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This study stands as an attempt to consider the micro-structure of materials in a continuum

framework by the aid of micromorphic continuum theory in the sense of Eringen. Since classical

continuum mechanics do not account for the micro-structural characteristics of materials, they can-

not be used to address the macroscopic mechanical response of all micro-structured materials. In

the “representative volume element (RVE)” based methods, classical continuum mechanics may be

applied to analyze mechanical deformation and stresses of materials at the relevant micro-structural

length-scale (such as grains of a polycrystalline metal, or sand, or metal matrix composite, etc), but

when applying standard homogenization methods, such lower length scale effects get smeared out at

the continuum scale. The micromorphic continuum theory provides the ability to incorporate the

micro-structural effects into the macroscopic mechanical behavior. Therefore, the micromorphic

continuum is a tool for a higher resolution multi-scale material modeling through capturing the

material’s micro-structural physics via bridging to the direct numerical simulations (DNS) at the

lower length scale. In the micromorphic continuum theory of Eringen, the fundamental assump-

tion is that the material is made of “micro-elements” in such a way that the classical continuum

mechanics balance equations and thermodynamics are valid within a micro-element. Note that

micro-elements represent the material’s micro-structure in a micromorphic continuum. The micro-

element deformation with respect to the centroid of a macroscopic continuum point is governed

by an independent micro-deformation tensor χ which adds 9 additional degrees of freedom to the

continuum model. The micromorphic additional degrees of freedom represent micro-stretch, micro-

shear, and micro-rotation of the micro-elements. The macroscopic deformation (macro-element de-

formation) in the micromorphic continuum is handled through the deformation gradient tensor F .



iv

If the hypothesis of micromorphic continuum works, in a multi-scale modeling framework, assuming

proper constitutive models can be formulated, and material parameters calibrated, micromorphic

continuum theory may fill the gap between the RVE-micro-structural-length-scale models and the

macroscopic continuum scale. The advantage of using micromorphic continuum is that it provides

a chance of linking the macroscopic model to the lower length scale simulations (DNS) and reducing

the computational cost by switching from DNS to the macro-scale finite element analysis or other

numerical methods at the continuum scale. The linking is done through defining the overlap cou-

pling region between the lower length scale analysis and micromorphic continuum to calibrate the

material parameters and the micromorphic continuum model degrees of freedom. Therefore, in the

framework of multi-scale modeling, micromorphic continuum can be used as a filter on top of the

DNS simulations to capture underlying length scale and better inform the macroscopic model. This

is done through the direct linking of the micromorphic continuum micro-elements to the material’s

micro-structure. The focus of this research is mainly on discussing the macroscopic mechanical be-

havior of micro-structured materials from the perspective of micromorphic continuum. This is done

via developing a three dimensional finite strain finite element model for micromorphic elasticity,

elastoplasticity and dynamics.



Dedication

To my parents, Mehri and Houshang, to my grandmother, Vahdat, and to my brothers,

Mehrdad and Farzad, without whom none of my success would have been possible.



vi

Acknowledgements

There simply not words to convey the gratitude I feel for the guidance and support I receive

from Assoc. Prof. Richard Regueiro, who has given me a vast degree of encouragement throughout

my PhD studies at the University of Colorado Boulder. He has been beyond what is required of

an advisor. His help and friendship have made a huge difference in my knowledge and experience

in both professional and personal life. I consider the opportunity of working with him as my best

luck in my professional career.

I would like to express my deepest appreciation to Prof. Ronald Pak, for his excellent com-

ments and novel ideas on my research. I would like to thank my committee members Assoc. Prof.

Franck Vernerey, Asst. Prof. John Evans, and Asst. Prof. Jeong-Hoon Song for their valuable

time, helpful suggestions, and great support on my dissertation.

I want to express my sincerest appreciation and love for my mother, my father, my grand-

mother and my brothers for providing me with endless support and opportunities throughout my

life.

Last but not least, my best friends, Arash, Hamidreza, Romik, Azadeh, Maryam, Parisa,

and Yasmin, in Boulder with whom I had the most memorable moments, during my PhD stud-

ies.



vii

Contents

Chapter

1 Introduction 1

2 Finite Strain Micromorphic Elasticity 9

2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Micromorphic Balance Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Balance of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Balance of micro-inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Balance of Linear Momentum, Angular Momentum, and First Moment of

Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Balance of Energy: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Second Law of Thermodynamics and Clausius-Duhem Inequality: . . . . . . . 27

2.4 Constitutive Equations and Constraints on Elastic Parameters . . . . . . . . . . . . 30

2.4.1 Constraints on Elastic Parameters of the Micromorphic Constitutive Equations 33

2.5 Comparison of Micromorphic and Micropolar Elasticity . . . . . . . . . . . . . . . . 35

2.5.1 Micropolar Balance and Constitutive Equations . . . . . . . . . . . . . . . . . 36

2.6 Total Lagrangian Finite Element Formulation for Micromorphic Continuum and

Time Integration for Implicit Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 41



viii

3 Finite Strain Micromorphic Elastoplasticity 48

3.1 Kinematics of finite strain micromorphic elastoplasticity . . . . . . . . . . . . . . . . 49

3.2 Clausius-Duhem Inequality for Micromorphic Elastoplasticity . . . . . . . . . . . . . 51

3.2.1 Plastic Evolution Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Yield Functions and Evolution Equations . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Numerical Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1 Finite Element Formulation for Micromorphic Elastoplasticity in the Inter-

mediate Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Applying Micromorphic Filter on 3D Beam Finite Element Analysis with Idealized Periodic

Micro-Structure 78

4.1 Applying Micromorphic Filter and Stress Calculations from 3D DNS . . . . . . . . . 79

4.2 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Numerical Examples on Finite Element Analysis of Micromorphic Continuum 90

5.1 Elements Used in Finite Element Simulations . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Finite Strain Micromorphic Elastoplasticity Analysis of a Uniaxial Strain Column

under Compressive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Discussion on Micromorphic Elastoplastic Material Parameters . . . . . . . . 109

5.3 Mesh Dependence and Micromorphic Regularization of Strain Softening Plasticity . 116

5.4 Beam Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.1 Comparison of Q27P8 and Q8P8 Elements . . . . . . . . . . . . . . . . . . . 120

5.4.2 Plate with a Circular Hole under Uniform Loading . . . . . . . . . . . . . . . 127

5.4.3 Plate Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4.4 Twisting of T-shaped Rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.5 Micromorphic Elasticity: Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.5.1 Uniaxial Strain Column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



ix

5.5.2 Beam Bending Dynamics at Finite Strain . . . . . . . . . . . . . . . . . . . . 160

5.5.3 Plate Dynamics Under In-plane Loading . . . . . . . . . . . . . . . . . . . . 170

6 Conclusion, Future Work 181

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.2 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Bibliography 184



x

Tables

Table

5.1 The selected material parameters for the micromorphic continuum. . . . . . . . . . . 98

5.2 Selected BCs for column under uniaxial strain in compression loading. . . . . . . . . 98

5.3 The selected material parameters for micromorphic continuum . . . . . . . . . . . . 118

5.4 Selected BCs for column under tensional load . . . . . . . . . . . . . . . . . . . . . . 118

5.5 Selected BCs for micromorphic dofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Selected material parameters for micromorphic beam bending example. . . . . . . . 122

5.7 Global convergence profile obtained by Newton-Raphson at the first and final time

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.8 Selected BCs and micromorphic dofs for plate with hole. . . . . . . . . . . . . . . . . 128

5.9 Selected material parameters for plate with circular hole. . . . . . . . . . . . . . . . 129

5.10 Selected material parameters for plate bending. . . . . . . . . . . . . . . . . . . . . . 136

5.11 Selected BCs for micromorphic dofs of plate under bending. . . . . . . . . . . . . . . 136

5.12 Selected material parameters for the micromorphic T-shaped rod. . . . . . . . . . . . 140

5.13 Selected BCs for micromorphic dofs of T-shaped rod. . . . . . . . . . . . . . . . . . . 140

5.14 Micromorphic elastic material parameters. . . . . . . . . . . . . . . . . . . . . . . . . 150

5.15 Selected boundary conditions for the column under compressive loading. . . . . . . . 150

5.16 Selected boundary conditions for beam bending dynamics. . . . . . . . . . . . . . . . 161

5.17 selected boundary conditions for plate under in-plane loading . . . . . . . . . . . . . 171



xi

Figures

Figure

2.1 schematic of the mapping of the macro-element dVβ and micro-element dV (α) from the

reference configuration B0 to the current configuration B via the macro-deformation gradient

F and micro-deformation tensor χ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Schematic of Neumann and Dirichlet boundary conditions for the micromorphic continuum

in the reference (left) and current (right) configurations. . . . . . . . . . . . . . . . . . . . 42

3.1 Multiplicative decomposition of deformation gradient F and micro-deformation tensor χ

into elastic and plastic parts, schematic of the mapping of the macro-element dVβ and the

micro-element dV (α) from the reference configuration B0 to the intermediate configuration B̄

and to the current configuration B via the elastic and plastic parts of the macro deformation

gradient F e, F p and the elastic and plastic parts of the micro-deformation tensor χe, χp. . 50

4.1 Illustration of micromorphic stress averaging domain Ωavgβ and micro-element domains α =

1, ..., 8 with centroid of c(α), volume v(α), surface area a(α), unit normal vector n(α) . . . . . 80

4.2 schematic of beam models with periodic micro-structure . . . . . . . . . . . . . . . . 83

4.3 Contour plot of σcell33 averaged stress in unit cells [Bishop and Lim, 2016]. . . . . . . 84

4.4 Unsymmetric Cauchy stress component (σ33)β vs Symmetric micro-element Cauchy

stress component σ
(α)
33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Micromorphic stresses, unsymmetric Cauchy stress component (σ33)β, symmetric

micro-stress component (s33)β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



xii

4.6 Couple stress components (m331)β, (m332)β, and (m333)β . . . . . . . . . . . . . . . . 85

4.7 Couple stress components (m331)β, (m332)β, and (m333)β for cases with (4× 4× 8)

and (8× 8× 16) unit cells and (2× 2× 4) averaging domains . . . . . . . . . . . . . 86

4.8 Difference between the norm of Cauchy stress of the beam with periodic micro-

structure and that of the homogenized beam. . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Schematic of Q27P8 and Q8P8 elements in Tahoe. . . . . . . . . . . . . . . . . . . . 92

5.2 Schematic of a column under compressive load. BCs are selected to represent a one

dimensional uniaxial strain in compression at both macro and micro scales (only uh3

and Φh
33 dofs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Comparison of Q27P8 and Q8P8 elements. . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Comparison of Q27P8 and Q8P8 elements: results of Φh
33 and micromorphic stresses

at top of column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Schematic of a column under compressive uniaxial strain load. . . . . . . . . . . . . 97

5.6 Contour plots of ∆γ̄, ∆γ̄χ, and ∆γ̄∇χ3 for case Micro/Macro/Micro-gradient softening

Plasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Contour plots of γ̄, γ̄χ, and γ̄∇χ3 for case Micro/Macro/Micro-gradient softening

Plasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.8 Description of plastic deformation of the micro-elements. . . . . . . . . . . . . . . . . 102

5.9 Cohesion versus plastic multiplier for micromorphic elastoplasticity . . . . . . . . . . 103

5.10 Stress-strain plot of micromorphic column versus classical column . . . . . . . . . . 105

5.11 Stress-strain plots of micromorphic elastoplastic column versus classical elastoplastic

column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.12 Micro-displacement tensor Φh
33 along length of column . . . . . . . . . . . . . . . . . 106

5.13 Couple stress component M̄h
333 along length of column . . . . . . . . . . . . . . . . . 107

5.14 Micro-stress component Σ̄h
33 along length of column . . . . . . . . . . . . . . . . . . . 107



xiii

5.15 Micromorphic and classical elastoplastic σh33 versus micromorphic and classical elastic

σh33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.16 Stress path for the micromorphic elastoplasticity case micro/macro perfect plasticity 112

5.17 Stress path for micromorphic elastoplasticity case micro/macro/micro-grad perfect

plasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.18 Stress path for micromorphic elastoplasticity case micro/macro softening plasticity . 114

5.19 Stress path for micromorphic elastoplasticity case micro/macro/micro-grad softening

plasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.20 Schematic of the model for mesh dependency analysis . . . . . . . . . . . . . . . . . 117

5.21 Mesh dependent classical softening elastoplasticity versus mesh independent micro-

morphic softening elastoplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.22 Schematic of cantilevered beam under concentrated load. Vβ denotes the averaging

domain for a macro-element continuum point with centroid Cβ. The red cube denotes

the micro-element volume V (α) with centroid C(α) and relative position vector Ξ(α). 121

5.23 Comparison of performance of Q8P8 and Q27P8 elements in Tahoe. . . . . . . . . . 124

5.24 Mesh refinement study on cantilevered beam using Q8P8 element. . . . . . . . . . . 124

5.25 Normalized deflection and micro-rotation along the length. . . . . . . . . . . . . . . 125

5.26 Macroscopic displacements and micro-stretch components plotted along the length

of the beam along the bold line in Fig.5.22. . . . . . . . . . . . . . . . . . . . . . . . 126

5.27 Contour plots and deformed shape of cantilevered beam. . . . . . . . . . . . . . . . . 126

5.28 Comparison of macroscopic displacement uh3 and micro-element displacement u
(α),h
3 . 126

5.29 Schematic of FE mesh and BCs for plate with circular hole at center. . . . . . . . . . 127

5.30 Stress distribution obtained from micromorphic, micropolar, and classical elasticity. . 130

5.31 The effect of BCs on the calculated stress distribution from the micromorphic con-

tinuum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.32 Effect of Φh BCs on distribution of σθθ around circular hole. . . . . . . . . . . . . . 131

5.33 Stress concentration at finite strain from micromorphic continuum. . . . . . . . . . . 131



xiv

5.34 Effect of Φh BCs on distribution of σhrθ and σhθr along plate diagonal. . . . . . . . . . 132

5.35 Contour plots of Φh
11, Φh

22, Φh
21, and Φh

12 . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.36 Schematic of mesh configuration and selected micromorphic BCs on Φh for plate

bending analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.37 Lateral deflection of plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.38 Deformed shape of plate in bending. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.39 Comparison of Mh
12, Mh

21, and Φrot,h
2 from micromorphic and micropolar theories. . . 139

5.40 Lateral deflection of plate under bending at finite strain. . . . . . . . . . . . . . . . . 139

5.41 Geometry, schematic of FE mesh, and applied BCs on micromorphic T-shaped rod. . 141

5.42 uh3 from micromorphic elasticity FE solution plotted along the red bold line in Fig.5.41.142

5.43 Micro-stretch Φh
33 along the red bolded line Fig.5.41. . . . . . . . . . . . . . . . . . . 144

5.44 Second Piola-Kirchhoff stress Sh33 along the red bold line in Fig.5.41. . . . . . . . . . 145

5.45 Schematic of macro-element and micro-element rotation with twist applied via dis-

placement and micro-rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.46 Deformed meshes for T-shaped model. 1× displacement magnitude. . . . . . . . . . 147

5.47 Uniaxial strain column under compression. . . . . . . . . . . . . . . . . . . . . . . . . 149

5.48 Dispersion analysis and wave profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.49 Comparison of displacements from classical and micromorphic continua through the

length of the column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.50 Contour plots of macro-element displacement uh3 and micro-element displacement

u
(α)h
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.51 Micro-displacement tensor component Φh
33 through the length of the column. . . . . 156

5.52 Schematic of Φh
33 throughout the column. . . . . . . . . . . . . . . . . . . . . . . . . 157

5.53 Couple stress interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.54 Couple stress component Mh
333 through the length of column . . . . . . . . . . . . . 158

5.55 Track of displacement uh3 at top of the column over time . . . . . . . . . . . . . . . . 159



xv

5.56 finite strain analysis versus small strain analysis on dynamic motion uh3 at top of the

column over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.57 Schematic of finite element mesh and BC for beam bending dynamics. . . . . . . . . 160

5.58 Macro-element displacement component uh2 along the length of the beam . . . . . . . 162

5.59 Contour plots of macro-element displacement uh2 and micro-element displacement

u
(α)h
2 for the micromorphic-micromorphic beam models . . . . . . . . . . . . . . . . . 163

5.60 Macro-element displacement component uh2 at the micromorphic and classical elas-

ticity interface and in the middle of the beam over time. . . . . . . . . . . . . . . . . 164

5.61 Second Piola Kirchhoff stress components Sh11 and Sh22 along length of beam. . . . . 167

5.62 Micro-displacement component Φh
22 along length of beam. . . . . . . . . . . . . . . . 168

5.63 Couple stress component Mh
222 along length of beam. . . . . . . . . . . . . . . . . . . 169

5.64 Contour plots couple stress components Mh
111 and Mh

222. . . . . . . . . . . . . . . . . 169

5.65 Configuration of plate under in-plane loading . . . . . . . . . . . . . . . . . . . . . . 170

5.66 macro-element displacement uh2 along width of plate. . . . . . . . . . . . . . . . . . . 171

5.67 macro-element displacement uh2 along interface of micromorphic and classical con-

tinuum blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.68 macro-element displacement uh3 along interface of plate. . . . . . . . . . . . . . . . . 173

5.69 Comparison of finite strain and small strain analyses on plate macro-element dis-

placement component uh2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.70 Contour plot of macro-element displacement component uh2 to visualize the longitu-

dinal wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.71 Contour plot of macro-element displacement component uh3 to visualize the trans-

verse wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.72 Macro-element velocity component u̇h2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.73 Second Piola Kirchhoff stress component Sh22. . . . . . . . . . . . . . . . . . . . . . . 178

5.74 Micro-displacement tensor component Φh
22. . . . . . . . . . . . . . . . . . . . . . . . 179

5.75 Couple stress component Mh
222. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180



Chapter 1

Introduction

In this new technological era, for broadly employed materials such as polycrystalline ceram-

ics, concrete, composites and granular materials, their heterogeneous particulate physics regulates

their macroscopic mechanical response. There is of great interest in developing models to be able

to capture the grain-scale physics as well as the macro-scale continuum mechanics. Approaches in

the continuum framework are trying to reconcile the idea of micro-structure through envisioning

materials as a collection of deformable bodies which possess physical properties. This study stands

as an attempt to incorporate the micro-structure of materials in a continuum framework by aid of

the micromorphic continuum theory in the sense of Eringen. The classical continuum mechanics is

based on the notion that a material body is continuous (does not consider the micro-structure of

materials) and the balance and the constitutive equations are valid throughout the body regardless

of the material body size. Thus, the continuum equations are only functions of the spatial position

vector x and time t. This assumption is acceptable for a majority of engineering applications for

which the size of the considered solid/structure is large enough in comparison with the size of

deformable sub-bodies (or “micro-element,” according to Eringen and Suhubi [1964]). From this

perspective, for generality, continuous media may be considered composed of deformable sub-bodies

(e.g., atoms, molecules, grains, clusters of grains, etc) with various characteristic length scales. The

characteristic length scale can be defined as the size of underlying sub-bodies or distances between

sub-bodies and the centroid of a corresponding macroscopic continuum material point P (in the
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reference configuration B0). External loads may also be associated with characteristic lengths,

which may be prescribed such that the material within the area on which the distributed load is

applied may be considered either homogeneous (classical) or heterogeneous (micromorphic). The

approximations that are provided by a local continuum theory are reliable when the ratio of an

external characteristic length scale λ is relatively large when compared to an internal characteristic

length scale l such that λ/l � 1 [Eringen, 1968a]. On the other hand, when λ/l ≈ 1, the loss of

accuracy in classical continuum theory occurs as a result of the inherent motions of the sub-bodies

which are now able to affect the total mechanical response. So far, several experiments have proved

the effect of sub-body-assemblies on the macroscopic continuum response (e.g., Fleck et al. [1994],

Stolken and Evans [1998]). Generalized continuum theories have been developed to account for

the interaction, deformation, and motion of microscale sub-bodies, but within a single macroscopic

continuum theory [E. Kröner, ed., 1968]. Therefore, it is assumed that a material body is composed

of a number of deformable sub-bodies within a macro-element (macroscopic continuum material

point P ) which are able to influence the macroscopic response of the continuum. The micropolar

theories are considered as a first-step-extension of classical continuum theories in this direction.

In micropolar theories, sub-bodies are assumed to have three rigid directors (independent of the

macroscale rotation tensorR) which define the sub-body rotations. In the micromorphic continuum

theory, a material point P carries three deformable directors to represent the general deformation

of sub-bodies (micro-rotation, micro-stretch, and micro-shear). This introduces nine additional

degrees of freedom (dofs) when compared to the classical continuum theory. When the directors

are constrained to capture only stretch-like deformation of the sub-bodies, then the theory is called

a micro-stretch continuum theory. The micro-stretch continuum has four additional dofs over the

classical continuum theory. In the micropolar continuum theory, the sub-bodies are assumed to be

rigid, and the three associated directors of a sub-body are responsible for its rotation. The history

of the polar theories dates back to Cosserat and Cosserat [1909]. They assumed that the sub-bodies

are rigid. Therefore, they defined the directors of the sub-bodies in a way to be able to handle

their rotational degrees of freedom. They were pioneers in proposing a kinematics framework for
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generalized continuum theory [E. Kröner, ed., 1968]. Their theory has been developed by other

researchers over time via defining the balance equations, kinematic relations, and constitutive equa-

tions. Mindlin [1964] developed a theory of small strain elasticity based upon the physical picture

that each macro-element of a material is composed of deformable particles. He defined the kinemat-

ics to be able to account for the resulting displacements and strain measures associated with the

macro and micro elements at small strain. He provided graphical interpretation of the higher or-

der stress tensor, micro-deformation tensor, and gradient of micro-deformation tensor. Eringen and

Suhubi [1964] formulated the basic field equations, boundary conditions, thermodynamics, and con-

stitutive equations for what they called “simple micro-elastic solids” or “micromorphic continua”

for large deformations. They defined a micro-elastic solid as a material body whose properties

and its behavior are affected by the deformable sub-bodies. Suhubi and Eringen [1964] introduced

strain measures and free energies to be able to specify the constitutive equations for isotropic micro-

elastic materials. Germain [1973] derived the micromorphic equations of motion based upon the

virtual power approach. They investigated micromorphic dynamics by introducing a micro-inertia

tensor for deformable sub-bodies. These three methods [Mindlin, 1964, Eringen and Suhubi, 1964,

Germain, 1973] constitute a basis for “modern” microcontinuum field theory by introducing higher

order stress tensors and microstress tensors within their balance equations. The resulting balance

equations of these three methods are different due to the differences in the kinematics or the differ-

ences related to the definitions of stress tensors. It is beyond the scope of this research to discuss

the similarities and differences between the three approaches. This research follows the approach of

Eringen and Suhubi [1964] because of the physical interpretation that their approach provides for

each of the new micro-field variables (stress, strain, ...) and mathematically proves that they exist

as a result of deformable micro-elements. They wrote balance equations for a micro-element, and

then through a variational approach by integral-averaging, they obtained the balance equations for

a macro-element. In the following, we describe more recent research on micromorphic continua.

Neff et al. [2014] formulated what they called “relaxed linear micromorphic continuum” with the

symmetric Cauchy stress in the absent of the coupling terms of the classical micromorphic contin-
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uum by Eringen and Suhubi [1964]. In addition, free energy function of the relaxed micromorphic

model is not uniformly pointwise positive definite. Their relaxed model is still able to capture the

micro-scale deformation. This simplification is helpful for better understanding of the micromor-

phic continuum as well as reducing the number of elastic constants of the constitutive equations.

Their model has been extended via the wave propagation analysis in the meta-materials by Madeo

et al. [2015]. Through investigating the dispersion relation for the relaxed micromorphic media, a

frequency range is predicted for which waves are not able to travel in the media. Chen and Lan

[2009] discussed the modeling of granular materials as a micromorphic continuum through defining

macro-elements as RVE’s which contain a number of deformable micro-elements. They derived all

the balance equations including mass, linear and angular momentum, and energy in the discrete

format assigned to the material’s particles. Finally, they transformed the discrete balance equa-

tions into their corresponding continuum scale macro-element. Note that in their modeling they

considered the dynamics of particles through incorporating the velocity and acceleration associated

with particles. Berezovski et al. [2015] studied the reflection and the transmission of elastic waves

at the interface region of two micromorphic continua. This is done to illustrate that the reflection

and transmission of waves are dependent on the micro-structural properties. Note that their model

incorporates the micro-structural effects through the internal variables of state unlike the method

of Eringen and Suhubi [1964] which is developed based upon incorporating the additional degrees

of freedom. Dingreville et al. [2013] proposed what they called “multiresolution material modeling”

to simulate the wave propagation in heterogeneous media. They performed a comparison between

a modeling done via a direct numerical simulation (DNS) and that of the upscaled micromorphic

continuum. The meso-scale DNS is used to inform the micromorphic continuum to be able to

capture the underlying physics without explicitly touching the micro-structural features via a fewer

number of degrees of freedom than the full DNS model. Note that they followed the micromorphic

continuum in the sense of Germain [1973]. Rapti et al. [2016] used the micro-dilation model to

study the effect of regularization on the mesh dependency in the shear band analysis under dy-

namic conditions. Note that the micro-dilation model describes only the volumetric deformation
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at the micro-scale through a single additional degree of freedom. Sansour [1998] reformulated the

micromorphic continuum field equations with new strain measures. He extended his model to finite

strain micromorphic viscoplasticity based upon a multiplicative decomposition of the microstretch

tensor. He used the integral-averaging-approach similar to Eringen and his co-workers to be able

to obtain the macro-element field equations. Vernerey et al. [2007] proposed a multi-scale con-

tinuum theory which is able to capture the deformations at various scales. They also used the

method of virtual power method [Germain, 1973] to derive a system of coupled equations to be

able to represent the effects of each length-scale on macroscopic continuum behavior. They studied

inelastic behavior by defining multiple yield functions, each representing the yielding at a specific

microstructural length-scale. They compared their theory with the direct numerical simulation

(DNS) for a specimen under tension. They observed that their model is successful in capturing the

major length-scale dependent physics with less computational cost. Lee and Chen [2003] developed

a constitutive equation for micromorphic thermoplasticity analysis. They used the kinematics and

balance equations in the sense of Eringen and Suhubi [1964]. It is to be noted that they did not use

a multiplicative decomposition of deformation gradient to formulate their elastoplasticity model.

Forest and Sievert [2003] used the virtual power method of Germain [1973] to propose a framework

for elastoviscoplastic analysis of the generalize continuum theories. In their derivations, they used

different invariants of deformation measures in comparison with that of Eringen and Suhubi [1964].

Forest and Sievert [2006] discussed the hierarchy of higher order continuum theories in terms of de-

grees of freedom. They introduced the microstrain theory with six additional degrees of freedom to

represent the deformation of sub-bodies. They provided some guidelines for the selection of a proper

higher order continuum model. Based upon what they expressed in their research, microdilation

theory with only one additional degree of freedom is an appropriate model to simulate significant

microvolume change. The micropolar (or Cosserat) continuum theories are suitable only for mate-

rials with independently-rotating sub-bodies. The microstrain theory is good for capturing strain

localization effects. Forest [2009] proposed a micromorphic approach for elasticity, viscoplasticity,

and damage for micro-structured materials. They expressed that their micromorphic approach is
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capable of providing the generalized balance equations that offers an anisotropic nonlinear consti-

tutive relations between the generalized strain and stress tensors. The objective of their paper is

to illustrate that the strain gradient theories can be related to the higher order continuum mechan-

ics (or micromorphic continuum in general). Sansour et al. [2010] extended their previous work

[Sansour, 1998] to a micromorphic continuum at finite inelastic strain. In order to illustrate their

new model, they simplified their previous model by reducing the additional degrees of freedom and

the associated material parameters. They conducted finite element (FE) simulations to illustrate

the scale-effects which can be captured by their new model. Li and Tong [2015] developed mul-

tiscale micromorphic molecular dynamics which is a concurrent three-scale dynamics model that

builds a bridge between (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale micro-

morphic dynamics and continuum scale. Zhang et al. [2011b] studied wedge indentation of a thin

film on a substrate based upon small strain micromorphic plasticity. They investigated that the

predictions of the indentation hardness will be affected by internal length scale, film hardening

modulus, and film thickness. Zhang et al. [2011a] investigated the size effect, Bauschinger effect,

ratcheting effect, and plastic shakedown phenomenon in materials with deformable sub-bodies. For

this purpose, they formulated small strain micromorphic elastoplasticity with isotropic/kinematic

hardening in a 2D finite element framework. Grammenoudis et al. [2009] formulated micromorphic

plasticity theory based upon a multiplicative decomposition of the macro-deformation gradient and

the micro-deformation tensor. They illustrated coupling of isotropic damage to micromorphic plas-

ticity model. Isbuga and Regueiro [2011] implemented a three-dimensional finite element analysis

of finite deformation micromorphic isotropic elasticity in the sense of Eringen and Suhubi [1964].

They noticed that boundary conditions on the additional micromorphic degrees of freedom together

with the elastic material parameters of micromorphic constitutive equations have significant affect

on the total macroscopic behavior. Regueiro and Isbuga [2011] presented the formulation of a

micromorphic continuum in the reference and current configurations. It is to be noted that their

implementation is a full Total Lagrangian three-dimensional hexahedral finite element model. They

demonstrated the effect of length scales by simulating a three-dimensional micro-indentation exam-
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ple. Regueiro [2009] formulated finite strain micromorphic pressure-sensitive elastoplasticity model

based upon a multiplicative decomposition of the deformation gradient and micro-deformation ten-

sor. They assumed the isotropic linear elasticity and non-associative Drucker-Prager plasticity with

cohesion hardening/softening for the constitutive equations. They formulated the plastic evolution

equations in three levels: 1) evolution equation for the plastic part of deformation gradient F p; 2)

evolution equations for the plastic part of micro-deformation tensor χp; 3) evolution equation for

the plastic part of the gradient of micro-displacement tensor ∇̄χp. It is to be noted that the model

was formulated in the current configuration. Regueiro [2010] expressed finite strain micromorphic

elastoplasticity model in the intermediate configuration which can be implemented via the Total

Lagrangian finite element analysis. He used a semi-implicit time integration method to integrate

the constitutive equations in rate form. This research is following the micromorphic continuum

approach by Eringen and Suhubi [1964] and the elasticity implementation by Isbuga and Regueiro

[2011] and finite strain elastoplasticity approach proposed by Regueiro [2010]. This approach is one

of the most general higher order continuum theories which is able to take into account the effect of

underlying sub-bodies behavior. One of the main advantages of this approach is that it can be fit

into a multi-scale modeling framework in which bridging/coupling is required between the different

length scales to the macro-scale model of interest. The bridging of underlying microstructure to the

macro-continuum of interest can be described as a transferring of the essential information out of

the mechanical behavior of the microstructure to the macro-continuum to provide a high resolution

simulation. Another advantage of the [Eringen and Suhubi, 1964] approach for the micromorphic

continuum is that the derivations start with writing the balance equations for the micro-elements

and then through using the variational approach and the integral averaging method the macro-

continuum field equations will be derived. By this procedure, this approach provides a physical

insight for all the additional microcontinuum parameters and mathematically proves that all these

new parameters exist. Index notation will be used wherever needed to clarify the presentation.

Cartesian coordinates are assumed, so all indices are subscripts, and a spatial partial derivative is

the same as a covariant derivative [Eringen, 1962]. Some symbolic/direct notation is also given,
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such that (a · b)ik = aijbjk, (a⊗b)ijkl = aijbkl. Boldface denotes a tensor or vector. Subscript (•),i

implies a spatial partial derivative with respect to xi. Superposed dot ˙(2) = D(2)/Dt denotes a

material time derivative. The symbols
def
= or := imply a definition. Quantities with (•)(α) live in

the micro-elements and quantities with (•)β are associated with the macro-elements.



Chapter 2

Finite Strain Micromorphic Elasticity

In this chapter, finite strain micromorphic elasticity proposed by Eringen and Suhubi [1964]

will be presented in detail. We start with the micromorphic kinematics to illustrate how the defor-

mation gradient F and the micro-deformation tensor χ map the macro and micro elements from the

reference configuration to the current configuration. Following the kinematics, the micromorphic

balance equations and thermodynamics will be derived in the current configuration. The aim of

this thesis is to implement micromorphic continuum in a total Lagrangian finite element framework.

Therefore, the constitutive equations are defined in the reference configuration. Also, mapping of

the current configuration tensor quantities to the reference configuration will be presented. The

elastic parameters of the micromorphic constitutive equations need to be defined in such a way to

ensure the positiveness of the strain energy function. Therefore, we discuss restrictions (proposed

by Smith [1968]) on the elastic moduli of micromorphic continuum.

2.1 Kinematics

The kinematics of a micromorphic continuum can be expressed as follows: consider a macro-

element continuum point Pβ in the reference configuration with centroid Cβ, such that its position

vector Xβ is attached to Cβ (see Fig.2.1). The relative position vector Ξ(α) of sub-body α (micro-

element) defines its centroid C(α) with respect to the macro-element centroid Cβ in the reference

configuration B0. Note that in general, the macro element has a number of sub-bodies (micro-
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elements) with their centroids determined through a family of position vectors Ξ(α) (α = 1, ..., N),

where N is the number of sub-bodies for material point Pβ. For simplicity of micromorphic con-

tinuum derivations, it is assumed that the family of relative position vectors Ξ(α) is not a function

of the position vector Xβ in the reference configuration B0 [Eringen, 1968a, 1999]. Note that

subscript β is to denote that there is more than one macro-element over the continuum body B0.

This is a fundamental assumption in the micromorphic theory to model materials with periodic

micro-structure. Assuming Ξ(α) a function of Xβ, such that Ξ(α)(Xβ), we have a functionally

graded micromorphic theory [Maugin, 2010]. A macro-element continuum point is, therefore, de-

fined by its centroid and the relative position vector Ξ(α) in the reference configuration written as

Pβ

(
Xβ,Ξ

(α)
)

. In the current configuration, a macro-element continuum point and its relative po-

sition vector can be defined as pβ

(
xβ, ξ

(α), t
)

with centroid cβ, and ξ(α)(Xβ,Ξ
(α), t), respectively.

Figure 2.1 illustrates the mapping of the macro-element and micro-element from the reference con-

figuration to the current configuration through the deformation gradient F and micro-deformation

tensor χ. Note that derivations in this thesis are done in Cartesian coordinates. The micro-element

centroid position vector in the reference and current configurations can be expressed such that,

X
(α)
K = XK(β) + Ξ

(α)
K , x

(α)
k = xk(β)(Xβ, t) + ξ

(α)
k (Xβ,Ξ

(α), t) (2.1)

An underlying assumption is that for “sufficiently small” sub-body relative position vectors through

a MacLaurin series expansion about Ξ(α) = 0 at Cβ [Eringen and Suhubi, 1964], ξ(α) can be linearly

related to Ξ(α) through the micro-deformation tensor χ, as follows,

ξ
(α)
k (Xβ,Ξ

(α), t) = χkK(Xβ, t)Ξ
(α)
K (2.2)

This assumption dictates an affine deformation of the macro-element continuum point with re-

spect to its independently-deforming sub-bodies (micro-elements) through χ(Xβ, t), whereas the

whole continuum body may experience inhomogeneous deformation through deformation gradient

F (Xβ, t), micro-deformation χ(Xβ, t), and micro-deformation gradient ∂χ(Xβ, t)/∂Xβ. Substi-
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tuting (2.2) into (2.1), we have the spatial position vector of the micro-element centroid as,

x
(α)
k = xk(β)(Xβ, t) + χkK(Xβ, t)Ξ

(α)
K (2.3)

P ( , )
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Figure 2.1. schematic of the mapping of the macro-element dVβ and micro-element dV (α) from the reference
configuration B0 to the current configuration B via the macro-deformation gradient F and micro-deformation
tensor χ.

The spatial velocity of the micro-element relative position vector can be expressed as,

v
(α)
k = ẋ

(α)
k = ẋk + ξ̇

(α)
k = vk + νklξ

(α)
l (2.4)

where vk is the velocity at cβ, and νkl = χ̇kKχ
−1
Kl is the gyration tensor. This is called gyration

tensor because it describes the whirling motion of micro-element with respect to the centroid of

macro-element cβ. The inverse motion of (2.2) is expressed as follows,

Ξ
(α)
K = χ−1

Kl(xβ, t)ξ
(α)
l (2.5)
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Using (2.4) and (2.5), the gyration tensor νkl can be defined such that,

ξ̇
(α)
k = χ̇kKΞ

(α)
K = χ̇kKχ

−1
Klξ

(α)
l = νklξ

(α)
l (2.6)

νkl = χ̇kKχ
−1
Kl (2.7)

Similarly, we can find the velocity gradient as,

vk,l = ḞkKF
−1
Kl (2.8)

If we take the partial spatial derivative of the micro-element position vector x
(α)
k in (2.3), with

respect to the reference micro-element position vector X
(α)
K , we can derive the micro-element de-

formation gradient F
(α)
kK such that,

F
(α)
kK = FkK(Xβ, t) +

∂χkL(Xβ, t)

∂XK(β)
Ξ

(α)
L

+

(
χkA(Xβ, t)− FkA(Xβ, t)−

∂χkM (Xβ, t)

∂XA(β)
Ξ

(α)
M

)
∂Ξ

(α)
A

∂XK(β)
(2.9)

By which the spatial micro-element differential line segment can then be formulated as follows,

dx
(α)
k = F

(α)
kK dX

(α)
K (2.10)

According to the micro-structural periodicity assumption, the relative position vector Ξ(α) is not

a function of position vector Xβ. Therefore, the micro-element deformation gradient F
(α)
kK will be

reduced such that,

F
(α)
kK (Xβ,Ξ

(α), t)
def
=

∂x
(α)
k

∂X
(α)
K

= FkK(Xβ, t) +
∂χkL(Xβ, t)

∂XK(β)
Ξ

(α)
L (2.11)

This is presented solely to illustrate a deformation gradient tensor that maps the reference

configuration micro-element differential line segment dX
(α)
K to the current configuration micro-

element differential line segment dx
(α)
k , but it is not used directly (presently) in developing the

constitutive equations. The micromorphic continuum theory of this thesis describes micro-element
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deformations in terms of solving for micro-displacement tensor Φ (rather than micro-element dis-

placement vector u(α), explain later) and tracking changes in the length of the family of relative po-

sition vector Ξ(α). Deriving the micromorphic continuum constitutive equations based on the micro-

element deformation gradient F
(α)
kK is very appealing in terms of solving for micro-element displace-

ment vector u(α) and, obtaining better picture of micro-element deformation. However, it could

be mathematically complicated to derive constitutive equations, micromorphic stress and strain

tensors. From classical continuum mechanics, the deformation gradient of the macro-continuum

can be expressed as,

FkK(Xβ, t) =
∂xk(β)(Xβ, t)

∂XK(β)
= δkK +

∂uk(Xβ, t)

∂XK(β)
(2.12)

Similarly, for the micro-deformation tensor we have,

χkK(Xβ, t) = δkK + ΦkK(Xβ, t) (2.13)

where ΦkK is the “micro-displacement tensor”. Note that ΦkK is a displacement-gradient-like

quantity, and it could be called “micro-displacement-gradient tensor”. We choose to be consistent

with Eringen’s terminology [Eringen, 1968] for the micro-displacement tensor ΦkK , but it should

not be confused with the micro-element displacement vector u(α) (explain later). The micro-

displacement tensor ΦkK represents the deformation of the family of relative position vectors Ξ(α)

such that,

ξ
(α)
k = χkKΞ

(α)
K = δkKΞ

(α)
K + ΦkKΞ

(α)
K (2.14)

where ΦkK is the “micro-displacement tensor”. Note that ΦkK is a displacement gradient-like quan-

tity which represents deformation of the relative position vector Ξ(α), which can be thought of as a

moment arm. Sometimes it is difficult to interpret the micro-structural deformation just by inves-

tigating the micro-displacement tensor Φ. Clearer understanding of micro-structural deformation

can be obtained through the micro-element displacement vector u(α) such that,

u(α)(Xβ,Ξ
(α), t) = u(Xβ, t) + Φ(Xβ, t) ·Ξ(α) (2.15)



14

Note that micromorphic continuum theory deals with both the macro-element and micro-element

continuum bodies. Therefore, the quantity u represents the displacement of the macro-element in

the micromorphic continuum body. The quantity u(α) can be considered as a displacement of the

micro-elements via explicitly involving the relative position vector Ξ(α) and the micro-displacement

tensor Φ. The micro-displacement tensor Φ can be related to the current configuration micro-

displacement tensor φ such that,

φkl = ΦkKχ
−1
Kl (2.16)

The micro-element displacement vector in the current configuration is expressed as follows,

x(α)(xβ, ξ
(α), t)−X(α)(xβ, ξ

(α)) = u(α)(xβ, ξ
(α), t) = u(xβ, t) + φ(xβ, t) · ξ(α) (2.17)

The deformation measures for micromorphic continuum which are invariant under rigid body motion

can be defined such that,

CKL = FkKFkL, C = F T · F , (2.18)

ΨKL = FkKχkL, Ψ = F T · χ, (2.19)

ΓKLM = FkKχkL,M , Γ = F T · (∇0χ) (2.20)

Substituting (2.12, 2.14) into (2.18-2.20) we obtain the deformation measures as follows,

CKL = δKL + UK,L + UL,K + UM,KUM,L (2.21)

ΨKL = δKL + ΦKL + UL,K + UM,KΦML (2.22)

ΓKLM = ΦKL,M + UN,KχNL,M (2.23)

where UK = δkKuk, ΦKL = δkKΦkL, χNL = δnNχnL, and χNL,M = ΦNL,M , where δkK is the

“shifter” in Cartesian coordinates [Eringen, 1962]. The Lagrangian strain tensor EKL, material

micro-strain tensor EKL, and the gradient deformation tensor ΓKLM can be written such that
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EKL =
1

2
(CKL − δKL) (2.24)

EKL = ΨKL − δKL (2.25)

ΓKLM = FkKχkL,M (2.26)

In the next section, the momentum balance equations and thermodynamics of a micromorphic

continuum proposed by Eringen and Suhubi [1964] will be re-derived in detail, to be consistent

with notation in this thesis and be complete with regard to derivation and future hierarchical

upscaling through a “micromorphic filter” [Regueiro et al., 2014].

2.2 Micromorphic Balance Equations

In this section the weighted residual, integral averaging method, is used in the current con-

figuration to derive balance equations and thermodynamics of a micromorphic continuum. Based

upon Eringen and Suhubi [1964] (details also in Regueiro [2011]), we start with the local classical

balance equations satisfied at centroid c(α) of micro-element differential volume dv(α) in the current

configuration. By using the integral-averaging-method, we arrive at an integral form of the balance

equations over the integrated macro-element differential volume dvβ.

2.2.1 Balance of Mass

The mass of micro-element differential volume dv(α) is ρ(α)dv(α), where ρ(α) is the micro-

element mass density. By integrating it over the macro-element volume dvβ, we can define the

macro-element differential mass dmβ as follows,

dmβ
def
=

∫

dvβ

ρ(α)dv(α) =

∫

dVβ

ρ
(α)
0 dV (α) (2.27)

where assuming single phase conservation of mass ρ
(α)
0 = ρ(α)J (α), J (α) = det F(α). Then, we have

the conservation of micro-element mass m(α) over dvβ such that,
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D(dmβ)

Dt
= 0 (2.28)

=
D

Dt

∫

dvβ

ρ(α)dv(α) (2.29)

=
D

Dt

∫

dVβ

ρ(α)J (α)dV (α)

=

∫

dVβ

(
Dρ(α)

Dt
J (α) + ρ(α)DJ

(α)

Dt

)
dV (α)

=

∫

dvβ

(
Dρ(α)

Dt
+ ρ(α) ∂v

(α)
l

∂x
(α)
l

)
dv(α) = 0

Thus, the localized balance of micro-element mass over dvβ is

Dρ(α)

Dt
+ ρ(α) ∂v

(α)
l

∂x
(α)
l

= 0 (2.30)

Considering the mass density ρβ = dmβ/dvβ at cβ, applying the integral-average definition of

differential mass over the macro-element,

ρβdvβ = dmβ
def
=

∫

dvβ

ρ(α)dv(α) (2.31)

The total mass m of the body B is then expressed as:

m =

∫

B
ρβdvβ =

∫

B

[∫

dvβ

ρ(α)dv(α)

]
=

∫

B0

[∫

dVβ

ρ(α)J (α)dV (α)

]
(2.32)

The conservation of mass over the body B is expressed as:

Dm

Dt
=

∫

B0

[∫

dVβ

D
(
ρ(α)J (α)

)

Dt
dV (α)

]

=

∫

B




∫

dvβ



Dρ(α)

Dt
+ ρ(α) ∂v

(α)
l

∂x
(α)
l︸ ︷︷ ︸

=0



dv(α)




= 0 (2.33)

Then, the balance of mass in B is such that,
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Dm

Dt
=

D

Dt

∫

B
ρβdvβ = 0

=

∫

B0

D (ρβJβ)

Dt
dVβ

=

∫

B

(
Dρβ
Dt

+ ρβ
∂vl(β)

∂xl(β)

)
dvβ = 0 (2.34)

where localizing the integral form of the balance of mass, we arrive at the balance of mass similar

to that of classical continuum theory such that,

Dρβ
Dt

+ ρβ
∂vlβ
∂xl(β)

= 0 (2.35)

2.2.2 Balance of micro-inertia

In order to derive the balance of micro-inertia, we start with the fact that all the micro-elements

within a macro-element are in equilibrium with respect to the momentum. Therefore, the first mass

moment about the centroid Cβ will be zero as follows,

∫

dVβ

ρ
(α)
0 Ξ

(α)
K dV (α) = 0 (2.36)

The second mass moment is not zero, such that the micro-inertia IKL(β) in the reference configu-

ration B0 is defined as

ρ0(β)IKL(β)dVβ
def
=

∫

dVβ

ρ
(α)
0 Ξ

(α)
K Ξ

(α)
L dV (α) (2.37)

where Iβ is the micro-inertia tensor in the reference configuration. Following the assumption of

periodic micro-structure, the family of relative position vectors Ξ(α) is not a function of the position

vector Xβ. Therefore, the relative position vector can be pulled out of the integral over the macro-

element volume in the reference configuration dVβ such that,

ρ0(β)IKL(β)dVβ
def
= Ξ

(α)
K Ξ

(α)
L

∫

dVβ

ρ
(α)
0 dV (α) (2.38)
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According to (2.38), for homogenous materials with periodic micro-structure, the micro-inertia

tensor Iβ is constant. This paper deals with the total Lagrangian finite element implementation of

micromorphic continuum. Therefore, the balance of micro-inertia in the reference configuration B0

is satisfied. The material time derivative of the micro-inertia term in the reference configuration

B0 is as follows,

D

Dt

∫

B0

ρ0(β)IKL(β)dVβ =

∫

B0

ρ0(β)

DIKL(β)

Dt
dVβ = 0 (2.39)

Likewise, a micro-inertia ikl(β) in the spatial configuration B and its mapping to the reference

configuration B0 can be expressed as

ρβikl(β)dvβ
def
=

∫

dvβ

ρ(α)ξ
(α)
k ξ

(α)
l dv(α) (2.40)

=

∫

dvβ

ρ(α)χkKΞ
(α)
K χlLΞ

(α)
L dv(α)

= χkKχlL

∫

dVβ

ρ
(α)
0 Ξ

(α)
K Ξ

(α)
L dV (α)

= χkKχlLρ0(β)IKL(β)dVβ = χkKχlLρβIKL(β)dvβ

=⇒ IKL(β) = χ−1
Kkχ

−1
Ll ikl(β) (2.41)

The balance of micro-inertia in the current configuration is derived such that,

D

Dt

∫

B0

ρ0(β)IKL(β)dVβ =

∫

B0

ρ0(β)

D(IKL(β))

Dt
dVβ = 0 (2.42)

DIKL(β)

Dt
= χ−1

Kkχ
−1
Ll

(
D(ikl(β))

Dt
− νkaial(β) − νlaiak(β)

)

=

∫

B
ρβχ

−1
Kkχ

−1
Ll

(
D(ikl(β))

Dt
− νkaial(β) − νlaiak(β)

)
dvβ = 0

and,

D(ikl(β))

Dt
− νkaial(β) − νlaiak(β) = 0 (2.43)
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Note that the balance of micro-inertia in the current configuration is presented for the purpose of

being used for future work of implementing updated Lagrangian finite element analysis of micro-

morphic continuum.

2.2.3 Balance of Linear Momentum, Angular Momentum, and First Moment of

Momentum

In the following, we derive the balance of linear momentum, angular momentum, and first

moment of momentum for micromorphic continuum theory. Based upon the approach by Eringen

and Suhubi [1964], we start with the localized balance of linear and angular momenta in the micro-

element differential volume dv(α) as follows,

σ
(α)
lk,l + ρ(α)(f

(α)
k − ü(α)

k ) = 0 (2.44)

σ
(α)
lk = σ

(α)
kl (2.45)

where the micro-element Cauchy stress tensor σ
(α)
kl is symmetric by way of angular momentum being

conserved within dv(α). ρ(α) is the micro-element mass density, f (α) is the micro-element body

force vector per unit mass, and ü(α) is the micro-element acceleration vector. By using a weighted-

residual approach, and selecting a smooth weighting function φ(α), the balance of momenta over B

(depending on choice of φ(α)) can be expressed as,

∫

B

{∫

dvβ

φ(α)
[
σ

(α)
lk,l + ρ(α)(f

(α)
k − ü(α)

k )
]
dv(α)

}
= 0 (2.46)

where (•)(α)
,l = ∂(•)(α)/∂x

(α)
l . Applying the chain rule and divergence theorem, we can rewrite

(2.46) as,
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∫

B

{∫

dvβ

[
(φ(α)σ

(α)
lk ),l − φ(α)

,l σ
(α)
lk + ρ(α)φ(α)(f

(α)
k − ü(α)

k )
]
dv(α)

}
= 0 (2.47)

∫

∂B

{∫

daβ

(φ(α)σ
(α)
lk )n

(α)
l da(α)

}
+

∫

B

{∫

dvβ

[
−φ(α)

,l σ
(α)
lk + ρ(α)φ(α)(f

(α)
k − ü(α)

k )
]
dv(α)

}
= 0 (2.48)

Assuming three different weighting functions for φ(α), we can derive the balance of linear momen-

tum, angular momentum, and first moment of momentum on B for micromorphic continuum: (1)

φ(α) = 1, balance of linear momentum; (2) φ(α) = enmkx
(α)
m , balance of angular momentum (enmk is

the permutation tensor); (3) φ(α) = x
(α)
m , balance of first moment of momentum. Substituting these

three choices for φ(α) into (2.48), we can derive the respective micromorphic balance equations on

B as follows.

2.2.3.1 Balance of Linear Momentum: (φ(α) = 1)

The balance of linear momentum can be expressed as,

∫

∂B

{∫

daβ

σ
(α)
lk n

(α)
l da(α)

}
+

∫

B

{∫

dvβ

[
ρ(α)(f

(α)
k − ü(α)

k )
]
dv(α)

}
= 0 (2.49)

where we have the following definition,

σlknldaβ
def
=

∫

daβ

σ
(α)
lk n

(α)
l da(α) (2.50)

ρfkdvβ
def
=

∫

dvβ

ρ(α)f
(α)
k dv(α) (2.51)

ρükdvβ
def
=

∫

dvβ

ρ(α)ü
(α)
k dv(α) (2.52)

where we drop the subscript β denoting macro-element variables at cβ (for example, macro-element

mass density ρβ and ρ are the same vaiable at cβ), unless needed for clarification, σlk is the

unsymmetric macroscopic Cauchy stress tensor, fk is the macroscopic body force vector per unit
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mass, ρ is the macroscopic mass density, and ük is the macroscopic acceleration vector. From

(2.49), (2.50-2.52), we have

∫

∂B
σlknldaβ +

∫

B
ρ(fk − ük)dvβ = 0 (2.53)

∫

B
[σlk,l + ρ(fk − ük)] dvβ = 0 (2.54)

The localized expression for micromorphic balance of linear momentum at spatial position xβ can

then be written as,

σlk,l + ρ(fk − ük) = 0 (2.55)

The balance of linear momentum for the micromorphic continuum is similar to that of the classical

continuum theory, except that the macroscopic Cauchy stress tensor σlk may be unsymmetric.

2.2.3.2 Balance of Angular Momentum: (φ(α) = enmkx
(α)
m )

The balance of angular momentum can be derived as follows,

∫

∂B

{∫

daβ

enmk(x
(α)
m σ

(α)
lk )n

(α)
l da(α)

}
+

∫

B

{∫

dvβ

enmk

[
−x(α)

m,lσ
(α)
lk + ρ(α)x(α)

m (f
(α)
k − ü(α)

k )
]
dv(α)

}
= 0

∫

∂B

{∫

daβ

enmk(xm(β) + ξ(α)
m )σ

(α)
lk n

(α)
l da(α)

}

+

∫

B

{∫

dvβ

enmk

[
−σ(α)

mk + ρ(α)(xm(β) + ξ(α)
m )(f

(α)
k − ü(α)

k )
]
dv(α)

}
= 0 (2.56)

where x
(α)
m,l = ∂x

(α)
m /∂x

(α)
l = δml. The acceleration of the micro-element centroid and the accelera-

tion of the relative position vector can be expressed as

ü
(α)
k = ük + ξ̈

(α)
k (2.57)

ξ̈
(α)
k = (ν̇kc + νkbνbc)ξ

(α)
c (2.58)
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Inserting (2.57, 2.58) into (2.56), we have,

∫

∂B

{∫

daβ

enmk((xm(β) + ξ(α)
m )σ

(α)
lk )n

(α)
l da(α)

}
=

∫

∂B





enmkxm(β)

∫

daβ

σ
(α)
lk n

(α)
l da(α)

︸ ︷︷ ︸
def
= σlknldaβ





+

∫

∂B





enmk

∫

daβ

σ
(α)
lk ξ(α)

m n
(α)
l da(α)

︸ ︷︷ ︸
def
=mlkmnldaβ





= enmk

∫

∂B

[
xm(β)σlknl +mlkmnl

]
daβ

= enmk

∫

B

[
σmk + xm(β)σlk,l +mlkm,l

]
dvβ (2.59)

∫

B

{∫

dvβ

enmk

[
−σ(α)

mk

]
dv(α)

}
= −enmk

∫

B

∫

dvβ

σ
(α)
mkdv

(α)

︸ ︷︷ ︸
def
= smkdvβ

= −enmk
∫

B
smkdvβ (2.60)

∫

B

{∫

dvβ

enmk

[
ρ(α)(xm(β) + ξ(α)

m )f
(α)
k

]
dv(α)

}
=

∫

B





enmkxm(β)

∫

dvβ

ρ(α)f
(α)
k dv(α)

︸ ︷︷ ︸
def
= ρfkdvβ





+

∫

B





enmk

∫

dvβ

ρ(α)f
(α)
k ξ(α)

m dv(α)

︸ ︷︷ ︸
def
= ρ`kmdvβ





= enmk

∫

B

(
xm(β)ρfk + ρ`km

)
dvβ (2.61)
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∫

B

{∫

dvβ

enmk

[
ρ(α)(xm(β) + ξ(α)

m )(−ü(α)
k )
]
dv(α)

}

= −enmk
∫

B

{∫

dvβ

ρ(α)(xm(β)ük + xm(β)ξ̈
(α)
k + ξ(α)

m ük + ξ(α)
m ξ̈

(α)
k )dv(α)

}

= −enmk
∫

B



xm(β)ük

∫

dvβ

ρ(α)dv(α)

︸ ︷︷ ︸
def
= ρdvβ

+xm(β)(ν̇kc + νkbνbc)

∫

dvβ

ρ(α)ξ(α)
c dv(α)

︸ ︷︷ ︸
=0

+ük

∫

dvβ

ρ(α)ξ(α)
m dv(α)

︸ ︷︷ ︸
=0

+

∫

dvβ

ρ(α)ξ̈
(α)
k ξ(α)

m dv(α)

︸ ︷︷ ︸
def
= ρωkmdvβ




= −enmk
∫

B

[
xm(β)ρük + ρωkm

]
dvβ (2.62)

where
∫
dvβ

ρ(α)ξ
(α)
k dv(α) = 0 because ξ

(α)
k is mass-centered on dvβ, mlkm is the higher order (couple)

stress defined through relative position vector ξ
(α)
m , smk is the symmetric micro-stress, `km is the

body force couple, and ωkm is the micro-spin inertia. Combining terms, we have

enmk

∫

B


xm(β)(σlk,l + ρ(fk − ük)︸ ︷︷ ︸

=0

) + σmk − smk +mlkm,l + ρ(`km − ωkm)


 dvβ = 0

enmk

∫

B
[σmk − smk +mlkm,l + ρ(`km − ωkm)] dvβ = 0 (2.63)

Upon localizing the integral at xβ,

enmk [σmk − smk +mlkm,l + ρ(`km − ωkm)] = 0 (2.64)

en


σ[mk] − s[mk]︸︷︷︸

=0

+ml[km],l + ρ(`[km] − ω[km])


 = 0 (2.65)

where en is a coefficient such that en = 1 for n = 1, 2, 3 (n 6= m 6= k), and we have,

σ[mk] +ml[km],l + ρ(`[km] − ω[km]) = 0 (2.66)
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For n = 1, 2, 3 where the antisymmetric definition is σ[mk] = (σmk − σkm)/2. It is to be noted

that (2.66) provides 3 equations through the balance of angular momentum to solve for the micro-

rotation vector ϕk (discussed later) and thus the balance of angular momentum does not provide

enough equations if we consider micro-shear and micro-stretch. Therefore, we need six additional

equations to be able to solve for all of the 9 additional micromorphic dofs ΦkK (or φkl). This is

done via the balance of first moment of momentum.

2.2.3.3 balance of first moment of momentum: (φ(α) = x
(α)
m )

Similar to the procedure we followed for the balance of angular momentum, the balance of first

moment of momentum is derived without multiplying by the permutation tensor enmk. Thus, we

may write directly equation (2.64) without the permutation tensor enmk as,

σmk − smk +mlkm,l + ρ(`km − ωkm) = 0 (2.67)

This equation provides 9 equations to solve for the 9 components of the micro-displacement tensor

ΦkK through the definition χkK = δkK + ΦkK (and later a Total Langrangian FE formulation).

Based upon these equations it can be seen that the macroscopic Cauchy stress σlk may not be

symmetric (if the couple stress is non-zero and not divergence free, and/or the body couple and

micro-spin inertia are non-zero).

2.3 Thermodynamics

In the following, we derive the first and second laws of thermodynamics for a micromorphic

continuum, as well as the Clasisus-Duhem inequality.

2.3.1 Balance of Energy:

The macro-element balance of energy equation with respect to micro-element dv(α) can be written

in integral form over dvβ such that,
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∫

dvβ

ρ(α)ė(α)dv(α) =

∫

dvβ

[
σ

(α)
kl v

(α)
l,k + q

(α)
k,k + ρ(α)r(α)

]
dv(α) (2.68)

where ė(α) is the micro-internal energy rate per unit mass, q
(α)
k is the micro-heat flux, and r(α) the

micro-heat source per unit mass. In this equation, it is assumed that the classical balance of energy

in localized form is valid within the micro-element differential volume dv(α). By integrating over

the whole body B, we have

∫

B

{∫

dvβ

ρ(α)ė(α)dv(α)

}
=

∫

B

{∫

dvβ

[
σ

(α)
kl v

(α)
l,k + q

(α)
k,k + ρ(α)r(α)

]
dv(α)

}
(2.69)

Further derivation of the above equation, term by term, leads to (again leaving off, subscript β on

macro-element variables at xβ, unless needed for clarification),
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∫

dvβ

ρ(α)ė(α)dv(α) =

∫

dVβ

ρ
(α)
0 ė(α)dV (α) =

D

Dt

∫

dVβ

ρ
(α)
0 e(α)dV (α)

︸ ︷︷ ︸
def
= ρ0edVβ=ρedvβ

=
D

Dt
(ρ0edVβ) = ρ0ėdVβ = ρėdvβ (2.70)

∫

dvβ

σ
(α)
kl v

(α)
l,k dv

(α) =

∫

dvβ

[
(σ

(α)
kl v

(α)
l ),k − σ(α)

kl,kv
(α)
l

]
dv(α) (2.71)

=

∫

daβ

σ
(α)
kl v

(α)
l n

(α)
k da(α) −

∫

dvβ

σ
(α)
kl,kv

(α)
l dv(α)

=

∫

daβ

σ
(α)
kl (vl + νlmξ

(α)
m )n

(α)
k da(α) −

∫

dvβ

ρ(α)(ü
(α)
l − f

(α)
l )(vl + νlmξ

(α)
m )dv(α)

= vl

∫

daβ

σ
(α)
kl n

(α)
k da(α)

︸ ︷︷ ︸
def
= σklnkdaβ

+νlm

∫

daβ

σ
(α)
kl ξ

(α)
m n

(α)
k da(α)

︸ ︷︷ ︸
def
=mklmnkdaβ

−vl
∫

dvβ

ρ(α)ü
(α)
l dv(α)

︸ ︷︷ ︸
def
= ρüldvβ

+vl

∫

dvβ

ρ(α)f
(α)
l dv(α)

︸ ︷︷ ︸
def
= ρfldvβ

−νlmül
∫

dvβ

ρ(α)ξ(α)
m dv(α)

︸ ︷︷ ︸
=0

−νlm
∫

dvβ

ρ(α)ξ̈
(α)
l ξ(α)

m dv(α)

︸ ︷︷ ︸
def
= ρωlmdvβ

+νlm

∫

dvβ

ρ(α)f
(α)
l ξ(α)

m dv(α)

︸ ︷︷ ︸
def
= ρ`lmdvβ

∫

dvβ

q
(α)
k,kdv

(α) =

∫

daβ

q
(α)
k n

(α)
k da(α) def

= qknkdaβ (2.72)

∫

dvβ

ρ(α)r(α)dv(α) def
= ρrdvβ (2.73)

Substituting these terms back into equation (2.69), we have
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∫

B
ρėdvβ =

∫

∂B
(vlσklnk + νlmmklmnk)daβ −

∫

B
vlρ(al − fl)dvβ −

∫

B
νlmρ(ωlm − `lm)dvβ

+

∫

∂B
qknkdaβ +

∫

B
ρrdvβ (2.74)

=

∫

B


vl(σkl,k + ρ(fl − ül)︸ ︷︷ ︸

=0

) + νlm(mklm,k + ρ(`lm − ωlm)︸ ︷︷ ︸
=sml−σml

)

+vl,kσkl + νlm,kmklm + qk,k + ρr] dvβ

The localized balance of energy over B becomes,

ρė = νlm(sml − σml) + vl,kσkl + νlm,kmklm + qk,k + ρr (2.75)

2.3.2 Second Law of Thermodynamics and Clausius-Duhem Inequality:

It is assumed that the classical second law of thermodynamics is valid within the micro-

element differential volume dv(α). By using the integral-averaging-method, the second law of ther-

modynamics over dvβ can be written as,

D

Dt

∫

dvβ

ρ(α)η(α)dv(α)

︸ ︷︷ ︸∫
dvβ

ρ(α)η̇(α)dv(α)def
= ρη̇dvβ

−
∫

daβ

1

θ
q

(α)
k n

(α)
k da(α)

︸ ︷︷ ︸
∫
dvβ

q(α)
k

θ


,k

dv(α)def
=

(qk
θ

)
,k

dvβ

−
∫

dvβ

ρ(α)r(α)

θ
dv(α)

︸ ︷︷ ︸
def
=
ρr

θ
dvβ

≥ 0 (2.76)

Note that there is no micro-temperature θ(α) in the model [Eringen, 1999], only macro-temperature

θ as a simplifying assumption in the thesis. The localized form of the second law at spatial position

xβ can be expressed as,

∫

B
ρη̇dvβ −

∫

B

(
1

θ
qk,k −

qk
θ2
θ,k

)
dvβ −

∫

B

ρr

θ
dvβ ≥ 0 (2.77)

ρθη̇ − qk,k +
1

θ
qkθ,k − ρr ≥ 0 (2.78)
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The macroscale Helmholtz free energy per unit mass ψ, and its material time derivative can be

written as,

ψ = e− θη (2.79)

ψ̇ = ė− θ̇η − θη̇ (2.80)

Inserting the above equations into (2.75), the Clausius-Duhem inequality for micromorphic contin-

uum can be written as,

−ρ(ψ̇ + ηθ̇) + σkl(vl,k − νlk) + sklνlk +mklmνlm,k +
1

θ
qkθ,k ≥ 0 (2.81)

Summary of Balance Equations The equations are now summarized over the current configuration

B at macro-element β with centroid cβ at spatial position vector xβ as,
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



balance of mass :
Dρ

Dt
+ ρvk,k = 0

ρdvβ
def
=
∫
dvβ

ρ(α)dv(α)

balance of micro− inertia :
Dikl(β)

Dt
− νkmiml(β) − νlmimk(β) = 0

ρikl(β)dvβ
def
=
∫
dvβ

ρ(α)ξ
(α)
k ξ

(α)
l dv(α)

balance of linear momentum : σlk,l + ρ(fk − ak) = 0

σlknldaβ
def
=
∫
daβ

σ
(α)
lk n

(α)
l da(α)

ρfkdvβ
def
=
∫
dvβ

ρ(α)f
(α)
k dv(α)

ρükdvβ
def
=
∫
dvβ

ρ(α)ü
(α)
k dv(α)

balance of first moment of momentum : σml − sml +mklm,k + ρ(`lm − ωlm) = 0

smldvβ
def
=
∫
dvβ

σ
(α)
ml dv

(α)

mklmnkdaβ
def
=
∫
daβ

σ
(α)
kl ξ

(α)
m n

(α)
k da(α)

ρ`lmdvβ
def
=
∫
dvβ

ρ(α)f
(α)
l ξ

(α)
m dv(α)

ρωlmdvβ
def
=
∫
dvβ

ρ(α)ξ̈
(α)
l ξ

(α)
m dv(α)

balance of energy : ρė = (skl − σkl)νlk + σklvl,k

+mklmνlm,k + qk,k + ρr

ρėdvβ
def
=
∫
dvβ

ρ(α)ė(α)dv(α)

ρrdvβ
def
=
∫
dvβ

ρ(α)r(α)dv(α)

qknkdaβ
def
=
∫
daβ

q
(α)
k n

(α)
k da(α)

Clausius−Duhem inequality : −ρ(ψ̇ + ηθ̇) + σkl(vl,k − νlk) + sklνlk

+mklmνlm,k +
1

θ
qkθ,k ≥ 0

(2.82)
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In this section, the governing equations of micromorphic continuum and the procedure of applying

the integral-averaging-method have been presented in detail. Next, constitutive equations are

presented to relate the various stresses to deformations in order to close the micromorphic elastic

theory.

2.4 Constitutive Equations and Constraints on Elastic Parameters

The Clausius-Duhem inequality for isothermal problems in the current configuration can be

written such that,

−ρ0ψ̇ + Jσkl(vl,k − νlk) + Jsklνlk + Jmklmνlm,k ≥ 0 (2.83)

The Helmholtz free energy function and its rate in terms of the deformation gradient F , micro-

deformation tensor χ and gradient of micro-deformation tensor ∇0χ can be expressed as

ρ0ψ(FkK , χkK , χkK,L) (2.84)

ρ0ψ̇ =
∂(ρ0ψ)

∂FkK
ḞkK +

∂(ρ0ψ)

∂χkK
χ̇kK +

∂(ρ0ψ)

∂χlK,L
χ̇lK,L (2.85)

where ρ̇0 = 0 for conservation of mass. Substituting (2.85) into (2.83) and expanding other kine-

matical terms, we have

−
(
∂(ρ0ψ)

∂FlK
ḞlK +

∂(ρ0ψ)

∂χlK
χ̇lK +

∂(ρ0ψ)

∂χlK,L
χ̇lK,L

)
+ Jσkl

(
ḞlKF

−1
Kk − χ̇lKχ−1

Kk

)

+Jskl ˙χlKχ
−1
Kk + Jmklm

(
˙χlK,Lχ

−1
KmF

−1
Lk + χ̇lK

˙χ−1
lK,LF

−1
Lk

)
≥ 0 (2.86)

Note that the macroscopic Cauchy stress σkl, the micro stress skl, and the higher order couple

stress tensors mklm are in the current configuration B. Since we want to derive the constitutive

equations in the reference configuration B0, we need to pull back the micromorphic stress tensors

to their corresponding pseudo-stresses in B0 via the Piola transforms as follows
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σkl =
1

J
FkKSKLFlL (2.87)

skl =
1

J
FkKΣKLFlL (2.88)

mklm =
1

J
FkKFlLMKLMχmM (2.89)

The pseudo-stress tensors in the reference configuration B0 with respect to the Helmholtz free

energy function per unit reference volume (ρ0ψ) where ψ is the Helmholtz energy per unit mass,

are derived via thermodynamics (e.g., following [Coleman and Noll, 1963]) as,

SKL =
∂(ρ0ψ)

∂FkK
F−1
Lk (2.90)

ΣKL =
∂(ρ0ψ)

∂FkK
F−1
Lk + F−1

KcχcA
∂(ρ0ψ)

∂χaA
F−1
La

+ F−1
KdχdM,E

∂(ρ0ψ)

∂χfM,E
F−1
Lf (2.91)

MKLM =
∂(ρ0ψ)

∂χfM,E
F−1
Lf (2.92)

where SKL is the second Piola Kirchhoff stress tensor, ΣKL is the pseudo-micro-stress in B0, and

MKLM is the pseudo-couple-stress in B0. Assuming a quadratic form of the Helmholtz free energy

function in the reference configuration B0 in terms of the Lagrangian strain EKL, micro-strain EKL,

and gradient deformation ΓKLM we have,

ρ0ψ =
1

2
EKLAKLMNEMN +

1

2
EKLBKLMNEMN

+
1

2
ΓKLMCLMKNPQΓNPQ + EKLDKLMNEMN (2.93)

where the elastic material moduli tensors AKLMN , BKLMN , DKLMN and CLMKNPQ may be

written [Suhubi and Eringen, 1964],
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AKLMN = λδKLδMN + µ (δKMδLN + δKNδLM ) (2.94)

BKLMN = (η − τ) δKLδMN + (κ− σ) (δKMδLN ) + (ν − σ) (δKNδLM ) (2.95)

CLMKNPQ = τ1 (δLMδKNδPQ + δLQδMKδNP ) + τ2 (δLMδKP δNQ + δLKδMQδNP )

+ τ3δLMδKQδNP + τ4δLNδMKδPQ + τ5 (δLKδMNδPQ + δLP δMKδNQ)

+ τ6δLKδMP δNQ + τ7δLNδMP δKQ + τ8 (δLP δMQδKN + δLQδMNδKP )

+ τ9δLNδMQδKP + τ10δLP δMNδKQ + τ11δLQδMP δKN (2.96)

DKLMN = τδKLδMN + σ (δKNδLM + δLNδKM ) (2.97)

where δKL is the Kronecker-delta operator; λ, µ, ν, τ , κ, σ, and ν are elastic moduli (units Pa) for

the Second Piola-Kirchhoff stress S and micro-stress Σ, and τ1, . . . , τ11 are elastic moduli (units

Pa.m2) for the higher order couple stress M . By using the Helmholtz free energy function per unit

reference volume in (2.93), from (2.92) the micromorphic stress tensors in B0 can be written as

follows,

SKL = AKLMNEMN +DKBMNEMN

+ (DKBMNEMN +BKBMNEMN )
[
C−1
LA (EAB + δAB)

]

+ CKBCNPQΓNPQC
−1
LQΓQBC (2.98)

ΣKL = AKLMNEMN +DKBMNEMN

+ 2sym (DKLMNEMN +BKBMNEMN )
[
C−1
LA (EAB + δAB)

]

+ CKBCNPQΓNPQC
−1
LQΓQBC (2.99)

MKLM = CLMKNPQΓNPQ (2.100)

Assuming small elastic strains (but potentially large rotations, which will be valid when we extend

the FE implementation to micromorphic elastoplasticity at finite strain [Regueiro, 2009, 2010]), the

micromorphic stress tensors can be simplified to,
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SKL = (λ+ τ)EMMδKL + 2 (µ+ σ)EKL + ηEMMδKL + κEKL + νELK (2.101)

ΣKL = (λ+ 2τ)EMMδKL + 2 (µ+ 2σ)EKL + (2η − τ) EMMδKL

+ (ν + κ− σ) (EKL + ELK) (2.102)

MKLM = τ1 (δLMΓKPP + δMKΓPPL) + τ2 (δLMΓNKN + δLKΓPPM ) + τ3δLMΓNNK

+ τ4δMKΓLPP + τ5 (δLKΓMPP + δMKΓNLN ) + τ6δLKΓNMN + τ7ΓLMK

+ τ8 (ΓKLM + ΓMKL) + τ9ΓLKM + τ10ΓMLK + τ11ΓKML (2.103)

The next section is devoted to the positiveness of micromorphic strain energy (Helmholtz free

energy without temperature terms) function and defining constraints on elastic parameters of the

constitutive equations.

2.4.1 Constraints on Elastic Parameters of the Micromorphic Constitutive Equa-

tions

In this section, constraints on elastic parameters of the micromorphic constitutive equations

are presented. Note that the study on positiveness of micromorphic strain energy in the sense of

Suhubi and Eringen [1964] was presented first by Smith [1968] for micromorphic linear isotropic

elasticity at small strain. Details on the derivations of the proposed restrictions on elastic material

moduli can be found in Smith [1968] and Isbuga and Regueiro [2011]. These constraints are defined

in such a way that guarantees the positiveness of the strain energy function, or Helmholtz free

energy function in our case. The constraints on the elastic parameters of the macroscopic Cauchy

stress σkl and micro-stress tensor skl are as follows,
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λ > 0

κ+ ν > 2σ

(κ+ ν − 2σ)µ > 2σ2

3λ+ 2µ > 0

κ+ ν + 3η > 3τ + 2σ

(κ+ ν + 2η − 3τ − 2σ) (3λ+ 2µ) > (3τ + 2σ)2

κ− ν > 0

4µ (κ+ ν − 2σ) > 2σ (2.104)

In order to determine the restrictions on τi of the couple stress, Smith [1968] proposed a

matrix T as follows

T =




τ1 + τ2 + 3τ3 + τ7 + τ10 3τ1 + τ4 + 3τ5 + τ8 + τ11 3τ2 + τ5 + τ6 + τ8 + τ9

3τ1 + τ2 + τ3 + τ8 + τ11 τ1 + 3τ4 + τ5 + τ7 + τ9 τ2 + 3τ5 + τ6 + τ8 + τ10

τ1 + 3τ2 + τ3 + τ8 + τ9 τ1 + τ4 + 3τ5 + τ8 + τ10 τ2 + τ5 + 3τ6 + τ7 + τ11




(2.105)

The constraints on τi are such that,

τ7 + 2τ8 > |τ9 + τ10 + τ11|

τ7 − τ8 >
1√
2

∣∣∣(τ9 − τ10)2 + (τ10 − τ11)2 + (τ11 − τ9)2
∣∣∣
1/2

tr (T) > 0

tr (coT) > 0

det (T) > 0 (2.106)

Note that tr(T) denotes the trace of T , and coT represents for the cofactor of T . It can be seen that

there is no constraint on any of the material parameters individually, except that λ > 0. Therefore,

some of the parameters can be either positive or negative, but they must satisfy Smith’s conditions
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(2.104) and (2.106) to be able to be selected as valid micromorphic elastic material parameters. So

far, in this chapter, the kinematics, balance equations, thermodynamics, and constitutive equations

for the micromorphic continuum have been presented. Following the approach of Eringen, the

mathematical derivations of each new variable (higher order stress, microstress, micro-inertia, and

so forth) have been shown to provide insight into the micromorphic continuum.

2.5 Comparison of Micromorphic and Micropolar Elasticity

In this section, a simplification from micromorphic continuum theory to micropolar theory

is presented. This is done for the purpose of comparing micromorphic theory with micropolar

theory for quasi-static linear elastic isotropic materials. In the results section, several examples are

presented to compare micromorphic and micropolar elasticity theories. This is done to illustrate

the effect of micromorphic additional dofs which makes this theory able to consider micro-shear

and micro-stretch deformations of the micro-elements, in addition to micro-rotation which is the

only micro-element deformation captured by micropolar continuum theory. One of the challenges of

comparing micromorphic and micropolar elasticity theories is that the material parameters for each

theory are different. The finite element code that is written in Tahoe (tahoe.sourceforge.net) is

specifically developed for micromorphic continuum equations, and cannot be simplified to simulate

a micropolar continuum (this requires a separate FE implementation). This means that constraint

φk = −1

2
eklmφlm (for small strains) cannot be applied directly onto micromorphic dofs within the fi-

nite element model in Tahoe. Eringen [1999] proposed a procedure for simplifying the micromorphic

kinematics, balance equations and constitutive equations to microstretch and micropolar theories

for small strain problems. But the proposed approach cannot be applied to simulations in this

thesis, since it requires that we apply the constraint of skew-symmetry on the micro-displacement

tensor, Φ = −ΦT . In the following the micropolar balance equations and constitutive equations

will be presented.
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2.5.1 Micropolar Balance and Constitutive Equations

The differences in the kinematics of micromorphic and micropolar continuum theories is

mainly related to their interpretation of the deformation of the micro-elements. In micromorphic

continuum, the micro-displacement tensor Φ(X, t) has 9 components to capture micro-shear, micro-

stretch, and micro-rotation. The micro-displacement tensor Φ(X, t) for micropolar theory [Eringen,

1968a], is written such that,

ΦkK = −ekKMΦrot
M , Φrot

M = −1

2
eMkKΦkK (2.107)

where Φrot is the independent micro-rotation vector of the micro-elements. The balance of mass

and linear momentum for a micropolar continuum theory are similar to those of a micromorphic

continuum. To derive the balance of angular momentum for micropolar continuum, we start with

the balance of angular momentum for micromorphic continuum such that,

enmk [σmk − smk +mlkm,l + ρ(`km − ωkm)] = 0 (2.108)

en


σ[mk] − s[mk]︸︷︷︸

=0

+ml[km],l + ρ(`[km] − ω[km])


 = 0 (2.109)

where en is a coefficient such that en = 1 for n = 1, 2, 3 (n 6= m 6= k), and we have,

en
[
σ[mk] +ml[km],l + ρ(`[km] − ω[km])

]
= 0 (2.110)

where the antisymmetric definition is σ[mk] = (σmk − σkm)/2. It is to be noted that (2.110)

provides 3 equations to solve for the micro-rotation vector ϕk. Thus, the micro-rotation vector of

a micropolar continuum can be solved from the balance of angular momentum (2.110) such that,

tk +mlk,l + ρ(`k − ωk) = 0 (2.111)

where,
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tk
def
= ekσ[mn] (2.112)

mlk,l
def
= ekmnmlnm,l = ekml[nm],l (2.113)

`k
def
= ek`[nm] (2.114)

ωk
def
= ekω[nm] (2.115)

(2.116)

where tk is the antisymmetric part of the micropolar Cauchy stress, mlk is the couple stress, `k

is the body force couple, and ωk is micro-spin inertia. The micro-rotation vector ϕ of micropolar

theory can be solved through the balance of angular momentum. Therefore, micropolar theory

does not involve the balance of first moment of momentum. Recalling from the previous section,

the integral form of the balance of energy for micromorphic theory can be written as,

∫

B
ρėdvβ =

∫

∂B
(vlσklnk + νlmmklmnk)daβ −

∫

B
vlρ(ül − fl)dvβ −

∫

B
νlmρ(ωlm − `lm)dvβ

+

∫

∂B
qknkdaβ +

∫

B
ρrdvβ (2.117)

=

∫

B


vl(σkl,k + ρ(fl − ül)︸ ︷︷ ︸

=0

) + νlm(mklm,k + ρ(`lm − ωlm)︸ ︷︷ ︸
=sml−σml

)

+vl,kσkl + νlm,kmklm + qk,k + ρr] dvβ

The balance of energy for micropolar continuum is then derived as follows, where we substitute for

micro-gyration tensor νlm the micropolar gyration vector νn, such that νlm = −elmnνn, and

∫

B
ρėdvβ =

∫

∂B
(vlσklnk − elmnνnmklmnk)daβ −

∫

B
vlρ(ül − fl)dv +

∫

B
elmnνnρ(ωlm − `lm)dvβ

+

∫

∂B
qknkda+

∫

B
ρrdvβ (2.118)

=

∫

B


vl(σkl,k + ρ(fl − ül)︸ ︷︷ ︸

=0

) + νl(mkl,k + ρ(`l − ωl)︸ ︷︷ ︸
=−elmnσmn

)

+vl,kσkl + νl,kmkl + qk,k + ρr] dvβ
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Thus, the localized balance of energy at spatial position xβ for a micropolar continuum is as follows,

ρė = σml(vl,m + νlm) + νl,kmkl + qk,k + ρr (2.119)

where σmlνlm for a micropolar continuum can be written such that,

σmlνlm = −σmlelmnνn = −σ[ml]enνn (2.120)

The Clausius-Duhem inequality for a micropolar continuum can be derived by substituting the

micropolar balance of energy (2.119) into the micromorphic Clausius-Duhem inequality (2.81) such

that,

−ρ(ψ̇ + ηθ̇)− σ[kl]enνn + σklvl,k +mklνl,k +
1

θ
qkθ,k ≥ 0 (2.121)

As mentioned earlier in this section, Eringen [1999] proposed a procedure to simplify micromor-

phic continuum to micropolar continuum. This procedure has been explained for the micropolar

balance equations. The key part of this simplification is to apply the constraint Φ = −ΦT on

the micro-displacement tensor Φ. Note that we are not able to apply such a constraint on the

micro-displacement tensor Φ of our FE micromorphic model in Tahoe. Therefore, in this thesis

the material parameters of micromorphic continuum are selected in such a way to make the mi-

cromorphic constitutive equations to be similar to the micropolar ones. The constitutive equations

of micropolar continuum given by Eringen [1999] (for small elastic strains, but potentially large

rotations) are as follows,

SKL = (λ) ¯̄EMMδKL + (µ̄+ η̄) ¯̄EKL + (µ̄) ¯̄ELK (2.122)

MKL = α¯̄ΓMM (δKL) + β ¯̄ΓKL + γ ¯̄ΓLK (2.123)

where MKL is the second order pseudo couple stress tensor in B0, ¯̄EKL = F TkKχ
−1
Lk − δKL, and

¯̄ΓKL =
1

2
eKMNχKNχkM,L. Where λ̄, µ̄, η̄, ᾱ, β̄, and γ̄ are micropolar material parameters. The
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constitutive equations of micromorphic and micropolar theories at small strain are written as,

σkl = (λ+ τ) emmδkl + 2 (µ+ σ) ekl

+ ηεmmδkl + κεkl + νεlk (micromorphic) (2.124)

σkl = λ̄εmmδkl + (µ̄+ η̄) εkl + µ̄εlk (micropolar) (2.125)

where the linearized strain measures for micromorphic continuum are given such that,

ekl =
1

2
(uk,l + ul,k) , εkl = φkl + ul,k (2.126)

Inserting (2.126) into the micromorphic constitutive equations (2.124) we have,

σkl = (λ+ τ + η)um,mδkl + (µ+ σ + κ)uk,l + (µ+ σ + ν)ul,k︸ ︷︷ ︸
macroscopic part

+ ηφmmδkl + κφkl + νφlk︸ ︷︷ ︸
microscopic part

(2.127)

The linear strain measure for micropolar theory and the constitutive equation for Cauchy stress

are given as,

εkl = elkjφj + ul,k (2.128)

σkl = λ̄um,mδkl + (µ̄+ η̄)ul,k + µ̄uk,l︸ ︷︷ ︸
macroscopic part

+ η̄elkjφj︸ ︷︷ ︸
microscopic part

(2.129)

An interesting feature of the micromorphic and micropolar constitutive equations at small strain is

that they can be separated into a macroscopic part (terms related to the macroscopic displacement

ui) and microscopic part (terms related to the micro-displacement tensor φij , for small strain). It

is evident that the constitutive equations of a micromorphic continuum have more terms involving

micro-scale deformation than does the micropolar theory. In the examples, the micromorphic

material parameters are selected such that the macroscopic part of (2.127) is equivalent to that of

(2.129). In the micropolar theory, the symmetric micro-stress still exists, but it will not contribute

to the balance of angular momentum (2.109), since it is written in terms of the anti-symmetric

part of the stresses. Therefore, in micropolar theory there is no constitutive equation required for
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the symmetric micro-stress. Eringen [1999] proposed a relation between the micromorphic couple

stress and that of the micropolar theory such that,

mkl = elmpmkpm = ᾱφr,rδkl + β̄φk,l + γ̄φl,k + ᾱ0eklpφ
str
,p (2.130)

φkl = φstrδkl (2.131)

where φstr is the micro-stretch term coefficient. Note that in microstretch theory it is assumed

that micro-stretch components are equal in all directions. The relations of ᾱ, β̄, γ̄, and ᾱ0 with

τ1, τ2, ..., τ11 are as follows,

ᾱ = 2τ8 − τ9 − τ11, β̄ = −τ4 + 2τ5 − τ6

γ̄ = τ4 − 2τ5 + τ6 + 2τ7 − 2τ8 + τ9 − 2τ10 + τ11

ᾱ0 = 3τ1 − 3τ2 + τ4 + τ6 − τ9 + τ11 (2.132)

To compare the micromorphic and micropolar theories, τi are selected such that ᾱ,β̄, and γ̄ given

through (2.132) are equal to the micropolar material parameters. Note that ᾱ0eklpφ
str
,p is not part of

the micropolar couple stress constitutive equation, but it appears in (2.130) as a result of simplifying

micromorphic to micropolar theory. Eringen [1968a] defined a micro-rotation vector Φrot in terms

of the micro-displacement tensor Φ such that,

skw (Φ)kK =

[
1

2

(
Φ−ΦT

)
kK

]
=
[
−ekKMΦrot

M

]
(2.133)

=
1

2




0 Φ12 − Φ21 Φ13 − Φ31

Φ21 − Φ12 0 Φ23 − Φ32

Φ31 − Φ13 Φ32 − Φ23 0




(2.134)

= −




0 e123Φrot
3 e132Φrot

2

e213Φrot
3 0 e231Φrot

1

e312Φrot
2 e321Φrot

1 0




(2.135)
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where we can write the rotation vector Φrot for micropolar theory such that,

Φrot =




Φrot
1

Φrot
2

Φrot
3




=




1
2 (Φ32 − Φ23)

1
2 (Φ13 − Φ31)

1
2 (Φ21 − Φ12)




(2.136)

We use (2.136) to calculate the rotation vector from the micromorphic dofs in order to compare

with that of the micropolar theory in the numerical examples. We can also apply BCs on the shear

terms of Φ to apply associated rotations Φrot.

2.6 Total Lagrangian Finite Element Formulation for Micromorphic Con-

tinuum and Time Integration for Implicit Dynamics

For the finite element formulation, the coupled strong form (S) of the micromorphic balance

of momenta in the current configuration are presented such that,

(S)





Find uk(x, t) : B̂ × [0, tfinal] 7→ R3, and φkK(x, t) : B̂ × [0, tfinal] 7→ R9, such that

σlk,l + ρ(fk − ük) = 0 ∈ B

uk(t) = guk (t) on Γug

σlknl(t) = tσk(t) on Γt

uk(x, 0) = uk0(x) ∈ B

σmk − smk +mlkm,l + ρ(`km − ωkm) = 0 ∈ B

φkl(t) = gφkl(t) on Γφg

mklmnk(t) = Mlm(t) on ΓM

φkl(x, 0) = φkl0(x) ∈ B
(2.137)

where B̂ = B∪Γ, and Γ = Γug∪Γt = Γφg∪ΓM. The finite element formulation will be presented in the

reference configuration B0 for a total Lagrangian implementation. Through the weighted residual

method and integration by parts, the balance of linear momentum in the current configuration can
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mklmnk = Mlm

    ΓM

σlknl = tσk

    Γt

    ΓM

    

ΦkK= GΦ
kK
    

UK = GU
K

U

Φ

B

uk = guk
Γu
g

ΓG

ΓT

φkl = gφkl

PkKNK = T P
k

M lmKNK =Mlm

Γφ
g

ΓG

0

B
^

^

Figure 2.2. Schematic of Neumann and Dirichlet boundary conditions for the micromorphic continuum in
the reference (left) and current (right) configurations.

be expressed as

∫

B
wk [σlk,l + ρ (fk − ük)] dvβ =

∫

∂B
wkσlknldaβ −

∫

B
[wk,lσlk + wkρ (fk − ük)] dvβ = 0 (2.138)

where wk is the weighting function for macro-scale displacement vector uk. Applying the Piola

transforms and mapping PlL = JσlkF
−1
Lk and σlk =

1

J
FlLSLKFkK , and Nanson’s formula to relate

the area change nlda = JF−1
KlNKdA, the variational form of the balance of linear momentum can

be written as,

∫

∂B0

wk(PkKNK)dAβ −
∫

B0

[wk,l(FlLSLKFkK) + wkρ0 (fk − ük)] dVβ = 0 (2.139)

Similarly, the variational form of the balance of first moment of momentum in the current config-

uration B is such that,

∫

B
ηml [σml − sml +mlkm,l + ρ (λlm − ωlm)] dVβ = 0 (2.140)

where ηml is the weighting function of the micro-displacement tensor φml in the current configura-

tion. Using (2.87)-(2.89), the variational form of the balance of first moment of momentum in the

reference configuration B0 can be expressed such that,
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∫

B0

ηml [FmMSMLFlL − FmMΣMLFlL + ρ0 (λlm − ωlm)] dVβ

−
∫

B0

ηml,kFkKFlLMKLMχmMdVβ +

∫

ΓM̂

ηmlM̂lmdAβ = 0 (2.141)

where λlm can be derived such that,

ρ0λlmdVβ = χmK

∫

dVβ

ρ
(α)
0 f

(α)
l Ξ

(α)
K dV (α) (2.142)

where the boundary couple-traction M̂lm = mklmJF
−1
KkNK = M̂lmKNK . Thus, the coupled weak

form for micromorphic elastodynamics in B0 may be stated as,

(W )





Find uk(X, t) ∈ S u and ΦkK(X, t) ∈ S Φ such that

∫
B0

[wk,l(FlLSLKFkK) + wkρ0fk] dVβ −
∫

ΓT
wk(T

P
K )dAβ −

∫
B0
wkρ0ükdVβ = 0

∫
B0
ηml [FmM (SML − ΣML)FlL + ρ0λlm] dVβ

−
∫
B0

(ηml,k) [FkKFlLMKLMχmM ] dVβ +
∫

ΓM̂
ηmlM̂lmdAβ −

∫
B0

(ηml,k)ρ0ωlmdVβ = 0

holds ∀wk(X) ∈ V u and ηml(X) ∈ V Φ

S u = {uk : B0 × [0, tfinal] 7→ R3, uk ∈ H1, uk(X, t) = guk (t) on Γug , uk(X, 0) = uk0(X)}

S Φ = {ΦkK : B0 × [0, tfinal] 7→ R9,ΦkK ∈ H1,ΦkK(X, t) = GΦ
kK(t) on ΓΦ

G,ΦkK(X, 0) = Φk0(X)}

V u = {wk : B0 7→ R3, wk ∈ H1, wk = 0 on Γug}

V Φ = {ηml : B0 7→ R9, ηml ∈ H1, ηml = 0 on ΓΦ
G}

(2.143)

where H1 denotes the first Sobolev space [Hughes, 1987], and S u and S Φ are the trial solution

spaces, and V u and V Φ the variation spaces.

Ignoring the boundary traction (TPK ), body force (ρ0fk), body couple (ρ0λlm), and boundary

traction-couple terms (M̂lm), we arrive at the following simplified coupled variational equations of

the balance of linear momentum and first moment of momentum for micromorphic elastodynamics
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as,

G =

∫

B0

wk,l(FlLSLKFkK)dVβ +

∫

B0

wkρ0ükdVβ = 0 (2.144)

H =

∫

B0

ηmlFmM (ΣML − SML)FlLdVβ +

∫

B0

ηml,kFkKFlLMKLMχmMdVβ

+

∫

B0

ηmlρ0ωlmdVβ = 0 (2.145)

The linearization of G and H may be stated as,

LG = G + δG = 0 , LH = H+ δH = 0 (2.146)

where δ(•) is the incremental operator with respect to a linearization procedure. We write,

δG =

∫

B0

δ (wk,l)FlLSLKFkKdVβ +

∫

B0

wk,l (δFlL)SLKFkKdVβ

+

∫

B0

wk,lFlL (δSLK)FkKdVβ +

∫

B0

wk,lFlLSLK (δFkK) dVβ

+

∫

B0

wkρ0 (δük) dVβ = 0 (2.147)

where

δFlK = (δul),K (2.148)

δχlK = δΦlK (2.149)

δ (wk,l) = −wk,a(δFaA)F−1
Al (2.150)

δELK =
1

2
[(δFiL)FiK + FiL(δFiK)] (2.151)

δELK = [(δFiL)χiK + FiL(δχiK)] (2.152)

δSKL = (λ+ τ) (δEMM )δKL + 2 (µ+ σ) (δEKL)

+ η(δEMM )δKL + κ(δEKL) + ν(δELK) (2.153)

and,
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δH =

∫

B0

ηml (δFmM ) (ΣML − SML)FlLdVβ +

∫

B0

ηmlFmMδ (ΣML − SML)FlLdVβ

+

∫

B0

ηmlFmM (ΣML − SML) (δFlL) dVβ +

∫

B0

δ(ηml,k)FkKFlLMKLMχmMdVβ

+

∫

B0

ηml,k (δFkK)FlLMKLMχmMdVβ +

∫

B0

ηml,kFkK (δFlL)MKLMχmMdVβ

+

∫

B0

ηml,kFkKFlLδ (MKLM )χmMdVβ +

∫

B0

ηml,kFkKFlLMKLM (δχmM ) dVβ

+

∫

B0

ηml (δχ̈lK)χmLρ0IKL(β)dVβ +

∫

B0

ηmlχ̈lK (δχmL) ρ0IKL(β)dVβ (2.154)

where δ (ΣML − SML) and δ (MKLM ) are expressed such that,

δ (Σ− S)KL = τ(δEMM )δKL + 2σ(δEKL) + (η − τ) (δEMM )δKL

+ (ν − σ) (δEKL) + (κ− σ) (δELK) (2.155)

δ (MKLM ) = τ1 [δLMδ (ΓKPP ) + δMKδ (ΓPPL)] + τ2 [δLMδ (ΓNKN ) + δLKδ (ΓPPM )]

+τ3δLMδ (ΓNNK) + τ4δMKδ (ΓLPP ) + τ5 [δLKδ (ΓMPP ) + δMKδ (ΓNLN )]

+τ6δLKδ (ΓNMN ) + τ7δ (ΓLMK) + τ8 [δ (ΓKLM ) + δ (ΓMKL)]

+τ9δ (ΓLKM ) + τ10δ (ΓMLK) + τ11δ (ΓKML) (2.156)

δ (ΓKLM ) = (δFkK)χlL,M + FkK (δΦiL),M (2.157)

Upon applying the linearization of the balance of linear and first moment of momenta equations in

(2.146), the coupled finite element equations can be constructed. Note that the terms involving δu

and δΦ in the balance of linear momentum are related to the Kdd and Kdφ parts of the consistent

tangent in (2.158). Similarly, the terms involving δu and δΦ in the balance of first moment of

momentum are related to Kφd and Kφφ in the consistent tangent. The system of coupled finite

element equations solved at each iteration for the incremental nodal macro-displacement vector δd

and micro-displacement tensor δφ as follows,



Mdd Mdφ

Mφd Mφφ


 ·





δü

δΦ̈





+



Kdd Kdφ

Kφd Kφφ


 ·





δu

δΦ





=




−Rd

−Rφ





(2.158)
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whereRd andRφ are the residual vectors at the current iteration of the Newton-Raphson algorithm

[Isbuga, 2012]. Kdd, Kdφ are the stiffness matrix components related to the balance of linear

momentum involving δu and δΦ respectively. Kφd, Kφφ are the stiffness matrix terms related to

the balance of first moment of momentum involving δu and δΦ. Similarly we have Mdd, Mdφ,

and Mφd, Mφφ which are the components of mass matrix related to the balance of linear and the

balance of first moment of momenta, respectively. Note that for the quasi-static analysis the terms

related to the incremental nodal acceleration vector δd̈ and acceleration of micro-displacement

tensor δφ̈ will be zero. In this thesis, the Hilber-Hughes-Taylor (HHT) implicit time integration

method has been used to construct temporally discretized equations of motion. Assuming the

classical equation of motion, temporal discretization applying the HHT method is expressed as,

M · ün+1 + (1 + α)K · un+1 − αK · un = R (tn+1+α) (2.159)

un+1 = un + ∆tu̇n +
∆t2

2
[(1− 2β) ün + 2βün+1] (2.160)

u̇n+1 = u̇n + ∆t [(1− γ) ün + γün+1] (2.161)

where α ∈ [−1/3, 0], γ = (1− 2α) /2, and β = (1− α)2 /4. Note that at α = 0, the HHT method

returns the trapezoidal rule. For α < 0 the numerical dissipation will be involved in the dynamic

analysis. The coupled micromorphic finite element equations can be written such that,



Mdd + β (1 + α) ∆t2Kdd Mdφ + β (1 + α) ∆t2Kdφ

Mφd + β (1 + α) ∆t2Kφd Mφφ + β (1 + α) ∆t2Kφφ


 ·





δü

δΦ̈





=




−Rd

−Rφ





(2.162)

where in (2.162), we can solve for δü and δΦ̈. Therefore, the acceleration of macroscopic displace-

ment and the micro-displacement tensor can be found ük+1
n+1 = ükn+1 + δü, Φ̈

k+1
n+1 = Φ̈

k
n+1 + δΦ̈.

Applying (2.160) and (2.161), the macro-element displacement vector u and micro-displacement

tensor Φ, and their velocities can be obtained as follows,
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un+1 = un + ∆tu̇n +
∆t2

2
[(1− 2β) ün + 2βün+1] (2.163)

u̇n+1 = u̇n + ∆t [(1− γ) ün + γün+1] (2.164)

Φn+1 = Φn + ∆tΦ̇n +
∆t2

2

[
(1− 2β) Φ̈n + 2βΦ̈n+1

]
(2.165)

Φ̇n+1 = Φ̇n + ∆t
[
(1− γ) Φ̈n + γΦ̈n+1

]
(2.166)



Chapter 3

Finite Strain Micromorphic Elastoplasticity

In this chapter, the finite strain micromorphic elasticity in the sense of Eringen and Suhubi [1964]

will be extended to elastoplasticity which has been first developed by Regueiro [2009, 2010]. The

formulation presented by Regueiro [2009, 2010] has several advantages over the other finite strain

micromorphic elastoplastic models available in the literature. This formulation is based upon the

micromorphic elasticity by Eringen and Suhubi [1964] in which the balance equations, thermody-

namics relations, and, the constitutive equations are developed for the finite strain analysis. From

the applicability perspective, this formulation provides an evident bridge between the microscopic

scale structure and continuum scale deformation. Furthermore, this formulation fits well in the

multi-scale hierarchical micro-structured material modeling framework when the bridging between

the direct numerical simulation and the finite element analysis is desired. To the best of my knowl-

edge, this formulation for the finite strain micromorphic elastoplasticity is the most general model

in comparison with the available models in the literature. Note that in this chapter all expressions

with a bar are defined in the intermediate configuration B̄. It is noteworthy to mention that the

main reason for the elastoplasticity formulation in the intermediate configuration is that including

material texture in the intermediate configuration is more straight forward in comparison with the

elastoplasticity model developed in the current configuration.



49

3.1 Kinematics of finite strain micromorphic elastoplasticity

To involve the plasticity analysis within the finite strain framework, the deformation gradient

tensor has to be decomposed into elastic and plastic parts. This decomposition is done via the

multiplicative decomposition of the deformation gradient tensor which requires to define a new

plastically deformed configuration named the intermediate configuration B̄. Figure 3.1 illustrates

the schematic of the micromorphic kinematics. In the context of the micromorphic continuum, we

have the deformation gradient and the micro-deformation tensor which have to be decomposed into

elastic and plastic parts, such that

FkK = F ekK̄F
p
K̄K

χkK = χekK̄χ
p
K̄K

(3.1)

Given the multiplicative decompositions of F and χ, the velocity gradient and micro-gyration

tensors can be expressed as,

vl,k = Ḟ elĀF
e−1
Āk

+ F elB̄L̄
p
B̄C̄
F e−1

C̄k
= `elk + `plk (3.2)

L̄p
B̄C̄

= Ḟ p
B̄B
F p−1

BC̄
(3.3)

νlk = χ̇elĀχ
e−1
Āk

+ χelB̄L̄
χ,p
B̄C̄
χe−1

C̄k
= νelk + νplk (3.4)

L̄χ,p
B̄C̄

= χ̇p
B̄B
χp−1

BC̄
(3.5)

where L̄
p

is the plastic velocity gradient in B̄ for F p, and L̄
χ,p

is the micro-scale plastic gyration

tensor in B̄. The spatial derivative of the micro-gyration tensor can be written such that,
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Cβ

Cβ

C
(α)
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(α)
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(α)
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(α)
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Figure 3.1. Multiplicative decomposition of deformation gradient F and micro-deformation tensor χ into

elastic and plastic parts, schematic of the mapping of the macro-element dVβ and the micro-element dV (α)

from the reference configuration B0 to the intermediate configuration B̄ and to the current configuration B
via the elastic and plastic parts of the macro deformation gradient F e, F p and the elastic and plastic parts
of the micro-deformation tensor χe, χp.

νlm,k = νelm,k + νplm,k

νelm,k = χ̇elĀ,kχ
e−1
Ām
− νelnχenD̄,kχe

−1
D̄m

(3.6)

νplm,k =
(
χelC̄,k χ̇

p
C̄A

+ χelĒ χ̇
p
ĒA,k

− χelF̄ L̄
χ,p
F̄ Ḡ

χp
ḠA,k

)
χ−1
Am

−νplaχeaĀ,kχe
−1
Ām

(3.7)
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The macro differential volume in the reference configuration dVβ at Cβ maps to the intermediate

(dV̄β) and current (dvβ) configurations as follows,

dvβ = JdVβ = JeJpdVβ = JedV̄β (3.8)

where Je = det(F e) and Jp = det(F p). likewise, the micro-element differential volumes mapping

can be expressed as,

dv(α) = J (α)dV (α) = Je(α)Jp(α)dV (α) = Je(α)dV̄ (α) (3.9)

where Je(α) = detF e(α) and Jp(α) = detF p(α). There is no need to decompose F (α) into F e(α) and

F p(α) since it is not involved in the formulation of the constitutive equations (see discussion after

equation (2.9)). But if such formulations were pursued, it would follow from (2.9). Likewise, the

mass densities are mapped such that,

ρ0 = ρJ = ρJeJp = ρ̄Jp (3.10)

ρ
(α)
0 = ρ(α)J (α) = ρ(α)Je(α)Jp(α) = ρ̄(α)Jp(α) (3.11)

The above equations are obtained according to the conservation of mass and applying the integral

averaging approach such that,

ρdvβ
def
=

∫

dvβ

ρ(α)dv(α) (3.12)

ρ0dVβ
def
=

∫

dVβ

ρ
(α)
0 dV (α) (3.13)

ρ̄dV̄β
def
=

∫

dV̄β

ρ̄(α)dV̄ (α) (3.14)

Given these kinematics of finite strain micromorphic elastoplasticity, the Clausius-Duhem inequality

can be derived to be able to construct the constitutive equations in the intermediate configuration.

3.2 Clausius-Duhem Inequality for Micromorphic Elastoplasticity

In this section, the Clausius-Duhem inequality will be mapped to the intermediate configu-

ration where we formulate the constitutive equations. As it is mentioned earlier, micromorphic
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elastoplasticity in the sense of Eringen, presents three levels of plasticity: macro, micro, and

micro-gradient plasticity. These levels of plasticity are able to evolve separately, however, they

are coupled via the constitutive equations and balance equations. By manipulating the Clausius-

Duhem inequality, the evolution equations for various parts of the plastic velocity gradient and

micro-gyration including L̄p
ĪJ̄

, L̄χ,p
ĪJ̄

and L̄χ,p
ĪJ̄ ,L̄

and their conjugate stresses will be obtained. In

order to map the Clausius-Duhem inequality to the intermediate configuration, the micromorphic

stresses in the current configuration are mapped to the intermediate configuration via the Piola

transform such that,

σkl =
1

Je
F ekK̄ S̄K̄L̄F

e
lL̄ (3.15)

skl =
1

Je
F ekK̄Σ̄K̄L̄F

e
lL̄ (3.16)

mklm =
1

Je
F ekK̄F

e
lL̄M̄K̄L̄M̄χ

e
mM̄ (3.17)

The Clausius-Duhem inequality in the current configuration is as follows,

∫

B

[
−ρ(ψ̇ + ηθ̇) + σkl(vl,k − νlk) + sklνlk +mklmνlm,k +

1

θ
qkθ,k

]
dvβ ≥ 0 (3.18)

The area-averaged unsymmetric Cauchy stress σ, the volume-averaged symmetric micro-stress s,

and the area-averaged higher order couple stress m terms are obtained as,
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σmlnmdaβ
def
=

∫

daβ

σ
(α)
ml n

(α)
m da(α)

=

∫

dĀβ

1

Je(α)
F
e(α)

mM̄
S̄

(α)

M̄N̄
F
e(α)

lN̄
Je(α)F

e(α)

Ām

−1
N̄

(α)

Ā
dĀ(α)

=

∫

dĀβ

F
e(α)

lN̄
S̄

(α)

M̄N̄
N̄

(α)

M̄
dĀ(α)

= F elN̄ S̄M̄N̄ N̄M̄dĀβ

where S̄M̄N̄ N̄M̄dĀβ
def
= F eN̄a

−1

∫

dĀβ

F
e(α)

aB̄
S̄

(α)

ĀB̄
N̄

(α)

Ā
dĀ(α)

recall N̄M̄dĀβ =
1

Je
F emM̄nmdaβ

=
1

Je
F emM̄ S̄M̄N̄F

e
lN̄︸ ︷︷ ︸

=σml

nmdaβ (3.19)

skldvβ
def
=

∫

dvβ

σ
(α)
kl dv

(α) =

∫

dV̄β

1

Je(α)
F
e(α)

kK̄
S̄

(α)

K̄L̄
F
e(α)

lL̄
Je(α)dV̄ (α)

= F ekK̄F
e
lL̄Σ̄K̄L̄dV̄β

where Σ̄K̄L̄dV̄β
def
= F eK̄i

−1F eL̄j
−1

∫

dV̄
F
e(α)

iĪ
F
e(α)

jJ̄
S̄

(α)

ĪJ̄
dV̄ (α)

=
1

Je
F ekK̄Σ̄K̄L̄F

e
lL̄︸ ︷︷ ︸

=skl

dvβ (3.20)

mklmnkdaβ
def
=

∫

daβ

σ
(α)
kl ξ

(α)
m n

(α)
k da(α)

=

∫

dĀβ

1

Je(α)
F
e(α)

kK̄
S̄

(α)

K̄L̄
F
e(α)

lK̄
χemM̄ Ξ̄

(α)

M̄
Je(α)F

e(α)

Āk

−1
N̄

(α)

Ā
dĀ(α)

=

∫

dĀβ

F
e(α)

lL̄
χemM̄ S̄

(α)

K̄L̄
Ξ̄

(α)

M̄
N̄

(α)

K̄
dĀ(α)

= F elL̄χ
e
mM̄M̄K̄L̄M̄ N̄K̄dĀβ

where M̄K̄L̄M̄ N̄K̄dĀβ
def
= F eL̄a

−1

∫

dĀ
F
e(α)

aB̄
S̄

(α)

K̄B̄
Ξ̄

(α)

M̄
N̄

(α)

K̄
dĀ(α)

recall N̄K̄dĀβ =
1

Je
F ekK̄nkdaβ

=
1

Je
F ekK̄F

e
lL̄χ

e
mM̄M̄K̄L̄M̄

︸ ︷︷ ︸
=mklm

nkdaβ (3.21)
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where S̄
(α)

K̄L̄
is the symmetric second Piola-Kirchhoff stress in the micro-element intermediate con-

figuration over dV̄β, S̄K̄L̄ is the unsymmetric macroscopic second Piola-Kirchhoff stress in the

intermediate configuration B̄, Σ̄K̄L̄ is the symmetric second Piola-Kirchhoff micro-stress in the in-

termediate configuration B̄, M̄K̄L̄M̄ is the higher order couple stress written in the intermediate

configuration B̄, N̄K̄ is the unit normal on dĀ in the intermediate configuration B̄, F e(α) is the elas-

tic part of the micro-element deformation gradient which maps the micro-element differential line

segment from the intermediate configuration dV̄β to the current configuration dvβ. As mentioned

earlier, the constitutive equations do not require F e(α) to be defined. The Clausius-Duhem inequal-

ity via mapping the couple stress from the current configuration to the intermediate configuration

becomes,

∫

B̄

[
−ρ̄(ψ̇ + η̄θ̇) + Jeσkl(vl,k − νlk) + Jesklνlk

+νlm,k
(
F ekK̄F

e
lL̄χ

e
mM̄M̄K̄L̄M̄

)
+

1

θ
Q̄K̄θ,K̄

]
dV̄β ≥ 0 (3.22)

The stress power terms in (3.22) are decomposed into the elastic and the plastic parts additively

according to the decomposition of the velocity gradient, the micro-gyration tensors, and the spatial

derivative of the micro-gyration tensor. The additive decomposition of the higher order couple

stress power can be written as,

Jeνlm,kmklm = νlm,k
(
F e
kK̄
F e
lL̄
χe
mM̄

M̄K̄L̄M̄

)
=

M̄K̄L̄M̄F
e
lL̄

(
χ̇e
aM̄,K̄

− νelnχenM̄,K̄

)}
elastic

+MK̄L̄M̄F
e
lL̄

(
−νplnχenM̄,K̄

+
[
χe
aC̄,K̄

χ̇p
C̄A

+ χe
aD̄
χ̇p
D̄A,K̄

− χeaB̄ L̄χ,pB̄Ē χ
p
ĒA,K̄

]
χp−1

AM̄

)





plastic

(3.23)

Note that the spatial derivative with respect to the intermediate configuration B̄ can be defined as,
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(•),K̄
def
= (•),kF ekK̄ (3.24)

The other stress power terms using (3.3,3.5) are written as,

Jeσklvl,k = F ekL̄Ḟ
e
kK̄ S̄K̄L̄︸ ︷︷ ︸

elastic

+ C̄eL̄B̄L̄
p
B̄K̄

S̄K̄L̄︸ ︷︷ ︸
plastic

(3.25)

Jeσklνlk =
(
F elL̄ν

e
lkF

e
kK̄

)
S̄K̄L̄︸ ︷︷ ︸

elastic

+ Ψ̄e
L̄ĒL̄

χ,p
ĒF̄
χe−1

F̄ k
F ekK̄ S̄K̄L̄︸ ︷︷ ︸

plastic

(3.26)

Jesklνlk =
(
F elL̄ν

e
lkF

e
kK̄

)
Σ̄K̄L̄︸ ︷︷ ︸

elastic

+ Ψ̄e
L̄ĒL̄

χ,p
ĒF̄
χe−1

F̄ k
F ekK̄Σ̄K̄L̄︸ ︷︷ ︸

plastic

(3.27)

Similar to the deformation measures of the finite strain micromorphic elasticity in the reference con-

figuration given by Suhubi and Eringen [1964], the elastic deformation measures in the intermediate

configuration can be expressed as,

C̄eK̄L̄ = F ekK̄F
e
kL̄, C̄

e
= F̄

eT · F̄ e
, (3.28)

Ψ̄e
K̄L̄ = F ekK̄χ

e
kL̄, Ψ̄

e
= F̄

eT · χ̄e, (3.29)

Γ̄eK̄L̄M̄ = F ekK̄χ
e
kL̄,M̄ , Γ̄

e
= F̄

eT ·
(
∇̄χ̄e

)
(3.30)

The Helmholtz free energy function per unit reference volume in the intermediate configuration

originally proposed by Regueiro [2010] is assumed to take the following functional form as,

ρ̄ψ(F ekK̄ , χ
e
kK̄ , χ

e
kM̄,K̄ , Z̄K̄ , Z̄

χ
K̄
, Z̄χ

K̄,L̄
, θ) (3.31)

where Z̄K̄ is a vector of the macro strain-like ISVs in B̄, Z̄χ
K̄

is a vector of the micro strain-like

ISVs, and Z̄χ
K̄,L̄

is a spatial derivative of a vector of the micro strain-like ISVs. Note that all these

vectors live in the intermediate configuration B̄. The material time derivative of the Helmholtz free

energy can be expressed as,
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D(ρ̄ψ)

Dt
=

∂(ρ̄ψ)

∂F e
kK̄

Ḟ ekK̄ +
∂(ρ̄ψ)

∂χe
kK̄

χ̇ekK̄ +
∂(ρ̄ψ)

∂χe
kM̄,K̄

D(χe
kM̄,K̄

)

Dt

+
∂(ρ̄ψ)

∂Z̄K̄

˙̄ZK̄ +
∂(ρ̄ψ)

∂Z̄χ
K̄

˙̄ZχK̄ +
∂(ρ̄ψ)

∂Z̄χ
K̄,L̄

D(Z̄χ
K̄,L̄

)

Dt
+
∂(ρ̄ψ)

∂θ
θ̇ (3.32)

where D(ρ̄ψ)
Dt can be written such that,

˙̄ρ = D(ρ0/J
p)/Dt = −ρ̄J̇p/Jp

D(ρ̄ψ)

Dt
= ˙̄ρψ + ρ̄ψ̇ = −(ρ̄ψ)

J̇p

Jp
+ ρ̄ψ̇ =⇒ ρ̄ψ̇ = (ρ̄ψ)

J̇p

Jp
+
D(ρ̄ψ)

Dt
(3.33)

Inserting equations (3.33), (3.25), (3.26), and (3.27) into the Clasius-Duhem inequality (3.22) we

have the following constitutive equations (following [Coleman and Noll, 1963] and [Coleman and

Gurtin, 1967]),

S̄K̄L̄ =
∂(ρ̄ψ)

∂F e
kK̄

F e−1
L̄k

(3.34)

Σ̄K̄L̄ =
∂(ρ̄ψ)

∂F e
kK̄

F e−1
L̄k

+ F e−1
K̄c
χecĀ

∂(ρ̄ψ)

∂χe
aĀ

F e−1
L̄a

+F e−1
K̄d
χedM̄,Ē

∂(ρ̄ψ)

∂χe
fM̄,Ē

F e−1
L̄f

(3.35)

M̄K̄L̄M̄ =
∂(ρ̄ψ)

∂χe
kM̄,K̄

F e−1
L̄k

(3.36)

ρ̄η̄ = −∂(ρ̄ψ)

∂θ
(3.37)

The mapping of the micromorphic stresses to the current configuration is such that,

σkl =
1

Je
F ekK̄ S̄K̄L̄F

e
lL̄ =

1

Je
F ekK̄

∂(ρ̄ψ)

∂F e
lK̄

(3.38)

skl =
1

Je
F ekK̄Σ̄K̄L̄F

e
lL̄

=
1

Je

(
F ekK̄

∂(ρ̄ψ)

∂F e
lK̄

+ χekĀ
∂(ρ̄ψ)

∂χe
lĀ

+ χekM̄,Ē

∂(ρ̄ψ)

∂χe
lM̄,Ē

)
(3.39)

mklm =
1

Je
F ekK̄F

e
lL̄χ

e
mM̄M̄K̄L̄M̄ =

1

Je
∂(ρ̄ψ)

∂χe
lM̄,K̄

F ekK̄χ
e
mM̄ (3.40)
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The Helmholtz free energy function in terms of the micromorphic elastic deformation measure

invariant equations (3.28-3.30) in the intermediate configuration the ISVs can be written as follows,

ρ̄ψ(C̄eK̄L̄,Ψ
e
K̄L̄, Γ̄

e
K̄L̄M̄ , Z̄K̄ , Z̄

χ
K̄
, Z̄χ

K̄,L̄
, θ) (3.41)

After some algebra, using the constitutive equations for the micromorphic stresses resulting from

(3.34-3.36), we can derive the constitutive equations in terms of the elastic deformation measure

invariants such that,

S̄K̄L̄ = 2
∂(ρ̄ψ)

∂C̄e
K̄L̄

+
∂(ρ̄ψ)

∂Ψe
K̄B̄

C̄e−1
L̄Ā

Ψe
ĀB̄

+
∂(ρ̄ψ)

∂Γ̄e
K̄B̄C̄

C̄e−1
L̄Ā

Γ̄eĀB̄C̄ (3.42)

Σ̄K̄L̄ = 2
∂(ρ̄ψ)

∂C̄e
K̄L̄

+ 2sym

[
∂(ρ̄ψ)

∂Ψe
K̄B̄

C̄e−1
L̄Ā

Ψe
ĀB̄

]

+2sym

[
∂(ρ̄ψ)

∂Γ̄e
K̄B̄C̄

C̄e−1
L̄Ā

Γ̄eĀB̄C̄

]
(3.43)

M̄K̄L̄M̄ =
∂(ρ̄ψ)

∂Γ̄e
L̄M̄K̄

(3.44)

where sym [•] denotes the symmetric part. The thermodynamically-conjugate stress-like ISVs are

defined as,

Q̄K̄
def
=

∂(ρ̄ψ)

∂Z̄K̄
, Q̄χ

K̄

def
=

∂(ρ̄ψ)

∂Z̄χ
K̄

, Q̄∇χ
K̄L̄

def
=

∂(ρ̄ψ)

∂Z̄χ
K̄,L̄

(3.45)

The reduced dissipation inequality in the intermediate configuration is expressed as,

−(ρ̄ψ) J̇
p

Jp + 1
θ Q̄K̄θ,K̄ − Q̄K̄ ˙̄ZK̄ − Q̄χK̄

˙̄ZχK̄ − Q̄∇χK̄L̄
D(Z̄χ

K̄,L̄
)

Dt

+S̄K̄L̄

(
C̄e
L̄B̄
L̄p
B̄K̄

)
+ (Σ̄K̄L̄ − S̄K̄L̄)

[
Ψe
L̄Ē
L̄χ,p
ĒF̄
C̄χ,e−1
F̄ N̄

Ψe
K̄N̄

]

+M̄K̄L̄M̄

{
Ψe
L̄D̄
L̄χ,p
D̄M̄,K̄

− 2Ψe
L̄D̄

skw
[
L̄χ,p
D̄C̄

Ψe−1
C̄F̄ Γ̄e

F̄ M̄K̄

]}
≥ 0

(3.46)
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where

C̄χ,e−1
K̄N̄

= χe−1
K̄k

χe−1
N̄k

(3.47)

Ψe−1
C̄F̄

= χe−1
C̄i

F e−1
F̄ i

(3.48)

skw [•] denotes the skew-symmetric part defined as,

2skw [•] def
=
[
L̄χ,p
D̄C̄

Ψe−1
C̄F̄

Γ̄eF̄ M̄K̄

]
−
[
L̄χ,p
B̄M̄

Ψe−1
D̄Ḡ

Γ̄eḠB̄K̄

]
(3.49)

and the spatial derivative of the micro-scale plastic velocity gradient can be expressed such that,

L̄χ,p
D̄M̄,K̄

=
[
χ̇p
D̄B

χp−1
BM̄

]
,K̄

=
(
χ̇p
D̄B,K̄

− L̄χ,p
D̄B̄

χp
B̄B,K̄

)
χp−1
BM̄

(3.50)

3.2.1 Plastic Evolution Equations

Satisfying the reduced dissipation inequality (3.46) requires the plastic evolution equations

to solve for F p
K̄K

, χp
K̄K

, and χp
K̄K,L̄

such that,

C̄eL̄B̄L̄
p
B̄K̄
−Ψe

L̄ĒL̄
χ,p
ĒF̄
C̄χ,e−1
F̄ N̄

Ψe
K̄N̄ = H̄L̄K̄

(
S̄, Q̄

)
(3.51)

solve for F p
K̄K

andF ekK̄ = FkKF
p−1
KK̄

Ψe
L̄ĒL̄

χ,p
ĒF̄
C̄χ,e−1
F̄ N̄

Ψe
K̄N̄ = H̄χ

L̄K̄

(
Σ̄, Q̄χ

)
(3.52)

solve for χp
K̄K

andχekK̄ = χkKχ
p−1
KK̄

Ψe
L̄D̄L̄

χ,p
D̄M̄,K̄

− 2Ψe
L̄D̄skw

[
L̄χ,p
D̄C̄

Ψe−1
C̄F̄

Γ̄eF̄ M̄K̄

]
= H̄∇χ

L̄M̄K̄

(
M̄, Q̄∇χ

)

(3.53)

solve for χp
K̄K,L̄

andχekK̄,L̄ = (χkK,L̄ − χekĀχ
p
ĀK,L̄

)χp−1
KK̄

Note that the macro and micro-gradient plasticity levels are coupled to the micro-plasticity analysis

through the plastic micro-gyration tensor L̄χ,p
ĒF̄

. This means that if plasticity occurs at the micro-

scale regardless of whether yielding takes place in the macro or the micro-gradient plasticity levels,



59

the micro plasticity drives plasticity at the macro and the micro-gradient levels. Therefore, we

have F p
K̄K

and χp
K̄K,L̄

evolving when χp
K̄K

evolves. According to the reduced dissipation inequality,

we proposed the evolution equation to solve for χp
K̄K,L̄

(3.53) directly to lessen computational

cost, although it can be calculated through the finite element interpolation of χP
K̄K

. Note that

the evolution equations for the macro and the micro plasticity presented in this section have been

modified compared to that of Regueiro [2010]. The evolution equations proposed by Regueiro [2010]

are such that,

C̄eL̄B̄L̄
p
B̄K̄

= H̄L̄K̄

(
S̄, Q̄

)
(3.54)

solve for F p
K̄K

andF ekK̄ = FkKF
p−1
KK̄

Ψe
L̄ĒL̄

χ,p
ĒF̄
C̄χ,e−1
F̄ N̄

Ψe
K̄N̄ = H̄χ

L̄K̄

(
Σ̄− S̄, Q̄χ

)
(3.55)

solve for χp
K̄K

andχekK̄ = χkKχ
p−1
KK̄

Ψe
L̄D̄L̄

χ,p
D̄M̄,K̄

− 2Ψe
L̄D̄skw

[
L̄χ,p
D̄C̄

Ψe−1
C̄F̄

Γ̄eF̄ M̄K̄

]
= H̄∇χ

L̄M̄K̄

(
M̄, Q̄∇χ

)

(3.56)

solve for χp
K̄K,L̄

andχekK̄,L̄ = (χkK,L̄ − χekĀχ
p
ĀK,L̄

)χp−1
KK̄

According to these evolution equations, if plasticity occurs at micro scale, it only drives the micro-

gradient plasticity level regardless of whether its yielding occurs or not. In the micromorphic

elastoplasticity numerical simulations, it has been observed that defining the micro plastic evolution

function H̄
χ

in terms of the relative stress Σ̄ − S̄ does not drive the plastic part of the micro-

deformation tensor χp to evolve consistently with the applied load and the plastic part of macro

deformation gradient F p. In addition, through the simulations the sign of relative stress may change

from positive to negative several times, which denotes that the direction of the micro plastic flow will

change accordingly. This leads to severe numerical difficulties as well as its physical interpretation

is under question. Also, note that if there is significant macro-scale plastic volume change through

Jp, then the term −(ρ̄ψ)J̇p/Jp will contribute to the reduced dissipation inequality in (3.46). It
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was shown in [Bennet et al., 2016] that the plastic evolution equations can be formulated in terms

of a thermodynamically-conjugate Eshelby-Mandel stress by re-working (3.46). This is relevant for

materials that experience finite plastic volume change or damage as well as texture effects. Such

formulation will be considered later, not here.

3.3 Constitutive Equations

In this section, the constitutive equations for the micromorphic elastoplasticity will be de-

rived. To this end, the quadratic form of the Helmholtz free energy function similar to micromorphic

elasticity is used. The Helmholtz free energy function per unit volume is defined in the intermediate

configuration B̄ and the energy terms of the internal state variables (ISVs) are involved such that,

ρ̄ψ
def
=

1

2
ĒeK̄L̄ĀK̄L̄M̄N̄ Ē

e
M̄N̄ +

1

2
ĒeK̄L̄B̄K̄L̄M̄N̄ ĒeM̄N̄

+
1

2
Γ̄eK̄L̄M̄ C̄K̄L̄M̄N̄P̄ Q̄Γ̄eN̄P̄ Q̄ + ĒeK̄L̄D̄K̄L̄M̄N̄ ĒeM̄N̄

+
1

2
H̄Z̄2 +

1

2
H̄χ(Z̄χ)2 +

1

2
Z̄χ
,K̄
H̄∇χ
K̄L̄
Z̄χ
,L̄

(3.57)

Note that the ISVs related to the macro and micro scales are scalar quantities defining the strength

of the material. H̄ and H̄χ are scalar hardening/softening parameters at the macro and micro

scales respectively. H̄∇χ
K̄L̄

is a symmetric second order hardening/softening modulus tensor for the

micro gradient plasticity level, which we will assume is an isotropic tensor as H̄∇χ
K̄L̄

= (H̄∇χ)δK̄L̄.

The elastic strains are defined similar to micromorphic elasticity as 2Ēe
K̄L̄

= C̄e
K̄L̄
− δK̄L̄, Ēe

K̄L̄
=

Ψ̄e
K̄L̄
− δK̄L̄, and Γ̄e

K̄L̄M̄
= F e

kK̄
χe
kL̄,M̄

. The elastic moduli for isotropic linear elasticity can be

expressed as,
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ĀK̄L̄M̄N̄ = λδK̄L̄δM̄N̄ + µ (δK̄M̄δL̄N̄ + δK̄N̄δL̄M̄ ) (3.58)

B̄K̄L̄M̄N̄ = (η − τ)δK̄L̄δM̄N̄ + κδK̄M̄δL̄N̄ + νδK̄N̄δL̄M̄

−σ(δK̄M̄δL̄N̄ + δK̄N̄δL̄M̄ ) (3.59)

C̄L̄M̄K̄N̄P̄ Q̄ = τ1

(
δL̄M̄δK̄N̄δP̄ Q̄ + δL̄Q̄δM̄K̄δN̄P̄

)

+τ2

(
δL̄M̄δK̄P̄ δN̄Q̄ + δL̄K̄δM̄Q̄δN̄P̄

)

+τ3δL̄M̄δK̄Q̄δN̄P̄ + τ4δL̄N̄δM̄K̄δP̄ Q̄

+τ5

(
δL̄K̄δM̄N̄δP̄ Q̄ + δL̄P̄ δM̄K̄δN̄Q̄

)

+τ6δL̄K̄δM̄P̄ δN̄Q̄ + τ7δL̄N̄δM̄P̄ δK̄Q̄

+τ8

(
δL̄P̄ δM̄Q̄δK̄N̄ + δL̄Q̄δM̄N̄δK̄P̄

)

+τ9δL̄N̄δM̄Q̄δK̄P̄ + τ10δL̄P̄ δM̄N̄δK̄Q̄

+τ11δL̄Q̄δM̄P̄ δK̄N̄ (3.60)

D̄K̄L̄M̄N̄ = τδK̄L̄δM̄N̄ + σ(δK̄M̄δL̄N̄ + δK̄N̄δL̄M̄ ) (3.61)

where ĀK̄L̄M̄N̄ and D̄K̄L̄M̄N̄ have major and minor symmetry, while B̄K̄L̄M̄N̄ and C̄K̄L̄M̄N̄P̄ Q̄ have

only major symmetry. The micromorphic linear elastic isotropic continuum has 18 elastic pa-

rameters listed as λ, µ, η, τ , κ, ν, σ, τ1 . . . τ11. Note that the elastic parameters related to the

couple stress are defined according to the length scale. The units of τ1 . . . τ11 are stress×length2

(e.g., Pa.m2). After some algebra using (3.42-3.45), and (3.57), it can be shown that the stress

constitutive relations are,
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S̄K̄L̄ = ĀK̄L̄M̄N̄ Ē
e
M̄N̄ + D̄K̄B̄M̄N̄ ĒeM̄N̄

+(D̄K̄B̄M̄N̄ Ē
e
M̄N̄ + B̄K̄B̄M̄N̄ ĒeM̄N̄ )

[
C̄e−1
L̄Ā
ĒeĀB̄ + δL̄B̄

]

+C̄K̄B̄C̄N̄P̄ Q̄Γ̄eN̄P̄ Q̄C̄
e−1
L̄Q̄

Γ̄eQ̄B̄C̄ (3.62)

Σ̄K̄L̄ = ĀK̄L̄M̄N̄ Ē
e
M̄N̄ + D̄K̄B̄M̄N̄ ĒeM̄N̄

+2sym
{

(D̄K̄L̄M̄N̄ Ē
e
M̄N̄ + B̄K̄B̄M̄N̄ ĒeM̄N̄ )

[
C̄e−1
L̄Ā
ĒeĀB̄ + δL̄B̄

]

+C̄K̄B̄C̄N̄P̄ Q̄Γ̄eN̄P̄ Q̄C̄
e−1
L̄Q̄

Γ̄eQ̄B̄C̄

}
(3.63)

M̄K̄L̄M̄ = C̄L̄M̄K̄N̄P̄ Q̄Γ̄eN̄P̄ Q̄ (3.64)

Q̄ = H̄Z̄ (3.65)

Q̄χ = H̄χZ̄χ (3.66)

Q̄χ
L̄

= H̄∇χZ̄χ
,L̄

(3.67)

Assuming small elastic deformations and removing the quadratic terms in (3.62) and (3.63), the

simplified stress constitutive equations for S̄K̄L̄, Σ̄K̄L̄, and M̄K̄L̄M̄ can be written such as,

S̄K̄L̄ = (λ+ τ)(ĒeM̄M̄ )δK̄L̄ + 2(µ+ σ)ĒeK̄L̄ (3.68)

+η(ĒeM̄M̄ )δK̄L̄ + κĒeK̄L̄ + νĒeL̄K̄

Σ̄K̄L̄ = (λ+ τ)(ĒeM̄M̄ )δK̄L̄ + 2(µ+ σ)ĒeK̄L̄ (3.69)

+η(ĒeM̄M̄ )δK̄L̄ + 2sym
[
κĒeK̄L̄ + νĒeL̄K̄

]

M̄K̄L̄M̄ = τ1

(
δL̄M̄ Γ̄K̄P̄ P̄ + δM̄K̄ Γ̄P̄ P̄ L̄

)
+ τ2

(
δL̄M̄ Γ̄N̄K̄N̄ + δLK Γ̄P̄ P̄ M̄

)
(3.70)

+ τ3δL̄M̄ Γ̄N̄N̄K̄ + τ4δM̄K̄ Γ̄L̄P̄ P̄ + τ5

(
δL̄K̄ Γ̄M̄P̄ P̄ + δM̄K̄ Γ̄N̄L̄N̄

)

+ τ6δL̄K̄ Γ̄N̄M̄N̄ + τ7Γ̄L̄M̄K̄ + τ8

(
Γ̄K̄L̄M̄ + Γ̄M̄K̄L̄

)

+ τ9Γ̄L̄K̄M̄ + τ10Γ̄M̄L̄K̄ + τ11Γ̄K̄M̄L̄
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3.4 Yield Functions and Evolution Equations

The micromorphic continuum introduces three levels of plasticity based on the three con-

jugate stress-plastic-power terms appearing in the reduced dissipation inequality (3.46) including

the macro, micro, and micro-gradient plasticity levels. Therefore, the plastic deformations cal-

culated from the evolution equations must satisfy the reduced dissipation inequality (3.46). This

approach of formulating the micromorphic elastoplasticity allows yielding and plastic deformation

at the macro, micro and micro-gradient levels separately. Note that χp
K̄K,L̄

can be calculated from

the finite element interpolation of χp
K̄K

, however, in the simulations of this thesis the evolution

equation (3.53) has been implemented directly for calculation χp
K̄K,L̄

. It is possible to define only

one yield function to be a function of all three stresses (S̄, Σ̄, M̄). If this yield function detects

yielding this means that yielding occurs at the all of the three scales at once (i.e., there is only one

plastic multiplier). This approach will simplify the numerical implementation of the micromorphic

elastoplasticity, and reduce the difficulty in finding appropriate plastic multipliers for each of the

plasticity levels. However, this is not desirable and will not reflect the physics properly. Therefore,

in this research, three distinct yield functions have been defined for each of the plasticity levels, and,

thus F p
ĪI

, χp
ĪI

, and χp
ĪI,L̄

are able to evolve separately through their separate evolution equations

and separate plastic multipliers. In this thesis the micromorphic elastoplasticity will be developed

based on the Drucker-Prager Pressure-Sensitive plasticity model.

Macro-scale plasticity

For macro-scale plasticity, the macroscopic yield function F̄(macro) and the plastic potential function

Ḡ(macro) are written such that,
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F̄(macro)(S̄, c̄)
def
= ‖devS̄‖ −

(
Aφc̄−Bφp̄

)
≤ 0 (3.71)

‖devS̄‖ =
√

(devS̄) : (devS̄)

(devS̄) : (devS̄) = (devS̄ĪJ̄)(devS̄ĪJ̄)

devS̄ĪJ̄
def
= S̄ĪJ̄ −

(
1

3
C̄eĀB̄S̄ĀB̄

)
C̄e−1
ĪJ̄

p̄
def
=

1

3
C̄eĀB̄S̄ĀB̄

Aφ = βφ cosφ , Bφ = βφ sinφ , βφ =
2
√

6

3 + β sinφ

Ḡ(macro)(S̄, c̄)
def
= ‖devS̄‖ −

(
Aψ c̄−Bψp̄

)

Aψ = βψ cosψ , Bψ = βψ sinψ , βψ =
2
√

6

3 + β sinψ
(3.72)

where c̄ is the macro cohesion, φ the macro friction angle, ψ the macro dilation angle, and −1 ≤

β ≤ 1. Note that β = 1 makes the Drucker-Prager yield surface intersect the triaxial extension

vertices of the Mohr-Coulomb yield surface, and β = −1 the triaxial compression vertices of the

Mohr-Coulomb yield surface. The reduced dissipation inequality will be satisfied if the selected

value for φ is larger than or equal to ψ, (φ ≥ ψ). This has been shown by Vermeer and de Borst

[1984]. The evolution equations for the macro plasticity level is expressed such that,

C̄eL̄B̄L̄
p
B̄K̄
− Ψ̄e

L̄ĒL̄
χ,p
ĒF̄
C̄χ,e−1
F̄ N̄

Ψ̄e
K̄N̄

def
= ˙̄γ

∂Ḡ(macro)

∂S̄K̄L̄
(3.73)

∂Ḡ(macro)

∂S̄K̄L̄
= ˆ̄N K̄L̄ +

1

3
BψC̄eK̄L̄

ˆ̄N K̄L̄ =
devS̄K̄L̄
‖devS̄‖

˙̄Z
def
= − ˙̄γ

∂Ḡ(macro)

∂c̄
= Aψ ˙̄γ (3.74)

c̄ = H̄Z̄ (3.75)

˙̄c = H̄ ˙̄Z = H̄Aψ ˙̄γ (3.76)

Q̄
def
= c̄ (3.77)
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where ˙̄γ is the macro plastic multiplier in the intermediate configuration. The plastic part of the

deformation gradient is solved by integrating the following equation, which is derived from (3.73)

as,

Ḟ p
B̄C

= ˙̄γC̄e−1
B̄L̄

∂Ḡ(macro)

∂S̄K̄L̄
F p
K̄C

+ C̄e−1
B̄L̄

Ψ̄e
L̄ĒL̄

χ,p
ĒF̄
C
χ(e−1)

F̄ N̄
Ψ̄e
K̄N̄F

p
K̄C

(3.78)

Micro-scale plasticity

For the micro-scale plasticity, the microscopic yield F̄χ(micro) and the plastic potential Ḡχ(micro)

functions are expressed as,

F̄χ(micro)(Σ̄, c̄
χ)

def
= ‖dev(Σ̄)‖ −

(
Aχ,φc̄χ −Bχ,φp̄χ

)
≤ 0 (3.79)

Aχ,φ = βχ,φ cosφχ , Bχ,φ = βχ,φ sinφχ , βχ,φ =
2
√

6

3 + βχ sinφχ

dev(Σ̄ĪJ̄)
def
= (Σ̄ĪJ̄)− p̄χC̄e−1

ĪJ̄

p̄χ
def
=

1

3
C̄eĀB̄(Σ̄ĀB̄)

Ḡχ(micro)(Σ̄, c̄
χ)

def
= ‖dev(Σ̄)‖ −

(
Aχ,ψ c̄χ −Bχ,ψp̄χ

)
(3.80)

Aχ,φ = βχ,ψ cosψχ , Bχ,ψ = βχ,ψ sinψχ , βχ,ψ =
2
√

6

3 + βχ sinψχ

where c̄χ is the micro cohesion, φχ the micro friction angle, ψχ the micro dilation angle, and −1 ≤

βχ ≤ 1, which are the material parameters to govern the plasticity at the micro-scale. It can be

seen that all the material parameters for the micro plasticity level can be defined irrespective of the

macro plasticity level parameters. This approach of formulating the micromorphic elastoplasticity

provides us a chance of capturing the different phenomenological aspects of the macro and micro

level plasticities. In this research, we employed the same functional forms for the macro and micro

level yield and the plastic potential functions, but this is not a requirement. The evolution equations

for the micro-scale plasticity can be written such that,
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Ψ̄e
L̄ĒL̄

χ,p
ĒF̄
C̄χ,e−1
F̄ N̄

Ψ̄e
K̄N̄

def
= ˙̄γχ

∂Ḡχ

∂(Σ̄K̄L̄)
(3.81)

∂Ḡχ

∂(Σ̄K̄L̄)
= ˆ̄Nχ

K̄L̄
+

1

3
Bχ,ψC̄eK̄L̄

ˆ̄Nχ
K̄L̄

=
dev(Σ̄K̄L̄)

‖dev(Σ̄)‖
˙̄Zχ

def
= − ˙̄γχ

∂Ḡχ

∂c̄χ
= Aχ,ψ ˙̄γχ (3.82)

c̄χ = H̄χZ̄χ (3.83)

˙̄cχ = H̄χ ˙̄Zχ = H̄χAχ,ψ ˙̄γχ (3.84)

Q̄χ
def
= c̄χ (3.85)

where ˙̄γχ is the micro plastic multiplier in the intermediate configuration. The evolution of the

plastic part of micro-deformation tensor is derived from (3.81) as,

χ̇p
B̄N

= ˙̄γχΨ̄e−1
B̄P̄

∂Ḡχ(micro)

∂Σ̄ŌP̄

Ψe−1
T̄ Ō

C̄χ,e
T̄ Q̄
χp
Q̄N

(3.86)

Micro-scale gradient plasticity

For the micro-scale gradient plasticity, the micro-gradient yield F̄
∇χ

and plastic potential Ḡ
∇χ

functions are written such that,

F̄∇χ
K̄(micro−grad)

(M̄, c̄∇χ)
def
= ‖devM̄‖K̄ −

(
A∇χ,φc̄∇χ

K̄
−B∇χ,φp̄∇χ

K̄

)
≤ 0 (3.87)

A∇χ,φ = β∇χ,φ cosφ∇χ , B∇χ,φ = β∇χ,φ sinφ∇χ , β∇χ,φ =
2
√

6

3 + β∇χ sinφ∇χ

devM̄ĪJ̄K̄
def
= M̄ĪJ̄K̄ − C̄e−1

ĪJ̄
p̄∇χ
K̄

‖dev(M̄)‖K̄ =
√

devM̄
ĪJ̄ K̄

devM̄
ĪJ̄ K̄

p̄∇χ
K̄

def
=

1

3
C̄eĀB̄M̄ĀB̄K̄

Ḡ∇χ
K̄(micro−grad)

(M̄, c̄∇χ)
def
= ‖devM̄‖K̄ −

(
A∇χ,ψ c̄∇χ

K̄
−B∇χ,ψp̄∇χ

K̄

)
(3.88)

where c̄∇χ is the micro gradient cohesion, φ∇χ the micro gradient friction angle, ψ∇χ the micro

gradient dilation angle, and −1 ≤ β∇χ ≤ 1. These are the material parameters which define
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the behavior of the material at the micro-gradient plasticity level. Note that the symbol • is

used to show that the index is not a dummy index, thus there is summation only over the other

indices. This is used to present the spatial gradient direction for the micro-gradient plasticity.

The micro-gradient plasticity is dependent on the spatial gradient direction. Therefore, for each of

the Cartesian coordinate directions in space, the yield and the plastic potential functions must be

defined. The evolution equations for the micro-gradient plasticity can be written such that,

Ψ̄e
L̄D̄L̄

χ,p
D̄M̄,K̄

− 2Ψ̄e
L̄D̄skw

[
L̄χ,p
D̄C̄

Ψ̄e−1
C̄F̄

Γ̄eF̄ M̄K̄

]
def
= ˙̄γ∇χ

Ī

∂Ḡ∇χ
Ī(micro−grad)

∂M̄K̄L̄M̄

(3.89)

∂Ḡ∇χ
Ī(micro−grad)

∂M̄K̄L̄M̄

=
devM̄K̄L̄M̄

‖devM̄‖Ī
+

1

3
B∇χ,ψC̄eK̄L̄δĪM̄

˙̄Zχ
,Ā

def
= − ˙̄γ∇χ

Ī

∂Ḡ∇χ
Ī

∂c̄∇χ
Ā

= A∇χ,ψ( ˙̄γ∇χ
Ī

)δĪĀ (3.90)

c̄∇χ
L̄

= H̄∇χZ̄χ
,L̄

(3.91)

where ˙̄γ∇χ
Ī

is the micro plastic gradient multiplier vector. The plastic part of micro-deformation

gradient χp
N̄A,M̄

is solved by integrating in time the following equation, which is derived from (3.89)

as,

χ̇p
N̄A,M̄

= ˙̄γ∇χ
Ī

Ψ̄e−1
N̄L̄

∂Ḡ∇χI(micro−grad)

∂M̄M̄L̄P̄

χp
P̄A

+ 2skw
[
L̄χ,p
N̄C̄

Ψe−1
C̄F̄

ΓeF̄ P̄ M̄

]
χp
P̄A

+ L̄χ,p
N̄L̄
χp
L̄A,M̄

− χp
N̄A,L̄

L̄p
L̄M̄

(3.92)

Integrating in time these evolution equations (3.73), (3.81), and (3.89), we are able to solve for

F p
ĪI

, χp
ĪI

, and χp
ĪI,L̄

. Using the multiplicative decomposition of the deformation gradient and the

micro-deformation tensor, F e
ĪI

, χe
ĪI

, and χe
ĪI,L̄

can be solved to calculate the micromorphic stresses

S̄, Σ̄, and M̄ and update the evolution equations.

3.5 Numerical Time Integration

In this research the evolution equations (3.73), (3.81), and (3.89) are integrated over time used

the scheme proposed by Moran et al. [1990] called “semi-implicit method”. This approach is used
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to avoid the complexity of a full implicit method for the micromorphic plastic evolution equations

in solving for the macro-plastic multiplier ˙̄γ, the micro-plastic multiplier ˙̄γχ, and the micro-gradient

plastic multiplier ˙̄γ∇χ. The employed semi-implicit method maintains the frame indifference of the

integrated constitutive equations. Note that this integration method is conditionally stable and

therefore, there is a limitation on time steps to obtain stable results. The semi-implicit numerical

time integration scheme for the finite strain micromorphic elastoplasticity can be written such that

Given: F n+1, χn+1, C̄
e
n,C̄

χ,e
n , Ψ̄

e
n, F p

n, χpn, Z̄n, Z̄χn , c̄n, c̄χn

• Calculate trial values of macroscopic and microscopic yield functions F̄macro and F̄χmicro

F e(tr) = F n+1F
p−1
n

C̄
e(tr)

= F e(tr)TF e(tr)

Ē
e(tr)

=
(
C̄
e(tr) − Ī

)
/2

χ̄e(tr) = χn+1χ
p−1
n

Ψ̄
e(tr)

= F e(tr)Tχe(tr)

Ēe(tr) = Ψ̄
e(tr) − Ī

S̄
e(tr)

= (λ+ τ)
(
trĒ

e(tr)
)
I + 2 (µ+ σ) Ē

eT (tr)
+ η

(
trĒe(tr)

)
I + κĒe(tr) + νĒeT (tr)

Σ̄
e(tr)

= (λ+ 2τ)
(
trĒ

e(tr)
)
I + 2 (µ+ 2σ)EeT (tr) + (2η − τ)

(
trĒe(tr)

)
I

+2 (κ+ ν − σ) sym
(
Ēe(tr)

)

F̄χ,trmicro = F̄χmicro

(
Σ̄
e(tr)

, C̄
χ,e(tr)

, c̄χn

)

F̄ trmacro = F̄macro

(
S̄
e(tr)

, C̄
e(tr)

, c̄n

)
(3.93)

• Plasticity may occur in both the macroscopic and microscopic scales, where the plastic part

of the micro-deformation tensor χpn+1 and deformation gradient F p
n+1 can be solved such

that,
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Ψ̄e
L̄Ē(n)χ̇

p
ĒI
χp−1
IF̄ (n)

C̄χ,e−1
F̄ N̄(n)

Ψ̄e
K̄N̄(n) = ˙̄γχ

(
∂Ḡχ(micro)

∂(Σ̄n
K̄L̄

)

)

n

(3.94)

χp
B̄N(n+1)

= χp
B̄N(n)

+ ∆γ̄χn+1Ψ̄e−1
B̄P̄ (n)

(
∂Ḡχ(micro)

∂Σ̄ŌP̄

)

n

Ψe−1
T̄ Ō(n)

C̄χ,e
T̄ Q̄(n)

χp
Q̄N(n)

(3.95)

∆tL̄χ,p
ĒF̄ (n+1)

=
(
χp
ĒI(n+1)

− χp
ĒI(n)

)
χp−1
IF̄ (n)

C̄eL̄B̄(n)
˙̄F p
B̄I
F̄ p−1
IK̄(n)

− Ψ̄e
L̄Ē(n)L̄

χ,p
ĒF̄ (n+1)

C̄χ,e−1
F̄ N̄(n)

Ψ̄e
K̄N̄(n) = ˙̄γ

(
∂Ḡ(macro)

∂S̄K̄L̄

)

n

F p
B̄C(n+1)

= F p
B̄C(n)

+ ∆γ̄n+1C̄
e−1
B̄L̄(n)

(
∂Ḡ(macro)

∂S̄K̄L̄

)

n

F p
K̄C(n)

(3.96)

+C̄e−1
B̄L̄(n)

Ψ̄e
L̄Ē(n)∆tL̄

χ,p
ĒF̄ (n+1)

Cχ,e−1
F̄ N̄(n)

Ψ̄e
K̄N̄(n)F

p
K̄C(n)

∆tL̄p
ĒF̄ (n+1)

=
(
F p
ĒI(n+1)

− F p
ĒI(n)

)
F p−1
IF̄ (n)

• Update elastic deformation

F e
n+1 = F n+1F

p−1
n+1

C̄
e
n+1 = F eT

n+1F
e
n+1

Ē
e
n+1 =

(
C̄
e
n+1 − I

)
/2

χen+1 = χn+1χ
p−1
n+1

Ψ̄
e
n+1 = F eT

n+1χ
e
n+1

Ēen+1 = Ψ̄
e
n+1 − I (3.97)

• Update the second Piola Kirchhoff S̄ and the micro-stress Σ̄

S̄
e

= (λ+ τ)
(
trĒ

e
n+1

)
I + 2 (µ+ σ) Ē

eT
n+1 + η

(
trĒen+1

)
I

+κĒen+1 + νĒeTn+1 (3.98)

Σ̄
e
n+1 = (λ+ 2τ)

(
trĒ

e
n+1

)
I + 2 (µ+ 2σ) Ē

eT
n+1 + (2η − τ)

(
trĒen+1

)
I

+2 (κ+ ν − σ) sym
(
Ēen+1

)
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• Internal state variables update

Z̄n+1 = Z̄n + ∆γ̄n+1

c̄n+1 = H̄Z̄n+1 (3.99)

Z̄χn+1 = Z̄χn + ∆γ̄χn+1

c̄χn+1 = H̄χZ̄χn+1 (3.100)

(3.101)

Micro-gradient plasticity:

Given: ∇0χn+1, F e
n+1, χen+1, C̄

e
n+1, C̄

χ,e
n+1, Ψ̄

e
n+1, F p

n+1, χpn+1, ∇̄Z̄∇χn , Z̄χn , c̄n, c̄χn

• Calculating trial values for micro-gradient plasticity

χ
e(tr)

kL̄,M̄
= χkK,L(n+1)F

p−1
LM̄(n)

χp−1
KL̄(n)

− χe(tr)
kN̄

χp
N̄A,M̄(n)

χp−1
AL̄(n)

Γ̄
e(tr)

K̄L̄M̄
= F ekK̄χ

e(tr)

kL̄,M̄

M̄
e(tr)

Q̄P̄ N̄
= C̄Q̄P̄ N̄K̄L̄M̄Γ

e(tr)

K̄L̄M̄

F̄
∇χ,(tr)
Ī

= F̄
∇χ
Ī

(
M̄

(tr)
, c̄∇χ
Ī(n)

)
(3.102)

• Numerical time integration of micro-gradient plastic evolution

Ψ̄e
L̄D̄(n)

(
χ̇p
D̄B,K̄

− L̄χ,p
D̄B̄(n+1)

χp
B̄B,K̄(n)

)
χp−1
BM̄(n)

− 2Ψ̄e
L̄D̄(n)skw

[
L̄χ,p
D̄C̄(n+1)

Ψ̄e−1
C̄F̄ (n)

Γ̄eF̄ M̄K̄(n)

]

= ˙̄γ∇χ
Ī



∂Ḡ∇χ

Ī(micro−grad)

∂M̄K̄L̄M̄



n

χp
N̄A,M̄(n+1)

= χp
N̄A,M̄(n)

+ ∆γ̄∇χ
Ī(n+1)

Ψ̄e−1
N̄L̄(n)


∂Ḡ

∇χ
I(micro−grad)

∂M̄M̄L̄P̄



n

χp
P̄A(n)

+2skw
[
∆tL̄χ,p

N̄C̄(n+1)
Ψe−1
C̄F̄ (n)

ΓeF̄ P̄ M̄(n)

]
χp
P̄A(n)

+∆tL̄χ,p
N̄L̄(n+1)

χp
L̄A,M̄(n)

− χp
N̄A,L̄(n)

∆tL̄p
L̄M̄(n+1)

(3.103)

χekM̄,L̄(n+1) = χkK,L(n+1)F
p−1
LM̄(n)

χp−1
KL̄(n)

− χekN̄(n+1)χ
p
N̄A,M̄(n+1)

χp−1
AL̄(n+1)

(3.104)
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• Updating couple stress

ΓeK̄L̄M̄(n+1) = F ekK̄(n+1)χ
e
kL̄,M̄(n+1) (3.105)

M̄Q̄P̄ N̄(n+1) = C̄Q̄P̄ N̄K̄L̄M̄ΓeK̄L̄M̄(n+1) (3.106)

• Updating internal state variables of micro-gradient plasticity

Z̄∇χ
Ī(n+1)

= Z̄∇χ
Ī(n)

+ ∆γ̄∇χ
Ī(n+1)

c̄∇χ
Ī(n+1)

= H̄∇χZ̄∇χ
Ī(n+1)

(3.107)

3.5.1 Finite Element Formulation for Micromorphic Elastoplasticity in the Inter-

mediate Configuration

For the finite element formulation, the coupled strong form (S) of the micromorphic balance

of momenta in the current configuration are presented such that,

(S)





Find uk(x, t) : B̂ × [0, tfinal] 7→ R3, and φkK(x, t) : B̂ × [0, tfinal] 7→ R9, such that

σlk,l + ρ(fk − ük) = 0 ∈ B

uk(t) = guk (t) on Γug

σlknl(t) = tσk(t) on Γt

uk(x, 0) = uk0(x) ∈ B

σmk − smk +mlkm,l + ρ(`km − ωkm) = 0 ∈ B

φkl(t) = gφkl(t) on Γφg

mklmnk(t) = Mlm(t) on ΓM

φkl(x, 0) = φkl0(x) ∈ B
(3.108)

where B̂ = B ∪ Γ, and Γ = Γg ∪ Γt = ΓG ∪ ΓM. The finite element formulation will be presented in

the intermediate configuration for a Total Lagrangian implementation of the micromorphic elasto-

plasticity. Through the weighted residual method and integration by parts, the balance of linear
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momentum in the current configuration can be expressed as,

∫

B
wk [σlk,l + ρ (fk − ük)] dvβ =

∫

∂B
wkσlknlda−

∫

B
[wk,lσlk + wkρ (fk − ük)] dvβ = 0 (3.109)

Applying the Piola transforms and mapping P̄lL̄ = JeσlkF
e−1
L̄k

and σlk =
1

Je
F e
lL̄
S̄L̄K̄F

e
kK̄

, and

Nanson’s formula to relate area change nldaβ = JeF e−1
K̄l

N̄K̄dĀβ, the variational form of the balance

of linear momentum can be written as,

∫

∂B̄
wk(P̄kK̄N̄K̄)dĀβ −

∫

B̄

[
wk,l(F

e
lL̄S̄L̄K̄F

e
kK̄) + wkρ̄ (fk − ük)

]
dV̄β = 0 (3.110)

Similarly, the variational form of the balance of first moment of momentum in the current config-

uration is such that,

∫

B
ηml [σml − sml +mlkm,l + ρ (λlm − ωlm)] dvβ = 0 (3.111)

Using the mapping (3.19)-(3.21) to the intermediate configuration, the variational form of the

balance of first moment of momentum in the intermediate configuration is such that,

∫

B̄
ηml

[
F emM̄ S̄M̄L̄F

e
lL̄ − F emM̄ Σ̄M̄L̄F

e
lL̄ + ρ̄ (λlm − ωlm)

]
dV̄β

−
∫

B̄
ηml,kF

e
kK̄FlL̄M̄K̄L̄M̄χ

e
mM̄dV̄β +

∫

Γ̄ ˆ̄M

ηml
ˆ̄MlmdĀβ = 0 (3.112)

where the couple traction term ˆ̄Mlm = mklmJ
eF e−1

K̄k
N̄K̄ = ˆ̄MlmK̄N̄K̄ . The coupled weak form for

micromorphic elastoplastic-dynamics in B̄ can be stated as
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(W )





Find uk(X, t) ∈ S u and ΦkK(X, t) ∈ S Φ such that

∫
B̄
[
wk,l(F

e
lL̄
S̄L̄K̄F

e
kK̄

) + wkρ̄fk
]
dV̄β −

∫
Γ̄T
wk(T̄

P
K̄

)dĀβ −
∫
B̄ wkρ̄ükdV̄β = 0

∫
B̄ ηml

[
F e
mM̄

(S̄M̄L̄ − Σ̄M̄L̄)F elL + ρ̄λlm
]
dV̄β

−
∫
B̄(ηml,k)

[
F e
kK̄
F e
lL̄
M̄K̄L̄M̄χ

e
mM̄

]
dV̄β +

∫
Γ̄ ˆ̄M

ηml
ˆ̄MlmdĀβ −

∫
B̄(ηml,k)ρ̄ωlmdV̄β = 0

holds ∀wk(X) ∈ V u and ηml(X) ∈ V Φ

S u = {uk : B0 × [0, tfinal] 7→ R3, uk ∈ H1, uk(X, t) = guk (t) on Γug , uk(X, 0) = uk0(X)}

S Φ = {ΦkK : B0 × [0, tfinal] 7→ R9,ΦkK ∈ H1,ΦkK(X, t) = GΦ
kK(t) on ΓΦ

G,ΦkK(X, 0) = Φk0(X)}

V u = {wk : B0 7→ R3, wk ∈ H1, wk = 0 on Γug}

V Φ = {ηml : B0 7→ R9, ηml ∈ H1, ηml = 0 on ΓΦ
G}

(3.113)

Ignoring the boundary traction (T̄P
K̄

), the body force (ρ̄fk), and the body force couple (ρ̄λlm),

and boundary traction couple terms ( ˆ̄M), we arrive at the following equations,

G =

∫

B̄
wk,l(F

e
lL̄S̄L̄K̄F

e
kK̄)dV̄β +

∫

B̄
wkρ̄ükdV̄β = 0 (3.114)

H =

∫

B̄
ηmlF

e
mM̄

(
Σ̄M̄L̄ − S̄M̄L̄

)
F elL̄dV̄β +

∫

B̄
ηml,kF

e
kK̄F

e
lL̄M̄K̄L̄M̄χ

e
mM̄dV̄β

+

∫

B̄
ηmlρ̄ωlmdV̄β = 0 (3.115)

The linearization can be written as,

LG = G + δG = 0 , LH = H+ δH = 0 (3.116)

where δ(•) is the incremental operator with respect to the linearization procedure. Note that the

superscript (n+ 1) is dropped from the formulations but is implied. The variational formulation of

the elastic and plastic part of the micromorphic deformations are derived such that,
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δχp
B̄N

= δ(∆γ̄)χΨ̄
e−1(n)

B̄P̄

(
∂Ḡχ(micro)

∂Σ̄ŌP̄

)(n)

Ψ
e−1(n)

T̄ Ō
C̄
χ,e(n)

T̄ Q̄
χ
p(n)

Q̄N
(3.117)

δχp−1
NB̄

= −χp−1
NP̄

[
δχp

P̄J

]
χp−1
JP̄

(3.118)

δ
[
∆L̄χ,p

ĒF̄

]
= χ

p(n)

ĒA
χp−1
AB̄

[
δχp

B̄N

]
χp−1
NF̄

(3.119)

δF p
B̄C

= δ(∆γ̄)C̄
e−1(n)

B̄L̄

(
∂Ḡ(macro)

∂S̄K̄L̄

)(n)

F
p(n)

K̄C

+ C̄
e−1(n)

B̄L̄
Ψ̄
e(n)

L̄Ē
δ
[
L̄χ,p
ĒF̄

]
C
χ,e−1(n)

F̄ N̄
Ψ̄
e(n)

K̄N̄
F
p(n)

K̄C
(3.120)

δF p−1
NB̄

= −F p−1
NP̄

δF p
P̄J
F p−1
JP̄

(3.121)

δ
[
∆L̄p

ĒF̄

]
= F

p(n)

ĒA
F p−1
AB̄

δF p
B̄N

F p−1
NF̄

(3.122)

δχp
N̄A,M̄

=
(
δ∆γ̄∇χ

Ī

)
Ψ̄
e−1(n)

N̄L̄


∂Ḡ

∇χ
I(micro−grad)

∂M̄M̄L̄P̄




(n)

χ
p(n)

P̄A

+ 2skw
[(
δ∆L̄χ,p

N̄C̄

)
Ψ
e−1(n)

C̄F̄
Γ
e(n)

F̄ P̄ M̄

]
χ
p(n)

P̄A

+
[
δ∆L̄χ,p

N̄L̄

]
χ
p(n)

L̄A,M̄
− χp(n)

N̄A,L̄

[
δ∆L̄p

L̄M̄

]
(3.123)

δF eiĪ = (δui),I F
p−1
IĪ
− F eiP̄

(
δF p

P̄J

)
F p−1
JĪ

(3.124)

δχeiĪ = (δΦiĪ)χ
p−1
IĪ
− χeiP̄

(
δχp

P̄J

)
χp−1
JĪ

(3.125)

δχlK = δΦlK (3.126)

δ (wk,l) = −wk,a(δFaA)F−1
Al (3.127)

δχekL̄,M̄ =
(
δΦkB,LF

p−1
LM̄
− χekR̄χ

p
R̄B,L

F p−1
LM̄

)
χp−1
BL̄

(3.128)

+
(
χkB,LδF

p−1
LM̄
− χekR̄χ

p
R̄B,L

F p−1
LM̄

)
χp−1
BL̄

(3.129)

+
(
χkB,LF

p−1
LM̄
− δχekR̄χ

p
R̄B,L

F p−1
LM̄

)
χp−1
BL̄

(3.130)

+
(
χkB,LF

p−1
LM̄
− χekR̄δχ

p
R̄B,L

F p−1
LM̄

)
χp−1
BL̄

(3.131)

+
(
χkB,LF

p−1
LM̄
− χekR̄χ

p
R̄B,L

δF p−1
LM̄

)
χp−1
BL̄

(3.132)

+
(
χkB,LF

p−1
LM̄
− χekR̄χ

p
R̄B,L

F p−1
LM̄

)
δχp−1

BL̄
(3.133)
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The linearization of the micromorphic strains and stresses are written such that,

δĒeL̄K̄ =
1

2

[
(δF eiL̄)F eiK̄ + F eiL̄(δF eiK̄)

]
(3.134)

δĒeL̄K̄ =
[
(δF eiL̄)χeiK̄ + F eiL̄(δχeiK̄)

]
(3.135)

δΓ̄eK̄L̄M̄ = δF ekK̄χ
e
kL̄,M̄ + F ekK̄δχ

e
kL̄,M̄ (3.136)

δS̄K̄L̄ = (λ+ τ) (δĒeM̄M̄ )δK̄L̄ + 2 (µ+ σ) (δĒeK̄L̄)

+ η(δĒeM̄M̄ )δK̄L̄ + κ(δĒeK̄L̄) + ν(δĒeL̄K̄) (3.137)

δΣ̄K̄L̄ = (λ+ 2τ) (δĒeM̄M̄ )δK̄L̄ + 2 (µ+ 2σ) (δĒeL̄K̄)

+ (2η − τ)(δĒeM̄M̄ )δK̄L̄ + 2(κ+ ν − σ)sym(δĒeK̄L̄) (3.138)

δM̄K̄L̄M̄ = C̄K̄L̄M̄N̄P̄ Q̄δΓ̄
e
N̄P̄ Q̄ (3.139)

Using the linearized formulations of the micromorphic deformation and stresses tensors, the lin-

earized formulation of the balance of linear momentum can be expressed as follows,

δG =

∫

B̄
δ (wk,l) (F elL̄S̄L̄K̄F

e
kK̄)dV̄β +

∫

B̄
wk,l

(
δF elL̄

)
S̄L̄K̄F

e
kK̄dV̄β

+

∫

B̄
wk,lF

e
lL̄

(
δS̄L̄K̄

)
F ekK̄dV̄β +

∫

B̄
wk,lF

e
lL̄S̄L̄K̄

(
δF ekK̄

)
dV̄β

+

∫

B̄
wkρ̄ (δük) dV̄β (3.140)

and for the balance of first moment of momentum we have,

δH =

∫

B̄
ηml

(
δF emM̄

) (
Σ̄M̄L̄ − S̄M̄L̄

)
F elL̄dV̄β +

∫

B̄
ηmlF

e
mM̄δ

(
Σ̄M̄L̄ − S̄M̄L̄

)
F elL̄dV̄β

+

∫

B̄
ηmlF

e
mM̄

(
Σ̄M̄L̄ − S̄M̄L̄

) (
δF elL̄

)
dV̄β +

∫

B̄
δ(ηml,k)F

e
kK̄F

e
lL̄MK̄L̄M̄χ

e
mM̄dV̄β

+

∫

B̄
ηml,k

(
δF ekK̄

)
F elL̄M̄K̄L̄M̄χ

e
mM̄dV̄β +

∫

B̄
ηml,kF

e
kK̄

(
δF elL̄

)
M̄K̄L̄M̄χ

e
mM̄dV̄β

+

∫

B̄
ηml,kF

e
kK̄F

e
lL̄δ
(
M̄K̄L̄M̄

)
χemM̄dV̄β +

∫

B̄
ηml,kF

e
kK̄F

e
lL̄M̄K̄L̄M̄

(
δχemM̄

)
dV̄β

+

∫

B̄
ηml (δχ̈lK)χemL̄ρ̄ĪK̄L̄(β)dV̄β +

∫

B̄
ηmlχ̈lK

(
δχemL̄

)
ρ̄ĪK̄L̄(β)dV̄β

+

∫

B̄
ηmlχ̈lKχ

e
mL̄δ

(
ρ̄ĪK̄L̄(β)

)
dV̄β (3.141)
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The micro-inertia term ĪK̄L̄(β) in the intermediate configuration is defined as follows,

ρ̄ĪK̄L̄(β)dV̄β
def
=

∫

dV̄β

ρ̄(α)Ξ̄
(α)

K̄
Ξ̄

(α)

L̄
dV̄ (α) (3.142)

where the plastically deformed relative position vector in the intermediate configuration is written

as follows,

Ξ̄
(α)

K̄
= χp

K̄K
Ξ

(α)
K (3.143)

Moment of micro-inertia in the reference configuration Iβ is related to moment of micro-inertia in

the intermediate configuration Īβ as follows,

ρ̄β ĪK̄L̄(β)dV̄β
def
=

∫

dV̄β

ρ̄(α)Ξ̄
(α)

K̄
Ξ̄

(α)

L̄
dV̄ (α) (3.144)

= χp
K̄K

χp
L̄L

∫

dV̄β

ρ̄(α)Ξ
(α)
K Ξ

(α)
L dV̄ (α)

= χp
K̄K

χp
L̄L
ρ0(β)Ξ

(α)
K Ξ

(α)
L dVβ = χp

K̄K
χp
L̄L
ρ0(β)IKL(β)dVβ

=⇒ IKL(β) = χp−1
KK̄

χp−1
LL̄

ĪK̄L̄(β) (3.145)

The coupled finite element formulation can be written upon using the linearization of the balance

of linear and first moment of momenta equations. Note that the terms involving δu and δΦ are the

“stiffness” matrix components. The terms involving δü and δΦ̈ are the “mass” matrix components.

The system of coupled finite element equations can be expressed such that,



Mdd Mdφ

Mφd Mφφ


 ·





δü

δΦ̈





+



Kdd Kdφ

Kφd Kφφ


 ·





δu

δΦ





=




−Rd

−Rφ





(3.146)

whereRd andRφ are the residual vectors at the current iteration of the Newton-Raphson algorithm

[Isbuga, 2012]. Kdd, Kdφ are the stiffness matrix components related to the balance of linear

momentum involving δu and δΦ respectively. Kφd, Kφφ are the stiffness matrix terms related to

the balance of first moment of momentum involving δu and δΦ. Similarly we have Mdd, Mdφ,
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and Mφd, Mφφ which are the components of mass matrix related to the balance of linear and the

balance of first moment of momenta respectively. The coupled finite element formulation for the

quasi-static micromorphic elastoplasticity can derived as follows,



Kdd Kdφ

Kφd Kφφ


 ·





δu

δΦ





=




−Rd

−Rφ





(3.147)



Chapter 4

Applying Micromorphic Filter on 3D Beam Finite

Element Analysis with Idealized Periodic

Micro-Structure

This chapter is devoted to applying a micromorphic filter on a 3D beam finite element analy-

sis (FEA) with idealized periodic micro-structure by Bishop and Lim [2016]. The goal of this study

is to present the physical motivation of a micromorphic continuum in a framework of multiscale

material modeling. This brief study presents a tool called “micromorphic filter” to perform the

bridging of underlying direct numerical simulation (DNS) of the material at grain scale to contin-

uum finite element scale. This is beneficial in terms of better understanding the effect of material’s

micro-structure on macroscopic behavior and perhaps improving macroscopic quantities including

stiffness and strength of materials via fabricating heterogeneous particulate physics at micro-scale

( see Gheibi and Gassman [2016], Khabiri et al. [2016], Sasanakul et al. [2017]). The micromorphic

filter works as a direct link between overlapping micromorphic continuum and DNS regions. This

is done through discretizing the DNS region into a number of averaging domains (called macro-

elements (dvβ in continuum framework)). The number of averaging domains defines the picture

of micromorphic continuum from the underlying micro-structure of the material. The micromor-

phic continuum theory of Eringen was proposed to incorporate micro-structures of materials in a

continuum framework. Therefore, micro-deformation tensor is proposed to govern “micro-element”



79

deformations, besides the deformation gradient capturing macroscopic deformations. In this chap-

ter the approach of applying micromorphic filter will be briefly reviewed and some initial results

will be presented.

4.1 Applying Micromorphic Filter and Stress Calculations from 3D DNS

To start, we should first recall the kinematics and balance equations of the micromorphic

continuum derived in Chapter 2. The idea of micromorphic filter is based on enforcing a direct link

between the DNS region and the micromorphic continuum. This is done through discretizing the

DNS region into a number of averaging domains Ωavg
β (macro-element β with differential dvβ) in such

a way that each averaging domain is composed of a number of micro-element volumes v(α) in the

current configuration (similar to dv(α) in the continuum description). Through the discretization,

the micromorphic continuum parameters including the micromorphic stresses, micro-deformation

tensor χ, and the micromorphic strain tensors can be calculated. This chapter deals with the

calculation of micromorphic stresses. Figure 4.1 illustrates the schematic of discretized DNS region

into a number of the averaging domains Ωavg
β with 8 micro-element volumes within each averaging

domain v(α), α = 1, ..., 8 for the symmetric micro-element Cauchy stress σ(α) calculations. For the

analysis in this chapter, we take σ(α) from DNS by Bishop and Lim [2016] which is the average

stress of each unit cell. (see Fig.4.2)

In the micromorphic continuum, it is assumed that a macro-scale continuum material point is com-

prised of micro-elements. Therefore, we define averaging domain Ωavg
β which contains 8 smaller

discrete micro-element domains (α) with v(α) (micro-elements). The relative position vector ξ(α)

extends from cβ (centroid of micromorphic filter averaging domain Ωavg
β ) to c(α) (centroid of micro-

element (α)) in the current configuration. Note that discrete averaging domain Ωavg
β corresponds to

dvβ macroscopic differential volume in the micromorphic continuum framework. Similarly, v(α) cor-

responds to dv(α) micro-element volume (see Fig.2.1). Therefore, we can approximate the integrals

in a continuum framework by discrete definitions, such that,
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Figure 4.1. Illustration of micromorphic stress averaging domain Ωavgβ and micro-element domains α =

1, ..., 8 with centroid of c(α), volume v(α), surface area a(α), unit normal vector n(α)

∫

B
(•) dvβ =

navg∑

β=1

[∫

Ωavgβ

(•)(α) dv(α)

]
≈

navg∑

β=1

(•)βW avgΩavg
β (4.1)

∫

Ωavgβ

(•)(α) dv(α) ≈
nmicro∑

α=1

(•)(α)W (α)v(α) (4.2)

where W avg and W (α) are the weights of integration which we assume W avg = W (α) = 1 for

consistency of volume calculations assuming Ωavg
β =

∑nmicro
α=1 v(α). From Fig.4.1, there are nmicro = 8

micro-elements to generate the average. Note that nmicro could be increased to 27, 64, ..., but, 8 is

the minimum. Based on the previous discussion, the symmetric micro-stress skl and unsymmetric

couple stress mklm are written as

skl
def
=

1

dvβ

∫

dvβ

σ
(α)
kl dv

(α) (4.3)

mklm
def
=

1

dvβ

∫

dvβ

σ
(α)
kl ξ

(α)
m dv(α) (4.4)

Using (4.2), (4.3), and (4.4), symmetric micro-stress and unsymmetric couple stress at point cβ in

the averaging domain Ωavg
β can be derived such that
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(skl)β =
1

Ωavg
β

nmicro∑

α=1

σ
(α)
kl v

(α) (4.5)

(mklm)β =
1

Ωavg
β

nmicro∑

α=1

σ
(α)
kl ξ

(α)
m v(α) (4.6)

Through (4.5) and (4.6), we can obtain micro-stress and couple stress in discretized averaging

domain Ωavg
β . Now, we look into the balance of first moment of momentum (2.67) to calculate the

unsymmetric Cauchy stress σβ at point cβ. The balance of first moment of momentum integrated

over the body B in the current configuration is such that

∫

B
[σmk − smk +mlkm,l + ρ(`km − ωkm)] dvβ = 0 (4.7)

In this chapter, we are assuming that the body force couple `km (no body force terms like gravity)

and micro-spin inertia ωkm are zero, since we are dealing with quasi-static analysis. The balance

of first moment of momentum in the discretized averaging domain is such that,

navg∑

β=1

[
(σmk)β − (smk)β + (mlkm,l)β + ρ

(
(`km)β − (ωkm)β

)]
Ωavg
β = 0 (4.8)

Assuming the balance equation is satisfied “pointwise” at each β averaging domain, such that,

(σmk)β = (smk)β − (mlkm,l)β − ρ
(

(`km)β − (ωkm)β

)
(4.9)

The remaining terms of (4.8) can be written in the discretized averaging domain such that

∫

B
σmkdvβ ≈

navg∑

β=1

[
(σmk)β Ωavg

β

]
(4.10)

∫

B
smkdvβ ≈

navg∑

β=1

[
(smk)β Ωavg

β

]
=

navg∑

β=1

[
nmicro∑

α=1

σ
(α)
kl v

(α)

]
(4.11)

∫

B
mlkm,ldvβ =

∫

∂B
mlkmnlda ≈

navg∑

β=1

[
nmicro∑

α=1

σ
(α)
lk ξ(α)

m n
(α)
l a(α)

]
(4.12)
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In the next section the numerical results on micromorphic filter and stress calculations are presented

for three dimensional beam FE models with 128 (4 × 4 × 8) and 1024 (8 × 8 × 16) periodic unit

cells.

4.2 Numerical Example

This section is devoted to presenting the numerical results of the micromorphic filter and

the stress calculations on three dimensional beam models with idealized periodic micro-structures.

Figure 4.2 depicts the schematic of beam models with two idealized periodic micro-structures

[Bishop and Lim, 2016] on which we applied micromorphic filter. In this chapter the micromorphic

filter is applied on either 16 averaging domains navg = 2×2×4 (2 averaging domains in x direction,

2 averaging domains in y direction, 4 averaging domains in z direction) or 64 averaging domains

navg = 4 × 4 × 8. According to the number of averaging domains on which the micromorphic

filter is applied (2 × 2 × 4 or 4 × 4 × 8) in Fig.4.2, the results of the micromorphic stresses are

plotted along the centroids of the darkened block at the top left edge of the beam models. Figure

4.3 illustrates the contour plot of σcell33 (averaged σ33 stress of each unit cell) for the beam models.

For the case in which the averaging domain Ωavg
β is selected such that the micro-element volume

v(α) is equal to the unit cell volume, σcell33 is equal to σ
(α)
33 (micro-element Cauchy stress in top and

bottom models). Note that based on the number of unit cells in the beam model, we can choose

the number of micromorphic averaging domains navg to calculate the micromorphic stresses. For

the model with (4× 4× 8) unit cells (4 unit cells in x direction, 4 unit cells in y direction, 8 unit

cells in z direction) we calculated the stresses through (navg = 2× 2× 4 = 16) averaging domains

each with nmicro = 8. For the case with (8 × 8 × 16) unit cells, we calculated the micromorphic

stresses through (navg = 2 × 2 × 4 = 16) and (navg = 4 × 4 × 8 = 128) averaging domains. Note

that in the case (navg = 2× 2× 4 = 16) each micro-element v(α) contains 8 unit cells, however, in

the other case (navg = 4 × 4 × 8 = 128) each micro-element v(α) corresponds to one unit cell. In

each case nmicro is equal to 8. Figures 4.4, 4.5, 4.6, and 4.7 show the micro-element Cauchy stress

component σ
(α)
33 , the calculated macro-element micromorphic Cauchy stress component (σ33)β, the



83

micro-stress component (s33)β, and the couple stress components (m331)β, (m332)β, and (m333)β

out of the discretized averaging domain Ωavg
β along the length of the beams with (4 × 4 × 8) and

(8× 8× 16) unit cells.

3D beam model with 4 4 8 unit cells× ×

Results of micromorphic filter
plotted along the centerline of darkened block for 
2 2 4 averaging domains× ×

Results of micromorphic filter
plotted along the centerline of darkened block for 
2 2 4 averaging domains× ×

3D beam model with 8 8 16 unit cells× ×

Results of micromorphic filter
plotted along the centerline of darkened block for 
4 4 8 averaging domains× ×

z x

y

Figure 4.2. schematic of beam models with periodic micro-structure
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In Fig.4.4, the micro-element Cauchy stress component σ
(α)
33 of the case with (8×8×16) unit

cells and (2 × 2 × 4) averaging domains (blue solid diamonds in Fig.4.4) is equal to the case with

(4× 4× 8) unit cells and (2× 2× 4) averaging domains (red solid diamonds in Fig.4.4). Therefore,

the obtained unsymmetric Cauchy stress component (σ33)β (blue and red dashed lines) for these

two cases are equal. This figure also shows the micro-element Cauchy stress component σ
(α)
33 of the

case with (8× 8 × 16) unit cells and (4 × 4) averaging domains (green solid diamonds). It can be

seen that for this case with more averaging domains, the model captures higher σ
(α)
33 which leads to

the higher (σ33)β in comparison with the case with (2× 2× 4) averaging domains. Note that with

the lower number of averaging domains, the micro-element stress is calculated via averaging over

a larger domain (more unit cells). Therefore, the obtained accuracy in calculating micro-element

stress and macro-element stress tensors will be lowered. Figure 4.5 illustrates the unsymmetric

Cauchy stress component (σ33)β in comparison with the symmetric micro-stress component (s33)β.

Similarly, the symmetric micro-stress component (s33)β obtained from the case with (8 × 8 × 16)

unit cells and (2×2×4) averaging domains is overlapped with that of the case with (4×4×8) unit

cells and (2×2×4) averaging domains. In the case with (8×8×16) unit cells, there is a discrepancy

between the calculated stresses out of the model with (4 × 4× 8) averaging domains and those of

the model with (2 × 2 × 4) averaging domains. This shows that the size of averaging domains is

playing a crucial role in calculating the micromorphic stresses. Increasing the size of averaging

domains in calculating the micromorphic stresses is equal to having a larger relative position vector

ξ(α) and a coarser micro-structure (a coarser interpretation of the micro-structure). Therefore, in

the case with (8× 8× 16) unit cells and (2× 2× 4) averaging domains, the picture of micromorphic

continuum from the underlying micro-structure is equal to the case with (4× 4× 8) unit cells and

(2 × 2 × 4) averaging domains for this particular example. Figure 4.6 illustrates the couple stress

components (m331)β, (m332)β, and (m333)β for the both models with (4× 4× 8) and (8× 8× 16)

unit cells. It can be seen that the couple stress component (m331)β is zero for all the models which

is related to the uniform distribution of the average unit cell Cauchy stress σcell33 (Fig.4.3) along the

x axis. Note that the model with (4× 4× 8) unit cells and (2× 2× 4) averaging domains has larger



88

(m332)β and (m333)β in magnitude in comparison with the model with (8× 8× 16) unit cells and

(4× 4× 8) averaging domains. The model with the assumed coarser micro-structure for (2× 2× 4)

averaging domains has longer relative position vector ξ(α) and therefore, with regard to (4.4) the

couple stress components have higher magnitudes. Figure 4.7 illustrates the calculated components

of couple stress (m331)β, (m332)β, and (m333)β from the model with (8 × 8 × 16) unit cells and

(2 × 2 × 4) averaging domains overlapped with those of the model with (4 × 4 × 8) unit cells and

(2× 2× 4) averaging domains, respectively. It is shown that the couple stress component (m331)β

is zero which mean that there is no gradient in the micro-element Cauchy stress component σ
(α)
33

along direction 1. The couple stress component (m333)β is constant which means that the gradient

of micro-element Cauchy stress component σ
(α)
33 is constant along direction 3 (see contour plots of

σcell33 Fig.4.3).
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Figure 4.8 illustrates the difference of the micromorphic Cauchy stress obtained from the micromor-

phic filter for beam with FE analysis idealized periodic micro-structures, and the exact solution of

the homogenous linear elastic isotropic beam model at small strain with no micro-structure [Bishop

and Lim, 2016]. From this figure it can be noticed that the difference of the micromorphic Cauchy

stress with that of the classical elasticity is smaller for the beam model with (8× 8× 16) unit cells

and (4×4×8) averaging domains in comparison with the other models. This denotes that with the

smaller relative position vector ξ(α) (finer interpretation of the micro-structure), the heterogeneity

effect of the micro-elements will be reduced (smaller couple stress), and the obtained micromorphic

Cauchy stress is closer to the exact homogenized solution. But the relative difference is still high

(≈ 50%), which is likely a result of ignoring cancellation of tractions across averaging domains when

going from equations (4.7) to (4.8) to (4.9). A weighted residual approach to (4.7) with weighting

function would be worthwhile considering because the traction forces would fall out explicitly.



Chapter 5

Finite Element Analysis of Finite Strain Micromorphic

Elasticity, Elastoplasticity, and Dynamics

In previous chapters, we presented the balance equations, thermodynamics, constitutive re-

lations and the extension of micromorphic elasticity to elastoplasticity, all at finite strain. Note

that more details on micromorphic elasticity and its extension to elastoplasticity can be found in

Eringen and Suhubi [1964], Isbuga [2012], Regueiro [2011], Regueiro [2010] and Regueiro [2009].

This chapter is devoted to presenting numerical examples to investigate the modeling of materials

with a periodic micro-structure from the perspective of micromorphic continuum. Non-periodic

micro-structured materials will be considered as future work. As mentioned earlier, the micro-

morphic continuum of this thesis (Ξ(α) is not function of position vector Xβ) is consistent with

a material with idealized periodic micro-structure. Three dimensional finite element analysis of

micromorphic elasticity, elastoplasticity, and dynamics are performed to investigate the effect of

deformable micro-elements on macroscopic mechanical behavior at finite strain. Note that the

selected material parameters in this research do not belong to any specific material, but satisfy

positive definiteness of strain energy and the reduced dissipation inequality (Smith [1968]). For

the purpose of presenting micromorphic continuum response, we start with a column in uniaxial

strain in compression to better illustrate the micromorphic stresses, strains, and micro-element

deformations. This is an example of a 1D micromorphic continuum and, therefore, from the nine

additional micromorphic dofs we only have one component of micro-displacement tensor Φ33 in-
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cluded to represent the compression of the micro-elements including the axial displacement u3. We

could also allow dofs Φ11, Φ22, but this will be considered in future work. In the numerical results,

first we provide discussion of the finite elements which are available in Tahoe with the capability

of dealing with two-field problems. Note that a micromorphic continuum is a two-field problem in

terms of dealing with the deformation of the micro and macro-elements (i.e., Φ and u, respectively).

The performance of these two element types are compared to deduce which element is the most

appropriate one for the micromorphic simulations in terms of accuracy and computational cost.

The elastoplasticity analysis in micro-structured materials from the view point of micromorphic

continuum will be presented through numerical simulations. It will be shown that there are three

levels of micromorphic elastoplasticity evolving throughout the continuum body, and the effect of

micro-element elastoplastic deformation on the macroscopic mechanical behavior will be discussed.

The dynamic analysis of a micromorphic continuum will also be presented to investigate the effect of

the micro-element deformation under dynamic loading on the continuum scale mechanical response.

5.1 Elements Used in Finite Element Simulations

In this section, we discuss the element types used to solve the coupled equations (2.158).

There are two 3D element types in Tahoe which are able to perform a two-field finite element

simulation. One uses a mixed 27-node triquadratic hexahedral interpolation for uh, and 8-node

trilinear hexahedral interpolation for Φh (Q27P8). The schematic of this element is depicted in

Fig.5.1 (a). The other one uses the same 8-noded hexahedral trilinear interpolation for both fields,

uh and Φh, shown in Fig.5.1 (b).

Note that mixed methods for approximating two-field problems is shown to be convergent by in-

creasing the number of elements for small strain problems [Hughes, 1987], but for finite strain

problems there is no such a proof. Isbuga [2012] illustrated several simulations to show the con-

vergence trend in various models by increasing the number of elements. This is done to check

the applicability of the mixed method approximation for the micromorphic continuum simulations.
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Figure 5.1. Schematic of Q27P8 and Q8P8 elements in Tahoe.
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Figure 5.2. Schematic of a column under compressive load. BCs are selected to represent a one dimensional

uniaxial strain in compression at both macro and micro scales (only uh3 and Φh33 dofs).
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Furthermore, a comparison is made to illustrate the performance of these two elements for micro-

morphic continuum. The comparison is done via the uniaxial strain example which represents a

1D micromorphic continuum. The schematic of the geometry, mesh configuration, and BCs are

presented in Fig.5.2. All of the micromorphic dofs are assumed to be zero, except the micro-

displacement component Φh
33 illustrating the micro-stretch deformation of the micro-elements in

the Z direction. The micro-displacement tensor component Φh
33 is zero on the bottom surface of

the column. Similar comparison between Q27P8 and Q8P8 elements is done for the beam bending

example.

Figure 5.3 compares the results of micromorphic dof Φh
33, second Piola Kirchhoff component Sh33,

symmetric micro stress component Σh
33, and couple stress component Mh

333 at top of the column

obtained from the Q27P8 and Q8p8 elements. It can be seen that the numerical results obtained

from Q27P8 and Q8P8 finite element models are consistent with each other. Figure 5.4 illustrates

the profile of micromorphic dof Φh
33, the nodal values of second Piola Kirchhoff component Sh33,

symmetric micro stress component Σh
33, and couple stress component Mh

333 through the length

of the column. Similarly, these results are in a good agreement with each other. This simple

example of column compression in a micromorphic continuum shows that the Q8P8 element is

able to successfully perform approximations of macro displacement uh and micro displacement

Φh fields. Therefore, to reduce the computational costs of simulations by the micromorphic finite

element code, the Q8P8 element will be used to create meshes for the numerical examples of

this research. Note that the Q27P8 element may be used for more complicated simulations of

the micromorphic elastoplasticity and dynamics in the future if required. In the next section, we

will discuss micromorphic elasticity and elastoplasticity in comparison with classical continuum

elasticity and elastoplasticity through finite strain analysis of a column under compressive load.
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Figure 5.3. Comparison of Q27P8 and Q8P8 elements.
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96

5.2 Finite Strain Micromorphic Elastoplasticity Analysis of a Uniaxial Strain

Column under Compressive Load

This section presents the finite strain micromorphic elastoplasticity analysis of a column un-

der compressive load in uniaxial strain. Note that the column is selected as a simple model to

better illustrate micromorphic elastoplasticity. This model has axial macro-element dof uh3 and

micro-element dof Φh
33. As discussed in the micromorphic elastoplasticity formulation section, plas-

ticity occurs at three levels: macroscopic, microscopic, and micro-gradient scales. In this example,

it is presented how these plasticity scales occur in a micromorphic continuum column under uniaxial

strain. The schematic of the geometry, mesh, BCs and loading condition are explained in Fig.5.5.

The selected material parameters for the elastoplastic micromorphic continuum are presented in

Table 5.1. In this table the terminology “Micro/Macro Perfect Plasticity” represents micromorphic

elastoplasticity model in which perfect plasticity occurs at microscopic and macroscopic scales,

and there is no micro-gradient plasticity level (∇χp = 0). In the model “Micro/Macro Softening

Plasticity”, softening plasticity will only take place at microscopic and macroscopic scales and no

micro-gradient plasticity level (∇χp = 0). The terminologies “Micro/Macro/Micro-grad Perfect

Plasticity” and “Micro/Macro/Micro-grad Softening Plasticity” refer to the models in which the

perfect and softening plasticity will happen at all three micromorphic plasticity scales. The ter-

minologies “Micro Perfect Plasticity” and “Micro Softening Plasticity” indicate the perfect and

softening plasticity only occur at the microscopic scale. This analysis is done to illustrate the effect

of elastoplasticity in the micro-elements of a micromorphic continuum on the macroscopic behavior

of the material in comparison with classical elastoplasticity. The BCs on micromorphic column are

presented in Table 5.2.
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Table 5.1. The selected material parameters for the micromorphic continuum.

Micromorphic Elasticity (linear, isotropic)

λ(Pa) µ(Pa) η(Pa) κ(Pa) ν(Pa) σ(Pa)

29.48e9 25.48e9 1e9 -1.5e9 -1.4e9 -3e9
τ(Pa) τ1(Pa.m2) τ2(Pa.m2) τ3(Pa.m2) τ4(Pa.m2) τ5(Pa.m2)
0.4e9 0.0 0.0 0.0 0.0 0.0

τ6(Pa.m2) τ7(Pa.m2) τ8(Pa.m2) τ9(Pa.m2) τ10(Pa.m2) τ11(Pa.m2)
0.0 10e11 0.0 0.0 0.0 0.0

Drucker-Prager

φ ψ φχ ψχ φ∇χ ψ∇χ

0.2 0.0 0.2 0.0 0.2 0.0
Micro/Macro Perfect Plasticity

H̄(Pa) c̄(Pa) H̄χ(Pa) c̄χ(Pa)
0.0 5e6 0.0 4e6

Micro/Macro/Micro-gradient Perfect Plasticity

H̄(Pa) c̄(Pa) H̄χ(Pa) c̄χ(Pa) H̄∇χ3 (Pa) c̄∇χ3 (Pa)
0.0 5e6 0.0 4e6 0.0 5e7

Micro/Macro Softening Plasticity

H̄(Pa) c̄(Pa) H̄χ(Pa) c̄χ(Pa)
-1e8 5e6 -1e8 4e6

Micro/Macro/Micro-gradient Softening Plasticity

H̄(Pa) c̄(Pa) H̄χ(Pa) c̄χ(Pa) H̄∇χ3 (Pa) c̄∇χ3 (Pa)
-1e8 5e6 -1e8 4e6 -1e8 5e7

Micro Perfect Plasticity Micro Softening Plasticity

c̄χ(Pa) H̄χ(Pa) c̄χ(Pa) H̄χ(Pa)
4e6 0.0 4e6 -1e8

Classical Continuum Perfect Plasticity Softening Plasticity

λ(Pa) µ(Pa) c̄(Pa) H̄(Pa) c̄(Pa) H̄(Pa)
28.9e8 22.48e8 5e6 0 5e6 -1e8

Table 5.2. Selected BCs for column under uniaxial strain in compression loading.

Micromorphic Continuum Throughout the column On surface Γ
BC on Φh33 Φh11,Φ

h
22,Φ

h
12,Φ

h
21,Φ

h
13,Φ

h
31,Φ

h
23,Φ

h
32 = 0 Φh33 = 0

uh1 , u
h
2 = 0 uh3 = 0

Classical Continuum Throughout the column On surface Γ
Φh11,Φ

h
22,Φ

h
12,Φ

h
21,Φ

h
13,Φ

h
31,Φ

h
23,Φ

h
32,Φ

h
33 = 0

uh1 , u
h
2 = 0 uh3 = 0
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The contour plots of macroscopic, microscopic, and micro-gradient plastic multipliers for the

Micro/Macro/Micro-gradient softening plasticity (micromorphic softening plasticity at all three

scales) are presented in Fig.5.6. This figure shows the trend of elastoplasticity in a micromorphic

continuum. It can be seen that in Fig.5.6(a), the elastoplasticity starts at microscopic scale all

along the micromorphic column, and the macroscopic and the micro-gradient scales deform elas-

tically. In Fig.5.6(b) a transition between the macroscopic and the microscopic plasticity scales

take place close to the lower boundary. There is no plasticity in the micro-gradient scale. Figure

5.6(c) illustrates the micromorphic column where all three plasticity scales occur simultaneously.

There is a transition between macroscopic and microscopic plasticity at the middle of the column,

and micro-gradient plasticity occurs close to the bottom boundary. Figure 5.6(d) shows the micro-

morphic column in which the plasticity occurs at the macroscopic and the micro-gradient scales.

Therefore, the plasticity at the microscopic scale is driven by the micro-gradient plasticity scale

rather than the microscopic scale itself. Figure 5.7 illustrates the contour plots of γ̄, γ̄χ, and γ̄∇χ3

along the length of the column for the same time steps as Figs.5.6 (a)-(d). This figure shows the ac-

cumulated plastic deformation in the macro, micro, and micro-gradient plasticity levels. Figure 5.8

illustrates the schematic of elastoplastic deformations in the micromorphic column under tension

in which micro-elements are expanding plastically through χp. This figure also shows positive ∇χp

where the micro-elements plastic expansion of adjacent macro-elements are increasing. This figure

presents the picture of micromorphic continuum from the elastoplastic deformation at micro-scale

through χp and ∇χp. Similar to classical elastoplasticity models, the macro-element elastoplastic

deformation is defined through the plastic part of the deformation gradient F p. The micromorphic

continuum provides two separate plastic deformations for the micro-elements via the plastic part

of micro-deformation tensor χp and the gradient of the micro-deformation tensor ∇χp. These two

levels of plasticity represent plastic deformation of the underlying sub-bodies. The plastic part

of the micro-deformation tensor χp defines the plastic deformation of the micro-elements in the

micromorphic continuum. As discussed earlier through constitutive equations (3.95), (3.96), and

(3.103), the plastic part of the micro-deformation tensor χp drives plasticity at the macro and
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micro-gradient scales irrespective of the yielding at these two scales. The gradient of the micro-

deformation tensor ∇χp shows the gradient of the plastic deformation of the micro-elements along

the spatial direction. Note that ∆γ̄χ = 0 and therefore, χ̇p = 0, however we have ∇χp evolving via

the micro-gradient plasticity scale which drives ∇χp independently. In terms of the micromorphic

evolution equations, the developed formulation for micromorphic elastoplasticity cannot recognize

the conflict of χ̇p = 0, while ∇χp is evolving through micro-gradient plasticity level.
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Figure 5.6. Contour plots of ∆γ̄, ∆γ̄χ, and ∆γ̄∇χ3 for case Micro/Macro/Micro-gradient softening Plasticity.

Figure 5.9 illustrates the cohesion versus plastic multiplier for the micromorphic elastoplasticity

models such as micro perfect plasticity, micro softening plasticity, micro/macro perfect plasticity,

and micro/macro softening plasticity. These figures present the softening and perfect plastic-
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Figure 5.7. Contour plots of γ̄, γ̄χ, and γ̄∇χ3 for case Micro/Macro/Micro-gradient softening Plasticity.

ity behavior of micromorphic column. From these figures, it can be noticed that micro soften-

ing/perfect plasticity, the plastic multiplier γ̄χ reaches a larger value in comparison with the cases

micro/macro/(perfect/softening plasticity). This denotes differences in the micromorphic elasto-

plasticity models. In the case in which both of macroscopic and microscopic plasticity levels are

evolving the microscopic plasticity will be replaced with the macroscopic plasticity level. Whereas,

the case with only micro plasticity, it is the only source of elastoplastic deformation. Figure 5.10

presents the Cauchy stress σh33 versus Eulerian strain eh33 plot of the micromorphic elastic and

elastoplastic column in comparison with the classical elastic and elastoplastic column. This figure

shows that the classical softening plasticity deforms more for the fixed amount of loading in com-
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parison with the micromorphic softening plastic model. Figure 5.11 demonstrates the stress-strain

(σh33 − eh33) curve of classical and micromorphic elastoplastic columns for both softening and the

perfect plasticity models. It can be seen that plasticity at the micro-gradient level does not have a

noticeable effect on the macroscopic Cauchy stress component σh33.
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Figure 5.12 depicts the micro-displacement component Φh
33 along the length of the column. The

case micro/macro/micro-grad softening plasticity (black line) shows the effect of the micro-gradient

plasticity (larger gradient of Φh
33 along the length as a result of the micro-gradient softening plas-

ticity) in comparison with the case micro/macro softening plasticity without the micro-gradient

softening (green line). Note that micro-gradient plasticity takes place near the bottom bound-

ary of the column in which there is a gradient in the profile of Φh
33 and in turn χh33. Therefore,

in the case micro/macro/micro-gradient perfect plasticity (blue line), larger gradient of Φh
33 at

the bottom boundary, is observed as a result of micro-gradient perfect plasticity in comparison

with the case micro/macro softening plasticity (green line). The effect of micro-gradient perfect

plasticity diminishes at the locations far from the bottom boundary, and the case micro/macro

softening plasticity gets larger values for Φh
33 due to micro-scale softening plasticity. Figure 5.13

presents the couple stress component M̄h
333 along the length of the micromorphic column. The

cases with micro-gradient plasticity (black and blue lines) have lower magnitude of couple stress

component M̄h
333 in comparison with cases with no micro-gradient plasticity (red and green lines).

This happens mainly due to the larger elastoplasticity as a result of the micro-gradient plasticity

and smaller portion of elastic deformation of the body. Therefore, according to the constitutive

equation of the couple stress component M̄h
333 (3.104) and (3.106), the larger gradient of the plastic

part of the micro-deformation tensor ∇χp leads to the smaller elastic part of the micro-deformation

tensor ∇χe and, therefore, smaller M̄h
333. The comparison of couple stress component M̄h

333 from

the softening plasticity analysis (for both elastoplasticity analyses with/without the micro-gradient

plasticity, green and black lines) has larger magnitude than those of the prefect plasticity analyses

(blue and red lines). According to Fig.5.12, the softening plasticity analysis has larger total gra-

dient of the micro-deformation tensor ∇χ (larger gradient of Φh
33). This can be considered as the

source of difference in the profile of M̄h
333 from softening and perfect plasticity analyses. Figure

5.14 demonstrates the effect of micro-gradient plasticity on the micro-stress component Σ̄h
33. The

profile of the micro-stress component Σ̄h
33 has a gradient close to the bottom boundary of column

(uh3 = 0, Φh
33 = 0) which is related to the gradient of the micro-displacement tensor Φh

33 at that
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location. Similar reasoning as those provided for the couple stress component M̄h
333 can be used to

explain the effect of micromorphic elastoplasticity analyses on the profile of micro-stress compo-

nent Σ̄h
33. Figure 5.15(b) depicts the macroscopic Cauchy stress component σh33 obtained from the

micromorphic and classical elasticity and elastoplasticity analyses. Figure 5.15(a) compares the mi-

cromorphic elastoplastic models and the classical elastoplasticity via the Cauchy stress component

σh33 along the length. This figure shows that in softening plasticity, the Cauchy stress component

σh33 is smaller in magnitude than that of perfect plasticity model. This is because of the larger

plastic deformation of the column with softening plasticity models than that of the column with

perfect plasticity. This conclusion is valid for both the micromorphic and classical columns.
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Figure 5.10. Stress-strain plot of micromorphic column versus classical column

Figure 5.16 plots stress paths for the micromorphic elastoplasticity model micro/macro perfect

plasticity to better illustrate the plasticity trend in a micromorphic continuum. Figure 5.16(a)

shows the second Piola Kirchhoff S̄
h

stress path and macroscopic yield function to demonstrate

the macroscopic plasticity level in the micromorphic column. The model is perfect macroscopic

plasticity, therefore, the macroscopic yield function remains unchanged. Figure 5.16(b) shows
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Figure 5.15. Micromorphic and classical elastoplastic σh33 versus micromorphic and classical elastic σh33

the initial steps of loading to compare the stress path of the classical perfectly plastic model

and micro/macro perfectly plastic. It can be seen that in the classical perfectly plastic model,

plasticity occurs earlier than that of the micro/macro perfectly plastic model. Figure 5.16(c)

presents the stress path of coupled stress M̄
h

in elastic region and, therefore, there is no micro-

gradient plasticity level in this model. Figures 5.16(d) and 5.16(e) show the stress path of micro-

stress Σ̄
h

and the microscopic yield function. These plots demonstrate the microscopic plasticity

level in a micromorphic column. As explained earlier, the micro-stress path will fall beneath the

microscopic yield function and, therefore, there is no microscopic plasticity afterward. It can be

seen that at some time steps in the model both macroscopic and microscopic plasticity occur

simultaneously.

Figure 5.17 depicts stress paths for the case micro/macro/micro-grad perfect plasticity model. In

this model, Fig.5.17(c) presents the micro-gradient plasticity level and couple stress M̄
h

stress path

versus the micro-gradient yield function. Figure 5.17(e) compares the micromorphic model with

only microscopic perfectly plastic micro-stress path (other levels of micromorphic plasticity will

not be involved) and that of the micro/macro/micro-grad perfectly plasticity model. This figure

shows that for the further time steps the microscopic plasticity in the micro/macro/micro-grad

perfect plasticity model will be diminished from the model. However, this is not the case of the
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micromorphic elastoplastic model with only microscopic perfect plasticity.

Figure 5.18 presents the stress path and yield functions for micromorphic case micro/macro soft-

ening plasticity. Figure 5.18(a) shows the second Piola Kirchhoff stress path and the macroscopic

yield function. Figure 5.18(b) compares the second Piola Kirchhoff stress path of the micromorphic

case micro/macro softening plasticity with that of classical softening plasticity. In this simulation,

the micro-gradient plasticity is not involved, and the couple stress path remains in the elastic re-

gion Fig.5.18(c). Figure 5.18(d) presents the micro-stress path for micromorphic micro-plasticity

level, which shows that micro-plasticity does not continue to evolve to the end of loading. There-

fore, softening plasticity in the microscopic level is not noticeable in comparison with softening at

macroscopic level. Figure 5.18(e) presents the micro-stress path transition from elastic to plastic

loading.

Figure 5.19 presents the micromorphic elastoplasticity stress paths for case micro/macro/micro-

grad softening plasticity. In this case, the micro-gradient plasticity level is also involved. Figures

5.19(a) and 5.19(b) depict micromorphic macroscopic plasticity softening through plotting the

second Piola Kirchhoff stress path. Figure 5.19(c) represents the couple stress path to show the

micromorphic micro-gradient plasticity level. The softening at the micro-gradient level is not

considerable which can be related to the selected material parameters of elastoplastic micromorphic

continuum. Figure 5.19(d) shows the micro-stress path. Similar to what is observed in the previous

case, microscopic plasticity does not continue to evolve to the end of the loading, and it will be

replaced with micromorphic macroscopic plasticity. Figure 5.19(e) demonstrates transition from

the elastic material behavior to elastoplastic yielding via plotting the initial steps of loading.

5.2.1 Discussion on Micromorphic Elastoplastic Material Parameters

This section is presented to discuss the reasoning behind selection of micromorphic elasto-

plastic material parameters for the previous example (micromorphic column under uniaxial strain

in compression), and also difficulties that are involved in elastoplastic analysis of a micromorphic

continuum. As observed in Fig.5.6, for the case Micro/Macro/Micro-gradient Perfect Plasticity, the



110

selection of micromorphic elastoplastic material parameters are such that plasticity starts through

yielding at the micro-scale with ∆γ̄χ evolving. According to the evolution equations of micromor-

phic continuum (3.78), (3.86), (3.92), yielding at micro-scale plasticity level (χp evolving) is able

to drive plasticity at other scales (macro and micro-gradient) through the coupling term of χp in

their evolution equations ((3.78), (3.92)). Therefore, we have inherent macro and micro-gradient

plasticity evolution regardless of yielding at these scales. The cases Micro Perfect/Softening Plas-

ticity (only χp evolving) are presented for the motive of presenting the effect of inherent macro and

micro-gradient plasticity levels on the elastoplastic behavior of a micromorphic column in uniaxial

strain comparison within the cases that the yielding occurs at the macro and micro-gradient levels.

Also, this is one of the reasons for selecting the micromorphic elastoplasticity material parameters

such that the micro-scale plasticity level occurs first. Then, we have the other levels of plasticity

already occurring when their yieldings occur. Note that this is the only selection of micromorphic

elastoplastic material parameters for which all their micromorphic plasticity levels occurred simul-

taneously during loading of the column. It has been observed that for selected elastic micromorphic

material parameters, if macro-scale plasticity occurs first, then micro-scale plasticity will not occur

throughout the simulation. The micro-gradient level plasticity may happen regardless of micro-

scale plasticity level. In terms of physical interpretation, this simulation is questionable when there

is no χp evolving via the micro-scale plasticity level, how we can justify ∇̄χp which is the spatial

gradient of χp. Another issue associated with this micromorphic elastoplastic simulation is that

for softening plasticity analysis, after a certain amount of loading, the micro-displacement tensor

component Φh
33 shows expansion of micro-elements (Φh

33 becomes positive, inconsistent with the

macro-element displacement uh3) under compressive loading. As discussed earlier in the selection

of micromorphic elastic material parameters, the inconsistency in the deformations of macro and

micro-elements in terms of physical interpretation is not acceptable.

The difficulties involved with numerical implementation of micromorphic elastoplasticity are

mainly related to searching for the macro and micro plastic multipliers ∆γ̄, ∆γ̄χ simultaneously for

the cases in which macro and micro-scale plasticity levels yieldings occur at once. The algorithm
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designed for such cases in Tahoe starts solving for positive (Kuhn-Tucker condition) macro and

micro-plastic multipliers (∆γ̄, ∆γ̄χ). If the obtained plastic multipliers are not positive, then the

algorithm tries to find either a positive macro-plastic multiplier ∆γ̄ or a positive micro-plastic mul-

tiplier ∆γ̄χ. If either a positive macro or micro-plastic multiplier is found then the yield function

of the other scale (macro or micro yield function) must be negative (deform elastically) to accept

the solution for micromorphic elastoplasticity step.
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Figure 5.16. Stress path for the micromorphic elastoplasticity case micro/macro perfect plasticity
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Figure 5.18. Stress path for micromorphic elastoplasticity case micro/macro softening plasticity
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Figure 5.19. Stress path for micromorphic elastoplasticity case micro/macro/micro-grad softening plasticity.
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5.3 Mesh Dependence and Micromorphic Regularization of Strain Softening

Plasticity

The finite element analysis of strain localization in classical softening elastoplasticity anal-

ysis might be mesh dependent. This is a fundamental issue in classical softening elastoplasticity

analysis which has been addressed in the literature by Wu and Wang [2010], Borja and Regueiro

[2001]. Mathematically speaking, it has been recognized that in a finite element analysis of strain

localization as a result of softening elastoplasticity the governing equations may become ill-posed

under certain circumstances (will not remain elliptic) [De Borst et al., 1993]. The ill-posedness of

governing equations is the source of mesh dependent finite element analysis of softening elastoplas-

ticity. Note that mesh dependency will not take place in the softening elastoplasticity where the

plastic deformation is uniform (no localization). Micromorphic elastoplasticity will be investigated

in this section as an applicable method which is able to regularize the mesh dependent behavior of

strain localization in softening elastoplasticity analysis. Figure 5.20 illustrates the model in which

strain localization is simulated by the micromorphic and classical elastoplasticity models.

Note that the imperfection in the FE mesh in applied through a weak element in the middle of

the column for all the mesh configurations is used to study mesh dependency. A weak element

denotes an element with lower cohesion c̄ and micro-cohesion c̄χ. Note that with a finer mesh, the

imperfection in the model will be smaller in terms of weak element length versus the column length.

The elastic material parameters are similar to those of Table 5.1. The parameters associated with

elastoplastic analysis are presented in Table 5.3. The BCs are presented in Table 5.4.

Figure 5.21 plots the Cauchy stress component σh33 versus the displacement component uh3 for

different meshes. As noted earlier, the size of imperfection zone is equal to the thickness of the

element in the middle of the column. As the mesh is refined the size of imperfection becomes

smaller. From Fig.5.21(a), it can be seen that for the finer mesh, the plastic strain localized in

the imperfection zone is larger, and the resulting load drop is considerable. This figure shows

that in this model, softening elastoplasticity behavior of classical continuum is totally dependent
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Figure 5.20. Schematic of the model for mesh dependency analysis

on the mesh size and the size of imperfection region. Figure 5.21(b) shows that micromorphic

elastoplasticity can be considered as a remedy to the mesh dependent deficiency of the classical

elastoplasticity. The results from the micromorphic elastoplasticity analysis converged for the finer

meshes.
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Table 5.3. The selected material parameters for micromorphic continuum

Micromorphic Elastoplasticity

H̄(Pa) c̄(Pa) H̄χ(Pa) c̄χ(Pa)
-9e7 5e6 -9e7 4e6

Micromorphic weak element

H̄(Pa) c̄(Pa) H̄χ(Pa) c̄χ(Pa)
-9e7 4.1e6 -9e7 3.1e6

Classical Continuum Softening properties Weak element properties

H̄(Pa) c̄(Pa) H̄(Pa) c̄(Pa)
-9e7 5e6 -9e7 4.1e6

Table 5.4. Selected BCs for column under tensional load

Micromorphic Continuum
Throughout the column On surface Γ1 On surface Γ2 On bottom Surface

Φh12,Φ
h
21,Φ

h
13,Φ

h
31,Φ

h
23,Φ

h
32 = 0 Φh11 = 0 Φh22 = 0 Φh33 = 0

uh1 = 0 uh2 = 0 uh3 = 0
Classical Continuum

Throughout the column On surface Γ1 On surface Γ2 On bottom Surface
uh1 = 0 uh2 = 0 uh3 = 0
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The next few sections focus on comparing micromorphic to micropolar and classical elasticity.

5.4 Beam Bending

5.4.1 Comparison of Q27P8 and Q8P8 Elements

Before evaluating the similarities and differences between micromorphic and micropolar elasticity

theories, the performance of these two elements are compared to deduce which element is the most

appropriate for micromorphic simulations considering convergence as well as cost. The comparison

is done via simulating a cantilevered beam under a concentrated load applied at the end of the

beam. The schematic of the beam is shown in Fig.5.22. From this figure it can be seen that there

are three sets of boundary conditions (BCs) on the micro-displacement tensor Φh to investigate

their effects on the macroscopic behavior of the beam. Table 5.5 summarizes the cases with various

sets of BCs on the micromorphic dofs, as well as setting certain dofs=0 within the beam.

Table 5.5. Selected BCs for micromorphic dofs.

On surface Γ Throughout the beam
Case A Φh11,Φ

h
22,Φ

h
33,Φ

h
13,Φ

h
31 = 0 Φh21,Φ

h
21,Φ

h
23,Φ

h
32 = 0

Case B Φh11,Φ
h
22,Φ

h
33 = 0 Φh21,Φ

h
21,Φ

h
23,Φ

h
32,Φ

h
13,Φ

h
31 = 0

Case C Φh13,Φ
h
31 = 0 Φh11,Φ

h
22,Φ

h
33,Φ

h
21,Φ

h
21,Φ

h
23,Φ

h
32 = 0

Note that the FE results are plotted along the bold line at the top left of the beam shown in

Fig.5.22. The performance of the Q8P8 and Q27P8 elements has been investigated via selecting

the BCs and dofs Case A for which the micro-stretch, as well as micro-rotation dofs, are included

in the simulation of micromorphic beam bending. The selected material parameters for the beam

model are presented in Table 5.6.

Figure 5.23 illustrates the performance of the Q8P8 and Q27P8 elements for the normalized de-

flection 3EIuh3/(FL
3) and rotation Φrot,h

2 of the cantilevered beam (recall for the micromorphic

FE model, Φrot,h
2 = (Φh

13 − Φh
31)/2). It can be concluded that the results of the Q8P8 and Q27P8

elements are relatively close to each other. Note that Isbuga and Regueiro [2011] used the Q27P8

element in creating meshes for their three-dimensional micromorphic finite element models. In this
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Figure 5.22. Schematic of cantilevered beam under concentrated load. Vβ denotes the averaging domain for

a macro-element continuum point with centroid Cβ . The red cube denotes the micro-element volume V (α)

with centroid C(α) and relative position vector Ξ(α).

section, relying on the good accuracy obtained from the Q8P8 element in comparison with the

Q27P8 element, the rest of the simulations are conducted with the Q8P8 element to reduce the

computational cost of 3D micromorphic FEA. The obtained convergence profile by the Newton-

Raphson algorithm at the first and last time steps is presented in Table 5.7. Figure 5.24 illustrates

a mesh refinement study on the micromorphic cantilevered beam using Q8P8 element. By demon-

stration, the results are convergent with respect to mesh refinement.

5.4.1.1 Effects of Φh BCs and dofs

Regarding the micromorphic elastic material parameters, it should be mentioned that the consti-

tutive equations for the micromorphic stresses may be calibrated through lower length-scale direct

numerical simulation (DNS) micro-structural simulations [Regueiro et al., 2014] as shown in chapter

4. Since we are not yet able to calibrate material parameters in that manner, they are instead se-

lected within the range of Smith [1968]’s constraints not to violate positiveness of the strain energy

function. Besides those constraints, we should be aware of the values of uh, u(α),h and Φh reflecting
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Table 5.6. Selected material parameters for micromorphic beam bending example.

Micromorphic Continuum

λ(Pa) µ(Pa) η(Pa) κ(Pa) ν(Pa) σ(Pa)

8e9 11e9 2e9 -1.0e9 -1.39e9 -2.11e9
τ(Pa) τ1(Pa.m2) τ2(Pa.m2) τ3(Pa.m2) τ4(Pa.m2) τ5(Pa.m2)

1.538e9 0.0 0.0 0.0 0.0 0.0
τ6(Pa.m2) τ7(Pa.m2) τ8(Pa.m2) τ9(Pa.m2) τ10(Pa.m2) τ11(Pa.m2)

0.0 0.769e6 0.0 0.0 0.0 0.0

Micropolar Continuum

λ̄(Pa) µ̄(Pa) η̄(Pa) ᾱ(Pa.m2) β̄(Pa.m2) γ̄(Pa.m2)
11.53e9 7.5e9 3.84e9 0.0 0.0 1.53e6

the deformations of micro-structured solids. The macro and micro scale deformations should be

consistent with each other (i.e., both in tension, both in compression, etc.). From the physical per-

spective, this means that the resulting macroscopic displacement vector uh and micro-displacement

tensor Φh need to be consistent with each other (i.e., if a micromorphic continuum solid is under

quasi-static compression in the X3 direction, uh3 and Φh
33 should both be negative to reflect compres-

sion in both of the macro and micro-elements). From Table 5.6, it can be observed that the selected

material parameters, κ, ν, and σ have negative values. The reason for this selection is that it has

been observed that if all of the micromorphic material parameters are selected to be positive, we are

not able to obtain consistent macro and micro-element deformations through uh and Φh. The in-

consistent deformations in the micromorphic continuum means that the micro-element deformation

represents tension while the macro-elements and the whole macroscopic structure are under com-

pression. In this paper, therefore, the material parameters are selected such that the positiveness of

strain energy function will be satisfied as well as the deformations of the micromorphic solid in the

macro and micro-elements are representing the physics of the problem. In the following, the effects

of BCs on Φh will be investigated, and the numerical results will be compared with an analytical

solution of a micropolar cantilevered beam model by Ramezani et al. [2009] (a similar problem was

analyzed using a 1D micropolar FE model in Regueiro and Duan [2015]). Figure 5.25(a) illustrates

the normalized deflection of a micromorphic cantilevered beam for three sets of micromorphic BCs,
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Table 5.7. Global convergence profile obtained by Newton-Raphson at the first and final time steps.

Step Iteration Number residual error

1 of 20 1st 7.811564× 10−04

2nd 1.584514× 10−09

20 of 20 1st 2.217045× 10−02

2nd 5.267324× 10−08

and is compared with the micropolar theory, classical FE model, and the classical beam models.

From the figure, it can be observed that an appropriate selection of BCs on Φh is crucial. One

of the challenges associated with using micromorphic continua is an appropriate selection of BCs

for the additional dofs Φh. Selecting inappropriate BCs may either lead to insensible results or

numerical instabilities in the nonlinear finite element model. The normalized deflection from Case

B, which only involves the micro-stretch dofs (Φh
11,Φ

h
22,Φ

h
33), exhibits considerably stiff macroscopic

behavior. By involving the micro-shear dofs Φh
31 and Φh

13 in Cases A and C, with and without the

micro-stretch components, respectively, the normalized deflections then fall in the same range as

the classical (Timoshenko and Goodier [1969]) and the micropolar (Ramezani et al. [2009]) theories.

Note that the largest deflection is obtained from the micromorphic model Case A involving all the

micro-stretch and micro-shear components of Φh enabled. From the perspective of comparing to

the micropolar theory, it can be noticed that the deflection from the micromorphic Case C (only the

micro-shear dofs Φh
13, Φh

31) are in good agreement with the micropolar theory, as is to be expected

since these are the only additional dofs available to the micropolar theory. Figure 5.25(b) illustrates

the micro-rotation Φrot,h
2 from the micromorphic theory as it compares to the micropolar theory for

two sets of micromorphic BCs: Case A (micro-stretch with micro-shear components), and Case C

(micro-shear without micro-stretch components). It is observed that the micro-rotation from Case

C is in good agreement with the micropolar theory. Figure 5.26 illustrates the macroscopic axial

displacement uh1 and the micro-stretch component Φh
11 plotted along the bold solid line in Fig.5.22.

It can be observed that the micro-stretch component Φh
11 has a sharp gradient near the boundary.

Note that the macroscopic and microscopic deformations are consistent: the macroscopic displace-

ment of the beam, uh1 , illustrates compression, and the corresponding micro-stretch component Φh
11
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Figure 5.23. Comparison of performance of Q8P8 and Q27P8 elements in Tahoe.
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Figure 5.24. Mesh refinement study on cantilevered beam using Q8P8 element.

is also in compression. Figure 5.27 shows the contour plots of uh3 and Φh
11 for the micromorphic

cantilevered beam.

Figure 5.28 illustrates the macroscopic displacement uh3 and the micro-element displacement u
(α),h
3

for small and finite strain FE analyses. As mentioned earlier, u
(α),h
3 represents the micro-element

displacement by accounting for the relative position vector Ξ(α) and the micro-displacement tensor

Φh. It can be seen that in case B, in which the only dofs are the micro-stretch terms, the macro-

element displacement uh3 and the micro-element displacement u
(α),h
3 are close representing very stiff

material micro-structure. Note that in the other cases u
(α),h
3 is larger than uh3 , but only slightly.
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Figure 5.25. Normalized deflection and micro-rotation along the length.

Since the selected relative position vector Ξ(α) is relatively large compared to the geometry of

the model (see Fig.5.22), the difference between the micro-element displacement u
(α),h
3 and the

macro-element displacement uh3 becomes noticeable.
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Figure 5.26. Macroscopic displacements and micro-stretch components plotted along the length of the beam
along the bold line in Fig.5.22.
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Figure 5.27. Contour plots and deformed shape of cantilevered beam.
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5.4.2 Plate with a Circular Hole under Uniform Loading

The second example is a 1m square plate with a hole (radius a = 0.05m), at the center under a

uniform loading tσ = 2× 104(Pa) at the left and right edges (Fig.5.29). This example is conducted

to compare the micromorphic continuum theory against the classical and the micropolar continuum

theories on calculating stress concentration and stress distribution around a circular hole.
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Figure 5.29. Schematic of FE mesh and BCs for plate with circular hole at center.

According to Fig.5.29 and Table 5.8, six sets of BCs on the micromorphic dofs have been considered.

The BCs have been divided into two main categories: Case A and Case B. In Case A, BCs on Φh

have been applied to the hole surface, and in Case B there are no BCs applied on Φh. In each of
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Table 5.8. Selected BCs and micromorphic dofs for plate with hole.

Case A On the hole Throughout the plate
I Φh11,Φ

h
22,Φ

h
12,Φ

h
21 = 0 Φh13,Φ

h
31,Φ

h
23,Φ

h
32,Φ

h
33 = 0

II Φh11,Φ
h
22 = 0 Φh12,Φ21,Φ

h
13,Φ

h
31,Φ

h
23,Φ

h
32,Φ

h
33 = 0

III Φh12,Φ
h
21 = 0 Φh11,Φ22,Φ

h
13,Φ

h
31,Φ

h
23,Φ

h
32,Φ

h
33 = 0

Case B Free dofs
I Φh11,Φ

h
22,Φ

h
12,Φ

h
21 Φh13,Φ

h
31,Φ

h
23,Φ

h
32,Φ

h
33 = 0

II Φh11,Φ
h
22 Φh12,Φ21,Φ

h
13,Φ

h
31,Φ

h
23,Φ

h
32,Φ

h
33 = 0

III Φh12,Φ
h
21 Φh11,Φ22,Φ

h
13,Φ

h
31,Φ

h
23,Φ

h
32,Φ

h
33 = 0

the Cases A and B, the effects of BCs on the micro-shear, micro-stretch, and their combination on

the macroscopic response have been studied. The selected material parameters for micromorphic

and micropolar elasticity are presented in Table 5.9.

Figure 5.30 illustrates the stress concentration with respect to radial distance r from the center

of the circular hole (with radius a = 0.05m) estimated by the micromorphic, micropolar, and the

classical elasticity theories. Note in the figure that the results of the micromorphic continuum for

Case B (there is no BC applied on Φh) are compared with the micropolar and classical elasticity

theories. The micromorphic continuum theory with only micro-shear dofs Φh
12 and Φh

21 (Case B-

III) simulates the closest result to the micropolar theory in Bauer et al. [2010]. Note that this

is similar to the beam example in Section 5.4 wherein the results of a micromorphic beam with

only the micro-shear dofs are closest to those of the micropolar theory. The cases with only micro-

stretch dofs (Case B-II), and the combination of micro-stretch and micro-shear dofs (Case B-I),

estimate slightly lower stress around the hole. Figure 5.31 shows the effect of micromorphic BCs on

the macroscopic response. It can be seen that for Case A (BCs on Φh around the hole) where the

micro-stretch dofs (Φh
11,Φh

22, Case A-II), and the combination of micro-stretch and micro-shear (Φh
11,

Φh
22, Φh

12, Φh
21, Case A-I), have been fixed around the hole, a considerable stress concentration has

been observed. This can be interpreted that the micro-elements of the micromorphic continuum are

constrained when applying BCs on the micro-stretch dofs (Φh
11, Φh

22) around the hole which results

in a higher stress concentration. Note that for Case A with micro-shear dofs only fixed around

the hole surface (Case A-III), the resulting stress concentration is closer to that of Case B (I,III),
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Table 5.9. Selected material parameters for plate with circular hole.

Micromorphic Continuum

λ(MPa) µ(MPa) η(MPa) κ(MPa) ν(MPa) σ(MPa)

1e5 2.2e5 3.0e4 -1.0e4 -8.0e4 -7.0e4
τ(MPa) τ1(Pa.m2) τ2(Pa.m2) τ3(Pa.m2) τ4(Pa.m2) τ5(Pa.m2)
2.75e4 0.0 0.0 0.0 0.0 0.0

τ6(Pa.m2) τ7(Pa.m2) τ8(Pa.m2) τ9(Pa.m2) τ10(Pa.m2) τ11(Pa.m2)
0.0 525 0.0 0.0 0.0 0.0

Micropolar Continuum

λ̄(MPa) µ̄(MPa) η̄(MPa) ᾱ(Pa.m2) β̄(Pa.m2) γ̄(Pa.m2)
15.75e4 7e4 7e4 0.0 0.0 1050

wherein there are no BCs applied on micro-shear. This shows that the effects of shear deformations

of the micro-elements are negligible on stress concentration due to the extensional-like deformation

of this example, while the micro-stretch dofs (Φh
11, Φh

22) play the main role and reflect the effect of

micro-elements stretched in tension for generating stress concentration around the hole.

Figure 5.32 illustrates the stress concentration plotted circumferentially around the hole (with

respect to θ) obtained from the micromorphic continuum theory in comparison with the micropolar

and classical continuum theories. In the micromorphic continuum, Case B-III with only micro-shear

dofs predicts the closest result to the micropolar theory results presented in Bauer et al. [2010] as

seen in Fig.5.32(a). Figure 5.32(b) shows the effect of micromorphic BCs on the stress distribution

around the hole. For Case A-I with micro-stretch and micro-shear components, and Case A-II with

micro-stretch components fixed on the hole surface, larger stress values are observed around the hole.

As mentioned earlier, this is the direct result of the constrained micro-elements of a micromorphic

solid through fixing the micromorphic dofs on the hole surface. Figure 5.33(a) compares the stress

concentration modeled by the micromorphic continuum at finite strain for Case B (I-III) with

classical elasticity. It can be noticed that the stress concentration captured by Case B-I (no BCs on

Φh
11,Φ

h
22,Φ

h
12,Φ

h
21) is slightly larger than those of Case B-II and III. However, this is not the case

for the small strain analysis in Fig.5.30(b). Figure 5.33(b) illustrates that for Case A (I-III) with

micromorphic BCs around the hole, at finite strain the obtained trend for the stress concentration
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Figure 5.30. Stress distribution obtained from micromorphic, micropolar, and classical elasticity.

is similar to the small strain analysis. Figure 5.34 illustrates the distribution of σhrθ and σhθr along

the diagonal of the plate. This figure compares the results of the micromorphic continuum for Case

B with the micropolar and classical theories, and the effects of BCs between Cases A and B. Note

that the macroscopic Cauchy stress is not symmetric for the micromorphic and micropolar theories,

and thus σhrθ and σhθr are not equal (this is also observed in Bauer et al. [2010]). Figure 5.34(d)

shows that at r = a, σhθr starts near zero. For Cases A-I and A-II with BCs on the micro-stretch

and micro-shear components, the effect of rigid micro-elements can be observed. Further from the

hole surface, σhθr reaches its maximum value. The effect of rigid micro-elements around the hole

surface on σhθr diminishes further from the hole surface. A similar trend for σhrθ can be observed in

Fig.5.34(b). Figure 5.35 shows the contour plots of Φh
11, Φh

22, Φh
21, and Φh

12 throughout the model.

Note that Φh
21 and Φh

12 do not evolve symmetrically. Therefore, it can be concluded that once the

shear components of Φh begin to evolve, symmetric BCs on Φh are not applicable (which we do

not assume for this plate example). Note that this could be the case for micro-stretch terms as

well.
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Figure 5.31. The effect of BCs on the calculated stress distribution from the micromorphic continuum.
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Figure 5.32. Effect of Φh BCs on distribution of σθθ around circular hole.
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(b) Effect of micromorphic BCs on σhθθ at finite
strain.

Figure 5.33. Stress concentration at finite strain from micromorphic continuum.
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Figure 5.34. Effect of Φh BCs on distribution of σhrθ and σhθr along plate diagonal.
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5.4.3 Plate Bending

The third example is devoted to presenting bending analysis in a micromorphic plate. The

selected material parameters, mesh configuration, and considered BCs on Φh are illustrated in

Table 5.10, Figure 5.36, and Table 5.11, respectively.
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Figure 5.36. Schematic of mesh configuration and selected micromorphic BCs on Φh for plate bending
analysis.

Note that four sets of material parameters for the couple stress have been selected to illustrate their

effect on the macroscopic response. In Figure 5.36, it can be seen that the moment has been applied

in two ways: (i) force on the plate edges to mimic a bending moment, and (ii) rotation through the

micromorphic dofs Φrot,h
1 is the micro-rotation about axis 1, and Φrot,h

2 is the micro-rotation about

axis 2). Note that applying moment through the micro-rotation from the modeling perspective can
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be described as applying moment on the individual micro-elements of the micromorphic continuum

rather than the macro-elements. From the physical point of view, it can be interpreted as applying

moment on the material micro-structure. Figure 5.37(a) shows the lateral plate deflection which is

plotted along the bold red lines in Fig.5.36 obtained from the micromorphic continuum theory in

comparison with the classical and micropolar theories. The results for the micromorphic continuum

are obtained by using Set I of material parameters listed in Table 5.10. Note that for Case A, in

which the micro-stretch and micro-shear dofs are active, and for Case B, in which only the micro-

shear dofs are active, the resulting deflections are overlapping. However, for Case C, in which only

the micro-stretch dofs are active and the micro-shear dofs are zero, the lateral deflection of the

plate is noticeably smaller (i.e, more stiff) than that of Cases A and B. Apparently, this means that

fixing the micro-shear dofs removes shear deformation of the micro-elements of a micromorphic

plate which makes the plate considerably more stiff in bending than for Cases A and B that include

micro-shear deformation. Lateral deflection of the plate from the micromorphic continuum Cases

A and B compared to the micropolar theory shows that the micromorphic plate deforms more

than the micropolar one. This demonstrates the significance of micro-shear (micropolar does not

consider micro-shear in micro-elements) as well as micro-rotation which are both captured by the

micromorphic theory, in contrast to the micropolar theory that only accounts for the micro-rotation

of micro-elements. The interesting point in this figure is that the lateral deflection of the model

for which the bending moment is mimicked via applying rotations Φrot,h
1 and Φrot,h

2 , is close to that

of the other models for which bending moment is applied by forces (“Bending by moment”). This

is observed for small strain analysis, and is not the case for finite strain problems (large strain

deflection of the micromorphic plate will be presented later in Fig.5.40). Figure 5.37(b) illustrates

the effect of couple stress material parameters on the macroscopic lateral deflection of the plate.

For the purpose of adjusting the micromorphic couple stress material parameters with those of

micropolar elasticity, with regard to (2.132), there are several choices for selections of couple stress

material parameters.
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Table 5.10. Selected material parameters for plate bending.

Micromorphic Continuum

λ(MPa) µ(MPa) η(MPa) κ(MPa) ν(MPa) σ(MPa)

1e5 2.2e5 3.0e4 -1.0e4 -8.0e4 -7.0e4
τ(MPa) τ1(Pa.m2) τ2(Pa.m2) τ3(Pa.m2) τ4(Pa.m2) τ5(Pa.m2)

Set I

2.75e4 0.0 0.0 0.0 625 0.0
Set II

2.75e4 0.0 0.0 0.0 675 100
Set III

2.75e4 0.0 0.0 0.0 1250 0
Set IV

2.75e4 0.0 0.0 0.0 0.0 0.0
τ6(Pa.m2) τ7(Pa.m2) τ8(Pa.m2) τ9(Pa.m2) τ10(Pa.m2) τ11(Pa.m2)

Set I

675 675 0.0 0.0 0.0 0.0

Set II

675 625 0.0 0.0 0.0 0.0
Set III

0.0 625 0.0 0.0 0.0 0.0
Set IV

1250 1250 0.0 0.0 625 0.0
Micropolar Continuum

λ̄(MPa) µ̄(MPa) η̄(MPa) ᾱ(Pa.m2) β̄(Pa.m2) γ̄(Pa.m2)
15.75e4 7e4 7e4 0.0 -1250 2500

Table 5.11. Selected BCs for micromorphic dofs of plate under bending.

On plane Γ1 On plane Γ2 On mid-plane Throughout the plate
Case A Φh22,Φ

h
23,Φ

h
32 = 0 Φh11,Φ

h
31,Φ

h
13 = 0 Φh33 = 0 Φh12,Φ

h
21 = 0

Case B Φh23,Φ
h
32 = 0 Φh31,Φ

h
13 = 0 Φh11,Φ

h
22,Φ

h
33 = 0 Φh12,Φ

h
21 = 0

Case C Φh22 = 0 Φh11 = 0 Φh33 = 0 Φh12,Φ
h
21,Φ

h
23,Φ

h
32,Φ

h
31,Φ

h
13 = 0
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Figure 5.38. Deformed shape of plate in bending.

It can be seen that for material sets III and IV, the lateral deflection is slightly larger than that

of the material sets I and II. The couple stress material parameters τi are somewhat related to

the relative position vector Ξ(α) which is related to the length scale of the problem. Therefore,

τi is closely related to the size of the micro-elements inside a micromorphic continuum. Note

that defining the relation between the τi to Ξ(α) is beyond the scope of this chapter. Changing

the τi’s may lead to changes in Ξ(α) that affects the size and number of micro-elements within a

macro-element. Therefore, different micro-element sizes will influence the macroscopic mechanical

behavior. But, here we follow the assumption that through changing τi’s the micro-element sizes

will remain unchanged to avoid the complication of the relation of Ξ(α) and τi’s. Figure 5.38

depicts the contour plot of macroscopic displacement uh3 and micro-element displacement u
(α),h
3
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of the micromorphic plate for which it is observed that u
(α),h
3 is slightly larger than uh3 because

of the contribution of relative position vector Ξ(α) (see Fig.5.36) multiplying by evolving Φh in

(2.15). Figure 5.39 illustrates the Mh
12, Mh

21 (2.130), and Φrot,h
2 (2.136) values obtained from the

micromorphic plate (Case A with four sets of material parameters for τi) and those of the micropolar

plate. Note that the micromorphic couple stress is related to the micropolar couple stress through

(2.130) for small strain analysis. Physically speaking, the couple stress can be interpreted as the

moment of the micro-element stress σ(α) inside a macro-element. Therefore, the couple stress for

the idealized periodic micro-structure (Ξ(α) is assumed to be spatially uniform at each Xβ in B0)

defines the gradient of micro-element stress σ(α) in a micromorphic continuum. Figures 5.39(a),(b)

illustrate the effect of τi’s on the micromorphic couple stress in comparison with the micropolar

couple stress. We do not expect the micromorphic couple stress to overlap the micropolar couple

stress, because it has been observed earlier, the significance of micro-shear dofs in the macroscopic

response of a micromorphic plate under bending. Note that there is a jump in the plot of resulting

micropolar couple stressMh
21 near the edge of the plate in Fig.5.39(b), which pertains to the localized

stress as a result of applying force to mimic the bending moment. Figure 5.39(c) shows that the

resulting micro-rotation Φrot,h
2 from micromorphic elasticity is higher than that for micropolar

theory. Apparently, this reflects the significance of micro-shear dofs included in the micromorphic

continuum for bending analysis which results in larger micro-rotation. Note that micro-rotation

curves captured by Case A and Case B are overlapping in Fig.5.39(c), which means that the micro-

stretch terms do not have a considerable effect on micro-rotation for this plate bending example.

Figure 5.40 illustrates the macroscopic lateral deflection of the plate under finite strain bending

analysis. It can be seen that for Case A at finite strain in which bending is applied through Φrot,h
1

and Φrot,h
2 , the lateral deflection starts deviating from that of Case B for which bending moment is

applied directly (compared to Fig.5.37(a) for small deflections wherein the curves for Cases A and

B overlap).
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5.4.4 Twisting of T-shaped Rod

The fourth example involves large twisting of a T-shaped rod to illustrate the capability of the

developed code in Tahoe to perform a large deformation 3D micromorphic FE analysis. Note that

there are no quantitative data presented by Bauer et al. [2010] on micropolar FEA of a T-shaped

rod to compare with the micromorphic model presented here. The selected material parameters

for the micromorphic T-shaped rod are listed in Table 5.12.

Table 5.12. Selected material parameters for the micromorphic T-shaped rod.

Micromorphic Continuum

λ(MPa) µ(MPa) η(MPa) κ(MPa) ν(MPa) σ(MPa)

29.31e3 25.48e3 1e3 -1.5e3 -1.4e3 -3e3
τ(MPa) τ1(Pa.m2) τ2(Pa.m2) τ3(Pa.m2) τ4(Pa.m2) τ5(Pa.m2)

4e2 0.0 0.0 0.0 0.0 0.0
τ6(Pa.m2) τ7(Pa.m2) τ8(Pa.m2) τ9(Pa.m2) τ10(Pa.m2) τ11(Pa.m2)

0.0 10e5 0.0 0.0 0.0 0.0

Table 5.13 summarizes the BCs on the micromorphic dofs Φh. The geometry, schematic of FE mesh,

and applied BCs are illustrated in Figure 5.41. Note that the twist is applied on the T-shaped rod

in two ways: (i) the macroscopic displacement uh, and (ii) the micro-rotation Φrot,h
3 .

Table 5.13. Selected BCs for micromorphic dofs of T-shaped rod.

Throughout the model Throughout the T No boundary condition
Set I, Fixed Micro-stretch

Case A Φh11,Φ
h
22,Φ

h
33,Φ

h
31,Φ

h
13,Φ

h
23,Φ

h
32 = 0 Φh12,Φ

h
21

Set I, With Micro-stretch
Case B Φh31,Φ

h
13,Φ

h
23,Φ

h
32 = 0 Φh11,Φ

h
22,Φ

h
33 = 0 Φh12,Φ

h
21

Set II, Fixed Micro-stretch
Case C Φh11,Φ

h
22,Φ

h
33,Φ

h
31,Φ

h
13,Φ

h
23,Φ

h
32 = 0 Φh12,Φ

h
21 = 0

Set II, With Micro-stretch
Case D Φh31,Φ

h
13,Φ

h
23,Φ

h
32 = 0 Φh11,Φ

h
22,Φ

h
33,Φ

h
12,Φ

h
21 = 0

Figure 5.42 shows the effects of micromorphic BCs as well as the manner by which twist is applied

(by (i) displacement uh, or by (ii) micro-rotation Φrot,h
3 ) on the macroscopic displacement result

uh3 . It is seen that the profile of uh3 in Fig.5.42(a) obtained from the micromorphic T-shaped rod

is not similar to that of classical elasticity which is a straight line. Micro-stretch terms do not
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Figure 5.41. Geometry, schematic of FE mesh, and applied BCs on micromorphic T-shaped rod.

have a significant effect on the profile of uh3 . Note that in the micromorphic T-shaped rod model

in which the twist is applied by micro-rotation Φrot,h
3 , the resulting uh3 does not follow the same

trend as the case in which twist is applied by displacement uh. In the model in which twist is

applied through macro-displacement, at the very end of the rod, uh3 is positive which shows axial

stretch in the rod. However, for the model in which twist is applied through micro-rotation, uh3
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Figure 5.42. uh3 from micromorphic elasticity FE solution plotted along the red bold line in Fig.5.41.

is negative at the end of the rod where it is under compression. In the profile of uh3 along the

length of the rod, where uh3 is negative (in compression), this is the location where considerable

twisting occurs (see Figs.5.46(d),(e)). For the model for which load is applied through micro-

rotation, considerable amount of twisting occurs in the middle of rod. On the other hand, for the

model in which load is applied through macro-displacement, significant twisting occurs near the

T position (Figs.5.46(a),(b)). Therefore, two different deformed shapes of the T-shaped rod have

been observed as a result of two different BCs. From the mathematical perspective, we have two

sets of nonlinear partial differential equations (balance of linear and first moment of momenta)

(2.158) for the micromorphic solid, in which two different sets of BCs lead to different results.
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Therefore, we do not expect to observe similar deformed shapes of the micromorphic T-shaped

rod with different BCs. Figure 5.42(a) also compares the axial displacement uh3 obtained from

classical continuum theory and that of micromorphic theory. The classical continuum predicts a

nearly linear distribution for uh3 , however, the simulations using the micromorphic continuum do

not follow a similar trend for uh3 . The linear distribution of uh3 along the length of the T-shaped

rod implies that the twist is distributed uniformly along the length as well (see Fig.5.46(c)). The

profile of uh3 obtained from the micromorphic continuum model shows both tension and compression

along the length of the rod. This denotes that the twist in the micromorphic T-shaped rod is not

uniform. This example illustrates that the results of a micromorphic continuum at finite strain

are deviating from the classical continuum result. Figures 5.42(b) and 5.42(c) illustrate the effect

of micromorphic BCs as well as the ways of applying twist on the rod (by displacement and by

micro-rotation) on uh3 . Note that the distribution of uh3 throughout the length of the rod is affected

by the manner of twist on the rod. This occurs as a result of applying two different BCs on (2.158).

Figure 5.42(b) shows that for the cases in which twist is applied through displacement, the twisted

rod is under stretch and uh3 is positive. However, if the twist is applied via micro-rotation, the

rod will be under compression and uh3 is negative. Figure 5.42(c) illustrates the effect of including

micro-stretch on uh3 . It can be noticed that including micro-stretch term leads to larger uh3 . Note

that for the case with BC set I with micro-stretch, the value of uh3 is slightly larger than that of

the case in which micro-stretch is fixed all through the T-shaped rod.

Figure 5.43 illustrates Φh
33 (micro-stretch in axial direction) along the length of the rod on

the red solid line in Fig.5.41. Figure 5.43(a) compares the micro-displacement component Φh
33

obtained for the micromorphic T-shaped rod in which the twist is applied through macro-element

displacement uh3 and micro-rotation Φrot,h
3 . It can be seen that in both cases, there is a gradient

in the profile of Φh
33 near the T, and it levels out further away from the T. Note that Φh

33 is in

compression when the twist is applied by micro-rotation (uh3 is also in compression). However, it is

in tension for the case in which the twist is applied by displacement (uh3 is also in tension). Figure

5.43(b) illustrates the effect of BCs sets I and II on the profile of Φh
33. It can be seen that for
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Figure 5.43. Micro-stretch Φh33 along the red bolded line Fig.5.41.

BC set II Φh
33 is larger than that of BC set I (uh3 in Fig.5.42(c) for BC set II is also larger than

set I). Figure 5.44 depicts the profile of the Second Piola-Kirchhoff stress Sh33 along the length of

the T-shaped rod (red solid line Fig.5.41). The results from classical continuum FEA show that

the profile of Sh33 is nearly uniform. However, in the micromorphic T-shaped rod this is not the

case. The peak in the profile of Sh33 along the length indicates a considerable twisting at that

location. Figure 5.45 illustrates the micro-rotation of macro-elements and micro-elements of the

micromorphic T-shaped rod as a result of applying twist via displacement and micro-rotation. By

investigating χ, it is found that for the case for which micro-rotation is applied on the model,

the local rotation of the micro-elements is higher than that of the case for which twist is applied

through displacement. Therefore, the differences in the micro-element deformations lead to the

different deformed configuration of the T-shaped model at finite strain. Apparently, considering

the effect of deformable micro-elements in the micromorphic continuum is the source of pronounced

differences with classical elasticity. It is noteworthy to mention that when we look more closely

into the micro-element displacement u(α),h (Fig.5.45), overlaps in the adjacent deformed micro-

elements are noticeable. In terms of a micromorphic continuum the compatibility of strain tensors

are ensured in order to obtain single-valued continuous macroscopic displacement u and micro-

displacement tensor Φ fields [Eringen, 1968]. However, through (2.15) and the choice of Ξ(α) in
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Fig.5.41, we do not expect the secondary quantity of micro-displacement u(α),h to be a single-valued

continuous field. Figure 5.46 shows the final deformed configurations of the T-shaped rod model

using classical and micromorphic theories. The figure shows the deformed meshes of the cases in

which twist is applied via displacement or micro-rotation, as well as comparing to the classical

continuum result. The deformed meshes show that differences in micro-element deformation lead

to different deformed shapes of the micromorphic T-shaped rods.
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5.5 Micromorphic Elasticity: Dynamics

5.5.1 Uniaxial Strain Column

To start, we investigate the dynamic behavior of a micromorphic continuum through a uniaxial

strain column example. The advantage of starting with this model is that it is a one-dimensional

simulation of micromorphic continuum with the macro-element displacement component uh3 and the

micro-displacement tensor component Φh
33 dofs. The schematic of mesh configuration, geometry,

and BCs are illustrated in Fig.5.47. Note that the relative position vector Ξ(α) = [0 0 0.625] in

Fig.5.47 belongs to the micro-element located in the positive portion of the macro-element. In this

analysis, we are assuming that the material is made of an idealized periodic micro-structure through

the Z direction. Each of the macro-volumes dVβ is made up of two micro-elements dV (α) which are

deformed in the Z direction through Φh
33 dof. The selected material parameters and the BCs for

the micromorphic column is presented in Table 5.14 and 5.15, respectively. Figure 5.48(a) shows

the dispersion diagram of a one-dimensional longitudinal wave in the micromorphic and classical

column. The dispersion diagram relates the wave number (wave length) of a wave to its frequency

in a continuum. The numerical dispersion diagrams are obtained from the finite element solution

and are compared with the small strain analytical solution of the classical continuum for the one

dimensional wave. Regarding the dispersion analysis, there are a number of studies available in the

literature that discuss the analytical and numerical approaches (Khajehtourian and Hussein [2014],

Hussein et al. [2014], Hussein and Khajehtourian [2015]). It has been found that the finite element

method is not the best numerical tool for conducting dispersion analysis. The dispersion diagrams

of micromorphic versus classical continuum illustrate that for the selected material parameters in

the small strain regimen differences in the wave velocity and the wave length of micromorphic and

classical continua are negligible. It is to be noted that the obtained dispersion diagrams from the

finite element method show a dispersive wave propagation (dispersion diagram is not linear unlike

the analytical solution) in both of classical and micromorphic continua. This issue can be related

to the finite element analysis that adds artificial dispersive properties in the wave propagation
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simulation. On top of that our finite element model is developed based on finite strain analysis and

to capture small strain analysis, loads with small amplitudes are used. Therefore, the geometric

non-linearity is another source of dispersion of the wave propagation. Figure 5.48(b) illustrates the

results of Cauchy stress σh33 from the three-dimensional finite element analysis for micromorphic

and classical continua versus the analytical solution of classical continuum. As mentioned, in the

finite element model, load with small amplitude is used to reduce the effect of non-linear geometric

terms. The time integration parameter is α = −0.05, (2.159), such that to remove some high

frequency oscillations without adding a considerable amount of algorithmic damping in comparison

with the trapezoidal time integration method which has zero algorithmic damping.
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Table 5.14. Micromorphic elastic material parameters.

Micromorphic Continuum

λ(Pa) µ(Pa) η(Pa) κ(Pa) ν(Pa) σ(Pa)

29.31e8 25.48e8 1e8 -1.5e8 -1.4e8 -3e8
τ(Pa) τ1(Pa.m2) τ2(Pa.m2) τ3(Pa.m2) τ4(Pa.m2) τ5(Pa.m2)

4e7 0.0 0.0 0.0 0.0 0.0
τ6(Pa.m2) τ7(Pa.m2) τ8(Pa.m2) τ9(Pa.m2) τ10(Pa.m2) τ11(Pa.m2)

0.0 1e11 0.0 0.0 0.0 0.0

ρ0(Kg/m3) t0(s)
2700 0.00026

Classical Continuum

λ(Pa) µ(Pa) ρ0(Kg/m3) t0(s)

28.9e8 22.48e8 2700 0.00026
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Figure 5.48. Dispersion analysis and wave profile.

Table 5.15. Selected boundary conditions for the column under compressive loading.

Micromorphic Continuum Throughout the column On surface Γ
BC on Φh33 Φh11,Φ

h
22,Φ

h
12,Φ

h
21,Φ

h
13,Φ

h
31,Φ

h
23,Φ

h
32 = 0 Φh33 = 0

uh1 , u
h
2 = 0 uh3 = 0

No BC on Φh33 Φh11,Φ
h
22,Φ

h
12,Φ

h
21,Φ

h
13,Φ

h
31,Φ

h
23,Φ

h
32 = 0

uh1 , u
h
2 = 0 uh3 = 0

Classical Continuum Throughout the column On surface Γ
uh1 , u

h
2 = 0 uh3 = 0
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Figure 5.49. Comparison of displacements from classical and micromorphic continua through the length of
the column.
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3 .

Since our loading is an impulse, the obtained results of stress show numerical oscillations at the

two sharp ends of the load profile. The rest of this section is devoted to demonstrating the dynamic

behavior of micromorphic continuum in comparison with classical continuum. The results of macro-

element displacement uh3 are plotted along the length of the column in Fig.5.49. At t = 0.01(s) the

wave is in the middle of the column heading downward (Fig.5.49(a)), at t = 0.02(s) the wave is

about to hit the bottom surface (Fig.5.49(b)), at t = 0.025(s) the wave is reflecting off the bottom

surface heading back up the column (Fig.5.49(c)), and at t = 0.025(s) the wave is in the middle of

the column heading upward (Fig.5.49(d)).

From Fig.5.49, it can be seen that the difference between the macro-element displacement uh3 from

classical and micromorphic continua is not significant especially for the times when the wave is

heading downward before hitting the bottom surface. The difference in the wave profile (wave speed

and wave displacement amplitude) of the micromorphic and classical continua become evident when

the wave is reflected off the bottom surface. It can be noticed that the effect of BC on Φh
33 does

not affect uh3 from micromorphic continuum noticeably. Figure 5.50 illustrates contour plots of the

macro and the micro-element displacements uh3 , u
(α)h
3 . From the contour plots, it can be observed

that the difference of micro-element displacement (maximum value of u
(α)h
3 = −0.838(m)) and the

macro-element displacement (maximum value of uh3 = −0.858(m)) is not large. According to the
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selected length of the relative position vector ‖Ξ(α)‖ = 0.625(m) which is about 2% of the total

length of the column, we did not expect considerable differences in the obtained displacements. Note

that as the size of relative position vector becomes smaller, micromorphic continuum behavior will

be closer to classical continuum (smaller macro and micro-elements sizes reduce the inhomogeneity

of the micro-structured material). Figure 5.51 illustrates the micro-displacement component Φh
33

along the length of the column. Through Φh
33 we should be able to look more closely into the changes

in the length of relative position vector component Ξ
(α)
3 , and, also, the micro-element deformations.

As mentioned earlier, the macro-element deformation is illustrated through the displacement vector

u. But, the micro-element displacement vector u(α) is calculated through (2.15) which is related

to the macro-element displacement u, the micro-displacement tensor Φ, and the relative position

vector Ξ(α), (2.15). Therefore, if Φ = 0, the macro-element displacement and the micro-element

displacement are equal (no micro-element deformation). Figure 5.51 is presented to study the

micro-element deformation and to understand the picture of micromorphic continuum from the

micro-structural deformation via plotting Φh
33 through the length of the column. Note that in this

paper the term “Small load amplitude” corresponds to capturing the small strain results through the

finite strain model by applying a small amplitude load. The term “Large load amplitude” denotes

applying load with a large amplitude to trigger the non-linear geometric effects. Figure 5.51(a)

illustrates Φh
33 when the wave is at its very initial steps heading downward. It can be seen that the

effect of BC on Φh
33 is not evident. According to the plots, the larger load amplitude (the blue and

cyan lines in comparison with the red and green lines) leads to the larger amplitude of Φh
33 along

the length and, therefore, larger micro-element deformation. Figure 5.51(b) shows the profile of Φh
33

when the wave is in the middle of the column heading downward (Fig.5.49(a)). The picture that

micromorphic continuum captures from the micro-structural deformation for the selected elastic

material parameters is that due to non-zero Φh
33 throughout the column, the micro-elements are

deforming all through the column; however, the wave (macro-element displacement u) is in the

middle of the column. The wave in the middle of the column denotes that the macro-elements

are deforming up to the middle of the column, and the rest of the column is macroscopically
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undeformed while microscopically, micro-elements are deforming throughout the column via the

micro-displacement tensor Φ. For the micromorphic column in which Φh
33 is free to evolve, Φh

33

plots (green and cyan lines) show compression all through the column. However, for the cases

with BCs on Φh
33, compression of micro-elements in the middle of the column (location where

the wave is passing) makes the micro-elements at the top of the column to be under extension

through positive Φh
33 (Fig.5.52). Note that the micro-element displacements u

(α)h
3 at the top of

the column are negative which indicates the contribution of macro-element displacement uh to the

micro-element displacement u(α),h (micro-elements are located within the macro-element, Fig.2.1).

However, the micro-elements themselves are under extension through positive Φh
33. Figure 5.51(c)

shows that as the wave is traveling downward, the micro-elements at the top of the column are under

larger extension as larger values of Φh
33 are observed. Figure 5.51(d) illustrates the longitudinal

compressive wave traveling upward through the column. For the case with a large load amplitude

and no BC on Φh
33 (cyan line), the micro-elements at top of the column are under larger extension

(larger Φh
33) in comparison with the other cases. This is related to the large load amplitude that

compresses the micro-elements close to the bottom end of the column that leads to larger extension

of the micro-elements at top of the column via positive value of Φh
33. Figure 5.51(e) depicts Φh

33

profile along the length of the column when the wave is traveling back up the column. It can

be seen that for the case that the micromorphic BC is applied on Φh
33 and the load amplitude is

large (blue line) we can observe the finite strain deformation effects such that the profile of Φh
33

is oscillatory. The next few figures are devoted to presenting the couple stress component Mh
333.

In the finite element calculation, the couple stress component Mh
333 has been calculated through

constitutive equation, however, for the purpose of getting insight into the couple stress physical

concept, we can use its basic definition (4.4), which interprets the couple stress in the current

configuration B as the volume average of the micro-element stress σ(α) multiplied by the relative

position vector ξ(α) over the macro-element domain. Therefore, the couple stress is a micro-scale

moment-like stress, in which it reflects the spatial gradient of the multiplication of micro-element

stress σ(α) and the relative position vector ξ(α) in Fig.5.53. The spatial gradient of the relative
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position vector is related to the micro-displacement tensor Φ through χ(Xβ, t) = 1+Φ(Xβ, t) and

(2.3). Note that the negative or positiveness of the couple stress does not necessarily imply that the

structure is either under compression or tension. Figure 5.54 depicts the couple stress component

Mh
333 through the length of the column for the times t = 0.002(s), 0.01(s), 0.02(s), 0.025(s), and

0.035(s). Figure 5.54(a) illustrates Mh
333 along the length of the column at time t = 0.002(s). It

can be seen that at time t = 0.002(s) the BC on Φh
33 does not affect the profile of couple stress

(similar to what is observed in Fig.5.51(a)).

From Figs.5.54, it can be seen that when there is no BC on Φh
33, its gradient around the

boundary is zero and the resulting couple stress Mh
333 will be zero as well. Therefore, for the cases

with no BC on Φh
33, the couple stress Mh

333 is zero at the two ends of the column. Figure 5.54(e)

illustrates Mh
333 at time t = 0.035(s). This figure reflects the effect of finite strain analysis on

the profile of Mh
333 along the length of the column similar to what is observed in the plot of the

micro-displacement tensor component Φh
33 in Fig.5.51(e). Figure 5.55 compares motion uh3 at the

top of the column obtained from the finite strain micromorphic continuum with and without BC on

Φh
33 and that of the classical continuum. The obtained displacements are close to each other which

can reflect the effect of small inhomogeneity due to small value of selected relative position vector

(small sizes of macro and micro-elements). Figure 5.56 depicts the finite strain analysis versus the

small amplitude model (small strain analysis) to highlight the non-linear geometry effect on the

displacement at top of the column. For the purpose of comparison, the obtained results of the small

amplitude load analysis are scaled with the ratio of large amplitude load to small amplitude load.

It can be seen that beside the larger macro-element displacement uh3 obtained from the finite strain

analysis in comparison with the small load amplitude models (for both classical and micromorphic

continua), the scaled wave from the small load amplitude model has a larger velocity than that of

the wave from finite strain analysis.
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333 at t=0.025(s).
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5.5.2 Beam Bending Dynamics at Finite Strain

The second example is for beam bending dynamics at finite strain in which a lateral load is

applied in the middle of the beam, and the two ends of the beam are fixed (Fig.5.57). The beam

bending model is made up of two blocks of materials to investigate the effect of transition from

micromorphic continuum/classical continuum to classical continuum/micromorphic continuum for

beam bending dynamics. The first block is located in the middle of the beam, and the second

block is made of two volumes located at the two sides of the beam (Fig.5.57). Note that each block

can be either micromorphic continuum or classical continuum. Therefore, there are four models to

investigate for beam bending dynamics.
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Figure 5.57. Schematic of finite element mesh and BC for beam bending dynamics.

The selected material parameters are similar to the previous example and are presented in Ta-

ble 5.14. The selected relative position vector for the micro-element in the positive part of the

macro-element is Ξ(α) = [0.125 0.125 0.0125] (m). Table 5.16 illustrates the BCs applied on the

micromorphic and classical continuum blocks of the beam models.
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Table 5.16. Selected boundary conditions for beam bending dynamics.

Micromorphic Continuum Throughout the beam On surface Γ (both sides)
Φh21,Φ

h
12,Φ

h
23,Φ

h
32 = 0 Φh11,Φ

h
22,Φ

h
33,Φ

h
13,Φ

h
31 = 0

uh1 , u
h
2 , u

h
3 = 0

Classical Continuum On surface Γ (both sides)
uh1 , u

h
2 , u

h
3 = 0

Figure 5.58 depicts the macro-element displacement component along the length of the beam models

at times t = 0.005(s), t = 0.025(s), t = 0.06(s), t = 0.12(s), t = 0.18(s), and t = 0.22(s). These

figures are presented to illustrate the effect of micromorphic and classical continuum interface

on the beam bending displacement. Note that the legends “Micromorphic-Micromorphic” and

“Classic-Classic” denote that both the first and second blocks are micromorphic and classical

continuum, respectively. The legends “Micromorphic-Classic” and “Classic-Micromorphic” denote

the first block is micromorphic continuum/classical continuum, and the second block is classical

continuum/micromorphic continuum. In the figures, a comparison is made between these four beam

models. Note that the dashed blue lines in the figures indicate the interfaces of micromorphic and

classical continuum. Figure 5.58(a) illustrates the beam macro-element displacement at the initial

stage of loading. It can be seen that the beam with micromorphic continuum block in the middle

deforms more than the beam with classical continuum blocks in the middle. Figures 5.58(b) and

5.58(c) show the bending wave in the beam when it is about to hit the interface of micromorphic

and classical continuum. From Fig.5.58(c), it can be seen that the interface does not have a

significant effect on the wave when it transfers from the micromorphic continuum block to the

classical continuum block and vice versa. Figures 5.58(d), 5.58(e), and 5.58(f) show that when the

wave is reflected from the two sides of the beam we can notice the effect of the interface on the

macro-element displacement profile along the length. The effect of the interface is more highlighted

as the wave travels back and forth through the beam. This is related to the differences of the

wave velocities in micromorphic and classical continua. Figure 5.59 demonstrates the deformed

configuration, the macro-element displacement component uh2 , and the micro-element displacement

component u
(α)h
2 of the micromorphic-micromorphic beam under bending.
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Figure 5.58. Macro-element displacement component uh2 along the length of the beam
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(α)h
2 for the

micromorphic-micromorphic beam models

The contour plots show that the difference between the micro-element displacement u
(α)h
2 and

the macro-element displacement uh2 is not significant, and as the displacements become larger

their difference becomes negligible. This indicates that the micro-element deformation through the

micro-displacement tensor Φ is not significant which may be related to the selected elastic material

parameters for micromorphic continuum and, also, the size of the relative position vector. Figures

5.60(a) and 5.60(b) illustrate the macro-element displacement uh2 in the middle and at the interface

of micromorphic and classical continuum blocks over time. From the perspective of displacement

magnitude, it is noticed that the micromorphic-micromorphic beam is the most flexible one, and the

classic-classic beam model is the stiffest. Note that when the wave is passing the interface toward

the middle of the beam (interface macro-element displacement uh2 is decreasing in Fig.5.60(a)) the

deviation between the macro-element displacement uh2 of the four beam models become noticeable

(the second time wave is passing the interface).

Figures 5.61 depicts the second Piola Kirchhoff stress components Sh11 and Sh22 along the length

of the beam for the times t = 0.005(s) and t = 0.025(s). These figures demonstrate two stress
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Figure 5.60. Macro-element displacement component uh2 at the micromorphic and classical elasticity interface
and in the middle of the beam over time.

waves Sh11 and Sh22 are traveling in two opposite directions toward the beam ends. For all the

four beam models the results of the second Piola Kirchhoff stress component Sh11 are overlapped

(axial wave); however, this is not the case for the second Piola Kirchhoff stress component Sh22

(transverse wave). Note that the profile of second Piola Kirchhoff stress component Sh22 at time

t = 0.025(s) has numerical oscillations. Similar to what is observed in Fig.5.48(b), these numerical

oscillations are related to the sharp profile of impulse load in which the developed implicit finite

element model with the employed time integration scheme is not able to remove them completely

from the stress results. The results can become improved by developing a micromorphic explicit

dynamic finite element analysis with smaller time steps and more accuracy which is beyond the

scope of this chapter. Figure 5.62 shows the micro-displacement component Φh
22 along the length

of the beam for the times t = 0.005(s), t = 0.025(s), and t = 0.06(s). Figure 5.62(a) illustrates

Φh
22 at the initial stage of loading. The plot of micro-displacement component Φh

22 shows that for

the micromorphic-micromorphic beam (blue circles) and the micromorphic-classic beam model (red

circles), the micro-elements throughout these two beam models are under extension in the direction

of loading. Also, the results of these two models are overlapped around the peak of Φh
22 plots in
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the middle of the beam. Note that for the classic-micromorphic beam model the bending wave has

not yet arrived at the micromorphic blocks (green circle) and the micro-displacement component

Φh
22 profile is zero all throughout the beam. Figure 5.62(b) shows Φh

22 at the time when the wave

is about to hit the interface of micromorphic and classical continuum (Fig.5.58(b)). The plots

of Φh
22 show that at time t = 0.025(s), the micro-element extensional wave spreads throughout

the micromorphic blocks (for both the micromorphic-micromorphic and the micromorphic-classic

models) of the beam models. We can see the two peaks in the plot of Φh
22 that shows the micro-

element extensional waves are traveling toward the two sides of the beam. From the micro-element

deformation perspective, the classic-micromorphic beam model behaves differently, and the micro-

elements in its micromorphic blocks show compression. This is related to the negative macro-

element displacement uh2 when the wave is about to hit the interface (Fig.5.58(b)). In Figure

5.62(c), the micro-element extensional wave is about to leave the middle part of the beam and,

therefore, the amplitude of Φh
22 is decreasing. Note that for the micromorphic-classic beam the

reduction in the amplitude of Φh
22 is more noticeable due to the transition from the micromorphic

continuum to the classical continuum blocks. For the classic-micromorphic beam, we can see that

Φh
22 is turning to positive value which is related to the positive macro-element displacement arrived

at the two sides of the beam. Figure 5.63 demonstrates the couple stress component Mh
222 along

the length of the beam for times t = 0.005(s), t = 0.025(s), and t = 0.06(s). As mentioned earlier,

negative or positive couple stress components do not necessarily imply that the structure is under

tension or compression. Therefore, if the couple stress component is negative, it can be concluded

that either the gradient of the relative position vector (which is related to Φ) or the gradient to

the micro-element stress is negative. In Fig.5.62(a), the spatial gradient of the micro-displacement

component Φh
22 is positive for the first half of the beam, and it is negative for the other half of the

beam. There is a trough in the plot of Mh
222 in Fig.5.63(a), which reflects the effect of the negative

spatial gradient of the micro-element stress in the Y direction. Figures 5.63(b) and 5.63(c) show

that for times t = 0.025(s) and t = 0.06(s) the profiles of couple stress component Mh
222 for the

middle block of the micromorphic-micromorphic and micromorphic-classic models are overlapped,
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unlike the micro-displacement component Φh
22 in Figs.5.62(b) and 5.62(c). This can be related

to similar spatial gradient of the micro-element stresses of these two models that compensate for

their differences with regard to the spatial gradient of the micro-displacement tensor component

Φh
22. Figure 5.64 demonstrates the contour plot of the couple stress components Mh

111 and Mh
222

along the length of the micromorphic-micromorphic beam. The contour plots of the couple stress

component Mh
111 show that it has a smooth distribution along the length of the beam. This is

related to the smooth gradient of the micro-element stress along the X axis. However, the couple

stress component Mh
222 represents the gradient of stress along the Y axis which is the thickness of

the beam. Therefore, in the region in which an abrupt change in deformation occurred, we can

expect the significant gradient of micro-element stress along the Y direction and this is the reason

for localized distribution of Mh
222 along the thickness of the beam.
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Figure 5.61. Second Piola Kirchhoff stress components Sh11 and Sh22 along length of beam.
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Figure 5.62. Micro-displacement component Φh22 along length of beam.
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Figure 5.63. Couple stress component Mh
222 along length of beam.
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5.5.3 Plate Dynamics Under In-plane Loading

In this section, numerical results on the dynamic analysis of a plate under in-plane loading

will be presented. Figure 5.65 illustrates the geometry, mesh schematic, and BCs of the plate. The

plate is made of two blocks in which either micromorphic or classical continuum can be associated

with these blocks. Therefore, similar to the beam bending example, there are four cases such

as “micromorphic-micromorphic”, “micromorphic-classic”, “classic-micromorphic”, and “classic-

classic” to study the dynamic behavior of the plate.

C
C

(macro-element volume)

V
(α)(micro-element volume)




0.625
0.625
0.0625


(m)h=2.5(m)

w=0.25(m)
l=2.5(m)

BL2: Classic
Case D:  BL1: Classic

BL2: Micromorphic
Case C:  BL1: Classic

BL2: Classic
Case B:  BL1: Micromorphic

BL2: Micromorphic
Case A:  BL1: Micromorphic





F(t)

Surface A

Surface B

Surface B





= 0 On Surface B

= 0 On Surface A

= 0 On back surface C





= 0 On Surface A

On Surface B

= 0 Fixed throughout the 
model

tt0

0

F(t)

F

L=30(m)

H=15(m)

Results are ploted along these lines

Y

X

Block 2

Block 1

V

(α)

β

β

uh
1

uh
2

uh
3

Φh
12,Φ

h
21,Φ

h
33,Φ

h
13,Φ

h
31,Φ

h
23,Φ

h
32

Φh
22

= 0Φh
11

 =Ξ(α)Ξ(α)

0

Figure 5.65. Configuration of plate under in-plane loading

The selected material parameters for the plate is similar to those of the previous examples and is

presented in Table 5.14. The BCs on the micromorphic dofs Φh and the macro-element displacement

uh (displacement in classical continuum) are illustrated in Table 5.17.
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Table 5.17. selected boundary conditions for plate under in-plane loading

Micromorphic Continuum Throughout the plate
Φh12,Φ

h
21,Φ

h
33,Φ

h
13,Φ

h
31,Φ

h
23,Φ

h
32 = 0

On surface A On surface B On surface C
Φh22 = 0 Φh11 = 0
uh2 = 0 uh1 = 0 uh3 = 0

Classical Continuum Throughout the plate
On surface A On surface B On surface C

uh2 = 0 uh1 = 0 uh3 = 0
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Figure 5.66. macro-element displacement uh2 along width of plate.
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Figure 5.67. macro-element displacement uh2 along interface of micromorphic and classical continuum blocks.
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Figure 5.66 illustrates the macro-element displacement uh2 along the width (vertical direction) of the

plate. These plots represent the displacement profile along the direction of the longitudinal wave

in the plate. These figures show that the difference in the macro-element displacement uh2 of the

four plate models is noticeable. Figure 5.66(a) shows that the micromorphic plate is slightly more

flexible than the classical continuum plate. Note that at times t = 0.004(s) and t = 0.0085(s) the

longitudinal wave is in the first block of the plate and, therefore, the obtained macro-element dis-

placement component uh2 of the micromorphic-classic and the classic-micromorphic are overlapped

with the micromorphic-micromorphic and the classic-classic plates, respectively. Figure 5.66(b)

demonstrates the status of the macro-element displacement uh2 when the longitudinal wave passed

the interface. As mentioned earlier, a small difference in the obtained displacement is noticeable.
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Figure 5.68. macro-element displacement uh3 along interface of plate.

It is worth mentioning that in general the profiles of the macro-element displacements uh2 of

the four models are the same. The differences in the longitudinal wave velocities of these models

make the displacement profiles of these four models deviate from each other. Figures 5.66(c) and

5.66(d) show the macro-element displacement uh2 when the wave is reflected from the bottom sur-

face. The differences between the profiles of the macro-element displacement uh2 of the four models

become more evident. Figure 5.67 illustrates profile of longitudinal wave along the interface of the

micromorphic and the classical continuum blocks horizontal bold line in Fig.5.65 through plotting
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Figure 5.69. Comparison of finite strain and small strain analyses on plate macro-element displacement

component uh2 .

the macro-element displacement component uh2 . Figure 5.67(a) depicts the longitudinal wave just

arrived at the interface. Therefore, the displacement profiles of the micromorphic-classic and the

classic-micromorphic plates are similar to those of the micromorphic-micromorphic and the classic-

classic plates. This figure shows that the amplitude of displacement in micromorphic continuum is

smaller than that of classical continuum; however, it has been observed that (Fig.5.66(a)) for the

selected elastic material parameters, deformation in micromorphic continuum for a certain amount

of load is larger than that of classical continuum. This is related to the lower micromorphic wave

speed and, therefore, the longitudinal wave in micromorphic continuum is behind classical contin-

uum and its displacement amplitude is smaller. Figure 5.67(b) illustrates the longitudinal wave

when it arrives at the second block toward the bottom end of the plate. Figure 5.67(c) demonstrates

the longitudinal wave when it is reflected off the bottom end of the plate. It can be seen that the

macro-element displacement component uh2 profile is similar for all four models in contrast with that

of Fig.5.67(d). Figure 5.67(d) depicts the profile of the macro-element displacement uh2 when the

longitudinal wave passes the interface for the second time. It is noticeable that the macro-element

displacement uh2 starts deviating from each other for all four cases.
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Figure 5.68 depicts the macro-element displacement uh3 along the interface. Figure 5.68(a) shows

the transverse wave along the interface at t = 0.004(s). The profile of out-of-plane macro-element

displacement uh3 is similar in all cases except small differences in the amplitude of the deformations

between micromorphic continuum and classical continuum. It can be seen that at time t = 0.0085(s)

when the transverse wave passed the interface (Fig.5.68(b)) the profiles of out-of-plane displacement

for all the four cases are different. Figure 5.69 show a comparison between the macro-element

displacement uh2 obtained from the finite strain analysis (large load amplitude model) and that

of the small load amplitude analysis (small strain analysis). Similar to the previous examples

the displacement from the small load amplitude analysis has been scaled to compare with finite

strain analysis. The finite strain analysis predicts a larger macro-element displacement component

uh2 in comparison with the scaled small load amplitude model. It is to be noted that the finite

strain wave travels at lower speed than the small strain wave. Figures 5.70 and 5.71 show contour

plots of the macro-element displacement components uh2 and uh3 to visualize the longitudinal and

transverse waves for the micromorphic-classic plate model. In these figures, four different times

are selected to illustrate the longitudinal and transverse waves propagation in the plate. Figure

5.72 shows the macro-element velocity component u̇h2 along the interface of the plate at the times

t = 0.006(s) and t = 0.0085(s). As mentioned earlier, wave velocity in classical continuum is higher

than that of micromorphic continuum. Note that this is not a general conclusion, and it is mainly

related to the selected elastic material parameters for micromorphic continuum. In Fig.5.72(a),

the velocity profile for all the four plate models are similar, however, their velocity amplitudes

are different. Figure 5.72(b) shows that when the longitudinal wave passed the micromorphic

and classical continuum interface the profile of velocity changes noticeably when it travels from

micromorphic to classical continuum. Figure 5.73 illustrates the second Piola Kirchhoff stress

component Sh22 along the interface. Similar to what is observed in the macro-element velocity

u̇h2 plots (Fig.5.72), at the time t = 0.006(s) (Fig.5.73(a)), the profile of second Piola Kirchhoff

stress component Sh22 is similar for all four cases, however, differences in the stress amplitude are

noticeable. Figure 5.73 shows that the difference in the profile of the second Piola Kirchhoff stress
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S22 from the micromorphic-micromorphic and the micromorphic-classic with that of the classic-

classic and the classic-micromorphic becomes more evident. Figure 5.74 illustrates the micro-

displacement tensor component Φh
22 along the width of the plate. Similar to what is observed in

previous examples, when the longitudinal compression wave is traveling, the micro-elements all

through the plate start deforming (for the micromorphic-micromorphic case, Φh
22 in Fig.5.74(a) is

negative all through the plate) in micromorphic continuum. As the micro-elements are getting

compressed at the bottom of the plate, the micro-elements at top of the plate are under tension

(Φh
22 turning to positive values) (Fig.5.74(b)). Figures 5.74(c) and 5.74(d) plot Φh

22 when the wave

is getting reflected off the bottom surface. Figure 5.75 illustrates the couple stress component

Mh
222 along the width of the plate at the times t = 0.006(s), t = 0.0085(s), t = 0.0135(s), and

t = 0.0175(s). As explained in the previous examples, Mh
222 shows the spatial gradient along the

direction 2 of the micro-element stress multiplied by the spatial gradient of the relative position

vector. Therefore, when the micro-displacement component Φh
22 has a spatial gradient along the

width of the plate, the couple stress component Mh
222 will be non-zero along the width of the plate.

In all the couple stress component Mh
222 plots in Fig.5.75 there is a peak (either positive or negative)

in the Mh
222 profile along the width of the plate that indicates the peak of spatial gradient of the

micro-element stress. Note that the peak in the spatial gradient of micro-element stress can be use

as an indication of the location of the wave (no gradient in the micro-element stress of adjacent

micro-elements denotes there is no disturbance of wave at that location). Consequently, we have

non-zero micro-displacement tensor Φh at that location.
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Chapter 6

Conclusion, Current and Future Work

The research was devoted to presenting the micromorphic continuum theory (by Eringen) deriva-

tions for elasticity, elastoplasticity, and dynamics at finite strain, as well as physical motivation,

finite element analysis implementation, and interpretation of the micromorphic micro-structured

material modeling. The main focus of this research is on the discussion of the micro-structured

material modeling from the perspective of a micromorphic continuum for elasticity, elastoplastic-

ity, and dynamics at finite strain. A three dimensional finite element model has been developed

in Tahoe to be able to perform three dimensional micromorphic continuum simulations. To the

best of our knowledge, there are no micromorphic finite strain finite element analysis models es-

pecially in 3D or analytical solutions in the sense of Eringen in the literature to be comparable

with our model. Considering the inhomogeneity in terms of the deformable micro-elements in mi-

cromorphic continuum, the macroscopic mechanical response can be different in comparison with

the homogenized classical continuum models. The difference is dependent on factors including ma-

terial parameters (micro-element deformations), the size of micro-elements (the relative position

vector family Ξ(α)), type of loading (bending and large rotation), and micromorphic BCs. Each of

these factors has been investigated through the numerical simulations. The material parameters

of micromorphic continuum play the main role in terms of the micro-element stiffness and their

deformation under loading. The larger micro-element deformations result into a more noticeable

inhomogeneity in the macroscopic mechanical response. The size of micro-element corresponds to
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the size of the material’s micro-structure in the micromorphic continuum description. Therefore,

the results of a material with finer micro-structure is closer to the classical continuum results. Types

of loading also affects the macroscopic behavior of the micro-structured materials in comparison

with the classical continuum models. Note that in bending and large torsion, the difference in the

macroscopic behavior obtained from micromorphic continuum for the micro-structured material

with the homogenized classical continuum model is more pronounced in comparison with those of

the uniaxial strain column simulation (micromorphic and classical continua are close). It is ev-

ident that the boundary conditions on the micromorphic dofs is crucial in terms of defining the

micro-element deformations and resulting inhomogeneity added through the couple stress terms.

We should keep in mind that the resolution of material modeling through micromorphic continuum

is higher than that of classical continuum, but, not as much as that of direct numerical simu-

lations (DNS). Micromorphic continuum theory is established based upon continuum mechanics

assumptions. Therefore, the micromorphic continuum picture from the micro-structure is obtained

through involving micro-elements and integral averaging over the macro-elements of a continuum

body without touching the material micro-structures explicitly. For multi-scale materials modeling,

sometimes it is worthwhile working with a micromorphic continuum to pick up more information

from an underlying DNS region. However, this may not be the case for all multi-scale modeling

problems. The decision can be made through observing the effect of micro-structural deformations

obtained from the DNS region and, if the inhomogeneity is pronounced, a micromorphic continuum

will provide better resolution for multi-scale material modeling.

6.1 Future Work

The following future work from the view point of finite element analysis can be envisioned such

that:

1- Developing micromorphic explicit finite element analysis to overcome numerical instabili-

ties in micromorphic dynamics
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2- Developing micromorphic poromechanics to simulate fluid flow through the micromorphic

solid skeleton

From the view point of physical motivation and micromorphic continuum application:

1- Calculating micro-deformation tensor χ and micromorphic strain tensors to plot stress-

strain curves based on DNS and micromorphic filter.

2- Calibrating micromorphic constitutive parameters via the calculated micromorphic stress-

strain curves.

3- Simulating an integrated model with overlapping regions (DNS/micromorphic filter/micromorphic

continuum) and comparing the result with the model entirely simulated by DNS.

4- Applying micromorphic filter on elastoplastic DNS for better failure predictions through

micromorphic elastoplasticity.
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