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Preface

For the last century, rare-earth based intermetallic compounds have provided a wide range

of ground states that have been intrigued the condensed matter research community including

both local moment and the strongly correlated electron systems. Up until now, huge numbers

of binary, ternary, and even quaternary intermetallic compounds have been investigated and

the results have been applied to daily life. Rare-earth based intermetallic compounds are

composed of metals or nonmetals and rare-earth metals. Rare-earth elements consists of the

lanthanides from Lanthanum (La) to Lutetium (Lu) as well as Yttrium (Y) and Scandium

(Sc).

The chemical properties of the rare-earth elements in compounds are similar due to their

trivalent valence configurations [Elliott, 1972]. Furthermore, the small difference in atomic, or

metallic, radii gives rise to the systematic volume change across a series of compounds. Because

of the similar chemical properties, when one of the elements of the rare-earth group is part

of an intermetallic compound, the other rare-earth elements with the same ligands will have

a high probability of forming the same crystal structure. In the past, the similarity of their

chemical properties presented considerable difficulties in separating the rare-earth elements

to high purity. However, Frank Harold Spedding developed methods for separating individual

rare-earth elements in 1942, and since that time the Ames Laboratory has made (and provided)

the worlds highest purity rare-earth elements, most recently through the material preparation

center (MPC) [MPC].

In contrast to the chemical properties, the physical properties vary remarkably across the

rare-earth compounds [Elliott, 1972]. The strong spin-orbit moment, due to the filling up of

the 4f electron shell, shows a large variation as the rare-earth element proceeds from the Ce
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to Yb. The localized character of 4f shell, generally situated in the interior of the lanthanide

atoms (shielded by the valence electrons), gives rise to the large magnetic moment per atom

as well as the strong, single-ion, magnetocrystalline anisotropy of the rare-earths. Rare-earth

based intermetallics have received attention since they offer a good opportunity to study the

origin and the nature of the 4f -electron magnetism. An investigation of rare-earth-based

intermetallic compounds has received additional attention due to the outstanding quality of

permanent magnets, e.g. Sm2Co17 [Ray, 1972] or Nd2Fe14B [Sagawa, 1984] which is currently

widely used in daily life such as loudspeakers, headphones, and drive motors for hybrid and

electric vehicles.

Based on the chemical similarity and physical difference, varying the rare-earth elements

from La to Lu, including Y, provides a good opportunity to tune the ground state properties

through changes in either the volume of the systems or the size or direction of the local moment

due to the localized character of f -electron wave function [Canfield, 2008].

A sub-group can be classified by those compounds in which the rare-earth exhibits no

magnetic moment, trivalent Y and La, tetravalent Ce, trivalent Eu, divalent Yb, and trivalent

Lu. This sub-group of compounds shows no magnetic order and generally simple, metallic

behavior. Another sub-group, classified with Ce and Yb, is of particular interest not only

because the magnetic trivalent state can transform to a nonmagnetic tetravalent state for Ce

and divalent state for Yb, but also because the 4f electron can hybridize with the conduction

electrons, giving rise to the heavy fermion (HF) behavior.

One of the ultimate goals in the field of condensed matter physics is to understand the inter-

action between magnetic and electronic degrees of freedom and to find new classes of novel ma-

terials, such as high temperature superconductivity (high-Tc cuprates) [Bednorz, 1986], colossal

magnetoresistance materials [von Helmolt, 1993], and multiferroic materials [Ramesh, 2007].

Rare-earth-based materials have provided a vast frontier to discover such materials. About

30 years ago, for example, the discovery of superconductivity in CeCu2Si2 [Steglich, 1979],

followed by the discovery of high-Tc cuprates [Bednorz, 1986], opened the new era of strong

electron correlations in solids. Since the discovery of these material, great efforts have been
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devoted to understand their key mechanisms and use that knowledge to find other classes of

novel materials.

Several rare-earth based superconducting compounds such as UBe13 [Ott, 1983], CeCoIn5

[Petrovic, 2001], and β-YbAlB4 [Nakatsuji, 2008], including most recently discovered FeAs-

based RFeAsO1−xFx [Kamihara, 2008], have been discovered and instigated hope of unraveling

the mechanism for superconductivity in these different classes of materials. The pursuit for

new superconductors with higher Tc still continues fervently. HF materials can be an important

corner stone for the development of our understanding of the interaction between magnetic

and electronic quantum fluctuations because the magnetic and electronic degrees are strongly

coupled. Thus, an understanding of the HF physics as part of the f -electron research can push

us one step further toward understanding strongly correlated electron systems and hopefully,

in the future, allow us to make a connection, through from HF superconductors (f -electron),

to high-Tc cuprates (d-electron) systems.
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CHAPTER 1. Introduction

In Ce- and Yb-based compounds, the complex physics of antiferromagnetic (AFM) heavy

fermion (HF) metals is mainly governed by the delicate interactions between hybridization,

resulting from submerging the 4f , often magnetic, electrons in a mobile conduction electron sea,

and the Ruderman-Kittel-Kasuya-Yosida (RKKY) magnetic interaction [Doniach, 1977]. The

relative strength of these interactions give rise to various phenomena like long range magnetic

order, intermediate (and/or mixed) valence behavior, unconventional superconductivity, and

HF behavior.

The ground state of the HF, Kondo lattice, systems is a Fermi liquid (FL) state comprised of

(Landau) quasi-particles. When f -electrons enter a conduction band there is an increased over-

lap of the electronic state which enhances the hybridization and band widths [Hewson, 1993].

One hallmark of these quasi-particles is the large Sommerfeld coefficient, γ, of the specific heat.

At low temperatures, the specific heat of metals is approximated by C(T ) = γT + βT 3, where

γT is the electronic specific heat and βT 3 is the lattice (phonon) contribution. For a normal

metal γ is of order 1 mJ/mol·K2, for example copper γ ∼ 0.7 mJ/mol·K2 [Pobell,1996], and for

HF materials γ is several hundred to several thousand times larger than that for normal metals

[Stewart, 1984]. The magnetic susceptibility, χ(T ), of HF compounds at high temperatures

follows the Curie-Weiss form, χ(T ) = C/(T − θ), where C is the Curie constant and θ is the

Weiss temperature, but at low temperatures tend to saturate at an anomalously high χ(0)

value. In the majority of HF metals, the electrical resistivity, ρ(T ), at very low temperatures

follows a T 2-dependence, ρ(T ) = ρ0 + AT 2 where ρ0 is the residual resistivity and A repre-

sents the quasi-particle scattering cross section. The observed A value for HF metals is on the

order of tens of µΩcm/K2, and is much larger than that of normal metals in which A∼ 10−3
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- 10−4 µΩcm/K2.

In addition to these fascinating properties, HF compounds also provide the cleanest evi-

dence for a quantum phase transition [Stewart, 2001]. In HF systems, the electronic states

have a characteristic energy that is orders of magnitude smaller than in normal metals because

the effective mass, ε(k) = �
2k2/2m∗, is orders of magnitude larger than the free electron mass.

This characteristic low energy scale can be controlled by such nonthermal control parameters

as chemical substitution (doping, x), magnetic field (H), and pressure (P).

At low temperatures, the thermodynamic and transport properties of HF systems have been

shown to be in remarkable agreement with the FL descriptions. The validity of FL theory in

metals, without long range order, was generally unquestioned in the community until strange

metallic behaviors were observed in HF systems tuned by varying x, H, P such as ρ(T ) ∝ AT

and C(T )/T ∝ − log(T ) [Stewart, 2001]. This strange metallic behavior, so-called non Fermi

liquid (nFL) behavior, have been explored in a moderate number of Ce-based intermetallic

compounds and to only a small extent in Yb-based materials. For instance a field tuned quan-

tum critical point (QCP) has been limited to two cases, only among stoichiometric compounds,

in particular YbRh2Si2 [Gegenwart, 2002] and YbAgGe [Bud’ko, 2004]. The question “why Ce

is popular and Yb so rare ?” may be answered simply due to the lack of known Yb-based HF

compounds. In general, Yb ions in intermetallic compounds show more localized character

than Ce and prefers to form Yb2+ state which is the same as non magnetic Lu. Additionally,

roughly speaking, the Yb-based intermetallic compounds may not be prepared easily by arc

melting due to the high vapor pressure of Yb, and so limits the rapid synthesis and discovery

of new materials. The goal of this work then is to study Yb-based HF physics across the QCP.

The outline of the dissertation is as follows: Chapter 2 presents a brief description of

the experimental methods used in this study and gives details of crystal growth via high

temperature solution, focusing on the particular procedures used for growing the YbPtBi

single crystals. Chapter 3 presents the theoretical framework for this thesis. This chapter

begins with the theory of the Kondo effect, which gives rise to the HF phenomena, followed

by a summary of the FL theory; theoretical reviews of quantum criticality are also presented.
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The experimental data are presented and discussed in chapters 4, 5, and 6. Chapter 4

focus on a thermoelectric power (TEP) study of YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co)

[Torikachvili, 2007]. The discovery of these compounds formally doubled the number of known

examples of the Yb-based HF compounds. The Kondo interaction of these systems is much

larger than inter-site RKKY exchange (TK � TRKKY ) and hence no long range magnetic order

was observed down to 20 mK. Mainly, the Kondo and crystalline electric field (CEF) energy

scales in these systems are inferred and the strong correlations between the zero temperature

limit of the electronic specific heat and the TEP are presented. In Chapter 5, the results of

TEP measurements for YbAgGe are given as an example of TK > TRKKY . The HF metal

YbAgGe, with a Kondo temperature of TK ∼ 25 K, orders antiferromagnetically below ∼ 1 K.

The existence of a magnetic field-induced QCP has been inferred by suppressing the AFM order

to sufficiently low temperature (∼ 20 mK) by a magnetic field applied both in the hexagonal

ab-plane and along the c-axis [Bud’ko, 2004]. In this study the TEP measurements only for

H ‖ ab are investigated and compared to earlier studies. Chapter 6 presents thermodynamic

and transport measurements of the face centered cubic YbPtBi [Fisk, 1991]. A huge low

temperature Sommerfeld coefficient, γ � 8 J/mol·K2, characterizes YbPtBi as an extreme

limit of the HF cases. This system also shows AFM ordering (spin density wave) below TN =

0.4 K that is located below the estimated Kondo temperature of TK ∼ 1 K which is the case as

TK ∼ TRKKY . The discussion is mainly focused on establishing the full H −T phase diagram

and quantum criticality in this system. Finally, Chapter 7 summarizes the main findings of

this work and outlines directions for further investigations as extensions of these studies of

quantum criticality.
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CHAPTER 2. Experimental methods

2.1 Sample growth and characterization

2.1.1 Synthesis

There are several techniques such as Czochralski, Bridgeman, floating zone methods

[Pamplin, 1975; Brice, 1986], and high temperature solution growth [Fisk, 1989; Canfield, 1992;

Canfield, 2001; Canfield, 2010], that can be used to grow single crystals. Among these tech-

niques, the RPtBi (R = Yb, and Lu) samples studied in this dissertation were prepared

using a molten metal, high temperature solution growth method with an excess of Bi flux

[Canfield, 1991]. Since the Bi flux itself is one of the constituent elements of the compounds

the technique is called self-flux growth.

Since no ternary phase diagram for YbPtBi is available and the method for growing sin-

gle crystals of RPtBi (R = rare-earth) was reported in Ref. [Canfield, 1991], several trials

to improve the quality of samples were attempted based on the binary phase diagram. No

other ternary compounds with Yb, Pt, and Bi, except YbPtBi, have been reported to date.

Figures 2.1 (a), (b), and (c) show the binary phase diagrams of Bi-Yb, Bi-Pt, and Pt-Yb

[Okamoto, 2000], respectively, where both Yb and Pt can be dissolved into Bi over 40 % at

800 ◦C there is plenty of opportunity to grow single crystals using excess Bi. In addition to

the eutectic region near 90% of Yb in Bi-Yb binary phase diagram, there is an eutectic region

near 87.5 % of Yb in Pt-Yb binary phase diagram. This eutectic region could also be used to

grow single crystals using high temperature solution method. In this case, since Yb is a main

flux in ternary melt, sometimes extra Yb3+ magnetic residue makes a problem in the physical

property measurements when Yb flux is included inside the sample or solidified on the sample
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Figure 2.1 Binary phase diagram of (a) Bi-Yb, (b) Bi-Pt, and (c) Pt-Yb
[Okamoto, 2000].
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surface. Thus, we avoided the Yb-riched ternary melt to grow single crystals. Because of the

YbBi2 phase and the reaction between rare-earth element and alumina crucible, the maximum

ratio of Yb in ternary melt was limited up to 12% of Yb. Since the binary phase diagram of

Bi-Lu is similar to Bi-Yb, similar procedures were used for growing LuPtBi samples.

The constituent elements were placed in an alumina crucible and sealed in a silica tube

under a partial pressure of Ar (Fig. 2.2 (d)). For YbPtBi, a starting molar proportion of

0.04≤ x ≤ 0.12 : 0.04≤ y ≤ 0.12 : 0.76≤ z ≤ 0.92 (Ybx : Pty : Biz) of the constituent

elements was used to grow samples. The starting molar compositions are plotted in ternary

phase diagram, together with the reported binary compounds and the desired YbPtBi, as

shown in Fig. 2.2 (a). The YbPtBi samples can be grown in a wide range of the Bi-riched

ternary melt.

The growth of YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) and YbAgGe are discussed

in detail in Ref. [Jia, 2007; Torikachvili, 2007] and Ref. [Morosan, 2004], respectively. The

samples used for this work were grown as described in these references.

The temperature profile for the YbPtBi growth was optimized with data from the differ-

ential thermal analysis (DTA) using a PerkinElmer Pyris DTA 7 differential thermal analyzer,

where ultra high purity Ar process gas, a Zr metal getter, and an Al2O3 crucibles were used.

For the experiments, the sample, loaded inside an Al2O3 crucible with initial composition of

Yb0.1Pt0.1Bi0.8, was heated and cooled two times between room temperature and 1200 ◦C at

10 ◦C/min. In Fig. 2.2 (b), the obtained DTA curves are plotted. In the both heating cycles

a clear, endothermic event occurred near 270 ◦C corresponding to Bi melting. In the cooling

cycles, the DTA curves showed an exothermic peak between 760 ∼ 790 ◦C, corresponding to

the crystalization of the YbPtBi and an another exothermic peak near 260 ◦C corresponding

to the solidification of Bi. Except for unknown features near 600 ◦C during the first heating,

probably related to the Pt and Yb melting, no other significant endo- or exthothermic peaks

were observed in this DTA experiments.

Based on the DTA data, the temperature of the furnace was raised to 1100 ◦C and after

homogenizing the mixture for 2 hours, the melt solution was cooled down to 900 ◦C over 10
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Figure 2.2 (a) Ternary phase diagram of YbPtBi. Solid dots mark the
initial compositions used for the growth of YbPtBi. (b) DTA
curves for YbPtBi, used initial composition of Yb0.1Pt0.1Bi0.8,
measured upon heating and cooling with a 10 ◦C/min rate. (c)
Temperature profile for the growth of single crystals of YbPtBi
from the Bi flux. (d) Schematic diagram of the ampoule. When
the constituent elements are loaded inside alumina crucible,
small pieces of Yb and Pt elements are surrounded by Bi ele-
ments. The picture of single crystal of YbPtBi over a millimeter
grid is included. The droplets on the surface are residual flux.
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hours and finally, slowly cooled down to 600 ◦C over 150 hours. Before decanting the excess

solution using a centrifuge, the samples, still submerged in the melt were annealed at 600 ◦C

for over 100 hours (see Fig. 2.2 (c)) in an attempt to minimize residual defects. The nucleation

of the samples in the crucible is completely random, and generally yielded either lots of small

crystals or a few (2 or 3) big crystals with typical dimensions of 5× 5× 5 mm3. The as grown

samples are a bit sensitive in air, probably sensitive to moisture. In air the surface of samples

starts to become dark after one week. Based on these observations, the samples were kept in

vacuum.

It is worth noting that the probability of growing larger samples seemed to depend on the

size of the initial constituent elements. When (i) small pieces of elements were used and (ii) Yb

and Pt elements are close each other and surrounded by Bi, larger sized crystals were obtained.

The second condition is just suspect, it has not proven yet. However, since there is a chance

of reaction between Yb and alumina crucible, it is best to avoid contact between Yb and the

crucible. Therefore, all constituent elements, Yb, Pt, and Bi, were cut roughly 0.5 ∼ 1 mm

pieces and then placed in the alumina crucible. When the elements were loaded inside the

crucible, small pieces of Yb and Pt elements were surrounded by Bi as shown in Fig. 2.2 (d).

2.1.2 Characterization

Powder X-ray diffraction measurements, collected on a Rigaku MiniFlex, were taken at

room temperature with Cu Kα radiation in order to confirm the crystal structure, determine

values for the lattice parameters, and to check for impurity phases. The X-ray pattern clearly

revealed that the flux-grown single crystals are single phase. No secondary phases are detected

except small amounts of pure, elemental Bi, that came from small solidified dropplets on the

the crystal surface. As shown in Fig. 2.2 (d), well-formed facets are clearly visible. The

crystallographic [100] direction is perpendicular to the rectangular shaped surface and the

[111] direction is perpendicular to the equilateral triangle surface which were determined from

the Laue technique.
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2.2 Measurements methods

2.2.1 Magnetization measurements

Magnetization measurements were made in order to characterize the magnetic properties of

YbPtBi. The dc magnetization was measured using a Superconducting Quantum Interference

Device (SQUID) made by Quantum Design (QD) which can perform measurements in magnetic

fields up to 70 kOe, and a temperature range from 1.8 K to 350 K. Generally, the magnetic

susceptibility was measured in a 1 kOe magnetic field. The samples were mounted tightly

between two straws, an approximately homogeneous background.

2.2.2 Specific heat measurements

The specific heat of YbPtBi was measured in a QD Physical Property Measurements System

(PPMS) with 3He option by the relaxation method in the temperature range of 0.4 to 100 K,

with a magnetic field applied along the [100] direction. The specific heat measurements at lower

temperatures, extended down to 0.05 K, were performed at Quantum Design head quarters,

San Diego, California using a PPMS with 3He-4He dilution option. The specific heat of LuPtBi

was measured in a QD PPMS by the relaxation method from 1.8 to 100 K.

2.2.3 Thermal expansion and magnetostriction measurements

Thermal expansion and magnetostriction were measured using a capacitive dilatometer

[Schmiedeshoff, 2006] constructed from copper, for 3He-setups, and from titanium, for dilution

refrigerator setups. The dilatometer was mounted in a 3He cryostat and was operated over a

temperature range of 0.3 - 300 K in an applied magnetic field up to 90 kOe at Occidental College,

Los Angeles, California. The magnetostriction measurements were extended to temperatures

down to 0.02 K and magnetic fields up to 180 kOe in a top loading, 3He-4He dilution refrigerator

at the Millikelvin Lab., National High Magnetic Field Laboratory, Tallahassee, Florida. The

variation of the sample length was measured in a longitudinal configuration; ∆L ‖ H ‖ [100].
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2.2.4 Electrical and Hall resistivity measurements

The electrical properties of YbPtBi and LuPtBi were characterized by electrical resistivity,

ρ(T,H), and Hall resistivity, ρH(T,H), measurements. The ρ(T,H) and ρH(T,H) measure-

ments as function of temperature from 0.02 to 300 K and magnetic fields up to 140 kOe were

performed using the ordinary, ac (f = 16 Hz), four-probe method. Below 1 K, ρ(T,H) and

ρH(T,H) for YbPtBi were measured in an Oxford Instrument 3He-4He dilution refrigerator

with a Lakeshore LS370 and a Linear Research LR700 ac resistance bridge. In order to reduce

the heating effect, the excitation current, I, was selected to be as low as possible, 10-30 µA, and

the magnetic field was swept very slowly, with rate of 100-500 Oe/min. Above 0.4 K, ρ(T,H)

and ρH(T,H) were measured in a QD PPMS with 3He option. The transverse magnetoresis-

tance measurements were performed in a configuration; I ⊥ H, I ‖ [010] and H ‖ [100]. The

Hall resistivity was measured in the following configuration; the Hall voltage was perpendicular

to the current (VH ⊥ I), VH ‖ [010], and magnetic field (VH ⊥ H), H ‖ [100]. In order to

remove MR contributions in ρH due to the misalignments of Hall voltage wires, the polarity

of the magnetic field was switched. For LuPtBi, ρH(T,H) measurements were performed with

H ‖ [111], I ⊥ [111], and H ⊥ I ⊥ VH configuration.

2.2.5 Thermoelectric power measurements

The transport properties of RPtBi (R = Yb and Lu) as well as YbT2Zn20 (T = Fe, Ru,

Os, Ir, Rh, and Co), and YbAgGe were further characterized by thermoelectric power (TEP)

measurements. The TEP was measured using a dc, alternating heating, technique utilizing

two heaters and two thermometers [Mun, 2010]. This specially designed setup was used in a

QD PPMS over the temperature range from 2 to 350 K and magnetic fields up to 140 kOe,

and in a CRYO Industries of America 3He system from 0.3 to 30 K and up to 90 kOe. Single

crystal samples were cut using a wire-saw and then polished down to the desired dimensions

with typical geometry factors; the length l ≥ 2 mm, the thickness 0.1 mm≤ t ≤ 0.2 mm, and

the width 0.1 mm≤ w ≤ 0.2 mm. The needle-shaped samples were directly attached to the

two Cernox thermometers using DuPont 4929N silver paint. Note that the TEP value of the
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lead wire (phosphor-bronze) is ignored since the TEP of this wire is negligible. See Appendix

for details of measurement setup.

For YbPtBi, the heat current, ∆T , was generated along the [010] direction and magnetic

field was applied along the [100] direction. The temperature difference along the samples was

kept between 0.03 ∼ 0.05 K below 2K. For LuPtBi, the TEP measurements were performed

with the heat current perpendicular to the [111] direction and magnetic field parallel to the [111]

direction, maintaining a transverse configuration; H⊥∆T . For YbT2Zn20 (T = Fe, Ru, Os, Ir,

Rh, and Co), the heat current was generated in the (111)-plane of the samples (∆T ‖ (111)) and

the magnetic field was applied along the [111] direction, maintaining a transverse configuration.

For T = Fe, Rh, and Co, zero-field TEP measurements were extended down to 0.4 K. The

anisotropic TEP measurements for YbAgGe were performed with two different heat current

directions, generated in the hexagonal ab-plane and along the c-axis, and the temperature

difference along the samples was kept between 0.03 ∼ 0.05 K below 2K. The magnetic field

was applied in the ab-plane for both ∆T directions, maintaining a transverse configuration,

(H ‖ ab)⊥(∆T ‖ ab) and (H ‖ ab)⊥(∆T ‖ c), in both cases.
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CHAPTER 3. Heavy Fermions and Quantum Criticality

3.1 Heavy Fermions

In this section we will give a general introduction to heavy fermion materials, their physical

properties and the basic concepts related to them; Kondo effect in a single ion and in a lattice,

crystalline electric field effect, RKKY interaction, Doniach diagram, Fermi liquid theory, and

manifestation of Fermi liquid nature in physical properties.

3.1.1 Kondo effect

The Kondo problem goes back to the discovery of a resistivity minimum at low temperatures

in metals with dilute, localized d- or f -electron, magnetic impurities. The resistivity minimum

was a long standing theoretical puzzle after its first experimental observation in Gold (Au) by

de Haas et al. [deHaas, 1934]. Finally, this minimum and the lower temperature increase of the

resistivity were successfully explained by Kondo [Kondo, 1964] with a perturbative calculation

with in the s− d model framework. The initial motivation for Kondo’s calculation of the con-

ductivity was that a possible basis for an explanation of the resistance minimum emerged with

the experimental observation of a correlation between the disappearance of a high tempera-

ture Curie-Weiss term in the impurity susceptibility (a local moment) below the temperature

of the resistivity minimum. Within the s − d model, a magnetic impurity is described by a

local spin S (S = 1/2) exchange coupled to the local conduction electron spin density. Figure

3.1 (a) shows the general behavior observed single impurity, Kondo systems. As temperature

decreases the impurity resistivity increases logarithmically and eventually saturates. The local

minimum in the sample’s resistivity can be obtained from this increasing impurity contribu-

tion, ρ(T ) ∝ − log(T ), combined with the decreasing phonon contribution, ρ(T ) ∝ T . At
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Figure 3.1 (a) Schematic behavior of the impurity contribution charac-
teristic of a typical Kondo alloy (single ion). (b) χ(T )/χ(0)
vs. log(T/T0) for j = 1/2, ..., 7/2 impurities. (c) C/2jkB vs.
log(T/T0) for j = 1/2, ..., 7/2 impurities. Where T0 is the
characteristic temperature, related to Kondo temperature (TK
= (2πwN/2j+1)T0). Figures (b) and (c) are digitized from the
Ref. [Rajan, 1983].

high temperatures, the magnetic susceptibility follows a Curie-Weiss law, χ(T ) = C/(T − θ),
where C is the Curie constant and θ is the Weiss temperature. In the low temperature limit

the impurity spin is compensated by the conduction electrons and the impurity susceptibility

is finite corresponding to Pauli and Van Vleck contributions. The impurity contribution to

the specific heat shows a peak corresponding to a magnetic entropy change of approximately

Rln(2), where R = NAkB ; NA is the Avogadro number and kB is the Boltzmann constant.

This changes in these data take place gradually on a temperature scale called the Kondo tem-

perature, TK , below which anomalous properties appear. Note that the Kondo temperature is
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not a phase transition temperature but rather characterizes a crossover, and can be defined as

[Hewson1993]:

TK = D exp(− 1
JN0

) (3.1)

where J is the exchange coupling and N0 is the density of state at the Fermi level. Many the-

oretical approaches developed so far, the renormalization group, Fermi liquid, and the Bethe

ansatz solutions, have led to rather a complete picture of the ground state and thermody-

namic behavior of the s − d model for spin S = 1/2 and non-degenerate Anderson model

[Hewson, 1993].

When a hybridizing, f -shell, local moment ion such as Ce, Yb, or U is embeded into a metal-

lic host, it is necessary to consider the ground state f -spin degeneracy N = 2j + 1. In this limit,

the N -fold degenerate Kondo lattice model, Coqblin-Schrieffer model [Coqblin, 1969], and the

degenerate (periodic) Anderson model [Hirst, 1978] have been developed and successfully ap-

plied to rare-earth (impurity) systems. We now begin a discussion of qualitative features in

the Anderson and Kondo lattice models. For small interaction, the periodic Anderson model

describes a Fermi liquid with two bands [Hewson, 1993]. The resulting Fermi liquid, formed

below a coherence temperature Tcoh, will have a Fermi volume containing both conduction

electrons and local moments.

A quadratic temperature dependence of the electrical resistivity is expected below Tcoh; for

T > Tcoh, conduction electrons interact weakly with a paramagnetic system of localized spins.

Ignoring phonon contributions, the resistivity in this region is logarithmically increased as

temperature decreases. In the crossover region T ∼ Tcoh, the strong Fermi surface fluctuations

give rise to a very high resistivity, giving rise to local resistance maximum. Experimentally,

this resistivity maximum is often used to defined coherence temperature, and sometimes is

considered to be a caliper of the Kondo temperature. Because of local moment ions in periodic

lattice, at high temperatures the magnetic susceptibility follows a Curie-Weiss behavior. At low

temperatures, much below Tcoh, the electronic specific heat is proportional to the temperature,

γ = C(T )/T |T→0 ∝ T , in Kondo lattice system. Recently a mean field approach taken to

the Kondo lattice model in the weak coupling limit shows that two energy scales are relevant
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for the Kondo lattice system [Burdin, 2000]: one is associated with the onset of local Kondo

screening, single impurity Kondo scale (T sK = Dexp(-1/JN0)FK(nc)); the other is associated

with Fermi liquid coherence and the behavior of physical quantities at T = 0 (Tcoh = Dexp(-

1/JN0)Fcoh(nc)), where FK and Fcoh are functions of the filling of the conduction band. These

two scales have the same exponential dependence on TK/D for weak coupling, but very different

dependencies on the conduction electron density in the limit nc 	 1, in which Tcoh 	 TK .

In the N -fold degenerated Kondo lattice model, kBTK � ∆CEF , where ∆CEF is the

crystalline electric field splitting (see below), a broad local maximum occurs for N > 3 in the

magnetic susceptibility and the magnetic specific heat. The magnetic susceptibility and specific

heat in the Coqblin-Schrieffer model based on the Bethe-ansatz solution are numerically solved

by Rajan [Rajan, 1983], and are plotted in Figs. 3.1 (b) and (c), respectively. Recently, these

results have been reproduced by Otsuki et al. solving the Coqblin-Schrieffer model based on

a continuous-time, quantum Monte Carlo method [Otsuki, 2007]. This peak like structure has

been observed in many Ce- and Yb-based Kondo lattice system [Hewson, 1993].

3.1.2 Crystalline electric field

Given that the 4f -electrons in rare-earth ions lie much closer to the nucleus than the 3d-

electrons in transition metal ions, and lie within 5d shells, they are shielded from the local

environment. As a consequence the spin-orbit interactions are stronger than the crystalline

electric field (CEF) interactions for rare-earth atoms. Consider the rare-earth ion with a

stable 4fn configuration with a ground state Hund’s rule multiplet |n,L, S〉. This energy level

is split by spin-orbit coupling into multiplets, |n,L, S, j〉 and |n,L, S, j′〉 with energies Ej ,

Ej′ = Ej + ∆Ejj′, with ∆Ejj′ > 0 so that the j multiplet lies lowest (Fig. 3.2 (a)). The

degeneracy factor will be denoted by Nj, where Nj = 2j + 1. For instance, j = 5/2 and j’ =

7/2 is appropriate for Ce.

If there is a CEF effect the lowest multiplet |n,L, S, j〉 is split into multiplets, depending

on the point symmetry. Assuming that if the lowest multiple is split into two multiples,

|n,L, S, j, γ〉 and |n,L, S, j, γ′〉 as shown in Fig. 3.2 (b), with degeneracies, Nγ and Nγ′ , and
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Figure 3.2 Lower multiplets associated with a rare-earth ion in a configu-
ration 4fn: (a) two multiplets with a spin-orbit splitting ∆Ejj′

and (b) with the lowest multiplet split by a crystalline electric
field with an excitation energy ∆Eγγ′ .

energies (Eγ), Eγ′ = Eγ + ∆Eγγ′ , where Eγ′ > 0 and Nγ + Nγ′ = Nj . When ∆Eγγ′ 	
TK the low temperature thermodynamics is governed by the energy scale kBTK , the Kondo

temperature associated with the unsplit multiplet, given by Nj. When ∆Eγγ′ � TK , TK will

be appropriate to the lower CEF multiplet with a degeneracy factor Nγ . These results can

be applied to Ce case, j = 5/2 multiplet split by a cubic CEF into a Γ7 doublet (NΓ7 = 2)

and a Γ8 quartet (NΓ8 = 4). Note that the relevant ratio kBTK/∆Eγγ′ is important in the

Coqblin-Schrieffer regime, but the ratio ∆Ejj′/∆Eγγ′ is a relevant ratio in the mixed valence

regime. Since the CEF is responsible for lifting the degeneracy of Hund’s rule ground state

multiplet at low temperatures, it is important to consider CEF effect that eventually affects

the magnetic properties of the rare-earth ions in Kondo lattice system .

3.1.3 RKKY interaction

The screening of local moments, required for Fermi liquid behavior in the Kondo lattice,

competes with interactions between local moments. Such interactions can be due to direct

hopping or exchange between f -orbitals, but are also generated due to the polarization of the

conduction electrons. Most local moment systems develop antiferromagnetic, or ferromagnetic,

order at low temperatures. A magnetic moment at location x0 induces a wave of Friedel os-

cillations in the electron spin density 〈σ̂(x)〉 = -Jχ (x − x0)〈S(x0)〉 where χ(x − x0) is the
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nonlocal susceptibility of the metal [Coleman, 2008]. The sharp discontinuity in the occupan-

cies f(εk) at the Fermi surface is responsible for Friedel oscillations in induced spin density

that decay with a power law. If second moment is introduced at location x, it couples to this

Friedel oscillation with energy J〈S(x)σ̂(x)〉, giving rise to the Ruderman-Kittel-Kasuya-Yosida

(RKKY) magnetic interaction [Ruderman, 1954; Kasuya, 1956; Yosida, 1957]. This indirect,

RKKY interaction, is given in lowest quadratic order in J ;

HRKKY = −J2χ(x− x′)S(x) · S(x′) (3.2)

where JRKKY (x − x′) = JRKKY (r) = −J2N0
cos 2kF r
kF r

, where N0 is the conduction electron

density of states and r is the distance from the local moment setting up the oscillations.

In alloys containing a dilute concentration of magnetic transition metal ions, the oscillatory

RKKY interaction gives rise to a frustrated, glassy magnetic state known as a spin glass

[Mydosh, 1993]. In the Kondo lattice systems, the RKKY interaction typically gives rise to

an ordered antiferromagnetic (or ferromagnetic) state with a Néel temperature, TN , (or Curie

temperature, Tc) of the order J2N0. In the Kondo screened state, JRKKY is expected to be

renormalized, in particular at long distances, but a reliable determination of JRKKY is not

available at present.

3.1.4 Heavy fermion state

The term heavy fermion (HF) has been used to describe the low temperature electronic

state in a new class of intermetallic compound with electronic density of states as much as

1000 times larger than copper. Since the discovery of heavy fermion behavior in CeAl3 (γ

= 1620 mJ/mol·K2) [Andres, 1975], various ground states, such as superconductors, antiferro-

magnets, valence fluctuations, and insulators, has been observed in Kondo lattice systems. The

lower cut-off (C(T )/T |T→0 = γ ≥ 400 mJ/mol·K2) [Stewart, 1984], defining heavy fermions, is

somewhat arbitrary as these systems are part of a continuum extending down through Kondo

lattice to mixed valence (intermediate valence) systems. The heavy electron state of inter-

metallic lanthanide and actinide compounds has its origin in the hybridization between the

4f - and 5f -electrons and the conduction electrons. In Ce-, Yb-, and U-based metallic systems
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the conduction electrons compensate or screen the localized moments of f -electrons where lo-

calized electrons together with their screening cloud form quasi-particles. These quasi-particles

have a heavy (effective) mass, reflected in the enhanced value of the Sommerfeld coefficient

γ = C(T )/T |T→0, Pauli susceptibility χ(0), and A-coefficient of the T 2 term to the electri-

cal resistivity at low temperatures. When f -electrons enter a conduction band there is an

increased overlap of the electronic state which enhances the hybridization and band widths

[Hewson, 1993] and the Fermi surface volume expands (within in the approximation of single

Fermi surface), and is compensated by the development of a positively charged background

[Coleman, 2008].

Figure 3.3 (a) Dispersion produced by the injection of a composite fermion
into the conduction sea. (b) Renormalized density of states,
showing hybridization gap ∆g [Coleman, 2008].

From the mean field approach to the Kondo lattice model the mass enhancement of the

quasi-particles and their hybridization strength can be obtained [Coleman, 2008]. Hybridiza-

tion between the f -electron states and the conduction electrons builds an upper and lower

Fermi band, separated by an indirect hybridization gap of width ∆g = Eg(+)−Eg(−), where

Eg(±) = λ± V 2/D∓ and D∓ are the top and bottom of the conduction band (Fig. 3.3). The

direct gap between the upper and lower bands is 2|V |, where |V | is the hybridization matrix

elements. The energy gap with N = 2j + 1 can be written

∆g =
πnf
Ne2

TK . (3.3)
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The relationship between the energy of the heavy electrons (E) and the energy of the con-

duction electrons (ε) is given by ε = E − |V |2/(E − λ), so that the density of heavy electron

states N∗(E) =
∑

k,± δ(E − E±
k ) is related to the conduction electron density of states N∗(ε)

by N∗(E) = N0
dε
dE = N∗(ε)(1 + |V |2

(E−λ)2
), which becomes N∗(E) ∼ N0(1 + |V |2

(E−λ)2
) outside

hybridization gap and becomes N∗(E) = 0 inside hybridization gap. So the hybridization gap

has of approximate width of kBTK . Since the density of state N∗(0) = N0 +nf/(NTK) at the

Fermi energy so the mass enhancement of the heavy electrons is then

m∗

m
= 1 +

nf
N0NTK

∼ nfD

NTK
(3.4)

where N0 is the density of state of electrons in the conduction sea and D is the width of

the electron band. Therefore, the mass enhancement is expected either when the band width

is very large, �
2/m∗ = d2E(k)/dk2 where E(k) is the energy dispersion, or when the Kondo

temperature is very low, TK ∝ 1/m∗, which defines a Fermi energy (kBTK) that is much smaller

than in common metals.

3.1.5 Doniach phase diagram

The competition between the Kondo screening (on-site) and the RKKY (inter-site) interac-

tions governs the phase diagram of the Kondo lattice, called Doniach diagram [Doniach, 1977].

Generally the Fermi liquid competes with a magnetically ordered metal, but in the presence

of strong quantum effects and geometric frustration, spin glass and spin liquid states may

also occur as a ground state [Coleman, 2007]. Doniach [Doniach, 1977] argued that there are

two energy (temperature) scales in the Kondo lattice, the single ion Kondo temperature TK

and TRKKY , given by TK = Dexp(-1/2JN0) and TRKKY = J2N0. Figure 3.4 is based on a

extension [Coleman, 2008] of the general Doniach phase diagram. When JN0 is small, then

TRKKY is the largest energy scale and an antiferromagnetic state is formed, but, when the

JN0 is large, TK is the largest energy and a fully screened Kondo lattice ground state becomes

stable. For intermediate values of JN0 a local maximum in TN occurs.

Although the Doniach diagram provides a qualitative understanding of HF Kondo lattice

behavior, there are concerns left over. This diagram is generically a comparison of energy
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Figure 3.4 Doniach diagram, illustrating the antiferromagnetic (AFM)
regime, where TK < TRKKY and the heavy fermion regime,
where TK > TRKKY . Experimental observation indicates
that the transition between these two regimes, (JN0)c, occurs
through a quantum critical point [Coleman, 2008].

scales and does not provide a mechanism connecting the heavy fermion to the local moment

(AFM) states. In this diagram, fundamentally based on a single impurity model, an artificially

large value of the coupling constant JN0 is required for heavy fermion state. This was later

resolved by considering the large f -spin degeneracy (N = 2j + 1) of the spin-orbit coupled

moments. The degeneracy can be large as N = 8 in Yb-based compounds, leading to a Kondo

temperature TK = D(NJN0)1/N exp(−1/NJN0) [Hewson, 1993; Coleman, 2008].

The Doniach diagram implies that there are materials having a critical value of (JN0)c

(Fig. 3.4) which are located at the interface of magnetic and nonmagnetic behavior; at this

point magnetic ordering take place undergoes at exactly zero temperature. The parameter,

JN0, depends on the details of the system. Experimental observation [Stewart, 2001] indicates

that the transition between these two regimes is a quantum critical point (QCP). Except

for the special case of some material being precisely located at the this critical value, in

general it is necessary to tune a system to the QCP using nonthermal control parameters
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such as substitution (x), pressure (P), and/or magnetic field (H). Near the critical point of

such a quantum phase transition, pronounced deviations from the Fermi liquid behavior have

been observed from the finite temperature thermodynamic and transport measurements. Such

deviations were considered as a breakdowns of the Fermi liquid state, so called non Fermi liquid

(nFL) behavior, caused by quantum fluctuations near the critical point. Experimentally, such

nFL behavior associated with an antiferromagnetic QCP involves logarithmic divergence of

the specific heat, C(T )/T ∝ -log(T ), and linear temperature dependence of the resistivity,

∆ρ = AT [Stewart, 2001]. Generally, the Fermi liquid state, with ∆ρ = AT 2, is typically

recovered when the system is tuned away from the QCP.

3.2 Fermi liquid theory

Systems of interacting fermions at low temperature have been of interest since early in the

development of condensed matter theory. The Fermi liquid (FL) theory, or Landau theory,

a phenomenological theory of interacting fermions, is based on the concept of quasi-particles

[Landau, 1957a; Landau, 1957b; Landau, 1959]. It proposed to map the properties of Fermi

systems at low temperature onto the physics of dilute gas of strongly interacting fermionic

excitations. A microscopic justification and rigorous general mathematical proof for the sta-

bility of the FL state have been performed by using a renormalization group (RG) method

[Feldman, 1993; Shankar, 1994].

For a noninteracting system, the occupation of the single particle state |k σ̂ 〉 with mo-

mentum k is given by nT=0
kσ̂ = θ(kF − k), where θ(kF − k) is the step function. The Fermi

momentum kF is determined by the density of particles

n =
∑
kσ̂

nT=0
kσ̂ =

k3
F

3π2
. (3.5)

If the low energy excitation spectrum of the interacting system is in one-to-one correspon-

dence with the Fermi liquid spectrum, and if the ground state retains the full symmetry of

the Hamiltonian, the system is termed a normal Fermi liquid [Baym, 1991]. Low energy single

particle excitations of the FL, with momentum numbers k and σ̂, are called quasi-particles.
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In the ground state, the quasi-particle distribution function is nkσ̂. The energy of a quasi-

particle, εkσ̂, is defined as the amount of energy by which the total energy E of the system

increases, if a quasi-particle is added to the unoccupied state |kσ̂〉, εkσ̂ = ∂E
∂nkσ̂

, where ∂nkσ̂

is the corresponding change of the distribution function. As a consequence of the interaction,

the single particle energies depend on the state of the system εkσ̂{nT=0
k′σ̂′ } = vF (k − kF ) for an

isotropic system at small energies, with the Fermi velocity vF = kF /m
∗. The effective mass,

m∗, determines the density of states N0 per spin at the Fermi level,

N0 =
m∗kF
π2

(3.6)

For isotropic systems, with short range interaction, the FL interaction function (fkσ̂k′σ̂′)

depends only on the angle between k and k’ and on the relative spin orientation of σ̂ and σ̂′,

and hence is parameterized as [Baym, 1991]

fkσ̂k′σ̂′ =
1

2N0

∞∑
l=0

Pl(k̂, k̂
′
)[F sl + F al σ̂σ̂

′] (3.7)

Here k̂ = k/|k|, σ̂ = ±1, Pl(x) are the Legendre polynomials, and F sl and F al are the di-

mensionless, spin symmetric and spin antisymmetric, Landau parameters, respectively, which

characterize the effect of the interaction on the quasi-particle energy spectrum. In a crystal,

the symmetry of the system is reduced to discrete rotations and/or reflections (the elements

of the space group of the lattice). As a consequence the band structure εk and the FL inter-

action fkσ̂k′σ̂′ may be strongly anisotropic. In applications of Fermi liquid theory to metals, it

is frequently assumed that an isotropic approximation in 3D or quasi-2D systems can give a

reasonable account of the FL properties.

3.2.1 Thermodynamic properties

The equilibrium distribution function n0
kσ̂ at finite temperature follows:

n0
kσ̂ = nF (εkσ̂) =

1
eεkσ̂/T + 1

(3.8)

The derivative of the internal energy with respect to temperature yields the specific heat

at constant volume. The leading term at T 	 TF (TF is the Fermi temperature) is linear
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in temperature, as for the free Fermi gas, and given by the (renormalized) density of states

N0 = m∗kF /π2 (Eq. 3.6)

CV =
π2k2

BN0T

3
= γT. (3.9)

The spin susceptibility χ at T 	 TF follow as

χ =
µ2
BN0

1 + F a0
=
m∗/m
1 + F a0

χ0 (3.10)

where µB is the magnetic moment of electrons, χ0 is the susceptibility of the free gas, and F a0

is the dimensionless, spin antisymmetric, Fermi liquid parameters for l = 0. χ is affected both

by the mass renormalization and by Fermi liquid parameters describing an effective screening

of the external fields.

3.2.2 Transport properties

At low temperature T 	 TF , there exists a small number of thermally excited quasi-

particles, which interact strongly. The decay rate 1/τ of a quasi-particle on top of the filled

Fermi sea is dominated by two particle collision processes; the considered quasi-particle in

state |1〉 = |k1σ̂1〉 scatters off a partner in state |2〉, the two particles ending up in the final

states |3〉 and |4〉.
A full evaluation of 1/τ yields [Baym, 1991]

1
τk

= (T 2 +
ε2k
π2

)
π3

64εF

∫ 1

0
d cos(

θ

2
)
∫ 2π

0

dφ

2π
[|A0(θ, φ)|2 + 3|A1(θ, φ)|2]. (3.11)

The quantities A0 and A1 are the dimensionless scattering amplitudes in the singlet and triplet

channels [A0,1 = N0a(1, 2; 3, 4)]; θ and φ parameterize the angle between k1 and k2 and the

planes (k1,k2), (k3,k4), respectively. In 2D systems the prefactor of T 2 in 1/τ is logarithmically

enhanced, 1/τ ∼ T 2 ln(TF /T ) [Chubukov, 2005].

The forward scattering limit of the quasi-particle scattering amplitude can be expressed as

[Landau, 1959]

Aα(θ, φ = 0) =
∑
l

Fαl
1 + Fαl /(2l + 1)

Pl(cos θ), (3.12)
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where α = s and a labels the spin symmetric and antisymmetric particle-hole channels, re-

spectively.

In the lowest approximation, the electrical conductivity σ = 1/ρ, where ρ is the resistivity,

is defined as the response of the electrical current density, j, to the screened electric field, E,

j = σE. For a translationly-invariant system, quasi-particle collisions are momentum conserv-

ing and the resistivity is zero. The most important source of momentum dissipation at low

temperature is impurity/defect scattering. Taking into account that electron-electron collisions

1/τe−e ∼ T 2 (Eq. 3.11) at low temperatures, the resistivity is given by

ρ(T ) = ρ0 +AT 2 + · · ·. (3.13)

Here ρ0 is the residual resistivity from impurity/defect scattering. The coefficient A is given by

a weighted angular average of the squared quasi-particle scattering amplitudesA∝ (A0,1(θ, φ))2

∝ N2
0 . Note that in general the transport relaxation time, τtr, differs from the relaxation time

in a particular k state due to the extra factor 1− cos θ (Eq. 3.11).

Whereas in the FL picture, the resistivity coefficient (when the transition amplitude

a(1, 2; 3, 4) depends weakly on momentum), the magnetic susceptibility, and the specific heat

coefficient are expected to be material dependent since A ∝ N2
0 , χ ∝ N0, and γ ∝ N0, ratios of

these terms can be constructed so as to be material independent. This is indeed observed for a

large number of HF systems, and A/γ2 is termed the Kadowaki-Woods ratio [Kadowaki, 1986]

and χ(0)/γ is called the Wilson ratio [Lee, 1986]. In the following section these FL relations

will be discussed in detail.

3.3 Fermi liquid relations

3.3.1 Kadowaki-Woods ratio - A vs. γ

Experimentally, the ratio between the T 2 coefficient of the resistivity (A) and the lin-

ear specific heat coefficient (γ) in heavy fermion compounds shows an approximate universal

value A/γ2 ≈ 10−5 µΩcm(mJ/mol·K)−2, which is know as the Kadowaki-Woods (K-W) ratio

[Kadowaki, 1986]. Although it was believed to be universal in heavy fermion systems for a
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long time, the K-W relation is violated in many Yb-based systems. Recently, a generalized

K-W relation was derived that is applicable for system with general f -orbital degeneracy, N ,

for Ce- and Yb-based compounds [Tsujii, 2005] as well as some Sm- and Er-based compounds

[Kontani, 2005; Kontani, 2008]. By considering the material dependence of N , the variation

in K-W ratio values was explained [Kontani, 2005; Kontani, 2008] by the given equations:

A =
hk2

B

e2
3π6

2k4
Fa

3
N(N − 1)Γ2

loc(0, 0)ρ
4
f (0) (3.14)

γ = NAk
2
B

π2

6
N(N − 1)Γloc(0, 0)ρ4

f (0)

where h is the Plank constant and e is the electron charge; kF is the Fermi momentum, Γloc(0, 0)

is the local four-point vertex which represents the effective interaction between quasi-particles;

ρf (0) is the density of states (DOS) per f -electron at the Fermi energy of which Nρf (0) is the

total DOS at the Fermi level. Here we will follow the notation given in Ref. [Tsujii, 2005], in

the previous section the DOS is given by N0. Since Γloc(0, 0) also depends on N , A and γ are

not simply proportional to N(N − 1). But a value for A/γ2 can be deduced as

A

γ2
=

h

e2N2
Ak

2
B

9(3π2)−1/3

n4/3a3

1
1
2N(N − 1)

≈ 1× 10−5

1
2N(N − 1)

(3.15)

by making several assumptions. For the case of N = 2, this formula gives the K-W ratio; A/γ2

= 1× 10−5 µΩcm(mJ/mol·K)−2 with h/e2 = 2.6×104 Ω and assuming 1/n4/3a ≈ 4×10−8 cm.

For general N , this gives a set of universal relations given in Ref. [Tsujii, 2005] and shown in

Fig. 3.5 as the solid lines for N = 2, 4, 6, and 8. In the above equation the free electron model

kF = (3π2n)1/3, n being the carrier concentration, was used. Based on the above the formula

unit (f.u.) should include only one rare-earth ion. The K-W ratio is found to depend on n as

n−4/3. Thus, it is necessary to consider the carrier density for low carrier systems.

For YbPtBi, in zero field and zero pressure, the K-W ratio is located close to the N = 8

curve [Torikachvili, 2007]. When the carrier density, 0.04 hole per formula unit (see chapter 6),

is considered, the N = 2, 4, 6, 8 manifolds shown in Fig. 3.5 shifts to downward with the N

= 2 line falling well below the data. Both the degeneracy and carrier density can not explain

the observed K-W ratio for YbPtBi. The K-W ratio may depend on CEF splitting, low carrier
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Figure 3.5 Figures are taken from Ref. [Tsujii, 2005]. Left figure:
A vs. γ of heavy fermion systems with various degener-
acy. The black line corresponds to the Kadowaki-Woods ratio
[Kadowaki, 1986]. Other solid lines are the predicted from the
orbitally degenerate periodic-Anderson model. Colors of this
symbols represent the degeneracy N ; black, yellow, blue, and
red indicate N = 2, 4, 6, and 8, respectively. Right figure:
The plot of Ã and γ̃ of heavy-fermion systems. The dotted line
represents the generalized K-W ratio.
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density and details of the multiple Fermi surface. The further discussion of the K-W ratio for

YbPtBi will be present in chapter 6.

If the value of N can be determined experimentally, the normalized coefficients Ã and γ̃

can be written

Ã =
A

1
2N(N − 1)

, γ̃ =
γ

1
2N(N − 1)

. (3.16)

Then the K-W ratio with anyN values, Ã/γ̃2 = 1×10−5 µΩcm(mJ/mol·K)−2. This generalized

K-W ratio does not include anyN dependence and should be applicable to arbitraryN systems.

The previous K-W relation turned out to be valid only when N = 2 (Kramers doublet case

due to strong CEF splitting primarily in Ce-based systems). However, a determination of the

ground state degeneracy N , or equivalently, the number of states below Kondo temperature TK ,

is not trivial due to the CEF splitting (∆CEF/kB) of the f -level; for example, the N = 6, for

Ce3+, and N = 8, for Yb3+, levels split into Kramers doublets or quartets depending on point

symmetry of the rare-earth ion. The generalized K-W relation is derived only by imposing

constraints of large mass enhancements and small charge susceptibility on the microscopic

FL theory. This fact illustrates a remarkable advantage of the FL theory for the analysis of

strongly correlated systems. Recently, the YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) system

with 2 ≤ N ≤ 8, has been reported by Torikachvili et al [Torikachvili, 2007]. These system

were found to be followed the generalized K-W relation well, and formally doubled the number

of examples of Yb-based HF system.

It should be noted that the transition metals Pd and Pt also deviate from the K-W relation.

These transition metals are not likely to require the generalized K-W relation, because the N

of these metals would be close to 2 due to the quenching of the orbital moment. Indeed

Ã/γ̃2 values for these metals is much smaller than the above equation. A. C. Jacko et al.

[Jacko, 2009] introduced a ratio closely related to the K-W ratio, that includes the effects of

carrier density and spatial dimensionality and reconciles the values for organic charge-transfer

salts, transition metal oxides, heavy fermions, and transition metals (Fig. 3.6).

Jacko et al. achieve this by considering new parameter, fdx(n) = ς2nN2
0 〈v2

0x〉, where 〈〉
denotes an average over the Fermi surface, n is the conduction electron density, and ς is a



28

Figure 3.6 Figures taken from Ref. [Jacko, 2009]. (a) The standard Kad-
owaki-Woods plot. It can be seen that the data for the tran-
sition metals and heavy fermions (other than UBe13) fall onto
two separate lines. However, a wide range of other strongly
correlated metals do not fall on either line or between the two
lines. aTM = 0.4 µΩcm mol2 K2mJ2 is the value of the K-W
ratio observed in the transition metals [Rice, 1968] and aHF =
10 µΩcm mol2 K2mJ2 is the value seen in the heavy fermions
[Kadowaki, 1986]. (b) Comparison of the ratio defined in equa-
tion Afdx(n)

γ2 with experimental data. It can be seen that, in all
of the materials studied, that data are in excellent agreement
with our prediction (line). The abbreviations in the data-point
labels are the same as in left figure. Further details of the data
are given in Supplimentary information [Jacko, 2009].
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constant, a more fundamental ratio is proposed:

A

γ2
fdx(n) =

81
4π�k2

Be
2

(3.17)

With fdx(n) derived from the band structures, this new relation was applied to a variety of

strongly correlated metals, assuming the isotropic materials have isotropic Fermi surfaces and

that layered materials have warped, cylindrical Fermi surfaces. As shown in Fig. 3.6 the new

ratio is in good agreement with the data for materials investigated, although the range of this

log-log plot does itself conceal a fair amount of scatter.

3.3.2 Wilson ratio - χ(0) vs. γ

The magnetic susceptibilities of all the HFs obey a Curie-Weiss law (χ = C/(T − θ)) at

high temperatures and are large and less temperature dependent at low temperatures, but also

display considerable variations. A plot of γ and χ(0) (T →0) for a number of HF compounds is

given in Fig. 3.7 [Hewson, 1993]. The straight line in the figure corresponds to the Wilson ratio

(RW ). This shows that both these quantities are enhanced in a similar way, caused presumably

by the f -spin fluctuations. In the N -fold degenerate models, the Coqblin-Schrieffer limit, the

magnetic susceptibility of Kondo lattice compounds is given by [Hewson, 1993]

χ =
(gµB)2j(j + 1)wN

3kBTK
(3.18)

where wN is the generalization of the Wilson number, given by wN = e1+C−3/2N/2πΓN (1 +

1/N) [Rasul, 1984]. The electronic specific heat coefficient, γ, deduced from the thermody-

namic equations in the Coqblin-Schrieffer limit [Coqblin, 1969] is given by

γ =
π2wN
3kBTK

N − 1
N

, (3.19)

where γ is expressed using high temperature limit of TK , as defined by Wilson [Rasul, 1984],

and this equation is equivalent to Eq. 3.14.

The Wilson ratio in this limit is given by

RW =
χ/χc
γ/γc

=
π2k2

B

j(j + 1)(gµB)2
χ

γ
=

N

N − 1
(3.20)



30

Figure 3.7 Figure taken from Ref. [Hewson, 1993]. A plot of γ and χ(0)
for a number of heavy fermion compounds. The straight line
corresponds to the Wilson ratio for non-interacting electrons
RW = 1 (original figure from Ref. [Lee, 1986]. The compound
Ube13 is a typo, should be UBe13.

hence Rw = 2 for N = 2, and Rw = 1 for N →∞. The degeneracy (N) dependence of the RW

was derived earlier than the generalized K-W relation, however, it has not been tested, partly

due to the experimental difficulties associated with measuring χ(0) down to low temperatures,

and partly caused by the nature of the ground state susceptibility, which is more sensitive to the

ground state wave function than specific heat and resistivity. The ground state susceptibility

is determined by the eigenstates for given j, where the degenerate eigenstate splits into several

new eigenstates for given point symmetry in a solid. The wavefunction of these eigenstates is

the quantum mechanical admixture, consisting
∑

mα | ±jm〉. Therefore, the proper ground

state wave function should be taken account to extracted the χ(0) as well as the measurement

should be performed at sufficiently low temperature. By considering the ground state N , likely

inferred from the K-W ratio, the different manifolds, with different ratio of RW , are expected

on γ vs. χ(0) plot for Ce, Yb, and U-based compounds.

More generally, there is a generalization of the FL relation [Hewson, 1993],

RW =
N

N − 1 + j(j + 1)(gµB)2χc,imp/3χ
(3.21)
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which reduces to N/(N −1) in the localized limit χc,imp → 0. From the FL theory, the specific

heat coefficient (3.9) and the spin susceptibility (3.10) are found as

γ =
π2k2

B

3
Ñ0 , χ =

µ2
BÑ0

1 + F a0
(3.22)

where Ñ0 is the renormalized total density of states at the Fermi level Ñ0 = N c
0(0) +Nf

0 (0)/Z

with N c,f
0 (0), the densities of states of conduction electrons and f -electrons, respectively, and

Z is the quasi-particle weight factor in FL theory. The factor RW = 1/(1+F a0 ) often called the

generalized Wilson ratio, where χ expresses the effect of quasi-particle interactions in terms of

the Landau parameter F a0 .

For a finite magnetic field, C(T ) can also be expressed in terms of χ(T ) by using the

thermodynamic relation,

∂2C(T,H)
∂H2

= T
∂2χ(T,H)

∂T 2
(3.23)

where C(T,H) and χ(T,H) is the specific heat and magnetic susceptibility, respectively, as

function of temperature and magnetic field. For T 	 TK , in the limit of T → 0,(
∂2χ(T,H)

∂T 2

)
0,0

=
(
∂2γ(H)
∂H2

)
0

. (3.24)

Using the independence of the χ/γ ratio of the magnetic field,

∂2γ(H)
∂H2

=
4π2k2

B

3(gµB)2
∂2χ(0,H)
∂T 2

, (3.25)

thus γ(H) can be obtained from the magnetic susceptibility.

3.3.3 Faraday number - S(T )/T vs. C(T )/T in the T = 0 limit

There is a third ratio connecting two distinct consequences of strong correlations among

electrons; the thermoelectric power (TEP) of a free electron gas is linear as a function of

temperature; S(T ) = αT . Moreover, the magnitude of the coefficient α is directly proportional

to the density of states at Fermi energy. A dimensionless ratio links the coefficient of TEP

to the electronic specific heat through the Faraday number q and the ratio is equal to -1 for

free electrons. A strong correlation between S(T )/T |T→0 and γ was recently found to hold for



32

several systems including HF compounds [Behnia, 2004]. Figure 3.8 shows the experimental

verification of this correlation for electron and hole-like carriers. In the following the diffusion

TEP for free electron and N -fold degenerate Anderson model [Newns, 1987; Houghton, 1987]

will be briefly summarized [Behnia, 2004].

Figure 3.8 Figures taken from Ref. [Behnia, 2004]. S/T versus γ for sev-
eral compounds. Solid circles (squares) represent Ce (Yb) heavy
fermion systems. Uranium-based compounds are represented by
open circles, metallic oxides by solid triangles, organic conduc-
tors by open diamonds, and common metals by open squares.
The two solid lines represent ±γ/(eNAv). Details are in Ref.
[Behnia, 2004].

In a Boltzmann equation, the TEP, also known as the Seebeck coefficient, is given by

S = −π
2

3
k2
BT

e

(
∂ lnσε
∂ε

)
εF

(3.26)

here e is the elementary charge and εF is the Fermi energy.
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Inserting the dc conductivity (σ(ε)) of the system for ε = εF into above equation yields

S = −π
2

3
k2
BT

e

[(
∂ ln τ(ε)
∂ε

)
εF

+
∫
dkδ(εF − ε(k))M−1(k)∫
dkδ(εF − ε(k))v(k)v(k)

]
(3.27)

where k is the electron wavevector, τ(ε) is the scattering time and M−1 is the inverse of the

effective mass tensor. This expression contains information on both transport and thermody-

namic properties of the system, and demonstrates the difficulty of interpreting the temperature

dependence of TEP. The scattering time and its energy dependence are only present in the

first term of the right hand side of the equation. The second term is purely thermodynamic.

In the simple case of a free electron gas, the second term of equation 3.27 is equal to

3/2εF . Moreover, in the zero-energy limit, the energy dependence of the scattering time can

be expressed as a simple function: τ(ε) = τ0ε
ζ which yields (∂ ln τ(ε)/∂ε)ε=εF = ζ/εF for the

first term. Although the most simple case is an energy independent relaxation time τ(ε) =

τ0 (ζ = 0), a conceivable case is ζ = -1/2, that corresponds to a constant mean free path (l);

τ = l/v ∝ ε−1/2. This leads to a very simple expression for the TEP of the free electron gas:

S = −π
2

3
k2
B

e

T

εF

(
3
2

+ ζ

)
. (3.28)

This expression gives an estimation of the magnitude of TEP in real metals. It also indicates

that, whenever the Fermi energy is replaced by a different, smaller energy scale, the coefficient

is expected to increase. The Fermi energy is related to the carrier concentration n and to the

density of states N0(ε). For free electrons, the link is given by N0(εF ) = 3n/2εF . Using this

expression, TEP can be written as

S = −π
2

3
k2
BT

e

N0(εF )
n

(
1 +

2
3
ζ

)
= αT (3.29)

This equation is similar to the familiar expression for the electronic specific heat of free elec-

trons, Cel = −π2

3 k
2
BTN0(εF ) = γT . In this regime, as pointed by Ziman [Ziman, 1972], TEP

probes the specific heat per electron (fundamentally reflecting entropy considerations). In

other words (and assuming ζ = 0): S = Cel/ne, where the units are V/K for TEP, J/Km−3 for

Cel, and m−3 for n. However, in order to compare different compounds, it is useful to express

γ = Cel/T in J/mol·K2 units.
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In order to focus on the S/Cel ratio, a dimensionless quantity can be defined,

q =
S

T

NAe

γ
(3.30)

where the constant NAe = 9.6 ×105 C/mol is called the Faraday number. For a free electron

gas with ζ = 0 (the simplest case), q is equal to -1. In the case of an energy independent mean

free path, implying ζ = -1/2, q becomes equal to -2/3. If the free electrons are replaced by

free holes (that is assuming a spherical Fermi surface in both cases) then q becomes equal to

+1 or +2/3.

In HF compounds, the effective mass, m∗, of quasi-particles is enhanced mainly due to

Kondo effects. A characteristic temperature scale, TK ∝ 1/m∗, appears which defines a Fermi

energy εF = kBTK much smaller than in ordinary metals (replacing the Fermi energy in Eq.

3.28). Thus, highly enhanced value of the linear coefficient of TEP, α, is expected. The

magnitude of S(T )/T in the zero-temperature limit and its eventual correlation with γ in

HF compound has been shown in Refs. [Newns, 1987; Houghton, 1987]. At T = 0, with the

expression for the impurity density of states at the Fermi level (f -electron ρf (0)) and the

localized f -electron number nf , S(T ) follows [Hewson, 1993]

S(T ) =
2π3k2

BT

3eN
cot

(πnf
N

)
Nρf (0)

(
1− ∂Σ

∂ε

)
ε=0

+O(T 3) (3.31)

Thus, for the N -fold degenerate Anderson model, ignoring higher order terms,

lim
T→0

[
S(T )
γT

]
=

2π
eN

cot(
πnf
N

) (3.32)

The values of γ and nf (T = 0) can be calculated from the Bethe ansatz results. This

equation is the same as Eq. 3.30, with a factor difference of N/2π cot(πnf

N ). In the N -fold

degenerate models for Ce and Yb impurities the sign of the TEP coefficients differ: for Ce

impurities, the Kondo resonance lies above the Fermi level and is only fractionally occupied,

nf (0)/N , for 0 < nf (0) < 1 and N = 6 (without CEF splittings), so the density of states at

the Fermi level is steeply rising and the coefficient is positive; for Yb, which is the particle-hole

image of the Ce case, the Kondo resonance lies below the Fermi level with a fraction of nf/N

holes above, where 0< nhf < 1 and N = 8, so the coefficient is then negative.
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At low temperatures the TEP measurements have been limited due to experimental diffi-

culties. In general, the TEP (S = −∆V/∆T ) signal is extremely small, much less than sub-µV

for given ∆T at low temperatures, and difficult to experimentally detect. For HF compounds,

however there is a possibility to probe the TEP signal at low temperatures due to the enhanced

TEP value. For instance, as shown in Fig. 3.8, |S(T )/T | ∼ 10 µV/K2 for HF compounds can

be measured; at T = 1K, experimentally the TEP voltage ∆V = 0.5 µV/K can be easily

measured with ∆T = 0.05 K (5% of given temperature). Even in HF compounds, because

S → 0 when T → 0, it is extremely difficult to measure TEP in dilution temperature region

(∼ 20 mK). Therefore, the zero temperature limit of S(T )/T may need to be extrapolated

from higher temperature measurements. In the following chapter we will test the FL relation

between γ vs. S(T )/T |T→0 with YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) HF system

[Torikachvili, 2007], since this relation has been relatively less investigated, as far as we know,

compared to K-W and Wilson ratio.

3.4 Quantum criticality

In this section we will introduce both existing experimental evidence and theoretical con-

cepts for quantum phase transitions, with particular emphasis on the antiferromagnetic (AFM)

quantum critical point (QCP). The first part of this section deals with the concept of quantum

phase transition. Next the critical exponents and scaling properties applicable to quantum

phase transition are presented and the experimental observation of AFM QCP is introduced

for HF compounds. Then the current theoretical models for quantum phase transition are

summarized; the Hertz-Moriya-Milllis theory, known as the spin density wave (SDW) scenario

and the breakdown of quasi-particle at the quantum critical point, known as the Kondo break-

down scenario, including local quantum criticality. Finally, a new perspective of quantum

criticality, global phase diagram particularly applied to the field tuned AFM QCP materials,

will be briefly reviewed with regards to YbRh2Si2 and YbAgGe. A more detailed introduction

to the material YbAgGe and experimental results on it will be presented in Chapter 5.
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3.4.1 Quantum phase transition

Phase transitions are classified into discontinuous (first order) and continuous (second or-

der) transitions. At a first order phase transition, the two phases coexist at the transition

temperature, good examples are ice and water at 0◦C or water and steam at 100◦C. In con-

trast, at a continuous phase transition, the two phases do not coexist. An important example

is the ferromagnetic transition of iron at 770◦C, above which the magnetic moment vanishes.

The transition point of a continuous phase transition is also called the critical point. A con-

tinuous phase transition can be characterized by an order parameter; this is a thermodynamic

quantity that is zero in one (disordered) phase and nonzero in the other (ordered) phase. Very

often the choice of an order parameter for a particular phase transition is obvious as, e.g. for

the ferromagnetic transition, where the total magnetization is an order parameter. However,

in some cases finding an appropriate order parameter is not trivial.

In order to introduce the concept of quantum phase transition and describe the consequence

of this, we will use the concept introduced by Sachdev [Sachdev, 1999] and follow his approach.

The following quoted sentence [Sachdev, 1999] describes the central concept of quantum phase

transition, which we will use.

“Consider a Hamiltonian, H(g), whose degrees of freedom reside on the sites of a

lattice, and which varies as a function of a dimensionless coupling g. Let us follow

the evolution of the ground state energy of H(g) as a function of g. ... We shall

identify any point of nonanalyticity in the ground state energy of the infinite lattice

system as a quantum phase transition: The nonanalyticity could be either the

limiting case of an avoided level-crossing or an actual level-crossing. ... Actually

our focus shall be on a limited class of quantum phase transitions-those that are

second order. Loosely speaking, these are transitions at which the characteristic

energy scale of fluctuations above the ground state vanishes as g approaches gc.

... It is important to notice that the discussion above refers to singularities in

the ground state of the system. So strictly speaking, quantum phase transitions

occurs only at zero temperature, T = 0. ... Because all experiments are necessarily
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at some nonzero, though possibly very small, temperature, a central task of the

theory of quantum phase transitions is to describe the consequences of this T = 0

singularity on physical properties at T > 0. It turns out that working outward from

the quantum critical point at g = gc and T = 0 is a powerful way of understanding

and describing the thermodynamic and dynamical properties of numerous systems

over a broad range of values of |g - gc| and T .”

Phase transitions at T = 0 are dominated by quantum effects, in contrast to classical phase

transitions at T > 0, even though both may occur in the same physical system. Figure 3.9 (a)

and (b) illustrates two possibilities for the T > 0 phase diagram of a system near a quantum

critical point. In the first case, order only exists at T = 0 and all T > 0 properties are analytic

as a function of g near g = gc. In this case there will be no true phase transition in any real

experiment carried out at finite temperature.

In the second case, there is a line of second order phase transitions for T > 0 that terminates

at the T = 0 quantum critical point at g = gc, shown in Fig. 3.9 (b), in which some key

distinctions between classical and quantum criticality are illustrated. The vicinity of the phase

transition line, �ω 	 kBT , can be described by the theory of second order phase transitions

in classical systems. The phase transition can be tuned by varying the values of |g - gc| and

T , and therefore the QCP can be determined as the endpoint of a line of finite temperature

transitions at g = gc and T = 0. Thus, complementary information about the quantum phase

transition can be obtained from the T > 0 phase transition in terms of a purely classical model.

In a classical systems the phase transitions are driven by thermal fluctuations which have no

fluctuation at T = 0. In contrast, quantum systems have fluctuations driven by the Heisenberg

uncertainty principle even in the ground state, and these fluctuation can drive interesting

phase transitions at T = 0. In the quantum disordered regime the physics is dominated by

quantum fluctuations. In the quantum critical region, both thermal and quantum fluctuations

are important, where unusual power laws and nFL behavior are observed at finite temperatures.

The boundaries of quantum critical region are determined by the condition kBT > �ω ∝ |g -

gc|zν [Sachdev, 1999], where both z and ν are critical exponent. In most of the experimental



38

Figure 3.9 Schematic phase diagram for two possibilities for the T > 0
phase diagram near a quantum phase transition. The horizontal
axis represents the control parameter (g) used to tune through
the quantum phase transition, and the vertical axis is the tem-
perature (T ). (a) Order is only present at T = 0. The shaded
area indicate the boundaries of the quantum critical region; the
boundaries (crossover line) are given by kBT ∝ |g - gc|zν . (b)
Order can also exist at finite temperature, which are second or-
der phase transitions terminating at the quantum critical point.
The solid line marks the finite temperature boundary between
the ordered and disordered phases. Close to this line the critical
behavior is classical. The ordered state can be suppressed to T
= 0 (gc) by nonthermal control parameters (g) such as pressure,
doping, and magnetic field.

examples shown a QCP the phase diagram is similar to the second (Fig. 3.9 (b)), where the

phase diagram has been constructed for various ordered state such as antiferromagnetic and

superconducting. A QCP can be generally approached in two different ways as either g → gc

for T near 0 or T → 0 near g = gc.

From now on we will use a limited criterion for a AFM QCP as following: A continuous

phase transition should be present at finite temperature and this transition should be sup-

pressed to T = 0 by using nonthermal control parameters. At a certain point, close to gc, a

signature of strong quantum fluctuation, such as nFL behavior, should be observed. Lastly

the QCP can also be decided by extrapolating the finite temperature behavior to T = 0, for
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Table 3.1 Commonly used critical exponents for magnets, where the order
parameter is the magnetization, m, and the conjugate field is a
magnetic field, H. t = |T − Tc|/T denotes the distance from the
critical point and d is the space dimensionality [Cowan, 2005].

Exponent Definition Conditions
Specific heat α C ∝ |t|−α t→ 0 , H = 0
Order parameter β m ∝ (−t)β t→ 0 from below H = 0
Susceptibility γ χ ∝ |t|−γ t→ 0 , H = 0
Critical isotherm δ H ∝ |m|δ t = 0 , H → 0
Correlation length ν ξ ∝ |t|−ν t→ 0 , H = 0
Correlation function η g(r) ∝ |r|−d+2−η t = 0 , H = 0
Dynamic z τc ∝ ξz t→ 0 , H = 0

instance, using scaling behavior with critical exponent.

3.4.2 Critical exponent and scaling invariant

One of the most remarkable features of continuous (classical) phase transitions is univer-

sality [Cowan, 2005]; the critical exponents are the same for entire classes of phase transitions

that may occur in very different physical systems. These universality classes are determined

only by the symmetries of the order parameter and by the space dimensionality of the system.

The mechanism behind the universality is the divergence of the correlation length. If the crit-

ical point is approached, the spatial correlations of the order parameter fluctuations become

long-ranged. Close to the critical point the correlation length, ξ, diverges as ξ ∝ |t|−ν where ν

is the critical exponent and t is a dimensionless measure of the distance from the critical point,

if the transition occurs at a non-zero temperature, Tc, it can be defined as t = |T − Tc|/Tc.
In addition to the long-range correlations in space there are analogous long-range correlations

of the order parameter fluctuations in time. The typical time scale for the decay of such fluc-

tuations is the correlation (or equilibration) time, τc. As the critical point is approached the

correlation time diverges as τc ∝ ξ ∝ |t|−νz, where z is the dynamical critical exponent. At

the phase transition point, the correlation length and time are infinite, fluctuations occur on

all length and time scales, and the system is said to be scale invariant. As a consequence, all

observables have power law dependencies on the external parameters. The set of corresponding
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exponents, so called critical exponents, completely characterizes the critical behavior near a

particular phase transition.

For example, the order parameter of a classical ferromagnet is the magnetization m(−→r ).

The external parameters are the reduced temperature, t = |T − Tc|/Tc, and the external

magnetic field, H, conjugate to the order parameter. Close to the critical point the cor-

relation length is the only relevant length scale and therefore, the physical properties can

be described by the homogeneity relation for the singular part of the free energy density,

f(t,H) = b−df(tb1/ν ,HbyB ). Here d represents the dimensionality and yB is another critical

exponent, which is related to δ by yB = dδ/(1 + δ) [Vojta, 2003]. The scale factor, b, is an

arbitrary positive number. A corresponding thermodynamic quantities can be obtained by

differentiating f(t,H).

In addition to the critical exponents ν, yB , and z, there are a number of other exponents

[Vojta, 2003]: α, β, γ, and δ. These exponents describe the singularities in the heat capacity,

order parameter, susceptibility, and equation of state, respectively, in terms of the reduced

temperature t. The definitions of the most commonly used critical exponents are summarized

in Table 3.1, where it should be noted that the exponents are not independent each other. The

four thermodynamic exponents, α, β, γ, and δ, can all be obtained from the free energy, which

contains only two independent exponents. They are connected by scaling relations: 2 − α =

2β+γ and 2−β = β(δ+1). Similarly, the exponents for the correlation length and correlation

function are connected by two hyperscaling relations; 2− α = dν and γ = (2− η)ν.
In general for a quantum phase transition, the energy scale E, eigenvalue of Hamiltonian

H(g), defined at T = 0 for g �= gc vanishes as E ∼ J |g - gc|zν as g approaches gc [Sachdev, 1999].

Here J is the energy scale of a characteristic microscopic coupling. In addition to a vanishing

energy scale, second order, quantum phase transitions have a diverging characteristic length

scale ξ; 1/ξ ∼ Λ|g - gc|ν where Λ is an inverse length scale of order the inverse lattice spacing.

Thus the characteristic energy scale, taking the ratio of exponents, vanishes as the z-th power

of the characteristic inverse length scale E ∼ ξ−z.

In the vicinity of a QCP, various physical properties show singularities which can be char-
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acterized by critical exponents [Ma, 1976]. Critical exponents, having no dependence of the

detailed microscopic nature of the system, are, by the dimensionality of the system and the

degrees of freedom, associated with the long-range correlations in the ordered phase. At the

QCP ξ and τc scales diverge like ξ ∼ g−ν and τc ∼ g−νz for g → 0. Thus the scaling form can

be written in terms of r, where r measures the distance to the critical point;

r =
δ0 − δc
δc

. (3.33)

The parameter δ0 depends on temperature and tunes the system through the phase transition.

If the system is tuned by varying pressure, magnetic field, or chemical substitution, then r

= (P − Pc)/Pc, (H − Hc)/Hc, or (x − xc)/xc, here Pc, Hc, and xc are their critical values.

By approaching gc at T = 0 a universal divergence in the low temperature limit has been

observed in many systems, especially for HF metals. For example, the AFM transition at

finite temperature can be suppressed to T = 0 by magnetic field. The phase boundary of the

ordered phase, tuned through the QCP, follows TN ∝ (−r)ψ, ψ = z/(d + z − 2). Hence, the

phase line is expected to be TN ∝ (−H−Hc
Hc

)2/3 for d = 3 and z = 2 [Stewart, 2001].

3.4.3 Experimental observation

As a general consideration, a quantum phase transition is most easily probed by chang-

ing not the temperature, but some other parameter in the Hamiltonian of the system. This

parameter might be the charging energy in Josephson-junction arrays (which controls their

superconductor-insulator transition) [Chaikin, 1995; Sondhi, 1997], doping in the parent com-

pound of a high Tc superconductor (which destroys the AFM spin order) [Dagotto, 1994;

Maple, 1998; Orenstein, 2000; Sachdev, 2000], the magnetic field in a quantum-Hall sample

(which controls the transition between quantized Hall plateaus) [Das Sarma, 1996], or the

transverse magnetic field in rare-earth magnetic insulators (which controls Ising spin vari-

ables) [Bitko, 1996], as well as pressure, doping, and magnetic field in HF materials and tran-

sition metal alloys (which controls the ground state between ordered and disordered states)

[Stewart, 2001; Löhneysen, 2007].
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Figure 3.10 Quantum critical points in HF metals. (a) Doping dependence
of the phase diagram of CeCu6−xAux system [Pietrus, 1995].
(b) C(T )/T vs. log(T ) of the AFM CeCu5.7Au0.3 as a function
of pressure [Bogenberger, 1995]. The C(T )/T data for 7.1 kbar
and 8.2 kbar show more than a decade in temperature agree-
ment with -log(T ) in the vicinity of the QCP. (c) Temperature
vs. pressure phase diagram for CePd2Si2 [Mathur, 1998]. Su-
perconductivity appears below Tc in a narrow window where
the TN tends to T = 0. Inset shows the normal state resistivity
above Tc varies as T 1.2 over wide range of temperature. (d)
YbRh2Si2 tuned by magnetic field [Custers, 2003]. The evolu-
tion of the exponent ε in ∆ρ = AT ε is shown by blue (ε = 2)
and orange (ε = 1) regions.
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Whereas quantum criticality is currently being investigated in a number of strongly corre-

lated system, among these systems it has been most systematically studied in AFM HF metals

which have several specific merits. Since a large effective mass is a characteristics of HF sys-

tems, the relevant energy scales are small; a low energy scale give rise to relatively easy tuning

of the ground state by external parameters. When the external, nonthermal control parameter

is varied, its affects can be understood, qualitatively, by considering how it changes the relevant

energy scales; Kondo and RKKY interaction, within Doniach diagram picture. Explicit ob-

servation of AFM QCPs has been achieved in a number of HF metals, including CeCu6−xAux

[Pietrus, 1995] tuned by chemical substitution, CePd2Si2 [Julian, 1998; Mathur, 1998] tuned by

pressure, and YbRh2Si2 [Trovarelli, 2000; Gegenwart, 2002] and YbAgGe [Bud’ko, 2004] tuned

by magnetic field. Most of these systems have allowed systematic studies of quantum critical

behavior through transport and thermodynamic measurements. A comprehensive review of

quantum criticality, including nFL behavior, in a large variety of HF systems up through the

year 2000 has been given by Stewart [Stewart, 2001].

One of the most intensively studied materials among AFM QCP systems is the CeCu6−xAux

system. CeCu6 has been established as a HF system showing no long range magnetic order

down to 20 mK [Amato, 1987; Onuki, 1987]. By doping in Au atoms [Pietrus, 1995], where Au

occupies the Cu(2) position in the CeCu6 structure, AFM order in CeCu6−xAux is induced

beyond a critical concentration xc ∼ 0.1 as shown in Fig. 3.10 (a). The Néel temperature,

TN , for 0.1 ≤ x ≤ 1 varies linearly with x. For x < xc, the electrical resistivity, ρ(T ),

increases at low temperature as ρ(T ) = ρ0 + AT 2 which is expected for a FL for T → 0

[Löhneysen, 1998]. For xc = 0.1 a linear temperature dependence of ρ(T ) is observed between

20 mK and 0.6 K, signaling nFL behavior. A pronounced nFL behavior in specific heat mea-

surements, C(T )/T = a ln(T0/T ), was also observed between 0.06 and ∼ 2.5 K for xc = 0.1

[Lohneysen, 1996; Löhneysen, 1998]. Pronounced nFL behavior has also been observed with

Ag doping [Heuser, 1998; Scheidt, 1999]. As an alternate route to induce nFL behavior, using

pressures up to 9 kbar to suppress AFM order in CeCu5.7Au0.3 has also been investigated. As

shown in Fig. 3.10 (b), the C(T )/T data indicate a -log(T ) dependence in the vicinity of the
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critical pressure.

At ambient pressure, CePd2Si2 manifests the AFM order below 10 K with a relatively small

ordered moment of ∼ 0.7 µB [Grier, 1984]. This AFM order can be suppressed to T → 0 by

increasing pressure, and superconductivity in a very narrow window is induced in the T − P
region close to the inferred critical pressure (Fig. 3.10 (c)) leading the authors to infer that

the superconductivity is magnetically mediated [Julian, 1998; Mathur, 1998]. The resistivity

does not exhibit the standard T 2-dependence expected of a FL, where the detailed power law

analysis showed that near Pc the resistivity varies as T 1.2 over wide range of temperature (inset,

Fig. 3.10 (c)).

In YbRh2Si2, presumed AFM ordering is continuously suppressed by an external magnetic

field, leading to a field tuned AFM QCP [Trovarelli, 2000; Gegenwart, 2002] as shown in Fig.

3.10 (d) [Custers, 2003]. By increasing the magnetic field the AFM ordering temperature is

suppressed to T → 0, and FL behavior is recovered away from the QCP. Quantum criticality is

also indicated by a linear temperature dependence of the electrical resistivity and a logarithmic

temperature dependence of C(T )/T in specific heat, i.e. nFL behavior close to Hc. A further

study of the quantum criticality has also been accomplished with Ge-, Ir-, and Co-doped

samples [Custers, 2003; Friedemann, 2009], tuning each of these related systems by magnetic

field.

Quantum phase transition experiments have been accompanied by extensive theoretical

studies, which will be introduced in the following section, focused specifically on AFM QCP.

From an experimental perspective, measurements can never be extended down to zero tem-

perature, thus QCPs are inferred from finite temperature results, but carried out down to

sufficiently low temperatures. A few of the experimental strategies use to find AFM QCP from

thermodynamic and transport measurements are:

• TN → 0 at g = gc: By varying a control parameter the AFM transition should be

suppressed to T = 0.

• nFL behavior: At the QCP a pronounced nFL behavior is one of signatures of quantum

fluctuations, i.e. behavior that deviates from the FL behavior, e.g., from a constant
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specific heat coefficient and a T 2-dependence of the resistivity at low temperatures.

• scaling behaivor: Scaling analysis is one of tools used to find a QCP. Since the order

parameter correlation length diverges near the quantum phase transition as ξ ∼ |r|−ν ,
by tracking the finite temperature behavior toward T → 0, the QCP can be found.

For example, the AFM transition temperature can be tracked by TN ∼ (−r)ψ and the

coefficient A of the T 2 resistivity diverges as A ∼ 1/(g - gc)α, approaching QCP from

paramagentic phase, where the exponent α ≈ 1 has been observed for many system.

• tracking TK : Based on recent theoretical work, a mechanism for quantum criticality

can be identified by tracking the characteristic energy scale of Kondo temperature at

finite temperature (see below). In this approach, however, it still remains a difficulty to

identify the Kondo temperature due to its crossover nature (TK does not define a phase

transition).

3.5 Theoretical models

We begin with briefly by reviewing the basic concepts of small moment ordering, which

belong to both intinerant magnetism and spin density wave models of field-induced QCP,

that are necessary for the later discussion. Following this, the two theoretical models, being

currently used to explain AFM QCP will be reviewed: the spin density wave, and the Kondo

breakdown, scenarios.

3.5.1 Spin Density Wave instabilities

A spin density wave (SDW) is an AFM ground state of metals for which the density of

the conduction electron spins is spatially modulated [Gruner, 1994a]. The development of a

SDW breaks translation symmetry, violating the translational invariance in solid, due to the

consequence of electron-electron interactions. The ground state is characterized by a periodic

modulation of the spin density, the period λ = π/kF being related to a wave vector, kF , that

nests parts (or all) of the Fermi surface. The AFM order can be represented schematically as
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∆S(r) = ∆S0 cos(2π/q ·r+φ), where ∆S(r) denotes the spatially dependent spin modulation,

which occurs along the direction r. The wavelength λ of SDW is determined by the Fermi

surface of the conduction electrons and in general is not a multiple of the lattice period a

and instead is incommensurate. In fact, the ratio λ/a can change with temperature, external

pressure, doping, and other parameters.

Figure 3.11 (a) Effect of electron-electron interactions on the susceptibility.
(b) Effect of dimensionality on the free electron generalized
electronic susceptibility.

It has been shown that in the Hatree-Fock approximation that the susceptibility, χ(q) for

q �= 0, diverges as q → 2kF [Overhauser, 1962], as shown in Fig. 3.11 (a). The effects of

screening and electron correlations, however, tend to suppress this divergence [White, 1983].

Consequently, a spin density wave can form only under special conditions, which can be under-

stood in a simply way by considering the behavior of the noninteracting electronic susceptibility

χ0(q) in one, two, and three dimensions as shown in Fig. 3.11 (b). Lower dimensional systems

are more likely to become unstable with respective to SDW formation. The reason for this is

related to the nesting of the corresponding states. In one and two dimensions Fermi surfaces

are geometrically simpler and a single wave vector can nest more (or all) of the Fermi surface.

SDW are observed in metals and alloys; the canonical example is chromium and its alloys,

where the AFM ordering is directly related to the band structure of chromium [Fawcett, 1994].
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SDWs also occur as ground state in strongly anisotropic systems, for example, the psudo-one

dimensional organic conductors [Gruner, 1994]. In analogy to the magnetic order of antiferro-

magnets below Néel temperature, the electron gas becomes unstable for temperatures below

an ordering temperature, TSDW , and enters a collectively ordered ground state of an itinerant

antiferromagnet. The reason of the instability of the electron gas at the transition to the SDW

ground state is the so-called nesting of the Fermi surface.

Nesting of the Fermi surface is essential to SDW formation. Nesting describes the required

property of the reciprocal space that allows parts of the Fermi surface with electron or hole

character to map on top of each other by a single translation with the wavevector kF . This

allows a gap to open at the Fermi surfaces involved with the nesting. The most obvious case is

for pseudo-one dimension, where the Fermi surface consists of two points at kF [Gruner, 1994].

In two or three dimensions a complete nesting by just a single kF -vector is no longer as likely,

but different parts of the Fermi surface can be mapped by different kF -vectors in a more or

less perfect way.

The spin density wave state, in a sense of Fermi-surface-related instability, has many sim-

ilarities to other broken symmetry ground states of metals, such as superconductivity and

the charge density wave (CDW) [Gruner, 1994a]. Within the framework of a mean field de-

scription, the ground states develop below a second order phase transition temperature with

many of the same thermodynamic signatures as that of the BCS superconducting ground state

within the framework of weak coupling theories. A gap develops in the single particle exci-

tation spectrum, with the zero temperature gap related (again within the framework of weak

coupling theory) to the transition temperature through the same relation 2∆ = 3.5kBTc. In

all case, furthermore, the ground state is that of the coherent superposition of pairs; pairs of

electrons for the superconducting state, pairs of electrons and holes with parallel spins for the

CDW state; and pairs of electrons and holes with opposite spins for the SDW ground state.

Consequently, the CDW ground state is nonmagnetic, while the SDW ground state has a well

defined long range magnetic order with magnons being the collective excitations of the ground

state. The small effective mass for SDW, expected to be the same as the band mass, may lead
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to quantum effects [Gruner, 1994a]. The ground state of SDW has a well defined magnetic

character. Consequently, transport and magnetic measurements, together with local probes

have been used to evaluate the essential characteristics of the ground state.

3.5.2 Spin Density Wave scenario of field-induced QCP

A large class of HF materials, which have localized magnetic moments coupled to a sepa-

rate set of conduction electrons, has been successfully explained in a framework of Doniach’s

model [Doniach, 1977; Continentino, 1989]. When the intersite exchange interaction dominates

(TK < TRKKY ), magnetic order typically occurs; the moments do not participate in the Fermi

surface of the metal, and thus the saturation moment in the ordered state is large and com-

parable to the atomic moment. When the onsite Kondo effect is larger (TK � TRKKY ), the

low temperature physics can be well described by FL theory with renormalized quasi-particle

masses [Hewson, 1993]; in this case the saturation moment in the ordered state is usually very

small in HF systems. Often the magnetism inferred from experiments is very weak, where

the ordered moment per site is much smaller than the microscopic local moment that actu-

ally occupies each site; for example, small ordered moments, much less than 1µB have been

observed in Ce-based HF compounds, where the microscopic local moment is expected to be

2.14µB per Ce site [Kittel, 1996]. Therefore, the ordered magnetism can be considered as the

consequence of a spin density wave that develops out of the parent heavy FL state, where

such a small ordered moment is expected in a SDW state. This is the reason why these ap-

parently the local moment systems as can be treated spin density wave states. Within this

phenomenological concept, several attempts to explain a strong quantum fluctuation in AFM

QCP have been developed, known as the spin density wave scenario (or Hertz-Moriya-Millis

theory [Hertz, 1976; Millis, 1993; Moriya, 1995]).

The SDW scenario is based on the assumption that, in a HF system, below an energy

scale of TK , the low energy excitations are heavy quasi-particles and their collective exci-

tations [Hertz, 1976; Millis, 1993; Moriya, 1973]. The traditional approach to an itinerant

AFM QCP describes its universal properties in terms of a Ginzburg-Landau-Wilson (GLW)
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Table 3.2 Temperature dependences from the spin fluctuation theories
of nFL behavior of Hertz-Millis [Hertz, 1976; Millis, 1993]and
Moriya et al [Moriya, 1995]., for the specific heat, susceptibility,
and resistivity in the low temperature limit. The dependences
of the magnetic ordering temperature TN (AFM) and Tc (FM)
and two crossover lines (TI and TII) on the critical parameter gc
from the Hertz-Millis theory.

Hertz/Millis
AFM AFM FM FM

z = 2, d = 3 z = 2, d = 2 z = 3, d = 3 z = 3, d = 2
C/T γ-a

√
T c log(T0/T ) c log(T0/T ) T−1/3

∆χ T 3/2 χ0 − dT
∆ρ T 3/2 T T

TN/C (gc - g)2/3 (gc - g) (gc - g)4/3 (gc - g)
TI (g - gc) (g - gc) (g - gc)3/2 (g - gc)3/2

TII (g - gc)2/3 (g - gc) (g - gc)3/4 (g - gc)

Moriya
AFM AFM FM FM
d = 3 d = 2 d = 3 d = 2

C/T γ0 − a
√
T − log(T ) − log(T ) T−1/3

χq T−3/2 − log(T )/T T−4/3 −T−1/ log(T )
∆ρ T 3/2 T T 5/3 T 4/3

functional of the order parameter and its fluctuations, φ4 theory, in d+
c = d + z dimen-

sions [Hertz, 1976; Millis, 1993], where d is the spatial dimension (typically 3 or 2) and z

= 2 corresponds to the dynamical exponent. The results of this model (Hertz and Millis)

depend on the dimension d, the critical exponent z, the reduced temperature t, and a con-

trol parameter g, which is related to a Hamiltonian parameter such as pressure, doping, or

magnetic field [Hertz, 1976; Millis, 1993]. The nFL behavior for antiferromagnets and ferro-

magnets in this framework are summarized in Table 3.2 [Stewart, 2001]. A self consistent

renormalization study of the spin fluctuations near magnetic phase transitions [Moriya, 1995]

gives several theoretical predictions about the nFL behavior. Application of this model to

HF systems leads, in only a few cases, to a satisfactory description of the low temperature

properties (e.g. Ce1−xLaxRu2Si2 [Kambe, 1996]). Likewise, in CeCu2Si2, transport and ther-

modynamic measurements [Gegenwart, 1998] have indicated that its field tuned QCP belongs
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to this SDW category, but mainly itinerant d-electron systems are explainable within this

model [Yeh, 2002; Norman, 2003; Fawcett, 1970; Moriya, 1985; Pfleiderer, 2001].

Figure 3.12 Schematic phase diagram showing two classes of quantum crit-
ical points, illustrating quantum criticality of (a) the spin den-
sity wave (SDW) scenario and (b) Kondo breakdown scenario
[Gegenwart, 2008]. TN represents the AFM ordering tempera-
ture and TFL indicates the onset of the low temperature Fermi
liquid regime. T0 represents the characteristic energy scale,
signifying the initial crossover from the high temperature lo-
cal moment behavior to the beginning of the low temperature
Kondo screening in a Kondo lattice system. The E∗ marks
an energy scale separating between small (left side of E∗) and
large Fermi surface (right side of E∗). The horizontal axis
represents the control parameter (g) used to tune through the
quantum phase transition, and the vertical axis is the tem-
perature (T ). In heavy fermion metals the antiferromagnetic
(AFM) transition can be suppressed to T = 0 (gc) by non-ther-
mal control parameters (g) such as pressure, doping, and mag-
netic field. For g > gc a Fermi liquid behavior is recovered.

A crucial aspect of the SDW scenario is that the paramagnetic energy scale TK remains

finite at the QCP [Gegenwart, 2008], implying that the heavy quasi-particles survive near the

QCP. Therefore, for such a transition one does not expected the Kondo temperature to change

significantly while the system is tuned through the QCP by varying control parameter. The

schematic phase diagram of this scenario is shown in Fig. 3.12 (a), where the characteristic



51

energy scale T0 represents the Kondo temperature [Gegenwart, 2008]. In view of the current

experimental tools, the issue of defining the Kondo temperature is not trivial, partly due to

the crossover character of Kondo temperature, and partly because standard quantities such

as resistivity and specific heat do not measure Kondo temperature directly. For example, the

Kondo temperature can be inferred from the coherence temperature, where resistivity shows

a significant drop followed by a logarithmic temperature dependence as temperature decrease.

Also the magnetic specific heat shows a broad local maximum which roughly reflects the Kondo

temperature. However, when CEF effects are significant, TK ≥ ∆CEF/kB , there are difficulties

in extracting Kondo temperature because of broadening of these features.

For a long time the SDW scenario has been applied to experimental results. However,

in three dimensions this class of theories fails to explain the simultaneous linear temperature

dependence of the resistivity and the -log(T ) dependence of the specific heat coefficient ob-

served in experiments as well as the divergent Grüneisen ratio[Kim, 2008] and Fermi surface

reconstruction, changing from small to large Fermi surface across the QCP, inferred by Hall

effect measurements [Paschen, 2004]. Although, in a multiband system, there also needs to be

careful interpretation of Hall effect measurements, since the Hall coefficient depends on the

carrier density and mobility as the weighted sum over each band’s contribution [Ziman, 1960].

3.5.3 Breakdown of Kondo effect

In contrast to the SDW scenario of quantum criticality, the Kondo temperature in the

“Kondo-breakdown” scenario of quantum criticality vanishes at the QCP and the quantum

critical behavior is dominated by local magnetic fluctuations [Schröder, 1998; Schröder, 2000].

The CeCu6−xAux system motivated this new theoretical approach to local quantum criticality

[Si, 2001; Si, 2003], since it is one of the intensively characterized HF systems exhibiting nFL

behavior.

Although the behaviors of C(T )/T ∝ log(T0/T ) and ∆ρ(T )∝T in CeCu6−xAux at the QCP

were reported [Lohneysen, 1996; Löhneysen, 1998], the phase boundary of TN can be described

by SDW scenario via 2D critical fluctuations [Millis, 1993], see Table 3.2 for d = 2 and z =
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2, these are not thought to be appropriate for CeCu6−xAux system. CeCu6−xAux exhibit 3D

AFM ordering, and the anisotropy of the electrical resistivity along different crystallographic

directions is less than factor of 3. Therefore CeCu6−xAux might be treated as 3D AFM metal.

For 3D itinerant fermion systems the SDW scenario predict C(T )/T = γ0 - β
√
T and ∆ρ(T )

∼ T 3/2 for antiferromagnets (z = 2) (see also Table 3.2) and TN should depend on the control

parameter, gx = x - xc for doping and gP = P - Pc for pressure, as TN ∼ |g|ψ with ψ =

z/z(d + z − 2) = z/(z + 1). In CeCu6−xAux system ψ = 1 for both gx and gP [Rosch, 1997].

Note that the dimensionality of this compound is still under debate, because of conflicting

inelastic neutron scattering results [Stockert, 1998].

Inelastic neutron scattering experiments, for xc = 0.1, showed that the unusual type of scal-

ing of the dynamical susceptibility of CeCu6−xAux at the QCP is not consistent with the SDW

scenario. The experimental data indicate anomalous E/T scaling: χ−1(q,E, T ) = 1/c[f(q) +

(−iE + aT )α] with an anomalous scaling exponent α ≈ 0.75 [Schröder, 1998; Schröder, 2000].

Based on these experiments a new theoretical concept was proposed with the idea that the

Kondo effect breaks down at the QCP.

Although many proposals have been developed, the model proposed by Si et al. [Si, 2001;

Si, 2003], called the local quantum criticality, seems to be in agreement with experiments

for CeCu6−xAux system. Note that among the currently available theoretical models only

the local quantum criticality model provides the E/T scaling of the dynamical susceptibility,

although it needs to also be tested by other microscopic models. The quantum criticality of

CeCu6 system is also tuned by other control parameters (pressure and magnetic field) (for

pressure, see Fig. 3.10 (b)). Tuning the system through the QCP by both the pressure and

doping shows the characteristics of local quantum criticality [Scheidt, 1999]. For field tuned

transitions the behavior appears to be consistent with the properties of an SDW QCP with d

= 3 [Löhneysen, 2001; Stockert, 2007]. Thus, the quantum criticality depends on not only the

systems, but also control parameters.

The name “local quantum criticality” refers to the localization of the electronic excitations

associated with the f -moments in which a destruction of Kondo screening of the f -moments
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coincides with the magnetic transition of the Kondo lattice. Thus, the breakdown of the

Kondo effect, vanishing at the QCP, should be associated with Fermi surface fluctuations

(instabilities).

In the SDW scenario of quantum criticality, the quasi-particle system undergoes a SDW

instability at the QCP and the Kondo temeprature remains finite across the quantum phase

transition. Recently, however, experimental results have indicated that the signature of heavy

quasi-particles does not survive near the QCP. This may occur due to magnetic coupling to the

surrounding moments or possibly due to fluctuations of the Fermi volume involved with onset

of Kondo screening in an Anderson lattice system [Si, 2001; Coleman, 2001; Senthil, 2003].

Originally, based mainly on results from YbRh2Si2, the nature of the Kondo breakdown

was suggested to involve multiple energy scales. These multiple energy scales collapse to zero

as the system is tuned through the QCP and it has been proposed that the Fermi surface

changes from a large to a small one when the QCP is crossed from the paramagnetic side

[Gegenwart, 2008]. In Fig. 3.12 T0 represents the initial crossover into Kondo screened state.

For T � T0 a Kondo lattice behaves as individual local moments, following the Curie-Weiss

behavior. Because of the difficulties of extracting T0, the temperature of 0.4Rln(2) entropy

per local moment is generally defined as T0 [Gegenwart, 2008]. The line associated with the

scale E∗ separates between the incomplete Kondo screened state (left side of E∗) and complete

Kondo screened state (right side of E∗). Thus, the E∗ line marks the crossover from small to

large Fermi surface. The left side of E∗ the local moments do not participate in the Fermi

surface formation. As shown in Fig. 3.12 (a), when the two lines, TN and E∗, are intersect,

the QCP belongs to the SDW scenario. When E∗ terminates at the same value of the control

parameter as the AFM phase boundary, the QCP falls in the Kondo breakdown scenario (Fig.

3.12 (b)) [Gegenwart, 2008].

Using the z = 3 quantum criticality (Kondo breakdown scenario), which describes the dy-

namics of hybridization fluctuation, both the logarithmically divergent specific heat coefficient

and the power law divergence of the thermal expansion coefficient are explained successfully,

giving rise to the divergent Grüneisen ratio with an exponent 2/3 [Kim, 2008]. However, for
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the Ge-doped and Co-doped YbRh2Si2 cases [Friedemann, 2009] these multiple energy scales

seem to yield more complex picture (see below).

3.5.4 Disorder effect

In a recent work, the interplay of disorder and spin fluctuations near a QCP has been found

to give ∆ρ = AT n, with 1 ≤ n ≤ 1.5 depending on the amount of disorder [Rosch, 1999]. In the

framework of disorder induced QCP, nFL in disordered systems can be considering as arising

from the formation of a Griffiths-phase[Griffiths, 1969]. By invoking Griffiths phases, a number

of measurable quantities in nFL systems were predicted to have power law behavior when

disorder is present; C(T )/T ∝ γ +
√
T , ∆χ(T ) ∝ T−3/2, and ∆ρ ∝ T 3/2 [Castro Neto, 1998].

A number of HF systems such as CePd2Si2 [Mathur, 1998], CeNi2Ge2 [Julian, 1996], and

CeCu2Si2 [Gegenwart, 1998], are good candidates to be described within the conventional

scenario, but the qualitative trends can also be well described by the theory taking the disorder

effects into account: ∆ρ(T ) ∝ T 3/2 in the more dirty systems and ∆ρ(T ) ∝ T n with n close to

1 in the cleaner systems [Rosch, 1999]. In the cleaner systems an anomalous behavior in the

transport (not in thermodynamics) is predicted even at some distance away from the QCP.

Therefore it is important to use the cleanest systems to investigate quantum criticality and

thus pressure and magnetic field will be better choices for control parameters.

3.5.5 High temperature approach

Rather than considering the quantum fluctuation at low temperature, near QCP via nFL

behavior and scaling invariance, careful examination of high temperature energy scale may

provide good opportunities to select the proper model for quantum critical scenarios, since

the high temperature signature is distinctly different between SDW and Kondo breakdown

scenario. Recently this approach has been taken with the high resolution ultraviolet photoe-

mission spectroscopy of the CeCu6−xAux system [Kroha, 2010]. Although there obviously is

uncertainty in estimating the Kondo temperature, a sudden decrease of the Kondo tempera-

ture was observed at/or very close to the quantum critical concentration (xc). This drop is
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consistent with the theoretically expected signature of the Kondo breakdown scenario. In Ref.

[Kroha, 2010] the Kondo temperature was defined as E∗ in Fig. 3.12. In this case the phase

diagram is close to Fig. 3.12 (b), where the characteristic energy scale terminates to QCP.

This supports the idea that the quantum phase transition in CeCu6−xAux follows the local

quantum criticality scenario, but this conclusion needs to be tested carefully.

3.5.6 New perspective - global phase diagram

Recently, a new perspective on the mechanism for quantum criticality, including a proposed

“global” phase diagram has been developed. We will summarize it briefly, based on the Ref.

[Coleman, 2010; Custers, 2010], since this model has been applied to field tuned AFM QCP.

The earlier work and its references can be found in Ref. [Rech, 2006; Coleman, 2007].

Figure 3.13 Figure taken from Ref. [Custers, 2010]: Generic phase di-
agram displaying the combined effects of Kondo coupling
(K) and magnetic frustration, or quantum zero-point motion
(Q). The f -electron localization and the phase line inter-
sect at a quantum tetra-critical point (QTC). For the loca-
tion of compounds in the phase diagram (red cross), see Ref.
[Custers, 2010].

A two-dimensional phase diagram (Fig. 3.13) can be constructed from the ratio K =
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TK/JH the Kondo temperature, TK , and the nearest neighbor RKKY interaction, JH , and the

quantum zero point motion of the local moments Q, where Q can be increased by increasing

the amount of frustration in the coupling between the local moments. This is an extension of

the Doniach diagram [Doniach, 1977]. As K is increased, a quantum phase transition takes

place at some value Kc (QC1) as shown in Fig. 3.13. When K = 0 local moments are

coupled together on a lattice by a short-range AFM Heisenberg interaction, and for Q = 0,

this lattice would develop an AFM ground state. However, by adding a frustrated, second

neighbor coupling, between the spins (reducing the moment size), the strength of the quantum

zero point spin fluctuation can be increased. At some critical value Qc, there is a quantum

phase transition where long range magnetic order melts under the influence of zero point spin

fluctuations to form a spin liquid (see QC2 in Fig. 3.13). For the general case K �= 0 and Q

�= 0, QC1 and QC2 are linked with a single phase boundary. At small K and Q, a common

AFM phase exists. The paramagnetic spin liquid at large Q has a small Fermi surface and the

paramagnetic, heavy FL at large K has a large Fermi surface, where these can be separated

by zero temperature phase transition.

This extended Doniach like diagram has been used to parameterize the magnetic field tuning

experiments on pure, Ir-, Co-, and Ge-doped YbRh2Si2, YbIr2Si2, YbAgGe, and YbAlB4

(see Fig. 3.13) [Custers, 2010]. For the YbRh2Si2 family, except for YbIr2Si2, there is a

field tuned temperature scale, T ∗ (E∗ in Fig. 3.12), where various anomalies are seen in

the thermodynamic and transport measurements such as Hall coefficient, susceptibility, and

magnetostriction. The anomalies corresponding to T ∗ are shown to sharpen up at the critical

field H∗ when T → 0. The H∗ has been interpreted as the point at which the magnetic

field causes the modification from a small to a large Fermi surface. The ground state of

YbIr2Si2 is a paramagnetic FL state which is stable up to 80 kbar [Yuan, 2006]. At the lowest

temperature no signature of T ∗ was found in magnetic field dependent Hall effect measurements

[Kriegisch, 2008]. Thus, YbIr2Si2 was placed tentatively to the right of the f -spin localization

line. In Fig. 3.13, YbAlB4 was placed at the edge of the spin liquid metal phase, since this

system enters a FL phase with small magnetic field. For YbAgGe, a larger magnetic field is
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required to suppress the AFM order. Beyond the AFM QCP, YbAgGe was shown to pass

through a finite magnetic field range with a linear temperature dependence of the resistivity

(nFL region), which is very similar to subsequent work on Ge-doped YbRh2Si2. For YbAgGe,

detailed descriptions of physical properties are give in the chapters below with references there

in.

In YbRh2Si2, the field induced T ∗ scale and the TN (AFM phase boundary) converge at

a single QCP, however, these have recently been proposed to separate in Ir- and Ge-doped

systems [Friedemann, 2009], manifesting similar features as those seen at high magnetic fields

in YbAgGe. A central question, raised from the proposed Doniach-like diagram, is what are

the characteristics of proposed spin liquid metal and what is the nature of the spin liquid phase

that is predicted to develop in Ir- and Ge-doped (not for Co-doped) YbRh2Si2 and YbAgGe

system.

3.5.7 Field tuned QCP - YbRh2Si2 and YbAgGe

SchematicH−T phase diagrams of YbRh2Si2 with Ir, Co, and Ge-doped [Friedemann, 2009]

and YbAgGe [Bud’ko, 2005a] are plotted in Fig. 3.14 which clearly shows the evolution of the

various energy and crossover scales; AFM ordering temperature TN , a crossover T ∗, and a FL

region below TFL. These scales were evidenced from several thermodynamic and transport

measurements. For YbRh2Si2 (Fig. 3.14 (a)), all these scales converge to one critical field at T

= 0 (QCP). For Ir-doped sample (Fig. 3.14 (b)), the TN is suppressed below 0.02 K, whereas

in the case of Co-doped sample (Fig. 3.14 (c)) the TN is enhanced to 0.41 K. The T ∗ scale does

not change the position in the phase diagram. Therefore, it was inferred that T ∗ is separated

from TN for Ir-doped sample, whereas T ∗ intersects with TN for Co-doped sample. In both

cases T ∗ and TFL seem to converge to the same critical field at T = 0.

Interestingly, both T ∗ and TFL for Ge-doped sample (Fig. 3.14 (d)) are separated from TN

but both of them vanish at the same field. For YbAgGe (Fig. 3.14 (e)), in addition to TN ,

T ∗, and TFL there is one more characteristic crossover scale THall; THall and T ∗ were initially

based on the sharp variation of the Hall coefficient [Bud’ko, 2005a]. As seen in Fig. 3.14 the
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Figure 3.14 Schematic H − T phase diagram of YbRh2Si2 with Ir, Co,
and Ge substitution and YbAgGe. In these systems a mag-
netic field (H) was selected as a control parameter g. Figures
are based on the results in Ref. [Friedemann, 2009] for (a)
YbRh2Si2, (b) Yb(Rh1−xIrx)2Si2, and (c) Yb(Rh1−xCox)2Si2;
in Ref. [Custers, 2010] for (d) YbRh2(Si1−xGex)2; in Ref.
[Bud’ko, 2005a] for (e) YbAgGe. The TN represents the anti-
ferromagnetic phase boundary. The crossover temperature to
the Fermi liquid state, TFL, is based on the quadratic temper-
ature dependence in the electrical resistivity ∆ρ(T ) = AT 2.
The crossover temperature, T ∗, was evidence from several
thermodynamic and transport measurements. For YbAgGe
and Ge doped YbRh2Si2 the non Fermi liquid (nFL) behavior,
∆ρ(T ) = AT , is observed for a wide range of magnetic field,
and therefore TFL is separated from the TN . See details in
text.

H − T phase diagram of YbAgGe is quite different compared to YbRh2Si2 family. However, if

TN and TFL only are considered, the H − T phase diagram of YbAgGe is similar to the case

of Ir- and Ge-doped YbRh2Si2. If nFL behavior is only considered, the features in the phase

diagram of Ge-doped YbRh2Si2 are very similar to those of YbAgGe; both of them show the

nFL behavior in a wide range of magnetic field, separating TFL from TN .

Although there are qualitative differences, the extended Doniach like diagram seems to

incorporate these materials. From the Fig. 3.13, when AFM order in YbAgGe is tuned by

magnetic field, the system moves in the direction of increasing K. Thus, the AFM order is

suppressed by intersecting the phase boundary linked by QC1 and QC2, and the nFL behavior
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corresponds to the region between the phase boundary and the line at which the f -spin changes

from localized to delocalized. The T ∗ feature may correspond to the f -spin localization line.

However, the nature of crossover THall and T ∗ lines in YbAgGe still need to be clarified.

With the current interest in Kondo breakdown scenario, including local quantum critical-

ity, a central question that has to be resolved is what is the direct experimental signature of

the Kondo breakdown, distinguished it from other possible routes to quantum criticality. For

example, a crossover scale, T ∗, was detected in a number of transport and thermodynamic

measurements in agreement with the predictions of the Kondo breakdown scenario. In par-

ticular, Hall effect measurements are consistent with a jump, and are interpreted as a change

from a small to a large Fermi surface, at the QCP in YbRh2Si2 [Paschen, 2004]. Generally, in

HF metals, the interpretation of the transport measurements is not easy due to the multi-band

contributions. Addressing this issue is not trivial due to the absence of low temperature angle

resolved photoemission spectroscopy which is restricted to higher temperatures T � TN and

de Haas van Alphen experiments which are restricted to high magnetic fields H � Hc. In

addition, standard quantities, which are accessible down to mK order such as resistivity and

specific heat, do not measure TK directly due to the crossover character.

In YbAgGe a wide range of nFL region appears to lie between the AFM and the heavy

electron state. Therefore, it is important to more carefully study the region between THall and

T ∗. In the later section we will investigate further this region by means of thermoelectric power

(TEP) measurements. In addition, when the higher temperature energy scale TK as shown

in Fig. 3.12, is identified, a Kondo breakdown scenario can be distinguished experimentally

from a SDW instability by tracking the evolution of TK at least qualitatively. Since the TEP is

known to be particularly sensitive to Kondo and CEF effects, and to various physical quantities

related to the DOS at the Fermi level [Blatt, 1976], the evolution of TK will also be traced by

TEP measurements for YbAgGe (see chapter 5).
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CHAPTER 4. Thermoelectric Power of the YbT2Zn20 (T = Fe, Ru, Os, Ir,

Rh, and Co) Heavy Fermion Compounds

4.1 Introduction

In a heavy fermion (HF) Kondo lattice system, the ground state is a Fermi-liquid (FL)

state constituting the Landau quasi-particles. In Ce-, Yb-, and U-based intermetallic sys-

tems the conduction electrons compensate or screen the localized moments of the f -electrons

where localized electrons together with their screening cloud form quasi-particles. These quasi-

particles have heavy masses, reflected in an enhanced value of the Sommerfeld coefficient, γ

= C(T )/T |T→0, at low temperatures. When f -electrons so strongly couple with conduction

band there is an increased overlap of the electronic state which enhances the hybridization and

band widths [Hewson, 1993].

The FL state in HF Kondo lattice systems shows strong correlations among physical quanti-

ties. One such correlation is the Kadowaki-Woods (K-W) ratio, a relation between the electrical

resistivity (ρ(T ) − ρ0 =AT 2) and specific heat (C(T )= γT ) [Kadowaki, 1986; Miyake, 1989],

given by the universal ratio A/γ2 = 1.0×10−5 µΩcm/(mJ/mol·K)2. Recently, systematic de-

viations of the K-W ratio in many HF systems (especially for Yb-based compounds) have

been explained by Tsujii et al., taking into account the ground state degeneracy (N =2j+1)

[Tsujii, 2003; Kontani, 2004; Tsujii, 2005]. A FL state is also characterized by the Wilson

ratio (RW ) which links γ to the Pauli susceptibility χ(0) [Weigman, 1983; Auerbach, 1986;

Lee, 1986], which is given by RW = π2k2
Bχ(0)/(j(j + 1)g2µ2

Bγ
2), where kB , g, and µB are

the Boltzman constant, Lande’s factor, and Bohr magneton, respectively [Hewson, 1993]. In

addition to the RW and K-W ratio, the zero temperature limit of the thermoelectric power

(TEP), S(T )/T =α, for several correlated materials has shown a strong correlation with γ via
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the dimensionless ratio q=NAeS/γT = NAeα/γ [Behnia, 2004], where NA is the Avogadro

number and e is the carrier charge.

For Yb-based HF systems, the electrical resistivity and TEP reveal complex tempera-

ture dependencies with a local extrema. In general, these extrema are related to Kondo

scattering associated with the ground state and excited states of the CEF energy levels

[Bhattacharjee, 1976; Lassailly, 1985; Maekawa, 1986]. The characteristic temperature of the

local maximum shown in ρ(T ) and the local minimum developed in S(T ) allow for an estimate

of the Kondo temperature, TK , and the crystalline electric field (CEF) splitting, ∆/kB , as

relevant energy scales in Yb-based HF systems.

In this chapter, TEP measurements on YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) are

presented as functions of temperature and magnetic field to evaluate the correlation between

specific heat and TEP in the zero temperature limit. These compounds crystallize in the

cubic CeCr2Al20-type structure (F d 3m, No.227) [Thiede, 1998] and have been reported to be

HF metals with no long range order down to 20 mK [Torikachvili, 2007]. In the FL regime it

has been shown that the RW and K-W ratios in this family follow the theoretical predictions

with different ground state degeneracies. The TEP data of YT2Zn20 (T = Fe, Co) are also

presented for comparison. YFe2Zn20 is one of the examples of a nearly ferromagnetic Fermi

liquids (NFFL) with a highly enhanced magnetic susceptibility value at low temperatures

[Jia, 2007], whereas YCo2Zn20 shows normal metallic behavior.

4.2 Results

Figure 4.1 shows the TEP data for YFe2Zn20 and YCo2Zn20. The temperature-dependent

TEP, S(T ), of these compounds is similar to normal metallic systems. At 300 K, S(T ) of both

compounds is positive and has an absolute value of � 9µV/K for YFe2Zn20 and � 5µV/K for

YCo2Zn20, and then decrease monotonically to below 25 K with decreasing temperature. With

further cooling, S(T ) of YCo2Zn20 passes through a broad peak (∼ ΘD/12 [Jia, 2008], where

ΘD is the Debye temperature) expected to be due to phonon-drag [Blatt, 1976]. On the other

hand, S(T ) of YFe2Zn20 shows a local minimum around 14 K (∼ ΘD/23 [Jia, 2008]) that is



62

Figure 4.1 Temperature-dependent thermoelectric power, S(T ), of
YFe2Zn20 and YCo2Zn20 along ∆T ‖ (111). Inset: S(T )/T vs.
T below 12 K. Solid lines are guide to eye.

not currently understood. The absolute value of the TEP for YFe2Zn20 is much smaller than

other NFFL systems. A signature of the spin fluctuation temperature, Tsf , has been inferred

from a shoulder in AFe4Sb12 (A = Ca, Sr, and Ba) data [Takabatake, 2006] and as a minimum

developed in RCo2 (R = Y, Sc, and Lu) data [Gratz, 2001]. The minimum developed near

14 K may be related to the signature of spin fluctuation, combined with phonon-drag in the

YFe2Zn20 system. In the T → 0K limit, S(T )/T of YFe2Zn20 is larger than that of YCo2Zn20

as shown in the inset of Fig. 4.1.

In zero field, the S(T ) data of the YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) compounds

are plotted in Fig. 4.2. In contrast to the isostructural Y-based compounds, S(T ) of the Yb-

based compounds exhibits a large, negative minimum (between -70 and -40 µV/K) and the

sign of S(T ) changing above 150 K from negative to positive (not observed in this temperature

range for T = Ir). The absolute TEP values of Yb-based compounds are much larger than Y-

based compounds at low temperatures, while they have a similar order of magnitude compared

to Y-based compounds around 300 K. A negative, highly enhanced value of the TEP, over the

temperature region measured, is typical of those found in other Yb-based Kondo lattice systems

[Foiles, 1981; Andreica, 1999; Deppe, 2008].
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Figure 4.2 Temperature-dependent thermoelectric power, S(T ), of
YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) in zero applied
magnetic field. Inset: S(T ) vs. log(T ) for T = Fe, Rh, and Co.

Figure 4.3 shows the low temperature S(T ) of YbT2Zn20. For T = Fe and Ru, a broad

minimum of ∼ -70µV/K is shown at the temperature TSmin∼ 22 K. For T = Os, Ir and Rh, a

similar broad minimum develops at a temperature of TSmin∼ 16-23 K, where the width of the

peak is wider than that for T = Fe and Ru. For T = Co, S(T ) shows a similar temperature

dependence but with the minimum shifted to T Smin∼ 4 K and it also shows slope changes

around ∼ 1 K and ∼ 8K. The width of the minimum for T = Co is narrower than that for

the other members of this family. Above 10 K, the absolute value of the TEP for T = Co

reduces rapidly as the temperature increases and the sign of the TEP changes from negative to

positive close to 150 K. For comparison, S(T ) curves for T = Co together with T = Fe and Rh

are plotted on a semi-logarithmic scale in the inset of Fig. 4.2. A smaller local minimum (∼
-48µV/K) is observed for YbOs2Zn20. It is not clear at present if this is related to the electrical

resistivity measurement that showed a larger residual resistivity in YbOs2Zn20 compared to

other members (T = Fe, Ru, Ir, and Rh) [Torikachvili, 2007]. S(T ) of YbIr2Zn20 is negative

over the whole temperature range measured, the sign change from negative to positive being

expected around ∼ 400 K, based on a linear extrapolation of S(T ) above 250 K. Below 10 K (or

3 K for T = Co), S(T ) data for all compounds show a tendency of approaching zero and reveal
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Figure 4.3 Low temperature S(T ) of YbT2Zn20 compounds in zero applied
magnetic field. Inset: S(T ) for T = Fe, Rh, and Co below 8K.
Solid lines on the top of the data for T = Fe and Rh are guide
to eye.

linear temperature dependencies, S(T ) =αT . Since the TEP was measured down to 0.4 K for

T = Fe, Rh, and Co, the linear temperature dependence of S(T ) is even more clearly revealed

for these compounds as shown in the inset of Fig. 4.3.

Figure 4.4 presents S(T )/T of YbT2Zn20 below 10 K. Since no signature of any kind of

long range order down to 20 mK has been observed in the electrical resistivity measurements

[Torikachvili, 2007], the zero temperature limit of S(T )/T can be reliably estimated by ex-

trapolating S(T ) from 2 K (or 0.4 K) to T = 0, where the inferred S(T )/T |T→0 values for

T = Fe, Ru, Os, Ir, and Rh range between -3.8 ∼ -10 µV/K2. For T = Co, S(T )/T value

at 0.4 K reaches -42µV/K2 and is still decreasing (see inset of Fig. 4.4). By using a linear

extrapolation, S(T )/T |T→0 value for T = Co is found to be ∼ -57µV/K2.

In Fig. 4.5 (a), the results of S(T ) measurements at H = 0 and 140 kOe are shown for T

= Fe, Ru and Ir. For clarity, the absolute value of the TEP is shifted by -20µV/K for T =

Ru and -40 µV/K for T = Ir. A slight change of T Smin and a reduction of absolute value are

seen for the H = 140 kOe data. Above 100 K, S(T ) for H = 140 kOe remains essentially the

same as S(T ) for H = 0. In the zero temperature limit for H = 140 kOe data (Fig. 4.5 (b)),
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Figure 4.4 S(T )/T vs. T for YbT2Zn20 below 10 K in zero applied mag-
netic field. Inset: S(T )/T vs. T for YbCo2Zn20. The solid line
represents the linear extrapolation curve to T = 0.

whereas S(T )/T for T = Ru remain essentially the same, S(T )/T at 140 kOe for T = Fe and

Ir is decreased from ∼ -3.8 to ∼ -6.4µV/K2 and from ∼ -4 to ∼ -6.6µV/K2, respectively. In

the inset of Fig. 4.5 (a), the TEP measured at T = 2.2 K is plotted as a function of magnetic

field for T = Fe, Ru, and Ir, where ∆S = S(H) − S(0). An interesting point of this result is

the appearance of a maximum around ∼ 70 kOe for T = Fe and Ru and a minimum around

∼ 100 kOe for T = Ir. For T = Ir the local minimum field shown in TEP is roughly matched

with the metamagnetic-like anomaly seen around H = 120 kOe in magnetization isotherms,

M(H), [Yoshiuchi, 2009] for H ‖ [110]. For T = Fe and Ru the M(H) data at T = 2 K do

not show any signature of metamagnetic-like behavior up to 70 kOe [Mun, 2010c], with M(H)

being linear in magnetic field for both compounds. In order to clarify this point, it is necessary

to measure M(H) for magnetic fields higher than 70 kOe, to see whether the anomaly in S(H)

is related to features in magnetization or electronic data.

In zero field, the electrical resistivity, ρ(T ), of YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and

Co) data taken from Ref. [Torikachvili, 2007] and isostructural LuT2Zn20 data taken from

Ref. [Mun, 2010a] are plotted in Figs. 4.6 (a) and (b), respectively. Upon cooling, ρ(T ) of

YbCo2Zn20 indicates a clearly local maximum (T ρmax = 2.4 K) followed by the logarithmic
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Figure 4.5 (a) S(T ) of YbT2Zn20 (T = Fe, Ru, and Ir) at H =0 (closed
symbols) and 140 kOe (open symbols). For clarity, the data for
T = Ru and T = Ir are shifted by -20 µV/K and -40 µV/K,
respectively. Inset: ∆S = S(H) − S(0) at 2.2 K for T = Fe,
Ru, and Ir. (b) S(T )/T vs. T for YbT2Zn20 (T = Fe, Ru, and
Ir) below 10 K at H =0 (closed symbols) and 140 kOe (open
symbols).

temperature dependence (-log(T )) as temperature decreases (inset (a)), which is typical of a

Kondo lattice system, whereas ρ(T ) data for the other members of this family (T = Fe, Ru, Os,

Ir, and Rh) decreases linearly and follows a sharp drop due to the coherent Kondo scattering.

In order to see the T ρmax for T = Fe, Ru, Os, Rh, and Ir, ∆ρ(T ) of YbT2Zn20 compounds has

been obtained by subtracting ρ(T ) of isostructural LuT2Zn20 compounds, where the relation

∆ρ(T ) = [ρ(T )-ρ0](YbT2Zn20) - [ρ(T )-ρ0](LuT2Zn20) was used because of the larger ρ0 value

of Lu-based than Yb-based compounds. The obtained ∆ρ(T ) is plotted in Fig. 4.6 (c), which

clearly shows T ρmax for all compounds followed by the -log(T ) dependence. At T = 2K, the

magnetoresistance (MR) of YbT2Zn20 (T = Fe and Ru), is plotted as (ρ(H) - ρ(0))/ρ(0) vs. H

in Fig. 4.6 (d), and it is positive up to 140 kOe without showing any noticeable anomaly.
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Figure 4.6 (a) Temperature-dependent electrical resistivity, ρ(T ), of
YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co). Inset shows
ρ(T ) of YbCo2Zn20 in a semi-logarithmic scale. Data are
taken from Ref. [Torikachvili, 2007]. (b) ρ(T ) of LuT2Zn20

(T = Fe, Ru, Os, Ir, Rh, and Co, taken data from Ref.
[Mun, 2010a]. (c) ∆ρ(T ) of YbT2Zn20, where ∆ρ(T ) =
(ρ(T ) − ρ0) (YbT2Zn20) - (ρ(T ) − ρ0) (LuT2Zn20). (d) Mag-
netoresistance, (ρ(H) − ρ(0))/ρ(0), of YbT2Zn20 (T = Fe and
Ru) at T = 2K.
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4.3 Discussion

Based on earlier thermodynamic and transport measurements [Torikachvili, 2007] of this

family, S(T ) data for YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) can be understood qualita-

tively by considering the Kondo (TK) and CEF (∆/kB) effects. The compounds in this series

appear to be a set of model Kondo lattice systems with varying energy scales: TK and ∆/kB .

In Fig. 4.7 (a), the Kondo temperature, T γK , determined from γ [Torikachvili, 2007] and local

minimum temperature, T Smin, observed in the zero field S(T ) data are plotted as a function of

the transition metal, T. The change of T Smin from T = Fe to T = Co correlates strongly with

changing TK by varying the transition metal, especially for T = Os, Ir, Rh, and Co.

Figure 4.7 (a) Relevant characteristic temperatures in YbT2Zn20 (T = Fe,
Ru, Os, Ir, Rh, and Co). A Kondo temperature (T γK) calculated
from γ, a local maximum temperature (T ρmax) obtained from the
resistivity, and a local minimum temperature (TSmin) developed
in S(T ) are plotted as a function of transition metal. T γK values
are taken from Ref. [Torikachvili, 2007]. (b) Plots of TSmin (left)
and T ρmax (right) vs. T γK . Solid lines are guide to the eye.

A similar trend can be found in the previously published electrical resistivity, ρ(T ), results

[Torikachvili, 2007]. For T = Co, ρ(T ) manifests a clear local maximum, T ρmax, around 2.4 K

followed by a logarithmic temperature dependence as temperature decreases. Whereas T ρmax is

clear in the ρ(T ) data for T = Co, ρ(T ) data from the other members of this family only show
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a clear local maximum after subtracting the resistivity data of the isostructural LuT2Zn20

(T = Fe, Ru, Os, Ir, and Rh) compounds. The local maximum temperatures, T ρmax, taken

from Ref. [Mun, 2010a] are plotted in Fig. 4.7 (a). Although the absolute value of the peak

temperatures are different, a systematic variation of T ρmax follows the same trends of T Smin and

T γK for varying transition metals.

In a Kondo lattice system, a single minimum developed in S(T ) is expected when TK

is either close to or higher than ∆/kB . Typically, an intermediate valence system such as

YbAl3 [Foiles, 1981] and YbCu2Si2 [Andreica, 1999] and a fully degenerate Kondo lattice sys-

tem such as Yb2Pt6Al15 [Deppe, 2008] exhibit a single minimum in the TEP, developing be-

low TK . When TK <∆/kB , more than one peak has been frequently observed in the TEP

[Andreica, 1999; Huo, 2001; Wilhelm, 2004; Köhler, 2008]. The low temperature extremum is

usually located close to TK , and the high temperature extremum located at 0.4-0.6 ∆/kB is at-

tributed to Kondo scattering off of the thermally populated CEF levels, which is in agreement

with theoretical predictions [Bhattacharjee, 1976; Maekawa, 1986; Bickers, 1985; Mahan, 1997;

Zlatić, 2003; Zlatić, 2005]. Therefore, the peak position can represent TK and ∆/kB as relevant

energy scales in Kondo lattice systems.

For the YbT2Zn20 family, TK and the ground state degeneracy play important roles in the

thermodynamic and transport properties. By considering the ground state degeneracy (N = 8

for T = Fe and Ru, and N = 4 for T = Os, Rh, Ir, and Co [Torikachvili, 2007]) it is expected

that TK ≥∆/kB for T = Fe and Ru and TK � ∆/kB for T = Os, Ir, Rh, and Co. Based on this,

for T = Fe and Ru, it is reasonable to assume that TSmin and T ρmax simply reflect TK ; with the

fully degenerate case corresponding to N = 8. For T = Os, Ir, Rh, and Co, the two extrema in

the S(T ) data associated with Kondo scattering on the ground state and thermally populated

CEF levels could be expected, however, only one broad peak structure is developed for T =

Os, Ir, Rh, and Co. We thus expect that a single broad minimum is produced by merging

more than one peak structure due to the relatively small CEF level splitting (TK ∼ ∆/kB). A

strong correlation between the two local extrema T ρmax and T Smin develops and remains robust

even when dependence on TK appears to break down (Fig. 4.7 (b)). It is worth noting that
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(i) T ρmax ∼ 2T Smin for T = Fe, Ru, Os, Ir, and Rh and (ii) for T = Os, Ir, Rh, and Co TSmin ∼
TK and T ρmax ∼ 2TK .

As shown in Fig. 4.5 the magnetic field dependence of the TEP observed in YbT2Zn20 (T

= Fe, Ru, and Ir) is anomalous. In the simplest case of a two band model, the carrier density

of electrons, ne, and holes, nh, can be taken as 1
2n = ne = nh. The diffusion TEP in magnetic

field with several assumptions [Sondheimer, 1948] can be expressed as

∆S = S(H)− S(0) = −S(0)
Υ2H2ζ(1 + ζ)
1 + Υ2H2ζ2

where Υ = 1/necρ(0), and ζ = Ln/L0 with Ln = 1
3(πkB/e)2 and L0 = κ(0)/σ(0)T (Lorentz

number); σ(0) = 1/ρ(0) and κ(0) are the electrical conductivity and thermal conductivity,

respectively, in zero magnetic field. At low temperatures L0 = Ln, ρ(0) = ρ0 (the residual

resistivity), and the diffusion TEP in zero magnetic field is proportional to the temperature,

S(0) ∝ T . Therefore, for simple metals ∆S = 0 when T = 0, and for very low temperatures ∆S

∝ T . At high temperatures L0 = Ln, and S(0) and ρ(0) are both proportional to temperature,

so that ∆S tends to zero like 1/T as T → ∞. In general, the change in the TEP will be too

small to be detected at room temperature. Since the magnetoresistance (MR) for T = Fe and

Ru is positive and increases monotonically at 2 K for H ‖ [111] up to 140 kOe [Mun, 2010a], the

change of the TEP (∆S) should increase or saturate with increasing magnetic field. The field

dependence of the TEP is not consistent with the MR results. Generally, the phonon-drag itself

is not sensitive to the applied magnetic field [Blatt, 1976], so it is clear that neither conventional

phonon-drag nor diffusion TEP of conduction electrons can account for the magnetic field

dependence of the TEP in these compounds. Thus, multiple factors, such as the Kondo effect

and CEF contributions, have to be considered. In order to understand the observed behavior

in more detail, a theoretical analysis of the TEP as a function of field for this systems will be

necessary.

Earlier thermodynamic and transport measurements [Torikachvili, 2007] showed that the

RW and K-W ratios of YbT2Zn20 agree well with the FL picture of the HF ground state. A clear

dependence of the A/γ2 ratio on the degeneracy N is shown in the inset of Fig. 4.8, where the

A and γ values are taken from Ref. [Torikachvili, 2007] and lines for degeneracies N are based
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Figure 4.8 -S(T )/T |T→0 vs. γ (log-log) plot of YbT2Zn20 (T = Fe,
Ru, Os, Ir, Rh, and Co). The zero temperature limit of
S(T )/T and γ for (1) YbCu4.5, (2) YbCuAl, (3) YbAgCu4,
(4) YbCu2Si2, (5) YbAl3, and (6) YbInAu2 are taken from
the table of Ref. [Behnia, 2004]. S(T )/T and γ of (7)
Yb2Pt6Al15 are taken from Ref. [Deppe, 2008]. S(T )/T and
γ of (8) YbNi2B2C and (9) YbNi2Ge2 are taken from Refs.
[Li, 2006; Bud’ko, 1999; Mun, 2010a], respectively. The solid
line represents γ/(eNA). Inset: Kadowaki-Woods plot (log-log
plot of A vs. γ) of YbT2Zn20. Symbols are taken from Ref.
[Torikachvili, 2007] and solid lines correspond to N = 2, 4, 6,
and 8 based on Ref. [Tsujii, 2005], respectively.

on Ref. [Tsujii, 2005]. A Fermi liquid state can also be characterized by the ratio between γ

and the zero temperature limit of S(T )/T [Behnia, 2004; Grenzebach, 2006; Zlatić, 2007]: a

“quasi universal” ratio q = NAeS/γT remains close to q = ± 1 for metals and the sign of q

depends on the type of carriers. Although for strongly correlated electronic materials like HF

systems, a single band and single scattering process is not generally thought to be sufficient for

explaining the strong correlation effects, given that C(T )/T and S(T )/T are most sensitive to

the position of the heavy band, a quasi universal ratio is expected to hold at low temperatures

[Miyake, 2005; Kontani, 2003].
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The experimental correlation between the zero temperature limit of S(T )/T and γ for

YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) is presented in Fig. 4.8, where the phonon-

drag effect is ignored since it is small. For comparison, data for several other Yb-based HF

compounds are also plotted in the same figure [Behnia, 2004a]. The calculated q values of

Yb-based compounds vary from -0.77 for T = Fe to -1.4 for T = Rh, which are close to the

value q = -1, expected for hole-like charge carriers. As shown in the figure, each data point is

close to a line represented by q = -1 which means that the zero temperature limit of S(T )/T

is strongly correlated to γ due to the enhanced density of state at the Fermi level; the larger

density of states at the Fermi level results in a larger γ and S(T )/T |T→0.

4.4 Summary

The thermoelectric power measurements on the YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co)

compounds are in agreement with the behavior observed in many heavy fermion Kondo lattice

systems. The evolution of the local minimum in S(T ) and the local maximum (coherence

temperature) in ρ(T ) with variation of the transition metals can be understood based on the

energy scale of Kondo temperature in conjunction with the influence of the crystalline electric

field splitting. The large value of S(T )/T in the zero temperature limit can be scaled with the

electronic specific heat coefficient, γ, which is reflected by a strong correlation via the universal

ratio q = NAeS/γT and confirms the validity of Fermi-liquid descriptions.
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CHAPTER 5. Thermoelectric Power Investigations of YbAgGe across the

Quantum Critical Point

5.1 Introduction

Intensive study of strongly correlated electronic systems (SCES) has revealed the existence

of quantum phase transitions from ordered states to disordered states driven by non-thermal

control parameters such as chemical doping, pressure, and magnetic field [Gegenwart, 2008].

In the quantum critical regime, these systems can manifest non-Fermi liquid (nFL) behavior:

the exponent of electrical resistivity, ∆ρ = AT n, has n < 2 and the electronic specific heat

coefficient, γ = C(T )/T |T→0, is either singular, so the effective mass diverges in the zero

temperature limit, C(T )/T ∝ -log(T ), or has a non-analytic dependence on temperature, so

the effective mass is finite C(T )/T ∝ -
√
T [Stewart, 2001]. Among SCES, nFL behavior near

a quantum critical point (QCP) has explicitly been identified for heavy fermion (HF) metals

such as CeCu6−xAux [Löhneysen, 1994] which becomes magnetic when the Au atom is replaced

Cu site (x ∼ 0.1); CePd2Si2 [Mathur, 1998] in which the Néel temperature, TN , is suppressed

and superconductivity is induced by applying pressure; and YbRh2Si2 [Trovarelli, 2000] and

YbAgGe [Bud’ko, 2004] both of which have antiferromagnetic (AFM) order which is suppressed

by the application of an external magnetic field. When the system is tuned away from (beyond)

the QCP, resistivity and specific heat indicate a recovery of the Fermi liquid (FL) state.

Systematic thermodynamic and transport measurements of YbAgGe have shown that the

behavior of this compound in the vicinity of the QCP differs from that of other examples of field-

induced quantum criticality. The hexagonal HF metal YbAgGe, with a Kondo temperature of

TK ∼ 25 K, orders antiferromagnetically below ∼ 1 K [Bud’ko, 2004; Katoha, 2004]. TheH−T
phase diagram of YbAgGe for H ‖ab is shown in Fig. 5.1, constructed from the electrical resis-
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Figure 5.1 H − T phase diagram of YbAgGe for H ‖ ab, constructed
from the specific heat Cp(T ) [Bud’ko, 2004; Tokiwa, 2006],
magnetizaion M(T,H) [Tokiwa, 2006], Hall resistiv-
ity ρH(T,H) [Bud’ko, 2005a], and resistivity ρ(T,H)
[Bud’ko, 2004; Niklowitz, 2006] measurements. Thick solid-
and dotted-lines represent the magnetic phase boundaries.
Dashed-lines THall and T ∗ are the crossover lines determined
from the thermodynamic and transport measurements. The
Fermi liquid region denoted by the dashed, TFL crossover line
was determined from the region satisfying ∆ρ = AT 2. See text
for details.
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tivity (ρ(T,H)) [Bud’ko, 2004; Niklowitz, 2006], magnetizaion (M(T,H)) [Tokiwa, 2006], spe-

cific heat (Cp(T )) [Bud’ko, 2004; Tokiwa, 2006], and Hall resistivity (ρH(T,H)) [Bud’ko, 2005;

Bud’ko, 2005a] measurements. Thermodynamic and transport measurements show that there

is a first order transition below 0.6 K in zero field [Bud’ko, 2004; Tokiwa, 2006; Umeo, 2004]

as well as either AFM order below 0.8 ∼ 1 K or a crossover region between 0.6 ∼ 1 K. The

AFM order can be suppressed by applying magnetic field of Hc ≥ 45 kOe. Inside the AFM

state, for H < Hc, there are three different regions. The first order phase boundary of region

I is clearly evidenced from ρ(T,H) and M(T,H) with hysteresis. The lower field side of the

phase boundary of region III was inferred primarily from ρ(H) measurements, whereas the top

and higher field side of the phase boundary are observable in all thermodynamic and transport

measurements, without any detectable hysteresis. The top boundary of region II, denoted

by the dotted-line, has been inferred from broad features in Cp(T ) and ρ(T ) measurements.

However, as magnetic field increases this top boundary evolves into clear, sharp features that

form the high field side of region III.

The crossover lines, THall and T ∗, were inferred from the slope changes in ρH(H) data

[Bud’ko, 2005; Bud’ko, 2005a] and supported by features inM(T,H) and Cp(T ) [Tokiwa, 2006]

data. A detailed power law analysis of ρ(T ) [Niklowitz, 2006], ρ(T ) = ρ0 + AT n, results that

the exponent n = 1 for 45 �H � 70 kOe (region IV in Fig. 5.1), the exponent n gradually

increases from 1 to 2 for 70 �H � 100 kOe, and ultimately the FL region, denoted by the TFL

line in Fig. 5.1, emerges for H > 100 kOe, satisfying ∆ρ = AT 2 [Niklowitz, 2006]. Note for

H ‖ c that the AFM order can also be suppressed for H ∼ 90 kOe and FL state is recovered

for H > 150 kOe [Bud’ko, 2004; Niklowitz, 2006].

When a QCP is approached, either by varying temperature or magnetic field, from the FL

state, a strong nFL signatures were observed; ∆ρ(T ) = AT in region IV and C(T )/T ∝ -log(T )

is clearly found for H � 80 kOe. The magnetic structure has been identified from the neutron

scattering experiments [F̊ak, 2005; F̊ak, 2006; McMorrow, 2008]; in zero field the magnetic

structure described by a commensurate propagation vector k1 = (1/3, 0, 1/3) [F̊ak, 2005], in

region II the magnetic structure changes to incommensurate with k2 = (0, 0, 0.324) [F̊ak, 2006],
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and in region III the magnetic structure, with small staggered moment, is similar as those in

region I [McMorrow, 2008], where the small ordered moment between 0.15 and 0.4 µB per Yb

ion is either perpendicular or parallel to the c-axis.

In this chapter, we report the thermoelectric power (TEP) measurements on YbAgGe.

Systematic measurements of the TEP through out the H − T phase space of a field-induced

QCP have been limited to few cases, only among stoichiometric compounds, in particular

YbRh2Si2 [Hartmann, 2010] and CeCoIn5 [Izawa, 2007]. In order to clarify the anisotropic

TEP response, measurements of TEP in this work were performed with two different heat

current directions.

5.2 Results

The temperature-dependent TEP, S(T ), of YbAgGe for both ∆T ‖ab and ∆T ‖ c mea-

sured for H = 0 and 140 kOe are plotted in Fig. 5.2; for comparison S(T ) data for isostructural

LuAgGe and TmAgGe are displayed in the inset. The S(T ) plot for LuAgGe is typical of

those found in normal metals, consistent with resistivity and Hall coefficient measurements

[Bud’ko, 2005; Morosan, 2004]. At high temperatures the absolute value of TEP for TmAgGe

is smaller than that of LuAgGe, however the slope, dS(T )/dT , is similar for both compounds.

In contrast to LuAgGe, the S(T ) data of TmAgGe manifest a broad peak around 25 K, followed

(upon warming) by sign change from positive to negative at 53 K.

For YbAgGe, above 25 K, a qualitatively similar temperature dependence for both ∆T -

directions is seen for S(T ) in zero and high magnetic field, which is negative and reveals a broad

local minimum around Tmin ∼ 85 K with the TEP values between -20∼ -30µV/K, typical of

those found in other Yb-based, Kondo lattice systems [Köhler, 2008]. At low temperatures the

observed S(T ) is anisotropic; in zero field, S(T ) for ∆T ‖ c remains negative over the whole

temperature range measured, whereas S(T ) for ∆T ‖ ab manifests sign reversals at TSR= 21

and 9.5 K. Sign changes at similar temperatures have been observed in ρH measurements

[Bud’ko, 2005; Bud’ko, 2005a].

Figures 5.3 (a) and (b) show the low temperature S(T ) for ∆T ‖ab and ∆T ‖ c, respec-
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Figure 5.2 S(T ) of YbAgGe for ∆T ‖ ab and ∆T ‖ c at H =0 (symbols)
and 140 kOe (lines), applied along hexagonal ab-plane (H ‖ab)
in a transverse configuration, H⊥∆T , for both heat flow direc-
tions. Arrows indicate the local minimum (Tmin) and maximum
(Tmax) temperature. Inset: S(T ) of LuAgGe and TmAgGe at
H = 0.

tively, in selected fields. In zero field the observed S(T ) data manifest rich and complex

structures involving sign reversals, TSR (not marked in Fig. 5.3), a clear maximum centered

at Tmax∼ 15 K, a gradually decreasing TEP followed by plateau region (T0), followed at lower

temperature by a sharp drop, and finally a weak slope change and an abrupt change associated

with the long range magnetic order TN ∼ 0.8 K and TN1∼ 0.65 K, respectively. As magnetic

field increases, S(T ) reveals systematic changes of these anomalies: TN , TN1, Tmax, and TSR.

The evolution of these features with magnetic field will be discussed in detail below. Similar

features are apparent in the ∆T ‖ab and ∆T ‖ c data sets. The biggest difference is that a

clear positive peak at Tmax develops for ∆T ‖ ab, whereas a shoulder occurs for ∆T ‖ c.
Below Tmax, an inflection point around T0∼ 5 K, determined as the local maximum in

dS(T )/dT , is observed in zero field for both ∆T -directions. This characteristic temperature

is also evident in the bulk magnetic susceptibility which shows a broad peak around 5 K along

H ‖ ab [Morosan, 2004]. Neutron scattering experiments [F̊ak, 2005] show that the character-

istic energy scale Γq at the AFM zone boundary has a discontinuity at T ∼ 5K. Whereas Γq
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Figure 5.3 Low-temperature S(T ) of YbAgGe for ∆T ‖ab (a) and ∆T ‖ c
(b) in selected fields, H = 0, 40, 50, 60, 70, 80, 90, 110 (only for
∆T ‖ ab), 140 kOe (bottom to top), applied along the ab-plane
in a transverse configuration (H⊥∆T ) for both heat flow di-
rections. Symbols and lines are taken from 4He and 3He mea-
surement setup, respectively. The local maximum temperature
Tmax, inflection point T0, magnetic order TN and TN1, and field-
-induced local maximum T ∗ are marked by arrows. Inset: (a)
Low-temperature S(T ) for ∆T ‖ab at H = 0, taken data both
warming up and cooling down the temperature. Arrow indicates
the phase transition temperature TN1. Inset: (b) Low-temper-
ature S(T ) for ∆T ‖ c at H =0, taken data both warming up
and cooling down the temperature. Arrows indicate the phase
transition temperature TN1 and the local minimum tempera-
ture corresponding to TN .
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at the AFM zone center increases rapidly without any discontinuity as temperature increases,

following
√
T behavior usually shown in HF compounds such as CuCu6 [Aeppli, 1986]. This

particular q-dependence of the strong antiferromagnetic spin fluctuations, may be a respon-

sible for anisotropic TEP at low temperature, as well as the inflection at temperature T0.

Anisotropic TEP may also be related to the different scattering rate due to the anisotropic

Fermi surface.

For H > 70 kOe the development of local maximum at T ∗ can be clearly seen in S(T ) for

both ∆T -directions, although it more clearly develops for ∆T ‖ c than for ∆T ‖ ab. This

maximum shifts to higher temperature as magnetic field increases. At least up to 90 kOe it

seems to be clear that Tmax is magnetic field-independent and T ∗ is approximately proportional

to the magnetic field. At higher fields, above 110 kOe, these two peaks merge into one peak

structure. Note that a similar development of such a peak structure has also been observed in

specific heat measurements in the similar temperature and magnetic field regime [Bud’ko, 2004;

Tokiwa, 2006].

As is suggested in earlier studies, YbAgGe shows a broad feature at TN ∼ 0.8-1 K and a

sharp, first order phase transition at TN1∼ 0.65 K which manifest clear hysteresis in resistivity

and magnetization measurements [Niklowitz, 2006; Tokiwa, 2006]. As shown in the inset of

Fig. 5.3 (a) in zero field the S(T ) data for ∆T ‖ ab show a sharp jump below ∼ 0.7 K (TN1)

without hysteresis within our measurement resolution (∆T ∼ 30 mK). For ∆T ‖ c (inset to

Fig. 5.3 (b)) a broad local minimum is located near TN ∼ 0.8 K and a sharp jump upward

occurs at TN1 ∼ 0.6 K. When magnetic field is applied, the shape of the anomaly at TN1

broadens and develops a clear hysteresis as it shifts to lower temperatures (see Fig. 5.4 below).

The iso-magnetic field (S(T )) and isothermal (S(H)) data can be used to establish a H − T
phase diagram. The TEP response to a magnetic phase transition has not been well established

and, in the case of AFM compounds, sometimes TEP shows no clear indication of the phase

transition [Hartmann, 2010; Sakurai, 2002]. Hence, we present all S(T ) data for ∆T ‖ ab in

Fig. 5.4 and outline the criterion we have established for tracking transitions.

As shown in Fig. 5.4 (a), a sudden jump at TN1 is clearly seen for H < 15 kOe, that
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Figure 5.4 Low-temperature S(T ) of YbAgGe for H ‖ab and ∆T ‖ab
(H⊥∆T ). S(T ) curves in (a), (b), (c), and (d) correspond
to the region I, II, III, and IV in Fig. 5.1, respectively. S(T )
curves in (a) and (c) are shifted for clarity. (a) Squares and
triangle symbols indicate phase transition temperatures deter-
mined from dS(T )/dT and the arrows represent the local min-
imum. The data, taken for both warming and cooling the tem-
perature, are plotted. Arrows in (b), (c), and (d) indicate the
local minimum and slope change. The data are presented only
taken upon warming the temperature. Solid lines are guides to
the eye. See text for details.
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corresponds to the boundary of region I in Fig. 5.1. Initially, the data were taken upon warming

from the base temperature to T > 1.5 K and then the data were collected upon cooling down

to base temperature, allowing for evaluation of hysteresis. The critical temperature for this

phase line was determined from the minimum of dS(T )/dT . The TN1 in zero field is suppressed

to lower temperature and the hysteresis becomes significant as magnetic field increases. Note

that a very large splitting between warming and cooling curves below ∼ 0.5 K is observed for

H = 12.5 kOe and a broad local minimum near 0.6 K begins to develop. The determined phase

transition temperatures are plotted below in Fig. 5.8 as solid up-triangles for warming and

solid down-triangles for cooling. As magnetic field increases (region II) the abrupt jump in

S(T ) changes to a broad local minimum first seen for H = 12.5 kOe (arrow in Fig. 5.4 (a))

and seen evolving in Fig. 5.4 (b). In this plot, only the data taken upon warming are plotted

because no detectable hysteresis was observed for H ≥ 15 kOe, for example, as seen for H

= 15 kOe curves in Fig. 5.4 (a). It is not clear at present whether this minimum is a phase

transition or a crossover. This minimum is denoted by solid circles in Fig. 5.8 below. At H =

25 kOe two slope changes are observed near 0.6 K and 0.75 K. For higher fields, 25<H < 45 kOe

(Fig. 5.4 (c)), the broad minimum in region II becomes sharp and the slope change shifts to

lower temperature with increasing magnetic field. This sharp slope change is indicated by

arrows in Fig. 5.4 (c) and plotted in Fig. 5.8 (below) as solid squares.

For still higher fields, 45<H < 70 kOe (Fig. 5.4 (d)), there is a weak slope change below

0.6 K. The slope change is most clearly seen in the H = 55 kOe data and is indicated by arrows

in Fig. 5.4 (d), and is represented in Fig. 5.8 (below) as stars. Note for H = 70 kOe data, S(T )

increases linearly as temperature decreases without any slope change below 1.5 K. In this field

regime, no clear feature of a phase transition has been detected in any of the earlier studies

[Bud’ko, 2004; Niklowitz, 2006; Tokiwa, 2006; Bud’ko, 2005a]. However, a broad feature occurs

in the magnetization and specific heat data [Tokiwa, 2006]. For further increasing magnetic

field (H > 70 kOe) a local maximum T ∗ develops as shown in Fig. 5.3 (a). The position of T ∗

was determined from a Gaussian curve fit to the S(T ) data and plotted in Fig. 5.8 (below) as

the cross-symbols.
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Figure 5.5 Low-temperature S(T ) of YbAgGe for H ‖ab and ∆T ‖ c. In
zero-field up-arrows indicate the abrupt jump (TN1) and local
minimum (TN ), respectively, determined from dS(T )/dT (in-
set). Down-arrows indicate the local minimum temperatures
corresponding to the TN . Inset: dS(T )/dT at H = 0.

One of the most striking features of the S(T ) measurements is the different manifestations

of the magnetic phase transitions for the two different directions of heat flow. When the

AFM ordering takes place, S(T ) for ∆T ‖ c manifests a broad minimum at ∼ 0.8 K which

is close to the temperature identified as TN from earlier studies of Cp(T ), ρ(T ), and M(T )

[Bud’ko, 2004; Tokiwa, 2006] and an abrupt jump without measurable hysteresis at TN1∼ 0.6 K

as shown in the inset of Fig. 5.3 (b). As magnetic field increases (Fig. 5.5), TN shifts to lower

temperature and it is completely suppressed for H > 50 kOe, whereas the feature identified as

TN1 fades away very rapidly and is not detected for H > 10 kOe. The evolution of TN with

varying magnetic field are shown in Fig. 5.5, where the arrows are determined from dS(T )/dT

(inset, Fig. 5.5). These phase boundaries are plotted in Fig. 5.8 as open up-triangles for

TN and open circle for TN1. Note for the H = 40 kOe curve that the local minimum at this

magnetic field is not discernible, instead S(T ) flattens below ∼ 0.6 K.

Figures 5.6 (a) and (b) show the field-dependent TEP, S(H), at selected temperatures.

S(H) measurements provide orthogonal cuts through the H −T phase diagram (Fig. 5.1) and

shed further light on some of the features observed in S(T ). For ∆T ‖ ab at T =0.4 K (Fig.
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Figure 5.6 S(H) of YbAgGe for ∆T ‖ ab (a) and ∆T ‖ c (b) at selected
temperatures of 0.4, 2.4, and 5.2 K, and for magnetic field ap-
plied along H ‖ ab in a transverse configuration (H⊥∆T ). Ar-
rows indicate phase transitions (Hc and HN1) and local maxi-
mum field (H∗), determined from dS(H)/dH. Inset: (a) S(H)
for ∆T ‖ ab at 0.4 K, taken data with both increasing and de-
creasing magnetic field. (b) dS(H)/dH for ∆T ‖ c at 0.4 K.

5.6 (a)), S(H) data show a sudden jump at HN1 = 13 kOe which is hysteretic (inset) and a

slope change around Hc= 42 kOe. In addition, a broad maximum appears at H∗∼ 68 kOe.

Note that HN1, Hc, and H∗ were determined from dS(H)/dH analysis by a sharp peak, slope

change (or minimum), and dS(H)/dH = 0, respectively. Although an anisotropic response

of S(H) to the magnetic field is observed for the two different directions of heat flow, the

characteristic magnetic fields for the long range magnetic order and the crossover field H∗

remain qualitatively the same for both ∆T -directions: for ∆T ‖ c at T = 0.4 K shown in Fig.

5.6 (b), S(H) data show distinct features at ∼ 10 kOe and ∼ 67 kOe corresponding to HN1 and

H∗ for ∆T ‖ ab, respectively. A very weak slope change around 42 kOe corresponding to Hc

for ∆T ‖ ab is also observed, where the derivative dS(H)/dH (inset) clearly shows a slope

change (or maximum) around 42 kOe. The phase transition fields, HN1 and Hc, for ∆T ‖ c are

represented by open-triangles (�) in Fig. 5.8. Note that the lower field boundary of region III

in Fig. 5.1 was not observed in TEP measurements for either ∆T -direction, where S(H) varies
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without any kink or significant slope change from 15 to 40 kOe. For ∆T ‖ c, the H∗ evolve in

basically the same way as for ∆T ‖ ab. Note that S(H) for ∆T ‖ c shows an additional broad

feature near ∼ 90 kOe for T =2.4 K curve.

Figure 5.7 S(H) of YbAgGe for ∆T ‖ ab and for magnetic field applied
along H ‖ ab in a transverse configuration (H⊥∆T ). (a) S(H)
at 0.4, 0.5, 0.6, and 0.8 K, taken data with increasing magnetic
field. Curves for T = 0.5, 0.6, 0.8 K are shifted for clarity.
Arrows indicate phase transitions HN1 (←) and Hc (↓), a sign
reversal (⇑), and a local maximums H∗ (↑). Inset: hysteresis
curves of S(H) measurements at T = 0.4, 0.5, and 0.6 K. (b)
Normalized TEP (S(H) − S(H = 0)) as a function of H at
T = 0.8, 1, 1.5, 2, 2.4, 5.2, 10 and 15 K. Arrows indicate a local
maximum H∗.

The evolution of HN1, Hc, and H∗ for ∆T ‖ ab are shown in Figs. 5.7 (a) and (b).

As temperature increases HN1 and Hc shift to lower magnetic fields and H∗ moves to higher

magnetic fields. The arrows,←, ↓, and ↑, are represented by symbols, �, �, and +, respectively,

in Fig. 5.8. When the temperature is lowered, the hysteresis at HN1 is more pronounced as

shown in the inset of Fig. 5.7 (a).

Since TEP in zero field manifests a sign reversal at low temperatures and the possibility of

a sign reversal at the QCP has been proposed [Kim, 2010], it is of interest to see the evolution

of the TEP sign change as the system is tuned by magnetic field (Fig. 5.7 (a)). For ∆T ‖ ab
the negative TEP sign in zero field changes to positive for HSR> 47 kOe at 0.4 K. The HSR at
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0.4 K shifts to higher fields as temperature increases, indicated by the large, open arrows in Fig.

5.7 (a). The sign reversal temperatures obtained from S(T,H) measurements for ∆T ‖ ab are

plotted in Fig. 5.8 as ×-symbols. Note that the sign reversal of TEP for ∆T ‖ c is essentially

similar to that for ∆T ‖ ab below 2K. At 0.4 K the TEP sign for ∆T ‖ c changes from negative

to positive for H > 44 kOe (Fig. 5.6 (b)).

5.3 Discussion

At low temperatures, TEP measurements on YbAgGe indicate complex sign variations as

temperature and magnetic field vary. For ∆T ‖ab, in zero field (Fig. 5.3 (a)) the sign reversal

in S(T ) occurs at TSR = 21 and 9.5 K. As magnetic field increases TSR shown at 21 K moves

to slightly higher temperatures, TSR at 9.5 K moves down and a third sign reversal occurs

at lower temperatures: HSR= 47 kOe at 0.4 K (Fig. 5.7 (a)). For ∆T ‖ c, in zero field TEP

remains negative for all T < 300 K (Fig. 5.2), but, at low temperatures, it moves gradually to

positive with increasing magnetic field, becoming positive for HSR> 44 kOe at 0.4 K (Fig. 5.6

(b)). Similar behavior, but with opposite sign change, has been observed in ρH measurements

[Bud’ko, 2005; Bud’ko, 2005a]. As temperature decreases, the Hall coefficient, ρH/H, remains

positive down to 50 mK for H ‖ ab and the Hall voltage along (approximately) the c-axis,

whereas a sign reversal from positive to negative is observed for H ‖ c and the Hall voltage

in the ab-plane. At this stage it is difficult to explain low temperature sign reversal for both

S(T ) and ρH/H which may arise from the multisheet Fermi surface of electrons and holes

with different mobilities. The conductivity change is mainly determined by the change in the

electron velocity at the Fermi level and the sign of the derivative of density of states (DOS)

does not depend on the sign of the velocity but depends on the curvature of the dispersion of

quasi-particles [Blatt, 1976; Ziman, 1960]. This may explains the discrepancy of sign between

TEP and Hall coefficients of YbAgGe; S > 0 and ρH/H < 0 at high temperatures. At low

temperatures, an explanation of the complex sign reversal in the TEP is not simple because

one should be considered all band contribution with a relevant weight of heavy and light

carriers.
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TEP is known to be particularly sensitive to Kondo (TK) and crystalline electric field (CEF,

∆CEF ) effects, and to various physical quantities related to the DOS because of the energy

dependence formula at the Fermi level [Blatt, 1976]: S = −π2k2
BT

3e (∂lnσ(ε)
∂ε )εF

, where e is the

elementary charge, εF is the Fermi energy, and σ(ε) is the transport integral. Although TEP

can probe various salient energy scales, the interpretation of its temperature and magnetic

field dependence is often difficult, even for simple metals. Since a quantitative analysis of TEP

is very difficult, we assumed that the present TEP data reflect the remaining 4f magnetic

contribution of trivalent Yb-ions, especially the position of the local extrema, the large absolute

value, and the abrupt change associated with long range magnetic order.

The characteristic temperatures, Tmax and Tmin, allow for the evaluation of TK and ∆CEF

as relevant energy scales in YbAgGe. In zero field, Tmax and Tmin, as shown in Fig. 5.2,

can be related to Kondo scattering associated with the CEF ground state and the excited

CEF multiplet levels, respectively. For HF Kondo lattice compounds, in general, it has been

shown that the lower temperature maximum is close to TK and the higher temperature mini-

mum develops roughly within 0.3-0.6 ∆CEF , which is in agreement with theoretical predictions

[Bhattacharjee, 1976; Lassailly, 1985; Alami, 1999; Zlatić, 2005]. Inelastic neutron scattering

experiments on YbAgGe have proposed the CEF level scheme with doublet levels located ap-

proximately at 0-140-230-330 K [Matsumura, 2004]. This scheme is consistent with the specific

heat analysis (0-110-190-335K) involving combined Kondo effect (TK = 24 K) and electronic

Schottky contributions [Katoha, 2004]. Thus, the doublet ground state and TK are well sep-

arated from the first excited CEF level. From the TEP measurements shown in Fig. 5.2 an

estimate of the energy level splitting lies between 140 and 280 K with respect to the ground

state doublet. The lower end of this range, Tmin∼ 0.6 ∆CEF , is very close to the value obtained

in the inelastic neutron scattering and specific heat analysis. Thus, we conclude that Tmin with

the large, negative, absolute value can be attributed to Kondo scattering on an excited CEF

multiplet of Yb3+.

In general a phonon-drag contribution to the TEP appears between 0.1-0.3 ΘD with a

broad peak structure [Blatt, 1976; Elliott, 1972], where ΘD is the Debye temperature. For
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YbAgGe with ΘD∼ 300 K [Morosan, 2004], Tmax is far below the expected temperature due

to the phonon-drag. For comparison, the TEP plots of the isostructural compounds, LuAgGe

and TmAgGe, do not manifest any conspicuous signatures of phonon-drag either (inset to

Fig. 5.2). LuAgGe has a slope change around 35 K (∼0.12 ΘD), and TmAgGe, S(T ) shows a

broad peak around 25 K expected due to either phonon-drag or CEF splitting. The absolute

TEP value of both compounds is small compared to that of YbAgGe and the temperatures of

anomalies seen for both compounds are higher than Tmax for YbAgGe. Therefore, we expect

that the origin of Tmax is not the phonon-drag.

On the other hand, it seems reasonable that Tmax is caused by the Kondo effect. In a num-

ber of HF compounds the Kondo effect manifests itself as a maximum in S(T ) in the vicinity

of the TK [Maekawa, 1986; Bickers, 1987; Očko, 2004]. In a similar way the resistivity curve

of YbAgGe displays a characteristic behavior in which the resistivity decreases rapidly below

∼ 100 K expected due to the CEF effect and shows a hump below 25 K related to the devel-

opment of coherent quasi-particles [Morosan, 2004]. We therefore assume that Tmax in TEP

measurements represents the crossover temperature (TK) from local moment to HF behavior.

A similar order of magnitude of TK is also estimated from the specific heat and neutron scat-

tering experiments. However, TK obtained from TEP is smaller than the one obtained from

the specific heat. Since TK is not a phase transition temperature but a crossover, a differ-

ent crossover temperature, but of similar order of magnitude, can be expected from different

measurements.

Figure 5.8 shows the H − T phase diagram based on the TEP measurements. All data

points inferred from S(T ) track well the data inferred from S(H) data. The closed-symbols are

taken from ∆T ‖ab and open-symbols are taken from ∆T ‖ c, respectively. The TEP data are

plotted on the top of the lines from Fig. 5.1. The clear agreement between TEP data and earlier

thermodynamic and transport results indicates that TEP measurements can be a useful tool to

refine and extend theH−T phase diagram. The sign reversal (×), shown for 45< H < 65 kOe,

and local maximum (+), shown for H > 70 kOe, are taken from ∆T ‖ ab. The phase boundary

of region I, showing the hysteresis from both S(T ) and S(H) measurements, is consistent with
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Figure 5.8 H − T phase diagram of YbAgGe for H ‖ ab. Solid sym-
bols are inferred from ∆T ‖ab data and open symbols are
inferred from ∆T ‖ c data, plotted on the top of phase and
crossover lines in Fig. 5.1; � (�, ◦) from up-sweeps in T , �
from down-sweeps in T , � (�) from up-sweeps in H, 	 from
down-sweeps in H, and other symbols (•, 
, �, �, ×, +) from
up-sweeps in T and H. The ×-symbols indicate the sign re-
versal on TEP from negative to positive. The +-symbols cor-
respond to the local maximum developed in S(T,H). The FL
region was taken from earlier ρ(T ) (∆ρ = AT 2) measurements
[Bud’ko, 2004; Niklowitz, 2006].
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earlier studies. The top of region II, reflected by a broad local minimum in S(T ), may not

be a phase transition but a crossover, since any clear signature of the phase transition in this

temperature and magnetic field region has not been observed from earlier thermodynamic and

transport measurements. The top and higher field boundary of region III are clearly seen in

both S(T ) and S(H) data; this phase transition line tends to go toward zero for Hc∼ 45 kOe.

The upper boundary (TN ) of region I and II was determined from the local minimum in

S(T ) for ∆T ‖ c (Fig. 5.5). It is clear that no signature of the upper boundary is observed

for ∆T ‖ab, which is similar to resistivity results [Niklowitz, 2006]. By contrast, the observed

TEP for ∆T ‖ c indicates both TN and TN1 in zero field, which is very similar to the specific

heat measurements [Bud’ko, 2004; Tokiwa, 2006]. As magnetic field increases, TN shifts to

lower temperature and seems to be suppressed for H > 45 kOe, merging together with the high

magnetic field boundary of region III and the THall crossover line.

In earlier versions of the YbAgGe (H − T ) phase diagram [Bud’ko, 2004; Niklowitz, 2006;

Tokiwa, 2006; Bud’ko, 2005; Bud’ko, 2005a] two well separated crossover lines, THall and T ∗,

were seen and the long range magnetic order was suppressed to zero at Hc� 45 kOe. The

THall line is well matched with the sign reversal of the TEP and T ∗ follows the local maximum

observed in S(T,H) measurements (Fig. 5.8). The T ∗ shifts to higher temperature as magnetic

field increases and the peak position roughly follows an anomaly shown in Cp(T ) measurements

[Tokiwa, 2006]. Importantly, upon decreasing temperature (T → 0), the features associated

with these crossover lines, obtained from all the thermodynamic and transport measurements,

converge to the same magnetic field values of Hc∼ 45 kOe and H∗∼ 70 kOe. Hence, it is

expected that, when T → 0, the sign of TEP will changes from negative to positive at ∼ 45 kOe

for both ∆T -directions and a peak structure in S(H) data will be developed at ∼ 70 kOe since

the feature at H∗ sharpens as temperature decreases.

It has been observed that the TEP measurements of YbRh2Si2 with a longitudinal config-

uration (H ‖∆T ) manifest a sign reversal across the field-induced QCP [Hartmann, 2010]. A

recent theoretical work [Kim, 2010] proposed the possibility of such TEP sign reversal at the

QCP and was applied to the YbRh2Si2. The sign reversal for YbRh2Si2 is present inside the
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AFM state and terminates at the critical field, whereas the sign reversal for YbAgGe emerges

at the critical field and persists up to high temperature. For CeRu2Si2 [Aoki, 1998], the posi-

tive TEP in zero field also changes sign above the metamagnetic field for ∆T ‖ c. Therefore,

it is suggestive that the sign reversal can be an additional tool to probe and identify a QCP.

Clearly, further theoretical and experimental investigations of this issue are required.

In addition to reproducing the earlier phase diagram in region I, II, and III, the TEP

measurements also delineate a new region: IV. The high temperature boundary of the dome-

like area, located between THall and T ∗ crossover line (region IV, Fig. 5.8), was determined by

a slope change of S(T ) (Fig. 5.4 (d)). In this region the temperature dependences and large

absolute values of the TEP are significantly different from that expected for the normal metal.

Thus, the observed TEP in region IV suggests an unconventional magnetic or electronic origin.

Between the THall and T ∗ crossover lines hints of such a dome-like region were seen as

broad features in earlier M(H) and Cp(T ) studies, but not identified as a possible transition.

For instance, upon increasing magnetic field, the magnetization divided by magnetic field,

M(H)/H, shows a considerable decrease passing through this region [Tokiwa, 2006]. More

significantly, the power law analysis of resistivity [Niklowitz, 2006] indicates a strong nFL

behavior, ρ(T ) ∝ T , in this dome-like area, where the boundary of maximum temperatures

satisfying ∆ρ ∝ T coincides with the boundary of the region IV. Therefore, the detection of

this newly identified, dome-like region appears to be robust in YbAgGe. When the magnetic

field increases from AFM (region III) to this region with ρ(T ) ∝ T (region IV), the lower

field boundary of the dome-like region manifests as sudden jump in M(H)/H and C(T )/T ,

as a sharp peak in magnetostriction (λab) [Schmiedeshoff, 2010] and ρH/H, and as a sign

change in S(H), however the higher field boundary of the dome-like region manifests itself as

a smooth evolution of M(H)/H, C(T )/T , λab, and ρH/H and as a peak structure in S(H).

It is not clear at this point if the dome-like region is a magnetic field induced metamagnetic

phase or electronic structure change (e.g. topology change of Fermi-surface). To clarify this

mysterious region further microscopic measurements, such as neutron scattering experiments,

will be needed.
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It is worth noting that although this region has not been identified at ambient pressure, a

similar region in the H−T phase diagram has been identified in recent pressure measurements

[Kubo, 2010]. At 0.95 GPa, region IV appears in the high magnetic field region between ∼
45 and ∼ 65 kOe and with increasing pressure (1.5 and 2.2 GPa) a new phase region between

∼ 65 and ∼ 90 kOe also develops. This behavior in the H − T − P phase space has been

associated with the partial release of the magnetic frustration in the quasi-kagome lattice of

Yb ions under pressure [Kubo, 2010]. Note that recently, a finite range of nFL behavior,

separating FL region from AFM state, has been observed from Ge- and Ir-doped YbRh2Si2

[Friedemann, 2009; Custers, 2010].

Figure 5.9 S(T )/T of YbAgGe on a log(T ) scale for both (a) ∆T ‖ ab and
(b) ∆T ‖ c in selected magnetic fields, applied along H ‖ ab in
a transverse configuration (H⊥∆T ). Solid line in (b) on the
top of 70 kOe data is a guide to the eye.

Inside the dome-like region IV, the TEP deviates from standard FL behavior, S(T ) = αT ,

where the observed S(T )/T for both ∆T -directions does not show a tendency of saturation at

low temperatures. As shown in Figs. 5.9 (a) for ∆T ‖ ab and (b) for ∆T ‖ c, S(T )/T increases

inside region IV as magnetic field increases, reaching the maximum around 70 kOe, and then

decrease with further increase of the magnetic field. It should be noticed that at H = 70 kOe,

S(T )/T for ∆T ‖ c manifests a clear, logarithmic temperature dependence as a signature of nFL
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behavior over about an order of magnitude in temperature. This is consistent with the specific

heat results that also manifest C(T )/T ∝ -log(T ) at similar fields [Bud’ko, 2004]. However,

S(T )/T for ∆T ‖ab increases more slowly than that for ∆T ‖ c when temperature is lowered

below 10 K. In order to clarify the existence of the logarithmic temperature dependence for

∆T ‖ab and to explore possibly of larger temperature range of such behavior, it is necessary to

measure TEP below 0.3 K. Logarithmic temperature dependencies of specific heat and TEP in

YbRh2Si2 [Hartmann, 2010] and CeCu6−xAux [Benz, 1999] has been observed in the vicinity

of QCP, which are supported from the theoretical calculations based on the two-dimensional

spin-density wave scenario [Paul, 2001]. In addition, the log(T ) divergence is also explained by

the Z = 3 quantum criticality of Fermi surface fluctuations of the Kondo breakdown scenario

[Kim, 2010].

As shown in Fig. 5.1, a finite range of nFL behavior with ∆ρ=AT down to 75 mK appears

between the THall and T ∗ crossover lines and the FL behavior is recovered for H > 100 kOe

[Niklowitz, 2006]. Between the T ∗ and TFL crossover lines the exponent of resistivity increases

from 1 to 2 as magnetic field increases. Therefore, the wide range of nFL behavior is robust

in YbAgGe, in contrast to the general expectation of the field-tuned QCP in HF metals of

which the FL behavior is recovered when long range magnetic order is suppressed to zero

temperature (TN→ 0). On the other hand, particularly for ∆T ‖ c, the TEP is proportional

to the temperature below T ∗ crossover line. The constant α corresponding to a saturation

of S(T )/T is seen at least up to 1K for H =90 kOe and up to ∼ 4K for 140 kOe (Fig. 5.9

(b)). The observed large value of α in the zero temperature limit is characteristic of the HF

state. The range with constant α is enlarged upon increasing field and the absolute value of

α decreases, in agreement with the results of C(T )/T [Bud’ko, 2004; Tokiwa, 2006]. Based

on the constant α, reflecting the FL region, the crossover temperature (TFL) from nFL to FL

obtained from TEP does not coincide with the one determined from resistivity measurements

[Niklowitz, 2006]. From the TEP results for ∆T ‖ c, AFM order and the FL state are not

directly connected by a QCP, but are separated by the dome-like region IV. In order to clearly

address this discrepancy between resistivity and TEP results as well as the anisotropic TEP
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response for different heat current directions, it is necessary to measure TEP with magnetic

field higher than 90 kOe and temperature down to mili-Kelvin range. Note that S(T )/T for

∆T ‖ab is continuously suppressed for H > 70 kOe, indicating a tendency of saturation of α.

Up to this point several qualitative correlations between TEP and specific heat have

been mentioned. More quantitatively, many HF compounds have shown correlations between

C(T )/T and S(T )/T in the zero temperature limit, linking these two quantities via the di-

mensionless ratio q = SNAe
γT ∼ ±1, where NA is the Avogadro number and the constant NAe is

called the Faraday number [Behnia, 2004]. Within the framework of the FL picture, both TEP

and specific heat are linearly proportional to the temperature, leading to the low temperature

saturation of S(T )/T =α and C(T )/T = γ. Fundamentally, this correlation can be linked to

entropy considerations because the entropy is carried by the heat current due to temperature

and electric potential gradients.

Since we are currently limited to TEP data down to 0.35 K, we compare C(T )/T to S(T )/T

at T = 0.4 K. As shown in Fig. 5.10 (a), although S(T )/T data (left axis) show somewhat

different magnetic field dependence between ∆T ‖ab and ∆T ‖ c, especially for H < 45 kOe,

the S(T )/T data sets at T = 0.4 K are fundamentally similar. C(T )/T data (right axis) at

0.39 K are taken from the Ref. [Tokiwa, 2006]. Figure 5.10 (b) presents q value as a function

of magnetic field. In the vicinity of Hc∼ 45 kOe, q is much less than unity (q→ 0) for both

∆T -directions. Basically the small q value near Hc is due to the small value of α, where

the sign of TEP changes from negative to positive. As magnetic field increases, the q value

increases inside the dome-like region, and then reaches order of unity at 70 kOe for both ∆T -

directions. For H > 70 kOe q value for ∆T ‖ ab remains close to the order of unity, whereas

q value for ∆T ‖ c decreases as magnetic field increases. The separation of q values is due to

S(H)/T data heading back toward to zero, amplifying of a relatively small difference between

the ∆T ‖ab and ∆T ‖ c data. For comparison with YbRh2Si2 [Hartmann, 2010], it has been

observed that the sign of q changes from positive to negative near the QCP; q > 0 for H < Hc

and q < 0 for H > Hc. The S(T )/T value of YbRh2Si2 in the zero temperature limit does

not scaled well with γ (q �=1) in the paramagnetic state. A recent theoretical investigation of
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Figure 5.10 (a) S(H)/T of YbAgGe at T = 0.4 K for both ∆T ‖ ab and
∆T ‖ c, plotted as a function of magnetic field, applied along
H ‖ ab in a transverse configuration (H⊥∆T ). Solid sym-
bols (triangles and circles) are taken from temperature sweeps
S(T )/T . Sommerfeld coefficient (C(T )/T , right axis) at
0.39 K was taken from the previous specific heat measurements
[Tokiwa, 2006]. (b) The estimated q values at T = 0.4 K for
both ∆T ‖ ab and ∆T ‖ c, plotted as a function of H.
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the ratio q shows that q decreases considerably toward antiferrromagnetic (AFM)-QCP but

does not change significantly for a ferrromagnetic-QCP [Miyake, 2005]. At this stage, we can

not offer a decisive comparison between theoretical work and our results because the ratio q is

compared at finite temperature of T = 0.4 K and manifests an anisotropic response for different

∆T -directions; both further theoretical investigations and experimental measurements down

to sub-mK range are needed. Based on our results, one should notice that the observed sign of

q is negative in zero field and positive for H >Hc due to the sign of TEP. In zero field it has

been shown that the sign of q is positive for Ce-based compounds and negative for Yb-based

compounds [Behnia, 2004]. In the presence of the magnetic field the observed sign of q for

YbAgGe does not follow the general trend, thus further investigations including theoretical

work are needed to clarify the discrepancy.

In this part experimental results of YbAgGe will be compared to theoretical predictions

of quantum criticality which were particularly applied to the magnetic field tuned quantum

phase transition of YbRh2Si2. Currently available scenarios of quantum criticality can be di-

vided into two categories. The first one is the conventional spin density wave (SDW) scenario

[Hertz, 1976; Millis, 1993; Moriya, 1995; Moriya, 1973] and the second one is the Kondo break-

down [Senthil, 2003; Senthil, 2004; Paul, 2007; Paul, 2008], including local quantum criticality

[Si, 2001; Si, 2003], scenario (see Chapter 3). In the first scenario, the quasi-particle system

undergoes a SDW instability at the QCP with the Kondo temperature (TK) remaining finite

across the quantum phase transition. Thus, heavy quasi-particles survive near the QCP while

the system is tuned through the QCP by varying control parameter. In the second, Kondo

breakdown scenario, the central question should be, what is the direct experimental signature

of the breakdown of the Kondo effect that distinguishes it from the alternate route to quantum

criticality? For example, in particular for only YbRh2Si2 [Paschen, 2004], Hall effect measure-

ments were proposed as a signature of breakdown of quasi-particles, where an abrupt jump was

predicted in the Hall coefficient, interpreted as change from small to large Fermi surface, at

QCP. In the SDW scenario, the Hall coefficient changes continuously upon entering the AFM

state [Paschen, 2006], which was observed in Cr1−xVx [Yeh, 2002; Norman, 2003; Lee, 2004]
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(3d-electron system). This issue is not trivial to address due to the absence of low temperature

angle resolved photoemission spectroscopy which is generally restricted to high temperatures

T � TN and quantum oscillation (such as de Haas-van Alphen) experiments which is gener-

ally restricted to high magnetic fields H � Hc. In addition, so far the local quantum critical

scenario is restricted to only CeCu6−xAux [Schröder, 1998; Schröder, 2000] and the Kondo

breakdown scenario is only based on main results of YbRh2Si2 [Paschen, 2004].

It has remained difficult to unambiguously identify the quantum critical scenario from the

low temperature behavior. Thus, rather than considering the quantum fluctuation at low

temperature, near QCP via nFL behavior and scaling invariance, careful examination of high

temperature energy scale (TK) may provide a good opportunity to select the proper model for

quantum criticality, since the high temperature signature is distinctly different between SDW

and Kondo breakdown scenario. Recently, the quantum criticality has been tested by consid-

ering the high temperature scale of TK in CeRu2(Si1−xGex)2 [Okane, 2009] and CeCu6−xAux

[Kroha, 2010] systems. An investigation of the Fermi surface near QCP of CeRu2(Si1−xGex)2

by soft x-ray angle resolved photoelectron spectroscopy suggested that SDW quantum critical-

ity is more appropriate than Kondo breakdown scenario, where the absence of the clear change

of the Fermi surfaces across the QCP was observed. An ultraviolet photoemission spectroscopy

measurements of CeCu6−xAux proposed that the quantum phase transition is dominated by

the local quantum critical scenario, where the sudden decrease of TK was seen near QCP. Note

that in both cases the measurements was performed around 15 ∼ 20 K, which is comparable

or much higher than TK .

Figures 5.11 (a) and (b) show the evolution of Tmax for both heat flow directions as a

function of magnetic field. The local maximum was determined from the Gaussian fit to S(T )

vs. log(T ) plots. The large uncertainty is mainly due to the merging of the two, Tmax and T ∗,

peaks at higher magnetic fields. As discussed above Tmax can be assumed to reflect the TK .

The estimate TK remains finite for both heat flow directions as the magnetic field is varied

across the whole magnetic field range, suggested that this is consistent with SDW scenario.

When the Kondo breakdown scenario is considered, the TEP should collapse below certain
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Figure 5.11 High temperature phase diagram of YbAgGe for H ‖ ab: (a)
∆T ‖ab (H⊥∆T ) and (b) ∆T ‖ c. Tmax (TK) and T ∗ rep-
resent crossover scales determined from the S(T,H). The FL
region was taken from earlier ρ(T ) (∆ρ = AT 2) measurements
[Bud’ko, 2004; Niklowitz, 2006]. The shaded area indicates
S(T ) > 0, determined from the crossover point S(T,H) =
0. See text and Fig. 5.8 for AFM phase boundaries.

energy scale (T ∗ ∼ E∗ in Ref. [Gegenwart, 2008], see the figure in chapter 3) associated with

the Fermi surface reconstruction and the sign of the TEP should change in the low temperature

limit [Kim, 2010]. For the case of YbAgGe, although the sign of TEP changes across the THall

crossover line, the TEP does not collapse, which is consistent with SDW scenario, although this

definitely needs to be verified below 0.35 K. However, the observed nFL behavior, C(T )/T ∝ -

log(T ), S(T )/T ∝ -log(T ), and ∆ρ(T ) ∝ T near 70 kOe, due to the strong quantum fluctuation

can not be explained within the d= 3 and z= 2 SDW framework [Hertz, 1976; Millis, 1993], but

can be explained within d= 2 SDW [Hertz, 1976; Millis, 1993; Moriya, 1995] and z= 3 Kondo

breakdown scenario [Paul, 2007; Paul, 2008]. Note that since the anisotropy between hexagonal

ab-plane and c-axis, based on transport measurements, is not very large [Umeo, 2004], YbAgGe

seems to be considered as 3D structure. Note that the in-plane resistivity, ρab, is higher than

the c-axis one, ρc, with ρab/ρc ≈ 4.2-4.7 for LuAgGe [Samolyuk, 2006].

There is an another issue to consider: The nature of the Kondo breakdown involves multiple

energy scales, which for YbRh2Si2 all converge at the QCP [Gegenwart, 2008]. However, the
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Ir- and Ge-doped YbRh2Si2 [Friedemann, 2009; Custers, 2010] show that the crossover energy

scale, T ∗, can be separated from the AFM state, showing a relatively wide nFL region. When

the nFL region is considered, the H − T phase diagram for YbAgGe is similar to that of

doped YbRh2Si2 (see schematic phase diagram in Chapter 3). However, the crossover scales

are needed to be distinguished among these systems, i.e. are both THall and T ∗ generic for all

systems or these are particular for only YbAgGe. In the Kondo breakdown scenario the nFL

behavior is based on the presence of a second QCP, which is close to the magnetic (AFM) QCP,

where the effective Kondo temperature goes to zero (TK → 0) near second QCP. If we assume

that these two QCP can be separated e.g. due to the frustration effect for YbAgGe giving

rise to the spin liquid state [Coleman, 2007], the THall line will be related to the magnetic

QCP and T ∗ can be related to second QCP. This assumption can be supported from the

recent proposed Doniach like diagram [Custers, 2010] (see figure in chapter 3). In this case, by

applying magnetic field much higher than 140 kOe, the high temperature scale of Tmax should

be breakdown, implying below T ∗ the heavy quasi-particles do not survive.

Clearly, there is no universal scenario to reconcile all of the experimental results, partly

due to the absence of unambiguous experimental tool to probe quantum critical scenario and

partly due to the limited experimental examples and biased theoretical approach to only one

particular system. This issue will be discussed further below together with YbPtBi.

5.4 Summary and Conclusion

TEP data on YbAgGe have been collected down to T ∼ 0.3 K and applied magnetic fields

up to 140 kOe for H ‖ ab and ∆T ‖ab as well as ∆T ‖ c. In zero field, the TEP data reveal

characteristic features of a local minimum (Tmin = 85 K), local maximum (Tmax = 15 K), and an

abrupt jump below 1 K, which correspond to the CEF level splitting (∆CEF ), Kondo temper-

ature (TK), and long range magnetic order, respectively, as relevant energy scales in YbAgGe.

The TEP response at the magnetic phase transition is anisotropic for the heat current direction

between in the hexagonal ab-plane and along the c-axis. The TEP measurements reproduce

the earlier H − T phase diagram and identify an additional dome-like phase between ∼ 45
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and ∼ 70 kOe, associated with anomalous, ρ(T ) ∝ T , resistivity. Two characteristic crossover

lines, constructed mostly from earlier Hall resistivity, are confirmed, clarified, and extended to

higher temperature from the TEP results. These crossover lines show a tendency of converging

toward to Hc∼ 45 kOe and H∗∼ 70 kOe in the zero temperature limit. The temperature and

magnetic field range of nFL behavior (∆ρ ∝ T ) observed in resistivity are well matched with

the dome-like area in the phase diagram. For H = 70 kOe data, adjacent to the dome-like area,

S(T )/T for ∆T ‖ c exhibits clearly a logarithmic temperature dependence in agreement with

earlier specific heat results C(T )/T ∝ -log(T ). The present TEP results, combined with earlier

specific heat and resistivity results, show a strong evidence of quantum critical fluctuations

around H � 70 kOe. The ratio of q, reflecting the correlations between S(T )/T and C(T )/T ,

is much less than unity (q→ 0) in the vicinity of the Hc� 45 kOe. As magnetic field increases

from Hc the q value is recovered an order of unity at H∗� 70 kOe. For H > 70 kOe the en-

hanced value of S(T )/T is indicative of the heavy fermion state, supporting previous specific

heat and resistivity results.
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CHAPTER 6. Magnetic field tuned QCP of heavy fermion system YbPtBi

6.1 Introduction

The faced-centered cubic (fcc) YbPtBi is a member of RPtBi (R = rare-earth) systems and

one of the few stoichiometric Yb-based heavy fermion compounds [Fisk, 1991; Canfield, 1991].

An enormous low temperature Sommerfeld coefficient, γ � 8 J/mol·K2 [Fisk, 1991], which

corresponds to one of highest effective mass values among heavy fermion (HF) systems, is

a characteristic of YbPtBi. This system manifests antiferromagnetic (AFM) ordering below

TN = 0.4 K, below the estimated Kondo temperature of TK ∼ 1 K [Fisk, 1991]. The results

of electrical resistivity and specific heat measurements suggested that a spin density wave

transition occurs below TN [Movshovich, 1994] with small ordered moment of only ∼ 0.1 µB

[Amato, 1992; Robinson, 1994]. It has been proposed that the massive electronic state manages

to appear due to either the frustrated (for nearest neighbors) fcc crystal structure suppressing

long range order to below the Kondo temperature or the low carrier density, metallic nature

leading to an unusually low Kondo temperature [Fisk, 1991; Hundley, 1997], or both.

For an AFM quantum critical point (QCP) in HF systems the conventional theory, so

called spin density wave (SDW) scenario, considers itinerant f -electrons on both the ordered

and the paramagnetic side of the QCP [Hertz, 1976; Millis, 1993; Moriya, 1995]. The critical

SDW fluctuations are responsible for non-Fermi liquid (nFL) behavior in which the electri-

cal resistivity follows ∆ρ(T ) ∝ T n with n < 2 (n = 1.5 for d = 3 and n = 1 for d = 2).

In this scenario, the quasi-particle effective mass is finite C(T )/T ∝ −√T at QCP for d

= 3 critical fluctuations. For d = 2 critical fluctuations, the theory predicts a logarithmic

divergence of the effective mass C(T )/T ∝ -log(T ). An essential aspect of the SDW sce-

nario is that the characteristic energy scale, TK , remains finite across the QCP, thus the
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quasi-particles survive in the vicinity of the QCP [Gegenwart, 2008]. An alternate scenario,

so-called Kondo breakdown scenario, has proposed that a localization of the f -electrons at

the QCP gives rise to a breakdown of the local Kondo energy scale and a dramatic change of

the Fermi surface topology [Coleman, 2001; Si, 2001; Si, 2003; Senthil, 2004; Paul, 2008]. The

SDW scenario has been applied to many HF compounds such as CeCu2Si2 [Gegenwart, 1998]

and CeNi2Ge2 [Julian, 1996] and the Kondo breakdown model seems to be favor for Au-

doped CeCu6−xAux [Schröder, 1998; Schröder, 2000] (specially called a local quantum criti-

cality [Si, 2001; Si, 2003]) and YbRh2Si2 [Paschen, 2004; Gegenwart, 2008]. However, unfor-

tunately, neither SDW nor the Kondo break down model are sufficient to explain the observed

experimental results from these systems.

Magnetic field-induced AFM QCP systems have been limited relatively few examples, only

among stoichiometric compounds, in particular YbRh2Si2 [Trovarelli, 2000; Gegenwart, 2002;

Paschen, 2004; Gegenwart, 2007; Friedemann, 2009] and YbAgGe [Bud’ko, 2004; Bud’ko, 2005;

Bud’ko, 2005a; Niklowitz, 2006; Tokiwa, 2006]. In addition to strong quantum fluctuations in

the vicinity of the QCP, the existence of a new crossover field scale, apparently associated with

the QCP, detected from several thermodynamic and transport measurements, has been shown

from the extensive study of YbRh2Si2 [Paschen, 2004; Gegenwart, 2007; Friedemann, 2009]

and YbAgGe [Bud’ko, 2004; Bud’ko, 2005]. This was motivated from changes in Hall ef-

fect measurements [Paschen, 2004], interpreted as a change of the Fermi surface at the QCP,

and more clearly seen in the other HF antiferromagnet, YbAgGe, in an applied magnetic

field of ∼ 45 kOe [Bud’ko, 2005a; Niklowitz, 2006; Tokiwa, 2006], particularly in Hall resis-

tivity data [Bud’ko, 2005a] and extended to higher temperatures via thermoelectric power

[Mun, 2010b] measurements. Among magnetic field-tuned QCP systems, YbAgGe shows a

wide nFL region characterized by the linear temperature dependence of the resistivity, ∆ρ ∝ T
[Niklowitz, 2006]. Recently a similar range of nFL behavior has also been observed in Ge-

doped YbRh2Si2 [Custers, 2010]. Mainly based on the magnetic field-tuned QCP systems, a

new mechanism for quantum criticality has been proposed by considering two tuning param-

eters [Coleman, 2010; Custers, 2010]: (i) the ratio between the Kondo temperature and the
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Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and (ii) the quantum zero-point fluctu-

ations which can be tuned by increasing the amount of frustration, where a Doniach-like, two

dimensional, phase diagram can be established with these two tuning parameters (see figure

in Chapter 3).

In this chapter, we present systematic measurements of the thermodynamic and transport

properties of YbPtBi down to 20 mK with magnetic fields up to 140 kOe to establish, delineate,

and understand the nature of magnetic field-induced QCP in this canonical system. In the

constructed H − T phase diagram for YbPtBi three low temperature regimes emerge: (i)

AFM state, characterized by SDW, which can be suppressed to T = 0 with a relatively small,

external magnetic field of Hc ∼ 4 kOe, (ii) a field induced, anomalous state in which the

electrical resistivity follows ρ(T ) ∝ T 1.5 between Hc and ∼ 8 kOe, and (iii) a Fermi liquid

(FL) state in which ρ(T ) ∝ T 2 for H ≥ 8 kOe. Each region can be distinguished by two

crossover scales, emerging near Hc ∼ 4 kOe and H∗ ∼ 7.8 kOe at T = 0. For H > H∗, the

FL coefficient A of the temperature dependence of resistivity and γ the linear component of

the temperature dependence of specific heat are drastically enhanced as ∼ 1/(H −Hc) and ∼
1/(H −Hc)2, respectively, when approaching Hc from the high magnetic field side. In contrast

to the resistivity results, the electronic specific heat coefficient, C(T )/T , does not show any

pronounced nFL behavior as either C(T )/T ∝ −√T or -log(T ) down to 50 mK near Hc.

6.2 Results

6.2.1 Magnetization

The anisotropic inverse magnetic susceptibilities, H/M(T ), of YbPtBi are shown in Fig.

6.1 (a), where the magnetic field was applied along the [100], [110], and [111] directions. The

observed magnetic susceptibility is essentially isotropic down to 2 K. Between 10 K and 250 K,

H/M(T ) obeys the Curie-Weiss law, χ(T ) = C/(T−θp), with θp � -2 K and µeff � 4.3µB/Yb3+

which is close to the free ion value of 4.5µB and consistent with earlier studies [Fisk, 1991].

Magnetization isotherms, M(H), of YbPtBi were measured at 1.8 K for the magnetic field

applied along the [100], [110], and [111] direction. The magnetic moment develops a modest
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Figure 6.1 (a) Inverse magnetic susceptibility, H/M(T ), of YbPtBi, where
the magnetic field was applied along [100], [110], and [111] di-
rection. The solid line represents the Curie-Weiss fit to the data
for H ‖ [100]. Inset displays H/M(T ) at low temperatures. (b)
Magnetization isotherms of YbPtBi at T = 1.8 K for H ‖ [100],
[110], and [111] direction.

anisotropy for H > 25 kOe at 1.8 K and reaches 2.3-2.8 µB/Yb3+ at 70 kOe, depending on the

magnetic field orientation, which is below the theoretical saturated value of 4µB for the free

Yb3+ ion and expected due to the Kondo and crystalline electric field (CEF) effects.

6.2.2 Resistivity

Earlier studies of the low temperature resistivity of YbPtBi found that below TN ∼ 0.4 K

an unexpected sample-to-sample variation of the resistive anomaly, and even an apparent

anisotropy, could develop. It was speculated that strain associated with the sample mounting

and hypothesized magnetoelastic effects to these observations. Figure 6.2 shows the electrical

resistivity, ρ(T ), for several different samples of YbPtBi as a function of temperature with

data for different ways attaching the sample to the thermal bath, for cooling. The electrical

resistivity curves of samples #3, #10, and #14 are normalized at 1 K to the resistivity of

sample #13, for clarity. The shape of the ρ(T ) curve below the AFM ordering temperature,

TN , turns out to be very sensitive to the details of how the sample is attached onto heat sink
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Figure 6.2 Temperature-dependent electrical resistivity, ρ(T ), of YbPtBi
measured for different sample mount conditions for cooling.
ρ(T ) curves are normalized to the sample #13 curve at T = 1K .
Sample #13 and #14 were hanging in vacuum, thus cooled only
through high purity, platinum voltage and current lead wires.
Samples #3 and #10 were attached to the thermal bath by
GE 7301 varnish. The inset shows ρ(T ) of sample #10, mea-
sured by the following temporal procedure; (i) initially sample
was mounted with Apiezon N-grease in 3He cryostat and ρ(T )
was measured down to 0.34 K (circles) in order to see the onset
of a sharp phase transition. After cleaning the N-grease (ii)
sample was attached to the dilution refrigerator with GE-var-
nish and ρ(T ) was measured (squares, inset and main figure).
After cleaning the GE-varnish (iii) sample was mounted with
N-grease again in dilution refrigerator and ρ(T ) was measured
(triangles).
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for cooling. Samples #13 and #14, both of which show a sharp increase of ρ(T ) below the

phase transition, were measured with the sample hanging in vacuum (without being directly

affixed to the thermal bath). Thus, these samples were cooled down to 0.02 K through only the

platinum voltage and current wires. On the other hand, the electrical resistivity measurements,

taken on samples that were mechanically attached to the heat sink, showed unusual behavior.

Samples #3 and #10 were attached to the heat sink with GE 7301 varnish (GE-varnish). The

ρ(T ) curve for sample #3 shows a relatively weak jump below TN , compared to the results from

samples #13 or #14, and no obvious anomaly, corresponding to the AFM phase transition,

was observed for sample #10, which manifests a weak slope change, only in a dρ(T )/dT plot.

The degree of sensitivity to mounting conditions can be illustrated, in detail, by the mea-

surement sequence below. Initially ρ(T ) data on several samples of YbPtBi were measured

down to 0.34 K in 3He cryostat in order to confirm a sharp onset of the phase transition below

0.4 K, where Apiezon N-grease was used to secure the sample to the heat sink. Most of the

samples showed a sharp rise of ρ(T ) below 0.4 K in which the slope of ρ(T ) below 0.4 K was

comparable to that of sample #13 in Fig. 6.2. The ρ(T ) data for sample #10 is representative

and is shown as circles in the inset to Fig. 6.2. Next, from these samples, after cleaning the

N-grease off using toluene, eight samples were mounted on a dilution refrigerator cold stage

with GE-varnish and ρ(T ) was measured down to 0.02 K. The ρ(T ) data obtained for sample

#10 in this measurement are presented as squares in Fig. 6.2 (and its inset) in which the

phase transition is no longer discernible, due to the complete suppression of ρ(T ) feature be-

low 0.4 K. All eight samples showed ρ(T ) behavior similar that of sample #10. Lastly, after

cleaning of the GE-varnish, using ethanol, samples were remounted with Apiezon N-grease to

the cold stage of the dilution refrigerator. The ρ(T ) data obtained in this measurement for

sample #10 are plotted in the inset of Fig. 6.2 as triangles. Interestingly, ρ(T ) shows sharp rise

below 0.4 K, which is similar to the result of the sample #3. The magnitude of enhancement

of ρ(T ) below TN is still smaller than that for the results in vacuum measurements (samples

#13 and #14), however much bigger than that for GE-varnish results, where among the eight

remounted samples, five of them indicate a sharply rising ρ(T ) below 0.4 K. The observed
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ρ(T ) response for different sample mounting methods may be related to the anisotropic local

pressure (strain), generated by different thermal contraction between sample and heat sink via

thermal bond (GE-varnish) combined with changes associated with the AFM transition.

Figure 6.3 Temperature-dependent electrical resistivity, ρ(T ), of YbPtBi
(for samples #3 and #13) at H = 0 and 140 kOe. For T >

0.35 K data, samples were mounted in PPMS 3He option with
Apiezon N-grease. Inset: ρ(T ) of sample #13 for several se-
lected fields.

In the paramagnetic region, T > TN , the electrical resistivity of YbPtBi is not sensitive to

either the sample mounting methods for cooling or the sample growth conditions, which was

tested with more than 20 samples. All resistivity curves, normalized at 300 K, collapse to a

single curve, where the resistivity values at 300 K range between 350 ∼ 420 µΩcm (reflecting

our geometric error in evaluating sample dimensions). In Fig. 6.3, as an example, the ρ(T )

data of the samples #3 and #13 are plotted for H = 0 and 140 kOe, where the ρ(T ) curve

of the sample #3 is scaled at 300 K to the sample #13. In zero field the two ρ(T ) curves are

identical above 0.4 K. For H = 140 kOe data, two curves also show virtually identical temper-

ature dependencies with an approximately 10% (1.6µΩcm) difference at 0.4 K. In zero field,

ρ(T ) decreases with decreasing temperature, displayed an inflection around 85 K (a maximum

in dρ(T )/dT ), and shows a shoulder-like feature below 5 K as it drops sharply until T = TN .

These two characteristic features in ρ(T ), around 5 and 85 K, are probably due to the Kondo
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and CEF effects. Without correction for the phonon contribution to the resistivity, the local

maximum associated with the coherence effect in a Kondo lattice and the logarithmic temper-

ature dependence of ρ(T ) can not be resolved. In the inset of Fig. 6.3, ρ(T ) data for sample

#13 are plotted in various magnetic fields. As magnetic field increases ρ(T ) shows a continuous

suppression of the low temperature anomaly, developed near 5K, which is no longer visible at

least for H = 140 kOe. The observed magnetoresistance (MR) for H = 140 kOe changes from

negative to positive near 25 K. In the following, we will mainly present the resistivity results

of sample #13 and the results will be compared to those of samples #3 and #14.

Figure 6.4 Low temperature electrical resistivity (ρ(T ), sample #13) of
YbPtBi in various magnetic fields applied along the [100] direc-
tion (a) for H ≤ 6 kOe and (b) for 4 kOe ≤ H ≤ 20 kOe. For
comparison, ρ(T ) data at H = 4 and 6 kOe are plotted in both
figures. (a) Open- and closed-symbols correspond to the data
taken with 3µA and 30µA excitation current, respectively.

Figures 6.4 (a) and (b) show the low temperature ρ(T ) of YbPtBi for sample #13. In

zero field there is a monotonic quasi-linear decrease with temperature from 1 K down to just

above 0.4 K, followed by a sharp increase of ρ(T ) is observed below 0.4 K (which is consistent

with earlier results [Movshovich, 1994]). This behavior is not consistent with that observed for

simple, local moment AFM ordering for which ρ(T ) decreases below TN due to a loss of spin
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disorder scattering. A sharp rise of the resistivity below 0.4 K is reminiscent of the resistivity

signature of charge density wave (CDW) [Myers, 1999] and spin density wave (SDW) materials

[Fawcett, 1988], and of that in AFM materials which form a magnetic superzone gap below

TN [Elliott, 1972]. The bulk magnetic susceptiblity shows that YbPtBi exhibits an AFM

order below 0.4 K [Fisk, 1991] but the µSR [Amato, 1992] and neutron scattering experiments

[Robinson, 1994] indicate that the ordered moment is 0.1µB or less. Thus, the ρ(T ) data is

not inconsistent with that observed for SDW systems for which an increase of ρ(T ) along the

direction of the SDW modulation, indicating the partial gapping of the Fermi surface, should

be expected. As magnetic field increases, the resistive anomaly associated with TN is not

only reduced in height but also shifts to lower temperature (Fig. 6.4 (a)). For H > 4 kOe

the resistive anomaly is completely suppressed and a monotonic increase of ρ(T ) is observed

as temperature increases. Interestingly, an anomalous behavior of the resistivity in the zero

temperature limit, ρ(0), is observed around 8 kOe at which ρ(0) seems to have a local maximum

with varying magnetic field (see below).

Figure 6.5 (a) shows the transverse magnetoresistivity, ρ(H), of sample #13 at various

temperatures, data taken with a configuration; H ‖ [100] and I ‖ [010] (H⊥ I). At T = 0.02 K

ρ(H) steeply decreases with increasing magnetic field, has a local minimum near 5.6 kOe,

exhibits a hump around 8 kOe, and then decreases with further increasing magnetic field. The

broad maximum around 8 kOe at T = 0.02 K broadens further and turns into a weak slope

change as temperature increases up to 0.5 K above which the anomaly is no longer noticeable.

The steep decrease of ρ(H) as magnetic field increases from zero to 5 kOe can be related to

the boundary of the AFM state. It is not clear at present whether the additional signature

around 8 kOe represents a phase transition, or some kind of crossover field. For T > TN a

negative MR appears, only without an ∼ 8 kOe hump, up to 40 kOe. Figure 6.5 (b) shows the

higher temperature MR, plotted as [ρ(H)− ρ(0)]/ρ(0) vs. H. The MR decreases without any

noticeable anomaly as magnetic field increases and the sign of the MR change from negative to

positive for T > 20 K. In the high magnetic field regime (H > 100 kOe), quantum oscillations

are visible at low temperatures. The analysis of these oscillations and discussions are presented
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Figure 6.5 (a) Transverse magnetoresistivity of YbPtBi (sample #13) as
plotted ρ vs. H at various temperatures; H ‖ [100] and I ‖ [010]
(H⊥ I). Inset shows a expanded plot in the low field regime for
T = 0.02, 0.3, and 0.5 K. Open circles in both main figure and
inset represent the residual resistivity taken from the power
law fit to ρ(T ) data (Fig. 6.4); T 1.5-fit for H < 8 kOe and
T 2-fit for H ≥ 8 kOe. Vertical arrows in the inset indicate slope
changes in dρ(H)/dH curve. (b) Transverse magnetoresistance
of YbPtBi (sample #13) as plotted [ρ(H) − ρ(0)]/ρ(0) vs. H

at various temperatures.

in the appendix C.

The AFM phase boundary was determined from the peak position in dρ(T )/dT because the

steep rise, seen in the zero field ρ(T ) below TN , broadens as magnetic field increases. Figure 6.6

(a) shows dρ(T )/dT of sample #13 for selected magnetic fields. As magnetic field increases,

the peak height at TN decreases and the peak width in dρ(T )/dT becomes wider, indicating

that the signature of the phase transition broadens. The peak in dρ(T )/dT is fairly sharp for

H ≤ 3 kOe curves, whereas it is no longer visible, down to 0.02 K, for H ≥ 4 kOe. Thus, with

increasing magnetic field, the AFM phase transition shifts to lower temperatures and vanishes

at around 4 kOe. The arrows in Fig. 6.6 (a) illustrate the criterion used to determine TN .

Figure 6.6 (b) shows the magnetic field dependence of the derivatives, dρ(H)/dH, obtained

from the ρ(H) curves presented in Fig. 6.5. The sharp peak positions of dρ(H)/dH were

selected as the critical field of the phase transition. The sharp peak at 2.9 kOe, shown in 0.02 K
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Figure 6.6 (a) dρ(T )/dT at various magnetic fields up to 4 kOe. Vertical
arrows indicate the determined AFM phase transition temper-
ature. (b) dρ(H)/dH at various temperatures. Up-arrow indi-
cates the AFM phase boundary and down-arrow correspond to
a local maximum. Inset shows dρ(H)/dH up to 0.5 K, where
vertical arrows indicate the determined phase transition field.

curve, shifts to lower field as temperature increases (inset) and turns into a broad minimum

for T ≥ 0.4 K. The higher field broad maximum near 7.6 kOe for 0.02 K curve broadens as

temperature increases. For T > 0.75 K, the lower field broad minimum and a slope change

near 6 kOe shown for T = 0.4 K curve are no longer visible and instead dρ(H)/dH shows a

single minimum near ∼ 10 kOe. As will be discussed below, the positions of the sharp peak and

the local maximum agree with the observed anomalies in the magnetostriction, Hall resistivity,

and thermoelectric power measurements.

To get further insight from the low temperature transport data from YbPtBi, ρ(T ) data
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Figure 6.7 (a) ρ(T ) vs. T 1.5 at various magnetic fields, where ρ(T ) curves
for H = 8 and 10 kOe are shifted by -1µΩcm each for clarity.
Down-arrows indicate the temperature below which ∆ρ(T ) =
AT 1.5, determined from a power law fit (∆ρ(T ) = AT n) to the
data. For H = 10 kOe the line is the fit of the power law to the
data and up-arrow indicates a deviation from T 1.5-dependence
of ∆ρ(T ). (b) ρ(T ) vs. T 2 at various magnetic fields. The
arrows mark the temperature where the fits (∆ρ(T ) = AT 2)
deviates from the data. These temperatures, TFL, are plotted
in the H−T phase diagram (see Fig. 6.10). For H = 20 kOe the
line is the fit of the power law to the data and up-arrow in the
low temperature side indicates a deviation from T 2-dependence
of ∆ρ(T ). (c) Double-logarithmic plots of ∆ρ(T ) vs. T for H =
6, 8, 10, and 15 kOe. The solid lines represent the temperature
dependence expected for the exponent n = 1.5 and n = 2.
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are analyzed by a power law; ∆ρ(T ) = ρ(T ) - ρ0 = AT n, where ρ0 is the residual resistivity

and A is the coefficient. The coefficient, A, can be interpreted as the quasi-particle scattering

cross-section. The exponent, n, indicates whether the system is in a Fermi Liquid (FL) regime

(n = 2) with dominant electron-electron scattering or whether strong quantum fluctuation

effects dominate, generally n< 2, in the vicinity of a QCP [Stewart, 2001]. Figures 6.7 (a)

and (b) show plots of ρ(T ) vs. T 1.5 and T 2, respectively, at various magnetic fields. In Fig.

6.7 (a) ρ(T ) for H = 8 and 10 kOe data are shifted by -1µΩcm each for clarity. Since the

anomaly in ρ(T ) below the SDW phase transition for H < 4 kOe prevents the power law fit

to the data, the fit was performed for H ≥ 4 kOe at which no sharp feature in dρ(T )/dT was

observed down to 0.02 K (see Fig. 6.6 (a)).

For 4 kOe ≤H ≤ 8 kOe, ρ(T ) can be well described by a T 1.5-dependence down to the

lowest accessible temperature of 0.02 K, where the exponent n ranges between 1.45 ∼ 1.6

depending on the fit range. The maximum temperature below which ∆ρ(T ) = AT 1.5 shifts

to higher temperature as magnetic field increases, indicated by down-arrows in Fig 6.7 (a).

For H = 8 and 10 kOe, plotted in both Figs. 6.7 (a) and (b), ρ(T ) can be described by a

T 2-dependence at low temperatures above which T 1.5-dependence is predominant. For H >

10 kOe a characteristic of FL state is clearly evidenced by the relation ∆ρ(T ) = AT 2 at

low temperatures as indicated by the arrow in Fig. 6.7 (b). Note for H ≥ 20 kOe that as

temperature decreases ρ(T ) follows T 2-dependence and then flattens, revealing the deviation

of FL behavior with n > 2. In Fig. 6.7 (b) the up-arrow in the low temperature side on ρ(T )

curve for H = 20 kOe curve indicates a deviation of T 2-dependence.

Since the difference of the exponent between n = 1.5 and 2 is very small, the results based

on the power law analysis are also visualized in Fig. 6.7 (c) as log-log plot of ∆ρ(T ) vs. T at

selected magnetic fields. ∆ρ(T ) for H = 6kOe is a straight line at least up to 0.4 K, which is

parallel to the T 1.5-line, whereas ∆ρ(T ) for H = 10 kOe deviates from a straight line parallel

to the T 1.5-line near 0.1 K below which the slope is parallel to the T 2-line. Note that at low

temperatures the slope in log - log plot depends on the ρ0 value. When ρ(T ) is corrected by

the ρ0 value obtained from the fit of T 1.5-dependence above ∼ 0.1 K, the slope for H = 10 kOe
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is parallel to the T 1.5-line above 0.1 K. For H = 15 kOe curve, ∆ρ is a straight line parallel to

the T 2-line below ∼ 0.25 K, which clearly indicate a quadratic temperature dependence down

to lowest temperature measured.

Figure 6.8 ρ(T ) of (a) sample #3 and (b) sample #14 at selected magnetic
fields. ρ(H) of (c) sample #3 and (d) sample #14 at selected
temperatures. (b) Zero field ρ(T ) of sample #14 was shifted by
+3µΩcm for clarity. Open circles in (c) and (d) represent the
residual resistivity obtained from the power law fit to the ρ(T )
data.

The electrical resistivity data for samples #3 and #14 are plotted in Figs 6.8 (a)-(d),

respectively, at selected temperatures and magnetic fields as representative data. For H ‖ [100],

the overall temperature and magnetic field dependences of the resistivity for both samples #3

and #14 are the same as those for sample #13 (Figs. 6.4 and 6.5). These data were analyzed

by the same methods, applied to sample #13, to determine phase transitions and power law

dependences of ρ(T ). These results together with those of sample #13 are summarized in Fig.

6.9 and Fig. 6.10.

In Fig. 6.9 parameters of A, n, and the maximum temperature range satisfying T 1.5 and
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Figure 6.9 Parameters obtained from power law fits, ρ(T ) = ρ0 + AT n, to
the data for three different samples. Open- and solid-symbols
correspond to fits with n = 1.5 and n = 2, respectively. (a) Tem-
peratures of the fit range below which a T n-dependence of ρ(T )
satisfies. For 8 kOe ≤H ≤ 10 kOe the fit of T 1.5-dependence was
performed above the temperature, satisfying T 2-dependence.
The horizontal line for H ≥ 20 kOe indicates the temperature
below which ρ(T ) flattens. (b) Determined exponents n from
least square fits to the data. (c) Field dependencies of the co-
efficients, A = (ρ(T ) − ρ0)/T n with n = 1.5 and 2, for three
different samples.
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T 2, obtained from the power law fit, are summarized for H ≥ 4 kOe. All open- and solid-

symbols correspond to the fits with n = 1.5 and n = 2 (Fig. 6.9 (b)), respectively, for three

different samples. For comparison with magnetoresistivity at 0.02 K, the obtained ρ0 values

for sample #13 are plotted in Fig. 6.5 as open-circles which track well the magnetoresistivity

at T = 0.02 K. ρ0 values for samples #3 and #10 also track the low temperature ρ(H) well

(Figs. 6.8 (c) and (d), respectively). As shown in Fig. 6.9 (a) for magnetic fields above 4 kOe

the temperature range, following T 1.5-dependences of ρ(T ), increases monotonically and for

magnetic fields higher than 8 kOe the FL region, ∆ρ(T ) = AT 2, gradually increases. The field

dependences of the coefficients, A = (ρ(T )− ρ0)/T n with n = 1.5 and 2, are plotted Fig. 6.9

(c). A strong enhancement of the T 2-coefficient is observed as magnetic field approaches 8 kOe

from higher magnetic fields.

Figure 6.10 H−T phase diagram of YbPtBi constructed from the ρ(T,H)
results for three different samples; all circles, triangles, and
squares correspond to the results of samples #13, #14, and
#3, respectively. TN was derived from the sharp minimum in
dρ(T )/dT (solid-symbols) and dρ(H)/dH (open-symbols). H∗

was derived from the broad local maximum in dρ(H)/dH (Fig.
6.6). TFL represents the upper limit of the T 2-dependence of
ρ(T ).



116

The various characteristics observed from sample #13, together with samples #3 and #14,

are collected in the H − T plane and displayed in Fig. 6.10. The magnetic field dependence

of TN was determined from the sharp peak position in dρ(T )/dT and dρ(H)/dH (Fig. 6.6).

The crossover scale, H∗, was obtained from the maximum of dρ(H)/dH (Fig. 6.6 (b)). The

FL region, TFL, marks the upper limit of T 2-dependence of ρ(T ) (Fig. 6.7). The AFM phase

boundary of TN and the crossover of H∗ and TFL, obtained from the results of three different

samples, agree well each other. Therefore, it seems to be reasonable to assume that the

strength of the anomaly developed in ρ(T ) below TN is only sensitive to the strain generated

through bonding agent for sample cooling (see Fig. 6.2), but the relevant physics of the samples

remains the same. The AFM boundary determined from dρ(T )/dT does not fully agree with

the one obtained from dρ(H)/dH at low temperatures; the AFM phase boundary below 0.2 K

spreads significantly. It is most likely that this inconsistency is based on the criteria used to

determine phase transition coordinates, but it is possible that there are two closely spaced

phase boundaries.

From the H−T phase diagram for the applied magnetic field parallel to the [100] direction,

it is clear that the AFM ordering can be suppressed to zero for Hc � 4 kOe. For H > Hc

a field induced anomalous state, characterized by ∆ρ(T ) = AT 1.5, is established up to ∼
8 kOe, and a FL state, characterized by ∆ρ(T ) = AT 2, is induced for H ≥ 8 kOe. The TFL

region enlarges monotonically with increasing magnetic field. It is apparent that at lowest

temperature measured (T = 0.02 K) a crossover from T 1.5- to T 2-dependence of ρ(T ) occurs

near 8 kOe. At higher magnetic fields, for H ≥ 8 kOe, a crossover from T 1.5- to T 2-dependence

of ρ(T ) is observed with decreasing temperature. Note that for H < 8 kOe, because of the poor

signal to noise ratio, below 0.08 K, ρ(T ) can be described with the exponent n = 2, depending

on the fit region.

As magnetic field decreases from the higher magnetic field (paramagnetic) side, the temper-

ature range, TFL, becomes smaller, while the coefficient A of T 2-dependence increases rapidly

and shows a tendency of diverging as H → Hc. A divergent nature of this coefficient, when

approaching to the critical field from paramagnetic side, is considered strong evidence for a
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field-induced quantum phase transition [Gegenwart, 2002], which will be discussed below to-

gether with the field dependence of the electronic specific heat coefficient (γ). In addition,

the exponent n=1.5 near a QCP was predicted by the traditional SDW scenario of quantum

criticality with d = 3 and z = 2 [Hertz, 1976; Millis, 1993]. From the phase diagram it is

apparent that H∗ separates TFL region from the AFM phase boundary TN .

6.2.3 Specific heat

Figure 6.11 (a) displays the temperature dependences of the specific heat, Cp(T ), of YbPtBi

for H = 0 and 140 kOe, applied along the [100] direction, together with zero field Cp(T ) of

its nonmagnetic isostructural counterpart, LuPtBi. The overall shape of Cp(T ) for LuPtBi

is typical for a nonmagnetic systems. In particular, below 8 K it is easily described by the

relation, Cp(T ) = γT + βT 3, in which the first term is a conventional conduction electron

contribution to the specific heat with the Sommerfeld coefficient, γ, and the second term

is a low temperature phonon contribution in a form of the Debye-T 3 law with the Debye

temperature, ΘD. For LuPtBi, shown in the inset of Fig. 6.11 (a), least-square fitting of this

formula to the experimental data yields the γ � 0 (6×10−5 J/mol·K2) and from β, the ΘD

� 190 K. Since γ is negligible, which is consistent with low a carrier density system, Cp(T ) of

LuPtBi is dominated by the phonon specific heat.

The zero field, Cp(T ) of YbPtBi indicates a distinct anomaly at about 0.41 K which is

consistent with earlier results [Fisk, 1991] (Fig. 6.11 (b)). Since Cp(T ) of YbPtBi shows a

broad hump around 6 K and a peak at TN , we were not able to extract γ and ΘD from a fit of

Cp(T )/T = γ + βT 2 to the data. The result of Cp(T ) for H = 140 kOe shows the development

of a large, broad peak structure, centered near 10 K, probably related to the electronic Schottky

anomaly. At high temperatures the Cp(T ) data are essentially the same for all curves shown

in Fig. 6.11 (a).

The total specific heat obtained for YbPtBi can be assumed to consist of the nuclear

Schottky (CN ), electronic (Cel), phonon (Clattice), and magnetic (Cm) contributions. At higher

temperatures, where CN (T ) contribution can be ignored, Cp(T ) consists of Cel, Clattice, and
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Figure 6.11 (a) Specific heat of YbPtBi as Cp(T ) vs. T for H = 0 (cir-
cles) and 140 kOe (triangles), applied magnetic field along the
[100] direction, and zero-field Cp(T ) of LuPtBi (squares). In-
set displays Cp/T vs. T 2 for LuPtBi. The solid line is a fit of
the equation Cp(T ) = γT + βT 3 to the data. (b) Zero field
specific heat for YbPtBi and LuPtBi below 10 K.

Cm contributions. Thus, Cm(T ) of YbPtBi was estimated by subtracting Cp(T ) of LuPtBi

and plotted as Cm(T ) vs. log(T ) in Fig. 6.12 (a) for selected magnetic fields.

In zero field, in addition to a distinct anomaly at TN , the two anomalies, which can be

expected due to the electronic Schottky contributions, are visible near 6 K and higher than

50 K. For H > 4 kOe which is high enough to suppress TN , as shown by ρ(T,H) results, a

broad peak is developed in the low temperature side (see H = 10 kOe data). The position of

the maximum of this low temperature anomaly continuously shifts to higher temperature as

magnetic field increases to 140 kOe. The anomaly, shown near 6 K in zero field, merges into

lower temperature anomaly around 40 kOe, causing significant broadening of the combined

feature. The evolutions of these two anomalies as a function of magnetic field are plotted in

the inset of Fig. 6.12 (a), where the position of maximum was determined from the Gaussian

fit to the data.

For H = 0 and 140 kOe, the magnetic entropy, Sm(T ), was inferred by integrating Cm(T )/T

starting from the lowest temperature measured and plotted in Fig. 6.12 (b). For H = 140 kOe,
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Figure 6.12 (a) Logarithmic temperature variation of the magnetic contri-
bution Cm(T ) to the specific heat of YbPtBi at selected mag-
netic fields; Cm(T ) = Cp(T )(YbPtBi) - Cp(T )(LuPtBi). Inset
displays positions of maxima developed in Cm(T ). (b) Mag-
netic entropy, Sm(T ), for H = 0 and 140 kOe, inferred by inte-
grating Cm/T starting from the lowest temperature measured.
Inset shows the low temperature Cp(T ) of YbPtBi (left axis,
symbols) and the magnetic entropy (Sm) divided by Rln(2)
(right axis, line). Vertical arrow marks the peak position of
the λ-shaped anomaly.

since the Cp(T ) data were taken above 2K and no up-turn in Cp(T ) data at low temperatures

was observed, the nuclear contribution was ignored to evaluate the magnetic entropy. Sm(T )

reaches about 55% of Rln(2) at TN and recovers the full doublet, Rln(2), entropy by ∼ 0.8 K

(inset), which suggests that the ordered moment at TN is compensated (reduced) by Kondo

screening. The calculated Sm(T ) reaches a value of Rln(4) by 7 K and Rln(6) by 28 K, and

the recovered Sm(T ) at T = 100 K is close to the full Rln(8), which suggests that the highest

CEF energy levles are separated by approximately 100 K from the ground states. The inferred

Sm(T ) data for H = 140 kOe is released slower than that for H = 0.

The results of low temperature specific heat measurements shed light on the HF state of

YbPtBi, where the evolution of the quasi-particle mass can be inferred as the system is tuned

by external magnetic field. The specific heat data divided by temperature are plotted in Fig.

6.13 (a) (solid symbols) as Cp(T )/T vs. log(T ) for T ≤ 2K and H ≤ 30 kOe, where the
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Figure 6.13 (a) Low temperature specific heat as Cp(T )/T (solid symbols)
and ∆C(T )/T (solid lines) vs. log(T ) for YbPtBi at various
magnetic fields, applied along the [100] direction; ∆C(T ) =
Cp(T ) - CN (T ), where the nuclear Schottky contribution was
subtracted by using CN (T ) ∝ 1/T 2. Inset shows the electronic
specific heat coefficient, γ = ∆C(T )/T |T→0 (open squares),
and ∆C(T )/T at T = 0.1 K (solid circles) as a function of
magnetic field. (b) Cp/T , CN/T , and ∆C/T for H = 30 kOe,
plotted in a log(T ) scale.

C(T )/T data for H = 0 are plotted below 10 K. When magnetic field is applied, the well

defined anomaly at TN is no longer visible for H > 3 kOe and instead the data show a broad

maximum. This broad maximum decreases in magnitude and shifts to higher temperature

with increasing magnetic field, indicating that the magnetic entropy is removed at higher

temperature for larger applied magnetic fields (see for H = 140 kOe curve in Fig. 6.12 (b)).

At the lowest temperatures, a slight up-turn in Cp(T ), associated with a nuclear Schottky

anomaly, is visible. This nuclear Schottky anomaly is much more pronounced in the Cp(T )/T

plots and becomes significant as magnetic field increases. It is expected that the anomaly

correspond to AFM order for H < 4 kOe may either broaden significantly or be masked by

the presence of the broad peak structure as well as the nuclear Schottky contributions.

Below 2 K, where Clattice contribution can be safely ignored, the electronic specific heat

coefficient was estimated by subtracting nuclear contribution, using CN (T ) ∝ 1/T 2; ∆C(T ) =
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Cp(T ) - CN (T ). As an example, the Cp(T ), the estimated CN (T ), and the ∆C(T ) for H =

30 kOe are plotted as circles, line, and pentagons, respectively, in Fig. 6.13 (b). Above ∼ 0.4 K,

the CN (T ) contribution to the total C(T )/T is very small, however, below ∼ 0.2 K, C(T )/T is

dominated by CN (T ) contribution. The obtained ∆C(T ) data for several magnetic fields are

plotted as ∆C(T )/T vs. log(T ) in Fig. 6.13 (a) (solid lines). In zero field, by extrapolating

∆C(T )/T to zero temperature (γ = ∆C(T )/T |T→0), γ is estimated to be 7.4 J/mol·K2, which

is consistent with earlier result (∼ 8 J/mol·K2 [Fisk, 1991]) and is one of the highest effective

mass values observed among HF compounds. The magnetic field dependence of γ is plotted in

the inset of Fig. 6.13 (a) as open squares. For comparison, the ∆C(T )/T data at T = 0.1 K are

also plotted as solid circles, which are essentially the same as γ. At magnetic fields below 8 kOe,

γ is approximately constant within about 1 J/mol·K2. A strong decrease of γ is observed for

H ≥ 8 kOe, implied that the quasi-particle mass diverges when approaching the critical field

from higher magnetic fields. For magnetic fields larger than 8 kOe, γ shows a very similar field

dependence as A (see discussion below). For any of the specific heat data, measured magnetic

fields up to 30 kOe, ∆C(T )/T shows no clear indication of a nFL-like behavior either as a

logarithmic (-log(T )) or non-analytic (-
√
T ) temperature dependence. A -log(T ) dependence

of ∆C(T )/T is observed over only a limited temperature range; for example, ∆C(T )/T shows

such a -log(T ) dependence between 0.3 ∼ 0.8 K near 4 kOe and between 0.45 ∼ 1.6 K near

8 kOe.

6.2.4 Thermal expansion and magnetostriction

Figure 6.14 shows a linear thermal expansion coefficient, α100 = d(∆L/L)/dT , where ∆L

is the length variation along the [100] direction (∆L/L ‖ [100]). At high temperatures, α100

gradually decreases with lowering temperature and then, below 100 K α100 decreases rapidly

down to ∼ 6 K. With further decreasing temperature, α100 shows a sudden enhancement below

5 K, followed by a sharp peak at T = 0.38 K. The observed characteristics in the temperature

dependence of the zero field α100 are very similar to that shown in the magnetic specific

heat (see Fig. 6.12). The AFM transition manifests itself as a sharp peak in α100 at TN
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Figure 6.14 The linear thermal expansion coefficient, α100 =
d(∆L/L100)/dT , of YbPtBi, where L is the sample length
along the [100] direction. The AFM ordering temperature is
indicated by the arrow at 0.38 K. The arrow at 6K represents
the maximum temperature observed in specific heat. Inset
shows α100 at selected magnetic fields (H = 0, 2.5, 5,
and 10 kOe bottom to top), measured with a longitudinal
configuration ∆L/L ‖ H ‖ [100].

= 0.38 K, where Cm(T ) exhibits the AFM transition as a maximum at TN = 0.41 K. If the

thermal expansion, ∆L/L, was composed of only the lattice contribution, it will only decrease

monotonically with decreasing temperature. Thus, the two features, at which α100 shows a

decrease with warming, at about 5 K and a saturation for T > 100 K, can be related to a

substantial magnetic contribution associated with Yb3+ ions, which is in agreement with the

broad peak positions centered at about 6K and higher than 50 K in Cm(T ). The saturation

of α100 for T > 100 K is most likely due to CEF effects of higher energy levels combined with

simple lattice effects. The anomaly near 5 K can be related to the CEF effects of the first

excited state, where the lattice contribution can be ignored at low temperatures. In order

to examine the magnetic field effect on α100 at low temperatures, the constant field, thermal

expansion was measured in the magnetic field parallel to [100], i.e. ∆L ‖ H ‖ [100]. The

results are plotted in the inset of Fig. 6.14. The peak at TN is suppressed below 0.3 K for H >

2.5 kOe. Low temperature α100 increases with application of magnetic field.
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Figure 6.15 Magnetostriction and the coefficient of YbPtBi. The linear
magnetostriction coefficient, λ100 = d(∆L/L100)/dH vs. H,
at selected temperatures, where L is the sample length along
the [100] direction parallel to the magnetic field applied along
the [100] (longitudinal configuration ∆L/L ‖ H ‖ [100]). The
upper inset shows the magnetic field dependence of the mag-
netostriction ∆L/L100. The lower inset shows λ100 at 0.02 K.
The up- and down-arrow indicate the phase transition TN and
the local minimum H∗, respectively.

Figure 6.15 shows the linear magnetostriction coefficient, λ100 = d(∆L/L)/dH, and the

linear magnetostriction, ∆L/L100 (upper inset), of YbPtBi for selected temperatures, where

the longitudinal linear magnetostriction has been measured parallel to the [100] direction,

i.e., ∆L ‖ H ‖ [100]. The magnetic field was swept with a rate of between 5∼ 10 Oe/sec

for temperatures up to 10 K. No hysteresis larger than ∼ 100 Oe could be detected. In the

low magnetic field regime ∆L/L at T = 0.02 K shows weak slope changes and then decreases

rapidly as magnetic field increases, which manifests in λ100 as sharp slope changes below 3 kOe

and a minimum around 7.8 kOe (see arrows in the lower inset). As temperature is raised, the

sharp slope changes are no longer visible for T > 0.4 K and the minimum shifts to higher

magnetic field. At high magnetic fields, there is broad features: a shoulder near 50 kOe and a

minimum near 100 kOe in λ100.

Figure 6.16 (a) shows a plot of the magnetic field variation of λ100 at selected temperatures.
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Figure 6.16 (a) The linear magnetostriction coefficient, λ100 =
d(∆L/L100)/dH vs. H, at selected temperatures. For clarity
the data sets are vertically shifted each by 5×10−5/kOe. The
up- and down-arrows indicate the phase transition TN and
the local minimum H∗, respectively. (b) λ100 up to 3 K. Inset
shows λ100 up to 10 K. Arrows indicate the minimum (H∗)
and maximum in λ100. (c) H − T phase diagram of YbPtBi,
constructed form α100 and λ100. Dashed-line is guide to eye.

For T = 0.02 K data, the two slope changes in λ100 are visible at about 1.5 and 3 kOe. These

anomalies shift to lower magnetic field as temperature increases. The phase transition field

was selected for the higher field slope change because the higher field one is well matched with

the sharp peak position in dρ(H)/dH (see discussion below). The determined phase transition

fields are indicated by up-arrow in Fig. 6.16 (a). The local minimum, observed from T = 0.02 K

curve at H∗ ∼ 7.8 kOe, is not very sensitive to temperature up to 0.5 K (H∗ = 8.4 kOe), whereas

H∗ shifts, almost linearly, to higher magnetic field with further increasing temperatures up to

10 K, which can be clearly seen when this position is plotted in the H − T plane in Fig. 6.16

(c). A negative λ100 is observed up to 4K and it changes to positive for T > 5K, shown in

the inset of Fig. 6.16 (b). Figure 6.16 (c) displays a H − T phase diagram constructed from

both α100 and λ100: The AFM phase boundary, TN , corresponds to the sharp peak position in

α100 and the higher field slope change in λ100, and a crossover scale, H∗, corresponds to the

position of the minimum for T ≤ 4 K in λ100.



125

6.2.5 Hall effect

Figure 6.17 Temperature dependence of the Hall coefficient, RH = ρH/H,
of LuPtBi for H = 10 kOe, applied along the [111] direction.
Inset shows the zero field resistivity.

Figure 6.17 shows the temperature-dependent Hall coefficient, RH = ρH/H, of LuPtBi at

H = 10 kOe, applied along the [111] direction. The positive RH of LuPtBi, suggesting that

the dominant carriers are holes, monotonically increases as temperature decreases. Assuming

a single band model, the carrier concentration at 300 K is estimated to be n = 1.7×1026 m−3

(RH = 0.37 nΩcm/Oe) corresponding to ∼ 0.02 hole per formula unit. As shown in the in-

set of Fig. 6.17 ρ(T ) of LuPtBi decreases as temperature is lowered. Thus, LuPtBi can be

characterized by a low carrier metallic (or semimetallic) system. The carrier concentration of

LuPtBi is approximately 100 times smaller than that for copper [Ziman, 1960], comparable

to that for earlier result of isostructural semimetal YbPtBi [Hundley, 1997], and 2 orders of

magnitude larger than that of NdPtBi [Morelli, 1996] and LaPtBi [Jung, 2001]. This trend is

consistent with the earlier resistivity results [Canfield, 1991] in which the resistivity systemati-

cally changes from a small gap semiconductor (or semimetal) for lighter rare-earth compounds

to metallic (or semimetallic) for heavier rare-earth compounds.

Figure 6.18 displays the magnetic field-dependent Hall resistivity, ρH , of YbPtBi in mag-

netic fields up to 140 kOe at various temperatures. The results, obtained in this study, are
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Figure 6.18 Hall resistivity, ρH , of YbPtBi as a function of magnetic field,
applied along the [100] direction, at various temperatures. The
arrow on 0.06 K curve near 55 kOe indicates a deviation from
linear field dependence of ρH . The dash-dotted line is guide
to the eye. Inset shows the low temperature and low field ρH
at selected temperatures.

similar to previous Hall effect measurements above 2K [Hundley, 1997]. Here, the measure-

ments have been extended to much higher magnetic fields, up to 140 kOe, and to much lower

temperatures, down to 0.06 K, investigating the phenomena that are related to quantum crit-

icality. Below 1 K the ρH data as function of temperature and magnetic field were taken with

the condition that the sample was mounted on a dilution refrigerator cold stage with very thin

layer of GE-varnish. At high temperatures (for T ≥ 0.5 K), after cleaning the GE-varnish off

using ethanol, the sample was mounted on the cold stage of 3He option in PPMS with Apiezon

N-grease and ρH was measured. The data, taken from a dilution refrigerator measurements,

are in good agreement with the data, taken from 3He setup.

The sign of ρH is positive for all temperatures measured which, as was the case for LuPtBi,

is suggestive that hole-type carriers are dominant. Above 100 K, ρH follows a linear magnetic

field dependence, whereas, for T ≤ 25 K, ρH exhibits a non-linear magnetic field dependence.

An apparent deviation from the linear magnetic field dependence of ρH is indicated by the

heavy arrow on 0.06 K data. As highlighted in the inset, the overall features of ρH below
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Figure 6.19 Hall coefficient, RH = ρH/H, of YbPtBi as a function of mag-
netic field, applied along the [100] direction, at various tem-
peratures. The arrow near 8 kOe indicates the position of local
minimum shown in RH at T = 0.06 K. Inset shows the high
temperature RH for T = 3, 5, 10, 25, 50, 100, and 300 K (top
to bottom).

0.4 K are strongly non-monotonic as a function of magnetic field. At 0.06 K, the ρH manifests

distinct features: a local maximum around 4 kOe and a broad curvature (formation of local

minimum) between 4 ∼ 12 kOe. As temperature increases the local maximum broadens and

the inflection point of the broad curvature moves to higher magnetic fields.

Figure 6.19 shows RH of YbPtBi as a function of magnetic field. At high temperatures

(inset), RH is almost magnetic field-independent. As temperature is lowered, a broad local

minimum in RH is developed and sharpened. An anomalous low temperature behavior of Hall

effect can be clearly seen in RH plot. At base temperature, T = 0.06 K, the high magnetic

field limit of RH (H → 140 kOe) is close to the low magnetic field limit of RH (H → 0). As

magnetic field increases two features are developed as a weak slope change near 4 kOe and a

clear minimum around 8 kOe. These two features are also seen in the MR and magnetostriction

measurements. Thus, the anomaly near 4 kOe can be related to the AFM phase boundary,

however the meaning of 8 kOe anomaly is still not clear. Generally, an interpretation of the

Hall effect is difficult when multiple bands are crossing the Fermi energy.
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Figure 6.20 ρH/H at selected temperatures. For clarity, the data sets have
been shifted by different amounts vertically. Arrows indicate
the position of local minimum and inflection point. The posi-
tions of H∗ are plotted in the H − T plane in the inset.

Figure 6.20 shows RH of YbPtBi at selected temperatures, where the data sets were shifted

by different amounts vertically for clarity. Because of poor signal to noise ratio of the current

data, the phase transition and the position of the characteristic feature can not be determined

precisely. The local maximum in ρH near 4 kOe that is clear at 0.06 K, (inset, Fig. 6.18)

broadens significantly as temperature increases and is no longer visible for T > 0.5 K. The

local minimum, H∗ ∼ 8 kOe observed at T = 0.06 K, gradually shifts to higher magnetic fields

as temperature increases. The determined positions of the local minimum are indicated by

arrows in Fig. 6.20 and also plotted in the H − T plane in the inset. As will be shown later,

the positions of H∗ agree also with the anomaly developed in MR, magnetostriction, specific

heat, and TEP measurements.

In Fig. 6.21 RH is plotted as a function of temperature at selected magnetic fields, where

closed- and open-symbols are taken from temperature and magnetic field sweeps of ρH , re-
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Figure 6.21 Temperature dependence of the Hall coefficient (RH = ρH/H)
of YbPtBi at various magnetic fields, applied along the [100]
direction. Closed- and open-symbols are taken from tempera-
ture and field sweeps of ρH , respectively. The open-diamond
symbols (�) of RH(T → 0) are obtained from the initial slope
of ρH vs. H. The dashed-line is guide to the eye.

spectively. The data of RH (H → 0) was obtained by taking the low field limit of dρH/dH

of which the large error bar is fundamentally due to the weak signal of ρH . In the low mag-

netic field (H → 0 and 2.5 kOe) results, RH clearly shows the change of scattering mechanism

near 0.4 K and ∼ 70 K. The steep increase below 0.4 K in RH (H → 0) agrees with the be-

havior observed from resistivity measurements. The temperature dependence of RH depends

strongly on the applied magnetic field below 70 K, whereas above 70 K RH is basically magnetic

field-independent for H ≤ 140 kOe.

As temperature decreases, the zero field limit RH (H → 0) data below 10 K show a very

weak temperature dependence and the opening of the SDW gap below TN = 0.4 K gives rise

to an abrupt enhancement of RH (H → 0). A steep increase of RH below TN implies a

significant carrier density reduction associated with the Fermi surface gapping. For H = 5 kOe

RH becomes almost temperature-independent below 10 K. Similar results have been observed

in URu2Si2 compound [Schoenes, 1987]. Below T0 = 17.5 K, RH of URu2Si2 increases by

factor of 5-20 because of the opening of a gap over the Fermi surface. It should be noted,
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though, that since the Hall sample was mounted with GE-varnish, there is a possibility that

the steep increase in RH below 0.4 K may be altered by strain (as was resistivity). Thus, Hall

data needs to be taken without using the GE-varnish. This may be difficult to accomplish due

to the torque that needs to be secured in high magnetic fields.

6.2.6 Thermoelectric power

The TEP as a function of temperature, S(T ), for LuPtBi is plotted in the inset of Fig. 6.22.

The positive sign of TEP indicates that holes are dominant carriers which is consistent with

RH results. As temperature increases S(T ) increases monotonically, after passing through a

broad peak structure around 40 K probably due to the phonon drag, and then S(T ) gradually

increases to 8 µV/K at 250 K. Above 250 K S(T ) shows an essentially temperature-independent

behavior up to 300 K. The observed TEP of LuPtBi is not consistent with the behavior expected

from simple metals and the origin of the strong break in slope near 40 K is unknown at present.

Figure 6.22 Temperature-dependent TEP, S(T ), of YbPtBi at selected
magnetic fields, applied along the [100] direction. Inset shows
the zero field S(T ) of LuPtBi.

Figure 6.22 shows the evolution of S(T ) for YbPtBi with magnetic fields applied along the

[100] direction. In zero field the observed TEP is positive, indicating that holes are dominant

carriers which is consistent with RH results and with previous TEP results [Hundley, 1997]
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above 2K. However, the positive sign of TEP for YbPtBi is opposite to that generally observed

in Yb-based HF systems, which is negative due to the location of a narrow Kondo resonance

peak slightly below the Fermi energy [Hewson, 1993]. The emergence of a broad peak structure,

centered around 70 K, can be associated with excited CEF energy levels of Yb3+ ions. This can

be also related to the appearance of a high temperature broad maximum around 70 K in ρH/H

and an inflection point near 85 K in ρ(T ). In these cases the temperature of the CEF related

features corresponds to a fraction of the CEF splitting (0.4-0.6∆CEF ) as evidenced in many

other Ce- and Yb-based compounds and alloys [Maekawa, 1986; Bickers, 1987; Očko, 2004;

Köhler, 2008].

Figure 6.23 (a) Low temperature S(T ) of YbPtBi at selected magnetic
fields for H ≤ 15 kOe. Vertical arrows indicate a local mini-
mum T0. Inset shows the zero field S(T ) below 1 K. Vertical
arrow represents the AFM ordering temperature at which the
slope, dS(T )/dT , is changed. (b) Low-temperature S(T ) for
15 ≤H ≤ 90 kOe. Vertical arrows indicate the characteristic
features corresponding to a local minimum temperature T0, a
linear temperature dependence of S(T ) below TFL, and a local
maximum for H = 90 kOe curve.

S(T ) changes very little with applied magnetic field for T � 20 K. For T � 20 K S(T ) shows

a rather complex behavior, with the emergence of new broad peak structures as magnetic field

increases. In Figs. 6.23 (a) and (b), the low temperature TEP data for YbPtBi are plotted as
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S(T ) vs. T for selected magnetic fields. In contrast to the high temperature behavior, S(T )

data reveal complex and strong magnetic field dependences. In zero field, the sign of TEP is

positive down to 0.35 K (the base temperature of the 3He system used) and S(T ) exhibits a

broad feature around 2 K. No clear signature of the AFM phase transition near 0.4 K is observed

as presented in the inset. Generally, for a SDW antiferromagnet such as Cr [Fawcett, 1988],

the TEP measurements revealed a sudden enhancement due to the opening a gap below SDW

state, similar to what was seen in the zero field limit Hall data (RH(H → 0)) in Fig. 6.21.

Unfortunately, at 0.35 K S(T ) is just starting to change; low temperature measurements will

be needed to fully define the zero field S(T ) feature. When a magnetic field is applied along

the [100] direction, S(T ) curves shift toward a negative direction and a local minimum, T0,

develops for H > 5 kOe. The position of T0 continuously shifts to higher temperature as

magnetic field increases up to 90 kOe, indicated by arrows in Figs. 6.23 (a) and (b). For H >

30 kOe, the low temperature behavior changes significantly; the TEP shows the development

of a new, broad feature, TFL, and reveals complex sign reversals. The position of TFL below

which S(T ) ∝ T is indicated by arrows in Fig. 6.23 (b). For H > 70 kOe, an additional local

maximum, Tmax, is developed in the low temperature side. The positions of both TFL and

Tmax shift to higher temperature with increasing magnetic field.

In order to investigate the low temperature quasi-particle behavior, a plot of S(T )/T is

presented in Figs. 6.24 (a) and (b) as a function of log(T ) for selected magnetic fields. In

zero field, S(T )/T exhibits a logarithmic temperature dependence between TN and ∼ 3 K. For

H = 2.5 kOe the log(T ) dependence of S(T )/T holds below 4 K. This log(T )-dependence of

S(T )/T has been observed from YbRh2Si2 [Hartmann, 2010] and YbAgGe [Mun, 2010b] in the

vicinity of the QCP, as a signature of nFL-like behavior. As magnetic field increases S(T )/T

moves toward negative direction for H > 4 kOe, and the low temperature behavior changes

dramatically. At higher fields for H = 30, 40, and 50 kOe, S(T ) curves are proportional to

the temperature for T < TFL (Fig. 6.23) below which S(T )/T = α, indicating the onset of

FL behavior. For H = 90 kOe S(T )/T deviates from a constant, indicating a deviation of FL

behavior, due to the development of the local maximum, Tmax, (see Fig. 6.23).
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Figure 6.24 Temperature-dependent TEP divided by temperature,
S(T )/T , in a logarithmic scale; S(T )/T vs. log(T ). (a) The
dashed-line on the curve for H = 2.5 kOe is guide to eye,
representing a logarithmic increase of S(T )/T below 4K.
(b) Dashed-lines on the curves for H = 30, 40, and 50 kOe
indicate a saturation of S(T )/T which corresponds to the
linear temperature dependence of S(T ) below TFL, shown in
Fig. 6.23 (b).

Figure 6.25 shows the magnetic field dependence of TEP, S(H), for YbPtBi. As magnetic

field increase S(H) curves initially decrease steeply and then linearly increases after passing

through a minimum, H∗. For H > 110 kOe at T = 2K, the oscillatory behavior corresponds

to quantum oscillations, which is consistent with Shubnikov de Haas (SdH) results. As temper-

ature increases from 0.4 K, H∗ shifts to higher magnetic fields and the absolute TEP value at

H∗ decreases up to 2K and then increases. The sign of TEP changes from positive to negative

around HSR = 4.2 kOe at 0.4 K and recovers positive sign near 43 kOe; both HSR values move

to higher magnetic fields with increasing temperature. For H > 100 kOe and T > 10 K a sign

reversal on TEP is no longer visible. At high magnetic fields, all S(H) curves seem to collapse

on the same line, following a linear magnetic field dependence.
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Figure 6.25 Magnetic field dependence of TEP, S(H), of YbPtBi at se-
lected temperatures.

Figure 6.26 shows the low temperature S(H) below 1.5 K, where each S(H) curve is shifted

by -0.3 µV/K, for clarity. In addition to the lower HSR and H∗, there is a slope change, HFL,

near 20 kOe above which S(H) is linear in magnetic fields. The lower sign reversal (HSR), the

local minimum (H∗), and the slope change (HFL) on S(H) move to higher magnetic fields

with increasing temperatures, indicated by a line, down arrows, and up arrows, respectively,

in Fig. 6.26.

The features, collected from the S(T ) and S(H) measurements, are plotted in the H − T
plane in Fig. 6.27. In zero field a weak signal as a small drop near 0.4 K is consistent with

the TN determined from resistivity (not shown in figure). The sign reversal temperatures

determined from S(T ) is well matched with the sign reversal fields determined from S(H),

where the higher field sign reversal is not plotted. The line of sign reversal terminates near

4 kOe by simple linear extrapolation of the data below 1K. The H∗ line determined from the

local minimum in S(H) is not matched with the T0 line obtained from the local minimum in
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Figure 6.26 S(H) of YbPtBi below 1.5 K. For clarity, the data sets have
been shifted by every -3µV/K vertically. Solid line HSR indi-
cates a sign change of TEP from positive to negative. Down-ar-
rows H∗ represent the determined position of the local mini-
mum. Up-arrows indicate a slope change, dS(H)/dH, above
which S(H) follows a linear field dependence.

S(T ), where two lines are linearly rise with increasing magnetic field.

By carefully examining S(T ) and S(H) data, as shown in bottom panels in Fig. 6.27, there

are signatures corresponding to H∗ and T0 in both figures even though one of features is very

weak. Below 30 kOe S(H) for T = 1K (a horizontal cut through the H − T plane) shows a

sign change at HSR = 5.6 kOe, a slope change near H0 = 11 kOe, and a local minimum around

H∗ = 15 kOe, where the signature of H0 is very weak. Below 2.5 K S(T ) for H = 15 kOe (a

vertical cut through the H − T plane) indicates a slope change around T ∗ = 1 K and a local

minimum near T0 = 1.3 K, where the signature of T ∗ is very weak. Thus, H∗ line is sensitive

to the magnetic field sweeps and T0 is sensitive to the temperature sweeps. Because of the

weak signal, T0 and H∗ were taken only from temperature sweeps and magnetic field sweeps,

respectively, and these are plotted in Fig. 6.27. T0 seems to extrapolate to the origin (T = 0
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Figure 6.27 Various Characteristics observed from S(T,H) measurements:
TSR and HSR represents the sign reversal extracted from the
position of S(T,H) = 0; H∗ marks the position of the local
minimum in S(H); T0 indicates the position of the local min-
imum in S(T ); Tmax represents the position of the local max-
imum developed at low temperatures for H ≥ 70 kOe; and
TFL and HFL represent the slope change in S(T ) (Fig. 6.23)
and S(H) (Fig. 6.26), respectively. Bottom panels show the
horizontal (left figure) and vertical (right figure) cut through
the H − T plane. Left panel: below 30 kOe S(H) at T = 1 K
hits all three characteristic lines of HSR, H0, and H∗. Right
panel: below 2.5 K S(T ) at H = 15 kOe indicates both T ∗ and
T0 line. See details in the text.
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and H = 0) of the H − T plane and H∗ tends toward H = 8 kOe at T = 0. The crossover

TFL (Fig. 6.23 and Fig. 6.26) is well overlapped with HFL and is almost linear in magnetic

fields above 0.4 K. As mentioned above for H = 30, 40, and 50 kOe, the TEP shows a linear

temperature dependence, S(T ) = αT , which is a indication of FL behavior. Between 20 ∼
30 kOe the boundary of TFL is overlapped with the boundary of the FL region determined

from T 2-dependence of ρ(T ). Therefore, TEP below 0.4 K is expected to follow S(T ) = αT for

H < 30 kOe. The local maximum developed in S(T ) for H > 70 kOe is plotted in Fig. 6.27

as stars. Because of the very weak TEP signal in this regime the signature is not discernible in

S(H) data. Since the TEP is known to be particularly sensitive to Kondo and CEF effects, the

development of Tmax can be related to the effect of further CEF splitting via Zeeman effect.

In such a high magnetic field the Kondo effect with TK ∼ 1 K for YbPtBi is expected to be

suppressed.

6.3 Discussion

6.3.1 Quantum criticality

The results of the low temperature thermodynamic and transport experiments are summa-

rized in the H−T phase diagram shown in Fig. 6.28. (For clarity only the resistivity data from

sample #13 are used to plot AFM phase boundary.) The magnetic field dependence of the

AFM phase boundary, TN , was mainly determined from the sharp peak position in dρ(T )/dT

and dρ(H)/dH (Fig. 6.10), the sharp peak position in α100, and the slope change in λ100

(Fig. 6.16). For comparison, the temperatures of the maximum in Cp (and the minimum in

ρ(T )) are higher than those of α100 and dρ(T )/dT , (Fig. 6.29) but as discussed above, the

position of the higher field slope change in λ100 is well matched with the sharp peak position

in dρ(H)/dH.

There is not perfect agreement between the temperature and magnetic field sweep data

below 0.2 K and there is an approximately 0.8 kOe difference between them at 0.02 K. However,

the field dependence of ρH at 0.06 K shows clear feature at H = 3.9 kOe (inset of Fig. 6.18),

which is close to the AFM boundary determined from the temperature sweeps. It has been
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Figure 6.28 H − T phase diagram for YbPtBi along H ‖ [100]. The TN
was derived from dρ(T )/dT , dρ(H)/dH, α100, and λ100. For
the phase boundary the ρ(T,H) results for sample #13 are
only included. The solid line on the AFM phase bound-
ary represents the fit of equation TN = [(H − Hc)/Hc]0.33

to the data. The dashed line represents the fit of equation
TN = [(H −Hc)/Hc]2/3 to the data. The TFL represents the
upper limit of the T 2-dependence of ρ(T ), where the results of
sample #13, #14, and #3 are plotted. The solid line is guide
to the eye. The local maximum of dρ(H)/dH and the local
minimum of λ100 are assigned to T ∗(H).
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shown in earlier studies that the AFM order can be suppressed by external magnetic field of

3.1 kOe [Movshovich, 1994], which is mainly based on magnetic field sweeps. It is not clear at

this point that whether this discrepancy is merely based on the criteria for determining the

TN or whether the AFM order splits into two different phases below 0.2 K and for H > 2 kOe.

Importantly, within any criteria used to determine phase transition, it is expected that the

AFM order can be suppressed to T = 0 by external magnetic fields of at most Hc = 4kOe.

Figure 6.29 Criteria for determining TN . (a) Zero field specific heat Cp
and the coefficient of linear thermal expansion α100. (b) Zero
field electrical resistivity ρ(T ) and the derivative dρ(T )/dT .
(c) Linear magnetostriction ∆L/L and the coefficient λ100 =
d(∆L/L)/dH at T = 0.02 K. (d) Magnetoresistivity ρ(H) and
the derivative dρ(H)/dH at T = 0.02 K. Solid lines are guides
to the eye.

Based on the scaling properties near QCP, the phase transition temperature is expected

to be hold a characteristic power law dependence; TN ∝ (-r)ψ, where r is the distance to the

QCP and ψ is the exponent [Löhneysen, 2007]. In Fig. 6.28 the solid line on the AFM phase

boundary represents the best fit of equation TN ∝ [(H −Hc)/Hc]ψ to the data with TN (0) =
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0.38 ± 0.02 K, Hc = 3.6 ± 0.2 kOe, and ψ = 0.33 (� 1/3) ± 0.03, where the error bar depends

on the fitting range. For (SDW) antiferromagnets with three dimensional critical fluctuations

(d = 3) the boundary of the ordered phase varies as TN ∝ (-r)2/3 [Hertz, 1976; Millis, 1993].

When the exponent is fixed to ψ = 2/3, the fit curve is represented by dashed line (Fig. 6.28)

on the phase boundary with TN = 0.4 K and Hc = 4.6 kOe. Apparently, for YbPtBi the AFM

phase boundary can be better described with ψ � 1/3, which deviates from the theoretical

prediction for a three dimensional AFM QCP of SDW scenario.

Figure 6.30 High temperature H − T phase diagram for YbPtBi. The
S(T,H) = 0 and the slope change from ρH/H are assigned to
TSR(H). The local maximum in dρ(H)/dH, the local mini-
mum of λ100, the local minimum of ρH/H, and the local min-
imum in S(H) are assigned to T ∗(H). The TFL was derived
from the upper limit of the T 2-dependence of ρ(T ) and the
upper limit of the T -dependence of S(T ). The slope change in
S(H) is also assigned to TFL. All lines and shaded area are
guides to the eye.

In addition to TN , measurements indicate a crossover region of T ∗(H). The features in
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dρ(H)/dH (Fig. 6.10), λ100 (Fig. 6.16), ρH/H (Fig. 6.20), and S(H) (Fig. 6.27), associated

with H∗, are assigned to T ∗(H) and are plotted in the H−T plane as shown in Fig. 6.30. The

error bars are rough estimates of the crossover widths, based on the widths of those features.

The width of the T ∗ crossover region is wider as temperature is increased. However, in the

zero temperature limit each T ∗ sharpens and tends to converge near H ∼ 7.8 kOe. For the

field-induced QCP systems, Ge-doped [Custers, 2010] and parent YbRh2Si2 [Paschen, 2004]

and YbAgGe [Bud’ko, 2005a], the similar crossover field for all of them has also been observed

from various thermodynamic and transport measurements. The FL region is uniquely defined

by S(T ) and ρ(T ) results below 30 kOe; for H > 30 kOe, the FL region determined from S(T )

and S(H) is not consistent with the one inferred from ρ(T ). Given that TFL represents a cross

over differences in its value, inferred from different data sets is not unexpected.

Even though the physical meaning behind the experimental signature is not clear and the

experimental signature is very weak, there is an another crossover scale of TSR (Fig. 6.30),

where HSR determined from S(H) is assigned to TSR. The lower magnetic field signature in

ρH/H, which corresponds to the slope change in ρH/H emerging from Hc, is overlapped with

the sign reversal in S(T,H). Thus, in the T → 0 limit, TSR is expected to converge to Hc by

tracking the ρH/H feature. For YbAgGe this TSR crossover line has also been observed with

similar behavior [Mun, 2010b].

One of the interesting issues is the magnetic field modification of the power law dependence

of the resistivity (Fig. 6.7, Fig. 6.9), ρ(T ) = ρ0 + AT n, which describes the low temperature

quasi-particle behavior. In Fig. 6.28, for H > Hc, the characteristic scale of TFL marks

the upper limit of the observed T 2-dependence of the resistivity below which the FL state is

stabilized. In Fig. 6.28 the results for sample #13, #14, and #3 are plotted and the solid

line is guide to eye. The TFL region shrinks quasi-linearly with decreasing magnetic field from

paramagentic state. By using simple linear extrapolation, the TFL line terminates at H ∼ 5.2

± 0.5 kOe, based on the results of three samples, which is close to but distinct from Hc. Below

H ∼ 8 kOe, the ρ(T ) curve is better fitted to the T 1.5- than T 2-dependence, indicating nFL-like

behavior (4 < H < 8 kOe). A detailed analysis of ρ(T ) (Fig. 6.9) reveals that as magnetic
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field decreases a nFL-like behavior (∆ρ(T ) ∝ T 1.5) of resistivity above the T 2-region is also

observed, which shrinks progressively towards H ∼ Hc. Although the question of whether

ρ(T ) ∝ T 2 exists at very low temperature down to Hc∼ 4 kOe is still open (although not

strongly supported by the data), a clear nFL region between 4 and 8 kOe is very clear.

The observation of these two regimes, FL and nFL, in YbPtBi raises the question of whether

the FL state survives in the magnetic field range between Hc and H∗ at T = 0 and what is

the physical origin of the crossover scale T ∗. The T ∗ line seems to block the extension of

FL state below 8kOe, but for unambiguous conclusions it will be necessary to perform high

resolution measurements of the resistivity to even lower temperature. In any case, it is natural

to interpret the constructed H − T phase diagram as showing that TN is suppressed to T =

0 for Hc ≤ 4 kOe and the FL state is stabilized for H > 8 kOe. The TSR and TN line vanish

at Hc and the T ∗ vanishes near the magnetic field of 7.8 kOe at T → 0 which is not directly

connected to TN . Although we can not prove, it is expected that both TFL and T ∗ terminate

to the same magnetic field in the zero temperature limit.

Since TFL seems to be detached from the TN , it would be interesting to assess whether

the quasi-particle effective mass diverges at the critical field of Hc via a strong magnetic field

dependence of the FL coefficient A and γ. The coefficient A rapidly increases with decreasing

magnetic field from the paramagnetic state (Fig. 6.31 (a)). Indeed, the steep variation of A

value can be well described by a scaling analysis with a form of A(H) -A0 ∝ (H−Hc)−β , where

A0 is the adjustable parameter, Hc is the critical field, and β is the exponent. In Fig. 6.31

(a) the solid line on A values for sample #13 represents a fit of the scaling form, where the fit

was performed between 8 and 50 kOe yielding a critical field Hc = 4.2 ± 0.5 kOe, an exponent

β = 1 ± 0.05, and A0 � 0.03 µΩcm/K2. The power law dependence of A can be clearly seen,

when it is plotted as A−1 vs. H, as shown in Fig. 6.31 (b). From a linear fit to the data the

critical field is obtained to be Hc∼ 4.4 kOe, which is close to the critical field of power law fit.

Similar critical fields for samples #3 (Hc � 4.3 kOe) and #14 (Hc � 4.2 kOe) with β � 1 can

be obtained with the adjustable parameter A0. Note that without A0 the critical field and the

exponent, obtained from the fit to three different sets of A value, vary 3.5 kOe ≤Hc≤ 4.7 kOe
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Figure 6.31 (a) Fermi liquid coefficient A = ∆ρ(T )/T 2 and γ =
C(T )/T |T→0. Solid line on A values represents a fit of equa-
tion, A - A0 ∝ 1/(H - Hc), performed up to 50 kOe with the
constant offset A0 � 0.03 µΩcm/K2 and Hc = 4.2 kOe. Ver-
tical line represents the critical field (Hc). (b) A−1 (left axis)
vs. H for three different samples (samples #3, #13, and #14
in Fig. 6.9) and γ−0.5 (right axis) vs. H. Solid lines represent
the linear fit to the data. See text for details.

and 0.92 ≤β≤ 1.12, respectively, thus the adjustable parameter A0 is necessary to allow the

three data sets to converge to the same Hc and β values in the same magnetic field range, but

even though A0, the value of Hc is much closer to Hc ∼ 4.5 kOe than to H∗ ∼ 8 kOe and β

is close to 1.0 than to 0.5 or 1.5. Since the A value diverges at near ∼ 4 kOe, the scattering

cross-section between quasi-particles becomes singular at Hc. The observed divergence of A

assigned Hc as the QCP and β = 1 as the exponent characterizing quantum criticality. A

power law divergence of the A value near QCP has been observed from other field-induced

QCP systems such as YbRh2Si2 [Gegenwart, 2002], CeCoIn5 [Paglione, 2003], and CeAuSb2

[Balicas, 2005] with exponent β = 1 or close to 1.

A FL state can be characterized by the Kadowaki-Woods (K-W) ratio [Kadowaki, 1986],

A ∝ γ2, where γ is a direct measure of the effective mass, m∗, of quasi-particles. Thus, the

dramatic variation of γ was also analyzed with a relation of γ(H) - γ0 ∝ (H −Hc)−β, which

is the same form as A, where γ0 is the adjustable parameter. The power law fit to the γ(H),
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performed between 8 and 50 kOe, yields a critical field Hc = 4.6 ± 0.4 kOe, an exponent β =

1 ± 0.2, and γ0 = 0.55 J/mol·K2. Although this analysis gives a consistent critical field with

that obtained from the fit of A, the required value of γ0 = 0.55 J/mol·K2 is very high. Without

γ0 the fit yields a critical field of 1.5 ± 0.5 kOe and an exponent β = 2 ± 0.4. This result can

be clearly seen in the γ−0.5 vs. H plot (Fig. 6.31 (b)) which is close to the linear in H, and

thus β ∼ 2. In this plot, the critical field is estimated to be Hc∼ 1.8 ± 0.5 kOe from the linear

fit to the data. The observed exponents, 1≤β≤ 2, are striking deviation from the K-W ratio,

where the exponent β = 0.5 is expected in FL regime. It is worth noting, though, that γ(H)

diverges near or below 4.5 kOe in all cases. Note that such a deviation from the K-W ratio

across the field tuned QCP has also been observed in Ge-doped YbRh2Si2 [Custers, 2003].

Figure 6.32 The temperature dependence of the resistivity, ∆ ρ(T ) =
ρ(T ) - ρ0, of YbPtBi for (a) sample #13 and (b) sample #3.
(a) The solid and dash-dotted line represent the calculated
∆ ρ(T ) with A � 76.7 µΩcm/K2 for H = 6 kOe and with A

� 32.4 µΩcm/K2 for H = 8kOe, respectively. (b) The solid
line and dashed line represent the calculated ∆ ρ(T ) with A

� 76.7 µΩcm/K2 for H = 6kOe and with A � 46.7 µΩcm/K2

for H = 7 kOe, respectively. The A values used to generate
∆ ρ(T ) were obtained from the power law fit (A∝ 1/(H−Hc))
to the A values shown in Fig. 6.31. See text for details.

To clarify the observed, anomalous power law dependence of resistivity below 8 kOe, the

measured resistivity was compared to the predicted T 2-dependence of resistivity base on the
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power law analysis of A values. In Fig. 6.32 the measured resistivity for samples #13 and #3,

together with the calculated resistivity curves, are plotted after subtracting ρ0 value (∆ ρ(T )).

For H = 6, 7, and 8 kOe, predicted A values, obtained from the power law fit (A∝ 1/(H−Hc),

Fig. 6.31) to the experimental A values, are used to generate ∆ ρ(T ) curves. For sample #13

as shown in Fig. 6.32 (a), the measured ∆ ρ(T ) for H = 8kOe is in good agreement with the

calculated ∆ ρ(T ) below ∼ 0.11 K (indicated by arrow), whereas the observed ∆ ρ(T ) for H =

6 kOe can not be reproduce by the predicted ∆ ρ(T ) fundamentally due to the large, predicted

A value used. For sample #3 (Fig. 6.32 (b)), the calculated curves for both H = 6 and 7 kOe

shows no agreement with the measured ∆ ρ(T ). Therefore, there seem to be a disruption of

high field FL behavior near H∗ (∼ 8 kOe) rather than going down to Hc (∼ 4 kOe). This result

is consistent with the behavior of γ(H) which clearly shows a deviation from the power law

dependence below 8 kOe (Fig. 6.31).

Figure 6.33 (a) log− log plot of A vs. γ. Solid lines represent the Kad-
owaki-Woods (K-W) ratio for different ground state degener-
acy [Tsujii, 2005] for N = 2 - 8. (b) A/γ2 vs. H, where the
horizontal arrow indicates the K-W ratio for N = 2. Solid line
is guide to the eye.

It has been shown that theA/γ2 ratio depends on the ground state degeneracy [Tsujii, 2005;

Torikachvili, 2007]. A clear dependence of the A/γ2 ratio on the degeneracy, N , is shown in

Fig. 6.33 (a). The experimental A/γ2 ratio continuously shifts from high degeneracy (near N
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= 6 at 8 kOe) toward low degeneracy (N = 2 at 20 kOe). A clear variation of K-W ratio in the

presence of magnetic field is better seen when A/γ2 is directly plotted as a function of magnetic

field (Fig. 6.33 (b)); the ratio, A/γ2, continuously increase in log-log scale as magnetic field

increases. In zero field and zero pressure, it has been shown [Torikachvili, 2007] that the K-W

ratio is located close to the N = 8 curve (not plotted in Fig. 6.33 (a)). Because of the AFM

order, the A value in zero pressure was estimated by linearly extrapolating pressure dependence

of A values between 4 and 19 kbar [Movshovich, 1994a]. In this pressure range the resistivity

data followed ∆ρ(T ) = AT 2 below 0.3 K. The observed behavior of K-W ratio suggests that

the variation of A/γ2 values is due to magnetic field induced changes in N , a supposition that

seems plausible because the ground state CEF degeneracy in zero field can be lifted by applied

magnetic field.

However there are several points about K-W scaling and YbPTBi that need to be consid-

ered. First, in zero field the ground state degeneracy of YbPtBi should be N = 2 (doublet)

or N = 4 (quartet) in cubic CEF [Lea, 1962]. This should then N to 4, not 6 or 8. Second,

the K-W ratio not only depends on the degeneracy but also on the carrier concentration, n,

as n−4/3 [Tsujii, 2005]. Thus, it is necessary to consider the carrier density for lower carrier

systems. When the carrier density, 0.04 hole per formula unit (in a single band model) for

YbPtBi at 300 K, is considered, the N = 2, 4, 6, and 8 manifold shown in Fig. 6.33 (a) shifts

downward with the N = 2 line falling well below the data. Thus the carrier concentration

within a single band model can not explain the observed behavior of K-W ratio. For YbPtBi

the K-W ratio may depend on CEF splitting, low carrier density, and details of the multiple

Fermi surfaces.

The multiband nature of YbPtBi is clearly evidenced from quantum oscillations (see the

appendix C) and can be supported from the TEP results. Many metals, including HF com-

pounds, have shown correlations between C(T )/T and S(T )/T in the zero temperature limit,

linking these two quantities via the dimensionless ratio, q = SNAe
γT ∼ ±1, where NA is the Avo-

gadro number and the constant NAe is called the Faraday number [Behnia, 2004]. At finite

temperature, near 0.4 K, this relation seems to be not relevant for YbPtBi. Taking the values
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of S(T )/T = 1.2 µV/K at the onset of TN and γ = 7.4 J/mol·K2 yields q = 0.015. Since the

dimensionless ratio holds for a single carrier per formula unit, generally a larger q value is ex-

pected when the carrier density is as low as this is; the carrier density of 0.04 hole per formula

unit implies q = -25. Therefore S(T )/T ∼ -20 µV/K2 is expected for γ = 7.4 J/mol·K2. As

seen in Fig. 6.24 the absolute value of S(T )/T up to 8 kOe is considerably lower than this

value, where γ remains the same order of magnitude. Therefore, the low carrier density of

YbPtBi can not, by itself, provide a natural explanation for this small magnitude of q, which

points to the multiband nature of this material as a likely explanation. In order to clearly

address this issue, further experimental investigations are required below 0.35 K. In multiband

metals, the TEP for each band can be positive or negative, therefore, in principle, the absolute

value of the weighted sum of the overall TEP could be considerably reduced, compared to the

single band picture. When the same amount of entropy is carried by each type of carrier a

reduction of S(T )/T is expected. Therefore, in addition to the ground state degeneracy and

carrier concentration, the multiband (multi-Fermi surface) effect and/or the strong anisotropy

of the Fermi surfaces should be considered in the K-W ratio as well as the q value.

Based on the scaling analysis of A for magnetic field higher than H∗, the quasi-particle

mass shows a power law divergence near Hc. However, the experimentally observed γ is finite

for H < 8 kOe (close to H∗). An intriguing question to raise is whether field induced QCP in

YbPtBi is connected to TN at T = 0 or whether they are essentially separated. In particular,

if the QCP is at Hc, what is the physical origin of the crossover line T ∗(H), which seems to cut

off the divergence of quasi-particle mass enhancement; and why do specific heat measurements

indicate no pronounced nFL behavior, -log(T ) or
√
T , for H ≥ Hc down to lowest temperature

measured? The resistivity results reveal a nFL behavior with ∆ρ(T ) = T 1.5 and the TEP

measurements indicate a logarithmic temperature dependence, S(T )∝ -log(T ), for H < Hc

and T > TN . Based on these transport results one should ask whether an extended regime of

nFL state is caused by purely quantum fluctuations or whether other effects, such as magnetic

field induced metamagnetic-like state or the modification of the CEF ground state, need to be

considered.
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A brief comparison of the H − T phase diagram, corresponding to quantum criticality

in field-induced QCP systems, was given in the previous chapter. As an extension of the

arguments for YbAgGe, the experimental results for YbPtBi will now be compared to the

other Yb-based, field-induced QCP systems; YbRh2Si2 [Gegenwart, 2002], Ge-doped YbRh2Si2

[Custers, 2010; Custers, 2003], and YbAgGe [Bud’ko, 2005a]. The schematic phase diagrams

for these systems are given in Chapter 3. Each of these systems shows an AFM order being

suppressed to T = 0 by an external magnetic field and beyond a given critical field a FL

state, exists below a TFL crossover. However, the details of characteristic crossover scales,

such as T ∗, are different. For YbRh2Si2 T ∗ has been interpreted as a characteristic energy

scale below which the quasi-particles are breakdown, involving a Fermi surface volume change

from small to large across the QCP [Paschen, 2004]. The sign reversal in TEP, TSR, has

been observed from both YbRh2Si2 [Hartmann, 2010] and YbAgGe [Mun, 2010b] across the

quantum critical region. Whereas the TSR for YbAgGe emerges at the critical field and persists

up to high temperature, the TSR for YbRh2Si2 exists inside the AFM region and terminates

at the critical field as the system is tuned through the QCP. For YbPtBi, considering these

two crossovers, T ∗ and TSR, the constructed phase diagram is similar to YbAgGe.

For both YbRh2Si2 and YbAgGe the resistivity, specific heat, and thermoelectric power

in the vicinity the QCP manifest a clear ∆ρ(T )∝T , C(T )/T ∝ -log(T ), and S(T )/T ∝ -log(T )

behaviors as signatures of strong quantum fluctuations, which can be understood within the

conventional SDW scenario with z = 2 and d = 2 [Hertz, 1976; Millis, 1993; Paul, 2001],

and are also compatible with the unconventional Kondo breakdown scenario [Coleman, 2001;

Senthil, 2004; Paul, 2008; Kim, 2010]. Note that the dimensionality of these systems needs

to be clarified. For YbPtBi no strong nFL behavior is observed from thermodynamic and

transport measurements, where the resistivity measurements show a T 1.5-dependence between

TSR and T ∗ in which the most strong signature is observed near T ∗, the specific heat shows a

-log(T ) dependence over only limited temperature range, and thermoelectric power measure-

ments shows a -log(T ) dependence below the critical field. In the paramagnetic region, for

Ge-doped [Custers, 2003] and parent YbRh2Si2 [Gegenwart, 2002] a divergence of the effective
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mass at the QCP has been inferred from the power law analysis of the FL coefficients of A.

For YbPtBi a power law analysis of the A-coefficient shows an indication of divergence at the

critical field, however the specific heat remains finite (and near constant) for H < H∗ at which

the divergence nature of the effective mass is essentially cut off. For YbAgGe the power law

dependence of these coefficients has not been analyzed.

The biggest difference between YbRh2Si2 and YbAgGe is that the crossover scales, T ∗ and

TFL, are detached from AFM phase boundary (TN ) for YbAgGe, whereas TN , T ∗, and TFL

terminate at the QCP for YbRh2Si2 (see schematic phase diagram in Chapter 3). Interestingly

the T ∗ for Ge-doped YbRh2Si2 is also detached from TN . When the nFL region is consid-

ered, a wide nFL region, determined from ∆ρ(T )∝T , is robust for YbAgGe [Niklowitz, 2006]

and Ge-doped YbRh2Si2 [Custers, 2010], in contrast to the field-induced QCP in YbRh2Si2 of

which the FL behavior is recovered when TN → 0. From this point of view the constructed

H − T phase diagram of YbPtBi is similar to that of YbAgGe and Ge-doped YbRh2Si2. For

YbAgGe, the two crossover scales, TSR and T ∗, are evidenced from thermodynamic and trans-

port measurements, where the wide nFL region has been seen between these two crossovers,

which is similar to that of YbPtBi. Note the for Ge-doped YbRh2Si2 the TSR has not been

identified.

However, there are remaining questions when YbAgGe is compared to other systems. In

the zero temperature limit, both T ∗ and TFL terminate to the same field for Ge-doped and

pure YbRh2Si2, whereas TFL for YbAgGe is detached from T ∗. For YbPtBi it is reasonable to

assume that both T ∗ and TFL terminate at or near the same field at T = 0. In a simple point

of view, YbPtBi is very similar to YbAgGe with regards to the crossover scales of TSR and T ∗

and is close to that of Ge-doped YbRh2Si2 with regards to the T ∗ and TFL. Therefore, YbPtBi

can be located between YbAgGe and Ge-doped YbRh2Si2 (closer to the Ge-doped YbRh2Si2)

in the extended Doniach-like diagram [Custers, 2010] (see figure in Chapter 3). As discussed

in the previous chapter about YbAgGe, if there are two QCP (characterized by two crossover

scales) in YbPtBi, the frustration effect, caused by the faced centered cubic structure, may

gives rise to the spin liquid state. Thus, the TSR line could be related to the magnetic QCP
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caused by the SDW instabilities and the T ∗ line can be related to the second QCP caused by

the suppression of the Kondo effect.

Quantum criticality can be identified by either the strong quantum fluctuations at low

temperatures or the tracking of the Kondo temperature at finite temperatures. It has been

inferred from the claimed breakdown of the Kondo scale from the magnetization and specific

heat data for YbRh2Si2 [Tokiwa, 2005]. However, for YbPtBi the Kondo scale can not be

defined because thermodynamic and transport measurements do not show any clear signature.

The fundamental reason of this is expected to be due to the comparable energy scales of TK ,

TN , and the small CEF level splitting. Also this may cause the broadening the specific heat

which hides the nFL behavior.

6.3.2 Antiferromagnetic order

In zero field the observed ρ(T ) below TN depends on the measurements conditions, but

the TN remains approximately the same temperature for all cases. Similar behavior has been

reported in Ref. [Movshovich, 1994], where ρ(T ) data for several rod-shaped samples show

either an increase or a decrease below TN . The different relative height of ρ(T ) below TN

was explained due to the partial gapping of the Fermi surface. In addition, the results of

ρ(T ), measured by Montgomery arrangement [Montgomery, 1971], reveal anisotropy for current

directions between along the high temperature [100] and [010] directions, which indicated a

broken cubic symmetry below TN . In this study, for testing the anisotropy with respect to the

different current directions, several pieces of resistivity samples were cut from a plate-shaped

sample with a wire-saw both parallel to the [100] and [010] crystallographically equivalent

direction. The results indicate that the anisotropy of ρ(T ) below TN does not depend on

the different current directions but highly depend on the sample mounting conditions. In

the earlier studies it has been speculated that the anisotropy was caused either by the highly

oriented domains or by internal stress developed during material growth [Movshovich, 1994].

In this study, however, the anisotropy is caused by the external parameters and expected to be

due to the external stress (anisotropic pressure), which is consistent with earlier specific heat
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results [Lacerda, 1993]. Note that the sample used in this study was annealed at 600◦C for

100 hr before decanting the crystals. Similar results have been found in the cubic chromium

(Cr) [Fawcett, 1988; Bastow, 1966], which is the canonical example of SDW material with TN

= 311 K, that magnetic field cooling and compressive stress cooling profoundly change the

magnetic structure [Bastow, 1966]. The application of a uniaxial stress (∼ 0.07 kbar) to a

single crystal of Cr, while cooling through TN , prohibits the development of domains with a

SDW vector (−→q ) parallel to the direction of stress, where the shifts of TN and magnitude of

the −→q vector were detected [Bastow, 1966]. In YbPtBi, for stress cooling through TN , it is

suspected that the anisotropic distortion of the Fermi surface under external strain can cause

the radical variation of the resistivity below TN .

One of the interesting aspects of antiferromagnetism in YbPtBi is the rapid suppression

of TN by the application of hydrostatic pressure [Movshovich, 1994], where a pressure as low

as 1 kbar suppresses the signature of the phase transition in resistivity measurements. On the

other hand, the specific heat measurements has been shown [Lacerda, 1993] that the phase

transition feature, shown in C(T )/T for the single crystal samples, is completely smeared out

for the pressed pellet samples, prepared from single crystals, which was mixed with GE-7301

varnish. In addition to the resistivity results in this study, the drastic difference of the specific

heat results between single crystals and pressed pellet samples suggests that the results of the

pressure dependence of resistivity are caused mainly by the external stress applied and also

possibly non-hydrostatic components in pressure experiments.

The temperature dependence of the electrical resistivity shows a sharp rise below TN which

is reminiscent of a SDW antiferromagnet Cr [Fawcett, 1988] and URu2Si2 [Schoenes, 1987].

From a simple point of view, we expect that parts of the high temperature Fermi surface

disappears when the gap is opened. As shown in Fig. 6.21, the opening of the SDW gap

below TN gives rise to an abrupt enhancement of RH (H → 0), enhanced roughly factor of two

compared to the value above TN . From the earlier study of the electrical resistivity and specific

heat [Movshovich, 1994], it has been shown by the analysis of these data, based on BCS theory,

that the Fermi surface is removed roughly 16 % by the formation of the SDW state. Thus,
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the steep increase of RH below TN implies a carrier density reduction with Fermi surface

nesting of highly renormalized bands. Previously, although neutron scattering experiments

have not confirmed AFM order [Robinson, 1994], the µ-SR experiments have been seen tiny

ordered moment [Amato, 1992]. Therefore, a SDW ground state is supported by compelling

evidence from ρ(T ), Cp(T ), and RH(T ) as well as the microscopic measurements. Note that

very similar results have been observed in URu2Si2 [Schoenes, 1987]. The carrier concentration

of URu2Si2 estimated from RH is 0.05 holes per formula unit which is close to the value of

YbPtBi, and about 40 % of the Fermi surface, calculated from specific heat, is removed by the

formation of the hidden ordered state at T0 = 17.5 K [Maple, 1986]. Below T0, RH of URu2Si2

increases by factor of 5-20 because of the opening of a gap over the Fermi surface. Recently

ρH measurements in pulsed magnetic field show that the steep enhancement of RH below T0

is completely suppressed across the QCP by order of 40 Tesla [Oh, 2007]. Similarly the sharp

rise of RH for YbPtBi is completely suppressed near Hc (Fig. 6.21).

6.4 Summary and Conclusion

The H − T phase diagram of YbPtBi has been constructed by low temperature thermo-

dynamic and transport measurements. In zero field the strength of the anomaly developed in

ρ(T ) below TN is sensitive to the strain, but the relevant physics of the samples remains the

same for magnetic field applied along H ‖ [100] up to 140 kOe. The AFM order can be sup-

pressed to T = 0 by external magnetic field of Hc ≤ 4 kOe and the temperature dependence

of the resistivity indicates the recovery of the FL state (clearly) for H ≥ 8 kOe. The two well

separated crossover scales, TSR and T ∗, have been found, where these crossover lines show a

tendency of converging toward to Hc∼ 4 kOe and H∗∼ 7.8 kOe in the zero temperature limit.

Although no clear nFL behavior is observed in the specific heat measurements in the vicinity

of the critical field, the electrical resistivity shows anomalous temperature dependence, ρ(T )

∝ T 1.5, as a signature of nFL behavior, between these two crossovers and S(T )/T exhibits

a logarithmic temperature dependence for H < Hc above the AFM ordering temperature.

The observed γ is finite below H ∼ 8 kOe and the quasi-particle scattering cross-section, A,
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indicates a power law divergence as A ∝ 1/(H −Hc) upon approaching the critical field from

paramagnetic state. As magnetic field decrease from higher field side the power law depen-

dence of both A and γ show a disruption below H∗ ∼ 8 kOe. The constructed H − T phase

diagram and the details of the quantum criticality in YbPtBi turn out to be complicated.
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CHAPTER 7. Summary and an outlook on future work

The motivation of this dissertation was to advance the study of Yb-based heavy fermion

(HF) compounds especially ones related to quantum phase transitions. One of the topics of

this work was the investigation of the interaction between the Kondo and crystalline electric

field (CEF) energy scales in Yb-based HF systems by means of thermoelectric power (TEP)

measurements. In these systems, the Kondo interaction and CEF excitations generally give

rise to large anomalies such as maxima in ρ(T ) and as minima in S(T ). The TEP data were

use to determine the evolution of Kondo and CEF energy scales upon varying transition metals

for YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) compounds and applying magnetic fields for

YbAgGe and YbPtBi. For YbT2Zn20 and YbPtBi, the Kondo and CEF energy scales could

not be well separated in S(T ), presumably because of small CEF level splittings. A similar

effect was observed for the magnetic contribution to the resistivity. For YbAgGe, S(T ) has been

successfully applied to determine the Kondo and CEF energy scales due to the clear separation

between the ground state and thermally excited CEF states. The Kondo temperature, TK ,

inferred from the local maximum in S(T ), remains finite as magnetic field increases up to

140 kOe.

For YbT2Zn20 systems, the zero temperature limit of S(T )/T scaled well with the electronic

specific heat coefficient, γ, which is reflected by a strong correlation via the quasi-universal

ratio, q = NAeS/γT , and confirms the validity of Fermi-liquid descriptions. For YbAgGe, the

ratio of q was investigated in the paramagnetic regime and found to be anisotropic for different

heat flow directions. At high magnetic fields, for H > 70 kOe, the enhanced value of S(T )/T is

indicative of the HF state, supporting previous specific heat and resistivity results. In contrast

to YbAgGe, the estimated q value for YbPtBi is much less than the theoretically predicted
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value, |q| = 1, and continuously varies as magnetic field increases. The small magnitude of

q can not be explained just by considering the low carrier nature of YbPtBi, indicating that

multiband effects in this low carrier density HF will have to be considered.

Furthermore, TEP investigations for YbAgGe were shown to be a useful tool to probe

and refine the H − T phase diagram and provided complementary information to the study of

quantum criticality in this system. The TEP measurements reproduced the earlier H−T phase

diagram; identified an additional dome-like phase between ∼ 45 and ∼ 70 kOe; and confirmed,

clarified, and extended the two characteristic crossover lines to high temperature. Importantly,

the power law analysis of resistivity indicates a strong nFL behavior, ρ(T ) ∝ T , in the dome-

like area, located between the two crossover lines. For H = 70 kOe data, S(T )/T exhibits

clearly a logarithmic temperature dependence in agreement with earlier specific heat results

C(T )/T ∝ -log(T ). The present TEP results, combined with earlier specific heat and resistivity

results, provide strong evidence of a quantum critical point at H � 70 kOe.

The study of YbPtBi compound was aimed at providing a new material to serve as a

canonical example for magnetic field tuned quantum criticality. This compound offered the

possibility of studying the interplay between a well defined ground state, which shows an

(spin density wave, SDW) antiferromagnetic (AFM) ordering below 0.4 K, and a low Kondo

temperature of order of TK ∼ 1K, which give rise to an enormous γ at low temperatures.

The H − T phase diagram of YbPtBi for H ‖ [100] has been constructed by low temperature

thermodynamic and transport measurements down to 0.02 K and up to 140 kOe.

The AFM order can be suppressed to T = 0 by external magnetic field of Hc ≤ 4 kOe and

the temperature dependence of the resistivity indicates the recovery of the FL state (clearly)

for H ≥ 8 kOe. The two separated crossovers have been found in this study, which were also

seen for YbAgGe. Although no clear nFL behavior is observed in the specific heat measure-

ments in the vicinity of the critical field, the electrical resistivity shows anomalous temperature

dependence, ρ(T ) ∝ T 1.5, as a signature of nFL behavior, between these two crossovers and

S(T )/T exhibits a logarithmic temperature dependence for H < Hc above the AFM order-

ing temperature. The observed γ is finite below H ∼ 8 kOe and the quasi-particle scattering
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cross-section, A, indicates a power law divergence as A ∝ 1/(H −Hc) upon approaching the

critical field from paramagnetic state. For YbPtBi, the constructed H −T phase diagram and

low temperature physical properties in the vicinity of the critical field are complicated, but

not as complicated as, for example, YbAgGe.

In this dissertation we have examined the heavy quasi-particle behavior, found near the field

tuned AFM quantum critical point (QCP), with YbAgGe and YbPtBi. Although the observed

nFL behaviors in the vicinity of the QCP are different between YbAgGe and YbPtBi, the

constructed H − T phase diagram including the two crossovers are similar. For both YbAgGe

and YbPtBi, the details of the quantum criticality turn out to be complicated. We expect

that YbPtBi will provide an additional example of field tuned quantum criticality, but clearly

there are further experimental investigations left and more ideas needed to understand the

basic physics of field-induced quantum criticality in Yb-based systems.

To date, there is no universal scenario to reconcile all of the experimental results for AFM

QCP, partly due to the absence of unambiguous experimental tools to probe quantum critical

scenarios and partly due to the limited experimental examples. With this said important

questions for future experiments can be pointed out. Based on the conventional (SDW) and

unconventional (Kondo breakdown) scenarios, it seems to be important to make a connection

between the underlying magnetic phase (local moment AFM order or SDW) and the nFL

behavior. If this is the way to distinguish the mechanism of quantum criticality, YbPtBi

may be the best material to address this issue by comparing between the local moment AFM

ordering for YbAgGe and/or YbRh2Si2 and the SDW ordering for YbPtBi. Therefore, local

probes such as neutron scattering experiments, to explicitly identify the nature of the AFM

order, as well as low ultra temperature investigations, with high resolution thermodynamic and

transport measurements, are necessary for YbPtBi. Since the strain, externally applied to the

sample, can affect the signatures of the AFM phase transition, transport and thermodynamic

measurements need to be performed carefully down to 20 mK or below.

In metallic compounds the interpretation of physical quantities requires careful consider-

ation of the Fermi surface, especially at a QCP. The question this raises is, “What is the



157

evolution of the Fermi surface at the QCP ?” If the Fermi surfaces have different shapes or are

completely reconstructed across the QCP, then a Lifshitz transition [Lifshitz, 1960], associated

with a reconstruction of the Fermi surface, must separate the two phases between AFM and

paramagnetic. Because most of the HF compounds have multiple Fermi surfaces, the natural

question is, “What is the experimental tool to probe such Lifshitz transition at extremely low

temperatures in a multiband material ?” The transport measurements can address this issue

clearly for a system with a single band, however it may not be true for multiband systems.

The quasi-particle mass seems to diverge at the QCP with a power law for YbPtBi. Quantum

oscillations for YbPtBi confirms the multi-band nature of this system. It needs to be clarified

if the power law divergence of quasi-particles is derived from a particular Fermi surface with

the other Fermi surfaces remaining essentially unaffected.

In the vicinity of a SDW instability, it has been predicted that HF compounds can show

a superconductivity mediated by AFM spin fluctuations [Scalapino, 1986]. One example of

this is thought to be CePd2Si2 [Mathur, 1998] when pressure induced superconductivity is

observed in the P − T diagram near an inferred critical pressure. In YbPtBi, no signature

of superconductivity was detected down to 20 mK in zero field as well as in the vicinity of

the critical field. Possible causes could be that no superconductivity is intrinsically present in

YbPtBi system, the sample is not clean enough (unlikely given SdH oscillations), the Tc is too

low to observe, or the external magnetic field needed to induce a QCP exceeds HC2(0) of the

superconductivity, in which case the control parameter may need to be changed.

The details of quantum criticality may depend on control parameter used. So far, the

CeCu6 system is the only one whose quantum criticality has been tested by all three available

control parameters: x, H, and P. Thus, the quantum criticality for both YbAgGe and YbPtBi

also need to be tested by using other control parameters.
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APPENDIX A. Experimental Setup for the Measurement of the

Thermoelectric Power in Zero and Applied Magnetic Field

Introduction

Since its discovery in 1821 by Thomas Johann Seebeck, relatively few studies of the mag-

netic field dependence of the thermoelectric power (TEP) were carried out, mostly in pure

metals [Blatt, 1976]. However, over the past few decades, the magnetic field-dependent TEP

studies of many materials ranging from magnetic multilayers [Sakurai, 1991] to high Tc su-

perconductors [Wang, 2001], to the electron-topological transition and to strongly correlated

electron systems [Sakurai, 1995; Benz, 1999; Izawa, 2007] have provided useful information.

Intensive efforts also have been made in the search for highly efficient thermoelectric mate-

rials. This being said, the measurement of the intrinsic TEP is particularly difficult even in

simple metals such as copper or gold. This is due to the small magnitude of TEP at low

temperatures and its sensitivity to the presence of small concentrations of impurities, where

magnetic impurities can enhance the TEP below certain temperatures by means of the Kondo

effect [Blatt, 1976].

Few experimental details have been given in the literature concerning the measurement

setups and the procedure for calibration of lead (as in contacting the sample, not Pb) wires

[Resel, 1996; Burkov, 2001; Choi, 2001]. Detailed descriptions of the measurement techniques

at low temperatures and high magnetic fields can be found in Refs. [Resel, 1996; Choi, 2001].

In this article, we describe the development of an experimental setup for TEP measurement in

a Quantum Design (QD), Physical Property Measurement System (PPMS). The PPMS sample

puck provides both thermal and electrical contacts to the sample. The merits of this technique

are (i) it is easy to implement using two commercial, Cernox thin-film, resistance cryogenic
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temperature sensors and two strain gauge heaters and (ii) it is easy to control the temperature

and magnetic field of the system using the PPMS platform. Using the PPMS temperature-

magnetic field (T −H) environment and the two heaters and two thermometers, an alternating

heating method allows for measurements of the TEP of materials over a temperature range

from 2 to 350 K and magnetic fields up to 140 kOe. The alternating heating method we use

improves the resolution by a factor of two and provides a reliable temperature gradient. For the

measurement, the sample is mounted directly between the two Cernox thermometers each of

which is heated by a strain gauge heater with constant DC current. An important component

of this technique involves the use of phosphor-bronze lead wires to reduce the background TEP

and magneto-thermoelectric power (MTEP) associated with the lead wires.

Experimental Setup

In this section we will describe our specific sample holder (sample stage) and explain the

data acquisition process. This measurement setup was designed to fit PPMS cryostat used to

control the temperature and magnetic field of the system. All instruments (current sources,

voltmeters, switch system and PPMS) were controlled by National Instruments LabVIEW

software. The sample holder can be easily modified and adapted to other cryogenic systems,

including those with higher magnetic fields and lower temperatures.

Sample Holder

Figures A.1 (a) and (b) show a schematic diagram of the sample stage built on the PPMS

sample puck and a photograph of actual sample stage. The magnetic field is applied perpen-

dicularly to the plane of the heaters, thermometers and puck platform. Two sample stages are

attached to a circular copper heat sink positioned on the 23 mm diameter PPMS sample puck

that, when in use, is shielded by a gold plated copper cap (not shown). We use Cernox sensors

(CX-1050-SD package) as thermometers that provide high sensitivity at low temperatures,

good sensitivity over a broad range and low magnetic field-induced errors. The dimensions of

this package (1.9×1.1×3.2 mm3) are large enough to attach a heater and sample simultane-
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Figure A.1 (a) Schematic diagram of sample stages. A: Strain gauges for
heater, B: Thermometers (Cernox), C: G-10 for thermal insula-
tion from heat sink, D: Voltage probe wires, E: Sample. (b) A
photo of the measurement cell. (c) Sample mounting method
using GE-varnish (top) and silver paste (bottom). (d) Block
diagram of measurement system. The system temperature and
magnetic field is controlled by PPMS. All instruments shown in
the block diagram including PPMS is operated by LabVIEW
software. The details of the use of the instruments are ex-
plained in the text.
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ously to the package surface. Strain gauges (heaters), 0.2 × 1.4 mm2 and typically R ∼ 120

Ω, are glued to the top of the Cernox thermometers using Stycast 1266 epoxy. In order to

insure thermal isolation, the heat sink (PPMS puck) and the sample stage was separated by

a thin (1 mm thickness) G-10 plate. This G-10 plate was glued to the bottom of the Cernox

thermometer using the Stycast 1266 epoxy. From several test runs we observed that the two

Cernox wires and two heater wires provided enough cooling power to the sample stage since

the strain gauge and Cernox each have low thermal mass. Each sample stage including heater,

thermometer and G-10 plate, was glued to the copper heat sink with GE 7301 varnish, so

that it could be easily removed by dissolving the GE-varnish with ethanol. Because of the

constraint of the PPMS sample puck, the distance between two stages can be varied from ∼1.5

mm to ∼ 6 mm. Large flexibility with respect to the sample size can therefore be gained since

the precise configuration of the thermal stage can be easily adjusted. If the sample length

is smaller than 1.5 mm, it is hard to establish a temperature difference (∆T ) because both

thermal stages are isolated from the heat sink. Typically, samples with length varying from 2

to 7 mm can be measured. All wires on the measurement cell are thermally anchored to the

heat sink. The TEP measurement was made with the PPMS operating in the high vacuum

mode with pressure ∼ 10−5 torr.

For mounting the sample, and measuring the voltage, two different configurations were

tested (Fig. A.1 (c)). First, samples were mounted on the two sample stages with GE-varnish.

The voltage difference ∆V is measured using 25 µm diameter copper wire or phosphor-bronze

wire attached to the sample using silver epoxy as shown in the top of Fig. A.1 (c). Alternatively,

samples were directly mounted to the sample stages using DuPont 4929N silver paste. The

silver paste provides good thermal and electrical contact between the sample and the gold

plated layer on the surface of the Cernox package (bottom of Fig. A.1 (c)). The copper wire

or phosphor-bronze lead wire is soldered to this gold plated layer. In this case the voltage

difference is obtained by measuring the voltage difference between two sample stages. Since

the data was taken in a steady state, by assuming the temperature of the gold layer is the

same as silver paste, the TEP contribution of the sample stage can be ignored. Since the
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silver paste can be dissolved in hexyl acetate, the sample can be easily detached by carefully

adding small amount of this solvent without degrading Stycast or GE-varnish. We ran several

test measurements to compare thermal coupling between sample and thermometers by using

silver paste and GE-varnish. We found it to be essentially the same for both cases. In general

the TEP measurement was performed with the silver paste configuration, because the sample

mounting and removal were easier than GE-varnish. The GE-varnish configuration is preferred

mainly when good electrical contact between the sample and the gold layer of the thermometer

with silver paste can not be established. For example, when we measure the TEP of the

Bi2Sr2CaCu2O8+δ (Bi2212) high Tc samples for calibration it was hard to get good electrical

contact (see next section).

Determination of ∆T , ∆V , Tav and S

A block diagram of the TEP measurement is shown in Fig. A.1 (d). Since the PPMS sample

puck provides only 12 wires, they had to be used frugally: Six wires total were used for the two

Cernox sensors, which were connected in series, four wires were used for the heaters (2 each),

and two wires were used for the TEP voltage. The resistance of each Cernox is measured with

a Hewlett Packard 34420A nanovoltmeter via a Keithley 7001 switch system with a Keithley

7059 low voltage scanner card. The current was supplied to the Cernox thermometers by a

Keithley 220 programmable current source. A temperature difference (∆T ) across the sample

was established by applying a DC current with two Keithley 220 programmable current source

alternately through one of the strain gauges at a time, while the voltage difference (∆V ) across

the sample was monitored independently with a Hewlett Packard 34420A nanovoltmeter.

When we apply a small temperature difference across the sample, the temperatures (T1(t),

T2(t)) and a voltage (V (t)) are recorded as a function of time, as illustrated in Fig. A.2.

T1 and T2 are the temperatures of the two Cernox thermometers that the sample spans. ti

represents the time just before alternating power to the heaters (e.g. #1 on and #2 off) and tf

indicates the time just before the next power switch (e.g. #1 off and #2 on). As shown in Figs.

A.2 (c) and A.2 (d) in particular, from a linear fit of the measured voltage and temperature
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Figure A.2 Measurement procedure to extract the TEP from data corre-
sponding to the measurement performed near 55 K on Pt-wire
versus phosphor-bronze wire. Actual time period (τ) between
subsequent cycles, used to calculate TEP, was 50 sec. (a) Mea-
sured temperatures of both thermometers (T1 and T2) and (b)
sample voltage (V ) as a function of time. Note small (∼0.1
K/min) drift superimposed on data. (c) (d) One cycle of mea-
surement to determine parameters ∆T , ∆V : initial temper-
ature Ti, final temperature Tf , initial voltage Vi, final volt-
age Vf and offset voltage Voff . The solid lines represent the
linear fit to the measurement data. The temperature differ-
ence for T1 (T2) is determined by ∆T1=T1i-T2i (∆T2=T2f -T1f )
so that 2∆T=∆T1+∆T2. The voltage difference is calculated
2∆V=Vf -Vi (see text).
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as a function of time, ∆T and ∆V , respectively, the sample temperature Tav and the TEP

(S = −∆V/∆T ) are calculated using the following equations.

2∆T = (T2f − T1f ) + (T1i − T2i)

2∆V = Vf − Vi

Tav =
(T2f + T1f ) + (T2i + T1i)

4

Since the temperature difference is generated by alternately applying power to one of the

heaters, the measured voltage corresponds to 2∆V . Thus, the TEP of sample is calculated by

S = −2∆V/2∆T . Figure A.2 shows the data corresponding to a measurement performed near

55 K on a platinum (Pt) wire sample, using phosphor-bronze lead wires. The puck temperature

was ramped at the rate of 0.1 K/min. A complete cycle, used to determine ∆T and ∆V , took

a time period (τ) of 50 sec. The parameters (T1i, T1f , T2i, T2f , Vi and Vf ) were determined

by a linear fit of the data as a function of time as shown in Fig. A.2 (c) and (d).

The heater current (I) and time period (τ), needed to generate given ∆T , are not easy to

estimate a prior, because of the temperature dependence of multiple parameters, such as the

thermal conductivity and heat capacity of the sample, sample stage and all electrical wiring of

the apparatus. Therefore, the current and measurement time for given ∆T were determined

empirically at several temperatures by applying constant power to one of the heaters. For

determining the final temperature and voltage, after switching the power from one heater to

the other, the number of data point for linear fit was selected within constant temperature and

voltage region as a function of time. Although it depends on the sample under investigation,

typical values of τ ∼ 45 sec at 2 K and τ ∼ 150 sec at 300 K for this setup allowed an accurate

determination of the final values of Tf and Vf . Typical values of the heater current were I ∼
0.8 mA to generate ∆T ∼ 0.2 K at 2 K, and I ∼ 5 mA to generate ∆T ∼ 1.0 K at 300 K.

By utilizing two heaters and an alternating gradient ∆T , we avoid problems associated

with offset voltages. Vi and Vf represent the thermal voltages in the circuit, which include

spurious voltages and the TEP of lead wires. In fact, for very low values of the TEP, it is often

necessary to consider an offset voltage (Voff ) in the system and circuit. A common source of

spurious voltage, for example, is the wiring of the system from the voltmeter to the sample
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space since there is a thermal gradient and several soldering points between various wires. We

found that the value of Voff for this setup depended on temperature; it was ∼0.5 µV around

300 K and ∼ -1.5 µV around 10 K. If we suppose that Voff is independent of the small ∆T

across the sample and has a small temperature dependence as a function of time (adiabatic

approximation) Voff can be easily canceled out using two heaters as shown in Fig. A.2 (d).

Figure A.3 TEP of constantan wire versus copper wire. Warming up and
cooling down indicate the measurement data using the stable
temperature method. The solid line shows the TEP values
using the alternating heating method by slowly drifting system
temperature. The detailed explanations are in the text. We
used the reference data provided from MMR Technologies with
constantan as a standard.

In the early stage of testing this measurement setup, the process of collecting data was

checked by measuring the constantan wire (100 µm diameter) against copper wire (∼ 20 µm

diameter). Since constantan wire has been known to have large TEP value compared to copper

wire, the system can be tested without correcting the contribution of copper wire as shown in

Fig. A.3. In this test run, we used the following two protocols. Firstly, a stable temperature

method was applied; in this measurement the sample puck was held at a constant temperature

and the TEP of the constantan wire using either one heater or two heaters was measured and

found to be basically same within error bar of this measurement setup. However, the TEP

data for the constantan wire showed a small hysteresis upon cooling and warming between 50
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and 260 K with a maximum difference of about 2 %. The origin of this hysteresis is not clear,

we expect this that it is based on different relaxation times to stablize the temperatures of the

system.

Secondly we adopted an alternate method which was to measure the TEP while slowly

warming the system temperature with the ramp rate of 0.1 K/min below 10 K and of 0.45

K/min above 100 K (shown for a measurement of Pt wire in Fig. A.2 (a) for T ∼55 K). As

temperature increases higher than 10 K, the ramp rate was increased for certain temperature

range, for instance 0.2 K/min up to 20 K and 0.3 K/min up to 100 K. It is worth noting

that if the system temperature is slowly warming, it is necessary to carefully consider the time

dependence of the sample temperatures and voltages. In this case we calculated ∆T and ∆V

from a linear fit of the data. Continuous measurements while ramping temperature provide

a high density of data and reduce the measurement time. In general it takes 16 hours to

run from 2 to 350 K. This is in contrast to our finding that the relaxation time to stablize a

sample stage completely under high vacuum at a single temperature is longer than one hour.

Figure A.3 shows the TEP of Constantan wire based on these two protocols. In this test run

the agreement between measured results and the reference data 1 is reasonable. The TEP

extracted by the second protocol (slow drift of the system temperature) lies between the data

taken on warming and cooling using the stable temperature method.

System Calibration and Sample TEP

Since the wires attached to the sample are either copper or phosphor-bronze, a second

thermal voltage is also generated. The measured TEP is then

Smeasured = Ssample − Swire (A.1)

Here Swire represents the sum of the wire and all system contributions. When measuring an

unknown sample the TEP is then the sum of Swire and Smeasured.

The TEP of copper is strongly dependent on magnetic impurities below 100 K due to

the Kondo effect [Blatt, 1976] and therefore no reliable (or universal) reference data set is
1The reference data came from MMR Technologies with constantan wire as a standard.
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Figure A.4 TEP of Pt-wire versus phosphor-bronze wire and Pt-wire ver-
sus copper wire. Circles and solid line represent the measured
data from this work without any corrections. Both reference 1
(open squares) and reference 2 (solid triangles) data are from
Ref. [Blatt, 1976].

available for low temperatures. On the other hand, a superconducting material is a suitable

reference because S = 0 in superconducting state. In the present study Pt-wire and Bi2212

high Tc superconductors were each, separately, mounted between the two sample stages and

calibration measurements were performed. These were sufficient for determining the lead wire

contribution Swire. For the high temperature region pure Pt-wire (∼50 µm diameter) was

used as a reference. Figure A.4 shows the TEP of the Pt-wire versus copper wire and Pt-wire

versus phosphor-bronze wire. The result of Pt-wire versus phosphor-bronze wire is in good

agreement with the absolute TEP value of Pt [Blatt, 1976] which implies that the absolute

TEP value of phosphor-bronze wire is negligible. Note that below 100 K the Pt-wire manifests

slightly different TEP responses depending on the heat treatment (annealing) of wire. At low

temperatures we employed two superconducting Bi2212 compounds with Tc about ∼82 K and

∼92 K, where the different Tc values may be due to the heating of sample in air. The results of

the TEP measurement for Bi2212 against copper and phosphor-bronze wire are shown in Fig.

A.5. In this calibration measurement samples were mounted on the two sample stages with

GE-varnish. The copper and phosphor-bronze wire were attached to the sample using silver
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epoxy (top configuration of Fig. A.1 (c)). Here we used Bright Brushing Gold to attach the

wire to the Bi2212 because using only silver epoxy provided a poor electrical contact, usually

on the order of 103 Ω. After painting on the Bright Brushing Gold, the sample was heated up

to 400 oC quickly, held for 5 min and air quenched to room temperature, where the contact

resistance was reduced to below 100 Ω.

Figure A.5 Calibration measurements of lead wires. (a) TEP of Bi2212
versus phosphor-bronze wire and (b) Bi2212 versus copper wire
as a function of temperature at several constant magnetic fields.

The absolute TEP of copper and phosphor-bronze wire we measured and of copper, from the

literature, is shown in Fig. A.6. Because S = 0 in the superconducting state, the observed TEP

is the absolute TEP of copper and phosphor-bronze wire. From Fig. A.6 (a) it is dramatically

clear that the absolute TEP value of phosphor-bronze wire is very small, S 	 0.5 µV/K, up

to 80 K. For copper wire the agreement between measured results and the literature data is

reasonable. The inset of Fig. A.6 (b) shows the low temperature TEP of copper wire. For the

copper wire measured against phosphor-bronze, no correction was added. These data indicate

a fairly good agreement with the data taken from Fig. A.5 (b). The estimated uncertainty for

the copper wire is about 0.3 µV /K. In addition to the subtraction errors, we believe that this

disagreement is due to a difference in quality of the copper wire in Ref. [Blatt, 1976] and that

used in this measurement.
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Figure A.6 (a) Absolute TEP of copper and phosphor-bronze wire below
80K. The data are taken from Fig. A.5. (b) Calibrated TEP
curve of copper wire at H=0 (open square) and 140 kOe (open
circle). Both closed circles (reference 3) and stars (reference
4) were taken from Ref. [Blatt, 1976]. Inset: expanded view
for low temperature range. The symbols present the measured
TEP of copper wire against to phosphor-bronze wire. No cor-
rection was added. Solid lines are taken from Fig. A.5 (b).

As an aside, it should be noted that the low temperature, oscillatory behavior of the Bi2212

sample for H >0 (Fig. A.5) is reproducible. Although similar behavior was observed in the

Nernst signal and associated with the plastic flow of the vortices [Wang, 2006], the origin of

this phenomena is still somewhat unclear.

Previous TEP measurements at low temperatures and in high magnetic fields have had

to take into account the significant contribution of background voltage. By using well-known

elemental metal wires of copper or gold and superconducting materials, these background

contributions can be accounted for, correcting the background contribution. For small single

crystals an alternating AC current technique, utilizing a thermocouple, has been used to mea-

sure TEP under high magnetic fields for a wide range of temperatures [Resel, 1996; Choi, 2001].

Although the thermocouple wire provides a good sensitivity for relative temperatures, an accu-

rate determination of ∆T in high magnetic fields becomes difficult and large efforts are needed

to calibrate the field dependence of the thermocouple wire.
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In order to exclude the difficulties due to the magneto-thermoelectric power (MTEP) mea-

surement based primarily on the field dependence of Swire and thermometer calibrations, we

selected phosphor-bronze wire and Cernox. Whereas the TEP of copper (Cu) wire is not small

and shows a field dependence, phosphor-bronze wire provides essentially zero TEP over wide

temperature range and is almost temperature and field independent [Wang, 2003] as shown

in Figs. A.5 and A.6. Therefore, in this measurement setup the magnetic field dependence

of TEP of samples, including the quantum oscillation (de Haas-van Alphen oscillation) at low

temperatures, can be reliably measured.

The accuracy of this technique was estimated by using the measurement of Pt and Cu wire.

The estimated uncertainty of this system over all temperature ranges falls within a maximum

±1 µV/K, and the relative accuracy is within a maximum of 10 %. In the high temperature

region, roughly above 100 K, the main uncertainty originates from inaccurate determination

of the ∆T due to the relatively low sensitivity of the Cernox. The absolute and relative

temperature of Cernox was observed within a resolution of 4 mK at low temperatures, the

relative error at high temperatures falls within ∼ 200 mK. For materials having low thermal

conductivity, the error may be larger due to the temperature difference between sample and

thermometer. For materials having small TEP, less than 0.5 µV /K, the error can also be larger

due to noise. More contributions to the error need to be considered for TEP measurements

in the magnetic field. For instance, due to the heat conducting environment which is mainly

caused by induced current by applying magnetic fields (dΦ/dt), it is very important to make

sure that the ramp rate of magnetic field should be slow enough to avoid additional heating

and reduce the induced voltage due to the open loop. Alternatively, the TEP can be measured

stepping the magnetic field with the magnet in persistent mode for each value of the field.

Summary of Technical Parameters and Reference Information

• Operation range: temperature range from 2 to 350 K and magnetic fields up to 140 kOe.

• Sample dimension: the length of the sample is between 1.5 and 7 mm.
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• ∆T : from 0.1 to 2.5 K, depending on the temperature and the absolute TEP value of

sample.

• Ramp rate of system temperature: it can be varied up to 1 K/min. For example, in the

calibration measurement, it was selected 0.1 K/min up to 10 K, 0.35 K/min up to 100

K and 0.45 K/min above 100 K.

• Estimated accuracy: maximum of ±1 µV/K and 10% depending on the temperature and

sample. The limit of accuracy is mainly imposed by the limitations in the thermometery

and the thermal contact between the sample and the thermal stage. If the absolute TEP

of the sample is smaller than 0.5 µV/K the fluctuation of the sample voltage was observed.

• Copper wire: 0.025 mm diameter, Puratronic, 99.995% (metals basis), Alfa Aesar. De-

tected impurity elements are Fe, Ag, O, S (as provided by supplier).

• Phosphor-Bronze wire: Cu0.94Sn0.06 alloy, 0.025 mm diameter, GoodFellow.

• Platinum wire: 0.05 mm diameter, 99.95% (metals basis), Alfa Aesar.

• Silver epoxy: H20E, Epotek.

• Strain gauge : FLG-02-23, 0.2×1.4 mm2 grid made from Cu-Ni alloy and 3.5×2.5 mm2

thin epoxy backing, Tokyo Sokki Kenkyujo Co., Ltd.

• Silver paste: DuPont 4929N silver paint, DuPont, Inc.

• Stycast 1266: Emerson & Cuming, Inc.
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APPENDIX B. TEP of YbNi2Ge2 and YbNi2B2C

Figure B.1 TEP of (left) YbNi2Ge2 and (right) YbNi2B2C as a function of
temperature between 2 and 300 K for ∆T ⊥ c. Insets show the
S(T )/T vs. T . Solid lines are guides to the eye.

Zero field S(T ) data of YbNi2Ge2 and YbNi2B2C compounds are plotted in Fig. B.1.

At high temperatures, the S(T ) for both exhibit a large, negative minimum (approximately

-40 µV/K in both cases) and S(T ) is negative for both samples over the measured tempera-

ture range. A negative sign with a highly enhanced value of the TEP over the temperature

region measured is typical of those found in Yb-based Kondo lattice systems [Foiles, 1981;

Andreica, 1999; Deppe, 2008]. The inset of Fig. B.1 (a) presents S(T )/T of YbNi2Ge2 be-

low 15 K. The zero temperature limit of S(T )/T was estimated by extrapolating S(T ) from

10 K to T = 0 (solid line), where the inferred S(T )/T |T→0 is approximately -0.88µV/K2. For

YbNi2B2C, the estimated S(T )/T |T→0 value is found to be ∼ -4.2µV/K2 by using a linear

extrapolation below 5 K as shown in Fig. B.1 (b).
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APPENDIX C. Quantum oscillations - YbPtBi

Shubnikov-de Haas (SdH) quantum oscillations have been observed throughout the mag-

netoresistance (MR) measurements at low temperatures and high magnetic fields. Figure C.1

shows the MR at T = 0.1 K for magnetic field applied along [100] and [111] directions, where

samples are mounted on a dilution refrigerator cold stage with GE-varnish. At high magnetic

fields a broad local extrema in MR is observed for both magnetic field directions. This behavior

may be due to the change of scattering processes with CEF levels, or it may be the oscillatory

component corresponding to extremely small Fermi surface area in which the small frequency

has been observed for RPtBi (R = La, Ce, and Nd) [Goll, 2002; Wosnitza, 2006; Morelli, 1996]

in the paramagnetic state (see below discussion). For YbPtBi though this is not likely to be

the case because the frequency is so small that it would have an amplitude that would make

it hard to observe in SdH measurements. What is intriguing are the unambiguous quantum

oscillations at high magnetic fields.

Before analyzing data in detail, it should be noted that the measurements are susceptible to

torque effects at high magnetic fields. At T = 0.5 K MR curves for the sample #13 are plotted

in the inset of Fig. C.1, where open circle indicates the data taken from hanging the sample

in vacuum and open square indicates the data taken from gluing the sample to the heat sink

using Apiezon N-grease. The MR data shows significantly different behavior for H > 40 kOe.

At higher magnetic fields along H ‖ [100], quantum oscillations are discernible for both curves,

but the fast Fourier transform (FFT) spectra indicate a frequency difference between the two

data sets. The observed difference of MR is most likely due to the torque. Note that the MR

curve for hanging the sample in vacuum indicates no hysteresis. Thus, only for measurements

performed with the sample attached to the cold stage using GE-varnish, are the SdH oscillation
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Figure C.1 Magnetoresistance (MR), plotted as [ρ(H)− ρ(0)]/ρ(0) vs. H,
of YbPtBi at T = 0.1 K along H ‖ [100] and H ‖ [111]. Inset
shows MR for sample #13 at T = 0.5 K along H ‖ [100]. Open
circles are taken data with hanging the sample in vacuum and
open squares are taken data with mounting the sample to the
cold stage using GE 7301 varnish. At high magnetic fields
quantum oscillations are discernible for both curves.

analyzed up to 2K. To analyze the SdH frequency, the magnetic field range, 80 kOe ≤ H ≤
140 kOe, was used.

In Figs. C.2 (a) and (c) typical SdH data sets for YbPtBi, after subtracting the background

contributions, are displayed as a function of 1/H at selected temperatures. The amplitude

of the oscillations decreases as temperature increases. Since the signals are comprised of a

superposition of several oscillatory components, the data are most easily understood by taking

the FFT of these data as shown in Fig. C.2 (b) for H ‖ [100] and (d) for H ‖ [111]. The FFT

spectra at T = 0.06 K show several frequencies, including second harmonics with very small

amplitudes. The observed frequencies are summarized in Table C.1.

Quantum oscillations are observed in magnetic fields as low as 60 kOe at the lowest tem-

perature measured and in temperatures as high as 3 K, which confirms the very high quality

samples as well as very small effective mass of conduction carriers. The frequencies in FFT

spectra do not shift with temperature and most of the first harmonics of the frequencies are

clearly observed as high as 2 K. The cyclotron effective mass, m∗, of the carriers from the vari-
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Figure C.2 SdH of YbPtBi at T = 0.06, 1, and 2 K, plotted after subtract-
ing the background MR, for (a) H ‖ [100] and (c) H ‖ [111].
FFT spectra of SdH data at T = 0.06, 1, and 2K for (b)
H ‖ [100] and (d) H ‖ [111].

ous orbits were determined by fitting the temperature-dependent amplitude of the oscillations

to the Lifshitz-Kosevich (L-K) formula [Shoenberg, 1984] for each frequency:

ρ = C F (H)F (TD)F (X)F (s) sin(
2πf
H

+ φ) (C.1)

where C is a constant, and F (H) is a function of only H, which will vary from case to case.

F (TD) is the Dingle reduction factor, F (TD) = exp(−2pπ2kBTD/βH), with β = e�/m∗c and

Dingle Temperature TD = �/2πkBτ ; F (X) is the temperature reduction factor, F (X) =

X/ sinh(X), with X = 2pπ2kBT/βH; and F (s) is the damping factor (spin splitting factor)

de-phasing by Zeeman splitting (E = ±gµBH), F (s) = cos(pπgm∗/2me). The various sym-

bols have the following meanings: p is the harmonics of the frequency (f), φ is the phase of

oscillations, τ is the relaxation time, e is the negative electronic charge, m∗ is the effective

(cyclotron) mass, me is the bare electron mass, g is the spin-splitting factor, µB is the Bohr

Magneton, and � is the Plank’s constant.

The oscillation amplitudes and the fit curves using the temperature reduction factor are
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Table C.1 Frequencies f and effective masses m∗ obtained from the SdH
oscillations. me is the bare electron mass.

H ‖ [100] f (MOe) m∗/me

α 7.27 1.41
β 7.83 1.59
δ 13.06 0.83
γ 13.99 0.80
η 14.37 0.97
2β 15.67
2δ 26.13
2γ 27.99
2η 28.74

H ‖ [111]
ξ 8.95 1.22
ξ1 17.90 0.49

plotted in Fig. C.3 (a) and (b). The calculated effective masses range from m∗(α) ∼ 1.41me

to m∗(ξ1) ∼ 0.49me, where me is the bare electron mass. The estimated effective masses

are summarized in Table C.1. We were not able to estimate the effective masses, associated

with the second harmonic frequencies due to the small amplitude of the signals. Although

the frequency ξ1 is integer-multiple of ξ, ξ1� 2ξ, it is not a higher harmonic of ξ because of

the inconsistent effective masses. In addition, if these frequencies are originating from the

same extremal orbit, the phase difference between two frequencies can not be explained; the

oscillation curves are generated by L-K formula with the phase term, A1 sin(2πξ/H + π/1.95)

+ A2 sin(2πξ1/H − π/7.7), as shown in Fig. C.3 (c). Therefore, ξ1 is independent frequencies,

coming from different area of extremal orbit. The frequency of the orbit η is almost twice

of the frequency of the α, however these orbits are also expected to be came from different

Fermi surfaces. If the orbit η is the second harmonics of the α, the oscillation amplitude of

the η should be smaller than that of α, but the amplitude of these frequencies are almost the

same for both. Therefore, the orbit η is not the second harmonics of the α. Note that the

frequency, observed near 14 MOe at 2K along H ‖ [100], seems to split from one component

into two component of γ and η with decreasing temperature, as indicated by up arrow in Fig.

C.3 (b). At present it is not clear whether two frequencies of γ and η are originating from
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Figure C.3 (a) and (b) Temperature dependence of the SdH amplitudes.
Solid lines represent the fit curves to the Lifshitz-Kosevich
(L-K) formula. All data and fit curves are normalized to 1,
indicated by horizontal arrows, and shifted for clarity. (c) Re-
sistivity along H ‖ [111] at T = 0.06 and 1 K, plotted as a func-
tion of 1/H after subtracting the background MR, where the
solid lines represent the fit curves based on the L-K formula
with the frequency ξ and ξ1.

the same extremal orbit, thus it needs to be clarified by further detailed measurements. From

the observed frequencies quite simple Fermi surfaces are expected. It would be necessary to

measure frequencies as a function of angle between the crystallographic axes in order to make

estimates of the Fermi surface topology.

The low carrier density for YbPtBi implies a Fermi surface occupying a small portion of

the Brillouin zone, which is consistent with the results of quantum oscillations. The frequency

of the quantum oscillations is proportional to the extremal cross-section, AFS, of the Fermi

surface; f = (�/2πe)AFS [Shoenberg, 1984]. In the paramagnetic region direct evidence for

small Fermi surfaces comes from SdH measurements, where several small extremal orbits,

implying a small portion of occupation of the Brillouin zone, are observed. Quantum oscilla-

tions have also been observed for LaPtBi and CePtBi [Goll, 2002; Wosnitza, 2006] from the
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electrical resistivty measurements in pulsed magnetic fields up to 50 Tesla. The oscillation fre-

quencies for LaPtBi are approximately 10 times smaller, 0.65 MOe for H ‖ [100] increasing to

0.95 MOe for H ‖ [110], than for YbPtBi. For CePtBi the anomalous temperature dependence

of SdH frequency, f = 0.6 MOe, was observed along H ‖ [100] and a very low SdH frequency

of ∼ 0.2 MOe, which is independent of temperature, was found along H ‖ [111]. In addition to

the unusual temperature dependence of the SdH frequency for CePtBi, the disappearance of

the oscillations was observed above about 25 Tesla at which the magnetic field-induced band

structure change was proposed [Wosnitza, 2006]. Since the SdH frequencies for YbPtBi are

not changed by temperature or magnetic field, within the temperature and magnetic field

range of our measurements, such a band structure modification is not expected. The band

calculations for LaPtBi [Oguchi, 2001] and CePtBi [Goll, 2002], assuming localized 4f states,

were found to be semimetals. In these calculations, two hole-like Fermi surface are found

around zone center, which are similar to the measured angular dependence of the Fermi sur-

face cross-section area of LaPtBi. A number of small electron-like pockets are also predicted

in the band calculations which are too small to observe experimentally. The effective masses

for both LaPtBi and CePtBi have been estimated to be ∼ 0.3me [Wosnitza, 2006], which is

somewhat smaller than for YbPtBi. The observed trend of SdH frequencies suggested larger

Fermi surface sheets for YbPtBi than LaPtBi, and these are consistent with earlier resistivity

results of RPtBi [Canfield, 1991], where the resistivity varied from metallic (semimetallic) to

small gap semiconductor when rare-earth changes from Lu to La; ρ(T ) of LuPtBi decreases

and ρ(T ) of LaPtBi increases as temperature decreases, where the carrier density for LuPtBi

is approximately two order of magnitude bigger than that for LaPtBi.

In order to compare the experimental observations of SdH frequencies to the topology of

the Fermi surfaces, we calculated the zero field band structure of paramagnetic YbPtBi. For

the Fermi surface calculation, we have used a full-potential Linear Augmented Plane Wave

(fp-LAPW) [Blaha, 2001] method with a local density functional [Perdew, 1992]. The struc-

ture data was taken from reported experimental results [Robinson, 1994]. To obtain the self

consistent charge density we chose 1204 k-points in the irreducible Brillouin zone and set
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RMT ·Kmax to 9.0, where RMT is the smallest muffin-tin radius and Kmax is the plane-wave

cutoff. We used muffin-tin radii 2.5 for all Yb, Bi, and Pt atoms. The calculation was iterated

with 0.0001 electrons of charge and 0.01 mRy of total energy convergence criteria. Although

there was a discussion about 4f electron pinning at the Fermi energy [Oppeneer, 1997] and we

were aware that Fermi surface is quite different under 4f electrons influence [McMullan, 1992]

we treated 4f electrons as core-electrons since we were interested in the high magnetic field,

paramagnetic state. To obtain SdH frequencies we calculated 2-dimensional Fermi surfaces

and integrated the Fermi surface area. We chose planes which were perpendicular to kz-axis

and had 0.01 (2π/a) interval. Each plane (-1≤ kx , ky ≤ 1) were divided with 100×100 mesh.

For a 3-dimensional Fermi surface, we used 2300 k-points in the irreducible Brillounin zone

and a graphic program called XcrysDen [XcrysDen].

Figure C.4 (a) Band structure of nonmagnetic YbPtBi, calculated for lo-
calized 4f states. (b) Calculated Fermi surface in the fcc Bril-
louin zone. Two three dimensional pockets (bands 55 and 56),
located in the zone center, are surrounded by sixteen cigar
shaped pockets (bands 57 and 58). (c) Enlarged Fermi sur-
face for band 55, 56, 57, and 58.
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The results of band structure calculations are shown in Fig. C.4 (a). The overall features

are very similar to the results of LaPtBi, however with more Fermi surface occupation in

the Brillouin zone. Around zone center two hole-like Fermi surface (band 55 and 56) are

surrounded by sixteen small electron-like pockets (band 57 and 58). These calculated Fermi

surfaces of YbPtBi are plotted in Fig. C.4 (b) and (c). The SdH frequencies of these four

bands are calculated to be 2.4, 3.5, 0.79, and 0.65 MOe from the maximum area perpendicular

to the kz, where there are orbits very close to 2.4 and 3.5 MOe due to the 3-dimensional shape

of the Fermi surfaces at the zone center. These values are much larger than the predicted

value for LaPtBi and CePtBi [Goll, 2002; Wosnitza, 2006], however four times smaller than

the frequencies determined from experimental results.

The Fermi surfaces of YbPtBi are highly sensitive to the 4f electron contributions as pre-

dicted in Ref. [McMullan, 1992]. When the 4f electrons are included in the band calculations,

the six hole-like pockets are located zone center in which the predicted frequencies range from

∼ 27 to ∼ 164 MOe [McMullan, 1992], which is much higher than the experimental observa-

tions. So treating 4f electrons as included in core levels appears to be reasonable. If the

Fermi level is shifted to lower energy, the experimentally observed frequencies can be matched

to the hole-like pockets at the zone center, whereas the electron-like pocket surrounding the

zone center will not be detected. As a conjecture, the effective masses and frequencies of the

orbit α and β along [100] direction, linked to the ξ along [111] direction, are almost the same,

expected that these two orbits are came from the band 55. Similarly the orbits δ, γ, and η,

connected to the ξ1, all came from the 3-dimensional shape of the band 56.

Without an angular dependence of the SdH measurements, the Fermi surface topology

can not be determined unambiguously and further theoretical work is needed to unravel the

discrepancies in the precise extremal orbit sizes. Since we have observed only small effective

masses for YbPtBi, it is expected that the hybridization between 4f and conduction electrons

has been suppressed for these high magnetic fields. This is consistent with the specific heat

results; the enormous value of γ ∼ 8 J/mol·K2 for H = 0 is suppressed to γ ∼ 0.15 J/mol·K2

for H = 50 kOe.
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Note that if there are still significant 4f electron contributions in this magnetic field range,

up to 140 kOe, it required much lower temperatures to observe heavy electrons in SdH mea-

surements. This is a standing problem in HF physics, in order to detect the heavier effective

masses, higher magnetic fields are needed, however the mass enhancement can be suppressed

due to the application of these larger magnetic fields. Thus, lower measurement tempera-

tures, crystals with extremely low scattering in terms of Dingle temperature, and materials

with higher TK values are necessary to detect heavier effective mass of carriers. Measuring de

Haas-van Alphen (dHvA) oscillations as a complementary to SdH oscillations may be another

experimental approach since oscillation amplitudes have different dependence of m∗ in dHvA

and SdH. However, this task can be challenging due to high paramagnetic background signal.
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[Gruner, 1994a] G. Grüner, Density Waves in Solids (Addison Wesley, Reading, MA, 1994).

[Hartmann, 2010] S. Hartmann, N. Oeschler, C. Krellner, C. Geibel, S. Paschen, F. Steglich,

Phys. Rev. Lett. 104, 096401 (2010).

[Hewson, 1993] A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge: Cam-

bridge University Press, 1993)

[Hertz, 1976] J. A. Hertz, Phys. Rev. B 14, 1165 (1976).

[Heuser, 1998] K. Heuser, E.-W. Scheidt, T. Schreiner, and G. R. Stewart, Phys. Rev. B 57,

R4198 (1998). K. Heuser, E.-W. Scheidt, T. Schreiner, and G. R. Stewart, Phys. Rev. B

58, R15959 (1998).

[Hirst, 1978] L.L. Hirst, Adv. Phys. 27, 231 (1978).

[Houghton, 1987] A. Houghton, N. Read, and H. Won Phys. Rev. B 35, 5123 (1987).

[Hundley, 1997] M. F. Hundley, J. D. Thompson, P. C. Canfield, and Z. Fisk, Phys. Rev. B

56, 8098 (1997).

[Huo, 2001] D. Huo, J. Sakurai, O. Maruyama, T. Kuwai, and Y. Isikawa, J. Magn. Magn.

Mater. 226-230, 202 (2001).

[Izawa, 2007] K. Izawa, K. Behnia, Y. Matsuda, H. Shishido, R. Settai, Y. Onuki, and J.

Flouquet, Phys. Rev. Lett. 99, 147005 (2007).

[Jacko, 2009] A. C. Jacko, J. O. Fjærestad, and B. J. Powell, Nature Phys. 5, 422 (2009).

[Jia, 2007] S. Jia, S. L. Bud’ko, G. D. Samolyuk, and P. C. Canfield, Nat. Phys. 3, 334 (2007).

[Jia, 2008] S. Jia, N. Ni, G. D. Samolyuk, A. Safa-Sefat, K. Dennis, Hyunjin Ko, G. J. Miller,

S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 77, 104408 (2008). Note that the De-

bye temperatures used in this paper are recalculated; ΘD (YFe2Zn20) = 350 K and ΘD

(YCo2Zn20) = 344 K.



189

[Julian, 1996] S.R. Julian, C. Pfleiderer, F. M. Grosche, N. D. Mathur, G. J. McMullan, A. J.

Diver, I. R. Walker, and G. G. Lonzarich, J. Phys.: Condens. Matter 8, 9675 (1996).

[Julian, 1998] S. R. Julian, F. V. Carter, F. M. Grosche, R. K. W. Haselwimmer, S. J. Lister,

N. D. Mathur, G. J. McMullan, C. Pfleiderer, S. S. Saxena, I. R. Walker, N. J. W. Wilson,

and G. G. Lonzarich, J. Magn. Magn. Mater. 177-181, 265 (1998).

[Jung, 2001] M. H. Jung, T. Yoshino, S. Kawasaki, T. Pietrus, Y. Bando, T. Suemitsu, M.

Sera, and T. Takabatake, J. Appl. Phys. 89, 7631 (2001).

[Kadowaki, 1986] K. Kadowaki and S. B. Woods, Solid State Commun. 58, 507 (1986).

[Kambe, 1996] S. Kambe, S. Raymond, H. Suderow, J. McDonough, B. F̊ak, L. P. Regnault,

R. Calemczuk, and J. Flouquet, Physica B 223-224, 135 (1996).

[Kamihara, 2008] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc.

130, 3296 (2008).

[Kasuya, 1956] T. Kasuya, Prog. Theor. Phys. 16, 45 58 (1956).

[Katoha, 2004] K. Katoha, Y. Manoa, K. Nakanoa, G. Teruia, Y. Niidea, and A. Ochiai, J.

Magn. Magn. Mater. 268, 212 (2004).

[Kim, 2008] K. S. Kim, A. Benlagra, and C. Pépin C Phys. Rev. Lett. 101 246403 (2008).
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[Zlatić, 2003] V. Zlatić, B. Horvatić, I. Milat, B. Coqblin, G. Czycholl, and C. Grenzebach,

Phys. Rev. B 68, 104432 (2003).
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