert. Goal 3 adapts Kurtenbach’s recommendation

for file retrieval. While navigation-based retrieval naturally supports the

goal by using consistent interaction mechanics across retrievals, search-based

retrieval does not. Instead, search-based interfaces typically present their

results to the user in a list, allowing direct access to each file. While this

may facilitate rapid retrieval for the current item, the list presentation does

not help users learn how to find the file in the navigation-based hierarchy –

which is often the preferred mechanism of retrieval [19, 25, 32, 34].

Note that there is a tension between the recommendations of Goal 2 and

Goal 3 because the presence of shortcuts allows alternative mechanisms for

retrieval, and consequently it may reduce opportunity for rehearsal, particu-

180

larly if the shortcuts vary due to fluctuations in prediction consistency.

Search Directed Navigation, described below, allows users to type charac-

ters to determine the set of likely candidates based on filename matches. The

presentation approach uses item highlighting (similar to Icon Highlights) to

guide users through the hierarchy, with the intention of facilitating rehearsal-

based transitions to expert performance.

7.2.2 File Navigation Interfaces

A basic file browser was developed that closely mimics the icon view of the OS

X Finder. This browser provided a framework in which to quickly investigate

the feasibility of new interfaces without extensive development time, while

also facilitating precise measurement of retrieval times by limiting the use of

extraneous features. The browser was augmented with three interfaces that

add new features intended to satisfy each of the design goals.

As described above, each technique can have an underlying algorithm,

a presentation approach, and various interaction techniques. Two of the

interfaces, Icon Highlights and Hover Menus, use AccessRank (Chapter 6)

as their underlying algorithm to predict likely folders and files; both use the

original version of AccessRank, with parameters λ = 0.8 and δ = 0.5. Search

Directed Navigation uses character-based filtering to determine candidates,

and also keeps track of prior revisitations. It uses an explicit interaction

technique – that is, users type characters to specify the search target. In

contrast, the AccessRank-based techniques use implicit information about

selection and navigation history, rather than user input about the target.

The sections below provide details of the presentation approach for the three

retrieval techniques.

Icon Highlights

Icon Highlights increase the visual salience of items that AccessRank predicts,

as shown in Figure 7.1a. The highlighting mechanism is similar to that

used in Apple’s System Preferences application (Figure 7.2), with graduated

blurring of ‘spotlight’ highlighting dependent on the item’s AccessRank score

(crisp presentation for probable items, blurred for less probable ones). In-

181

(a) Icon Highlights (b) Hover Menus

Figure 7.1: Icon Highlights (left), showing ‘Plants’ as the most likely Access-
Rank prediction. Hover Menu (right) showing predictions under ‘Comput-
ing’, with n = 3.

place highlighting (rather than spatial or temporal segmentation) is used

because it promotes predictable retrieval mechanisms, in line with Goal 3.

The highlighting scheme can be applied to any folder view, such as large

or small icons/thumbnails, or filename lists. All items remain selectable,

regardless of their highlight state. To indicate the presence or absence of

highlighted items outside the current scroll view, the design marks items in

the horizontal or vertical scrollbar [98].

Details of the highlighting and blurring algorithm are described as follows.

A blur level is calculated for all highlighted items, where 0 corresponds to

no blur and 1 responds to maximum blur. First, a minimum blur level bmin

is calculated, based on the largest item score in the folder as a proportion of

the total scores (pmax) as well as the total number of accesses (n) of items

within the folder – see Equations 7.1 to 7.3.

bmin1 =
2

3
(1− pmax) (7.1)

bmin2 = max(0.125(5− n), 0) (7.2)

bmin = bmin1 + bmin2 − bmin1bmin2 (7.3)

The result of this calculation is that higher blur levels are used, and thus

a greater degree of uncertainty is implied, when (1) the top-rated item does

182

not represent a large proportion of all accesses in the folder, or (2) when

there is insufficient history to be confident in the predictions.

Next, blur levels are calculated for the k highest ranked items (according

to AccessRank) – thus limiting the amount of visual clutter. Note that

because of AccessRank’s switching threshold, requiring a minimum score

difference before two items can swap ranks in order to increase selection

stability, these items will not necessarily be the items with the highest scores.

Blur levels are linearly translated from AccessRank scores such that the item

with the highest AccessRank score has a blur level of bmin and an AccessRank

score of 0 corresponds to a blur level of 1. Finally, these levels are rounded

to one of l discrete blur levels, so that users are not distracted trying to

distinguish subtle differences between highlight prominences. Icon Highlights

were evaluated using k = 5 and l = 4.

Hover Menus

When retrieving a file, users often know where it is, but must go through

the sometimes tedious process of traversing through a hierarchy to get to it.

This issue can be diminished with features such as bookmarks, shortcuts or

aliases, or by structuring hierarchies to be more shallow, however these all

require explicit user action ahead of time and are limited in the number of

locations they work for.

Hover Menus are designed to automatically give users shortcuts to pre-

dicted targets located deeper in the hierarchy. They offer a recognition-based

shortcut for reducing the number of levels that must be traversed through

standard navigation actions.

When a user hovers over a folder for 500ms a menu appears below it

(Figure 7.1b) showing lower level content (folders and files at any sublevel)

that have the highest AccessRank ranks. Selecting a menu item navigates

directly to the associated folder or file. To facilitate rapid browsing of several

folders, menus appear immediately if the cursor enters a folder within 500ms

of leaving a folder with a menu already displayed. Menus also fade out if the

cursor leaves a folder without a selection being made.

The menus are populated with up to n files followed by n folders, each

183

Figure 7.2: Search-based highlighting in OS X System Preferences.

sorted by AccessRank score. Hover Menus were evaluated with n = 3, al-

though this value would likely be user-configurable in a deployed implemen-

tation.

This mixture of files and folders is useful in that it provides quick access to

the files most commonly accessed, however it also provides a way to traverse

partway through the hierarchy by selecting an intermediate folder when the

target file is not listed.

Both Hover Menus and Icon Highlights are designed in line with Chap-

ter 5’s aid revisitation, but only in context design recommendation, as they

facilitate revisitation without disorienting users by affecting the underlying

presentation of the file hierarchy.

Search Directed Navigation

Search Directed Navigation (SDN) is intended to satisfy Goal 3 by provid-

ing search-based guidance through the navigation hierarchy towards the tar-

get, allowing the user’s interaction with search results to be a rehearsal of

navigation-based retrieval. It is in part inspired by a similar technique in OS

X’s System Preferences application (Figure 7.2), which highlights the icons

for preference panes that contain a setting matching a search query.

SDN provides search-based guidance by highlighting items in the hier-

archy that match typed query terms (Figure 7.3), using a visually similar

184

Figure 7.3: Experiment setup showing Search Directed Navigation. Pre-
dicted items (files and folders leading to files) are highlighted in response to
search terms.

highlighting strategy to Icon Highlights. If the search term matches an item

at any level, the highlighting propagates up the hierarchy to mark the path

to the target – for example, if the query was ‘budget’, a folder named ‘Fi-

nances’ might be highlighted if it were to contain a matching item named

‘2013 Budget.xls’. An item matches the search query if any word (or consec-

utive combination of words) from the filename starts with the query. In the

above example, the query ‘2013 bu’ would match ‘2013 Budget.xls’, but ‘13’

and ‘budget 2013’ would not. In the current version, words are delimited by

spaces, however a deployed version could also delimit by underscores, peri-

ods, hyphens or use of camel case (for example, MeetingMinutesNew could

be parsed as three words), all of which are commonly used in filenames (see

Chapter 5).

Items can be highlighted using one of several approaches. The evaluated

implementation uses two highlight levels: one for previously-visited items

(crisp border), and one for unvisited items (blurred border). Alternatively,

items could be highlighted based on their AccessRank scores or through

185

other metrics. Full content-based search strategies could also be used to

determine the set of matches, although the current implementation does not

do so; this is because filenames are the most common attribute to search, as

found in Chapter 5, and because restricting searches to filenames increases

responsiveness and results specificity, in line with the focus on attributes with

high specificity design recommendation from Chapter 5.

SDN is designed to address several deficiencies of search. Search is pri-

marily used to retrieve files with unknown locations [25], however locations

are more quickly learned when the easiest strategy available explicitly re-

quires retrieval of location knowledge [63]. By merely aiding users to navi-

gate through their hierarchies, SDN therefore assists users to rehearse, and

thus learn, item locations, so that they can more easily transition to faster

or more preferred methods (see the facilitate location learning design recom-

mendation from Chapter 5). In contrast, other search interfaces typically

only present a list of results, and do not have this properly.

Second, SDN is better suited than search for locating items with similar

names where the item’s location is the distinguishing element (see the facili-

tate differentiation of items with similar names design recommendation from

Chapter 5). For example, one file called ‘Presentation.ppt’ might be located

in a ‘CHI 2013’ folder, while another with the same name might be located

in a ‘Department seminar’ folder. Clearly the folder name can immediately

distinguish these two folders, however such information is rarely present in

conventional search result interfaces.

Finally, while search as a method to retrieve files is typically used as a last

resort due to the higher cognitive load of recall as opposed to recognition, the

increased ability to use recognition with SDN means that users are potentially

more likely to use it compared to search [19, 18, 32, 145].

7.3 Interface Evaluation

Icon Highlights (IH), Hover Menus (HM), and Search Directed Highlights

(SDN) are each intended to improve different aspects of navigation-based

file retrieval, as emphasised by their associated design goals: improve visual

identification of likely targets, provide shortcut target acquisition, and im-

186

prove learning of file locations. If deployed in real file browser applications,

these techniques are probably best combined (discussed later). However, it

is important to first understand how each of the methods is used in iso-

lation – how they affect file navigation performance, and how participants

subjectively respond to them.

Devising experimental tasks for evaluating file retrieval interfaces is com-

plicated by the number of relevant factors that might be considered. These

include the structure of the file hierarchy, the degree of ambiguity in the

semantic relationship between hierarchical components, the stability or pre-

dictability of the data organisation in the interface, the recency and frequency

of any previous visits to items in the hierarchy, as well as individual user

preferences. This led to an experiment design which uses artificial tasks that

control, or partially control, some of these factors in order to yield prelimi-

nary insights into the comparative usability and performance of the interfaces

(more extensive evaluation is described in Chapter 8).

Experimental tasks involved navigating within a three-level semantically

organised hierarchy to select a target file that was cued by displaying its name

in a small window at the side of the file browser interface. Example targets

include ‘Paris’ (within ‘Geography’ then ‘Capital cities’) and ‘Horse’ (within

‘Animals’ then ‘Mammals’). The path to most targets was intentionally

partially ambiguous – for example, the target ‘Paris’ might reasonably be

contained within top-level folders ‘Geography’ or ‘History’, or in second-

level folders ‘Capital cities’ or ‘Large cities’. The ambiguity was intended

to emulate imprecise recall of file locations and imperfect organisation as is

typical of personal file hierarchies.

During the experiment participants visited files up to 5 times each, allow-

ing analysis of how performance with the interfaces changed as users become

more familiar with the file locations and retrieval mechanisms. The experi-

ment also examined how well users remembered the location of target files.

7.3.1 Participants and Apparatus

16 volunteers (9 female, mean age 25.2) participated in the study, which

lasted 60-90 minutes. All had normal or corrected to normal vision and were

187

fluent English speakers.

The experiment ran on an iMac with a display resolution of 1920× 1080.

The file browser window was 880× 631 pixels, populated with 48× 48 pixel

icons representing files and folders. Software logged all user actions, including

task time.

The experimental file browser application imitated the icon view in OS X

at a fixed size of 6 × 5 icons (Figure 7.3). Items could be opened by double

clicking, and toolbar navigation links allowed for navigation back, forward,

or up to the parent directory. The basic interface, called Standard (ST) was

then augmented with each of the three interfaces introduced in this chapter.

Icon Highlights (IH) used k = 5 and l = 4, Hover Menus (HM) used n = 3,

and Search Directed Navigation (SDN) used two highlight levels for visited

(crisp) and unvisited (blurred) targets.

The same file hierarchy was used throughout the experiment, with targets

located in different branches for each interface. The hierarchy structure was

modelled on Bergman’s findings of mean folder sizes [29]: 12, 10 and 8 folders,

and 16, 12 and 9 files at the root, second and third level respectively. Folders

containing no target nodes were not populated. For consistency, all target

files used for analysis were located at the third level, which matches the

observed mean file retrieval depth in previous studies [29, 30]. In total, the

hierarchy contained 388 folders and 448 files, of which 288 could be selected

as target items.

During the experiment, a small information window provided participants

with brief instructions, a progress meter, and (during tasks) a target filename.

Information about where in the file hierarchy the file was located was not

provided and had to be deduced based on the semantic structure. Opening

the target file would return the participant to the root folder and begin the

next task. Opening any other file would not do anything.

7.3.2 Procedure

The experiment consisted of two parts: the first asked participants to carry

out retrieval tasks (using each of ST, IH, HM and SDN) with icons that

remained spatially stable in the file browser (though initially ordered ran-

188

domly); the second repeated the procedure of part one, but used icons that

were randomly rearranged after each selection in order to examine how perfor-

mance with the interfaces was affected by unstable locations. Understanding

susceptibility to unstable locations is important since many activities cause

view instability, including changing a browser window’s sorting criteria, view

settings or size, or changing folder contents.

Part one of the experiment consisted of three phases using each of the

four interfaces: practice, retrieval, and standard-retrieval. All three phases

were completed using one interface before moving on to the next.

The practice phase allowed participants to familiarise themselves with the

interface. The phase used a small training file hierarchy, and participants

were instructed to open files freely until they were ready to start the actual

tasks. All data from the practice phase was discarded.

During the retrieval phase, participants completed 22 file retrieval tasks in

response to cued target filename stimuli. Successfully completing a retrieval

automatically initiated the next by displaying another target filename. Tar-

get files were randomly selected according to a near-Zipfian distribution at

each level of the hierarchy, with ten target files occurring with frequencies

5, 3, 2, 2, 2, 2, 1, 1, 1, and 1 times each. The remaining two retrievals

were for two ‘distractor’ targets, which were each accessed once. The two

distractor targets were at the top level of the hierarchy, and were included

to reduce participants’ anticipation of targets always being located at the

third level. They were inserted roughly one-quarter and two-thirds of the

way through the overall sequence of tasks. The sequence of other retrievals

was randomised based on the above distribution of frequencies, but was the

same for each interface for a given participant.

The ten true targets for each interface were randomly selected from the

hierarchies contained within three top-level folders. To reduce learning effects

stemming from familiarity with the hierarchy, different interfaces used targets

from different top-level folders (thus using all 12 top-level folders over the

course of the experiment). Note that the two interfaces that used AccessRank

(IH and HM) had no pre-populated history of file accesses, so for the initial

selections of each target they provided no automatic highlighting (IH) and

no menus (HM). As the retrieval phase progressed, however, these systems

189

adapted to the user’s navigation actions as described above. Because of the

short duration of the experiment, a modified version of AccessRank was used

that did not incorporate the time of day.

Once the retrieval phase was complete with each interface, participants

completed NASA Task Load Index (TLX) worksheets [89] and provided com-

ments on the interface (reproduced in Appendix B).

The standard-retrieval phase consisted of a single selection of each of the

ten targets from the retrieval phase using the standard file browser (i.e.,

the IH, HM, or SDN augmentations were unavailable). Its purpose was to

analyse any differences in how the interfaces supported users in learning the

traditional mechanisms for navigating to files.

Part two of the experiment repeated the method used for part one, but

without the standard-retrieval phase and using maximally unstable icons –

the spatial location of every icon in each folder was randomised after each

target acquisition. The targets used with each interface were randomly se-

lected within the same top-level folders used for that interface in part one,

so participants could be expected to have some familiarity with them from

the beginning of part two. However, as with part one, the interfaces began

with no usage history, and so provided no highlights or menus for the initial

selections.

The following pseudo-code summarises the procedure:

foreach Part ∈ {stable, unstable}
foreach Interface ∈ {ST, IH, HM, SDN (counterbalanced)}

phase1: practice

phase2: retrievals

if Part = stable

phase3: standard-retrievals

7.3.3 Experimental Design

Data from the retrieval phases are analysed using a 4×5 repeated-measures

analysis of variance (ANOVA) for within-subjects factors interface (levels

ST, IH, HM, and SDN) and repetition (levels 1, 2, 3, 4, 5, representing the

190

count of repeated access to the same item). The primary dependent variable

is total time to select the target file (log transformed to reduce the impact

of positive skew). Navigational error rates are also analysed. Timing data

from the standard-retrieval phase are analysed using one-way ANOVA across

levels of interface, since each target is only visited once. To help characterise

performance with the interfaces, step time (the time spent navigating down

a level of the hierarchy) is analysed as a secondary dependent measure using

factors interface and depth (hierarchical level 1, 2, 3).

To reduce the impact of outliers when navigational errors were made,

task times were capped at 30 seconds and step times at 10 seconds. This

affected 3.4% of tasks and 1.7% of steps, distributed evenly between inter-

faces. Data from the first task for each interface in each phase was excluded

to allow participants to get accustomed to each configuration. Post hoc tests

use the Bonferroni correction. Where the ANOVA assumption of sphericity

was violated (Mauchly test), Greenhouse-Geisser adjustments were used (as

indicated by non-integral degrees of freedom).

7.4 Results

Results from part one (stable icons) are presented first, then part two (un-

stable icons), followed by subjective responses and further characterisation

of how the interfaces were used.

7.4.1 Part 1: Spatially Stable Icons

All three interfaces improved performance over the standard file browser,

with SDN providing the largest benefits for unvisited files, and IH and HM

working best for revisitations.

Retrieval Times

Figure 7.4a summarises retrieval times. ANOVA showed a significant main

effect of interface (F1.9,28.8 = 8.2, p < .01), with SDN, IH, and HM all sim-

ilarly fast (means 6.98, 6.98 and 7.06 seconds respectively) compared with

ST slower at 8.51 s. Posthoc analysis confirmed pairwise differences between

ST and both SDN and IH.

191

0"

2"

4"

6"

8"

10"

12"

14"

16"

1" 2" 3" 4" 5"

Ta
sk
%T
im

e%
(s
)%

Repe--on%Number%

Standard"
Icon"Highlights"
SDN"
Hover"Menus"

(a) Spatially stable icons

1" 2" 3" 4" 5"
Repe$$on'Number'

(b) Maximally unstable icons

Figure 7.4: Task times by repetition number. Error bars ± 1 st. err.

Note that ANOVA results in the mean time for each repetition num-

ber being weighted equally when determining overall means, even though

there were fewer tasks for higher repetition numbers (due to the Zipfian-like

distribution of targets). This means that compared to retrieval times as a

whole, those with high repetition numbers were overrepresented in ANOVA

means compared to items that were only visited once. Unweighted means

may therefore be better predictors of real world performance, where retrieval

patterns similar to Zipfian distributions are typical. For these, SDN was

fastest overall (mean 8.3s, s.d. 2.0s), followed by Icon Highlights (mean 9.3s,

s.d. 2.1), Hover Menus (mean 10.0s, s.d. 1.8) and the standard icon view

(mean 10.7s, s.d. 2.9).

There was an expected significant main effect of repetition (F2.6,39.0 =

116.9, p < .001), with mean times reducing from 12.9 s to 5.07 s for repeti-

tion 1 to 5. Of particular note, there was a significant interface×repetition

interaction (F7.1,106.8 = 7.1, p < .001). Figure 7.4a suggests that this is best

attributed to SDN being substantially faster than the other interfaces for the

first retrieval of an item, but slower than IH and HM for revisitations. This

is primarily due to differences in the techniques’ underlying algorithms and

interaction mechanisms, rather than their presentation approaches: SDN al-

192

0"

1"

2"

3"

4"

5"

6"

1" 2" 3"

St
ep

%T
im

e%
(s
)%

Hierarchy%Depth%

Standard"
Icon"Highlights"
SDN"
Hover"Menus"

(a) Spatially stable icons

1" 2" 3"
Hierarchy)Depth)

(b) Maximally unstable icons

Figure 7.5: Step times by depth in the hierarchy. Error bars ± 1 st. err.

lows user input, and so can work immediately, whereas IH and HM must build

up information about user selections before they can make good predictions.

To summarise, the standard interface (ST) was consistently slowest. Search

Directed Navigation (SDN) was fastest for the first retrieval, when users had

not yet learned item locations (and when the other interfaces had no history

to work on), but third fastest with repeated items. Hover Menus (HM) were

relatively slow for initial selections, but fastest once their menus had been

populated with shortcuts. Its fast performance can be explained by users

quickly finding the top-level folder, and capitalising on the menu shortcut

to the target item. Icon Highlights (IH) was first or second fastest at each

repetition level.

Step Times During Retrieval Phase

A step time was defined as the time taken at each hierarchical level (i.e., a

‘step’) from a user’s final arrival at a particular level (through a previous

selection or feature such as the ‘back’ button) until their final departure.

Note that the sum of step times for a task may be less than the total task

time, since superfluous navigations are not included in any step time.

Figure 7.5a shows step times for each interface across file hierarchy depth.

193

0%#

5%#

10%#

15%#

20%#

25%#

1# 2# 3# 4# 5#

Er
ro
r$
ra
te
$

Repe**on$Number$

Standard#
Icon#Highlights#
SDN#
Hover#Menus#

(a) Spatially stable icons

1" 2" 3" 4" 5"
Repe$$on'Number'

(b) Maximally unstable icons

Figure 7.6: Error rates by repetition number

There were significant main effect for both interface and depth (p < .001).

Overall step times were lowest for Icon Highlights and SDN (mean 2.6s, s.d.

0.6 and 1.4 respectively) followed by the standard icon view (mean 3.0s, s.d.

0.8) and Hover Menus (mean 3.7s, s.d. 1.1). Post hoc comparisons showed all

differences were significant (p < .001) except for SDN and Icon Highlights.

The advantage that SDN had for task times was reduced for step times as

they do not incorporate SDN’s lower error rate (see below).

There was also a significant interface×depth interaction (p < .001). SDN

and HM both showed particularly slow performance at the first level, which

can be attributed to their interaction mechanisms – the time costs of typ-

ing a query (SDN) or browsing menus (HM). However, SDN provides faster

times at deeper levels through specific item highlighting, and HM reduces

the number of steps required to retrieve a file.

Error Rates During Retrieval Phase

Any navigation into an incorrect folder was logged as an error. However,

as stated previously, the hierarchy was intentionally partially ambiguous, so

high levels of error were anticipated, particularly for the first selection of any

target.

Figure 7.6a summarises the results, showing no significant effect of inter-

face (F3,45 = 1.8, p = .16), but an anticipated effect of repetition (F2.6,38.8 =

194

0"

2"

4"

6"

8"

10"

12"

14"

Standard" Icon"Highlights" SDN" Hover"Menus"

Ta
sk
%T
im

e%
(s
)%

Retrieval"phase" Standard?retrieval"phase"

Figure 7.7: Task times for retrieval and follow up standard-retrieval phases
after removing the augmentations. Error bars ± 1 st. err.

33.7, p < .001). A significant interface×repetition interaction (F4.4,66.0 =

3.15, p < .05) is best attributed to the marked difference between SDN’s low

error rate in the first repetition (4.9%) compared to other techniques (20-

23%). This is in part an artefact of the experimental method, which used

exact filename stimuli (favouring SDN) but inexact, ambiguous hierarchical

structures to guide navigation-based retrieval.

Standard Retrieval Phase

The standard retrieval phase involved navigating to targets without any of

the augmentations provided by IH, HM or SDN, to test for differences in

participants’ learning of the actual file locations. There was no main effect

for interface (p = .338), with mean times ranging from 6.8 s with ST and

IH to 7.7 s for SDN, shown in Figure 7.7. Error analysis also showed no

significant effect.

7.4.2 Part 2: Maximally Unstable Icons

Results from part 2 showed that the interfaces provide additional value when

icon locations are not spatially stable.

195

Retrieval Times, Step Times, and Error Rates

Figure 7.4b summarises the results for retrieval times, showing that the new

interfaces yield greater benefits with unstable icons than with stable icons.

Mean retrieval times were fastest with IH (6.1 s, s.d. 1.0), followed by SDN

(8.0 s, s.d. 2.5) and HM (8.6 s, s.d. 2.1), with ST much slower at 11.5 s (s.d.

2.3) (F1.9,28.7 = 25.4, p < .001). Posthoc analyses show pairwise differences

between ST and all three augmented interfaces, as well as between IH and

HM. Repetition showed the anticipated significant main effect (p < .001). As

with spatially stable icons, unweighted means resulted in SDN performing

better relative to the other interfaces as initial visits (where it performs best)

were no longer underrepresented; mean retrieval times with this method had

SDN fastest (8.3 s, s.d. 2.6), followed by IH (9.5 s, s.d. 2.2), HM (11.2 s, s.d.

2.4) and ST (12.9 s, s.d. 2.8).

The significant interface×repetition interaction (F5.5,82.2 = 6.4, p < .001)

is again attributed to SDN showing much less performance improvement

across repetition compared with other interfaces. The figure also shows that

IH performed particularly well with unstable icons when revisiting items.

Analysis of step times showed similar (though larger) effects to those

described above for stable icons (see Figure 7.5b), with both main effects and

the interaction significant (p < .001). Overall step times were again lowest

for IH and SDN (mean 2.7 s, s.d. 0.8 and 1.5 respectively) followed by ST

(mean 3.9 s, s.d. 1.0) and HM (mean 4.1 s, s.d. 1.3). Post hoc comparisons

showed all differences were significant (p < .001) except for between SDN

and IH, and between HM and ST.

In analysing errors, there were significant main effects for interface (p <

.05) and repetition (p < .001), as shown in Figure 7.6b. SDN had substan-

tially fewer errors (0.6%) than the other interfaces (4.6, 6.2, and 5.5% for

ST, IH and HM respectively), with consistently low error rates, unlike the

other interfaces, which had much higher error rates for the first repetition.

Post hoc comparisons confirmed that SDN’s advantage was significant, but

this can again be partly attributed to the experimental method.

196

Fa
st
es
t&

Fe
w
es
t&

er
ro
rs
&

Pr
ef
er
re
d&

ov
er
al
l&1&

2&

3&

4&

5&

M
en

ta
l&

De
m
an
d&

Ph
ys
ic
al
&

De
m
an
d&

Te
m
po

ra
l&

De
m
an
d&

Pe
rf
or
m
an
ce
&

Eff
or
t&

Fr
us
tr
aA

on
&

Le
ve
l&

Standard& Icon&Highlights& SDN& Hover&Menus&

Figure 7.8: NASA TLX scores (left) and subjective rankings (right). Lower
is better. Error bars ± 1 st. err.

7.4.3 Subjective Results

Subjective responses in all categories of the NASA TLX worksheets favoured

the new interfaces in comparison to the standard file browser. Friedman

tests show significant differences between interfaces for mental demand, per-

formance, effort and frustration. Participants also ranked the interfaces (1st

to 4th) for speed, errors, and overall preference. SDN was consistently ranked

first, and the standard interface consistently last. Responses are summarised

in Figure 7.8.

When asked whether they would prefer SDN or traditional file search

tools, 12 of the 16 chose SDN. However, several participants commented

that directly listing results was an advantage of search, with one noting that

SDN would be a good complement to search. One noted that she would like

a combination of HM and SDN as a way to get the advantages of SDN’s

highlighting but with fewer navigation steps. Another noted that SDN was

most useful when first accessing items, but after a few times they remembered

their locations, as intended in design goal 3.

Two participants commented that the Hover Menus appeared too slowly,

suggesting the need for a shorter dwell timeout or the ability to immediately

show the menu (e.g., using a mechanism similar to right click).

197

0%#
10%#
20%#
30%#
40%#
50%#
60%#
70%#
80%#
90%#
100%#

1# 2# 3# 4# 5#

U
sa
ge
&R
at
e&

Repe**on&

SDN#stable# SDN#unstable#
Hover#stable# Hover#unstable#

Figure 7.9: Percentage of tasks where SDN and Hover Menus were used, by
repetition number.

One participant also commented that Icon Highlights made it harder to

select unhighlighted items, because the highlighting dragged their eyes to

items. Another complained that it highlighted folders that were mistakenly

opened. This problem could be addressed by only updating the visitation

data for a folder when a leaf node it contains is ultimately selected.

7.4.4 Characterisation of Use

Search Directed Navigation and Hover Menus require active use – users must

explicitly choose to type a query or use a menu. Interaction logs revealed

details about how participants used these interfaces.

Figure 7.9 shows the proportion of SDN and HM tasks in which their fea-

tures were actively used, across repetition of access. The interesting result

is in the contrast between SDN usage patterns when navigating stable and

unstable icons. With stable icons, participants made extensive use (77%) of

SDN in the first repetition, decreasing to 19% in the fifth repetition, sug-

gesting that they gradually learned icon locations and decided not to use

explicitly typed queries as they could quickly select items at their known

locations. With unstable locations, however, participants continued to use

queries across repetition (65-76% of tasks for all repetitions). Referring back

198

to the Search, Decision and Pointing model that motivated design goal 3,

this suggests that users will naturally transition to decision-based mecha-

nisms for identifying and selecting items when stable spatial locations allow

them to do so, but that they prefer to use explicit search criteria instead

of completing the time-consuming activity of visually searching for targets

when items appear in random (unlearnable) locations.

Hover Menus were used consistently regardless of the stability of icons.

Only the first repetition, where the menus were unlikely to be populated with

assistive data, showed low levels of use. When menus were shown for stable

icons, target items were present 58.0% of the time, and their parent folders

80.0% of the time, including 62.3% of the time when the target file was not.

When the target file was present, it was selected 99.0% of the time; when

absent, but with its parent folder present, the parent was selected 93.0% of

the time.

For unstable locations, the target item’s parent folder was much more

likely to be present: 87.6% of the time (compared to 80.0%), and 79.1% of

the time when the target file was not present (compared to 62.3%). This was

partly because revisitations made up a slightly larger proportion of menu

activations, and may have also been because participants more actively used

them to revisit folders, as visual search times were higher. In fact, parent

folders were selected in 98.1% of cases when the target item was not present

in a Hover Menu but its parent folder was.

Overall, Hover Menus were activated for 54.0% of tasks in the hover menu

condition, including 72.5% of revisitations. A selection was made in 81.7%

of tasks where Hover Menus were activated.

7.5 Discussion and Future Work

Results show that all three interfaces improve performance in navigation-

based file retrieval over the standard icon view. Icon Highlights and Hover

Menus are particularly efficient for revisiting items, while Search Directed

Navigation performs best for newly (or rarely) visited items. Furthermore,

analysis of step times suggests that SDN would have higher relative perfor-

mance for targets deep in the hierarchy, and the same is likely true for Hover

199

Menus as deep targets present opportunities to skip a larger number of levels

than could be skipped in the evaluation.

An important finding was that, relative to the standard icon view, the

three interfaces’ performance increases as spatial stability decreases. Both IH

and SDN partially overcome spatial instability by quickly focusing attention

to relevant icons. Hover Menus still requires visual search to find a target

folder, but the shortcuts it provides eliminate the need for visual search to

be repeated at every level of the hierarchy. The standard view was notably

slow with unstable icons, important because item locations can change when

folder content changes or when window settings or sizes are changed. As

file browsers have some degree of, but not complete, spacial stability, the

magnitude of the performance benefit that the augmentations offer is likely

somewhere between that shown in the two graphs in Figure 7.4.

7.5.1 Combining the Interfaces

As anticipated from the design goals, each of the interfaces performs best in

different scenarios of use. For example, the Icon Highlights presentation of

AccessRank predictions was the best interface for frequently-revisited files

in spatially-unstable views, and SDN was best for infrequently-accessed files

that are deeper in the hierarchy. Importantly, however, the interface designs

are complementary and can be combined to gain increased benefit. In such

a combination, Icon Highlights would be always present, while the features

of Hover Menus and SDN would be available to the user on-demand.

Icon Highlights and SDN currently use the same visualisation to highlight

items. This overlap is unlikely to cause confusion, since users who enter a

search query to SDN have made an explicit choice to use that technique,

and will likely expect that the highlighting is reflecting their search rather

than the general AccessRank prediction. However, one of the augmentations

could potentially use a different visualisation to make it easier to distinguish

modalities, or to support both visualisations simultaneously. This could be

achieved through use of colour, outlines, or any number of other approaches.

One such alternative is presented for Icon Highlights in Chapter 8.

Hover Menus could be modified to adapt to SDN queries. Ultimately

200

this combination converges with traditional lists of search results, but could

be implemented to either highlight matching menu items or repopulate the

menu accordingly.

One area for further study in combining these interfaces is to determine

whether users face additional cognitive load in deciding which technique to

use. In a deployed interface that combined the techniques, users may default

to using the automatic feedback provided by Icon Highlights, and only resort

to Hover Menus or SDN when retrieval difficulties arise. This seems similar

to current retrieval (where users resort to search after fruitless navigation),

but the combined interface would provide a richer set of tools for assisting

navigation without a complete change in retrieval mechanism.

Table 7.1 summarises properties of all the retrieval methods discussed

in this chapter, including navigation, search, the three augmentations and a

combined interface. Values are based on a mixture of evaluation results and

theoretical underpinnings. While all approaches have strengths and weak-

nesses, in theory, combining IH, HM and SDN provides the most benefits.

ST Srch IH HM SDN Cmb
Reduces step times 7 N/A X 7 X X
Good for deep targets 7 X 7 X X X
Location learning X 7 X 7 X ±
Copes with instability 7 X X ± X X
Reminding ability X 7 X X X X
Fast revisitations 7 7 X X 7 X
Handles unknown locations 7 X 7 7 X X

Table 7.1: Properties of retrieval methods discussed in this chapter (Srch =
Search, Cmb = Combined). X= yes, 7= no, ± = mixed support.

7.5.2 Interface Refinements and Implementation

Implementing the current designs of Icon Highlights, Hover Menus and SDN

requires relatively minor cosmetic changes to the input and output behaviour

of current file browsers – highlighting probable items, adding marks in the

scroll-trough to demark their location, adding hover menus, and adding a

search query field. Implementing the back-end predictive algorithms requires

201

recording and tracking file access data, as well as efficient algorithm imple-

mentations that can handle mutable hierarchical data; example implementa-

tions are described in Chapter 8.

The current implementations of IH, HM and SDN are relatively rudi-

mentary, developed to explore their key concepts. There are therefore sev-

eral avenues for interface refinement, including adapting them to other view

types, and enhancing Hover Menus to provide more information about file

and folder locations (e.g., by displaying full paths in tooltips).

In the evaluation, all folders that appeared in Hover Menus were at the

same depth in the hierarchy, and file scores and folder scores were not di-

rectly compared. This meant that the underlying algorithms did not have

to consider how scores of folders at different levels in the hierarchy should

be compared, when higher level folders that encompass others are likely to

be accessed more often, while lower level folders allow users to skip a larger

portion of the hierarchy. This issue is discussed further in Chapter 8.

Search Directed Navigation performed best relative to a standard file

browser when retrieving items for the first time. However, such items are

displayed less prominently by the current implementation of the technique.

This may indicate that alternate methods of determining highlight promi-

nence may be more appropriate.

7.5.3 Limitations

The initial evaluation of the three interfaces provided important first results

to investigate their feasibility. However, there were several limitations of

both the design of the techniques themselves, and the experimental method

used to evaluate them. Some of these are resolved in Chapter 8, however

they are listed here to clarify the extent to which the initial results can be

generalised.

Limitations of the Techniques

Highlights: The highlighting method is based on the ‘spotlights’ seen in OS

X’s System Preferences (Figure 7.2), but other methods may further im-

prove performance. For example, Findlater et al. [68] described ephemeral

202

adaptation, where predicted items appear immediately, while other items

gradually fade in. They found that ephemeral adaptation was more effective

than static highlights, with both subjectively preferred to a control condi-

tion. While ephemeral adaptation may further improve performance for IH

and SDN, its advantages come from its initial animation, after which pre-

dicted items are no longer distinguishable from remaining items. This results

in several limitations for use in file retrieval: notably, it cannot be used with

occluded highlights (i.e., where scrolling is required), where the animation

would have concluded before the item is in view, nor does it support later

reuse of a window, which, as found in Chapter 5, is extremely common in the

domain of file retrieval. Static highlights – which are always visible – retain

their benefits when scrolling or reusing windows. Further work is required to

investigate whether the advantages of ephemeral adaptation outweigh these

limitations, or whether other highlighting methods would further improve

the interfaces described in this chapter.

AccessRank: The results do not indicate whether AccessRank, the high-

lighting method, or some combination of them contributed to the success of

IH and SDN, nor do they show whether the AccessRank parameters were

optimal. Although simulation results in Chapter 6 suggest that the use of

AccessRank was appropriate, further work is necessary to determine whether

this is indeed the case. Chapter 8 includes subjective results on the perceived

predictive accuracy of AccessRank predictions for Icon Highlights, however

comparative results between different predictive algorithms showing their

relative effects on retrieval times are beyond the scope of this thesis.

Limitations of the Experimental Method

Non-natural setting: The experiment was designed to emulate a familiar

dataset. This preliminary evaluation answered specific research questions

that confirmed the techniques’ feasibility. However, a large field study in-

volving participants’ own personal file collections would yield more accurate

findings; such a study is described in Chapter 8.

Task cuing strategy: The evaluation method initiated tasks by showing a

stimulus consisting of the target file’s name, which allowed users to simply

203

type the name for a certain match with SDN. In reality, recall of filenames

is imperfect (Blanc-Brude and Scapin study [32] found that correct filename

portions – necessary for use of SDN – were recalled for 83% of files, though

only 25% of filenames were perfectly recalled). While use of filenames as

task stimuli is not a perfect solution, it was the most appropriate given the

constraint of an unfamiliar document collection; the difficulties in setting

appropriate cues for file retrieval tasks in lab studies are well documented

[104, 27]. Because of this limitation, however, the results for initial selections

with SDN can be considered a best case analysis. This limitation is also

resolved in the field study in Chapter 8.

SDN vs search: The evaluation compared performance between alterna-

tive interfaces supporting navigation-based file retrieval. Performance com-

parisons between search and navigation were not addressed. A future eval-

uation could directly compare how search and SDN influence file location

learning, whether they have different perceived workloads, and which tech-

niques are best in different circumstances, however this is beyond the scope

of this thesis.

Sample size: While the results were highly significant, a larger sample size

would produce more robust findings. There is little reason to doubt the key

results based on this limitation, although a larger sample may have affected

some of the more subtle differences between techniques in specific situations.

Erroneous predictions: While the experiment design did not allow for

direct analysis of the effect of erroneous predictions, their effect was incorpo-

rated into the main results, showing that the interfaces still provided signif-

icant overall benefits. Further studies are needed to investigate their effect

in more detail.

Variation in users: Further work is required to investigate the difference

in effectiveness of the interfaces for users who organise their hierarchies in

different way (e.g., pilers vs filers [127]). Previous results have suggested

differences in both organisation and retrieval behaviour between filers and

pilers [94, 183]. These differences affect properties such as folder breadth

and retrieval frequency, which could affect the quality and usefulness of pre-

dictions.

204

7.6 Conclusion

This chapter introduced three interface designs to improve user performance

in accessing files by navigating through hierarchical structures. The designs

use underlying algorithms or search queries to predict likely target files, and

they use these predictions to assist users in traversing the hierarchy. The in-

terfaces are designed to assist with hierarchical traversal, rather than simply

deliver a list of likely targets, because they are intended to help users learn

the location of files, and the associated mechanisms for retrieval, to assist

with future navigation-based file accesses.

The interfaces are derived from three design goals: (1) minimise the time

spent at each hierarchical level; (2) reduce the number of hierarchical levels

that must be traversed; and (3) promote rehearsal of the retrieval mechan-

ics to facilitate expertise. The Icon Highlights interface is designed to assist

users in visually identifying likely targets at each level of the hierarchy (goal

1). Evaluation results show that it performs particularly well when users

are revisiting files in folder views that are spatially unstable. Hover Menus

are designed to facilitate shortcuts to likely folders and files across levels of

the hierarchy (goal 2), and results showed that they are particularly effective

for revisiting files in spatially stable views. Search Directed Navigation high-

lights items that match search query terms, emphasising those that have been

previously visited. It offers an alternative to search by guiding users through

the hierarchy to matching items, forcing rehearsal of the navigation actions

used when expert (goal 3). Results showed that it performs particularly well

when users do not have location knowledge.

All of the interfaces allowed faster task completion than the standard file

browser in all conditions, and subjective preferences favoured them. How-

ever, this chapter only evaluated them in a lab setting, which involved a

variety of methodological constraints. To confirm their benefits, Chapter 8

further develops two of the techniques and evaluates them in an externally

valid, natural setting. Nevertheless, these initial results suggest that these

relatively easy to implement features can greatly improve the common activ-

ity of navigation-based file retrieval.

205

Chapter VIII

Finder Highlights: Design and Evaluation of an

Augmented File Browser

Chapter 7 described the design and evaluation of three techniques for use

in a standard file navigation interface: Icon Highlights, which highlight items

in the current folder that are most likely to be accessed next; Hover Menus,

which show a menu providing shortcuts to highly ranked descendant files and

folders when hovering over a folder icon; and Search Directed Navigation,

which highlights items that match, or contain items that match, a search

query. The evaluation showed that each is effective at reducing retrieval

times, with Icon Highlights and Hover Menus specialising at revisitations,

and Search Directed Navigation specialising at locating unfamiliar items.

These findings are important in suggesting the potential for improving

a core interaction that is used many times a day by most computer users.

However, the results only demonstrate a potential – the techniques improved

file retrieval performance when used in a lab setting that applied a wide set of

experimental constraints on their use. Factors that limit the external validity

of the findings, or that raise risks of generalisation, include both technical

aspects of system behaviour and methodological constraints.

The technical aspects are related to the design of the browser used for the

evaluations; it was intentionally rudimentary in order to limit interaction to

only the key interface features under study. In particular, the following dif-

ferences existed between the evaluated browser and real-world file browsers:

Tools – the evaluated browser eliminated navigation tools normally available

in fully functional file browsers, such as shortcuts, search features, and

navigation buttons.

206

Views – the evaluated browser provided a simple icon view, displaying items

in grid formation, whereas real-world file browsers normally allow ex-

tensive view configuration.

Integration of techniques – a real-world file browser might be expected

to support the techniques simultaneously, but the evaluated browser

supported only a single technique at any given time.

Näıve back-end algorithms – the evaluated systems made unrealistic sim-

plifying assumptions to enable prediction of upcoming file selections,

and did not have to consider performance issues due to the artificially

small hierarchy containing only 836 nodes (files and folders).

On the methodological side, as with any lab study, the empirical method-

ology constrained external validity.

Artificial and static file hierarchy – the artificial file hierarchy of static

content differed from the user’s real file system in terms of size, struc-

ture, content, and importantly, familiarity.

Specific tasks – tasks were limited to file retrievals, ignoring other tasks

performed with file browsers such as file organisation.

Revisitation patterns – participants were required to repeatedly revisit

files within a short experiment, creating unrealistically dense revisita-

tions.

Task stimuli – rather than retrieving files when needed for actual work,

participants retrieved them in response to a filename cue, when other

cues may be more realistic [32].

Discrete tasks – each retrieval began at the root level of the file hierarchy,

ignoring the possibility of window reuse.

The evaluation in Chapter 7 provided important results about the po-

tential for Icon Highlights, Hover Menus and Search Directed Navigation.

207

However, the above issues must be addressed before the potential of these

interfaces can be realised in real-world file browsers. This chapter therefore

describes the design, implementation and longitudinal evaluation of a plugin

to OS X’s Finder, the operating system’s standard file manager. The plugin,

called Finder Highlights, introduces support for Icon Highlights and Search

Directed Navigation – the two techniques showing the most promise.

Particular focus is given to the algorithmic challenges of these implemen-

tations: for Search Directed Navigation, efficiently determining which icons

to highlight, and adapting the results to query or location changes without

restarting the entire search; for Icon Highlights, modifications to AccessRank

(Chapter 6) to better support the domain of file navigation, including use

with hierarchical data. The chapter also describes a potential implementa-

tion of Hover Menus, including a description of Benefit Weighted AccessRank,

a modified version of AccessRank that tailors results based not just on which

items are most likely to be accessed, but also the degree of benefit provided

by potential shortcuts to each item.

The chapter then describes a four-week longitudinal field study of Finder

Highlights. Results confirm that both Icon Highlights and Search Directed

Navigation can improve file retrieval times and are subjectively preferred

over standard techniques. Analysis of file retrieval performance shows that

retrieval times when using Finder Highlights (mean 10.6 s) were 13% faster

than retrievals accomplished without it (mean 12.2 s). However, many par-

ticipants did not use SDN, associating it with rarely-used search interfaces.

This distinction between favourable lab study results for SDN (where all par-

ticipants employed its features and benefited from them) and the field study

results (where many participants ignored it) validates the motivation for the

study. The finding also corroborates several prior studies showing that lab

studies often produce more positive results than field studies [43, 60, 96, 146].

The chapter concludes by discussing the implications of the results and

giving direction for future refinements.

208

8.1 Finder Highlights

Finder Highlights is a fully functional plugin to the standard OS X file

browser, the Finder, that adds support for Icon Highlights and Search Di-

rected Navigation. The design and implementation of Finder Highlights

serves two purposes. First, to confirm that the techniques are feasible outside

a prototype system, both in terms of integrating the techniques into an ex-

isting file browser user interface, and developing underlying algorithms that

efficiently determine highlights. Second, to investigate whether the potential

benefits of the techniques, shown by the results of the lab study in Chapter

7, are realised in real-world file retrieval tasks.

Finder Highlights includes support for two out of the three techniques

described in Chapter 7: Icon Highlights and Search Directed Navigation.

Focusing on these two techniques allowed for more in-depth analysis on how

they are used; including Hover Menus would make it difficult to tease apart

the relative benefits of the techniques, as there would be complicated interac-

tions between them that would be difficult to analyse in a field study. There

were several reasons for the selection of Icon Highlights and Search Directed

Navigation as the two techniques to implement. First, these were the two

fastest methods in the lab study, particularly when item locations were not

spatially stable. Second, they both use a highlighting-based approach, in-

troducing interesting design questions about how they can be implemented

together. Third, Icon Highlights serves as a passive technique, with its high-

lights appearing automatically with no user input required, whereas Search

Directed Navigation is an active technique that requires explicit action be-

fore it can be used. This contrast makes for interesting comparisons between

a lab study, where participants may feel obligated to use new or novel in-

teraction techniques, and a field study, where active techniques may be less

likely to be used [43, 96]. Fourth, Icon Highlights and Search Directed Nav-

igation were designed for different types of retrieval tasks (Icon Highlights

for revisitations, Search Directed Navigation for hard-to-find items), so there

is likely less interaction between the techniques as there would be between

Hover Menus and the highlighting-based interfaces.

A high-level architecture of Finder Highlights is shown in Figure 8.1. It

209

Finder UI

File System

Finder Highlights UI

AccessRank
(Icon Highlights) SDN Algorithm

Back-end Algorithms

File Access and Prediction Database

Log file

Figure 8.1: High-level architecture of Finder Highlights. Grey cells repre-
sent system components, blue cells represent parts of Finder Highlights, and
arrows indicate information flow.

consists of a user interface layer (Finder Highlights UI) that extends the OS

X Finder. The user interface layer requires file access predictions, which

are provided by two different algorithmic components. The first of these

serves Icon Highlights predictions, and uses modifications and extensions to

AccessRank that were required to enable AccessRank to support mutable,

hierarchical data (e.g., to support score changes when a file is moved between

folders). The second component determines search results for Search Directed

Navigation. Both the Finder and the predictive algorithms draw on data from

the file system. The algorithms store data about retrievals and predictions

in a database, and all user interactions with the file browser are written to

log files.

The design and implementation of Finder Highlights are described in the

sections below, split by technique: first Icon Highlights, then Search Directed

Navigation.

8.2 Design and Implementation of Icon Highlights

The implementation of Icon Highlights as part of Finder Highlights involved

two main areas of work: user interface refinements for use in a real file

browser, and algorithmic enhancements to AccessRank to support and en-

hance use with a file hierarchy. These are detailed below.

210

8.2.1 Interface Design

In Chapter 7, both Icon Highlights and Search Directed Navigation were

implemented as circular highlights cut out of a transparent grey overlay.

The underlying file hierarchy was always presented as a grid of icons, much

like the icon views in OS X and Windows. While this design was sufficient

in the context of the initial lab study, a real-world implementation presents

several design challenges:

• Challenges in supporting multiple views ; the original circular highlight

would not work for views that display item in a list, for example.

• Challenges in supporting Icon Highlights and Search Directed Naviga-

tion simultaneously, ensuring that the highlights presented by the one

technique are not confused with those of the other.

• Challenges in competing with other visual features, ensuring that high-

lights do not diminish or obscure other features such as colour labels

or icons.

These challenges were addressed as follows. Highlight shapes, sizes and

blur levels were adjusted to support multiple views. Highlights displayed

using Icon Highlights were modified to use a yellow spotlight rather than a

white cutout. This distinguished the highlights from those used by Search

Directed Navigation, which maintained the original cutout method. Addi-

tionally, it eliminated the permanent grey overlay for Icon Highlights, where

a permanent loss in contrast would be disadvantageous (on the other hand,

its temporary use to highlight items in response to explicit user actions, as

in Search Directed Navigation, is appropriate). To ensure that the yellow

highlights do not interfere with other visual features such as colour labels,

the highlights are drawn behind items where there is sufficient space (i.e., in

icon view), and above them with a blend function that ensures visibility of

underlying content in all other cases. These refinements are detailed below.

211

(a) Icon view (b) List view

Figure 8.2: Icon Highlights shown in different views.

Highlight Appearance for Icon Highlights

Icon Highlights uses yellow highlights to identify likely items. An item’s

AccessRank score determines both the blur level of the highlight (in the same

way as in Chapter 7) and the brightness of the highlight colour. RGB values

for the highlight colour are calculated as (1, 1, 0.55 + 0.2(b
bmaxi

)), recalling

that b is the highlight’s blur level and bmaxi is the highlight’s maximum blur

level, and where (1, 1, 1) corresponds to white.

Support for Different Views

The preliminary systems described in Chapter 7 only supported a standard

icon view. Finder Highlights supports all of the Finder’s views, regardless

of the icon and text sizes used within them. Figure 8.2 shows two forms

that highlights can take with Icon Highlights, while Figure 8.3 (later in this

chapter) shows a wider range of appearances with Search Directed Navigation

(the size and shape of the highlights is the same for both techniques).

For icon view, highlights have a similar circular design to those in Chapter

7. The exception is when filenames are shown on the right of icons, such that

the total area containing the icon and filename is much wider than it is high.

In these cases, the highlights are displayed as rounded rectangles. Highlights

can also overlap each other if icons are close together (seen, for example, with

the ‘Desktop’ and ‘Documents’ highlights in Figure 8.2a).

For column view, a shorter, wider rounded rectangle highlight appears

around the item’s icon and filename label. This is similar for list view (Figure

212

8.2b), including Cover Flow view, noting that content outside the ‘Name’

column is not highlighted.

To ensure that these short highlight rectangles have similar visual saliency

to larger highlights, the maximum blur level for highlight region i is reduced

for small highlight regions as follows, where dmin is the smallest dimension

of the highlight region, in pixels, and bmax is the global maximum blur level:

bmaxi = min(bmax,
dmin
48

bmax) (8.1)

Highlight Rendering

As well as adjustments for size and shape, highlights are rendered differently

in icon view (Figure 8.2a) and other views such as list view (Figure 8.2b).

In icon view, there is a large amount of whitespace surrounding each icon.

If an item has been given a colour label, that label appears behind only

the icon’s filename, preserving most of the whitespace. The highlight can

therefore be drawn behind the icon and label, while still having guaranteed

visibility. Other views, however, have less whitespace, and any colour labels

generally consume all of it (for example, ‘Dropbox’ in Figure 8.2b). In these

views, highlights are drawn on top of the underlying view, using a blend

mode that ensures the highlight is visible without affecting the readability

of the text or other content underneath. In this blend mode, which uses

a subtractive model, each component of the resultant colour is calculated

as max(0, 1 − (1 − c1) − (1 − c2)), where c1 and c2 are the corresponding

components of the two colours being blended.

Highlight Selection

A maximum of seven highlights are shown for each location, correspond-

ing to the top seven AccessRank predictions – though, due to its stability

component, these are not necessarily the items with the highest scores. This

maximum ensures that Icon Highlights’ benefits are not diminished over time

as a wide range of files are accessed, which would otherwise result in a ma-

jority of items being highlighted in some locations. Note that in some cases

multiple locations are visible in a single view at once, such as when a folder is

213

expanded in list view or multiple columns are visible in column view. In these

cases, predictions are made separately for each location, and the maximum

number of highlights is applied to each, rather than acting as a global max-

imum. Icon Highlights are only displayed when Search Directed Navigation

is not active.

8.2.2 Extending AccessRank for use with Icon Highlights

Icon Highlights uses a modified version of AccessRank (Chapter 6) to deter-

mine which items to highlight, and how prominently to highlight each one.

These modifications are necessary to support predictions in a changing hier-

archical structure where only a subset of files and folders are displayed at a

time. Further changes are also made to reduce the influence of file retrievals

made outside of the Finder; as found in Chapter 6, an item’s access history

using one method has little predictive power on whether it will be accessed

with another method.

Configuring AccessRank parameters for Icon Highlights

AccessRank has two parameters, λ and δ, that should be calibrated for each

domain it is used in. Comparisons of accuracy and stability results for Ac-

cessRank configurations on the file navigation dataset from Chapter 5 suggest

that AccessRank 2 with (λ, δ) = (1.65, 1) is an appropriate configuration,

with low average rank, a high percentage of revisitations predicted, and high

Rank-Biased Overlap (RBO) scores, collectively ensuring both high accu-

racy and high stability. The λ value of 1.65 indicates that the algorithm’s

Markov component, which is heavily dependent on the most recent retrieval,

has a higher weight than its Combined Recency and Frequency (CRF) com-

ponent, which incorporates both recency and frequency. This is beneficial,

since Chapter 6 found that recency is a much stronger predictor than fre-

quency for the domain of file retrieval. For practical reasons, AccessRank’s

time component was not incorporated, as this would have had a large effect

on the amount of history data that would need to be written to disk, and

prior results indicate that its inclusion produces relatively small benefits.

214

Adaptations to support location-specific predictions

AccessRank ranks only the items in the current location when making pre-

dictions for Icon Highlights. These predictions can be made for either a fixed

location (e.g., a folder) or a dynamic location (e.g., the results of a search).

AccessRank scores can be efficiently updated to enable quick location-

specific predictions. The model uses a global event counter that is incre-

mented for every retrieval. Although item scores generally decrease each

time the counter is incremented (due to AccessRank’s CRF component),

these scores do not need to be updated after every retrieval. Instead, an

item’s score is updated in O(1) time only immediately before it is ranked;

this ranking only occurs when the item’s parent folder is viewed.

AccessRank’s stability component requires a threshold before two items

can change the relative order of their rankings, based on the magnitude of

the difference between their scores. Finder Highlights applies this stabil-

ity component only when viewing a fixed location (i.e., a folder), not when

viewing dynamic content such as search results. This enables consistent be-

haviour, with AccessRank providing extra stability for successive predictions

of items within the same parent folder, but not applying the stability com-

ponent when it makes little intuitive sense (as there is no conceptual link

between the content of the results of successive searches). To achieve this

behaviour, Finder Highlights updates the previous rank of an item only when

it is ranked in the context of its parent folder.

Recording accesses at retrieval-time

Accesses are recorded for file retrievals, with accesses for files’ ancestors being

recorded simultaneously. This ensures that navigational errors do not affect

predictions, as would occur if accesses were recorded for each navigation step

(and noted by one participant in Chapter 7).

For AccessRank’s Markov model to function, it must have an appropri-

ately set previous item. This is set to the previously retrieved file, rather than

any folder accessed in an intermediate navigation step. The model is updated

for all path components of each retrieval. As an example, if /Applications/U-

tilities/Terminal is opened, immediately followed by /Applications/Microsoft

215

Office 2011/Microsoft Word, then the Markov model would be updated for

the sequences Terminal → Applications, Terminal → Microsoft Office 2011

and Terminal → Microsoft Word. The predictions for each step of a retrieval

are therefore all based on the particular file that was most recently accessed.

In the Markov model, the count for each of these transitions is incremented

by one, however the total count is only increased by one for each retrieval.

Incorporating retrievals made using other methods

Finder Highlights greatly reduces the influence of retrievals made outside

the Finder on predictions for Icon Highlights. This reduction is necessary

because results in Chapter 6 indicated that the access history of an item

with one retrieval method, such as search, has little predictive power over

future accesses with another method, such as navigation. The influence of

these retrievals is reduced, rather than removed, because it would not conform

with user expectations if items previously accessed frequently with methods

other than Finder navigation were never highlighted with Icon Highlights.

The reduction in the influence of these retrievals is done by weighting

them as if they occurred 400 events further in the past than they actually

occurred. This results in negligible scores in comparison with items that

have been accessed from within the Finder, meaning that items that have

only been retrieved in this way have either (1) very dim highlights, when

viewed alongside items that have been retrieved through the Finder; or (2)

a highlight in the normal range when viewed alongside items which have

also not been retrieved through the Finder in some time. In the latter case,

relative item prominence is preserved.

Retrievals made outside the Finder are ignored by AccessRank’s Markov

model. For example, if “Budget.xls” is opened in the Finder, followed by

“Todo.txt” using an Open Recent menu and “Bank details.doc” in the Finder,

the Markov model is updated as if “Budget.xls” was followed by “Bank de-

tails.doc”, with no consideration of “Todo.txt”.

Within Finder, a subcategory of navigation retrievals are those that use

OS X’s Quick Look feature. Quick Look allows an item to be quickly pre-

viewed in a lightweight window within the Finder without opening the item

216

in a separate application. Once a preview window is shown, users can switch

between files using the keyboard, allowing them to quickly preview a large

number of items. As a result, use cases for Quick Look range from skimming

through a large number of files while searching for a specific target, to using

it as a substitute for opening a file. These two extremes have significantly

different intents, and it is important that they are handled separately; for

example, if Quick Look is used to quickly scroll through an entire folder of

photos, it would make little sense to record retrievals for every one, while if

it is used to watch an entire video as a substitute to opening it in a media

player, it would be an error not to record it as a retrieval. Finder Highlight

attempts to distinguish between these cases by recording a retrieval only if

the Quick Look preview for a single item is visible for at least five seconds.

Supporting aliases

Aliases and symbolic links provide shortcuts to files and folders located else-

where in the hierarchy. When accessing an alias, Finder Highlights records

a retrieval for the alias’s original file (i.e., the file it references), rather than

the alias itself. When ranking items, AccessRank uses the score of an alias’s

original file, although the alias records its own previous rank for the purposes

of AccessRank’s stability component. These changes ensure that items are

highlighted in a way that assists subsequent retrievals of an item, regardless

of the path taken to it.

Adjusting scores in response to file management tasks

When a file is retrieved, Finder Highlights records accesses for both the file

and each of its ancestors. This means that a folder’s AccessRank score is

reflective of the scores of all the items inside it. To preserve this property,

Finder Highlights updates folder scores when items are moved between folders

or deleted.

When an item is moved or renamed, it carries its own score and history

data to its new path, and references contained in the Markov model are

updated. Markov transitions are stored in memory as two way links for

efficient updates, so that each item is aware of both which paths have been

217

retrieved following its retrievals, and which paths it followed. When an item

is deleted, its data is removed.

Ancestors of moved or deleted items have adjustments made to their CRF

weights. Adding an item to a folder increases its CRF weight, while removing

an item from a folder either decreases its CRF weight or leaves it the same,

depending on the type of item. Conceptually, items are classified as follows:

Files are leaf nodes in the hierarchy, whose CRF weights correspond only

to their direct access history.

Containers are the direct parents of files. If a container’s children are

moved or deleted, it may still be an area of active work, with activity

simply transitioning to other files in the same area.

Intermediaries are the parents of containers or other intermediaries. If

an intermediary’s children are moved or deleted, this may be more

indicative of a change in the hierarchy structure, rather than the par-

ticular file makeup of an area of current activity. Note that a folder

that contains both files and folders may act as either a container or an

intermediary, depending on the context.

Accordingly, containers and intermediaries are treated differently when

updating CRF weights. If the child of an intermediary is deleted or moved

to another location, Finder Highlights reduces its CRF weight. If the child

of a container is deleted or moved, its CRF weight is not affected, since it

may still be an area of current activity.

Adjustments to folders’ CRF weights are made by adding or subtracting

the CRF weights of the descendant items that are being added or removed.

This is due to the summative nature of CRF weights – the CRF weight of a

folder is generally equal to the sum of the CRF weights of its children. All

changes are performed recursively up the hierarchy. Before any CRF weights

are modified, weights of all applicable items are updated based on the current

CRF event counter.

218

Accounting for simultaneous accesses

The Finder allows users to select and open multiple files simultaneously.

An example of when a user might choose to do this might be to open a

set of images in an application that allows them to easily view or compare

them. Ordinarily, these files would be treated as separate retrievals, and the

files’ ancestors would receive excessively large scores relative to their siblings,

even though the change is conceptually the result of a single retrieval task.

Instead, when multiple files are opened simultaneously, Finder Highlights

records only a single access for each of their common ancestors, while still

recording a retrieval for each of the individual files. This is the only situation

in which the CRF weight of a folder can be less than the sum of the CRF

weights of its children. Importantly, this behaviour is allowable since moving

or deleting a file, as opposed to a folder, does not affect the score of its

original parent, and because simultaneous accesses can only occur for a set

of files; were this not the case, a folder could conceivably have a negative

CRF weight after removing descendants that were opened simultaneously.

8.3 Design and Implementation of Search Directed Navigation

As with Icon Highlights, Search Directed Navigation required both user inter-

face refinements and algorithmic enhancements. These are described below.

8.3.1 Interface Design

The interface design for Search Directed Navigation shared many common

challenges with those of Icon Highlights: supporting multiple views, support-

ing use of both techniques simultaneously, and competition with other visual

features. Additionally, it introduced an additional challenge: integrating

the Search Directed Navigation search field with that of the existing search

functionality in Finder.

Highlight Appearance and Implementation

As with Icon Highlights, Search Directed Navigation alters highlight appear-

ance based on the folder view, but highlights are otherwise styled in the same

219

(a) Icon view with labels beneath icons (b) Icon view with labels on right of icons

(c) List view (d) Column view

Figure 8.3: Search Directed Navigation highlights shown in different views

way as in Chapter 7 (i.e., as a white highlight cut out of a transparent grey

overlay). Highlights are shown with either crisp borders (previously visited

items) or blurred borders (unvisited items), as in the original design. Figure

8.3 shows some of the forms these highlights can take.

The Search Directed Navigation view is implemented as an overlay win-

dow which updates whenever the underlying content updates, whether it be

a content update (navigating to another folder, or a change in the content of

the current folder) or a view update (scrolling, resizing, changing view types,

or changing view properties such as icon size, text size, or grid spacing). Im-

plementing it as an overlay makes it easy to alter the view’s appearance while

maintaining a strong degree of separation from the underlying view, which is

beneficial for plugin stability. The overlay itself is slightly darker than that

used for Icon Highlights and Search Directed Navigation in Chapter 7, to

improve the contrast between highlighted items and other content.

In large views, highlights may appear outside the visible region. While

possible approaches to indicate the existence of these highlights are discussed

220

later in the chapter, Finder Highlights includes one refinement to reduce the

effect of this issue. When opening a folder while Search Directed Navigation

is active, the view will automatically scroll so that the first result is visible; if

one is already visible, this will have no effect. If a match is found only after

the folder is opened, no scrolling occurs, as this may be disorienting to the

user.

Search Field

Search Directed Navigation and Finder’s search feature offer differing use

cases. For example, Search Directed Navigation is specialised for filename

queries, whereas search supports a range of file attributes. Both techniques

are activated by typing a query into a search field. Providing a separate

search field for each of the two techniques would clutter the browser interface

and would be likely to confuse users, so Finder Highlights integrates Search

Directed Navigation within Finder’s existing search field in its toolbar (Figure

8.4).

The search field is live updating, meaning that it begins searching im-

mediately when text is entered, rather than waiting for a button click or for

the enter key to be pressed. Finder Highlights adds a menu to the search

field, activated by clicking the search icon at the left of the field, which can

be used to switch between the existing Finder search and Search Directed

Navigation. When no query has been entered, the search field displays the

current search mode as dimmed placeholder text (Figure 8.5), showing either

“Search Directed Navigation” or “Finder Search”. Switching between search

modes cancels any current search and clears the search text.

Search Directed Navigation’s grey overlay (and any search results) are

displayed only when text is entered in the search field while Search Directed

Navigation is the active search mode; it is not displayed when the search field

is empty. Yellow highlights from Icon Highlights are displayed only when the

Search Directed Navigation overlay is not shown.

New Finder windows initially show Search Directed Navigation as the ac-

tive search mode in most cases. The exception is windows created in response

to a search related event (for example, by choosing “Show All in Finder” from

221

Figure 8.4: The Finder toolbar’s search field, used to enter the SDN query.
Clicking on the search icon at the left of the field shows a menu which toggles
between search modes.

Figure 8.5: The search field, using the placeholder text to indicate the current
search mode.

the Spotlight menu or typing a keyboard shortcut for search), which instead

show Finder Search, for consistency with previous behaviour. Once a window

is active, command-F (the keyboard shortcut for Find) activates the search

field without changing search modes. This ensures that the placeholder text

users see in the search field is consistent with the search mode that is acti-

vated when they move focus to the search field via the keyboard. Another

shortcut – command-option-F – is provided to toggle between search modes

and move focus to the search field (if not already focused). Using it when no

windows are open has the same effect as using command-F.

Figure 8.4 shows a Search Directed Navigation search that is currently in

progress. The cancel button (far right of the search field) immediately ends

the search, clears the search field, and hides the Search Directed Navigation

overlay. The progress indicator (immediate left of the cancel button) is shown

while there is still the possibility of changes to the set of highlighted items

in the current location. Searching may continue after it has disappeared,

however this searching will be at deeper locations in the hierarchy where any

visible ancestors have already been highlighted. Additionally, the progress

indicator may disappear before highlights for certain low interest locations

222

have been finalised, such as system folders. The effect of this behaviour is

that the progress indicator acts as a way for the user to know whether there

is a chance for matches of other visible locations if they continue to wait, or if

the current set of highlights constitutes all matched subtrees of the hierarchy.

8.3.2 Search Directed Navigation Algorithm

Search Directed Navigation provides visual feedback that guides users to

descendent files and folders that match a search query at any lower level of

the hierarchy. As a result, its underlying algorithm must efficiently cope with

a potentially large search space. While the algorithm in the lab prototype

(Chapter 7) was able to perform an exhaustive search in real time, actual file

hierarchies are much larger and require a more sophisticated approach. This

section therefore describes a specialised algorithm that is used to determine

matches for Search Directed Navigation.

A variety of goals were considered in the design of a suitable algorithm:

• Quick access to previous items: most retrievals are for previously visited

items, but these make up only a small proportion of all files. These files

should therefore be searched and displayed first.

• Fast feedback: the priority is to quickly determine which items in the

current view contain matched descendants, rather than to determine

all matched descendants of visible items. However, all matched descen-

dants should be recorded, when found, to facilitate responsiveness when

subsequently navigating down the hierarchy. User feedback should be

provided once the set of highlights for currently viewed items is fi-

nalised, even if all their descendants have not yet been checked.

• Platform independence: the algorithm design should not be tied to a

particular platform or system.

• Tolerance of imperfect information: it would not be possible to create

and maintain an index of the entire file hierarchy, as the plugin does

not have access to low level system information about every change to

the file system, and thus the index would become outdated. While it

223

has access to some changes made within the Finder itself, changes made

from other applications are not recorded. Additionally, new devices can

be connected, and the algorithm should be able to search their content

without requiring time to first index them.

• Interruptible: the search should be interruptible, so as not to interfere

with user input when searching a large hierarchy subtree.

• Adaptable to changing location: the search should adapt to changes in

the window’s hierarchy location without restarting the entire search,

where possible.

• Adaptable to changing query: the search should adapt to changes in

the search query without restarting the entire search, where possible.

• Adaptable to changing content: the search should adapt to changes in

the folder hierarchy it is searching, ensuring that any new content is

searched, and any previous matches are updated in response to moved

or renamed content.

In order to satisfy these requirements, the implementation combines sev-

eral methods to achieve the best results, as visualised in Figure 8.6. The

core algorithm is composed of two phases. In its first phase (the revisitation

index), it searches an index of previously visited files and folders, returning

matches for these items almost instantaneously. In its second phase (the ex-

haustive search), it performs a breadth-first search of all descendants of the

visible items.

The time it takes for the exhaustive search to complete varies consider-

ably based on the context of the search. In the worst case – when searching

an entire system – this can take about half a minute to complete on a typical

modern computer. However, in practice, most searches will match multiple

files, and the first results are typically shown much sooner – the effect being

that many searches have a complete set of highlights determined in less than

a second. Nevertheless, the exhaustive search method does result in an unde-

sirable worst case performance, exhibited when searching the entire system

224

Operating
System Index
(eg Spotlight)

(optional)

Revisitation
Index

Exhaustive
Search

Results
Verification

Results

Search
Change

Figure 8.6: An overview of how Search Directed Navigation results are de-
termined, using a combination of different methods.

for a unique filename located deep in the hierarchy in a low priority location

that has not previously been visited.

To address this issue, the system’s search index (if available) can be used

to find results simultaneously to the core algorithm. OS X’s Spotlight index

provides an example of such an index, and it was used in Finder Highlights.

The system search index serves as an optional addition to improve perfor-

mance, but is not required. The design supports use of such an index to

produce a set of potential results, which are then verified based on the re-

quirements of the core algorithm; the system index therefore need neither

produce an exhaustive nor an accurate set of results, however it can signifi-

cantly improve performance by approximating both.

Full details of this process, as well as information about how the algorithm

copes with changes to its query, location, or content, are described below.

225

Matching items

In Chapter 7, an item was defined as a match for Search Directed Navigation

when any word (or consecutive combination of words) from the filename had

the search query as a prefix. This definition was expanded for the real-world

implementation, due to the wider range of ways that tokens are delimited

in practice, compared to the dataset used for the prototype. In fact, results

from Chapter 5 showed that spaces, hyphens, underscores and periods were

all common, as was mixed case.

To determine matches, filenames are first decomposed into a set of match

keys, with a match occurring when a match key contains the search query as

a prefix (ignoring case). Each key consists of a filename substring, beginning

at the start of a token (defined below) and continuing until the end of the

filename. This allows multiple tokens to be entered as a query, as in the

prototype, provided they are delimited in the same way as in the filename.

File extensions are not included as a key themselves, but are included at the

end of other keys.

The start of a token is defined as either: (1) the first character of the

filename; (2) any non-delimiter character following a delimiter; (3) an up-

percase character following a lowercase character; or (4) any change between

character types, excluding a delimiter following another character. Delimiter

characters include a space (‘ ’), hyphen (‘-’), underscore (‘ ’) or period (‘.’).

Character types are letters, numbers, delimiters and all other characters.

The ' character can act as either an apostrophe or a quotation mark, and

is therefore included in both the set of letters and other characters. This

means that it can only be the start of a token if it follows a number or de-

limiter. In such cases, it is treated as a member of the ‘other character’ set,

and any subsequent letters begin a new token. With this behaviour, “Today's
tasks” would have keys “Today's tasks” and “tasks”, “Photos '09” would have

keys “Photos '09”, “'09” and “09”, and “Filename 'quote'” would have keys

“Filename 'quote'”, “'quote'”, and “quote'”. As a longer example, “Trav-

elBudget13 Spain trip.xls” would have keys “TravelBudget13 Spain trip.xls”,

“Budget13 Spain trip.xls”, “13 Spain trip.xls”, “Spain trip.xls” and “trip.xls”.

Any query that is a prefix of one of these keys would result in a match.

226

Index of previously visited locations

Finder Highlights maintains its own index of previously visited files, allowing

for quick lookup of the most likely matches. Like in the prototype implemen-

tation of Search Directed Navigation, these matches (i.e., revisitations) are

shown with a crisp border. Although some systems feature their own search

indexes that can optionally be used in tandem with Finder Highlights’ own

index, maintaining its own index provides several benefits. First, it decou-

ples its algorithms from a particular platform. Second, it acts as a more

lightweight index, containing only those items that have been previously

visited, and is optimised for the behaviour of Search Directed Navigation –

meaning that the most likely matches can be returned faster than they would

when using an external index.

The index contains three types of locations, which are treated identically:

(1) files that have been previously opened; (2) folders that have been opened

in the Finder; and (3) all ancestors of other locations in the index. Items are

added as they are opened in the Finder, or in the case of files opened through

a method outside the Finder, when they are added to the user’s recent items

file (see Section 4.2.4).

The index updates automatically as a result of items being moved, re-

named or deleted within the Finder. Some file system changes can occur

outside the Finder, and these changes are not detected by Finder Highlights.

Instead, every time an item is accessed in the index, a check is performed to

ensure it still exists in the file system; if it does not, then it is removed from

the index.

The index is stored on disk as an alphabetically sorted list of paths. Once

loaded into memory, the index is stored in three separate collections: (1) the

path list: a list of path objects, sorted by path, each storing the original path

and a set of match keys for each; (2) the index: a list of all key-path pairs,

sorted by key; and (3) a mapping from string paths to path objects.

To find matches for a query, a binary search is performed on the in-

dex to find the first and last matches; a match occurs when the match key

has the query as a prefix. This search does not consider location; matches

will be returned regardless of whether they are descendants of the search

227

location. Matched items are inserted into a tree of results, mirroring the

actual file hierarchy, which allows for quick lookup of matches in a particular

location. When adding a path, nodes are added for ancestor paths if not

already present in the results tree. This entire index lookup operation takes

O(log(n) + m) time, where n is the number of key-path pairs in the index,

and m is the number of matches for the query.

Exhaustive search of other items

While the index of previously visited items quickly finds the most likely

results, an exhaustive search is still necessary to find other matches. This is

done using a breadth-first search of the visible subtrees of the file hierarchy,

with the search beginning following the completion of the index lookup. The

search gives priority to locations that do not yet have any results, as well as

to certain pre-defined common locations.

A breadth-first search is used to reduce the effect of particularly large

subtrees slowing down discovery in other locations, as might occur with

depth-first search. This reflects the primary goal of the exhaustive search:

to quickly determine which of the visible items should be highlighted, rather

than minimising the total search time. As the user will likely be traversing

through the hierarchy as they search, this provides the greatest appearance

of responsiveness throughout the process. Further aiding this goal, when a

match is found inside a visible folder, any additional items within the same

sub-hierarchy are added to the search queue with a low priority. Items are

dequeued in strict order of priority, with the time an item is enqueued con-

sidered only for items of the same priority. The effect of this is that the

algorithm prioritises finding the first match for each visible folder. An emer-

gent property of this behaviour is that searches appear to be significantly

quicker when there are many results for a query.

The initial items in the search, referred to as root nodes, are each of the

items in the current location – for example, the ten folders visible in Figure

8.3a. Other items in the current view that are not children of the current

location, such as those in previous columns in column view, are not searched,

however any existing results inside them are preserved, and any changes to

228

Documents

Library

Movies

Bus routes

Christmas

France trip

Writing

Preferences

Caches

Frameworks

Projects

Family

Friends

Figure 8.7: Example of exhaustive SDN search for query ‘fr’ with items of
different priorities. Darker shades denote higher priorities. Thick borders de-
note matches, thin borders denote ancestors of matches, and dashed borders
denote all other items.

their highlights (for example, if they are ancestors of the selected folder) are

reflected visually. An an example, in Figure 8.3d, the root nodes are the four

items inside the selected ‘2010-2013’ folder. The ‘2007’ and ‘2009’ folders are

not searched as they are not children of the current location, but because they

were part of the existing result set before the ‘2010-2013’ folder was selected

(see Dynamically changing the search location below), their highlights are

preserved.

When a match is found, it is added to the existing results tree that was

created during the revisitation index lookup. Nodes in the tree keep track

of their score, corresponding to whether they should receive a prominent or

dim highlight; this score is the highest of their own score (if the node is itself

a match for the query) and those of all their children.

Certain locations are given higher or lower initial search priorities. High

229

priority locations are the user’s documents folder, their downloads folder,

and their applications folder(s). However, after finding initial matches in

these locations, additional items revert to the same low priority as those in

other locations with matches. Low priority locations are the ‘System’ and

‘Library’ folders, which contain system files and application data. If matches

are found inside these locations, additional items have the lowest priority of

all items.

An example search is illustrated in Figure 8.7. The three root folders

denoted in the example all contain a child that matches the search query,

however they each have different priorities, as outlined above. In this exam-

ple, the nodes would be evaluated in the following order (ignoring descendant

items not shown in the diagram): ‘Documents’, ‘Bus routes’, ‘Christmas’,

‘France trip’, ‘Movies’, ‘Family’, ‘Friends’, ‘Library’, ‘Writing’, ‘Projects’,

‘Caches’, ‘Frameworks’ and ‘Preferences’.

Integration with system indexes

Search Directed Navigation’s algorithm can optionally use a system-specific

index to improve search performance. The Finder Highlights implementa-

tion uses OS X’s Spotlight index in tandem with the core Search Directed

Navigation algorithm in order to find matches more quickly. Following com-

pletion of an index search, all results are verified to ensure that they conform

to the requirements of a Search Directed Navigation match, and are then

added to the results tree. Consistent with the goal of producing relevant

results as soon as possible, the index is searched for all filenames inside an

observed location that begin with the search query; while this omits filenames

that contain the query elsewhere in the filename, it is considerably quicker

to check for prefixes, and additional results will be detected with the core

algorithm. It is also paramount to minimise the time spent searching the

Spotlight index, so as not to noticeably slow down the core algorithm.

In addition to non-prefix matches, some locations may be excluded from

the Spotlight index. The core algorithm, while slower to complete, acts as a

fallback in all these cases, and indeed, it can work completely independently

of Spotlight.

230

Dynamically changing the search location

Search Directed Navigation is designed for users to navigate through the file

hierarchy as they use it. As such, it is important that it can efficiently update

its results in response to these location changes, without restarting the entire

search. As the Finder Highlights index returns all results across the entire

file hierarchy, location changes primarily affect the exhaustive search. Any

system-specific index lookup may also need to be repeated or refined with the

updated location, although this is outside the scope of the core algorithm.

A location change can be divided into one of three categories: (1) moving

up the hierarchy, such as to a parent folder; (2) moving down the hierarchy,

such as into a child folder; or (3) moving to an unconnected part of the file

hierarchy. Each case is handled differently.

In the first case – moving up the hierarchy – all existing results are main-

tained, however the search now covers a larger area. The items in the new

location are added to the set of root nodes and to the search queue of the

exhaustive search, restarting the queue processing if it has previously com-

pleted. To ensure that the previous root nodes are not traversed a second

time, they remain in the set of root nodes, and only non-root nodes are added

to the search queue in later processing.

The second case – moving down the hierarchy – involves modifying the

existing search queue, which may now include items outside the scope of the

new location. Queue processing, if running, is paused while this occurs. Two

cases can occur when modifying the queue. If an ancestor of a new root node

exists in the queue, then the new root node has not yet been explored – this

might occur when traversing several levels at once, for example by following

an alias. In this case, the new root node is added to the queue. Alternatively,

no ancestor of a particular new root node exists in the queue, implying that

it is currently being searched or has already been searched. In this case, the

new root node in not added to the queue, to prevent a second traversal. In

either case, nodes that are not descendants of a new root node, or new root

nodes themselves, are removed from the queue.

The final case – moving to an unconnected part of the file hierarchy –

requires the search to be restarted with the new location.

231

Dynamically changing the search query

Consistent with Raskin’s recommendation for incremental search [154], Search

Directed Navigation updates its results instantly whenever its search query

is modified. This enables users to adapt or refine their search query based

on preliminary results.

Like location changes, query changes can be divided into three categories:

(1) appending text to the query; (2) removing a suffix from the query; and

(3) all other changes. As the search updates live when the user types a query,

the first two categories are the most common, and in these cases the search

does not need to be completely restarted.

When the query is appended (case 1), the search becomes more restrictive,

and some of the existing search results might no longer be valid. Finder

Highlights rechecks these existing results, then continues with the search

using the new query; restarting the search is not required.

In the second case, a suffix is removed from the query. All existing results

are still valid, however new results might now exist that were not previously

valid. The search is restarted, including rechecking the Finder Highlights

index, however existing results are preserved.

In the third case, there may be both existing results that are now invalid,

and previously invalid results that are not valid. The search is therefore

completely restarted.

Dynamically handling moved or renamed items

Users may potentially move or rename items during a search. When this

occurs, changes to the results tree and search queue are required for each

moved or renamed item.

The results tree is updated by removing the subtree rooted at the source

location, and adding it again at the destination location. If the item has

been renamed, the new name is checked to verify if it matches the search

query. Any score changes, whether a result of location changes or renaming,

are propagated up the hierarchy. If the moved or renamed item was not in

the results tree, its name is checked, and if it is now a match, it is added.

After the results tree is updated, each item in the search queue is checked

232

to see if it is a descendant of the item, or the item itself, and its path is

updated accordingly.

8.4 Field Evaluation of Finder Highlights

The primary objective of the research in this chapter is to learn how Icon

Highlights and Search Directed Navigation are used in the real world. Finder

Highlights addresses the interface and algorithm design issues described above,

allowing for such an evaluation.

Finder Highlights was deployed in a four-week field study, logging details

about Finder usage, Icon Highlights predictions and Search Directed Navi-

gation searches. To protect privacy while maintaining an ability to identify

revisitations, logs recorded hash codes of file paths, rather than the original

paths. Logs were stored locally on participants’ computers until the end of

the study.

8.4.1 Procedure

Twenty OS X 10.8 users (4 female) participated in the study, aged between

23 and 66 (mean 32.0). One participant withdrew from the study due to the

purchase of a new computer, leaving 19 submitting data. Self-reported daily

computer use ranged from 1 to 14 hours per day (mean 7.2 hours). Partic-

ipants were recruited from a range of sources: four were tertiary students,

eight were university staff or faculty, and eight worked outside academia.

Communication with participants occurred online. After agreeing to an

informed consent form, participants completed a pre-study survey, asking ba-

sic demographic information and general questions about how they retrieved

files. They were then instructed to download the Finder Highlights software

and to watch a three minute video that briefly explained the techniques.

The video directed participants to use their computers as normal during the

study, and to use the techniques as little, or as much, as they liked. After four

weeks, participants were emailed with instructions to uninstall the software,

submit their logs, and complete a post-study survey. The consent form and

surveys are reproduced in Appendix C.

233

8.4.2 Log File Data Analysis

Ultimately, the techniques included in Finder Highlights are intended to re-

duce file retrieval times. However there are complexities in determining these

times from interaction logs, including external distractions, cognitive efforts

prior to task initiation, and the range of tasks possible within a file browser.

In particular, certain assumptions were made to establish an objective time

at which each retrieval began (in contrast, lab experiments can begin timing

at the point an artificial stimuli is shown). In the analysis of retrieval times,

time measurements were determined to begin at the later of (1) the time a

browser window was opened; (2) the time of the first navigation event after

either another retrieval, use of another browser window, or a file manage-

ment task (e.g. moving or deleting an item); and (3) a navigation event that

was more than 30 seconds after the previous one. Time measurements ended

when a file was opened. Retrievals of items on the desktop were excluded,

since Finder Highlights had no effect on the desktop interface.

To further characterise retrievals, step times were also analysed – that

is, the time between opening successive folders while navigating to a file.

To reduce noise, steps were excluded from the analysis if they included: an

upwards step through the hierarchy; use of history buttons, sidebar links,

search, or another window; a change in the view configuration; file man-

agement activities (e.g., moving a file); or if the step took longer than 30

seconds.

Baseline comparison between the unmodified Finder and Finder High-

lights were performed by comparing logs of file retrieval from the characteri-

sation study in Chapter 5 (hereafter referred to as Finder logs) with the logs

generated by Finder Highlights. Logs from the Finder and Finder Highlights

studies were analysed with exactly the same assumptions using exactly the

same analysis tools. In particular, the assumptions for measuring retrieval

and step times were identical. Though there were minor differences in the

collection of the two datasets (i.e. Finder Highlights ran on a slightly newer

version of OS X, and recruitment strategies differed slightly), these differ-

ences were minor and unlikely to significantly affect results. All times were

log-transformed for ANOVA analyses to reduce the skew of the data.

234

Results incorporate both quantitative data retrieved from the logs and

qualitative data from survey responses. Only the first 28 days of log data

was included in analysis for each participant, though one participant only

used the software for 20 days.

8.4.3 Retrieval Times and Step Times

Between-subjects analyses of retrieval and step times were conducted using

Finder and Finder Highlights logs. The Finder logs included 1689 retrievals,

while the Finder Highlights logs included 2521.

The mean retrieval time with Finder Highlights was 10.6 s (s.d. 3.4),

13% faster than the Finder mean of 12.2 s (s.d. 4.7): F1,42 = 7.4, p < .01.

The mean for the Finder retrieval times is supported by a recent result from

Bergman et al. [30], which reported a similar mean Mac OS X file retrieval

time of 12.6 s. Of more interest, however, is the breakdown by technique,

as Finder Highlights is primarily a mechanism by which to evaluate them.

These results are provided below.

Icon Highlights

To examine the independent contribution of Icon Highlights, retrievals that

involved search-based interfaces were excluded. Results were similar to the

overall results above, which is best explained by the low proportion of re-

trievals using search or Search Directed Navigation (see below). Mean re-

trieval times with Icon Highlights were 9.8 s (s.d. 3.3), compared to 12.1 s

(s.d. 4.8) without it – F1,42 = 9.4, p < .005. An analysis of the mean depth

of retrieved files in both studies confirmed that this difference in retrieval

times was not caused by differences between the participants’ file structures,

with no significant difference between retrieval depths in the two datasets.

Further, a comparison of step times confirms that participants selected tar-

gets within the folder view more quickly when Icon Highlights were available

(mean 3.9 s, s.d. 1.4) than when using the standard Finder (mean 4.5 s,

s.d. 1.5) – F1,42 = 4.2, p < .05. Importantly, as Icon Highlights are intended

to reduce visual search time by highlighting likely targets, this reduction pro-

vides strong evidence that this design intention is fulfilled. Both step and

retrieval times for Icon Highlights are summarised in Figure 8.8.

235

0"

2"

4"

6"

8"

10"

12"

14"

Normal"
Finder"

Finder"
Highlights"

Re
tr
ie
va
l)T
im

e)
(s
))

0"

1"

2"

3"

4"

5"

Normal"
Finder"

Finder"
Highlights"

St
ep

)T
im

e)
(s
))

Figure 8.8: Non-search retrieval and step times with and without Finder
Highlights, showing the effect of Icon Highlights. Error bars ±1 st. err.

Search Directed Navigation

In the earlier lab study (Chapter 7), Search Directed Navigation was highly

efficient and extremely well received by participants. Results from the field

study, however, are very different – not because Search Directed Naviga-

tion was inefficient or disliked, but rather because it was largely ignored. It

was actively used by only 4 of the 19 participants, who used it in between

1% and 44% of navigational steps (mean 14%); these participants averaged

9.8 retrievals and 89 steps using Search Directed Navigation. This contrast

between extremely positive lab study results and substantially neutral find-

ings due to disuse in the field amplifies the motivation for this research, in

migrating analysis from the lab to the real world.

The lack of data on active use of Search Directed Navigation complicates

its rigorous analysis. Further, as Search Directed Navigation introduces new

functionality – guiding users to files through the hierarchy in response to a

search term – there are difficulties in determining an appropriate baseline

for comparison. Limited insights can be gained by comparing steps times

following Search Directed Navigation activation for the four participants who

used it (mean 2.9 s, s.d. 1.3) to other steps made by the same participants

(3.8 s, s.d 1.7), however statistical tests are inappropriate due to the above

reasons.

236

Step Times with Correct and Incorrect Highlighting

Highlighting functionality is likely to assist users when their intended target is

highlighted, but may distract when other items are highlighted and the target

is not. To investigate this issue, all steps where Icon Highlights were available

were categorised in one of three ways to produce an analysis factor step

type: positive highlights, where the selected item was highlighted; negative

highlights, where other items were highlighted and the selected item was not;

and no highlights, where no items were highlighted.

A within-subjects analysis of variance showed a significant effect of step

type – F2,36 = 5.3, p < 0.01. Step times were fastest with positive highlights

(3.4 s), followed by no highlights (3.9 s), with negative highlights substantially

slower (5.1 s). This result provides further evidence that Icon Highlights,

when providing correct predictions, was successful in helping users quickly

identify and select targets. While the result also suggests that highlighting

items other than the target slows performance, this can at least partially be

explained by varying folder sizes: folders with negative highlights contained

many more items (mean 73.9) than either positive highlights (mean 21.8)

or no highlights (mean 24.2). Therefore, both the slower performance and

the incorrect highlighting can be partially attributed to the substantially

larger folder sizes. Further research is necessary to accurately determine the

negative impact of ‘distractor’ highlighting.

Further analysis of steps showed that 46.5% had positive highlights, 29.3%

had negative highlights, and 24.2% had no highlights. In contrast to the

46.5% of selected items that were highlighted, an average of 22.5% of items

were highlighted in each folder, suggesting that the AccessRank prediction

algorithm provided good predictions of upcoming file selections. The average

rank of a revisited item in its folder was 3.4 (18.2% of all steps opened a top-

ranked item), while an average of 3.0 items were highlighted at each step.

8.4.4 Questionnaire Responses

After four weeks of use, participants completed a post-study questionnaire

that gathered both quantitative subjective responses (using five-point Likert

scales from ‘strongly disagree’ (1) to ‘strongly agree’ (5)) and participant

237

Statement (paraphrased) S
tr

on
gl

y
D

is
ag

re
e

(1
)

D
is

ag
re

e
(2

)

N
eu

tr
al

(3
)

A
gr

ee
(4

)

S
tr

on
gl

y
A

gr
ee

(5
)

M
ea

n

Icon Highlights
IH was useful 0 2 3 9 5 3.9
IH reduced cognitive load 0 3 7 5 4 3.5
Would like IH as permanent feature 0 4 3 8 4 3.6
Predictions seemed accurate 0 2 1 14 2 3.8
Could predict if target would be highlighted 0 1 4 8 5 3.9
Highlighting technique clear and intuitive 0 0 2 11 6 4.2

Search Directed Navigation
SDN was useful 3 2 9 2 3 3.0
SDN affected file retrieval behaviour 2 2 10 2 3 3.1
Would like SDN as permanent feature 2 2 9 2 4 3.2
Results seemed accurate 0 0 4 2 4 4.0
SDN made it harder to use search 4 6 1 3 0 2.2
Confused between SDN and search 5 5 1 3 0 2.1
Highlighting technique clear and intuitive 0 0 2 4 6 4.3

General
Hard to locate occluded highlights 3 8 2 2 1 2.4

Table 8.1: Participant agreement with statements about Icon Highlights (IH)
and Search Directed Navigation (SDN).

comments. The quantitative responses are summarised in Table 8.1, which

shows abbreviated forms of the Likert-scale questions asked.

Likert scale responses reflect the log results above. Participants responded

more favourably to the question of whether Icon Highlights was useful (14 re-

sponses above neutral, 2 below) than for the equivalent question with Search

Directed Navigation (5 above neutral, 5 below). Participants also felt that

the Icon Highlights predictions were accurate (16 above neutral, 1 below)

and predictable (13 above neutral, 1 below), and that its highlighting tech-

nique was clear and intuitive (17 above neutral, none below). The positive

response for the predictability of highlighting is important, as prior research

has shown that users can more quickly identify targets using pre-attentive

search if they know in advance that they will be highlighted in a particular

way [178].

238

Only three participants agreed that it was difficult to locate occluded

highlights, such as those that require scrolling to see. This result implies

that there is not a pressing need for features that emphasise their presence.

Nevertheless, potential interfaces to achieve this are outlined in the discus-

sion.

Icon Highlights

The survey also asked participants to rate the effect of Icon Highlights on

retrieval times and error rates. Participants generally stated that it improved

retrieval times (7 felt it made them faster, 1 slower), especially when retriev-

ing previously visited files (15 faster, none slower), while it had a negligible

effect for new or rarely visited files (1 faster, 1 slower). Icon Highlights also

had a positive impact on perceived error rates (7 reported fewer navigation

errors, none more).

The participants’ general comments on Icon Highlights referred to the

technique being most useful when navigating through many successive direc-

tories, when lots of items in a folder had similar names, and when revisiting

specific items – particularly in large folders. However, a number of comments

suggested possible refinements: (1) that too many items were highlighted to-

wards the end of the study (one participant), which could be rectified by

reducing the per-folder highlight limit or by considering the total number

of items in a folder when calculating a limit; (2) that there was not enough

difference between prominent and dim highlights (one participant), which

could be rectified by calibrating the highlighting formula; (3) that the high-

light colour was not visually appealing or should be customisable (six par-

ticipants); (4) a lack of keyboard navigation, which would be useful to move

between highlighted items (one participant); (5) confusing interaction be-

tween highlights and existing colour labels (one participant), which suggests

the need for refining the colour blending methods used in Finder Highlights;

and (6) that highlights could be unpredictable when opening items sequen-

tially, where the highlighted items were not always the most recent items –

this was caused by the lack of transitivity of AccessRank’s stability compo-

nent, causing highlights to sometimes be selected seemingly arbitrarily; this

239

effect could be reduced by calibrating AccessRank’s parameters, for example

by reducing the δ parameter.

The participants’ comments also suggested a perception that the tech-

niques might be most effective for users with disorganised file structures.

P8: “There is more and more mess on my hard drive, so it is useful to high-

light files that I actually use”. Indeed, Icon Highlights may be of more benefit

to ‘pilers’ than ‘filers’ (described in Chapter 3); those with disorganised hi-

erarchies may be more reliant on visual search, perhaps due to larger folder

sizes or less inherent knowledge of file locations.

One participant requested that the highlights should only appear when a

modifier key is held down, although this could greatly reduce the method’s

benefits by changing it from a passive method (requiring no user input) to

an active method (requiring explicit user action); as discussed below, Search

Directed Navigation (an active method) was rarely used despite its potential

benefits. Another participant suggested a feature to manually remove high-

lights from certain items, suggesting that they were periodically aware of the

distraction caused by negative highlights.

While Icon Highlights were designed to help retrieve files, one participant

said that its benefits were primarily in reducing organisation time. This

participant had previously made extensive use of OS X’s manual colour la-

belling feature, meaning that Icon Highlights provided no additional benefit

at retrieval-time. However, he commented that it was a very useful auto-

matic replacement for manual labelling. Another unexpected use, referred

to in comments from four participants, was that sometimes the absence of

highlights was particularly useful. For example, in ordered lists of movie files,

the highlighted items would indicate which had already been watched, and

the first unhighlighted item following them would correspond to the video

they wanted to watch next. In another example, a participant sometimes

knew a target item would not be highlighted, and could ignore highlights to

speed up visual search.

Navigating with Icon Highlights normally occurred when participants al-

ready would have used navigation, however some participants stated that

they occasionally switched from other methods to gain its advantages. This

included two participants each in place of ‘Open Recent’ menus and search.

240

Search Directed Navigation

As expected, considering its relatively infrequent and light use, the dominant

response for questions concerning use of Search Directed Navigation was neu-

tral. However, as supported by the logs, a minority of the participants found

it useful, with three expressing strong agreement regarding its usefulness.

Four said they retrieved files more quickly overall because of SDN (four for

previously visited files and one for new or rarely visited files), with it having

no effect for the remainder, who did not use it.

Those who used it often used it in place of navigation, rather than just

as a search substitute, and appreciated the context it provided. P5: “Just

loved it! Unlike the normal search, my current path stays the same, and I

don’t have a list of items coming from nowhere... I was comfortably guided

through what I wanted. Sometimes [with Finder search] several files match

the query and the results are all [shown together]. Here I can easily focus on

the one file I was looking for. No ambiguities.”

P4 commented that Search Directed Navigation resulted in lower error

rates than search, and facilitated learning of item locations, in line with its

design goals: “Sometimes I will use [Spotlight search], but if a file doesn’t

appear that I am looking for, I am no closer to finding it. With Search

Directed Navigation... usually I also have a vague idea of where the file is, so

I was able to use a starting top level folder as a starting point. This allowed

me to usually find my file much more quickly, and with more success, but I

also got the benefit of being reminded of where I stored the file and other files

that I passed on the way.”

P6 also mentioned this property, commenting “I really liked the way it

seemed to teach the directory structure to me; traditional find would hide the

structure from me”, and referring to Icon Highlights as a way to retrieve files

faster, but Search Directed Navigation as a way to remember his structure.

However, most participants rarely or never used Search Directed Naviga-

tion. Common reasons for this were that participants already knew where

their files were (12 participants), do not use search much (8), forgot or did

not think to use it (4), prefer traditional search interfaces (2), do not navigate

to files much (2) or that it was too slow to find results (2). One participant

241

commented that he would have used SDN frequently had it supported nav-

igation to highlighted items using the keyboard. Two participants did not

realise that Search Directed Navigation only searched filenames, and were

confused by this, with another suggesting that a content searching option

would be useful.

A common theme in the explanations of the lack of use of Search Directed

Navigation were comparisons with traditional search interfaces, which pre-

vious studies (as well as the findings in Chapter 5) suggest are often used

as a method of last resort [19, 25, 32, 34]. Several participants used ‘search’

as a misnomer when referring to Search Directed Navigation in comments.

These comparisons indicate that many participants did not consider Search

Directed Navigation for tasks where they would not already use search, limit-

ing its utility to those retrievals for which both traditional search and Search

Directed Navigation were suitable. This issue is discussed further in the

discussion.

Despite the low uptake, the strong positive reactions from those who

used it suggest that Search Directed Navigation can be a valuable tool once

familiarised with its use.

8.5 Design of Unimplemented Techniques and Features

Chapter 7 introduced three file retrieval interfaces: Icon Highlights, Search

Directed Navigation and Hover Menus. Finder Highlights included imple-

mentations of Icon Highlights and Search Directed Navigation, but did not

include Hover Menus. This section describes the design of a deployable ver-

sion of Hover Menus, as well as the design of potential interfaces to indicate

the presence of occluded highlights.

8.5.1 Hover Menus

Deployment of Hover Menus would require both a suitable interface design,

as well as an efficient back-end algorithm to determine menu content. This

section discusses potential interface designs for a Hover Menus-like technique,

followed by a description of a potential algorithm that determines the con-

tents of Hover Menus using a modified version of AccessRank. Except where

242

otherwise stated, AccessRank data is stored and updated in the same way

as with Icon Highlights.

Alternative Interface Designs for Hover Menus

The user interface for Hover Menus described in chapter 7 could be used

unmodified in a real world implementation. However, possible alternative

designs are discussed below.

The Hover Menus design requires users to first find the folder correspond-

ing to the next step of their retrieval. Alternate designs could omit this step,

potentially increasing the benefits of using the shortcuts they provide, at

the expense of lower accuracy. This could be accomplished, for example, by

showing a list of suggestions in the sidebar, which are identical to the items

that would be shown in the hover menu for the current folder.

Further opportunities arise when Search Directed Navigation is combined

with Hover Menus. When Search Directed Navigation is active, the items in

Hover Menus (or equivalent interface) could be restricted to items that would

be highlighted by Search Directed Navigation. Alternatively, a popup could

appear below the search field that shows these results directly, much like URL

suggestions in a web browser, but with the added benefit of incorporating a

benefit weighting based on hierarchy depth.

Benefit Weighted AccessRank – an Algorithm to Determine Menu Content

The original prototype of Finder Highlights used a hierarchy where all sug-

gested folders were at a fixed depth, and all files were at a different fixed

depth. This meant that items in Hover Menus – where files and folders are

ranked separately – could be ranked purely based on AccessRank score. How-

ever, in a real file hierarchy, items are at varying depths. Using unmodified

AccessRank scores would mean that the menus would be predominantly pop-

ulated with shallow items, as folders generally have scores that are greater

or equal to that of their descendants. However, the benefits of Hover Menus

are greater when more hierarchy levels can be skipped.

To address this issue, Hover Menus can make use of a modified Access-

Rank score to determine item rankings, called Benefit Weighted AccessRank

243

(BWAR). Consider a hierarchy node N1 at depth d1, and one of its descen-

dants, N2, at depth d2. Let the benefit weighting be the number of levels

between these two nodes, i.e. d2 − d1. Further, let wN2 be the AccessRank

score of N2, and wBWAR(N1, N2) be the BWAR score for N2, relative to N1.

The latter can be calculated as:

wBWAR(N1, N2) = (d2 − d1)wN2

The purpose of this modified score is to consider the total benefit of pro-

viding a shortcut to an item – that is, the likelihood of it being relevant,

multiplied by the potential time saving that using the shortcut would pro-

vide. As found in Chapter 6, the original AccessRank score acts as a suitable

approximation of the probability that an item will be accessed. Furthermore,

by assuming that each step through the hierarchy takes constant time, mul-

tiplying by the number of levels between two locations provides a suitable

method of approximating the potential time saving.

To implement this modified score calculation efficiently, all items with

scores are represented in a tree structure. Each node also maintains a variable

containing the depth of its subtree – i.e., the maximum distance between

it and any of its descendants. The depth of the subtree of a leaf node is

zero. Each node also stores its previous list of Hover Menus predictions, if

applicable, where the list contains only those items actually displayed in the

menu. References contained in this list should be updated if any of its items

are moved, renamed or deleted.

When determining the items to appear in the Hover Menu for a folder,

the folder becomes the Hover Menu’s root node, N1. Its descendants are

then ranked based on their BWAR scores, relative to N1. The order of items

in N1’s previous prediction list is used by AccessRank’s stability compo-

nent during this ranking; note that when using AccessRank 2, the switching

threshold is modified to be T = wBWAR(N1, N2)δ, instead of T = wN2δ.

To avoid calculating BWAR scores and rankings for every item in the

subtree, efficient culling can be used. First, recall that a node’s CRF and

Markov weights are both greater than or equal to those of any of its de-

scendants, since each retrieval for a file also marks a retrieval for each of its

244

ancestors. Therefore, for versions of AccessRank that do not incorporate a

time weighting (as in the Finder Highlights implementation of Icon High-

lights), a node’s AccessRank score will also be greater than or equal to the

scores of its descendants. Using the subtree depth dmax that is stored for

each node, the maximum possible BWAR score of any of the descendants of

N2, relative to the root node N1, is therefore calculated as:

BWARmax(N1, N2) =
(
d2 − d1 + dmaxN2

)
wN2

N1’s subtree can thus be searched using a priority queue, where a node

N2’s priority is equal to BWARmax(N1, N2). When evaluating a node N2, it

is added to a set of candidate nodes only if wBWAR(N1, N2)+T > wk, where T

is the AccessRank switching threshold, k is the number of results shown in the

Hover Menu, and wk is the BWAR score of the kth highest candidate score,

or 0 if fewer than k candidates exist. Additionally, N2’s children, denoted by

N2i , are added to the priority queue only when BWARmax(N1, N2i)+T > wk.

The search ends when either the priority queue is empty, or the highest

priority in the queue is less than the current value of wk (which can increase

over the course of the search).

Note that separate sets of candidate nodes will typically be maintained

for files and folders, however for simplicity, they are referred to here as a

single set.

Once a candidate set is finalised, its items are ranked using AccessRank.

The top k results are stored as the node’s previous list of predictions and

displayed in the menu.

8.5.2 Highlight Edge Indicators

A limitation of visually highlighting items is that the prominence or exis-

tence of obscured highlights is not known, such as when viewing a large

folder where scrolling is required. While the original design of Icon High-

lights included scrollbar marks to indicate the locations of items outside the

current view area, not all systems include scrollbars that are always visible.

Furthermore, in two dimensional views such as icon view, locations cannot

easily be deduced purely from markings in one dimensional horizontal and

245

(a) Whole edge highlighting

(b) Sticky item highlighting

(c) Stacked sticky item highlights

Figure 8.9: Edge highlight designs for Icon Highlights

vertical scrollbars. Although most participants in the Finder Highlights eval-

uation did not indicate that the need to emphasise obscured highlights was

a pressing issue, this section describes potential methods to assist those who

would like such a feature.

Techniques such as Halo [20] and Wedge [88] address the issue of occluded

objects by using visualisations at the screen edge that imply the exact loca-

tion of the object. Halo achieves this by displaying the edge of a ring, where

the centre of the ring corresponds to the object, and Wedge further devel-

246

ops the idea by displaying non-overlapping wedges. In a file browser, precise

two dimensional locations are less important than in other contexts, such

as landmarks on a map. For example, horizontal location is of no relevance

in list and column views, and there is typically minimal horizontal scrolling

required in icon view. As such, simpler techniques than Halo and Wedge are

likely sufficient.

Figure 8.9 shows two possible designs. The simpler, whole edge highlight-

ing, is shown in Figure 8.9a. Whole edge highlighting shows highlights at

the edge of the view, spanning the entire edge and indicating the direction

of occluded highlights. In the example, the highlight at the bottom of the

view indicates that highlighted items exist further down the view. Multiple

edges could be highlighted if highlights appear in multiple directions, and

corners could have diagonal sloped highlights to indicate any items that are

outside the visible bounds of the view in two dimensions. The intensity of the

highlight could be used to indicate the most intense occluded highlight, the

number of occluded highlights, or the distance to the next occluded highlight.

Figure 8.9b shows sticky item highlighting, where all occluded highlights

are shifted horizontally or vertically so that they are visible at the edge

of the visible area. Items that are outside the bounds in two dimensions

are shifted both horizontally and vertically. Figure 8.9c also shows sticky

item highlighting, with a much brighter edge highlight. This shows multiple

highlights ‘stacked’ (drawn on top of each other), and can be used as an

indicator of the number of occluded highlights. As the user scrolls down and

fewer highlights are occluded below the view, the edge indicator becomes

dimmer.

While the above designs are shown for Icon Highlights, they would work

equally well for Search Directed Navigation, with the exception that stacked

highlights would not be apparent as the drawing method is not cumulative.

8.6 Discussion

To briefly summarise, conducting a real world evaluation of Icon Highlights

and Search Directed Navigation required addressing several user interface de-

sign challenges in extending the previously reported research prototypes into

247

viable file browser features. It also required several extensions to existing

algorithms. Results of a four-week field study in which real users employed

Finder Highlights for their everyday file retrieval activities showed that Icon

Highlights reduced file retrieval times. Search Directed Navigation was ig-

nored by most users, but generated enthusiastic responses from those who

used it.

8.6.1 Methodology – Lab versus Field

Step and retrieval times from the field study were in line with those from the

original lab study, confirming the techniques’ performance benefits in real

world tasks. The main difference between the studies was the difference in

usage of Search Directed Navigation: in the lab, it caused marked perfor-

mance improvement and strongly positive subjective assessments, but in the

field, it was largely ignored. It is likely that the reason there was a large

difference between studies for Search Directed Navigation, but not for Icon

Highlights, stems from the difference between active and passive techniques;

lab studies are potentially more engaging than field studies, with implicit

expectations for participants to use new or novel interfaces, meaning that

lab studies overestimate the usage rate of active interfaces. On the other

hand, users have no choice in whether they use passive interfaces, so gain the

benefits in both contexts.

The field study also identified new use cases not identified in the lab study,

such as the use of Icon Highlights as a substitute for manual highlighting, or

to determine progress through a list of video files. This reinforces the view of

Hertzum [96] that lab studies are biased towards how tasks are performed,

rather than what tasks can be performed.

The findings from the field study underline and reiterate methodological

concerns previously identified in several HCI studies [43, 60, 146]. The need

for cross validation across multiple methods is well known (e.g., [96]), but

it remains relatively uncommon in HCI. There are good reasons for not ad-

vancing beyond lab studies – the potential of innovative interface concepts

can be established quickly and with strong rigour in controlled experimental

studies; advancing beyond lab studies requires arduous and refined system

248

engineering; and longitudinal evaluation is difficult to conduct, not least be-

cause of the difficulty of finding willing participants who will make prolonged

commitments to experimental software. Although these disincentives to the

evaluation of real systems are substantial, the results in this study exemplify

both the limits of lab studies and the value of field studies.

8.6.2 Overcoming Barriers to Adoption

The polarised results for Search Directed Navigation raise important and

general challenges for interface designers. In the lab study performance with

Search Directed Navigation was excellent. In the field study, at least some

who used it loved it. But, most participants ignored it.

It seems likely that Search Directed Navigation can improve user perfor-

mance in file retrieval tasks, as suggested by the lab study and the enthusiasm

of those who used it. However, until users have their first experience of its

benefits, they have little reason to try to exploit it, as doing so requires an

overhead in learning and adapting to its new functionality.

There was also evidence that many participants hesitated to use Search

Directed Navigation because of strong associations with search. In particu-

lar, all participants who agreed it was useful described it as a combination of

search and navigation, while all three participants who described it as purely

a search feature rated it negatively or neutrally. Furthermore, eight partic-

ipants provided “I don’t use search much” as a reason for not using Search

Directed Navigation. While Search Directed Navigation was designed, in

part, to bridge the gap between search and navigation, and thus to be used

for a wider range of retrievals than search (which is typically used as a last

resort [19, 25, 32, 34]), strong associations with search may have impacted its

uptake. Perhaps framing Search Directed Navigation as less of a search-based

technique would change perceptions and increase adoption – for example, by

changing its name and removing its integration with the standard search

field, instead using an alternate activation mechanism.

The barriers to adopting new and ultimately more efficient interface meth-

ods were also examined by Scarr et al. [165]. There are abundant opportu-

nities for further research on methods that help users identify and capitalise

249

on unused interface methods that will ultimately assist them in becoming

more efficient with computing tools, with ‘Skillometers’ providing one recent

example [126].

8.6.3 Predictive Highlighting More Broadly

Icon Highlights and Search Directed Navigation both use highlighting meth-

ods to draw the user’s attention to anticipated targets for retrieval. Although

the specific application area for Icon Highlights and Search Directed Navi-

gation is the important and frequent task of file retrieval, the results have

implications for many other application areas. Considerable previous re-

search has explored predictive highlighting (e.g., [5, 68, 134, 142]), with the

predictions often based on simple models of most frequent or most recent

accesses. As predictive algorithms become more accurate, there is likely to

be greater success in migrating related techniques into production systems.

Before this occurs, there are fruitful research opportunities in examining the

design space and effectiveness of different highlighting schemes.

8.6.4 Prediction Versus Interaction

Icon Highlights and Search Directed Navigation use sophisticated algorithms

to predict the user’s upcoming actions. Their predictive algorithms are cur-

rently exploited to assist the user’s manual methods for file retrieval – they

help users identify targets and learn the navigational actions required so

that users can improve performance over time. However, there is an inter-

face design tension between the accuracy of the predictive algorithm and the

interface methods used to present those predictions. For example, if Access-

Rank or any other algorithm had near perfect prediction, then it would be

near pointless to require the user to navigate to the file, and instead it could

be autonomously opened by the system. There are interesting theoretical

and design challenges in understanding the relative merits of different inter-

face methods in the presence of improving predictive algorithms, with some

of these issues discussed in [75].

250

8.6.5 Purpose of Stability in Predictions

AccessRank emphasises the need for prediction stability to enable greater

consistency in user interfaces. Its true importance relates to the benefits of

users being able to predict in advance where items will be or what items

will be emphasised [178]. Quantitative measures used to assess stability are

normally a suitable approximation of this property, however there are clear

cases where a mismatch occurs – for example, when accessing video files

sequentially, when the user expects the most recent files to be highlighted,

rather than a temporally stable set of items. This highlights the need for

further work on the development of new metrics or techniques to better

assess how well algorithm predictions match user expectations.

8.6.6 Highlighting Aesthetics and Effectiveness

Findlater et al. [68] commented that “it may be difficult to design visually

attractive real world interfaces that use highlighting, and even harder to add

colour highlighting to an existing interface”, since such highlighting would

compete with other uses of colour in these interfaces. The implementation

of Icon Highlights and Search Directed Navigation, and the positive survey

responses to the highlighting mechanisms, indicate that it is achievable in

the context of file browsers. Findlater et al.’s comment came in response to

a study by Gajos et al. [74], in which a highlighting technique for command

access was unsuccessful.

For highlighting techniques to be successful, it is likely that the following

requirements must be met: (1) that the underlying interfaces are not spatially

stable, meaning that spatial memory alone cannot be used to remember

item locations; and (2) that users can anticipate whether their target will

be highlighted [178]. While both of these are true for Icon Highlights and

Search Directed Navigation, this was not the case in Gajos et al.’s study.

8.7 Conclusion

Finder Highlights is a robust and real software system that augments the OS

X file browser, the Finder, with techniques designed to improve navigation-

251

based file retrieval. It was designed and implemented in order to test Icon

Highlights and Search Directed Navigation, two techniques that earlier lab

studies showed to have strong potential for improving file retrieval. This

chapter presented the interface and algorithmic design challenges associated

with advancing from the lab to the field. The algorithmic advances, in partic-

ular, represent research contributions that can be reused by future researchers

working on interfaces that predict upcoming user actions.

A four-week field study of Finder Highlights showed marked differences

between the lab and field results. While the field study results show that

the potential of Icon Highlights identified in the prior study is realised in

the field, the lab study results for Search Directed Navigation did not fully

translate to the field. The findings have clear implications for the design

of future file browser interfaces, which should incorporate features similar

to those of Finder Highlights, and for HCI experimental methodology. This

work will hopefully inspire more novel interactive techniques to be tested in

the field as well as the lab.

252

Part V

Discussion, Further Work and

Conclusions

253

Chapter IX

Discussion and Further Work

File retrieval is a common and important task for computer users. The

work presented in this thesis aims to improve user interfaces for file retrieval:

it described an empirical characterisation of file retrieval behaviour, intro-

duced a new prediction algorithm that can be used in a variety of user inter-

faces, and proposed and evaluated three improvements to file navigation.

This chapter takes a broader look at the context of this thesis. It describes

progress on research objectives, discusses the ways in which the research can

be generalised to other areas, and provides direction for future research.

9.1 Progress on Research Objectives

The introduction described four goals for the thesis, further broken down

from the overarching goal of understanding and improving personal file re-

trieval. These goals were:

1. Understand the methods with which users can currently retrieve files,

and understand retrieval behaviour in the context of existing knowledge

about file management.

2. Form an empirical characterisation of file retrieval behaviour based on

how users retrieve their files in a natural setting.

3. Develop and evaluate a prediction algorithm that can accurately predict

future user actions for use in user interfaces.

4. Design, implement and evaluate improved file retrieval methods that

allow users to access their files more efficiently.

254

The first part of goal 1 was advanced with a description and categorisation

of existing retrieval methods in Chapter 2. Chapter 3 further explored file

retrieval in the context of retrieval across different domains, and provided

a broad overview of existing literature on file management, addressing the

remainder of goal 1.

Goal 2 was progressed with the empirical characterisation of file retrieval

in Chapter 5. This characterisation was formed by conducting a four-week

longitudinal study in which FileMonitor, a logging tool described in Chapter

4, was deployed to 26 participants. The characterisation provided a thorough

description of file retrieval behaviour, including both quantitative measures

such as file retrieval times and window reuse behaviour, and qualitative data

from participant interviews.

Goal 3 was achieved with the design and evaluation of AccessRank in

Chapter 6. Simulations were performed that showed that AccessRank out-

performed existing algorithms over a range of datasets when considering the

combination of both accuracy and stability of results. AccessRank was fur-

ther developed in Chapter 8, where improvements were made to facilitate

predictions in hierarchical file structures.

Goal 4 was advanced with the design and evaluation of Icon Highlights,

Hover Menus and Search Directed Navigation. The techniques were initially

described and evaluated in Chapter 7. This evaluation showed that they

improved file retrieval times and were subjectively preferred over a stan-

dard navigation interface in a lab setting, and detailed the conditions under

which each interface performed best. Chapter 8 extended this work by im-

plementing fully functional versions of Icon Highlights and Search Directed

Navigation as part of a plugin to the OS X Finder called Finder Highlights.

A four-week longitudinal field study of Finder Highlights confirmed the ben-

efits of these techniques in a natural setting, while highlighting limitations

in the adoption of Search Directed Navigation outside a lab context.

Together, the progress on these goals significantly contributes towards

the research community’s knowledge of file retrieval, both in terms of under-

standing file retrieval (goals 1 and 2) and improving current interfaces (goals

3 and 4).

255

9.2 Context of This Thesis

This thesis provided new understanding of file retrieval and ways to improve

it. However, it is by no means exhaustive, and there are many aspects of file

management that were not investigated as part of this research.

Human-Computer Interaction

Human-Computer Information Retrieval

File Retrieval

File Navigation

Augmenting Navigation

Figure 9.1: Research context of this thesis

Figure 9.1 provides a simplified diagram of the context of this thesis.

Within Human-Computer Interaction, the thesis focused on Human-Computer

Information Retrieval [130]. This excluded other aspects of file management,

such as file organisation; although aspects of this were interweaved through-

out the thesis, it was not a primary focus. Within Human-Computer Infor-

mation Retrieval, the focus was on file retrieval, as opposed to other domains

such as retrieval of emails or previously visited websites. The improved file

retrieval interfaces described in Chapters 7 and 8 then further focused on file

navigation, having found in earlier chapters that navigation was the most

common file retrieval method. However, there are undoubtedly countless im-

provements that could be made to other retrieval methods, as well as the

design of completely new methods. Within file navigation, the focus was on

augmenting current navigation interfaces, adding additional features rather

than modifying existing ones. Methods that are still navigation-based, but

challenge the underlying assumptions of existing navigation interfaces, were

not explored.

Many of the results in this thesis generalise to some of the areas not

256

explicitly explored, in ways described in the following section. However, there

remain abundant research opportunities in the domain of file management

that were outside the scope of this thesis.

9.3 Research Generalisability

The focus on this thesis was on understanding file retrieval and improving

it through the use of particular enhancements to file navigation. However,

aspects of this research are generalisable and also apply to other areas. This

section focuses on three such areas, while the discussion sections of individual

chapters provide additional insights.

9.3.1 Characterisation of File Retrieval

The characterisation of file retrieval behaviour in Chapter 5 provided a broad

and detailed description of how users retrieve their files and the issues they

face. While this characterisation was important in advising the design of the

file retrieval improvements discussed later in the thesis, they are undoubtedly

also relevant to the design of other improved retrieval methods.

The results also have broader implications on research methodology, both

for studies of file retrieval and of user interfaces in general. Lab studies

often consider tasks in isolation (e.g., [29]), which facilitates robust statistical

analysis. However, the significant amount of window reuse in file navigation

shows that this is not how users perform tasks in practice; they multitask

and make use of existing resources that are available to them from previous

tasks. This has significant implications on the external validity of studies

that do not consider this, and suggests that studies that do not ‘reset’ the

experimental interface after each task may be more reflective of real-world

usage.

9.3.2 AccessRank

AccessRank was designed to be domain independent – that is, it does not

rely on the attributes of any particular domain, using only information about

the times of previous item accesses to make its predictions. While it was used

257

in the context of file retrieval interfaces in this thesis, it would be suitable

to many other domains, particularly those it was evaluated on: commands,

websites and window switches.

In many domains, AccessRank can be used unmodified. Those that use

hierarchical data can incorporate the AccessRank enhancements described

in Chapter 8. When global predictions are required across an entire hierar-

chy or sub-hierarchy, Benefit Weighted AccessRank (Chapter 8) can produce

predictions that take into account the relative costs of retrieving items at

varying hierarchy depths. While domain-specific enhancements are possible

in some domains (for example, by incorporating the effect of different access

methods for URLs), AccessRank can be used as-is to provide accurate and

stable predictions with a range of domains and predictive interfaces. Chap-

ter 6 provided some examples of interfaces into which AccessRank could be

incorporated.

9.3.3 Predictive Interfaces

Icon Highlights and Search Directed Navigation showed that predictive in-

terfaces, and in particular those that highlight likely items, can be highly

effective. Highlighting could therefore be adopted in a wider range of in-

terfaces. However, predictive interfaces must be designed with care – in

particular, it is important that they retain a degree of spatial consistency in

order to facilitate the transition to expert performance.

The specific interfaces introduced in this thesis could also be adapted for

other domains. For example, Icon Highlights could be adapted to highlight

links on web pages that are most likely to be of interest, determined based on

both the user’s access history and communal access patterns. Search Directed

Navigation could also highlight links, in order to help train people how to

access certain parts of large websites without the use of search. Similarly,

the techniques could be adopted for retrieval of email messages – as has been

suggested by Elsweiler et al. [64].

258

9.4 Future Work

While there is significant room for iterative refinement of the work described

in this thesis, this section focuses on some wider issues that have growing im-

portance as the world becomes more interconnected and technology becomes

more ubiquitous. These include the increasing use of shared data as part of

project collaboration, the use of multiple devices by single users, and chang-

ing file management paradigms as a result of greater security requirements.

9.4.1 Shared Data

The focus of this thesis was on retrieving items from personal file collections.

These personal collections differ from shared repositories, in that the owner

has sole control over, and has much greater familiarity with, their hierarchy

structure. On the other hand, shared repositories – commonly found on the

web – mean that only one person is responsible for the organisation of the

information, while other users can focus on retrieval.

Tools such as Dropbox [59] blur this boundary. Dropbox integrates with

file managers to provide a section of the file hierarchy which is shared with

other users. While all users who have access to a particular part of this

repository can modify its internal structure, these changes are synchronised,

and any changes are imposed on other users.

Systems like Dropbox introduce interesting directions for future research.

While the organisational load is shared amongst users, the loss of control is

disadvantageous; in the file retrieval characterisation study (Chapter 5) one

participant described this aspect as “really awkward”. Karlson et al. [113]

also describe this problem, naming it the ‘Ownership Problem’. There are

abundant research opportunities in investigating ways to mitigate this issue

– for example, how such tools could allow users to individually customise

their view of shared data to accommodate their own organisational struc-

ture, while retaining the ability to synchronous data between users. Such

customisations could also allow these shared files to be distributed amongst

existing organisational structures, resolving the conflict between organising

based on related content (e.g., by project) and based on purpose (e.g., for

sharing) [57] that these tools currently introduce.

259

The reduced need to spend time organising these shared repositories must

also be balanced with the greater difficulty retrieving files due to lower hi-

erarchy familiarity. Greater adoption of shared repositories increases the

importance of efficient retrieval methods, with those that can predict re-

trievals potentially playing an important role. While AccessRank (Chapter

6) makes predictions based on the access history of a single user, there is

scope for improved algorithms that incorporate usage history from multi-

ple users when acting on shared repositories. While this is common on the

web (e.g., [36, 141, 76]), web prediction algorithms incorporate data from

large numbers of users that allows for sophisticated analysis and prediction.

Hybrid algorithms, incorporating communal access history for repositories

shared with a small number of people, but biased towards the current user’s

history, are worthy of investigation.

9.4.2 Multiple Devices

While the previous section considered the problem of one hierarchy to many

users, this section considers the opposite problem: one user to many hierar-

chies. That is, the effect on predictions and their presentation when a single

user uses the same file on multiple devices.

The simplest case of this problem is when users have identical copies

of their file hierarchy on multiple devices, with the content synchronised

between them. Currently, the interfaces implemented in Finder Highlights

(Chapter 8) consider only those past retrievals performed on the same de-

vice, and synchronisation tools would not be able to merge the prediction

databases across devices. More sophisticated implementations of the retrieval

techniques could add explicit support for considering retrieval history across

multiple devices when making predictions, with the two main areas of work

being the merging of prediction databases when synchronising devices, and

considering the relative predictive power of accesses on each device on future

accesses on the current device. Algorithmic enhancements would be required

to support this latter consideration, in order to efficiently make predictions

based on past accesses where the device used for each access must be con-

sidered, and this might involve different (but compatible) representations of

260

the prediction database on each device.

In other cases, files or file hierarchies might be similar across devices,

but not identical. This could occur, for example, if a folder is copied to

another device but is not subsequently synchronised. Alternatively, it could

occur when synchronising with a device which uses a different representation

to store content – for example, synchronising between a desktop computer,

with a full file hierarchy, and a mobile device, with more limited support for

hierarchical file structures. In these cases, the individual files still exist on

multiple devices, but they are not necessarily organised in the same form.

Accessing one of these files on one device, however, may still impact the

probability that it will be accessed on a different device, and future predictive

algorithms and interfaces could add support for tracking files across devices

independent of hierarchical structure.

9.4.3 Changing Paradigms

As security concerns grow, new file management paradigms are emerging. As

an example, iOS uses application sandboxing, restricting applications to their

own storage areas. Apple’s iCloud technology [9] allows users to seamlessly

synchronise files across devices (for example, an iOS device and a desktop

computer), however these files are stored in ubiquity containers – sandboxed

areas of the file system reserved for a specific application or file type. Each

ubiquity container contains a ‘Documents’ folder, the contents of which is

presented to the user when they wish to save a file to, or open a file from,

the application’s iCloud storage area. However, there is no direct support

for creating additional subfolders inside these Documents folders.

While this approach eases the organisational load by automatically filing

based on application, it presents several problems. First, it does not allow

users to create their own hierarchies within each ubiquity container, negat-

ing many of the benefits that hierarchies provide when working with large

numbers of files. Second, it forces users to organise content in undesirable

ways. By requiring that users save content in iCloud’s storage area in order

to synchronise it across devices, it forces users to organise based on purpose

[57], when they more often consider their content based on project or role

261

[23]. Furthermore, within iCloud, it forces users to organise content based on

format. These two aspects create a mismatch between users’ mental models

of their files and how the computer presents them, forcing users to change

their thinking when retrieving a file to first consider attributes that are less

important to them, such as whether it is a synchronised document or what

format it is.

Unless improved non-hierarchical retrieval methods are developed, it is

unlikely that file management paradigms such as those used by iCloud will

become ubiquitous. While they are functional for smaller numbers of doc-

uments, the inability for users to organise based on project or role make

them infeasible for large numbers of documents, as is common in modern

computing. Further research is therefore needed to develop methods that al-

low users to use organisational schemes consistent with their mental models,

while also accommodating changing security requirements and the different

synchronisation, sharing and backup requirements of different files. Some of

these issues are also explored in Placeless Documents [57].

262

Chapter X

Conclusion

Personal file retrieval is a common, but tedious task for all computer users.

This thesis was motivated both by the knowledge gap faced by researchers in

how users retrieve their files, and by the desire to create improved retrieval

interfaces. It addressed these motivations in three parts. First, with an em-

pirical characterisation of personal file retrieval, describing in detail the files

people retrieve and the methods they use to do so in everyday work environ-

ments. Second, with a new prediction algorithm, AccessRank, for use in pre-

dictive user interfaces. Finally, with three enhancements to navigation-based

file retrieval which were found to improve retrieval times in both structured

lab studies and everyday retrieval tasks as part of a four-week field study.

This thesis made six primary research contributions, relating mainly to

the domain of personal file retrieval, but in some cases with broader appli-

cation:

1. A review of file retrieval methods and file management. This review

allows other researchers to more quickly evaluate currently retrieval

methods and opportunities for further research.

2. The development of FileMonitor, a tool that logs file retrieval behaviour

on OS X. FileMonitor enables accurate and automated collection of

large amounts of file retrieval data, which can be used either to char-

acterise file retrieval behaviour or for evaluating file retrieval interfaces

or prediction algorithms. The description of FileMonitor’s implemen-

tation is also of use to researchers developing similar tools.

3. An empirical characterisation of file retrieval behaviour. A four-week

longitudinal study involved 26 participants running FileMonitor on

263

their personal computers, followed by 30 minutes interviews about their

file management behaviours. FileMonitor logs and interview responses

provided a detailed characterisation of file retrieval behaviour, includ-

ing specific analyses of revisitation, window reuse, and the use of dif-

ferent retrieval methods. Findings from this characterisation provide

insights into both the design and evaluation of file retrieval tools.

4. The development and evaluation of AccessRank, a prediction algorithm

designed for use in a range of user interfaces. AccessRank was designed

with both accuracy and stability of results in mind. Simulations on a

range of datasets compared various configurations of AccessRank with

existing algorithms, showing that AccessRank outperformed existing

algorithms when considering the combination of accuracy and stabil-

ity, and also demonstrating the strengths of different algorithms across

different datasets.

5. The design of three interfaces that augment a standard file browser to

aid file navigation tasks: Icon Highlights, which highlight items that

are most likely to be accessed next; Search Directed Navigation, which

highlights items that match, or contain items that match a filename

query; and Hover Menus, which provide a menu containing shortcuts

to likely files and folders deeper in the hierarchy. A lab study of 16

participants showed that each improved file retrieval performance and

was subjectively preferred over a standard browser.

6. The design and evaluation of fully functional implementations of Icon

Highlights and Search Directed Navigation, implemented as part of

Finder Highlights, a plugin to a real-world file browser. The imple-

mentations include design and algorithmic enhancements to enable the

techniques to work in a real-world setting, including a specialised ver-

sion of AccessRank to predict future file retrievals for Icon Highlights,

and a search algorithm to determine filename matches for Search Di-

rected Navigation. Finder Highlights was evaluated in a four-week field

study with 19 participants, with results confirming the performance

264

benefits provided by Icon Highlights and highlighting the advantages

that field studies can offer over lab studies.

This research provides the foundation for further work in several areas.

First, the empirical characterisation of file retrieval highlights several areas in

which file retrieval tools can be improved. Second, many user interfaces could

benefit from incorporating AccessRank predictions to improve prediction ac-

curacy as well as results stability. Third, the improved navigation techniques

described in this thesis could be further improved based on feedback from

field study participants.

265

References

[1] Abrams, D., Baecker, R., and Chignell, M. Information archiving with

bookmarks: personal web space construction and organization. In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’98, ACM (New York, NY, USA, 1998), 41–48.

[2] Aceituno, J., and Roussel, N. The Hotkey Palette: Flexible Contextual

Retrieval of Chosen Documents and Windows. Tech. Rep. RR-8313,

INRIA, June 2013.

[3] Adar, E., Teevan, J., and Dumais, S. T. Resonance on the web: web

dynamics and revisitation patterns. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, CHI ’09, ACM (New

York, NY, USA, 2009), 1381–1390.

[4] Agarawala, A., and Balakrishnan, R. Keepin’ it real: pushing the

desktop metaphor with physics, piles and the pen. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI

’06, ACM (New York, NY, USA, 2006), 1283–1292.

[5] Alexander, J., Cockburn, A., Fitchett, S., Gutwin, C., and Greenberg,

S. Revisiting read wear: analysis, design, and evaluation of a footprints

scrollbar. In Proceedings of the 27th international conference on Human

factors in computing systems, CHI ’09, ACM (New York, NY, USA,

2009), 1665–1674.

[6] Alexander, J., Cockburn, A., and Lobb, R. Appmonitor: A tool for

recording user actions in unmodified windows applications. Behavior

Research Methods 40, 2 (2008), 413–421.

[7] Apple Developer Connection. Working with Spotlight.

https://developer.apple.com/library/mac/#documentation/Car

266

bon/Conceptual/MetadataIntro/MetadataIntro.html, retrieved

2013.

[8] Apple Inc. The Mac OS X Accessibility Protocol.

https://developer.apple.com/library/mac/#documentation/Acc

essibility/Conceptual/AccessibilityMacOSX/OSXAXModel/OSXAX

model.html, 2013.

[9] Apple Inc. iCloud Design Guide: iCloud Fundamentals.

https://developer.apple.com/library/mac/documentation/Gen

eral/Conceptual/iCloudDesignGuide/Chapters/iCloudFundamet

als.html, retrieved 2013.

[10] Apple Inc. Safari. http://www.apple.com/safari/, retrieved 2013.

[11] Arcuri, M., Coon, T., Johnson, J., Manning, A., and van Tilburg, M.

Adaptive menus, Sept. 19 2000. US Patent 6,121,968.

[12] Arlitt, M., Friedrich, R., and Jin, T. Performance evaluation of Web

proxy cache replacement policies. Performance Evaluation 39, 1-4

(2000), 149–164.

[13] Aula, A., Jhaveri, N., and Käki, M. Information search and re-access

strategies of experienced web users. In Proceedings of the 14th interna-

tional conference on World Wide Web, WWW ’05, ACM (New York,

NY, USA, 2005), 583–592.

[14] Azagury, A., Factor, M. E., Maarek, Y. S., and Mandler, B. A novel

navigation paradigm for xml repositories. Journal of the American

Society for Information Science and Technology 53, 6 (2002), 515–525.

[15] Balakrishnan, R. “beating” fitts’ law: virtual enhancements for point-

ing facilitation. Int. Journal of Human-Computer Studies (2004), 857–

874.

267

http://www.apple.com/safari/

[16] Bälter, O. Keystroke level analysis of email message organization. In

Proceedings of the SIGCHI conference on Human Factors in Computing

Systems, CHI ’00, ACM (New York, NY, USA, 2000), 105–112.

[17] Bao, X., Herlocker, J. L., and Dietterich, T. G. Fewer clicks and less

frustration: Reducing the cost of reaching the right folder. In Proceed-

ings of the 11th international conference on Intelligent user interfaces,

ACM (2006), 178–185.

[18] Barreau, D. Context as a factor in personal information management

systems. Journal of the American Society for Information Science 46,

5 (1995), 327–339.

[19] Barreau, D., and Nardi, B. A. Finding and reminding: file organization

from the desktop. SIGCHI Bull. 27, 3 (July 1995), 39–43.

[20] Baudisch, P., and Rosenholtz, R. Halo: a technique for visualizing off-

screen objects. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’03, ACM (New York, NY, USA,

2003), 481–488.

[21] Bellotti, V., Ducheneaut, N., Howard, M., Smith, I., and Grinter, R. E.

Quality versus quantity: E-mail-centric task management and its rela-

tion with overload. Human-computer interaction 20, 1 (2005), 89–138.

[22] Bergman, O., Beyth-Marom, R., and Nachmias, R. The user-subjective

approach to personal information management systems. Journal of the

American Society for Information Science and Technology 54, 9 (2003),

872–878.

[23] Bergman, O., Beyth-Marom, R., and Nachmias, R. The project frag-

mentation problem in personal information management. In Proceed-

ings of the SIGCHI conference on Human Factors in computing sys-

tems, CHI ’06, ACM (New York, NY, USA, 2006), 271–274.

268

[24] Bergman, O., Beyth-Marom, R., and Nachmias, R. The user-subjective

approach to personal information management systems design: Evi-

dence and implementations. Journal of the American Society for In-

formation Science and Technology 59, 2 (2008), 235–246.

[25] Bergman, O., Beyth-Marom, R., Nachmias, R., Gradovitch, N., and

Whittaker, S. Improved search engines and navigation preference in

personal information management. ACM Trans. Inf. Syst. 26, 4 (2008),

1–24.

[26] Bergman, O., Gradovitch, N., Bar-Ilan, J., and Beyth-Marom, R.

Folder versus tag preference in personal information management.

Journal of the American Society for Information Science and Tech-

nology (2013).

[27] Bergman, O., Tene-Rubinstein, M., and Shalom, J. The use of atten-

tion resources in navigation versus search. Personal and Ubiquitous

Computing 17, 3 (2013), 583–590.

[28] Bergman, O., Tucker, S., Beyth-Marom, R., Cutrell, E., and Whit-

taker, S. It’s not that important: demoting personal information of low

subjective importance using grayarea. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’09, ACM

(New York, NY, USA, 2009), 269–278.

[29] Bergman, O., Whittaker, S., Sanderson, M., Nachmias, R., and Ra-

mamoorthy, A. The effect of folder structure on personal file navi-

gation. Journal of the American Society for Information Science and

Technology (JASIST) 61, 12 (2011), 2300–2310.

[30] Bergman, O., Whittaker, S., Sanderson, M., Nachmias, R., and Ra-

mamoorthy, A. How do we find personal files?: the effect of os, pre-

sentation & depth on file navigation. In Proceedings of the 2012 ACM

annual conference on Human Factors in Computing Systems, CHI ’12,

ACM (New York, NY, USA, 2012), 2977–2980.

269

[31] Blacktree. Quicksilver. http://www.blacktree.com/, retrieved 2013.

[32] Blanc-Brude, T., and Scapin, D. L. What do people recall about their

documents?: implications for desktop search tools. In IUI ’07: Proceed-

ings of the 12th international conference on Intelligent user interfaces,

ACM (New York, NY, USA, 2007), 102–111.

[33] Boardman, R. Multiple hierarchies in user workspace. In CHI ’01:

CHI ’01 extended abstracts on Human factors in computing systems,

ACM (New York, NY, USA, 2001), 403–404.

[34] Boardman, R., and Sasse, M. A. ”stuff goes into the computer and

doesn’t come out”: a cross-tool study of personal information man-

agement. In Proceedings of the SIGCHI conference on Human factors

in computing systems, CHI ’04, ACM (New York, NY, USA, 2004),

583–590.

[35] Boardman, R., Spence, R., and Sasse, M. A. Too many hierarchies? the

daily struggle for control of the workspace. In Proc. HCI International

2003, vol. 1 (2003), 616–620.

[36] Bollen, J., Vandesompel, H., and Rocha, L. Mining associative re-

lations from website logs and their application to context-dependent

retrieval using spreading activation. In Workshop on Organizing Web

Space (WOWS), ACM Digital Libraries 99, August 1999, Berkeley,

California, Citeseer (1999).

[37] Bush, V. As We May Think. Atlantic Monthly (1945).

[38] Byrne, M. D., John, B. E., Wehrle, N. S., and Crow, D. C. The tangled

web we wove: a taskonomy of www use. In CHI ’99: Proceedings of

the SIGCHI conference on Human factors in computing systems, ACM

(New York, NY, USA, 1999), 544–551.

[39] Capra III, R. G., and Pérez-Quiñones, M. A. Using web search engines

to find and refind information. Computer 38 (2005), 36–42.

270

http://www.blacktree.com/

[40] Carroll, J. M. Creative names for personal files in an interactive com-

puting environment. International Journal of Man-Machine Studies

16, 4 (1982), 405–438.

[41] Case, D. O. Collection and organization of written information by so-

cial scientists and humanists: a review and exploratory study. Journal

of Information Science 12, 3 (1986), 97–104.

[42] Catledge, L., and Pitkow, J. Characterizing browsing strategies in the

World-Wide Web. Computer Networks and ISDN systems 27, 6 (1995),

1065–1073.

[43] Chiasson, S., Biddle, R., and van Oorschot, P. C. A second look at the

usability of click-based graphical passwords. In Proceedings of the 3rd

symposium on Usable privacy and security, SOUPS ’07, ACM (New

York, NY, USA, 2007), 1–12.

[44] Civan, A., Jones, W., Klasnja, P., and Bruce, H. Better to organize

personal information by folders or by tags?: The devil is in the de-

tails. Proceedings of the American Society for Information Science and

Technology 45, 1 (2008), 1–13.

[45] Cockburn, A., and Gutwin, C. A predictive model of human perfor-

mance with scrolling and hierarchical lists. Human-Computer Interac-

tion 24, 3 (2009), 273–314.

[46] Cockburn, A., Gutwin, C., and Greenberg, S. A predictive model

of menu performance. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’07, ACM (New York,

NY, USA, 2007), 627–636.

[47] Cockburn, A., and McKenzie, B. What do web users do? an empirical

analysis of web use. International Journal of Human-Computer Studies

54, 6 (2001), 903–922.

271

[48] CocoaDev. MethodSwizzling. http://cocoadev.com/

MethodSwizzling, retrieved 2013.

[49] Cole, I. Human aspects of office filing: Implications for the electronic

office. In Proceedings of the Human Factors and Ergonomics Society

Annual Meeting, vol. 26, SAGE Publications (1982), 59–63.

[50] Cook, T. It’s 10 o’clock: do you know where your data are? Technol.

Rev. 98, 1 (1995), 48–53.

[51] Cooley, R., Mobasher, B., and Srivastava, J. Web mining: information

and pattern discovery on the world wide web. In Tools with Artificial

Intelligence, 1997. Proceedings., Ninth IEEE International Conference

on (1997), 558–567.

[52] Cruz, I. F., and Xiao, H. A layered framework supporting personal in-

formation integration and application design for the semantic desktop.

The VLDB Journal 17, 6 (2008), 1385–1406.

[53] Cutrell, E., Dumais, S., and Teevan, J. Searching to eliminate personal

information management. Communications of the ACM 49, 1 (2006),

58–64.

[54] Cutrell, E., Robbins, D., Dumais, S., and Sarin, R. Fast, flexible filter-

ing with phlat. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’06, ACM (New York, NY, USA,

2006), 261–270.

[55] de Bruijn, O., Spence, R., and Chong, M. Y. Rsvp browser: Web

browsing on small screen devices. Personal Ubiquitous Comput. 6, 4

(2002), 245–252.

[56] Dhyani, D., Ng, W. K., and Bhowmick, S. S. A survey of web metrics.

ACM Comput. Surv. 34, 4 (2002), 469–503.

272

http://cocoadev.com/MethodSwizzling
http://cocoadev.com/MethodSwizzling

[57] Dourish, P., Edwards, W. K., LaMarca, A., Lamping, J., Petersen, K.,

Salisbury, M., Terry, D. B., and Thornton, J. Extending document

management systems with user-specific active properties. ACM Trans.

Inf. Syst. 18, 2 (2000), 140–170.

[58] Dourish, P., Edwards, W. K., LaMarca, A., and Salisbury, M. Presto:

an experimental architecture for fluid interactive document spaces.

ACM Trans. Comput.-Hum. Interact. 6, 2 (1999), 133–161.

[59] Dropbox, Inc. Dropbox. https://www.dropbox.com/, retrieved 2013.

[60] Duh, H. B.-L., Tan, G. C. B., and Chen, V. H.-h. Usability evalua-

tion for mobile device: a comparison of laboratory and field tests. In

Proceedings of the 8th conference on Human-computer interaction with

mobile devices and services, MobileHCI ’06, ACM (New York, NY,

USA, 2006), 181–186.

[61] Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R., and Robbins,

D. C. Stuff i’ve seen: a system for personal information retrieval and

re-use. In SIGIR ’03: Proceedings of the 26th annual international

ACM SIGIR conference on Research and development in informaion

retrieval, ACM (New York, NY, USA, 2003), 72–79.

[62] Dumais, S. T., and Jones, W. P. A comparison of symbolic and spatial

filing. In CHI ’85: Proceedings of the SIGCHI conference on Human

factors in computing systems, ACM (New York, NY, USA, 1985), 127–

130.

[63] Ehret, B. D. Learning where to look: location learning in graphical user

interfaces. In Proceedings of the SIGCHI conference on Human factors

in computing systems: Changing our world, changing ourselves, CHI

’02, ACM (New York, NY, USA, 2002), 211–218.

[64] Elsweiler, D., Harvey, M., and Hacker, M. Understanding re-finding be-

havior in naturalistic email interaction logs. In Proceedings of the 34th

international ACM SIGIR conference on Research and development in

273

https://www.dropbox.com/

Information Retrieval, SIGIR ’11, ACM (New York, NY, USA, 2011),

35–44.

[65] Fagin, R., Kumar, R., and Sivakumar, D. Comparing top k lists. SIAM

Journal on Discrete Mathematics 17, 1 (2004), 134–160.

[66] Fertig, S., Freeman, E., and Gelernter, D. “Finding and reminding”

reconsidered. SIGCHI Bull. 28, 1 (1996), 66–69.

[67] Findlater, L., and McGrenere, J. A comparison of static, adaptive, and

adaptable menus. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’04, ACM (New York, NY, USA,

2004), 89–96.

[68] Findlater, L., Moffatt, K., McGrenere, J., and Dawson, J. Ephemeral

adaptation: the use of gradual onset to improve menu selection perfor-

mance. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’09, ACM (New York, NY, USA, 2009),

1655–1664.

[69] Fisher, D., Brush, A. J., Gleave, E., and Smith, M. A. Revisiting whit-

taker & sidner’s ”email overload” ten years later. In Proceedings of the

2006 20th anniversary conference on Computer supported cooperative

work, CSCW ’06, ACM (New York, NY, USA, 2006), 309–312.

[70] Fitts, P. M. The information capacity of the human motor system in

controlling the amplitude of movement. 1954. J Exp Psychol Gen 121,

3 (September 1992), 262–269.

[71] Forlines, C., and Balakrishnan, R. Improving visual search with image

segmentation. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’09, ACM (New York, NY, USA,

2009), 1093–1102.

[72] Freeman, E., and Gelernter, D. Lifestreams: a storage model for per-

sonal data. SIGMOD Rec. 25, 1 (Mar. 1996), 80–86.

274

[73] Frias-Martinez, E., and Karamcheti, V. A prediction model for user

access sequences. In Proceedings of the WEBKDD workshop: web min-

ing for usage patterns and user profiles, ACM SIGKDD international

conference on knowledge discovery and data mining (2002).

[74] Gajos, K. Z., Czerwinski, M., Tan, D. S., and Weld, D. S. Exploring

the design space for adaptive graphical user interfaces. In Proceedings

of the working conference on Advanced visual interfaces, AVI ’06, ACM

(New York, NY, USA, 2006), 201–208.

[75] Gajos, K. Z., Everitt, K., Tan, D. S., Czerwinski, M., and Weld, D. S.

Predictability and accuracy in adaptive user interfaces. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems,

CHI ’08, ACM (New York, NY, USA, 2008), 1271–1274.

[76] Gaul, W., and Schmidt-thieme, L. Mining web navigation path frag-

ments. In In Proceedings of the Workshop on Web Mining for E-

Commerce Challenges and Opportunities (2000).

[77] Gemmell, J., Bell, G., Lueder, R., Drucker, S., and Wong, C.

Mylifebits: fulfilling the memex vision. In MULTIMEDIA ’02: Proceed-

ings of the tenth ACM international conference on Multimedia, ACM

(New York, NY, USA, 2002), 235–238.

[78] Géry, M., and Haddad, H. Evaluation of web usage mining approaches

for user’s next request prediction. In Proceedings of the 5th ACM inter-

national workshop on Web information and data management, WIDM

’03, ACM (New York, NY, USA, 2003), 74–81.

[79] Gifford, D. K., Jouvelot, P., Sheldon, M. A., and O’Toole, Jr., J. W.

Semantic file systems. SIGOPS Oper. Syst. Rev. 25, 5 (1991), 16–25.

[80] Golemati, M., Katifori, A., Giannopoulou, E. G., Daradimos, I., and

Vassilakis, C. Evaluating the significance of the windows explorer vi-

sualization in personal information management browsing tasks. In In-

275

formation Visualization, 2007. IV’07. 11th International Conference,

IEEE (2007), 93–100.

[81] Gonçalves, D. Users and their documents. Tech. rep., Technical Report,

Instituto Superior Técnico, 2002.

[82] Gonçalves, D., and Jorge, J. An empirical study of personal docu-

ment spaces. Interactive Systems. Design, Specification, and Verifica-

tion (2003), 403–412.

[83] Google. Quick Search Box. http://www.google.com/

quicksearchbox/, retrieved 2013.

[84] Greenberg, S. Using unix: Collected traces of 168 users. Tech. rep., Re-

search Report 88/333/45, Department of Computer Science, University

of Calgary, Calgary, Alberta, 1988.

[85] Greenberg, S., and Witten, I. Supporting command reuse: empiri-

cal foundations and principles. International Journal of Man-Machine

Studies 39, 3 (1993), 353–390.

[86] Greenberg, S., and Witten, I. Supporting command reuse: Mechanisms

for reuse. International Journal of Man-Machine Studies 39, 3 (1993),

391–425.

[87] Gregor, S., and Peter, K. Stability of ranked gene lists in large mi-

croarray analysis studies. Journal of Biomedicine and Biotechnology

2010 (2010).

[88] Gustafson, S., Baudisch, P., Gutwin, C., and Irani, P. Wedge: clutter-

free visualization of off-screen locations. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’08, ACM

(New York, NY, USA, 2008), 787–796.

[89] Hart, S., and Staveland, L. Development of nasa-tlx (task load in-

dex): Results of empirical and theoretical research. In Human Mental

Workload, P. Hancock, Ed. (1988), 139–183.

276

http://www.google.com/quicksearchbox/
http://www.google.com/quicksearchbox/

[90] Hearst, M. Design recommendations for hierarchical faceted search

interfaces. In ACM SIGIR workshop on faceted search (2006), 1–5.

[91] Hearst, M. A. Clustering versus faceted categories for information

exploration. Commun. ACM 49, 4 (2006), 59–61.

[92] Henderson, S. Genre, task, topic and time: facets of personal digital

document management. In CHINZ ’05: Proceedings of the 6th ACM

SIGCHI New Zealand chapter’s international conference on Computer-

human interaction, ACM (New York, NY, USA, 2005), 75–82.

[93] Henderson, S. How do people manage their documents?: an empiri-

cal investigation into personal document management practices among

knowledge workers. PhD Thesis-University of Auckland (2009).

[94] Henderson, S. Personal document management strategies. In Proceed-

ings of the 10th International Conference NZ Chapter of the ACM’s

Special Interest Group on Human-Computer Interaction, CHINZ ’09,

ACM (New York, NY, USA, 2009), 69–76.

[95] Henderson, S., and Srinivasan, A. An empirical analysis of personal

digital document structures. Human Interface and the Management of

Information. Designing Information Environments (2009), 394–403.

[96] Hertzum, M. User testing in industry: A case study of laboratory,

workshop, and field tests. In Proceedings of the 5th ERCIM Workshop

(1999), 59–72.

[97] Hick, W. On the rate of gain of information. The Quarterly Journal

of Experimental Psychology 4, 1 (1952), 11–26.

[98] Hill, W. C., Hollan, J. D., Wroblewski, D., and McCandless, T. Edit

wear and read wear. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’92, ACM (New York,

NY, USA, 1992), 3–9.

277

[99] Huang, Y.-F., and Hsu, J.-M. Mining web logs to improve hit ratios

of prefetching and caching. Know.-Based Syst. 21 (February 2008),

62–69.

[100] Humanized. Enso Launcher. http://humanized.com/enso/

launcher/, retrieved 2013.

[101] Hyman, R. Stimulus information as a determinant of reaction time.

Journal of Experimental Psychology 45, 3 (1953), 188–196.

[102] Jensen, C., Lonsdale, H., Wynn, E., Cao, J., Slater, M., and Dietterich,

T. G. The life and times of files and information: a study of desktop

provenance. In CHI ’10: Proceedings of the 28th international confer-

ence on Human factors in computing systems, ACM (New York, NY,

USA, 2010), 767–776.

[103] Jones, W. Finders, keepers? the present and future perfect in support

of personal information management. First Monday 9, 3 (2004).

[104] Jones, W. Personal information management. Annual review of infor-

mation science and technology 41, 1 (2007), 453–504.

[105] Jones, W., Bruce, H., and Dumais, S. Keeping found things found

on the web. In Proceedings of the tenth international conference on

Information and knowledge management, ACM (2001), 119–126.

[106] Jones, W., Bruce, H., and Dumais, S. How do people get back to

information on the web? how can they do it better? In Proceedings of

INTERACT ’03 (2003), 793–796.

[107] Jones, W., Dumais, S., and Bruce, H. Once found, what then? A study

ofkeeping behaviors in the personal use of Web information. Proceedings

of the American Society for Information Science and Technology 39, 1

(2002), 391–402.

278

http://humanized.com/enso/launcher/
http://humanized.com/enso/launcher/

[108] Jones, W., Phuwanartnurak, A. J., Gill, R., and Bruce, H. Don’t take

my folders away!: organizing personal information to get things done.

In CHI ’05: CHI ’05 extended abstracts on Human factors in computing

systems, ACM (New York, NY, USA, 2005), 1505–1508.

[109] Joy, W. An Introduction to the C shell, vol. 2c. University of California,

Berkeley, 1980.

[110] Kaasten, S., and Greenberg, S. Integrating back, history and book-

marks in web browsers. In CHI ’01: CHI ’01 extended abstracts on

Human factors in computing systems, ACM (New York, NY, USA,

2001), 379–380.

[111] Käki, M. Findex: search result categories help users when document

ranking fails. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’05, ACM (New York, NY, USA,

2005), 131–140.

[112] Kaptelinin, V. Creating computer-based work environments: an em-

pirical study of macintosh users. In Proceedings of the 1996 ACM

SIGCPR/SIGMIS conference on Computer personnel research, ACM

(1996), 360–366.

[113] Karlson, A. K., Smith, G., and Lee, B. Which version is this?: im-

proving the desktop experience within a copy-aware computing ecosys-

tem. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’11, ACM (New York, NY, USA, 2011),

2669–2678.

[114] Koren, J., Leung, A., Zhang, Y., Maltzahn, C., Ames, S., and Miller, E.

Searching and navigating petabyte-scale file systems based on facets. In

PDSW ’07: Proceedings of the 2nd international workshop on Petascale

data storage, ACM (New York, NY, USA, 2007), 21–25.

279

[115] Krishnan, A., and Jones, S. Timespace: activity-based temporal visu-

alisation of personal information spaces. Personal Ubiquitous Comput.

9, 1 (2005), 46–65.

[116] Kuiyu, B. An intelligent recommender system using sequential Web

access patterns. In Conference on Cybernetics and Intelligent Systems,

vol. 1 (2004), 3.

[117] Kurtenbach, G. P. The design and evaluation of marking menus. PhD

thesis, University of Toronto, Ontario, Canada, 1993.

[118] Kwasnik, B. How a personal document’s intended use or purpose affects

its classification in an office. In ACM SIGIR Forum, vol. 23, ACM

(1989), 207–210.

[119] Kwasnik, B. The importance of factors that are not document at-

tributes in the organisation of personal documents. Journal of docu-

mentation 47, 4 (1991), 389–398.

[120] Landauer, T. K., and Nachbar, D. W. Selection from alphabetic and

numeric menu trees using a touch screen: breadth, depth, and width.

In Proceedings of the SIGCHI Conference on Human Factors in Com-

puting Systems, CHI ’85, ACM (New York, NY, USA, 1985), 73–78.

[121] Lansdale, M. The psychology of personal information management.

Applied Ergonomics 19, 1 (1988), 55–66.

[122] Lee, D., Choi, J., Kim, J.-H., Noh, S. H., Min, S. L., Cho, Y., and

Kim, C. S. On the existence of a spectrum of policies that subsumes

the least recently used (lru) and least frequently used (lfu) policies.

SIGMETRICS Perform. Eval. Rev. 27, 1 (1999), 134–143.

[123] Lewis, J. P., Rosenholtz, R., Fong, N., and Neumann, U. Visualids:

automatic distinctive icons for desktop interfaces. In ACM SIGGRAPH

2004 Papers, SIGGRAPH ’04, ACM (New York, NY, USA, 2004), 416–

423.

280

[124] Mackay, W. E. Diversity in the use of electronic mail: a preliminary

inquiry. ACM Trans. Inf. Syst. 6, 4 (Oct. 1988), 380–397.

[125] Mackay, W. E. The missing link: integrating paper and electronic

documents. In Proceedings of the 15th French-speaking conference on

human-computer interaction, IHM 2003, ACM (New York, NY, USA,

2003), 1–8.

[126] Malacria, S., Scarr, J., Cockburn, A., Gutwin, C., and Grossman, T.

Skillometers: reflective widgets that motivate and help users to improve

performance. In Proceedings of the 26th annual ACM symposium on

User interface software and technology, UIST ’13, ACM (New York,

NY, USA, 2013), 321–330.

[127] Malone, T. W. How do people organize their desks?: Implications for

the design of office information systems. ACM Trans. Inf. Syst. 1, 1

(1983), 99–112.

[128] Mander, R., Salomon, G., and Wong, Y. Y. A ‘pile’ metaphor for

supporting casual organization of information. In CHI ’92: Proceedings

of the SIGCHI conference on Human factors in computing systems,

ACM (New York, NY, USA, 1992), 627–634.

[129] Mannila, H., and Toivonen, H. Discovering generalized episodes using

minimal occurrences. In Proceedings of the 2nd International Confer-

ence on Knowledge Discovery in Databases and Data Mining (1996),

146–151.

[130] Marchionini, G. Toward human-computer information retrieval. Bul-

letin of the American Society for Information Science and Technology

32, 5 (2006), 20–22.

[131] Markatos, E. P. On caching search engine query results. Computer

Communications 24, 2 (2001), 137–143.

281

[132] Markov, A. The theory of algorithms. American Mathematical Society

Translations (1960).

[133] Marsden, G., and Cairns, D. E. Improving the usability of the hier-

archical file system. In SAICSIT ’03: Proceedings of the 2003 annual

research conference of the South African institute of computer scien-

tists and information technologists on Enablement through technology,

South African Institute for Computer Scientists and Information Tech-

nologists (Republic of South Africa, 2003), 122–129.

[134] Matejka, J., Li, W., Grossman, T., and Fitzmaurice, G. Communi-

tycommands: command recommendations for software applications.

In Proceedings of the 22nd annual ACM symposium on User interface

software and technology, ACM (2009), 193–202.

[135] Mayer, M. Web history tools and revisitation support: A survey of

existing approaches and directions. Found. Trends Hum.-Comput. In-

teract. 2, 3 (Mar. 2009), 173–278.

[136] McKenzie, B., and Cockburn, A. An Empirical Analysis of Web Page

Revisitation. In Maui, Hawaii: Proceedings of the 34th Hawaiian In-

ternational Conference on System Sciences, HICCSS34 (2001).

[137] Megiddo, N., and Modha, D. S. Arc: A self-tuning, low overhead re-

placement cache. In FAST ’03: Proceedings of the 2nd USENIX Con-

ference on File and Storage Technologies, USENIX Association (Berke-

ley, CA, USA, 2003), 115–130.

[138] Megiddo, N., and Modha, D. S. Outperforming lru with an adaptive

replacement cache algorithm. Computer 37 (2004), 58–65.

[139] Microsoft. Windows Search. http://windows.microsoft.com/en-

US/windows7/products/features/windows-search, retrieved 2013.

282

[140] Miller, D. P. The depth/breadth tradeoff in hierarchical computer

menus. Proceedings of the Human Factors and Ergonomics Society

Annual Meeting 25, 1 (1981), 296–300.

[141] Mobasher, B., Dai, H., Luo, T., and Nakagawa, M. Using sequential

and non-sequential patterns in predictive web usage mining tasks. In

Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International

Conference on (2002), 669–672.

[142] Moon, J. M., and Fu, W.-T. Effects of spatial locations and luminance

on finding and re-finding information in a desktop environment. In CHI

’09: Proceedings of the 27th international conference extended abstracts

on Human factors in computing systems, ACM (New York, NY, USA,

2009), 3365–3370.

[143] Mozilla. The Places frecency algorithm. https://developer.mozilla

.org/en/The Places frecency algorithm, 2008.

[144] Mozilla. Firefox web browser. http://www.mozilla.com/firefox/,

retrieved 2013.

[145] Nardi, B., Anderson, K., and Erickson, T. Filing and finding computer

files. Proceedings of the East-West HCI, Moscow, Russia (1995).

[146] Nielsen, C. M., Overgaard, M., Pedersen, M. B., Stage, J., and Stenild,

S. It’s worth the hassle!: the added value of evaluating the usability of

mobile systems in the field. In Proceedings of the 4th Nordic conference

on Human-computer interaction: changing roles, NordiCHI ’06, ACM

(New York, NY, USA, 2006), 272–280.

[147] Obendorf, H., Weinreich, H., Herder, E., and Mayer, M. Web page

revisitation revisited: implications of a long-term click-stream study

of browser usage. In CHI ’07: Proceedings of the SIGCHI conference

on Human factors in computing systems, ACM (New York, NY, USA,

2007), 597–606.

283

http://www.mozilla.com/firefox/

[148] Objective Development. LaunchBar. http://www.obdev.at/

products/launchbar/, retrieved 2013.

[149] Padioleau, Y., Sigonneau, B., and Ridoux, O. Lisfs: a logical infor-

mation system as a file system. In ICSE ’06: Proceedings of the 28th

international conference on Software engineering, ACM (New York,

NY, USA, 2006), 803–806.

[150] Perkowitz, M., and Etzioni, O. Towards adaptive web sites: Conceptual

framework and case study. Computer Networks 31, 11-16 (1999), 1245–

1258.

[151] Perugini, S. Supporting multiple paths to objects in information hier-

archies: Faceted classification, faceted search, and symbolic links. Inf.

Process. Manage. 46, 1 (2010), 22–43.

[152] Philippe Mougin. F-Script. http://www.fscript.org, retrieved 2013.

[153] Quan, D., Bakshi, K., Huynh, D., and Karger, D. User inter-

faces for supporting multiple categorization. In INTERACT’03; IFIP

TC13 International Conference on Human-Computer Interaction, 1st-

5th September 2003, Zurich, Switzerland, Ios Pr Inc (2003), 228.

[154] Raskin, J. The humane interface: new directions for designing interac-

tive systems. ACM Press/Addison-Wesley Publishing Co., New York,

NY, USA, 2000.

[155] Ravasio, P., Schär, S. G., and Krueger, H. In pursuit of desktop evolu-

tion: User problems and practices with modern desktop systems. ACM

Trans. Comput.-Hum. Interact. 11, 2 (2004), 156–180.

[156] Rekimoto, J. Time-machine computing: a time-centric approach for

the information environment. In UIST ’99: Proceedings of the 12th

annual ACM symposium on User interface software and technology,

ACM (New York, NY, USA, 1999), 45–54.

284

http://www.obdev.at/products/launchbar/
http://www.obdev.at/products/launchbar/
http://www.fscript.org

[157] Ringel, M., Cutrell, E., Dumais, S., and Horvitz, E. Milestones in time:

The value of landmarks in retrieving information from personal stores.

In Human-computer interaction: INTERACT’03; IFIP TC13 Interna-

tional Conference on Human-Computer Interaction, 1st-5th September

2003, Zurich, Switzerland, Ios Pr Inc (2003), 184.

[158] Robertson, G. G., Mackinlay, J. D., and Card, S. K. Cone trees: ani-

mated 3d visualizations of hierarchical information. In CHI ’91: Pro-

ceedings of the SIGCHI conference on Human factors in computing

systems, ACM (New York, NY, USA, 1991), 189–194.

[159] Robinson, J. T., and Devarakonda, M. V. Data cache management us-

ing frequency-based replacement. SIGMETRICS Perform. Eval. Rev.

18, 1 (1990), 134–142.

[160] Romano, S., and ElAarag, H. A quantitative study of recency and

frequency based web cache replacement strategies. In CNS ’08: Pro-

ceedings of the 11th communications and networking simulation sym-

posium, ACM (New York, NY, USA, 2008), 70–78.

[161] Running with Crayons Ltd. Alfred. http://www.alfredapp.com/,

retrieved 2013.

[162] Russell, D., and Lawrence, S. Search everything. Personal information

management (2007), 153–166.

[163] Salton, G., and McGill, M. J. Introduction to Modern Information

Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[164] Sarukkai, R. Link prediction and path analysis using Markov chains.

Computer Networks 33, 1-6 (2000), 377–386.

[165] Scarr, J., Cockburn, A., Gutwin, C., and Quinn, P. Dips and ceilings:

understanding and supporting transitions to expertise in user inter-

faces. In Proceedings of the SIGCHI Conference on Human Factors

285

http://www.alfredapp.com/

in Computing Systems, CHI ’11, ACM (New York, NY, USA, 2011),

2741–2750.

[166] Sears, A., and Shneiderman, B. Split menus: effectively using selection

frequency to organize menus. ACM TOCHI 1, 1 (1994), 27–51.

[167] Sinha, D., and Basu, A. Gardener: A file browser assistant to help users

maintaining semantic folder hierarchy. In Intelligent Human Com-

puter Interaction (IHCI), 2012 4th International Conference on, IEEE

(2012), 1–6.

[168] Solomon, M. SIMBL. http://www.culater.net/software/SIMBL/

SIMBL.php, retrieved 2013.

[169] Soules, C. A. N., and Ganger, G. R. Connections: using context to

enhance file search. SIGOPS Oper. Syst. Rev. 39, 5 (2005), 119–132.

[170] Stasko, J. An evaluation of space-filling information visualizations for

depicting hierarchical structures. Int. J. Hum.-Comput. Stud. 53, 5

(Nov. 2000), 663–694.

[171] Steve Nygard. class-dump. http://www.codethecode.com/projects/

class-dump/, retrieved 2013.

[172] Tak, S. Understanding and Supporting Window Switching. PhD thesis,

University of Canterbury, 2011.

[173] Tang, J. C., Drews, C., Smith, M., Wu, F., Sue, A., and Lau, T. Ex-

ploring patterns of social commonality among file directories at work.

In Proceedings of the SIGCHI Conference on Human Factors in Com-

puting Systems, CHI ’07, ACM (New York, NY, USA, 2007), 951–960.

[174] Tauscher, L., and Greenberg, S. How people revisit web pages: empir-

ical findings and implications for the design of history systems. Inter-

national Journal of Human Computer Studies 47 (1997), 97–138.

286

http://www.culater.net/software/SIMBL/SIMBL.php
http://www.culater.net/software/SIMBL/SIMBL.php
http://www.codethecode.com/projects/class-dump/
http://www.codethecode.com/projects/class-dump/

[175] Teevan, J., Adar, E., Jones, R., and Potts, M. A. S. Information re-

retrieval: repeat queries in yahoo’s logs. In Proceedings of the 30th

annual international ACM SIGIR conference on Research and devel-

opment in information retrieval, SIGIR ’07, ACM (New York, NY,

USA, 2007), 151–158.

[176] Teevan, J., Alvarado, C., Ackerman, M. S., and Karger, D. R. The

perfect search engine is not enough: a study of orienteering behavior

in directed search. In CHI ’04: Proceedings of the SIGCHI conference

on Human factors in computing systems, ACM (New York, NY, USA,

2004), 415–422.

[177] Thorington, J., and Irwin, J. An adaptive replacement algorithm for

paged-memory computer systems. IEEE Transactions on Computers

21 (1972), 1053–1061.

[178] Treisman, A. Perceptual grouping and attention in visual search for

features and for objects. Journal of Experimental Psychology: Human

Perception and Performance 8, 2 (1982), 194.

[179] Tulving, E., and Thomson, D. Encoding specificity and retrieval pro-

cesses in episodic memory. Psychological review 80, 5 (1973), 352–373.

[180] Tyler, S. K., and Teevan, J. Large scale query log analysis of re-

finding. In Proceedings of the third ACM international conference on

Web search and data mining, WSDM ’10, ACM (New York, NY, USA,

2010), 191–200.

[181] Webber, W., Moffat, A., and Zobel, J. A similarity measure for indefi-

nite rankings. ACM Transactions on Information Systems (TOIS) 28,

4 (2010), 20.

[182] Weinreich, H., Obendorf, H., Herder, E., and Mayer, M. Not quite the

average: An empirical study of web use. ACM Trans. Web 2, 1 (2008),

1–31.

287

[183] Whittaker, S., and Hirschberg, J. The character, value, and manage-

ment of personal paper archives. ACM Trans. Comput.-Hum. Interact.

8, 2 (2001), 150–170.

[184] Whittaker, S., Matthews, T., Cerruti, J., Badenes, H., and Tang, J.

Am i wasting my time organizing email?: a study of email refinding. In

Proceedings of the SIGCHI Conference on Human Factors in Comput-

ing Systems, CHI ’11, ACM (New York, NY, USA, 2011), 3449–3458.

[185] Whittaker, S., and Sidner, C. Email overload: exploring personal infor-

mation management of email. In CHI ’96: Proceedings of the SIGCHI

conference on Human factors in computing systems, ACM (New York,

NY, USA, 1996), 276–283.

[186] Wu, S., and Crestani, F. Methods for ranking information retrieval

systems without relevance judgments. In Proceedings of the 2003 ACM

symposium on Applied computing, SAC ’03, ACM (New York, NY,

USA, 2003), 811–816.

[187] Yee, K.-P., Swearingen, K., Li, K., and Hearst, M. Faceted metadata

for image search and browsing. In Proceedings of the SIGCHI Confer-

ence on Human Factors in Computing Systems, CHI ’03, ACM (New

York, NY, USA, 2003), 401–408.

[188] Zhang, J., Izmailov, R., Reininger, D., and Ott, M. Web caching

framework: Analytical models and beyond. In Internet Applications,

1999. IEEE Workshop on, IEEE (2002), 132–141.

[189] Zipf, G. K. Human Behaviour and the Principle of Least-Effort.

Addison-Wesley, 1949.

288

Appendices

289

Appendix A

Characterisation Study Material

The following material from the file retrieval characterisation study in

Chapter 5 is presented on the following pages:

1. The information sheet provided to participants before they agreed to

participate in the study.

2. The consent form that was signed by all participants before FileMonitor

was installed on their computers.

3. The template for the post-study interview. This template was used

by the interviewer, both as a topic prompt and to take notes during

the interview. However, it was only used as a guide, and additional

questions were generally asked based on participant responses to the

planned questions.

290

Department of Computer Science and
Software Engineering

Stephen Fitchett Professor Andy Cockburn
Erskine Room 344, Tel: +64 27 3788035 Tel: +64 3 364 2987 x7755
Email: stephen.fitchett@pg.canterbury.ac.nz Email: andy@cosc.canterbury.ac.nz

Information Sheet for “File Use Study”

You are invited to participate in the research project “File Use Study”.

The aim of this project is to understand how users access their files. This will allow us to design and
build improved user interfaces for file access.

If you agree to participate in the study you will be asked to install our file logging software on your
computer. This program silently monitors the mechanisms for file accesses (e.g., by opening folders,
by double-clicking on a file icon, use of search, file renaming activities, etc.) and records them in log
files stored on your computer.

Privacy

Information that includes file names, file paths and Spotlight search terms are stored, which allows us
to see how frequently the same files are used, but the actual file content is not stored. Your log files
will be processed by a computer program, and no human will see your file names or search terms.
You can view the content of the log files at any point by viewing the content of the files in
“~/Library/Application Support/FileLogger/”. At any time, we will be happy to walk you through the
content of these files. You also have the right to withdraw from the project at any time, including
withdrawal of any information provided.

What’s involved

At the start of the study we’ll install the software, and you’ll complete a short pre-study survey. The
software will gather data for a period of four weeks. This should have no effect on your computer’s
performance, and you should continue to use your computer as normal.

At the end of the study we will contact you to arrange a time to retrieve the log files and uninstall the
logging software. There will be a short post-study questionnaire. We offer a $50 shopping voucher as
reward and thanks to all participants when we receive their log files.

About the study

The results of the project may be published (including in a publicly accessible PhD thesis), but you are
assured of the complete confidentiality of data gathered in this investigation: the identity of
participants will not be made public. To ensure anonymity and confidentiality your signed consent
form will be stored in a locked filing cabinet in a locked office, and computer logs of your participation
are anonymous.

The project is being carried out by PhD student Stephen Fitchett, as part of a Marsden funded
research project under the supervision of Professor Andy Cockburn. Both Stephen and Andy can be

291

contacted using the information above. They will be pleased to discuss any concerns you may have
about participation in the project.

The project has been reviewed and approved by the University of Canterbury Human Ethics
Committee.

Technical issues

If you notice any problems as a result of the sofware (such as Finder restarting itself or Finder
features not working correctly), please contact Stephen. In the unlikely event that you have major
issues that you need to resolve immediately, you can temporarily disable the logging tool by entering
the following three commands exactly in a Terminal window (you can access the Terminal by, for
example, searching for it in Spotlight or navigating to /Applications/Utilities/Terminal):

cd ~/Library/Application\ Support/SIMBL/Plugins
mv FileLogger.bundle ../FileLogger.bundle
killall Finder

Please contact Stephen as soon as possible if you have had to do this.

Yours sincerely

Stephen Fitchett Andy Cockburn
PhD Student Professor

292

Department of Computer Science and
Software Engineering

Stephen Fitchett Professor Andy Cockburn
Erskine Room 344, Tel: +64 27 3788035 Tel: +64 3 364 2987 x7755
Email: stephen.fitchett@pg.canterbury.ac.nz Email: andy@cosc.canterbury.ac.nz

29th March, 2012

Consent form for “File Use Study”

I have read and understood the description of the above-named project. On this basis I agree to
participate as a subject in the project, and I consent to publication of the results of the project with the
understanding that anonymity will be preserved. I am over 18 years of age.

I understand also that I may at any time withdraw from the project, including withdrawal of any
information I have provided.

I note that the project has been reviewed and approved by the University of Canterbury Human Ethics
Committee.

NAME (please print): ___

Signature: ___

Date: _______________________

Age: _______________________

Gender: Male Female

Which best describes you?

 CSSE undergrad CSSE postgrad CSSE staff Other

 Other undergrad Other postgrad Other UC staff

How often do you use your computer on a typical day?

 Less than one hour 1-2 hours 2-4 hours 4-8 hours 8 hours+

293

File use study survey! Participant: _____________________

Introduction: We're interested in the different ways people find their files. We've prepared
some questions, but feel free to add any other information you think might be relevant. If
there are any questions you're uncomfortable with, just say so and we can continue.

1. Would you be able to identify the three files you've been working with most over the
last week? (is this indicative of your normal usage? If not, how do you usually go
about opening files?)
(for each:
⁃ See how they get to it.
⁃ If it's open:

⁃ ask them how long it has been open for
⁃ ask when they close the file and why they do this
⁃ ask them to close it and show you how they would open it again

⁃ If it's closed:
⁃ ask them to show you how they open it.)

2. Can you think of a file you've recently opened that was hard to find? Can you show
me how you'd go about finding and opening it?

⁃ (if they used search) Now, can you show me how you'd go about finding it if

search wasn't available?
__
__
__
__
__

294

3. OK, so you <list>. Are there any other features you use to find or open files?

4. (If multiple techniques mentioned) What, if anything, determines what tool you use
to find or open files?

5. (If both search and other methods mentioned) In what situations would you search,
rather than navigate to a file or application?

Search:
6. (if search not yet mentioned) Do you ever search for files?

7. (if yes or previously mentioned) What search interfaces do you use to find files?
OR (if some already mentioned) Apart from <list already mentioned>, are they any
other search interfaces you use to find files?

8. (for omitted search techniques) Do you ever [use Spotlight/search for files in
Finder]?

Other techniques:
9. Do you use the Finder sidebar, and if so, how? Have you customised it?

295

10. How do you use the desktop? (in particular, is it used for convenient access to
things, or unorganised temporary storage, or something else? Roughly how much is
on it?)

11. (if recent items not mentioned) Do you ever use any menus or interfaces that show
recent items? (if yes) Which ones?

⁃ (for omitted techniques) Do you ever use [the recent items menu in the Apple

menu/the open recent menu in applications/other open recent interfaces]?
__
__

12. (if open dialog not mentioned) Do you ever use the open dialog in applications? (if
yes) Under what circumstances would you use it?

13. (if dock not mentioned) Do you use the Dock to open applications or other items? (if
yes) How would you normally use it in day to day use? Have you customised the
Dock?

14. (if command line not mentioned) Do you ever use the command line to open files?
(if yes) Under what circumstances would you use it?

15. (if third party tools not mentioned) Do you ever use third party tools to open files?
(if yes) Which ones? Under what circumstances would you use them?

⁃ (if yes) Can you think of a file you've recently opened with this tool? Can you

show me how you'd use it to find the file?
__
__
__

16. What annoyances, if any, do you have when finding or opening files?

⁃ (if not referred to) when using Finder?

__
__
__

296

⁃ (if not referred to) when using search?
__
__
__

17. Can you think of any changes you'd like made to the interfaces you use to find
files?

297

Appendix B

Improved File Retrieval Interfaces – Lab Study Material

The following material from the lab study of Icon Highlights, Search Di-

rected Navigation and Hover Menus in Chapter 7 is presented on the following

pages:

1. The consent form that was signed by all participants before participat-

ing in the study.

2. The pre-experiment and post-experiment surveys.

298

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF SASKATCHEWAN
INFORMED CONSENT FORM

Research Project: Using Navigation Aids to Help Locate Files

Investigators: Dr. Carl Gutwin, Department of Computer Science

 Stephen Fitchett, Department of Computer Science

 Roxanne Dowd, Department of Computer Science

This consent form, a copy of which has been given to you, is only part of the process of informed consent. It should give you the basic
idea of what the research is about and what your participation will involve. If you would like more detail about something mentioned
here, or information not included here, please ask. Please take the time to read this form carefully and to understand any
accompanying information.

The goal of the research is to understand the effects of different navigation methods on locating files.

The session will require approximately an hour, during which you will be asked to locate files in a mock file browser.

At the end of the session, you will be given more information about the purpose and goals of the study, and there will be time for you
to ask questions about the research.

The data collected from this study will be used in articles for publication in journals and conference proceedings.

As one way of thanking you for your time, we will be pleased to make available to you a summary of the results of this study once
they have been compiled (usually within three months). This summary will outline the research and discuss our findings and
recommendations. If you would like to receive a copy of this summary, please write down your email address here.

Contact email address:__

All personal and identifying data will be kept confidential. If explicit consent has been given, textual excerpts, photographs, or video
recordings may be used in the dissemination of research results in scholarly journals or at scholarly conferences. Anonymity will be
preserved by using pseudonyms in any presentation of textual data in journals or at conferences. The informed consent form and all
research data will be kept in a secure location under confidentiality in accordance with University policy for 5 years post publication.
Do you have any questions about this aspect of the study?

You are free to withdraw from the study at any time without penalty and without losing any advertised benefits. Withdrawal
from the study will not affect your academic status or your access to services at the university. If you withdraw, your data will be
deleted from the study and destroyed.

Your continued participation should be as informed as your initial consent, so you should feel free to ask for clarification or new
information throughout your participation. If you have further questions concerning matters related to this research, please contact:

• Dr. Carl Gutwin, Professor, Dept. of Computer Science, (306) 966-8646, gutwin@cs.usask.ca

Your signature on this form indicates that you have understood to your satisfaction the information regarding participation in the
research project and agree to participate as a participant. In no way does this waive your legal rights nor release the investigators,
sponsors, or involved institutions from their legal and professional responsibilities. If you have further questions about this study or
your rights as a participant, please contact:

• Dr. Carl Gutwin, Professor, Dept. of Computer Science, (306) 966-8646, gutwin@cs.usask.ca

• Office of Research Services, University of Saskatchewan, (306) 966-4053

Participant’s signature:__

Date:_____________________

Investigator’s signature:___

Date:_____________________

A copy of this consent form has been given to you to keep for your records and reference. This research has the ethical approval of the
Office of Research Services at the University of Saskatchewan.

299

Pre-Experiment Survey

Gender:! Male! Female

Age:! ____________

!Do you have normal/corrected to normal vision?

! Yes! No

!How many hours do you use computers on a typical day? ____________

! Participant number: _______

300

Standard icon view
Mental demand! How mentally demanding was the task?

Low
54321

High

Physical demand! How physically demanding was the task?

Low
54321

High

Temporal demand! How hurried or rushed was the pace of the task?

Low
54321

High

Performance! How successful were you in accomplishing what you were asked to do?

Perfect
54321

Failure

Effort! How hard did you have to work to accomplish your level of performance?

Low
54321

High

Frustration! How insecure, discouraged, irritated, stressed and annoyed were you?

Low
54321

High

Comments:! !
! !
! !
! !
! !
! !

! Participant number: _______

301

Item highlights
Mental demand! How mentally demanding was the task?

Low
54321

High

Physical demand! How physically demanding was the task?

Low
54321

High

Temporal demand! How hurried or rushed was the pace of the task?

Low
54321

High

Performance! How successful were you in accomplishing what you were asked to do?

Perfect
54321

Failure

Effort! How hard did you have to work to accomplish your level of performance?

Low
54321

High

Frustration! How insecure, discouraged, irritated, stressed and annoyed were you?

Low
54321

High

I used the features provided by this navigational aid:

Never
54321

Always

Comments:! !
! !
! !
! !
! !
! !

! Participant number: _______

302

Search directed navigation
Mental demand! How mentally demanding was the task?

Low
54321

High

Physical demand! How physically demanding was the task?

Low
54321

High

Temporal demand! How hurried or rushed was the pace of the task?

Low
54321

High

Performance! How successful were you in accomplishing what you were asked to do?

Perfect
54321

Failure

Effort! How hard did you have to work to accomplish your level of performance?

Low
54321

High

Frustration! How insecure, discouraged, irritated, stressed and annoyed were you?

Low
54321

High

I used the features provided by this navigational aid:

Never
54321

Always

Comments:! !
! !
! !
! !
! !
! !

! Participant number: _______

303

Hover menus
Mental demand! How mentally demanding was the task?

Low
54321

High

Physical demand! How physically demanding was the task?

Low
54321

High

Temporal demand! How hurried or rushed was the pace of the task?

Low
54321

High

Performance! How successful were you in accomplishing what you were asked to do?

Perfect
54321

Failure

Effort! How hard did you have to work to accomplish your level of performance?

Low
54321

High

Frustration! How insecure, discouraged, irritated, stressed and annoyed were you?

Low
54321

High

I used the features provided by this navigational aid:

Never
54321

Always

I sometimes forgot about this feature:

Strongly
disagree

54321

Strongly
agree

Comments:! !
! !
! !
! !
! !

! Participant number: _______

304

Please rank the interfaces in order from 1 to 4 (with 1 being the best) for each of the following.

! Standard icon view! Item highlights

! Search Directed Navigation! Hover menus

1. Which interface was fastest to find files? (rank 1 to 4)

! Standard icon view! Item highlights
! Search Directed Navigation! Hover menus

2. Which interface did you make the fewest errors with? (rank 1 to 4)

! Standard icon view! Item highlights
! Search Directed Navigation! Hover menus

3. Which interface did you prefer overall? (rank 1 to 4)

! Standard icon view! Item highlights
! Search Directed Navigation! Hover menus

If I could choose between Search Directed Navigation, and a search feature like those in
modern computer systems, I would prefer:

! Search Directed Navigation! Search

Comments:! !
! !
! !
! !

! Participant number: _______

305

Appendix C

Improved File Retrieval Interfaces – Field Study

Material

The following material from the Finder Highlights field study in Chapter

8 is presented on the following pages:

1. The information web page and electronic consent form, visible to all

potential participants.

2. The pre-study survey, completed before installation of Finder High-

lights.

3. The post-study survey, completed after uninstallation of Finder High-

lights.

306

Finder Highlights Study

You are invited to participate in the research
project "Finder Highlights Study".

The aim of this project is to evaluate new file
retrieval interfaces in a real world field
study, in order to understand whether they
are effective and how they are used.

If you agree to participate in the study you
will be asked to install our software on your
computer for about a month. This software
consists of a plugin to Finder, the file
browser application on Mac OS X. It will add additional features that you can use during the study
period, that are intended to aid file retrieval. These are demonstrated in an included tutorial video.
It also monitors how you use Finder to navigate and retrieve files and records these details
anonymously in log files stored on your computer (described below).

Eligibility

To participate in this study, you must have a Mac running Mac OS X 10.8 (Mountain Lion) that you
will use for the next month. Ideally this should be your primary computer. If you have multiple
Macs, please only install it on the one you use the most. You should not participate if other people
use your computer under the same user account (if they use other accounts, that’s ok), or if you use
any other Finder plugin that modifies its appearance or behaviour.

You should be fluent in English, although it does not need to be your native language.

Privacy

As part of the study, the software will log information about how you use Finder. However, this
information does not include any personal or identifying information such as filenames or search
text. If you wish, you can view the content of the log files at any point by viewing the content of the
files in ~/Library/Application Support/FinderHighlights Logs/. At the end of the study, we will provide
instructions for you to send us these log files; they will never be transmitted automatically. You
have the right to withdraw from the study at any time, including withdrawal of any information
provided.

What's involved

At the start of the study, you'll complete a short pre-study survey, download and install the
software, and watch a short tutorial video explaining the new features that it provides.

For the following four weeks, you will continue to use your computer as normal, but with our
software installed. You can use the features offered by our software as much or as little as you like.

At the end of this period, we will contact you with instructions on how to uninstall the software and
send us your log files. There will also be a short online post-study survey.

About the study

The results of the project may be published (including in a publicly accessible PhD thesis), but you
are assured of the complete confidentiality of data gathered in this investigation: the identity of
participants will not be made public. To ensure anonymity and confidentiality your information will

307

be held securely in electronic form, and computer logs of your participation are anonymous.

The project is being carried out by PhD student Stephen Fitchett, as part of a Marsden funded
research project under the supervision of Professor Andy Cockburn. Both Stephen and Andy can be
contacted using the information below. They will be pleased to discuss any concerns you may have
about participation in the project.

Email (Stephen): stephen.fitchett@pg.canterbury.ac.nz
Email (Andy): andy@cosc.canterbury.ac.nz
Erskine Room 344, University of Canterbury, New Zealand
Tel: +64 3 364 2987 x7755

The project has been reviewed and approved by the University of Canterbury Human Ethics
Committee.

Technical issues

If you notice any problems as a result of the sofware (such as Finder restarting itself or Finder
features not working correctly), please contact Stephen. In the unlikely event that you have major
issues that you need to resolve immediately, you can temporarily disable the logging tool by
entering the following three commands exactly in a Terminal window (you can access the Terminal
by, for example, searching for it in Spotlight or navigating to /Applications/Utilities/Terminal):

cd ~/Library/Application\ Support/SIMBL/Plugins
mv FinderHighlights.bundle ../FinderHighlights.bundle
killall Finder

Please contact Stephen as soon as possible if you have had to do this.

Consent Form

I have read and understood the description of this project. On this basis I agree to participate as a
subject in the project, and I consent to publication of the results of the project with the
understanding that anonymity will be preserved. I am over 18 years of age.

I understand also that I may at any time withdraw from the project, including withdrawal of any
information I have provided.

I note that the project has been reviewed and approved by the University of Canterbury Human
Ethics Committee.

Setup and installation

To setup the software and begin the study, follow the steps below as they appear.

I have read the study information and consent form and give my consent to participate in this
study.

308

Finder Highlights: Pre-Study Survey
Make sure to read the study information and consent form before completing this survey (available
at http://cosc.canterbury.ac.nz/highlights). Please be ready to download and install the Finder
Highlights software when you submit this form.
* Required

Consent *
 I have read the study information and consent form and give my consent to participate in this

study.

Contact Information

Name *
Your identity will be kept confidential and will only be known to those involved in the study. It will not
be published.

Email *
Your email address will only be used for correspondence related to the study.

Demographic Information
The following information is used for statistical information only.

Age *

Gender *
 Male

 Female

 Other/refuse

Roughly how many hours do you use your computer on a typical day? *
Answer for the computer you will be using for the study.

What type of computer will you be using for the study? *
 Desktop

 Laptop

Are you: *
Choose the option that best describes you.

 An undergraduate student

 A graduate or postgraduate student

309

 University staff or researcher (including post-doc)

 Employed outside a university

 Other

IT experience
 I study or work in an IT related field (computer science, software development, etc)

File Organisation

How organised do you normally keep your files? *
 Very disorganised

 Slightly disorganised

 Neither organised nor disorganised

 Slightly organised

 Very organised

Typically, how easy or hard is it for you to locate your files? *
 Very difficult

 Slightly difficult

 Neither easy nor difficult

 Slightly easy

 Very easy

Which of the following most accurately describes how you store files? *
 I keep all my files in a well organised structure

 I organise many of my files, but many others are unfiled

 I don't organise my files much, and most of my files are unfiled

How often do you use the following methods to retrieve files on your computer? *

Never Occasionally Sometimes Often Very often Not sure

Navigate through
the file hierarchy
in Finder

Search

"Open Recent"
menus or similar

"Open" dialogs
(i.e. File > Open)

Comments
If you have any comments on any of these questions, please write them here.

310

Powered by

This content is neither created nor endorsed by Google.

Report Abuse - Terms of Service - Additional Terms

Submit
Never submit passwords through Google Forms.

311

Finder Highlights: Post-Study Survey
Thank you for your participation in the Finder Highlights study. This survey will ask questions about
your experience using the software. Your answers will be kept confidential. The survey will take
approximately 10 minutes.

When completing the survey, think about how you used Icon Highlights and Search Directed
Navigation when you retrieved files, compared to how you normally would have retrieved files
without these features.

Recall that Icon Highlights are the yellow highlights that appear automatically for items you've
previously accessed, and Search Directed Navigation is the search mode that highlights items that
match a filename query.

* Required

Name *
Your identity will be kept confidential and will only be known to those involved in running the study. It
will not be published.

Icon Highlights

I found Icon Highlights (the yellow highlights) useful *
 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

The presence of Icon Highlights meant I didn't have to think as much when navigating to files *
 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

I would like a feature similar to Icon Highlights to be a permanent feature of my file browser *
 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

Compared to normal, did Icon Highlights affect whether you made errors navigating to files? *
An example of an error might be opening a folder that doesn't contain the item you are looking for.

 I made fewer errors because of Icon Highlights

312

 Icon Highlights didn't affect whether I made errors

 I made more errors because of Icon Highlights

 Don't know

Comments on above questions

When did you find Icon Highlights most useful (if you found them useful)?

Were there any aspects of Icon Highlights that you disliked or that could be improved?

Search Directed Navigation

I found Search Directed Navigation useful *
 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

The availability of Search Directed Navigation affected how I retrieved files *
 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

313

I would like a feature similar to Search Directed Navigation to be a permanent feature of my
file browser *

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

Comments on above questions

Which of the following best describes how you think of Search Directed Navigation? *
Note: "Navigation" refers to navigating through the file hierarchy

 A search feature

 Mostly a search feature, but partly a navigation feature

 Equally a search and navigation feature

 Mostly a navigation feature, but partly a search feature

 A navigation feature

 Don't know

If you didn't use Search Directed Navigation much, why not? (tick all applicable)
 I already knew where my files were

 I couldn't remember the filenames of what I was looking for

 I forgot about it or didn't think to use it

 I don't use search much

 I don't navigate to files much

 It was too slow to find results

 I prefer using the mouse than typing a query

 I didn't understand how it worked

 Not applicable

 Don't know

 Other:

Comments on above questions

314

When did you find Search Directed navigation most useful (if you found it useful)?

Were there any aspects of Search Directed Navigation that you disliked or that could be
improved?

Performance

The presence of Icon Highlights meant that overall I retrieved files: *
 More quickly

 At about the same speed

 More slowly

 Don't know/not applicable

The presence of Icon Highlights meant that I retrieved previously visited files: *
 More quickly

 At about the same speed

 More slowly

 Don't know/not applicable

The presence of Icon Highlights meant that I retrieved rarely visited or new files: *
 More quickly

 At about the same speed

 More slowly

 Don't know/not applicable

315

The presence of Search Directed Navigation meant that overall I retrieved files: *
 More quickly

 At about the same speed

 More slowly

 Don't know/not applicable

The presence of Search Directed Navigation meant that I retrieved previously visited files: *
 More quickly

 At about the same speed

 More slowly

 Don't know/not applicable

The presence of Search Directed Navigation meant that I retrieved rarely visited or new files: *
 More quickly

 At about the same speed

 More slowly

 Don't know/not applicable

Comments

Use of Different Methods

I navigated while paying attention to Icon Highlights when I otherwise would have (tick all
applicable):
"Navigation" refers to navigating through the file hierarchy in Finder

 Used navigation

 Used search

 Use an "Open Recent" menu or similar

 Used an "Open" dialog

 I didn't pay attention to Icon Highlights

 Don't know

 Other:

I used Search Directed Navigation when I otherwise would have (tick all applicable):
 Used navigation

 Used search

 Use an "Open Recent" menu or similar

316

 Used an "Open" dialog

 I didn't use Search Directed Navigation

 Don't know

 Other:

Comments

My use of search changed as follows because of the availability of Icon Highlights: *
Search includes the Spotlight menu, the standard Finder search, or any other file search tools,
EXCLUDING Search Directed Navigation.

 I used search less

 I used search about as often

 I used search more

 Not applicable/I never use search

 Don't know

My use of search (excluding Search Directed Navigation) changed as follows because of the
availability of Search Directed Navigation: *

 I used search less

 I used search about as often

 I used search more

 Not applicable/I never use search

 Don't know

Comments

If Icon Highlights had not been available, I would have used Search Directed Navigation: *
 Less often

 About as often

 More often

 Don't know

If Search Directed Navigation had not been available, I would have used paid attention to Icon
Highlights: *

317

 Less often

 About as often

 More often

 Don't know

Comments

Accuracy

Icon Highlight predictions seemed accurate *
 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

 Don't know/not applicable

I knew in advance whether Icon Highlights would highlight what I was looking for *
 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

 Don't know/not applicable

Search Directed Navigation results seemed accurate *
 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

 Don't know/not applicable

Comments

318

Design

I found it hard to locate highlighted items when they were out of view *
For example, if you had to scroll in large folders.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

 Don't know/not applicable

Comments

I found it harder to use Finder search because of Search Directed Navigation *
 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

 Don't know/not applicable

I got confused between Finder search and Search Directed Navigation *
 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

 Don't know/not applicable

Comments

319

The way items were highlighted with Icon Highlights was clear and intuitive *
 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

 Don't know/not applicable

The way items were highlighted with Search Directed Navigation was clear and intuitive *
 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

 Don't know/not applicable

Comments

Other

Do you have any other comments?

If you like, we can send you the results of this study once they have been finalised. This will
likely be towards the end of the year.

 Please email me the results of the study when they have been finalised

320

Powered by

This content is neither created nor endorsed by Google.

Report Abuse - Terms of Service - Additional Terms

Submit
Never submit passwords through Google Forms.

321

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Research Approach
	Research Contributions
	Structure of the Thesis
	Glossary of Terms
	Files
	File structure
	Opening files
	Retrieval methods
	Scores

	I File Retrieval and Retrieval Tools
	File Retrieval Methods
	Classification of Retrieval Methods
	Support for File Retrieval Features
	File Navigation
	Search
	Saved Searches
	Faceted Search
	Research Systems
	Launchers

	Recommender Interfaces
	Bookmarks
	Conclusion

	An Overview of Organisation and Retrieval Behaviour
	Comparison of Domains
	Refinding on the Web
	Email Management
	Management of Paper Documents
	Electronic File Management
	Summary of File Management Studies
	Types of Information
	Representation of Structure
	Organisation and Maintenance
	The Desktop and Spatial Locations
	Memory of File Attributes
	Retrieval Behaviour

	Conclusion

	II Characterising File Retrieval
	FileMonitor: A Tool To Understand File Retrieval Behaviour
	An Overview of FileMonitor
	FileMonitor Implementation
	Logging
	Finder Usage
	Spotlight Usage
	Recent Documents

	FileMonitor Logs
	Discussion
	Conclusion

	How Do Users Retrieve Files? An Empirical Characterisation of File Retrieval
	Background
	Study Method
	Limitations of Log Analysis

	Analysis Part 1: Retrieved Files
	How often are files revisited?
	Are the same items often accessed in each folder?
	What types of files are retrieved?
	What are the characteristics of filenames?
	How deep in the hierarchy are retrieved files?
	Summary of Retrieved Files

	Analysis Part 2: File Retrieval Methods
	How does use compare between retrieval methods?
	Do users use different methods to retrieve the same files?
	Navigation in the File Browser
	Search
	Recent Items
	Open Dialogs
	Other Methods

	Analysis Part 3: File Management
	Discussion
	Comparison with Prior Work
	Implications for Design
	Implications for Evaluation

	Conclusion

	III Predicting User Interaction
	AccessRank: Predicting What Users Will Do Next
	Overview of Prediction Algorithms
	Menus
	Cache Algorithms
	Web Browser Suggestions
	Web Pages
	Summary of Predictive Algorithms

	AccessRank
	AccessRank Score
	Time Weighting
	Switching Threshold

	Converting Logs for Analysis
	Standardised Log Format

	Measures Used to Compare Algorithms
	Prediction Measures
	Stability Measures
	Data Characterisation Measures

	Analysis of Algorithm Performance
	Results

	Discussion
	Improving AccessRank
	Optimisation Attempts for File Retrieval Predictions
	Applications

	Conclusion

	IV Improving File Retrieval
	Preliminary Design & Evaluation of Improved Navigation-Based File Retrieval Interfaces
	The Performance Impact of Structure
	Improved File Navigation: Goals and Interfaces
	Design Goals
	File Navigation Interfaces

	Interface Evaluation
	Participants and Apparatus
	Procedure
	Experimental Design

	Results
	Part 1: Spatially Stable Icons
	Part 2: Maximally Unstable Icons
	Subjective Results
	Characterisation of Use

	Discussion and Future Work
	Combining the Interfaces
	Interface Refinements and Implementation
	Limitations

	Conclusion

	Finder Highlights: Design and Evaluation of an Augmented File Browser
	Finder Highlights
	Design and Implementation of Icon Highlights
	Interface Design
	Extending AccessRank for use with Icon Highlights

	Design and Implementation of Search Directed Navigation
	Interface Design
	Search Directed Navigation Algorithm

	Field Evaluation of Finder Highlights
	Procedure
	Log File Data Analysis
	Retrieval Times and Step Times
	Questionnaire Responses

	Design of Unimplemented Techniques and Features
	Hover Menus
	Highlight Edge Indicators

	Discussion
	Methodology -- Lab versus Field
	Overcoming Barriers to Adoption
	Predictive Highlighting More Broadly
	Prediction Versus Interaction
	Purpose of Stability in Predictions
	Highlighting Aesthetics and Effectiveness

	Conclusion

	V Discussion, Further Work and Conclusions
	Discussion and Further Work
	Progress on Research Objectives
	Context of This Thesis
	Research Generalisability
	Characterisation of File Retrieval
	AccessRank
	Predictive Interfaces

	Future Work
	Shared Data
	Multiple Devices
	Changing Paradigms

	Conclusion
	References

	Appendices
	Characterisation Study Material
	Improved File Retrieval Interfaces -- Lab Study Material
	Improved File Retrieval Interfaces -- Field Study Material

