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Fifth-generation district heating and cooling (5GHDC) systems are the next generation of

district systems which rely on water approaching indoor ambient temperatures (≈20-25◦C). The

lower temperatures allow for additional heat sources to be added to the network, allowing for

some buildings to become prosumers (e.g. data centers, supermarkets through refrigeration heat

rejection). The energy performance of buildings served by a 5GDHC network is a strong function

of the inlet temperature, which corresponds to the network supply temperature. Optimizing the

network’s efficiency and its grid topology leads to an evaluation of many possible network topologies,

which is numerically expensive. To be able to analyze and contrast any given district energy

system layout, the impact of connecting individual buildings to a 5GDHC network must be quickly

evaluated, while allowing for flexibility in deciding which buildings should be connected to the

network.

Conventionally, each building on a district heating and cooling network is represented by a

physical building energy model that is run in conjunction with the network simulation. Although

this setup allows for running the analysis with flexibility on the building load side, it results in

long-running simulations, thus limiting the ability to quickly analyze various network topologies.

An alternate approach to determine the building loads is to create a surrogate model, allowing

the network simulation to request the building loads from a myriad of predefined building types

and building characteristics. Three reduced order modeling techniques were investigated to replace

the conventional long running physical building energy models: ordinary least squares regression

(linear models), random forests, and support vector machines.
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Chapter 1

Introduction

Urban design and development are at the forefront of many ongoing projects as the buildings

industry moves from the ability to build zero energy buildings to building zero energy districts [1].

One of the challenges of designing zero energy districts is the ability to optimize the interconnection

of building heating and cooling systems with district energy systems. In a conventional design

context for district energy systems, the systems are sized based on the expected loads of the

interconnected buildings. The ability to optimize which buildings are connected to the district

energy system, the topology, and the operating temperatures become a time-consuming task. The

task involves building energy modeling for connected loads and pressure driven simulation for the

network loop design.

Designing a district energy system could be completed in a single engineering modeling tool;

however, the building models in these tools are typically simplified models with limited configura-

tions and have potentially long running simulation times. Ideally, the analysis would run a fully

defined physical models for each network topology, which requires substantial simulation time and

resources while allowing for the largest diversity in design considerations in both the building sys-

tems and the district energy system. The approach described in this thesis uses physical building

energy models to generate a large parameter space of buildings that are used to generate reduced

order models using linear models, random forests, and support vector machines.

The ability to use reduced order models comes with several advantages and disadvantages

ranging from time to generate models, time to load the models into memory to run an analysis,
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and overall accuracy of the reduced order models. The goal is to provide building energy loads

to the network topology simulation tool faster than running fully defined physical building energy

models. The faster running models should provide similar accuracy, ultimately allowing for a larger

number of network topologies and building connections to be evaluated.

1.1 Background and Motivation

Energy consumption has steadily increased over the years, in part due to the energy con-

sumption from new and emerging economies, see Figure 1.1 [2]. A good portion of this increase in

energy consumption is related to the growth in the building sector and building-related services,

such as heating, ventilation, and air conditioning (HVAC). As developed nations experience aging

HVAC systems in need of replacement, and as emerging nations add millions of square meters of

buildings per year, the time for evaluating and designing centralized district energy systems has

come. Nearly half of the new building construction square footage is occurring in China [3] and

the majority in urban areas [4]. In China, the urbanization rate is around 55% and is expected

to continue growing as they continue to add nearly 3 billion square meters annual of which nearly

2 billion square meters are urban residential or commercial/public buildings. The pattern of in-

creased urbanization rate is expected to continue throughout the world, which increases the overall

need for energy efficient and maintainable district energy systems.

Figure 1.1: Million tons of oil equivalent energy projection
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Perez-Lombard, et al., estimate that between 20% to 40% of the world energy consumption is

for buildings, see Figure1.2 [2]. The United States uses roughly 40% of its total energy for buildings

with 22% in residential and 18% in commercial buildings.

Figure 1.2: Building energy consumption by country

The end-use breakdown for commercial buildings is shown in Figure 1.3. Nearly two-thirds

of the energy consumption in commercial buildings is for HVAC and refrigeration (HVAC&R) with

35% used for space heating and service water heating [5]. In the residential sector, nearly half of

the energy is used for HVAC&R, with 29% going to space heating and hot water [6], see Figure 1.4.

The HVAC&R related end uses are of interest since district heating (and cooling) can be effective

at reducing this type of energy consumption.
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Figure 1.3: Commercial building energy end-use consumption in the United States, by percent

Figure 1.4: Residential building energy end-use consumption in the United States, by percent
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In 2012, it was estimated that the United States has 5.6 million commercial buildings totaling

nearly 8.4 billion square meters (90 billion square feet) [5]. Similarly, in 2015, the estimated number

of residential buildings was 118 million homes (74 million single-family detached homes), totaling

22 billion square meters (237 billion square feet) of which 17.5 billion square meters (189 billion

square feet) were for single-family detached homes [6]. It is estimated that only 0.5 billion square

meters (5.4 billion square feet) of buildings is heated using district heating and 0.18 billion square

meters (1.9 billion square feet) is cooled using district cooling [7]. Figure 1.5 shows the breakdown

of district heating and cooling systems by fuel type in the United States as of 2012. As shown, the

majority of the systems in the United States are for district heating with the similar fractions of

non-CHP heating and CHP heating. The main fuel type for district heating is natural gas for both

CHP and non-CHP systems. The energy generated for district cooling is much less, accounting for

only 2% of the total energy generated for district energy.

Figure 1.5: District energy systems by type and fuel in the United States
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Over the last century, district heating systems have slowly been decreasing loop temperatures

in an effort to reduce thermal distribution losses and increase the available types of heat sources.

While the district energy industry is currently grappling with adopting low supply water temper-

atures, on the order of 50-60◦C as part of fourth-generation district heating systems [8], the next

generation is already on the horizon, termed fifth-generation district heating and cooling systems

(5GDHC).

In 5GDHC systems, water at near indoor ambient temperatures (10-25◦C) is circulated to

accept low-temperature waste heat sources that normally go untapped and to balance coincident

heating and cooling loads on the network. In an ideal 5GDHC system, each building is equipped

with a water-to-water heat pump (WWHP) to remove energy from the district system and use the

heat pump to meet heating and cooling needs. The water-to-water heat pump (WWHP) is installed

to boost or reduce the temperature of the ambient loop to the required supply temperature for each

individual building. The WWHP can be the only system for the building or could be added as

a retrofit system by replacing the building’s existing central boiler and chiller plant while keeping

unchanged the building’s existing air handling units and other secondary delivery systems. Figure

1.6 shows a simple configuration of connecting a retail, office, and residential building to a single

source district heating and cooling system [9].
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Figure 1.6: Diagram of simple 5GDHC system configuration

1.2 Objectives

The complexity of defining models for building energy modeling and the computational time

required for modeling a single building can be significant. Modeling multiple buildings for a para-

metric analysis or optimization only exacerbates the computational time requirements (10s of min-

utes to several hours). The overarching objective of the ambient loop project is to determine the

most efficient loop design, including the network topology (i.e. which buildings should be connected

and how), the heat sources (and sinks) to connect, and the optimal 5GDHC operating tempera-

ture. Figure 1.7 shows seven different configurations of how three buildings could be connected to

a district energy system [9]. The gray circles are non-connected buildings and the red circles are

connected to the district energy system. The full combinatorial of three buildings and one district

energy system being connected in all the various configurations yields a total of 53 combinations.

As expected, the number of configurations grows quickly when the number of buildings increase (8

buildings and a district heating system yields over 65 trillion combinations).
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Figure 1.7: Seven examples of three buildings connected to a district energy system

To further complicate the modeling of 5GDHC systems, the temperature of the water does

not remain constant between buildings. Some system topologies contain a parallel flow arrangement

using a uniform header that supplies the same water temperature for each building, but that is a

design consideration. As a result, the inlet water temperature changes for each building during each

time step for each layout. If the return temperature changes for each building, then the models

would need to be run in series resulting in even longer runtimes.

Based on the fast-increasing complexity of adding more buildings to the system, the use of a

quick and reasonably accurate building energy model becomes critical. The computation time for a

single scenario with three buildings Using conventional building energy modeling would be roughly

five minutes. The runtime is not prohibitive if the layout is fully prescribed and only contained a

handful of buildings; however, the layout, number of buildings, and operating conditions may not

be known and is typically a varying parameter in the design.

The overall objective of this thesis is to:

(1) provide a framework for generating and evaluating various reduced order models for ambient

loop analysis,

(2) estimate building energy loads based on various covariates (such as inlet ambient loop

supply temperature, date and time, and various building characteristics),
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(3) evaluate the performance of the reduced order models including creation time, load time,

execution time, and accuracy.

In the context of 5GDHC systems, the existence of a reduced order model to determine build-

ing loads based on various covariates would ultimately allow for several questions to be answered

that would have otherwise been simulation time prohibitive such as:

(1) Which buildings should be connected to the 5GDHC system?

(2) What is the best network topology for the 5GDHC?

(3) What should be the optimal network topology if new heating or cooling sources are added

to the loop?

(4) If operating schedules change for a building, should the building still be connected?

(5) How should we control the buildings?

(6) What should the current supply temperature of the 5GDHC loop be at a specific date and

time?

1.3 Thesis Organization

The thesis is organized into five chapters, this Introduction, a Literature Review discussing

district energy systems, building energy modeling, and reduced order modeling research. The next

section, Methodology, explains the creation of the building energy models and the reduced order

models. The section also presents the results of the building energy models and the results of

each individual reduced order model. The Results and Discussion chapter compares the results of

the various reduced order models, and the Summary and Conclusions presents the effectiveness of

using reduced ordered models in lieu of building energy modeling. Finally, the last chapter contains

Future Work discussing the possible expansion of this work.
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Literature Review

There is a need to understand the impact on energy, health, and comfort as district energy

system designers and engineers push the loop temperatures to near ambient temperature. Also,

as energy efficient urban design is becoming a goal for many growing cities, there needs to exist

various analysis tools to evaluate options surrounding best system configurations, buildings to

connect, temperature optimization, and system control. This chapter will discuss the state-of-the-

current on district energy systems, building energy modeling, and the current use of reduced order

models for evaluating building energy use.

2.1 District Heating and Cooling Systems

2.1.1 History

District heating systems have been around for hundreds of years; however, modern systems

started to appear in the United States in the late 1870’s [10]. Some of the first district energy

systems in the United States are still in operation, such as Denver, Colorado’s district heating

system, which was installed in 1880 [10] and is recognized as the oldest continuous operating

district heating system in the United States. The original systems are considered first generation

(1G) steam systems with supply temperatures running between 100-200◦C. Even in the 1G systems,

there was a desire to reduce maintenance costs and to save energy. In the case of Denver, the main

distribution lines were installed in hollowed out wood trunks with asbestos lining to reducing line

losses.
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Second generation heating systems starting appearing in the 1930’s with hot water supply

temperatures around 100◦C. The trend of reducing the hot water supply temperature has continued,

resulting in energy savings due to reduced transmission losses and the ability to add new heating

sources to the district system. Figure 2.2 and Figure 2.1 show the progression of district heating

and cooling systems over the last one and a half centuries [8].

Figure 2.1: Progression of district energy temperatures

Figure 2.2: Progression of district energy systems
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Von Rhein points out that the third generation district heating systems were created during

the transition from oil-based heating systems to coal-based systems due to the oil crises [9]. Not

only did the supply fuel change, but buildings were becoming more energy efficient allowing for the

supply temperatures to drop to between 70◦C and 100◦C. Finally, fourth generation district heating

and cooling systems have recently emerged and are typically considered the state-of-the-art. These

systems have lower temperatures, typically less than 70◦C.

As the temperature of district heating systems has decreased, the ability to use new lower-

grade heat sources has emerged. The original heat sources were steam boilers, which evolved

over time to use combined heat and power (CHP), and eventually geothermal, biomass, waste

incineration [8], and solar thermal [11]. The approach to further lower the loop temperature enables

even more heating sources such as wastewater heat recovery [1] and data center waste heat [12].

Unfortunately, there have been few advances in cooling sources. Absorption chillers can be used

if there is high-temperature waste heat, otherwise, heat rejection for district cooling is typically

accomplished with mechanical cooling, cooling towers, and/or cooling ponds [13, 14].

2.1.2 District Heating Energy Saving Potential

Gils, et al. [15] conducted a penetration study for district heating focusing on the existing

population centers in the United States and forecasting energy consumption, building counts, length

of pipes, and various other variables. Based on the research, it is estimated that 43% of the

heating demand for residential and commercial buildings could be met through district heating.

The effectiveness of district heating is climate specific and population density sensitive. As shown

in Figure 2.3, the northeastern states with larger population densities can achieve higher district

heating potential. For example, District of Columbia, New Jersey, and New York can all achieve

over 70% of their needed heating energy through district heating; whereas warmer southern states

(e.g. Louisiana, Florida, etc.) or low population states in the north (e.g. Montana, North Dakota)

have low district heating potentials.
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Figure 2.3: District heating potential by state

2.2 Building Energy Modeling

Building energy modeling (BEM) has historically been a time-consuming task requiring thou-

sands of inputs and taking minutes to hours to simulate a single complex scenario to produce annual

results [16]. The complexity of BEM is often seen as acceptable when designing complex systems

such as advanced heating, ventilation, and air-conditioning (HVAC) systems or integrating multiple

systems across a building (e.g. HVAC, photovoltaics, district heating and cooling, ambient loops,

etc.). In the last several years, tools have been developed to facilitate BEM and, more importantly,

to add parametric analyses to conventional workflows. The ability to easily run parametric analyses

has caused a shift in the users’ ability from simply learning how to run individual models to now

using large parametric results to perform more advanced analyses, such as, sensitivity analyses,

optimization, and meta-modeling. These meta-models, or reduced order models, can run faster

depending on the selected covariates than a running fully defined building energy models.

Building energy modeling is a large domain with many available tools. The International

Building Performance Simulation Association (IBPSA) lists 179 building-related software tools

[17]. The list contains tools for various topics including whole building energy modeling, lighting,

weather, airflow, life cycle analysis, photovoltaics, and various others. Fifty-seven of the tools are

listed as whole building energy modeling tools and are the main focus of building energy modeling
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as it pertains to 5GDHC and reduced order modeling.

Foucquier defines three types of models: physical (white box), statistical (black box), and

hybrid (gray box) models [18]. Physical models (for buildings) are often developed by engineers

which create bottom-up component models exposing key user inputs that can be varied by a com-

petent user. There are two main subcategories of physical models: compiled and equation-based.

Compiled physical models include DOE-2 [19], TRNSYS [20], ESP-r [21], IES [22], and EnergyPlus

[23]. The compiled physical models often have the ability to add in additional components defined

in modules or simplified equations. Some examples of equation-based physical models include En-

gineering Equation Software (EES) [24] and Modelica [25]. Equation-based physical models are

flexible but often require a more experienced and domain educated user. These models compile

the equations at runtime and the compiled equations are then used for simulation. Once a set of

equations has been compiled, then the simulation can be run again with different variable inputs

without the need to recompile.

Statistical models (for buildings) use statistics or mathematical equations to link inputs

(covariates) to a specific set of outputs. An example of a statistical model is the development of a

4-parameter change point model [26]. The model uses training data to estimate the values of the

four parameters, see Eq. 2.1 where E is the expected energy consumption, a is the slope offset, bc

is the cooling slope, br is base level slope, t is change point temperature, and T is the average daily

temperature. Once the model is fit, then daily cooling energy consumption can be estimated based

on the outdoor dry-bulb temperature. In general, statistical models require a clear understanding

of the covariates, the sensitivity of the covariates, and the desired outputs. Statistical models can

also require a large amount of training data in order to perform the parameter estimation or to

feed into machine learning algorithms.

E = a+ bc(T − t)+ − br(t− T )+ (2.1)

Based on the type of data required to build the models and how the models run creates
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another category: bottom-up vs. top-down [27]. A bottom-up model aggregates the results of

various components based on the user inputs. A bottom-up model has the ability to report the

state of any internal variable in the model. This is a major advantage of the bottom-up model and

allows for easy estimation of end uses based on differing building designs. In contrast, a top-down

approach functions on the already aggregated dataset, some of which was used to train the model.

In reality, bottom-up physical models are an aggregation of other physical models or statistical

models, thus are hybrid models. A comparison of the various models is below.

Bottom-Up Physical Model (White Box):

• Advantages

∗ Ability to both represent and analyze results of physical systems (e.g. package single

zone HVAC systems vs. water-to-water heat pump HVAC systems).

∗ Models can provide a more accurate representation of building performance with vary-

ing temporal resolution.

∗ Building controls can be evaluated.

∗ Missing data can be inferred and/or defaulted.

• Disadvantages

∗ Requires a large amount of physical data on the building systems including fully

defined building geometry.

∗ Although it is an advantage that missing data can be inferred and/or defaulted, typi-

cally the missing data are defaulted to minimum code and standard value , or defaulted

to an unknown/unreasonable value.

∗ Simulation runtime can be long depending on model complexity.

Top-Down Statistical Model (Black Box):
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• Advantages

∗ Models can run quickly.

∗ Building does not need be fully defined.

∗ Can be part of an aggregate model (i.e. can be referenced by a bottom-up physical

model).

• Disadvantages

∗ Can require a large amount of training data to fit the statistical model. Training data

needs to cover all the possible conditions that is expected to be encountered.

∗ The results are not physical and must be interpreted.

∗ Various models may be needed to evaluate multiple outputs.

2.3 Reduced Order Models

A reduced order model (ROM) is the general term used in this thesis to describe a black box

statistical model. Reduced order models could also be described as data-driven models, metamodels,

response surface models, or surrogate models. Although there are specific (and subtle) differences

between the models listed, the term reduced order model encompasses various features found in

the similarly named approaches above.

Machine learning has become ubiquitous in many fields of study and more recently in the

building sciences. As machine learning becomes more approachable, the ability to use reduced order

models in optimization, uncertainty analysis, energy conservation measure selection for building

retrofits, and overall building energy performance predictions can help provide results significantly

faster than running fully defined physics-based building energy models, all the while, maintaining

sufficient accuracy.

Modern-day physics-based building simulation engines, such as EnergyPlus are excellent at

providing a single, deterministic result based on the input described. However, a single result is
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rarely the only result that falls within the error bounds of the many different possibilities of inputs.

These engines are notorious for having long runtimes, making the exploration of large parametric

spaces intractable. In addition, building energy modeling, in its true form, has difficulty abstracting

higher level input parameterizations. For example, changing the window-to-wall ratio of a single

input file can be challenging due to the fact that a window is described vertex by vertex within

the BEM input file. Due to the runtimes, difficulty obtaining empirical data, and the challenge

of running high-level parametric analyses, reduced order models for building analyses have been

successfully deployed for various reasons including:

• faster iteration time during the building design and engineering phase,

• model reduction to limit the number of inputs (further reducing modeling complexity)

• ability to run analyses real-time on web servers,

• more time efficient navigation of large parameter spaces, and

• running uncertainty analysis on inputs.

One area where reduced order models have been successfully deployed is in building bench-

marking and energy asset ratings. Many jurisdictions around the world have started requiring asset

ratings, and in some cases performance ratings, to be calculated for individual building [28]. The

methods of performing the ratings vary widely; however, most methods require fast and accurate

approximations of the desired results (such as the building’s total annual energy consumption).

The U.S. Department of Energy developed the Asset Score Tool to perform an asset rating

calculation. The main version of the asset rating is performed by a fully described BEM, however,

Goel, et al., also used a random forest model to provide a quick approximation of a building’s

asset score based on a few high-level inputs [29]. Also, Brazil’s building energy labeling program

investigated the use of artificial neural networks (ANN) for the building shell labels [30]. The neural

networks performed well (within 16%) based on the input variables selected; further research was

able to reduce the error to 0.6% [31]. The model inputs were high-level geometric values such as
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the linear distance of interior wall, shadow angles, window-to-wall ratios, thermal transmittance,

thermal capacities, and basic operational data such as schedules and equipment power densities.

Load-based reduced order modelings methods have been investigated in several cooling domi-

nated climates. Li et al. investigated the use of various types of neural networks and support vector

machines (SVM) to approximate the building’s hourly cooling load [32]. The results showed that

the SVM model performed better than the neural network models. The inputs of the model were

strictly climate data including a 2-time step lag. Kalogirou et al. used ANN to develop a surrogate

model to evaluate building thermal behavior and to calculate the building energy consumption over

a 24-hour period[33]. For their use case with very specific data, the ANN performed well (R2 of

0.9991). Models have also been developed for approximating the building’s heating loads [34] using

various regression techniques such as linear and polynomial regressions.

Aijazi et al. used a surrogate model to evaluate the total building energy consumption compar-

ing random forests, linear regressions, and radial basis functions [35]. The runtime of the surrogate

models were roughly five orders of magnitude faster than the detailed EnergyPlus simulations.

Other surrogate model development has occurred using various techniques such as equation-based

simplification [36, 37], unsupervised learning [38, 36] such as clustering and neural networks [39, 40],

and supervised learning such as linear (and nonlinear) regression [41], regression trees, and classifi-

cation [42]. Lastly, there are several kernel-based supervised learning methods such as kernel ridge

regression and support vector machines which have been employed for building energy and comfort

analysis [43, 44].

Based on the prior research, reduced order models have been used to accurately represent

detailed building simulation results. The type of reduced order model is heavily dependent on the

use case for the model. Overall, the models tend to run faster than the detailed simulations while

providing similar accuracy. The literature review justifies the hypothesis of using reduced order

models to more quickly model ambient loop systems while maintaining model accuracy.
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Methodology

The first application of the proposed reduced order models is to develop an analysis tool to

evaluate ambient loop network topologies. The network topology analysis tool [9] was developed in

parallel to this thesis. The development of the tool involved investigating the ability of two different

simulation engines to model buildings and district systems, EnergyPlus [23] and Modelica [25].

Ultimately, Modelica with the Modelica Buildings Library [45] was chosen to model the network

systems due to its ability to handle pressure driven flow, advanced controls, and its integration

capabilities of Python-based scripts. EnergyPlus was chosen to model the building physics and

the data generation engine for the reduced order models. The reduced order model results were

loaded into Modelica to approximate building loads based on specific covariates such as date and

time, inlet temperature, and building operating conditions. This thesis focused on the development

and validation of the baseline models, parametric simulations, and the development of the reduced

order models.

The development of reduced order models require both a bottom-up physical model and a

top-down statistical model. The initial step was to run a parametric analysis of physical models

using EnergyPlus. The results of the parametric analysis were then used to generate the statistical

model, see Figure 3.1. The line in the figure shows the separation between the physical model

and the statistical model. The simulation results from the physical model are post-processed and

passed to a Python library (termed the ROM Framework) to develop and evaluate various reduced

order modeling methods.
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Figure 3.1: Development and integration of ROMs in 5GDHC Modeling

The methodology is divided into two sections, Building Energy Modeling Data Generation

and Reduced Order Modeling Development. Each section discusses the background, procedure,

and results of generating the respective data sets.

3.1 Building Energy Modeling Data Generation

Empirical data of 5GDHC loop performance and buildings attached to the loop are not

readily available. Even if empirical data were available, the data would be for very specific building

designs, network system designs, and operating schemes. A comprehensive dataset that includes

the expected ranges of all operating conditions is needed in order to generate the statistical models.

As a result, building energy models were developed and used to generate the comprehensive data

set. This section describes the background, procedure, and discusses the results of generating the

building data.

3.1.1 Background

Building energy modeling (BEM) was used to generate the datasets for developing the reduced

order models. The ability to use BEM allows for a larger than typical parameter space with varying
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building types, configurations (e.g. square footage, interior gains), and building operations (e.g.

schedules, inlet temperatures, etc).

EnergyPlus was chosen as the physical modeling engine. EnergyPlus is a whole building

energy analysis tool that performs detailed sub-hourly simulations [23]. The input to EnergyPlus is

a text file in the input description format (IDF). The file fully describes the building in pain-staking

detail. EnergyPlus is typically run as a single input/single output simulation engine, meaning that

the IDF file is a single building configuration and results in a single set of results, all related to

the input. Furthermore, EnergyPlus is a bottom-up physical model of a building, thus, the models

require a large amount of data to run simulations. The type of data required includes everything

from the location of the building, geometric configuration including its walls, windows, slabs, roofs,

and the detailed description of the HVAC system including details on the system performance. The

amount of data required to run a simple single small office building can easily be several thousand

inputs.

OpenStudio [46] is an analysis tool that makes generating EnergyPlus input files easier.

OpenStudio has a custom input format (similar to the IDF format) that extends EnergyPlus and

enables more advanced modeling workflows through its user interfaces and application programming

interfaces (APIs). For modeling, OpenStudio has several features that make modeling easier, more

accurate, and repeatable including:

• Modeling Building Spaces: EnergyPlus’s canonical modeling unit is a thermal zone, that

is, the physical boundary in a building sharing a common heating and/or cooling setpoint.

Building energy standards and architectural models typically include the concept of rooms

or spaces; therefore, OpenStudio enables the user to define spaces with specific loads and

characteristics. This enables codes and standards to be more easily applied due to how

standards typically reference space types. Spaces are aggregated into thermal zones for

modeling in EnergyPlus upon simulation.

• Application Programming Interface (API): Conventionally, generating the input files for
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modeling is the most time-consuming task and can easily result in many input errors.

The entirety of the OpenStudio input description can be accessed from APIs in various

languages including Ruby, Python, and C#. Ruby is the preferred and supported API

language. A major advantage to APIs is the ability for validations to run during model

assembly (e.g. making sure the right HVAC objects are added to the loop).

• Advanced Daylighting : OpenStudio enables the use of Radiance [47] for more advanced

(and arguably more accurate) daylighting analysis. Advanced daylighting analysis was not

leveraged in this analysis.

In addition to the modeling improvements listed above, there are several other workflow

improvements in the OpenStudio ecosystem. Not only does OpenStudio make modeling a single

building easier and more consistent, but it also provides an easy way to run parametric analyses,

either through user developed software or through OpenStudio provided software. Below is a list

of additional OpenStudio components designed to make modeling a single building more reliable

and components designed to make modeling many buildings easier.

• User Interfaces: There are several user interfaces that are shipped with OpenStudio. The

items that were used in this analysis are listed below along with the description.

∗ The Application [46]: The OpenStudio Application allows users to view the model

inputs. This is preferred over using a text editor to manually manipulate the model

due to the ease of making mistakes in the text file.

∗ Parametric Analysis Tool (PAT) [48]: PAT is used to generate and package the data

needed to run parametric analyses, optimizations, and calibrations in the OpenStudio

Analysis Framework [49]. PAT creates a zip file with seed models, weather data,

and measures (described below) along with a JavaScript Object Notation (JSON) file

that describes the algorithms to run. This is described more below in the Analysis

Framework bullet.
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∗ Dview : Dview is a user interface that was developed in conjunction with other tools

(e.g. BEopt, System Advisor Model) to visualize the resulting time series data. Dview

can load EnergyPlus SQL files, CSV files, and weather files.

• Measures: Measures are Ruby scripts that can programmatically perturb a building energy

model [50]. Measures can act on the OpenStudio model, the EnergyPlus model, or be used

as a reporting measure to access and post-process results. This is described in more detail

in the Measures section.

• Standards: Standards [51] is a Ruby library enabling users to a) select a prototype model

based on building vintage, type, and climate zone, or b) apply codes and standards to

an existing building based on one of the following standards: ASHRAE 90.1, Title 24,

National Energy Code of Canada, Energy Conservation Code (India), or the International

Construction Code.

• Prototype Buildings: The U.S. Department of Energy publishes prototype buildings [52] in

EnergyPlus format which represent models suitable for sector analyses and impact studies.

OpenStudio has these same models available in the OpenStudio format.

• Analysis Framework : The Analysis Framework is a web-based application that allows for

parametric analyses, optimizations, and calibrations to be run on local or cloud-based

infrastructure [53]. More information is in the Parametric Analysis Tool and Analysis

Framework section.

3.1.1.1 Measures

The 5GHDC analysis leveraged the concept of OpenStudio measures; therefore, a more de-

scriptive discussion of measures is warranted. As briefly described above, a measure is a Ruby

script that runs within an OpenStudio workflow. The measure has a set of arguments as inputs in

the form of simple computational types such as strings, integers, or doubles. These arguments be-

come internal variables within the measure and are used to programmatically perturb the building
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energy model. Multiple measures can be chained together to generate linear workflows of model

perturbations. OpenStudio measures have no concept of dependency, other than data in and data

out dependencies, for example, if a downstream measure relies on an upstream measure to set a

specific value in the building energy model, then there is nothing to ensure that the upstream

measure sets the value. It is important that measures are developed, chained together, and tested

with care to prevent such errors.

There are three specific places in which measures are executed in the OpenStudio workflow:

1) post seed model loading, 2) after model translation to EnergyPlus IDF, and 3) after EnergyPlus

simulation completion. The OpenStudio Workflow library [54] was designed to chain these events

together in order to systematically and deterministically generate the same simulation file every

single time. In addition to running measures, the OpenStudio workflow library is responsible for

keeping track of log data including the user defined attributes during the running of each measure.

These measure attributes can be simple log messages or structured data that can be stored for use

in subsequent post-processing.

An example of a structured measure attribute would be to store the average lighting power

density of the building before and after a measure runs. All structured measure attributes are

accessible after simulation completion in a JSON format. In this provided example, having the

value before and after allows for model validation, variable extraction, and simple comparisons.

For example, setting the initial and final values of arguments in the measure attributes is very

helpful when the inputs of measures are percent increases from the already defined values in the

building energy model. Since the value is not defined, the measure is able to calculate the average

value (e.g. LPD, square footages) and return the value for later use by the statistical models. Figure

3.2 graphically shows how a measure consumes an input, saves structured measure attributes, and

passes the results to another measure.
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Figure 3.2: OpenStudio workflow and measure attributes

Both the measure name and the measure attributes are user-defined; therefore, it is important

to keep the values consistent throughout the analysis. For example, in order to vary the inlet tem-

perature of a district system between 15 and 25◦C required the development of a measure to set the

loop temperature. The measure was named Ambient Loop Temperature Setpoint and had two argu-

ments, the setpoint temperature and the design delta. Measure arguments are automatically added

to the measure attributes as snake cased variables (e.g. Variable Name becomes variable name) and

in this case the measure attributes contained the “setpoint temperature” and the “design delta”.

The measure name is prepended to the measure attributes for the final variable name. In this

example, the full measure variables of interest were named ambient loop temperature setpoint set-

point temperature and ambient loop temperature setpoint design delta. It was important to un-

derstand the naming convention as the procedures below rely on having the data in very specific

formats.

An example of a measure in Ruby is shown in Figure 3.3. The measure is defined as a Ruby

class and inherits its functionality from the OpenStudio ModelMeasure library. The measure has a

section to define its human-readable name and its arguments. In this case, the measure is expecting

a single input (or argument) named setpoint temperature. Based on the convention above, the

measure identifiable name for post-processing is ambient loop example measure, and by default,

it will have a variable named ambient loop example measure.setpoint temperature. The existence

of the runner.registerValue will result in another variable named ambient loop example measure
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lpd average and will be set to 1.3 W/m2.

class AmbientLoopExampleMeasure < OpenStudio :: Measure ::

ModelMeasure

def name

return "Ambient Loop Example Measure"

end

def arguments ()

args = OpenStudio :: Ruleset :: OSArgumentVector.new

setpoint = OpenStudio :: Ruleset :: OSArgument.makeDoubleArgument(

"setpoint_temperature", true)

setpoint.setUnits("Degrees Celsius")

setpoint.setDefaultValue (20)

args << setpoint

return args

end

def run(model , runner , user_arguments)

super(model , runner , user_arguments)

return false unless runner.validateUserArguments(arguments(

model), user_arguments)

setpoint = runner.getDoubleArgumentValue("setpoint_temperature

", user_arguments)

// manipulate building model

lpd_average = 1.3 # set to some value for demostration

purposes

runner.registerValue(’lpd_average ’, lpd_average , ’W/m2’)

return true

end

end

AmbientLoopExampleMeasure.new.registerWithApplication

Figure 3.3: Structure of an OpenStudio measure
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3.1.1.2 Parametric Analysis Tool and Analysis Framework

PAT allows for a user to easily define an analysis (e.g. optimization, sampling, etc.) which is

passed to the OpenStudio Analysis Framework for running. PAT (Version 2.6.0) was used to specify

the seed model, weather files, add measures in a specific order, set the ranges and distributions of

variables, and provide the communication to the OpenStudio Analysis Framework. Figure 3.4 shows

an example measure input from PAT. The definition includes two continuous variables, setpoint

temperature and design delta, for the ambient loop. The distributions were chosen as uniform, the

reasoning will be discussed further in the subsequent sections.

Figure 3.4: OpenStudio PAT configuration example

The OpenStudio Analysis Framework is a server-based application that can scale horizontally

to run a large number of building energy models in parallel. The analysis framework has access to

R (the statistical programming language) for running advanced algorithms. In this case, R is used

to sample the parameter space using a Latin Hypercube Sampling (LHS) algorithm, treating all

the parameter spaces equally [55]. LHS is effective at reducing the number of datapoints needed

to represent the parameter space without impacting the overall mean and variance of the entire

parameter space.

The OpenStudio Analysis Framework can be deployed locally, remotely on Amazon Web
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Services (AWS), or on in-house workstations.

3.1.2 Procedure

The development of the datasets needed for evaluating the 5GDHC required knowledge of the

various components of OpenStudio in order to adequately extend the components. Out of the box,

OpenStudio does not provide libraries for modeling 5GDHC systems; however, both EnergyPlus

and OpenStudio have the ability to model district heating and cooling systems with ease. This

section will discuss the procedure used to extend, model, and post-process the data needed to

generate a representative dataset of buildings connected to a 5GDHC system.

Overall, the steps needed to generate the building energy models included:

• Generate baseline buildings: one with a conventional HVAC system and one with an energy

transfer station.

• Run one off analysis to represent the building not connected to a district system with

conventional HVAC system

• Validate the baseline building to ensure its representational accuracy

• Extend OpenStudio standards library to include a water-based HVAC system

• Determine the perturbation variables and ranges

• Develop measures needed for perturbing baseline models to generate parameter space

• Develop reporting measures for evaluating and validating the building models

• Run the analysis

• Post process and validate the results

The process above is highly iterative and requires substantial time to ensure each step is

running as expected. The subsections below will discuss the development of the baseline buildings,
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the modifications to the OpenStudio Standards library, and the development of the measures needed

for the analysis.

3.1.2.1 Baseline Model Description

There were two prototypical buildings that were selected for the analysis: a small office and

a retail building. The two buildings were selected to provide load diversity in the buildings that

were to be modeled in Modelica’s network topology simulation. The baseline buildings (also called

seed models) were based on the prototype buildings as described in the Extending OpenStudio

Standards subsection.

The characteristics of the buildings are shown in Table 3.1. Figure 3.5 and Figure 3.6 show

geometry renderings of the small office and retail baseline buildings, respectively.

Table 3.1: Baseline building characteristics

Characteristic Units Small Office Retail

Default Standards N/A 90.1-2010 90.1-2010

Location Golden, CO Golden, CO

Construction

Roof m2K/W IEAD, R-3.7 IEAD, R-3.7

Exterior Walls m2K/W Mass Walls, R-1.8 Mass Walls, R-1.8

Geometry

Square Footage m2 511 2,294

Number of Stories N/A 1 1

Window-to-wall Ratio % 20 7

Skylight-roof Ratio % 0 1

Internal Loads

Average Lighting Power Density W/m2 9.7 16.1
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Average Electric Power Density W/m2 6.8 5.23

Number of People #/100m2 6 15

HVAC

System Type N/A Air Cooled PTHP PSZ-AC

Cooling Efficiency COP 3.65 3.87

Heating Efficiency COP / Eff 3.74 0.8

Distribution N/A Rooftop Rooftop

Figure 3.5: Rendering of the small office baseline model
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Figure 3.6: Rendering of the retail baseline model

The baseline buildings contained the prototypical HVAC systems as defined by the OpenStu-

dio Standards library. The design of district heating and cooling systems require the connection of

the HVAC systems to the district loop; therefore, another set of baseline buildings were developed

with updated HVAC systems in order to connect the buildings to the district system.

The water-based building’s HVAC systems were chosen based on a typical system that would

be installed for a building the same size. Table 3.2 shows the equivalent water-based system based

on the total square footage of the building. This lookup was created based on the increased use of

water-based systems in commercial buildings due to the larger adoption of geothermal systems (e.g.

ground source heat pumps) [56]. The table uses the generally accepted guidance of 350-400 ft2 (32-

37 m2) per ton of cooling [57] to help provide the selection. In general, it is reasonable to assume

that smaller buildings (less than 5,000 square meters) connected to district systems or geothermal

systems will have distributed HVAC systems (either water-to-water heat pumps or water-to-air

heat pumps). Conversely, larger buildings will typically have chiller/boiler based cooling/heating

systems.
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Table 3.2: Type of ambient loop primary system by building area

Recommended System Type Building Area Ranges (m2)

Distributed water-based heat pump system 70 to 5,250

Single Chiller / Boiler 2,100 to 7,000

Multiple Chillers / Boilers 4,200 to 52,500

The development of the HVAC systems is described in more detail in the Extending Open-

Studio Standards section. The results of the baseline buildings, both with conventional systems

and water-based systems are discussed in the results portion of this section.

3.1.2.2 Extending OpenStudio Standards

The OpenStudio Standards library is a Ruby gem to either generate a prototypical building or

apply various existing codes and standards to a building energy model. The OpenStudio Standards

library was extended to add water-based systems specific to ambient loop district energy systems.

For the purpose of this thesis, the entire system used to connect a building to the ambient loop

was termed the energy transfer station (ETS). Based on the type of building the ETS was modeled

as either a water-to-water heat pump (WWHP) or a water-to-air heat pump (commonly named a

packaged terminal heat pump - PTHP)

Figure 3.7 is a high-level diagram showing the primary water loop of a conventional HVAC

system with a chiller. The heat rejection, in this case, is either air-cooled, cooling towers, or cooling

ponds. The extensions to the OpenStudio Standards library replaces the heat rejection side of this

model with the ambient loop and replaces the chiller with the water-based system.
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Figure 3.7: Primary water loop in conventional building

Figure 3.8 shows the primary water loop of the building after swapping the system with

an ETS. The heat rejection (assuming cooling mode) is connected to the ambient loop through a

heat exchanger. The heat exchanger transfers the heating or cooling to the primary input to the

WWHP. The WWHP then pumps the chilled water (again, in cooling mode) to the terminal unit

coils where the primary air loops can distribute the cooled air.

Figure 3.8: Energy transfer station in the ambient loop connected building

EnergyPlus and OpenStudio do not have the concept of an ETS but it could be modeled

as a district energy system with lower temperatures and a heat exchanger. Note that the ETS

heat exchanger was considered an ideal heat exchanger for the purpose of this project. Adding a

physical heat exchanger model using either EnergyPlus or Modelica would increase the accuracy of

the model by decreasing the effectiveness of the district heating and cooling system, thus, increasing
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the heating and cooling electricity needed to meet building setpoint. The ability to regress the data

would not be impacted.

The ability to add an ETS to an existing building model was directly added to the OpenStudio

Standards library to leverage the pre-existing helper methods such as adding the water loop, chilled

water loop, and setting the default values based on the ASHRAE standard being referenced. The

code-block in Figure 3.9 shows the method in detail. Note the use of the “get or add” helper

methods. Since the ETS was added to an existing building model, most of these methods simply

return the already existing objects from the model. The developed method only added energy

transfer stations for water-to-air and water-to-water heat pumps; however, the method can be

expanded in the future to allow for other types of water-based HVAC systems such as chilled water

distribution systems (replacing chillers).
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# Add Energy Transfer Station

# Used for Ambient Loop connections.

def add_energy_transfer_station(primary_system , zones)

return true if zones.empty?

if primary_system.downcase == ’water -to -air heat pump’

condenser_loop = get_or_add_ambient_water_loop

add_water_source_hp(condenser_loop , zones , ventilation=

true)

elsif primary_system.downcase == ’water -to-water heat pump’

ambient_loop = get_or_add_ambient_water_loop

hot_water_loop = get_or_add_hot_water_loop(’HeatPump ’,

ambient_loop)

chilled_water_loop = get_or_add_chilled_water_loop(’

90.1 -2010’, ’HeatPump ’, true , ambient_loop)

add_vav_reheat(’90.1 -2010’,

sys_name=nil ,

hot_water_loop ,

chilled_water_loop ,

zones ,

hvac_op_sch=nil ,

oa_damper_sch=nil ,

vav_fan_efficiency =0.62 ,

vav_fan_motor_efficiency =0.9,

vav_fan_pressure_rise=OpenStudio.convert

(4.0, ’inH_ {2}O’, ’Pa’).get ,

return_plenum=nil ,

reheat_type=’Water ’)

else

raise "Unknown primary system ’#{ primary_system}’ for #{

__method__}"

end

end

Figure 3.9: Energy transfer station in ambient loop connected building

After the ETS methods were added, the next step was to create the measures to chain all

the required parts together. The next section discusses the development of these measures.
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3.1.2.3 Measure Development

Several new measures were written to perform the model perturbations. There were three

succinct energy modeling tasks to be run: 1) baseline simulation, 2) baseline simulation with ETS,

and 3) parametric analysis with varying building inputs. These three tasks were repeated for the

two building types (small office and retail building). The three tasks built on measures used from

the previous tasks and can be seen in Figure 3.10. As shown in the figure, the three tasks in green

have the same workflow but with different measures enabled. The baseline simulation only required

instantiating the prototype building and changing the building location. The baseline simulation

with ETS required adding in the ETS and setting the ambient and hot water loop temperatures.

Lastly, the parametric analysis required adding in a couple additional measures to change building

loads. Note that the three modeling tasks used the same reporting measures (the orange blocks

in the figure). Having a similar workflow and using the same measures for the modeling tasks is

advantageous as it reduces errors since the tasks are all dependent on the results of previous tasks.

Figure 3.10: Order and list of measures for simulations

The measures above have various arguments. Table 3.3 shows the same list of measures along

with the arguments and example argument values.
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Table 3.3: List of measures and arguments

Measure Name Arguments Example Argument Value

Ambient Loop Prototype Building (C.1)

Building Type SmallOffice

Template 90.1-2010

Climate Zone ASHRAE 169-2006-5B

Change Building Location (C.2)

Weather File Name Golden, CO

Climate Zone Lookup from .stat file

Ambient Loop Add ETS (C.3)

No Arguments

Ambient Loop Temperature Setpoint (C.4)

Loop Temperature 20

Delta Design Loop Temperature 5.55

Hot Water Loop Design Temperature (C.5)

Hot Water Temperature 60

Internal Loads Multiplier (C.6)

LPD Multiplier 1

EPD Multiplier 1

People Multiplier 1

The reporting measures typically do not contain arguments (but they can) and are used

to post-process the results of a single simulation. The analysis used two reporting measures, the

OpenStudio Results and the Ambient Loop Reports (see C.7). The OpenStudio Results measure is

packaged with OpenStudio and used to report basic diagnostics on models; however, the Ambient

Loop Reports measure was written in order to post-process the results into a format that can be
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consumed by the reduced order modeling framework. The Ambient Loop Reports measure queries

the EnergyPlus simulation results for the needed hourly reporting variables (e.g., district cooling

inlet/outlet temperature, district heating inlet/outlet temperature, cooling electricity, heating elec-

tricity, etc.) and converts the results into hourly values over the year (i.e., an 8,760). These results

are saved to a CSV file and saved for later processing by the ROM Framework.

Table 3.4 lists all output variables of interest from the simulations. These outputs were

created for all three modeling tasks (baseline, baseline with ETS, and parametric analysis). The

“constant” items in the table are building characteristics (e.g. the building’s average lighting power

density). These values are held constant for every time step and simply stored for use in the reduced

order modeling framework.

Table 3.4: Building energy modeling output variables

Variable Time step Units

Date and Time, Day of Week Hourly N/A

Outdoor Relative Humidity Hourly Percent

Outdoor Drybulb Temperature Hourly C

District Heating Energy Hourly GJ

District Cooling Energy Hourly GJ

Heating Energy Hourly GJ

Cooling Energy Hourly GJ

ETS Inlet Temperature Hourly ◦C

ETS Outlet Temperature Hourly ◦C

Ambient Loop Setpoint Temperature Constant ◦C

Ambient Loop Delta T Constant ◦C

Average EPD Constant W/m2

Average LPD Constant W/m2
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3.1.2.4 Parametric Simulations

The OpenStudio Analysis Framework and the Parametric Analysis Tool (PAT) were used

to generate and run the parametric simulations. Each seed model (i.e., the small office and retail

buildings) were run with the same algorithm to populate the parameter space. The building models

were parameterized by differing the inlet temperature of the ambient loop, the district system design

temperature difference (to emulate varying mass flow rates), and the internal gains of the space.

Table 3.5 lists the distributions for the measure arguments that were used to populate the parameter

space. The distributions were all set to uniform since the goal of the parametric analysis was to

provide the largest set of operational data to maximize the effectiveness of the datasets for the

reduced order modeling framework. Also, note that only measures with input distributions are

shown in the table below.

Table 3.5: Parameter space for building energy models

Measure Variable Value(s)

Ambient Loop Setpoint Temperatures Setpoint Temperature Uniform[15, 25] ◦C

Ambient Loop Setpoint Temperatures Design Delta T Uniform[1, 7] ◦C

Hot Water Design Loop Temperature Temperature Static[60] ◦C

Internal Loads Multiplier LPD Multiplier Uniform[0.33, 3]

The parameter space was sampled 100 times using the Latin Hypercube Sampling (LHS)

scheme. Historically, most sampling schemes leveraged Monte Carlo-based algorithms; however,

due to the “long-running” time of simulations, it was preferred to run as few simulations as possible

while maintaining statistical validity, thus the LHS scheme was selected. Figure 3.11 shows the

difference between sampling a variable 100 times using LHS vs. a pure random sampling for a

normal distribution. As shown, using LHS allows fewer samples to more accurately represent the

distribution type.
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Figure 3.11: LHS vs random sampling (normal distribution with n = 100)

The OpenStudio Analysis Framework used the LHS samples to set the arguments of the

measures which then generated and ran a fully defined EnergyPlus model, utilizing OpenStudio.

The results are stored both as files and in the OpenStudio Analysis Framework’s database.

3.1.3 Results and Discussion

The analysis used EnergyPlus, OpenStudio, and the OpenStudio Analysis Framework to gen-

erate the datasets needed for the ROM Framework. There were two major sections of this analysis,

1) the generation and simulation of the baseline models, and 2) the generation and simulation of a

parametric analysis. The results for each are discussed in the following subsections.

3.1.3.1 Baseline Models

There were two building types with two different configurations that were modeled for the

baseline models. The two building types were small office and retail. Each of these was modeled

with and without an ETS. Table 3.6 shows the high-level results of the four simulations.
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Table 3.6: Baseline model results

Small

Office

Small

Office

with

ETS

Retail Retail

with

ETS

EUI (MJ/m2) 376.9 440.6 689.5 690.4

Total Heating EUI (MJ/m2) 30.6 35.1 133.9 61.9

Total Cooling EUI (MJ/m2) 22.0 117.3 37.7 301.1

Total Fans EUI (MJ/m2) 42.7 5.3 203.6 5.3

Total Pumps EUI (MJ/m2) 0.0 1.3 0.0 3.4

Heating setpoint not met (occupied hours) 27 14 0 12

Cooling setpoint not met (occupied hours) 0 4 0 0

Based on the results shown in the table, the comparison of the buildings with and without

the ETS was similar. The only major difference is related to how ventilation occurs between the

baseline building and the baseline with ETS building. The ventilation in the baseline buildings was

substantially higher due to the existence of a full air handling unit. For example, the ventilation

rate in the small office baseline building was ≈0.4 ACH; whereas, the baseline with ETS was around

0.05 ACH. This significantly changed the load due to outdoor air not being introduced into the

building.

Figure 3.12 and Figure 3.13 show the difference in the loads of the small office by month.

The difference is related to the difference in ventilation strategies, as described above. Overall, the

energy use intensities (EUI) were similar between the baseline and baseline with ETS buildings.
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Figure 3.12: Small office baseline loads by month

Figure 3.13: Small office baseline with ETS loads by month

Figures in Appendix A: Supporting Analysis Results show images of the baseline and baseline

with ETS systems. Figures A.1, A.2 show the supply and demand side of the ambient loop systems

which were the same for both baseline buildings. Figure A.3 and Figure B.1 graphically show the

baseline system for the small office and retail building, respectively.

The monthly energy end uses for the small office building are shown in Figure 3.14 for

electricity and Figure 3.15 for gas. Figure 3.16 shows the monthly energy end uses for the small

office building with ETS. As shown, the peak energy is roughly the same between the two buildings.

The majority of the variance is in the heating and cooling energy. Note that the baseline building

used gas for heating, whereas the ETS baseline used electricity (and district heating). Similar plots
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for the retail building are shown in Appendix B.1: Baseline Results.

Figure 3.14: Small office baseline monthly electricity energy end use

Figure 3.15: Small office baseline monthly gas energy end use
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Figure 3.16: Small office baseline with ETS monthly electricity energy end use

The results of the ambient loop were inspected to ensure the results were reasonable. Figure

3.17 shows the ETS outlet temperature compared to the ETS inlet temperature from the ambient

loop. As expected, the delta temperature of the inlet compared to the outlet temperature increased

as the building load increased. In addition, the supplemental heating power ramped up as the

building load increased over the day.

Figure 3.17: BEM simulation results (January 12)
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The governing equation for the amount of energy extracted from the district heating and

cooling plant is shown in 3.1 where Q̇ is the amount of energy added/extracted, ṁ is the mass flow

rate, Cp is the specific heat (constant), and ∆T is the temperature across the inlet/outlet. The

∆T is a design parameter, thus assumed constant. The only non-constant variables are the mass

flow rate and the resulting energy.

Q̇ = ṁCp∆T (3.1)

Figure 3.18 shows the HVAC energy as a function of the outdoor air temperature. The plot

shows the classic V-shaped energy signature showing the heating slope (left side) and the cooling

slope (right side). The plot shows that for this building configuration in ASHRAE climate zone

5B, more energy was used for cooling than heating.

Figure 3.18: Small office heating power vs. the outdoor dry-bulb temperature
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3.1.3.2 Parametric Analysis

Parametric analyses were run for both the small office and the retail building. Each anal-

ysis used LHS with 100 samples to generate a parameter space. The simulations were run on a

local desktop computer with four cores dedicated to simulations using the OpenStudio Analysis

Framework. Part of the project is to understand runtimes; therefore, the simulation runtimes were

logged. There were three specific runtimes of interest:

• Measure Runtime: The amount of time to run all of the measures. This includes the

prototype measures which requires sizing simulations and the reporting measures which

can require time-intensive data queries for post-processing.

• EnergyPlus Runtime: The amount of time to run only EnergyPlus.

• Other Runtime: The other runtime is time needed to download, start the simulations,

transition between the run states (e.g apply measure 1 to apply measure 2), and reporting

the results back to the central run database

Figure 3.19 and Figure 3.20 show the runtimes for the office and retail building, respectively.

On average, the small office building took 63 seconds to run; 18 seconds for EnergyPlus, 37 seconds

for measures, and 8 seconds for other. The retail building performed similar, on average taking 63

seconds to run; 20 seconds for EnergyPlus, 36 seconds for measures, and 7 seconds for other.
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Figure 3.19: Simulation runtime for small office

Figure 3.20: Simulation runtime for retail

The variability in runtime was consistent for the small office building and much more variable

in the retail building. This was most likely due to thread affinity (how the computer assigns work to
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the processor) causing simulations to require more processing power than available, thus increasing

the runtime. In general, the computational cost to run the measures was higher than running

EnergyPlus. This cost is deemed reasonable due to the complexity of generating dynamic models

without the aid of OpenStudio.

Parallel coordinate plots were used to visually verify the results of the parametric analysis.

Figure 3.21 shows the plot of the small office after the parametric analysis. Each vertical axis is a

variable (input or output) and each line (blue or gray) connecting the vertical axes is a single sim-

ulation. In the figure, the data are constrained to low EUI buildings (gray box on the total site eui

axis), showing that low EUI buildings typically have lower LPD, and the delta design temperature

and ambient loop temperature all not heavily dependent on the EUI (visible by the large spread in

the design delta and setpoint temperature axes). A similar plot for the retail building is shown in

Appendix B.2: Parametric Analysis Results.

Figure 3.21: Small office parallel coordinate plot
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3.2 Reduced Order Modeling Development

The reduced order modeling development required investigating various regression techniques

such as ordinary least squares regression and machine learning approaches such as random forests

and support vector regressions. A generalized framework was built to run these various regression

algorithms on the same dataset to easily compare the performance. This generalized framework

was termed the ROM Framework.

3.2.1 Background

There were three specific regression algorithms that were used, 1) ordinary least squares re-

gression, 2) random forest, and 3) support vector regression. Each of these methods was researched

to understand how they function and how to best evaluate their performance. This section will go

into the details of each of the algorithms.

All of the models below used a validation, test, and training dataset. These datasets were

extracted from the initial dataset and set apart for the various purposes which are described in the

procedure section. Note that the term validation dataset used here is not the same as the validation

data that is used in the k-fold cross-validation technique.

3.2.1.1 Ordinary Least Squares Regression

Ordinary least square regression models (or linear models) are very popular, easy to imple-

ment, and can perform very well with simple linearly-related data. In this case, the linear model

was a multiple regression model in the form of Equation 3.2, where y is a matrix of results, X is a

matrix of input data, β are the parameters as a vector, and ε is the error as a matrix.

y = Xβ + ε (3.2)

The results of the linear model were evaluated by calculating the coefficient of determination

(R2), visualizing the residuals to check for homoskedasticity, and generating Q-Q plots to check for
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normality. The resulting models were also evaluated with the validation dataset.

3.2.1.2 Random Forest

Random forests [58] are a type of ensemble modeling method where the predictions of various

underlying models are combined. In the case of regression, the random forests model uses decision

trees as the underlying model. Each tree is built using a bootstrapped sample (i.e. samples are

replaced) by splitting the tree into branches with the largest reduction of the mean square error

based on a limited selection of features. Splitting continues until the minimum number of samples

per leaf node or the maximum depth of the tree is reached. For prediction, the results of each tree

are averaged to provide the estimate. The Python package used to generate the random forests

model [58] include many parameters that need to be tuned. The parameters of focus were:

• n estimators: the number of trees to generate; initially 10 but used 100 or 200 for the final

models

• max depth: the maximum size that the tree can grow, defaults to no maximum

• min samples split : the minimum number of samples to perform a split; default was 2

• min samples leaf : the minimum number of samples required to be leaf node; default was 1

• max features: the number of features to evaluate the best split, typically equal to the

number of features divided by 3

The model generation included hyper-parameter tuning of the variables above. Hyper-

parameter tuning was accomplished by performing a grid search with k-fold cross-validation, in

this case the number of folds was selected to be three in order to decrease the build time. Cross-

validation is a method in which the training dataset is divided into k folds and one of the folds

is withheld as the other folds are used to train the model. The withheld fold (which is termed

the validation data) is then used to validate the accuracy of the trained model. This is repeated

until all the folds have been tested at which point the model performance results are averaged
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and persisted. Equations 3.3 and 3.4 show the error calculation for each cross-validation, where

Ek is the error predicting the k-th fold, λ is a tuning parameter, y is the test data, x is the test

parameters, β̂ is the model.

Ek(λ) =
∑

i∈k−th part

(yi − xiβ̂
−k(λ))2 (3.3)

CV (λ) =
1

K

K∑
k=1

Ek(λ) (3.4)

In the case of the hyper-parameters and grid search, the user specifies ranges of model pa-

rameters to evaluate. Table 3.7 lists the hyper-parameters that were varied and the different values

that were tested. An effort was taken to select the minimum number of reasonable values to test

since the total number of cross-validation runs quickly adds up (and is time consuming). In this

case, the values here resulted in 243 candidate models, and with 3-folds, 729 fits. This was done

for each of the 6 response variables, 4,734 fits in total.

Table 3.7: Random forest hyper-parameter test values

Hyper-parameter Tested Values

max depth auto, 3, 6

max features 0.5, 0.66, 0.75

min samples leaf 1, 2, 4

min samples split 2, 3, 5

n estimators 10, 100, 200

3.2.1.3 Support Vector Regression

The support vector algorithm is a class of nonlinear generalization algorithms developed in

the early 1960’s [59]. Support vectors are created by minimizing the error between the proposed

hyperplane and the training data. Once minimized, the datapoints that are used to define the
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“tube” are the support vectors. If a support vector is removed, then the shape and performance

of the model can change significantly. Figure 3.22 shows a contrived 2-D example of the support

vector [59], where ε is the range where observed data will not incur the cost penalties. The higher

the ε the smoother the resulting regression algorithm, and, consequently, the fewer support vectors.

The figure also shows ζ which is the distance between the observed datapoint and the upper (or

lower) bound of the error “tube”. These values incur a cost penalty, which can be scaled using the

C parameter, which typically is defaulted to 1.

Figure 3.22: Support vector margins

Support vector algorithms use kernels to select the observed data that are included in the

minimization equation. The most common kernels are linear, polynomial, sigmoid, and radial basis

functions. The radial basis function (3.5) non-linearly maps datapoints to a higher dimension

which allows for relationships between the covariates to be non-linear as well. The parameter γ is

recommended to be set at 1/nfeatures; however, γ should still be included in the hyper-parameter

tuning.

K(xi, xj) = exp(−γ||xi − xj ||2) (3.5)

The build times for support vectors can be quite long due to the computational requirements

(memory and CPU) to calculate and store the dot product matrix. In 2004, it was suggested that

after 3,000 samples the user must use another approach to compute the support vectors [59]. As of
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2018, computational advances and algorithm improvements (such sequential minimal optimization)

have allowed more samples to be evaluated. The ROM Framework’s down sampling capabilities

allow for the samples to be sized within reason before memory or computation issues arise.

The training of support vector regressions require the data to be normalized within a standard

range, in this case, -1 to 1. Each covariate was scaled using Python’s StandardScaler object. In

addition to scaling, several of the variables have cyclical properties. For example, the day of week is

represented by an integer between 0 (Sunday) and 6 (Saturday) which are numerically distant but

temporally near. The cyclical variables were transformed using Eq. 3.6, where v is the resulting

value, i is the categorical value, and n is the total number of categories for the variable.

v = sin(2πi/n) (3.6)

Support vectors have few training hyper-parameters that need to be evaluated and are shown

below:

• C : the penalty parameter of the error term, defaults to 1

• γ: the parameter in the RBF equation, defaults to 1/nfeatures

• ε: range of the penalty-free “tube”, defaults to 0.1

In the case of the hyper-parameters and grid search, the user specifies ranges of model param-

eters to evaluate. Table 3.8 lists the hyper-parameters that were varied and the different values that

were tested. Based on research, the values of C, γ, and ε should be varied by order of magnitudes.

Table 3.8: SVR hyper-parameter test values

Hyper-parameter Tested Values

C 0.1, 1, 10

γ 0.25, 0.1, 0.01

ε 0.1, 0.25, 0.5
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3.2.2 Procedure

The results from the Building Energy Modeling Data Generation section became the input

for the reduced order models described in this section. The reduced order models were developed

using a software library developed for this research termed the ROM Framework. The library is a

collection of Python classes and a command line interface to load datasets, build regression models,

run validation, save plots, and store the generated models as files on the computer for later use.

The ROM Framework also includes an analysis library which allows for a ROM to be loaded and

run through parametric sweeps with various input distributions. The goal of the ROM Framework

was to consistently and deterministically evaluate regression techniques without needing to copy

and paste large chunks of code in single-use scripts. Information on the ROM Framework can be

seen in Appendix D: ROM Framework Information.

There were several metrics of interest based on the use case of the reduced order models:

(1) Amount of time to build and test the models (with k-fold cross validation if applicable)

(2) Accuracy of the models based on various performance metrics such as PCC, NMBE, and

CVRMSE.

(3) Amount of time to load the models after they were built and persisted to disk

(4) Size of the persisted models on disk

(5) Amount of time to run a single time step through the reduced order models after models

are loaded from disk

(6) Amount of time to run 8,760 hours through the reduced order models after models are

loaded from disk

The overarching use case of the reduced order models was to quickly approximate the amount

of energy used in an ambient loop system as well as the return temperature from the building back
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into the ambient loop. In order to accomplish this, various reduced order models were developed

using the following high-level procedure:

• Withhold single 8,760 building results for testing model performance

• Optional: Down sample dataset to a fraction of the whole dataset

• Withhold percentage of results for the training dataset

• Use remaining data to fit or train model

• Run training data through model to test model performance

• If applicable, run k-fold cross validation and grid sear4ch on model to tune hyper-parameters

• Evaluate model performance for a single 8,760 model which was excluded from training

dataset

The response variables and covariates list were considered the same for each reduced order

model type and building type. The response variables are heavily focused on HVAC performance

and it is reasonable to assume that the same response variables and covariates would be applicable

for most building types. There were five response variables of interest and are shown in Table

3.9. The covariates were chosen by choosing a set of inputs and outputs to the EnergyPlus models

that would physically explain the heating and cooling loads (e.g. time of day, inlet temperatures,

outdoor environmental conditions). A larger set of covariates was originally chosen and was later

reduced to the few most important covariates based on the random forest’s relative importance

outputs. The covariates were a mix of BEM inputs and outputs and are shown in Table 3.10.

In the table, several of the variables were treated as factors (or categories), for example, the day

of week is an integer value between 0 and 6. Depending on the reduced order model type, these

factor-based variables are transformed to represent cyclical variables.
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Table 3.9: ROM response variables

Variable Time step Units

District Heating Energy Hourly GJ

District Cooling Energy Hourly GJ

Heating Energy Hourly GJ

Cooling Energy Hourly GJ

ETS Outlet Temperature Hourly ◦C

Table 3.10: ROM covariates

Variable Type Units

Month Factor (int) N/A

Hour Factor (int) N/A

Day of Week Factor (int) N/A

Outdoor Relative Humidity Variable Percent

Outdoor Drybulb Temperature Variable ◦C

ETS Inlet Temperature Variable ◦C

ETS Outlet Temperature Variable ◦C

Average LPD Variable W/m2

3.2.2.1 Training Data

There were three types of data that were extracted for the purpose of training, testing,

and validating the reduced order models: 1) a validation dataset, 2) training dataset, and 3)

testing dataset. The validation dataset consisted of a randomly selected single annual simulation

from the dataset. The purpose of the validation dataset was to compare the performance across

multiple reduced order models with a dataset that was not used in fitting the model, used for model
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validation, as well as 30% of the remaining dataset (withheld at random) for the test dataset.

The building energy models resulted in a large number of datapoints for training the reduced

order models. In order to reduce the physical size of the presisted models, reduce the likelihood of

over-fitting, and to decrease the training time, a down sampling feature was created to down select

the total number of datapoints before training. The ROM Framework allows the user to specify the

fraction to randomly down sample the dataset after extracting the validation simulation dataset

but before splitting the dataset into the training and testing datasets. Down sampling seemed

reasonable due to the fact that each simulation resulted in 8,760 datapoints and if there were 100

samples, then down sampling to 15% of the total still resulted in 131,400 total samples.

The ROM Framework sets the random seed before sampling the dataset; therefore, all the

ROMs used the exact same set of data for training and testing. This resulted in a training dataset

size of 70% of the total 867,240 datapoints (8,760 hours x 99 simulations).

3.2.2.2 Model Evaluation Criteria

The validation criterion for each response variable was the Pearson correlation coefficient

(PCC) 3.7, often denoted by r, which determined how linear the test data results correspond to

the ROM modeled results. Where xi,yi are the actual and modeled value for each datapoint, n is

the total number of data points, x̄, ȳ are the means of the actual and modeled values.

PCC = r =

∑
xiyi − nx̄ȳ√∑

x2i − nx̄2
√∑

y2i − nȳ2
(3.7)

In addition to the PCC, the validation dataset was run with the reduced order models and

compared using the normalized mean bias error (NMBE) and the coefficient of variation of the

root mean square Error (CVRMSE), Equations 3.8 and 3.9, where yi is the measured value for

datapoint i, ŷi is the modeled value, n is the total number of datapoints, and ȳ is mean of the

measured data. Conventionally, NMBE and CVRMSE are used to evaluate the error in measured

data vs. modeled data; however, in this case, these metrics were used to describe the deviation
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between an idealized model (assumed to be correct) and the ROM results. ASHRAE Guideline 14

[24] was developed for standardizing the energy (and demand) saving calculations for buildings. The

NMBE and CVRMSE metrics are defined in ASHRAE Guideline 14 as a metric for measuring the

applicability of a model compared to actual measured energy consumption. In this case, the actual

energy consumption was defined as the EnergyPlus results and the reduced order models represent

the approximations. ASHRAE Guideline 14 recommends NMBE less than 5% and CVRMSE less

than 15% should be considered as a reasonable model.

NMBE =

∑
(yi − ŷi)

(n− 1) · ȳ
(3.8)

CV RMSE =
1

ȳ

√∑
(yi − ŷi)2
n− 1

(3.9)

3.2.3 Results and Discussion

This section discusses the results of each of the individual reduced order models. The re-

sults presented in this section are for the small office building (the retail building is in Appendix

B.3: Reduced Order Model Results). Also, the section Results and Discussion contain results of

comparing and contrasting the various ROM performances.

The results of each ROM focused on three categories: 1) build performance, 2) training data

performance, and 3) validation data performance. The build performance includes discussion on

the time to build the ROMs and any algorithm specific build performance metrics (e.g. analysis of

variance for linear models). The training data discusses how well the models performed based on

the withheld training data. Lastly, the validation data performance discusses model performance

based on the withheld validation data. The validation data results are discussed in the Results and

Discussion section.

3.2.3.1 Linear Model

Build Performance



59

The models built in 0.13 seconds on average for the full dataset with no down sampling. Figure

3.23 shows the build time for each of the response. As shown, the heating electricity response built

the fastest and the cooling electricity took the longest; however, the differences between the two is

minimal. The time for cross-validation was zero for the linear models.

Figure 3.23: Linear model build time based on response variable, no down sampling

The ROM Framework creates diagnostic plots such as a residual and Q-Q plot for inspection

for each response variable. Figures 3.24 and 3.25 show the performance of the district heating

energy response variable and the ETS outlet temperature, respectively. The results show that the

district heating energy is non-homoskedastic; whereas the ETS outlet temperature is slightly more

homoskedastic. The Q-Q normal plots are not linear in either case, meaning that the models are

non-normal.
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Figure 3.24: Diagnostic plot for district heating energy

Figure 3.25: Diagnostic plot for ETS outlet temperature

The use of the down sampled datasets was unnecessary for the linear models due to the fast

build time of the models and the lack of needing to run hyper-parameter tuning.

Training Data Performance

The performance of the linear models is presented in Table 3.11. As shown, the ETS outlet

temperature response variables performed well based on the Pearson correlation coefficient. Also,

down sampling the data set to 15% of the entire dataset did not significantly affect the performance.
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Table 3.11: Linear model performance

Response PCC (15% Down sample) PCC (100% Data)

Heating Electricity 0.322 0.322

Cooling Electricity 0.531 0.531

District Cooling Chilled Water Energy 0.533 0.532

District Heating Hot Water Energy 0.343 0.342

ETS Outlet Temperature 0.980 0.981

The training data was passed into the linear model and the results of each response variable

was plotted against the actual training results. Figure 3.26 shows the Y-Y plot for the heating elec-

tricity and ETS outlet temperature. As shown, the non-linear nature of heating and cooling systems

prevent the linear model from fitting well. However, the ETS outlet temperature model showed

reasonable results due to the fact that the delta temperature across the ETS is an operational

parameter and relatively constant during full load operation of the HVAC systems.

(a) Heating Electricity (b) ETS Outlet Temperature

Figure 3.26: Y-Y plots for the linear model
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Hex plots were also generated for the Y-Y plots allowing inspection into the density of the

plotted data. Figure 3.27 shows that the linear model for the district cooling had the majority of

the training data near zero but predicted a wide range of values. The ETS outlet temperature had

data much more reasonably spread out and evenly distributed.

(a) District Cooling (b) ETS Outlet Temperature

Figure 3.27: Y-Y plots with densities

3.2.3.2 Random Forest

The random forest models took longer to build than linear regression models. In addition,

there were more parameters that affect the performance of the models that needed to be accounted

for. For these reasons, and to save build time, the use of the down sampled dataset was used when

performing the cross-validation.

Build Performance

Using the full dataset (no down sampling), a single random forest model took 50 seconds

on average to build. To perform k-fold cross-validation using the full dataset would take over 10

hours using the grid search parameters defined above. In addition, it is highly likely that fitting the
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model on the full dataset would not drastically improve the model performance. Therefore, several

down sampled datasets were evaluated (5%, 15%, and 25%) to determine if the model performance

was impacted based on the down sampling fraction.

Using the 15% down sampled dataset, the random forest model took, on average, 3.7 seconds

to build and ≈15 minutes for hyper-parameter tuning/cross-validation, see Figure 3.28. Note that

the cross-validation time was significantly higher than the build time.

Figure 3.28: Random forest build and cross-validation time

Data were stored during the grid search and cross-validation to understand how the hyper-

parameters impacted the build time and performance of the models. Figure 3.29 shows the mean

fit time (for a complete cross-validation) compared to the mean test score for the district heating

energy. The raw data show a positive correlation between longer fit times with higher mean test

scores; however, the hex plot version shows that there is a high density of data with a low mean

fit time and high test score. This pattern was consistent for the cases with the other response

variables.
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(a) Raw Data (b) Hex Plot

Figure 3.29: District heating energy build time compared to test score

Training Data Performance

The random forests models performed very well but require a long time to generate. The

random forests algorithm also has the built-in ability to determine the most important variable

as a byproduct of using random forests. The relative importance is a measure of how much the

variable reduces the mean square error. Figure 3.30 shows the cooling variable importance factors.

The greater the relative importance, the more sensitive the model was to that covariate. The most

important factor for cooling related energy use was the outdoor dry-bulb temperature, day of week,

and hour of day.
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(a) Cooling Electricity

(b) District Cooling Energy

Figure 3.30: Cooling response relative importances

Similarly, Figure 3.31 shows the important covariates for the heating electricity and district

heating hot water energy. The heating loads were more a function of the hour and day of week,

compared to the cooling energy loads.



66

(a) Heating Electricity

(b) District Heating Energy

Figure 3.31: Heating response relative importances

The ETS outlet temperature was modeled reasonably as a linear model. Figure 3.32 shows

that the random forests model that the most important covariate for predicting the ETS outlet

temperature was the ETS inlet temperature.
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Figure 3.32: ETS outlet temperature importance

Table 3.12 lists the performance of the random forest models based on the Pearson correlation

coefficient and the percent of down sampled data. As shown, using 15% down sampling of data

shows comparable performance to a dataset that includes 100% of the data.

Table 3.12: Random forest performance

Response PCC(15%

Down sample)

PCC (100%

Down sample)

Heating Electricity 0.989 0.999

Cooling Electricity 0.995 0.999

District Cooling Chilled Water Energy 0.997 0.999

District Heating Hot Water Energy 0.999 0.999

ETS Outlet Temperature 0.999 0.999

Figure 3.33 shows the Y-Y plots of the cooling electricity response, with and without hex-

binning. As shown, the correlations are reasonable, with a large amount of data around zero (based

on the hex plot). Figure 3.34 shows similar plots for the outlet temperature.
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(a) Raw data (b) Hex plot

Figure 3.33: Y-Y Plots for random forest cooling electricity

(a) Raw data (b) Hex plot

Figure 3.34: Y-Y Plots for random forest ETS outlet temperature

3.2.3.3 Support Vector Regression

The support vector regressions with a radial basis function performed well depending on

the response variable. An additional covariate was added to improve the algorithm. The added
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covariate was a state variable signifying if the HVAC system was off, in cooling mode, in heating

mode, or was heating and cooling during the sample hour. The SVR models took a prohibitive

amount of time to build on the entire dataset; therefore, the models were only built on the down-

sampled datasets.

Build Performance

The SVR models were built with scaled covariates. Also, if a covariate’s value had a cyclical

relationship, the results were transformed using the sine wave definition in the procedures section

above. The full dataset of 876,000 samples before splitting the training data was initially used;

however, the SVR model was unable to be trained due to the large amount of data causing memory

crashes. The 15% down sampled dataset was therefore used for analyzing the SVM ROM per-

formance. In addition, the hyper-parameter tuning using 3-fold cross-validation took a significant

amount of time. The grid search for the hyper-parameter tuning only consisted of 3 variables (ε, C,

and γ) and the predetermined values for each resulted in 36 fits. The 15% down sampled dataset

resulted in ≈90,000 training samples and the cross-validation for a single fit, in the worst case, took

≈50 minutes.

Figure 3.35: SVR build and cross-validation time, for 15% down sampled data

Figure 3.36 shows the mean test score of the cross-validation grid search as a function of the

mean fit time for the ETS outlet temperature. It shows that, for the ETS outlet temperature, the
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test score is not highly dependent on the fit time, that is, there are low fit times that perform better

than the higher fit times. This trend was consistent with the other response variables.

Figure 3.36: SVR build and cross-validation time for ETS outlet temperature, 15% down sampled

data

The grid search was set up for the SVR using the values specified in the background section.

All of the response variables ended up selecting the following parameters: γ = 0.5, ε = 0.25, and

C = 1. The gamma variable was higher than the default meaning that the radial basis function

had increased the ’radius’ and included more data in the kernel. The ε value was also higher than

the default resulting in a large tube area where the penalty value was not incurred.

Training Data Performance

Table 3.13 lists the performance of the support vector regression based on the Pearson correla-

tion coefficient. Values are shown for the 15% down sampled case with and without hyper-parameter

tuning. Other down sampled values were not investigated due to the inability to build large datasets

with support vector algorithms. In most cases, the hyper-parameter tuned parameters performed
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better than the untuned case. In general, the cooling response variables performed better than the

heating response variables.

Table 3.13: Support vector regression

Response PCC (no tuning) PCC (with tuning)

Heating Electricity 0.827 0.881

Cooling Electricity 0.974 0.984

District Cooling Chilled Water Energy 0.974 0.984

District Heating Hot Water Energy 0.850 0.919

ETS Outlet Temperature 0.995 0.995

Figures 3.37, Figure 3.38, and Figure 3.39 show the Y-Y plots for cooling electricity, heating

electricity, and ETS outlet temperature, respectively. Visually the models perform well. In the hex

plots below, values that were exactly (0,0) were removed in order to increase the visibility of the

hex bins. Due to the nature of the data sets, a large amount of data will be at 0,0 for heating and

cooling (if the model performs well) due to the nature of the system being off because it is either

the other season or night time. As discussed above, the addition of the HVAC state variable was

added to increase the detectability of the HVAC state and increase the performance. The cooling

electricity (and district cooling) both had values on the top left portion of the Y-Y plot (low actual

energy but higher modeled energy); however, these data do not appear in the hex plot, meaning

that the frequency of these points is low.
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(a) Cooling Electricity (b) Hex plot

Figure 3.37: Y-Y Plots of the cooling electricity for support vector regression

(a) Raw data (b) Hex plot

Figure 3.38: Y-Y Plots of the heating electricity for support vector regression
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(a) Raw data (b) Hex plot

Figure 3.39: Y-Y Plots for support vector regression ETS outlet temperature



Chapter 4

Results and Discussion

A small office and a retail building were modeled with and without an ETS in order to

generate the dataset used to build reduced order models. The results and discussion presented here

focus on the results of the reduced order models for only the small office building. The first section

discusses how the models performed relative to each other based on the withheld validation data,

the runtime performance, and the down sampling performance. The results for the retail building

are presented in Appendix B.4: Validation Results.

4.1 Model Performance

The model performance used the PCC metric to determine the performance of the various

models. The results are presented in Table 4.1 using the 15% down sampled data. As shown

the random forest and the SVR models performed well with PCC values greater than 0.9. The

linear model performed well for the ETS outlet temperature. Based on these results, the preferred

model would be the random forest; however, there are several other metrics of interest and will be

discussed in the following subsections.
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Table 4.1: PCC performance of reduced order models

Response ROM Type PCC

HeatingElectricity LinearModel 0.322

HeatingElectricity RandomForest 0.989

HeatingElectricity SVR 0.882

CoolingElectricity LinearModel 0.532

CoolingElectricity RandomForest 0.995

CoolingElectricity SVR 0.983

DistrictCoolingChilledWaterEnergy LinearModel 0.533

DistrictCoolingChilledWaterEnergy RandomForest 0.997

DistrictCoolingChilledWaterEnergy SVR 0.984

DistrictHeatingHotWaterEnergy LinearModel 0.342

DistrictHeatingHotWaterEnergy RandomForest 0.992

DistrictHeatingHotWaterEnergy SVR 0.919

ETSOutletTemperature LinearModel 0.980

ETSOutletTemperature RandomForest 0.999

ETSOutletTemperature SVR 0.995

4.1.1 Validation Data

The validation data was a random temporally contiguous 8,760 sample from the original

EnergyPlus models which was withheld before the data were split for training. The validation data

was loaded into memory and passed into each of the reduced order models. The results were stored

in a larger data frame. Each of the reduced order model results was compared to the EnergyPlus

model and two performance metrics were calculated, the CVRMSE and NMBE. As described

in Section Model Evaluation Criteria, the use of ASHRAE Guideline 14 was used to assess the

goodness of the reduced order models compared to the actual EnergyPlus model. Table 4.2 shows
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the results of the metrics. As shown, there were few models that fell within ASHRAE Guideline

14 requirements, however, overall, the SVR and the random forest models performed better on

predicting the energy and the linear model performed well on the ETS outlet temperature. The

cooling models overall fit better than the heating models.

Table 4.2: Performance of validation data

Response ROM Type NMBE CVRMSE

HeatingElectricity LinearModel 18.0 700

HeatingElectricity RandomForest 24.7 135

HeatingElectricity SVR 7.44 275

CoolingElectricity LinearModel 14.4 181.3

CoolingElectricity RandomForest 14.0 40.5

CoolingElectricity SVR 6.93 47.4

DistrictCoolingChilledWaterEnergy LinearModel 9.84 185

DistrictCoolingChilledWaterEnergy RandomForest 6.47 24.2

DistrictCoolingChilledWaterEnergy SVR 1.92 45.4

DistrictHeatingHotWaterEnergy LinearModel 15.9 733

DistrictHeatingHotWaterEnergy RandomForest 28.1 139

DistrictHeatingHotWaterEnergy SVR 7.05 289

ETSOutletTemperature LinearModel 0.29 1.39

ETSOutletTemperature RandomForest 2.45 2.93

ETSOutletTemperature SVR 0.612 2.16

In addition to the core performance metrics, three time periods were visually inspected to

investigate how well the reduced order models accounted for the variations based on the time of

year. The time periods are described below. The swing season was chosen to include a time period
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where both heating and cooling were most likely to occur, even within the same day.

(1) : Summer: July 01 to July 10

(2) : Winter: January 15 to January 25

(3) : Swing Season: March 01 to March 10

A few choice images are presented below to demonstrate the performance of the models. The

remaining images are in Appendix A.2.4: Validation Results. Figure 4.1 shows the performance

of the three models during the summer period. As shown, the random forest model follows the

actual data the best, although, slightly under predicting. The support vector model followed the

weekday modeled data well; however, the support vector regression was unable to predict the zero

weekend energy consumption for cooling. The data for district cooling energy performed similar to

the cooling electricity.

Figure 4.1: Summer validation period cooling electricity performance

Figure 4.2 shows the heating electricity in the summer period. As shown, the random forest

model was the only model that reasonably predicted no heating electricity during the summer.

The linear model predicted negative energy and the support vector regression erratically predicted

values around zero. The district heating energy models predicted similarly to the heating electricity.
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Figure 4.2: Summer validation period heating electricity performance

Figure 4.3 presents the ETS outlet temperature during the summer validation period. The

actual data has little variation due to the summer run period with a stable 24.8◦C. All three models

predicted between 24.4 and 25.2◦C.

Figure 4.3: Summer validation period ETS outlet temperature performance

The winter validation period visually performed similar to the summer validation. Figure 4.4

presents the modeled performance and shows that the random forest, again, performed the best;

however, the support vector regression was reasonable as well. Both the support vector regression
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and linear model had values below zero which are physically impossible.

Figure 4.4: Winter validation period cooling electricity performance

The winter validation period district heating performance is shown in Figure 4.5. Again, the

random forest model performed the best as it was able to track the peaks much better than the

support vector regression or the linear model.

Figure 4.5: Winter validation period district heating energy performance

The ETS outlet temperature for the winter validation period is shown in 4.6. For the ran-
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dom model selected out of the dataset, the random forest model underpredicted the ETS outlet

temperature by around 0.5◦C. In this case, the support vector regression predicted the higher ETS

outlet temperature the best, but poorly predicted the lower temperatures.

Figure 4.6: Winter validation period ETS outlet temperature performance

Finally, the swing season validation period results are presented in Figures 4.7, 4.8, and 4.9.

The random forest model tended to perform the best. As shown in the ETS outlet temperature

plot, the random forest model is best at handling the day-to-day swing due to the random forest

model’s training based on categorical variables and splitting trees.
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Figure 4.7: Swing season validation period cooling electricity performance

Figure 4.8: Swing season validation period heating electricity performance



82

Figure 4.9: Swing season validation period ETS outlet temperature performance

4.1.2 Runtime Performance

There were four metrics of interest in the runtime performance, 1) the size of the persisted

model, 2) the time to load the model from disk, 3) the time to run a single datapoint after loading

the model, and 4) the time to run 8,760 datapoints after loading the model.

The persisted size of the random forest models were large relative to other models, see Figure

4.10. The figure is presented on a log-scale and shows that the size difference between the support

vector regressions is several orders of magnitude larger than the linear models (≈ 3 MB compared

to ≈ 1 KB). The random forest models are also several orders of magnitude larger than the support

vector regression models (≈ 800 MB compared to ≈ 3 MB).
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Figure 4.10: Storage size of persisted models

The reason for the large random forest persisted disk size is due to the need to store all

of the trees. The support vector regression and the linear model are able to store mathematical

representations such as equations and support vectors. Figure 4.11 shows only a portion of the first

tree of the random forest which demonstrates the amount of data needed to represent the model.

In the case of the hyper-parameter tuned models, there were 200 trees that were chosen with the

max depth set to none, this greatly increases the size of the models that need to be persisted.
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Figure 4.11: Portion of the first tree of the random forest

The remaining three metrics are presented as averages in Table 4.3. As shown the time to

load the random forest model is the longest compared to the other models. The support vector

regression models took the longest to run an 8,760.
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Table 4.3: Load time and runtime of reduced order models

Type Avg Load Time (Sec) Avg Run Time - Single

(Sec)

Avg Run Time - 8760

(Sec)

Linear Model 0.00034 0.00291 0.00361

Random Forest 0.898 0.0109 0.163

SVR 0.066 0.036 2.56

Figure 4.12 and Figure 4.13 show the load times and runtimes, respectively. The data are

shown with log-scale on the time. The support vector regression runtime for the 8,760 datapoints

takes substantially longer. This is due in part in the need to pre-process the input data by scaling

the data and transforming the cyclical data. There are clear advantage to loading the model once

and processing as many datapoints as possible in chunks, instead of loading and processing single

datapoints one-by-one.

Figure 4.12: Load time as a function of the model type
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Figure 4.13: Run times as a function of the model type

4.1.3 Down Sampling Performance

Down sampling of the data was performed in order to decrease the build time and to reduce

the possibility of over fitting the data. All models were evaluated with 5% and 15% down sam-

pling; whereas only the linear and random forest models were evaluated with 25% and 100% down

sampling. The support vector algorithm was unable to handle more than 150,000 samples based

on the library chosen to do the analysis.

As the down sample was increased, the PCC did not appreciably increase; however, the build

times and persisted disk size increased. Figure 4.14 shows the increases in PCC based on all of the

models. The type of model is not important in the shown figure, rather, the lack of any significant

increase as the down sampling rate increased shows that the models are not necessarily better based

on a larger down sample size.
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Figure 4.14: PCC change based on down sample (Note: SVR only down sampled for 5% and 15%)

The use of down sampling decreased the size of the persisted models for the random forest by

more than one-quarter. The average size of the random forest persisted model for 5% down sample

was 300 MB whereas for the 25% down sample it was around 2 GB. Having a smaller persisted disk

size also reduced the load time of the model. Since the performance of the models did not vary

significantly when using the lower down sampling percentage, it is recommended to use the lowest

value possible when running analyses with reduced order models.

4.2 ROM Framework

A ROM Framework was developed in order to build, evaluate, validate, and run the reduced

order models. The framework is written in Python. The interface is currently a command line

utility that can be installed via source code [60].

The first stage of the ROM Framework is to build and evaluate the models. The ROM

Framework consumes a generic CSV file where each row is a sample or datapoint. An accompanying

JSON file is used to describe the data and options for the reduced order modeling algorithms. The

suggested workflow for using the ROM Framework is shown in Figure 4.15.
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Figure 4.15: Flowchart for building and running reduced order models

The first step when building and evaluating the models is to define the variables in the CSV

file. The definition is saved in a specific format as defined by the metadata JSON file. The file

describes where the results are stored, the name of the analysis, which reduced order models to

build/evaluate, any configuration option on the reduced order modeling algorithms, the down sam-

pling values (if needed), a list of covariates and their transformations, and, lastly, the response

variables. An example of the metadata.json file can be found in the ROM Framework documen-

tation. Information on accessing the documentation is found in Appendix D: ROM Framework

Information. The CSV and metadata JSON file are passed into the ROM Framework and, depend-

ing on the algorithm, undergo transformation and scaling. The reduced order modeling algorithm

then builds the model and persists the models to disk, as well as some high-level diagnostic plots

and metric CSV files. The user is then able to run an evaluation and a validation task on the

persisted models to further investigate model performance. The result of these tasks are diagnostic

plots and CSV files. Lastly, the user has the ability to run any of the persisted models using an

analysis definition JSON file. An example of the file is shown in Figure 4.16.
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{

"variables": [

{

"name": "Month",

"data_source": "epw",

"data_source_field": "month"

},

{

"name": "Hour",

"data_source": "epw",

"data_source_field": "hour"

},

{

"name": "DayofWeek",

"data_source": "epw",

"data_source_field": "day"

},

{

"name": "SiteOutdoorAirDrybulbTemperature",

"data_source": "epw",

"data_source_field": "dry_bulb"

},

{

"name": "SiteOutdoorAirRelativeHumidity",

"data_source": "epw",

"data_source_field": "rh"

},

{

"name": "ETSInletTemperature",

"data_source": "value",

"value": 20

},

{

"name": "lpd_average",

"data_source": "value",

"value": 9.4

}

]

}

Figure 4.16: Analysis definition example input file

The example analysis definition file allows the user to specify either fixed values (e.g. ETSIn-

letTemperature) or values from an EnergyPlus weather file (e.g. Month, Hour, SiteOutdoorAirDry-
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bulbTemperature). The user is also able to specify a distribution or specific array of values to sweep

over. In the example above, the analysis generated results in order to visualize the cooling and

heating energy use over 8,760 hours with a fixed ETS inlet temperature of 20◦C and LPD of 9.4

W/m2. The random forest reduced order model was used in the example. Figure 4.17 and Figure

4.18 show the heat maps of the cooling energy and heating energy, respectively.

(a) Cooling Electricity (b) District Chilled Water Energy

Figure 4.17: Flood plot of random forest model with fixed inlet temperature
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(a) Heating Electricity (b) District Hot Water Energy

Figure 4.18: Flood plot of random forest model with fixed inlet temperature

As shown in the images, with a fixed ETS inlet temperature, the cooling energy consumption

was higher than the heating overall. During the cooling season, the energy extracted from the

ambient loop was around five times higher than the electrical energy provided by the water-to-

water heat pump’s compression cycle. There are several periods in the heating heat map where

there was no heating needed, and in many cases, the district hot water was covering the majority of

the heating demand (note that the scales between the two plots are slightly different). The ROM

Framework allows the user to quickly run these type of analyses without needing to fully articulate

an EnergyPlus model.
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4.2.1 Integrating Models with Other Tools

One of the main outcomes of this thesis was to create a method for connecting the reduced

order models with other tools (namely Modelica). There were three methods that were investigated:

(1) calling from a command line interface (CLI) with passed arguments

(2) called directly from Python by loading a custom developed library

(3) storing results in an n-dimension comma-separated values (CSV) files and loaded into the

analysis tool

4.2.1.1 Command Line Interface

The ROM Framework has a CLI which consumes an analysis definition file; however, a simpler

CLI was created to connect third-party applications without needing the analysis definition file.

An example is shown in Figure 4.19. The CLI takes several arguments to define 1) the building

type (analysis id), 2) the ROM model (model), 3) the response variable, and 4) all of the covariates

needed to perform the predict procedure. This is a very customized approach to predict any

response variables because any changes to the covariates (i.e. adding/removing) will require an

update to the CLI. The other limitation to this method is that each CLI call requires fully loading

the persisted reduced order models from disk which can be prohibitive as in the case of the random

forest models. Lastly, the result of this CLI is simply printed to the screen; therefore, any third-

party application calling the CLI will need to capture STDOUT and parse the result.
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parser = argparse.ArgumentParser ()

parser.add_argument(’-f’, ’--file’, help=’Description file to use’

, default=’metamodels.json’)

parser.add_argument(’-a’, ’--analysis_id ’, default=’

smoff_parametric_sweep ’, help=’ID of the Analysis Models ’)

parser.add_argument(’--model_type ’, default=’RandomForest ’,

choices =[’LinearModel ’, ’RandomForest ’, ’SVR’])

parser.add_argument(’-r’, ’--responses ’, nargs=’*’, default =[’

HeatingElectricity ’], help=’List of responses ’)

parser.add_argument(’-d’, ’--day_of_week ’, type=int , default=0,

help=’Day of Week: 0-Sun to 6-Sat’)

parser.add_argument(’-m’, ’--month’, type=int , default=1, help=’

Month: 1-Jan to 12-Dec’)

parser.add_argument(’-H’, ’--hour’, type=int , default=9, help=’

Hour of Day: 0 to 23’)

parser.add_argument(’-T’, ’--outdoor_drybulb ’, type=float , default

=-5, help=’Outdoor Drybulb Temperature ’)

parser.add_argument(’-RH’, ’--outdoor_rh ’, type=float , default =50,

help=’Percent Outdoor Relative Humidity ’)

parser.add_argument(’-i’, ’--inlet_temp ’, type=float , default =20,

help=’Inlet Temperature ’)

parser.add_argument(’--lpd’, type=float , default =9.5, help=’

Lighting Power Density (W/m2)’)

args = parser.parse_args ()

rom = Metamodels(args.file)

rom.set_analysis(args.analysis_id)

rom.load_models(args.model_type , models_to_load=args.responses ,

root_path=’smoff ’)

data = {

’Month’: args.month ,

’Hour’: args.hour ,

’DayofWeek ’: args.day_of_week ,

’SiteOutdoorAirDrybulbTemperature ’: args.outdoor_drybulb ,

’SiteOutdoorAirRelativeHumidity ’: args.outdoor_rh ,

’lpd_average ’: args.lpd ,

’ETSInletTemperature ’: args.inlet_temp ,

}

df = pd.DataFrame ([data])

for response in args.responses:

v = rom.yhat(response , df)

print(v[0])

Figure 4.19: Example CLI implementation
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This CLI method was originally proposed for Modelica, however, Modelica is unable to pass

categorical variables with ease; therefore, the second approach was pursued as discussed in the next

subsection.

4.2.1.2 Python Method

The second approach of connecting third-party tools was exposing a Python method. In the

case of Modelica, a Python method can be accessed at each time step in the Modelica simulation.

Figure 4.20 shows an example of how the method run model was created for use in Modelica. As

shown, the argument to the method is an array of numbers (either floats or integers). Modelica’s

library does not easily allow strings or categorical variables, therefore, the enumerations were

mapped to integers in Modelica and the Python method unmapped the values as needed. This

method was non-ideal and hopefully, future versions of Modelica can expand the Python-method

implementation to be more flexible.

The advantage of the Python-based method is the ability for a third-party application to

directly call and receive the result of the method without needing to parse STDOUT. This method

though suffers from the same need as the CLI to load the persisted reduced order model every time

step. The ability to preload the reduced order models in Modelica was investigated but did not

work as expected, thus, further research is needed.
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def run_model(values):

model = int(values [0])

response = int(values [1])

data = {

’Month’: int(values [2]),

’Hour’: int(values [3]),

’DayofWeek ’: int(values [4]),

’SiteOutdoorAirDrybulbTemperature ’: float(values [5]),

’SiteOutdoorAirRelativeHumidity ’: float(values [6]),

’lpd_average ’: float(values [7]),

’ETSInletTemperature ’: float(values [8]),

}

# Convert the model integer to correct ROM type

if model == 1:

model = ’LinearModel ’

elif model == 2:

model = ’RandomForest ’

elif model == 3:

model = ’SVR’

# Convert the response integer to the correct type

if response == 1:

response = ’CoolingElectricity ’

elif response == 2:

response = ’HeatingElectricity ’

elif response == 3:

response = ’DistrictCoolingChilledWaterEnergy ’

elif response == 4:

response = ’DistrictHeatingHotWaterEnergy ’

elif response == 5:

response = ’ETSOutletTemperature ’

rom = load_models(’smoff/metamodels.json’, model , [response ])

print(’Predicting ...’)

df = pd.DataFrame ([data])

print(rom.yhat(response , df)[0])

v = rom.yhat(response , df)[0]

print(f’Predicted value is {v}’)

return v

Figure 4.20: Example Python method implementation
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4.2.1.3 n-Dimensional CSV Export

The last method to interconnect third-party applications was simply exporting multidimen-

sional CSV files. The ROM Frameworks analysis definition interface was designed for this purpose.

The analysis definition file can specify distributions of data and the ROM Framework can export

multiple CSV files based on a pivot variable. Figure 4.21 shows an example of how the ETS inlet

temperature will be sampled 10-times inclusively between 15 and 25◦C.

{

"name": "ETSInletTemperature",

"data_source": "distribution",

"distribution": {

"minimum": 15,

"maximum": 25,

"number_of_samples": 10

}

}

Figure 4.21: Analysis definition with distribution

The analysis definition can handle more than one variable distribution which results in the

full combinatorial of all the variables. The ROM Framework will then return CSV files based on

each of the swept variables. In the case of the ETS inlet temperature, the result will be a table

with inlet temperatures across the top, date times on the y-axis, and the matrix will be the value

of the response variable. There is one file for each response variable. Figure 4.22 shows a view of

one of the exported CSV files. This file was used to approximate the heating electricity of the small

office building.
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Figure 4.22: CSV example export

Ultimately, this method was chosen for the Modelica integration due to how fast Modelica

could load and interpolate values from CSV files compared to the overhead in loading the reduced

order models every time step.



Chapter 5

Summary and Conclusions

In the United States, district heating and cooling systems are widely underutilized. Based

on the literature review, around 43% of the heating demands in the United States could be met

using district heating systems. Conventional district heating systems use high-temperature water

or steam to provide heat to the buildings. These systems have high system losses as well as few

available types of heat source. More recently, there has been an effort to further reduce the district

heating system water temperatures to near ambient temperatures. The lower temperatures reduce

the system losses and enable additional heating sources such as the heat rejected from commercial

refrigeration system and data centers.

This thesis discussed the background of district energy systems, explored modeling techniques

for buildings, and provided a new modeling strategy for quickly evaluating district energy systems.

A reduced order modeling framework (ROM Framework) was developed to build, evaluate, and

validate various reduced order modeling algorithms. The ROM Framework is able to consume any

building energy modeling result file (as a CSV) and generate reusable reduce order models based

on the supplied covariates and response variables. The overarching goals were to:

(1) provide a framework for generating and evaluating various reduced order models for ambient

loop analysis,

(2) estimate building energy loads based on various covariates (such as inlet ambient loop

supply temperature, date and time, and various building characteristics),
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(3) evaluate the performance of the reduced order models including creation time, load time,

execution time, and accuracy.

5.1 Building Energy Models

Two building types were evaluated, a retail and small office. The majority of the results

presented are for the small office. The results for the retail building are provided in Appendix B:

Retail Building Analysis Results. The building energy models were generated using OpenStudio

and EnergyPlus. A parametric analysis was run to create a diverse set of buildings based on the

district energy inlet temperatures, lighting power density, and various date and time metrics.

5.2 Reduced Order Models

Three reduced order modeling algorithms were evaluated: linear model, random forest, and

support vector regression. The originating building energy modeling results were a large dataset

with nearly a million samples. The reduced order modeling algorithms were able to fit reasonable

models but in the case of support vector regression, was unable to mathematically compute the

vectors on the full sample. Table 5.1 summarizes the small office average Pearson’s correlation

coefficient (PCC) based on the reduced order model type. As shown the PCC of both the random

forest and SVR models performed very well (greater than 0.9) on average; however, the build and

cross-validation time for the random forest was significantly lower than that of the SVR.
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Table 5.1: Average model performance

Model Type Avg PCC Avg Build

Time

Avg CV Time Avg Load Time Avg Run Time

Linear Model 0.62 0.02 0.00 0.0002 0.003

Random Forest 0.99 3.77 981.1 0.739 0.011

SVR 0.96 39.2 2708 0.061 0.033

Depending on the use case of the reduced order models, it may be reasonable to use the SVR

model due to quicker load times compared to the random forest. Another option would be to down

sample the random forest model even more in order to reduce the size of the persisted model since

the disk size of the model is directly proportional to the size of the forest.

Overall, the performance of the linear model was poor for the energy response variables;

however performed well for the temperature variable. Figure 5.1 shows the HVAC energy as a

function of outdoor dry-bulb temperature for the three reduced order models. The difference

is indistinguishable between the random forest and SVR; however, the linear model is obviously

problematic.
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Figure 5.1: Energy consumption vs outdoor dry-bulb temperature

The ability to evaluate different reduced order models, such as linear models, random forests,

and support vector machines was easily accomplished using the developed ROM Framework.

The ROM Framework also enabled the integration of the reduced order models with system

modeling tools such as Modelica. Three different methods of tool integration were investigated,

CLI interface, direct python method, and n-dimensional CSV files. The three options were explored

with Modelica to determine the best integration path. Due to Modelica’s need to load the models

at every time step, the CSV files were initially chosen. Extensions to Modelica and the Modelica

building’s library are being investigated to load the reduced order models upon model initialization;

therefore, the only time incurred would be the model runtime for a single datapoint which is small

(0.05 seconds). Additionally, since the linear model performed well for the ETS outlet temperature,

the model could easily be programmed as a simple C function in Modelica.
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5.3 Future Work

The ability to use quickly executed reduced order models for evaluating district energy power

and supplemental power needed for heating and cooling allows for analyses that would be otherwise

time prohibitive. A district energy system network topology analysis is possible using the reduced

order modeled since the ETS inlet temperature is one of the covariates. The questions that can be

answered in the near future using these models include:

(1) Which buildings should be connected to the 5GDHC system?

(2) What is the best network topology for the 5GDHC?

(3) What should be the optimal network topology if new heating or cooling sources are added

to the loop?

(4) If operating schedules change for a building, should the building still be connected?

(5) How should we control the buildings?

(6) What should the current supply temperature of the 5GDHC loop be at a specific date and

time?

There are three areas for future work including 1) extending building energy models and

covariates, 2) extending the ROM Framework functionality, and 3) integrating reduced order models

with third-party applications.

5.3.1 Extending Building Energy Models and Covariate

The ability to run different buildings would allow for more comprehensive network topology

analyses due to a larger building selection. There are several building energy model extensions and

improvements that could benefit from future work including:

(1) Generic building types: Currently, the building energy models used the DOE Prototype

buildings. These buildings have fixed geometry and dimensions. There are some generic
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OpenStudio measures that exist that are able to create buildings based on requested floor

areas and aspect ratios. Using these generic building types would allow for more flexibility.

(2) Expose additional covariates: Covariates are directly linked to OpenStudio measures. Ad-

ditional covariates allow for flexibility with the reduced order models and ultimately would

allow for more load diversity in the network topology analyses. An example of an additional

covariate would be a “schedule shifter” which would take a building’s operating schedule

to dynamically create the many needed modeling schedules.

(3) Update OpenStudio Server and OpenStudio Standards: OpenStudio Server and OpenStudio

Standards are actively developed projects and inevitably the ambient loop measures that

were developed as part of this thesis will need to be updated.

5.3.2 Extending ROM Framework

Presently, the ROM Framework only evaluated linear models, random forests, and support

vector regressions. There are hundreds of other methods that could be used to create reasonably

performing reduced order models. The ROM Framework is designed with a base class for “easy”

extension. Future work for the ROM Framework includes:

(1) Additional Models: Add additional models to be evaluated such as artificial neural networks,

classification and regression trees, autoregressive moving average (ARMA), wavelets, etc.

(2) Additional Parameters: Expose various model parameters based on the type of reduced

order model. For example, allow for different basis functions or log-based normalizations.

(3) More diagnostic plots and tabular data: Hundreds of images and CSV files are created

during the building the reduced order models. There is plenty of research needed to find

better ways to present the performance results.

(4) Build Time Performance: Decrease the time to build and evaluate the reduced order models

by using optimization for cross-validation instead of grid search.
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(5) Load Time Performance: The best performing reduced order model takes too long to load

and more research is needed to reduce the persisted size of the models thereby decreasing

the load time.

5.3.3 Integration of Reduced Order Models with Third-party Applications

The ROM Framework was designed to easily load an already built reduced order model;

however, the ability for the ROM Framework to integrate with generic third-party applications is

still lacking. Three example scripts were created to demonstrate integration but future work could

include:

(1) Generic CLI : Add a method to the ROM Framework that translates the variables in the

metamodels.json file to dynamically create a CLI.

(2) Generic Python Method : Currently the Python method requires an integer-based map-

ping to categorical variables. A reasonable extension would be to dynamically convert the

integers to the categorical values based on a definition in the metadata.json file.
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[2] L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption infor-
mation,” Energy and Buildings, vol. 40, pp. 394–398, jan 2008.

[3] L. Hong, N. Zhou, D. Fridley, W. Feng, and N. Khanna, “Modeling China’s Building Floor-
Area Growth and the Implications for Building Materials and Energy Demand,” in 2014
ACEEE Summer Study on Energy Efficiency in Buildings, (Pacific Grove, CA), 2014.

[4] Tsinghua University Building Energy Research Center, “China Building Energy Use 2016,”
Tech. Rep. July, Building Energy Research Center Tsinghua University, 2016.

[5] EIA (Energy Information Administration), “Commercial Buildings Energy Consumption Sur-
vey (CBECS),” tech. rep., Department of Energy (DOE), 2012.

[6] EIA (Energy Information Administration), “Residential Energy Consumption Survey
(RECS),” tech. rep., Department of Energy (DOE), 2015.

[7] EIA (Energy Information Administration), “U.S. District Energy Services Market Characteri-
zation,” tech. rep., ICF L.L.C. and the International District Energy Association, Washington,
DC, 2018.

[8] H. Lund, S. Werner, R. Wiltshire, S. Svendsen, J. E. Thorsen, F. Hvelplund, and B. V.
Mathiesen, “4th Generation District Heating (4GDH). Integrating smart thermal grids into
future sustainable energy systems.,” Energy, vol. 68, pp. 1–11, apr 2014.

[9] J. von Rhein, “Modeling, Simulation, and Life-Cost Analysis of Fifth-Generation District
Heating and Cooling Networks,” 2018.

[10] J. Wagner and S. P. Kutska, “District Energy Denver’s Historic System: Still Full Steam
Ahead,” International District Energy Association, vol. 94, no. 4, pp. 16–20, 2008.
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Appendix A

Supporting Analysis Results

A.1 Ambient Loop HVAC System

Figure A.1: Ambient loop supply loop
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Figure A.2: Ambient loop demand loop with water-to-air heat pumps
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A.2 Small Office Building Analysis Results

A.2.1 Baseline Results

Figure A.3: Small office baseline HVAC system
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A.2.2 Parametric Analyses Results

Figure A.4: Small office building parallel coordinate plot
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A.2.3 Reduced Order Model Results

A.2.3.1 Linear Models

Figure A.5: Small Office: Linear model build time based on response variable, no down sampling

Figure A.6: Small Office: Diagnostic plot for heating electricity
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Figure A.7: Small Office: Diagnostic plot for cooling electricity

Figure A.8: Small Office: Diagnostic plot for district cooling energy
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Figure A.9: Small Office: Diagnostic plot for district heating energy

Figure A.10: Small Office: Diagnostic plot for ETS outlet temperature
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(a) Raw Data (b) Hex Plot

Figure A.11: Small Office: Heating electricity

(a) Raw Data (b) Hex Plot

Figure A.12: Small Office: Cooling electricity
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(a) Raw Data (b) Hex Plot

Figure A.13: Small Office: District cooling energy

(a) Raw Data (b) Hex Plot

Figure A.14: Small Office: District heating energy
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(a) Raw Data (b) Hex Plot

Figure A.15: Small Office: ETS outlet temperature

A.2.3.2 Random Forest

Figure A.16: Small Office: Heating electricity relative importance
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Figure A.17: Small Office: Cooling electricity relative importance

Figure A.18: Small Office: District cooling energy relative importance

Figure A.19: Small Office: District heating energy relative importance
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Figure A.20: Small Office: ETS outlet temperature importance

(a) Raw Data (b) Hex Plot

Figure A.21: Small Office: Heating electricity
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(a) Raw Data (b) Hex Plot

Figure A.22: Small Office: Cooling electricity

(a) Raw Data (b) Hex Plot

Figure A.23: Small Office: District cooling energy
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(a) Raw Data (b) Hex Plot

Figure A.24: Small Office: District heating energy

(a) Raw Data (b) Hex Plot

Figure A.25: Small Office: ETS outlet temperature
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A.2.3.3 Support Vector Regression

(a) Raw Data (b) Hex Plot

Figure A.26: Small Office: Heating electricity

(a) Raw Data (b) Hex Plot

Figure A.27: Small Office: Cooling electricity
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(a) Raw Data (b) Hex Plot

Figure A.28: Small Office: District cooling energy

(a) Raw Data (b) Hex Plot

Figure A.29: Small Office: District heating energy
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(a) Raw Data (b) Hex Plot

Figure A.30: Small Office: ETS outlet temperature

A.2.4 Validation Results

Figure A.31: Small Office: Load time as a function of the model type
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Figure A.32: Small Office: Run times as a function of the model type

Figure A.33: Small Office: Energy Consumption vs Outdoor Dry-Bulb Temperature
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Figure A.34: Small Office: Summer validation period cooling electricity performance

Figure A.35: Small Office: Summer validation period district cooling energy
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Figure A.36: Small Office: Summer validation period heating electricity performance

Figure A.37: Small Office: Summer validation period district heating energy
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Figure A.38: Small Office: Summer validation period ETS outlet temperature performance

Figure A.39: Small Office: Winter validation period cooling electricity performance
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Figure A.40: Small Office: Winter validation period district cooling energy

Figure A.41: Small Office: Winter validation period heating electricity performance
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Figure A.42: Small Office: Winter validation period district heating energy

Figure A.43: Small Office: Winter validation period ETS outlet temperature performance
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Figure A.44: Small Office: Swing validation period cooling electricity performance

Figure A.45: Small Office: Swing validation period district cooling energy
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Figure A.46: Small Office: Swing validation period heating electricity performance

Figure A.47: Small Office: Swing validation period district heating energy
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Figure A.48: Small Office: Swing validation period ETS outlet temperature performance



Appendix B

Retail Building Analysis Results

B.1 Baseline Results

Figure B.1: Retail baseline HVAC system
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Figure B.2: Retail baseline monthly electricity energy end use

Figure B.3: Retail baseline monthly gas energy end use

Figure B.4: Retail baseline with ETS monthly electricity energy end use
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B.2 Parametric Analysis Results

Figure B.5: Retail building parallel coordinate plot
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B.3 Reduced Order Model Results

B.3.1 Linear Models

Figure B.6: Linear model build time based on response variable, no down sampling

Figure B.7: Retail: Diagnostic plot for heating electricity
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Figure B.8: Retail: Diagnostic plot for cooling electricity

Figure B.9: Retail: Diagnostic plot for district cooling energy
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Figure B.10: Retail: Diagnostic plot for district heating energy

Figure B.11: Retail: Diagnostic plot for ETS outlet temperature
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(a) Raw Data (b) Hex Plot

Figure B.12: Retail: Heating electricity

(a) Raw Data (b) Hex Plot

Figure B.13: Retail: Cooling electricity
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(a) Raw Data (b) Hex Plot

Figure B.14: Retail: District cooling energy

(a) Raw Data (b) Hex Plot

Figure B.15: Retail: District heating energy
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(a) Raw Data (b) Hex Plot

Figure B.16: Retail: ETS outlet temperature

B.3.2 Random Forest

Figure B.17: Random forest build and cross-validation time
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(a) Raw Data (b) Hex Plot

Figure B.18: District heating energy build time compared to test score

Figure B.19: Retail: Heating electricity relative importance
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Figure B.20: Retail: Cooling electricity relative importance

Figure B.21: Retail: District cooling energy relative importance

Figure B.22: Retail: District heating energy relative importance
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Figure B.23: Retail: ETS outlet temperature importance

(a) Raw Data (b) Hex Plot

Figure B.24: Retail: Heating electricity



147

(a) Raw Data (b) Hex Plot

Figure B.25: Retail: Cooling electricity

(a) Raw Data (b) Hex Plot

Figure B.26: Retail: District cooling energy
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(a) Raw Data (b) Hex Plot

Figure B.27: Retail: District heating energy

(a) Raw Data (b) Hex Plot

Figure B.28: Retail: ETS outlet temperature
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B.3.3 Support Vector Regression

Figure B.29: Retail: SVR build and cross-validation time, for 5% down sampled data

Figure B.30: Retail: SVR build and cross-validation time for ETS outlet temperature, 5% down

sampled data
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(a) Raw Data (b) Hex Plot

Figure B.31: Retail: Heating electricity

(a) Raw Data (b) Hex Plot

Figure B.32: Retail: Cooling electricity
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(a) Raw Data (b) Hex Plot

Figure B.33: Retail: District cooling energy

(a) Raw Data (b) Hex Plot

Figure B.34: Retail: District heating energy
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(a) Raw Data (b) Hex Plot

Figure B.35: Retail: ETS outlet temperature
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B.4 Validation Results

Table B.1: Retail: PCC performance of reduced order models

Response ROM Type PCC

HeatingElectricity LinearModel 0.974

HeatingElectricity RandomForest 0.996

HeatingElectricity SVR 0.992

CoolingElectricity LinearModel 0.735

CoolingElectricity RandomForest 0.987

CoolingElectricity SVR 0.935

DistrictCoolingChilledWaterEnergy LinearModel 0.739

DistrictCoolingChilledWaterEnergy RandomForest 0.990

DistrictCoolingChilledWaterEnergy SVR 0.942

DistrictHeatingHotWaterEnergy LinearModel 0.400

DistrictHeatingHotWaterEnergy RandomForest 0.947

DistrictHeatingHotWaterEnergy SVR 0.832

ETSOutletTemperature LinearModel 0.974

ETSOutletTemperature RandomForest 0.996

ETSOutletTemperature SVR 0.992
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Table B.2: Retail: Performance of validation data

Response ROM Type NMBE CVRMSE

HeatingElectricity LinearModel 1.18 180

HeatingElectricity RandomForest 1.81 43.7

HeatingElectricity SVR 1.77 117

CoolingElectricity LinearModel 4.6 114

CoolingElectricity RandomForest 9.67 31.8

CoolingElectricity SVR 9.93 58.6

DistrictCoolingChilledWaterEnergy LinearModel 3.20 127

DistrictCoolingChilledWaterEnergy RandomForest 2.03 26.0

DistrictCoolingChilledWaterEnergy SVR 4.14 60.3

DistrictHeatingHotWaterEnergy LinearModel 3.43 276

DistrictHeatingHotWaterEnergy RandomForest 2.97 93.7

DistrictHeatingHotWaterEnergy SVR 4.90 176

ETSOutletTemperature LinearModel 1.05 180

ETSOutletTemperature RandomForest 3.24 43.7

ETSOutletTemperature SVR 1.75 117
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Figure B.36: Retail: Model disk size

Table B.3: Retail: Load time and runtime of reduced order models

Type Avg Load

Time (Sec)

Avg Run Time

- Single (Sec)

Avg Run Time

- 8760 (Sec)

Linear Model 0.0003 0.0028 0.0036

Random Forest 0.457 0.011 0.157

SVR 0.032 0.036 2.13

Figure B.37: Retail: Load time as a function of the model type
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Figure B.38: Retail: Run times as a function of the model type

Figure B.39: Retail: Energy Consumption vs Outdoor Dry-Bulb Temperature
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Figure B.40: Retail: Summer validation period cooling electricity performance

Figure B.41: Retail: Summer validation period district cooling energy
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Figure B.42: Retail: Summer validation period heating electricity performance

Figure B.43: Retail: Summer validation period district heating energy
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Figure B.44: Retail: Summer validation period ETS outlet temperature performance

Figure B.45: Retail: Winter validation period cooling electricity performance
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Figure B.46: Retail: Winter validation period district cooling energy

Figure B.47: Retail: Winter validation period heating electricity performance
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Figure B.48: Retail: Winter validation period district heating energy

Figure B.49: Retail: Winter validation period ETS outlet temperature performance
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Figure B.50: Retail: Swing validation period cooling electricity performance

Figure B.51: Retail: Swing validation period district cooling energy
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Figure B.52: Retail: Swing validation period heating electricity performance

Figure B.53: Retail: Swing validation period district heating energy
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Figure B.54: Retail: Swing validation period ETS outlet temperature performance



Appendix C

OpenStudio Measures Source Code

C.1 Ambient Loop Prototype Building Measure

class AmbientLoopPrototypeBuilding < OpenStudio :: Measure ::

ModelMeasure

def name

return "Ambient Loop Prototype Building"

end

def description

return "Ambient Loop Prototype Building"

end

def modeler_description

return "Ambient Loop Prototype Building"

end

def arguments(model)

args = OpenStudio :: Measure :: OSArgumentVector.new

# Make an argument for the building type

building_type_chs = OpenStudio :: StringVector.new

building_type_chs << ’SecondarySchool ’

building_type_chs << ’PrimarySchool ’

building_type_chs << ’SmallOffice ’

building_type_chs << ’MediumOffice ’

building_type_chs << ’LargeOffice ’

building_type_chs << ’SmallHotel ’

building_type_chs << ’LargeHotel ’

building_type_chs << ’Warehouse ’

building_type_chs << ’RetailStandalone ’

building_type_chs << ’RetailStripmall ’

building_type_chs << ’QuickServiceRestaurant ’
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building_type_chs << ’FullServiceRestaurant ’

building_type_chs << ’MidriseApartment ’

building_type_chs << ’HighriseApartment ’

building_type_chs << ’Hospital ’

building_type_chs << ’Outpatient ’

building_type = OpenStudio :: Measure :: OSArgument.

makeChoiceArgument(’building_type ’, building_type_chs , true

)

building_type.setDisplayName(’Building Type.’)

building_type.setDefaultValue(’SmallOffice ’)

args << building_type

# Make an argument for the template

template_chs = OpenStudio :: StringVector.new

template_chs << ’DOE Ref Pre -1980’

template_chs << ’DOE Ref 1980 -2004’

template_chs << ’90.1 -2004’

template_chs << ’90.1 -2007’

# template_chs << ’189.1-2009 ’

template_chs << ’90.1 -2010’

template_chs << ’90.1 -2013’

template_chs << ’NECB 2011’

template = OpenStudio :: Measure :: OSArgument.makeChoiceArgument(

’template ’, template_chs , true)

template.setDisplayName(’Template.’)

template.setDefaultValue(’90.1 -2010’)

args << template

# Make an argument for the climate zone

climate_zone_chs = OpenStudio :: StringVector.new

climate_zone_chs << ’ASHRAE 169 -2006 -1A’

# climate_zone_chs << ’ASHRAE 169 -2006 -1B’

climate_zone_chs << ’ASHRAE 169 -2006 -2A’

climate_zone_chs << ’ASHRAE 169 -2006 -2B’

climate_zone_chs << ’ASHRAE 169 -2006 -3A’

climate_zone_chs << ’ASHRAE 169 -2006 -3B’

climate_zone_chs << ’ASHRAE 169 -2006 -3C’

climate_zone_chs << ’ASHRAE 169 -2006 -4A’

climate_zone_chs << ’ASHRAE 169 -2006 -4B’

climate_zone_chs << ’ASHRAE 169 -2006 -4C’

climate_zone_chs << ’ASHRAE 169 -2006 -5A’

climate_zone_chs << ’ASHRAE 169 -2006 -5B’

# climate_zone_chs << ’ASHRAE 169 -2006 -5C’

climate_zone_chs << ’ASHRAE 169 -2006 -6A’

climate_zone_chs << ’ASHRAE 169 -2006 -6B’

climate_zone_chs << ’ASHRAE 169 -2006 -7A’

# climate_zone_chs << ’ASHRAE 169 -2006 -7B’
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climate_zone_chs << ’ASHRAE 169 -2006 -8A’

# climate_zone_chs << ’ASHRAE 169 -2006 -8B’

climate_zone_chs << ’NECB HDD Method ’

climate_zone = OpenStudio :: Measure :: OSArgument.

makeChoiceArgument(’climate_zone ’, climate_zone_chs , true)

climate_zone.setDisplayName(’Climate Zone.’)

climate_zone.setDefaultValue(’ASHRAE 169 -2006 -2A’)

args << climate_zone

return args

end

# define what happens when the measure is run

def run(model , runner , user_arguments)

super(model , runner , user_arguments)

# Use the built -in error checking

if !runner.validateUserArguments(arguments(model),

user_arguments)

return false

end

# Assign the user inputs to variables that can be accessed

across the measure

building_type = runner.getStringArgumentValue(’building_type ’,

user_arguments)

template = runner.getStringArgumentValue(’template ’,

user_arguments)

climate_zone = runner.getStringArgumentValue(’climate_zone ’,

user_arguments)

# path is relative to the run directory

run_dir = File.join(’models ’)

FileUtils.mkdir_p run_dir unless Dir.exist? run_dir

runner.registerInfo "Found run dir to be #{ run_dir}"

new_model = OpenStudio :: Model:: Model.new

new_model.create_prototype_building(building_type , template ,

climate_zone , ’USA_CO_Golden -NREL .724666 _TMY3.epw’)

# For some reason new_model.save does not work inside the

measure.

File.open("#{ run_dir }/ prototype.osm", ’w’) {|f| f << new_model

.to_s}

# remove existing objects from model
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handles = OpenStudio :: UUIDVector.new

model.objects.each do |obj|

handles << obj.handle

end

model.removeObjects(handles)

model.addObjects(new_model.toIdfFile.objects)

# model change timestep to only one hour

timestep = model.getTimestep

timestep.setNumberOfTimestepsPerHour (1)

# echo the new space ’s name back to the user

runner.registerInfo("Model replaced.")

# report final condition of model

runner.registerFinalCondition("AmbientLoopSmallOffice Ran")

return true

end

end

AmbientLoopPrototypeBuilding.new.registerWithApplication

C.2 Change Building Location Measure

# Authors : Nicholas Long , David Goldwasser

# Simple measure to load the EPW file and DDY file

class ChangeBuildingLocation < OpenStudio :: Measure :: ModelMeasure

Dir[File.dirname(__FILE__) + ’/resources /*.rb’].each { |file|

require file }

# resource file modules

include OsLib_HelperMethods

# define the name that a user will see , this method may be

deprecated as

# the display name in PAT comes from the name field in measure.

xml

def name

’ChangeBuildingLocation ’

end

# define the arguments that the user will input

def arguments(model)

args = OpenStudio :: Measure :: OSArgumentVector.new
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weather_file_name = OpenStudio :: Measure :: OSArgument.

makeStringArgument(’weather_file_name ’, true)

weather_file_name.setDisplayName(’Weather File Name’)

weather_file_name.setDescription(’Name of the weather file to

change to. This is the filename with the extension (e.g.

NewWeather.epw). Optionally this can inclucde the full file

path , but for most use cases should just be file name.’)

args << weather_file_name

# make choice argument for climate zone

choices = OpenStudio :: StringVector.new

choices << ’1A’

choices << ’1B’

choices << ’2A’

choices << ’2B’

choices << ’3A’

choices << ’3B’

choices << ’3C’

choices << ’4A’

choices << ’4B’

choices << ’4C’

choices << ’5A’

choices << ’5B’

choices << ’5C’

choices << ’6A’

choices << ’6B’

choices << ’7’

choices << ’8’

choices << ’Lookup From Stat File’

climate_zone = OpenStudio :: Measure :: OSArgument.

makeChoiceArgument(’climate_zone ’, choices , true)

climate_zone.setDisplayName(’Climate Zone.’)

climate_zone.setDefaultValue(’Lookup From Stat File’)

args << climate_zone

# make an argument for use_upstream_args

use_upstream_args = OpenStudio :: Measure :: OSArgument.

makeBoolArgument(’use_upstream_args ’, true)

use_upstream_args.setDisplayName(’Use Upstream Argument Values

’)

use_upstream_args.setDescription(’When true this will look for

arguments or registerValues in upstream measures that

match arguments from this measure , and will use the value

from the upstream measure in place of what is entered for

this measure.’)

use_upstream_args.setDefaultValue(true)



170

args << use_upstream_args

args

end

# Define what happens when the measure is run

def run(model , runner , user_arguments)

super(model , runner , user_arguments)

# assign the user inputs to variables

args = OsLib_HelperMethods.createRunVariables(runner , model ,

user_arguments , arguments(model))

if !args then return false end

# lookup and replace argument values from upstream measures

if args[’use_upstream_args ’] == true

args.each do |arg ,value|

next if arg == ’use_upstream_args ’ # this argument should

not be changed

value_from_osw = OsLib_HelperMethods.

check_upstream_measure_for_arg(runner , arg)

if !value_from_osw.empty?

runner.registerInfo("Replacing argument named #{arg}

from current measure with a value of #{ value_from_osw

[:value ]} from #{ value_from_osw [: measure_name ]}.")

new_val = value_from_osw [: value]

# todo - make code to handle non strings more robust.

check_upstream_measure_for_arg coudl pass bakc the

argument type

if arg == ’total_bldg_floor_area ’

args[arg] = new_val.to_f

elsif arg == ’num_stories_above_grade ’

args[arg] = new_val.to_f

elsif arg == ’zipcode ’

args[arg] = new_val.to_i

else

args[arg] = new_val

end

end

end

end

# create initial condition

if model.getWeatherFile.city != ’’

runner.registerInitialCondition("The initial weather file is

#{model.getWeatherFile.city} and the model has #{ model.

getDesignDays.size} design day objects")
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else

runner.registerInitialCondition("No weather file is set. The

model has #{ model.getDesignDays.size} design day objects

")

end

# find weather file

osw_file = runner.workflow.findFile(args[’weather_file_name ’])

if osw_file.is_initialized

weather_file = osw_file.get.to_s

else

runner.registerError("Did not find #{args[’weather_file_name

’]} in paths described in OSW file.")

return false

end

# Parse the EPW manually because OpenStudio can’t handle

multiyear weather files (or DATA PERIODS with YEARS)

epw_file = OpenStudio :: Weather ::Epw.load(weather_file)

weather_file = model.getWeatherFile

weather_file.setCity(epw_file.city)

weather_file.setStateProvinceRegion(epw_file.state)

weather_file.setCountry(epw_file.country)

weather_file.setDataSource(epw_file.data_type)

weather_file.setWMONumber(epw_file.wmo.to_s)

weather_file.setLatitude(epw_file.lat)

weather_file.setLongitude(epw_file.lon)

weather_file.setTimeZone(epw_file.gmt)

weather_file.setElevation(epw_file.elevation)

weather_file.setString (10, "file :///#{ epw_file.filename}")

weather_name = "#{ epw_file.city}_#{ epw_file.state}_#{ epw_file.

country}"

weather_lat = epw_file.lat

weather_lon = epw_file.lon

weather_time = epw_file.gmt

weather_elev = epw_file.elevation

# Add or update site data

site = model.getSite

site.setName(weather_name)

site.setLatitude(weather_lat)

site.setLongitude(weather_lon)

site.setTimeZone(weather_time)

site.setElevation(weather_elev)
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runner.registerInfo("city is #{ epw_file.city}. State is #{

epw_file.state}")

# Add SiteWaterMainsTemperature -- via parsing of STAT file.

stat_file = "#{File.join(File.dirname(epw_file.filename), File

.basename(epw_file.filename , ’.*’))}.stat"

unless File.exist? stat_file

runner.registerInfo ’Could not find STAT file by filename ,

looking in the directory ’

stat_files = Dir["#{File.dirname(epw_file.filename)}/*. stat"

]

if stat_files.size > 1

runner.registerError(’More than one stat file in the EPW

directory ’)

return false

end

if stat_files.empty?

runner.registerError(’Cound not find the stat file in the

EPW directory ’)

return false

end

runner.registerInfo "Using STAT file: #{ stat_files.first}"

stat_file = stat_files.first

end

unless stat_file

runner.registerError ’Could not find stat file’

return false

end

stat_model = EnergyPlus :: StatFile.new(stat_file)

water_temp = model.getSiteWaterMainsTemperature

water_temp.setAnnualAverageOutdoorAirTemperature(stat_model.

mean_dry_bulb)

water_temp.

setMaximumDifferenceInMonthlyAverageOutdoorAirTemperatures(

stat_model.delta_dry_bulb)

runner.registerInfo("mean dry -bulb is #{ stat_model.

mean_dry_bulb}")

# Remove all the Design Day objects that are in the file

model.getObjectsByType(’OS:SizingPeriod:DesignDay ’.

to_IddObjectType).each (&: remove)

# find the ddy files

ddy_file = "#{File.join(File.dirname(epw_file.filename), File.

basename(epw_file.filename , ’.*’))}.ddy"
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unless File.exist? ddy_file

ddy_files = Dir["#{File.dirname(epw_file.filename)}/*. ddy"]

if ddy_files.size > 1

runner.registerError(’More than one ddy file in the EPW

directory ’)

return false

end

if ddy_files.empty?

runner.registerError(’could not find the ddy file in the

EPW directory ’)

return false

end

ddy_file = ddy_files.first

end

unless ddy_file

runner.registerError "Could not find DDY file for #{ ddy_file

}"

return error

end

ddy_model = OpenStudio :: EnergyPlus.loadAndTranslateIdf(

ddy_file).get

ddy_model.getObjectsByType(’OS:SizingPeriod:DesignDay ’.

to_IddObjectType).each do |d|

# grab only the ones that matter

ddy_list = /(Htg 99.6. Condns DB)|(Clg .4. Condns WB=>MDB)|(

Clg .4% Condns DB=>MWB)/

if d.name.get =~ ddy_list

runner.registerInfo("Adding object #{d.name}")

# add the object to the existing model

model.addObject(d.clone)

end

end

# Set climate zone

climateZones = model.getClimateZones

if args[’climate_zone ’] == ’Lookup From Stat File’

# get climate zone from stat file

text = nil

File.open(stat_file) do |f|

text = f.read.force_encoding(’iso -8859 -1’)

end
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# Get Climate zone.

# - Climate type "3B" (ASHRAE Standard 196 -2006 Climate Zone

)**

# - Climate type "6A" (ASHRAE Standards 90.1 -2004 and

90.2 -2004 Climate Zone)**

regex = /Climate type \"(.*?) \" \( ASHRAE Standards ?(.*) \)

\*\*/

match_data = text.match(regex)

if match_data.nil?

runner.registerWarning("Can’t find ASHRAE climate zone in

stat file .")

else

args[’climate_zone ’] = match_data [1]. to_s.strip

end

end

# set climate zone

climateZones.clear

climateZones.setClimateZone(’ASHRAE ’, args[’climate_zone ’])

runner.registerInfo (" Setting Climate Zone to #{ climateZones.

getClimateZones(’ASHRAE ’).first.value }")

# add final condition

runner.registerFinalCondition ("The final weather file is #{

model.getWeatherFile.city} and the model has #{model.

getDesignDays.size} design day objects .")

true

end

end

# This allows the measure to be use by the application

ChangeBuildingLocation.new.registerWithApplication

C.3 Ambient Loop Add ETS Measure

class AmbientLoopAddEtsSystem < OpenStudio :: Measure :: ModelMeasure

def name

return "Ambient Loop Add ETS System"

end

def description

return "Apply an ETS system to a model"

end

def modeler_description

return "This measure removes the existing HVAC system and
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replaces it with an energy transfer station."

end

# define the arguments that the user will input

def arguments(model)

args = OpenStudio :: Measure :: OSArgumentVector.new

return args

end

# Return the list of thermal zones that will have an ETS (

exclude attics)

def get_thermal_zones(model)

zones = []

model.getThermalZones.each do |thermal_zone|

add_zone = true

thermal_zone.spaces.each do |space|

next unless space.spaceType.is_initialized

next unless space.spaceType.get.standardsSpaceType.

is_initialized

if space.spaceType.get.standardsSpaceType.get == ’Attic’

add_zone = false

end

end

zones << thermal_zone if add_zone

end

return zones

end

# define what happens when the measure is run

def run(model , runner , user_arguments)

super(model , runner , user_arguments)

# Use the built -in error checking

if !runner.validateUserArguments(arguments(model),

user_arguments)

return false

end

# path is relative to the run directory

run_dir = File.join(’models ’)

FileUtils.mkdir_p run_dir unless Dir.exist? run_dir

runner.registerInfo "trying to remove HVAC equipment"

model.remove_prm_hvac
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File.open("#{ run_dir }/prototype -no -hvac.osm", ’w’) {|f| f <<

model.to_s}

# add in the ambient loop model -- this is definitely not

right. This adds a water to air heat pump

model.add_energy_transfer_station("Water -to-Air Heat Pump",

get_thermal_zones(model))

File.open("#{ run_dir }/ final.osm", ’w’) {|f| f << model.to_s}

return true

end

end

# register the measure to be used by the application

AmbientLoopAddEtsSystem.new.registerWithApplication

C.4 Ambient Loop Temperature Setpoint Measure

class AmbientLoopTemperatureSetpoint < OpenStudio :: Ruleset ::

ModelUserScript

def name

return "Ambient Loop Temperature Setpoint"

end

def description

return "Set the temperature of the ambient loop to a specific

value."

end

def modeler_description

return "There are naming restrictions in this measure. Plant

loop must be named ’Ambient Loop’"

end

# define the arguments that the user will input

def arguments(model)

args = OpenStudio :: Ruleset :: OSArgumentVector.new

# the name of the space to add to the model

setpoint = OpenStudio :: Ruleset :: OSArgument.makeDoubleArgument(

"setpoint_temperature", true)

setpoint.setUnits("Degrees Celsius")

setpoint.setDisplayName("Ambient Loop Temperature")

setpoint.setDefaultValue (20)

setpoint.setDescription("Temperature setpoint for Ambient Loop
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")

args << setpoint

delta = OpenStudio :: Ruleset :: OSArgument.makeDoubleArgument("

design_delta", true)

delta.setUnits("Delta Temperature")

delta.setDefaultValue (5.55) # 10 Deg F default delta

delta.setDisplayName("Delta Design Loop Temperature")

delta.setDescription("Set the delta design temperature for the

ambient loop")

args << delta

return args

end

# define what happens when the measure is run

def run(model , runner , user_arguments)

super(model , runner , user_arguments)

# use the built -in error checking

return false unless runner.validateUserArguments(arguments(

model), user_arguments)

# assign the user inputs to variables

setpoint = runner.getDoubleArgumentValue("setpoint_temperature

", user_arguments)

delta = runner.getDoubleArgumentValue("design_delta",

user_arguments)

# This measure only works with the predifined loop name of ‘

Ambient Loop ‘

plant_loop = model.getPlantLoopByName(’Ambient Loop’).get

# try and set the temperature of the ambient loop - this

includes setting the

# plant loop min/max temperatures , the sizing plant objects ,

and the schedules

loop_sizing = plant_loop.sizingPlant

loop_sizing.setDesignLoopExitTemperature(setpoint)

loop_sizing.setLoopDesignTemperatureDifference(delta)

plant_loop.supplyOutletNode.setpointManagers.each {|sm| sm.

remove}

amb_loop_schedule = OpenStudio ::Model :: ScheduleRuleset.new(

model)

amb_loop_schedule.setName("Ambient Loop Temperature Ruleset")
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amb_loop_schedule.defaultDaySchedule.setName("Ambient Loop

Temperature - Default")

amb_loop_schedule.defaultDaySchedule.addValue(OpenStudio ::Time

.new(0, 24, 0, 0), setpoint)

amb_stpt_manager = OpenStudio :: Model:: SetpointManagerScheduled

.new(model , amb_loop_schedule)

amb_stpt_manager.setName(’Ambient Loop Setpoint Manager -

Scheduled ’)

amb_stpt_manager.setControlVariable("Temperature")

amb_stpt_manager.addToNode(plant_loop.supplyOutletNode)

# report final condition of model

runner.registerFinalCondition("The final maximum loop

temperature is: #{ setpoint}")

return true

end

end

# register the measure to be used by the application

AmbientLoopTemperatureSetpoint.new.registerWithApplication

C.5 Hot Water Loop Temperature Setpoint Measure

class HotWaterLoopDesignTemperature < OpenStudio :: Measure ::

ModelMeasure

def name

return "Hot Water Loop Design Temperature"

end

def description

return "Set the design temperature of the Hot Water Loop to

the specified value."

end

def modeler_description

return "The name of the loop must be ’Hot Water Loop’"

end

# define the arguments that the user will input

def arguments(model)

args = OpenStudio :: Ruleset :: OSArgumentVector.new

# the name of the space to add to the model

temp = OpenStudio :: Ruleset :: OSArgument.makeDoubleArgument("

hot_water_temperature", true)
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temp.setDisplayName("Hot Water Temperature")

temp.setDescription("Design temperature of the hot water loop.

Name must be Hot Water Loop")

args << temp

return args

end

# define what happens when the measure is run

def run(model , runner , user_arguments)

super(model , runner , user_arguments)

# use the built -in error checking

if !runner.validateUserArguments(arguments(model),

user_arguments)

return false

end

# assign the user inputs to variables

temp = runner.getDoubleArgumentValue("hot_water_temperature",

user_arguments)

# get the hot water loop

# This measure only works with the predifined loop name of ‘

Ambient Loop ‘

plant_loop = model.getPlantLoopByName(’Ambient Loop’).get

# try and set the temperature of the ambient loop - this

includes setting the

# plant loop min/max temperatures , the sizing plant objects ,

and the schedules

loop_sizing = plant_loop.sizingPlant

# report initial condition of model

runner.registerInitialCondition("Hot water loop design

temperature started with #{ loop_sizing.

designLoopExitTemperature}")

loop_sizing.setDesignLoopExitTemperature(temp)

# report final condition of model

runner.registerFinalCondition("Hot water loop design

temperature ended with #{ loop_sizing.

designLoopExitTemperature}")

return true

end
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end

# register the measure to be used by the application

HotWaterLoopDesignTemperature.new.registerWithApplication

C.6 Internal Loads Multiplier Measure

class InternalLoadsMultiplier < OpenStudio :: Measure :: ModelMeasure

# require all .rb files in resources folder

Dir[File.dirname(__FILE__) + ’/resources /*.rb’].each {|file|

require file}

# resource file modules

include OsLib_HelperMethods

# human readable name

def name

return "Internal Loads Multiplier"

end

# human readable description

def description

return "Multipliers for LPD , EPD , and people densities."

end

# human readable description of modeling approach

def modeler_description

return "Multipliers for LPD , EPD , and people densities."

end

# define the arguments that the user will input

def arguments(model)

args = OpenStudio :: Ruleset :: OSArgumentVector.new

lpd = OpenStudio :: Ruleset :: OSArgument.makeDoubleArgument("

lpd_multiplier", true)

lpd.setDisplayName("LPD Multiplier")

lpd.setDefaultValue (1.0)

lpd.setUnits("W/ft^2") # The resulting unit

lpd.setDescription("Multiply the LPD in the building by this

multiplier. Retail LPD is typically 1.3, Small Office 1.0")

args << lpd

epd = OpenStudio :: Ruleset :: OSArgument.makeDoubleArgument("

epd_multiplier", true)

epd.setDisplayName("Electric Equipment Power Density

Multiplier")
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epd.setDefaultValue (1.0)

epd.setUnits("W/ft^2") # The resulting unit

epd.setDescription("Multiply the EPD in the building by this

value")

args << epd

people_per_floor_area = OpenStudio :: Ruleset :: OSArgument.

makeDoubleArgument("people_per_floor_area_multiplier", true

)

people_per_floor_area.setDisplayName("People per floor area

multipleir")

people_per_floor_area.setDefaultValue (1.0)

people_per_floor_area.setUnits("People/ft^2") # The resulting

unit

args << people_per_floor_area

return args

end

# define what happens when the measure is run

def run(model , runner , user_arguments)

super(model , runner , user_arguments)

# assign the user inputs to variables

args = OsLib_HelperMethods.createRunVariables(runner , model ,

user_arguments , arguments(model))

return false unless args

# array of altered lighting defitinos (tracking so isn’t

altered twice)

altered_light_defs = []

ave_lpd = 0

ave_lpd_count = 0

ave_epd = 0

ave_pd = 0

ave_space_count = 0

# loop through space types altering loads

model.getSpaceTypes.each do |space_type|

next if space_type.spaces.size == 0

next if space_type.standardsSpaceType.get == ’Attic’

# update lights

space_type.lights.each do |light|

light_def = light.lightsDefinition
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unless altered_light_defs.include? light_def

light_def.setWattsperSpaceFloorArea(light_def.

wattsperSpaceFloorArea.get * args[’lpd_multiplier ’])

altered_light_defs << light_def

ave_lpd += light_def.wattsperSpaceFloorArea.get

ave_lpd_count += 1

end

end

# replace electric equipment

if space_type.electricEquipmentPowerPerFloorArea.

is_initialized

space_type.setElectricEquipmentPowerPerFloorArea(

space_type.electricEquipmentPowerPerFloorArea.get *

args[’epd_multiplier ’])

ave_epd += space_type.electricEquipmentPowerPerFloorArea.

get

end

# replace people

if space_type.peoplePerFloorArea.is_initialized

space_type.setPeoplePerFloorArea(space_type.

peoplePerFloorArea.get * args[’

people_per_floor_area_multiplier ’])

ave_pd += space_type.peoplePerFloorArea.get

end

ave_space_count += 1

end

if ave_lpd_count > 0

runner.registerValue(’lpd_average ’, ave_lpd / ave_lpd_count ,

’W/m2’)

end

if ave_space_count > 0

runner.registerValue(’epd_average ’, ave_epd /

ave_space_count , ’W/m2’)

runner.registerValue(’ppl_average ’, ave_pd / ave_space_count

, ’People/m2’)

end

return true

end

end

# register the measure to be used by the application
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InternalLoadsMultiplier.new.registerWithApplication

C.7 Ambient Loop Reports Measure

require ’erb’

require ’date’

class AmbientLoopReports < OpenStudio :: Measure :: ReportingMeasure

def name

return ’Ambient Loop Reports ’

end

def description

return ’Add report variables for post -processing the ambient

loop data.’

end

def modeler_description

return ’Reporting Variables for Ambient Loop’

end

def log(str)

puts "#{Time.now}: #{str}"

end

# define the arguments that the user will input

def arguments

args = OpenStudio :: Ruleset :: OSArgumentVector.new

# this measure does not require any user arguments , return an

empty list

return args

end

# return a vector of IdfObject ’s to request EnergyPlus objects

needed by the run method

def energyPlusOutputRequests(runner , user_arguments)

super(runner , user_arguments)

result = OpenStudio :: IdfObjectVector.new

# use the built -in error checking

return result unless runner.validateUserArguments(arguments ,

user_arguments)

# Output:Variable ,*,Facility Heating Setpoint Not Met Time ,

hourly; !- Zone Sum [hr]
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# Output:Variable ,*,Facility Cooling Setpoint Not Met Time ,

hourly; !- Zone Sum [hr]

# Output:Variable ,*,Facility Heating Setpoint Not Met While

Occupied Time ,hourly; !- Zone Sum [hr]

# Output:Variable ,*,Facility Cooling Setpoint Not Met While

Occupied Time ,hourly; !- Zone Sum [hr]

result << OpenStudio :: IdfObject.load(’Output:Variable ,,

District Cooling Inlet Temperature ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Variable ,,

District Cooling Outlet Temperature ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Variable ,,

District Cooling Mass Flow Rate ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Variable ,,

District Heating Inlet Temperature ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Variable ,,

District Heating Outlet Temperature ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Variable ,,

District Heating Mass Flow Rate ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Variable ,,

District Heating Hot Water Energy ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Variable ,,

District Cooling Chilled Water Energy ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Variable ,,Site

Mains Water Temperature ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Variable ,,Site

Outdoor Air Drybulb Temperature ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Variable ,,Site

Outdoor Air Relative Humidity ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Meter ,Cooling:

Electricity ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Meter ,Heating:

Electricity ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Variable ,*,Zone

Predicted Sensible Load to Setpoint Heat Transfer Rate ,

hourly ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Meter ,Heating:Gas

,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Meter ,

InteriorLights:Electricity ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Meter ,Fans:

Electricity ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Meter ,

InteriorEquipment:Electricity ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Meter ,

ExteriorLighting:Electricity ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Meter ,Electricity
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:Facility ,timestep;’).get

result << OpenStudio :: IdfObject.load(’Output:Meter ,Gas:

Facility ,timestep;’).get

return result

end

def extract_timeseries_into_matrix(sqlfile , data , variable_name ,

key_value = nil)

log "Executing query for #{ variable_name}"

if key_value

ts = sqlfile.timeSeries(’RUN PERIOD 1’, ’Zone Timestep ’,

variable_name , key_value)

else

ts = sqlfile.timeSeries(’RUN PERIOD 1’, ’Zone Timestep ’,

variable_name)

end

log ’Iterating over timeseries ’

column = [variable_name.delete(’:’)] # Set the header of the

data to the variable name , removing :

unless ts.empty?

ts = ts.get if ts.respond_to ?(: get)

ts = ts.first if ts.respond_to ?(: first)

start = Time.now

# Iterating in OpenStudio can take up to 60 seconds with 10

min data. The quick_proc takes 0.03 seconds.

# for i in 0..ts.values.size - 1

# log "... at #{i}" if i % 10000 == 0

# column << ts.values[i]

# end

quick_proc = ts.values.to_s.split(’,’)

# the first and last have some cleanup items because of the

Vector method

quick_proc [0] = quick_proc [0]. gsub (/^.*\(/ , ’’)

quick_proc [-1] = quick_proc [-1]. delete(’)’)

column += quick_proc

log "Took #{Time.now - start} to iterate"

end

log ’Appending column to data’

# append the data to the end of the rows

if column.size == data.size
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data.each_index do |index|

data[index] << column[index]

end

end

log "Finished extracting #{ variable_name}"

end

# define what happens when the measure is run

def run(runner , user_arguments)

super(runner , user_arguments)

# use the built -in error checking

return false unless runner.validateUserArguments(arguments ,

user_arguments)

# get the last model and sql file

model = runner.lastOpenStudioModel

if model.empty?

runner.registerError(’Cannot find last model.’)

return false

end

model = model.get

sqlFile = runner.lastEnergyPlusSqlFile

if sqlFile.empty?

runner.registerError(’Cannot find last sql file.’)

return false

end

sqlFile = sqlFile.get

model.setSqlFile(sqlFile)

# create a new csv with the values and save to the reports

direcoty.

# assumptions:

# - all the variables exist

# - data are the same length

# initialize the rows with the header

puts ’Starting to process Timeseries data’

rows = [

# Initial header row

[’Date Time’, ’Month ’, ’Day’, ’Day of Week’, ’Hour’, ’

Minute ’]

]

# just grab one of the variables to get the date/time stamps

ts = sqlFile.timeSeries(’RUN PERIOD 1’, ’Zone Timestep ’, ’
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Cooling:Electricity ’)

unless ts.empty?

ts = ts.first

# Save off the date time values

ts.dateTimes.each_with_index do |dt , _index|

rows << [DateTime.parse(dt.to_s).strftime(’%m/%d/%Y %H:%M’

), dt.date.monthOfYear.value , dt.date.dayOfMonth , dt.

date.dayOfWeek.value , dt.time.hours , dt.time.minutes]

end

end

# add in the other variables by columns -- should really pull

this from the report variables defined above

extract_timeseries_into_matrix(sqlFile , rows , ’Site Outdoor

Air Drybulb Temperature ’, ’Environment ’)

extract_timeseries_into_matrix(sqlFile , rows , ’Site Outdoor

Air Relative Humidity ’, ’Environment ’)

extract_timeseries_into_matrix(sqlFile , rows , ’Heating:

Electricity ’)

extract_timeseries_into_matrix(sqlFile , rows , ’Heating:Gas’)

extract_timeseries_into_matrix(sqlFile , rows , ’Cooling:

Electricity ’)

extract_timeseries_into_matrix(sqlFile , rows , ’Electricity:

Facility ’)

extract_timeseries_into_matrix(sqlFile , rows , ’Gas:Facility ’)

extract_timeseries_into_matrix(sqlFile , rows , ’District

Heating Inlet Temperature ’, ’DISTRICT HEATING 1’)

extract_timeseries_into_matrix(sqlFile , rows , ’District

Cooling Inlet Temperature ’, ’DISTRICT COOLING 1’)

extract_timeseries_into_matrix(sqlFile , rows , ’District

Heating Outlet Temperature ’, ’DISTRICT HEATING 1’)

extract_timeseries_into_matrix(sqlFile , rows , ’District

Cooling Outlet Temperature ’, ’DISTRICT COOLING 1’)

extract_timeseries_into_matrix(sqlFile , rows , ’District

Heating Mass Flow Rate’, ’DISTRICT HEATING 1’)

extract_timeseries_into_matrix(sqlFile , rows , ’District

Cooling Mass Flow Rate’, ’DISTRICT COOLING 1’)

extract_timeseries_into_matrix(sqlFile , rows , ’District

Heating Hot Water Energy ’, ’DISTRICT HEATING 1’)

extract_timeseries_into_matrix(sqlFile , rows , ’District

Cooling Chilled Water Energy ’, ’DISTRICT COOLING 1’)

# Figure out how to add this variable , probably by zone:

# "Output:Variable ,*,Zone Predicted Sensible Load to Setpoint

Heat Transfer Rate ,hourly ,timestep ;").get
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# sum up a couple of the columns and create a new column

var_1 = nil

var_2 = nil

rows.each_with_index do |row , index|

if index == 0

runner.registerInfo(row.join(’,’))

# Get the index of the columns to add

var_1 = row.index(’HeatingElectricity ’)

var_2 = row.index(’HeatingGas ’)

if var_1 && var_2

rows[index] << ’HeatingTotal ’

next

else

break

end

end

runner.registerInfo("Index #{ index}, Value 1 #{row[var_1]},

Value 2 #{row[var_2]}, Class #{row[var_1 ]}")

runner.registerInfo("rows[index] class #{rows[index]}")

rows[index] << row[var_1].to_f + row[var_2].to_f

end

# convert this to CSV object

File.open(’./ report_timeseries.csv’, ’w’) do |f|

rows.each do |row|

f << row.join(’,’) << "\n"

end

end

# Find the total runtime for energyplus and save it into a

registerValue

total_time = -999

location_of_file = [’../ eplusout.end’, ’./run/eplusout.end’]

first_index = location_of_file.map {|f| File.exist ?(f)}.index(

true)

if first_index

match = File.read(location_of_file[first_index ]).to_s.match

(/ Elapsed.Time =(.*)hr(.*) min (.*) sec/)

total_time = match [1]. to_i * 3600 + match [2]. to_i * 60 +

match [3]. to_f

end

runner.registerValue(’energyplus_runtime ’, total_time , ’sec’)

return true
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ensure

sqlFile.close if sqlFile

end

end

# register the measure to be used by the application

AmbientLoopReports.new.registerWithApplication



Appendix D

ROM Framework Information

The ROM Framework is a Python package that was developed for this project. The ROM

Framework was designed to be flexible allowing for new datasets and algorithms to be easily imple-

mented and tested. The ROM Framework requires data in CSV format and a supporting JavaScript

Object Notation (JSON) file that describes the covariates, response variables, and model parame-

ters. The documentation of the ROM Framework can be found on Python’s read the docs pages

https://reduced-order-modeling-framework.readthedocs.io/en/latest/. The source code

for the ROM Framework can be found on GitHub https://github.com/nllong/ROM-Framework.

https://reduced-order-modeling-framework.readthedocs.io/en/latest/
https://github.com/nllong/ROM-Framework
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