
Lehigh University
Lehigh Preserve

Theses and Dissertations

2011

A Machine Learning Approach to Adaptive
Software Transaction Memory
Qingping Wang
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Wang, Qingping, "A Machine Learning Approach to Adaptive Software Transaction Memory" (2011). Theses and Dissertations. Paper
1086.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1086?utm_source=preserve.lehigh.edu%2Fetd%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A MACHINE LEARNING APPROACH

TO

ADAPTIVE SOFTWARE

TRANSACTION MEMORY

by

Qingping Wang

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Department of Computer Science and Engineering

Lehigh University

August 2011

ii

c© Copyright 2011 by Qingping Wang

All Rights Reserved

iii

This thesis is accepted in partial

fulfillment of the requirements for the degree of

Master of Science.

(Date)

Michael Spear

iv

Acknowledgements

I am grateful to many people who have been a part of my graduate studies. First

of all, I want to express my gratitude to my advisor Prof. Spear. He is the best

advisor I could wish for. He is an insightful scholar, a helpful supervisor, a good

teacher, an excellent colleague and a top hacker. His enthusiasm, inspiration and

efforts spent on students helped me grow. Without his sound advice, I would have

been lost.

My parents have always been the source of my strength. Without their support

in my education, none of my successes would have been possible. It’s their love that

encouraged me to go thus far. Words cannot express my love for them.

I owe sincere gratitude to my labmate Sean. Your friendship was a source of

great happiness, and you made this small town feel home to me. Thanks for your

help that made my life easier many times.

Among other people, I want to thank my younger brother Jiping, as well as my

best friends Yang and Zhe. You are always a part of my life.

v

Contents

Acknowledgements v

List of Tables viii

List of Figures ix

Abstract 1

1 Introduction 2

1.1 STM overview . 2

1.2 STM: An Abstraction over Synchronization Mechanisms 3

1.3 Issues with STM . 6

1.3.1 STM semantics . 6

1.3.2 Implementation Strategies . 8

2 Adaptive STM System 12

2.1 Motivation . 12

2.2 Previous Adaptive STM Systems . 13

2.3 The Machine Learning Approach . 16

vi

3 System Model 18

3.1 System Overview . 18

3.2 Discussion of the Framework . 20

4 System Implementation 22

4.1 Characterizing Workloads . 22

4.1.1 Dynamic Features . 23

4.2 Training . 25

4.2.1 OffLine Training Strategy . 25

4.2.2 Offline Training workloads . 27

4.3 Adaptive Policies . 28

4.3.1 Expert Policies . 28

4.3.2 ML-Based policies . 29

5 Evaluation 31

5.1 Test Environment . 31

5.1.1 Evaluation Criteria . 32

5.2 Performance Summary: Preliminaries 33

5.3 Expert Policy Performance . 34

5.4 CBR Performance . 34

5.5 Impact of Training Data . 35

6 Conclusion 37

Bibliography 39

Vita 45

vii

List of Tables

4.1 Dynamic workload features . 26

5.1 Descriptions of 9 STAMP benchmarks, adapted from [3] 32

5.2 Harmonic mean speedups on each STAMP benchmark, 33

5.3 Harmonic mean speedups when ELA semantics are required. 33

viii

List of Figures

1.1 A typical atomic block using STM . 3

1.2 A deadlock free solution to account transfer problem with 2PL 4

1.3 A solution to the account transfer problem using 2PL with deadlock . 5

1.4 Account Transfer with STM . 5

1.5 Performance of the STAMP SSCA2 workload 7

1.6 Performance of the STAMP Vacation workload 7

3.1 The System Overview . 18

5.1 Impact of training data. 36

ix

Abstract

Since software transactional memory (STM) came into existence, numerous STM

algorithms have been proposed. These algorithms differ in internal synchronization

control mechanisms, and thus each is best for some class of workloads. In this

thesis, we propose a system that applies machine learning techniques into an STM

runtime system, so that the best algorithm can be selected at run time according to

workload features. The performance achieved by this system outperforms any single

STM algorithm, and approaches the best possible performance of policies proposed

by STM experts.

1

Chapter 1

Introduction

1.1 STM overview

Software Transactional Memory(STM) is a concurrency control mechanism, analo-

gous to the concept of transactions [24] used in database systems to control access to

shared memory. With STM, code sections that require atomicity are annotated as

transactions. Memory accesses inside a transaction are instrumented. Boundaries

of transactions (places where transactions begin and end) are also instrumented.

Instrumentation code for individual memory accesses and transaction boundaries

resides in STM libraries, which are in charge of how concurrency is controlled.

Accesses to shared memory succeed when a transaction commits, or all involved

memory locations roll back to their previous states if conflicts with other transac-

tions happen. A typical implementation of an atomic block is illustrated in Figure

1.1.

2

1.2. STM: AN ABSTRACTION OVER SYNCHRONIZATION MECHANISMS

atomic{ BEGIN_TXN

X = 2 * X; Write(&X, 2 * Read(&X))

} END_TXN

Figure 1.1: A typical atomic block using STM
The lefthand side corresponds to what the programmer would write. The

righthand side shows how a compiler would transform the code

1.2 STM: An Abstraction over Synchronization

Mechanisms

As a concurrency control mechanism, STM offers an alternative to traditional syn-

chronization techniques, like locks, semaphores and monitors. With any of these,

to achieve concurrency in programs, developers not only need to figure out critical

sections that should be protected, but also they have to design a synchronization

protocol to specify how they are protected. Overall, to write correct concurrent

programs with those techniques, details in synchronization protocol implementation

and correctness reasoning require a lot of developer effort, which can be tedious and

error-prone.

Consider a simple banking system which has two accounts, a checking account

and a savings account. There are two transactions, T1 and T2, that access and up-

date those two accounts. Transaction T1 transfers $512 from checking into savings,

and transaction T2 transfers 16% of the balance of savings into checking. To guar-

antee correctness, the sum of balances in the accounts should remain the same after

the transfer. Each transaction consists of non-atomic instructions that access and

update accounts. We need to make sure that intermediate status of either account

3

CHAPTER 1. INTRODUCTION

Thread1 Thread2

Lock(savings) Lock(savings)

Lock(checking) Lock(checking)

Checking = checking - 512 tmp = savings * 0.16

savings = savings + 512 saving = savings - tmp

Unlock(checking) checking = checking + tmp

Unlock(savings) Unlock(checking)

Unlock(savings)

Figure 1.2: A deadlock free solution to account transfer problem with 2PL

caused by one transaction is invisible to another transaction.

A possible solution to this problem using locks with a Two-Phase Locking (2PL)

protocol [24] is described in Figure 1.2.

The problem with this is that 2PL may suffer from deadlock [30], where each

thread is waiting for resources held by other threads, and thus no thread can make

progresses. Careless Lock/Unlock placement will easily give rise to the deadlock

problem. Figure 1.3 shows an example, where Thread1 and Thread2 are waiting

for a lock held by each other and cannot make progress.

A solution to the account transfer problem using STM is illustrated in Figure

1.4, where no lock instruction appears anywhere, and thus no correctness reasoning

is required on how locks should be used. The code looks much more succinct and it’s

not very different from writing a sequential program. This succinctness means that,

when using STM, application developers only need to identify critical sections of

programs, and annotate them as transactions using APIs exposed by STM libraries.

STM libraries will automatically handle underlying synchronization issues at run

time. Therefore, instead of spending a considerable amount of effort in implementing

and debugging the synchronization protocol, application developers can focus on

4

1.2. STM: AN ABSTRACTION OVER SYNCHRONIZATION MECHANISMS

Thread1 Thread2

Lock(checking) Lock(savings)

checking = checking - 512 tmp = savings * 0.16

Lock(savings) savings = savings -tmp

savings = savings + 512 Lock(checking)

Unlock(checking) checking = checking + tmp;

Unlock(savings) Unlock(checking)

Unlock(savings)

Figure 1.3: A solution to the account transfer problem using 2PL with deadlock
Thread 1 and Thread 2 enter into a mutual waiting situation if they

simultaneously acquire their first lock and then try to acquire the second one

atomic { atomic{

checking = checking - 512; temp = checking * 0.16;

savings = savings + 512; checking = checking - temp;

} saving = saving + temp;

}

Figure 1.4: Account Transfer with STM

application design and implementation. In Figure 1.4, there is no need to worry

about deadlock since we do not place any locks in the code. The STM will handle

synchronization instead.

To a certain extent, STM offers a higher-level of abstraction on concurrency con-

trol. STM library developers focus on implementations of various synchronization

protocols, while application developers, that is, STM library users, only need to

concentrate on application design and implementation.

5

CHAPTER 1. INTRODUCTION

1.3 Issues with STM

STM is a promising solution to shared memory synchronization. It can reduce pro-

grammers’ burden in writing concurrent programs. However, STM is not a panacea.

Since the concept of STM came into existence, dozens of STM algorithms have been

proposed [9, 10]. Not surprisingly, none of them can outperform all others on all

workload across various software and hardware platforms.

On the one hand, some STM algorithms can not be applied to some classes of

workloads. For instance, SwissTM [11] can not be used to instrument workloads that

require privatization-safety [27], even if it is a good choice on workloads requiring

less strict semantics.

On the other hand, even if an algorithm does not suffer from applicability restric-

tions, it may not be the peak performer on a workload. For instance, for workloads

featuring tiny transactions, Nano, a high-overhead and low-bottleneck variant of

WSTM [13], is a premier choice; while for read-dominated workloads, TML [7] is

usually very good. Figure 1.5 and Figure 1.6 illustrate how different STM algorithms

perform on workloads with different features.

1.3.1 STM semantics

STM semantics defines how transactions interact with non-transactional code. A

clear and simple semantics for STM is valuable for programmers to understand the

programming construct, and thus help debug program errors with programming

tools.

If STM is used to protect every access to shared memory data, it’s expected to

6

1.3. ISSUES WITH STM

 8

 10

 12

 14

 16

 18

 20

 22

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
(S

ec
on

ds
)

Threads

Nano
NOrec

BitLazy
TL2
LSA

Figure 1.5: Performance of the STAMP SSCA2 workload
for common STM algorthms. The Nano algorithm is asymptotically worse than
every algorithm tested, yet it is best since the workload has tiny transactions

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
(S

ec
on

ds
)

Threads

Nano
NOrec

BitLazy
TL2
LSA

Figure 1.6: Performance of the STAMP Vacation workload
with low contention for common STM algorithms. Nano is the worst performer for

Vacation with low contention

7

CHAPTER 1. INTRODUCTION

have the property called strict serializaility [24] from database systems: in every

program execution, transactions would appear to occur, each atomically, in a global

total order that is consistent with program order in every thread. This is the so

called Single Lock Atomicity(SLA) [18], since it appears as if all transactions were

protected by a single, system-wide mutual exclusion lock, so at most one block is

in execution at a time. In SLA, shared data can be accessed non-transactionally

as long as an equivalent lock-based program would be race-free. Encounter-time

Lock Atomicity(ELA) [18] specifies that the compiler cannot reorder code within a

transaction if the reorder could introduce a race in the equivalent lock-based code.

However, STMs could incur nontrivial cost to support SLA or ELA. For historical

reasons, some STMs failed to provide SLA semantics [18], either because the target

workloads only access shared memory with transactions; or because the need for

SLA was not know when the algorithm was proposed. Thus, semantics provided

by such algorithms are in conflict with SLA. When using these algorithms, there

exist situations where shared data can be accessed by transactional code and non-

transactional code simultaneously, which can violate correctness.

1.3.2 Implementation Strategies

Instrumentation for individual accesses and transaction boundaries is usually imple-

mented in a library. The library provides concurrency control by mapping individual

locations in memory to some form of metadata. Synchronization is enforced by op-

erating on these metadata according to a single writer, multi-reader protocol. The

library also detects deadlock and handles rollback.

Take TLRW [10] as an expample to illustrate how an STM works practically.

8

1.3. ISSUES WITH STM

In TLRW, a data structure called byte-lock is used as synchronization metadata. A

byte-lock tracks up to 56 concurrent readers and one writer. To write an address

m, a thread i first tries to set the writer field of m’s byte-lock to i; and if thread i

is already a reader on m, it clears its read status from m. Then it spins until all

other readers clear their read status, that is, all readers drain out from m. To read a

location m, the value is simply returned if a thread i is already a reader or the writer

on m; Otherwise, the thread registers itself as a reader of m, and only if m has no

writer. If there is a writer, the thread uses back off before trying again. After a

fixed number of tries, thread i aborts to prevent deadlock. By using this read/write

locking approach internally, the algorithm retains correctness while shielding the

programmer from the need to reason about locks.

There are a variety of STM algorithms in literature featuring different forms of

metadata and synchronization protocols. Each of them works well for a class of

workloads. Mainstream design and implementation strategies are described below.

Single Mutex Some STM algorithms use a global mutual exclusion lock to

protect all transactions. In such implementations, write logging may be used to

support self-abort (log old values of writing locations and write them back when

the transaction aborts); or a reader-writer lock could be used if transactions with

read-only operations dominate (this increases concurrency for readers).

Ownership Records (Orecs) In STM algorithms, such as TL2 [9], memory lo-

cations are mapped to a large table of ownership records (versioned locks). Reads do

not modify locks but record lock versions; Writes acquire the lock either on the first

encounter (eager), or at commit time (lazy). Eager systems usually implement in-

place update of locations and undo logging, while lazy systems use buffered update

9

CHAPTER 1. INTRODUCTION

and redo logging. Moreover, orec systems usually employ a global shared counter

to reduce overheads [9, 22], but the global counter can become a bottleneck when

small writer transactions dominate, since it needs to be updated by every writer.

Overall, Orec systems are typically good for workloads with large transactions, and

usually scale well due to fewer bottlenecks than other systems. However, each write

requires a costly compare-and-swap (CAS) operation.

Signatures In these algorithms, a transaction’s accesses are represented as bit-

vectors, or signatures, such that conflicts can be detected using fast vector inter-

section operations. Such STMs, like RingSTM [28], are livelock-free and do not

require multiple CAS operations[28, 9]. These STMs are compatible with stronger

language-level semantics by default. However, they suffer from larger bottlenecks

and limited granularity of conflict detection.

Values There are STMs, e.g. NOrec [8], that do not use per-location metadata,

instead logging all address/value pairs read. Conflicts are detected by checking if

the values of reading locations have changed [21, 8]; and a single lock is used to

protect commit operations. Algorithms in this style are livelock-free, and tend to

have very low single-thread latency since no global metadata is maintained. They

also provide very strong language-level semantics. However, such algorithms are not

a good fit for workloads with frequent writer transactions, since the single lock limits

performance, and checking for conflicts in large transactions can be expensive.

Bit and Byte Locks All of the designs described above use optimistic read

mechanisms, such that no transaction can identify when it is accessing locations that

another transaction is reading. In effect, readers are invisible to other transactions.

Relatively cheap visible reader implementations have been achieved by maintaining

10

1.3. ISSUES WITH STM

either bitmaps [17, 20] or wider bytelocks [10]. Reader visibility increases latency

(due to read registration) and can result in more contention for metadata, but

it simplifies conflict detection and resolution, and enables good semantics (ELA).

TLRW [10] is a system in this class.

Read-Parallel Designs A few STM designs target specific domains, such as

the eager and lazy variants of the TML algorithm [7, 8]. These provide extremely

low latency for individual transactions due to the simplicity of metadata, but only

allow either a set of readers or a single writer to execute at any time.

11

Chapter 2

Adaptive STM System

2.1 Motivation

That one STM algorithm fits well for all workloads is not true. There are good

chances that the algorithm used to instrument a workload falls into pathologies,

or performs poorly. Definitely, we want our system to be smart enough to avoid

pathologies. To go one step further, even if there is no pathology, there could be

chances of achieving better performance, and we want our system to be able to

explore such possibilities.

To solidify our motivation, consider a program whose behavior is input depen-

dent, and the execution exhibits phases (program sections with different character-

istics), where the ideal algorithm varies from phase to phase. In this scenario, we

desire that the STM library can dynamically select the best algorithm to instrument

each phase, in order to maximize the performance. Therefore, to be able to achieve

peak performance all the time, pathology avoidance and continuous exploration

12

2.2. PREVIOUS ADAPTIVE STM SYSTEMS

(periodical exploration for better STM algorithms) are necessary.

2.2 Previous Adaptive STM Systems

Adaptive STM is not a new idea. There are previous works that sought to prevent

pathologies, or to maximize performance using ad-hoc policies. The following are

the most relevant works.

Worst-Case Progress Almost all current TM systems allow the runtime to

automatically abort any transaction (by undoing the effects of its actions) if it con-

flicts with another transactions. This mechanism precludes execution of irrevocable

actions, such as I/O and system calls, whose effects cannot generally be rolled back.

Thus, it limits the application of transactions. Welc et al. [32] proposed a mecha-

nism called single-owner read locks that supported irrevocable transactions. This

mechanism allowed transition of a regular transaction into an irrevocable state on-

the-fly during its execution. At any time, only one active irrevocable transaction can

exist in the system, and it is guaranteed to commit since its revocation is prevented.

Besides supporting I/O in transactions, systems like this can be used to guarantee

progress, by guaranteeing that some transaction always commits.

Location-Level Adaptivity Sonmez et al. [25] investigated feedback-directed

dynamic selection between different implementations of atomic blocks. In their

strategy, atomic blocks were executed using STM with optimistic concurrency con-

trol, i.e. invisible reads; and variables that cause large numbers of aborts were

dynamically identified. These hot variables were selectively switched to pessimistic

concurrency control (visible reads). In this way, transactions that abort often are

13

CHAPTER 2. ADAPTIVE STM SYSTEM

deferred until they can complete. This strategy reduced single-threaded through-

put (due to the cost of pessimistic concurrency control), but saved work wasted in

aborted transactions. Moreover, it prevented pathologies at the cost of bringing

overhead on hot variables detection.

Scalable Progress Guarantees Ni et al. [20] proposed a high-performance

STM library which implemented multiple execution modes and a novel record based

STM algorithm that supported both optimistic and pessimistic concurrency con-

trol. In their system, besides supporting irrevocable mode, the runtime was able to

switch a transaction dynamically to obstinate mode, that is, a transaction can run

concurrently with regular transactions, but has a higher conflict resolution priority.

This system employed a novel indirection based interface to prevent overhead while

supporting these mechanisms, and it was able to also avoid global coordination when

switching the mode of a transaction.

Performance Via Feature Monitoring Marathe et al. introduced an adap-

tive STM system[16] that tracked a workload using a special API call named early

release, which removes a location from the transaction’s read log. If a workload

used early release, locations would be locked at commit time. This technique im-

proved throughput and lowered latency for transactions, but relied on the use of an

uncommon feature.

Re-Parameterizing the STM Felber et al. [12] proposed TinySTM, a word-

based STM implementation that used locks to protect shared memory location, and

they performed dynamic tuning with it. In their system, one of the most important

parameters that affected system performance was the number of locks used for

concurrency control: increasing number of locks could reduce false sharing; while a

14

2.2. PREVIOUS ADAPTIVE STM SYSTEMS

smaller number of locks could in principle reduce the validation time of an update

transaction (since fewer locks are checked), at the cost of some performance penalty

due to false sharing. To find the best number of locks needed, they periodically

adapted the parameter at runtime, using a hill climbing algorithm.

Phased Execution PhTM [14] switched between hardware and software modes

on a machine with hardware TM support. Events including the presence of trans-

actions that were not supported by the hardware, excessive consecutive aborts and

periodic timers caused the system to switch modes. PhTM supported switching

between different phases, each implemented by a different form of transactional

memory support, so the runtime could adapt between a variety of different trans-

actional memory implementations according to the current environment and work-

load. However, the focus of this work was on hardware/software interaction, and

PhTM did not consider switching among STM implementations, except for avoiding

pathologies. In addition, some variants required shared-memory communication at

the beginning of some transactions even when there was no mode switch in progress,

which could act as a bottleneck.

Selecting Locks or Transactions Usui et al. [31] employed a combination

of static and dynamic analysis to identify workloads for which locks outperformed

STM, even when multiple threads were available. Clearly at one thread, a lock-

based runtime with a lower latency is better. Additionally, if transaction latency is

too high, and the cost of a lock moving between processors’ caches is low, then at

higher thread counts, the concurrency afforded by STM may not be worth its cost.

Pathology Avoidance The latest version of RSTM [26] supports adaptivity

among different STM algorithms by combining the ideas from PhTM [14] with the

15

CHAPTER 2. ADAPTIVE STM SYSTEM

indirection-based interface of Ni et al. [20]. The system selects from 10 algorithms,

to react to bad performance. Decisions are based on an algorithm’s likelihood of

pathology and precision of conflict detection.

Previous works on adaptivity support in STM lack generality. There are two

common features of the approaches described above. First, decisions about which

algorithm to use follow a statically specified policy, and usually only include a small

set of options (or parameterized versions of a single algorithm). Second, the inputs

to the adaptivity policy are based on very small feature set. These techniques are

effective at improving performance and preventing pathologies, but none of them is

able to maximize a program’s performance by identifying the best STM algorithm

for a dynamic program phase.

2.3 The Machine Learning Approach

Machine learning (ML) techniques are usually suitable for a complex problem with

a huge search space that is hard to model. Given the complex diversity of features

displayed by parallel programs and the subsequent amount of computing required

to build models for program behaviors, it is hard to directly correlate a program

feature with complex program behaviors. ML is a good candidate approach to such

problems.

ML has been widely used in previous research for efficiently selecting compiler

optimization parameters [6, 5, 2, 33], finding the best values for transformation pa-

rameters [19, 29, 4], and choosing the best algorithm to use for a sequential task [15].

16

2.3. THE MACHINE LEARNING APPROACH

We built an ML-based adaptive runtime system to improve the performance of STM-

based programs. We implemented Case Based Reasoning(CBR) [1] in our general

purpose framework. Our system can select among a broad set of TM algorithms

during execution, to select the algorithm most likely to maximize the performance

of the program.

17

Chapter 3

System Model

3.1 System Overview

To implement adaptivity in our STM library, we extended the adaptive version of

RSTM [26]. Figure 3.1 depicts the components of the framework.

The adaptive STM system primarily consists of the offline training component,

dynamic profiling component(”more profiles” and ”instrumented transaction” in

Figure 3.1) and the online decision component(”transaction profile” and ”adaptive

μbenchmarkμbenchmark
μbenchmark

Adaptivity
Policy

 Analyze

Application
Feature

Requirements

More
Profiles?

Instrumented
Transaction

 Yes

 Commit

(Transaction profile)

 No

(Throughput)

Approximate
Application

Profile

 Set Algorithm

Off-Line Training

Learning Tool

Running Program

STM AlgorithmSTM AlgorithmSTM AlgorithmSTM Algorithm

Trigger

 Online Decision Dynamic ProfilingWorkload

Figure 3.1: The System Overview

18

3.1. SYSTEM OVERVIEW

policy” in Figure 3.1), which are responsible for selecting the best algorithm to

instrument the current phase of the running workload.

When the system starts, it first initializes itself. A dozen algorithms are regis-

tered in the system as candidates for dynamic selection. In addition, information

obtained by offline training described in Chapter 4.2.1 is read by the system to create

the adaptivity policy. Environment variables are read to specify if ELA semantics

are required and how many transactions to run to profile the workload. After this

configuration, a default STM algorithm is selected and the workload starts running.

While the workload is running, lightweight measurements detect the possibility

that a new algorithm should be selected. We use the number of consecutive aborts

for non-Mutex based algorithms, or for Mutex based algorithms the number of

CPU cycles a thread waits before it can start a new transaction. We also track

the total number of transactions committed by a specific thread. These metrics

are intuitive, since too many aborts and too long of a waiting time indicate that

starvation or livelock is possible. By checking the total commits in a specific thread,

we can periodically sample after fixed commit counts 160, 161, 162, 163, k × 164, for

all k > 0.

The metrics are checked every time when a transaction aborts. If the number

reaches its threshhold, the system tries to switch to another algorithm by the on-line

decision system. To make online decision, the system first switches to a ProfileTM

algorithm, which is described in Chapter 4.1.1. ProfileTM runs in single-thread

mode, and records a set of program characteristics of the workload. In ProfileTM

mode, the excution of the workload does not stop. The amount of work ProfileTM

19

CHAPTER 3. SYSTEM MODEL

does varies from one to multiple transactions. This number is defined by an envi-

ronment variable during system initialization.

When ProfileTM finishes its work, the system feeds the collected information

to the decision component, which returns the algorithm most likely to maximize

the performance according to the decision algorithm. The system switches from

ProfileTM and instruments the workload with the algorithm returned by the deci-

sion component, and the system goes back to multithreaded mode. This process

will repeat through the execution of the workload. Since the performance is being

monitored at all times, as long as the system detects that the current instrumenting

algorithm is not good, it will start the profiling process and try to find a better

algorithm.

3.2 Discussion of the Framework

New STM algorithms can be easily integrated into the system. Every STM algo-

rithm has an independent implementation, and they are registered in the system

as function pointers. If there is any new algorithm proposed in the future and we

want it to instrument workloads, what we need to do is add the implementation file,

register its functions to the system, and retain the adaptive policy.

The decision component is also independent of other components in the sys-

tem. Thus adding a new decision algorithm would not affect other components.

To integrate a new decision algorithm, besides the implementation of the algorithm

itself, we need to prepare the corresponding offline training component, which is

completely isolated from others.

20

3.2. DISCUSSION OF THE FRAMEWORK

Like previous adaptive systems, our system can detect pathologies and guarantee

progress. As described above, when the system detects livelock or starvation, it will

switch to a better algorithm based on its adaptivity policy. To go one step further,

just as one STM algorithm cannot excel on different workloads, the same algorithm

might not have excellent performance for all phases of a workload. Our system is

able to switch to a better algorithm for a different program phase. Moreover, during

the whole process of workload execution, our system keeps exploring new candidates

that can bring in better performance with reasonable overhead. Therefore, if there

exists a better choice of algorithm, we have the chance to find it.

21

Chapter 4

System Implementation

In Chapter 3, we discussed how the system works. We have the offline training

system, the profile component and the on-line decision algorithm. In this Chapter,

we discuss the details of each component. In Chapter 4.1, representative program

behaviors relevant to performance of STM algorithms are discussed, as well as the

way we obtain that information. In Chapter 4.2, workloads with those representative

program behaviors and the strategy to train the learning system on workloads are

presented. Once the system trained is trained, details of how the system makes

decisions based on application profiles are covered in Chapter 4.3.

4.1 Characterizing Workloads

Any system involving learning, either supervised or unsupervised, needs to identify

a class of features of the system in order to generate rules that could be applied to it.

A system that selects an appropriate STM algorithm for a specific workload must

have some description of the workload behavior that provides a reliable basis for

22

4.1. CHARACTERIZING WORKLOADS

decision making. As discussed in Chapter 2, previous approaches used a variety of

measures to approximate the behavior of workloads, and many of them suffer from

a lack of generality. To be general-purpose, we attack this problem via dynamic

profiling to collect program behaviors that influence the performance of different

STM algorithms.

4.1.1 Dynamic Features

The dynamic behavior of a program is measured via a combination of two techniques

in our system. First, we use lightweight instrumentation on every transaction bound-

ary to measure program-wide properties. Second, we developed a simple STM called

ProfileTM, which is used to sample per-transaction program characteristics.

Boundary Instrumentation In the abort function of each STM algorithm, we

update a per-thread counter of consecutive aborts. In the begin function, a counter

records the number of ticks a thread waited before it started a new transaction. In

the commit function, we update a per-thread count of committed writing transac-

tions and read-only transactions. These numbers are queried when the workload

read-only ratio (RORatio) is needed. In addition, a counter storing the value of

the hardware tick counter is stored in the commit function. After every commit,

its value is updated, while before a transaction begins, we subtract that value from

the current hardware tick counter and add the difference to a per-thread accumu-

lator. By dividing by the number of transactions, we can estimate the amount of

non-transactional work (NonTxWork) between transactions.

23

CHAPTER 4. SYSTEM IMPLEMENTATION

ProfileTM Measuring program properties by whole program profiling is expen-

sive (more than 5% slowdown). As it is reasonable that profiling should not incur

overhead when not in use, we use sampling instead. Whenever the system detects

that the current STM algorithm is not performing well, ProfileTM is used to in-

strument the running workload for a while (from one to several transactions). In

ProfileTM, a fair ticket lock guarantees that only one transaction is running at a

time, so there is no concurrency in the system, and every thread has a chance to be

sampled. ProfileTM transactions sample the hardware tick counter when they begin,

and again when they commit, to provide an estimate of the time that a transaction

takes (TxTime). These transactions buffer all writes until commit time, and thus

some reads must perform a lookup in the buffer. No global metadata is required by

the buffer, which ensures compatibility with code that uses self-abort, and prevents

possible races between self-aborting transactions and non-transactional code [23].

There are five distinguishable types of shared memory accesses in STM imple-

mentations. Each of them invokes overhead different than others: stores to new

locations (Writes), write-after-write stores (WAWWrites), loads from a read-only

context (ROReads), read-after-write loads (RAWReads), and loads from a non-read-

only context that are not RAW (RWReads). Table 4.1 describes their differences

with more detail. On every shared memory access, ProfileTM counts which of the

five access types occurs. When the transaction commits, the entire dynamic profile

is added to a log for use by the adaptive policy.

The cost to collect a dynamic profile with ProfileTM is low. First, boundary in-

strumentation that collects information to invoke ProfileTM is not expensive. Even

though boundary instrumentation reads hardware counters and updates counters for

24

4.2. TRAINING

other events in every transaction, only a small number of load and store instructions

are involved. Second, transactions have less latency under profile mode than un-

der traditional STM algorithms, because ProfileTM runs in a single-threaded mode

with no concurrency, so there is no cost for updating synchronization metadata. In

addition, the number of profiling transactions is much smaller than normal transac-

tions, and the frequency at which we incur adaptivity costs is not high. Moreover,

ProfileTM guarantees progress.

4.2 Training

We extended the adaptive version of RSTM [26] to use the workload features de-

scribed in Chapter 4.1 to select an STM algorithm during program execution.

4.2.1 OffLine Training Strategy

In previous literature, differences in the configuration of microbenchmarks led to

different STM algorithms offering maximum throughput. These microbechmarks

have representative program behaviors. We perform unsupervised off-line training

in the learning component of our system. The training system is presented a set

of microbenchmarks, a set of configurations of those benchmarks and a set of STM

algorithms as input. From each microbenchmark-configuration-algorithm combi-

nation, it runs five 5-second experiments at different thread levels. The average

throughput is recorded. Then it runs each microbenchmark-configuration combi-

nation using ProfileTM in single threaded mode to collect dynamic features of the

25

CHAPTER 4. SYSTEM IMPLEMENTATION

ROReads These are reads performed by transaction T before its
first write. ROReads typically have the lowest latency (in
buffered-update STM systems, these reads do not require
a write-set lookup)

RWReads These are reads performed by T after it has performed at
least one write. They always include the cost of a write-
set lookup that does not succeed in buffered-update STM
systems.

RAWReads Reads to locations for which T has a speculative write of-
ten have low overhead. They appear as successful write-
set lookup without further operations in buffered-update
STM systems.

Writes This is the number of distinct locations that have been
written by T

WAWWrites A write to a location that has already been written may
have lower costs, since it may only need to update the
buffered value

NonTxWork When the gap between transactions is large relative to
the duration of transactions, the best STM algorithm is
typically one with low single-thread latency [31].

RORatio For most STM algorithms, read-only transactions do not
modify shared metadata. When the rate of writer trans-
actions is low, these systems scale almost perfectly. As
writers increase in frequency, the point at which read-
only optimizations cease to be profitable varies with the
STM algorithm.

TxTime The average time a transaction takes.

Table 4.1: Dynamic workload features

26

4.2. TRAINING

workload. With these experiments, the system can figure out which STM algorithm

a specific program may favor at a given thread level since it knows the best per-

former for the workload and the workload’s characteristics. Then all the data is fed

to the ML training policy to generate an adaptivity policy. The form of the policy

is a data file that specifies the behavior of the decision system in different cases.

4.2.2 Offline Training workloads

In a production environment, it would be acceptable to tailor training data to the

common-case for the target application. However, in order to show generality, we

train using parameterized microbenchmarks instead, and thus measure what would

serve as a lower bound on the effectiveness of our adaptive system. Our training

workloads fall into the following categories.

Data Structure Traversals This class contains red-black trees, hash tables, and

linked lists, with varying mixes of insert, lookup, and remove, and varying key ranges

stored in the dataset. These workloads typically scale well, and correspond to the

use of TM for creating concurrent data structures.

Pathology Test This workload causes livelock under eager acquisition, and star-

vation for most other STMs.

Overhead Finders These workloads expose overheads in the STM algorithm. Ex-

amples include shared counters, which highlight boundary latency, truly disjoint

workloads, which show the cost of shared metadata on scalability, and read-sharing

workloads, which emphasize the cost of visible reads.

Multiword Atomics These workloads use TM to perform multiword CAS opera-

tions of varying sizes, or to implement read N write 1 operations. We also created a

27

CHAPTER 4. SYSTEM IMPLEMENTATION

read N write N operation, to show how the order of reads and writes affects through-

put.

Database Simulations These workloads aim to mirror more complex uses of trans-

actions. In addition to various forest workloads (consisting of multiple operations

on a set of red-black trees), we also provide a tree workload where every transaction

performs writes.

As appropriate, we varied the non-transactional time between transactions, the

number of locations accessed within a transaction, and the percentage of transac-

tions that were read only. In total, this resulted in 213 different microbenchmark

configurations, which we tested at many thread levels.

4.3 Adaptive Policies

In the system described in Chapter 3.2, any classification algorithm can be used to

select an STM algorithm. The developer can easily create an adaptive policy com-

pletely independent of all other components. A completely automated ML system

can generate the policy as the output of off-line training. At most, programmers

need to offer some guidance when creating a policy with learning tools.

4.3.1 Expert Policies

These policies are written by a programmer, to satisfy arbitrary requirements. For

example, RSTM (without ProfileTM and our dynamic adaptivity framework) pro-

vides expert policies to avoid pathology by transitioning the algorithm selection

28

4.3. ADAPTIVE POLICIES

according to a state machine. Our simplest expert policies capture the intuition

that the best algorithm depends on the thread count. We provide three policies,

depending on whether ELA semantics are required or not, and whether writers are

expected to be frequent.

ThrX Assumes weak semantics are acceptable, and uses Mutex at 1 thread, and

the LSA algorithm [12] otherwise. When ELA semantics [18] are not required, LSA

is among the lowest latency and most scalable algorithms, unless contention is high.

ThrELA1 Provides ELA semantics, using Mutex at 1 thread and NOrec [8] oth-

erwise. NOrec is among the most scalable STMs that provide strong semantics.

ThrELA2 Like ThrELA1, except for 8 or more threads, lazy TLRW [10] is used.

TLRW has fewer bottlenecks than NOrec when writers are frequent.

4.3.2 ML-Based policies

We employ case based reasoning as the machine learning technique to automatically

create an adaptive policy. It receives microbenchmark configurations and a set of

STM algorithms; and outputs a data file that describes representative program

behaviors and preferred STM algorithms as the adaptive policy.

Case Based Reasoning

Case-based reasoning is the process of solving new problems based on solutions of

similar past problems. In case-based reasoning, a system creates a base containing

configurations of environment, and the best responses of the system to the environ-

ment. In our system, our cases are program behaviors of microbenchmarks and the

running environment (thread count), and the response to a case is the best STM

29

CHAPTER 4. SYSTEM IMPLEMENTATION

algorithm (the one with highest throughput). During program execution, the CBR

policy scans the case base for entries that have the same number of threads as the

workload; then it selects the entry that is most similar to the average of the col-

lected transactional profiles, via a similarity metric, and returns the algorithm in

that entry, that is the best performer for the program behavior for the microbenmark

entry. Our CBR policies use the 8 dynamic features in Chapter 4.1.2. We combine

the three read features into a single metric, and the two write features into another.

We then consider all 31 possible combinations as candidate similarity metrics, using

a normalized Manhattan distance. By retaining some metadata in the case base, we

can always identify the training experiment that influenced a CBR decision, which

aids in performance tuning.

30

Chapter 5

Evaluation

5.1 Test Environment

We built our STM codes and adaptive policies based on the adaptive version of

RSTM [26]. The baseline adaptive RSTM provides 10 STM algorithms, and we

added 9 more, which included published algorithms, new parameterizations of ex-

isting algorithms, and Nano (Chapter 1). All experiments were performed on an

HP z600 with 6GB RAM and a 2.66GHz Intel Xeon X5650 (Nehalem) processor

with six cores (12 hardware threads in total). Code was compiled with g++ version

4.5.1, in 32-bit mode with -O3 optimizations. All experiments are the average of 3

trials. We trained 6 versions of our adaptive policies: ELA refers to training con-

ducted using only algorithms that provide Encounter-Time Lock Atomicity (ELA)

semantics [18], and X refers to training on all 19 algorithms. We also considered

three sets of training workloads: S1 used data structure traversals, pathology tests,

and overhead finders. S2 used multiword atomics and database simulations. S1+S2

31

CHAPTER 5. EVALUATION

Name Domain Description Tx Length R/W Set Tx Time Contention
bayes machine learning Learns structure of a Bayesian network Long Large High High
genome bioinformatics Performs gene sequencing Medium Medium High Low
intruder security Detects network intrusions Short Medium Medium High
kmeans data mining Implements K-means clustering Short Small Low Low
labyrinth engineering Routes paths in maze Long Large High High
ssca2 scientific Creates efficient graph representation Short Small Low Low
vacation online transaction processing Emulates travel reservation system Medium Medium High Low/Medium

Table 5.1: Descriptions of 9 STAMP benchmarks, adapted from [3]

used all training workloads.

We set an abort trigger at 16 consecutive aborts, a 2048-cycle loop spin on

lock acquisition, and according to the commit thresholds described earlier. On any

trigger, we collected a single transaction profile, as initial studies did not find a

significant improvement in sample quality, but did observe noticeable slowdown in

the Labyrinth workload, when collecting multiple profiles.

5.1.1 Evaluation Criteria

To evaluate our adaptive policies, we used the STAMP benchmark suite [3]. Details

of the STAMP benchmarks are reported in Table 5.1. For the 9 recommended

configurations, we tested each of the 19 STM algorithms at 1, 2, 4, 8, and 12

threads. Using this information, we created an Oracle dataset consisting of the

best performer for each benchmark at each thread level. For each adaptivity policy,

we tested each benchmark at each thread level, and computed its speedup versus

the oracle (which is expected to be < 1). We scored each policy based on its per-

benchmark harmonic mean speedup, as well as its STAMP-wide harmonic mean

speedup. Occasional speedups > 1 occurred when the policy exploited program

phases.

32

5.2. PERFORMANCE SUMMARY: PRELIMINARIES

Bayes Genome Intruder KMeans KMeans Labyrinth SSCA2 Vacation Vacation All
(High) (Low) (High) (Low)

LSA 0.801 0.904 0.884 0.819 0.881 0.988 0.730 0.888 0.879 0.858
ThrX 0.803 0.936 0.979 0.892 0.917 0.995 0.785 0.974 0.959 0.910
CBRTime+RO 0.701 0.909 0.906 0.782 0.865 1.053 0.930 0.994 0.989 0.891

Table 5.2: Harmonic mean speedups on each STAMP benchmark,
for the best single algorithm, the best configuration for the expert, and CBR

adaptivity policies. In this table, there are no semantics requirements imposed on
the policies. CBR is trained only on the S1 training set.

Bayes Genome Intruder KMeans KMeans Labyrinth SSCA2 Vacation Vacation All
(High) (Low) (High) (Low)

NOrec 0.877 0.911 0.889 0.645 0.720 0.992 0.555 0.877 0.883 0.791
ThrELA2 0.923 0.903 0.897 0.717 0.737 0.985 0.674 0.863 0.875 0.829
CBRRead 0.793 0.991 0.905 0.841 0.868 0.934 1.050 0.978 0.985 0.921

Table 5.3: Harmonic mean speedups when ELA semantics are required.
CBR is trained only on the S1 training set.

5.2 Performance Summary: Preliminaries

Tables 5.2 and 5.3 list the best per-benchmark and STAMP wide harmonic mean

speedups for each adaptive approach. Note that the oracle policy differs between

the two tables, since ELA excludes LSA, TinySTM [12], TL2 [9], and Nano; con-

sequently, quantitative comparisons cannot be made between tables. If only one

algorithm can be used for all of STAMP, ELA favors NOrec while LSA is best oth-

erwise. However, for several benchmarks this choice is far from ideal, resulting in a

low 0.791 overall speedup for NOrec, and 0.858 for LSA. For X semantics, only TL2

was close (0.805); for ELA, TLRW variants, and orec variants, were close (above

0.73). The adaptivity policies included in RSTM perform poorly (not shown). These

policies interpret transient high abort rates as pathology, and make permanent de-

cisions toward fair but low-throughput algorithms. NOrec and LSA outperform the

corresponding ELA and X RSTM policies.

33

CHAPTER 5. EVALUATION

5.3 Expert Policy Performance

The ThrX and ThrELA policies, which select an algorithm based only on the thread

count, raise performance significantly. For ThrX, this improvement is completely

due to avoiding overhead at 1 thread, as it chooses LSA otherwise. We recommend

this approach without hesitation for any future STM design. However, ThrX still

performs poorly on SSCA2, KMeans, and Bayes. ThrELA2, which chooses between

Mutex, NOrec, and TLRW-lazy, is more nuanced. In choosing TLRW-lazy at 8

threads, it loses performance on Vacation. However, TLRW-lazy scales better than

NOrec for small writing transactions, and in the end this improvement on KMeans

and SSCA2 tips the scales in favor of ThrELA2 over ThrELA1 (which only uses

Mutex and NOrec).

While we include Bayes performance in all of our evaluation, we are generally

suspicious of this workload. The number and size of transactions run by each thread

is dependent on the interleaving of a few transactions executed early in the workload;

eager algorithms (particularly with visible reads) seem to deterministically choose

a bad initial commit order, which can cause an order of magnitude slowdown. Sim-

ilarly, a round-robin scheduling of transactions can occasionally cause a superlinear

(> 4) speedup at 2 threads.

5.4 CBR Performance

We explored all combinations of 5 CBR feature categories, and considered all three

training workloads. Given this large search space, we were able to find policies

that offered exceptional performance on STAMP, With ELA semantics, the use of

34

5.5. IMPACT OF TRAINING DATA

a single feature, the read count of transactions, enabled a system that achieved a

0.921 speedup. This surpasses all other ELA adaptivity policies. With X semantics,

our best performer only reached 0.891. Tables 5.2 and 5.3 only list the best CBR

performer for a given semantics level. For reference, the CBRRead policy only had

a 0.660 speedup under X semantics, and the CBRTime+RO policy achieved a 0.741

speedup under ELA (0.851 without Bayes). The most consistent CBR performer

used two features: TxTime and NonTxWork (CBRTxTime+NonTxWork). For ELA

semantics, it achieved a 0.892 speedup, and for X, a 0.890.

5.5 Impact of Training Data

Our CBR policies without exception performed best when trained only on the S1

training workloads. In considering the training workloads, S1 is drawn from STM

microbenchmarks, whereas S2 is an attempt to model behaviors that we expect

future TM programs to use. The explanation is simple: S2 contains many entries

that, on a per-metric basis, are indistinguishable to our CBR similarity functions.

Thus the S2 workloads can cause our policies to reject an otherwise valid choice of

algorithm from S1, due to a similarity collision.

35

CHAPTER 5. EVALUATION

 0

 0.2

 0.4

 0.6

 0.8

 1

S1 S1 S2 S2 S1+S2 S1+S2

CBR Read(ELA)
CBR Time RO(X)

Figure 5.1: Impact of training data.
The best-performing CBR policies for ELA and X semantics degrade significantly

when trained improperly.

36

Chapter 6

Conclusion

We believe that adaptive synchronization is necessary for high-performance shared

memory programs. To that end, in this thesis, we introduced a low-overhead system

for dynamically profiling the behavior of memory transactions. We also proposed an

adaptivity mechanism based on machine learning that can exploit dynamic profiles

to predict the STM algorithm that will maximize a workload’s performance. By

operating in this manner, our system is robust to program behaviors that are input-

dependent, or that vary during distinct phases of execution.

As future work, we plan to investigate changes to our training strategy by ex-

ploring more metrics. In particular, we found that the ratio of transactional work to

non-transactional had a strong impact on the choice of algorithm, yet our training

workloads were not parameterized for non-transactional work. Similarly, the number

of dynamic profiles to collect upon a trigger is crucial since the decision is largely

based on it. We intend to learn this parameter automatically and explore more

about its influence. In addtion, while our training workloads collect data about how

37

CHAPTER 6. CONCLUSION

transactions behave in isolation, we did not explore metrics that consider the nature

of concurrency in a program. More ML algorithms need to be considered to infer

concurrency properties, such as metadata bottlenecks and conflict granularity.

In the longer term, we believe that many more questions will be easier to address

given our results, our mechanisms, and our framework. Questions include adapting

in response to other STM feature requests (such as I/O), adapting on architectures

for which hardware TM support is available, and choosing among lock mechanisms

for workloads that do not, or cannot, use transactions.

38

Bibliography

[1] Agnar Aamodt and Enric Plaza. Case-based reasoning: foundational issues,

methodological variations, and system approaches. AI Commun., 7:39–59,

March 1994.

[2] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle,

J. Thomson, M. Toussaint, and C. K. I. Williams. Using machine learning to

focus iterative optimization. In Proceedings of the International Symposium on

Code Generation and Optimization, 2006.

[3] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun.

STAMP: Stanford transactional applications for multi-processing. In IISWC

’08: Proceedings of The IEEE International Symposium on Workload Charac-

terization, 2008.

[4] John Cavazos and Michael F. P. O’Boyle. Automatic tuning of inlining heuris-

tics. In Proceedings of the 2005 ACM/IEEE Conference on Supercomputing,

2005.

[5] John Cavazos and Michael F. P. O’Boyle. Method-specific dynamic compila-

tion using logistic regression. In Proceedings of the 21st annual ACM SIGPLAN

39

BIBLIOGRAPHY

Conference on Object-oriented Programming Systems, Languages, and Applica-

tions, 2006.

[6] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves, Devika

Subramanian, Linda Torczon, and Todd Waterman. Acme: adaptive compi-

lation made efficient. In Proceedings of the 2005 ACM SIGPLAN/SIGBED

Conference on Languages, Compilers, and Tools for Embedded Systems, 2005.

[7] Luke Dalessandro, Dave Dice, Michael Scott, Nir Shavit, and Michael Spear.

Transactional mutex locks. In Proceedings of the 16th International Euro-Par

Conference on Parallel Processing: Part II, 2010.

[8] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec: streamlining

stm by abolishing ownership records. In Proceedings of the 15th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, 2010.

[9] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In In Proceed-

ings of the 20th International Symposium on Distributed Computing, 2006.

[10] Dave Dice and Nir Shavit. Tlrw: return of the read-write lock. In Proceedings

of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures,

2010.

[11] Aleksandar Dragojević, Rachid Guerraoui, and Michal Kapalka. Stretching

transactional memory. In Proceedings of the 2009 ACM SIGPLAN Conference

on Programming Language Design and Implementation, 2009.

[12] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tun-

ing of word-based software transactional memory. In Proceedings of the 13th

40

BIBLIOGRAPHY

ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming (PPoPP), 2008.

[13] Tim Harris and Keir Fraser. Language support for lightweight transactions. In

Proceedings of the 18th annual ACM SIGPLAN conference on Object-oriented

programing, systems, languages, and applications, 2003.

[14] Yossi Lev, Mark Moir, and Dan Nussbaum. Phtm: Phased transactional mem-

ory. In Proceedings of the 2nd ACM SIGPLAN Workshop on Transactional

Computing, 2007.

[15] Xiaoming Li, Maŕıa Jesús Garzarán, and David Padua. A dynamically tuned

sorting library. In Proceedings of the international symposium on Code Gener-

ation and Optimization: Feedback-directed and Runtime Optimization, 2004.

[16] Virendra J. Marathe, William N. Scherer III, and Michael L. Scott. Adap-

tive software transactional memory. In Proceedings of the 19th International

Symposium on Distributed Computing, 2005.

[17] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya,

David Eisenstat, William N. Scherer III, and Michael L. Scott. Lowering the

overhead of nonblocking software transactional memory. In Proceedings of the

1st ACM SIG-PLAN Workshop on Languages, Compilers, and Hardware Sup-

port for Transactional Computing, 2006.

[18] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai,

Richard L. Hudson, Bratin Saha, and Adam Welc. Practical weak-atomicity

41

BIBLIOGRAPHY

semantics for java stm. In Proceedings of the twentieth annual symposium on

Parallelism in algorithms and architectures, 2008.

[19] Antoine Monsifrot, François Bodin, and Rene Quiniou. A machine learning

approach to automatic production of compiler heuristics. In Proceedings of the

10th International Conference on Artificial Intelligence: Methodology, Systems,

and Applications, 2002.

[20] Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion Berkowits,

James Cownie, Robert Geva, Sergey Kozhukow, Ravi Narayanaswamy, Jef-

frey Olivier, Serguei Preis, Bratin Saha, Ady Tal, and Xinmin Tian. Design

and implementation of transactional constructs for c/c++. In Proceedings of

the 23rd ACM SIGPLAN Conference on Object-oriented Programming Systems

Languages and Applications, 2008.

[21] Marek Olszewski, Jeremy Cutler, and J. Gregory Steffan. Judostm: A dynamic

binary-rewriting approach to software transactional memory. In Proceedings

of the 16th International Conference on Parallel Architecture and Compilation

Techniques, 2007.

[22] Torvald Riegel, Pascal Felber, and Christof Fetzer. A lazy snapshot algorithm

with eager validation. In Proceedings of the 20th International Symposium on

Distributed Computing, 2006.

[23] Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Robert Geva, Yang Ni, and Adam

Welc. Towards transactional memory semantics for c++. In Proceedings of the

42

BIBLIOGRAPHY

twenty-first annual symposium on Parallelism in algorithms and architectures,

2009.

[24] Abraham Silberschatz, Henry Korth, and Sudarshan. Database Systems Con-

cepts. McGraw-Hill, Inc., New York, NY, USA, 6 edition, 2006.

[25] Nehir Sonmez, Tim Harris, Adrian Cristal, Osman S. Unsal, and Mateo Valero.

Taking the heat off transactions: Dynamic selection of pessimistic concurrency

control. In Proceedings of the 2009 IEEE International Symposium on Paral-

lel&Distributed Processing, 2009.

[26] Michael F. Spear. Lightweight, robust adaptivity for software transactional

memory. In Proceedings of the 22nd ACM symposium on Parallelism in algo-

rithms and architectures, SPAA ’10, 2010.

[27] Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L.

Scott. Privatization techniques for software transactional memory. In Proceed-

ings of the Twenty-sixth Annual ACM Symposium on Principles of Distributed

Computing, 2007.

[28] Michael F. Spear, Maged M. Michael, and Christoph von Praun. Ringstm:

scalable transactions with a single atomic instruction. In Proceedings of the

Twentieth Annual Symposium on Parallelism in Algorithms and Architectures,

2008.

[29] Mark Stephenson and Saman Amarasinghe. Predicting unroll factors using

supervised classification. In Proceedings of the International Symposium on

Code Generation and Optimization, 2005.

43

BIBLIOGRAPHY

[30] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper

Saddle River, NJ, USA, 3rd edition, 2007.

[31] Takayuki Usui, Reimer Behrends, Jacob Evans, and Yannis Smaragdakis.

Adaptive locks: Combining transactions and locks for efficient concurrency. In

Proceedings of the 2009 18th International Conference on Parallel Architectures

and Compilation Techniques, 2009.

[32] Adam Welc, Bratin Saha, and Ali-Reza Adl-Tabatabai. Irrevocable transactions

and their applications. In Proceedings of the twentieth annual Symposium on

Parallelism in Algorithms and Architectures, New York, NY, USA, 2008. ACM.

[33] Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong,

Maria Garzaran, David Padua, Keshav Pingali, Pau l Stodghill, and Peng Wu.

A comparison of empirical and model-driven optimization. In Proceedings of

the ACM SIGPLAN 2003 Conference on Programming Language Design and

Implementation, 2003.

44

Vita

Qingping Wang was born to Xingen Wang and Lianmei Hu on Sep 24th, 1985 in

Wuhan, China. He grew up and finished his education from primary school to

college in his hometown. In June 2009, he recieved a bachelor’s degree in Computer

Science from Wuhan University, Wuhan, China. After that, he came to the U.S and

attended graduate school at Lehigh University.

	Lehigh University
	Lehigh Preserve
	2011

	A Machine Learning Approach to Adaptive Software Transaction Memory
	Qingping Wang
	Recommended Citation

	tmp.1363264564.pdf.WEifa

