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Abstract  

Low-cost air quality sensor systems have the potential to provide entirely new information about our air 

quality given (1) the increase in temporal and spatial resolution that they facilitate, (2) their capacity to utilize many 

different sensor types in a single system, and (3) their accessibility that enables citizens to measure air quality for 

themselves. However, there are still many challenges associated with sensor use, including issues of sensor 

performance quantification and a need for best practices to guide the use of this technology, particularly for 

community-based research. This thesis addresses these challenges. This thesis includes the quantification of volatile 

organic compound using sensors to provide methane and non-methane hydrocarbon concentration estimates in 

complex environments. To support the development of best practices, multiple deployments allowed for the 

exploration of questions related to the influence the building-scale variability of pollutants on sensor system siting, 

choices in sensor data processing, and field calibration procedures. Additionally, education and outreach work 

utilizing sensors and involving partnerships with local communities are described with the focus on resources and 

lessons that could support future community-based air quality research.   

This thesis also demonstrated the potential for sensor data. For example, sensor estimates of methane levels 

from a network deployed in rural Colorado revealed trends similar to those noted by other researchers using high-

quality instrumentation and methods. In another example, sensor estimates of methane and total non-methane 

hydrocarbons levels, analyzed along with other sensor signals (i.e., from carbon monoxide and carbon dioxide 

sensors), helped to identify distinct pollutant sources on a fine temporal and spatial scale in a South Los Angeles 

neighborhood. The results and conclusions of this work support the continued development of this technology with 

the goal of collecting preliminary and supplementary information that may contribute to improved public and 

environmental health.  
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fitted data plotted against the multi sensor data, the color indicates a normalized density of the data (yellow 

– high density, blue – low density). The black dotted line is the 1:1 line. 

8.8: Paired data for the two sampling sites near the drill site, with co-located data plotted in purple and deployed data 

in green; panel a – single sensor for CH4, panel b – multi sensor for CH4, and panel c – multi sensor for 

NMHC 

8.9: Hourly averages across deployment for all sensors (indicated in colors, with the exception of C1, which is 

indicated in grey), for the two methane plots, the averaged reference data, is indicated in black. Panel a – 

single sensor model for CH4, panel b – multi sensor model for CH4, panel c – multi sensor  

model for TNMHC 

8.10: Roughly one day of hourly data from two MegaCities sites: CNP (near our C1 Y-Pod), and USC (near our R4 

Y-Pod). The data was retrieved from https://megacities.jpl.nasa.gov/portal/data-access/. Note, the Y-Pod data 

was also hourly averaged, and the data plotted was from the multi sensor model. 

8.11: Panel a – Original methane level estimates from three sites, Panel b – the same data with the baseline removed. 

All data was converted using the multi sensor CH4 model. 

8.12: Baseline removed data from four sites grouped by hour of the day (in local time), panels a-d include the single 

sensor CH4 data, panels e-h include the multi sensor CH4 data, and panels i-l include the multi sensor NMHC 

data. The whiskers on the box plots represent the 5th and 9th percentiles respectively. 

8.13: Approximately one week of baseline removed data, with panel a including the single sensor CH4 data, panel b 

including the multi sensor methane data, and panel c including the multi sensor NMCH data. The time stamp 

is local, and the yellow box highlights the event discussed in the text. To the right of each panel is a zoomed 

in version of the event highlighted in yellow. 

8.14: Panel a includes baseline removed TNMHC, CO2, and CO data from Site E2 as well as baseline removed 

TNMHC data from Site E1. All of the data is from 8/15/16 and the times listed are local times. Panel b 

includes a wind rose for only the period of enhancements in TNMHCs. 



xv 

 

8.15: Panel a includes baseline removed TNMHC and CO2 data from Site E2, with the wind direction data during the 

period of elevation highlighted in yellow shown in panel b. Panel c includes baseline removed TNMHC and 

CO2 data from Site E1, with wind direction data from the period of elevations highlighted in yellow plotted 

in panel d. 

8.16: Baseline removed data from the same four sites shown in Figure 12, grouped by hour of the day (again, in local 

time), panels a-d include CO2 data, and panel e includes CO data from Site E2. The whiskers on the box plots 

represent the 5th and 9th percentiles respectively. 

8.17: Scatterplots of baseline removed data, with the correlation coefficients for each set of data noted. The top row 

of CH4 data is from the single sensor model, and the second row of CH4 data is from the multi sensor model. 

8.18: Complete CO2 and CO data from Site E2, with a ref. ratio based on the CARB inventory included, illustrating 

the similarity between the observed data and the expected CO/CO2 ratio for the LA area. 

8.19: Baseline removed CO2 and TNMHC data from Site E2, with a period highlighted in which an odor complaint 

was noted by nearby residents. 

8.20: Baseline removed CO2 and TNMHC data from Site E2 and Site E1, annotated with noise and odor complaints 

as well as observations of residents of heavy activity at the drill site. 

8.21: The daily 50th and 95th percentile values plotted against the number of observations per day (i.e., summed 

activity reports, odor complaints, and/or noise complaints). 

IV.1: Time series of Y-Pod data (shown in colors), and reference data (shown in black), for CO2 (top) and O3 (bottom).  

IV.2: Time series of co-located (top) and deployed (bottom) Y-Pods, for examining neighborhood-scale variability of 

CO2.  

IV.3: Time series of co-located (top) and deployed (bottom) Y-Pods, for examining neighborhood-scale variability of 

O3. 

IV.4: Time series of co-located (top) and deployed (bottom) Y-Pods, for examining building-scale variability of CO2.  

IV.5: Time series of co-located (top) and deployed (bottom) Y-Pods, for examining building-scale variability of O3.  

IV.6: Scatter plot of differences between B1 and B5 (on the x-axis, for O3, B1 – B5; and on the y-axis, for CO2, B5 – 

B1), colored by the hour of the day. The dotted lines around the center axes indicate the respective RMSEs 

for CO2 and O3. 

V.1. Scatter plots of P1 versus every other Y-Pod including both co-located data (in green) and deployed data (in 

blue).  

V.2: Panel (a) includes time series of methane reference data and fitted sensor data. Panel (b) includes the methane 

data for the Validation 2 dataset binned by days. The yellow segments highlight periods when 

underestimations below atmospheric background were removed, which coincide with days where the 

dynamic range is less than the expected uncertainty (RMSE is 0.18 ppm). 

V.1: Correlation plot for reference gases   

V.2:  Regression model residuals (from Section 3.1)  
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Chapter 1: Introduction 

“The senses don’t just make sense of life in bold or subtle acts of clarity, they tear reality apart into  

vibrant morsels and reassemble them into meaningful patterns.” 

~ Diana Ackerman, A History of the Senses 

Sensors serve a purpose very similar to our natural senses, they make it possible to detect and extract very 

specific pieces of reality, which we can then inspect for meaningful patterns. These patterns can anchor our 

understanding and provide a basis for action. At this stage in our evolution, our natural senses, despite their 

sophistication, are not enough. Manmade sensors can supplement our senses or provide information in places we 

cannot go, for instance broadening the visible spectrum (Gålfalk et al., 2016) or placing them inside of a brain to begin 

to decode the mysteries of its functions (Collier & Mahoney, 1984). Recently, much work has gone into understanding 

and developing sensors for lower cost air quality monitoring. This development has resulted in tools that can provide 

us with entirely new information about our local air quality resulting from the ability to deploy these systems in 

networks and the ability to leverage signals from different sensor types. While these new tools will never replace our 

existing monitoring infrastructure, or the high-quality tools on which we base regulatory decisions – there is an 

enormous potential to supplement the information we already have. These new tools could enable quicker 

identification of air quality issues and more strategic use of high quality instrumentation helping us confront the causes 

of poor air across the globe.  

According to the World Health Organization, in 2016 outdoor air pollution was estimated to have caused 4.2 

million premature deaths in both cities and rural areas, and 91% of the world’s population was estimated to be living 

in areas where air quality guidelines (defined by the WHO) were not being met (WHO, 2018). This statistic translates 

to 9 out of every 10 people breathing polluted air worldwide. While in some cases the cause of this pollution may be 

obvious, air quality monitoring is still a necessary piece of the puzzle as it can support the design of more robust 

solutions and be used to assess the effectiveness of different actions intended to reduce exposure. Furthermore, new 

technologies such as low-cost sensing systems will support the collection of data on smaller, more local scales, 

informing locally relevant action. 

Currently sensor systems are well-suited for monitoring certain criteria pollutants. For example, there are 

several studies illustrating the robust performance of carbon monoxide and ozone sensors at ambient levels (Mead et 

al., 2013; Cross et al., 2017; Sadighi et al., 2018; Zimmerman et al., 2018). There has also been much research in 
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particulate matter sensors that utilize light-scattering detection principles (Johnson et al., 2018; Kelly et al., 2017). 

While these pollutant species are important for human health, the ability to use sensors for the detection of air toxics 

and important hydrocarbons, such as methane, would build our capacity to characterize air quality issues.  

One study in rural Alaska demonstrated the capability of low-cost metal oxide VOC sensor to replicate 

diurnal trends at low, ambient concentrations (Eugster & Kling, 2012). Other studies in laboratory settings have 

illustrated promising performance from low-cost sensors for VOC detection; particularly when multiple sensors are 

used in an array or when techniques such as temperature-controlled operation are incorporated (Sauerwald et al., 2018; 

Schütze et al., 2017). These studies have demonstrated the ability of sensors to not only detect specific VOCs at 

ambient levels, but also to accomplish this amidst confounding gases (Leidinger et al., 2014). A few studies have also 

piloted the use of low-cost sensors in the field, illustrating their capacity to detect VOCs in more complex 

environments. One of these showed the detection of ambient benzene using an array and neural network calibrations 

(De Vito et al., 2008). Another pointed to the usefulness of PID sensors to detect short-term enhancements and how 

this could be leveraged by combing sensors with a tool that can provide speciated information (e.g., passive adsorption 

tubes (Thoma et al., 2016). However, there are no studies utilizing low-cost sensors for methane detection in complex 

environments, or studies investigating the ability of multiple VOC sensors to provide estimates of concentrations of 

individual and grouped or summed VOCs in the field.  

The detection of hydrocarbons and VOCs are an important next step in the development of low-cost sensors. 

Methane is a potent greenhouse gas, and recently leaks along the production and distribution chain have become a 

concern as researchers are consistently finding that methane has been underestimated in the established emissions 

inventories (Miller et al., 2013; Marchese et al., 2015). Other VOCs are a concern as these can include hazardous air 

pollutants (HAPs) or air toxics, with known implications for human health. These are a concern as researchers have 

found that small scale variability exists among these pollutants based on proximity to sources. For example, in the 

RIOPA study researchers found that residential concentrations of certain air toxics were 1.5 – 4 times higher at homes 

less than 50 m from a source (Kwon et al., 2006). Also, concentrations of toxics have been detected above the EPA’s 

benchmark for cancer and non-cancer risks in communities in recent years (Kwon et al., 2006; Wu et al., 2012). When 

considering potential emissions sources, a typical refinery may be operating according to regulations, however there 

may be another refinery that is an outlier and releasing a relatively large amount of emissions that affect nearby 

communities. Low-cost sensors could help to identify these outliers and hot spots more quickly. Instances like this are 
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of particular concern for communities disproportionately impacted by air pollution, communities that are often also 

typically minority and socioeconomically disadvantaged. Several studies over the years have demonstrated the reality 

of this disproportionate impact (Brown 1995; Souza et al., 2009; Marshall 2008). Additionally, when residents are 

concerned about a nearby potential source of pollution, they are eager to get involved and learn more (Brown 1992). 

Furthermore, the residents of these communities often have valuable experiential knowledge on their immediate 

environment and the sources that they live next door to. 

AN EXAMPLE OF COMMUNITY-BASED AIR QUALITY RESEARCH  

Community members in Northeast Denver were concerned about a number of local air quality issues. After 

a meeting was held discussing different approaches to air quality monitoring and their concerns, we organized a pilot 

project to screen for perchloroethylene and radon in a small sample of homes (TNH2H, 2015). Perchloroethylene was 

selected as residents had seen reports of PERC vapor intrusion near former dry-cleaning facilities affecting homes and 

childcare facilities in Denver. Radon was added by the suggestion of a community member. While we did not find 

evidence of high levels of perchloroethylene, we did find levels of radon above the US EPA’s “action level” in 12 out 

of 15 homes (TNH2H, 2015). Although the more startling take-away was how many participants remarked that they 

had never been advised to test for radon, despite being long-term residents of the neighborhood, some up to 30 years. 

This is especially surprising because radon is a well-known issue in Colorado, with 1 out of every 2 homes in Denver 

County testing above the “action level” (CDPHE, 2018). Radon is also the leading cause of lung cancer in non-smokers 

in the US (US EPA, 2018).  

This pilot project provides a clear example of a low-cost, accessible air quality monitoring method (off-the-

shelf, short-term radon sampling kits), helping to identify an important and actionable issue in a community. This 

project was a partnership between Taking Neighborhood Health to Heart, an organization with experience engaging 

in community-based participatory research (CBPR), the Thriving Earth Exchange, an organization working to support 

community-based science, and researchers from our team at CU Boulder who received additional support from CU 

Engage. Using the results of this pilot project, the community-based organization, Taking Neighborhood Health to 

Heart (TNH2H), has continued to expand this project and conduct more radon sampling in the community as well as 

hold education and outreach events with the support of a US EPA Environmental Justice Small Grant (US EPA, 

2017c). This pilot project serves as a great model for community-based participatory air quality research.  
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Utilizing a participatory method already established by TNH2H aided with recruitment of participants, 

ensured the success of crowd-funding efforts, and enabled us to implement sampling procedures that protected both 

participants and researchers (Main et al., 2012). Iterative data analysis and interpretation between partners helped to 

determine ideal next steps, including securing a source of financial support for mitigation in low-income homes 

through an existing emergency home repair program. Arguably the pilot project was conducted using modest funding 

(<$5000), but the support and participation of many partners led to its success and helped to facilitate the acquisition 

of funding from more conventional sources. It’s possible that low-cost sensors systems could be used in a similar 

iterative fashion, first identifying issues and providing initial results that facilitate further investigations.  

BENEFITS AND POTENTIAL OF LOW-COST SENSING SYSTEMS  

Of course, as previously stated, sensor systems will never replace conventional air quality monitoring 

equipment, but there are gaps in the research that sensors may be well-suited to fill. For example, regulatory 

monitoring stations require not only costly instrumentation, but also personnel to carry out the appropriate Federal 

Reference Methods and ensure the collection of legally defensible data. A task that is especially important as this is 

the data used to determine whether or not regulations are being met. However, it would be cost prohibitive to deploy 

this type of equipment and these methods on neighborhood scales in every neighborhood with a concern. While there 

are reliable tools, maintained by research groups and utilized on a more as needed basis that can sometimes be accessed 

through partnerships, for example Picarro CRDS which can provide high quality methane data or a PTR-MS which 

can provide speciated high-time resolution hydrocarbon data, these tools are generally reserved for larger campaigns 

that pursue research questions of interest to the academic community. These tools would not typically be accessible 

to a community curious about the local effects of a particular emission source. Another option is passive sampling 

techniques, which are lower in cost and can provide high quality speciated information (Eisele et al., 2016; Johnston 

& Gibson, 2013). The trade-off here is that these tools cannot provide high-time resolution data and may not support 

the study of individual emission events.  

Low-cost sensor systems can provide high temporal and spatial resolution data and they can be deployed in 

customizable networks. These networks are ideal for examining temporal and spatial variability. In one study, 

researchers utilized a baseline extraction technique to separate the regional and local trends in the data from a sensor 

network. These researchers were then able to compare the average rural vs urban baseline and learn about the transport 
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and impact of local sources on urban versus rural air. Other studies have confirmed the existence of variability in 

ozone concentrations on very small spatial scales, which could impact exposure levels and suggests that the nearest 

regulatory monitoring stations may not always be the best estimate an individual’s exposure (Sadighi et al., 2018; 

Cheadle et al, 2017). Studies have also confirmed the ability of these networks to increase the granularity of air quality 

data, which has the potential to reveal new information and patterns (Shusterman et al., 2016; Schneider et al., 2017).  

Linked to this idea of increased spatial and temporal resolution of air quality data are networks to support 

community-based investigations. Given the accessibility and relatively simple deployment and operation of these 

tools, they are also well suited to support community-based investigations (Shamasunder et al., 2018). The IVAN Air 

Monitoring Network in Imperial County utilizes a network of low-cost PM sensors to provide higher resolution data, 

supplementary to the existing regulatory network (English et al., 2016). This community, in a county with the highest 

rates of hospitalization for asthma for school-age children, utilizes this data to inform actions at the local schools – 

specifically decisions regarding whether or not students spend time outdoors (English et al, 2016). This network of 

sensors allows individual schools to make decisions based on more locally relevant information. In addition to the 

ability to provide higher-resolution data to communities, there is the potential to leverage community knowledge and 

expertise to add context to the data from these networks. As noted earlier, community residents are likely to know 

quite a bit about potential sources of air pollution in the community. This information in addition to observed odors 

or visible emissions can support the interpretation of data from sensor networks. However, this type of analysis would 

require new ways of collecting comprehensive observational data as well as ways to merge the quantitative sensor 

data and qualitative observational information.  

Other promising sensor applications are fenceline monitoring or leak detection and personal exposure 

monitoring. Given their size, cost, and power requirements, low-cost sensors are ideal for fenceline monitoring and 

leak detection even in remote areas, for example on a well-pad in a rural area. Studies have demonstrated that sensors 

are capable of detecting large changes from baseline, particularly in situations where the surrounding environment has 

no other or relatively few sources (Mead et al., 2013; Thoma et al., 2016). A sensor could be used to continuously 

monitor for leaks at a single target source, and additional streams of information such as meteorological data can 

enhance confidence in the information gained from this type of sensor data. In terms of personal exposure monitoring, 

many studies have pointed out how using the nearest available regulatory monitoring to estimate exposure is 

inadequate (Wilson et al., 2005). Researchers in public health are excited about sensors not only because there is the 
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possibility of increasing the accuracy of exposure data, but also given the temporal resolution, researchers can begin 

to explore the impact of acute, high-level exposure events. A few studies have also examined sensor capabilities for 

this purpose (Jerrett et al., 2017; Piedrahita et al., 2014).  

Sensors are also well-suited to support education and outreach (E&O). Again, given the cost, and relatively 

simple operation of these tools they work well in K-12 E&O classrooms. For example, low-cost sensing systems can 

help make complex and seemingly invisible concepts more concrete, like combustion chemistry. Students can burn 

different fuels types (e.g., by using simple items like a lighter and a coffee stir stick) illustrating the difference between 

complete and incomplete combustion. These differences are visible in the data by comparing the response from CO2 

and VOC/CO sensors. Access to sensor systems can also support student-led investigations, in addition to more 

structured activities. For example, the Air Quality InQuiry Program (AQ-IQ), which I helped to build along with 

partners from CU, the Delta School District, and the Delta County Health Dept, provides the support needed for 

students to design and conduct their own air quality studies. This program includes access to low-cost sensing systems, 

a project-based learning curriculum, and university mentors (cite). Through this program students are able to 

experience the complete research process from planning to interpreting their data and presenting their results, all the 

while using the same tools being used by academics. This program encourages students to research questions that are 

personally and locally relevant to their interests, for example they often investigate the indoor air quality in their 

school or emissions from products that they and their fellow students use, such as perfume. More accessible 

environmental monitoring tools would support more efforts such as this, and in addition to benefitting those directly 

participating in the E&O, the resources developed and lessons learned could translate to the use of sensors by the 

public more broadly.  

While communities often wish to use sensors to investigate specific concerns, the projects also provide an 

opportunity for environmental education and a chance to improve scientific literacy. By participating in research 

projects utilizing sensors, individuals might learn more about the complexities of air quality monitoring and decision 

making as well as more about air quality in general. These types of projects could also have the added benefit of 

improving relationships between regulatory agencies and communities.  
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HOW DOES THE THESIS ENABLE SENSOR SYSTEMS TO  

REACH THESE VISIONS?  

In addition to these benefits and potential applications for sensors, it is important to discuss the challenges 

and limitations associated with their use. A workshop organized and led by the MetaSense Project provides an 

overview of the current state of the sensor technology and the major issues requiring attention. Chapter 2 includes a 

summary of this workshop as well as a general review of low-cost sensing systems. This summary provides valuable 

background and context on the field of low-cost sensor research; it also highlights current needs and questions that 

my work presented here speaks to. Several of the issues noted during the workshop, which my work helps to address, 

include quantification of sensor performance, a lack of best practices, and the need for more case studies and examples 

of low-cost sensor system use. Chapters 3 and 4 provide information on my use of low-cost sensors for education and 

outreach work, including the development of a program around the use of sensors and assessments of that program. 

These two chapters also further highlight the benefits and potentials of sensor use.   

Returning to the content of Chapter 2, workshop participants identified the establishment of best practices as 

an upcoming need. The US EPA has developed many valuable resources to help encourage the purposeful use of 

sensors in the Air Sensor Toolbox, which includes a helpful guide to planning a sensor study and several tools for 

analyzing and visualizing sensor data (US EPA, 2017a). Still, given the wide variety of sensor uses we are likely to 

see, there is value in examining these questions from different perspectives and in different contexts. For example, by 

studying the variability observed by multiple sensor systems placed around a single field site. The results of this type 

of study might contain lessons that could inform sensor system placement for future studies, which is the analysis 

shared in Chapter 5. Currently, the siting and placement of sensor systems is primarily based on what is safest and 

most convenient for the property owner or resident. However, if a sensor system is placed in a location where it cannot 

collect the appropriate data to address the research question, then it might not matter if the sensor data was carefully 

quantified and is of high data quality. Answering questions like this will further support the collection of purposeful 

and useful sensor data.  

Another ongoing concern regarding the use of low-cost sensor systems has been related to quantification and 

ensuring reliable data quality. The main reason this concern persists is that most low-cost sensors are cross-sensitive 

to environmental factors (i.e., temperature and humidity) and sometimes other pollutants as well (Lewis, 2016). 

Previous studies have found that field calibration or field normalization, as opposed to laboratory calibrations, support 

the generation of calibration models that can mitigate some of the effects of these cross-sensitivities and provide 
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relatively robust estimates of the concentration of target pollutants (Piedrahita et al., 2014; Castell et al., 2017). 

Basically, the dynamic conditions experienced during a field deployment are difficult to simulate in the lab. Field 

calibrations rely on a co-location with high-quality reference instruments, typically before and after a field 

deployment. Then using a technique such as multiple linear regression, the co-located data is used to train and test a 

calibration model to predict concentrations of the target pollutant. This calibration model can then be used to convert 

raw sensor signals to useable concentration data. Some specific issues related to calibration during the workshop 

included the need to determine the extent to which field calibrations are transferable to new locations and standardizing 

the way in which uncertainty is calculated and reported.  

My work quantifying sensor performance, presented throughout Chapters 6, 7, and 8, primarily focuses on 

the quantification of VOC sensors for methane as well as individual and grouped VOCs, in the context of field 

deployments. As previously mentioned, this is an understudied area and further research could open the door to broader 

use of these tools in the future. However, quantifying VOC sensors is in some ways more complicated than it would 

be for sensors designed to detect other pollutants because there are so many more potential confounders given the 

number and variety of VOCs potentially found in a city. A review article highlights the complexities of measuring 

VOCs, even with conventional methods, and provides an overview of worldwide profiles, further illustrating the 

potential for complex mixtures (Kumar & Viden, 2007). Consequently, in addition to assessing the predictive abilities 

of the calibration models generated using typical quantification techniques, I also consider sensor behavior across 

changing VOC compositions. Furthermore, the availability of datasets collected in different environments, such as 

urban Los Angeles and rural Colorado, may lead to results and lessons learned that are more broadly applicable. 

A final observation shared by workshop participants was that more case studies and examples of sensor 

projects could be valuable to both researchers and community groups by helping them think about how to use sensors 

and plan studies. The work presented here in Chapters 6 and 8 includes several deployments, from different locations, 

and with different objectives. These vary from a deployment in rural Colorado, examining the spatial variability of 

estimated methane concentrations across an area containing various densities of oil and gas activity, to another in Los 

Angeles, examining methane and total non-methane hydrocarbon data from a sensor network in a high density 

residential area impacted by traffic and other local industries. Each of the studies provides the opportunity to explore 

what conclusions can be drawn from this data that are unique to this approach and technology, which will help to 

highlight how sensors can best support existing monitoring efforts. Therefore, these studies both provide adaptable 
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examples and they contribute to a bigger picture. Additionally, during these deployments and projects, resources were 

developed and lessons were learned that can hopefully be leveraged by future sensor projects helping to push the 

needle forward on what future projects are able to accomplish. 
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Preface to Chapter 2 

 

The following chapter is intended to provide background and context for my dissertation work. The 

author list of this publication is not in order of the level of contribution, but rather the order in 

which contributions were added to the paper. I was responsible for writing Sections 5.3 

(Opportunities for Community-Driven Science) and 7 (Workshop Conclusions). I also assisted with 

a review of and revisions to the whole summary paper. In addition to work on this publication, I led 

the planning and organization of the workshop with the help of the planning committee. 
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ABSTRACT 

In May 2017, a two-day workshop was held in Los Angeles (California, U.S.A.) to gather practitioners who 

work with low-cost sensors used to make air quality measurements. The community of practice included individuals 

from academia, industry, non-profit groups, community-based organizations, and regulatory agencies. The group 

gathered to share knowledge developed from a variety of pilot projects in hopes of advancing the collective knowledge 

about how best to use low-cost air quality sensors. Panel discussion topics included: (1) best practices for deployment 

and calibration of low-cost sensor systems, (2) data standardization efforts and database design, (3) advances in sensor 

calibration, data management, and data analysis and visualization, and (4) lessons learned from research/community 

partnerships to encourage purposeful use of sensors and create change/action. Panel discussions summarized 

knowledge advances and project successes while also highlighting the questions, unresolved issues, and technological 

limitations that still remain within the low-cost air quality sensor arena. 

1. INTRODUCTION 

In the United States, air quality has traditionally been measured according to a metric established by the 

United States Environmental Protection Agency (USEPA) using equipment that implement a federal reference method 

(FRM) or federal equivalent method (FEM). These devices cost tens of thousands of dollars and require significant 

infrastructure and trained personnel to operate. Within the last ten years, miniaturization and other technological 

advances have brought to market a number of low-cost (<$2500) sensors designed to measure atmospheric particles 

and gases. Although sensors cannot replace traditional FRM/FEM monitors, these sensors have created new 

opportunities for broadening access to ambient air quality monitoring for applications such as personal health and sub-
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regional air quality assessment (Snyder et al., 2013; Hagler et al., 2014). Residents in Environmental Justice 

communities are particularly interested in using sensor technology to gather neighborhood-level data to illustrate the 

impact of specific emissions sources and magnitude of air quality issues affecting their communities. 

Efforts relating to the application of this new generation of low-cost sensors have taken several forms. While 

much has been invested in the development of low-cost ambient air quality sensors, research to identify appropriate 

and purposeful use of sensors and networks and develop data analysis and visualization tools to process and interpret 

collected data is ongoing. In order to increase sensing accuracy, studies have sought to characterize how low-cost 

sensors respond under changing environmental conditions. 

Accuracy and reliability have become unifying concerns. Sensor system development and implementation 

have been hampered by the complex nature of low-cost gas and particle sensor responses. Some sensors have exhibited 

vexing manufacturing variations and sensor sensitivity to environmental factors like temperature, humidity, and 

barometric pressure has proven difficult to model when the conditions range widely. The response of low-cost sensors 

has been shown to change as they age, in connection with how long they have been in operation. Issues with sensor 

drift have necessitated frequent recalibration, reducing their cost advantage. In addition, low-cost sensors have also 

proven sensitive to enclosure air exchange rates, complicating mobile deployments, which are a popular application 

of low-cost sensors because of their small size and low power requirements (Arfire et al., 2016). Sensors can be slow 

to respond to changes in pollutant levels, causing pollutant spikes encountered in mobile deployments to be 

underestimated. Finally, air quality sensors are often marketed for one pollutant, but exhibit cross-sensitivity to other 

pollutants. Ongoing research is investigating a number of sensors to identify cross-sensitivities and working towards 

resolution and quantification of individual gas species using advanced calibration techniques and comparison to 

FRM/FEM measurements (McKercher et al., 2017; Lewis et al., 2016; Piedrahita et al., 2104; Cross et al., 2017; 

Borrego et al., 2016; Jiao et al., 2016; Spinelle et al., 2105a; Spinelle et al., 2017a). Keeping abreast of this technology 

sector is difficult at best given that new sensors or versions are coming to market seemingly every day and our ability 

to evaluate the technology requires painstaking research. 

All of these efforts have resulted in valuable lessons and the MetaSense research team (Griswold et al., 2015) 

convened this workshop with the leading practitioners in the field of low-cost air sensing to share insights and discuss 

open problems. The community of practice included academic researchers, industry professionals, non-profit groups, 

community-based organization, and regulatory agencies. The workshop was organized into four panels guided by the 
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following topics: (1) best practices for deployment and calibration of low-cost sensor systems, (2) data standardization 

efforts and database design, (3) advances in sensor calibration, data management, and data analysis and visualization, 

and (4) lessons learned from research/community partnerships to encourage purposeful use of sensors and create 

change/action. The following summarizes the workshop’s discussions among panel experts and the community of 

practice and shares insights from two community-based organizations gathering air quality data in an effort to improve 

their communities. 

2. PANEL 1, ‘BEST PRACTICES’ FOR DEPLOYMENT AND CALIBRATION OF 

LOW-COST SENSOR SYSTEMS 

Significant effort has been devoted to exploring the use of low-cost air quality sensors. The low-cost and 

small size of these devices make them very attractive for increasing the spatial coverage of existing networks, 

deploying sensors in urban locations where small footprints are desirable, and mobile or semi-mobile sampling 

schemes. During Panel 1, panelists Andrea Polidori (South Coast Air Quality Management District, Diamond Bar, 

CA, USA), Ron Cohen (University of California, Berkeley, CA, USA), Jonathan Thornburg (Research Triangle 

Institute, Durham, NC, USA), and Angelo Bianchi (AQMesh, Stratford-upon-Avon, UK) discussed the exploratory 

research done to understand the appropriate use of sensors, evaluation efforts being conducted by a variety of 

institutions, current sensor performance expectations, the state of calibration research, and recent deployment efforts. 

The overall conclusion was that this field is in transition and more work and funding is needed to continue to realize 

the full potential of low-cost air quality sensors. 

2.1. Categorization and Use of Sensor Systems 

There appears to be a common misconception that low-cost air quality sensors are capable of measurements 

comparable to FRM/FEM measurements. Experience proves this is not the case with some sensors showing no 

correlation to FRM/FEM measurements, while others show reasonable correlations (R2~0.7) (US EPA, 2017b; 

SCAQMD, 2015). The USEPA is not currently entertaining sensor applications for FEM consideration. In addition to 

poor correlations, sensors often have greater uncertainty. Thus, many sensors fall into an undefined space somewhere 

between qualitative educational and regulatory compliance measurements and future work may further define this 

space. 
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Although low-cost air quality sensors, in their current state, cannot be used for regulatory or compliance 

purposes, there are a number of appropriate and useful application for these low-cost tools (Hall et al., 2014; Williams 

et al., 2014). Sensors may not be able to report a sufficiently precise or accurate pollutant concentration to replicate 

FRM/FEM measurements but some correlate fair to reasonably well (R2 = 0.4–0.8) (US EPA, 2017b; SCAQMD, 

2015).  Those that correlate can be used to supplement existing monitoring networks to increase spatial coverage and 

fill knowledge gaps. They can be used to measure smaller scale variations in spatial concentration or determine how 

a suspected source may be affecting a nearby community, frequent concerns of community-based organizations. 

Education and developing air quality awareness are natural applications of sensor technologies and provide a means 

by which citizens and students might learn about air quality issues, sources impacting air pollution, and variations in 

air quality in various environments such as work, home, and outdoors. Personal exposure monitoring is another 

emerging and exciting application for sensors, especially for individuals who are more sensitive to air pollution. 

Personal exposure monitoring may help an individual make decisions about the timing and location of daily activities 

like commuting and exercise, based on air quality data. Whether or not a particular sensor is being used appropriately 

is application dependent—the sensor model, the calibration/deployment procedures, and even data processing and 

interpretation should all be motivated by the research question. 

2.2. Sensor Evaluation 

Choosing an appropriate sensor is an important first step in any data collection effort. To date, three notable 

programs have been established to characterize the performance of low-cost air quality sensors and to make the results 

of such evaluations available to all potential users. In each case, evaluations are done objectively and the evaluating 

programs often outright purchase the sensors to ensure integrity. Sensors are often evaluated under real-world outdoor 

field conditions where sensors are placed alongside the traditional FRM/FEM equipment to which their data are 

compared. Laboratory testing is also employed for evaluations and involves exposing sensors to known pollutant 

concentrations within an environmental chamber. Evaluations may include variable temperature and relative humidity 

conditions as well as introduction of known or possible interfering pollutants. These results should be consulted in the 

search for an appropriate sensor. 

The Air Quality Sensor Performance Evaluation Center (AQ-SPEC), operated by the South Coast Air Quality 

Management District (SCAQMD), was established in 2014 to evaluate the accuracy and usability of commercially 

available low-cost air quality sensors. At present, evaluations focus primarily on turn-key products that are ready for 
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immediate deployment and/or operation. All sensors evaluated in this program are operated outside in southern 

California field conditions, and reasonably performing sensors are also tested under controlled laboratory conditions 

with varied temperature and relative humidity conditions. Sensor evaluation reports and details about testing protocols 

are available on the AQ-SPEC website located at www.aqmd.gov/aq-spec (SCAQMD, 2015). 

The US EPA Office of Research and Development (ORD) also conducts evaluations of low-cost air quality 

sensors and the evaluations results are one of the many resources made available through the USEPA Air Sensors 

Toolbox located at www.epa.gov/air-sensor-toolbox (US EPA, 2017a). The US EPA has undertaken a number of 

sensor evaluation efforts under outdoor field and controlled laboratory conditions. More field evaluations are 

undertaken than lab evaluations and most have been conducted at the Ambient Air Innovation Research Site (AIRS) 

test platform at the Research Triangle Park location in North Carolina. In addition to turn-key products, US EPA has 

also evaluated some component based sensors and have incorporated such sensors into a number of devices including 

the Village Green Stations, AirMappers, and several versions of the Citizen Science Air Monitors (CSAMs). These 

devices, and a small number of turn-key products, have been operated and evaluated over the course of several small 

to mid-sized field deployments connected to US EPA projects all over the country (US EPA, 2017a). 

The Joint Research Center (JRC), as the European Commission’s Science and Knowledge Service, has also 

conducted research evaluating low-cost air quality sensors via testing under controlled laboratory conditions in a state-

of-the-art chamber and outdoor field deployments. Laboratory evaluations have focused on component based sensors, 

calibrations, and long-term experiments to give insight into long-term performance and drift. Field deployments have 

investigated normalization techniques too. Information about the chamber, testing protocols, sensor evaluations, and 

field deployments are mainly found through reports and in the scientific literature (Spinelle et al., 2015a; Spinelle et 

al., 2013; Spinelle et al., 2015b). Additionally, a number of academic researchers have published papers sharing lab 

evaluations (Wang et al., 2015) or field performance data on a limited selection of sensors (Austin et al., 2015; Duvall 

et al., 2016; Lin et al., 2015; Manikonda et al., 2016; Zikova et al., 2017). 

Sensor performance evaluations have been extremely helpful for practitioners. However, under the current 

paradigm, the evaluating institutions pay for the sensors they evaluate, which is likely to be unsustainable in the long 

run with a rapidly changing marketplace and increasing costs as sensor systems get more complex. Debates about the 

path forward are ongoing and options include third party evaluation, sensor certification, or a program which would 

encourage manufactures to self-evaluate. Although these discussions are happening now, it is important to note that 

http://www.epa.gov/air-sensor-toolbox
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such programs come with significant investments of time (e.g., developing test methods for each pollutant, getting 

manufactures on board) and money (e.g., start-up, program maintenance) and are likely to take many years to develop. 

2.3. Current State of Sensor Performance 

The sensor evaluation efforts described have provided insight into the current state of sensor performance 

and have elucidated areas where further research and development is needed. Evaluations show that currently available 

particulate matter (PM) sensors exhibit reasonable performance (select sensors approaching 0.7 < R2 < 0.9) 

(SCAQMD, 2015). Evaluations found that most PM sensors have minimal downtime, moderate inter-sensor 

variability, and show reasonable correlation with FRM/FEM measurements, although calibration and normalization 

is still needed. Many show temperature and humidity effects, especially at high humidity, and under-report at very 

high (>200 g/m3) concentrations (Crilley et al., 2017; Williams et al., 2014). Additionally, most sensors cannot detect 

very small particles (lower cutoffs between 0.3 and 1 m) and will miss ultrafine particles and smoke (Jovasevic-

Stoianovic et al., 2015). Some work is ongoing to develop sensors capable of measuring particles in this small size 

range. Most of the current sensors detect particle counts rather than particle mass and must use an algorithm to report 

PM mass concentrations (Jovasevic-Stoianovic et al., 2015). 

Evaluations show that gas-phase sensors exhibit acceptable data recovery but have more inter-sensor 

variability than PM sensors. When carbon monoxide (CO), nitrogen dioxide (NO2), and ozone (O3) are measured 

alone in a laboratory setting under controlled conditions without confounding gas species present, sensors exhibit 

reasonable to good correlation with FRM/FEM measurements (0.8 < R2 < 0.99) (SCAQMD, 2015; Castell et al., 2017; 

US EPA, 2017b). Sensors that are cross-sensitive to multiple pollutants show low correlations with FRM/FEM 

measurements when operated in the field environment where a mixture of pollutants is present (0.3 < R2 < 0.9) 

(SCAQMD, 2015; US EPA, 2017b). Temperature and relative humidity (RH) have a larger effect on gas phase sensors 

leading to decreased sensitivity in high RH conditions and degradation over time (Lewis et al., 2016; Masson et al., 

2015a). Therefore, repeated field calibration of gas phase sensors is needed and is further discussed in the next section. 

To date, ambient concentrations of sulfur dioxide (SO2), hydrogen sulfide (H2S), methane (CH4), and volatile organic 

compounds (VOCs) prove extremely difficult to quantify despite sensors that advertise sensitivity to these species. 
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2.4. Sensor Calibration 

Sensor performance evaluations have indicated a need to calibrate sensor response if one wishes to compare 

one sensor’s data to that of another sensor or to nearby regulatory monitoring data. Field normalization of sensor 

signals that have been collocated with FRM/FEM measurements is the most common method of calibrating sensor 

measurements. Linear regression is commonly used to normalize sensor signals to reference measurements, but there 

is no evidence that these correlations are transferrable to different locations. Environmental factors such as 

temperature, relative humidity, relative concentration of confounding pollutants, and particle sources and variation in 

particle size are all known to affect sensor response, so it is not surprising that these variables also change how sensor 

measurements compare with the reference. 

Researchers are exploring different methods of calibrating sensors against reference measurements motivated 

by the known presence of complex nonlinear and cross-sensitive behavior of sensors. Field normalization techniques 

that attempt to address these complex behaviors include multi-linear regressions, non-linear multi-variate models, and 

machine learning (Cross et al., 2017; Spinelle et al., 2015a; Spinelle et al., 2017a; Masson et al., 2015a & 2015b; 

Esposito et al., 2016). These methods may make calibrations more transferrable between regions because they consider 

many of the factors known to influence sensor performance, though model extrapolation is a concern. Therefore, it 

will be important to calibrate over a wide range of environmental variables and pollutant concentrations. Future 

experiments may investigate if such calibrations can be performed in a laboratory setting (Cross et al., 2017). Methods 

for dealing with sensor aging, which can cause a range of issues from drift to sensor failure, are still largely 

underdeveloped. 

Beyond field normalization to reference measurements, researchers have used their understanding of 

atmospheric chemistry to add another level of validation to the data produced by sensors. There is great potential for 

researchers to develop rules based on atmospheric chemistry/physics to ‘check’ sensor data and to share these 

resources with users. For instance, Ron Cohen shared that his group has been using VOC + NO2 ozone formation 

chemistry to check some of their sensor data. Briefly, O3 concentrations should fall to zero at night, if there is any NO 

present so nighttime sensor readings may point to a bias within the sensor measurements and monitoring changes in 

this minimum concentration may help detect sensor drift or more dramatic shifts in sensor performance. 



18 

 

2.5. Sensor Network Deployment 

Numerous sensor deployments have been conducted in recent years ranging from residents investigating air 

quality in their homes or neighborhoods, to small networks looking at community-level concentrations, to large sensor 

networks covering cities or regions (Jiao et al., 2016; Lin et al., 2015; Shusterman et al., 2016; Moltchanov et al., 

2015; Sun et al., 2015; Tsujita et al., 2005; Gao et al., 2105; Kaufman et al., 2017). Increasing network size leads to 

increasing complexity and exponentially increasing costs and effort for data analysis and visualization. 

When deploying sensors for data collection purposes, there are a number of factors to consider. The EPA’s Air 

Sensor Guidebook (Williams et al., 2014)  may be a helpful resource to those designing a data collection effort using 

sensors. The following represent key considerations and ‘best practice’ recommendations. 

• The research question needs to drive proper sensor selection. Consult evaluation reports during the sensor 

selection process to better understand how a sensor might be expected to perform given the environment and 

expected pollutant concentrations. 

• Calibration is key to any successful deployment. Although researchers are still investigating a number of 

ways to calibrate sensors (Section 3.4), collocation of all sensors with nearby FRM/FEM is still an essential 

best practice. At a minimum, this should be done before any sensor deployment or field study. Repeating the 

procedure after a deployment will help quantify sensor drift and help bound uncertainty. Long-term 

deployments often rotate sensors through several short collocation periods to continually monitor for drift 

and sensor failure. 

• Sensor failure and replacement is a concern especially for successful long-term deployment. Evaluation 

efforts have noted significant variation and failure of new sensors in the low-cost price range. Early 

deployments noted pre-mature failures and indications of short sensor lifetimes with declining performance 

within the 1st year of use. Users should purchase additional sensors to complete the deployment plan and 

continually monitor sensors for failure and declining performance. 

• The research question and pollutant of interest should govern the size and siting of the sensor network. For 

instance, if the question involves how air pollutant concentrations vary in the outdoor and indoor 

environment, a small number of sensors may be needed and siting criteria would include considerations like 

weather, ventilation, sources, and obstructions. If however, one would like to reliably monitor concentrations 
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over a large area, sensor siting is still important but so is sensor redundancy, pollutant variation, and sensor 

density within the network. 

Data collection and management is a not a trivial matter, especially as the size of a sensor network deployment grows 

and the data is collected more frequently. Panels 2 and 3 of the workshop were convened to discuss data issues and 

those discussions are detailed in the following Sections 3 and 4. 

3. PANEL 2, DATA STANDARDIZATION EFFORTS & DATABASE DESIGN 

The low-cost sensor revolution has been making air quality sensors affordable and available to large 

populations and community-based organizations. Users come from a variety of backgrounds and have varied 

objectives. The number of deployed sensors appears to be increasing over time. Currently, data from low-cost air 

quality sensors comes in a variety of formats sometimes without data labels, units, or metadata to easily understand 

and process the available information or to compare one dataset to another. Panelists Abhijit RS (Environmental 

Defense Fund, San Francisco, CA, USA), Andrea Clements (U.S. Environmental Protection Agency, Research 

Triangle Park, NC, USA) and Michael Hannigan (University of Colorado, Boulder, CO, USA) discussed the need for 

a harmonized approach to data management. The group discussed the value in developing and adopting data standards. 

3.1. Data Standardization 

A variety of low-cost air quality sensors and sensor systems are presently available. These sensor systems 

may measure one or more pollutants and/or environmental parameters, employing one of a variety of measurement 

techniques. Some sensor systems include onboard algorithms to transform raw data signals into pollutant 

concentrations. Each uses its own data structure to capture, store, and publish the data. 

In order to efficiently store and process large volumes of data sourced from disparate sources, all the 

incoming data should be representable in a uniform and common structure and format. In practice today, this requires 

data transformation in order to integrate data from various sources. The idea of data standards plays a very important 

role in developing a large-scale data management system. Receiving data from sensors in standard data formats would 

save a lot of time and effort for everyone involved. If sensor system developers adopt data standards, in terms of both 

data formats and data quality (for example by reporting confidence intervals along with pollutant concentrations), 

deploying new sensors in the field could become easier by reducing the technical burden on the user and expanding 

the utility of the measurements they record. 
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Data format standardization in the air quality domain includes date and timestamp formats, standardized 

definitions of terms including pollutant names, units of measurement for pollutant concentrations and their interfering 

factors like meteorological parameters, and a minimum set of data elements to be recorded by the sensors and stored 

by the backend data system. It also includes data transfer protocols and file formats used for data exchange. 

Sensor data currently exists in various formats—comma delimited (CSV) files, XML and JSON formats, 

database tables, PDF files, etc. Some of these files have headers indicating what is contained in each field or column 

and some don’t. The date and timestamp in these files may or may not have a time zone designator; they may not take 

daylight saving changes (DST) into account; some may represent timestamps in UTC while others will report in local 

time. Sometimes, a date and timestamp is not reported at all. Additionally, the units of measurement vary among these 

datasets; some sensors report particulate matter (PM) concentration in mass (e.g., g/m3) and others in particle count. 

The data elements (fields or columns) contained in these datasets vary widely; some files have raw sensor signal or 

pollutant concentration measurements only while others include statistical summaries like mean and median alongside 

sensor measurements. Other issues connected to data quality include field duplication, data duplication, unexpected 

insertion of text character strings, data gaps, and irregular data reporting. Uniform procedures for addressing all of 

these challenges in every dataset would make it easier to integrate the data in order to perform analysis across data 

sets. 

3.2. Air Quality Data Platform 

Low-cost sensors can provide data with very high spatial and temporal resolution, which is not easily 

achieved with conventional instruments. Researchers and academics have been collecting air quality data for decades; 

in recent years, community organizations have been deploying sensor networks in their neighborhoods to monitor 

their local air quality and citizen scientists have been using sensors to learn about air quality in their immediate 

surroundings. However, most of this data is only available to the people who collected the data, and generally not 

available to a larger audience. These siloed data stores limit the extent to which data analytics can be performed on 

air quality data. Combining all these datasets and providing a framework amenable to sophisticated analysis would 

facilitate better understanding of air quality in many places and on many scales. This gained information could help 

influence behavioral changes that result in improved environmental protection and human health. 

There is a need to develop a schema that facilitates air quality data aggregation and sharing. Such a schema 

could consist of a scalable cloud-based infrastructure, which could provide the capabilities for users to run their 
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computations and analyses instead of downloading data to their local systems for processing. A centralized system 

could catalyze development of software tools to analyze and visualize the data and make them available to all the 

users. Air quality researchers and sensor developers could look at wide varieties of pollutant concentration data in 

concert with factors like meteorology, land use, traffic, and emission sources that affect air quality. Community 

organizations and citizen scientists would be able to compare various neighborhoods and develop science driven policy 

recommendations founded on data. The data platform would be in a position to connect with other systems that host 

data relevant for air quality analyses like health informatics, real estate market, urban planning, emission inventories, 

and water quality; thereby, expanding the scope of use. 

3.3. Bridging the Data Gap 

The Environmental Defense Fund has convened the Air Sensor Workgroup (ASW), a broad-based group 

with participants from state and federal government, academic institutions, sensor developers, and other organizations 

and stakeholders interested in making air quality data open and Findable, Accessible, Interoperable, and Reusable 

(FAIR). The main objective of the ASW is to enable easy and efficient access to large volumes of air quality data for 

the common good. To achieve their vision, they developed Date and Timestamp Guidelines and are working on other 

relevant data standards. They are also developing a data platform to host and publish data collected from low- and 

medium-cost air quality sensors globally. The ASW does not have any commercial interests and the software and tools 

developed by them will be released as open source software and will be publicly available at no cost to the users. The 

ASW encourages users to leverage this data platform to make advances in auto-calibration of sensors and support 

scaling the sensor deployments in addition to other potential uses. More information about the ASW is available at 

www.edf.org/asw (EDF, 2018). 

3.4. Future Needs and Directions 

The air quality community needs to move away from qualifying the data as good or bad, and toward 

characterizing the exact qualities of the sensor data, including confidence in pollutant concentrations. Air quality 

measurement data should be supplemented with metadata. The data platform will need to be flexible with limited 

optionality to keep it simple for users. Some basic data quality validations could be performed by the data platform, 

but it will be up to the end users to determine whether the quality of data is good enough for their particular use. 
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The sensor calibration details are currently not published widely. This makes researchers wary of the reported 

measurements. That leads to additional testing and potential recalibration by advanced users. Additionally, air sensors 

may behave differently under lab conditions and field conditions, which may need to be taken into consideration while 

calibrating. Hence, providing more information about the out-of-the-box calibration will not only expedite the use of 

sensors but also create opportunities for improving the calibration methods and scalability of deployment. 

One of the important questions is how an open-access data platform might impact local communities and 

environmental justice issues. Such a data platform may be used to develop products and services, and monetize them. 

The data by itself may not be monetized but the tools to process and visualize the data could be; the results of data 

analytics and the corresponding findings could find monetary value as well. While this may not financially benefit the 

data owners who contributed data to the data platform, a concern of some groups, it certainly helps to advance science 

and there are potential indirect benefits that data contributors might reap over time. An open-access data platform 

would allow researchers to perform analyses and then share the results with other platform users. Community groups 

could use those case studies to guide local action. Community groups may also be able to post their data and solicit 

assistance with analyses to develop actionable insights. Health scientists and other may be able to combine personal 

air quality exposures to health outcomes. Eventually, air quality data could be as widely available and interpretable as 

traffic or meteorological data. An open-access data platform might also lead to a variety of analyses and 

interpretations; some of them could seem contradictory. This may open up channels for further communication among 

the researchers and analysts, and might help in advancing science. Negative impacts have yet to be defined. 

3.5. Summary 

Sensor and sensor system developers and users conforming to data standards could facilitate the aggregation 

of data, making it possible to create a larger, richer dataset which could lead to the discovery of new insights. A 

common data platform could open up opportunities to integrate data from global sources leading to development of 

data products and applications that can help users understand air quality at the neighborhood scale. Given this vision, 

establishing data standards and complying with them is critical to harnessing value from the data measured by low-

cost sensors. 
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4. PANEL 3, ADVANCES IN SENSOR CALIBRATION, DATA MANAGEMENT, AND 

DATA ANALYSIS AND VISUALIZATION 

During Panel 3, panelists Michael Heimbinder (HabitatMap, Brooklyn, NY, USA), Sanjoy Dasgupta 

(University of California, San Diego, CA, USA), Nicholas Masson (Qsense Inc., Boulder, CO, USA), and Mark 

Potosnak (DePaul University, Chicago, IL, USA) posed several questions to guide the discussion regarding sensor 

calibration and data management, analysis, and visualization. The subsequent discussion focused on five key issues 

outlined and summarized in this Section. Despite outstanding data calibration, quality, and validation issues, 

participants agreed that there is great value in the data collected by sensors but that this data must be used wisely and 

with caution. Users were encouraged to collect supplemental data (e.g., metrological data, co-pollutants 

concentrations, traffic and other observational data) that might help in subsequent data interpretation efforts. 

Researchers were also encouraged to be open and honest in setting expectations and in explaining the appropriate use 

and current limitations of sensor technology. Repeatedly, community organizers mentioned the need for effective 

infographics and data visualization tools to help share data, interpret the results, and educate the public. 

4.1. Data Quality 

As discussed in Section 2, data from low-cost sensors are not equivalent to data from FRMs/FEMs, but rather 

than thinking of sensor data as “good data” if it compares well to FRMs/FEMs, it might be better to consider if data 

is “good enough” for the intended objective (Williams et al., 2014). For instance, to monitor spatial variation, the 

paramount consideration is that sensor measurements are comparable to one another. Sometimes, another factor (like 

how the body responds to a pollutant concentration) may have more uncertainty than the concentration measurements 

allowing for more flexibility in the sensor uncertainty. Thus, the necessary quality of the data should be considered in 

the study design process. 

Quantification of uncertainty or confidence interval is essential for understanding and using sensor data. 

Generally, uncertainty is defined through collocation with FRM/FEM instruments, but statistical modeling may help 

determine the appropriate confidence intervals. The interval should fully capture the uncertainty in the data and the 

width of this interval can help determine the usefulness of the data. Researchers should be sure to consider whether 

the measurement uncertainty is driven by the sampling environment, systemic biases, or random error. 

Network deployments may alter the data quality questions. Looking at the sensor data in aggregate may 

render smaller errors unimportant. Environmental factors can significantly influence sensor performance and are likely 
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to remain important. Information about traffic and expected sources may also be helpful in interpreting data. When 

considering data in aggregate, researchers can look for similar behavioral patterns among a number of sensors to verify 

changes and may be able to identify or confirm pollution sources. Although this approach may be helpful, care should 

also be taken not to exclude interesting data. Data that may seem to be outliers may actually be a signal deserving of 

future investigation. 

4.2. Supplemental Data Collection 

As previously mentioned, environmental factors such as temperature, relative humidity (RH), and the 

concentration of co-responsive pollutants are all known to affect sensor response. At a minimum, it is important that 

any data collection effort measure these essential variables. This realization has led to a rise in the development multi-

sensor instruments (boxes, pods, systems, etc.). Many of the commercial instruments on the market today are 

attempting to measure all of these parameters and leverage the instruments to make as many measurements as possible. 

In many cases, the increased complexity of these instruments takes them from the low-cost sensor realm into a more 

expensive price range ($2000–$15,000), which also makes them more difficult for communities and citizen scientists 

to afford, especially if a large distributed sensor network deployment is needed to address research questions. 

It is worth noting that temperature and RH measurements also have caveats. Many metal oxide and 

electrochemical sensors respond to temperature and RH, so measurements of these environmental variables in the air 

mass directly adjacent to the sensors (within the sensor enclosure if one is used) is very important. Some enclosures 

are not designed to dissipate heat and temperatures in their interior can differ greatly from the outdoor environment. 

However, the ambient temperature and RH also influence the chemistry that can affect levels of atmospheric 

pollutants. Thus, both measurements are important and care should be taken in designing sensor enclosures to 

minimize the difference between enclosure and ambient measurements. 

As the community begins to consider aggregating sensor measurements to make them useful beyond the 

initial intended use, additional supplemental data may also prove important in interpreting the results. It is difficult to 

know what might be important when starting a small-scale study and the needs will vary depending on both the level 

and scope of analysis undertaken. For instance, information about the sensor (make, model, serial number, purchase 

data, time in service, etc.), position (GPS coordinates), results of collocation efforts, and the calibration equation used 

are essential. Environmental factors such as temperature, RH, pressure, dew point, wind speed, wind direction, and 

solar radiation may all assist in understanding sensor response and interpreting variations within the data. Urban or 
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near-roadway data interpretation may benefit from noise/sound data, traffic count, traffic pattern, and vehicle fleet 

information. Source inventories and source locations may be especially important in interpreting data near sources 

with episodic and transient behavior. Satellite data may help elucidate the influence of regional sources like wildfire 

or dust. Unfortunately, it is often impossible to collect all of this information during the course of a data collection 

effort, often due to cost, but some of this information may be available from other nearby sources (e.g., a weather 

station, local government website) or a previous study may have many of the same measurements that could give 

ballpark estimates. Often, researchers involved in a data collection effort will know the best sources for supplementary 

information and listing them in metadata for future reference would be helpful. 

4.3. Working with Communities 

It is important to understand that many communities are seeking assistance in further understanding their 

lived experience. They often look for scientific research partners to guide them in collecting and interpreting data. 

More discussion about these types of partnership and needs are discussed in Section 5. 

Communities of all types and scales (neighborhoods to cities to states) are interested in collecting air quality 

data using sensors but may not be prepared to handle data calibration issues or the vast amount of data that comes 

with a large-scale deployment. Some participants attended this workshop just to learn which sensors would be most 

widely recommended and free of errors or issues. Several received the idea of a data repository with enthusiasm, partly 

because the burden of creating and hosting a database could be lifted. 

4.4. Data Interpretation Needs 

Researchers working with low-cost air quality sensors are generally aware of the quality and uncertainty 

associated with their sensor measurements. Many other users, especially more casual users, may need more assistance 

in understanding the limitations of the technology and interpretation of the data. Repeatedly, practitioners mentioned 

the need for effective infographics to help share data, interpret the results, and educate the public. 

Experts in epidemiological research, including participants Rima Habre (University of Southern California, 

Los Angeles, CA, USA) and Michael Jerrett (University of California, Los Angeles, CA, USA), noted that low-cost 

air quality sensors are changing the type of exposure data available often pushing toward a goal of measuring personal 

exposures. Highly time-resolved data (seconds to minutes) creates opportunities for new research in deciphering the 

impact of acute exposures to various pollutants. Numerous researchers are exploring the development of apps and 
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websites aimed at helping people explore and interpret their personal exposures. Given the current state of sensor 

science, with relatively large measurement uncertainties, there is a concern from practitioners about encouraging 

citizens to change behavior based on sensor measurements. On the one hand, users observing spikes may be prompted 

to change their behavior resulting in reduced exposure. On the other hand, the reduced exposure may not result in an 

observable health outcome and users may be less likely to continue with their behavior changes as a result. Moreover, 

spikes in air quality data may result in users experiencing increased stress, possibly negating any other health benefit. 

4.5. Sensors and Modeling 

One of the motivations for measurements with low-cost sensors is to increase the spatial resolution of our 

atmospheric measurements to identify variation below the city or regional level, even down to the city block-level or 

below (Apte at el., 2017). Current modeling techniques struggle at this level due to the high dynamic variability of 

pollution sources, wind, obstructions, etc. (Berrocal et al., 2010). Because of the greater uncertainty associated with 

the low-cost sensor measurements, much work is still needed to determine if low-cost sensing can improve model 

performance and better describe personal exposure. There are some on-going efforts using machine learning to inform 

models with low-cost sensor measurements (Verma et al., 2011; Nikzad et al., 2012). 

5. PANEL 4 AND A COMMUNITY PANEL, LESSONS LEARNED FROM 

RESEARCH/COMMUNITY PARTNERSHIPS 

Communities are demanding a greater role in scientific research and decision-making that impacts their lives. 

Across the US and globally, residents continue to recognize that pollution sources impact their neighborhoods and 

exposure to pollutants may be causing health hazards for them based on where they live, work, and play. Further, 

communities are increasingly seeking tools to document these exposures and environmental health disparities. 

Currently, regulatory air monitoring systems generally do not assess neighborhood variability in air quality at a 

sufficiently refined spatial scale (Basu et al., 2004; Jerrett et al., 2005). The increase in the availability of low-cost air 

pollution sensors has increased the number of citizen scientists collecting and using air quality data to better 

characterize and understand their local environment. Education and involvement of communities in science and 

research is not only important for improving public health; it is also important for building awareness about the sources 

of air pollution, exposure pathways, and the association between contaminants and health endpoints (Wing, 2005). 

During Panel 4, panelist Jill Johnston (University of Southern California, Los Angeles, CA, USA), Nicole Wong 
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(Redeemer Community Partnership, Los Angeles, CA, USA), Vanessa Galaviz (State of California, OEHHA, 

Oakland, CA, USA), Ashley Collier (University of Colorado, Boulder, CO, USA), and Andrea Clements (U.S. 

Environmental Protection Agency, Research Triangle Park, NC, USA) outlined key aspects to forging a successful 

partnership with communities that are seeking information about ambient air quality and offered recommendations 

for how low-cost sensors can be deployed for research by citizen scientists. In addition, community leaders Sandy 

Navarro (People not Pozos, Los Angeles, CA, USA) and Luis Olmedo (Comite Civico Del Valle, Inc., Brawley, CA, 

USA) shared specific examples from their experiences as community leaders addressing air quality concerns (see 

Section 5.3 for more details about these community projects). 

5.1. Building Scientific Literacy 

Low-cost air quality sensors offer new opportunities to gather data about local air quality in an individual 

home, during a bike ride, or in various neighborhood parks simultaneously. Devices that measure real-time pollution 

and provide immediate feedback have the opportunity to serve as tools to build the capacity of residents to understand 

air pollution, spatial and temporal variability, and exposure patterns relevant to their community. Through this process, 

residents can learn about scientific methods, the ability to interpret data within a given context, and the potential links 

between air quality and health outcomes (Trumbull et al., 2000). Residents offer expertise to identify potential sources 

of air pollutants otherwise unknown to scientists or regulators as a result of their lived experiences and knowledge of 

their neighborhood. Collaboration and bidirectional dialogue is important to characterize the question, evaluate 

whether available low-cost sensors are appropriate for addressing that question, and design a method for collecting 

the data. Community members also contribute observational data or qualitative information to add context to recorded 

pollutant concentrations. It is key, however, that all parties understand both the advantages and limitations of low-cost 

sensing. 

5.2. Leveraging Low-Cost Sensors 

Low-cost sensor technology can be leveraged to advance the co-production of knowledge. During the initial 

phases of study design, a variety of expertise should be considered, such as that of community members, scientists, 

regulatory partners, and even representatives from potential sources of concern. Academic or regulatory partners can 

support communities to ensure appropriate sensor technologies are chosen considering: (1) the pollutant or source of 

interest, (2) spatial and temporal scale of interest, and (3) the “ease” of interpretability of the data. Collaborators should 
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discuss the design of defensible calibration techniques and collocation with regulatory monitors. Community members 

offer vital knowledge about important factors that may need to be considered when planning how to conduct 

observations of the problem (source, frequency, intensity, etc.) (Main et al., 2012), and possess vital community 

contacts to help with community engagement. 

In order to build trust between community members, scientists, and regulatory bodies, panelists and attendees made 

several best-practice recommendations: 

• Discuss, during the study design phase, responsibilities and expected outcomes with all key partners. 

• Explain the capabilities of sensor measurements at the time of a partnership and educate all parties on the 

current challenges that remain for the field. 

• Clarify the expectations of what sensor data can and cannot help elucidate, how the sensor data compares to 

“gold standard” FRM/FEM instruments, and what will happen with the data during and after the study. Such 

agreements should all be clearly outlined and accepted by partners. 

• Outline the limitations of such data for use by regulatory agencies. 

• Prepare residents for various potential outcomes based on their questions, such as negative or no results. 

• Establish agreements regarding data sharing and ownership, communication of results, and publication 

during the study design phase. 

Collaborative teams may find it valuable to include social scientists or to look to other disciplines for examples of 

useful formats for sharing data/results (Main et al., 2012), effective ways of communicating risk (Bickerstaff et al., 

2004), or the principles of community-based participatory research (CBPR) established in public health research 

(Israel et al., 2012). 

5.3. Opportunities for Community-Driven Science 

Community-research partnerships can prompt action to prevent harmful exposures or improve local air 

quality. Innovators continue to advance low-cost sensor technology, but even with the existing limitations, sensor 

systems on the market now can still provide insight for communities aiming to gather data about ambient air exposures. 

For example, while exact concentration measurements may be fairly uncertain, relative difference within or between 

communities or before and after an event (e.g., engine changeover or reactivation of industrial source) may still be 

valuable depending on the questions and goals of a particular community. Similarly, sensors may be able to give 
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insight into spatial/temporal patterns as well as determine “hotspots” for future targeted studies with more 

sophisticated instrumentation. 

During the workshop, two community leaders shared their thoughts on applications for and experiences with 

low-cost sensors. Sandy Navarro from People Not Pozos, a grassroots program that is part of Esperanza Community 

Housing based in South Los Angeles, described using sensors as tools to better identify local air exposures. Since 

2010, local residents have complained of noxious odors and health symptoms (e.g., respiratory illness, fatigue, 

headaches, nausea, eye & throat irritation, dizziness, and spontaneous nosebleeds) (Sadd & Shamasunder, 2015). 

Many of those residents identified a nearby oil drilling site, situated across the street from one of Esperanza’s low-

income housing buildings, as a source of odors and air pollution. After three years of official complaints and protests 

by this environmental justice community, investigators from the USEPA visited the site and discovered violations 

resulting in a shutdown of operations (Sahagun, 2014). People Not Pozos organized in response to this issue; including 

collaboration with researchers in order to collect environment and health data and training community residents to 

engage as researchers on the project. Nonetheless, community frustrations persist. The community has not received 

response to official complaints, sufficient data or access to collected data, nor easily understandable information in an 

accessible way (e.g., Spanish translations). Thus, an on-going project, in collaboration with another group of 

researchers, has deployed a small network of low-cost sensors to characterize neighborhood-scale air quality. 

The subsequent discussion highlighted a common problem in public health and environmental justice: that 

need is often greater than the capacity. Particularly in a city like LA, given its size and density, public health officials 

are likely to be limited by available resources (including both equipment and time). A researcher from the local 

regulatory agency expressed precisely this sentiment, indicating that the agency is piloting new technologies to try 

and help expand their capacity to investigate community concerns and complaints. Among these new technologies are 

low-cost sensor systems, which may be able to serve as a sort of alarm. Additionally, he noted that communication is 

an issue and it’s likely the residents’ complaints and requests for data were probably not reaching the appropriate 

person. This example highlights an area where local regulatory agencies can assess the effectiveness of or improve 

their education and outreach efforts to the communities they serve. 

In the Imperial Valley, Luis Olmedo with the nonprofit Comite Civico Del Valle shared another story 

describing the Identifying Violations Affecting Neighborhoods (IVAN) monitoring system. This system includes a 

platform for submitting and viewing environmental reports, as well as real-time data from a network of 40 air quality 
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monitors utilizing low-cost particulate matter sensors (Comite Civico del Valle, 2017a). On the website, users can 

receive air quality alerts that include recommendations for adjusting outdoor physical activity to reduce an individual’s 

exposure. These recommendations are based on a scale that the IVAN team has developed that provides numeric and 

color indicators based on PM concentrations and potential health impacts (Comite Civico del Valle, 2017b). In the 

Imperial Valley, this system has been integrated into a school-based flag program that uses colored flags to indicate 

air quality and provides recommendations on outdoor activity. While recognizing this information is still limited, Luis 

asserted that this strategy enables individuals to make their own choices about their health and potential exposures. 

These monitors provide a picture of PM concentrations at a spatial scale and resolution previously unavailable 

allowing the community to take targeted action. Actions that are especially important given that Imperial County has 

the highest rates of asthma-related hospitalizations and emergency room visits among school-aged children of all 

counties in California (CDPH, 2015). 

There remains a need to develop best practices for risk communication and visualization of air sensor data 

for residents. For example, in the case of real-time data, it is important to communicate the difference between short-

term high exposures versus 24-h or weekly averages in pollutant levels. The use of real-time and personal monitoring 

with low-cost sensor provides an opportunity to better assess dose-response relationships to various health outcomes 

and more specifically study vulnerable and susceptible populations—such as asthmatics or those living in 

environmental justice neighborhoods. Ultimately, the results from sensor studies have the potential to help 

communities decide on actions they themselves wish to take to protect health (Minkler, 2010). 

5.4. Summary 

Overall, community-driven research using sensors is likely to benefit both community and scientists alike. 

In particular, the communities facing the greatest environmental exposure risks and health effects are demanding a 

greater role in researching, describing and prescribing solutions to address the local environmental hazards they face 

(Cole & Foster, 2001; Corburn, 2002). Coupled with technical expertise and air quality sensors, communities can play 

a central role in defining the problems, supplying local knowledge and interpreting the results in the context of the 

local reality. With communities’ expertise, there are improvements in the relevance of research questions at the 

scientific level. Community research may also help to build trust and empower participants and community members, 

especially when the data is community owned and managed, giving them a ‘seat at the table’ with industry and 
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regulators. Moreover, using sensors in community science allows for real-world application of the research, allowing 

for people to make a difference and improve the health and lives of their community members. 

6. STAKEHOLDER SMALL GROUP DISCUSSIONS 

To conclude the workshop, attendees split into small groups to discuss what could be taken away from the 

workshop discussions. Attendees were given general guidance to focus on three core topics: existing resources to be 

shared and new resources that should be developed, important takeaways or best-practices that could be shared more 

widely, and important next steps for the field. A theme that emerged from these discussions was the need to improve 

communication between all stakeholders and how communication strategies could address the challenges highlighted 

in this paper. The variety of stakeholders and accelerating pace of research necessitate a variety of communication 

strategies to address the breadth of challenges in this field. In general, the group discussions focused on 

communications between and within two main groups of stakeholders: researchers and the participating community 

members. 

6.1. Creating Dialogue in Community-Based Research 

Communication between researchers using low-cost air quality sensors and engaged members of 

communities in which those sensors are deployed is both challenging and vitally important. A key challenge is creating 

a dialogue that brings all stakeholders to the table and values each member’s knowledge and perspectives. Successfully 

establishing this dialogue will improve project relevance and data quality while identifying other areas of interest that 

might otherwise be overlooked. 

Establishing realistic expectations between all parties at the onset of community-based research studies is 

paramount. Sensor limitations must be discussed and the measurements adequately contextualized. The community’s 

concerns, objectives, and insights must be discussed. Some collaborations have found it helpful to establish 

Memoranda of Understanding (MoU) and/or Frequently Asked Question (FAQ) pages for their projects. All parties 

involved in the research should collaboratively develop such documents so that they are easy to understand (including 

language translation when necessary) and adequately capture the expectations and responsibilities of all project 

partners. Developing standard templates for and promoting the wider use of MoU in community-based research 

projects could help maintain positive relationships and create engaged communities that are more open to working 

with researchers. 
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An important expectation that should not be overlooked is the ownership and control of data collected during 

a community-based research project. Every community’s expectations will be different and researchers should be 

mindful of the sense of ownership that community members may feel toward data that they were responsible for 

collecting. Researchers should share data in a manner that respects the wishes of the community in which it was 

collected. 

Appropriately communicating data can be especially challenging given the developmental nature of these 

instruments. However, it is critical to develop data communication methods that allow community members to 

transparently access and understand data and uncertainty while providing adequate context. Enhancing access to the 

data will allow researchers and community partners to collaboratively draw insights from the data. These methods 

may come in a variety of forms and the communication of data to non-technical persons should also be a consideration 

when designing infographics and interpretation or visualization tools for community based research. By developing 

best practices for data visualization and communication, researchers can help communities to better quantify and 

communicate aspects of their lived reality. 

6.2. Collaboration and Standards for Low-Cost Sensor Research 

As research in the field of low-cost sensors accelerates, it will become increasingly important for researchers 

to harmonize terminology and data reporting formats. One effort that was widely discussed at the close of the 

workshop was the Data Platform initiative being led by the EDF (discussed in Section 3). This project attempts to 

create a database and schema that would allow users to openly share data collected using low-cost air quality sensors. 

A lengthy discussion focused on how standardizing a data reporting format based on sensor type could facilitate 

largescale comparison between research projects and allow researchers to test calibration models on a larger parameter 

space. The formatting guidelines could include details as simple as the date and time string format to the specific 

metadata that should be included. 

Given interest in large scale comparisons between research projects, it is important that metadata include 

information about the sensor and its performance and measurement uncertainty. Most importantly, data quality 

elements such as precision, bias, detection limit, age, and calibration can be imbedded in the metadata. This 

information can give researchers more information about the measurement uncertainty and help them determine the 

usefulness of the data for a given application. It could also streamline collaborations between projects using a variety 

of different instruments and more generally improve communications between stakeholders. 
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Calibration presents another complicated challenge for communication and comparison. For example, when 

researchers compare different calibration techniques, it is important to be mindful of the statistical techniques used in 

these comparisons (e.g., RMSE, R-squared, correlation coefficient). It is likely that the best metric to compare and 

select a calibration model will depend on the application and goals of the project. The difficulty in fairly evaluating 

calibration methodologies, including physical methodologies and numerical methods was discussed at length. Physical 

methodologies, like collocation, have questionable applicability once sensors are moved into a new area to collect 

data. Once collocation calibration data has been collected, a variety of numerical calibration methods are currently 

utilized ranging from simple linear fits to complex machine learning and artificial neural networks (Cross et al., 2017; 

Spinelle et al., 2015a; Spinelle et al., 2017a; Masson et al., 2015a & 2015b; Esposito et al., 2016; Zimmerman et al., 

2018). 

From the workshop discussions, it was clear that additional research is needed to develop a comprehensive 

best practice for sensor calibrations. One idea for calibration method comparison could include sharing a collection 

of data from a variety of sensor technologies in a number of unique environments that include collocated reference 

data. These datasets could allow researchers to test novel methodologies and to compare their effectiveness against 

previous methods. This data could be released as sets of “training” datasets including reference data and “validation” 

sets without reference data to penalize over-tuning of calibration algorithms. 

6.3. Going Forward 

The low-cost air quality sensing workshop provided an excellent forum for researchers, regulators, 

manufacturers, and community advocates to discuss a sampling of the challenges and successes in this fast-growing 

field. Going forward, it will be important to continue to hold workshops like this and to include an even broader group 

of stakeholders in the discussions. This may include policy makers, electrical engineers, programmers, and others 

from both the United States and abroad. With such a fast-moving state of technology, it will remain important to 

collaborate with all parties to ensure that research projects are successful and relevant. Beyond workshops, there was 

also interest expressed in other methods of staying connected and sharing resources, for example via a listserv or wiki 

page. Toward that goal, Table 1 shares a list of existing resources that were compiled during the final discussion. This 

list is not comprehensive but may serve as a starting point. These are valuable resources for those involved in air 

quality and environmental justice and sharing others not listed here is equally important. Please note that inclusion or 

omission does not indicate an endorsement or lack thereof of these tools. 
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Table 1. Online tools that may be useful to low-cost air quality research stakeholders. 

 

7. WORKSHOP CONCLUSIONS 

This workshop provided the opportunity to reflect on the current state of low-cost air quality sensor research. 

The discussions made it clear that better communication within the field could help integrate the wide array of 

knowledge held by researchers, communities, and other stakeholders. There was consensus among the diverse group 

of attendees that, for the time-being, low-cost air-quality sensing was a complement, not a replacement for high-end 

sensing. Likewise, attendees agreed that to properly utilize low-cost sensing, it is critical to apply sensors in ways that 

complement the capabilities of the sensors. The group also expressed optimism that despite sensor limitations there 

are areas in which studies using low-cost sensors can make valuable contributions. In the next phase of low-cost air 

quality sensor research, a goal should be the bringing together of diverse sets of expertise to identify and tackle ongoing 

and emerging issues, especially via projects that lead to data driven actions and improved public health. 
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Preface to Chapters 3 & 4 

 

The following two chapters provide information on my use of low-cost sensors in an education and 

outreach context. Both describe the development of an E&O program, assessments of this program, 

and plans to ensure the program’s sustainability. These papers were intended to provide 

information for those interested in building a similar program. Additionally, the two chapters 

contain anecdotes and data speaking to the value of this program. There is some overlap in content 

between the two chapters – Chapter 4 was intended to be a continuation of and build off of Chapter 

3. Thus Chapter 4 contains newer and more data and assessment information than Chapter 3. 
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ABSTRACT 

Advances in sensor technology mean more research groups are developing, using, and improving monitoring 

systems that utilize low-cost sensors. However, these technologies also have the potential to make data collection 

more accessible, benefiting education and outreach programs. Through the North Fork Valley (NFV) Project, we are 

bringing next-generation air quality monitors into the classroom and developing supporting resources to help students 

engage in their own hands-on research. This project is a collaboration between the University of Colorado at Boulder, 

the Western Slope Conservation Center (Paonia, CO), and Colorado’s Delta County schools. The objectives of the 

overall project include (1) collecting baseline air quality data using low-cost monitors (termed U-Pods) and (2) 

engaging local students in citizen science efforts.  

The NFV is a rural Colorado community that faces potential impacts to air quality as a result of current and 

future energy development; however, rural communities typically lack historical air quality data, tools to monitor air 

quality, and connections to higher education and university resources. During year one of the project (Sept. 2013 – 

May 2014), we introduced the technology and began working with students across three high schools. In addition to 

the baseline monitoring, we also provided a set of portable monitors and helped students conduct their own air quality 

research projects. Impressed by the engagement and interest on the part of the students, we began building a project-

based learning curriculum to support student driven air quality data collection. In year 2 (Sept. 2014 – May 2015) we 

were still working with three schools in the NFV, formalizing the curriculum, implementing it, and conducting 

assessment activities.  

Assessment activities included student surveys, teacher surveys and questionnaires, and questionnaires for 

other stakeholders. We will also send the curriculum for review by an external team of teachers, researchers, and 
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others working in education/outreach. This paper discusses the curriculum and the results of our assessments, as well 

as unexpected project outcomes, such as the value of providing students with a window into academic-level scientific 

research and also with an opportunity to collect local data that allows them to engage at a new level with a global 

environmental issue – air quality. 

1. INTRODUCTION 

The North Fork Valley Air Monitoring Project began as a collaboration between the Western Slope 

Conservation Center (WSCC) in Paonia, CO and the University of Colorado, Boulder. The WSCC was interested in 

collecting baseline air quality data ahead of proposed oil and gas development in the region. There is a history of 

engagement with environmental issues in this community, for example the WSCC maintains over 10 years of 

volunteer-collected surface water quality data. However, the community has very little information about their air 

quality. The University of Colorado’s Office of Outreach and Engagement connected the WSCC with a mechanical 

engineering research group working with low-cost air quality monitoring tools (an air quality lab under the direction 

of Michael Hannigan). The original objectives of the project included (1) piloting baseline air quality data collection 

using low-cost tools, and (2) engaging the community in citizen science. This project also provided one of the first 

opportunities for long-term deployment and use of the low-cost air quality monitors (U-Pods). Our research group 

hoped to use this opportunity to learn more about the performance of the U-Pods, as well as how people (citizen 

scientists and community groups) would like to use the technology. This project, now in year two, has grown into the 

foundation for a promising K-12 outreach program connecting high school students with university researchers.  

This project is based in the North Fork Valley (NFV), which is located in Delta County on the Western Slope 

of Colorado. This is a rural and primarily agricultural community with several coal mines that have been in operation 

for over 30 years. Despite ample natural resources, students are at a disadvantage when it comes to accessing higher 

education. In 2010, American Community Survey Statistics revealed that 10%-20% of county residents have a college 

degree (US EPA, 2015), which may indicate that some students are growing up in homes where a college degree is 

not highly valued. Additionally, the county is more than a four-hour drive from Colorado’s large state schools located 

on the Front Range, making K-12/university partnerships difficult to initiate and sustain. Together these factors may 

result in students having misconceptions about the world of academic research.  
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The recent collapse of the local coal industry (Markus, 2013) and the continual hemorrhage of jobs due to 

the mechanization of agriculture is causing serious disruptions in the local economy. During the 2013-2014 school 

year, 50.1% of the students were eligible for free or reduced lunch (CDE, 2015). Problems with the local economy 

can affect the entire school district; a poor economy leads to lowered enrollment, which in turn affects district funding. 

We feel that these factors make rural school districts, like Delta County, especially important places for K-12 outreach 

programs. The NFV project specifically exemplifies, how access to resources and support from university partners 

can result in positive STEM learning experiences for students and benefit all participants (the students, the teachers, 

and the researchers). 

Year one of the project began with the installation of a network of stationary air quality monitors (U-Pods) 

and the next step was to encourage community engagement in the project. Several local high school teachers were 

interested in learning more and invited us into their classrooms. We brought more U-Pods into the classroom and 

introduced the students to the project. The teachers were interested in working together and we continued to partner 

together for the remainder of the school year. Thus began our K-12/university partnership. This partnership involved 

monthly visits from a CU graduate student maintaining the monitoring pilot project and supporting student research 

projects. Although our long-term vision involves community groups and citizens using U-Pods to collect useful air 

quality data, the technology itself is still developing, as well as the necessary supporting infrastructure necessary to 

use the technology (e.g., data organization and storage solutions, and data QA/QC mechanisms). We quickly realized 

how working with students could provide us with valuable information to help build the foundation of air quality 

citizen science while also providing a unique opportunity for students to learn more about academic research and 

participate in a hands-on STEM learning experience. Thus the project naturally grew into a mutually beneficial 

opportunity.  

Following year one, the project was able to continue through the NSF-funded Sustainability Research 

Network AirWaterGas Project – a large-scale interdisciplinary research project including air and water quality 

researchers, public health experts, economists, and more all examining the benefits and challenges associated with oil 

and gas development. The NFV Project is continuing specifically under the Education and Outreach efforts of the 

AirWaterGas Project. Year two has provided us with the opportunity to consider how we can grow our successes into 

a sustainable program offered by the university. This paper describes the efforts of our second year of the project, 

primarily to build a project-based learning curriculum which will support the continued implementation and use of 



40 

 

the project. We describe our motivations, methods, thoughts on implementation and sustainability, and an overview 

of the assessment activities conducted.  

2. THE TECHNOLOGY  

Developments in sensor technology are making environmental monitoring tools more accessible, and ideal 

for STEM learning opportunities. Our monitor (the U-Pod, shown in Figure 1 below) is an open-source design and 

can be completely constructed for under $1000 per monitor (Mobile Sensing Technology, 2017). The sensors are 

electronic and data is collected continuously to an on-board mini-SD card. Another advantage, in addition to the cost, 

is that the U-Pod is capable of measuring multiple pollutants (i.e., carbon dioxide, carbon monoxide, volatile organic 

compounds, ozone, and nitrogen dioxide). This technology has the potential to increase the spatial resolution of data 

(e.g., deploying 20 monitors throughout a neighborhood could provide detailed information regarding the impact of 

emission sources on local air quality), and supplement our existing large-scale monitoring systems. Although the 

sensors used in the U-Pod are less accurate than current instruments used for regulatory purposes, if used in 

conjunction with higher quality instruments we may be able to learn a lot more about our air quality and ways of 

improving it.  

Another exciting prospect is the use of this technology for citizen science. “Citizen science refers to the 

engagement of non-professionals in scientific investigations – asking questions, collecting data, or interpreting results” 

(Miller-Rushing et al., 2012). Citizen science can range from contributory (where participants collect data as part of a 

larger, researcher led project) to collaborative and co-created (where scientists and participants work together with 

both groups engaged in defining the question, collecting the data, and interpreting results) (Miller-Rushing et al., 

2012). Our research group is interested in the long-term potential of this technology to be a part of collaborative and 

co-created citizen science. This vision, however, may be a few years off as researchers continue using and improving 

the technology. In the meantime, the U-Pods are ideal for educational applications. Using the monitors provides 

students with exposure to the fields of electrical engineering, computer science, and mechanical engineering in 

addition to the environmental engineering involved in air quality research. The U-Pods can be used by teachers to 

instruct and inspire interest in a variety of subjects. New technologies such as this one are extremely valuable for 

STEM education, not only because of their increasing affordability, but also because students can take an inside look 

at something they could build themselves – these tools are not the traditional “black box” instrument.  
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Figure 1: Monitor Deployed Outdoors (center), An Interior View of the Circuit Board  

and Sensors (upper left) 

3. PROJECT-BASED LEARNING 

We have chosen to utilize a project-based leaning (PBL) structure for out outreach program. “Project-based 

learning is a teaching method in which students gain knowledge and skills by working for an extended period of time 

to investigate and respond to a complex question, problem, or challenge” (Buck Institute for Education, 2018). It 

involves the application of knowledge, as well as the acquisition of new knowledge to investigate a driving question 

and it challenges students to manage their time and resources. In engineering education, projects seem to provide 

students with “a better understanding of the application of their knowledge in practice and the complexities of other 

issues involved in professional practice” (Mills & Treagust, 2003). Similar outcomes have been observed in K-12 

education, “research clearly indicates that project-based learning is beneficial, with positive outcomes including 

increases in level of student engagement, heightened interest in content, more robust development of problem-solving 

strategies, and greater depth of learning and transfer of skills to new situations” (Holm, 2011). In light of these positive 

outcomes, we are using the model of PBL to drive the structure of our curriculum.  

After an introduction to the capabilities of the U-Pods and the field of air quality research (through the 

curriculum discussed in the following section of the paper), students are tasked with designing their own investigation 

into air quality issues in the community. As students progress with designing their project, they stumble upon “need-

to-knows;” questions about atmospheric chemistry and pollution that they need to answer in order to progress in their 

investigation. Students then collect and analyze their own data and present their research in a scientific-style poster. 

This project provides students with a research experience truer to life than the typical in-class experiments and 
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activities because in addition to the air quality research, students are responsible for defining and maintaining a 

schedule and working as part of a collaborative team. 

A lack of resources in rural communities typically makes the implementation of projects like these 

challenging; however, if this can be overcome (e.g., through K-12/university partnerships) the benefits to student 

learning are impressive. During the first year, teachers reported (anecdotally) that engagement had increased and in 

particular from students who had not previously displayed a strong interest in their science classes. We believe part 

of the reason for this might be an increased sense of ownership over the project, possibly due to the authenticity of the 

questions students ask. For example, students investigate questions of their choosing in their own communities. They 

are being provided with the opportunity to take the air quality background knowledge they have gained and apply it 

to an investigation of their immediate environment. 

4. CURRICULUM DEVELOPMENT 

At the beginning of the project, we thought we might ask students to help us maintain our stationary 

monitoring network and collect baseline data. But there was greater engagement from the students (as reported by 

teachers) and interest from the teachers when we gave students U-Pods to use for other activities. We adapted our 

project to meet the needs of the community and we ended up with a more mutually beneficial project. For example, 

we continued to collect the baseline air quality data and were able to use that data in the classroom for teaching 

purposes. Alternatively, asking students to investigate their own research questions provided our group with more 

information on potential local air quality issues (e.g., agricultural practices that might affect air quality).  

Some examples of how students were interested in using the U-Pods include measuring emissions from 

different vehicles, investigating the possible impact of train emissions by comparing two different locations in the 

NFV, and examining indoor air quality in different classrooms throughout their school. One group of students burned 

homemade biodiesel and regular diesel in the lab and compared these emissions; they were invited to compete at the 

state level in the Colorado Science Fair at Colorado State University (Ft. Collins, CO). In addition to competing, these 

students were able to visit the CSU campus, attend lectures, and were awarded an honorable mention in the 

competition. For these rural students, this experience had a significant impact on their desire to pursue higher 

education.  
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During year two of the project, we are building a curriculum that will support the continued implementation of 

this project. Five modules are under development. These modules are intended to provide enough background 

knowledge and enough of an introduction to the skills students will need to act as a springboard for their project phase. 

In other words, we want to empower students to ask complex and informed questions that will guide their research, 

but it is expected that they will seek out new knowledge and build on their skills in order to successfully complete 

projects (this is true to the objectives of PBL). The curriculum is not intended to be comprehensive, but is intended to 

support the teachers interesting in conducting challenging air quality research projects in their classrooms. 

• Module 1: This module provides an introduction to air quality and the technology; the module is intended to 

communicate to students (1) why we care about air quality, (2) some basic information regarding air quality 

measurements (the different types of pollutants, what we can measure with the U-Pod, etc…), and (3) get 

students thinking about the connection between specific emission sources and the quality of our air. 

• Module 2: This module focuses on data collection using the low-cost monitors and this is taught through an 

activity. Students begin by learning about the difference between complete and incomplete combustion, and 

how this is relevant to internal combustion engines in vehicles (mainly, the air to fuel ratio). Then students 

are then given a U-Pod to collect data on emissions by idling different vehicles, as a group we analyze and 

discuss the data, as well as our experimental design. 

• Module 3: This module covers data analysis using excel; we have two prepared data sets (one with carbon 

dioxide data and one with ozone data), both include approximately 100 rows of data with time, pollutant 

concentration, and temperature. The students use this data to complete an activity that takes them through 

basic data analysis using Microsoft excel.  

• Module 4: During this module students are given time to brainstorm project ideas, and discuss these ideas 

with their group members, their teacher, and graduate student mentors. They also write up an official project 

plan, using a provided template.  

• Student Projects: At the point, students will conduct their projects, modules 1-4 are intended to provide the 

support and preparation necessary to empower students to do their own research. 

• Module 5: This module is intended to help students process and finalize their projects. Students take a look 

at example posters, fill out a worksheet to encourage them to think critically about their project and the 

results, and the finish by using a template to create a scientific-style poster.  
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The series of modules or lesson then culminates in a poster session, open to other students, teachers, parents, and the 

community. The poster session challenges students to communicate their research and gives them an opportunity to 

show off what they have done. Each module includes complete instructions, presentations, worksheets, data sets, 

templates, links to more information, and suggested assessment as necessary. Additionally, the modules can be 

implemented independently, for example if a teacher is looking for a 1-2 class introduction to excel and data analysis. 

However, as a whole the modules provide students with the skills necessary to conduct their own research.  

At this point, heavy involvement from university partners is required throughout the entire lesson, for 

example graduate student mentors lead or co-teach each module. We hope that the curriculum reaches a point where 

teachers are comfortable implementing it more independently, which will allow us take a more focused role and reach 

a greater number of students. Although we do see the relationships between high schools students and graduate 

students as being an integral piece of the project. We envision having a graduate students build a relationship with a 

class, by making as many in-person visits as is feasible, being available to assist and support teachers as necessary, 

and being available to advise students on project design, data collection and data analysis. However, we would like to 

build a strong enough foundation (including quality/comprehensive curriculum, and making the technology as simple 

to use as possible) that graduate students can support rather than lead, which we believe will also give teachers more 

independence and flexibility in implementation. This may also include teacher training sessions in the future, which 

would provide hands-on training for teachers prior to their use of the U-Pods in their classrooms. This model will 

allow us to reach a larger number of classes across Colorado.  

5. CURRICULUM IMPLEMENTATION AND SUSTAINABILITY 

We intend to make the curriculum available publicly and free of charge in August 2015. We also plan to 

organize a monitor rental program. Given that we are working with a developing technology (the U-Pod) – a rental 

program would likely be more successful than if teachers were to purchase U-Pods. A rental program will allow our 

research group to maintain the U-Pods and provide technical support as needed, while giving teachers access to the 

technology. Once again, the project continuing through the AirWaterGas Project has provided us with the luxury of 

resources and time to explore and build the sustainability of the project. 

Working closely with teachers as we develop the curriculum and program, is helping us to design for simpler 

implementation. We are aware of the hurdles teachers face, especially when presented with curriculum promoting less 
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conventional methods of education (e.g., PBL), but we hope that through continuous teacher feedback we can facilitate 

the incorporation of this type of teaching. In addition to the curriculum, we hope to foster a community of teachers 

and learners who can work together. We would like to build (or utilize an existing tools) an online space where 

participants (teachers, students, and community members/groups using the U-Pods) can upload and share data, process 

and visualize data, and communicate with each other about their projects, and the tools. This is further down the road, 

but is certainly part of our long-term vision. 

6. ASSESSMENT PLAN  

At the end of the first year we collected a student opinion survey and interviewed participating teachers, 

however, this year we are more rigorously evaluating the project as it is implemented and developed using an 

assessment plan. The plan will evaluate both our curriculum and the outreach project as a whole. For example, in order 

to evaluate the lesson, each module will be sent for external review by a team of experts. This team includes a teaching 

expert, an air quality science expert, and a curriculum/outreach program expert. The review criteria itself is based on 

CLEAN Guidelines developed by CIRES to evaluate potential and proposed CLEAN curriculum (CIRES, 2015). The 

information from the external review team will be used to finalize the curriculum before it is made publicly available.  

Summative assessment data will assist in evaluating our project’s success and sustainability; this data will focus 

on student skills/attitudes, the project’s impact, and opinions regarding the project (Knight & Sullivan, 2006). 

Summative assessment activities include student surveys, teacher surveys and interviews, and stakeholder interviews.  

• Student Surveys 

o Four in total  

o Three accompanying Modules 1-3, administered following each module, copies of these three 

surveys are available in Appendices C, D and E 

o Surveys collect demographic information and include multiple choice questions that will assess 

students’ attitudes toward STEM and higher education, as well as their confidence in new, specific 

skills developed during the modules 

o The final survey will be implemented after the completion of the entire lesson, and it will collect 

demographic information and attempt to assess the impact of participating in the project 

• Teacher Surveys and Interviews  
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o Administered after the completion of the entire lesson 

o This survey will assess their impressions of effectiveness of the project, and whether or not they felt 

they received sufficient support (both technical and regarding content) 

o It will include multiple choice survey questions and open ended interview questions 

• Stakeholder Interviews 

o Administered after the completion of year two 

o Example of stakeholders – individuals associated with the WSCC and Delta County Public Health 

(another project partner) 

o Given the uniqueness of rural communities and the challenges the face, we would like to assess how 

effectively we are meeting the needs of the community through a series of open-ended questions 

The summative assessment data will be used to evaluate our success in meeting the goals of the NFV Project specified 

in the assessment matrix, as well as the goals of the larger AirWaterGas Education and Outreach Project. This data 

will also be used to determine improvements that we can implement moving forward. For reference, Table 1 provides 

information on the scope of the NFV Project during years one and two.  

Table 1: Summary Statistics for Engagement 

 

Assessment data will help ensure we address Goals 1-3 from the AirWaterGas Education and Outreach 

assessment matrix (Appendix B) in future offerings of the program by helping us to determine how well we are 

meeting these goals currently. Preliminary data from year one student and teacher interviews indicates we are 

successfully reaching minority populations with our education and outreach activities, the minority population being 

an underserved rural Colorado community (addressing Goal 2). Of the three teachers who participated during year 

one, two teachers were interested in participating for a second year (the third teach expressed interest, but is no longer 

teaching for unrelated reasons). Additionally, we are bringing hands-on environmental and engineering educational 

opportunities to Delta County (a network stakeholder), also addressing Goal 1. Using both this preliminary 

information, and the data we are currently collecting, we can make improvements to future iterations of the program 

that will better ensure we meet our goals for this outreach program and it is contributing to the larger AirWaterGas 

program that has provided the funding allowing the project to continue.  

 Year 1 Year 2 

Number of Delta County Schools 3 3 

Number of Teachers 3 3 

Number of Students 40 46 

 



47 

 

7. ASSESSMENT RESULTS AND OUTCOMES 

Teacher and students reactions to the first year of the project drove our desire to continue the project and 

explore ways to make it sustainable. Some observations shared by teachers during the year one interviews mentioned 

the following benefits: ownership of their projects by the students and increased engagement, a better understanding 

of the scientific process (especially of how science can be more of a non-linear and challenging process than is 

typically presented in high school), and students strengthened skills likely to help increase their success in higher 

education (e.g., problem-solving and analysis skills). Two out of the three teachers also noted, that their own 

participation was likely to ensure they would continue teaching in the district.  

These outcomes are not unlike outcomes observed in other K-12 STEM outreach projects. Four outreach 

projects at the Colorado School of Mines were evaluated and researchers noted an increased interest in science, 

mathematics, and computer science, as well as an increased exposure to and interest in college (Moskal et al., 2007). 

These outreach projects taught the application of mathematics to science and engineering, but they also involved 

teaching through hands-on projects and also the use of graduate student mentors in K-12 classrooms, which is similar 

in structure to our program. It seems that although the content is somewhat different, the programs cited in this paper 

and ours are similar in approach. Preliminary data suggests we are seeing outcomes and benefits in our program that 

are similar to the outcomes and benefits of other K-12 STEM outreach programs, indicating that we are building a 

promising program.  

In addition to the more or less anticipated outcomes, there have been several unexpected outcomes we are 

beginning to see as well. For example, Laursen et. al describe a ‘leveling effect’ to outreach activities, teachers 

observed that the new material had a way of challenging and engaging all students regardless of their typical level of 

performance or aptitude (2007). While air quality is typically taught in Environmental Science and AP Environmental 

Science classes (the types of classes we target for this project), the content required for this project tends to be more 

in-depth than students are used too. For example, students learn more about particular pollutants and air quality 

measurement techniques. In addition to that students are using a new and unfamiliar tool to make measurements (the 

U-Pod) and building skills with other 21st century tools (e.g., Microsoft excel, and tools on the Google platform like 

Documents and Fusion Tables) that facilitate online collaboration and project management. We have also heard 

multiple comments from teachers expressing their surprise at the engagement from typically lower performing 

students. It seems curricula like this may have the potential to research students that traditional methods do not.  
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Year two of the project will provide the opportunity to better confirm these outcomes. Although assessment 

is still underway, we have administered the student surveys accompanying Modules 1-3 and are able to share some 

preliminary results. The Project Intro Survey was distributed to the high school students following Module 1. The 

survey sought feedback on students’ opinions and attitudes regarding air quality in general and in the context of the 

project. The results suggest that the presentation offered a valuable learning experience as students rated their 

understanding of the impact of air quality research and the amount they learned highly (4.43/5.00 and 4.56/5.00, 

respectively), as shown in Table 2. Open-ended questions were developed to gain qualitative feedback on the 

experience. The results revealed that students were very responsive to the hands-on nature of the activity. Using the 

U-Pod offered the opportunity for students to engage in the experiment and understand the application of the lecture 

material. One student commented,” I love doing hands-on and that is how I learn” and another noted, “I liked how 

you could really see what was happening with the air” after using the U-Pod. The question regarding recommendations 

for improvement for the presentation also revealed strong satisfaction. Students commented, “It could not be made 

better, it was awesome” and “it was perfect, filled with really interested facts.” One common suggestion was to shorten 

the length of the lecture to allow for more time for the interactive experiment. We intend to integrate this student 

feedback, by improving the modules as suggested and maintaining the successful aspects.  

Table 2: Module 1 Student Survey Results 

 

8. CONCLUSIONS  

The NFV Project is the beginning of a promising K-12 outreach project. The project has evolved from a 

grassroots effort to work with rural Colorado students into a systematic project being designed for sustainability and 

longevity. By the end of this second year we will have a curriculum that supports the implementation of PBL in the 

Project Intro Survey (n=55) 

Category Mean 

I am interested in learning more about air quality. 3.62 

I want to know more about what an 

environmental engineer does. 

3.38 

I feel that engineers have made major 

accomplishments and advancements. 

4.69 

I would have a difficult time explaining this topic 

to another person. 

3.09 

I know where to go to find out more about this 

topic. 

3.53 

I understand the impact of air quality research on 

the community. 

4.42 
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classroom, as well as student use of a new technology – the U-Pod. We believe our model of ‘renting’ the U-Pods will 

ensure teachers are provided with technological support and will help university researchers in building K-12 

partnerships. We have been extremely fortunate in having expert educational partners who are willing to work closely 

with our group to weigh in on what works in the classroom and what does not. These partnerships will also be a key 

piece in the sustainability of the project going forward. 

Our research group has learned a lot about building partnerships and working with rural communities and we 

hope to build on this work in order to reach other rural Colorado communities. Rural communities are underserved; 

they do not lack great teachers or talented students but are sometimes put at a disadvantage through a lack of resources 

partly caused by distance from large universities typically offering resources. We hope this project is able to provide 

a sustainable program that to makes more resources available to teachers and students, as well as providing a way for 

students to build personal connections with researchers. We are excited by the project’s initial results thus and would 

like to see the kind of impact it can have in the long run.  
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ABSTRACT 

The availability of low-cost sensors and environmental monitoring technologies is growing rapidly. While 

researchers are making use of these technologies and validating their results, there is also enormous potential for their 

use in education and outreach. Through the North Fork Valley (NFV) Project, we are bringing next-generation air 

quality monitors into the classroom and developing necessary resources to support student-driven research projects. 

This project is a collaboration between the University of Colorado at Boulder, community partners, and educational 

partners (Delta County School District 50, and St Vrain Valley School District) and is funded by the NSF-funded 

AirWaterGas (AWG) Sustainability Research Network Education and Outreach (E&O) efforts. During year two, we 

are formalizing the curriculum, implementing it in multiple school districts, and conducting assessment activities. This 

paper will discuss the curriculum, the results of our assessments thus far, and our vision for the project. The work 

completed during year two will help ensure we are building a sustainable project. Additionally, we intend to make the 

curriculum public with hopes that other research groups working with low-cost air quality sensors can utilize our 

materials and possibly our model for their own education and outreach. 

1. INTRODUCTION 

For the past two years our team has implemented a project that brings together innovative research and K-12 

education. The North Fork Valley (NFV) Air Monitoring Project takes a low-cost, next-generation air quality 

monitoring instrument, still undergoing the research and development process, and explores its place in education and 

outreach. Partnerships like these provide a unique opportunity beneficial to both researchers and K-12 students. 

Researchers are able to learn about their work from a different perspective; in our case how the public would like to 

use our technology, and how well it can be adapted for this purpose. Students in these K-12/university partnerships 

are able to work in a hands-on way with a technology that is not a black-box and learn about university-level research 
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and the possibility of pursuing a degree or career in STEM. This program provides students with an introduction to 

disciplines like environmental and mechanical engineering, as well as the problem-solving that goes into investigating 

complex questions. Teaching students about air quality is not our final goal, but rather we hope to use air quality 

research as the vehicle by which students can learn more about the skills specific to STEM fields, both technical and 

professional. This paper will describe the project’s evolution, the technology that makes this project possible, and our 

efforts to build a sustainable outreach program. 

1.1 The Communities 

Our initial school district partner was Delta County School District 50 (DCSD) located on the Western Slope 

of Colorado in the North Fork Valley. During the second year we have expanded to the St Vrain Valley School District 

(SVVSD) on Colorado’s Front Range. Delta County is a rural and primarily agricultural community with several coal 

mines that have been in operation for over 30 years. However, the recent collapse of the local coal industry (Markus 

2013) and the continual loss of jobs due to mechanization in agriculture is putting stress on the local economy. During 

the 2013-2014 school year, 50.1% of the students were eligible for free or reduced lunch (CDE, 2015). In terms of the 

perceived value of higher education, 10%-20% of residents have a college degree (US EPA, 2015). DCSD is also 

more than a four-hour drive from Colorado’s large state schools located on the Front Range, which makes K-

12/university partnerships difficult to initiate and sustain. 

By contrast, SVVSD is a mixture of rural and suburban. This part of Colorado has experienced significant 

growth over the past few years due to the expansion of the oil and gas industry (Dunn, 2014). During the 2013-2014 

school year, 37.4% of the students in SVVSD were eligible for free or reduced lunch (CDE, 2015). Additionally, the 

area is well served with university outreach programs as the schools in this district are less than an hour drive from 

the Denver Metro area and several major Colorado universities. The districts also differ demographically, with DCSD 

made up of a 10-20% minority population and SVVSD made up of 20-40% minority population (US EPA, 2015). 

Working with these two districts during year two of the project is helping our team to build a program that meets the 

needs of a variety of groups, especially underserved rural communities. We hope to build a curriculum both accessible 

to and suitable for the diverse geography and socio-economic demographics of Colorado. 
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1.2 NFV Project, Year 1 

The North Fork Valley Air Monitoring Project began as a collaboration between the Western Slope 

Conservation Center (WSCC) in Paonia, CO, the University of Colorado, Boulder’s Office of Outreach and 

Engagement, and the Hannigan Air Quality Research Lab (Mechanical Engineering, CU Boulder). Delta County lacks 

detailed historic air quality data, and the WSCC was interested in understanding current air quality in the area in light 

of proposed increased oil and gas development in the NFV. The original objectives of the project were to pilot low-

cost tools for baseline air quality data collection and engage the community in citizen science. 

During year one we engaged local high school students in assisting with the project, but found that they were 

more interested in asking their own questions than helping with the collection of baseline data. The project naturally 

grew into two parts: (1) the long-term, continuous collection of air quality data using a stationary network of monitors, 

and (2) student-driven air quality research projects. After seeing the benefits of this experience to students, particularly 

in a rural and underserved community (Collier et al., 2015a), we decided to continue for a second year in an attempt 

to build a sustainable outreach program. 

1.3. NFV Project, Year 2 

During year two, the project is continuing through the NSF funded AirWaterGas (AWG) Sustainability 

Research Network, specifically with the help of the AWG Education and Outreach (E&O) team (Knight et al., 2015). 

AWG is a large-scale interdisciplinary research project including teams studying air quality, water quality, water 

treatment, water quantity, natural gas infrastructure, social-economic systems, health effects, practices and policies, 

and E&O. Together all of these teams are examining the benefits, risks, and challenges associated with unconventional 

oil and gas development. Year two activities for the NFV Project included continued data collection in the NFV, 

curriculum development, implementation in multiple school districts, and overall project/curriculum assessment. 

Although the title of the program has not changed, we have expanded to an additional school district in an area of 

Colorado outside of the North Fork Valley. 

Working with school districts affected by current and proposed oil and gas development helps us build 

bridges to facilitate the sharing of results from the larger AWG Project. For example, these communities may have 

specific questions regarding risks to local air/water quality, and because we have built trust between the community 

and our University, they may feel comfortable coming to us for information. Using this program to build relationships 

has the potential to help us get up-to-date, relevant research to these communities to inform decision making on the 
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local level. Finally, air quality serves as a vehicle to initiate conversations on complex issues surrounding energy 

development and use. 

1.4 THE TECHNOLOGY: U-PODS 

Developments in sensor technology are making environmental monitoring tools more accessible, and ideal 

for supporting STEM learning opportunities. Researchers at the University of Maine demonstrated through the GK-

12 Sensors! Program that using sensors in secondary schools is beneficial to students, teachers, and graduate teaching 

fellows (Arsenault et al., 2005). For several years, our research group has been developing and using an air quality 

monitor that utilizes low-cost sensors for our own research. Our monitor (the U-Pod, shown in Fig. 1) is an open-

source design and can be constructed for under $1000 per monitor (Mobile Sensing Technology, 2017). The U-Pod is 

capable of measuring multiple pollutants (e.g., carbon dioxide, carbon monoxide, volatile organic compounds, ozone, 

and nitrogen dioxide) continuously; data is then recorded to an on-board memory card. Although the sensors used in 

the U-Pod are less accurate than the more costly instruments used for regulatory purposes, if we leverage both the 

low-cost and high quality instruments, there is the potential to collect far more detailed information regarding our air 

quality than currently exists. 

New technologies such as this one are extremely valuable for STEM education not only because of their 

increasing affordability, but also because students can take an inside look at something they could build themselves. 

These tools are not the traditional “black box” instrument because they utilize a relatively simple design and ‘off-the-

shelf’ sensors. Students can open up the U-Pods and understand how they function, making the technology is ideal for 

hands-on learning. Using the monitors also provides students with exposure to the various fields of study that went 

into making it: electrical engineering, computer science, and mechanical engineering in addition to the environmental 

engineering involved in air quality research. Citizen science is another area where technologies like the U-Pod could 

have a large impact. Citizen science “refers to the engagement of non-professionals in scientific investigations – asking 

questions, collecting data, or interpreting results” (Miller-Rushing et al., 2012). Citizen science can range from 

contributory (where participants collect data as part of a larger, researcher led project) to collaborative and co-created 

(where scientists and participants work together with both groups engaged in defining the question, collecting the data, 

and interpreting results) (Miller-Rushing et al., 2012). Our research group sees using the U-Pods for educational 

applications as a way to move toward this vision of using low-cost technologies to support collaborative and co-

created citizen science. 
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Figure 1: Image of the U-Pod, interior (top left) and exterior 

2. A PROJECT-BASED LEARNING CURRICULUM 

2.1 Project-based Learning 

In addition to hands-on learning, we have found that the U-Pods are an ideal way to support project-based 

learning (PBL) driven by student-generated research questions. Project -based learning is a method of teaching in 

which students work for an extended period of time on a complex problem, question or challenge, and thereby gain 

knowledge and skills (Buck Institute for Education, 2018). In engineering education, projects better equip students to 

apply their knowledge in practice, as well as providing a better understanding of the complexities in involved in 

professional practice (Perrenet et al., 2000). Similar outcomes have been observed in K -12 education where research 

indicates that PBL leads to an increased level of student engagement, higher interest in content, and better problem-

solving skills, and an increased depth of learning and ability to transfer skills to new situations (Holm, 2011).

 During year one of the project, teachers anecdotally reported similar outcomes including increased 

engagement and greater depth of learning. For this reason, we chose to build a program and curriculum supporting the 

PBL teaching method. 

PBL challenges students to apply their existing knowledge in new ways and acquire new knowledge to solve 

novel real-world problems. As students progress with their project, they stumble upon “need-to-knows;” in this case, 

questions about atmospheric chemistry and pollution that they need to answer in order to progress in their 

investigation. Additionally, since projects are conducted over a long period of time, students must manage working 

with a team, adhering to a schedule, and monitoring progress. We currently cover the bulk of the content (discussed 

in the following section) during the first semester and leaving the second semester for projects. The curriculum 
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introduces students to the U-Pods, and helps them build useful skills with all of the pieces supporting the PBL model 

(Collier et al., 2015a). 

2.2 Curriculum Development 

During the first year, it was interesting to observe the synergism between the continuous data collected 

through the stationary network and the student-driven projects. For example, we were able to use the baseline data to 

support student learning about air quality concepts in the classroom. Alternatively, student-led investigations provided 

our group with information on potential local air quality issues (e.g., agricultural practices like ditch burning). In 

addition to local knowledge, students use of U-Pods clarified what skills and background knowledge users need. This 

also led to the idea of developing a curriculum to support U-Pod use. 

During year two, the curriculum used in the classroom is being reviewed and polished for public distribution. 

Five modules are currently under development. These modules provide students with background knowledge and an 

introduction to the skills necessary for successful projects including data analysis and how to present scientific results. 

The curriculum will empower students to ask complex and informed questions about local air quality issues. Each 

module (summarized in Table 1) includes guidance for teachers, presentations, worksheets, data sets, templates, links 

to more information, and suggested assessment as necessary. Together the five modules cover skills useful for this 

project and beyond it (e.g., working with large data sets in Excel, making a poster in PowerPoint, etc…). The series 

of modules culminates in a ‘Science Symposium’ or poster session, open to other students, teachers, parents, and the 

community. In line with the goals of PBL, the poster session challenges students to interpret and communicate their 

research to an authentic audience. 

3. CURRICULUM IMPLEMENTATION 

Lack of resources, knowledge, and skills is often as a barrier to technology integration in K-12 settings (Hew 

& Brush et al., 2007). To address these barriers, we are creating a U-Pod ‘check-out program’. Given that the U-Pod 

is a developing technology – a rental program will likely be more successful than selling the U-Pods because this type 

of program will allow the researchers to maintain the technology. This type of program will provide teachers with 

access to resources while facilitating technical support and providing our group with a way to maintain and strengthen 

relationships with districts using the U-Pods. We feel this is a promising model, and plan to make our curriculum 

publicly available in Fall 2015 in the hopes that other groups working with low-cost sensors will replicate this model. 
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Table 1: Air Quality Curriculum Overview 

 

4. PROJECT ASSESSMENT 

4.1. Overview 

Informal and anecdotal assessment data were collected at the end of year one. Assessment for the second 

year is more rigorous; formal assessment matrices have been developed for both the NFV Project and the AWG E&O 

team (Collier et al., 2015a). The NFV Project goals include developing/finalizing curriculum and conducting formal 

assessment of both the curriculum and the program. The goals for AWG E&O are broader in scope, for example one 

of the goals listed in the AWG E&O Assessment matrix is to ‘Integrate AWG SRN Research, Education & Outreach 

Activities’. We are successfully reaching an underserved rural Colorado community (Delta County students) by 

facilitating the use of the U-Pod for E&O in addition to the research it is being used for internally. Year two data will 

allow us to better determine which goals we are addressing and where we can improve. 

Summative assessment data will assist in evaluating the project upon the completion of year two; this data 

will focus on student skills/attitudes, the project’s impact, and opinions regarding the project. Our methods are typical 

of those used to assess similar K-12 outreach projects (Knight & Sullivan, 2006). We are also engaging in formative 

assessment throughout the year, as we work with teachers one-on-one to ensure we are meeting the needs of their class 

and implementation is running smoothly. Summative assessment activities and our progress are presented in Table 2. 

Student surveys (4 total) include attitude questions and confidence questions intended to assess whether students are 
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developing the skills intended with each module. Multiple student surveys with repeated questions will allow for pre 

vs post analysis to provide insight into the impact of the program over the course of the year. Surveys and interviews 

from teachers will ask whether they would continue participating in this program, what benefits to their students they 

observe, if they received enough support, and their overall reflections. Input from other stakeholders will allow us to 

consider whether or not we are meeting the needs of the community. The external review team assessing the 

curriculum includes an air quality expert and a teaching expert. The criteria this team is using was derived from 

guidelines developed by Cooperative Institute for Research in Environmental Sciences (CIRES) to assess proposed 

curriculum for Climate Literacy and Energy Awareness Network (CLEAN) (CIRES, 2015). In all surveys where we 

have requested that participants rate an opinion or experience, a score of 4.00/5.00 (80%) is our target. Together all 

of this data will be used to not only evaluate year two, but also inform future implementations of the project, the 

overall structure of the program, and revisions to the curriculum before it is made publicly available. 

4.2 Preliminary Results 

Table 3 provides an indication of the scope of the project during years one and two. Following the completion of 

year one, all three of the teachers were interviewed and a simple student survey was distributed. The teachers shared 

the following observations regarding their students: 

• Increased engagement in science classes 

• Student ownership of their projects 

• A better understanding of the scientific process (particularly the iterative nature of data collection and 

analysis that is not typically demonstrated in high school science classes) 

• Students strengthened skills likely to help increase their success in higher education (e.g., problem-solving 

and analysis skills) 

Teachers also mentioned that students benefited from working with a graduate student mentor, access to new 

classroom resources, and hands-on use of technology (both the U-Pod and tools such as Microsoft Excel, and the 

Google Drive platform to facilitate collaborative work). Finally, all three teachers expressed interest in continued 

participation in this program.  
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Table 2: Assessment Overview 

 

Table 3: Project Scope 

 

Complete assessment data from year two will help us to evaluate whether or not outcomes and benefits we 

observed during year one are occurring repeatedly. In the meantime, we can provide a discussion of preliminary 

results. The Module 1 and 2 Survey results are available in Tables 4 and 5 respectively. The Module 1 Survey was 

distributed to the high school students following our first classroom visit. This survey sought feedback on students’ 

attitudes regarding engineering and air quality and their reactions to the module. The results suggest that the 

presentation offered a valuable learning experience as students from District 1 (Delta County) rated their 

understanding of the impact of air quality research as a 4.60/5.00 and the amount they learned highly as 4.50/5.00, 

both meeting the goal of a minimum score of 4.00/5.00. District 2 (SVVSD) shared similar results with a rating of 

4.31/5.00 for their understanding of the impact of air quality research and 4.60/5.00 for the amount they learned. Mean 

scores below 4.00 for both school districts are reflected for questions 1, 2, and 5, which indicates that these are areas 

where we may be able to improve students’ attitudes over the course of the project. Responses to similar questions in 

the final student survey will help us understand if the project may have positively impacted students’ attitudes toward 

air quality, attitudes toward environmental engineering, or their knowledge of sources for information on air quality 

and other STEM related questions. Lower scores were also observed for question 4, but this question is a reflection of 

students’ comprehension of the material, and a lower score indicates comprehension. Additional open-ended questions 

in the Module 1 survey revealed that students responded most positively to the hands-on demonstration of the 

technology. 
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Table 4: Module 1 Survey Results 

 

Table 5: Module 2 Survey Results 

 

The Module 2 Survey (Table 5) was distributed to students after they participated in an activity to measure car 

emissions during which they were able to practice using the U-Pods. The data indicates that the desired mean score of 

4.00/5.00 or higher mean was met for every question and for both districts (with the exception of one score for question 

3 and District 1). The qualitative feedback indicated that students enjoyed the hands-on aspect and the opportunity to 

do the experiment themselves. One student commented, “I liked how we got involved in the activity” and another 

noted the change in teaching style was valuable and that “it was nice to get out of the classroom and learn a different 

way. 

5. DISCUSSION 

Engineering outreach programs “introduce students to the joys and frustrations of engineering” (Sullivan et 

al., 1999); this type of experience can have a multitude of benefits. Some students may be inspired to pursue a degree 

in engineering or STEM, while others (who may go on to work in entirely different fields) gain an increased 

understanding of STEM and its role in our society enhancing their multidisciplinary education. We believe that using 

the U-Pods for E&O has the potential to provide this type of experience. Comparing our preliminary data to results of 
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the evaluation of four outreach projects at the Colorado School of Mines indicates that we are building a promising 

outreach program (Moskal et al., 2007). Among the observed benefits to middle school students (the target audience) 

Mines researchers listed: 

• Increased use of technology 

• Increased classroom resources 

• Availability of college role models 

• Increased interest in science mathematics, and computer science 

• Increased exposure to and interest in college 

• Successful participation in academic competitions, including several awards (Moskal et al., 2007) 

Many of the benefits listed above match or are similar to benefits our teachers observed during year one (mentioned 

in the Preliminary Results section).  

Year two is providing more quantitative information regarding our project’s impact and thus far the indication 

is that the modules are serving their intended purpose. Students responses resulted in mean scores of over 4.00/5.00 

for questions 6 and 7 (Table 4), these questions cover the primary purpose of Module 1 – introducing students to air 

quality research and communicating why it is important. Lower scores (below 4.00/5.00) for interest/opinion questions 

regarding engineering and air quality are not uncommon and have been found in other studies where high school 

students were surveyed (Zarske et  al., 2007). It is possible that 80% is an unrealistic expected score for questions such 

as these, or that a lack of exposure to engineering in traditional curricula results in lower scores. We plan to compare 

these initial scores to the scores of similar questions in the final survey; however, this may be an area where more 

research is necessary. 

Module 2 is intended to prepare students for data collection. As indicated by the scores, students came away 

from the activity feeling more comfortable with the technology, and thinking about study design. The one exception 

is the low score from District 1 for question 3 (Table 5) regarding whether the activity led them to consider project 

ideas. This may be an indication that the module was implemented differently, and it would be worthwhile to add 

suggested discussion questions into the curriculum to address this need. Additionally, this mean score is significantly 

different from District 2. All other mean scores were not significantly different (p-values > .05) between districts, 

which indicates that students in both locations are reacting to the curriculum and project similarly. We will continue 
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to observe the differences and similarities between the school districts throughout the remaining surveys, as it will 

inform our program design, and specifically designing to meet the needs of a variety of school types. 

6. LIMITATIONS AND FUTURE PLANS 

The primary limitations of our assessment data are the lack of a control group and small sample size. These 

are limitations we will address in future iterations of the program. We already have plans for implementation in new 

districts during year three, which will provide a larger population. We would also like to refine our assessment tools 

and implement established tools developed by external groups, as well as examining how we can incorporate more 

established outreach frameworks into the program. Year three of the project will include the above, as well as 

implementation of the final version of curriculum, continued assessment, and building the U-Pod ‘check-out’ program. 

In the long-term, we are interested in working with school districts to track the long-term progress of students and 

their degree choices in college. 

In addition to planning for future iterations of the project, we are considering program viability. One key to 

ensuring our program is sustainable is to refine our ideal role as a university partner. Although the relationships built 

between high schools students and the graduate student mentors are an integral piece of the project, currently a 

graduate student mentor leads or co-teaches each module. Ideally, we would like graduate student mentors to support 

rather than lead, which in turn gives teachers more independence and flexibility in implementation and promotes 

program sustainability. To facilitate this transition, we will add teacher training sessions providing hands-on 

experience prior to their using U-Pods in the classroom. This model will result in a more resilient program and allow 

our team to take a facilitator/resource role and reach a greater number of students and classes across Colorado. 

We are also aware that sustainability beyond the AWG grant period is another challenge to consider. Karp 

and Gale report in their paper on long-term program sustainability that a means for continuing beyond the initial grant 

was forming partnerships with established organizations (Karp & Gale et al., 2009). These partners were then able to 

assist the program in continuing after it had been built through the initial grant. This may be a model that would work 

for our project as well, and we will continue to explore our options. 

We see this program as having the potential to benefit participants in a lasting way. This program provides 

students with a window into engineering, academic research, and even public and environmental health. For example, 

a group of students from one of the high schools in Delta County incorporated a U-Pod into their science fair project. 
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They used the U-Pod to compare by-products from the combustion of homemade biodiesel to the combustion of 

regular diesel fuel. This group was subsequently invited to the state science fair at Colorado State University (Ft. 

Collins, CO). At the state level they were awarded an honorable mention and scholarship money for college. Their 

teacher also reported that visiting CSU increased their interest in higher education. While in Ft Collins, the students 

were able to participate in a state-wide academic competition, attend classes, and tour the campus. With support from 

our team and access to resources like the U-Pod, the students were able to go from making biodiesel to assessing the 

impacts of using biodiesel – moving toward an understanding of the entire lifecycle of the fuel. This provided these 

students with experiences similar to those of environmental engineers, and also an idea of the supporting disciplines 

(e.g., mechanical engineering and computer science). Utilizing the program for a science fair project provide an 

example of a group taking the U-Pod further than the intended PBL curriculum, which is something we hope to see 

more of and support in the future. We hope that through opportunities such as this, increased access to university 

resources, or even simply by connecting them with researchers we can inspire students to consider the wide variety of 

options available post high school. 

7. CONCLUSION 

The NFV Project is the beginning of a promising K-12 outreach program. The project has evolved from a 

grassroots effort to work with rural Colorado students into a systematic project undergoing implementation in multiple 

school districts, funded by the National Science Foundation, and aiming for sustainability and longevity. We believe 

our unique model of a U-Pod ‘check-out’ program will ensure teachers are provided with access to resources and the 

necessary technological support and facilitate building partnerships that may lead to future collaborations and 

opportunities for our University. This program has the potential to build and sustain a community of learners using 

the U-Pods and inspire students to consider careers in science, engineering, and public and environmental health. 
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Preface to Chapters 5 & 6 

 

The following two chapters passed peer review and were published prior to their inclusion in this 

dissertation (publication information is available following the titles). However, minor revisions 

have been made, to the versions of the articles contained in these chapters, based on the suggestions 

of my committee members. 
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ABSTRACT 

The increased use of low-cost air quality sensor systems, particularly by communities, calls for the further 

development of best-practices to ensure these systems collect usable data. One area identified as requiring more 

attention is that of deployment logistics, that is, how to select deployment sites and how to strategically place sensors 

at these sites. Given that sensors are often placed at homes and businesses, ideal placement is not always possible. 

Considerations such as convenience, access, aesthetics, and safety are also important. To explore this issue, we placed 

multiple sensor systems at an existing field site allowing us to examine both neighborhood-level and building-level 

variability during a concurrent period for CO2 (a primary pollutant) and O3 (a secondary pollutant). In line with 

previous studies, we found that local and transported emissions as well as thermal differences in sensor systems drive 

variability, particularly for high-time resolution data. While this level of variability is unlikely to affect data on larger 

averaging scales, this variability could impact analysis if the user is interested in high-time resolution or examining 

local sources. However, with thoughtful placement and thorough documentation, high-time resolution data at the 

neighborhood level has the potential to provide us with entirely new information on local air quality trends and 

emissions. 

1. INTRODUCTION AND BACKGROUND 

As research into and the use of low-cost air quality sensor systems continues to expand there is great potential 

for this technology to support community-level investigations. Furthermore, given the nature of these sensor systems, 

such investigations provide data with increased resolution on both temporal and spatial scales. Ideally, such sensor 

systems offer greater insight into personal exposure (Jerrett et al., 2017), small-scale variability (Sadighi et al., 2018), 
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and local emission sources or potential ‘hot spots’ (Mead et al., 2013). One of the barriers to widespread sensor use 

has been concerns over data quality and reliability. There is a growing body of research demonstrating the ability of 

sensors to quantify pollutants at levels relevant to ambient investigations (Piedrahita et al., 2014; Zimmerman et al., 

2018; Cross et al., 2017; Kim et al., 2017). However, other issues have received less attention, for example, strategies 

for siting low-cost sensors. Sensor deployment and siting considerations are particularly important because while it is 

sometimes possible to re-analyze or re-quantify sensor data as new techniques become available, it is rarely possible 

to re-collect data as environmental conditions and emissions impacting a site are dynamic in nature. Careful 

consideration prior to and documentation of the sensor siting process could not only aid in data processing and 

interpretation, but also help to ensure the collection of useful and relevant data. 

Previous studies have demonstrated that pollutant variability can exist on small spatial scales utilizing six-

minute or hourly averaged data. Variability has been observed across a street or within a few hundred meters, 

especially in more complex urban environments (Vardoulakis et al., 2005; Croxford et al., 1998). Therefore, it is 

reasonable to expect that where the sensor is placed on a building could influence the data collected. While there are 

strict guidelines for siting a Federal Equivalent Method/Federal Reference Method (FEM/FRM) monitor, no such 

guidelines exist for low-cost sensor systems.  Further complicating the matter, siting a sensor system at a home or 

business can be challenging as convenience, safety, and aesthetics are all factors in the decision rather than simply the 

most ideal placement for accurate measurements. As guidelines for sensor system deployment are established, it would 

be valuable to both examine existing literature and learn from field deployments. For instance, in addition to guidelines 

for siting FRM/FEM monitors for regional-scale monitoring, the US EPA offers some considerations for monitoring 

at the urban (4-50 km), neighborhood (0.5-4 km), middle (100 m - .5 km), and micro (< 100 m) scales (US EPA, 

2017d). Given that many sensor studies occur in cities, modeling studies examining how urban landscapes and 

buildings influence air flow and pollutant transport could also assist with strategic sensor system placement at a site 

(Hang et al. 2012; Vardoulakis et al., 2003). Finally, studies on near-source measurements or small-scale variability 

could be valuable examples, some of these utilize combined monitoring/modeling approaches and many specifically 

investigate near-roadway emissions and trends (Clougherty et al., 2013; Vardoulakis et al., 2005). Similar to regulatory 

monitoring and conventional research, communities interested in using sensors must define the scale and objective of 

their monitoring, whether is to compare local emission sources, understand potential exposures at a neighborhood 
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level, or characterize air quality across their city. Here we used a short deployment to better understand the effects of 

certain sensor system placement choices, which could then be used to advise communities based on their objectives.  

A recent study in New Zealand, also utilizing a field deployment of sensor systems, thoroughly examined 

specific aspects of this question by determining the intra-site variability of paired O3 sensors and the impact of siting 

conditions/type on the overall dataset (Miskell et al., 2017). Miskell and colleagues found that most factors examined, 

such as placement at a site (i.e., on a wall, balcony, or roof), land coverage beneath the instrument, or land-use 

designation at the site, had little impact on the observed intra-site variability (2017). Two factors–exposure to direct 

sunlight likely causing temperature differentials between paired sensors and local emission events–resulted in the 

greatest intra-site variability (Miskell et al., 2017). The team concluded that networks of O3 monitors set up by citizen 

scientists can supplement existing reference networks and provide new information, as limited variability was 

introduced due to siting choices and this variability was minimal over typical reporting scales (e.g., hourly or 8-hour 

averaged data) (Miskell et al., 2017). 

This study by Miskell and colleagues provided a comprehensive example of how sensor systems can support 

existing monitoring networks for O3 and the impacts of siting choices in this context (2017). However, it is possible 

that communities may wish to use sensors for the collection of high-time resolution data on smaller spatial scales 

rather than the larger averaging times and regional scales studied by Miskell and colleagues (2017). To explore the 

impact of siting choices in this alternate context we undertook a small case study during a larger deployment of sensor 

systems in Los Angeles, CA, USA. We added four additional sensor systems to one sampling site to observe the 

variability across several sensors on one building. We compared this building-level variability to the neighborhood-

level variability. This analysis includes data from both metal oxide O3 sensors and non-dispersive infrared CO2 

sensors–providing the opportunity to examine a primary and a secondary pollutant. The differing spatial scales 

(neighborhood vs. regional) and higher temporal resolution (utilizing primarily minute-median data) as well as the 

addition of CO2 data offers a small, complementary dataset providing additional information to inform 

recommendations for siting practices. 

Furthermore, while there currently exist several valuable resources contributing best practices and supporting 

community-based investigations using low-costs sensors, such as the US EPA’s Air Sensor Guidebook (Williams et 

al., 2014), South Coast Air Quality Management District’s Sensor Performance and Evaluation Center (SCAQMD, 

2015), and the Environmental Defense Funds Air Sensor Work Group (EDF, 2018), additional case studies examining 
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the questions of best-practices in different contexts will support the development of recommendations appropriate for 

the variety of uses likely to emerge. This need for more standards to guide all aspects of sensor use from planning to 

deployment to data analysis and interpretation has been cited as critical by academic, community-based, and regulatory 

researchers (Clements et al., 2017). 

2. MATERIALS & METHODS 

2.1. Deployment Overview (Sensor Systems, Siting, and Timeline) 

The sensor systems utilized for this study, called Y-Pods (Hannigan Lab at CU Boulder, Boulder, CO, USA), 

contain several gas-phase and environmental sensors. This analysis utilizes data from the SGX (Corcelles-

Cormondreche, Switzerland, formerly e2v) metal oxide semiconductor O3 sensors (model MiCS-2611) and ELT non-

dispersive infrared CO2 sensors (model S-300) as well as data from environmental sensors (i.e., temperature and 

relative humidity). These sensor systems, or similar ones (e.g., the U-Pod, predecessor to the Y-Pod) operating the 

same sensors, have been used in prior sensor quantification and spatial variability studies (Sadighi et al., 2018; Casey 

et al., 2018a; Cheadle et al., 2017; Masson et al., 2015b; Collier-Oxandale et al., 2018a). Figure 1 includes a photo of 

the interior of a Y-Pod and an example of two deployed Y-Pods. The Y-Pods, and all previous iterations, include a 

fan to drive active air flow resulting in multiple air exchanges per minute. The observations presented here would 

likely need to be re-evaluated for a system relying on passive flow. More information on signal processing and sensor 

performance quantification is available below in Section 2.2. 

As previously mentioned, this study was integrated into a larger field deployment in Los Angeles allowing 

us to leverage one of the existing study sites and ongoing sensor calibration efforts. The study area is primarily high 

density residential with schools and some businesses nearby. In addition to local traffic and businesses (such as 

restaurants) other emission sources include two major highways to the North and East of the sampling area. The 

diagram in Figure 1 illustrates where the Y-Pods (B2, B3, B4, and B5) were added to the building site (main sensor 

system–B1). Note, the placements vary with respect to elevation and proximity to obstructions – it was the objective 

of the study to compare a variety of placements, including non-ideal locations. Two Y-Pods were placed on the front 

of the building on a fire escape, two and three stories off the ground, and 6–12” from the side of the building. 

The fire escapes at the front and back of the building are both constructed of metal and allow for free airflow 

through and around the structures. The main Y-Pod was elevated on the roof, on top of a structure housing the stairs, 
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close to the front of the building, and with no obstructions on any sides. The fourth and fifth Y-Pods were placed at 

the back of the building on another fire escape, one at the roof-level and the other three stories off the ground, again 

6–12” from the side of the building. The back of the building is obstructed by a narrow alley that does not allow 

through-traffic; the lack of access to representative air flow makes the placement of B5 the least “ideal”. 

 
Figure 1: The map (left) indicates the sampling sites relevant to this paper, the diagram (top right) indicates 

where sensor systems were deployed at the Building Site, and the photos (bottom right) show the inside of a 

Y-Pod and a deployed Y-Pod. 

 

Figure 1 also illustrates the location of several other neighborhood sites from which data was used in this 

analysis (N1, N2, and N3). These sensor systems were deployed on a relatively small scale with the furthest distance 

between any two neighborhoods sites being less than 1000 ft. It is important to note that the placement of N1, N2, and 

N3 at their respective sites also introduces some added variability as these placements differed site to site. The Y-Pod 

placement for N1 was most similar to B3 on a large second story balcony, on the side of a building open to the road. 

The Y-Pod placement for N2 was also most similar to B3–at the front of the building, on the street side, but set back 

by a small yard/driveway and lower in elevation (~10 ft off the ground). The Y-Pod placement for N3 was most similar 

to B1, placed on the roof of a multi-family residence. 

This study relies on comparing co-located sensor data with spatially deployed sensor data, therefore we 

limited the data utilized to match the lengths of our co-located datasets meaning approximately three weeks of data 

were included in the analysis. Figure 2 shows the timeline of long-term sensor use, including time periods of co-

location and periods of field deployment. The co-location of all sensor systems prior to the field deployment was used 

to understand neighborhood variability; this co-located time period is referred to as Week 0. The Week 0 co-location 
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occurred in a different part of Los Angeles at a regulatory monitoring site; this site is described in greater detail below 

in Section 2.2.2. For the first week of the building-scale variability study, the building Y-Pods (B2, B3, B4, and B5) 

were co-located with B1–this is referred to as Week 1. During this period the neighborhood Y-Pods (N1, N2, and N3) 

were already deployed to their field sites. Immediately following the first week of the field deployment the sensor 

systems were separated to their respective locations on the building and this is referred to as Week 2. The data from 

Week 2 was designated as the deployed dataset for both the neighborhood sites and the building sites. 

 
Figure 2. Timeline showing when co-location of sensors with reference instruments occurred and when 

deployments to field sites occurred. 

2.2. Signal Processing and Sensor Quantification 

Sensor signals were saved to a text file on a micro-SD card on the Y-Pod every 6–25 s, depending on the 

programming. As some of the metal oxide sensors used here require a warm-up period, the first half hour of data after 

a pod has been powered off for half an hour or more was removed. Minute medians were computed; using medians 

instead of averages removes any single extreme points likely the result of electronic noise. For both the CO2 and O3 

sensors, voltage values were recorded to the SD card as ADC values. These voltages were used as is for the CO2 

sensor, but for the O3 sensor they were converted to a normalized resistance prior to analysis (Sadighi et al., 2017; 

Piedrahita et al, 2014; Masson et al., 2015a). Note, all of the datasets for Weeks 0, 1, and 2 are complete with the 

exception of the O3 data from Y-Pod N3, on which the O3 sensor appears to have malfunctioned. Thus, this data has 

been excluded from the analysis. 

Sensor signals were converted to concentrations using field calibration, which involves: (1) colocation with 

high-quality reference instruments; (2) the development of a calibration model using the air quality sensor signals, 

environmental sensor signals, and trusted reference data as well as a technique such as multiple linear regression; and 

(3) the evaluation of that model and its application to testing or validation data. Ideally; the sensors are co-located 

before and after the field deployment to better facilitate corrections for drift. It is common to incorporate 

environmental parameters into these calibration models as low-cost sensors are often cross-sensitive to temperature, 

humidity, and sometimes other pollutants (Cross et al., 2017). Note, each calibration model is specific to each Y-Pod, 
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utilizing only sensor signals from that board. This method of sensor performance quantification has been used by our 

research group as well as others (Sadighi et al., 2017; Spinelle et al., 2015a; Spinelle et al., 2017a) and with techniques 

such as linear regression, multiple linear regression, and machine learning (Zimmerman et al., 2018; Casey et al., 

2018c). Details of the calibration employed here are presented below. 

2.2.1. Quantification of CO2 Sensor  

For CO2 sensor quantification, the Y-Pods were twice co-located with a LI-840A (Licor, Lincoln, NE, USA) 

placed at a regulatory monitoring site near downtown Los Angeles. The Licor LI-840A has an expected uncertainty 

of <1% of the reading as stated by the manufacturer, and the instrument is calibrated using a zero and two-point span 

calibration with gas standards. The Licor used in this study was calibrated prior to a deployment during the previous 

summer and was stored between these deployments. As a result of the time lag, we expect drift to have impacted the 

CO2 reference data. However, as we are interested in sensor to sensor comparisons and the sensor data is baseline 

shifted (as described below), this drift is of minimal concern. These two co-locations with the Licor were 8 weeks 

apart and included 17 days total, 12 of which were used for calibration model training and 5 of which were used for 

model testing. In this instance more of the co-location data was designated for training in order to increase the 

robustness of the model and expand the environmental conditions for which the model was trained. The model used, 

Equation (1), included predictors for temperature (Temp), absolute humidity (AH), time (t), and the sensor signal or 

voltage (V) and solves for the CO2 concentration (C): 

                              (1) 

Due to logistics and a lack of available reference data, both calibration co-locations occurred prior to the 

building-scale variability study (Figure 2). For this reason, further signal processing was necessary. Given that the 

CO2 calibration model is extrapolating in time, additional drift was expected. For this reason, the CO2 data was 

converted using the calibration model and then this data was baseline corrected (to remove drift), and finally the 10 th 

percentile value from each Y-Pod was normalized to 400 ppm. We selected 400 ppm as it is the approximate 

atmospheric background concentration of CO2 (NOAA, 2018). In light of the goals of this case study–comparing 

relative differences across co-located verses deployed sensors–this additional processing was deemed reasonable. 

Furthermore, the results illustrate the high correlation and agreement between co-located sensors post-processing as 

would be expected and is also present in the calibration data (Appendix IV). 
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2.2.2. Quantification of the O3 Sensors 

For O3 sensor quantification, the Y-Pods were co-located with API/Teledyne 400 instruments (San Diego, 

CA, USA) at two different regulatory monitoring sites. The first site was in Los Angeles in a mixed-use area with 

some nearby housing and industry. The second site was outside of Los Angles in Shafter, a rural Californian 

community. These two co-locations occurred prior to and following the building-scale field deployment and therefore 

no additional signal processing was necessary. The model, Equation (2), used included predictors for temperature 

(Temp), absolute humidity (AH), time (t), the normalized sensor resistance (R/R0), as well as an interaction term 

between temperature and concentration, and solves for the O3 concentration (C). The interaction term is intended to 

address not only changes in baseline driven by temperature but changes in the magnitude of sensor response driven 

by temperature. This model has been demonstrated as well performing for this sensor in previous studies (Sadighi et 

al., 2018; Cheadle et al., 2017): 

                         (2) 

3. RESULTS AND DISCUSSION 

3.1. Field Calibration Results (Sensor System Uncertainty) 

Table 1 below provides the performance statistics from the generation and validation of the calibration 

models. The complete statistics for individual Y-Pods as well as time series data are available in Appendix IV. For 

both CO2 and O3, there is relative consistency across the training and testing datasets. Additionally, the RMSE for the 

O3 sensor was consistent with uncertainty typically cited for both this same sensor and other metal oxide O3 sensors 

(Sadighi et al., 2018, Cheadle et al., 2017; Bart et al., 2014). A previous study using the CO2 sensor in a portable 

sensor system found a RMSE ranging from approximately 9–16 ppm depending on the calibration model selected 

(Piedrahita et al., 2014). 
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Table 1: Performance Statistics as Compared to Reference Datasets (Averaged for all Y-Pods). 

 

3.2. Neighborhood-Scale Variability 

Comparing Week 0 (co-located) to Week 2 (deployed to field sites), there is increased variability in both the 

CO2 and O3 data. For CO2, this variability is most extreme in the comparison between B1 and N3, which was also the 

site furthest away from B1 and closest to the highways. For this pair of sensors, the correlation decreases from 0.96 

to 0.89 and the spread in the absolute differences as well as the median absolute difference increases, see Figure 3. 

This is not the case for the comparisons of B1 to N1/N2 where there is only a very small decrease in correlation. 

Examining the time series plots (available in Appendix IV) reveals differences in the variability seen in Week 0 versus 

Week 2. For Week 0 the variability seems primarily driven by offsets in which one Pod is biased low or high for a 

period, whereas for Week 2, the variability seems driven by differences in trends between the sites typically in the 

form of short-term enhancements. These enhancements present in the Week 2 data are likely sources or plumes 

impacting the sites unevenly. 

For O3, spatial variability across field sites was much more apparent. Although there was little change in the 

correlation coefficient, there was an increase in the spread in both the scatterplot and the boxplot (Figure 4). For Week 

0, nearly all the absolute differences between B1 and N1/N2 were below the expected uncertainty (RMSE = 5.28 ppb). 

For Week 2, after the Y-Pods were spatially deployed the spread increased to well above the RMSE, see Figure 4. The 

time series plots (Appendix IV) confirmed that this increased variability was primarily driven by short-term dips in 

O3 likely caused by localized destruction occurring in a NOx plume. While it is possible that the differences in 

increased variability between the sensor types were in part due to CO2 being a primary pollutant (thus less well-mixed) 

and O3 a secondary pollutant (generally more well-mixed), it is also worth noting that the CO2 sensor has a lower 

signal/noise than the O3 sensor in this application. Another possible explanation for O3 depletion could be loss to 

surfaces. This is important to consider as the Y-Pods were placed in close proximity to either the roof (which was a 
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sealed, finished roof) or the sides of the building (which were brick). Studies have illustrated how different surfaces 

drive different rates of ozone deposition (Simmons & Colbeck, 1990; Shen & Gao, 2018). Though loss of ozone to 

surfaces would most likely be expressed in the data as a gradual, continual decrease rather than quick depletions and 

recoveries.  

 
Figure 3: Scatter plots showing each neighborhood Y-Pod (N1, N2, and N3) vs. Y-Pod B1 for Weeks 0 and 2. 

The boxplots show the absolute differences between B1 and each of the neighborhood pods, with the whiskers 

at the 5th and 95th percentile respectively. Again, the data was shifted,  

placing the 10th percentile value at 400 ppm.  

 
Figure 4: Scatter plots showing each neighborhood Y-Pod (N1, and N2) vs. Y-Pod B1 for Weeks 0 and 2.  

The boxplots show the absolute differences between B1 and each of the neighborhood pods, with the whiskers 

at the 5th and 95th percentile respectively.  

3.3. Building-Scale Variability 

Somewhat surprisingly spatial variability was also observed at the building-level for both sensor types when 

comparing Week 1 (co-located at the building) and Week 2 (deployed). For CO2, there was a decrease in the 
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correlations on the same scale as occurred across some of the neighborhood sites (Figure 5). For O3, again there are 

no significant changes to the statistics, but there is an increase in spread (Figure 6), similar to Figure 4. The time series 

(Appendix IV) showed the events driving these differences were short-term in nature and appeared to be driven by 

local emissions or transported plumes. This influence of nearby emissions events was observed by Miskell and 

colleagues as well (2017). 

 
Figure 5. The scatter plots to the left show the correlation between Y-Pod B1 and each of the added building 

Y-Pods (B2, B3, B4, and B5) for both minute (M) and hourly (H) CO2 data for Week 1 (co-located). The 

scatter plots to the right show the same correlations, again with minute and hourly data, but for Week 2. 

 

Hourly-averaged data was added to both Figure 5 and 6 to determine whether this variability impacted data on more 

typical temporal reporting scales. Similar to Miskell and colleagues, the variability does not seem to impact the hourly 

O3 data (2017). However, given the decreased correlation coefficients (particularly for sites B2 and B5), it appears 

there was some variability still present in the hourly-averaged CO2 data.  
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Figure 6. The scatter plots to the left show the correlation between Y-Pod B1 and each of the added building 

Y-Pods (B2, B3, B4, and B5) for both minute (M) and hourly (H) O3 data for Week 1 (co-located). The scatter 

plots to the right show the same correlations, again with minute and hourly data, for Week 2 when they were 

spatially deployed around the building site. 

 

For both pollutants, the most dramatic differences were between sites B1 and B4/B5, the two sites at the back 

of the building. Speaking with community partners from the project we determined that the building has both a natural 

gas hot water heater and natural gas dryers toward the back of the building where there are also pipes that appear to 

be venting these emissions. Sources on the building would seem to explain the large magnitude of the observed 

variability. By comparison, for the sites B2 and B3, which were on the front of the building above the road, there were 

occasional increasing spikes for CO2 and decreasing spikes for O3 that are smaller in magnitude. The range of 

responses observed in the sensors, along with this contextual information affirms that multiple pollutant sources were 

impacting the building in an uneven manner.  

Providing further evidence for multiple sources, Figure 7 includes the absolute differences between Y-Pod 

B1 and B5 for CO2 (in blue) and O3 (in red). There are periods where the differences between CO2 and O3 were well-

correlated indicating a shared source. Following this period were instances where the differences were primarily 

visible in one pollutant or the other. This lack of correlation likely indicates two separate sources, one with relatively 

more CO2 and another with more NO. Furthermore, there were many instances where these differences between the 

two building sites were well above the RMSE values. In Figure IV.6 (Appendix IV) the spatial differences have been 

plotted in such a way as to highlight the temporal aspect of both the increases in CO2 and decreases in O3 at the B5 

site. The correlation between differences in CO2 and O3 occur primarily in the evening hours, while the uncorrelated 
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periods result in enhancements during early morning and daytime hours. These temporal patterns also point to separate 

sources influencing sensor data.  

 
Figure 7: Time series of absolute differences between Y-Pod B1 and Y-Pod B5 for CO2 (blue) and O3 (red),  

the RMSE for both the CO2 and O3 sensors are indicated using dotted lines. The yellow boxes highlight periods 

where the differences in the two signals are well-correlated verses periods where the differences are  

occurring primarily in the CO2 or O3 signal. The correlation coefficient (R) has  

been added to contrast the different periods. 

 

In addition to nearby emission events, Miskell and colleagues observed that direct sunlight causes thermal 

variations in the instruments causing variability (2017). We compared the internal temperatures in the Y-Pods to 

determine whether this could be a source of variability in our study as well. Figure 8 depicts the variability in light of 

temperature differences. Again, B1 was placed on a roof with no nearby obstructions meaning that it was exposed to 

more direct sun than B5, which was placed on a fire escape in an alley. In Figure 8, the internal temperature differences, 

between B1 and B5, less than three degrees Celsius were plotted separately from differences greater than three degrees 

Celsius. The line of best fit for the group with larger temperature differences (in yellow) illustrates a consistent bias 

in the data at low and high concentrations. This bias is visible in the time series as well, the B1 values are consistently 

greater than the B5 values when the temperature difference is above three degrees. Conversely, B1 and B5 are better 

matched in terms of long-term trends for smaller temperature differences. Although the calibration model does 

incorporate corrections for temperature effects, the model would be unable to account for the small differences driven 

by direct sunlight exposure as this would be difficult to control during co-location. The corrections incorporated into 

the calibration model are intended to deal with less acute temperature effects (e.g., diurnal patterns). One other possible 

explanation for this variability, mentioned previously, would be ozone loss to surfaces. It is possible that the different 

surfaces of the roof and walls of the building drive deposition at different rates. Although, Miskell and colleagues did 
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examine the impact of land coverage (i.e., grass, gravel, deck) below the instrument and did not find that this variable 

had a significant affect in intra-site variability (2017).  

 
Figure 8: Two plots illustrating the effect of temperature differences between the pods. The scatter plot (left) 

depicts B1 vs. B5, separating points where the temperature difference between the two pods is less than and 

greater than three degrees Celsius. The time series (right), shows two days of data from B1 and B5 where the 

B1 data also has an overlay of temperature differences between the pods. 

 

Siting choices and additional shading for the sensor systems could reduce this variability. Although some of 

the variability between building-sites can be attributed to thermal differences, it is important to recall that this 

variability is displayed as a bias rather than the larger spread associated with the variability driven by nearby emissions. 

Therefore, this variability would be unlikely to affect any conclusions about spatial differences due to sources in the 

same way the short-term enhancements would when examining high-time resolution data.  

3.4. Impact of Siting Choices on Neighborhood Variability Analysis 

In agreement with the findings of Miskell and colleagues, we have observed that local emissions or plumes 

can drive intra-site variability as well as temperature differences caused by exposure to direct sunlight (2017). Also, 

as with the previous study, this spatial variability does not impact O3 concentrations on typical reporting scales (hourly 

or eight-hour averages for example). However, the same is not necessarily true for CO2 suggesting it may be valuable 

to further investigate this aspect of variability for primary pollutants. The spatial variability observed here becomes 

especially important for communities interested in high-time resolution data, which may be used to assess exposure 

and/or understand the impact of local emission sources within a neighborhood. When high temporal and spatial 

resolution is of interest, incorrect placement could result in the inappropriate attribution of sensor responses or failing 
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to record emissions that are present. Figure 9 includes several days of data demonstrating the large magnitude of 

differences that can be observed across a single site.  

To further explore the impact of the building-scale variations on the community-scale spatial differences, 

Figures 10 and 11 depict the average of the neighborhood sites with one building site selected and assumed to be 

representative for that location. The shading on the plot indicates the standard deviation for each mean. For the first 

case, in blue, Y-Pod B5 was selected as the building site Pod and for the second case, in red for minute median and 

green for hourly averaged data, B1 was selected. Similar to the previous comparison, there are minimal differences 

between the hourly O3 datasets and only a few instances in the hourly CO2 data where the mean of the B5 dataset 

differs beyond the standard deviation of the B1 dataset. However, examining the minute-median data for either 

pollutant, one might draw different conclusions regarding the neighborhood variability depending on which building 

site was selected. For example, one might anticipate more variability with B5 selected, or fewer local sources capable 

of scavenging O3 with B1 selected. If examining the maximum daily CO2 concentrations, the results for several days 

would differ. Regardless of which building site is selected, the diurnal trends are consistent potentially providing an 

indication of regional trends. Also, for the minute data, this difference between the datasets is more extreme for the 

CO2 data possibly due to CO2 being a primary pollutant and less well-mixed in the atmosphere. 

 
Figure 9: Time series of CO2 data (top and bottom left) and O3 data (top and bottom right) each showing 

approximately one-day of data from the building sites during the Week 2 period. 
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Figure 10: Time series of CO2 data (top: minute-median, bottom: hourly-averaged), showing the mean and 

standard deviation of different sets of Y-Pods. 

 
Figure 11: Time series of O3 data (top: minute-median, bottom: hourly-averaged), showing the mean and 

standard deviation of different sets of Y-Pods. 

3.5. Generalizability of Building-Scale Spatial Variability & Potential Recommendations 

There are a few aspects of this study that limit generalizability: we used short periods of data, we only 

examined the variability around one building in Los Angeles (variability might look different around a different 

structure or in a different city), and the two sensors types we used rely on different operating principles. Given these 

limitations, there are still recommendations based on this analysis that can be made. As the following 

recommendations are intended for individuals or groups interested in conducting sensor studies, more general “best 
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practice” recommendations have been included as well. While some of these are more general, specifically the first 

and fourth ones, the results of the study nonetheless affirm their value. Furthermore, these suggestions complement 

the US EPA’s existing recommendations for planning a study and siting sensors (Williams et al., 2014); though it 

would also be beneficial to supplement these with EPA recommendations for siting for regulatory and research studies 

(US EPA, 2017d). These recommendations are tailored to low-cost sensor studies involving high-time resolution data 

on a neighborhood or source-scale: 

• Compare Sensors: Co-locating sensors in the field will support a better understanding of inter-sensor 

variability prior to their deployment, which will aid in attributing new variability introduced by the 

deployment of sensor systems to separate sites. These relative comparisons can also be valuable if there are 

problems with the calibration. 

• Placement and Distribution: To study a particular emission source, place sensors upwind and downwind of 

the site of interest, at varying distances. Some of the sensors should have a line of sight to the emission 

source. Consider factors such as typical wind directions and potential obstructions, which may impact the 

transport of emissions. These placements should also minimize added variability when possible. For 

example, shading all sensor systems, placing them on the same sides of buildings, or placing them 

exclusively on rooftops could reduce the variability and biases that result from occasional direct sunlight. 

• Supplementary Sensor Data: Consider using multiple systems or sensor types. The ability of sensors to 

capture variability on small spatial scales could be leveraged to aid in source identification by placing 

multiple sensor systems at a site with the objective of capturing local emissions with some systems and 

targeting exclusively regional trends with other systems. Leveraging data from multiple sensor types could 

also shed light on sources and emissions by studying the correlations or temporal patterns of data from 

sensors intended to measure different target pollutants. 

• Document Deployment: Document your deployment in writing and with photos (take photos of the sensor 

systems from different angles and photos from the sensors of what they “see”). Learning about nearby 

activities could provide contextual information that can aid in data interpretation and reduce the 

misinterpretation of sensor data. 
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4. CONCLUSIONS 

This deployment demonstrated how the variability in CO2 and O3, measured using low-cost sensors, across 

a single sampling site can be comparable to the variability across several sites in a neighborhood. However, this spatial 

variability occurs primarily in high-time resolution (<1 h) data as it seems to be driven by nearby emission plumes 

and occasional thermal differences. As Miskell and colleagues reported these differences do not persist at typical 

reporting scales (Miskell et al., 2017), but if a researcher or community is interested in high-temporal resolution data 

then this variability could become significant. This variability might also be more important to consider for studies 

taking place on smaller spatial scales, such as the neighborhood scale at which this study takes place, rather than larger 

regional scales.  

While minute-level data is not currently utilized for regulatory purposes, this level of data can provide 

powerful preliminary and supplementary information when it comes to understanding the activities and experiences 

in a community and at local scales. Furthermore, the presence of building-level variability does not exclude sensors 

from being used in air quality investigations, but rather affirms their ability to detect these differences in trends. 

Through attention to siting and thorough planning/documentation, there is the potential to make more accessible the 

collection of data that could for example, inform detailed investigations into the impact of a single source on a 

neighborhood, track the transport of emissions through an area, or clarify the acute effects of brief, high-concentration 

exposures. These potential applications suggest that this new type of data, made possible by sensors, could eventually 

support improved public health. 
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ABSTRACT 

Low-cost sensors have the potential to facilitate the exploration of air quality issues on new temporal and 

spatial scales. Here we evaluate a low-cost sensor quantification system for methane through its use in two different 

deployments. The first was a 1-month deployment along the Colorado Front Range and included sites near active oil 

and gas operations in the Denver-Julesburg basin. The second deployment was in an urban Los Angeles neighborhood, 

subject to complex mixtures of air pollution sources including oil operations. Given its role as a potent greenhouse 

gas, new low-cost methods for detecting and monitoring methane may aid in protecting human and environmental 

health. In this paper, we assess a number of linear calibration models used to convert raw sensor signals into ppm 

concentration values. We also examine different choices that can be made during calibration and data processing and 

explore cross sensitivities that impact this sensor type. The results illustrate the accuracy of the Figaro TGS 2600 

sensor when methane is quantified from raw signals using the techniques described, with an uncertainty of 0.38 ppm 

observed in the Colorado deployment and 0.22 ppm observed in the Los Angeles Deployment. These results also 

highlight the need for further research into the cross-sensitivities that affect these sensors. Although, considering the 

limitations, these tools seem to be able to reveal air quality trends and events on small spatial and temporal scales – 

speaking to their potential to provide preliminary data that can inform more targeted measurements or supplement 

existing monitoring networks. 
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1 INTRODUCTION 

1.1 Background and motivation 

Given both the direct impacts on climate change and indirect impacts on human health, it is important to 

study increased atmospheric methane on varied temporal and spatial scales. Methane is an important greenhouse gas 

with 28 times the global warming potential of CO2 over a 100-year lifetime (IPCC, 2015); moreover, the majority of 

methane emissions result from human activity (US EPA, 2017e). Researchers using ice core samples to measure 

historic methane levels found relatively stable atmospheric concentrations of approximately 0.695 ppm from 1000 

AD until the Industrial Revolution (Etheridge et al., 1988), after which methane concentrations have grown to a 

present-day global average of 1.851 ppm (NOAA, 2017). This increased atmospheric methane not only intensifies 

climate change but also contributes to higher ground level ozone – a public health risk (Fiore, 2008). Multiple 

modeling studies have revealed the benefits of reducing methane emissions, which include decreased premature 

mortality from respiratory illness caused by ozone (West et al., 2006; Fang et al., 2013). A better understanding of 

emissions and sources could help in the effort to reduce atmospheric methane. 

In 2015, production, storage, processing, and distribution of natural gas and petroleum were responsible for 

approximately one-third of methane emissions in the US (US EPA, 2017e). While all of the leaks along this chain, 

from production to distribution, contribute to climate change, vented and fugitive emissions of methane that occur at 

oil and gas production sites may raise concerns for nearby communities due to potential co-emission of hazardous 

BTEX (benzene, toluene, ethylbenzene, and xylene) compounds (Adgate et al., 2014; Helmig et al., 2014; Moore et 

al., 2014). Recent studies also suggest that methane emissions from the oil and gas sector are underestimated in current 

inventories (Miller et al., 2013; Wilcox et al., 2014; Zavala-araiza et al., 2015; Petron et al., 2014; Subramanian et al., 

2015). Miller and colleagues found that methane emissions in US EPA inventories may be underestimated by a factor 

of 1.5 (Miller et al., 2013). It has been suggested that these discrepancies between measured methane and source-

based inventory estimates may be explained by “super-emitters” – a small percentage of sites or equipment that 

contribute a large portion of the emissions (Wilcox et al., 2014; Petron et al., 2014). For example, a study in the Barnett 

Shale region found that at any given time, 2 % of facilities accounted for half of methane emissions and that these 

sites vary spatiotemporally (Zavala-araiza et al., 2015). As described in a recent review, smart-sensing systems 

designed to detect leaks and alert operators at the well pad level may aid in identifying these events as they occur 
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(Allen, 2014), speaking to the need for tools that can feasibly achieve useful spatial and temporal resolution for 

monitoring at the local or facility level. 

1.2 Low-cost sensors for air quality monitoring 

1.2.1 A place for sensors 

Typically monitoring methods and technologies are driven by the research question of interest and available 

resources. For example, the National Oceanic and Atmospheric Administration (NOAA) has maintained a global 

monitoring network for methane for upwards of 30 years to study long-term atmospheric trends, seasonal cycles, and 

its global distribution (NOAA, 2017). Monitoring networks can also be built on smaller scales to study methane fluxes 

at the regional or city level; the Megacities Carbon Project is currently undertaking this work in Southern California, 

as is the INFLUX project in Indianapolis (Wong et al., 2015; Davis et al., 2017). Remote sensing provides a global 

picture and, given the spatial coverage, these data can highlight hotspots at the regional scale (Kort et al., 2014). 

However, interferences and satellite trajectories prevent truly continuous data collection for any single location. 

Aircraft campaigns and mobile monitoring using vehicles equipped with gas analyzers both allow for horizontally and 

vertically resolved spatial coverage at the neighborhood or facility level. Additionally, these methods facilitate the 

collection of high-quality data with precise instrumentation (Yacovitch et al., 2015; Karion et al., 2013). However, 

aircraft data typically represent a “moment in time” and changing meteorological conditions often limit the ability to 

repeat data collection. Ground-based mobile monitoring may be repeated more easily, but the data collected are often 

periodic in nature and intended for targeted studies. Currently the scientific and regulatory communities are limited in 

their capability to collect data continuously at the neighborhood or facility level. While it would be possible to site the 

same high-quality instruments utilized in global and regional monitoring networks at a local scale, this approach would 

be costly given the expense of the equipment, the siting requirements, and the expertise needed for operation. 

Low-cost air quality sensing systems are potentially well suited to fill this role by providing continuous 

measurements in high-density networks at a local scale. Given their versatility and capacity to provide data of high 

spatial and temporal resolution, these systems could augment regulatory monitoring systems, aid in compliance 

monitoring (e.g., leak detection), or enable the public to formulate local strategies to reduce their exposure (Snyder et 

al., 2013). These systems are relatively easy to deploy and operate in nearly any type of location due to their size, low 

power requirements, and automated electronic data collection. These characteristics also make them more accessible 

for community-engaged research applications than conventional methods (Shamasunder et al., 2017). For example, 
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these systems could support a community collecting preliminary data, in partnership with researchers or local 

regulatory agencies, that could be evaluated for “hotspots” or correlated with community members’ experiences (e.g., 

odors or health symptoms) – providing more information to support better understandings of complex air quality 

issues. 

1.2.2 Previous sensor research 

Several studies have demonstrated the ability of low-cost sensors to measure pollutants of interest at ambient 

levels. For example, CO, NO, and NO2 have been measured in an urban sensor network with additional analysis 

demonstrating the ability to differentiate local emissions from regional trends (Mead et al., 2013; Heimann et al., 

2015). In another example, researchers demonstrated the feasibility of collecting personal CO, NO2, O3, and CO2 

exposure data with uncertainty estimations using a portable, wearable system (Piedrahita et al., 2014). Several studies 

have also made use of sensors to study the spatial variability of O3 on various scales (Sadighi et al., 2018; Cheadle et 

al., 2017; Moltchanov et al., 2015). Connected to this effort on sensor applications, there has been much work 

evaluating the performance of individual sensors (Masson et al., 2015a &2015b; Spinelle et al., 2015a & 2017a; Lewis 

at al., 2016) and demonstrating the performance of different calibration approaches (Zimmerman et al., 2018; Kim et 

al., 2018; Cross et al., 2017). 

While many projects utilize sensors capable of detecting criteria pollutants, advances in the development of 

metal-oxide semiconductor (MOx) sensors have led to sensors capable of detecting methane in settings closer to 

ambient environmental conditions (Quaranta et al., 1999; Biaggi-Labiosa, 2012). Eugster and Kling (2012) 

demonstrated the ability of the Figaro TGS 2600 sensor to resolve diurnal methane fluctuations in a remote area of 

Alaska. A similar sensor, the Figaro TGS 2611-E00, was found to have an accuracy of 1.7 ppm in a laboratory setting 

for minute-averaged data, suggesting its suitability for detecting substantial methane leaks (Van den Bossche et al., 

2017). These and similar metal-oxide volatile organic compound (VOC) sensors have also been utilized in other 

applications such as odor detection at landfills and electronic noses (Penza et al., 2015; Zhang et al., 2008). 

This paper describes a methodology for collecting and quantifying data using Figaro TGS 2600 MOx sensors 

to examine ambient trends and methane enhancements on small spatial and temporal scales. Data from two field 

deployments are used to discuss the different considerations for calibrating and deploying these sensors. The first 

dataset was collected in Colorado during the FRAPPE/DISCOVER-AQ monitoring campaigns in the summer of 2014 

(Pfister et al., 2017). This deployment primarily measured rural and semirural areas along the Front Range north of 
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Denver; important sources of methane in the area include oil and gas development and agriculture/ranching. The 

second dataset was collected in California near downtown Los Angeles in the late summer– early fall of 2016 as part 

of a community-based research project. This deployment was in a mainly urban area with high-density housing near 

two major roadways and urban oil extraction. With this work, we build on the previous study by Eugster and Kling 

(2012) by demonstrating the use of these sensors in more complex environments where they are likely subject to a 

greater number and variety of local and regional influences. We (1) demonstrate methods for sensor calibration and 

validation of the Figaro TGS 2600 MOx sensors using field co-locations, (2) examine different options and issues that 

arise in the calibration process, and (3) explore the potential for the data from these sensors to offer unique information. 

This paper is intended to explore ways of adapting this system to fit the needs and logistical constraints of different 

investigations in order to provide useful and relevant methane estimations. 

2 METHODS 

2.1 Instrumentation – low-cost sensor systems 

In both deployments, embedded sensor systems termed U-Pods and Y-Pods (subsequent iterations of an 

open-source platform) were used for data acquisition (Mobile Sensing Technology, 2017). The main differences 

between the two versions were in the circuit board design and the programming, which was altered to improve 

reliability. Each U-Pod and Y-Pod (pod) was outfitted with multiple gas-phase and environmental sensors, listed in 

Table 1. The two Figaro VOC sensors were originally developed for monitoring in industrial applications where much 

higher pollutant concentrations are expected compared to ambient environmental monitoring. The following analysis 

will primarily utilize signals from one of these VOC sensors – the Figaro TGS 2600 MOx sensor. This is the same 

sensor used by Eugster and Kling in Alaska (2012), deployed here in environments characterized by complex mixtures 

including methane emissions and associated confounding gas species. 
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Table 1: U-Pod and Y-Pod sensor lists. 

 

These embedded sensor systems are housed in small weather-proof plastic cases (approximately 20 cm 25 cm 10 cm) 

with fans to pull ambient air through the enclosure and across the sensor surfaces resulting in multiple air exchanges 

occurring each minute. The systems in these weatherproof cases can be placed outdoors for long periods of time. They 

are powered using 12 V AC/DC adapters plugged into wall power, but can use car batteries and/or solar power in 

remote locations. All data are logged to an onboard micro-SD card. As configured, these pods draw roughly 11 W. 

These systems have been used in several other indoor and outdoor air quality studies (Casey et al., 2018a & 2018b; 

Sadighi et al., 2018; Cheadle et al., 2017). Figure 1 includes a labeled photo of a Y-Pod interior and a photo of two 

Y-Pods deployed. 

 
Figure 1: A labeled photo of a Y-Pod interior (a) and a photo of two Y-Pods deployed at a field site (b). 

2.2 Deployment overview 

As sensor systems are a developing technology, guidelines specifically for sensor deployment have yet to be 

established. In this section we describe our process for siting sensor systems. Once a site is selected, pod placement is 

chosen based on feasibility, access to air flow, and avoiding potential obstructions as much as possible to obtain 

samples that are representative of the area. As selecting sampling locations and setting up pods is typically a joint 

effort with community partners, different sites often require different approaches. For example, pods are typically 

placed on the roof of multi-story buildings, while we may place the pod on the edge of a first story roof or a fence of 

Sensor type U-Pod Y-Pod 
   

Temperature and RH RHT03 (also known as DHT22) Sensirion SHT2 

Temperature and pressure 47 Bosh BMP085 Bosh BMP180 

Carbon dioxide ELT S-100 NDIR ELT S-300 NDIR 

Ozone SGX Corporation MiCS-2611 SGX Corporation MiCS-2611 

VOC sensor 1 Figaro TGS 2600 MOx Figaro TGS 2600 MOx 

VOC sensor 2 Figaro TGS 2602 MOx Figaro TGS 2602 MOx 

Additional optional Alphasense B4 series Alphasense B4 series 

Sensors (CO, NO, NO2, O3, SO2), (CO, NO, NO2, O3, SO2), 

 Baseline Mocon PID Baseline Mocon PID 
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a single-family home. Additional considerations include access to power, whether the instrument is obstructing a 

walkway or driveway, and safety of the residents. In both deployments discussed in this paper, site selection was 

guided by the research goals and access to representative air flow while also considering the preferences of the owner, 

tenants, or site manager. 

In Colorado, the pods were used during the 2014 FRAPPE/DISCOVER-AQ campaign with the aim of 

characterizing small-scale spatial variability of pollutants. This deployment lasted roughly 1 month. The deployment 

of the pods was organized around a main site for the FRAPPE/DISCOVER-AQ campaign, the Boulder Atmospheric 

Observatory (BAO) Tower in Erie, Colorado. Fourteen pods were placed in an approximately 10 x 10 km grid, 

primarily to the northwest of the BAO Tower. The remaining four pods were placed to the southwest and northeast of 

the grid to provide regional comparisons, with measurements taken at the Golden National Renewable Energy 

Laboratory (NREL), Frederick, and Platteville. All Colorado sites are shown in Fig. 2. 

Shown in Fig. 2 are the boundaries of the Wattenberg Gas Field and all active and inactive wells. In general, 

oil and gas activity increases in density moving from the southwestern side of the deployment region to the 

northeastern side, with the Erie sites on the edge of the gas field. Note that the Golden site has no nearby oil and gas 

activity, while the Platteville site is surrounded by a high density of wells. The pods were sited in rural and suburban 

areas primarily at homes, schools, or in open spaces with two monitors sited at a water reclamation facility. Of the 18 

monitors, data from 15 were included in the following analysis. Three monitors were excluded because of extended 

power failure, temperature or humidity sensor failure, or MOx VOC sensor malfunction. Some of the remaining 15 

monitors experienced occasional power loss, but all necessary sensors operated continuously. 
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Figure 2: Maps of Colorado deployment area with every site displayed in panel (b) and the Erie sites 

displayed in panel (a). Panel (c) indicates active and inactive wells in the Wattenberg Gas Field along with 

major urban areas and counties; data are courtesy of the Colorado Oil and Gas Conservation Commissions 

(COGCC, 2017). 

 

In Los Angeles, we partnered with two community-based organizations, Redeemer Community Partnership 

and Esperanza Community Housing, and deployed Y-Pods through-out a neighborhood south of downtown Los 

Angeles. This deployment lasted approximately 8 weeks. The community was specifically interested in deploying a 

monitoring network around an active oil extraction site. In this case, sites were selected at varying distances away 

from the drilling operation as well as varying distances from freeways, another potential source of pollutants (Fig. 3). 

Thirteen of the sites were within an approximately 5 x 5 km grid, and two additional sites were located further to the 

northwest and northeast. These two additional sites were utilized because they allowed for continuous co-location 

with reference instruments for validation purposes. The deployment area in Los Angeles was primarily urban and 

suburban with high-density residential areas, some commercial and industrial land use, and much higher-density traffic 

than the Colorado deployment area. 
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Figure 3: Map of Los Angeles deployment sites, showing (a) the deployment area and all sites where co-

locations with reference monitors occurred and (b) the distribution of monitoring sites in relation to major 

roadways and the drill site of interest (note the monitor locations have been approximated to the center of 

their respective blocks to protect participant identities). 

 

Evaluating the performance of the Figaro TGS 2600 MOx sensor in the context of these two deployments 

provides the opportunity to better understand its strengths and limitations. In Colorado, the sensor network covered a 

larger area and we examined methane trends with respect to regional differences in potential sources (the inclusion of 

the sites further to the northeast and southwest enlarge the sampling area to a more regional scale). In Los Angeles, 

the sensor network covered a smaller area to examine local methane trends and to attempt to distinguish emissions 

from point sources. Another important distinction between the two locations is the nature of the oil and gas activity. 

In Colorado, the deployment was in the SW portion of the Denver-Julesburg Basin, which produces a mix of natural 

gas, condensate liquids, and crude oil (US EIA, 2016a). This area also includes the Wattenberg Field, which ranked 

in the top 10 for both oil- and gas-producing fields in 2013 (US EIA, 2015). In Los Angeles, oil and gas activity refers 

primarily to crude oil production. California is the fourth top-producing state for crude oil (US EIA 2016b), and Los 

Angeles County is home to more than 5000 active oil wells (Sadd & Shamasunder, 2015). In both cases we expect 

methane to be emitted or co-emitted with other VOCs; we attempt to better understand local sources, methane may 

serve as a valuable indicator of emissions from these types of sites. The ratio of methane relative to other combustion 

products such as CO and CO2 will likely be higher from sites related to oil and gas activity than from other local 

sources such as traffic (Nam et al., 2004; Popa et al., 2014; Peischl et al., 2013). While the two deployment locations 
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offer contrasting sampling environments, both locations offer complexity in terms of number and types of sources, 

geography, and typical atmospheric trends. 

2.3 Sensor signal processing 

The operating principle of MOx semiconductor sensors is based on a reducing gas changing the resistance of 

a semiconductor material in a simple resistance circuit (Sun et al., 2012). In clean air, the flow of current across the 

sensor surface is limited by donor electrons in the tin dioxide that are attracted to oxygen adsorbed to the sensor’s 

surface. The flow of current increases when the target gas (e.g., methane) is present, thus reducing the amount of 

oxygen adsorbed to the sensor’s surface (Figaro USA, Inc.). In other words, the resistance across the sensor decreases 

with increasing methane. In both the Y-Pods and U-Pods, the sensor voltage is continuously recorded to the SD card. 

Using Eq. (1), provided by the sensor manufacturer, we calculate the sensor resistance (Rs) at various concentrations 

(Figaro, 2005a). In this equation Vc is the circuit voltage, RL is the load resistance, and Vout is the logged voltage. R0 

represents the resistance in clean air and the ratio of Rs/R0 is typically used in the analysis of MOx sensor data (Eugster 

and Kling, 2012; Piedrahita et al., 2014). Gas sensor signals, temperature, humidity, and pressure are recorded to the 

SD card approximately every 6–25 seconds (depending on a pod’s programming). This frequent data acquisition 

allows for the use of minute-median data in calibration and analysis. Unless otherwise stated, this is the time resolution 

used in our analysis and shown in this paper. 

 (1) 

2.4 Sensor calibration, validation, and analysis 

  Field normalizations were used to generate calibration models for the sensors. Field normalization provides 

one approach to correcting for the cross sensitivities that low-cost sensors tend to exhibit with respect to temperature, 

humidity, and other trace gases (Spinelle et al., 2015a & 2017a; Sadighi et al., 2018; Masson 2015a, b; Wang et al., 

2010). This method is implemented by co-locating low-cost sensor systems with high-quality reference instruments 

(typically regulatory-grade monitors) for a given period and then generating a calibration model using an approach 

such as linear regression. These calibration models predict the methane concentration (in ppm) based on the sensor 

signal (Rs/R0) and other predictors. An advantage of calibrating sensors in the field as opposed to in a laboratory 

setting is that the models will be trained for the pollutant levels of interest and across the same dynamic temperature 

𝑅𝑠 =
𝑉𝑐 ∗ 𝑅𝐿

𝑉𝑜𝑢𝑡

−  𝑅𝐿 
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and humidity values that a sensor will likely experience during field deployment. In a study involving personal air 

quality monitors, Piedrahita et al. (2014) successfully calibrated sensors and provided sensor-specific uncertainty 

estimates using this method.  

In Colorado, we co-located U-Pods with a Los Gatos cavity ring-down spectrometer operated by the Penn 

State NATIVE Trailer team at the Platteville Atmospheric Observatory in Platteville, CO. In Los Angeles, we co-

located Y-Pods with reference instruments at two different sites. The pre-deployment co-location was with a Baseline 

Mocon Series 900 Methane/Non-methane Hydrocarbon Analyzer located in a primarily residential suburban area of 

Los Angeles. The post-deployment calibration was with a Picarro cavity ring-down spectrometer located in a 

suburban/urban area with a mix of residential, retail, and industrial land use. Reference instruments at both Los 

Angeles sites were operated by the South Coast Air Quality Management District. The timelines in Figs. 4 and 5 

illustrate when pods were co-located vs. deployed in the field and which data were used for the generation of 

calibration models (i.e., training data) versus the validation of those models (i.e., testing data). Note that for the 

Colorado deployment, both before and after the field deployment, the monitors were co-located in batches due to 

logistical constraints. Arrows indicate the movement of batches of monitors, and the “not in use” row clarifies whether 

pods were deployed. In addition, during the Colorado deployment, a single calibration model (a universal model) was 

developed based on the data from the “main” U-Pod, described in greater detail below. For the Los Angeles 

deployment, calibration models specific to each Y-Pod (sensor-specific models) were used. 

 

 
Figure 4: Timeline for Colorado, indicating when monitors were co-located together in batches before and 

after the field deployment and illustrating how two U-Pods were sited with a reference instrument during the 

field deployment (these data were used for calibration generation or training data versus model validation or 

testing data). 
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Figure 5: Timeline for LA indicating when Y-Pods were co-located together with reference instruments 

before and after the field deployment, as well as which data were used for calibration generation (training 

data) versus model validation (testing data). 

 

The setup of Y-Pods for these co-locations was governed by limitations at the site. In Colorado, Y-Pods were 

mounted to the railing of the NATIVE Trailer (approximately 1.5 m above the trailer roof), which housed the reference 

instruments. The inlets to the reference instruments were approximately 2.5 m above the roof of the trailer and roughly 

2 m away from the Y-Pods. For the first co-location in Los Angeles, the reference instrument was housed in a trailer 

in an open field. As we were not able to place the Y-Pods on the roof of the trailer, they were placed 0.75–1.5 m off 

the ground on the side of the trailer where the inlet was mounted. In this case, the Y-Pods were roughly 6 m below 

and 3 m to the side of the inlet. For the second co-location in Los Angeles, the reference instruments were housed 

inside of a building. In this case the Y-Pods were mounted to a railing roughly 1–2 m off the roof. However, the Y-

Pods were also approximately 10 m away from and 1–2 m below the inlet, as this location was secure and out of the 

way of ongoing operations at the reference site. We would expect the variability between co-location setups to be 

most important for short-term spikes in CH4 that do not pass over the Y-Pod and inlet evenly. As discussed in Section 

3.1, our co-location site in Colorado experienced the most short-term CH4 spikes, whereas the changes in CH4 

concentration at the two LA sites were more gradual in nature.  

For both deployments, 4 days of data at the beginning and 4 days at the end of the co-location with reference 

instruments were used to generate the calibration models. Specifically, for Colorado, 4 days at the beginning and end 

of the field deployment were used for generating the quantification model. In Los Angeles, 4 days from both the pre- 

and post-co-location were used for model generation. The remaining data from co-locations were then used for model 

validation (approximately 18 days for Colorado and 4 days for LA). Table 1 lists the calibration models that were 

compared. Several models (the simpler ones) selected are commonly used in sensor calibration, while the more 

complicated models were selected based on predictors that aided in correcting for cross sensitivity and resulted in 

more normal residuals. The models are listed in order of their complexity, beginning with the addition of 

environmental parameters, then interactions, and then transformations. Regression analysis provides sensor-specific 
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coefficients for predictor variables. The models are then inverted so that gas concentration is expressed as a function 

of sensor signals and can then be used to predict pollutant concentrations using new data collected in the field. This 

inverted model approach is typical for field normalization (Piedrahita et al., 2014; Spinelle et al., 2015a & 2017a). 

Evaluation of model performance was based on the coefficient of determination (R2) and the root mean squared error 

(RMSE), as well as an analysis of the residuals in relation to relevant environmental and air quality parameters. 

Validation data provide the opportunity to evaluate the consistency of each model’s performance based on the same 

metrics and the addition of mean bias. 

Table 2: Calibration Models 

 

Given the structure of each deployment and availability of co-located data, two different approaches to 

developing and applying calibration models were used: a universal calibration model vs. sensor-specific models. For 

the Colorado deployment, a universal calibration model was developed using the data from one sensor and this model 

was applied to all the sensors. As shown in Fig. 4, two U-Pods were co-located with the reference instrument 

throughout the field deployment. The data from one of these pods was used along with the following process: (1) 

generate a universal calibration model using data from the main U-Pod co-located with the reference instrument; (2) 

normalize all of the other U-Pods’ raw sensor signals to the main U-Pod using data from when they were co-located 

together before and after the field deployment; and (3) apply the universal calibration model to the normalized sensor 

data from each pod. The second U-Pod co-located with the reference instrument allows for validation of this method. 

For the Los Angeles deployment, sensor-specific calibration models unique to each Y-Pod were used. As 

shown in Fig. 5, the Y-Pods were all co-located together with reference instruments before and after the field 

deployment providing the opportunity to generate and use sensor-specific models. Additionally, one Y-Pod in Los 
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Angeles was deployed with a reference instrument throughout the field deployment pro-viding an additional set of 

validation data (referred to as Validation 2). These data offer the opportunity to calibrate the Los Angeles data using 

both sensor-specific calibration models and a universal calibration model – a direct comparison demonstrating the 

relative performance of these two methods. This offers an informative comparison as there may be instances where 

only one method is possible given logistics, such as access to reference instruments. Another advantage to this 

universal calibration model approach would be that the calibration model is not extrapolating in time as the training 

data would cover the complete field deployment period.  

3 RESULTS AND DISCUSSION 

3.1 Differences in reference data and environmental conditions that impact calibration 

Different sampling environments necessitate the use of different strategies to produce the strongest 

calibration for each dataset. Reasons for this may be differences in local sources or meteorological trends. Figure 6a 

and b illustrate the difference in temperature and humidity values observed during calibration versus validation periods 

for both locations. In Colorado, the temperature and absolute humidity observed during the validation period are 

generally well represented by the data collected during the calibration period, although there are some high and low 

humidity values at certain temperatures that fall outside of the calibration parameter space. Conversely, in Los 

Angeles, the full range of temperature and humidity values observed during the validation period are captured in the 

calibration period. However, the Los Ange-les data have many temperature–humidity combinations that are unique to 

the validation period. 

Other sensor limitations must be considered as well, for example relatively slow sensor response. A low-cost 

sensor with an operating principle relying on chemical reactions may not have time to fully detect a passing plume 

(Arfire et al., 2016), whereas this is not an issue for high-quality reference instruments that rely instead on optical 

properties. The manufacturer of the Picarro cavity ring-down spectrometer, for example, cites a gas response time 

under 3 seconds (Picarro, Inc., 2015), while Baseline Mocon cites a response time of less than 5 seconds for the Series 

900 Methane/Non-methane Hydrocarbon Analyzer (Mocon, Inc., 2017). Given these quick response times and the 

high flow rates used for sampling by the reference instruments we would not expect a lag on the part of the reference 

instrument. The sensor failing to reach steady state when exposed to a short and high concentration plume, as a result 

of slow sensor response, would be more of a concern for calibration. This limitation may result in sensor data that is 
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fundamentally different from reference data, further complicating calibration model generation. One option for 

addressing this issue, explored below, is filtering very short-duration reference data features prior to model generation. 

Demonstrating the need for this step, Fig. 6d and e each show 3 days of data from the reference monitors in which the 

diurnal patterns are similar, but the Colorado data also include short-term enhancements or “spikes” in methane 

possibly from the oil and natural gas extraction activity in the study region. The histogram in Fig. 6c depicts the 

changes in methane values for each dataset from minute to minute, further highlighting instances in the Colorado data 

where methane levels change by 0.5 or even 1 ppm over the course of a minute. These differences in the environmental 

parameter spaces emphasize the need to customize quantification methods to each dataset. 

Figure 6: Panels (a) and (b) are the temperature and humidity values observed during calibration and 

validation periods in Colorado and Los Angeles, respectively. Panel (c) is a histogram of the changes in 

methane from minute to minute (for the reference data) and panels (d) and (e) are 3 days of minute-

resolution data from the reference instruments in Colorado and Los Angeles, respectively. 

3.2 Comparing calibration models 

Table 3 contains the resulting statistics for each of the models described in Table 2 for one Colorado U-Pod 

and three Los Angeles Y-Pods. Three Y-Pods were selected randomly to facilitate analysis of the universal model 

method and provide an initial indication of calibration model consistency across different sensors. This table lists the 

R2 and the RMSE as well as the mean bias for the validation data. In all cases, these are the statistics for the fitted 

sensor data (converted into ppm CH4) versus the reference methane data. Note that the second value in the Colorado 

data is the result when a filter is used to remove short-term spikes from the reference and sensor data. Filtering the 

Los Angles reference data did not change any of the statistics for that dataset and therefore was not performed. This 

filter removes spikes that are greater than twice the past hour’s standard deviation and last less than 5 min in duration. 
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Table 3: Calibration model generation and validation results 

 

Figures 7a and b provide a graphical representation of the same statistics from Table 3 and emphasize the 

differences in results between the two datasets. For the Colorado data, the greatest improvement in fit was observed 

when time was added as a predictor, but then the results level off with no major improvements as the models increase 

in complexity. However, the results consistently returned a higher R2 and lower RMSE when short-term methane 
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spikes were filtered prior to model generation. In the Los Angeles dataset, there was continual improvement as models 

increased in complexity, with the most complex model producing a high R2 and low RMSE as well as the most 

consistency across both the calibration and validations datasets. 

Figures 8 and 9 provide plots of the “best-fitting” calibration models for each dataset based on regression 

statistics (particularly for the validation dataset), consistency across calibration and validation data results, and an 

analysis of the residuals. For the Colorado data, the selected model was the simplest well-fitting model, the fourth 

model, while for the Los Angeles data the selected model was the most complex model tested, the 11th model. With 

regards to both datasets, the selected model produced the most normal residuals, which also did not exhibit major 

trends in relation to the predictors, and they resulted in the closest one-to-one relationship between the fitted sensor 

data and the reference data. The time series plots also display the performance of the calibration model on the 

validation dataset. Note, the statistics for Mdl1 for the Colorado data appear to indicate that that model is best fitting, 

however, there were major issue with the residuals from this fit.  

 
Figure 7: Plotted R2 (a) and RMSE (b) for all models; circle markers indicate results from calibration 

generation (using the training data) and asterisk markers indicate results from the application of the models 

to the validation data (or testing data). 

 

As demonstrated by these two datasets, calibration models are not “one size fits all”. While the deployments 

in Los Angles and Colorado occurred at roughly the same time of year, the best-fitting calibration models and 

regression results proved to be quite different. This speaks to the need to consider the environmental and pollutant 

parameter space both when planning a deployment and when processing data. For example, more complex temperature 

and humidity behavior may require more complex corrections. Additionally, if there is little overlap between 

conditions observed during calibration, validation, and field deployment then the resulting calibrations will be less 

dependable. Likely, there are factors beyond environmental parameter space driving differences between sensor and 
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reference data. In that vein, it is important to explore the operational differences between the reference instrument and 

the sensors, including distance apart and proximity to significant sources. Here, we compensated for those operational 

differences by filtering “spikes” from the reference data; another modification could be to use a different averaging 

time such as hourly instead of minute data. This analysis demonstrates the importance of exploring different models, 

transformations of variables, and treatments of the data to find the model that provides the strongest methane estimates. 

 
Figure 8: “Best-fitting” model (MDL4_1INT) for the Colorado data with residual analysis (for validation 

data, RMSE is 0.383 ppm and mean absolute percent error is 12.13 %). Panels (a–c) are time series of the 

reference data and converted sensor data. Panel (d) is a scatter plot of the same data. Panels (e–i) are the 

residuals from the calibration generation. 
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Figure 9: “Best-fitting” model (Mdl5_2Int_Tr) for the Los Angeles data with residual analysis (LA1 shown) 

(for validation data, RMSE is 0.160 ppm and mean absolute percent error is 5.75 %). Panels (a–c) are time 

series of the reference data and converted sensor data. Panel (d) is a scatter plot of the same data. Panels (e–i) 

are the residuals from the calibration generation. 

 

One feature of the models that applied to both datasets was a correction for sensor drift over time, 

emphasizing the importance of collecting data that either bookend or span the duration of the field deployment. Even 

though the final models selected here differed, both included a correction for sensor drift over time and a pre-only or 

post-only calibration would not have allowed for this correction. To examine the consistency of this drift between 

sensors, we compared the linear drift from the three LA Y-Pods by examining data converted to concentrations using 

Mdl3, which does not include time as a predictor. The results were drift values of 0.009, 0.015, and 0.011 ppm week 

1 for LA1, LA2, and LA3, respectively. While these numbers are similar to those reported by Eugster and Kling 

(2012), the total drift implied is less than or equal to our expected uncertainty for each Y-Pod making the estimates 

unreliable. Given the differences in the deployments and their lengths, we have a starting idea of drift and its 

consistency sensor to sensor, but a better understanding of drift as well as the effective lifetime of sensors will be 

important for future use of this and other MOx sensors. 

3.3 Sensor-specific vs. universal calibration models 

The additional validation data (Validation 2) collected during the field deployment in Los Angeles facilitates 

a comparison of the sensor-specific versus the universal calibration model approach. Several calibration models were 
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generated using this additional co-located data (Fig. 5), including the two models selected in the previous section as 

“best-fitting”. 

These models were then applied to normalized data from the other two Los Angeles Y-Pods included in the 

previous section. The raw sensor data from the Figaro TGS 2600 sensors were normalized using a simple linear 

regression (the R2 values for these regressions were 0.989 and 0.999, respectively). Similar to the results from Section 

3.2, the same model (MDL5_2INT_TR, model 11) emerges as the strongest for this particular dataset given that the 

validation statistics include the highest R2 and lowest RMSE. An important note is that overall the results using this 

method are not as strong as the results seen using the sensor-specific models in the previous section. One reason for 

this may be that we are attempting to fit roughly 6 weeks, rather than 4 days, for the calibration model generation, 

meaning that the model is attempting to cover a larger environmental parameter space. This might also explain why 

the results for the “best-fitting” model are better for the validation period, which is much shorter. In any case, this 

calibration model approach provides useful information regarding methane levels (e.g., diurnal trends), as is 

demonstrated by Fig. 10, and this method can be used to con-vert the normalized signals from other sensors to a ppm 

value when logistics limit the potential for co-locating all sensors, whether due to time constraints or the limited 

availability of power and/or space at a co-location site. As the logistics of the Colorado deployment did not allow for 

sensor-specific calibrations, the universal calibration model approach is used below in Section 3.5 to convert the 

Colorado field data from all the U-Pods. 

Table 4: Calibration and validation results for the universal calibration method ( *normalized Y-Pod data). 
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Figure 10: Time series of the universal calibration model (for MDL5_2INT_TR) generated using the 

Validation 2 period (b) and the application of the model to the pre- and post-deployment co-location data (a 

and c) for Y-Pods LA1 and the normalized data from LA2 and LA3. 

3.4 Further sensor quantification considerations 

Comprehensive best practices to guide the use of low-cost air quality sensors have not been established. A 

recent workshop for low-cost sensors outlined some of the concerns shared throughout the research community 

including deployment logistics, data formatting and sharing, and communication of uncertainty (Clements et al., 

2017). With our datasets, we investigated three issues related to the development of best practices: the length of a co-

location for a field normalization, additional dataset-specific filtering based on environmental parameters, and cross 

sensitivities to non-methane pollutants. 

3.4.1 Length of co-location 

Bootstrapping methods were applied to determine the variability and effectiveness of different co-location 

lengths for the Colorado data. A starting point in the complete dataset was randomly selected and consecutive data of 

varying lengths (0.5, 3, 7, or 14 days) were used to generate a calibration model. This model was then applied to the 

entire dataset for validation. For comparison purposes three different models were tested with 20 iterations for each 

model. The resulting statistics are plotted in Fig. 11 along with error bars for 1 standard deviation. 
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Figure 11: R2 (a) and RMSE (b) for the calibration model generation (based on a given length of time) and 

the application of those models to the complete Colorado data. Note that calibration data, or training data, 

are selected using a random stating point in the complete Colorado dataset and the appropriate amount of 

consecutive data. The colors indicate the model, and solid lines indicate calibration results while dashed lines 

indicating validation results. 

 

The simplest model (Mdl1), using only sensor signal and no environmental predictors, seems to perform 

consistently well for all lengths of time; however, the residuals reveal strong trends with temperature and humidity, 

indicating that these variables are not being corrected for. Given the analysis of the residuals, this model may provide 

useful information, but its implementation is also likely to be misleading. For example, this model may be useful in 

applications that do not require detailed analysis or decision making based on the data, such as education and outreach 

in a K-12 classroom where sensors are used for labs or student projects (Collier et al., 2015a). Taking into account 

residuals, Mdl3 provides some correction for temperature and humidity effects without overfitting on shorter co-

location lengths. Mdl4_1Int, which includes time as a predictor, is the best performing model for co-location periods 

of 2 weeks. Given that time was a useful predictor in Section 3.2, the fact that the data are spanning 2 weeks is probably 

more important than having 2 full weeks of co-located data. This means that the co-location data must be long enough 

or span a long enough duration relative to the complete dataset in order to provide a time correction that does not lead 

to overfitting and poor performance on validation data. While greater complexity can provide a better calibration 

model, a sufficient amount of data must be used to avoid overfitting. Simply stated, the model selection should be 

appropriate to the data’s characteristics and intended purpose. 

3.4.2 The impact of model extrapolation 

The additional co-located data from Los Angeles (Validation 2) facilitate a more in-depth exploration of the 

outlier residuals and approaches that could improve the predictive power of the calibration model. For example, 
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dataset-specific filters were applied to remove values where extrapolation is likely occurring in field data. 

Extrapolation in this case would be instances where one or more predictors are outside of the range of values used to 

train the calibration model. Table 5 provides the statistics that result from applying the calibration model with and 

without this added filtering. The unfiltered dataset statistics are the same results explored in Section. 3.2. All other 

statistics in the table were calculated after values not observed during calibration were removed. In the first filtered 

grouping in Table 5, instances where individual temperature or humidity values (primarily extreme values) not 

observed were removed. In the second grouping, all data combinations not observed during calibration were removed, 

meaning all instances where exact combinations of temperature, humidity, etc. were not observed. The final filtering 

option, shown in the fourth section, applies knowledge of atmospheric composition to assist with filtering. In this 

instance, the atmospheric baseline of methane was used to filter out low concentration values; the baseline was 

determined by the minimum value observed in the CH4 reference data. 

The final filtering approach should only be applied to sensor data selectively. Removing improbable values from 

sensor data that fall below zero or a known baseline may be a useful or even necessary strategy in certain situations. 

In dealing with air quality data, there are examples of additional processing being used to reduce negative values 

(Hagler et al., 2011) and examples of guidelines to remove negative values below a given threshold (US EPA, 2016). 

For work with sensor data, if the focus of the analysis is to understand enhancements over background captured by 

sensors, then removing improbably low values can elucidate these results. If preliminary data are being shared with 

the public, then flagging and removing improbable values can reduce confusion. Given the challenges in sensor 

quantification, this second example in particular warrants consideration by those using sensors in partnership with 

communities. However, it is also likely that these underestimations contain valuable information about sensor behavior 

and sensitivity; removing these values will also introduce a negative bias to the data. Accordingly, when using this 

type of processing, researchers will need to be clear about why this approach is useful and valid. For this dataset, every 

instance where underestimations are removed by the filter coincides with days having a dynamic range of methane 

less than the expected uncertainty for the sensor, which indicates that these underestimations may be connected to a 

limit of detection issue. Figure V.1 (Appendix V) demonstrates this association. 
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Table 5: Additional filtering to improve calibration model performance on field data (specifically the 

Validation 2 dataset). AH is absolute humidity, WS is wind speed, WD is wind direction, and AP is 

atmospheric principles. 

 

Additional filtering at nearly each stage yields some improvement in statistics, with the removal of the 

complete data combinations not seen during calibration resulting in the largest improvements (when we look at the R2 

values), but this method also removes a significant portion of the data. The combination of applied knowledge of 

atmospheric composition and the removal of extreme individual values not observed during calibration yields 

improvements while maintaining a substantial amount of the data. This result, labeled “selected filtering”, suggests 

that this more conservative version of filtering may be sufficient. Not only did this filtering result in a RMSE that is 

lower than the RMSE for first validation dataset (0.1525 and 0.1601 ppm, respectively), but also these improvements 

are visible in a plot of the data. Figure 12a provides an overview of the complete dataset and highlights where some 

of the under-predictions are corrected for before 7 and 17 September, likely driven by the filter utilizing atmospheric 

principles. Figure 12b shows a close-up of a couple of days illustrating a reduction in overprediction, driven by the 

filter for either temperature, humidity, or resistance values. 
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Figure 12: Panel (a) includes the complete Validation 2 dataset from the Los Angeles deployment. The 

statistics for each are RMSE is 0.17 ppm and absolute percent relative error is 6.77 % for the unfiltered data 

(blue); RMSE is 0.15 ppm and absolute percent relative error is 6.19 % for the filtered data (green), with the 

reference data plotted in black. Panel (b) is a close-up of approximately 2 days illustrating an instance where 

the filtering helped to reduce an overprediction of methane concentrations. 

 

As was demonstrated with the Validation 2 dataset, we expect that applying the same filtering to each 

deployed sensor’s data should result in more reliable field data from all of the sites. Thus in addition to filtering data 

prior to calibration by removing short-duration enhancements in the reference data, filtering converted sensor data can 

improve the reliability of calibrated data. While the bounds for this type of filtering should be dataset-specific, this 

step could easily be an automated addition to low-cost sensor quantification procedures. 

3.4.3 Sensor cross sensitivities 

Another common concern for low-cost sensors is cross sensitivities to other gases, in addition to known cross 

sensitivities to environmental factors. As discussed by Eugster and Kling (2012), the Figaro TGS 2600 sensor is 

reported to be sensitive to carbon monoxide as well as a few other hydrocarbons (Figaro, 2005a). This is not surprising, 

as each of these species can act as a reducing gas at the sensor surface and therefore also reduce the resistance to 

electron flow. While Eugster and Kling (2012) did not examine CO specifically given the absence of potential sources 

in their deployment area, they did perform an analysis of variance examining the effects of CO2 and found no 

significant impacts. We applied the same analysis techniques to minute-resolution data to examine the impacts of 

other gases, specifically CO, O3, and a few VOCs. Given the information provided by the sensor manufacturer, we 

expected a cross sensitivity to CO, but not to O3; this analysis provided an opportunity to check these assumptions. 

Table 6 includes the resulting explained variance from each ANOVA, all of which included environmental parameters 
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and time along with the following differences: set 1 is CH4 only, set 2 is CH4 and CO, set 3 is CH4 and O3, set 4 is CO 

only, and set 5 is the combined (CH4 + CO) predictor. 

The overall results varied between the deployments. For example, absolute humidity explained a high 

percentage of the variance in Los Angeles, while the temperature and humidity both played a role in the Colorado 

data. It’s worth noting that in some instances the percent of variability explained by the environmental parameters is 

equal to or greater than the variability explained by the pollutants. This trend has been seen in other studies as well 

(Eugster and Kling), and suggests that it might be worth considering housing for sensors that controls temperature and 

humidity reducing the amount of correction to the sensor signal that needs to occur.  

A commonality was that the sensor exhibits a cross sensitivity to CO, but not to O3. In both cases, the 

inclusion of O3 resulted in a higher percentage of variance being attributed to the residuals, and the variance explained 

by the O3 concentrations was 0.3 and 2.7 % for Los Angeles and Colorado, respectively. In contrast, the inclusion of 

CO in the ANOVA for the Colorado data resulted in a decrease of the variance explained by CH4 from 29.2 % to a 

still significant 21.8 %, while 15.0 % was explained by the new CO predictor. Notably, this set of parameters also 

resulted in the lowest portion of the variance being left to the residuals, suggesting that it provided the strongest set of 

explanatory parameters among these five sets. The inclusion of CO in the ANOVA for the Los Angeles data yielded 

somewhat different results with the explained variance dropping drastically for CH4 and being quite low for CO as 

well, at 2.6 and 4.2 %, respectively. This result is likely explained by the temporal correlation between the two gases 

obscuring the importance of each individually. The CO concentrations in Los Angeles were higher than those observed 

in Colorado and well correlated with the CH4 data as demonstrated in Fig. 13. Further supporting this conclusion, 

parameter set 5 included a combined “CH4 + CO” term and resulted in a higher portion of the variance explained 

through this term at 19.8 % versus CH4 alone (16.8 %) or CO alone (18.1 %). This set also resulted in the lowest 

portion of variance left to the residuals. The lack of correlation between the Colorado CO and CH4 allows us to 

examine the impacts of the CO cross sensitivity more closely. Figure 14 shows a portion of the Colorado data with 

both reference and U-Pod methane plotted along with carbon monoxide data from a reference monitor. In Fig. 14a 

spikes in CO correspond with overpredictions of methane (most notably on 8 August) and the scatter plot in Fig. 14b 

highlights how overpredictions seem to coincide with elevated CO concentrations. 
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Table 6: Explained variance from ANOVA analyses on Figaro TGS 2600 resistance values (Rs/R0) for 

different parameter sets. 

 

 
Figure 13: Histogram of carbon monoxide data from the two deployments and scatter plot of carbon 

monoxide data vs. methane data also from the two deployments. Note that all data in these two plots are from 

reference instruments. 

 
Figure 14: (a) Time series of methane and carbon monoxide data from the reference monitors and converted 

U-Pod sensor data. (b) Scatter plot of reference methane data (x axis) vs. U-Pod methane data (y axis) with 

the points colored by carbon monoxide vales. Together they further show the Figaro TGS 2600’s cross 

sensitivity to carbon monoxide, illustrating how many over predictions correspond to instances when CO is at 

or above 0.5 ppm. 
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In addition to this observed cross sensitivity to CO, we expect that other hydrocarbons may affect the sensor response 

as well. This would be an important consideration for measurements made in areas with oil and gas activity where the 

pollutant mixtures may be complex. At the PAO site there was also a proton-transfer-reaction quadrupole mass 

spectrometry (PTR-MS) providing speciated VOC measurements (Halliday et al, 2016). Future work will provide a 

more in-depth analysis of VOC sensitivity and selectivity for the two MOx sensors we are using (Chapter 7); however, 

we have included here a preliminary look at this cross sensitivity to other hydrocarbons. Table 7 provides the results 

of another sensitivity analysis in which the explanatory power of a few speciated VOCs is examined. For simplicity, 

one VOC from different well-correlated groups was selected (e.g., benzene was selected out of the aromatic species). 

This analysis illustrates that VOCs (particularly acetaldehyde and benzene) do help to more fully explain the variance 

in the sensor signal, but they do not displace methane. This is most apparent for parameter sets 5 and 6, in which we 

see the variance explained by residuals increase slightly and the variance explained by temperature increase quite a 

bit as this factor compensates for the missing methane. When methane is added back in for parameter set 7, along with 

all three VOCs and CO, the variance explained by the residuals is at its lowest and the variance explained by methane 

is at 10.1 %, higher than the percentages for the individual hydrocarbons. Thus, the Figaro TGS 2600 sensor seems to 

be cross sensitive to carbon monoxide and some hydrocarbons, effects that should be considered or mitigated in future 

uses of this sensor to estimate methane. 

Table 7: Explained variance of the Figaro TGS 2600 resistance values (Rs/R0) for parameter sets including 

different VOCs. 

 

Despite sampling in more complex environments than previous deployments of this sensor (Eugster and 

Kling, 2012), we are still seeing a sizable proportion of the sensor data’s variance explained by ambient methane 

concentrations. Although these cross sensitivities need to be addressed to discern which signals are driven by methane 
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versus other pollutants, the Figaro TGS 2600 sensors are reacting in part to changes in ambient methane again 

providing useful methane estimates for applications where methane concentrations are needed with resolutions on the 

order of 0.2–0.4 ppm (the uncertainty determined in this analysis). Given the variety of low-cost sensors available, 

using the Figaro TGS 2600 sensors in a sensor array could provide additional signals at each deployment site 

facilitating more reliable data. Including multiple sensor signals in a neural network calibration approach may also 

improve the accuracy of the calibrated data (Zimmerman et al., 2018; De Vito et al., 2008; Huyberechts et al., 1997). 

Future analysis of the data collected in Los Angeles and continued use of this sensor in areas with complex mixtures 

will require carbon monoxide and non-methane hydrocarbon impacts be considered. 

3.5 Ability to assess spatial variability in the northern front range of Colorado 

The universal calibration approach along with the “best-fitting” calibration model (Fig. 8) was used to convert 

the field data from the sensors deployed in Colorado. Following the same procedure outlined in Section 2.4 and 

examined in Section 3.3, the raw voltage values from each Figaro TGS 2600 sensor, from the post-calibration period, 

were normalized to the sensor signals in U-Pod P1 (the main U-Pod) using sensor-specific simple linear fits. The 

calibration model was then applied to these normalized sensor data along with the temperature and humidity data from 

each U-Pod. An additional step was taken to detrend each set of converted sensor data by removing the best-fit linear 

trend from the whole dataset. It was necessary in this instance because the time correction incorporated in the 

calibration model appeared to be over- or under-correcting for different sensors. The choice to continue using this 

model was based on both the performance of the model observed in Section 3.2 and the fact that time appears to be a 

useful predictor for the Colorado data given the cross-sensitivity analysis in Section 3.4.3. Data from the pre-

calibration period when six sensors were co-located with U-Pod P1 were used to verify that the application of this 

detrend function was appropriately correcting for the under-or over- correction of the model. One possible explanation 

for this difference in drift between the sensors is that 5 sensors were new and while the other 10 (including the one in 

U-Pod P1) had been previously deployed. This difference in drifts was not observed in the Los Angeles data (Section 

3.3), which utilized all new sensors at the start of the deployment and were operated for the same amount of time 

throughout the deployment. The final step in preparing these data was to filter out data where the temperature and 

humidity values were outside of those ranges observed during calibration and to remove data where concentration 

values were lower than an expected minimum (atmospheric background) was observed, similar to the analysis in 

Section 3.4.2. In this case a conservative 1.6 ppm was used, roughly half of our RMSE below background methane 
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levels. For this analysis, filtering out implausibly low values highlights the differences in methane enhancements 

between the field sites. The largest amount of data removed from any U-Pod dataset as a result of this filtering was 

approximately 6 %. 

Table 8: Statistics for Colorado data converted using the universal model method. 

 

Table 8 presents statistics illustrating the correlation coefficients and RMSE for converted sensor data during 

co-location versus field deployment for both the 2 U-Pods continuously paired and the mean of all 15 U-Pods. Here 

correlation coefficients were used as fitted sensor data was being compared to fitted sensor data rather than reference 

data. The result is high correlation when pods are co-located and low correlation when U-Pods are deployed to their 

field sites, high-lighting that (1) there is consistency in the data provided through the universal calibration model and 

(2) we are seeing quite a bit of variability across the field sites. Additionally, the RMSE for co-located U-Pods is less 

than the error we expect given the RMSE of 0.3832 ppm for the validation dataset. The details of each individual 

sensor versus P1 are available in Fig. V.1 and Table V.1, in Appendix V. These details demonstrate the extent of inter-

sensor variability for co-located sensors and the increase in variability for deployed sensors. It’s worth noting here 

that at least some of this variability may be due to variability in environmental parameters, though given the magnitude 

of the variability it seems likely that at least a portion of it is due to differences in pollutant levels and trends. While 

there is some variability among correlation coefficients, for nearly all sensors the periods of enhanced methane fall 

along the 1:1 line and most offsets occur at lower methane concentrations. Additionally, all RMSEs for co-located 

sensor fall below our expected uncertainty, while the RMSEs for deployed sensors is larger than this uncertainty (with 

the exception of the P1–P2 pair, which was co-located during the deployment). 
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Figure 15: Time series of minute-resolution data from four Colorado sites and a map showing the location of 

the four U-Pod with respect to all active and inactive wells (COGCC, 2017). 

 

This process provided minute-resolution methane estimates from 15 field sites, allowing for analysis of 

spatial data over different temporal scales. For example, Fig. 15 includes roughly 2 days of data from four different 

deployment sites: P1 was our primary U-Pod located at the Platteville site, U-Pod E2 was located at the Boulder 

Atmospheric Observatory, U-Pod E3 was located at a water reclamation facility, and the U-Pod G1 was located at the 

Golden site. Even from this small-time frame of data, we can see major differences between the sites. For example, 

there was a clear diurnal trend with elevated methane each night at the Platteville site. The high time resolution also 

allows us to observe short-term daytime increases at different sites, which were more sporadic and likely due to local 

emissions as there is typically more atmospheric mixing in the daytime (Bamberger et al., 2014). In contrast, the 

Golden site (U-Pod G1) exhibited relatively little variability in methane with differences between this site and the 

others well above our RMSE, suggesting significant differences in methane concentrations between these sites. Figure 

15b provides a reminder of where the oil and gas wells of the Wattenberg Field are in relation to these U-Pods. These 

high-resolution data (minute-median) allow for the study of individual emission events and possibly their correlation 

to nearby activity or regional trends. 

Figure 16 shows the day and night methane concentrations for each site throughout the deployment, grouped 

by region. This figure also highlights the ambient background for methane the U-Pod RMSE (0.3832 ppm) for this 

dataset on either side to illustrate that the enhancements above back-ground were well beyond our expected error. The 

sensor in Golden (U-Pod G1) exhibited little variability across both daytime and nighttime values, whereas all the 

sites in Erie, Frederick, and Platteville exhibited larger ranges and larger nighttime increases in methane likely 

contributed to by local or regional sources. At the majority of sites, over 50 % of the data fell within the RMSE of 
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typical background levels of methane. Though the middle 50 % of the nighttime data appears slightly shifted upward 

for U-Pods E11 and E3 in Erie (the two pods located near the water reclamation facility). This trend was even more 

pronounced at the sites in Frederick and Platteville. Recall the well density show in Figs. 2 and 15, illustrating no oil 

and gas activity around Golden, whereas we see higher-density activity in Erie and Frederick, with the highest density 

of activity around Platteville suggesting that one possible source driving this elevated methane is emissions from oil 

and gas activity. We observe this trend at night when atmospheric mixing is more limited and the planetary boundary 

layer is lower. 

 
Figure 16: Box plots of all data for each U-Pod, grouped into daytime and nighttime values. Note that 

whiskers are the 5th and 95th percentile values. These U-Pods are then further grouped by region. 

 

Figure 17 further illustrates this point by showing the difference in 90th percentile values between the main 

U-Pod (P1) and all other U-Pods during the day (left) versus at night (right). The daytime differences are small, within 

0.2 ppm for all sites, possibly indicating effective daytime mixing. However, at night there is a clear gradient across 

the sites with little difference between the pods in Platteville and in-creasing differences as we move to the edge of 

the gas field and outside of it, with an approximately 1 ppm difference for the Golden site and the site furthest west in 

Erie. Throughout the Erie field sites, the two U-Pods furthest north show the smallest difference with the Platteville 

pods after the Frederick pod, which was located much further into the gas field. These two pods were also the ones 

located at the water reclamation facility and therefore subject to an additional local methane source. Interestingly, 
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however, the U-Pod furthest west in the Erie area was the only U-Pod in that grid located on the west side of the 

county line. This placed the pod in Boulder County during a time when a moratorium beginning in 2012 was in effect 

(Boulder County, 2016). This moratorium severely limited new oil and gas development in the county. Although we 

cannot conclusively say the observed difference in 90th percentile nighttime values is the result of differing methane 

trends on either side of the county line, it is an indication of a question possibly worth revisiting using other data 

collected during the FRAPPE/DISCOVER-AQ campaigns. More importantly, this example demonstrates how low-

cost sensors can offer preliminary or supplementary data to help inform and guide future work. 

 
Figure 17: Well sites (COGCC, 2015) are plotted along with the differences between the 90th percentile value 

for the main Platteville U-Pod (P1) and every other U-Pod during the day (a) and night (b). The color bar 

indicates the magnitude of the difference in units of ppm CH4. 

 

 
Figure 18: Figure 18. Mean methane value for each hour of the day, for each U-Pod, grouped and  

color-coded by region. 
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Figure 18 provides another overview of the field data. In this plot, each hour of the day is averaged for each 

pod using all available data – providing an indication of the diurnal patterns at each site. Again, we are seeing the 

nighttime increase in methane occurring at the Platteville site and to a lesser extent an increase at the Frederick site. 

These increases continue to be well above background and the estimated measurement error, which supports the 

conclusion that nighttime methane pooling was occurring in this location – a conclusion which is further supported 

by the observations of other researchers. Another study also conducted during the FRAPPE/DISCOVER-AQ 

campaign found elevated levels of benzene at the Platteville Atmospheric Observatory, occurring primarily at night. 

These elevated benzene concentrations were attributed to local oil and gas activity, as opposed to another source such 

as traffic, and the movement of the planetary boundary layer (Halliday et al., 2016). Figure 18 indicates that something 

similar may have been occurring with methane at the same site, likely driven by one or more sources and the 

fluctuations of the planetary boundary layer. Another study using data from 2013 found the mean level of light alkanes 

in Platteville elevated 5– 6 times above levels in Erie and 9–15 times above levels in downtown Denver (Thompson 

et al., 2014). This trend of elevated alkanes in Platteville and lower levels in Erie also agrees with the gradients 

apparent in Figs. 17 and 18 as we see the highest elevations in Platteville, moderate elevations in Frederick, and lower 

levels across our Erie sites. Overall, this confirms the ability of these low-cost sensors to provide unique information, 

in this case information regarding regional methane trends that is supported by studies that used more conventional 

monitoring instruments and sampling methods. 

4 CONCLUSIONS 

A common response to the question, “How good is low-cost sensor data?” is “it depends”. It depends on what 

question you are trying to answer, what data you intend to collect, how you would like to use the data, and what 

supporting measurements are available. As demonstrated by the quantification system applied to the two deployments 

examined in this paper, the use of low-cost sensors, certainly in the short-term, is likely to be heavily application-

dependent and sensors should be calibrated and quantified to meet the needs of a given research question and in 

response to the conditions of a particular deployment. As low-cost sensor systems become easier to deploy and data 

processing becomes more automated, these systems have tremendous potential. Their low-cost and portable nature 

allows for quick deployment across varied spatial scales, especially small, localized scales. Sensor data can already 

highlight potential “hotspots”, which could lead to better allocation of resources or the detection of potential air quality 
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issues sooner. When used in this context, the sensor system described herein can provide a useful estimate of methane 

concentrations that may serve as preliminary or supplementary data. In Los Angeles, we were able to provide a 

methane prediction despite the complexity of sources and this methane signal has the potential to provide some insight 

into what is happening at the neighborhood level, although special attention will need to be paid to likely confounders 

and cross sensitivities. In Colorado, we were able to generate a dataset that can be examined on various temporal and 

spatial scales as well as data able to characterize regional trends that concur with the observations of other researchers. 

While more research into cross sensitivities and other deployment issues is certainly necessary, this sensor system 

currently provides a potentially powerful tool for understanding methane in communities near sources. Furthermore, 

this is a tool that is complementary to conventional monitoring methods. 
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ABSTRACT 

Volatile organic compounds (VOCs) present a unique challenge in air quality research given their importance 

to human and environmental health, and their complexity to monitor resulting from the number of possible sources 

and mixtures. New technologies, such as low-cost air quality sensors have the potential to support existing air quality 

measurement methods by providing high time and spatial resolution data. This higher resolution data could provide 

greater insight into specific events, sources, and local variability. Furthermore, given the potential for differences in 

selectivities for sensors, leveraging multiple sensors in an array format may even be able to provide insight into which 

VOCs or types of VOCs are present. During the FRAPPE/DISCOVER-AQ monitoring campaigns, our team was able 

to co-locate two sensor systems, using metal oxide (MOx) VOC sensors, with a proton-transfer-reaction mass 

spectrometer (PTR-MS) providing speciated VOC data. This dataset provided the opportunity to explore the ability 

of sensors to estimate specific VOCs and groups of VOCs in real-world conditions, e.g., dynamic temperature and 

humidity. Moreover, we were able to explore the impact of changing VOC compositions on sensor performance as 

well as the difference in selectivities of sensors in order to consider how this could be utilized. From this analysis, it 

seems that systems using multiple VOC sensors are able to provide VOC estimates at ambient levels for specific 

VOCs or groups of VOCs, it also seems that this performance is fairly robust to changing VOC mixtures, and it was 

confirmed that there are consistent and useful differences in selectivities between the two MOx sensors studied. While 

this study was fairly limited in scope, the results suggest that there is the potential for low-cost VOC sensors to support 

highly resolved, ambient hydrocarbon measurements. The availability of this technology could enhance research and 

monitoring for public health and communities impacted by air toxics, which in turn could support a better 

understanding of exposure and actions to reduce harmful exposure.  
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1 INTRODUCTION 

1.1 Background 

Volatile organic compounds (VOCs) are ubiquitous in daily life; from the naturally occurring scents of 

flowers blooming in the spring to VOCs resulting from human activity, such as BTEX emissions from vehicles, 

compounds emitted when cooking, and even fragrances in cleaning supplies and personal care products (McDonald 

et al., 2018). In addition to their ubiquitous nature, VOCs are wide ranging in terms of potential risks to our health. 

Many VOCs that pose a danger to human health are classified as Hazardous Air Pollutants (HAPs) by the US EPA 

(Woodruff et al., 1998). For example, two of the more toxic and prevalent compounds from the HAPs list are benzene 

and formaldehyde, both of which pose a variety of risks from acute toxic effects to long-term carcinogenic risks 

depending on the level of exposure (Suh et al., 200). The inhalation of benzene on shorter time scales can result in 

neurologic symptoms, such as dizziness, drowsiness, headaches, and unconsciousness (Suh et al., 2000). 

Formaldehyde has been cited as a concern for indoor air quality as it is a respiratory and sensory irritant (Rumchev et 

al., 2007). One study have found that children exposed to a median level of 20 µg/m3 or more of benzene in their 

homes were eight times more likely to have asthma than children living in homes with lower levels of benzene; a 

similar link was found between formaldehyde and asthma with researchers finding a 3% increase in risk of having 

asthma for every 10 µg/m3 increase in formaldehyde exposure (Rumchev et al., 2007). Additionally, researchers have 

found that both compounds rank among the highest in terms of cancer risk when personal exposure across 

microenvironments and different exposure pathways are taken into consideration (Loh et al., 2007). 

Beyond these two compounds there are many other VOCs that warrant concern. The RIOPA Study measured 

VOC concentrations outside of homes to examine the impact of proximity to nearby emission sources on exposure. 

This study found certain VOC levels elevated 1.5-4 times above ambient levels for homes less than 50 meters from a 

source (Kwon et al., 2006). Among the VOCs studied during RIOPA were benzene and perchloroethylene, another 

known carcinogen. Researchers also found that living within 25 m of a source of either of these two compounds 

increased the lifetime upper-bound cancer risk by 50-200% as compared to living more than 250 m from a source 

(Kwon et al., 2006) – highlighting the importance of studying VOCs at increased spatial resolutions. A more recent 

study found that EPA determined cancer risks as well as non-cancer neurological and respiratory risk benchmarks 

were exceeded in two environmental justice communities for several compounds, including benzene (Wu et al., 2012). 

Beyond the health effects, VOCs are often the cause of odor complaints, such as those tied to industrial activity. Even 
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if there are no confirmed health effects from a pollutant, exposure to odors can cause quality of life issues and have 

hidden societal costs such as stress-related physical disorders (Beloff et al., 2000).  

Given the prevalence of hazardous VOCs, more measurements and data could help inform actions to reduce 

VOCs and the public’s exposure. However, given the spatial and temporal variability for VOC sources and complex 

mixtures of VOCs that occur in the environment, new approaches may be needed to supplement existing methods. 

Currently there are a variety of methods to quantify ambient VOCs, including real-time instruments, whole air 

sampling techniques, and passive methods capable of providing accurate, speciated measurements (Krol et al., 2010; 

Kumar & Viden, 2007). However, relying on a single high-quality instrument may miss important spatial patterns, 

and using a distributed method such as sorption tubes that provide time-averaged values may miss important temporal 

patterns. Next generation monitoring technologies, such as low-cost air quality sensors, used in combination with 

conventional techniques are an approach that may be able to help address these needs. Low-cost sensing systems often 

cost orders of magnitude less than conventional instruments on a per-unit basis and are simpler to deploy and operate 

making them particularly well-suited to provide preliminary or supplementary data for community-based projects or 

projects in partnership with environmental justice communities where resources may be limited (Shamasunder et al., 

2018). Deployments of these sensing systems have already demonstrated the capacity to provide information on 

pollutant variability at small scales (Cheadle et al., 2017; Sadighi et al., 2018; Collier-Oxandale et al., 2018b), to 

differentiate regional trends from local emissions (Heimann et al., 2015), and to support personal exposure monitoring 

(Piedrahita et al., 2014; Jerrett et al., 2017). However, sensor performance quantification is an ongoing challenge for 

this technology. While some studies have demonstrated success quantifying sensors for gas-phase or criteria pollutants 

(Zimmerman et al., 2018; Casey et al., 2018c; Cross et al., 2017), this task may be more complicated for VOC sensors 

given that ambient VOCs exist in complex and dynamic mixtures.  

1.2 Previous VOC Sensor Research 

One of the reasons quantification is a challenge for low-cost sensors is their cross-sensitivity to environmental 

factors, such as temperature and humidity, and also to confounding gases (Lewis et al., 2016). Addressing this issue 

of cross-sensitivity is more complicated for VOC sensors compared to single chemical sensors as there are many more 

confounding species to consider and calibration models will need to be trained to target specific VOCs or groups of 

VOCs (Lewis et al, 2016). Several reviews provide an overview of the different sensors and systems available for 

measuring VOCs, including information on strengths and limitations, and performance evaluations based on 
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laboratory tests and examples found in the literature (Spinelle et al., 2017b; Spinelle et al., 2017c, Szulcynski & 

Gebicki, 2017; Williams & Kaufamn, 2015). These reviews also discuss the cross-sensitivity and selectivity issue; 

when considering the potential for sensors to make ambient measurements of benzene, the reviews noted that most 

sensors lack the selectivity and sensitivity for these measurements when sensors were tested individually (Spinelle et 

al., 2017b; Spinelle et al., 2017c). Researchers have also confirmed via laboratory tests that the limit of detection for 

most electrochemical and MOx sensors is too high for ambient measurements, and while photo ionization detector 

(PID) sensors are capable of lower detection limits with linear responses, these suffer from cross-sensitivities caused 

by interfering compounds. Similarly, laboratory evaluations conducted by the US EPA seemed to indicate there is the 

potential for these systems to record environmentally relevant levels of VOCs, however, they also found that only two 

of the five systems tested seemed capable of detecting VOCs below 25 ppb. While much of the current literature seems 

to suggest that the sensors currently available either lack low detection limits or the selectivity to pick out the 

compounds of concern, there are examples of deployments and laboratory studies presenting some innovative 

techniques for using these sensors and analyzing the data that could yield the useful information. 

For example, DeVito and colleagues (2008) applied a neural net calibration to an array consisting of five 

different MOx sensors and provided a relatively stable benzene prediction with less than 2% error, for a period of 6 

months. Furthermore, this study was conducted at a stationary monitoring site near a road, where the sensor system 

was subject to ambient temperature and humidity variations as well as varied concentrations of other VOCs (De Vito 

et al., 2008). Speaking to the potential for improving sensor quantification, the results of this study meet the Data 

Quality Objectives (DQO) outlined by the European Air Quality Directive for indicative benzene measurements, 

which call for a relative error less than 30% (Spinelle et al., 2017b). An earlier study by Wolfrum and colleagues 

(2006) demonstrated the use of MOx sensors (the Figaro TGS 2602) in arrays to differentiate and quantify three 

different VOCs (toluene, acetone, and isopropanol) in a laboratory setting. In addition to detecting these compounds 

at sub-ppm levels (approximately 0.1 – 1 ppm), analysis confirmed the sensor array’s ability to predict individual 

pollutants in the presence of a confounding VOCs further speaking to the potential for VOC sensors. Another study 

by Eugster and Kling (2012), using a similar MOx sensor (the Figaro TGS 2600), demonstrated the detection of 

ambient methane in a remote area of Alaska throughout dynamic environmental conditions.  

Other techniques being piloted to improve the capabilities of low-cost sensors include temperature-controlled 

operation (TCO) and/or utilizing a pre-concentrator (Schutze et al., 2017). TCO makes use of the fact that different 
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gases react with the surface of the sensor at different temperatures as well as the dynamic response after cleaning the 

surface via heating to elevated temperatures (Schutze et al., 2017). In one such study, researchers found that by 

applying TCO to a sensor system with MOx sensors, they were able to achieve an accuracy of ±0.2 – 2 ppb depending 

on the target gas concentration (benzene) and level of confounding gas(es) (Saurwald et al., 2018). Another study, 

also using TCO and multiple MOx sensors, demonstrated the ability to differentiate VOCs (benzene, formaldehyde, 

and naphthalene) at the ppb level, even in the presence of a confounding gas (ethanol) at much higher concentrations 

than the target gases (Leidinger et al., 2014). This differentiation was achieved using Linear Discriminant Analysis 

and was able to correctly classify the gas 95-99% of the time for concentrations of 4.7, 100, and 20 ppb for benzene, 

formaldehyde, and naphthalene respectively (Leidinger et al., 2014). In addition to TCO, another technique under 

consideration is the addition of an open pre-concentrator where a target gas could accumulate on an adsorbing material 

and then be thermally desorbed for analysis (Schutze et al., 2017; Leidinger et al., 2016). A system such as this would 

facilitate lower detection limits for MOx sensor systems. In addition to different techniques for collecting and 

processing sensor data, another option is to combine low-cost sensors with other measurement techniques. For 

example, a study in Philadelphia involved combining low-cost sensors (in this case PID sensors) and passive 

adsorption tubes (Thoma et al., 2016). The passive adsorption tubes provided speciated, quantified VOC data, while 

the sensor data along with meteorological information provided valuable information regarding pollutant trends and 

emission sources (Thoma et al., 2016). While there are many challenges associated with the use of VOC sensors, the 

potential this technology has to complement current monitoring efforts necessitates the exploration of these innovative 

solutions.  

During the FRAPPE/DISCOVER-AQ campaign in Colorado, our team placed two low-cost sensor systems 

at the Platteville Atmospheric Observatory (PAO), co-located with a proton-transfer-reaction mass spectrometer 

(PTR-MS) that provided speciated VOC data. Each sensor system included two different MOx VOC sensors in 

addition to other gas-phase and environmental sensors. It is this combination of the availability of speciated VOC data 

and the dynamic environmental conditions of a field deployment that make this dataset and the subsequent analysis 

unique. There are numerous studies exploring the performance of these types of sensors in the lab when exposed to 

different VOCs and even complex VOC mixtures. There are several field studies examining the deployment of these 

sensors, however, these studies tend to involve a single VOC reference instrument (e.g., benzene) or target VOC. This 

dataset will help to further inform best practices and procedures for using these sensors thanks to the added complexity 
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of our reference data. In this paper we explore the quantification of these sensors for individual and grouped VOCs, 

we also examine the different selectivities of the two sensors to better understand how these differences can be 

leveraged, and finally we try to understand how consistent sensor performance might be across different atmospheric 

compositions. These results build off previous work that involved quantifying one of the MOx sensors for ambient 

levels of methane, allowing us to explore the advantages of multi-sensor systems (Collier-Oxandale et al., 2018). 

2. METHODS  

2.1 Deployment Overview 

In the summer of 2014, during the FRAPPE and DISCOVER-AQ campaigns (Pfister et al., 2017), our team 

deployed a network of low-cost sensors systems in an attempt to quantify the small-scale spatial variability of 

pollutants. However, these measurement campaigns also provided the valuable opportunities to co-locate our systems 

with high quality, reliable reference instruments providing the opportunity to improve sensor quantification and 

validation. One such co-location was at the Platteville Atmospheric Observatory (PAO), where two sensor systems, 

termed U-Pods, were co-located with the NATIVE Trailer maintained by researchers from Penn State (Halliday et al., 

2016). The two U-Pods were co-located on the roof of the NATIVE trailer for approximately one month from mid-

July to mid-August, Figure 1c includes a photo of the two U-Pods. This site offered a unique dataset given the potential 

for different types of VOCs. The PAO is in a rural area to the northeast of populated urban areas and surrounded by 

nearby oil and gas activity; there was the potential for typical traffic and urban emissions as well as emissions from 

oil and gas activity, and possibly even from local agriculture. Figure 1a illustrates the site’s placement in relation to 

nearby cities and active/inactive oil and gas wells. 

 
Figure 1: The map (1a) illustrates the placement of the Platteville site with respect to the nearby cities Denver and 

Boulder, and oil and gas activity as indicated by active and inactive wells (34). The top right photo (1b) shows the inside of 

a Y-Pod (a newer version of the U-Pod), which depicts the sensors used and the general design of the system. There were 
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some updates to the circuit board, but the sensors used were the same. The photo on the bottom right (1c) shows the 

placement of the two U-Pods on the NATIVE Trailer at the Platteville site. 

 

This deployment is described in greater detail in our previous paper (Collier-Oxandale et al., 2018a). While 

VOC quantification was not the original intent of the deployment, it was something we were able to explore from the 

unique dataset provided through this co-location. Due to this analysis not being anticipated, techniques such as TCO 

were not incorporated; however, we did examine the use of a multi-sensor system in the context of relatively simple 

deployment and sensor performance quantification procedures. Thus, this work provides an opportunity to learn about 

VOC sensor potential at a fundamental level, under typical field conditions.  

2.3 Reference Measurements  

As previously mentioned, there were many reference instruments in operation at the PAO site, including a 

proton-transfer-reaction mass spectrometer (PTR-MS) that provided high-time resolution data for the VOC species 

listed in Table 1 (Halliday et al, 2016; Gouw & Warneke, 2007). In addition to the speciated VOC data, the Penn State 

NATIVE Trailer was outfitted to measure the other pollutants listed in Table 1 as well. Halliday and colleagues provide 

a detailed description of the operation of the PTR-MS during this campaign as well as more information on the other 

measurements occurring in the NATIVE Trailer (Halliday et al, 2016). All of the reference data was retrieved from 

the Discover-AQ data repository (NASA, 2015).  

Table 1: Reference data utilized in this analysis and the instruments used to collect that data 

 

2.2 MOx Sensors and the U-Pod Platform 

MOx sensors are composed of a metal-oxide surface (often tin dioxide), a sensing chip to measure changes 

in conductivity, and a heater. The general mechanism is that oxygen molecules adsorb to the metal oxide surface, 

trapping electrons. When the sensor comes in to contact with the target reducing gas these oxygen molecules react 

Reference Pollutant Instrumentation Reference Pollutant Instrumentation 

    

Acetaldehyde PTR-MS Methane (CH4) Los Gatos CRDS 

Acetone-Propanol PTR-MS Carbon Monoxide (CO) Thermo CO Analyzer 

Benzene PTR-MS Carbon Dioxide (CO2) Licor 7000 

C8 Alkylbenzenes PTR-MS Nitric Oxide (NO) Thermo NOy Analyzer 

C9 Alkylbenzenes PTR-MS Nitrogen Dioxide (NO2) Environment SA Analyzer 

Formaldehyde PTR-MS Ozone (O3) Thermo O3 Analyzer 

Methanol PTR-MS Hydrogen Sulfide (H2S) PTR-MS 

Toluene PTR-MS   
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and are removed allowing the electrons to flow and increasing the conductivity across the surface (Wang et al., 2010). 

While the principle is simple, complications arise during quantification of pollutant concentrations, as the reactions 

occurring on the sensor surface are impacted by changes in temperature and humidity (Wang et al., 2010, Sun et al., 

2012) as well as the fact that these sensors are cross-sensitive to gases other than the target gas (Spinelle et al., 2017c). 

Adding to this complexity, the nanostructure of the metal-oxide surface itself can also influence sensitivity and 

selectivity (Sun et al., 2012; Shen et al., 2018). These sensors were developed for and are typically used in scenarios 

where high pollutant concentrations would be expected, such as in an industrial setting or inside a vehicle engine.  

Two VOC sensors are incorporated into our sensing platform, the TGS 2600 and the TGS 2602 (Figaro, Inc.). 

They are advertised for the detection of “air contaminants”; the manufacturer specifies a few different contaminants 

to which they are sensitive. These include methane, carbon monoxide, iso-butane, ethanol, and hydrogen for the TGS 

2600 (Figaro, 2005a). Hydrogen, ammonia, ethanol, hydrogen sulphide, and toluene sensitives are specified for the 

TGS 2602 (Figaro, 2005b). Granted several of these contaminants are not VOCs, however, as we are utilizing these 

sensors for the detection of VOCs we will continue to identify them as VOC sensors. Additionally, both datasheets 

list a typical detection range of approximately 1-30 ppm (Figaro, 2005a & 2005b). However, as indicated by previous 

studies, sub-ppm levels of detection appear possible for both the TGS 2600 (Eugster & Kling, 2012) and the TGS 

2602 (Wolfrum et al., 2006). The other environmental and gas-phase sensors used in the U-Pod are listed in Table 2 

for reference.  

Table 2: Complete list of sensors used in the U-Pod 

Sensor Type U-Pod 

Temperature & Relative Humidity RHT03 (aka DHT22) 

Temperature & Pressure 47 Bosh BMP085 

Carbon dioxide ELT S-100 NDIR 

Ozone SGX Corporation MiCS-2611 

VOC Sensor 1 Figaro TGS 2600 MOx 

VOC Sensor 2 Figaro TGS 2602 MOx 

Additional Optional Sensors Alphasense B4 series (CO, NO, NO2, O3, SO2), Baseline Mocon PID 

 

The U-Pod is an embedded sensor system based on an open-sources design developed and assembled by our 

lab (Mobile Sensing Technology, 2017). These systems are housed in a small weather proof case, approximately 20cm 

x 25cm x 10cm, and use fans to pull air over the sensors and facilitate active flow. The U-Pods draw roughly 11 Watts 

of power and were powered by 12V AC/DC power adapters for this deployment, however they are capable of being 

powered by car batteries and/or solar power if remote deployment is necessary. The data is logged to an onboard 
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micro-SD card at a rate of one data point every 6-25 seconds, depending on how the system is programmed. Figure 

1b includes a diagram of the interior or a Y-Pod, a newer version of the technology utilizing the same sensors. U-Pods 

and newer versions of the system (the Y-Pods) have been used in several indoor and outdoor air quality studies that 

included sensor quantification and an examination of spatial variability or air quality trends (Cheadle et al., 2017; 

Sadighi et al., 2018; Collier-Oxandale et al., 2018b).  

2.4 Data Processing and Analysis Rationale  

The variable voltage values associated with the changing conductivity of the sensors are recorded to a micro-

SD card and this voltage is then converted to a normalized resistance value (Rs/R0), which is typically the form used 

for sensor data analysis (Eugster & Kling, 2012; Piedrahita et al., 2014). The resistance is first calculated using Eq. 1, 

provided by the sensor manufacturer. In this equation Rs is the changing resistance in the sensor driven by the 

concentration of the target gas, while Vc is the circuit voltage, Rl is the load resistance, and Vout is the logged voltage. 

The R0 value is typically the sensor resistance in clean air, and this value is used to normalize the resistance values. 

When calibrating in the field R0 is identified as the maximum resistance value for the training period, or when the air 

is cleanest. For the following analysis this normalized term, Rs/R0, is used. During processing, minute-medians are 

calculated from the sub-minute raw data, and warm-up data (the first half hour of operation after a U-Pod has been 

powered off for any period over half an hour) is removed.  

𝑅𝑠 =
𝑉𝑐∗𝑅𝐿

𝑉𝑜𝑢𝑡
−  𝑅𝐿    (1) 

 

To facilitate analysis, the minute-median data was matched to the reference data using the nearest minute. 

This matched sensor (Table 2) and reference data (Table 1) was then five-minute averaged in blocks, in order to reduce 

the potential for any lags resulting from issues with time matching the data, particularly between short term spikes. 

Additionally, if three or more minutes were missing from either the sensor dataset or the reference dataset, then the 

whole five-minute average was excluded from the analysis. Occasional gaps in the reference datasets last from a few 

minutes to a few hours and vary by instrument; missing data was typically due to calibration events. One of the U-

Pods, identified as P1 for this study, experienced a power failure resulting in approximately three days of data loss; 

the remaining data is complete. The second U-Pod, identified as P2 in this analysis, experienced intermittent power 

failure resulting in approximately 12 days of data lost in total out of the 22 days of deployment. However, the sensors 

remained fully functional throughout the deployment, despite power failures. While this analysis primarily utilizes 
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data from U-Pod P1, the data from P2 still provides an opportunity to validate our observations drawn from the P1 

analysis.  

To assess a VOC sensor’s capabilities for use in the field, we applied typical quantification and analysis 

techniques. Given the cross-sensitives previously mentioned, researchers have found ‘field calibration’ or ‘field 

normalization’ to be a promising method to mitigate cross-sensitivities and calibrate for a target pollutant. Field 

calibrations are implemented by co-locating low-cost sensor systems with high-quality reference instruments 

(typically regulatory-grade, Federal Reference Method/Federal Equivalence Method monitors), often before and after 

a field deployment, and then generating a calibration model using an approach such as multiple linear regression or 

machine learning (Sadighi et al., 2018; Zimmerman et al., 2018; Cross et al., 2017). This technique allows predictive 

calibration models to be built for the conditions which sensors will experience in the field, such as diurnal 

environmental trends and background pollutants. While laboratory studies are valuable for understanding sensor 

capabilities and limitations in a controlled environment, researchers have continually observed that field as opposed 

to lab calibrations provide better pollutant estimations (Piedrahita et al., 2014; Castell et al., 2017). Therefore, the co-

located data from the PAO site was used to conduct a typical field calibration by selecting a portion of the data from 

the beginning and the end of the deployment to build calibration models. The remaining data was used as testing data.  

The models selected utilize multiple linear regression (MLR). While more complex machine learning 

techniques have proved very successful (Zimmerman et al., 2018; Casey et al., 2018c; De Vito et al., 2008), we wanted 

to start with a more fundamental and simple quantification method. Models were trained to predict benzene, summed 

aromatic species, summed total VOC species, and methane. For summed signals, the ppbC values for each compound 

were calculated as the number of carbons in the compound multiplied by the volumetric concentration of the same 

compound; these ppbC values were then summed (Chen et al., 2014). The summed aromatics signal was calculated 

as the sum of the ppbC concentration values for benzene, C8 alkylbenzenes, C9 alkylbenzenes, and toluene. This signal 

was calculated by summing the ppbC values for all of the available species measured by the PTR-MS: acetaldehyde, 

acetone, benzene, C8 alkylbenzenes, C9 alkylbenzenes, formaldehyde, methanol, and toluene.  

Table 3 lists the multiple linear regression models utilized. Model 1 is a simple model including the two MOx 

VOC sensors, an interaction between the two sensors, and environmental predictors (e.g., temperature and humidity), 

and time to address drift. While Model 1 is the same for each target pollutant, Model 2 is different for each target 

group. For each Model 2, predictors were added to improve the resulting statistics and residuals for a given target 
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pollutant or pollutant group. In addition to simulating a field calibration, we also utilized bootstrapping and analysis 

of variance to get a more fundamental understanding of the sensors’ selectivities and the consistency of their behavior.  

Table 3: Multiple linear regression models used 

Model Identifier  Model 

Model 1: for all 𝐶 = 𝑝1 + 𝑝2 ∗ 𝑉𝑂𝐶1 + 𝑝3 ∗ 𝑉𝑂𝐶2 + 𝑝4 ∗ 𝑇𝑒𝑚𝑝. + 𝑝5 ∗ 𝐴𝑏𝑠.  𝐻𝑢𝑚. +𝑝6 ∗ 𝑇𝑖𝑚𝑒 

Model 2: for benzene 𝐶 =  𝑝1 + 𝑝2 ∗ 𝑉𝑂𝐶1 + 𝑝3 ∗ 𝑉𝑂𝐶2 + 𝑝4 ∗ 𝑇𝑒𝑚𝑝. + 𝑝5 ∗ 𝐴𝑏𝑠.  𝐻𝑢𝑚.  + 𝑝6 ∗ 𝑇𝑖𝑚𝑒 + 𝑝7

∗ 𝑉𝑂𝐶2(𝑉) + 𝑝8 ∗ (𝑇𝑒𝑚𝑝.∗ 𝑉𝑂𝐶2) 

Model 2: for aromatics  𝐶 =  𝑝1 + 𝑝2 ∗ 𝑉𝑂𝐶1 + 𝑝3 ∗ 𝑉𝑂𝐶2 + 𝑝4 ∗ 𝑇𝑒𝑚𝑝. + 𝑝5 ∗ 𝐴𝑏𝑠.  𝐻𝑢𝑚.  + 𝑝6 ∗ 𝑇𝑖𝑚𝑒 + 𝑝7

∗ 𝑉𝑂𝐶2(𝑉) + 𝑝8 ∗ (𝑇𝑒𝑚𝑝.∗ 𝑉𝑂𝐶2) 

Model 2: for VOCs 𝐶 =  𝑝1 + 𝑝2 ∗ 𝑉𝑂𝐶1 + 𝑝3 ∗ 𝑉𝑂𝐶2 + 𝑝4 ∗ 𝑇𝑒𝑚𝑝. + 𝑝5 ∗ 𝐴𝑏𝑠.  𝐻𝑢𝑚.  + 𝑝6 ∗ 𝑇𝑖𝑚𝑒 + 𝑝7

∗ (ln (𝑇𝑒𝑚𝑝. ) ∗ 𝐴𝑏𝑠.  𝐻𝑢𝑚. ) 

Model 2: for methane  𝐶 =  𝑝1 + 𝑝2 ∗ 𝑉𝑂𝐶1 + 𝑝3 ∗ 𝑉𝑂𝐶2 + 𝑝4 ∗ 𝑇𝑒𝑚𝑝. + 𝑝5 ∗ 𝐴𝑏𝑠.  𝐻𝑢𝑚.  + 𝑝6 ∗ 𝑇𝑖𝑚𝑒 + 𝑝7 ∗ 𝐶𝑂2 

Model predictors: VOC1 – Figaro 2600 R/R0, VOC2 – Figaro 2602 R/R0, Temp – temperature (degrees C), Abs. Hum. – absolute 

humidity, Time – continuous time (to address drift), VOC2(V) – Figaro 2602 voltage signal, CO2 – carbon dioxide concentration 

(in this case from the reference data); C is the concentration value being solved for, either an individual or group of VOCs  

Clarifying how target VOCs and groups of VOCs were selected: benzene and summed aromatic species 

(including C8 and C9 alkylbenzenes) were selected for health reasons, as discussed in Section 1. While benzene health 

risks are the most well understood, the other common aromatic species (e.g., the BTEX compounds: benzene, 

ethylbenzene, toluene, and xylene) also present similar concerns for human health (Adgate et al., 2014). The summed 

total VOC signal was selected to provide some insight into the sensors’ capacity to predict total non-methane 

hydrocarbons (TNMHCs). This signal was calculated by summing the ppbC values for all of the available species 

measured by the PTR-MS: acetaldehyde, acetone, benzene, C8 alkylbenzenes, C9 alkylbenzenes, formaldehyde, 

methanol, and toluene. This type of measurement may be useful in an area concerned with a broad array of air toxics 

or when used in combination with a method of VOC speciation.  

3. RESULTS & DISCUSSION  

3.1 Field Calibration Performance 

In the following sections, we show the results of the two MLR models for predicting each of the target VOCs 

or groups of VOCs. In each case, a timeseries is included to illustrate qualitatively the models’ ability to predict trends 

and VOC concentrations, while regression statistics note the performance of the model across training and testing data 

and any changes from Model 1 to Model 2. The training periods have been highlighted in yellow and are the same 

training and testing periods used in the previous methane quantification work (Collier-Oxandale et al., 2018a). Also 
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included are scatterplots to highlight improvements in testing data from Model 1 to Model 2, and boxplots of the 

residuals (observed – predicted) to show where the majority fall (despite the wide variance apparent in the scatterplot). 

Additional residual plots are available in the appendix (Figures VI.2). There are also plots of raw sensor data versus 

some of the reference data, providing an idea of trends prior to fitting, available in the appendix (Figures VI.11). 

3.1.1 Predicting Benzene and Summed Aromatic Species  

Figures 2 and 3 present the results for benzene and the summed aromatic level quantification. Overall, both 

models capture the diurnal trends and short term elevated concentrations, although the models under predict the highest 

concentration events. Model 2 performs better than Model 1, with an R2’s of 0.67 and 0.64 for benzene and summed 

aromatics respectively. In both cases, Model 2 pulls some of the more extreme values closer to the 1:1 line. For the 

aromatics, Model 2 also results in closer fitting values at low concentrations. Furthermore, the RMSEs for the Model 

2 testing data, 0.52 ppb and 11.25 ppbC for benzene and summed aromatics respectively, seem low enough to enable 

useful predictions at ambient levels given that they are below the full dynamic range observed in this dataset. The 

underprediction of the benzene and summed aromatic peaks is most likely due to a limitation associated with sensor 

response time. The response time for the PTR-MS has a 1 second per species integration time during the 1-minute 

measurement cycle (Gouw & Warneke, 2007), however the MOx sensors respond more slowly as they are relying on 

a chemical reaction. This means that a sensor may not be able to reach steady state in the time it takes for a plume to 

pass.  

Figure 2: The far-left panel (2a) depicts a time series including the benzene data from the PTR-MS, and the fitted sensor 

data from Model 1 (in blue) and Model 2 (in fuchsia). The text box includes the following statistics: coefficient of 

determination (R2) and them the root mean squared error (RMSE) in that order for each testing and training dataset. 

The middle panel (2b) depicts a scatterplot of the testing data for Model 1 (in blue) and Model 2 (in fuchsia), the 1:1 line 

has also been added. The furthest right panel (2c) depicts boxplots of the residuals with the whiskers at the 5th and 95th 

percentile respectively (in red). 
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Despite this limitation, these two figures seem to suggest that these sensors can provide real-time estimates 

on aromatics and possibly even BTEX level estimates, a measure that could be especially valuable for exposure and 

health studies. Given that ethylbenzene and xylenes are C8 alkylbenzenes, the relatively strong performance of the 

summed aromatics prediction supports the idea that these sensors are suited for a more targeted BTEX concentration 

estimates. Additionally, it is possible that more advanced analytical techniques, such as neural networks, could better 

preforming models, as show in the work of De Vito and colleagues with MOx sensors and benzene (2008). 

 

Figure 3: The far-left panel (2a) depicts a time series including the summed aromatic data from the PTR-MS (benzene, 

toluene, C8 and C9 alkylbenzenes), and the fitted sensor data from Model 1 (in blue) and Model 2 (in fuchsia). The text 

box includes the following statistics: coefficient of determination (R2) and them the root mean squared error (RMSE) in 

that order for each testing and training dataset. The middle panel (2b) depicts a scatterplot of the testing data for Model 1 

(in blue) and Model 2 (in fuchsia), the 1:1 line has also been added. The furthest right panel (2c) depicts boxplots of the 

residuals with the whiskers at the 5th and 95th percentile respectively (in red). 

3.1.2 Predicting Summed VOCs 

Figure 4 illustrates the performance of both models for the sum of all VOC compounds available from the 

PTR-MS. Again, there are improvements with the more specialized Model 2, which corrects for some of the over-

predictions. The resulting RMSEs of 13.38 and 12.78 ppbC and reasonably high R2 values of 0.59 and 0.62 for Models 

1 and 2 respectively, suggest this performance is suitable for certain ambient studies as the uncertainty is again well 

below the observed dynamic range. This analysis also demonstrates the stability of these models, as the signal being 

predicted is a sum whose precise composition is varying in time. For instance, the PTR-MS signals from the aromatic 

species are well-correlated with each other (Figure VI.1), but the aromatics are not well-correlated with any of the 

OVOCs, meaning the relative amounts of these compounds vary, potentially making the task of signal prediction more 

challenging. These results may also support the assertion that these sensors could be suited to make TNMHC 

measurements, a measurement sometimes made by regulatory agencies in areas where VOCs are a concern and real-

time data is desired. Though speciated VOC measurements, made using canisters for example, are typically more 
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common. In terms of limitations, the models again under-predict the short-term peaks and this summed VOC estimate 

is noisier than for the previous two target VOCs (benzene and summed aromatics).  

 

Figure 4: The far-left panel (2a) depicts a time series including the summed VOC data from the PTR-MS (acetaldehyde, 

acetone, formaldehyde, methanol, and the aromatic species), and the fitted sensor data from Model 1 (in blue) and Model 

2 (in fuchsia). The text box includes the following statistics: coefficient of determination (R2) and them the root mean 

squared error (RMSE) in that order for each testing and training dataset. The middle panel (2b) depicts a scatterplot of 

the testing data for Model 1 (in blue) and Model 2 (in fuchsia), the 1:1 line has also been added. The furthest right panel 

(2c) depicts boxplots of the residuals with the whiskers at the 5th and 95th percentile respectively (in red). 

3.1.3 Predicting Methane  

Figure 5 depicts the performance of the models for methane quantification. As with the previous VOCs and 

groups of VOCs, the methane calibration models are able to predict periods of elevated methane and indicate some of 

the shorter-term methane plumes. There are also the same limitations as noted in the previous section, mainly the 

under-prediction of peaks. Expanding on our previous methane quantification work, which utilized only the Figaro 

TGS 2600 sensor, including the second VOC sensor improves our ability to predict methane levels. The R2 and RMSE 

for the testing data in this previous work was 0.50 and 0.383 ppm respectively (Halliday et al., 2016). Simply adding 

an additional sensor to the model results in an R2 and RMSE of 0.58 and 0.24 ppm for the Model 1 testing data. Model 

2 is even better performing.  
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Figure 5: The far-left panel (2a) depicts a time series including the methane data from the Los Gatos cavity ring-down 

instrument, and the fitted sensor data from Model 1 (in blue) and Model 2 (in fuchsia). The text box includes the following 

statistics: coefficient of determination (R2) and them the root mean squared error (RMSE) in that order for each testing 

and training dataset. The middle panel (2b) depicts a scatterplot of the testing data for Model 1 (in blue) and Model 2 (in 

fuchsia), the 1:1 line has also been added. The furthest right panel (2c) depicts boxplots of the residuals with the whiskers 

at the 5th and 95th percentile respectively (in red). 

While the inclusion of a second VOC sensor does help to better target and predict methane, there is still room 

for improvement as is evidenced by the curvature in Figure 5b. As previously noted, it is possible that non-linear 

models or the use of a more advanced machine learning technique could facilitate further improvements. However, 

the overall results indicate that the use of multiple gas-phase sensors does help mitigate the cross-sensitivities noted 

in the previous paper and improve the performance of the calibration model (Collier-Oxandale et al., 2018a).  

3.1.4 Model Accuracy, Specialization, and Robustness 

The cumulative distributions of the relative error (in percent) for each set of fitted data (including the testing 

period only) is shown in Figure 6. Considering the relatively simple deployment and quantification procedures, this 

figure emphasizes the utility and potential for these MOx sensors. Applying the 30% relative error DQO for indicative 

benzene measurements required by the European Air Quality Directive to our measurements, upwards of 98% and 

84% of the methane and summed VOC estimates meet this benchmark (Spinelle et al., 2017b). For benzene and the 

summed aromatics, this number is lower, 43% and 38% respectively. However, these larger relative errors seem to be 

primarily driven by fairly small differences in low observed concentrations and the associated predictions. For 

example, a 100% relative error resulting from an observed value of .5 ppb and a predicated value of 1 ppb. If low 

values are excluded from the datasets (instances where the reference data is below 0.5 ppb for benzene and below 10 

ppbC for the summed aromatics, roughly the RMSE for each dataset), then the proportion of data meeting the 
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benchmark increases to 67% for benzene and 63% for summed aromatics. Excluding these low values might be 

reasonable for a study using sensors as the higher concentrations are most likely what would be of interest.  

 

Figure 6: Cumulative distributions of relative sensor error for all fitted testing or validation data, the two dotted lines 

represent the fitted testing data for benzene and summed aromatic, respectively, with the low values  

removed from the reference data. 

Given the limitations caused by cross-sensitivities, understanding how consistently sensor perform across 

changing compositions of VOCs is of high importance. While laboratory studies have illustrated the potential to 

identify specific pollutants in the presence of known confounders (Leidinger et al., 2014; Leidinger et al., 2017), the 

complex nature of field data requires a different approach. In Figure 7, the residuals from each Model 2 are plotted 

against all remaining VOCs. Figure 7a depicts the residuals for the benzene model versus the ppbC sum of all 

remaining non-methane VOCs. Figure 7b depicts the summed aromatic residuals versus the ppbC sum of all non-

methane and non-aromatic species. Figure 7c depicts the summed VOC residuals versus methane, and in Figure 7d 

the methane residuals are plotted versus the ppbC sum of all non-methane VOCs. For each plot, two concentrations, 

indicated by colored markers, were selected to be held constant; these are roughly the 75th and 95th percentile values 

for the predicted datasets. The intention of this analysis was to examine the effects of varying levels of VOCs on 

model performance. More plots of residuals verses reference VOCs are available in the appendix (Figures VI.3).  
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Figure 7: Complete residuals verses other, non-target VOCs. The complete residuals for the Model 2 results are in black. 

The blue and fuchsia points that represent two values held constant. For panel a, the constant benzene values selected 

were 0.75 and 1.6 ± 0.05 ppb. For panel b, the summed aromatics values selected were 19 and 38 ± 1 ppbC. For panel c, 

the summed VOC values selected were 47 and 67 ± 1 ppbC. For panel d, the methane values  

selected were 2.5 and 3 ± 0.05 ppm. 

Figure 7b and 7c suggest that the predictions are robust across changing concentrations of other VOCs, as 

there are no positive or negative trends. In Figure 7c, the residuals seem to be largest for lower levels of methane and 

smaller for high levels of methane, which is possibly suggesting that summed VOCs are easier to estimate in the 

presence of higher concentrations of methane. However, this pattern is less apparent when we hold the estimated VOC 

concentrations constant. The negative and positive trends in Figures 7a and 7d emphasize that there is room for 

improvement in the models that predict a single compound. In Figure 7a, the positive trends once again highlight 

under-prediction of the highest benzene elevations. In Figure 7d, the negative trends suggest that over-predictions by 

the model may be driven by cross-sensitivities that are not adequately corrected for as these over-predictions 

correspond to higher summed NMVOC concentrations. However, Figures 7a and 7d plots still do not display any clear 

patterns, such as a well-defined linear relationship, again indicating some robustness amid changing VOC 

compositions.  

In an effort to further understand model robustness and specialization, we explored model fit statistics during 

times when the target VOCs were well versus poorly correlated with a potentially confounding species. For this 
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analysis, we applied a 1-hour moving window to the data and calculated (1) the R2 between the target VOC(s) and 

another/other VOC(s), (2) the RMSE for our Model 2 results for that hour, and (3) the average target VOC(s) 

concentration for that hour. These plots, Figure 8, help to confirm whether or not our models are being specialized to 

our target VOC(s). For example, if our models are predicting VOCs in a more general sense and not specializing for 

our targets, we would expect lower RMSE’s to correspond to higher R2’s and higher RMSEs to correspond to lower 

R2’s, or periods when more differentiate was happening between the two signals. Conversely, if the models are being 

specialized to the target VOCs we would expect to see RMSEs that are more or less independent of correlations 

between different target VOC(s). In general, the results seem to point toward specialization. 

 

Figure 8: Plots of error (RMSE) versus the coefficient of determination (R2) for the target VOC or group versus a non-

target, potentially confounding VOC or group. These values are calculated on the basis of a 1-hour moving window and 

the points are colored according to the average of the target pollutant or group for that hour. The dotted black line on 

each is the overall RMSE determined in Section 3.1. 

For our Model 2 for benzene, most of the RMSE’s for each hour are below the overall RMSE for the model. 

For the points that are above the overall RMSE, many of these are for the high benzene concentrations – the 

underpredicted peaks. Furthermore, these higher benzene RSME values actually occur when we see high correlation 

between the summed VOCs and benzene, suggesting that the model is not simply fitting a more general VOC signal. 

Conversely, the high RMSE values do occur when there is low correlation between benzene and methane (Figure 8c), 

but there is still no clear trend of high RMSE for low correlation and low RMSE values for high correlation. For the 

summed VOCs, there is also not a clear relationship between correlation and RMSE values.  

These results provide supporting evidence that the models are becoming specialized to the intended target 

VOC or group of VOCs. Table 4 provides further support for this point by illustrating lower correlation between fitted 

datasets for Model 2 versus Model 1 and when there is lower correlation between the reference datasets. The pollutant 

pair in Table 4 worthy of a closer look is the benzene and summed aromatics. In this case these two reference data 
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sets are very highly correlated, and it’s not possible to confirm that the sensors are predicting benzene specifically, or 

a more general BTEX signature. The additional plots of residuals for the benzene Model 2, in Appendix VI, do indicate 

trends with regards to the benzene data and the other aromatic species. Therefore, while it seems that the models can 

be trained to predict specific or different groups of VOCs, for highly correlated species or groups (that the sensors are 

selective for) it may be more difficult to make this distinction. Sensor users should be careful to not over-assign 

meaning to signals that are more likely to be indicative of VOC types or groups rather than specific species.   

Table 4: Coefficient of determination (R) between reference data pairs and fitted sensor data pairs. 

Pollutant Pair PT-RMS Data Fitted Sensor Data  
(Model 1) 

Fitted Sensor Data  
(Model 2) 

Benzene vs. VOCs 0.906 0.936 0.877 
Benzene vs.  Methane 0.464 0.901 0.826 
Benzene vs. Aromatics 0.957 0.989 0.987 

Methane vs. VOCs  0.531 0.902 0.864 

3.2 Sensor Selectivity & Consistency  

The availability of speciated VOC data also allowed us to compare the selectivity of each sensor. Given that 

the manufacturer lists different compounds as target gases for each sensor, we expected a difference in the selectivity 

between the two VOC sensors. Furthermore, it’s likely that differences in selectivity aided the specialization of the 

calibration models in Section 3.1. 

We used analysis of variance to determine what the differences in selectivities might be and the results of 

this analysis are listed in Tables 5 and 6. The application of this technique is similar to previous studies where it was 

used to determine the effects of confounding species (Collier-Oxandale et al., 2018a; Eugster & Kling et al., 2012). 

These tables list the results of multiple runs in which different variables were included to determine their ability to 

explain the variance in the raw sensor signals. For instance, the first run includes only environmental parameters and 

time and for both sensors this set of predictors leaves the highest percentage of variability to residual error. Additional 

runs include all available reference signals (Run 2), or all available TNMHCs (Run 3). The final run in each case 

selects one VOC out of highly correlated groups (e.g., benzene for the aromatics and acetaldehyde for the aldehydes) 

and also results in the smallest portion of variance left to residual error, hence providing the strongest sets of 

explanatory variables. Comparing the two tables, the consistently important explanatory variables are highlighted in 

light grey. In Table 5, we see that acetaldehyde, benzene, methane and carbon monoxide are consistently important 

predictors for the Figaro 2600 signal, with methane and carbon monoxide as the most important. In Table 6, the percent 
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of variance in the Figaro 2602 sensor explained by benzene becomes more dominant, while carbon monoxide and the 

aldehydes are no longer important predictors. The lack of sensitivity to carbon monoxide for the Figaro 2602 sensor 

could be especially valuable in identifying the effects of this cross-sensitivity and correcting for it. It is important to 

note here that we do not expect the Figaro 2602 to be sensitive to pure methane (based on laboratory tests and 

manufacturer information), so it is probable that this response is driven by other light alkanes co-emitted and correlated 

with methane. Overall, this analysis confirms a difference in selectivities, which supports the idea that these two 

sensors can together be leveraged in VOC and source identification.  

Table 5: Analysis of variance results for the Figaro 2600 sensor signal (Rs/R0) 

 
Actd Acet Benz C8 C9 Form Meth Tol CH

4
 CO CO

2
 O

3
 NO

2
 H

2
S Temp AH Time Err 

                   

1 - - - - - - - - - - - - - - 42.65 4.14 5.35 47.86 

2 2.23 0.06 3.23 0.04 0.01 0.37 0.27 0.67 6.42 10.16 0.08 0.23 0.08 0.26 8.18 19.71 6.84 41.16 

3 3.45 0.43 5.30 0.07 0.65 1.55 0.12 0.91 - - - - - - 31.20 10.00 5.16 41.14 

4 3.48 1.09 3.80 0.00 0.21 1.58 0.32 0.78 9.18 - - - - - 19.34 13.26 9.11 37.84 

5 2.58 0.42 2.75 0.02 0.00 0.61 0.11 0.60 10.42 8.85 - - - - 16.41 15.62 7.61 33.99 

6 - - - - - - - - 8.27 16.86 0.00 0.00 3.35 0.02 3.66 21.13 5.60 41.11 

7 - - - - - - - - - 18.45 4.81 0.00 4.37 0.21 3.81 19.65 3.22 45.47 

8 6.63 - 5.42 - - - 0.28 - 9.36 9.77 - - - - 17.06 14.04 6.60 30.83 

 

Table 6: Analysis of variance results for the Figaro 2602 sensor signal (Rs/R0). 

 
Actd Acet Benz C8 C9 Form Meth Tol CH4 CO CO2 O3 NO2 H2S Temp AH Time Err 

                   

1 - - - - - - - - - - - - - - 16.42 3.34 1.77 78.47 

2 0.07 0.89 1.91 0.18 0.00 0.36 0.39 0.07 3.95 1.39 0.60 0.72 0.53 0.12 40.91 3.38 3.83 40.68 

3 0.79 1.16 3.31 0.02 0.91 0.92 0.95 0.11 - - - - - - 34.16 3.71 7.43 46.53 

4 0.54 0.42 1.47 0.02 0.23 1.06 0.54 0.03 12.32 - - - - - 44.37 2.48 3.54 32.96 

5 0.39 0.60 1.17 0.04 0.12 1.36 0.65 0.01 12.21 0.74 - - - - 44.54 2.38 3.90 31.90 

6 - - - - - - - - 7.05 4.13 1.38 0.80 0.08 0.75 34.89 1.51 1.51 47.90 

7 - - - - - - - - 0.00 4.90 10.94 0.57 0.00 1.83 29.57 1.28 2.67 48.24 

8 0.83 - 10.63 - - - 0.77 - 11.04 0.34 - - - - 42.70 2.04 2.65 29.00 

 

Additional ANOVA results are available in the appendix (Figures VI.4), including results of this analysis 

conducted on subsets of the data to test the robustness of our conclusions. The different subsets include the complete 

data, day vs. night data, and periods of elevated concentrations of specific compounds. Essentially these figures 

reinforce the conclusions drawn from the results above. Even across different subsets of data, the Figaro 2602 seems 

to be more responsive to aromatic species and the methane signal, while lacking sensitivity to carbon monoxide and 

the OVOCs. The Figaro 2600 is consistently responsive to methane, aromatic compounds, carbon monoxide, and to a 
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lesser extent the aldehyde species. For the subsets where we see low percents of variance explained by predictors, this 

may be due to relatively lower concentrations of the pollutants revealed to be important (Figure VI.5 illustrates the 

main differences in the subsets of data). As the conclusions drawn from the ANOVA results seem to be consistent 

across different runs and subsets of data, this supports the likelihood of consistency in sensor selectivities. 

In addition to insights into selectivity these results also reiterate the importance of the cross-sensitivities to 

environmental parameters like temperature and humidity. As indicated in Tables 5 and 6 temperature and/or humidity 

often explain a greater percentage of variance in the sensor signal than the pollutants of interest. While the residuals 

from the regression analysis in Section 3.1 indicate that the models seem to be adequately correcting for temperature 

and humidity effects (Figures S2), the effects of these parameters are complex. We know that temperature can not 

only impact the rate of reactions occurring at the sensor surface, but also the rate of desorption [Schutze et al., 2017; 

Sun et al., 2012]. This behaviour means that temperature has the potential to impact the rates of response and recovery 

for the sensors as well as the magnitude of responses. Figures S6 provides an impression of these complexities. 

However, even though the pollutants explain a smaller percentage of the variance in sensor signal, performing the 

regression analysis from Section 3.1 with the sensor data excluded illustrates the value of the signals from the MOx 

sensors. Table 7 lists the results of the regression analysis for each Model 1 with all VOC sensor data excluded; this 

table also includes the original results in parentheses. Relying solely on environmental sensor data results in a higher 

RMSE and a lower R2, particularly for the testing data. Plots in the appendix (Figures VI.7) further illustrate how 

excluding the sensor signal not only eliminates our ability to predict short-term enhancements in pollutant levels, but 

also reduces our ability to accurately track diurnal patterns. 

Table 7: Model 1 regression statistics, excluding MOx sensor data (original results, including MOx sensor data) 

 
 Training  Testing 
 

R
2 RMSE R

2 RMSE 
Benzene (ppb) 0.22 (0.68) 0.55 (0.35) 0.08 (0.58) 0.83 (0.58) 

Aromatics (ppbC) 0.24 (0.63) 12.6 (8.81) 0.09 (0.56) 17.72 (12.33) 
Summed VOCs (ppbC) 0.26 (0.68) 15.13 (9.95) 0.07 (0.59) 20.72 (13.38) 

Methane (ppm) 0.42 (0.75) 0.32 (0.21) 0.22 (0.58) 0.35 (0.24) 
 

To better understand the consistency of the observed differences in sensor selectivities, we utilized 

bootstrapping for model training while also moving through different combinations of VOCs as predictors. Here each 

scenario was run 25 times with 15% of the dataset (in three-hour blocks) randomly selected for training and the 

remaining 85% of the data used for testing. Figure 9 shows the results for the testing data. The intended prediction 
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data sets were calculated by first summing the species in ppbC or ppmC and then normalizing the resulting sum to 

better make relative comparisons. These results continue to support the conclusions drawn thus far. The Figaro 2602 

(noted as Fig2) is better at predicting BTEX compounds than the Figaro 2600 (noted as Fig1), however, the opposite 

is true when predicting methane and carbon monoxide. The poorest performance results from the predictions of 

summed, oxygenated VOCs. The model including both sensors and an interaction term nearly always provides the 

best results, indicating that power in leveraging the difference in selectivities between the two sensor types. 

On a final note, regarding the consistency of these conclusions, this bootstrap analysis as well as the original 

regression analysis was repeated for the second U-Pod (P2) co-located at this site (the results are available in the 

appendix, Figures VI.8 and VI.9). In these results we see similar trends and behavior, but with poorer performance 

and greater variability. This poorer performance is likely due to the more fragmented nature of the data, as well as the 

possibly that the intermittent power failures affected the sensor signal enough to decrease the performance. Overall, 

the similarities in results suggest consistency within sensor types. 

 

Figure 9: The boxplots above illustrate the results of training on a randomly selected 15% of the data and testing on the 

remaining 85% 25 times, using each sensor individually, the two sensors as predictors, and the two sensors plus an 

interaction between them. Plots a and b depict the R2 and RMSE respectively for the testing data. Note all of the data has 

been normalized and the whiskers are the 5th and 95th percentile respectively.  

The x-axis indicates the VOC or group being predicted. 

3.3 Leveraging Sensor Differences to Learn About Potential Sources  

Given the observed differences in selectivities, it is possible that sensor arrays may be able to provide useful 

information even in the absence of co-locations and field calibrations. For example, the ratios between different VOC 

sensors may be able to provide insight into VOC types or sources. This approach may be especially powerful if used 
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in conjunction with methods such as passive sorption tubes; sensors could indicate emission events and a rough idea 

of VOC composition and then sampling tubes could provide more quantitative speciation.  

Here we compared sensor ratios to reference pollutant ratios and trends. For this analysis, the baseline was 

identified and removed from both the sensor and the reference data using a technique applied to sensor data by 

Heimann and colleagues (2015). The purpose of this baseline removal was to isolate short-term emissions and remove 

the larger regional/diurnal trends. We then calculated the Rs/R0 ratio as the Figaro 2600/Figaro 2602 and removed 

ratio values deemed ‘insignificant’; insignificant values were identified as ratios where the data from one or both 

sensors was below a given threshold. The threshold was 0.05 for the Figaro 2600 and 0.1 for the Figaro 2602. These 

thresholds were calculated as the average difference between paired values from the two co-located U-Pods P1 and 

P2. This was necessary as a low ratio could result from either the Figaro 2602 values being high or both the sensor 

values being low, in the latter case a low ratio may have been misleading. Finally, the different ratios were examined 

for correspondence to specific patterns in the reference data. Figure 10 below notes a few interested ratios and trends. 

A complete look at these ratios in relation to reference data is available in the Figures VI.10.  

While the results of this analysis are limited to this single deployment, they suggest that this approach has 

potential. In Figure 10a, we see that a low ratio, indicated in fuchsia (meaning a greater response from the Figaro 2602 

than from the Figaro 2600), corresponds to a higher toluene to benzene ratio. As Halliday and colleagues observed 

(2016), toluene to benzene ratios above 2.0 are more likely to be the result of traffic, while lower ratios are more likely 

to be indicative of oil and gas emissions. If this VOC sensor ratio were to consistently indicate high toluene to benzene 

ratios over other concentrations and VOC compositions, this could be a powerful tool for differentiating between 

traffic and oil and gas emissions. Further supporting this point, a larger ratio indicated in yellow (meaning a greater 

response from the Figaro 2600 than from the 2602) falls much lower than the toluene to benzene ratio of 2.0, with a 

ratio of approximately 0.89. When examining this same ratio with regards to the benzene to methane relationship 

(Figure 10b), it falls close to ratios observed in other studies in oil and gas areas. Thus, this analysis provides two 

examples supporting the idea that this ratio may be indicative of oil and gas emissions. One final observation, in 

Figures 10a and 10c, we see the ratio that falls closest to a 1:1 relationship for the sensors (in green) both falls below 

the toluene:benzene ratio of 2.0 and corresponds to many of the enhancements in benzene that seem to occur 

independent of enhancements in carbon dioxide. While there are no clear relationships between the benzene and 

carbon dioxide, this behaviour may illustrate an ability to indicate oil and gas emissions that are not the result of 
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combustion, but rather evaporative emissions. Though of course these observations would need to be demonstrated as 

consistent across different locations and with respect to differing background VOCs to ensure their reliability – the 

results here are limited to this single time and place.  

 

Figure 10: Each panel displays two pollutants plotted together (from the reference data set). Panel a is the benzene versus 

the toluene while panel b is methane versus the benzene and panel c is carbon dioxide versus benzene. Points with certain 

sensor ratios are then colored according to the colors listed in each the legend. Other relevant information, for example a 

ratio of 2 for the toluene to benzene ratio or relationships from previous studies. 

Returning to Figure 10b, the relationship for the ratio in yellow is weak given the poor correlation. However, 

by utilizing a moving correlation to essentially extract periods where the relationship between the benzene and 

methane is stronger, indicating a likely shared source, we can better assess association of the yellow sensor ratio seems 

to benzene:methane ratios indicative of oil and gas areas. Using a moving correlation with an hour-long window, we 

calculated the correlation coefficients for each hour, the average ratios of benzene:methane and Fig1:Fig2, and the 

range of methane for that hour. Figure 11 depicts the distribution for the complete hourly averages of VOC sensor 

ratios, and a subset. In the selected subset, hourly averages correspond to an R higher than 0.85, a benzene:methane 

ratio < 1 ppb/ppm (the typical range observed in an oil and gas area), and a range in methane > 0.5 ppm. The shift in 

the distribution highlights that the emissions likely from oil and gas seem to be associated with the VOC sensor ratio 

of 1.15-1.75, which supports the idea that these sensor ratios may be able to differentiate oil and gas sources of 

hydrocarbons from traffic sources.  
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Figure 11: Histogram of complete sensor ratios for each hour using moving correlation window vs. the ratios for a select 

subset of data with high correlation between benzene and methane (> 0.85), a ratio of benzene:methane typically 

associated with oil and gas activity (< 1.0 ppb/ppm), and a significant change in methane (> 0.5 ppm). 

4. CONCLUSION  

While more field research is necessary, here we have provided an overview of MOx VOC sensor potential. 

Not only were calibration models capable of providing predictions relevant for ambient studies, but also these models 

appear to be specialized to the target pollutants and robust across changing compositions of other VOCs. Furthermore, 

this analysis confirmed a difference in selectivity between two MOx VOC sensors, a difference which can be leveraged 

in the development of calibration models, to identify and mitigate cross-sensitivities, and potentially in source 

classification. Cross-sensitivities to confounding species are currently a major concern, for low-cost sensors in general 

and in particular for VOC sensing. However, given the differences in selectivity it seems that multiple sensors could 

be used to strategically determine the gases most likely affecting a sensor. For example, a carbon monoxide sensor 

and the Figaro 2602 could help to confirm whether methane is the main driver of a response from the Figaro 2600. 

Furthermore, if the demonstrated association between sensor ratios and source types is shown to be consistent, multi-

sensor devices could be a powerful tool for collecting preliminary or supplementary data in areas affected by numerous 

and complex sources – like environmental justice communities.   

Low-cost field deployed MOx VOC sensors have the potential to provide information in support public health 

research, community-based environmental justice studies, or even supplement research by the regulatory or academic 

community. Given their cost and the relative ease of deployment, these tools can provide information at higher spatial 
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and temporal resolution than is currently available. Even considering the uncertainties and limitations discussed in 

this paper, these tools could guide exposure studies or provide a better idea of the impact of nearby sources on 

overburdened communities. Often in environmental justice communities, lacking resources, even cursory information 

on VOCs and local emissions could be valuable. These types of sensors could also supplement conventional 

monitoring approaches. For example, regulatory agencies sometimes utilize TNMHC measurements and MOx sensors 

may be able to supplement these instruments again by providing greater spatial resolution. Multi-sensor systems could 

also provide time-resolved information, adding to data collected using a speciated method such as VOC canisters or 

passive sorption tubes. Future research will hopefully explore these applications as well as further quantify the capacity 

and limitations of these sensors, however, the usefulness demonstrated here speaks to the potential MOx sensors have 

to provide new insights into the complex and dynamic VOC types and sources impacting our lives and communities. 
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ABSTRACT 

In the late summer of 2016, our team deployed a network of low-cost air quality sensing systems in 

partnership with community-based organizations, in a neighborhood in South Los Angeles. Residents of this 

community are concerned about possible emissions from local oil and gas activity, however in addition to these 

potential emissions, the neighborhood is also subject to a complex mixture of pollutants from other nearby sources 

including major highways. For this deployment, metal-oxide VOC sensors were quantified to provide methane and 

total non-methane hydrocarbon concentration estimates. This data along with other sensor signals, meteorological 

data, and community member observations was used to examine the composition and likely origin of emissions. We 

found that the sensor network displayed expected environmental trends and highlighted short-term elevations on CH4 

and/or TNMHCs which we were then able to investigate more closely. This study confirmed the existence of multiple 

sources impacting homes near the oil and gas site of interest, including a source that emits volatilized or vented 

hydrocarbons as opposed to hydrocarbons associated with combustion. We hope that this deployment can also serve 

as a model for how information from multiple sensor signals can be leveraged to better understand sources in complex 

areas, potentially supporting more community-based air quality research.  

1. INTRODUCTION  

Much of the research into low-cost air quality sensors has focused on quantifying sensors for criteria 

pollutants. However, moving beyond criteria pollutants and adding the capacity to estimate Hazardous Air Pollutants 

and greenhouse gases will expand our ability to identify sources and study important research questions related to 

health and exposure. Expanding the list of pollutants we are able to measure is also compatible with a shift to studying 
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air quality at a more localized level. The implementation of the Clean Air Act and subsequent work led to immense 

improvements in air quality, particularly at the regional scale. These improvements, on larger temporal and spatial 

scales, have allowed for a shift in focus to examining issues at a higher resolution. Studying air quality at this scale 

may necessitate examining emissions events and individual sources, making the capacity to measure a variety of 

pollutants valuable. Furthermore, these sources can carry risks to public and environmental health, for example, the 

potential for the emission of air toxics, including compounds such as benzene and formaldehyde. These compounds 

can originate from a number of sources outdoors and indoors and both rank high in terms of cancer risk when potential 

exposure pathways are taken into consideration (Loh et al., 2007). Alternatively, methane, a potent greenhouse gas, 

carries environmental concerns and recent studies have found methane emissions to be underestimated in current 

emissions inventories (Miller et al., 2013). Studies demonstrating the existence and impact of leaks along the entire 

production and distribution chain raise concerns (Marchese at al., 2015; Philips et al., 2013). For example, a study 

from 2015, in the Barnett Shale determined that roughly half of methane emissions were originating from 2% of oil 

and gas facilities, pointing to the need to identify individual sources having relatively larger impacts (Zavala-araiza at 

al., 2015).  

As studies continue to focus in on these smaller scales, we are learning more about the small-scale spatial 

variability of pollutants. When considering this variability of pollutants, one important source is major roadways and 

the health of those living in close proximity to them. A review from 2007 noted the consistent observation of steep 

pollutant gradients near highways, ranging from 2 – 400 meters (Brugge et al., 2007). Within these gradients, the 

higher concentrations of certain pollutants can have an impact on public health. For example, one study cited in the 

review found that benzene and summed VOCs were twice as high outside of homes in areas with heavy traffic versus 

low traffic (Fischer et al., 2000). Sources other than roadways have also been shown to have an impact on local air 

quality and exposure as well. In the RIOPA study, researchers measured concentrations of a variety of VOCs, aromatic 

hydrocarbons (BTEX), methyl ter butyl ether (MTBE), and tetrachloroethylene (PCE), and examined the resulting 

concentrations in relation to proximity to sources (Kwon et la., 2006). The study found that residential ambient 

concentrations of VOCs were 1.5-4 times higher within 50 meters of a respective source (e.g., gas stations for BTEX, 

or dry cleaners for PCE) (Kwon et al., 2006), emphasizing the potential for small scale variability of pollutants near 

sources. Another study, utilizing passive sampling techniques to examine spatial variability around a refinery in 

Philadelphia, found significantly higher concentrations of BTEX and styrene on the fence line of the refinery as 
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opposed to further way (Mukerjee et al., 2016). In terms of scale, the data utilized was from sampling sites within a 

mile of the refinery (Mukerjee et al., 2016). New monitoring technologies are emerging, which will support more in-

depth studied into small-scale spatial and temporal variability. One example is low-cost air quality sensors, which, 

while still a developing technology, can be deployed in networks to provide high spatial and temporal resolution data. 

A solution such as this could be especially valuable in places where the sources of interest exist amid a complex 

mixture of point and mobile sources.  

1.1 Background 

Los Angeles, CA has long been the subject of much research and action regarding air pollution due to the 

numerous sources, continued growth, and effects of the topography and meteorology on pollution accumulation and 

dispersion (Kunzli et al., 2003). One industry that communities are particularly concerned about in terms of potential 

impacts to local air quality is urban oil and gas activity. Los Angeles county holds more than 5000 active oil wells, 

with 850 of these located within the City of Los Angeles (Sadd & Shamasunder, 2015). Rapid development over the 

years has led to a “conflict in land usage” (Chilingar et al., 2005), which has resulted in the active wells and production 

sites in close proximity to high density residential areas and public services such as schools and hospitals 

(Shamasunder et al., 2018). In some instances, an oil well head may be within 60 ft of a residence (Shamasunder et 

al., 2018). Furthermore, residents living near some of these active facilities, on occasion, have been known to report 

adverse physical symptoms such as nose bleeds, headaches, and respiratory issues as well as other complaints such as 

disruptive noises or odors (Sahagun, 2013). Given the potential for the release of air toxics from these facilities, such 

as BTEX (benzene, toluene, ethylbenzene, and xylene) compounds (Adgate et al., 2014; Helmig et al., 2014; Moore 

et al., 2014), it is understandable that a facility in close proximity to a home might evoke concern. In addition to a 

potential for direct health effects, depending on the compounds emitted, the presence of odors could lead to decreased 

property values, or even stress-related physical disorders (Beloff et al., 2000). 

Motivated by a concern for their health, residents of these communities often seek ways to collect more 

information or data to better understand their exposure and potentially facilitate action to reduce exposure (Brown, 

1992). One example is a project where residents worked with academic and regulatory partners to deploy a network 

of lower cost air quality monitors that could provide more locally relevant information than the existing monitoring 

network, which in turn could be used to inform actions of local schools to reduce students’ exposure (Wong et al., 

2018; English et al., 2016). The increasing availability of more accessible environmental monitoring technologies, 
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along with greater engagement from academic and regulatory researchers could support more community-based air 

quality research projects. In turn, this type of research could lead to greater insights into human exposure and the 

effects of pollution in complex environments as well as locally relevant actions reduce exposure.  

1.2 Low-cost Air Quality Sensors – An Overview  

Next generation monitoring technologies, such as low-cost air quality sensors, have the potential to provide 

preliminary data to inform targeted studies, to supplement our existing monitoring networks with additional data, and 

to aid in the quicker detection of hotspots (Snyder et al., 2013). The cost of these systems (typically $500 -$5000 ea.) 

makes the deployment of networks of sensors more feasible, leading to datasets with much high spatial and temporal 

resolution. Furthermore, because of the lower costs and the relatively simple deployment and operation procedures, 

this technology is well-suited to support community-based investigations (Shamasunder et al., 2018). However, an 

ongoing challenge associated with the use of low-cost sensors is quantification and ensuring/assessing data quality.  

These sensors exhibit cross-sensitivities to environmental parameters, like temperature and humidity, as well 

as confounding pollutants (Lewis et al., 2016). Significant research, both in the lab and the field, has gone into 

understanding and mitigating these cross-sensitivities in order to provide reliable calibrations for low-cost sensors 

(Masson et al., 2015a & 2015b). There are also many promising examples of sensors quantified for the detection of 

criteria pollutants (Mead et al., 2013; Piedrahita et al., 2014; Sadighi et al., 2018; Hagan et al., 2018) and hydrocarbons 

(Eugster & Kling, 2012; Collier-Oxandale et al., 2018a; De Vito et al., 2008; Leidinger et al., 2014; Collier-Oxandale 

et al., 2018c) at ambient levels. Research around sensor quantification also continues to explore the application of 

innovative techniques, such as machine learning or temperature-controlled operation, to improve the capabilities and 

quantification of low-cost sensors (Casey et al., 2018c; Cross et al., 2017; Zimmerman et al., 2018; Sauerwald et al., 

2018; Schultze et al., 2017; Kim et al., 2017). Beyond quantification there are also example of sensors being used to 

study spatial variability of pollutants, to examine indoor air quality, and to support personal exposure monitoring 

(Sadighi et al., 2018; Cheadle et al., 2017; Casey et al., 2018a; Jerrett et al., 2017). As quantification continues to 

improve and best practices are established, it is possible that sensors could play a valuable role in addressing 

environmental inequities by helping to identify communities or areas overburdened by air pollution and potentially 

the likely sources of that pollution. A summary from a recent workshop provides a good overview of the current state 

of air quality sensor research (Clements et al., 2017). 
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In this paper, we utilize data from metal oxide (MOx) VOC sensors to provide quantitative estimates of 

methane (CH4) and total non-methane hydrocarbon (TNMHC) concentrations (Collier-Oxandale et al., 2018a & 

2018c). These estimates are then utilized along with other gas-phase sensor data and meteorological information to 

reveal air quality trends at the local level in a South Los Angeles neighborhood. These additional data streams are 

utilized to better understand the composition of emissions events and determine likely sources. To our knowledge, 

this research is the first to use sensors calibrated for CH4 and NMHC sensors in a complex urban environment to study 

pollutant variability and individual emission events. Furthermore, the use of multiple sensors and analysis techniques 

shared in this paper could serve as a model for deploying sensors with communities to investigate local concerns 

around issues such as odors and industrial activity. This paper includes an evaluation of the sensor quantification 

efforts, an overview of the spatial and temporal variability seen in the sensor data, and analysis of individual emission 

events informed by supplementary data and in relation to local observations by community members.  

2. METHODS  

2.1 Study Overview 

The low-cost sensing systems were deployed for a period of 8 weeks, from late summer through early fall, 

in a community in South Los Angeles. Figure 1 illustrates the sampling sites in relation to sources of interest; the sites 

are distributed on either side of and varying distances away from the major highways indicated by black lines and an 

active oil extraction site indicated by a red star. Fourteen of the sites were located within a roughly 5x5 km area. The 

two additional sites, were further away and were selected as they allowed for continuous co-location with reference 

instruments providing additional quantification validation data. The neighborhood in which the sensor systems were 

deployed is primarily high density residential with some commercial and industrial land use. While only the major 

highways are indicated, some other sites were located on fairly busy roads and vehicle emissions certainly would 

originate from these roads too. Other potential local sources of VOCs would include, most prominently, gas stations 

and dry cleaners. There are also other active and inactive extraction and processing sites in the area, though there are 

no other active drill sites near any sampling site other than the one noted in the map.  
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Figure 1: Map of sampling sites and major sources of interest. Note that the Y-Pod locations have been 

approximated to the center of their respective blocks in order to protect participant identities. The first initial 

is indicative of the site type: N – neighborhood site, R – near roadway site, E – near oil extraction site, c – 

ongoing co-location site. 

2.2 Local Partnerships & the Communities 

This project was conducted in a participatory manner, in partnership with two local community-based 

organizations. Redeemer Community Partnership, a community development corporation, has been organizing local 

residents around the drill site of interest and has been active in the community since 1992. Esperanza Community 

Housing has been active in the community since 1989 and played a large role in bringing awareness to violations at a 

formerly active drill site to the attention of regulators (Brown, 1995). Together we worked with community partners 

to plan the project, choose the sampling sites, and conduct the sampling. Partners also assisted with finding and hiring 

a local field technician to check the sensor systems periodically and collect the data. As part of the project a 

Memorandum of Understanding (MOU) was developed and signed by all partners to ensure a mutual understanding 

of the limitations of sensor technology and study objectives as well as to ensure ongoing communication, particularly 

around the dissemination of the results of the project.  

This deployment spanned primarily two communities, West Adams and University Park. In both of these 

communities, problems such as poverty and housing insecurity contribute to an overburdening of residents. West 

Adams is made up of 87% residents of color, including 58% Latino and 20% African American. Furthermore 68% of 

residents live 200% below the poverty line (Shamasunder et al., 2018). University Park is predominantly Latino at 

76% and here 72% of residents are living 200% below the poverty line (Shamasunder et al., 2018). Prior studies have 
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demonstrated the reality of environmental inequalities resulting in higher levels of exposure to air pollutants in 

minority and socioeconomically disadvantaged communities (Souza et al., 2009; Marshall, 2008; Wang et al., 2010). 

In some cases, these higher levels of exposure are observable via smell or sight, or can cause physical symptoms 

(though of course not all odors signify dangerous compounds or dangerous levels of these compounds). For that 

reason, we were also interested in the local knowledge and observations of community members. We wanted to 

consider whether or not observations correlated with pollutant enhancements and vice versa, and whether these 

observations could add valuable contextual information to trends in the sensor data. Following the deployment, we 

were provided with a log of observed activity at the drill site and notes of noise and odor complaints. This log provided 

another, more qualitative stream of data to fold into our analysis.  

2.3 Low-Cost Sensing Systems  

The low-cost sensing systems used for this study were designed and assembled in our lab at the University 

of Colorado Boulder. These systems include commercially available sensors of various types, including metal oxide 

semi-conductor, electrochemical, and non-dispersive infrared sensors for gas phase pollutants as well as sensors for 

environmental parameters. U-Pods and Y-Pods are iterations of the same design with some minor differences in the 

circuit board design and Arduino programming, with the design objective of increased reliability of performance for 

the Y-Pod. Table 1 lists all sensors that can be included in the system, while Figure 1 includes a diagram of the inside 

of a Y-Pod and several photographs of Pods deployed in the field and at a co-location site. 

Table 1: Complete list of sensors used in the U-Pods and Y-Pods 

 

These systems are housed in a weather-proof case, approximately 20 cm x 25 cm x 10 cm. with electronics 

fans facilitating active flow across the sensor surfaces and resulting in multiple air exchanges per minute. The Pods 

are typically powered using 12 V AC/DC power adapters, although they can also be powered via a solar panel or car 

Sensor Type U-Pod Y-Pod 

Temp. & RH RHT03 (aka DHT22) Sensirion SHT2 

Temp. & Pres. 47 Bosh BMP085 Bosh BMP180 

Carbon dioxide ELT S-100 NDIR ELT S-300 NDIR 

Ozone SGX Corporation MiCS-2611 SGX Corporation MiCS-2611 

VOC Sensor 1 Figaro TGS 2600 MOx Figaro TGS 2600 MOx 

VOC Sensor 2 Figaro TGS 2602 MOx Figaro TGS 2602 MOx 

Additional 

Optional Sensors 

Alphasense B4 series (CO, NO, NO2, O3, SO2), 

Baseline Mocon PID, SEN-08942 RoHS weather 

meter (for wind speed and direction) 

Alphasense B4 series (CO, NO, NO2, 

O3, SO2), Baseline Mocon PID 
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battery. Data is logged to an onboard micro-SD card multiple times per minute. More information on these systems 

and their operation is available in other papers, as these systems operating these sensors have been utilized in a number 

of previous studies (Masson et al., 2015b; Sadighi et al., 2018; Collier-Oxandale et al., 2018a & 2018b; Casey et al., 

2018a; Cheadle et al., 2017; Casey et al., 2018b; Castell et al., 2017).  

For this deployment, these systems were placed at sites agreed upon by researchers and community partners. 

Placement of the systems at each site was partially limited by safety, convenience, and resident preference, although 

efforts were made to select ideal locations; locations elevated off the ground and with access to representative air flow. 

As observed in a previous study, intra-site variability is a possibility and is often driven by sources within close 

proximity to the site (Collier-Oxandale et al., 2018b). For this reason, the specific placement of each monitors was be 

taken into consideration during our analysis. We were also careful to ensure that the two Y-Pods adjacent to the drill 

site of interest had a line-of-sight to the potential source.  

 

Figure 2: Top left – Y-Pod interior, top right – two-Y-Pods deployed on a roof, bottom left – Y-Pods deployed 

at a co-location site near downtown LA, bottom right – Y-Pod deployed on a building above a roadway. 

In terms of data completeness, there were two periods of continuous data loss from two Y-Pods that do not 

appear to have effected data quality. However, one of the Y-Pods did experience repeated, sporadic power loss and 

this Y-Pod has been excluded from the analysis. Another Y-Pod displayed a problem with a VOC sensor that was only 

apparent during the calibration and resulted insignificantly poorer than the calibration results for all other Y-Pods. 

This Y-Pod was also excluded from the analysis, and as a result data from 14 Y-Pods was utilized in the analysis. 

While the analysis primarily utilizes data from the Y-Pods, which were new systems with new sensors, supplementary 
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U-Pods were sometimes co-located with Y-Pods to provide additional streams of data and this information will be 

included on an as-needed basis.  

2.4 Sensor Signal Processing & Quantification  

Metal oxide (MOx) semi-conductor sensors rely on a reducing gas to remove oxygen molecules adsorbed to 

the sensor surface, which then changes the conductivity by lowering the resistance (Wang et al., 2010). This variable 

resistance is then indicative of the concentration of the reducing gas or target gas in the atmosphere. While simple in 

principle, quantifying the concentration of the target gas is complicated by the fact that changes in ambient temperature 

and humidity affect these reactions occurring on the sensor surface (Wang et al., 2010; Sun et al., 2012), as well as 

the fact that other reducing gases may also affect the sensor surface (Spinelle et al., 2017c). These sensors were 

originally developed for scenarios with high concentrations of the target gas(es) – scenarios in which the effects of 

environmental variables and confounders would be small in comparison to the effects seen from the target gas. As 

such, intensive sensor quantification and robust calibration are a necessity when attempting to utilize these sensors for 

gases at ambient concentrations.  

2.4.1 Field Calibration  

While laboratory tests are useful for determining the capabilities of sensors, researchers have continually 

found that field co-locations allow for the generation of more accurate calibration models (Piedrahita et al., 2014; 

Castell et al., 2017). The reason for this is likely the large and dynamic range of environmental variables and presence 

of background pollutants, which cannot be adequately replicated in the lab. A field co-location particularly near the 

intended deployment site, provides data that trains the calibration model to detect the target pollutant amid 

environmental and background conditions similar to those that will be experienced during a field deployment. A field 

calibration or normalization involves the physical co-location of sensor systems with reliable reference 

instrumentation, typically prior to and following a field deployment. The concurrent data is then utilized along with a 

technique such as multiple linear regression or machine learning to generate and evaluate a calibration model, which 

can be used to convert field data to usable concentration values. For this study, support from local regulatory agencies 

allowed for both pre-deployment and post-deployment co-locations listed in Table 2. Note the final co-location site 

for TNMHCs was much further north, outside of Los Angeles, which while not ideal given the different background 
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conditions, was the best option for the post-deployment co-location. Furthermore, based on the results presented in 

Section 3.1, we believe this reference dataset still supports useful data quantification. 

Table 2: Details of co-locations with reference instruments 

 

aoperated by SCAQMD, boperated by SJVAD 

2.4.2 Signal Processing and Calibration Models  

As stated earlier, the raw sensor signals are recorded to a micro-SD card as voltages, which are then converted 

to a normalized resistance. This process is described in greater detail in previous works (Collier-Oxandale et al., 2018a 

& 2018c). This resistance is then used to generate the calibration model. In terms of other processing, the raw values 

were converted to minute-medians and the warm-up data was excluded. Warm-up data is defined as the first half hour 

of data after the Pod has been turned off for a half hour or longer. The processed sensor data was then used alongside 

the reference data to generate a calibration model. Table 3 lists the calibration models utilized in this study. Note, the 

calibration models rely on data from the Figaro TGS 2600 and Figaro TGS 2602, made by Figaro Inc., along with 

environmental data to convert sensor signals. The quantification, selectivities and cross-sensitivities of both sensors 

are described in greater detail in the previous papers works (Collier-Oxandale et al., 2018a & 2018c).  

The most notable difference between the two models used for methane is the later incorporates data from 

multiple sensors while the former relies on only a single sensor. The former model was determined to be the best-

fitting model in a previous work on methane quantification as it seemed to correct for complex temperature and 

humidity effects well works (Collier-Oxandale et al., 2018a); in this study we also utilized inverted models that 

necessarily result in a 1:1 relationship between pollutant concentration and sensor signal. In the subsequent study, we 

examined the usefulness of multi-sensor models, which required solving for pollutant concentration rather than a 

model for sensor signal works (Collier-Oxandale et al., 2018c). In this second study, the multi-sensor models helped 

correct for cross-sensitivities and provided better estimates of target species works (Collier-Oxandale et al., 2018c). 

Both were included in this analysis, allowing us to compare the two methane concentration estimates. This previous 

study also illustrated how similar models, utilizing the same sensors can result in calibration models specialized for 

Dates Reference Instrument Pollutants Location 

Pre: 8/1 – 8/4/2016 aBaseline Mocon Series 900 Analyzer CH4, TNMHCs Los Angeles, CA 

Post: 10/20 – 10/28/2016 aPicarro cavity ring-down spectrometer CH4 Los Angeles, CA 

Post: 11/2 – 11/12/2016 bSynspec Alpha 115  TNMHCs Shafter, CA  
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the target species or groups of species works (Collier-Oxandale et al., 2018c), which is why the same model form was 

used for CH4 and TNMHCs in Table 3.  

Table 3: Calibration Models 

 

Predictors (lower case p with subscripts) are Fig1 – Rs/R0 for the Figaro 2600 sensor, Fig2 – Rs/R0 for the Figaro 2602 sensor,  

C – pollutant concentration, T – temperature, H – absolute humidity, Ti – continuous time. The predictor p1 indicates  

an empirical constant. 

2.4.3 Supporting Data & Additional Processing  

Signals from other sensors were also utilized to better understand the composition of the emissions events 

eliciting a response, specifically from the electrochemical carbon monoxide sensors and non-dispersive infrared 

carbon dioxide sensors. These signals are quantified similarly to the VOC sensors, using field calibration. However, 

given that these sensors have been used in previous studies by our group and by others (Mead et al., 2013; Piedrahita 

et al., 2014; Casey et al., 2018b; Cross et al., 2017; Zimmerman et al., 2018; Jerrett et al., 2017; Collier-Oxandale et 

al., 2018b), and that the most important information from these signals is examining enhancements and relative 

amounts of CO2 and CO, the work presented here focuses on the VOC sensor quantification. Details regarding the 

performance of CO and CO2 sensors is available in Appendix VII. 

One additional processing technique was incorporated into this study to highlight the short-term 

enhancements, likely associated with local emission events, baseline removal. We utilized a technique developed to 

extract the baseline from atmospheric data (Ruckstuhl et al., 2012). Heimann and colleagues (2015), have 

demonstrated the application of this technique to low-cost sensor data, specifically for electrochemical carbon 

monoxide sensors. Using this technique, these researchers illustrated the ability to separate regional trends 

(represented by the baseline) from local trends (apparent in the baseline-removed data). More details on the procedures 

and an example are available in Appendix VII. It’s worth noting that while this is one technique for identifying and 

removing the baseline, many other techniques have been developed in the field of digital signal processing and 

particularly given the complex nature of sensors systems, a smarter processing technique might be worth considering 

(Smith, 1997). 

Model Name Equation  

Single Sensor CH4 𝐹𝑖𝑔1 =  𝑝1 + 𝑝2(𝐶) + 𝑇(𝑝3 + 𝑝6(𝐶)) + 𝑝4(𝐻−1) + 𝑝5(𝑇𝑖) + 𝑝7(𝑇 ∗ 𝐻−1) + 𝑝8(𝑇𝑑 ) 

Multi Sensor CH4 𝐶 = 𝑝1 + 𝑝2(𝐹𝑖𝑔1) + 𝑝3(𝐹𝑖𝑔2) + 𝑝4(𝐹𝑖𝑔1 ∗ 𝐹𝑖𝑔2) + 𝑝5(𝑇) + 𝑝6(𝐻) + 𝑝7(𝑇𝑖) 

Multi Sensor TNMHC  𝐶 = 𝑝1 + 𝑝2(𝐹𝑖𝑔1) + 𝑝3(𝐹𝑖𝑔2) + 𝑝4(𝐹𝑖𝑔1 ∗ 𝐹𝑖𝑔2) + 𝑝5(𝑇) + 𝑝6(𝐻) + 𝑝7(𝑇𝑖) 
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3. RESULTS & DISCUSSION  

3.1 Sensor Performance Quantification  

3.1.1 Quantification Model Results 

Table 4 summarizes the results of sensor quantification efforts for the two methane models and the non-

methane hydrocarbon model. When compared to quantification results from previous studies, the results are very 

similar suggesting consistency in the behavior of these MOx sensors. For instance, the average R2 and RMSE for the 

testing data for the three Y-Pods used in our previous study (Collier-Oxandale et al., 2018a) were 0.740 and 0.177 

ppm respectively. When this quantification is expanded to include the other 12 Y-Pods available the new averages are 

nearly unchanged. Comparing the results for the two multi sensor models reveals similarities as well. For CH4, the 

multi sensor model exhibits improvements over the single sensor model, which is the same outcome as was observed 

when the two models were applied to a different dataset works (Collier-Oxandale et al., 2018a & 2018c). For 

TNMHCs, the average R2 is similar to those that resulted when sensors were calibrated to predict a summed VOC 

signal works (Collier-Oxandale et al., 2018c). The RMSE’s for both training and testing datasets presented here are 

higher, however this is not surprising as the dynamic range of the TNMHCs (~300 ppb) is much higher than the range 

for the summed VOC signal (~30 ppb). The complete statistics for each individual Y-Pod are in the supplementary. 

Table 4: Resulting statistics from calibration model generation and validation, averages across 15 Y-Pods 

 

*MB – mean bias  

Figures 3, 4, and 5 depict the results for all Y-Pods and for each model for the collocations. From these plots, 

it is clear that there is little inter-sensor variability. These figures also help to illustrate the strengths and limitations of 

each model. For example, all the models seem to reproduce diurnal trends as well as some of the shorter-term peaks, 

but there is some underestimation of peaks, particularly for the multi sensor models.  

 Training Testing 

 R2 RMSE MB* R2 RMSE MB 
       

Single Sensor – CH4 (ppm) 0.812 0.153 0.001 0.737 0.178 0.025 

Multi Sensor – CH4 (ppm) 0.880 0.111 0.000 0.802 0.157 0.074 

Multi Sensor – NMHC (ppb) 0.598 31.15 0.011 0.458 46.35 7.62 
       

 



155 

 

 

Figure 3: Single Sensor model for CH4, the colors indicate individual Y-Pods, while the reference data is 

shown in black. The testing period is highlighted in yellow. 

 

Figure 4: Multi Sensor model for CH4, the colors indicate individual Y-Pods, while the reference data is 

shown in black. The testing period is highlighted in yellow. 

 

Figure 5: Multi sensor model for TNMHCs, the colors indicate individual Y-Pods, while the reference data is 

shown in black. The testing period is highlighted in yellow. 

3.1.2 Comparing Methods 

From the statistics presented above, it is clear that the multi sensor model provided improved methane level 

estimates; Figure 6 explores where these improvements occurred. Figure 6, panel a illustrates that the use of the multi 

sensor model reduced the underpredictions observed with the use of the single sensor model, providing a better 

estimate of the baseline. Additionally, the multi sensor model reduced some of the overpredictions, possibly caused 



156 

 

by confounding compounds. Figure 6, panel b shows that the paired fitted points fall primarily along the 1:1 line. This 

would suggest that the majority of paired points were fairly similar between the two model applications and most of 

the differences impact a small amount of the data.  

Although the multi sensor model seems to produce more reliable methane level estimates, there may be 

unique information in the single sensor CH4 model that makes it worthwhile to continue to consider this dataset 

throughout the analysis. One possibility that was discussed in our previous study works (Collier-Oxandale et al., 

2018c), where we examined quantification for individual and grouped VOCs, was that models were being trained to 

quantify a more generalized VOC signal instead, or in addition to, their target compound. We found that even when 

using the same model form, the models for each compound or compound group were becoming specialized works 

(Collier-Oxandale et al., 2018c); however, correlations between VOCs made it challenging to conclude that 

confounding was not present in the quantification. For example, in this work, while the multi sensor model is an 

overall improvement, it seems that adding the second VOC sensor may be introducing some responses to VOCs other 

than methane; these appear to be visible as short-term spikes not present in the single sensor CH4 data or the reference 

CH4 data (Figure 6). As such, we thought it would be valuable to retain and examine the results from both methane 

models going forward. A more comprehensive evaluation of the single vs. the multi sensor model in relation to 

reference data would have been conducted had the post-deployment co-location offered both datasets concurrently as 

opposed to two separate co-locations for each species of interest. Though the datasets do overlap from the pre-

deployment colocation, the methane and TNMHC reference data from this run both have a very small dynamic range.  

 

Figure 6: Panel a shows additional validation data, concurrent to the field deployment, with both the single 

(in blue) and multi sensor (in green) models plotted with the reference data (in black). Panel b shows the 

single sensor fitted data plotted against the multi sensor data, the color indicates a normalized density of the 

data (yellow – high density, blue – low density). The black dotted line is the 1:1 line. 
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3.2 Overview of Spatially Deployed Sensor Data 

3.2.1 Variability Captured by Sensors 

Comparing co-located verses deployed sensors, shown in Figure 8, reveals the variability introduced when 

sensors are moved to field sites, even when those sites are relatively close at approximately 140 m apart, which is the 

difference between the E1 and E2 sites, on either side of the drill site. Furthermore, the differences, and similarities, 

in the deployed data are significant with both correlated and uncorrelated elevations in methane and TNMHCs above 

the expected uncertainties (0.2 ppm and 50 ppb respectively). The high degree of correlation between co-located MOx 

sensors seems to be a reliable characteristic of these sensors and makes them well-suited to detect and study spatial 

variability (Collier-Oxandale et al., 2018b; Cheadle et al., 2017; Sadighi et al., 2018).  

 

Figure 8: Paired data for the two sampling sites near the drill site, with co-located data plotted in purple and 

deployed data in green; panel a – single sensor for CH4, panel b – multi sensor for CH4, and panel c – multi 

sensor for NMHC 

3.2.2 Spatial & Temporal Patterns 

Across the Y-Pods there are similarities in the temporal trends. Averaging each hour for the whole 

deployment reveals that both the CH4 and TNMHCs increase at night and decrease during the day (Figure 9). This 

fluctuation is driven by the planetary boundary layer that lowers at night, causing the accumulation of air pollutants 

that are emitted at the ground, and rises during the day, facilitating mixing, dispersion, and reduced concentrations. 

Figures 9a and 9b also include the reference CH4 data collected throughout the deployment. While this reference data 

was collected north of our deployment sites, we would still expect to see similar diurnal trends across all sites. 

Additionally, one Y-Pod (C1) was co-located with the reference instrument throughout the deployment; the 

concentrations shown for C1 most closely matched the reference data. While there is no reference TNMHC signal 

from the deployment, it is evident that this data also follows a similar diurnal pattern. It’s worth pointing out the 
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negative values present in Figure 9c, as well as the values below the known baseline for methane, particularly in 

Figure 9a. Though there is an uncertainty of approximately 0.17 ppm for the CH4 models and 46 ppb for the TNMHCs, 

underestimations of this level are likely due to inadequacies in the models.  

To provide further evidence that the sensors were replicating expected environmental trends, we compared 

data from sensors to data collected through the MegaCities Project (Wong et al., 2015), see Figure 10. This figure 

illustrates how features in the diurnal patterns can vary by region and that these differences are also reflected in the 

sensor data. For 10/5/16 – 10/6/16, we observed a distinct difference in the timing of when the CH4 levels increase to 

their nightly peak across the two sites; these increases were almost six hours apart with the increase in the CH4 at the 

CNP site and the C1 Site occurring first. The lag apparent in the USC data was also observed in our data from the R4 

Site. The areas where these sites are located are separated by the hills that lie northwest of downtown LA making it 

reasonable that differences in topography and meteorology could drive different diurnal patterns on either side. It is 

also worth noting that differences between R4/USC and C1/CNP are not surprising given differences in siting 

conditions and locations as well as differences in the instruments. 

 

Figure 9: Hourly averages across deployment for all sensors (indicated in colors, with the exception of C1, 

which is indicated in grey), for the two methane plots, the averaged reference data, is indicated in black. 

Panel a – single sensor model for CH4, panel b – multi sensor model for CH4, panel c – multi sensor  

model for TNMHC 
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Figure 10: Roughly one day of hourly data from two MegaCities sites: CNP (near our C1 Y-Pod), and USC 

(near our R4 Y-Pod). The data was retrieved from https://megacities.jpl.nasa.gov/portal/data-access/. Note, 

the Y-Pod data was also hourly averaged, and the data plotted was from the multi sensor model. 

Figure 11 provides an example of data from 3 sites, with the top panel depicting the converted sensor data 

and the bottom panel depicting the same data with the baseline removed. Notably, the short-term enhancements do 

not occur across all the sites at the same time, suggesting that there may be local sources impacting one sensor 

system and not the others. This figure also emphasizes how even though the short-term enhancements are larger than 

the expected error, it is easy for these features to get lost amidst the large diurnal swings. This figures also 

demonstrates why it can be difficult to identify differences between sites using passive sampling tools. While 

passive sampling methods can provide quantified, speciated hydrocarbon information, the levels of background 

pollutants that can accumulate during boundary layer fluctuations may overwhelm short-term events of interest. 

Sensors can prove to be valuable in this type of application as they allow for the detection of these events over very 

short time scales. The utility of combining these two sampling methods as has been demonstrated by other 

researchers (Thoma et al., 2016). 
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Figure 11: Panel a – Original methane level estimates from three sites, Panel b – the same data with the 

baseline removed. All data was converted using the multi sensor CH4 model. 

Looking more broadly across all the Y-Pods, there appears to be a trend of lower correlation among Pods 

that are further apart and higher correlation for Pods closer together. Table 6 illustrates this (1) by comparing all the 

pods in the study area to the Y-Pod C1 at the reference site (across regions), and (2) by comparing the Y-Pods in the 

study area to one of the neighborhood pods, N5, (within neighborhood), and (3) by comparing the two Y-Pods at the 

extraction site less than 150 meters apart (across block). To further emphasize this point, both the correlation 

coefficient for the complete dataset and the extracted baseline are compared. Generally, the R for the pairs of baseline 

data is higher and the correlations increase as distance between Y-Pod decrease. These are two reasonable results, as 

the complete datasets include the short-term events which are more likely to differ between sites than the 

diurnal/regional trends.  We would also expect less variability in both datasets for Y-Pods close together as they will 

have more shared influences.  

Table 6: Average correlation coefficient between Y-Pod baseline data across varying spatial scales 

 

 

 Single Sensor CH4 Multi Sensor CH4 Multi Sensor TNMHC 

 Complete Baseline Complete Baseline Complete Baseline 

Across regions 0.6891 0.7164 0.7157 0.7602 0.5976 0.5895 

Within 

neighborhood 
0.8103 0.8498 0.7359 0.8084 0.7173 0.7580 

Across block 0.9314 0.9867 0.8568 0.9527 0.8726 0.9741 
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3.3. Sensor Data in Relation to Potential Sources  

In this section, the high-resolution spatial and temporal nature of the sensor data as well as additional signals are 

leveraged to better understand these short term-enhancements in methane and TNMHCs, including their probable 

composition and direction of origin.  

3.3.1 Differences Across Site Categories  

Figure 12 depicts the complete data from four sites, sorted by hour of the day. Site R3 is above a busy roadway, site 

N5 serves as a background site as it approximately 260 m from the nearest highway and 970 m from the drill site, 

essentially between these two potential sources. The final two sites, E2 and E1, are to the immediate east and west of 

the drill site. In terms of similarities, there are elevated levels of CH4 and the TNMHC concentration estimates for all 

of the sites in the morning hours, from 6 – 8 am. This enhancement is likely a combination of morning rush hour 

traffic and the boundary layer having not fully lifted yet causing these emissions to accumulate (recall from Figure 9 

that this occurs until around 10 am). As might be expected, there are also enhancements across the sites beginning 

around 6 pm and continuing through the evening hours, likely the result of evening traffic. However, in addition to 

these daily patterns, occurring most prominently at site E2 and occasionally at E1 are late morning and afternoon 

enhancements that are also above the expected error. These afternoon enhancements even pull the 95th percentile 

values higher for the E2 data, and lead to more variability across the sites for this time period. Additional plots with 

only the 95th percentile values are available in Appendix VII and clearly shown these trends.  



162 

 

 

Figure 12: Baseline removed data from four sites grouped by hour of the day (in local time), panels a-d 

include the single sensor CH4 data, panels e-h include the multi sensor CH4 data, and panels i-l include the 

multi sensor NMHC data. The whiskers on the box plots represent the 5th and 95th percentiles respectively. 

The top and bottom 5th percent of the data are indicated by yellow markers across all plots. 

The concentration enhancements do not occur across all of the sites included in Figure 12 and the timing of 

the enhancements can be spatially dependent. These changes in time and space were also observed by researchers 

during a study on methane spatial variability in relation to sources; that team concluded that measurements of ground 

level methane can provide information on sources up to 8.4 km away at night, but only 240 m away during the day 

(Bamberger et al., 2014). Those researchers emphasized the capacity for daytime mixing to disperse pollutants, 

supporting the idea that these afternoon enhancements must be the result of a local source. Those conclusions further 

support the idea that enhancements we observed in the early morning hours were likely from morning traffic sources 

nearby and further away.  
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Regarding the early morning enhancements observed specifically in the methane signal, while we would not 

expect large methane emissions from vehicles, it is possible that the sensor system was also being influenced by light 

alkanes or carbon monoxide. The Figaro 2600 has demonstrated a cross-sensitivity to carbon monoxide works 

(Collier-Oxandale et al., 2018a & 2018c). The same hour of day box plots, but for all of the deployment sites, are 

available in the supplementary for comparison. There were no locations with the magnitude and frequency of afternoon 

enhancements as those observed at Site E2.  

In Figure 13, we focus on one of these afternoon-evening enhancements, as indicated by the yellow box. The 

baseline removed data from sites E1 and E2 are plotted together, and the inclusion of both methane models along with 

knowledge on the selectivity of the two sensors provides some insight into composition. This probable emissions event 

was estimated to be most drastic in the data from both multi sensor models, with changes in concentration beyond our 

expected error (approximately .2 ppm for CH4 and 50 ppb for TNMHCs). The fact that the event was not predicted to 

the same extent by the single methane model, utilizing only the Figaro 2600, may indicate that it is primarily made up 

hydrocarbons that the second VOC sensor is more reactive to, as this sensor has different selectivities than the Figaro 

2600. As determined in a previous study, the Figaro 2602 was found to be more well-suited for detecting larger 

aromatic hydrocarbons, and the Figaro 2600 was found to be more well-suited for detecting light alkanes like methane 

works (Collier-Oxandale et al., 2018c). As a counter example, following the event in the yellow box, there were 

repeated enhancements in all three panels, from roughly late afternoon on 8/17 through late afternoon on the 8/20, 

occurring at only Site E2. Since we observe these enhancements methane in panel a as well suggests that these 

enhancements may have been the result of a more diverse mix of hydrocarbons that included methane and/or lighter 

alkanes.  
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Figure 13: Approximately one week of baseline removed data, with panel a including the single sensor CH4 

data, panel b including the multi sensor methane data, and panel c including the multi sensor NMCH data. The 

time stamp is local, and the yellow box highlights the event discussed in the text. To the right of each panel is a 

zoomed in version of the event highlighted in yellow.  

In addition to the likely presence of larger hydrocarbons, we see that the timing of the events was not perfectly 

correlated between the sites. The enhancements alternated between the two sites, possibly suggesting a shared source 

between the two sites and shifting wind directions. By incorporating additional streams of data, we can more fully 

understand this emission event.  
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3.3.2 Utilizing Additional Data Streams 

 

Figure 14: Panel a includes baseline removed TNMHC, CO2, and CO data from Site E2 as well as baseline 

removed TNMHC data from Site E1. All of the data is from 8/15/16 and the times listed are local times. Panel 

b includes a wind rose for only the period of enhancements in TNMHCs. 

Figure 14, panel a, shows the same event highlighted in Figure 13, with carbon dioxide and carbon monoxide 

data added. Figure 14, panel b, depicts the wind data recorded at Site E2 during only the emission event. The added 

data helps to further clarify the emission composition, something especially important also due to the possibility of 

confounders. Both carbon monoxide and carbon dioxide are combustion by-products, with carbon monoxide as 

indicative of incomplete combustion and carbon dioxide as indicative of complete combustion. In Figure 14, there 

does not appear to be a significant response from either CO or CO2 that is also correlated with this emission event – 

suggesting the TNMHC response is likely the result of volatilized or vented hydrocarbons. As volatilized or 

evaporative hydrocarbons are common drill site emissions (Moore et al., 2014; Warneke et al., 2014), these results 

further support the idea that this emission event may be the result of activities at the drill site. The wind rose confirms 

the presence of active and shifting wind directions during this period, suggesting emission transport was possible. 

However. it’s certainly possible that there were other sources of volatilized hydrocarbons in the area.  

Examining the data from multiple sensors throughout the field deployment provides other periods where the 

TNMHC data was uncorrelated with combustion by-products giving insight into emissions composition. Figure 15, 

panel a, shows both a significant TNMHC enhancement independent of any increases in the CO2 signal, and following 

that, an enhancement that is correlated with the CO2 signal. Panel b in Figure 15 includes the wind direction data from 

the period of enhancement indicated in the yellow box, and confirms that there are examples of enhanced TNMHCs 

associated with winds coming from the west, indicated in the red circle. Figure 15, panel c provides another example, 



166 

 

in this case there are enhancements in TNMHCs independent of enhancements in CO2 as well as enhancements in 

CO2 uncorrelated with the TNMHC signal. In panel d, there are again enhancements in TNMHCs this time associated 

with wind from the east. Given that Site E2 is the to east of the drill site and Site E1 is to the west of the drill site, 

these examples provide further evidence that these enhancements may be originating from a source between the two 

sites.  

 

 

Figure 15: Panel a includes baseline removed TNMHC and CO2 data from Site E2, with the wind direction 

data during the period of elevation highlighted in yellow shown in panel b. Panel c includes baseline removed 

TNMHC and CO2 data from Site E1, with wind direction data from the period of elevations highlighted in 

yellow plotted in panel d. 

In addition to examining individual events, a more quantitative idea of the differences between sites can be 

seen by counting the peaks, or enhancements at each one. Table 7 includes the number of peaks at each site, for the 

same timeframe, for a smaller and a larger peak height, and for the complete data as well as the afternoon only hours. 

Note, the baseline removed data was used to count peaks above the two thresholds and both peak thresholds are above 

our expected uncertainty. Site E2 consistently has some of the largest numbers of peaks. Conversely, Site E1 does not 

exhibit the highest quantities of peaks for whole dataset, but when we select for the afternoon hours, this site rises in 

the ranks. Similar to Figure 12, this table suggests that sites E1 and E2 are seeing relatively more enhancements in 

both CH4 and TNMHCs in the afternoon hours, when the atmosphere is more well-mixed, and sources are therefore 

more likely to be local.  

Table 7: Number of Peaks Above a Threshold 
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3.3.3 Further Examining the Composition of Emission Events 

When examining the trends related to composition across the entire deployment, the added CO and2 data 

further explains the previously observed temporal patterns. For CO2, enhancements across four selected sites occur 

primarily in the same early morning hours (6 – 8 am) with some occurring in the evening hours, and few enhancements 

in the afternoon (Figure 16, panels a-d). The elevated CO2 in the early morning hours and evening hours, supports the 

idea that these enhancements are the result of traffic emissions, as CO2 emissions would be expected from vehicles. 

The CO data from Site E2, reveals enhancements only during the early morning hours (Figure 16, panel e). The CO2 

and CO data further affirm that afternoon enhancements in hydrocarbons at Site E2 are primarily the result of 

volatilized or vented hydrocarbons.  

 

Figure 16: Baseline removed data from the same four sites shown in Figure 12, grouped by hour of the day 

(again, in local time), panels a-d include CO2 data, and panel e includes CO data from Site E2. The whiskers 

on the box plots represent the 5th and 95th percentiles respectively. 

 CH4 (Single Sensor, ppm) CH4 (Multi Sensor, ppm) TNMHC (Multi Sensor, ppb) 

 All data Afternoon Only All Data Afternoon Only All Data Afternoon Only 

 > .25 > .5 > .25 > .5 > .25 > .5 > .25 > .5 > 50 > 100 > 50 > 100 
             

N1 442 76 11 0 338 53 15 3 731 192 57 6 

E1 320 31 14 0 421 105 63 22 744 206 78 20 

R1 428 27 2 0 304 6 7 0 666 177 45 7 

N2 505 81 6 0 625 182 11 3 884 237 43 3 

R2 509 39 5 0 280 8 2 0 644 167 33 0 

R3 735 124 6 0 418 24 4 2 523 79 3 0 

N4 528 84 10 0 457 91 32 12 837 257 47 11 

R4 417 24 10 0 279 5 0 0 655 110 19 0 

R5 484 57 13 1 524 51 59 7 1326 305 149 18 

N5 361 22 16 1 357 86 57 26 872 233 109 11 

N6 337 40 4 2 383 46 34 7 690 165 82 9 

E2 712 120 82 31 546 73 121 25 918 221 155 46 
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The scatterplots of one atmospheric constituent versus another are shown in Figure 17 and they provide 

further insight into the potential sources. Some of the scatterplots exhibit distinct and separate trends likely the result 

of a combination of sources impacting the specific site. At first pass, there are at least two prominent sources, one 

emitting combustion emissions and one emitting volatilized or vented hydrocarbons. The enhancements resulting from 

volatilized hydrocarbons are reflected in the data from all quantification methods, suggesting a mix of hydrocarbons 

as opposed to a single species or group.  

 

Figure 17: Scatterplots of baseline removed data, with the correlation coefficients for each set of data noted. 

The top row of CH4 data is from the single sensor model, and the second row of CH4 data is from the multi 

sensor model. 

To explore the origins of the CO, we compared the complete CO and CO2 data from Site E2, see Figure 18. 

In this plot there is a much higher correlation between the two atmospheric constituents, suggesting a single source 

for the combustion by-products observed at Site E2. A reference ratio has also been added to this plot, that represents 

the expected CO/CO2 ratio based on the CARB emission inventory for the South California Air Basin; this ratio was 

calculated by researchers quantifying sources of methane over Los Angeles and this CO/CO2 ratio was found to be 

consistent with aircraft measurements (Peischl et al., 2013). As this site is not on a major roadway it’s reasonable that 

it would primarily experience well-mixed CO and CO2 levels consistent with levels seen throughout the basin.  
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Figure 18: Complete CO2 and CO data from Site E2, with a ref. ratio based on the CARB inventory included, 

illustrating the similarity between the observed data and the expected CO/CO2 ratio for the LA area. 

3.4 Joining Sensor Data and Local Knowledge  

3.1.3 Additional Gas-Phase Sensor Data 

As previously stated, the additional sensor data was quantified and incorporated on an as needed basis. Table 

5 includes the summary statistics from the quantification of the CO2 and CO data, with the number of Pods or sensors 

being averaged in the final column. These uncertainties presented here are similar to those of other studies using the 

same sensors. Studies quantifying the CO2 sensor have found RMSEs of 10.1 ppm (Collier-Oxandale et al., 2018b) 

and standard errors of 9.4 – 16.8 ppm (Piedrahita et al., 2014). While studies utilizing the CO sensor have found 

RMSE’s of 0.10 ppm (Casey et al., 2018a) and standard errors 0.28 – 0.44 ppm (Piedrahita et al., 2014). Plots and 

more details are available in the supplementary.  

Table 5: Results of the generation and validation of models for the prediction of CO2 and CO 

 

3.4.1 A Preliminary Attempt  

As described earlier, in addition to sensor data, our community partners provided us with observational 

information from residents around the drill site. Our team was interested in whether or not this qualitative information 

could provide more context to the trends seen in the sensor data. And, yes, there are examples in the data of 

 Training Testing  

Pollutant R2 RMSE (ppm) MB (ppm) R2 RMSE (ppm) MB (ppm) n (Y-Pods) 

        

CO2 0.930 9.41 0.126 0.807 14.79 -8.49 4 
        

CO 0.841 0.11 0.002 0.603 0.09 -0.036 1 
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observations occurring concurrent to periods when elevated levels of CH4 and/or TNMHCs are also seen. For example, 

on 8/30 an odor complaint was noted around 3:00 pm, an afternoon during which enhancements in TNMHCs were 

also observed (Figure 19). In another example, odor complaints, noise complaints, and periods of heavy activity line 

up with enhancements in TNMHCs occurring at both Site E2 and E1.  

 

Figure 19: Baseline removed CO2 and TNMHC data from Site E2, with a period highlighted in which an odor 

complaint was noted by nearby residents. 

 

Figure 20: Baseline removed CO2 and TNMHC data from Site E2 and Site E1, annotated with noise and odor 

complaints as well as observations of residents of heavy activity at the drill site. 

In an effort to examine this data in a more systematic way, for each day the presence of a noise complaint, 

odor complaint, or observation of activity at the drill site were added together producing a number of observations per 

day. This data was then plotted against the 50th and 95th percentile data for each day for the TNMHC data (Figure 

21). The results include a similar and positive relationship for the 95th percentile data points from both sites. Also, 

there were no low 95th percentile values on days with two or more observations. These examples suggest that it is 

possible that low-cost sensors are capable of recording emission events associated with the types of events reported 

by community members. However, this is a very limited and preliminary attempt at this type of analysis, and a more 

ideal dataset would include more observations from the entire study area and ideally, non-observations or 

confirmations of periods with no odors, or observable activity.  
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Figure 21: The daily 50th and 95th percentile values plotted against the number of observations per day (i.e., 

summed activity reports, odor complaints, and/or noise complaints). 

3.4.2 A Model for Future Community-based Air Quality Projects 

The analysis presented here provides an example of how sensors could support community-based air quality 

investigations in the future. As quantification for existing and new sensors continues to improve, this will increase the 

variety of sensors available for these studies. The inclusion of all these different sensor types will aid in mitigating 

cross-sensitivities as well as determining probable compositions of observed emissions. In addition to this sensor data 

collected across a network, other streams of data such as meteorological information will further help to identify 

sources and possibly even quantify the impact in a preliminary sense. This first step to determining what actions can 

reduce exposure.  

The incorporation of community observations will provide further information regarding the context and 

effect of observed emissions, which may be especially valuable in areas with complex emissions mixtures like Los 

Angeles. It’s also possible that the lived experiences of residents could help researchers to recognize patterns or trends 

in the data that otherwise may have been missed. However additional considerations will be needed to determine the 

best ways to collect this qualitative data and to merge it with the more quantitative, air quality data streams. One way 

of expanding the collection of this observational data could be through a mobile app or through physical log sheets 

utilized in a targeted campaign. It’s possible that leveraging these two different types of data could facilitate more 

participatory and inclusive studies, and also could enhance data interpretation leading to more locally relevant and 

actionable results for a community.  
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4. CONCLUSION 

In line with previous studies utilizing the same VOC sensors, we found that the results of sensor performance 

quantification were similar to expected results and that the converted sensor data reflected expected environmental 

trends – specifically regional and diurnal trends works (Collier-Oxandale et al., 2018a & 2018c). The unique 

information provided by this network of sensors includes the short-term enhancements in the CH4 and TNMHC 

concentrations that are likely the result of local emission events given the time of day at which many of them occur. 

Furthermore, examining the CO2 and CO data from the same time periods seems to suggest that at least some of these 

enhancements were the result of volatilized or vented hydrocarbons, as opposed to a combustion source such as motor 

vehicles. The inclusion of wind data also seems to suggest the source of these emissions may lie in the direction of 

the drill site. Finally, some of these enhancements also line up with observations made by nearby residents concerning 

odors or activity at the site of interest. While this data is not conclusive in terms of identifying all of the sources 

impacting concentrations at the site of interest, we can say that traffic and combustion emissions are not the only 

source in that area whose emissions are reaching the homes. Furthermore, given that the other source is comprised of 

volatilizing or venting hydrocarbons, the drill site provides a likely explanation for the other source. Similar to 

previous research, this study also illustrates that while individual low-cost sensors may lack the detection limits and 

accuracy to provide reliable information in ambient situations, when we leverage the information of multiple sensors 

we can better interpret the data from complex environments, leading to more useful information.  
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Chapter 9: Conclusions 

SCIENTIFIC CONTRIBUTIONS 

The contributions of my work speak to issues and needs identified by the low-cost sensor community in 

Chapter 2. Furthermore, these contributions begin to address different facets of the same problem, supporting the 

advancement of this technology as a whole. They include: 

• Advances in the quantification of the performance of low-cost VOC sensors 

• Recommendations and guidelines for the deployment and use of sensors systems, particularly in networks on 

small-spatial scales and in partnership with communities 

• Strategies for leveraging multi-sensor devices to better understand not only sensor behavior, but also air 

quality trends and potential sources of pollution  

The contributions of this thesis expand the type of gases available to be measured by the sensor community 

as well as pave the way for more use of this technology by communities. One contribution includes techniques that 

can be used to quantify metal oxide VOC sensor signals to estimate methane concentrations in complex environments, 

such as an area with high density natural gas and oil production activity. This work also demonstrated the different 

choices that are available to the sensor user in terms of calibration model selection, or the processing that can be 

applied to sensor or reference data and discussed what choices might be appropriate for a given situation. Another 

contribution includes techniques to quantify multiple metal-oxide sensor signals for individual and grouped 

hydrocarbons, including TNMHCs. This work provided a preliminary assessment of sensor selectivity and the 

reliability of performance amid changing VOC compositions. In both instances, the techniques described include 

specific multiple linear regression calibration models, examples of approaches to measurement validation, and results 

that sensor users can compare to. These techniques are unique for methane and non-methane hydrocarbons 

quantification as they are intended to be utilized in field calibration and field deployments of the sensors for ambient 

monitoring, as opposed to laboratory studies. These techniques have also been assessed in both rural and urban 

environments, and this feature, along with the difference in approaches, makes the work complementary to that of my 

colleague, which explored the utility of advanced machine learning techniques to achieve similar aims (Casey et al., 

2018c).  

Applying these quantification techniques to field data led to several case studies of sensor applications that 

demonstrate the potential information available, providing models for future studies. The quantification of sensor 
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signals for methane levels and their deployment in rural Colorado illustrated how sensor networks are capable of 

providing data leading to observations that correspond to observations resulting from studies using higher quality 

instrumentation and measurement methods. Specifically, the low-cost sensors captured the same large night-time 

enhancements in methane at the Platteville site, amid high density oil and gas activity, as another study (Collier-

Oxandale et al., 2018; Halliday et al., 2016). Also, the data from the sensor network reflected a gradient of decreasing 

nighttime enhancements in methane, similar to the gradient of decreasing levels of alkanes observed by another team 

in the same area (Collier-Oxandale et al., 2018; Thompson et al., 2014). This case study, described in Chapter 6, 

further supports the assertion that sensors can provide useful preliminary information or data that supplements more 

conventional methods by, for example, illustrating the persistence of spatial and temporal trends across a region. The 

use of sensors in Los Angeles demonstrated their utility in a complex environment. There may quite a lot of uncertainty 

around the information from a single sensor, especially given the limitation of cross-sensitivities. However, when the 

signals from multiple sensor types are leveraged together and multiple system are examined across a network, some 

of the uncertainty regarding cross-sensitivities is minimized and interesting patterns can emerge. This is the type of 

data can provide insight into the multiple sources impacting a neighborhood. In our study, leveraging multiple sensors 

helped to clarify whether the source of enhancements in VOCs was more likely combustion or volatilization, which 

along with additional information, helps to indicate the origins of emission events. This case study, described in 

Chapter 7, provides a model for how low-cost sensors could be used to provide preliminary data in a community 

impacted by a complex mixture of emissions and possibly either inform more comprehensive monitoring plans. This 

study also reinforced the usefulness of utilizing existing analysis techniques, such as baseline removal, with sensor 

data. This analytical method was shown to be particularly useful for isolating short-term events that occur during 

larger diurnal swings and high levels of background pollutants. The work in Chapter 7 also provides a preliminary 

example of merging qualitative observational information and quantitative air quality sensor data, for which there 

currently are no best practices. 

The analysis of the building-scale variability of pollutants and its impact on sensor data, presented in Chapter 

5, provides an example that could inform sensor system placement for other users. Granted this example has many 

limitations as it was conducted at a single building in an urban location, it may still contain useful lessons. 

Additionally, the conclusions of this study agree with those of another study considering sensor siting and placement 

in a very different environment (Miskell et al., 2017); although the spatial scales vary between that study and the one 
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described here, the agreement suggests some broader conclusions about sensor siting. The examples of quantification 

techniques, provided in Chapters 6 and 7, may also support the development of best practices for field calibrations, 

especially if they are considered in conjunction with the other studies utilizing field calibrations (Sadighi et al., 2018; 

Zimmerman et al., 2018; Hagen et al., 2018).  

RELATED RESOURCES AND LESSONS LEARNED  

Though these are not scientific contributions, I would like to provide a list of resources developed or 

discovered throughout this work that I think are particularly well-suited to support community-based air quality 

research. It is not uncommon for researchers initiating these projects to have backgrounds primarily in air quality or 

engineering and little experience engaging with communities. Considering resources such as these might lead to more 

successful partnerships.  

Related to this Thesis: 

• Air Quality Inquiry (AQ-IQ) Curriculum – This project-based learning curriculum provides background 

information on air quality, sensors use, and help planning and conducting air quality research. The curriculum 

was developed for a high school audience but could be adapted for younger audiences or the public. 

Additionally, this curriculum has undergone multiple reviews and is publicly available on the 

TeachEngineering Digital Library.  

https://www.teachengineering.org/curricularunits/view/cub_airquality_unit 

• Memorandum of Understanding, Template – This template was modeled after an MOU developed with 

community partners in Los Angeles. This document aids in ensuring that important issues are discussed at 

the outset of the project, including the capabilities and limitations of sensor systems, and the community’s 

expectations regarding final products (e.g., reports) and data dissemination. (available in Appendix I) 

• Air Quality Sensors Project 1-Pager, Template – This template provides a helpful tool for making a 1-page 

document to share with regulatory partners and the public. This type of document provides regulatory 

partners with the needed information to assist with facilitating co-locations at reference stations. This 

document can also answer questions from the community about the study and provide relevant information 

to community members that may consider hosting a monitor at their home or on their property. It is helpful 

to have a document such as this available early on in sensor projects. (available in Appendix II)  

https://www.teachengineering.org/curricularunits/view/cub_airquality_unit
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• Lessons Learned & Other Observations: 

o Taking Neighborhood Health to Heart has a published overview of their CBPR methods and there 

is one aspect that I believe would be particularly beneficial to low-cost sensor projects – the Data 

Review and Dissemination Committee (Main et al., 2012). The function of this committee is to 

review the data, ensure the protection of community member privacy throughout data dissemination, 

and maintain a copy of the final data (Main et al., 2012). Having this committee in place at the start 

of the project also leads to more accountability and dialogue between researchers and their 

community partners as the expectations are clear that the final reports and dissemination of data will 

be iterative and involve the participation of all partners.   

o Another important lesson from my partnership with TNH2H, described in Chapter 1, was the 

importance of discussing possible results and the appropriate next steps before beginning the project. 

At the outset of the partnership, we discussed the potentiality of finding high levels of radon or 

perchloroethylene in homes. For radon, we wanted to ensure that options were in place for low-

income residents to receive financial support to mitigate their homes. For perchloroethylene, I 

outlined a plan for additional sampling, including sampling methods and labs that could conduct the 

analysis. We also contacted local public health officials to share our plan and receive feedback. This 

action had the duel benefit of these officials sharing their expertise and other resources as well as 

making them aware of our project. A worksheet with guiding questions has also been included in 

the appendix (Appendix III) to lead these discussions with partners. These discussions ensure that 

all partners are on the same page regarding possible next steps, after the completion of the initial 

data collection.  

External Resources:  

• Resources from the American Geophysical Union’s Thriving Earth Exchange (TEX) – TEX works to 

facilitate and support community-based science, pairing scientists from the AGU membership with 

communities and local governments with questions about their environment. They support projects across a 

wide range of disciplines and have a wealth of knowledge on this topic. Their website includes some great 

resources including readings and project planning templates, these would be especially valuable for sensor 
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researchers and scientists without and prior experience in CBPR looking to begin a community-based air 

quality project. https://thrivingearthexchange.org/resources/ 

• ‘Four questions to ask before buying an air  quality sensor’ infographic - Another helpful tool is an 

infographic, developed by Tim Dye, this tool is intended to guide the selection of sensors for a project and 

includes helpful questions and links. http://tdenviro.com/wp-content/uploads/2017/09/4-questions-when-

buying-air-sensors.pdf 

• Resources for those new to community-based research in general: Often researchers participating in sensor 

projects come from an atmospheric chemistry or engineering background and may have little experience 

working with communities. There is already a wealth of information and resources to support successful 

academic/community partnerships. Below are several links to this work. 

o Living Knowledge Toolbox – The Living Knowledge Network is an international network working 

to support engaged work. Section 3 of the Toolbox includes links to a variety of helpful manuals, 

tools, and guides. http://www.livingknowledge.org/resources/toolbox/ 

o National Coordinating Center for Public Engagement’s Guide to working with Local Communities 

– This is a brief, but simple guide to getting partnerships started and includes helpful tips for both 

researchers and communities. http://www.publicengagement.ac.uk/do-engagement/partnership-

working/working-with-local-communities 

o Reading: This article, entitled a “Review of community-based research: assessing partnership 

approaches to improve public health”, is also a good resource, reviewing the benefits and challenges 

of CBPR. https://www.ncbi.nlm.nih.gov/pubmed/9611617 

 

 

 

 

 

 

 

https://thrivingearthexchange.org/resources/
http://tdenviro.com/wp-content/uploads/2017/09/4-questions-when-buying-air-sensors.pdf
http://tdenviro.com/wp-content/uploads/2017/09/4-questions-when-buying-air-sensors.pdf
http://www.livingknowledge.org/resources/toolbox/
http://www.publicengagement.ac.uk/do-engagement/partnership-working/working-with-local-communities
http://www.publicengagement.ac.uk/do-engagement/partnership-working/working-with-local-communities
https://www.ncbi.nlm.nih.gov/pubmed/9611617
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• Finally, I believe it is worth mentioning the resources from Chapter 2 once more as many of these tools are 

specifically geared to supporting air quality sensor projects. Table from Chapter 2 (Clements et al., 2017): 

 

FUTURE WORK 

Research will need to continue along the current trajectories to reach a point where sensor systems can be 

integrated into existing monitoring plans. Sensor calibration procedures and techniques for quantifying uncertainty 

will eventually need to be standardized, which may be challenging as these methods will need to be adaptable to the 

wide variety of potential sensor uses and applications. Before standardization, researchers will need to explore the use 

of more advanced calibration techniques (i.e., neural networks and other machine learning approaches) for methane 

and non-methane VOCs to improve the utility of sensors for assessing hazardous air pollutants. While there has been 

some research into advanced calibration techniques, specifically for several criteria pollutants (Cross et al., 2017; 

Zimmerman et al., 2018), methane (Casey et al., 2018c) and benzene (De Vito et al., 2008), more studies will help to 

identify the most reliable technique overall or for a given situation. Factor analysis methods are worth exploring as 

these conventional analysis tools could be applied to sensor data to produce useful information, example tools might 

be positive matrix factorization. Finally, researchers need to gain a better understanding of calibration transferability; 

simply stated, how robust are calibrations developed at one reference site when sensors are moved to their field sites. 
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This question has started to be explored as well (Castell et al., 2017; Hagan et al., 2018; Casey et al., 2018b), including 

a study by my colleague examining the transferability of carbon dioxide and ozone calibrations.  

Another next step, not directly related to the technical capacity of sensors, but very important for community-

based air quality research is the development of best practices regarding how the results of these sensor projects are 

presented and determining what potential actions may follow certain results. Communities often engage in projects 

utilizing air quality sensors because they would like to investigate a particular local concern, therefore, the results of 

these projects should provide either an answer to the initial research question or data to inform appropriate next steps. 

It would be helpful for the low-cost sensor community to consider what types of reports could be produced for 

community partners that could then be used to pursue additional research, more funding, or a conversation with local 

regulatory and public health representatives. This is a task that will require all stakeholders (researchers, community 

members, public health/regulatory representatives, and if possible, industry representatives), and decisions will need 

to be made regarding what needs to be included in these reports so the data can be properly assessed and acted on. A 

model for a roadmap that would lead to a potential mitigation action, that could be developed at the start of a project 

would also be beneficial. This roadmap model is likely much longer-term and will require many more case studies 

and iterations.  

CLOSING REMARKS  

My work and that of other researchers has demonstrated low-cost air quality sensors are capable of providing 

us with new and unique information about our environment. Sensors technologies are also versatile, these technologies 

may develop into tools to supplement conventional air quality research or become an established method for regulatory 

agencies and communities to work together to identify environmental inequities. Sensors may also find purpose as 

educational tools, teaching users about air quality, monitoring, and how our personal choices impact our exposure. 

While low-cost sensors may not lead to the kind of discoveries that change the thinking of the academic community, 

they will support bottom-up, localized research, research that takes on difficult questions, such as “is my child safe, 

breathing this air?”. Though they may never be able to provide a final answer to these questions, sensors can provide 

a starting point and create momentum. The niche capabilities of low-cost sensing systems and the potential to 

contribute to reduced exposure and improved environmental protections, despite the ongoing challenges and 

limitations, make them worthy of continued development and consideration.  
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Appendix I 

MEMORANDUM OF UNDERSTANDING TEMPLATE 

 

List of Project Partners and Affiliations  

 
Partner 1 

 

Affiliation 2 

 

Partner 2 

 

Affiliation 1 

 

Project Overview  
 

Include here  

 

• A description of the project and the objectives 

• A general timeframe and where the project will occur, including a brief description of the community 

and sampling sites 

• An overview of the methods (e.g., number of sensor systems, sensor types, and any important notes 

regarding the limitations of these sensors as it relates to the project) 

• An overview of each partner’s background, skills, and role in the project 

 

 

Responsibilities and Rights of the Partners 
 

Partner # (list responsibilities and rights) 

 

Include here:  

 

• Responsibilities of partner, and associated deadlines 

• Rights of each partner (for example to the data) 

• Other expectations (e.g., a number of participants to be recruited, or a description of the final report that will 

be delivered to a community partner) 

• Be sure to include expectations around analyzing, interpreting, and sharing the data (for example, you may 

want to include the expectation that no partner will publicly share the data without consulting all partners, or 

that data will only be shared after the data is de-identified with respect to participants or sampling locations) 

• *Complete for each partner 

 

Partner Signatures 
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Appendix II 

PROJECT ONE-PAGER TEMPLATE  

 

Note, this may be tailored for either regulatory partners assisting with sensor co-locations or community members 

hosting stations sensor systems.  

 

Project Overview 

• Where sampling will occur and what pollutants are of interest 

• Project objectives, location, and general timeframe 

• Plans for data or where/how it will be shared (e.g., a journal article) 

 

Sensor System Specifications 

• Size, weight, and power requirements (for those hosting monitors, translate this into a total electricity cost)  

• Requirements for deployment locations (e.g., preferred placement at site), and how they are secured at a site 

• Maintenance and access to system required  

• List sensors and include a photo 

 

Contact Information  

• Include appropriate contacts of there are issues during the co-location or field deployment  

 

Additional Optional Sections 

• Detailed schedule of sensor system deployment and access needed (for residents) 

• Details of project participant compensations or gift cards that will be provided as a thank you 
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Appendix III 

INITIAL QUESTIONS FOR PROJECT PARTNERS 

 

These questions are intended to support initial conversations among project partners ahead of the development of a 

complete plan for data collection and analysis.  

 

1. List the all potential results of the data collection.  

 

 

 

2. What are the follow-up actions that your team agrees would be best to conduct for each potential outcome? 

 

 

 

3. What would you need to conduct these actions (e.g., additional funding? More resources? a longer project 

timeline?) 

 

 

 

At this point develop a plan with your project partners regarding how you will proceed in each of these cases and 

determine if any additional resources need to be in place prior to the beginning of data collection. It’s also good to 

incorporate these thoughts into the project plan, then an actionable and agreed upon plan is already in place.  
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Appendix IV 

SUPPLEMENTAL FOR CHAPTER 5 

 

Table 1: Performance Statistics for each Y-Pod; RMSE - CO2 (ppm) & O3 (ppb);  MB – Mean Bias 

Carbon Dioxide Ozone 
 

Training Data Testing Data Training Data Testing Data 

Pod R2 RMSE MB R2 RMSE MB R2 RMSE MB R2 RMSE MB 

B2 0.93 7.32 -0.01 0.94 9.69 -6.35 NA NA NA NA NA NA 

B3 0.93 7.85 -0.04 0.93 7.39 2.69 0.97 3.45 -0.11 0.94 5.16 -1.88 

B4 0.86 11.2 0.01 0.83 11.3 5.84 0.96 3.88 -0.07 0.96 4.73 -2.18 

B5 0.94 7.35 -0.03 0.92 7.25 1.90 0.96 4.00 -0.11 0.92 6.51 -3.07 

B7 0.94 7.32 0.01 0.77 14.7 10.4 0.97 3.71 -0.13 0.94 5.30 -1.99 

B8 0.91 9.11 -0.04 0.88 9.00 0.39 0.98 2.78 -0.08 0.97 3.96 -0.94 

C9 0.88 10.3 -0.04 0.89 14.6 12.8 0.97 3.74 -0.08 0.95 5.10 -2.96 

D2 0.95 6.19 -0.02 0.93 6.83 3.49 0.96 3.95 -0.08 0.93 6.21 -3.08 

Ave 0.92 8.33 -0.02 0.89 10.1 3.89 0.97 3.65 -0.09 0.94 5.28 -2.30 

SD 0.03 1.71 0.02 0.06 3.16 5.95 0.01 0.42 0.02 0.02 0.86 0.79 
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Figure 1: Time series of Y-Pod data (shown in colors), and reference data (shown in black), for CO2 (top) and 

O3 (bottom). 

  

 
Figure 2: Time series of co-located (top) and deployed (bottom) Y-Pods, for examining neighborhood-scale 

variability of CO2. 

 

 
Figure 3: Time series of co-located (top) and deployed (bottom) Y-Pods, for examining neighborhood-scale 

variability of O3. 
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Figure 4: Time series of co-located (top) and deployed (bottom) Y-Pods, for examining building-scale 

variability of CO2. 

 

 
Figure 5: Time series of co-located (top) and deployed (bottom) Y-Pods, for examining building-scale 

variability of O3. 

 

 
Figure 6: Scatter plot of differences between B1 and B5 (on the x-axis, for O3, B1 – B5; and on the y-axis, for 

CO2, B5 – B1), colored by the hour of the day. The dotted lines around the center axes indicate the respective 

RMSEs for CO2 and O3.  
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Appendix V 

SUPPLEMENTAL FOR CHAPTER 6 

Figure 1. Scatter plots of P1 versus every other Y-Pod including both co-located data (in green) and deployed 

data (in blue). 

 

Table 1: Statistics for Colorado data converted using the universal model method, including data for each 

individual Y-Pod and statistics for each Y-Pod versus Y-Pod P1. 
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Figure 2: Panel (a) includes time series of methane reference data and fitted sensor data. Panel (b) includes 

the methane data for the Validation 2 dataset binned by days. The yellow segments highlight periods when 

underestimations below atmospheric background were removed, which coincide with days where the 

dynamic range is less than the expected uncertainty (RMSE is 0.18 ppm). 
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Appendix VI 

SUPPLEMENTAL FOR CHAPTER 7 

 

 

Figure 1 – Correlation plot for reference gases 
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a.  b.  

c. d.  

 

Figures 2 -  Regression model residuals (from Section 3.1) 

a (top left four panels) – models for benzene 

b (top right four panels) – models for summed aromatics 

c (bottom left four panels) – models for summed VOCs 

d (bottom right four panels) – models for methane 
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Figures 3 – Additional residuals for models vs. target and non-target VOCs 
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Figures 4 – ANOVA results illustrating the percentage of variance in the sensor signal explained by various 

predictors for complete data and subsets of data (top – Figaro 2600, bottom – Figaro 2602) 

(White indicates that a predictor was not included in a run, and the VOC species subsets are defined in Figure VI5) 
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Figures 5 – Illustration of selected periods of different relative composition 

 

 

 

Figure 6: Sensor signal vs. temperature and pollutant concentrations 
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Figure 7: Regression analysis results, excluding VOC sensor signals 

(training data before 7/20 & after 8/5, remaining data is testing) 

 

 

 

Figure 8: Bootstrap analysis for sensor set in secondary U-Pod 
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Figure 9: Regression analysis results for sensor set in secondary U-Pod 

(training data before 7/20 & after 8/5, remaining data is testing 
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Figures 10: Complete sensor ratio plots 
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Figures 11: Raw sensor data versus reference data, top – summed non-methane VOCs, bottom – methane  
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Appendix VII  

SUPPLEMENTAL FOR CHAPTER 8 

Table 1: Methane Statistics – both methods 

 

Table 2: Total Non-Methane Hydrocarbons 

   Multi-Sensor: TNMHC 

Y-Pod  Training  Testing 

  R2 
RMSE 

(ppb) 
MB R2 

RMSE 

(ppb) 

MB 

(ppb) 

        

C1  0.62 30.9 0.00 0.48 46.4 9.3 

C2  0.6 31.6 0.00 0.46 47.6 11.6 

E1  0.59 32.1 0.00 0.45 48 10.5 

E2  0.6 31.8 0.00 0.46 48.2 12.8 

N1  0.59 32.1 0.00 0.47 47.9 13.7 

N2  0.59 31.9 0.00 0.47 47.3 11.6 

N3  0.58 32.6 0.00 0.43 47.6 4.6 

N4  0.6 31.4 0.00 0.46 47.4 8.1 

N5  0.62 30.8 0.00 0.48 46.6 9.7 

N6  0.57 33 0.00 0.43 48.6 10.8 

R1  0.58 34.7 0.00 0.48 46.1 5.4 

  Single-Sensor: CH4 Multi-Sensor: CH4 

  Training  Testing Training  Testing 

  
R2 

RMSE 

(ppm) 
MB R2 

RMSE 

(ppm) 
MB R2 

RMSE 

(ppb) 
MB R2 

RMSE 

(ppb) 
MB 

              

C1  0.821 0.149 0.002 0.755 0.161 0.063 0.881 0.11 0.000 0.802 0.163 0.086 

C2  0.852 0.132 0.001 0.733 0.181 0.021 0.882 0.109 0.000 0.8 0.163 0.084 

E1  0.834 0.141 0.002 0.719 0.183 0.023 0.882 0.109 0.000 0.802 0.152 0.062 

E2  0.804 0.156 0.001 0.761 0.191 -0.01 0.879 0.11 0.000 0.806 0.152 0.067 

N1  0.805 0.155 0.001 0.71 0.194 0.007 0.876 0.112 0.000 0.809 0.154 0.07 

N2  0.794 0.16 0.001 0.764 0.156 0.061 0.878 0.111 0.000 0.811 0.149 0.061 

N3  0.803 0.156 0.001 0.728 0.183 0.018 0.88 0.11 0.000 0.807 0.148 0.059 

N4  0.82 0.147 0.001 0.753 0.176 0.019 0.879 0.11 0.000 0.808 0.151 0.062 

N5  0.804 0.156 0.002 0.694 0.196 0.007 0.881 0.109 0.000 0.799 0.155 0.067 

N6  0.831 0.143 0.002 0.712 0.19 0.011 0.885 0.108 0.000 0.79 0.167 0.088 

R1  0.796 0.176 0.001 0.754 0.163 0.053 0.879 0.121 0.000 0.797 0.177 0.108 

R2  0.789 0.163 0.001 0.739 0.172 0.036 0.883 0.108 0.000 0.8 0.158 0.073 

R3  0.8 0.157 0.001 0.757 0.169 0.033 0.873 0.113 0.000 0.8 0.16 0.077 

R4  0.818 0.149 0.001 0.762 0.171 0.025 0.883 0.109 0.000 0.807 0.154 0.071 

R5  0.806 0.155 0.001 0.713 0.192 0.008 0.878 0.111 0.000 0.792 0.161 0.076 

              

Ave.  0.812 0.153 0.001 0.737 0.179 0.025 0.880 0.111 0.000 0.802 0.158 0.074 
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R2  0.6 31.5 0.00 0.47 46.2 6.5 

R3  0.61 19.5 0.00 0.4 32.7 -17.8 

R4  0.59 32.1 0.00 0.45 47.3 6.9 

R5  0.61 31.4 0.00 0.47 47.2 10.6 

        

Ave.  0.597 31.160 0.000 0.457 46.340 7.620 

 

 

Figure 1: Histogram illustrating the accuracy of the distribution from the single-sensor method versus the 

multi sensor method 

 

 

Figure 2: Baseline Extraction Methodology 

 

Following the method utilized in:  

Heimann, I., Bright, V. B., McLeod, M. W., Mead, M. I., Popoola, O. A. M., Stewart, G. B., & Jones, R. L. (2015). 

Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality 

sensors. Atmospheric Environment, 113, 10–19. http://doi.org/10.1016/j.atmosenv.2015.04.057 

http://doi.org/10.1016/j.atmosenv.2015.04.057
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The steps include: 

1. Breaking complete data into equal sized pieces (3 hours long), 3 hours found to be appropriate for removing 

diurnal variability but not short-term enhancements (i.e., local emissions) 

2. Binning the distributions using discrete concentration intervals  

3. Then bi was determined to be the 25th percentile value of the applied smooth kernel fit  

4. B(t) determined though interpolation between the baseline values (𝐻𝑒𝑖𝑚𝑎𝑛 𝑒𝑡 𝑎𝑙.,) 

𝑺(𝒕) = 𝑩(𝒕) + 𝑳(𝒕) 

 

Carbon Dioxide Sensor Quantification Details  

The data used here was from a co-location at a SCAQMD reference site, where a Licor CO2 analyzer was added and 

maintained by our team. A model utilizing, concentration, temperature, humidity, and time as predictor to solve for 

raw sensor voltage was utilized. Below are plots to illustrate the performance as well as the results statistics (in ppm) 

from four Y-Pods.  

 

Figure 3: Carbon Dioxide Sensor Quantification Details 

 

Table 3: Carbon Dioxide Sensor Quantification Results 

 Training   Testing    

 R2 RMSE MB R2 RMSE MB 

E1 0.876 13.220 0.136 0.835 13.286 -6.864 

R3 0.933 9.377 0.247 0.876 14.378 -10.787 

N5 0.953 7.739 0.072 0.729 18.382 -12.020 

E2 0.958 7.317 0.050 0.789 13.130 -4.302 
       

Average 0.930 9.413 0.126 0.807 14.794 -8.494 
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Carbon Monoxide Sensor Quantification Details 

The data used here was from a co-location at a SCAQMD reference site that included an FRM/FEM carbon monoxide 

monitor. A model utilizing, concentration, temperature, humidity, and time as predictor to solve for raw sensor voltage 

was utilized. Below are plots to illustrate the performance as well as the results statistics from one U-Pod. This U-Pod 

was co-located at the E2 site during the field deployment and was utilized for it’s capacity to run the added CO 

electrochemical sensor.  

  

Figure 4: Carbon Monoxide Sensor Quantification Details 

 

Statistics (R2, RMSE in ppm, Mean Bias in ppm) 

- Training: 0.841, 0.11, 0.002 

- Testing: 0.603, 0.09, -0.036 

 

 

 

 

Figure 5: 95th percentile plots (from hourly grouped data shown in paper) 
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Figure 6: Box plots of grouped hourly data for all sites 
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