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Thesis directed by Assoc. Prof. Richard A. Regueiro

This study stands as an attempt to consider the micro-structure of materials in a continuum
framework by the aid of micromorphic continuum theory in the sense of Eringen. Since classical
continuum mechanics do not account for the micro-structural characteristics of materials, they can-
not be used to address the macroscopic mechanical response of all micro-structured materials. In
the “representative volume element (RVE)” based methods, classical continuum mechanics may be
applied to analyze mechanical deformation and stresses of materials at the relevant micro-structural
length-scale (such as grains of a polycrystalline metal, or sand, or metal matrix composite, etc), but
when applying standard homogenization methods, such lower length scale effects get smeared out at
the continuum scale. The micromorphic continuum theory provides the ability to incorporate the
micro-structural effects into the macroscopic mechanical behavior. Therefore, the micromorphic
continuum is a tool for a higher resolution multi-scale material modeling through capturing the
material’s micro-structural physics via bridging to the direct numerical simulations (DNS) at the
lower length scale. In the micromorphic continuum theory of Eringen, the fundamental assump-
tion is that the material is made of “micro-elements” in such a way that the classical continuum
mechanics balance equations and thermodynamics are valid within a micro-element. Note that
micro-elements represent the material’s micro-structure in a micromorphic continuum. The micro-
element deformation with respect to the centroid of a macroscopic continuum point is governed
by an independent micro-deformation tensor x which adds 9 additional degrees of freedom to the
continuum model. The micromorphic additional degrees of freedom represent micro-stretch, micro-
shear, and micro-rotation of the micro-elements. The macroscopic deformation (macro-element de-

formation) in the micromorphic continuum is handled through the deformation gradient tensor F'.



iv
If the hypothesis of micromorphic continuum works, in a multi-scale modeling framework, assuming
proper constitutive models can be formulated, and material parameters calibrated, micromorphic
continuum theory may fill the gap between the RVE-micro-structural-length-scale models and the
macroscopic continuum scale. The advantage of using micromorphic continuum is that it provides
a chance of linking the macroscopic model to the lower length scale simulations (DNS) and reducing
the computational cost by switching from DNS to the macro-scale finite element analysis or other
numerical methods at the continuum scale. The linking is done through defining the overlap cou-
pling region between the lower length scale analysis and micromorphic continuum to calibrate the
material parameters and the micromorphic continuum model degrees of freedom. Therefore, in the
framework of multi-scale modeling, micromorphic continuum can be used as a filter on top of the
DNS simulations to capture underlying length scale and better inform the macroscopic model. This
is done through the direct linking of the micromorphic continuum micro-elements to the material’s
micro-structure. The focus of this research is mainly on discussing the macroscopic mechanical be-
havior of micro-structured materials from the perspective of micromorphic continuum. This is done
via developing a three dimensional finite strain finite element model for micromorphic elasticity,

elastoplasticity and dynamics.
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Chapter 1

Introduction

In this new technological era, for broadly employed materials such as polycrystalline ceram-
ics, concrete, composites and granular materials, their heterogeneous particulate physics regulates
their macroscopic mechanical response. There is of great interest in developing models to be able
to capture the grain-scale physics as well as the macro-scale continuum mechanics. Approaches in
the continuum framework are trying to reconcile the idea of micro-structure through envisioning
materials as a collection of deformable bodies which possess physical properties. This study stands
as an attempt to incorporate the micro-structure of materials in a continuum framework by aid of
the micromorphic continuum theory in the sense of Eringen. The classical continuum mechanics is
based on the notion that a material body is continuous (does not consider the micro-structure of
materials) and the balance and the constitutive equations are valid throughout the body regardless
of the material body size. Thus, the continuum equations are only functions of the spatial position
vector « and time t. This assumption is acceptable for a majority of engineering applications for
which the size of the considered solid/structure is large enough in comparison with the size of
deformable sub-bodies (or “micro-element,” according to Eringen and Suhubi [1964]). From this
perspective, for generality, continuous media may be considered composed of deformable sub-bodies
(e.g., atoms, molecules, grains, clusters of grains, etc) with various characteristic length scales. The
characteristic length scale can be defined as the size of underlying sub-bodies or distances between

sub-bodies and the centroid of a corresponding macroscopic continuum material point P (in the



reference configuration By). External loads may also be associated with characteristic lengths,
which may be prescribed such that the material within the area on which the distributed load is
applied may be considered either homogeneous (classical) or heterogeneous (micromorphic). The
approximations that are provided by a local continuum theory are reliable when the ratio of an
external characteristic length scale A is relatively large when compared to an internal characteristic
length scale [ such that A/l > 1 [Eringen, 1968a]. On the other hand, when A/l ~ 1, the loss of
accuracy in classical continuum theory occurs as a result of the inherent motions of the sub-bodies
which are now able to affect the total mechanical response. So far, several experiments have proved
the effect of sub-body-assemblies on the macroscopic continuum response (e.g., Fleck et al. [1994],
Stolken and Evans [1998]). Generalized continuum theories have been developed to account for
the interaction, deformation, and motion of microscale sub-bodies, but within a single macroscopic
continuum theory [E. Kroner, ed., 1968]. Therefore, it is assumed that a material body is composed
of a number of deformable sub-bodies within a macro-element (macroscopic continuum material
point P) which are able to influence the macroscopic response of the continuum. The micropolar
theories are considered as a first-step-extension of classical continuum theories in this direction.
In micropolar theories, sub-bodies are assumed to have three rigid directors (independent of the
macroscale rotation tensor R) which define the sub-body rotations. In the micromorphic continuum
theory, a material point P carries three deformable directors to represent the general deformation
of sub-bodies (micro-rotation, micro-stretch, and micro-shear). This introduces nine additional
degrees of freedom (dofs) when compared to the classical continuum theory. When the directors
are constrained to capture only stretch-like deformation of the sub-bodies, then the theory is called
a micro-stretch continuum theory. The micro-stretch continuum has four additional dofs over the
classical continuum theory. In the micropolar continuum theory, the sub-bodies are assumed to be
rigid, and the three associated directors of a sub-body are responsible for its rotation. The history
of the polar theories dates back to Cosserat and Cosserat [1909]. They assumed that the sub-bodies
are rigid. Therefore, they defined the directors of the sub-bodies in a way to be able to handle

their rotational degrees of freedom. They were pioneers in proposing a kinematics framework for



generalized continuum theory [E. Kroner, ed., 1968]. Their theory has been developed by other
researchers over time via defining the balance equations, kinematic relations, and constitutive equa-
tions. Mindlin [1964] developed a theory of small strain elasticity based upon the physical picture
that each macro-element of a material is composed of deformable particles. He defined the kinemat-
ics to be able to account for the resulting displacements and strain measures associated with the
macro and micro elements at small strain. He provided graphical interpretation of the higher or-
der stress tensor, micro-deformation tensor, and gradient of micro-deformation tensor. Eringen and
Suhubi [1964] formulated the basic field equations, boundary conditions, thermodynamics, and con-
stitutive equations for what they called “simple micro-elastic solids” or “micromorphic continua”
for large deformations. They defined a micro-elastic solid as a material body whose properties
and its behavior are affected by the deformable sub-bodies. Suhubi and Eringen [1964] introduced
strain measures and free energies to be able to specify the constitutive equations for isotropic micro-
elastic materials. Germain [1973] derived the micromorphic equations of motion based upon the
virtual power approach. They investigated micromorphic dynamics by introducing a micro-inertia
tensor for deformable sub-bodies. These three methods [Mindlin, 1964, Eringen and Suhubi, 1964,
Germain, 1973] constitute a basis for “modern” microcontinuum field theory by introducing higher
order stress tensors and microstress tensors within their balance equations. The resulting balance
equations of these three methods are different due to the differences in the kinematics or the differ-
ences related to the definitions of stress tensors. It is beyond the scope of this research to discuss
the similarities and differences between the three approaches. This research follows the approach of
Eringen and Suhubi [1964] because of the physical interpretation that their approach provides for
each of the new micro-field variables (stress, strain, ...) and mathematically proves that they exist
as a result of deformable micro-elements. They wrote balance equations for a micro-element, and
then through a variational approach by integral-averaging, they obtained the balance equations for
a macro-element. In the following, we describe more recent research on micromorphic continua.
Neff et al. [2014] formulated what they called “relaxed linear micromorphic continuum” with the

symmetric Cauchy stress in the absent of the coupling terms of the classical micromorphic contin-



uum by Eringen and Suhubi [1964]. In addition, free energy function of the relaxed micromorphic
model is not uniformly pointwise positive definite. Their relaxed model is still able to capture the
micro-scale deformation. This simplification is helpful for better understanding of the micromor-
phic continuum as well as reducing the number of elastic constants of the constitutive equations.
Their model has been extended via the wave propagation analysis in the meta-materials by Madeo
et al. [2015]. Through investigating the dispersion relation for the relaxed micromorphic media, a
frequency range is predicted for which waves are not able to travel in the media. Chen and Lan
[2009] discussed the modeling of granular materials as a micromorphic continuum through defining
macro-elements as RVE’s which contain a number of deformable micro-elements. They derived all
the balance equations including mass, linear and angular momentum, and energy in the discrete
format assigned to the material’s particles. Finally, they transformed the discrete balance equa-
tions into their corresponding continuum scale macro-element. Note that in their modeling they
considered the dynamics of particles through incorporating the velocity and acceleration associated
with particles. Berezovski et al. [2015] studied the reflection and the transmission of elastic waves
at the interface region of two micromorphic continua. This is done to illustrate that the reflection
and transmission of waves are dependent on the micro-structural properties. Note that their model
incorporates the micro-structural effects through the internal variables of state unlike the method
of Eringen and Suhubi [1964] which is developed based upon incorporating the additional degrees
of freedom. Dingreville et al. [2013] proposed what they called “multiresolution material modeling”
to simulate the wave propagation in heterogeneous media. They performed a comparison between
a modeling done via a direct numerical simulation (DNS) and that of the upscaled micromorphic
continuum. The meso-scale DNS is used to inform the micromorphic continuum to be able to
capture the underlying physics without explicitly touching the micro-structural features via a fewer
number of degrees of freedom than the full DNS model. Note that they followed the micromorphic
continuum in the sense of Germain [1973]. Rapti et al. [2016] used the micro-dilation model to
study the effect of regularization on the mesh dependency in the shear band analysis under dy-

namic conditions. Note that the micro-dilation model describes only the volumetric deformation



at the micro-scale through a single additional degree of freedom. Sansour [1998] reformulated the
micromorphic continuum field equations with new strain measures. He extended his model to finite
strain micromorphic viscoplasticity based upon a multiplicative decomposition of the microstretch
tensor. He used the integral-averaging-approach similar to Eringen and his co-workers to be able
to obtain the macro-element field equations. Vernerey et al. [2007] proposed a multi-scale con-
tinuum theory which is able to capture the deformations at various scales. They also used the
method of virtual power method [Germain, 1973] to derive a system of coupled equations to be
able to represent the effects of each length-scale on macroscopic continuum behavior. They studied
inelastic behavior by defining multiple yield functions, each representing the yielding at a specific
microstructural length-scale. They compared their theory with the direct numerical simulation
(DNS) for a specimen under tension. They observed that their model is successful in capturing the
major length-scale dependent physics with less computational cost. Lee and Chen [2003] developed
a constitutive equation for micromorphic thermoplasticity analysis. They used the kinematics and
balance equations in the sense of Eringen and Suhubi [1964]. It is to be noted that they did not use
a multiplicative decomposition of deformation gradient to formulate their elastoplasticity model.
Forest and Sievert [2003] used the virtual power method of Germain [1973] to propose a framework
for elastoviscoplastic analysis of the generalize continuum theories. In their derivations, they used
different invariants of deformation measures in comparison with that of Eringen and Suhubi [1964].
Forest and Sievert [2006] discussed the hierarchy of higher order continuum theories in terms of de-
grees of freedom. They introduced the microstrain theory with six additional degrees of freedom to
represent the deformation of sub-bodies. They provided some guidelines for the selection of a proper
higher order continuum model. Based upon what they expressed in their research, microdilation
theory with only one additional degree of freedom is an appropriate model to simulate significant
microvolume change. The micropolar (or Cosserat) continuum theories are suitable only for mate-
rials with independently-rotating sub-bodies. The microstrain theory is good for capturing strain
localization effects. Forest [2009] proposed a micromorphic approach for elasticity, viscoplasticity,

and damage for micro-structured materials. They expressed that their micromorphic approach is



capable of providing the generalized balance equations that offers an anisotropic nonlinear consti-
tutive relations between the generalized strain and stress tensors. The objective of their paper is
to illustrate that the strain gradient theories can be related to the higher order continuum mechan-
ics (or micromorphic continuum in general). Sansour et al. [2010] extended their previous work
[Sansour, 1998] to a micromorphic continuum at finite inelastic strain. In order to illustrate their
new model, they simplified their previous model by reducing the additional degrees of freedom and
the associated material parameters. They conducted finite element (FE) simulations to illustrate
the scale-effects which can be captured by their new model. Li and Tong [2015] developed mul-
tiscale micromorphic molecular dynamics which is a concurrent three-scale dynamics model that
builds a bridge between (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale micro-
morphic dynamics and continuum scale. Zhang et al. [2011b] studied wedge indentation of a thin
film on a substrate based upon small strain micromorphic plasticity. They investigated that the
predictions of the indentation hardness will be affected by internal length scale, film hardening
modulus, and film thickness. Zhang et al. [2011a] investigated the size effect, Bauschinger effect,
ratcheting effect, and plastic shakedown phenomenon in materials with deformable sub-bodies. For
this purpose, they formulated small strain micromorphic elastoplasticity with isotropic/kinematic
hardening in a 2D finite element framework. Grammenoudis et al. [2009] formulated micromorphic
plasticity theory based upon a multiplicative decomposition of the macro-deformation gradient and
the micro-deformation tensor. They illustrated coupling of isotropic damage to micromorphic plas-
ticity model. Isbuga and Regueiro [2011] implemented a three-dimensional finite element analysis
of finite deformation micromorphic isotropic elasticity in the sense of Eringen and Suhubi [1964].
They noticed that boundary conditions on the additional micromorphic degrees of freedom together
with the elastic material parameters of micromorphic constitutive equations have significant affect
on the total macroscopic behavior. Regueiro and Isbuga [2011] presented the formulation of a
micromorphic continuum in the reference and current configurations. It is to be noted that their
implementation is a full Total Lagrangian three-dimensional hexahedral finite element model. They

demonstrated the effect of length scales by simulating a three-dimensional micro-indentation exam-



ple. Regueiro [2009] formulated finite strain micromorphic pressure-sensitive elastoplasticity model
based upon a multiplicative decomposition of the deformation gradient and micro-deformation ten-
sor. They assumed the isotropic linear elasticity and non-associative Drucker-Prager plasticity with
cohesion hardening/softening for the constitutive equations. They formulated the plastic evolution
equations in three levels: 1) evolution equation for the plastic part of deformation gradient F?; 2)
evolution equations for the plastic part of micro-deformation tensor x?; 3) evolution equation for
the plastic part of the gradient of micro-displacement tensor VxP. It is to be noted that the model
was formulated in the current configuration. Regueiro [2010] expressed finite strain micromorphic
elastoplasticity model in the intermediate configuration which can be implemented via the Total
Lagrangian finite element analysis. He used a semi-implicit time integration method to integrate
the constitutive equations in rate form. This research is following the micromorphic continuum
approach by Eringen and Suhubi [1964] and the elasticity implementation by Isbuga and Regueiro
[2011] and finite strain elastoplasticity approach proposed by Regueiro [2010]. This approach is one
of the most general higher order continuum theories which is able to take into account the effect of
underlying sub-bodies behavior. One of the main advantages of this approach is that it can be fit
into a multi-scale modeling framework in which bridging/coupling is required between the different
length scales to the macro-scale model of interest. The bridging of underlying microstructure to the
macro-continuum of interest can be described as a transferring of the essential information out of
the mechanical behavior of the microstructure to the macro-continuum to provide a high resolution
simulation. Another advantage of the [Eringen and Suhubi, 1964] approach for the micromorphic
continuum is that the derivations start with writing the balance equations for the micro-elements
and then through using the variational approach and the integral averaging method the macro-
continuum field equations will be derived. By this procedure, this approach provides a physical
insight for all the additional microcontinuum parameters and mathematically proves that all these
new parameters exist. Index notation will be used wherever needed to clarify the presentation.
Cartesian coordinates are assumed, so all indices are subscripts, and a spatial partial derivative is

the same as a covariant derivative [Eringen, 1962]. Some symbolic/direct notation is also given,



such that (a-b);, = aijbjk, (@ ®b);jr = a;jby. Boldface denotes a tensor or vector. Subscript (e) ;
implies a spatial partial derivative with respect to z;. Superposed dot (00) = D(0)/Dt denotes a
def

material time derivative. The symbols = or := imply a definition. Quantities with (o)(o‘) live in

the micro-elements and quantities with (e)g are associated with the macro-elements.



Chapter 2

Finite Strain Micromorphic Elasticity

In this chapter, finite strain micromorphic elasticity proposed by Eringen and Suhubi [1964]
will be presented in detail. We start with the micromorphic kinematics to illustrate how the defor-
mation gradient F' and the micro-deformation tensor x map the macro and micro elements from the
reference configuration to the current configuration. Following the kinematics, the micromorphic
balance equations and thermodynamics will be derived in the current configuration. The aim of
this thesis is to implement micromorphic continuum in a total Lagrangian finite element framework.
Therefore, the constitutive equations are defined in the reference configuration. Also, mapping of
the current configuration tensor quantities to the reference configuration will be presented. The
elastic parameters of the micromorphic constitutive equations need to be defined in such a way to
ensure the positiveness of the strain energy function. Therefore, we discuss restrictions (proposed

by Smith [1968]) on the elastic moduli of micromorphic continuum.

2.1 Kinematics

The kinematics of a micromorphic continuum can be expressed as follows: consider a macro-
element continuum point P in the reference configuration with centroid Cg, such that its position
vector X 3 is attached to Cg (see Fig.2.1). The relative position vector =) of sub-body a (micro-
element) defines its centroid C(® with respect to the macro-element centroid Cp in the reference

configuration By. Note that in general, the macro element has a number of sub-bodies (micro-
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elements) with their centroids determined through a family of position vectors = (a=1,..,N),
where N is the number of sub-bodies for material point Pg. For simplicity of micromorphic con-
tinuum derivations, it is assumed that the family of relative position vectors = is not a function
of the position vector X g in the reference configuration By [Eringen, 1968a, 1999]. Note that
subscript § is to denote that there is more than one macro-element over the continuum body Bp.
This is a fundamental assumption in the micromorphic theory to model materials with periodic
micro-structure. Assuming 2(® a function of X 3, such that E(a)(X 3), we have a functionally
graded micromorphic theory [Maugin, 2010]. A macro-element continuum point is, therefore, de-
fined by its centroid and the relative position vector =) in the reference configuration written as
Py (X 85 E(o‘)>. In the current configuration, a macro-element continuum point and its relative po-
sition vector can be defined as pg (:135, £, t) with centroid cg, and E(O‘)(XB, =@, t), respectively.
Figure 2.1 illustrates the mapping of the macro-element and micro-element from the reference con-
figuration to the current configuration through the deformation gradient F' and micro-deformation
tensor x. Note that derivations in this thesis are done in Cartesian coordinates. The micro-element

centroid position vector in the reference and current configurations can be expressed such that,

X = Xio) +20, a) = arg (X ) + 60 (X5, 2, 1) (2.1)

An underlying assumption is that for “sufficiently small” sub-body relative position vectors through
a MacLaurin series expansion about E(®) = 0 at Cj [Eringen and Suhubi, 1964], £ can be linearly

related to =@ through the micro-deformation tensor x, as follows,

(X 5, B, 1) = (X 5, 1)) (2.2)

This assumption dictates an affine deformation of the macro-element continuum point with re-
spect to its independently-deforming sub-bodies (micro-elements) through x(Xg,t), whereas the
whole continuum body may experience inhomogeneous deformation through deformation gradient

F(Xg,t), micro-deformation x(Xg,t), and micro-deformation gradient dx (X g,t)/0X . Substi-
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tuting (2.2) into (2.1), we have the spatial position vector of the micro-element centroid as,

IL‘](f) = l‘k(ﬂ)(X,B» t) + XkK(Xﬁa t)._é?) (2 3)

«@)
P( 5 ,:‘(u,) %( /ﬁ’_S_J\t) Macro-element
9 — _ = o~
gz F.X - - S
- . e . dv((")\
v \. s . N
/ . -\ c f //Q—-l\[icrofelement
I C : =
| . B /
\
N
Bo d%
N
)
Reference Configuration ) Current Configuration

(a)

a — (@)
X<K)(Xﬂ7'=’ )= Xk(5)+ a,

o) @) @) —
V(X521 = myo X5, 1) + & (X5,E 1)

Figure 2.1. schematic of the mapping of the macro-element dV3 and micro-element dV(® from the reference
configuration By to the current configuration 5 via the macro-deformation gradient F' and micro-deformation
tensor x.

The spatial velocity of the micro-element relative position vector can be expressed as,
U’(Ca) = xgl) = + é](ga) =V + l/kl‘fl(a) (24)

where v, is the velocity at cg, and vy = XkKXI_(} is the gyration tensor. This is called gyration
tensor because it describes the whirling motion of micro-element with respect to the centroid of

macro-element cg. The inverse motion of (2.2) is expressed as follows,

=) = X (5, )6 (2.5)
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Using (2.4) and (2.5), the gyration tensor vg; can be defined such that,

S;ﬁ“) = WEE;?) = XkKX[_(}fl(a) = szfz(a) (2.6)
Vki = XEKXK| (2.7)

Similarly, we can find the velocity gradient as,
Uk,l = FkKF[Ell (28)

If we take the partial spatial derivative of the micro-element position vector IL‘](CQ) in (2.3), with

. o« (e} . .
respect to the reference micro-element position vector Xg(), we can derive the micro-element de-

formation gradient F; ,5;? such that,

anL (Xﬂ ’ t)

(@)
XK@ -

F = Fu(Xat)+

[1]

GXkM(XﬁJ):(a)) o=y (2.9)

Xg.t)— Fua(Xga,t) — =
+<XkA( 8,t) — Fra(Xp,t) X 1o, M) 9 Xk

By which the spatial micro-element differential line segment can then be formulated as follows,
dz\® = F%ax(® (2.10)

According to the micro-structural periodicity assumption, the relative position vector =@ is not
a function of position vector X g. Therefore, the micro-element deformation gradient F,g?() will be

reduced such that,

F(X 5, 1) = = Frr(Xp,t) + (2.11)

This is presented solely to illustrate a deformation gradient tensor that maps the reference

configuration micro-element differential line segment dXﬁ?) to the current configuration micro-

element differential line segment da:,(f), but it is not used directly (presently) in developing the

constitutive equations. The micromorphic continuum theory of this thesis describes micro-element
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deformations in terms of solving for micro-displacement tensor ® (rather than micro-element dis-
placement vector w(®), explain later) and tracking changes in the length of the family of relative po-
sition vector E(). Deriving the micromorphic continuum constitutive equations based on the micro-
element deformation gradient F’ ,5;? is very appealing in terms of solving for micro-element displace-
ment vector ©(® and, obtaining better picture of micro-element deformation. However, it could
be mathematically complicated to derive constitutive equations, micromorphic stress and strain
tensors. From classical continuum mechanics, the deformation gradient of the macro-continuum
can be expressed as,

_ Owgp) (X, t) See + Oug(Xp,t)

Fig(Xg,t) = = 0, 2.12
Kk(Xg, 1) OXr (3 K DX (o) (2.12)
Similarly, for the micro-deformation tensor we have,

Xik (X g,t) = O + Pric (X, t) (2.13)

where @i is the “micro-displacement tensor”. Note that ®px is a displacement-gradient-like
quantity, and it could be called “micro-displacement-gradient tensor”. We choose to be consistent
with Eringen’s terminology [Eringen, 1968] for the micro-displacement tensor @y, but it should
not be confused with the micro-element displacement vector w(® (explain later). The micro-
displacement tensor @ represents the deformation of the family of relative position vectors Z(®)
such that,

£ = gk EW = 62 + By x2S (2.14)

where & i is the “micro-displacement tensor”. Note that & is a displacement gradient-like quan-
tity which represents deformation of the relative position vector E(O‘), which can be thought of as a
moment arm. Sometimes it is difficult to interpret the micro-structural deformation just by inves-
tigating the micro-displacement tensor ®. Clearer understanding of micro-structural deformation

can be obtained through the micro-clement displacement vector u(®) such that,

uw (X 5,2 1) = u(Xp,t) + B(Xg,1) - 2 (2.15)
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Note that micromorphic continuum theory deals with both the macro-element and micro-element
continuum bodies. Therefore, the quantity w represents the displacement of the macro-element in
the micromorphic continuum body. The quantity u(®) can be considered as a displacement of the
micro-elements via explicitly involving the relative position vector =@ and the micro-displacement
tensor ®. The micro-displacement tensor ® can be related to the current configuration micro-

displacement tensor ¢ such that,

Okt = Prr X (2.16)

The micro-element displacement vector in the current configuration is expressed as follows,

() (xg, €, 1) — X (25,6@)) = ul(zg,€, 1) = u(zp, t) + p(xs,t) - £ (2.17)

The deformation measures for micromorphic continuum which are invariant under rigid body motion

can be defined such that,

Ckr = FexFyr, C=F".F, (2.18)
Uir = FixXkr, T =F" .y, (2.19)
v = FexXkow, I'=F"(Vox) (2.20)

Substituting (2.12, 2.14) into (2.18-2.20) we obtain the deformation measures as follows,

Ckr = Ok +Urkr+ULk+UnmrxUnmr (2.21)
Vg = Ok +Pxr + Uk +Un,g®mr (2.22)
kv = Prxrm+UngXNLM (2.23)

where Ux = drrxur, Prr = ok ®Prr, XNL = OnNXnL, and xnp,m = ®nr,v, Where Oxx is the
“shifter” in Cartesian coordinates [Eringen, 1962]. The Lagrangian strain tensor Ef, material

micro-strain tensor £k, and the gradient deformation tensor I'k13s can be written such that
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1
Exr = i(CKL —0KkL) (2.24)
Ekr = VYkrL —0kL (2.25)
kv = FrrXkrm (2.26)

In the next section, the momentum balance equations and thermodynamics of a micromorphic
continuum proposed by Eringen and Suhubi [1964] will be re-derived in detail, to be consistent
with notation in this thesis and be complete with regard to derivation and future hierarchical

upscaling through a “micromorphic filter” [Regueiro et al., 2014].

2.2 Micromorphic Balance Equations

In this section the weighted residual, integral averaging method, is used in the current con-
figuration to derive balance equations and thermodynamics of a micromorphic continuum. Based
upon Eringen and Suhubi [1964] (details also in Regueiro [2011]), we start with the local classical
balance equations satisfied at centroid ¢(® of micro-element differential volume dv(®) in the current
configuration. By using the integral-averaging-method, we arrive at an integral form of the balance

equations over the integrated macro-element differential volume dvg.

2.2.1 Balance of Mass

The mass of micro-element differential volume dv(® is p(®dv(®, where p(®) is the micro-
element mass density. By integrating it over the macro-element volume dvg, we can define the

macro-element differential mass dmg as follows,

dms < /d p@dp(®) = /d § P\ ay (@) (2.27)
vB B

where assuming single phase conservation of mass p(()a) = pla) j(@)  J(@) = det F(®), Then, we have

the conservation of micro-element mass m(® over dvg such that,
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S =0 (2.28)

D

_ (@) gpl@) 2.2
Dt J,” dv (2.29)
D

_ D (@) 7@) gy (@)

- p@) @ gy
Dt Jay,

_ D ) () DI (@)
= /dV5< D JY+p i dv

« (@)
d’l}[g Dt 3$la

Thus, the localized balance of micro-element mass over dvg is

Dp(a) N 8,0(04)
o TP @
oz,

=0 (2.30)

Considering the mass density ps = dmg/dvs at cg, applying the integral-average definition of

differential mass over the macro-element,

ppdvg = dmg def /d o\ dp(®) (2.31)
vg

The total mass m of the body B is then expressed as:

m = / padvs = / [ / p(a)dv<a>] _ / [ / (@) 7(@) gy (@) (2.32)

B B | Jdvs Bo |Jdvs
The conservation of mass over the body B is expressed as:
Dm-_ / / D (p'*)J) Jv @
Dt By | Jav; Dt
Do | w0 |
= + p dv'¥ | =0 (2.33)
/B /dyﬁ Dt axl(a)

=0

Then, the balance of mass in B is such that,
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Dm D
Dt T Dt fy =0
D (psJs)
= ———22dV,
/Bo pr 7
Dps 5%))
= +p dvg =0 2.34
NE R L (2.3

where localizing the integral form of the balance of mass, we arrive at the balance of mass similar

to that of classical continuum theory such that,

Dp 81}1
B + pg B
Dt 0:131(5)

=0 (2.35)

2.2.2 Balance of micro-inertia

In order to derive the balance of micro-inertia, we start with the fact that all the micro-elements
within a macro-element are in equilibrium with respect to the momentum. Therefore, the first mass

moment about the centroid Cj will be zero as follows,

/ P2 av@ = o (2.36)
Vi
The second mass moment is not zero, such that the micro-inertia /7,5y in the reference configu-

ration By is defined as

def a)—(a)=(a o
po) i) dVs = /d , ot == av @ (2.37)
B

where Ig is the micro-inertia tensor in the reference configuration. Following the assumption of
periodic micro-structure, the family of relative position vectors 2(®) is not a function of the position
vector X g. Therefore, the relative position vector can be pulled out of the integral over the macro-

element volume in the reference configuration dVj such that,

def —(a)=(c e
poe I dVs < ZEg) /d y ppav(® (2.38)
B
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According to (2.38), for homogenous materials with periodic micro-structure, the micro-inertia
tensor I is constant. This paper deals with the total Lagrangian finite element implementation of
micromorphic continuum. Therefore, the balance of micro-inertia in the reference configuration By
is satisfied. The material time derivative of the micro-inertia term in the reference configuration

By is as follows,

D

DI,
i | e KrLedVs = / pos) 57 AV = (2.:39)
Bo

Likewise, a micro-inertia iz(g) in the spatial configuration B and its mapping to the reference

configuration By can be expressed as

. def a) (@) ~(a a
pins)dvg = /d PNV dv (2.40)
Vg
- /d P Xk B X1, EE o)
vB

= XkKXlL/ P(() )uﬁ?)ui)dV‘ )
Vs
= XexXiLPog) k3 dVs = xkrXxiLrplkrng)dvs

= Ir1(5) = XgiXoi k(o) (2.41)

The balance of micro-inertia in the current configuration is derived such that,

D D(Ikrs)
= IcpndVs = SR gy, = 0 9.42
Di /BO poee) k() AV /B PO g (2.42)
Digpg) 1 1 (Dlingg) . .
Dt XKkXLl Dt Pkalal() T Viatak(p)

D(igys))

1 -1 . .

- TR i) — Vialars) ) dvg = 0
/BIO/BXkaLl ( Dt Vkalal(B) — Vial k(ﬁ)) vg

and,

D(iyy)

D~ Vkelal(p) ~ Vialak(s) = 0 (2.43)
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Note that the balance of micro-inertia in the current configuration is presented for the purpose of
being used for future work of implementing updated Lagrangian finite element analysis of micro-

morphic continuum.

2.2.3 Balance of Linear Momentum, Angular Momentum, and First Moment of

Momentum

In the following, we derive the balance of linear momentum, angular momentum, and first
moment of momentum for micromorphic continuum theory. Based upon the approach by Eringen
and Suhubi [1964], we start with the localized balance of linear and angular momenta in the micro-

element differential volume dv(®) as follows,

o)+ PO (Y — i) =0 (2.44)
o) = oy’ (2.45)

(@)

where the micro-element Cauchy stress tensor ‘71; is symmetric by way of angular momentum being

@) is the micro-element mass density, f(® is the micro-element body

conserved within do(®. pf
force vector per unit mass, and @(® is the micro-element acceleration vector. By using a weighted-

residual approach, and selecting a smooth weighting function ¢(®, the balance of momenta over B

(depending on choice of qﬁ(a)) can be expressed as,

/ { [ 60 el oo ) dv@} - (2.46)
vB

where (o)(la ) = d(e)(@ /8x§a). Applying the chain rule and divergence theorem, we can rewrite

(2.46) as,
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/B {/d (0 af) = ol + p e (f) — )] dv(“)} 0 (247)
vg

f {/ <¢(“)o§£>>n§“da(a)} "
ag
s {/ [~ ale) + o9 (£ — )] d”(a)} - 24
vg

Assuming three different weighting functions for ¢(%), we can derive the balance of linear momen-
tum, angular momentum, and first moment of momentum on B for micromorphic continuum: (1)
@ = 1, balance of linear momentum; (2) dl@) = enmkngf ), balance of angular momentum (€, is
the permutation tensor); (3) ¢(® = :m(ﬁ ), balance of first moment of momentum. Substituting these

three choices for ¢(® into (2.48), we can derive the respective micromorphic balance equations on

B as follows.

2.2.3.1 Balance of Linear Momentum: (¢(® = 1)

The balance of linear momentum can be expressed as,

/ { / a§g>n§a)da<a>} + / { / PO )] du@} —0 (2.49)
oB dag B dvg

where we have the following definition,

onydag def /d Jl(]?)nl(a)da(a) (2.50)
ag

pledvg < /d P £ (@ (2.51)
vg

pligdvg o / p(a)ﬁ,(ca)dv(a) (2.52)
dvg

where we drop the subscript # denoting macro-element variables at cg (for example, macro-element
mass density pg and p are the same vaiable at cg), unless needed for clarification, oy is the

unsymmetric macroscopic Cauchy stress tensor, fi is the macroscopic body force vector per unit
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mass, p is the macroscopic mass density, and iy is the macroscopic acceleration vector. From

(2.49), (2.50-2.52), we have

/ omydag + / p(fr — iig)dvg =0 (2.53)
oB B
/B [ouk,1 + p(fre — )] dvg =0 (2.54)

The localized expression for micromorphic balance of linear momentum at spatial position g can

then be written as,

o+ p(fr. — iig) =0 (2.55)
The balance of linear momentum for the micromorphic continuum is similar to that of the classical

continuum theory, except that the macroscopic Cauchy stress tensor oj; may be unsymmetric.

2.2.3.2 Balance of Angular Momentum: ((b(o‘) = enmk:m(ﬁ))

The balance of angular momentum can be derived as follows,

/{/ enmk($£s)0l(l?))nl(a)da(a)}+

oB dag

/ { [ nns [0+ o0 (1 5] m} 0
B dvg

A

oB dag

+/B {/dvﬁ enmk [—07(7:2 + p(a)(x (8) 5 )(f(a) i )] dv(a)} =0 (2.56)

where a?( )l (a / 837 = 0. The acceleration of the micro-element centroid and the accelera-

tion of the relative position vector can be expressed as

il = iy £ (2.57)

ED = (Do + vrpe) ) (2.58)
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Inserting (2.57, 2.58) into (2.56), we have,

/ { / enmk((xmw)+f§?))af§))n§a)da(“)} = / EnmkTm(5) / o i da'®
o8 | Jdag oB das

~~

def
éalknldaﬁ

+/ enmk/ Ul(,?)ggf‘)nl(a)da(a)
oB dag

def
=mygmnidag

= enmk/ [T (3) Ok + Mk dag
oB

= enmk/ [Cmk + Tin(8) 011 + M, dvg (2.59)

B
/ / Cnmk [—07(513] dv(a) = _enmk// Uﬁ:lzdv(a)
B dvg B Jdvg
—_— —
def

e
= Srnkdvﬂ

= —enmk/smkdvg (2.60)
B

/. {/ cumi [0 + €51 d”(a)} )
B dvg

/ enmkxm(ﬁ) / p(a) f]ia) dv(a) + / Enmk / P(a) flga)gﬁr?)dv(a)
B dug B dvg
=0 kdvg dZe{PkadUB

= €nmk/ (Tm(gyp Sk + Plem) dvg  (2.61)
B
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/B {/d Cnmk [p(a) (@m(s) + &%‘))(—u;a))} de)}
va

= —enmk/B {/d PN (& i + rrmw)f,ﬁo‘) + &y + 57(7?)&5;&))65”(&)}
vB

= _enmk/ wm(ﬁ)ﬁk/ P Vvt ) (ke + kal/bc)/ plE) dy(@)
B dvg dvg
—_— ~~

d:efp dvg =0

iy / D) gyy(@) / PO () gy e
dvg dvg

=0

4 o dvg

= —enmk/B [acm(/g)pu'k + pwkm] dvg (2.62)

where [ v p(a)fl(f)dv(a) = 0 because f,(f) is mass-centered on dvg, My, is the higher order (couple)
stress defined through relative position vector {5,? ), Smk is the symmetric micro-stress, £k, is the

body force couple, and wg, is the micro-spin inertia. Combining terms, we have

enmk/ T (3) (Ot + p(fre — k) + Omk — Smk + Mikmi + P(Lkm — Wkm) | dvg =0
B wV
-0

enmk/ [Umk — Smk + Mikm,l + p(ekm - wkm)] d’l)g =0 (263)
B

Upon localizing the integral at xg,

Cnmk [Umk — Smk + Mikm,l + p(ekm - wkm)] =0 (264)
en | Opmk] = Smk] FMkm)t + PLkm) — Wikm)) | =0 (2.65)
=0

where e, is a coefficient such that e, = 1 for n = 1,2,3 (n # m # k), and we have,

k] + M)t + P m) — Wikm)) = 0 (2.66)
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For n = 1,2,3 where the antisymmetric definition is o4 = (0mk — okm)/2. It is to be noted
that (2.66) provides 3 equations through the balance of angular momentum to solve for the micro-
rotation vector ¢y, (discussed later) and thus the balance of angular momentum does not provide
enough equations if we consider micro-shear and micro-stretch. Therefore, we need six additional
equations to be able to solve for all of the 9 additional micromorphic dofs ®rx (or ¢x;). This is

done via the balance of first moment of momentum.

2.2.3.3 balance of first moment of momentum: (¢(® = :cgff))

Similar to the procedure we followed for the balance of angular momentum, the balance of first
moment of momentum is derived without multiplying by the permutation tensor e,,;. Thus, we

may write directly equation (2.64) without the permutation tensor e, as,

Omk — Smk + Mikm,t + PUrm — Wkm) =0 (2.67)

This equation provides 9 equations to solve for the 9 components of the micro-displacement tensor
@i through the definition xxx = dxx + Prx (and later a Total Langrangian FE formulation).
Based upon these equations it can be seen that the macroscopic Cauchy stress oj; may not be
symmetric (if the couple stress is non-zero and not divergence free, and/or the body couple and

micro-spin inertia are non-zero).

2.3 Thermodynamics

In the following, we derive the first and second laws of thermodynamics for a micromorphic

continuum, as well as the Clasisus-Duhem inequality.

2.3.1 Balance of Energy:

The macro-element balance of energy equation with respect to micro-element dv(® can be written

in integral form over dvg such that,
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/ @)@ @) — / [o0f) 4450 + pr(] vl (2.68)
dvg dvg ’ ’

(a)

where ¢(®) is the micro-internal energy rate per unit mass, q;, ~ is the micro-heat flux, and (@) the
micro-heat source per unit mass. In this equation, it is assumed that the classical balance of energy
in localized form is valid within the micro-element differential volume dv(®). By integrating over

the whole body B, we have

/ { / ﬂ(a)é(a)dv(a)} _ / { / (o0l + ) + o] dv(a)} (2.69)
B | Jdvg B | Jdvg ' '

Further derivation of the above equation, term by term, leads to (again leaving off, subscript 8 on

macro-element variables at xg, unless needed for clarification),
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/ @@ gyl@) / D@ gyer — 2 / (@) g (e
dvg v Dt Jav,

défpo edVg=pedvg

D : .
= E(Poedvﬂ)zmedvﬁ:pedvﬂ (2.70)
| auifa = [ el = ool an (271)
Uﬁ 'UB

= / a,g?)vfa)n,ia)da(a)—/ algﬁcvl(a)dv(a)
dag dvg

- /d ot (0 + v €)Y da®) — /d O™ = £ w1 + v () dv @
ag vs

= [ PO b [ ol eni
dag dag

def def
= ornidag = Mpimnirdag

_Ul/ p(a)ﬁl(a)dv(a) +Ul/ p(a)fl(a)dv(a)
dvg dvg

d;fpﬁldvﬁ d;fpfldvﬁ
i [ D0 v [ p el
dvg dvg
= d:efpwlmdvﬂ

—I—I/lm/ p(“)fl(a)ﬁ,(,‘;‘)du(a>
dvg

~~

défpzlmdvﬂ
o o a) (a o) def
/ ql(c,k)d”( )= / ql(g )n](c Jda(® = gynpdag (2.72)
dvg dag
dvg

Substituting these terms back into equation (2.69), we have
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/Pédvﬁ = / (vioknE + Vimmimng)dag — / vip(a; — fi)dvg — / Vim p(Wim — lim)dvg
B oB B B

+/ qknkda5+/prdv5 (2.74)
B B

= /B vi(orr i + p(fi — W) + Vi (Miim g + plim — wim))

=0 =8ml—0ml

U kKL + Vi kMkim + Qi + pr] dvg

The localized balance of energy over B becomes,

PE = Vi (8mi — Omi) + VLkOK + Vim kMkim + Qi + pr (2.75)

2.3.2 Second Law of Thermodynamics and Clausius-Duhem Inequality:

It is assumed that the classical second law of thermodynamics is valid within the micro-
element differential volume dv(®). By using the integral-averaging-method, the second law of ther-

modynamics over dvg can be written as,

D 1 (0) ()
D (0) (@) gpy(@) _ 1 @) (@ () / P do@ > 0 5 76

P v q; 'n,; da v\ > .
Dt dvg dag 0 k k dvg 0 ( )

. e . (0% e T
Jaug Pl (@) pidug I ql(c : dv(a)d£f<qi) dv d:f%dvﬁ

dvg 0 = 0 " B
k

Note that there is no micro-temperature (% in the model [Eringen, 1999], only macro-temperature
0 as a simplifying assumption in the thesis. The localized form of the second law at spatial position

x can be expressed as,

. 1 qx pr
dvs— | (Zars— g, ) dvs — | Zdvg > .
/BPTI o /z;(GQk’k 0* ’k> o /B g =0 277)

) 1
PO — ki + Garbp — pr 20 (2.78)
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The macroscale Helmholtz free energy per unit mass 1, and its material time derivative can be

written as,

v =e—06n (2.79)

) =¢é—6n—0n (2.80)

Inserting the above equations into (2.75), the Clausius-Duhem inequality for micromorphic contin-

uum can be written as,

. . 1
—p( +n0) + o (vik — vik) + Skik + MitmVim gk + qué),k >0 (2.81)

Summary of Balance Equations The equations are now summarized over the current configuration

B at macro-element 3 with centroid cg at spatial position vector xg as,



balance of mass :

balance of micro — inertia :

balance of linear momentum :

balance of first moment of momentum :

balance of energy :

Clausius — Duhem inequality :

Dp
E‘l‘pvkk—o

deﬁ :e fde p(a)dfu(a)

Digyp)
Dt

piriaydvg = [, PG dvo(@

— VkmUmi(8) — Vimimk(g) = 0

oy + p(fe —ar) =0

ouniday < [}, ofn® da
plrdvg = [y, p fi% vl

. def () . () (@)
pligdvg = fdvﬁp iy, dv

Tml = Smi + Miim k. + P(lim — Wim) =0
smldvﬁ = fdv )dv( )
mklmnkdaﬁ - fdag kl é-m n a)da(o‘)

a)fl fm dv(®)
@F £ gyl

Plimdvg = fdvﬁﬂ

def
pwimdvg = fdvﬁ p

pé = (Sk — ok Vik + OriULE
+MEimVim,k + Gk + P

pedvg = fdv )é(e) dy(@)

p’r‘d’UB : f p(a)r(a)dv(a)

qknkdafg fdaﬁ Ol)n](C )da( )

—p(t +10) + o (v — vik) + Skvik

1
—qif >0

F+MpimVim,k + 0

29

(2.82)
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In this section, the governing equations of micromorphic continuum and the procedure of applying
the integral-averaging-method have been presented in detail. Next, constitutive equations are
presented to relate the various stresses to deformations in order to close the micromorphic elastic

theory.

2.4 Constitutive Equations and Constraints on Elastic Parameters

The Clausius-Duhem inequality for isothermal problems in the current configuration can be

written such that,

—poth + Jow (e — vir) + Jsuvie + JMpim Vi > 0 (2.83)

The Helmholtz free energy function and its rate in terms of the deformation gradient F', micro-

deformation tensor x and gradient of micro-deformation tensor Vyx can be expressed as

po (FrK s XkK s XkK,L) (2.84)

. J(pot) - d(po?) . A(po?) .
= F 7 + 2.85
po OF. . | hK + O XkK aXlKLXlK,L (2.85)

)

where po = 0 for conservation of mass. Substituting (2.85) into (2.83) and expanding other kine-

matical terms, we have

+

[ 9(po?) - A(po) . 9(pot)
< OF ik Fisc oar " " OXiIK L

XU(,L) + Jop (FZKFE - XIKX;(%C)

+TSkXIK X g + JMkim (sz,LX;}%FL_kl + XlKXf]<17LFEk1) >0 (2.86)
Note that the macroscopic Cauchy stress oy, the micro stress sp;, and the higher order couple
stress tensors myy,, are in the current configuration B. Since we want to derive the constitutive
equations in the reference configuration By, we need to pull back the micromorphic stress tensors

to their corresponding pseudo-stresses in By via the Piola transforms as follows
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1

ok = ijKSKLFlL (2.87)
1

Skl = ijKEKLFlL (2.88)
1

Mkl = ijKFlLMKLMXmM (2.89)

The pseudo-stress tensors in the reference configuration By with respect to the Helmholtz free
energy function per unit reference volume (pgt)) where 1 is the Helmholtz energy per unit mass,

are derived via thermodynamics (e.g., following [Coleman and Noll, 1963]) as,

Sy = oo g (2.90)

OFy i = ¥

Apo) 1 -1 A(po?) 1

2 = F F F
KL OFp L + H e Xea Oxan Lo

_ 8(p0"$) _

1 1

+ p——-F 2.91
KdXdM, oxrme (291)

d(pot)) -1
= F 2.92
Mgy OXaE Lf (2.92)

where Sk, is the second Piola Kirchhoff stress tensor, Xk, is the pseudo-micro-stress in By, and
Mg rar is the pseudo-couple-stress in By. Assuming a quadratic form of the Helmholtz free energy
function in the reference configuration By in terms of the Lagrangian strain Er, micro-strain Exy,,

and gradient deformation I'gi7 s we have,

1 1
poY = §EKLAKLMNEMN+§5KLBKLMN5MN

1

+ §FKLMCLMKNPQF NPQ + ExrDxrymnEmn (2.93)

where the elastic material moduli tensors Axrvmn, Brrmn, Drrvy and Crygnpg may be

written [Suhubi and Eringen, 1964],
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Bgrun =

CrmMrNPQ =

Dgrun =
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Mrroyun + p(OxmoLN + SxNOLr) (2.94)

(77 — T) 5KL5MN + (FL — 0') (5KM5LN) + (I/ — 0') (5KN5LM) (295)

T1 (Lm0 NOPQ + 01QdMKONP) + T2 (OLMOK PONG + OLKOMQINP)

T30LMOKQINP + TadLNONMKIPQ + T5 (OLkOMNOPQ + OLPOMKONQ)

T60LKOMPOING + TrOLNOMPOKQ + T8 (OLPONMQOKN + 0LQOMNIK P)

T9OLNOMQOKP + T100LPOMNOKQ + T110LQOMPOK N (2.96)

TOKLOMN + 0 (OxNOLM + OLNOK M) (2.97)

where dx 1, is the Kronecker-delta operator; A, u, v, 7, k, o, and v are elastic moduli (units Pa) for

the Second Piola-Kirchhoff stress S and micro-stress ¥, and 7q,...,711 are elastic moduli (units

Pa.m?) for the higher order couple stress M. By using the Helmholtz free energy function per unit

reference volume in (2.93), from (2.92) the micromorphic stress tensors in By can be written as

follows,

Skr

YKL

Mgrm

AgiuNnEvN + DgpunEun

(DxkpunEmy + BkpunEmn) [Cpa (Eap + 04B)]
CKBCNPQFNPQCECIQFQBC (2.98)
AxLuNEuN + DxpunEmn

2sym (D vunEvn + BkpunEun) [Cra (Eap + 6aB)]

CxponpUNPQCLAToBC (2.99)

CrvrnrQUNPQ (2.100)

Assuming small elastic strains (but potentially large rotations, which will be valid when we extend

the FE implementation to micromorphic elastoplasticity at finite strain [Regueiro, 2009, 2010]), the

micromorphic stress tensors can be simplified to,
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Sk = (A+7)Eumékr +2(pn+0) Exkp +n€vmdkr + ExL + vELK (2.101)
Yk = AN+27)Epyymoxrn +2(uw+20) Exr + (2n — 1) EmmokL
+ (+r—0)(ExL+ LK) (2.102)
Mg = 71 (0omTrpp + oMkl ppr) + 72 (OomT Nk N + 0Lk T PPM) + T30 LM NN K

+ 7ok lrpp + 75 O Tvpp + 0k TNIN) + 760k DN + Tl Lk

+ 78 (Ukm +Tvkr) + 7ol L + 1ol vk + Tl v (2.103)

The next section is devoted to the positiveness of micromorphic strain energy (Helmholtz free
energy without temperature terms) function and defining constraints on elastic parameters of the

constitutive equations.

2.4.1 Constraints on Elastic Parameters of the Micromorphic Constitutive Equa-

tions

In this section, constraints on elastic parameters of the micromorphic constitutive equations
are presented. Note that the study on positiveness of micromorphic strain energy in the sense of
Suhubi and Eringen [1964] was presented first by Smith [1968] for micromorphic linear isotropic
elasticity at small strain. Details on the derivations of the proposed restrictions on elastic material
moduli can be found in Smith [1968] and Isbuga and Regueiro [2011]. These constraints are defined
in such a way that guarantees the positiveness of the strain energy function, or Helmholtz free
energy function in our case. The constraints on the elastic parameters of the macroscopic Cauchy

stress o, and micro-stress tensor sy; are as follows,
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A >0
kK+v > 20
(k+v—20)pu > 20°
3A+2u > 0
k+v+3n > 31+ 20
(k4+v+2n—37—20)(BA+2u) > (31 +20)*
k—v > 0

du(k+v—20) > 20 (2.104)

In order to determine the restrictions on 7; of the couple stress, Smith [1968] proposed a

matrix T as follows

TI+T+3m+m+70 In+nu+3ms+18+71 I+ +T6+TR+ T

T= 311+ 1+ 73+ 718+ 111 1+ 3y +77+ 7+ 719 To 4+ 375 + 76 + T8 + T10 (2105)

T1+3n+m3+7wR+T79 TI+TA+3TB+TR+TI0 T2+ T5+ 316+ T+ T

The constraints on 7; are such that,

T+ 218 > ’79+T10+T11’

1 1/2
TT— T8 > \ﬁ (7'9—7'10)2+(7'10—711)2+(7'11—7'9)2

tr(T) > 0
tr(coT) > 0
det (T) > 0 (2.106)

Note that tr(T) denotes the trace of T', and coT represents for the cofactor of T'. It can be seen that
there is no constraint on any of the material parameters individually, except that A > 0. Therefore,

some of the parameters can be either positive or negative, but they must satisfy Smith’s conditions
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(2.104) and (2.106) to be able to be selected as valid micromorphic elastic material parameters. So
far, in this chapter, the kinematics, balance equations, thermodynamics, and constitutive equations
for the micromorphic continuum have been presented. Following the approach of Eringen, the
mathematical derivations of each new variable (higher order stress, microstress, micro-inertia, and

so forth) have been shown to provide insight into the micromorphic continuum.

2.5 Comparison of Micromorphic and Micropolar Elasticity

In this section, a simplification from micromorphic continuum theory to micropolar theory
is presented. This is done for the purpose of comparing micromorphic theory with micropolar
theory for quasi-static linear elastic isotropic materials. In the results section, several examples are
presented to compare micromorphic and micropolar elasticity theories. This is done to illustrate
the effect of micromorphic additional dofs which makes this theory able to consider micro-shear
and micro-stretch deformations of the micro-elements, in addition to micro-rotation which is the
only micro-element deformation captured by micropolar continuum theory. One of the challenges of
comparing micromorphic and micropolar elasticity theories is that the material parameters for each
theory are different. The finite element code that is written in Tahoe (tahoe.sourceforge.net) is
specifically developed for micromorphic continuum equations, and cannot be simplified to simulate
a micropolar continuum (this requires a separate FE implementation). This means that constraint
o = —%eklmqﬁlm (for small strains) cannot be applied directly onto micromorphic dofs within the fi-
nite element model in Tahoe. Eringen [1999] proposed a procedure for simplifying the micromorphic
kinematics, balance equations and constitutive equations to microstretch and micropolar theories
for small strain problems. But the proposed approach cannot be applied to simulations in this
thesis, since it requires that we apply the constraint of skew-symmetry on the micro-displacement
tensor, ® = —®7. In the following the micropolar balance equations and constitutive equations

will be presented.
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2.5.1 Micropolar Balance and Constitutive Equations

The differences in the kinematics of micromorphic and micropolar continuum theories is
mainly related to their interpretation of the deformation of the micro-elements. In micromorphic
continuum, the micro-displacement tensor ® (X, ) has 9 components to capture micro-shear, micro-
stretch, and micro-rotation. The micro-displacement tensor ® (X, t) for micropolar theory [Eringen,
1968a], is written such that,

1
Prr = —erx @i, o = —§€MkK¢‘kK (2.107)

where ®' is the independent micro-rotation vector of the micro-elements. The balance of mass
and linear momentum for a micropolar continuum theory are similar to those of a micromorphic
continuum. To derive the balance of angular momentum for micropolar continuum, we start with

the balance of angular momentum for micromorphic continuum such that,

Enmk [Umk — Smk + Mikm, + p(gkm - ka)] =0 (2'108)
en | Omk] = Simk] TMUkm) + PLem] — Wikm)) | = 0 (2.109)
=0

where e, is a coefficient such that e, =1 for n = 1,2,3 (n # m # k), and we have,

en [Ofmi) + My + PLm) — Wiem))] = 0 (2.110)

where the antisymmetric definition is opk = (Omk — Okm)/2. It is to be noted that (2.110)
provides 3 equations to solve for the micro-rotation vector ¢. Thus, the micro-rotation vector of

a micropolar continuum can be solved from the balance of angular momentum (2.110) such that,

te + Mg, + p(ly —wi) =0 (2.111)

where,
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te Y eropm (2.112)
Mk, o CkmnMinm,l = €kMnm],] (2.113)
O Y el (2.114)
Wi def CkWnm] (2.115)

(2.116)

where t; is the antisymmetric part of the micropolar Cauchy stress, mg; is the couple stress, /g
is the body force couple, and wy, is micro-spin inertia. The micro-rotation vector ¢ of micropolar
theory can be solved through the balance of angular momentum. Therefore, micropolar theory
does not involve the balance of first moment of momentum. Recalling from the previous section,

the integral form of the balance of energy for micromorphic theory can be written as,

/Pédvﬁ = / (viognE + VimMpgmng)dag — / vp(ty — fi)dvg — / Vi P(Wim — lim)dvg
B oB B B

+/ qknkda5+/prdv5 (2.117)
oB B

= /B (g + p(fi = W) + Vi (Mt e + Pl — Wim))

~~

=0 =Sml—0ml

F01 Ok + Vi, kMol + Qe + 1] dug

The balance of energy for micropolar continuum is then derived as follows, where we substitute for

micro-gyration tensor vy, the micropolar gyration vector v, such that vy, = —epnnn, and

/Pédvﬁ = /a (VORI — €lmnVnMdmny)dag — / vp(iy — fi)dv + / elmnVnP(Wim — lim)dug
B B B B

+/ qknkda—k/prdvg (2.118)
oB B

= /B vi(ork + p(fi — in)) + vi(mp g + p(b — wi))

=0 =—€mnOmn

+u k0w + Vi + Qi + pr] dug
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Thus, the localized balance of energy at spatial position xg for a micropolar continuum is as follows,
pé = Opmi(Vim + Vim) + Viemes + qr i + pr (2.119)

where o,V for a micropolar continuum can be written such that,
OmiVim = —Oml€lmnVn = —0[ml]€nVn (2.120)

The Clausius-Duhem inequality for a micropolar continuum can be derived by substituting the
micropolar balance of energy (2.119) into the micromorphic Clausius-Duhem inequality (2.81) such

that,

—p(Y +nb) — opyenvn + orvLE + Mk + aqké’,k >0 (2.121)

As mentioned earlier in this section, Eringen [1999] proposed a procedure to simplify micromor-
phic continuum to micropolar continuum. This procedure has been explained for the micropolar
balance equations. The key part of this simplification is to apply the constraint ® = —®7 on
the micro-displacement tensor ®. Note that we are not able to apply such a constraint on the
micro-displacement tensor ® of our FE micromorphic model in Tahoe. Therefore, in this thesis
the material parameters of micromorphic continuum are selected in such a way to make the mi-
cromorphic constitutive equations to be similar to the micropolar ones. The constitutive equations

of micropolar continuum given by Eringen [1999] (for small elastic strains, but potentially large

rotations) are as follows,

Skr = (N Bum6kr + (B +0) Exr + () Evk (2.122)

Mg = ol (Okr) + BTkr + Tk (2.123)

where My is the second order pseudo couple stress tensor in By, E:'KL = FEKX; — 0k, and

_ 1 - _
IN = S EKMNXKNXkM,L- Where A, i1, 7, &, B, and 4 are micropolar material parameters. The
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constitutive equations of micromorphic and micropolar theories at small strain are written as,

o = (A7) emmbu +2(p+0)en
+  NEmmOk + Keg + vey  (micromorphic) (2.124)
Ok = NemmOp + (L +0)ew + i (micropolar) (2.125)

where the linearized strain measures for micromorphic continuum are given such that,

1
e = 5 (Ukg +wig) s Ew = Op + U (2.126)

Inserting (2.126) into the micromorphic constitutive equations (2.124) we have,

o = A+T+0) Unmbp + (L + 0+ K)ugs + (1 + 0+ v)ug

macroscopic part
+  NPmmOkl + KPr + Vi (2.127)

microscopic part

The linear strain measure for micropolar theory and the constitutive equation for Cauchy stress

are given as,

Ekl = €ikj®j + uk (2.128)
Ok = MmO+ (B +7) gy + fugs +  New;o; (2.129)
——
macroscopic part microscopic part

An interesting feature of the micromorphic and micropolar constitutive equations at small strain is
that they can be separated into a macroscopic part (terms related to the macroscopic displacement
u;) and microscopic part (terms related to the micro-displacement tensor ¢;;, for small strain). It
is evident that the constitutive equations of a micromorphic continuum have more terms involving
micro-scale deformation than does the micropolar theory. In the examples, the micromorphic
material parameters are selected such that the macroscopic part of (2.127) is equivalent to that of
(2.129). In the micropolar theory, the symmetric micro-stress still exists, but it will not contribute
to the balance of angular momentum (2.109), since it is written in terms of the anti-symmetric

part of the stresses. Therefore, in micropolar theory there is no constitutive equation required for
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the symmetric micro-stress. Eringen [1999] proposed a relation between the micromorphic couple

stress and that of the micropolar theory such that,

M = ClmpMipm = 0rr0p1 + Bt + F1 i + Qoripd’y (2.130)
o = o (2.131)
where ¢ is the micro-stretch term coefficient. Note that in microstretch theory it is assumed

that micro-stretch components are equal in all directions. The relations of &, 8, 7, and @&y with

T, T2, ...,T11 are as follows,

a = 218 —T9 — Ti1, BZ—T4+2T5—T6
¥ = T4—275+ 76+ 277 — 278 + T9 — 2710 + T11
Gy = 31 — 3T+ T4+ 76— To+ 711 (2.132)

To compare the micromorphic and micropolar theories, 7; are selected such that @&,3, and 7 given
through (2.132) are equal to the micropolar material parameters. Note that &oeklpgb’s;r is not part of
the micropolar couple stress constitutive equation, but it appears in (2.130) as a result of simplifying
micromorphic to micropolar theory. Eringen [1968a] defined a micro-rotation vector ®™* in terms

of the micro-displacement tensor ® such that,

skw (@), = [; (® - @T)kK} = [—exx M ®5F] (2.133)
0 Q9 — Pgy P13 — Py
= % Qo1 — P12 0 o3 — 39 (2.134)
_@31 — P13 Pgo — Do3 0 ]
_ 0 e123P5" 6132‘135°t_
= — |en3®)t 0 €931 DOt (2.135)
3125 €301 P 0
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where we can write the rotation vector ®™* for micropolar theory such that,

Pt 3 (P32 — P23)
Prot — (I)got = % (13 — B3y) (2.136)
Lot 3 (P21 — @12)

We use (2.136) to calculate the rotation vector from the micromorphic dofs in order to compare
with that of the micropolar theory in the numerical examples. We can also apply BCs on the shear

terms of @ to apply associated rotations ®™.

2.6 Total Lagrangian Finite Element Formulation for Micromorphic Con-

tinuum and Time Integration for Implicit Dynamics

For the finite element formulation, the coupled strong form (S) of the micromorphic balance

of momenta in the current configuration are presented such that,

Find ug (2, t) : B x [0, tgnat] = R, and  ¢px(x,t) : B x [0, tanat] = RY, such that

oy +p(fx —tx) = 0€B

up(t) = gp(t)only

Jlknl(t = tg(t) on Ft
(S) up(x,0) = ugo(x) € B
Tmk — Smk + Mikm,t + P(lrm — Wim = 0eB

)
)
)
)
)
)
)
)

ou(t) = ght)onTy
Mpimk(t) = My (t) on T vy
¢ri(x,0) = opo(x) eB

(2.137)
where B = BUL, and T = rguly = F?UF M- The finite element formulation will be presented in the
reference configuration By for a total Lagrangian implementation. Through the weighted residual

method and integration by parts, the balance of linear momentum in the current configuration can



42

Uk = G w

L)
D= G oK

£ _ @
Pkl = Gy

B

Myl = M,

Figure 2.2. Schematic of Neumann and Dirichlet boundary conditions for the micromorphic continuum in
the reference (left) and current (right) configurations.

be expressed as

/B’u)k [O'Zk,l + P (fk — uk)] dvg = /35 wkalknldag — /B [wk,lalk + WEpP (fk — uk)] dvg =0 (2.138)

where wy is the weighting function for macro-scale displacement vector ug. Applying the Piola
1

transforms and mapping P;; = Joj F L_kl and oy, = jFl .SLr Fri, and Nanson’s formula to relate

the area change n;da = JF I}}N K dA, the variational form of the balance of linear momentum can

be written as,

/a wi(Prrx Ni)dAg — / (Wi (FiLSLr Frx) + wipo (fr, — tiy)] dVs = 0 (2.139)
Bo BO

Similarly, the variational form of the balance of first moment of momentum in the current config-

uration B is such that,

/Bnml [Omi = Smi 4 Makmy + P (Nim — wWim)] dVp =0 (2.140)

where 7,,; is the weighting function of the micro-displacement tensor ¢,,,; in the current configura-
tion. Using (2.87)-(2.89), the variational form of the balance of first moment of momentum in the

reference configuration By can be expressed such that,
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/ Nt [Frnme SmLFiL — From2m L Fiz + po (Mim — wim)] dV3
Bo

—/ nml,kaKﬂLMKLMXdeV5+/ DtMimdAg = 0 (2.141)
Bo r

M

where )Aj,, can be derived such that,

PoAImdV = XmK/d P(() )f(aLg{)dV( ® (2.142)
Vs

where the boundary couple-traction Mlm = MpmJ F I},ﬁN K = Mlm k Ng. Thus, the coupled weak

form for micromorphic elastodynamics in By may be stated as,

Find uy(X,t) € 7% and @4 (X,t) € ® such that
fB (w1 (FiL S Fric) + wrpo fr] AV — fp wi(TE)dAz — fg wypotipdVg =0
Jgo Mt [Fmna (Snrz — Zaar) Fir + podim] AV
— J, (i k) [Frere Fi M v Xmar ] AV + pr DMy dAg — J5o Mt o) powimdVis = 0
(W) {4 holds Yy (X) € ¥* and 7,(X) € ¥®
= {ur : Bo x [0, tinat] = R, up € HY up (X, t) = gpt(t) on Ty, ug (X, 0) = ugo(X)}
= {®px : Bo x [0, thinal) = R, Ppic € HY, @i (X, 1) = G (t) on T8, @pic (X, 0) = Po(X)}

= {wk : By '—)Rs,wk € Hl,wk :OOHFZ}

V= : Bo = R, myny € HY 1y = 0onTE}
(2.143)

where H' denotes the first Sobolev space [Hughes, 1987], and .#% and .#® are the trial solution
spaces, and 7% and #® the variation spaces.

Ignoring the boundary traction (T ), body force (pofi), body couple (poAy), and boundary
traction-couple terms (Mlm), we arrive at the following simplified coupled variational equations of

the balance of linear momentum and first moment of momentum for micromorphic elastodynamics
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as,

g = /wk,l(ﬂLSLKFkK)dVB+/ wkpoildegzo (2.144)
Bo

Bo

H = /ﬁmlFmM(EML—SML)ﬂLdV5+/ Mot e Fe ik FIL Mg L Xmav dVa
Bo BO

+ / nmlp()wlmdvﬁ =0 (2.145)
Bo

The linearization of G and H may be stated as,
LG=G+0G=0, LH=H+IH=0 (2.146)

where (o) is the incremental operator with respect to a linearization procedure. We write,

0 (wpy FlLSLKFdeVﬁJr/ wi (0F1L) Str FrrdVa
Bo

wklelL 5SLK)FdeV,3+/ wi 1 Fin Spk (0Fk) dVa

Bo

wkpo (5uk dVﬁ =0 (2.147)

+
\\\

where

ik = (dw) g (2.148)
oxik = 0Pk (2.149)
§(wpy) = —wra(6Faa)Fy) (2.150)
0ELk = %[(5F1L) Fix + Fip(6Firc )] (2.151)
0k = [(0Fin)xix + Fir(dxix)) (2.152)

Sk, = (A+7)(0Eymm)okr +2(n+0) (0EkL)

+ 77(55MM)5KL + H<5SKL) + 1/(55[,]() (2.153)

and,
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/ Nt (0Fmnr) (Bvr — Swr) FiodVa +/ Nt Enrd (X — Surr) FiodVa

Bo

+/B Nt Fmnve (Enr — Smr) (0FL) dVs + ; St k) Frx Fio M par XmamrdVa

0 0
+/B Ml k (5FkK)FlLMKLMXdeV/3+/B Ntk Frre (0F11) My XmardVp

0 0
+/B Umz,kaKﬂL5(MKLM)XdeVﬁ+/B Nt e Frexc FiL Micar (Oxmar) AV

0 0
+/BO Mt (0X1K) XmLpolk 1(3)dVp + /Bo NmiXir (0XmrL) polk sV (2.154)

where 6 (X — Sar) and § (Mgrar) are expressed such that,

6(E=8)k, = T00EMM)OkL +20(0EkL) + (n—7) (6EMM)OKL
+ (v — o) (08kL) + (k — o) (6€LK) (2.155)
d Mgrv) = 71[0omd Crpp) +0mkd (Cppr)] + 72 (0000 (DnkN) + 0rkd (Tppar)]

+7300m0 (Cnnk) + udmkd Tropp) + 75 00k Tavpp) + 0mkd (Dnpn)]
+760r k0 (U'nyvn) + 770 Cryvr) + 780 Trrn) +6 (Cmker)]
+796 (L) + 7100 (Tavink) + 7116 (Prear) (2.156)

) (FKLM) = (5FkK) XIL,M + FkK (6(I)iL),M (2.157)

Upon applying the linearization of the balance of linear and first moment of momenta equations in

(2.146), the coupled finite element equations can be constructed. Note that the terms involving du

and 09 in the balance of linear momentum are related to the K 44 and K44 parts of the consistent

tangent in (2.158). Similarly, the terms involving du and §® in the balance of first moment of

momentum are related to Ky; and K4 in the consistent tangent. The system of coupled finite

element equations solved at each iteration for the incremental nodal macro-displacement vector §d

and micro-displacement tensor d¢ as follows,

Mdd Md¢ 0w Kdd Kd¢ du —Rd
: + . = (2.158)

My My, 5d Ky Ky GL: -R,
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where R; and R are the residual vectors at the current iteration of the Newton-Raphson algorithm
(Isbuga, 2012]. K44, K44 are the stiffness matrix components related to the balance of linear
momentum involving du and d® respectively. K4q, K44 are the stiffness matrix terms related to
the balance of first moment of momentum involving du and d®. Similarly we have M4, M 44,
and M 44, M 44 which are the components of mass matrix related to the balance of linear and the
balance of first moment of momenta, respectively. Note that for the quasi-static analysis the terms
related to the incremental nodal acceleration vector dd and acceleration of micro-displacement
tensor 8¢ will be zero. In this thesis, the Hilber-Hughes-Taylor (HHT) implicit time integration
method has been used to construct temporally discretized equations of motion. Assuming the

classical equation of motion, temporal discretization applying the HHT method is expressed as,

M - ’iln+1 + (1 + Od) K- Unp+1 — aK - un = R (tn—f—l—i-a) (2159)
. AR . .
Upt1 = Up+ Atwy, + 5 [(1—20) Wy, + 2Btp+1] (2.160)

where a € [-1/3,0], v = (1 — 2) /2, and 8 = (1 — a)? /4. Note that at o = 0, the HHT method
returns the trapezoidal rule. For a@ < 0 the numerical dissipation will be involved in the dynamic

analysis. The coupled micromorphic finite element equations can be written such that,

Maq+B(1+a) APKga Mas+ B(1+a) AP K, ou e (2.162)

Md)d'f’ﬂ(l'i_a) At2K¢d M¢¢+ﬁ(l—l—a) At2K¢¢ (5‘:1) _R¢

where in (2.162), we can solve for i and §®. Therefore, the acceleration of macroscopic displace-

- k41

ment and the micro-displacement tensor can be found uﬁﬂ = ufl g tou, @, =®,,,+0P.

Applying (2.160) and (2.161), the macro-element displacement vector w and micro-displacement

tensor ®, and their velocities can be obtained as follows,



Un+1
un+1
q)n+1

¢’n+1

. A . )
u,, + Ati, + — [(1—20) ty, + 28p41]

Uy + At [(1 =)ty + yitn41]
. At2 .. ..
B+ Al + = [(1 —28) &, + 25@,14

&, + At [(1 ) é, 4 ’7‘.1-)71+1}
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(2.163)
(2.164)
(2.165)

(2.166)



Chapter 3

Finite Strain Micromorphic Elastoplasticity

In this chapter, the finite strain micromorphic elasticity in the sense of Eringen and Suhubi [1964]
will be extended to elastoplasticity which has been first developed by Regueiro [2009, 2010]. The
formulation presented by Regueiro [2009, 2010] has several advantages over the other finite strain
micromorphic elastoplastic models available in the literature. This formulation is based upon the
micromorphic elasticity by Eringen and Suhubi [1964] in which the balance equations, thermody-
namics relations, and, the constitutive equations are developed for the finite strain analysis. From
the applicability perspective, this formulation provides an evident bridge between the microscopic
scale structure and continuum scale deformation. Furthermore, this formulation fits well in the
multi-scale hierarchical micro-structured material modeling framework when the bridging between
the direct numerical simulation and the finite element analysis is desired. To the best of my knowl-
edge, this formulation for the finite strain micromorphic elastoplasticity is the most general model
in comparison with the available models in the literature. Note that in this chapter all expressions
with a bar are defined in the intermediate configuration B. It is noteworthy to mention that the
main reason for the elastoplasticity formulation in the intermediate configuration is that including
material texture in the intermediate configuration is more straight forward in comparison with the

elastoplasticity model developed in the current configuration.
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3.1 Kinematics of finite strain micromorphic elastoplasticity

To involve the plasticity analysis within the finite strain framework, the deformation gradient
tensor has to be decomposed into elastic and plastic parts. This decomposition is done via the
multiplicative decomposition of the deformation gradient tensor which requires to define a new
plastically deformed configuration named the intermediate configuration B. Figure 3.1 illustrates
the schematic of the micromorphic kinematics. In the context of the micromorphic continuum, we
have the deformation gradient and the micro-deformation tensor which have to be decomposed into

elastic and plastic parts, such that

Frx = FI:I_{FIIZ{K
XK = XpgXeg (3.1)

Given the multiplicative decompositions of F' and x, the velocity gradient and micro-gyration

tensors can be expressed as,

v = FGF+ FpLh Fool =05, + ), (3:2)
E%é - FgBFp;é (3-3)
vie = XX ar T XiaLSEX o = Vie + Vi (3.4)
T = X"t 5

where L? is the plastic velocity gradient in B for FP, and L*? is the micro-scale plastic gyration

tensor in B. The spatial derivative of the micro-gyration tensor can be written such that,
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—=(a)
P (mﬂ’: ’ t)
B - — - =
L7t . . dv(( Y) Macro-element

\ - - /
- 7
AN . - 1, x
PR (a)
F1 g N nfe £)1)
— (@) //”~__?\\\
B(xg =) _---L Fx T T
ﬁ // ° \\ [ . ° dv(o‘) \
Reference Conﬁguration// .- . ((1)\\ —> e - . ) (@) d)%(a‘é\l Current Configuration

Figure 3.1. Multiplicative decomposition of deformation gradient F' and micro-deformation tensor x into

elastic and plastic parts, schematic of the mapping of the macro-element dV3 and the micro-element dv (e
from the reference configuration By to the intermediate configuration B and to the current configuration B
via the elastic and plastic parts of the macro deformation gradient F'¢, F” and the elastic and plastic parts
of the micro-deformation tensor x¢, x?.

Vimk = Vipg+ l/ﬁmk
e __ e e—1 e . e e—1
Vimgk = XiA kX dm — YinXnD kX Dm (3.6)
P _ e D e D e _TXP . P -1
Vimk = <XlC,k Xeat Xie Xgar — Xir Lra X(‘;A,k) Xam

1
VX ik X Am (3.7)
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The macro differential volume in the reference configuration dVjz at Cg maps to the intermediate
(dV3) and current (dvg) configurations as follows,
dvg = JdVz = JJPdVs = J¢dVj (3.8)

where J¢ = det(F°) and JP = det(F?). likewise, the micro-element differential volumes mapping

can be expressed as,

dv @ = J@) gy (@ — je(@) gp(a) gy (@) — jel@) gy7(a) (3.9)
where J4Y) = det F&® and JP(® = det FP(®). There is no need to decompose F(® into F¢®) and
FP(®) gince it is not involved in the formulation of the constitutive equations (see discussion after
equation (2.9)). But if such formulations were pursued, it would follow from (2.9). Likewise, the

mass densities are mapped such that,

po = pJ=pJ°JP =pJP (3.10)
p(()a) = pl) @) = p(a) jela) gp(a) — 5(@) p(a) (3.11)

The above equations are obtained according to the conservation of mass and applying the integral

averaging approach such that,

pdvg of / PV dp(®) (3.12)
dvg

podVy & / P\ dv (@) (3.13)
v

pdv; X / P av@ (3.14)
v

Given these kinematics of finite strain micromorphic elastoplasticity, the Clausius-Duhem inequality

can be derived to be able to construct the constitutive equations in the intermediate configuration.

3.2 Clausius-Duhem Inequality for Micromorphic Elastoplasticity

In this section, the Clausius-Duhem inequality will be mapped to the intermediate configu-

ration where we formulate the constitutive equations. As it is mentioned earlier, micromorphic
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elastoplasticity in the sense of Eringen, presents three levels of plasticity: macro, micro, and
micro-gradient plasticity. These levels of plasticity are able to evolve separately, however, they
are coupled via the constitutive equations and balance equations. By manipulating the Clausius-
Duhem inequality, the evolution equations for various parts of the plastic velocity gradient and
micro-gyration including [7[3 7 E}‘f and I’}(}Dj and their conjugate stresses will be obtained. In
order to map the Clausius-Duhem inequality to the intermediate configuration, the micromorphic

stresses in the current configuration are mapped to the intermediate configuration via the Piola

transform such that,

1 _
on = o FieSkiky (3.15)
1 _
Skl = ﬁﬂ?f’(zkiﬂ% (3.16)
1 _
Mitm = S Fe g B MR Ly X ir (3.17)

The Clausius-Duhem inequality in the current configuration is as follows,

. . 1
/ [—P(i/f +n0) + o (Vi g — Vik) + Skl + MigmVim g + 5%% dvg >0 (3.18)
B

The area-averaged unsymmetric Cauchy stress o, the volume-averaged symmetric micro-stress s,

and the area-averaged higher order couple stress m terms are obtained as,



Skldvg

mklmnkdag

where Sy v NydAg o F]f,a_l/_ F;(-a)g(a) V() g4
dAgs

- - 1
recall Ny dAg = FF;M”mdaﬁ
1

= —F°_ SMNFleN nmdag

Je mM

=0Oml

KL"IL

[ ot = [ R s p e a
dvg d

V,B Je(a) kK

FeeF1Er1dVs

where SgpdVs <€ Fg T Fg ! / FOFA 5 gy

pa

i ¢ S FS du

Je  kKZKLTIL B

N—_——— ——
=Skl

G

(@) ye(a) pe(e) ! N g A

Jela) " kK “KL"IK mM= Ny Ak

e(a) e  gla)=(a) (@) 5 7(a
/_ F e S Exy Ng dA®
dAg

FXiMrrmNgdAs

where MK;MNRCM6 « Fffa_l /_ F;J(E‘a)

- 1
recall NgdAg = ﬁF,fKnkda,g
1 _
FeFer Pl X Mg Lz 7iedas

~~
=Mkim

ala@) =(a) a7(@) 5 71(a
SipEar Ny dA®

93

(3.19)

(3.20)

(3.21)
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where S (@)

7 1s the symmetric second Piola-Kirchhoff stress in the micro-element intermediate con-

figuration over dVjs, Sip is the unsymmetric macroscopic second Piola-Kirchhoff stress in the
intermediate configuration B, ¥ is the symmetric second Piola-Kirchhoff micro-stress in the in-
termediate configuration B, My ; is the higher order couple stress written in the intermediate
configuration B, N is the unit normal on dA in the intermediate configuration B, F e(@) is the elas-
tic part of the micro-element deformation gradient which maps the micro-element differential line
segment from the intermediate configuration dVj to the current configuration dvg. As mentioned
earlier, the constitutive equations do not require Fe(® t6 be defined. The Clausius-Duhem inequal-
ity via mapping the couple stress from the current configuration to the intermediate configuration

becomes,

/B [—ﬁ(”t/} +70) + Jeom (v g — vi) + JCsuv
_ 1. B
AVt (Fe g Fp X Mg Lar) + g@rb K| dVs =0 (3.22)

The stress power terms in (3.22) are decomposed into the elastic and the plastic parts additively
according to the decomposition of the velocity gradient, the micro-gyration tensors, and the spatial
derivative of the micro-gyration tensor. The additive decomposition of the higher order couple

stress power can be written as,

Vi e miim = Vimk (Ff e P Xe g Mipir) =

— - _ e - (xe L o 7>}elastic
KLM L
aM ,K InAnM,K (323)

+MgrmEy (—anXZM,R .
plastic

e_ _yP e P _ e _fgXpP.pPp | . p-1
+ Xoc.xXca T XapXpa g — XaB LpE XEA,K} X" At

Note that the spatial derivative with respect to the intermediate configuration B can be defined as,
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(0) & < () 4Ffs (3.24)

The other stress power terms using (3.3,3.5) are written as,

Jeowur = FipFipSgi+CipllpSkr (3.25)
elastic pl;srtic
_ _ =X, 1 _
Joouve = (F7viFig) Skr+ YL EiX 5 Fig SkL (3.26)
elastic plastic
N \T T ). _1 N [
Fown = (FiviFie) Sep+ Vs oS (3.27)
elastic plastic

Similar to the deformation measures of the finite strain micromorphic elasticity in the reference con-
figuration given by Suhubi and Eringen [1964], the elastic deformation measures in the intermediate

configuration can be expressed as,

ki = FigFg,  C=F7.F" (3.28)
Uir = Figxin, O =F7.x (3.29)
= fe el e

% = FiXepar TT=F" - (VX°) (3.30)

The Helmholtz free energy function per unit reference volume in the intermediate configuration

originally proposed by Regueiro [2010] is assumed to take the following functional form as,

ﬁw(F]:[_(uXZR?XZ]\?[’[_(azf(vZ?{)Z}(’[’/a) (331)

where Zy is a vector of the macro strain-like ISVs in B, Z?—( is a vector of the micro strain-like
ISVs, and Z}( 7 1s a spatial derivative of a vector of the micro strain-like ISVs. Note that all these
vectors live in the intermediate configuration B. The material time derivative of the Helmholtz free

energy can be expressed as,



D(pv) _ 0 pe , O6v) o o) D)
- 7t
Dt OFfy MK oy R T g _Dt
Apw) 5 Apw) 5y Apw) Pk o) 4
LY P Y ¢ 2k o7y, TR
where % can be written such that,
p = (po/Jp)/Dt = —pJr/J"
D(p . . J?  D(p
OO _ o pl =~y + 5= o= () + )
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(3.32)

(3.33)

Inserting equations (3.33), (3.25), (3.26), and (3.27) into the Clasius-Duhem inequality (3.22) we

have the following constitutive equations (following [Coleman and Noll, 1963] and [Coleman and

Gurtin, 1967]),

G OPY) o1
Sgi = —
3Fkk

elea(w)

- d(p _
% (pd)) F€71 KcXcA a e
A

KL = 9F.
Fe 1 e (pw)

RaXdM,E ‘I

8XfME f

v a(m/’) e—1
Mz = Xz F{F Lk
Py

Fel

The mapping of the micromorphic stresses to the current configuration is such that,

o e 9(pY)
Okl = JeFk:KS kg = JeFkK OFc.
1
Skl = Je EKL 1L
U (e 0%) o 0p¥) (pv) )
= — | Frr + Xja Xjoit, B
e kK e kA e kM ,E e
J ( OF% OX[a N,
: 1 O(pY) e e
Mikim eF B aMrim = Je One P Xomit
!

J i

(3.34)

(3.35)
(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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The Helmholtz free energy function in terms of the micromorphic elastic deformation measure

invariant equations (3.28-3.30) in the intermediate configuration the ISVs can be written as follows,

Po(Crr Yer Drim Zi Zir Zie 1o

0) (3.41)
After some algebra, using the constitutive equations for the micromorphic stresses resulting from

(3.34-3.36), we can derive the constitutive equations in terms of the elastic deformation measure

invariants such that,

J__ 3(ﬁ1/1) a(ﬁ¢) ~e—1 (e
kL = 28@;-@ * aqf;_(goﬂ AB
0 ﬁl/) ~ve—1 17
+ ar(e ) C T%56 (3.42)
KBC
S A(py) (pY) A1
Yri = 2 =c + 2sym S S
8(ﬁ¢) ~e—1 e
+2sym 8]__16, — CL_/AI PABC—, (343)
KBC
v A(py)
e = 9 44
KLM 81—\%]\7[[( (3 )

where sym [e] denotes the symmetric part. The thermodynamically-conjugate stress-like ISVs are

defined as,

= det O(pY) Sy der O(PY)  Svy det O(pY)
Qr = 5%~ Q= 5zv » Qi = 7% (3.45)
0Z 0Z 8ZK,E
The reduced dissipation inequality in the intermediate configuration is expressed as,
N = = 5 =y 5 ~vy D(Z% ;)
—(p¥) 9% + iQrbx — Qrli — QuZ¥g — Qs —pi™
Q ~ T N Q T 9. ~ b 71
+Sk; (CEBL%K> + (Spr — Skr) [W%E%gc;g; WKN} (3.46)

Mz {5 p Loy e — 2V pskow | LEU oplhp |} 20
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where
62%;771 = X%k XFk (3.47)
Vor = Xei Fr (3.48)

skw [e] denotes the skew-symmetric part defined as,
9skw [o] & |LXP weITe | — [LXP o ITe (3.49)
W DC Y CF* FMK BN ~ DG GBK :

and the spatial derivative of the micro-scale plastic velocity gradient can be expressed such that,

7 XD — |y Pl — (P Xp P p—1
Lowig = [XDBXBM} e (XDB,R —Lps XBB,F() Xpi1 (3-50)

3.2.1 Plastic Evolution Equations

Satisfying the reduced dissipation inequality (3.46) requires the plastic evolution equations

P P
to solve for F and X K.L such that,

p
K XRK’

-
5L

=X, 7_1 — = A
b~ YiplErCiy Yin =Hik (S5.Q) (8:51)

solve for Ff. . and Fy . = F}, KF;Z(}

T X5 s -1 [7 N
TelErCry Viy = Hig (2.QY) (3.52)

solve for x'%. .- and xj - = XkKX];(_[%

25 P o1t _ AV (51 BV
VT pLpir i — 2Vipskw [L)J%%‘I/eéﬁ T %M}’(} = 5 (M, QYY)

(3.53)

P e_ _ _ N 2 p—1
solve for XEK.L and XkR.L = (XkK,L XkAXAK,E)X KK

Note that the macro and micro-gradient plasticity levels are coupled to the micro-plasticity analysis

xp

%p- This means that if plasticity occurs at the micro-

through the plastic micro-gyration tensor L

scale regardless of whether yielding takes place in the macro or the micro-gradient plasticity levels,
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the micro plasticity drives plasticity at the macro and the micro-gradient levels. Therefore, we
have F* ]73( 5 and X% KL evolving when X% - evolves. According to the reduced dissipation inequality,
we proposed the evolution equation to solve for XII)?K,E (3.53) directly to lessen computational
cost, although it can be calculated through the finite element interpolation of Xl;i( - Note that
the evolution equations for the macro and the micro plasticity presented in this section have been
modified compared to that of Regueiro [2010]. The evolution equations proposed by Regueiro [2010]

are such that,

CssL” . = Hri (S, Q) (3.54)

solve for F?(K and Fyp = FkKFpI_{IK

et e ,
telErCiy Yin = Hig (2-5,QY) (3.55)

D _ p—1
solve for X - and X}z = Xkk X
7 X>P TXP qre—17 —_ gVx T OV
oLlom i = 2YIpskw [LDC‘I’%F r %M}’(} = HpJ (M, QYY)

(3.56)

» e _ e D p—1L
solve for XRK.L and XkR.L = (XkK,L XkAXAK,E)X KK

According to these evolution equations, if plasticity occurs at micro scale, it only drives the micro-
gradient plasticity level regardless of whether its yielding occurs or not. In the micromorphic
elastoplasticity numerical simulations, it has been observed that defining the micro plastic evolution
function HY in terms of the relative stress ¥ — S does not drive the plastic part of the micro-
deformation tensor x? to evolve consistently with the applied load and the plastic part of macro
deformation gradient FP. In addition, through the simulations the sign of relative stress may change
from positive to negative several times, which denotes that the direction of the micro plastic flow will
change accordingly. This leads to severe numerical difficulties as well as its physical interpretation
is under question. Also, note that if there is significant macro-scale plastic volume change through

J?, then the term —(pb)JP/JP will contribute to the reduced dissipation inequality in (3.46). It
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was shown in [Bennet et al., 2016] that the plastic evolution equations can be formulated in terms
of a thermodynamically-conjugate Eshelby-Mandel stress by re-working (3.46). This is relevant for
materials that experience finite plastic volume change or damage as well as texture effects. Such

formulation will be considered later, not here.

3.3 Constitutive Equations

In this section, the constitutive equations for the micromorphic elastoplasticity will be de-
rived. To this end, the quadratic form of the Helmholtz free energy function similar to micromorphic
elasticity is used. The Helmholtz free energy function per unit volume is defined in the intermediate

configuration B and the energy terms of the internal state variables (ISVs) are involved such that,

(3.57)

Note that the ISVs related to the macro and micro scales are scalar quantities defining the strength
of the material. H and HX are scalar hardening/softening parameters at the macro and micro
scales respectively. ﬁg% is a symmetric second order hardening/softening modulus tensor for the

micro gradient plasticity level, which we will assume is an isotropic tensor as FIIZ% = (HVX)5 KL

The elastic strains are defined similar to micromorphic elasticity as QE%Z = C_’;—(E —0gp, € =

KXZE, 57 The elastic moduli for isotropic linear elasticity can be

expressed as,
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Agimn = Mgrdun + 1 Ordry + g n0Lar) (3.58)
Bginn = (1= 7)0gp0nn + mOrndry + VR nOLar
—0(0rOrN + OgNOLNr) (3.59)
Crmrnpg = 71 (Orn0kNOpg T 0rg0mKINP)

+72 0230k pONG + 01k ONGoNP)

73010k GONP + TOLNON KOG

+75 (0103 n0pg + 01p0NkONG)

7601k ONPONG + TIOLNONIPORG

+78 0208100k N + 01.00n N 0K P)

+790LN0NQOR P + T00LPONINORQ
+T110L00 i pOR N (3.60)
Diginy = T0rpduny +00xrydin +0xn0Lim) (3.61)
where AREMN and DREMN have major and minor symmetry, while BKZMN and CKZMNPQ have
only major symmetry. The micromorphic linear elastic isotropic continuum has 18 elastic pa-
rameters listed as A\, u, 0, 7, K, v, 0, 71 ...711. Note that the elastic parameters related to the
couple stress are defined according to the length scale. The units of 7y ... 71 are stressxlength?

(e.g., Pa.m?). After some algebra using (3.42-3.45), and (3.57), it can be shown that the stress

constitutive relations are,



=
wll
@%I (9 & =

+(DrpunEyy + Breun€ar) |Coi €55 + 0in

e g—lfwe_ o

+CrpenralpaClo Panc

AgunEyy + PrpunEin

+2sym {(DREMNEEN + BraunEiy) [CE,EIEEB +0r5
+CrpenralraCia Tose |

HZ

HXZX

[TVXx 7X
HYXZY,
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(3.62)

(3.63)
(3.64)
(3.65)
(3.66)

(3.67)

Assuming small elastic deformations and removing the quadratic terms in (3.62) and (3.63), the

simplified stress constitutive equations for Sz, Yz, and Mg,z can be written such as,

(A +7) (B )0z + 20+ 0) B

(€5 )Orr + rExr +vET &

A+ 1) (B i)z +2(n+0)E%;

+1(Exp)Ort + 2sym [k€k 7 + vEL£]

1 (Ozu T kpp +0urTppr) + 72 Ozl vis + 00kl ppx)
730ril wwk + T0nxTrpp + 75 (Oralwpp + Onusl Niv)
760,k U ynin + 7l o + 78 (P + Tiker)

ol g + nolyrie + il garr

(3.68)

(3.69)

(3.70)
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3.4 Yield Functions and Evolution Equations

The micromorphic continuum introduces three levels of plasticity based on the three con-
jugate stress-plastic-power terms appearing in the reduced dissipation inequality (3.46) including
the macro, micro, and micro-gradient plasticity levels. Therefore, the plastic deformations cal-
culated from the evolution equations must satisfy the reduced dissipation inequality (3.46). This
approach of formulating the micromorphic elastoplasticity allows yielding and plastic deformation
at the macro, micro and micro-gradient levels separately. Note that X% K[ can be calculated from
the finite element interpolation of X%K’ however, in the simulations of this thesis the evolution
equation (3.53) has been implemented directly for calculation X% KL It is possible to define only
one yield function to be a function of all three stresses (S, ¥, M). If this yield function detects
yielding this means that yielding occurs at the all of the three scales at once (i.e., there is only one
plastic multiplier). This approach will simplify the numerical implementation of the micromorphic
elastoplasticity, and reduce the difficulty in finding appropriate plastic multipliers for each of the
plasticity levels. However, this is not desirable and will not reflect the physics properly. Therefore,
in this research, three distinct yield functions have been defined for each of the plasticity levels, and,
thus F7, X%, and X];I, ; are able to evolve separately through their separate evolution equations
and separate plastic multipliers. In this thesis the micromorphic elastoplasticity will be developed
based on the Drucker-Prager Pressure-Sensitive plasticity model.

Macro-scale plasticity

For macro-scale plasticity, the macroscopic yield function F’(macm) and the plastic potential function

G (macro) are written such that,



F(macro) (S’ 6)

C7;’(7710,07’0) (S7 5)

|devS| — (A% - B¢p) <0

[devS]| = /(devS) : (devS)

(devS) : (devS) = (devS;y)(devSyy)

5 def 5 1. S
devSr; = Sy — <3CZBSAB) cr7

_def 1 =o 5
p = 3C55%n

Ad):ﬁd’cosqﬁ, B¢:ﬁ¢sin¢, /3¢>:

|devS|| - (4%~ BYp)

AY = chosw , BY = B¢sin¢, B¢

3+ Bsing

3+ fBsiny
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(3.71)

(3.72)

where ¢ is the macro cohesion, ¢ the macro friction angle, ¢ the macro dilation angle, and —1 <

B8 < 1. Note that 8 = 1 makes the Drucker-Prager yield surface intersect the triaxial extension

vertices of the Mohr-Coulomb yield surface, and 5 = —1 the triaxial compression vertices of the

Mohr-Coulomb yield surface. The reduced dissipation inequality will be satisfied if the selected

value for ¢ is larger than or equal to v, (¢ > ). This has been shown by Vermeer and de Borst

[1984]. The evolution equations for the macro plasticity level is expressed such that,

= = def - aé(’macra)

LEYEFYFN TKN v 851
8G(macro)
8§RE
i,,idevgl_ﬂi
KL ™ devS]|
. oG
def - macro -
¢ = HZ
¢ = HZ=HAY
Q=

N 1 o

(3.73)

(3.74)
(3.75)
(3.76)

(3.77)
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where 7 is the macro plastic multiplier in the intermediate configuration. The plastic part of the
deformation gradient is solved by integrating the following equation, which is derived from (3.73)

as,

. ___0G _ _
p _ zpme—1Y T (macro) p —1 x:p x(e=1)
Foe =791 —5g_— e Cpr VinlsrCr

P
EFYFN wvFre (3.78)

Micro-scale plasticity

X
(micro)

For the micro-scale plasticity, the microscopic yield FX and the plastic potential G

(micro)

functions are expressed as,

F (i) (2,E9) L |dev()| - (AX’%X - BX’%X) <0 (3.79)
26
X0 — BX:P X Xo® — AXoP qin AX ¢ _ Ve
A BX?cospX , B BX?sin X | B 3T Ax s X
o\ def o e
dev(E77) = (Ery) — pXCF; !
_y def 1 e [
* = 5Ch(a8)
Pniery(5:8) = dev()] - (402 - BVpY) (3.80)

2v/6
3 + BX sin X

AX? = XYV cog X | BXY = BX¥gin X | AV =
where ¢X is the micro cohesion, ¢X the micro friction angle, /X the micro dilation angle, and —1 <
B6X < 1, which are the material parameters to govern the plasticity at the micro-scale. It can be
seen that all the material parameters for the micro plasticity level can be defined irrespective of the
macro plasticity level parameters. This approach of formulating the micromorphic elastoplasticity
provides us a chance of capturing the different phenomenological aspects of the macro and micro
level plasticities. In this research, we employed the same functional forms for the macro and micro

level yield and the plastic potential functions, but this is not a requirement. The evolution equations

for the micro-scale plasticity can be written such that,
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o .. OGX
Je _[xroxelge o def AX —= (3.81)
LEZEF~FN KN 8(2RZ)
a@x A 1 =
h — NX_ 4+ —BX¥Ce.
0(Sgp) K3 o
NX — dev(¥gr)
KL |dev(Z)
;X dﬁf _;Xaéx o XvaX
Zx s = = AXYy (3.82)
X =  FHXZX (3.83)
X = FXZX — X AXP3X (3.84)
ox (3.85)

where X is the micro plastic multiplier in the intermediate configuration. The evolution of the

plastic part of micro-deformation tensor is derived from (3.81) as,

oGYX .
.p yae—l (micro) ~e—1Ax,e. p
KBy = XU i) ge g (3.86)
BN BP 62013 TO "TQQMQN

Micro-scale gradient plasticity

For the micro-scale gradient plasticity, the micro-gradient yield FYX and plastic potential GVX

functions are written such that,

=~V T — def v _V v/
FR’(Xmicro—grad)(M’ CVX) = ”deVMHf( - (AVX7¢CR'X o Bvx,(pr?X) <0 (3.87)
26

Vx,¢ Vx,¢ Vx VX0 — AVX:® qin AV X Vx,¢ —
A = f cos¢p X, B =p sing¥X | 3 = 31 Vs g

7 def — ~e—1-=Vx
devMisir = Mysg — ij Py

|dev(M)| 5 = \/devMU®devMU®

_Vy def 1_ —
pr* = 3CasMask

GYx (ML,e¥Y) ) dev M| 4 — (AVX’%;X - BVX’%?;X) (3.88)

K (micro—grad

where ¢VX is the micro gradient cohesion, ¢VX the micro gradient friction angle, 1)VX the micro

gradient dilation angle, and —1 < BYX < 1. These are the material parameters which define
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the behavior of the material at the micro-gradient plasticity level. Note that the symbol (e) is
used to show that the index is not a dummy index, thus there is summation only over the other
indices. This is used to present the spatial gradient direction for the micro-gradient plasticity.
The micro-gradient plasticity is dependent on the spatial gradient direction. Therefore, for each of
the Cartesian coordinate directions in space, the yield and the plastic potential functions must be

defined. The evolution equations for the micro-gradient plasticity can be written such that,

_—
_ - _ Zx,p T el def -V I(micro—grad)
oL — 205 pokw [ERR U Ty | & 47X — e (3:89)
KLM
OGYX devMpry 1
I(m_zcro—grad) _ ev KLM 7BVx,¢'Cf€7 7(517]\7[
OM gy [devM[; 3 e
. aGYX
def -V -V
25 % AN = AV (37614 (3.90)
’ 8CA
eTX = VXX (3.99)

where 'Lyj—vx is the micro plastic gradient multiplier vector. The plastic part of micro-deformation
radient X% , - is solved by integrating in time the following equation, which is derived from (3.89
g XN AN y g g

as,

=V

OG ] X .
.p = VUxge—1 I(micro—grad) p =xp rre—1 »
XNA,M - ’7]’ \IINE 8]\7[*” XPA+2SkW LNC'\IJC'FF%PM] X]BA
MLP
TXP P D TD
T LNiXTax — Xyarlrm (3.92)

Integrating in time these evolution equations (3.73), (3.81), and (3.89), we are able to solve for

F IZ'I, X%, and XIIZI 7- Using the multiplicative decomposition of the deformation gradient and the

e

micro-deformation tensor, Ff,, x¢,, and x%, ; can be solved to calculate the micromorphic stresses

S, £, and M and update the evolution equations.
3.5 Numerical Time Integration

In this research the evolution equations (3.73), (3.81), and (3.89) are integrated over time used

the scheme proposed by Moran et al. [1990] called “semi-implicit method”. This approach is used
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to avoid the complexity of a full implicit method for the micromorphic plastic evolution equations
in solving for the macro-plastic multiplier 7, the micro-plastic multiplier 4X, and the micro-gradient
plastic multiplier ¥VX. The employed semi-implicit method maintains the frame indifference of the
integrated constitutive equations. Note that this integration method is conditionally stable and
therefore, there is a limitation on time steps to obtain stable results. The semi-implicit numerical
time integration scheme for the finite strain micromorphic elastoplasticity can be written such that

verw: AE AXE e P 7 X & X
Given: FnJrl’ Xn+1> CnaCn ) v ) Ffm Xn» Zna Zna Cn; Cn

n

e Calculate trial values of macroscopic and microscopic yield functions Fraero and F‘;fn oro

C,e(tr) — Fe(tr)TFe(tr)
Ee(tr) _ (Ce(t'r) . j) /2

celtr) —

—1
X Xn+1Xh

geltr) — Fe(tr)TXe(tr)

geltn) _ et _ g

SN — ) (B ) T 2(u+ o) BT oy (0089 ) 1ot k€T g
=90 = (vt 27) (0BT ) L4 2 (ot 20) BT+ (25— 7) (€7 ) 1

+2(k +v —0)sym <£’€(”)>

ot =Y <2e(tr) ’ C,x,e(tr) EX>

micro maicro ’ & n
Fg{acro = Fmacro (S’e(tr)v Ce(tr)v En) (393)

e Plasticity may occur in both the macroscopic and microscopic scales, where the plastic part
of the micro-deformation tensor x* 41 and deformation gradient F? 41 can be solved such

that,



(micro)

X
T e . -1 Ax.e—1 F.e _ 3
Vi B X B XThm) CEN ) Vi) = 7 < o= ,) >

IGX
_ - Te—1 (micro) e—1  Ax.e
X%N(n—H) = X%N(n) + A%)@(Jrl‘PBP(n) ( 0S0p ) \I'TO(n)CX’

T X _ —1
AtL)é%(n+1) = (X%I(n+1) - X%I@)) X];F(n)
~e = =p—1 T, € 7X5 ~ 7(5—1 T, € _ =
CramFritx n) \I'EE(n)LXEJg(nH)C}SN(n)\I’RN(n) =7 <

_ oG
D o _ e—1 (macro) D
Fromsny = Foow T Am1Chz ( 9551 > From)

e—1 J,e X e—1 Te
050 Y LB AL (1) CFr ) YR N ) F R ()

F -1

ALY iy = (Fhrwrny = For) Frog

e Update elastic deformation

Ffwrl = Fn+1Ff;;11
6761-1-1 = F;Ti-le-i-l
E2+1 = (C’Z—&—l - I) /2
Xnt1 = Xn+1xfz:rll
‘ili+1 = F2T+1XZ+1

1= — 1

e Update the second Piola Kirchhoff S and the micro-stress

S =O+7)(rEL )T +2(u+0) By +n(tr€6,) T

R + VEZTH

S =\ +2r) (rEL ) T+2(u+20)ES 4+ (20— 1) (tr€0 1) T

+2(k+v—o0)sym (E,,)

TQ(n)XQN(n)

. 8G(macro)
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(3.94)

(3.95)

(3.96)

(3.97)

(3.98)
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e Internal state variables update

Znt1 = Zn + Any1
Cns1 = HZ, 11 (3.99)
zX i —ZX+A7nH
Cr = ETXZ;‘H (3.100)
(3.101)
Micro-gradient plasticity:
Given: Vox, i1 Fri1s Xog1 Cn+17 CnH, 7n+1, Y D VIZNX, ZX, &y, EX

e Calculating trial values for micro-gradient plasticity

Xiir = Xk 1) P X — X X510 VoL

PREn = i

155% = Copnrinlinmny

FPO = B () (3.102)

e Numerical time integration of micro-gradient plastic evolution

T - D XP p—1 T X>P 1
Y i) (XDB,K LDB(n+1)XBB K(n)) XBNI(n) ~ 205 p ) SkW LDC( +1)\I}Z’F(n)F;‘MK( )
~Vx
_ S/VX I(micro—grad)
! OMp L
n
GYX
_ P _Vx ~e—1 I(micro—grad) P
XN A it (n+1) = Xnanrm) T Ainsn Y N NL(n) My 1 p XPA(n)

X, e—1 e
+2skw [AtL;%p—( )‘I’Cp(n)FFPM(n) XZIDE’A(n)

X7p yu TP
ALY ) XEa 1) ~ XN L) AL Dt () (3.103)

e _ p—1  p—1 e D p—1
Xit, Lnt1) = XK LD L0 Xie ) ™ XeN () XN A3 (1) X AL 41) (3.104)
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71

opNmi1) = Copnrin Tk Li(nsn) (3.106)
e Updating internal state variables of micro-gradient plasticity
Vx  _ 7Vx
2 I(n+1) Z( )+A71(n+1)
=Vx Vx 7Vx
Criminy = HX 250 (3.107)
3.5.1 Finite Element Formulation for Micromorphic Elastoplasticity in the Inter-

mediate Configuration

For the finite element formulation, the coupled strong form (S) of the micromorphic balance

of momenta in the current configuration are presented such that,

Find ug(x,t) : B x [0, tanal] — R, and  épx(x,t) : B x [0, tana] — R, such that

ot tp(fe —tg) = 0€B

u(t) = gp(t)on Iy

onu(t) = t7(t)on Ty

(5) up(2,0) = wp(x) €B
Omk = Smk + Mkl + Pl — Wkm) = 0E€B

ou(t) = gh(t)only

Memnk(t) = M (t) on Iy
Pri(z,0) = opo(z) € B

(3.108)

where B = BU [and I' =Ty UT'y = ' UT' 5. The finite element formulation will be presented in

the intermediate configuration for a Total Lagrangian implementation of the micromorphic elasto-

plasticity. Through the weighted residual method and integration by parts, the balance of linear
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momentum in the current configuration can be expressed as,

/Bwk [Ulk,l +p (fk — uk)] dv,g = /33 wroda — /B [waO'lk + wgp (fk — uk)] dvg =0 (3.109)
1 e g e
T HSLrEy

> and
Nanson’s formula to relate area change n;dag = J°F ;i(;l]v #dAg, the variational form of the balance

Applying the Piola transforms and mapping P,; = Jo F E;l and oy, =

of linear momentum can be written as,

/85 wi(Pug Ng)dAg — /g [wi (B Spr Fig) + wip (fi — i) ] dVs = 0 (3.110)

Similarly, the variational form of the balance of first moment of momentum in the current config-

uration is such that,

/Bnml [Omi = Smi + Mikm + p (Nim — Wim)] dvg =0 (3.111)

Using the mapping (3.19)-(3.21) to the intermediate configuration, the variational form of the

balance of first moment of momentum in the intermediate configuration is such that,

/Bﬂml (FeiSun 7 — FoaSan g + 0 im — wim)] dVs

_/BnmhkF]:[_(FlLMKLMX;MdVB +/ NiMimdAg = 0 (3.112)
T -

M
where the couple traction term /\jllm = MpimJ eFI‘i{;lN B = ﬂlm #Ni. The coupled weak form for

micromorphic elastoplastic-dynamics in B can be stated as
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Find uy(X,t) € 7% and @4 (X,t) € #® such that

Jg Wi (B Spr Fg) +wipfi] dVs — [r, wi(TE)dAg — [5wipiigdVs = 0

St [Fe i (Siar, — San) Fig, + phim) dVs

= Ja(mmw) [Fig g Mgcpars, i) 4V + Jo Nt MimdAg — [ (i) wimdVs = 0
(W) { holds Vuw(X) € ¥* and 5, (X) € ¥

= {uk : By x [O,tﬁnal] — ]R3,uk S Hl,uk(X,t) = g};(t) onFZ,uk(X,O) = ukg(X)}

P = {wy : By R3 wy, € HY  wy, :0011FZ}

V= {Nmi : Bo — R9777ml € Hl,ﬁmz = Oonfg}
(3.113)

Ignoring the boundary traction (TII—; ), the body force (pfi), and the body force couple (pA;y,),

and boundary traction couple terms (/\jl), we arrive at the following equations,

g = /_wkl( SLK )dVB—l—/wkpudeﬁ =0 (3.114)
B
H = /nszﬁLM (Zwrz — Swz) F7dVs + /nml,kF Mg L XAV
B B
+ /nmlpwlmd‘_/ﬁ =0 (3115)
B
The linearization can be written as,

LG=G+6G=0, LH=H+H=0 (3.116)

where 0(e) is the incremental operator with respect to the linearization procedure. Note that the
superscript (n+ 1) is dropped from the formulations but is implied. The variational formulation of

the elastic and plastic part of the micromorphic deformations are derived such that,

= {CI)kK By x [0 tﬁnal] — RY ,Pric € H! (I)kK( ) G ( )Oan,q)kK(X,O) = (I)k(](X)}
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g = H(A)¥ T (év(;‘;)]))y )\P%o“”)@%é‘”)x%? (3.117)
5X5)\7_B1 = —Xyp [5XPJ} XI}; (3.118)
SALEE] = NG ok i (3.119)
OFE, = §(A)C5 " (‘ﬁ%"?)upgg)
v O s L ox R (3.120)
SFP Y = —FPIoFD PP (3.121)
6[AE%F} - FSZL)FgBl‘;FgNFJ%Fl (3.122)
Tx ()
g = (7)ot ()
+ 2skw | (0L5% ) \vg;“")r;fzm A
+ [MLX:E} AR L[&ALP } (3.123)
6FG = (ow) Ft = F (0F%,) FY (3.124)
o = (0N = Xip <5><’1’3J) Xt (3.125)
oxik = 0Pk (3.126)
6 (wry) = —wWga(0Fun)Fy (3.127)
OXpiir = (6<I>kB,LF£ ~ XirXhp. Frar )X’éf (3.128)
+ <XkBL5 P — XeaXhg iy 1);@‘; (3.129)
(L Pl = X Frg ) X! (3.130)
* (X’“BLFM XirXap L F L I)X%_El (3.131)
(B Fy — XiXes 0P ) Xt (3.132)
+ (XkBLFM XkRXRBLFp 1) 5X%El (3.133)



The linearization of the micromorphic strains and stresses are written such that,

5By = 5 [OFG)Fy + Fy0F)
08 = [OFDIXk + F7(0xiz)]
i = OFXupar T FerdXir
0Sgr = (A +7) Oy y)0gr +2(n+0) (0EEL)
+ 1(6EG )0kt + k(0E%) + V(65 &)
Srr = (A+27) ((5E;—4M)5KL +2(u+ 20) (5E%I_()
+ (2n— T)(ééjm)é,—@ +2(k+v— U)sym(éc‘j[e—@)
Mgy = Crimunpodlpo
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(3.134)
(3.135)

(3.136)

(3.137)

(3.138)

(3.139)

Using the linearized formulations of the micromorphic deformation and stresses tensors, the lin-

earized formulation of the balance of linear momentum can be expressed as follows,

/B(S(wk,l)(FleLSLKF]S )dVﬁJr/wkl((SFzL) St FerdVs
+ /Bwkl = (0Sti) Fy dVB+/wkl 7Stk (0Fcg) dVs
+ /_wkp(Mk)dVB

B

and for the balance of first moment of momentum we have,

OH = /Bnml ((SF:;LM) (EME - SME) Fl%df/ﬂ + /BnmlanMé‘ (EME _ S]\?[f,) F}%dVB

+

_l’_

Mg (0F i) Ffp Mg i X iy dVs + /Bnml,kFEf{ (OF7) Mg pyixXsidVs
nml,kFlfkﬂeE(s (MF(EM) X;Mdvﬁ + /Bﬁml,kF F MKLM (5X M) dVB

Mt (6X15) X1 LR (5)dV + /Bnmliém (0Xz) PIRL(3)AVS

+

+

_|_

NmiXIK X 1,0 (ﬁff(i(ﬁ)> dVs

(3.140)

Mt E 1 (SME - gME) (5Flei) dVB + /85(77ml7k:) ed)s MKLMXdeVB

(3.141)
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The micro-inertia term I L(p) In the intermediate configuration is defined as follows,

Pl sdVs / | FIEDE @ (3.142)
Vs
where the plastically deformed relative position vector in the intermediate configuration is written

as follows,

[1]1

@ =y B (3.143)

Moment of micro-inertia in the reference configuration I is related to moment of micro-inertia in

the intermediate configuration I 3 as follows,

_ 7 = def _(a)=(a)=(a) ;777 (a
polgrpdVs = /d i pI=W=W gy (@ (3.144)
B

= XpgXip /d . pOEN = gy (@

:(a) :(04)

X Xippo)Ere B AV = X i X5 pos) L3y AV

—1 p—1+
== Ixrp) = X%KXZ;;IRE(,B) (3.145)

The coupled finite element formulation can be written upon using the linearization of the balance
of linear and first moment of momenta equations. Note that the terms involving du and d® are the
“stiffness” matrix components. The terms involving §4 and 6P are the “mass” matrix components.

The system of coupled finite element equations can be expressed such that,

Mdd Md¢ o Kdd Kd¢ ou —Rd
- + . = (3.146)

M¢d M¢¢ 0P K¢d K¢¢ oP —R¢
where R; and R are the residual vectors at the current iteration of the Newton-Raphson algorithm
(Isbuga, 2012]. K4, K44 are the stiffness matrix components related to the balance of linear

momentum involving du and d® respectively. K g, K44 are the stiffness matrix terms related to

the balance of first moment of momentum involving du and d®. Similarly we have M4, M 44,



7
and M 44, M 44 which are the components of mass matrix related to the balance of linear and the
balance of first moment of momenta respectively. The coupled finite element formulation for the
quasi-static micromorphic elastoplasticity can derived as follows,

Kdd Kd¢ du —Rd
. — (3.147)



Chapter 4

Applying Micromorphic Filter on 3D Beam Finite
Element Analysis with Idealized Periodic

Micro-Structure

This chapter is devoted to applying a micromorphic filter on a 3D beam finite element analy-
sis (FEA) with idealized periodic micro-structure by Bishop and Lim [2016]. The goal of this study
is to present the physical motivation of a micromorphic continuum in a framework of multiscale
material modeling. This brief study presents a tool called “micromorphic filter” to perform the
bridging of underlying direct numerical simulation (DNS) of the material at grain scale to contin-
uum finite element scale. This is beneficial in terms of better understanding the effect of material’s
micro-structure on macroscopic behavior and perhaps improving macroscopic quantities including
stiffness and strength of materials via fabricating heterogeneous particulate physics at micro-scale
( see Gheibi and Gassman [2016], Khabiri et al. [2016], Sasanakul et al. [2017]). The micromorphic
filter works as a direct link between overlapping micromorphic continuum and DNS regions. This
is done through discretizing the DNS region into a number of averaging domains (called macro-
elements (dvg in continuum framework)). The number of averaging domains defines the picture
of micromorphic continuum from the underlying micro-structure of the material. The micromor-
phic continuum theory of Eringen was proposed to incorporate micro-structures of materials in a

continuum framework. Therefore, micro-deformation tensor is proposed to govern “micro-element”
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deformations, besides the deformation gradient capturing macroscopic deformations. In this chap-
ter the approach of applying micromorphic filter will be briefly reviewed and some initial results

will be presented.

4.1 Applying Micromorphic Filter and Stress Calculations from 3D DNS

To start, we should first recall the kinematics and balance equations of the micromorphic
continuum derived in Chapter 2. The idea of micromorphic filter is based on enforcing a direct link
between the DNS region and the micromorphic continuum. This is done through discretizing the
DNS region into a number of averaging domains ngg (macro-element /8 with differential dvg) in such
a way that each averaging domain is composed of a number of micro-element volumes v(® in the
current configuration (similar to dv(®) in the continuum description). Through the discretization,
the micromorphic continuum parameters including the micromorphic stresses, micro-deformation
tensor x, and the micromorphic strain tensors can be calculated. This chapter deals with the
calculation of micromorphic stresses. Figure 4.1 illustrates the schematic of discretized DNS region
into a number of the averaging domains ngg with 8 micro-element volumes within each averaging
domain v(®, o =1, ..., 8 for the symmetric micro-element Cauchy stress (@ calculations. For the
analysis in this chapter, we take o(® from DNS by Bishop and Lim [2016] which is the average
stress of each unit cell. (see Fig.4.2)

In the micromorphic continuum, it is assumed that a macro-scale continuum material point is com-
prised of micro-elements. Therefore, we define averaging domain szg which contains 8 smaller
discrete micro-element domains () with v(®) (micro-elements). The relative position vector g
extends from cg (centroid of micromorphic filter averaging domain ngg ) to ¢l®) (centroid of micro-
element («)) in the current configuration. Note that discrete averaging domain szg corresponds to
dvg macroscopic differential volume in the micromorphic continuum framework. Similarly, v(® cor-
responds to dv(® micro-element volume (see Fig.2.1). Therefore, we can approximate the integrals

in a continuum framework by discrete definitions, such that,
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avg
Qa

vg

Figure 4.1. Illustration of micromorphic stress averaging domain Qg and micro-element domains o =

1,...,8 with centroid of ¢(®, volume v(®)| surface area a(®, unit normal vector n(®)

Navg Navg
/B (9)dvsg = > [ /Q . () dv(o‘)] ~ Y (9) WG (4.1)
B=1 B B=1
/Q L@@ a Y (o) ey (4.2)
B a=1

where W9 and W(® are the weights of integration which we assume W9 = W) = 1 for
consistency of volume calculations assuming ngg = S Pmicro (@) From Fig.4.1, there are nyicro = 8
micro-elements to generate the average. Note that n,,;.-, could be increased to 27,64, ..., but, 8 is

the minimum. Based on the previous discussion, the symmetric micro-stress s;; and unsymmetric

couple stress my;,, are written as

def 1 (@) ; (a)
Sp = @ — oy, dv (4.3)
dQ}/B dvg M
€ ]- [e%
MEim dzf - Ul(gl)fgla)dv(a) (4.4)
dvﬁ dvg

Using (4.2), (4.3), and (4.4), symmetric micro-stress and unsymmetric couple stress at point cg in

the averaging domain Qg)”g can be derived such that
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(Skl)ﬁ = avg Z Ukl U (45)
(mklm>5 = Qavg Z Ukl 7(7?) (46)

Through (4.5) and (4.6), we can obtain micro-stress and couple stress in discretized averaging
domain ngg . Now, we look into the balance of first moment of momentum (2.67) to calculate the
unsymmetric Cauchy stress og at point cg. The balance of first moment of momentum integrated

over the body B in the current configuration is such that

/B [0k — Smk + Mikmi + P(Llim — Wim)] dvg =0 (4.7)

In this chapter, we are assuming that the body force couple #x,, (no body force terms like gravity)
and micro-spin inertia wg,, are zero, since we are dealing with quasi-static analysis. The balance

of first moment of momentum in the discretized averaging domain is such that,

Navg

Z [(Umk)ﬁ - (Smk)ﬁ + (mlkm,l)g + P ((Ekm)ﬁ - (ka)ﬁ>} ngg =0 (4'8)
B=1

Assuming the balance equation is satisfied “pointwise” at each 8 averaging domain, such that,

(o-mk)ﬂ = (Smk),()’ - (mlkm,l)ﬁ - P <(€km)5 - (wkm)ﬁ> (4'9)

The remaining terms of (4.8) can be written in the discretized averaging domain such that

Navg
/B Tmidvy = Z[(amk)gszg”ﬂ (4.10)

p=1

Navg MNmicro
/Smkdvﬁ ~ [(Smk)ggg ]: [Z Ukl ’U ] (4.11)
N p=1 =1

B
/Bmlkm,ldvﬂ = /azs mlkmmda% [Z oeln® ] (4.12)
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In the next section the numerical results on micromorphic filter and stress calculations are presented
for three dimensional beam FE models with 128 (4 x 4 x 8) and 1024 (8 x 8 x 16) periodic unit

cells.

4.2 Numerical Example

This section is devoted to presenting the numerical results of the micromorphic filter and
the stress calculations on three dimensional beam models with idealized periodic micro-structures.
Figure 4.2 depicts the schematic of beam models with two idealized periodic micro-structures
[Bishop and Lim, 2016] on which we applied micromorphic filter. In this chapter the micromorphic
filter is applied on either 16 averaging domains 14,y = 2 x 2 x4 (2 averaging domains in « direction,
2 averaging domains in y direction, 4 averaging domains in z direction) or 64 averaging domains
Nawg = 4 x 4 x 8. According to the number of averaging domains on which the micromorphic
filter is applied (2 x 2 x 4 or 4 x 4 x 8) in Fig.4.2, the results of the micromorphic stresses are
plotted along the centroids of the darkened block at the top left edge of the beam models. Figure
4.3 illustrates the contour plot of 05§ (averaged o33 stress of each unit cell) for the beam models.
For the case in which the averaging domain ngg is selected such that the micro-element volume

cell (a)

@) i equal to the unit cell volume, 053" is equal to 03?;

ol (micro-element Cauchy stress in top and
bottom models). Note that based on the number of unit cells in the beam model, we can choose
the number of micromorphic averaging domains n4,4 to calculate the micromorphic stresses. For
the model with (4 x 4 x 8) unit cells (4 unit cells in « direction, 4 unit cells in y direction, 8 unit
cells in z direction) we calculated the stresses through (ng.,g = 2 x 2 x 4 = 16) averaging domains
each with n,e0 = 8. For the case with (8 x 8 x 16) unit cells, we calculated the micromorphic
stresses through (ngyg = 2 X 2 x 4 = 16) and (ngyy = 4 x 4 x 8 = 128) averaging domains. Note
that in the case (ngwg = 2 X 2 x 4 = 16) each micro-element v(® contains 8 unit cells, however, in
the other case (ngy,y = 4 x 4 x 8 = 128) each micro-element v(®) corresponds to one unit cell. In
each case Npmicro 18 equal to 8. Figures 4.4, 4.5, 4.6, and 4.7 show the micro-element Cauchy stress

component U:(g), the calculated macro-element micromorphic Cauchy stress component (o33) 8 the



83
micro-stress component (s33) . and the couple stress components (m331) 5 (m332) g0 and (ms33) 5

out of the discretized averaging domain €3’ along the length of the beams with (4 x 4 x 8) and
(8 x 8 x 16) unit cells.

Results of micromorphic filter

plotted along the centerline of darkened block for
224 averaging domains

i 3D beam model with 448 unit cells
€T
Results of micromorphic filter

plotted along the centerline of darkened block for
2:2-4 averaging domains

Results of micromorphic filter

plotted along the centerline of darkened block for
4:4-8 averaging domains

3D beam model with 8<8<16 unit cells

Figure 4.2. schematic of beam models with periodic micro-structure
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Figure 4.3. Contour plot of 055" averaged stress in unit cells [Bishop and Lim, 2016].
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Figure 4.5. Micromorphic stresses, unsymmetric Cauchy stress component (o33) 5, Symmetric micro-stress
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In Fig.4.4, the micro-element Cauchy stress component a:gg) of the case with (8 x 8 x 16) unit
cells and (2 x 2 x 4) averaging domains (blue solid diamonds in Fig.4.4) is equal to the case with
(4 x 4 x 8) unit cells and (2 x 2 x 4) averaging domains (red solid diamonds in Fig.4.4). Therefore,
the obtained unsymmetric Cauchy stress component (o33)z (blue and red dashed lines) for these
two cases are equal. This figure also shows the micro-element Cauchy stress component a:g?;) of the
case with (8 x 8 x 16) unit cells and (4 x 4) averaging domains (green solid diamonds). It can be
seen that for this case with more averaging domains, the model captures higher aég) which leads to
the higher (033) 4 in comparison with the case with (2 x 2 x 4) averaging domains. Note that with
the lower number of averaging domains, the micro-element stress is calculated via averaging over
a larger domain (more unit cells). Therefore, the obtained accuracy in calculating micro-element
stress and macro-element stress tensors will be lowered. Figure 4.5 illustrates the unsymmetric
Cauchy stress component (033) 5 in comparison with the symmetric micro-stress component (s33) 5
Similarly, the symmetric micro-stress component (s33)s obtained from the case with (8 x 8 x 16)
unit cells and (2 x 2 x 4) averaging domains is overlapped with that of the case with (4 x 4 X 8) unit
cells and (2 x 2 x4) averaging domains. In the case with (8 x 8 x 16) unit cells, there is a discrepancy
between the calculated stresses out of the model with (4 x 4 x 8) averaging domains and those of
the model with (2 x 2 x 4) averaging domains. This shows that the size of averaging domains is
playing a crucial role in calculating the micromorphic stresses. Increasing the size of averaging
domains in calculating the micromorphic stresses is equal to having a larger relative position vector
£ and a coarser micro-structure (a coarser interpretation of the micro-structure). Therefore, in
the case with (8 x 8 x 16) unit cells and (2 x 2 x 4) averaging domains, the picture of micromorphic
continuum from the underlying micro-structure is equal to the case with (4 x 4 x 8) unit cells and
(2 x 2 x 4) averaging domains for this particular example. Figure 4.6 illustrates the couple stress
components (ms31)s, (M332)g, and (m333)z for the both models with (4 x 4 x 8) and (8 x 8 x 16)
unit cells. It can be seen that the couple stress component (mss1)g is zero for all the models which
is related to the uniform distribution of the average unit cell Cauchy stress a§§” (Fig.4.3) along the

x axis. Note that the model with (4 x 4 x 8) unit cells and (2 x 2 x 4) averaging domains has larger
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(ms32) and (ms33)5 in magnitude in comparison with the model with (8 x 8 x 16) unit cells and
(4 x 4 x 8) averaging domains. The model with the assumed coarser micro-structure for (2 x 2 x 4)
averaging domains has longer relative position vector & (@) and therefore, with regard to (4.4) the
couple stress components have higher magnitudes. Figure 4.7 illustrates the calculated components
of couple stress (mggl)ﬁ, (mggg)ﬁ, and (m333)5 from the model with (8 x 8 x 16) unit cells and
(2 x 2 x 4) averaging domains overlapped with those of the model with (4 x 4 x 8) unit cells and

(2 x 2 x 4) averaging domains, respectively. It is shown that the couple stress component (mss1)g

()

is zero which mean that there is no gradient in the micro-element Cauchy stress component 033

along direction 1. The couple stress component (ms33) 3 is constant which means that the gradient

(a)

of micro-element Cauchy stress component 033 is constant along direction 3 (see contour plots of

o5 Fig.4.3).
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Figure 4.8. Difference between the norm of Cauchy stress of the beam with periodic micro-structure and
that of the homogenized beam.
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Figure 4.8 illustrates the difference of the micromorphic Cauchy stress obtained from the micromor-
phic filter for beam with FE analysis idealized periodic micro-structures, and the exact solution of
the homogenous linear elastic isotropic beam model at small strain with no micro-structure [Bishop
and Lim, 2016]. From this figure it can be noticed that the difference of the micromorphic Cauchy
stress with that of the classical elasticity is smaller for the beam model with (8 x 8 x 16) unit cells
and (4 x 4 x 8) averaging domains in comparison with the other models. This denotes that with the
smaller relative position vector 5(0‘) (finer interpretation of the micro-structure), the heterogeneity
effect of the micro-elements will be reduced (smaller couple stress), and the obtained micromorphic
Cauchy stress is closer to the exact homogenized solution. But the relative difference is still high
(=~ 50%), which is likely a result of ignoring cancellation of tractions across averaging domains when
going from equations (4.7) to (4.8) to (4.9). A weighted residual approach to (4.7) with weighting

function would be worthwhile considering because the traction forces would fall out explicitly.



Chapter 5

Finite Element Analysis of Finite Strain Micromorphic

Elasticity, Elastoplasticity, and Dynamics

In previous chapters, we presented the balance equations, thermodynamics, constitutive re-
lations and the extension of micromorphic elasticity to elastoplasticity, all at finite strain. Note
that more details on micromorphic elasticity and its extension to elastoplasticity can be found in
Eringen and Suhubi [1964], Isbuga [2012], Regueiro [2011], Regueiro [2010] and Regueiro [2009].
This chapter is devoted to presenting numerical examples to investigate the modeling of materials
with a periodic micro-structure from the perspective of micromorphic continuum. Non-periodic
micro-structured materials will be considered as future work. As mentioned earlier, the micro-
morphic continuum of this thesis (E(® is not function of position vector X 3) is consistent with
a material with idealized periodic micro-structure. Three dimensional finite element analysis of
micromorphic elasticity, elastoplasticity, and dynamics are performed to investigate the effect of
deformable micro-elements on macroscopic mechanical behavior at finite strain. Note that the
selected material parameters in this research do not belong to any specific material, but satisfy
positive definiteness of strain energy and the reduced dissipation inequality (Smith [1968]). For
the purpose of presenting micromorphic continuum response, we start with a column in uniaxial
strain in compression to better illustrate the micromorphic stresses, strains, and micro-element
deformations. This is an example of a 1D micromorphic continuum and, therefore, from the nine

additional micromorphic dofs we only have one component of micro-displacement tensor ®33 in-
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cluded to represent the compression of the micro-elements including the axial displacement ug. We
could also allow dofs ®11, ®92, but this will be considered in future work. In the numerical results,
first we provide discussion of the finite elements which are available in Tahoe with the capability
of dealing with two-field problems. Note that a micromorphic continuum is a two-field problem in
terms of dealing with the deformation of the micro and macro-elements (i.e., ® and u, respectively).
The performance of these two element types are compared to deduce which element is the most
appropriate one for the micromorphic simulations in terms of accuracy and computational cost.
The elastoplasticity analysis in micro-structured materials from the view point of micromorphic
continuum will be presented through numerical simulations. It will be shown that there are three
levels of micromorphic elastoplasticity evolving throughout the continuum body, and the effect of
micro-element elastoplastic deformation on the macroscopic mechanical behavior will be discussed.
The dynamic analysis of a micromorphic continuum will also be presented to investigate the effect of

the micro-element deformation under dynamic loading on the continuum scale mechanical response.

5.1 Elements Used in Finite Element Simulations

In this section, we discuss the element types used to solve the coupled equations (2.158).
There are two 3D element types in Tahoe which are able to perform a two-field finite element

hand 8node

simulation. One uses a mixed 27-node triquadratic hexahedral interpolation for u
trilinear hexahedral interpolation for ®" (Q27P8). The schematic of this element is depicted in
Fig.5.1 (a). The other one uses the same 8-noded hexahedral trilinear interpolation for both fields,
uP and ®", shown in Fig.5.1 (b).

Note that mixed methods for approximating two-field problems is shown to be convergent by in-
creasing the number of elements for small strain problems [Hughes, 1987], but for finite strain
problems there is no such a proof. Isbuga [2012] illustrated several simulations to show the con-

vergence trend in various models by increasing the number of elements. This is done to check

the applicability of the mixed method approximation for the micromorphic continuum simulations.
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(a) Schematic of Q27P8 element (b) Schematic of Q8P8 element

Figure 5.1. Schematic of Q27P8 and Q8P8 elements in Tahoe.
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Figure 5.2. Schematic of a column under compressive load. BCs are selected to represent a one dimensional
uniaxial strain in compression at both macro and micro scales (only u? and ®%; dofs).
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Furthermore, a comparison is made to illustrate the performance of these two elements for micro-
morphic continuum. The comparison is done via the uniaxial strain example which represents a
1D micromorphic continuum. The schematic of the geometry, mesh configuration, and BCs are
presented in Fig.5.2. All of the micromorphic dofs are assumed to be zero, except the micro-
displacement component <I>§3 illustrating the micro-stretch deformation of the micro-elements in
the Z direction. The micro-displacement tensor component <I)§3 is zero on the bottom surface of
the column. Similar comparison between Q27P8 and Q8P8 elements is done for the beam bending
example.

Figure 5.3 compares the results of micromorphic dof (I>§3, second Piola Kirchhoff component S§l3,
symmetric micro stress component Zgg, and couple stress component M§l33 at top of the column
obtained from the Q27P8 and Q8p8 elements. It can be seen that the numerical results obtained
from Q27P8 and Q8PS finite element models are consistent with each other. Figure 5.4 illustrates
the profile of micromorphic dof <I>’§3, the nodal values of second Piola Kirchhoff component S§l3,
symmetric micro stress component 213}3, and couple stress component M§33 through the length
of the column. Similarly, these results are in a good agreement with each other. This simple
example of column compression in a micromorphic continuum shows that the Q8P8 element is
able to successfully perform approximations of macro displacement u" and micro displacement
®" fields. Therefore, to reduce the computational costs of simulations by the micromorphic finite
element code, the Q8P8 element will be used to create meshes for the numerical examples of
this research. Note that the Q27P8 element may be used for more complicated simulations of
the micromorphic elastoplasticity and dynamics in the future if required. In the next section, we
will discuss micromorphic elasticity and elastoplasticity in comparison with classical continuum

elasticity and elastoplasticity through finite strain analysis of a column under compressive load.
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5.2 Finite Strain Micromorphic Elastoplasticity Analysis of a Uniaxial Strain

Column under Compressive Load

This section presents the finite strain micromorphic elastoplasticity analysis of a column un-
der compressive load in uniaxial strain. Note that the column is selected as a simple model to
better illustrate micromorphic elastoplasticity. This model has axial macro-element dof u’:} and
micro-element dof <I>§3. As discussed in the micromorphic elastoplasticity formulation section, plas-
ticity occurs at three levels: macroscopic, microscopic, and micro-gradient scales. In this example,
it is presented how these plasticity scales occur in a micromorphic continuum column under uniaxial
strain. The schematic of the geometry, mesh, BCs and loading condition are explained in Fig.5.5.
The selected material parameters for the elastoplastic micromorphic continuum are presented in
Table 5.1. In this table the terminology “Micro/Macro Perfect Plasticity” represents micromorphic
elastoplasticity model in which perfect plasticity occurs at microscopic and macroscopic scales,
and there is no micro-gradient plasticity level (Vx? = 0). In the model “Micro/Macro Softening
Plasticity”, softening plasticity will only take place at microscopic and macroscopic scales and no
micro-gradient plasticity level (Vx? = 0). The terminologies “Micro/Macro/Micro-grad Perfect
Plasticity” and “Micro/Macro/Micro-grad Softening Plasticity” refer to the models in which the
perfect and softening plasticity will happen at all three micromorphic plasticity scales. The ter-
minologies “Micro Perfect Plasticity” and “Micro Softening Plasticity” indicate the perfect and
softening plasticity only occur at the microscopic scale. This analysis is done to illustrate the effect
of elastoplasticity in the micro-elements of a micromorphic continuum on the macroscopic behavior
of the material in comparison with classical elastoplasticity. The BCs on micromorphic column are

presented in Table 5.2.
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Table 5.1. The selected material parameters for the micromorphic continuum.

Micromorphic Elasticity (linear, isotropic)

APa) w(Pa) n(Pa) k(Pa) v(Pa) o(Pa)
29.48e9 25.48e9 1e9 -1.5e9 -1.4e9 -3e9
7(Pa) 71(Pa.m?)  1o(Pa.m?) 73(Pa.m?) 74(Pa.m?)  75(Pa.m?)
0.4e9 0.0 0.0 0.0 0.0 0.0
16(Pa.m?)  17(Pa.m?) 13(Pa.m?) 79(Pa.m?) m10(Pa.m?) 711 (Pa.m?)
0.0 10el1 0.0 0.0 0.0 0.0
Drucker-Prager
¢ G Px Yx PVX VX
0.2 0.0 0.2 0.0 0.2 0.0
Micro/Macro Perfect Plasticity
H(Pa) ¢(Pa) HX(Pa) X (Pa)
0.0 5e6 0.0 4e6
Micro/Macro/Micro-gradient Perfect Plasticity
H(Pa) &(Pa) HX(Pa) & (Pa) HYX(Pa) & *(Pa)
0.0 5e6 0.0 4e6 0.0 5e7
Micro/Macro Softening Plasticity
H(Pa) ¢(Pa) HX(Pa) cX(Pa)
-1e8 5e6 -1e8 4e6
Micro/Macro/Micro-gradient Softening Plasticity
H(Pa) (Pa) HX(Pa) & (Pa) HyX(Pa) & *(Pa)
-1e8 5eb -1e8 4e6 -1e8 oe’
Micro Perfect Plasticity Micro Softening Plasticity
cX(Pa) HX(Pa) cX(Pa) HX(Pa)
4e6 0.0 4e6 -1e8
Classical Continuum Perfect Plasticity Softening Plasticity
A(Pa) w(Pa) ¢(Pa) H(Pa) ¢(Pa) H(Pa)
28.9e8 22.48e8 5e6 0 oeb -1e8

Table 5.2. Selected BCs for column under uniaxial strain in compression loading.

Micromorphic Continuum Throughout the column On surface T’
BC on &%y Dy, DLy, By, @y, B3, @y, B3, @, =0 Pl =0
ult ul =0 ul =0

Classical Continuum Throughout the column On surface T’

O O LN O O O O
D11, Doy, Pz, Doy, Pz, Py, Doz, Py, Pz = 0
ult ul =0 ul =0
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The contour plots of macroscopic, microscopic, and micro-gradient plastic multipliers for the
Micro/Macro/Micro-gradient softening plasticity (micromorphic softening plasticity at all three
scales) are presented in Fig.5.6. This figure shows the trend of elastoplasticity in a micromorphic
continuum. It can be seen that in Fig.5.6(a), the elastoplasticity starts at microscopic scale all
along the micromorphic column, and the macroscopic and the micro-gradient scales deform elas-
tically. In Fig.5.6(b) a transition between the macroscopic and the microscopic plasticity scales
take place close to the lower boundary. There is no plasticity in the micro-gradient scale. Figure
5.6(c) illustrates the micromorphic column where all three plasticity scales occur simultaneously.
There is a transition between macroscopic and microscopic plasticity at the middle of the column,
and micro-gradient plasticity occurs close to the bottom boundary. Figure 5.6(d) shows the micro-
morphic column in which the plasticity occurs at the macroscopic and the micro-gradient scales.
Therefore, the plasticity at the microscopic scale is driven by the micro-gradient plasticity scale
rather than the microscopic scale itself. Figure 5.7 illustrates the contour plots of 4, 4X, and "ygv X
along the length of the column for the same time steps as Figs.5.6 (a)-(d). This figure shows the ac-
cumulated plastic deformation in the macro, micro, and micro-gradient plasticity levels. Figure 5.8
illustrates the schematic of elastoplastic deformations in the micromorphic column under tension
in which micro-elements are expanding plastically through x?. This figure also shows positive Vx?
where the micro-elements plastic expansion of adjacent macro-elements are increasing. This figure
presents the picture of micromorphic continuum from the elastoplastic deformation at micro-scale
through x? and VxP. Similar to classical elastoplasticity models, the macro-element elastoplastic
deformation is defined through the plastic part of the deformation gradient F”. The micromorphic
continuum provides two separate plastic deformations for the micro-elements via the plastic part
of micro-deformation tensor xP and the gradient of the micro-deformation tensor Vx?. These two
levels of plasticity represent plastic deformation of the underlying sub-bodies. The plastic part
of the micro-deformation tensor x? defines the plastic deformation of the micro-elements in the
micromorphic continuum. As discussed earlier through constitutive equations (3.95), (3.96), and

(3.103), the plastic part of the micro-deformation tensor x? drives plasticity at the macro and
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micro-gradient scales irrespective of the yielding at these two scales. The gradient of the micro-
deformation tensor Vx? shows the gradient of the plastic deformation of the micro-elements along
the spatial direction. Note that A3X = 0 and therefore, x” = 0, however we have Vx? evolving via
the micro-gradient plasticity scale which drives Vx? independently. In terms of the micromorphic
evolution equations, the developed formulation for micromorphic elastoplasticity cannot recognize

the conflict of x¥ = 0, while Vx? is evolving through micro-gradient plasticity level.
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Figure 5.6. Contour plots of A%, AFX, and A'_yfsv X for case Micro/Macro/Micro-gradient softening Plasticity.

Figure 5.9 illustrates the cohesion versus plastic multiplier for the micromorphic elastoplasticity
models such as micro perfect plasticity, micro softening plasticity, micro/macro perfect plasticity,

and micro/macro softening plasticity. These figures present the softening and perfect plastic-
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Figure 5.7. Contour plots of 74, X, and **YSV X for case Micro/Macro/Micro-gradient softening Plasticity.

ity behavior of micromorphic column. From these figures, it can be noticed that micro soften-
ing/perfect plasticity, the plastic multiplier 7X reaches a larger value in comparison with the cases
micro/macro/(perfect /softening plasticity). This denotes differences in the micromorphic elasto-
plasticity models. In the case in which both of macroscopic and microscopic plasticity levels are
evolving the microscopic plasticity will be replaced with the macroscopic plasticity level. Whereas,
the case with only micro plasticity, it is the only source of elastoplastic deformation. Figure 5.10
presents the Cauchy stress a:}fg versus Eulerian strain egg plot of the micromorphic elastic and
elastoplastic column in comparison with the classical elastic and elastoplastic column. This figure

shows that the classical softening plasticity deforms more for the fixed amount of loading in com-
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parison with the micromorphic softening plastic model. Figure 5.11 demonstrates the stress-strain

ol — el,) curve of classical and micromorphic elastoplastic columns for both softening and the
33 33

perfect plasticity models. It can be seen that plasticity at the micro-gradient level does not have a

noticeable effect on the macroscopic Cauchy stress component 093.
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Figure 5.12 depicts the micro-displacement component <I>§3 along the length of the column. The
case micro/macro/micro-grad softening plasticity (black line) shows the effect of the micro-gradient
plasticity (larger gradient of <I>§3 along the length as a result of the micro-gradient softening plas-
ticity) in comparison with the case micro/macro softening plasticity without the micro-gradient
softening (green line). Note that micro-gradient plasticity takes place near the bottom bound-
ary of the column in which there is a gradient in the profile of <I>§3 and in turn ng- Therefore,
in the case micro/macro/micro-gradient perfect plasticity (blue line), larger gradient of ®%; at
the bottom boundary, is observed as a result of micro-gradient perfect plasticity in comparison
with the case micro/macro softening plasticity (green line). The effect of micro-gradient perfect
plasticity diminishes at the locations far from the bottom boundary, and the case micro/macro
softening plasticity gets larger values for <I>§3 due to micro-scale softening plasticity. Figure 5.13
presents the couple stress component ]\_4:?33 along the length of the micromorphic column. The
cases with micro-gradient plasticity (black and blue lines) have lower magnitude of couple stress
component M§‘33 in comparison with cases with no micro-gradient plasticity (red and green lines).
This happens mainly due to the larger elastoplasticity as a result of the micro-gradient plasticity
and smaller portion of elastic deformation of the body. Therefore, according to the constitutive
equation of the couple stress component M2, (3.104) and (3.106), the larger gradient of the plastic
part of the micro-deformation tensor Vx? leads to the smaller elastic part of the micro-deformation
tensor V¢ and, therefore, smaller M§‘33. The comparison of couple stress component ]\_43’}33 from
the softening plasticity analysis (for both elastoplasticity analyses with/without the micro-gradient
plasticity, green and black lines) has larger magnitude than those of the prefect plasticity analyses
(blue and red lines). According to Fig.5.12, the softening plasticity analysis has larger total gra-
dient of the micro-deformation tensor Vx (larger gradient of <I>§3). This can be considered as the
source of difference in the profile of M, from softening and perfect plasticity analyses. Figure
5.14 demonstrates the effect of micro-gradient plasticity on the micro-stress component ¥%,. The
profile of the micro-stress component %2 has a gradient close to the bottom boundary of column

(ult = 0, ®%, = 0) which is related to the gradient of the micro-displacement tensor ®%, at that
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location. Similar reasoning as those provided for the couple stress component ]\7[:?33 can be used to
explain the effect of micromorphic elastoplasticity analyses on the profile of micro-stress compo-
nent 25‘3. Figure 5.15(b) depicts the macroscopic Cauchy stress component 05‘3 obtained from the
micromorphic and classical elasticity and elastoplasticity analyses. Figure 5.15(a) compares the mi-
cromorphic elastoplastic models and the classical elastoplasticity via the Cauchy stress component
0§‘3 along the length. This figure shows that in softening plasticity, the Cauchy stress component
0§‘3 is smaller in magnitude than that of perfect plasticity model. This is because of the larger
plastic deformation of the column with softening plasticity models than that of the column with

perfect plasticity. This conclusion is valid for both the micromorphic and classical columns.
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Figure 5.10. Stress-strain plot of micromorphic column versus classical column

Figure 5.16 plots stress paths for the micromorphic elastoplasticity model micro/macro perfect
plasticity to better illustrate the plasticity trend in a micromorphic continuum. Figure 5.16(a)
shows the second Piola Kirchhoff §” stress path and macroscopic yield function to demonstrate
the macroscopic plasticity level in the micromorphic column. The model is perfect macroscopic

plasticity, therefore, the macroscopic yield function remains unchanged. Figure 5.16(b) shows
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the initial steps of loading to compare the stress path of the classical perfectly plastic model
and micro/macro perfectly plastic. It can be seen that in the classical perfectly plastic model,
plasticity occurs earlier than that of the micro/macro perfectly plastic model. Figure 5.16(c)
presents the stress path of coupled stress M " in elastic region and, therefore, there is no micro-
gradient plasticity level in this model. Figures 5.16(d) and 5.16(e) show the stress path of micro-
stress =" and the microscopic yield function. These plots demonstrate the microscopic plasticity
level in a micromorphic column. As explained earlier, the micro-stress path will fall beneath the
microscopic yield function and, therefore, there is no microscopic plasticity afterward. It can be
seen that at some time steps in the model both macroscopic and microscopic plasticity occur
simultaneously.

Figure 5.17 depicts stress paths for the case micro/macro/micro-grad perfect plasticity model. In
this model, Fig.5.17(c) presents the micro-gradient plasticity level and couple stress M " stress path
versus the micro-gradient yield function. Figure 5.17(e) compares the micromorphic model with
only microscopic perfectly plastic micro-stress path (other levels of micromorphic plasticity will
not be involved) and that of the micro/macro/micro-grad perfectly plasticity model. This figure
shows that for the further time steps the microscopic plasticity in the micro/macro/micro-grad

perfect plasticity model will be diminished from the model. However, this is not the case of the
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micromorphic elastoplastic model with only microscopic perfect plasticity.

Figure 5.18 presents the stress path and yield functions for micromorphic case micro/macro soft-
ening plasticity. Figure 5.18(a) shows the second Piola Kirchhoff stress path and the macroscopic
yield function. Figure 5.18(b) compares the second Piola Kirchhoff stress path of the micromorphic
case micro/macro softening plasticity with that of classical softening plasticity. In this simulation,
the micro-gradient plasticity is not involved, and the couple stress path remains in the elastic re-
gion Fig.5.18(c). Figure 5.18(d) presents the micro-stress path for micromorphic micro-plasticity
level, which shows that micro-plasticity does not continue to evolve to the end of loading. There-
fore, softening plasticity in the microscopic level is not noticeable in comparison with softening at
macroscopic level. Figure 5.18(e) presents the micro-stress path transition from elastic to plastic
loading.

Figure 5.19 presents the micromorphic elastoplasticity stress paths for case micro/macro/micro-
grad softening plasticity. In this case, the micro-gradient plasticity level is also involved. Figures
5.19(a) and 5.19(b) depict micromorphic macroscopic plasticity softening through plotting the
second Piola Kirchhoff stress path. Figure 5.19(c) represents the couple stress path to show the
micromorphic micro-gradient plasticity level. The softening at the micro-gradient level is not
considerable which can be related to the selected material parameters of elastoplastic micromorphic
continuum. Figure 5.19(d) shows the micro-stress path. Similar to what is observed in the previous
case, microscopic plasticity does not continue to evolve to the end of the loading, and it will be
replaced with micromorphic macroscopic plasticity. Figure 5.19(e) demonstrates transition from

the elastic material behavior to elastoplastic yielding via plotting the initial steps of loading.

5.2.1 Discussion on Micromorphic Elastoplastic Material Parameters

This section is presented to discuss the reasoning behind selection of micromorphic elasto-
plastic material parameters for the previous example (micromorphic column under uniaxial strain
in compression), and also difficulties that are involved in elastoplastic analysis of a micromorphic

continuum. As observed in Fig.5.6, for the case Micro/Macro/Micro-gradient Perfect Plasticity, the
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selection of micromorphic elastoplastic material parameters are such that plasticity starts through
yielding at the micro-scale with A3X evolving. According to the evolution equations of micromor-
phic continuum (3.78), (3.86), (3.92), yielding at micro-scale plasticity level (x? evolving) is able
to drive plasticity at other scales (macro and micro-gradient) through the coupling term of x? in
their evolution equations ((3.78), (3.92)). Therefore, we have inherent macro and micro-gradient
plasticity evolution regardless of yielding at these scales. The cases Micro Perfect/Softening Plas-
ticity (only x? evolving) are presented for the motive of presenting the effect of inherent macro and
micro-gradient plasticity levels on the elastoplastic behavior of a micromorphic column in uniaxial
strain comparison within the cases that the yielding occurs at the macro and micro-gradient levels.
Also, this is one of the reasons for selecting the micromorphic elastoplasticity material parameters
such that the micro-scale plasticity level occurs first. Then, we have the other levels of plasticity
already occurring when their yieldings occur. Note that this is the only selection of micromorphic
elastoplastic material parameters for which all their micromorphic plasticity levels occurred simul-
taneously during loading of the column. It has been observed that for selected elastic micromorphic
material parameters, if macro-scale plasticity occurs first, then micro-scale plasticity will not occur
throughout the simulation. The micro-gradient level plasticity may happen regardless of micro-
scale plasticity level. In terms of physical interpretation, this simulation is questionable when there
is no xP evolving via the micro-scale plasticity level, how we can justify Vx? which is the spatial
gradient of xP. Another issue associated with this micromorphic elastoplastic simulation is that
for softening plasticity analysis, after a certain amount of loading, the micro-displacement tensor
component CI>’§3 shows expansion of micro-elements (@gg becomes positive, inconsistent with the
macro-element displacement ug) under compressive loading. As discussed earlier in the selection
of micromorphic elastic material parameters, the inconsistency in the deformations of macro and
micro-elements in terms of physical interpretation is not acceptable.

The difficulties involved with numerical implementation of micromorphic elastoplasticity are
mainly related to searching for the macro and micro plastic multipliers A%, AJX simultaneously for

the cases in which macro and micro-scale plasticity levels yieldings occur at once. The algorithm
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designed for such cases in Tahoe starts solving for positive (Kuhn-Tucker condition) macro and
micro-plastic multipliers (A%, A5X). If the obtained plastic multipliers are not positive, then the
algorithm tries to find either a positive macro-plastic multiplier A% or a positive micro-plastic mul-
tiplier A¥X. If either a positive macro or micro-plastic multiplier is found then the yield function
of the other scale (macro or micro yield function) must be negative (deform elastically) to accept

the solution for micromorphic elastoplasticity step.
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Figure 5.17. Stress path for micromorphic elastoplasticity case micro/macro/micro-grad perfect plasticity.
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5.3 Mesh Dependence and Micromorphic Regularization of Strain Softening

Plasticity

The finite element analysis of strain localization in classical softening elastoplasticity anal-
ysis might be mesh dependent. This is a fundamental issue in classical softening elastoplasticity
analysis which has been addressed in the literature by Wu and Wang [2010], Borja and Regueiro
[2001]. Mathematically speaking, it has been recognized that in a finite element analysis of strain
localization as a result of softening elastoplasticity the governing equations may become ill-posed
under certain circumstances (will not remain elliptic) [De Borst et al., 1993]. The ill-posedness of
governing equations is the source of mesh dependent finite element analysis of softening elastoplas-
ticity. Note that mesh dependency will not take place in the softening elastoplasticity where the
plastic deformation is uniform (no localization). Micromorphic elastoplasticity will be investigated
in this section as an applicable method which is able to regularize the mesh dependent behavior of
strain localization in softening elastoplasticity analysis. Figure 5.20 illustrates the model in which
strain localization is simulated by the micromorphic and classical elastoplasticity models.

Note that the imperfection in the FE mesh in applied through a weak element in the middle of
the column for all the mesh configurations is used to study mesh dependency. A weak element
denotes an element with lower cohesion ¢ and micro-cohesion ¢X. Note that with a finer mesh, the
imperfection in the model will be smaller in terms of weak element length versus the column length.
The elastic material parameters are similar to those of Table 5.1. The parameters associated with
elastoplastic analysis are presented in Table 5.3. The BCs are presented in Table 5.4.

Figure 5.21 plots the Cauchy stress component U§‘3 versus the displacement component ug for
different meshes. As noted earlier, the size of imperfection zone is equal to the thickness of the
element in the middle of the column. As the mesh is refined the size of imperfection becomes
smaller. From Fig.5.21(a), it can be seen that for the finer mesh, the plastic strain localized in
the imperfection zone is larger, and the resulting load drop is considerable. This figure shows

that in this model, softening elastoplasticity behavior of classical continuum is totally dependent
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Figure 5.20. Schematic of the model for mesh dependency analysis

on the mesh size and the size of imperfection region. Figure 5.21(b) shows that micromorphic
elastoplasticity can be considered as a remedy to the mesh dependent deficiency of the classical
elastoplasticity. The results from the micromorphic elastoplasticity analysis converged for the finer

meshes.
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Table 5.3. The selected material parameters for micromorphic continuum

Micromorphic Elastoplasticity

H(Pa) ¢(Pa) HX(Pa) cX(Pa)
-9e7 oeb -9e7 4e6
Micromorphic weak element
H(Pa) ¢(Pa) HX(Pa) cX(Pa)
-9e7 4.1e6 -9e7 3.1e6
Classical Continuum Softening properties Weak element properties
H(Pa) ¢(Pa) H(Pa) ¢(Pa)
-9e7 5eb -9e7 4.1e6

Table 5.4. Selected BCs for column under tensional load

Micromorphic Continuum

Throughout the column On surface I'y  On surface I's;  On bottom Surface
(DillQa @317 (I)}f?,v (I)gla ‘1312137 <I)§2 =0 (I)}fl =0 ‘1)32 =0 (I)]?}?, =0
ut =0 ubl =0 ul =0
Classical Continuum
Throughout the column On surface I'y  On surface I's;  On bottom Surface

uf =0 ul =0 ul =0
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The next few sections focus on comparing micromorphic to micropolar and classical elasticity.

5.4 Beam Bending

5.4.1 Comparison of Q27P8 and Q8P8 Elements

Before evaluating the similarities and differences between micromorphic and micropolar elasticity
theories, the performance of these two elements are compared to deduce which element is the most
appropriate for micromorphic simulations considering convergence as well as cost. The comparison
is done via simulating a cantilevered beam under a concentrated load applied at the end of the
beam. The schematic of the beam is shown in Fig.5.22. From this figure it can be seen that there
are three sets of boundary conditions (BCs) on the micro-displacement tensor ®" to investigate
their effects on the macroscopic behavior of the beam. Table 5.5 summarizes the cases with various

sets of BCs on the micromorphic dofs, as well as setting certain dofs=0 within the beam.

Table 5.5. Selected BCs for micromorphic dofs.

On surface " Throughout the beam
Case A q)iLl? ‘I’§L2a <I>§’3, ‘I’}f3a (I)gl =0 @31, q)gh CI’Sg, <I>§2 =0
Case B (I)}llla (1)327 ‘I)g?) =0 (I)IQllv q)gla (1)337 CI)éLQ, (b}ll?n (I)gl =0
Case C (b}ll?)v q’éﬁ =0 (I)]fp <I>§2, <I>§3, (I)}th (I)gla (1)12137 ‘I)gz =0

Note that the FE results are plotted along the bold line at the top left of the beam shown in
Fig.5.22. The performance of the Q8P8 and Q27P8 elements has been investigated via selecting
the BCs and dofs Case A for which the micro-stretch, as well as micro-rotation dofs, are included
in the simulation of micromorphic beam bending. The selected material parameters for the beam
model are presented in Table 5.6.

Figure 5.23 illustrates the performance of the Q8P8 and Q27P8 elements for the normalized de-
flection 3ETu%/(FL3) and rotation CDEOt’h of the cantilevered beam (recall for the micromorphic
FE model, ®5°"" = (%, — ®!)/2). Tt can be concluded that the results of the Q8P8 and Q27P8
elements are relatively close to each other. Note that Isbuga and Regueiro [2011] used the Q27P8

element in creating meshes for their three-dimensional micromorphic finite element models. In this
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Figure 5.22. Schematic of cantilevered beam under concentrated load. Vs denotes the averaging domain for
a macro-element continuum point with centroid Cg. The red cube denotes the micro-element volume V(@)
with centroid C(® and relative position vector =),

section, relying on the good accuracy obtained from the Q8PS8 element in comparison with the
Q27P8 element, the rest of the simulations are conducted with the Q8P8 element to reduce the
computational cost of 3D micromorphic FEA. The obtained convergence profile by the Newton-
Raphson algorithm at the first and last time steps is presented in Table 5.7. Figure 5.24 illustrates
a mesh refinement study on the micromorphic cantilevered beam using Q8P8 element. By demon-

stration, the results are convergent with respect to mesh refinement.

5.4.1.1 Effects of " BCs and dofs

Regarding the micromorphic elastic material parameters, it should be mentioned that the consti-
tutive equations for the micromorphic stresses may be calibrated through lower length-scale direct
numerical simulation (DNS) micro-structural simulations [Regueiro et al., 2014] as shown in chapter
4. Since we are not yet able to calibrate material parameters in that manner, they are instead se-
lected within the range of Smith [1968]’s constraints not to violate positiveness of the strain energy

function. Besides those constraints, we should be aware of the values of u”, u(®"" and ®" reflecting
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Table 5.6. Selected material parameters for micromorphic beam bending example.

Micromorphic Continuum

A(Pa) u(Pa) n(Pa) k(Pa) v(Pa) o(Pa)
8e9 11e9 2e9 -1.0e9 -1.39¢9 -2.11e9
7(Pa) 11(Pa.m?)  1o(Pa.m?)  13(Pa.m?) T4(Pa.m?®)  75(Pa.m?)
1.538e9 0.0 0.0 0.0 0.0 0.0
16(Pa.m?)  17(Pa.m?) 718(Pa.m?)  19(Pa.m?)  1i0(Pa.m?®) 711(Pa.m?)
0.0 0.769e6 0.0 0.0 0.0 0.0
Micropolar Continuum
A(Pa) ii(Pa) fi(Pa) a(Pa.m?) B(Pa.m?) ¥(Pa.m?)
11.53e9 7.5e9 3.84e9 0.0 0.0 1.53e6

the deformations of micro-structured solids. The macro and micro scale deformations should be
consistent with each other (i.e., both in tension, both in compression, etc.). From the physical per-
spective, this means that the resulting macroscopic displacement vector u and micro-displacement
tensor ®" need to be consistent with each other (i.e., if a micromorphic continuum solid is under
quasi-static compression in the X3 direction, ug and (I>§3 should both be negative to reflect compres-
sion in both of the macro and micro-elements). From Table 5.6, it can be observed that the selected
material parameters, x, v, and ¢ have negative values. The reason for this selection is that it has
been observed that if all of the micromorphic material parameters are selected to be positive, we are
not able to obtain consistent macro and micro-element deformations through w” and ®". The in-
consistent deformations in the micromorphic continuum means that the micro-element deformation
represents tension while the macro-elements and the whole macroscopic structure are under com-
pression. In this paper, therefore, the material parameters are selected such that the positiveness of
strain energy function will be satisfied as well as the deformations of the micromorphic solid in the
macro and micro-elements are representing the physics of the problem. In the following, the effects
of BCs on ®" will be investigated, and the numerical results will be compared with an analytical
solution of a micropolar cantilevered beam model by Ramezani et al. [2009] (a similar problem was
analyzed using a 1D micropolar FE model in Regueiro and Duan [2015]). Figure 5.25(a) illustrates

the normalized deflection of a micromorphic cantilevered beam for three sets of micromorphic BCs,
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Table 5.7. Global convergence profile obtained by Newton-Raphson at the first and final time steps.

Step Iteration Number residual error
1 of 20 15 7.811564 x 10-%%
2nd 1.584514 x 10799
20 of 20 15t 2.217045 x 10702
ond 5.267324 x 10708

and is compared with the micropolar theory, classical FE model, and the classical beam models.
From the figure, it can be observed that an appropriate selection of BCs on ®” is crucial. One
of the challenges associated with using micromorphic continua is an appropriate selection of BCs
for the additional dofs ®". Selecting inappropriate BCs may either lead to insensible results or
numerical instabilities in the nonlinear finite element model. The normalized deflection from Case
B, which only involves the micro-stretch dofs (@?1, <I>§LQ, <I>§3), exhibits considerably stiff macroscopic
behavior. By involving the micro-shear dofs ®%, and ®%, in Cases A and C, with and without the
micro-stretch components, respectively, the normalized deflections then fall in the same range as
the classical (Timoshenko and Goodier [1969]) and the micropolar (Ramezani et al. [2009]) theories.
Note that the largest deflection is obtained from the micromorphic model Case A involving all the
micro-stretch and micro-shear components of ®" enabled. From the perspective of comparing to
the micropolar theory, it can be noticed that the deflection from the micromorphic Case C (only the
micro-shear dofs @?3, @’gl) are in good agreement with the micropolar theory, as is to be expected
since these are the only additional dofs available to the micropolar theory. Figure 5.25(b) illustrates
the micro-rotation <I>§°t’h from the micromorphic theory as it compares to the micropolar theory for
two sets of micromorphic BCs: Case A (micro-stretch with micro-shear components), and Case C
(micro-shear without micro-stretch components). It is observed that the micro-rotation from Case
C is in good agreement with the micropolar theory. Figure 5.26 illustrates the macroscopic axial
displacement u? and the micro-stretch component ®%, plotted along the bold solid line in Fig.5.22.
It can be observed that the micro-stretch component ®%, has a sharp gradient near the boundary.
Note that the macroscopic and microscopic deformations are consistent: the macroscopic displace-

ment of the beam, u’f, illustrates compression, and the corresponding micro-stretch component <I>§‘1
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Figure 5.23. Comparison of performance of Q8P8 and Q27P8 elements in Tahoe.
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Figure 5.24. Mesh refinement study on cantilevered beam using Q8P8 element.

is also in compression. Figure 5.27 shows the contour plots of ug and ®? for the micromorphic

cantilevered beam.

Figure 5.28 illustrates the macroscopic displacement ué‘ and the micro-element displacement uéa)’h

for small and finite strain FE analyses. As mentioned earlier, uéa)’h represents the micro-element

displacement by accounting for the relative position vector = and the micro-displacement tensor

®". Tt can be seen that in case B, in which the only dofs are the micro-stretch terms, the macro-

element displacement ug and the micro-element displacement uga)’h are close representing very stiff

material micro-structure. Note that in the other cases uga)’h is larger than u’?f, but only slightly.
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is relatively large compared to the geometry of

the model (see Fig.5.22), the difference between the micro-element displacement uga)’h and the

macro-element displacement ué‘ becomes noticeable.
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Plate with a Circular Hole under Uniform Loading

The second example is a 1m square plate with a hole (radius a = 0.05m), at the center under a

uniform loading t7 = 2 x 10%(Pa) at the left and right edges (Fig.5.29). This example is conducted

to compare the micromorphic continuum theory against the classical and the micropolar continuum

theories on calculating stress concentration and stress distribution around a circular hole.

L=1(m)

Macroscopic BC’s

h

uh=o— On Bolded Line

in Y direction

h On Bolded Line
2= Y77 in X direction

On the Surface

Case A —

( h &h &h dh
I- ‘1)11,@22,@12,(1)21 0
Fixed on hole surface

h Gt
- P73y =0
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(1){”2@’211 =0 Fixed throughout the

model

ur- eh, ok =0
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(I)}ILI @’2’2 =0 Fixed throughout the
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Case B —

h
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> E(") o), . .
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1=0.2(m)

Microscopic BC’s
h &h Hh DL Ph —
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No boundary condition, free to evolve,

h h
10 - @11,<I>22

No boundary condition, free to evolve,

¢}1L2@}211 =0 Fixed throughout the
’ model

el

No boundary condition, free to evolve,

(I>}1L1 <I)}2L2 =0 Fixed throughout the
’ model

Figure 5.29. Schematic of FE mesh and BCs for plate with circular hole at center.

According to Fig.5.29 and Table 5.8, six sets of BCs on the micromorphic dofs have been considered.

The BCs have been divided into two main categories: Case A and Case B. In Case A, BCs on ®"

have been applied to the hole surface, and in Case B there are no BCs applied on ®". In each of
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Table 5.8. Selected BCs and micromorphic dofs for plate with hole.

Case A On the hole Throughout the plate
I oIy, Bhy, 05, P4y =0 ‘I’}fga (bgl’ @33, ‘I)gz» (I)]?Z?, =0
II (I’}fh (I)gz =0 @?27 o1, <I>{L3, (I)gh ‘1)337 <I>§2, (I)gfi =0
atl 01y, 94 =0 Oly, Pop, Py, DYy, Phy, Oy, Phy =0
Case B Free dofs
I cb}llla (1)1527 (I)}fz, @31 (I)}1L3v q)§1a q>’2137 ‘I)g% (1)1313 =0
1 (I)ibh (I)gz ‘I)}fza Po1, ‘I)?sa (I)gh q)§37 ‘I’gzv (I)g:z =0
il ‘I’}fza ‘1)31 ‘I)}fp Po2, @?37 (I)glv ‘ng, <I>§2, (I>§3 =0

the Cases A and B, the effects of BCs on the micro-shear, micro-stretch, and their combination on
the macroscopic response have been studied. The selected material parameters for micromorphic
and micropolar elasticity are presented in Table 5.9.

Figure 5.30 illustrates the stress concentration with respect to radial distance r from the center
of the circular hole (with radius a = 0.05m) estimated by the micromorphic, micropolar, and the
classical elasticity theories. Note in the figure that the results of the micromorphic continuum for
Case B (there is no BC applied on <I>h) are compared with the micropolar and classical elasticity
theories. The micromorphic continuum theory with only micro-shear dofs ®%, and ®% (Case B-
III) simulates the closest result to the micropolar theory in Bauer et al. [2010]. Note that this
is similar to the beam example in Section 5.4 wherein the results of a micromorphic beam with
only the micro-shear dofs are closest to those of the micropolar theory. The cases with only micro-
stretch dofs (Case B-1I), and the combination of micro-stretch and micro-shear dofs (Case B-I),
estimate slightly lower stress around the hole. Figure 5.31 shows the effect of micromorphic BCs on
the macroscopic response. It can be seen that for Case A (BCs on ®” around the hole) where the
micro-stretch dofs (®f,,®%,, Case A-II), and the combination of micro-stretch and micro-shear (®%,
®h, ®h, & Case A-I), have been fixed around the hole, a considerable stress concentration has
been observed. This can be interpreted that the micro-elements of the micromorphic continuum are
constrained when applying BCs on the micro-stretch dofs (®%, ®4,) around the hole which results
in a higher stress concentration. Note that for Case A with micro-shear dofs only fixed around

the hole surface (Case A-III), the resulting stress concentration is closer to that of Case B (LIII),
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Table 5.9. Selected material parameters for plate with circular hole.

Micromorphic Continuum

A(M Pa) w(MPa) n(MPa) k(M Pa) v(MPa) o(MPa)
led 2.2eb 3.0e4 -1.0e4 -8.0e4 -7.0e4
7(MPa) 7 (Pam?) 7(Pam?)  73(Pa.m?) T4(Pa.m?®)  75(Pa.m?)

2.75e4 0.0 0.0 0.0 0.0 0.0
16(Pa.m?®)  17(Pa.m?) 718(Pa.m?)  19(Pa.m?)  1i0(Pa.m?) 711(Pa.m?)
0.0 525 0.0 0.0 0.0 0.0

Micropolar Continuum

A(M Pa) a(M Pa) (M Pa) a(Pa.m?) B(Pa.m?) ¥(Pa.m?)
15.75e4 Ted Ted 0.0 0.0 1050

wherein there are no BCs applied on micro-shear. This shows that the effects of shear deformations
of the micro-elements are negligible on stress concentration due to the extensional-like deformation
of this example, while the micro-stretch dofs (®7,, ®%,) play the main role and reflect the effect of
micro-elements stretched in tension for generating stress concentration around the hole.

Figure 5.32 illustrates the stress concentration plotted circumferentially around the hole (with
respect to ) obtained from the micromorphic continuum theory in comparison with the micropolar
and classical continuum theories. In the micromorphic continuum, Case B-III with only micro-shear
dofs predicts the closest result to the micropolar theory results presented in Bauer et al. [2010] as
seen in Fig.5.32(a). Figure 5.32(b) shows the effect of micromorphic BCs on the stress distribution
around the hole. For Case A-I with micro-stretch and micro-shear components, and Case A-II with
micro-stretch components fixed on the hole surface, larger stress values are observed around the hole.
As mentioned earlier, this is the direct result of the constrained micro-elements of a micromorphic
solid through fixing the micromorphic dofs on the hole surface. Figure 5.33(a) compares the stress
concentration modeled by the micromorphic continuum at finite strain for Case B (I-III) with
classical elasticity. It can be noticed that the stress concentration captured by Case B-I (no BCs on
oh @b, o, ®b) is slightly larger than those of Case B-II and III. However, this is not the case
for the small strain analysis in Fig.5.30(b). Figure 5.33(b) illustrates that for Case A (I-III) with

micromorphic BCs around the hole, at finite strain the obtained trend for the stress concentration
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Figure 5.30. Stress distribution obtained from micromorphic, micropolar, and classical elasticity.

is similar to the small strain analysis. Figure 5.34 illustrates the distribution of Ufg and a(’}r along
the diagonal of the plate. This figure compares the results of the micromorphic continuum for Case
B with the micropolar and classical theories, and the effects of BCs between Cases A and B. Note
that the macroscopic Cauchy stress is not symmetric for the micromorphic and micropolar theories,
and thus o’y and ol are not equal (this is also observed in Bauer et al. [2010]). Figure 5.34(d)
shows that at r = a, Ug,r starts near zero. For Cases A-I and A-II with BCs on the micro-stretch
and micro-shear components, the effect of rigid micro-elements can be observed. Further from the
hole surface, agr reaches its maximum value. The effect of rigid micro-elements around the hole
surface on o diminishes further from the hole surface. A similar trend for o can be observed in
Fig.5.34(b). Figure 5.35 shows the contour plots of ®f,, ®4,, &%  and &%, throughout the model.
Note that ®%, and ®7, do not evolve symmetrically. Therefore, it can be concluded that once the
shear components of ®”" begin to evolve, symmetric BCs on ®" are not applicable (which we do

not assume for this plate example). Note that this could be the case for micro-stretch terms as

well.
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Figure 5.31. The effect of BCs on the calculated stress distribution from the micromorphic continuum.
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5.4.3 Plate Bending
The third example is devoted to presenting bending analysis in a micromorphic plate. The

selected material parameters, mesh configuration, and considered BCs on ®" are illustrated in

Table 5.10, Figure 5.36, and Table 5.11, respectively.

Bending applied by
moment

M, =1Nmm / (I)}f’z(I)}z”l Fixed throughout the plate
My =-0.5 N.mm

Case A > (I)?LCI){LS @gl =0 Fixed on planeI:

<I>§”2_<1>’2Lg ‘I>§2 =0 Fixed on planel} V“‘)(711,i(fro—f:]emen,f volume)
Bending applied by (I)gg =0 Fixed on mid-plane 0.05
P, b, Dl Db =@_ |
31,%13,%23,732 Case B > q>§1 (I)’IIB:O Fixed on planeI> = = [0.05 | (mm)
’ |4
(I)rntﬁh 1 (CI)h oh ) =002 < (13’213@& =0 Fixed on plane I 0005
1 =5 (P3y~P23) =0 ’
2 (1)’{1 <I>§2 <I)§3 = 0 Fixed throughout the plate
rot,h 1 ’ ’

o, = 3 (CI)}ILS 7(135311) =0.04 Case C > (I)]fl =0 Fixed on plane I
‘I)gg =0 Fixed on plane I}

h _ _Hh
P: 27 <I>23 <I)§3 =0 Fixed on mid-plane

@gl =_ (I)}f3 \ ‘I)qu’?g,‘I)gafbgz = (0 Fixed throughout the plate

Figure 5.36. Schematic of mesh configuration and selected micromorphic BCs on ®" for plate bending
analysis.

Note that four sets of material parameters for the couple stress have been selected to illustrate their

effect on the macroscopic response. In Figure 5.36, it can be seen that the moment has been applied

in two ways: (i) force on the plate edges to mimic a bending moment, and (ii) rotation through the
rot,h rot,h .

micromorphic dofs ;7" is the micro-rotation about axis 1, and ®, " is the micro-rotation about

axis 2). Note that applying moment through the micro-rotation from the modeling perspective can
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be described as applying moment on the individual micro-elements of the micromorphic continuum
rather than the macro-elements. From the physical point of view, it can be interpreted as applying
moment on the material micro-structure. Figure 5.37(a) shows the lateral plate deflection which is
plotted along the bold red lines in Fig.5.36 obtained from the micromorphic continuum theory in
comparison with the classical and micropolar theories. The results for the micromorphic continuum
are obtained by using Set I of material parameters listed in Table 5.10. Note that for Case A, in
which the micro-stretch and micro-shear dofs are active, and for Case B, in which only the micro-
shear dofs are active, the resulting deflections are overlapping. However, for Case C, in which only
the micro-stretch dofs are active and the micro-shear dofs are zero, the lateral deflection of the
plate is noticeably smaller (i.e, more stiff) than that of Cases A and B. Apparently, this means that
fixing the micro-shear dofs removes shear deformation of the micro-elements of a micromorphic
plate which makes the plate considerably more stiff in bending than for Cases A and B that include
micro-shear deformation. Lateral deflection of the plate from the micromorphic continuum Cases
A and B compared to the micropolar theory shows that the micromorphic plate deforms more
than the micropolar one. This demonstrates the significance of micro-shear (micropolar does not
consider micro-shear in micro-elements) as well as micro-rotation which are both captured by the
micromorphic theory, in contrast to the micropolar theory that only accounts for the micro-rotation
of micro-elements. The interesting point in this figure is that the lateral deflection of the model
for which the bending moment is mimicked via applying rotations @iOt’h and <I>§°t’h, is close to that
of the other models for which bending moment is applied by forces (“Bending by moment”). This
is observed for small strain analysis, and is not the case for finite strain problems (large strain
deflection of the micromorphic plate will be presented later in Fig.5.40). Figure 5.37(b) illustrates
the effect of couple stress material parameters on the macroscopic lateral deflection of the plate.
For the purpose of adjusting the micromorphic couple stress material parameters with those of
micropolar elasticity, with regard to (2.132), there are several choices for selections of couple stress

material parameters.
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Table 5.10. Selected material parameters for plate bending.

Micromorphic Continuum

A(M Pa) w(M Pa) n(MPa) k(M Pa) v(MPa) o(MPa)
led 2.2e5 3.0e4 -1.0e4 -8.0e4 -7.0e4
T(MPa) 7(Pam?) 7(Pam?) 73(Pa.m?) 4(Pa.m?)  15(Pa.m?)
Set 1
2.75e4 0.0 0.0 0.0 625 0.0
Set 11
2.75e4 0.0 0.0 0.0 675 100
Set I1T
2.75e4 0.0 0.0 0.0 1250 0
Set IV
2.75e4 0.0 0.0 0.0 0.0 0.0

16(Pa.m?®)  17(Pa.m?) 718(Pa.m?)  19(Pa.m?)  mi0(Pa.m?) 711(Pa.m?)

Set I

675 675 0.0 0.0 0.0 0.0
Set 11

675 625 0.0 0.0 0.0 0.0
Set IIT

0.0 625 0.0 0.0 0.0 0.0
Set IV

1250 1250 0.0 0.0 625 0.0

Micropolar Continuum

MM Pa) @(M Pa) (M Pa) a(Pa.m?) B(Pa.m?)  A(Pa.m?)
15.75e4 Ted Ted 0.0 -1250 2500

Table 5.11. Selected BCs for micromorphic dofs of plate under bending.

On plane I'y On plane I'y On mid-plane Throughout the plate
Case A @b, ‘ng, ‘1’32 =0 o, (I):}Sllv @?3 =0 (I)gs =0 Py, @5 =0
Case B oLk, =0 h, =0 n L, N =10 or,, d% =0

h h h h h h h h h
Case C Pyp = ¢ =0 P33 =0 Dry, P31, Po3, Py, Py, Py = 0
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Figure 5.38. Deformed shape of plate in bending.

It can be seen that for material sets III and IV, the lateral deflection is slightly larger than that
of the material sets I and II. The couple stress material parameters 7; are somewhat related to
the relative position vector () which is related to the length scale of the problem. Therefore,
7; is closely related to the size of the micro-elements inside a micromorphic continuum. Note
that defining the relation between the 7; to =@ ig beyond the scope of this chapter. Changing
the 7;’s may lead to changes in =@ that affects the size and number of micro-elements within a
macro-element. Therefore, different micro-element sizes will influence the macroscopic mechanical
behavior. But, here we follow the assumption that through changing 7;’s the micro-element sizes
will remain unchanged to avoid the complication of the relation of =@ and 7;’s. Figure 5.38

depicts the contour plot of macroscopic displacement u}3’ and micro-element displacement uéa)’h
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of the micromorphic plate for which it is observed that uéa)’h is slightly larger than ug because
of the contribution of relative position vector Z(®) (see Fig.5.36) multiplying by evolving ®" in
(2.15). Figure 5.39 illustrates the M}, M% (2.130), and <I>50t’h (2.136) values obtained from the
micromorphic plate (Case A with four sets of material parameters for ;) and those of the micropolar
plate. Note that the micromorphic couple stress is related to the micropolar couple stress through
(2.130) for small strain analysis. Physically speaking, the couple stress can be interpreted as the
moment of the micro-element stress o(®) inside a macro-element. Therefore, the couple stress for

the idealized periodic micro-structure (Z(®)

is assumed to be spatially uniform at each Xz in By)
defines the gradient of micro-element stress o(®) in a micromorphic continuum. Figures 5.39(a),(b)
illustrate the effect of 7;’s on the micromorphic couple stress in comparison with the micropolar
couple stress. We do not expect the micromorphic couple stress to overlap the micropolar couple
stress, because it has been observed earlier, the significance of micro-shear dofs in the macroscopic
response of a micromorphic plate under bending. Note that there is a jump in the plot of resulting
micropolar couple stress M;l near the edge of the plate in Fig.5.39(b), which pertains to the localized
stress as a result of applying force to mimic the bending moment. Figure 5.39(c) shows that the
resulting micro-rotation @gOt’h from micromorphic elasticity is higher than that for micropolar
theory. Apparently, this reflects the significance of micro-shear dofs included in the micromorphic
continuum for bending analysis which results in larger micro-rotation. Note that micro-rotation
curves captured by Case A and Case B are overlapping in Fig.5.39(c), which means that the micro-
stretch terms do not have a considerable effect on micro-rotation for this plate bending example.
Figure 5.40 illustrates the macroscopic lateral deflection of the plate under finite strain bending
analysis. It can be seen that for Case A at finite strain in which bending is applied through <I>§°t’h
and <I>§°t’h, the lateral deflection starts deviating from that of Case B for which bending moment is

applied directly (compared to Fig.5.37(a) for small deflections wherein the curves for Cases A and

B overlap).
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micromorphic and micropolar theories.
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5.4.4 Twisting of T-shaped Rod

The fourth example involves large twisting of a T-shaped rod to illustrate the capability of the
developed code in Tahoe to perform a large deformation 3D micromorphic FE analysis. Note that
there are no quantitative data presented by Bauer et al. [2010] on micropolar FEA of a T-shaped
rod to compare with the micromorphic model presented here. The selected material parameters

for the micromorphic T-shaped rod are listed in Table 5.12.

Table 5.12. Selected material parameters for the micromorphic T-shaped rod.

Micromorphic Continuum

A(M Pa) w(M Pa) n(MPa) k(M Pa) v(MPa) o(MPa)
29.31e3 25.48e3 le3 -1.5e3 -1.4e3 -3e3
7(MPa) 7(Pam?) 7(Pam?)  73(Pa.m?) 74(Pa.m?)  75(Pa.m?)
4e2 0.0 0.0 0.0 0.0 0.0
16(Pa.m?®)  17(Pa.m?) 718(Pa.m?)  19(Pa.m?)  1i0(Pa.m?) 711(Pa.m?)
0.0 10eb 0.0 0.0 0.0 0.0

Table 5.13 summarizes the BCs on the micromorphic dofs ®". The geometry, schematic of FE mesh,
and applied BCs are illustrated in Figure 5.41. Note that the twist is applied on the T-shaped rod

in two ways: (i) the macroscopic displacement u”, and (ii) the micro-rotation @gOt’h.

Table 5.13. Selected BCs for micromorphic dofs of T-shaped rod.

Throughout the model Throughout the T No boundary condition
Set I, Fixed Micro-stretch
Case A Oy, ®F,, i3, Phy, Olf3, Phy, @, =0 o'y, P4y
Set I, With Micro-stretch
Case B Ol D5, ®F5, D4y = 0 oy, @l @3 =0 o'y, Ohy
Set II, Fixed Micro-stretch
Case C ®fy, Phy, D3, @ly, Py, Phs, @y = 0 Py, @3 =0
Set II, With Micro-stretch
Case D Ol Dy, @F, D4y =0 Oly, Bhy, Oliy, Py, @5y =0

Figure 5.42 shows the effects of micromorphic BCs as well as the manner by which twist is applied
(by (i) displacement w”, or by (ii) micro-rotation @gOt’h) on the macroscopic displacement result

ug It is seen that the profile of ug in Fig.5.42(a) obtained from the micromorphic T-shaped rod

is not similar to that of classical elasticity which is a straight line. Micro-stretch terms do not
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Figure 5.41. Geometry, schematic of FE mesh, and applied BCs on micromorphic T-shaped rod.

have a significant effect on the profile of ug Note that in the micromorphic T-shaped rod model

in which the twist is applied by micro-rotation @gOt’h, the resulting ué} does not follow the same

trend as the case in which twist is applied by displacement w”. In the model in which twist is

applied through macro-displacement, at the very end of the rod, ug is positive which shows axial

stretch in the rod. However, for the model in which twist is applied through micro-rotation, ulg
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Figure 5.42. u# from micromorphic elasticity FE solution plotted along the red bold line in Fig.5.41.

is negative at the end of the rod where it is under compression. In the profile of ué} along the
length of the rod, where ug is negative (in compression), this is the location where considerable
twisting occurs (see Figs.5.46(d),(e)). For the model for which load is applied through micro-
rotation, considerable amount of twisting occurs in the middle of rod. On the other hand, for the
model in which load is applied through macro-displacement, significant twisting occurs near the
T position (Figs.5.46(a),(b)). Therefore, two different deformed shapes of the T-shaped rod have
been observed as a result of two different BCs. From the mathematical perspective, we have two

sets of nonlinear partial differential equations (balance of linear and first moment of momenta)

(2.158) for the micromorphic solid, in which two different sets of BCs lead to different results.
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Therefore, we do not expect to observe similar deformed shapes of the micromorphic T-shaped
rod with different BCs. Figure 5.42(a) also compares the axial displacement u? obtained from
classical continuum theory and that of micromorphic theory. The classical continuum predicts a
nearly linear distribution for ué‘, however, the simulations using the micromorphic continuum do
not follow a similar trend for ug The linear distribution of ug along the length of the T-shaped
rod implies that the twist is distributed uniformly along the length as well (see Fig.5.46(c)). The
profile of ug obtained from the micromorphic continuum model shows both tension and compression
along the length of the rod. This denotes that the twist in the micromorphic T-shaped rod is not
uniform. This example illustrates that the results of a micromorphic continuum at finite strain
are deviating from the classical continuum result. Figures 5.42(b) and 5.42(c) illustrate the effect
of micromorphic BCs as well as the ways of applying twist on the rod (by displacement and by
micro-rotation) on ug Note that the distribution of uél throughout the length of the rod is affected
by the manner of twist on the rod. This occurs as a result of applying two different BCs on (2.158).
Figure 5.42(b) shows that for the cases in which twist is applied through displacement, the twisted
rod is under stretch and u]?} is positive. However, if the twist is applied via micro-rotation, the
rod will be under compression and ug‘ is negative. Figure 5.42(c) illustrates the effect of including
micro-stretch on ulg It can be noticed that including micro-stretch term leads to larger ug’ Note
that for the case with BC set I with micro-stretch, the value of ulg is slightly larger than that of
the case in which micro-stretch is fixed all through the T-shaped rod.

Figure 5.43 illustrates CI>’§3 (micro-stretch in axial direction) along the length of the rod on
the red solid line in Fig.5.41. Figure 5.43(a) compares the micro-displacement component <I>§3
obtained for the micromorphic T-shaped rod in which the twist is applied through macro-element
displacement ug and micro-rotation @gOt’h. It can be seen that in both cases, there is a gradient
in the profile of ®%; near the T, and it levels out further away from the T. Note that ®%; is in
compression when the twist is applied by micro-rotation (ug is also in compression). However, it is

in tension for the case in which the twist is applied by displacement (ug” is also in tension). Figure

5.43(b) illustrates the effect of BCs sets I and II on the profile of ®%,. It can be seen that for
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Figure 5.43. Micro-stretch ®%; along the red bolded line Fig.5.41.

BC set I ®%, is larger than that of BC set I (u in Fig.5.42(c) for BC set II is also larger than
set I). Figure 5.44 depicts the profile of the Second Piola-Kirchhoff stress S§L3 along the length of
the T-shaped rod (red solid line Fig.5.41). The results from classical continuum FEA show that
the profile of S’g% is nearly uniform. However, in the micromorphic T-shaped rod this is not the
case. The peak in the profile of S§3 along the length indicates a considerable twisting at that
location. Figure 5.45 illustrates the micro-rotation of macro-elements and micro-elements of the
micromorphic T-shaped rod as a result of applying twist via displacement and micro-rotation. By
investigating x, it is found that for the case for which micro-rotation is applied on the model,
the local rotation of the micro-elements is higher than that of the case for which twist is applied
through displacement. Therefore, the differences in the micro-element deformations lead to the
different deformed configuration of the T-shaped model at finite strain. Apparently, considering
the effect of deformable micro-elements in the micromorphic continuum is the source of pronounced
differences with classical elasticity. It is noteworthy to mention that when we look more closely
into the micro-element displacement ()" (Fig.5.45), overlaps in the adjacent deformed micro-
elements are noticeable. In terms of a micromorphic continuum the compatibility of strain tensors
are ensured in order to obtain single-valued continuous macroscopic displacement v and micro-

displacement tensor ® fields [Eringen, 1968]. However, through (2.15) and the choice of Z(®) in
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Fig.5.41, we do not expect the secondary quantity of micro-displacement u(®" to be a single-valued
continuous field. Figure 5.46 shows the final deformed configurations of the T-shaped rod model
using classical and micromorphic theories. The figure shows the deformed meshes of the cases in
which twist is applied via displacement or micro-rotation, as well as comparing to the classical
continuum result. The deformed meshes show that differences in micro-element deformation lead

to different deformed shapes of the micromorphic T-shaped rods.
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Figure 5.44. Second Piola-Kirchhoff stress S%; along the red bold line in Fig.5.41.
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Figure 5.45. Schematic of macro-element and micro-element rotation with twist applied via displacement
and micro-rotation.
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Figure 5.46. Deformed meshes for T-shaped model. 1x displacement magnitude.
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5.5 Micromorphic Elasticity: Dynamics

5.5.1 Uniaxial Strain Column

To start, we investigate the dynamic behavior of a micromorphic continuum through a uniaxial
strain column example. The advantage of starting with this model is that it is a one-dimensional
simulation of micromorphic continuum with the macro-element displacement component ug and the
micro-displacement tensor component <I>§3 dofs. The schematic of mesh configuration, geometry,
and BCs are illustrated in Fig.5.47. Note that the relative position vector 2 =[0 0 0.625] in
Fig.5.47 belongs to the micro-element located in the positive portion of the macro-element. In this
analysis, we are assuming that the material is made of an idealized periodic micro-structure through
the Z direction. Each of the macro-volumes dVj is made up of two micro-elements dV' (@ which are
deformed in the Z direction through ®%; dof. The selected material parameters and the BCs for
the micromorphic column is presented in Table 5.14 and 5.15, respectively. Figure 5.48(a) shows
the dispersion diagram of a one-dimensional longitudinal wave in the micromorphic and classical
column. The dispersion diagram relates the wave number (wave length) of a wave to its frequency
in a continuum. The numerical dispersion diagrams are obtained from the finite element solution
and are compared with the small strain analytical solution of the classical continuum for the one
dimensional wave. Regarding the dispersion analysis, there are a number of studies available in the
literature that discuss the analytical and numerical approaches (Khajehtourian and Hussein [2014],
Hussein et al. [2014], Hussein and Khajehtourian [2015]). It has been found that the finite element
method is not the best numerical tool for conducting dispersion analysis. The dispersion diagrams
of micromorphic versus classical continuum illustrate that for the selected material parameters in
the small strain regimen differences in the wave velocity and the wave length of micromorphic and
classical continua are negligible. It is to be noted that the obtained dispersion diagrams from the
finite element method show a dispersive wave propagation (dispersion diagram is not linear unlike
the analytical solution) in both of classical and micromorphic continua. This issue can be related

to the finite element analysis that adds artificial dispersive properties in the wave propagation
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simulation. On top of that our finite element model is developed based on finite strain analysis and
to capture small strain analysis, loads with small amplitudes are used. Therefore, the geometric
non-linearity is another source of dispersion of the wave propagation. Figure 5.48(b) illustrates the
results of Cauchy stress 05‘3 from the three-dimensional finite element analysis for micromorphic
and classical continua versus the analytical solution of classical continuum. As mentioned, in the
finite element model, load with small amplitude is used to reduce the effect of non-linear geometric
terms. The time integration parameter is o = —0.05, (2.159), such that to remove some high
frequency oscillations without adding a considerable amount of algorithmic damping in comparison

with the trapezoidal time integration method which has zero algorithmic damping.
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Figure 5.47. Uniaxial strain column under compression.
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Table 5.14. Micromorphic elastic material parameters.

Micromorphic Continuum

A(Pa) w(Pa) n(Pa) k(Pa) v(Pa) o(Pa)
29.31e8 25.48e8 1e8 -1.5e8 -1.4e8 -3e8
7(Pa) 71(Pa.m?)  1(Pam?) m3(Pam?) 74(Pam?)  75(Pa.m?)
4e7 0.0 0.0 0.0 0.0 0.0
16(Pa.m?)  17(Pa.m?) 1s(Pa.m?) 19(Pa.m?) 7i9(Pa.m?) 711(Pa.m?)
0.0 lell 0.0 0.0 0.0 0.0
po(Kg/m?) to(s)
2700 0.00026
Classical Continuum
A(Pa) p(Pa) po(Kg/m?) to(s)
28.9e8 22.48e8 2700 0.00026
4500 1000
Analytical Solution
4000 Classical Elasticity ]
T Small Amplitude Loading 0 }
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Figure 5.48. Dispersion analysis and wave profile.

Table 5.15. Selected boundary conditions for the column under compressive loading.

Micromorphic Continuum Throughout the column On surface I’
BC on &%y DYy, DLy, By, By, By, By, DLy, By = 0 Py =0
u}fv ug =0 ug =0
No BC on @}, Dy, Ly, By, By, B3, @y, B3, B, =0
u}fv ug =0 ug =0
Classical Continuum Throughout the column On surface I'

ul ul =0 ul =0
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and micromorphic continua through the length of
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Figure 5.50. Contour plots of macro-element displacement u3 and micro-element displacement u(a) .

Since our loading is an impulse, the obtained results of stress show numerical oscillations at the
two sharp ends of the load profile. The rest of this section is devoted to demonstrating the dynamic
behavior of micromorphic continuum in comparison with classical continuum. The results of macro-
element displacement ug are plotted along the length of the column in Fig.5.49. At ¢ = 0.01(s) the
wave is in the middle of the column heading downward (Fig.5.49(a)), at ¢ = 0.02(s) the wave is
about to hit the bottom surface (Fig.5.49(b)), at ¢ = 0.025(s) the wave is reflecting off the bottom
surface heading back up the column (Fig.5.49(c)), and at ¢t = 0.025(s) the wave is in the middle of
the column heading upward (Fig.5.49(d)).

From Fig.5.49, it can be seen that the difference between the macro-element displacement u3 from
classical and micromorphic continua is not significant especially for the times when the wave is
heading downward before hitting the bottom surface. The difference in the wave profile (wave speed
and wave displacement amplitude) of the micromorphic and classical continua become evident when
the wave is reflected off the bottom surface. It can be noticed that the effect of BC on <I>§3 does

not affect u3 from micromorphic continuum noticeably. Figure 5.50 illustrates contour plots of the

macro and the micro-element displacements ug, uga)h. From the contour plots, it can be observed
that the difference of micro-element displacement (maximum value of u:(,,a)h = —0.838(m)) and the

macro-element displacement (maximum value of uf = —0.858(m)) is not large. According to the
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selected length of the relative position vector ||[2(®)| = 0.625(m) which is about 2% of the total
length of the column, we did not expect considerable differences in the obtained displacements. Note
that as the size of relative position vector becomes smaller, micromorphic continuum behavior will
be closer to classical continuum (smaller macro and micro-elements sizes reduce the inhomogeneity
of the micro-structured material). Figure 5.51 illustrates the micro-displacement component <I>§3
along the length of the column. Through <I>§3 we should be able to look more closely into the changes
in the length of relative position vector component Ega), and, also, the micro-element deformations.
As mentioned earlier, the macro-element deformation is illustrated through the displacement vector
u. But, the micro-element displacement vector u(® is calculated through (2.15) which is related
to the macro-element displacement u, the micro-displacement tensor ®, and the relative position
vector E(O‘), (2.15). Therefore, if ® = 0, the macro-element displacement and the micro-element
displacement are equal (no micro-element deformation). Figure 5.51 is presented to study the
micro-element deformation and to understand the picture of micromorphic continuum from the
micro-structural deformation via plotting @é‘g through the length of the column. Note that in this
paper the term “Small load amplitude” corresponds to capturing the small strain results through the
finite strain model by applying a small amplitude load. The term “Large load amplitude” denotes
applying load with a large amplitude to trigger the non-linear geometric effects. Figure 5.51(a)
illustrates <I>§3 when the wave is at its very initial steps heading downward. It can be seen that the
effect of BC on <I>’§3 is not evident. According to the plots, the larger load amplitude (the blue and
cyan lines in comparison with the red and green lines) leads to the larger amplitude of @’3}3 along
the length and, therefore, larger micro-element deformation. Figure 5.51(b) shows the profile of <I>§3
when the wave is in the middle of the column heading downward (Fig.5.49(a)). The picture that
micromorphic continuum captures from the micro-structural deformation for the selected elastic
material parameters is that due to non-zero ®%; throughout the column, the micro-elements are
deforming all through the column; however, the wave (macro-element displacement w) is in the

middle of the column. The wave in the middle of the column denotes that the macro-elements

are deforming up to the middle of the column, and the rest of the column is macroscopically
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undeformed while microscopically, micro-elements are deforming throughout the column via the
micro-displacement tensor ®. For the micromorphic column in which <I>7§3 is free to evolve, <I>§3
plots (green and cyan lines) show compression all through the column. However, for the cases
with BCs on <I>§”3, compression of micro-elements in the middle of the column (location where
the wave is passing) makes the micro-elements at the top of the column to be under extension
through positive <I>§3 (Fig.5.52). Note that the micro-element displacements uga)h at the top of
the column are negative which indicates the contribution of macro-element displacement u” to the
micro-element displacement w(®)-" (micro-elements are located within the macro-element, Fig.2.1).
However, the micro-elements themselves are under extension through positive f1>§3. Figure 5.51(c)
shows that as the wave is traveling downward, the micro-elements at the top of the column are under
larger extension as larger values of <I>}3‘3 are observed. Figure 5.51(d) illustrates the longitudinal
compressive wave traveling upward through the column. For the case with a large load amplitude
and no BC on @g‘g (cyan line), the micro-elements at top of the column are under larger extension
(larger ¢§‘3) in comparison with the other cases. This is related to the large load amplitude that
compresses the micro-elements close to the bottom end of the column that leads to larger extension
of the micro-elements at top of the column via positive value of ¢§3. Figure 5.51(e) depicts <I>§3
profile along the length of the column when the wave is traveling back up the column. It can
be seen that for the case that the micromorphic BC is applied on <I>§3 and the load amplitude is
large (blue line) we can observe the finite strain deformation effects such that the profile of ®%,
is oscillatory. The next few figures are devoted to presenting the couple stress component M§L33.
In the finite element calculation, the couple stress component M§l33 has been calculated through
constitutive equation, however, for the purpose of getting insight into the couple stress physical
concept, we can use its basic definition (4.4), which interprets the couple stress in the current
configuration B as the volume average of the micro-element stress o(® multiplied by the relative
position vector & (@) over the macro-element domain. Therefore, the couple stress is a micro-scale
moment-like stress, in which it reflects the spatial gradient of the multiplication of micro-element

stress (@ and the relative position vector E(o‘) in Fig.5.53. The spatial gradient of the relative
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position vector is related to the micro-displacement tensor ® through x(Xpg,t) =1+ ®(Xpg,t) and
(2.3). Note that the negative or positiveness of the couple stress does not necessarily imply that the
structure is either under compression or tension. Figure 5.54 depicts the couple stress component
M2, through the length of the column for the times ¢ = 0.002(s), 0.01(s), 0.02(s), 0.025(s), and
0.035(s). Figure 5.54(a) illustrates M4, along the length of the column at time ¢ = 0.002(s). It
can be seen that at time ¢t = 0.002(s) the BC on ®%; does not affect the profile of couple stress
(similar to what is observed in Fig.5.51(a)).

From Figs.5.54, it can be seen that when there is no BC on <I>§3, its gradient around the
boundary is zero and the resulting couple stress M§l33 will be zero as well. Therefore, for the cases
with no BC on ®%;, the couple stress M, is zero at the two ends of the column. Figure 5.54(e)
illustrates M, at time ¢t = 0.035(s). This figure reflects the effect of finite strain analysis on
the profile of M§l33 along the length of the column similar to what is observed in the plot of the
micro-displacement tensor component @§3 in Fig.5.51(e). Figure 5.55 compares motion ug at the
top of the column obtained from the finite strain micromorphic continuum with and without BC on
<I>§3 and that of the classical continuum. The obtained displacements are close to each other which
can reflect the effect of small inhomogeneity due to small value of selected relative position vector
(small sizes of macro and micro-elements). Figure 5.56 depicts the finite strain analysis versus the
small amplitude model (small strain analysis) to highlight the non-linear geometry effect on the
displacement at top of the column. For the purpose of comparison, the obtained results of the small
amplitude load analysis are scaled with the ratio of large amplitude load to small amplitude load.
It can be seen that beside the larger macro-element displacement ué‘ obtained from the finite strain
analysis in comparison with the small load amplitude models (for both classical and micromorphic
continua), the scaled wave from the small load amplitude model has a larger velocity than that of

the wave from finite strain analysis.
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5.5.2 Beam Bending Dynamics at Finite Strain

The second example is for beam bending dynamics at finite strain in which a lateral load is
applied in the middle of the beam, and the two ends of the beam are fixed (Fig.5.57). The beam
bending model is made up of two blocks of materials to investigate the effect of transition from
micromorphic continuum/classical continuum to classical continuum/micromorphic continuum for
beam bending dynamics. The first block is located in the middle of the beam, and the second
block is made of two volumes located at the two sides of the beam (Fig.5.57). Note that each block
can be either micromorphic continuum or classical continuum. Therefore, there are four models to

investigate for beam bending dynamics.

Results plotted along
this edge { @’1’1 -0

‘I’gz =0
ol =0
Boundary Conditions ) &%, =0 Throughout the Beam
on two ends of beam ol =0 @qu,llqu)ggq,gz -0
h _
- F=5.94e10 (N) u}ll -0
- ub =0

i3 =0

_
Case A: BLI1: Micromorphic
BL2: Micromorphic Vs(macro-element volume)

Case B: BL1: Micromorphic
< BL2: Classic
Case C: BLI1: Classic

BL2: Micromorphic
L Case D: BLI: Classic
BL2: Classic

V(@ (micro-element volume)
h=0.5(m)
0.125
0.125 | (m)

=(a) _
< w=0.05(m) {00125

Figure 5.57. Schematic of finite element mesh and BC for beam bending dynamics.

The selected material parameters are similar to the previous example and are presented in Ta-
ble 5.14. The selected relative position vector for the micro-element in the positive part of the
macro-element is 2(®) = [0.125 0.125 0.0125] (m). Table 5.16 illustrates the BCs applied on the

micromorphic and classical continuum blocks of the beam models.
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Table 5.16. Selected boundary conditions for beam bending dynamics.

Micromorphic Continuum  Throughout the beam  On surface I' (both sides)
Dy, 0, (I”zl?,» q)§2 =0 @, P, (I’gzav (I)}fsa @gl =0

ult b ul =0
Classical Continuum On surface T' (both sides)

R h o h
uy, s, uz =0

Figure 5.58 depicts the macro-element displacement component along the length of the beam models
at times ¢ = 0.005(s),t = 0.025(s),t = 0.06(s),t = 0.12(s),t = 0.18(s), and t = 0.22(s). These
figures are presented to illustrate the effect of micromorphic and classical continuum interface
on the beam bending displacement. Note that the legends “Micromorphic-Micromorphic” and
“Classic-Classic” denote that both the first and second blocks are micromorphic and classical
continuum, respectively. The legends “Micromorphic-Classic” and “Classic-Micromorphic” denote
the first block is micromorphic continuum/classical continuum, and the second block is classical
continuum/micromorphic continuum. In the figures, a comparison is made between these four beam
models. Note that the dashed blue lines in the figures indicate the interfaces of micromorphic and
classical continuum. Figure 5.58(a) illustrates the beam macro-element displacement at the initial
stage of loading. It can be seen that the beam with micromorphic continuum block in the middle
deforms more than the beam with classical continuum blocks in the middle. Figures 5.58(b) and
5.58(c) show the bending wave in the beam when it is about to hit the interface of micromorphic
and classical continuum. From Fig.5.58(c), it can be seen that the interface does not have a
significant effect on the wave when it transfers from the micromorphic continuum block to the
classical continuum block and vice versa. Figures 5.58(d), 5.58(e), and 5.58(f) show that when the
wave is reflected from the two sides of the beam we can notice the effect of the interface on the
macro-element displacement profile along the length. The effect of the interface is more highlighted
as the wave travels back and forth through the beam. This is related to the differences of the
wave velocities in micromorphic and classical continua. Figure 5.59 demonstrates the deformed
configuration, the macro-element displacement component u’zl, and the micro-element displacement

component uéa)h of the micromorphic-micromorphic beam under bending.
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Figure 5.59. Contour plots of macro-element displacement u% and micro-element displacement u2 " for the
micromorphic-micromorphic beam models

The contour plots show that the difference between the micro-element displacement uga)h and
the macro-element displacement u’2Z is not significant, and as the displacements become larger
their difference becomes negligible. This indicates that the micro-element deformation through the
micro-displacement tensor ® is not significant which may be related to the selected elastic material
parameters for micromorphic continuum and, also, the size of the relative position vector. Figures
5.60(a) and 5.60(b) illustrate the macro-element displacement u? in the middle and at the interface
of micromorphic and classical continuum blocks over time. From the perspective of displacement
magnitude, it is noticed that the micromorphic-micromorphic beam is the most flexible one, and the
classic-classic beam model is the stiffest. Note that when the wave is passing the interface toward
the middle of the beam (interface macro-element displacement u# is decreasing in Fig.5.60(a)) the
deviation between the macro-element displacement uf of the four beam models become noticeable
(the second time wave is passing the interface).

Figures 5.61 depicts the second Piola Kirchhoff stress components S}y and S, along the length

of the beam for the times ¢ = 0.005(s) and ¢ = 0.025(s). These figures demonstrate two stress
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Figure 5.60. Macro-element displacement component u} at the micromorphic and classical elasticity interface
and in the middle of the beam over time.

waves SI and S, are traveling in two opposite directions toward the beam ends. For all the
four beam models the results of the second Piola Kirchhoff stress component S{‘l are overlapped
(axial wave); however, this is not the case for the second Piola Kirchhoff stress component S,
(transverse wave). Note that the profile of second Piola Kirchhoff stress component S%, at time
t = 0.025(s) has numerical oscillations. Similar to what is observed in Fig.5.48(b), these numerical
oscillations are related to the sharp profile of impulse load in which the developed implicit finite
element model with the employed time integration scheme is not able to remove them completely
from the stress results. The results can become improved by developing a micromorphic explicit
dynamic finite element analysis with smaller time steps and more accuracy which is beyond the
scope of this chapter. Figure 5.62 shows the micro-displacement component <I>’2‘2 along the length
of the beam for the times ¢ = 0.005(s), t = 0.025(s), and ¢t = 0.06(s). Figure 5.62(a) illustrates
<I>’212 at the initial stage of loading. The plot of micro-displacement component <I>’§2 shows that for
the micromorphic-micromorphic beam (blue circles) and the micromorphic-classic beam model (red
circles), the micro-elements throughout these two beam models are under extension in the direction

of loading. Also, the results of these two models are overlapped around the peak of <I>’212 plots in
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the middle of the beam. Note that for the classic-micromorphic beam model the bending wave has
not yet arrived at the micromorphic blocks (green circle) and the micro-displacement component
®h, profile is zero all throughout the beam. Figure 5.62(b) shows ®4, at the time when the wave
is about to hit the interface of micromorphic and classical continuum (Fig.5.58(b)). The plots
of <I>}212 show that at time ¢ = 0.025(s), the micro-element extensional wave spreads throughout
the micromorphic blocks (for both the micromorphic-micromorphic and the micromorphic-classic
models) of the beam models. We can see the two peaks in the plot of ®%, that shows the micro-
element extensional waves are traveling toward the two sides of the beam. From the micro-element
deformation perspective, the classic-micromorphic beam model behaves differently, and the micro-
elements in its micromorphic blocks show compression. This is related to the negative macro-
element displacement uf when the wave is about to hit the interface (Fig.5.58(b)). In Figure
5.62(c), the micro-element extensional wave is about to leave the middle part of the beam and,
therefore, the amplitude of <I>’212 is decreasing. Note that for the micromorphic-classic beam the
reduction in the amplitude of ®%, is more noticeable due to the transition from the micromorphic
continuum to the classical continuum blocks. For the classic-micromorphic beam, we can see that
@’212 is turning to positive value which is related to the positive macro-element displacement arrived
at the two sides of the beam. Figure 5.63 demonstrates the couple stress component M£‘22 along
the length of the beam for times ¢ = 0.005(s), t = 0.025(s), and ¢ = 0.06(s). As mentioned earlier,
negative or positive couple stress components do not necessarily imply that the structure is under
tension or compression. Therefore, if the couple stress component is negative, it can be concluded
that either the gradient of the relative position vector (which is related to ®) or the gradient to
the micro-element stress is negative. In Fig.5.62(a), the spatial gradient of the micro-displacement
component @’212 is positive for the first half of the beam, and it is negative for the other half of the
beam. There is a trough in the plot of ML, in Fig.5.63(a), which reflects the effect of the negative
spatial gradient of the micro-element stress in the Y direction. Figures 5.63(b) and 5.63(c) show
that for times ¢ = 0.025(s) and ¢ = 0.06(s) the profiles of couple stress component M2, for the

middle block of the micromorphic-micromorphic and micromorphic-classic models are overlapped,
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unlike the micro-displacement component ®3, in Figs.5.62(b) and 5.62(c). This can be related
to similar spatial gradient of the micro-element stresses of these two models that compensate for
their differences with regard to the spatial gradient of the micro-displacement tensor component
®h,. Figure 5.64 demonstrates the contour plot of the couple stress components MJy; and M,
along the length of the micromorphic-micromorphic beam. The contour plots of the couple stress
component M}, show that it has a smooth distribution along the length of the beam. This is
related to the smooth gradient of the micro-element stress along the X axis. However, the couple
stress component MQh22 represents the gradient of stress along the Y axis which is the thickness of
the beam. Therefore, in the region in which an abrupt change in deformation occurred, we can
expect the significant gradient of micro-element stress along the Y direction and this is the reason

for localized distribution of M%, along the thickness of the beam.
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5.5.3 Plate Dynamics Under In-plane Loading

In this section, numerical results on the dynamic analysis of a plate under in-plane loading
will be presented. Figure 5.65 illustrates the geometry, mesh schematic, and BCs of the plate. The
plate is made of two blocks in which either micromorphic or classical continuum can be associated
with these blocks. Therefore, similar to the beam bending example, there are four cases such
as “micromorphic-micromorphic”, “micromorphic-classic”, “classic-micromorphic”, and “classic-

classic” to study the dynamic behavior of the plate.

E(t)

1

Case A: BLI1: Micromorphic
BL2: Micromorphic
Case B: BL1: Micromorphic
Block 1 BL2: Classic
Surface B—
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Figure 5.65. Configuration of plate under in-plane loading

The selected material parameters for the plate is similar to those of the previous examples and is
presented in Table 5.14. The BCs on the micromorphic dofs ®" and the macro-element displacement

u” (displacement in classical continuum) are illustrated in Table 5.17.
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Figure 5.66. macro-element displacement u? along width of plate.
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Figure 5.66 illustrates the macro-element displacement u} along the width (vertical direction) of the
plate. These plots represent the displacement profile along the direction of the longitudinal wave
in the plate. These figures show that the difference in the macro-element displacement ug of the
four plate models is noticeable. Figure 5.66(a) shows that the micromorphic plate is slightly more
flexible than the classical continuum plate. Note that at times ¢ = 0.004(s) and ¢t = 0.0085(s) the
longitudinal wave is in the first block of the plate and, therefore, the obtained macro-element dis-
placement component ug of the micromorphic-classic and the classic-micromorphic are overlapped
with the micromorphic-micromorphic and the classic-classic plates, respectively. Figure 5.66(b)
demonstrates the status of the macro-element displacement u’zl when the longitudinal wave passed

the interface. As mentioned earlier, a small difference in the obtained displacement is noticeable.
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Figure 5.68. macro-element displacement u# along interface of plate.

It is worth mentioning that in general the profiles of the macro-element displacements u of
the four models are the same. The differences in the longitudinal wave velocities of these models
make the displacement profiles of these four models deviate from each other. Figures 5.66(c) and
5.66(d) show the macro-element displacement u} when the wave is reflected from the bottom sur-
face. The differences between the profiles of the macro-element displacement u} of the four models
become more evident. Figure 5.67 illustrates profile of longitudinal wave along the interface of the

micromorphic and the classical continuum blocks horizontal bold line in Fig.5.65 through plotting
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Figure 5.69. Comparison of finite strain and small strain analyses on plate macro-element displacement
component u}g

the macro-element displacement component ug Figure 5.67(a) depicts the longitudinal wave just
arrived at the interface. Therefore, the displacement profiles of the micromorphic-classic and the
classic-micromorphic plates are similar to those of the micromorphic-micromorphic and the classic-
classic plates. This figure shows that the amplitude of displacement in micromorphic continuum is
smaller than that of classical continuum; however, it has been observed that (Fig.5.66(a)) for the
selected elastic material parameters, deformation in micromorphic continuum for a certain amount
of load is larger than that of classical continuum. This is related to the lower micromorphic wave
speed and, therefore, the longitudinal wave in micromorphic continuum is behind classical contin-
uum and its displacement amplitude is smaller. Figure 5.67(b) illustrates the longitudinal wave
when it arrives at the second block toward the bottom end of the plate. Figure 5.67(c) demonstrates
the longitudinal wave when it is reflected off the bottom end of the plate. It can be seen that the
macro-element displacement component u} profile is similar for all four models in contrast with that
of Fig.5.67(d). Figure 5.67(d) depicts the profile of the macro-element displacement u% when the
longitudinal wave passes the interface for the second time. It is noticeable that the macro-element

displacement u} starts deviating from each other for all four cases.
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Figure 5.70. Contour plot of macro-element displacement component u% to visualize the longitudinal wave.
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Figure 5.71. Contour plot of macro-element displacement component ué” to visualize the transverse wave.
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Figure 5.68 depicts the macro-element displacement ug along the interface. Figure 5.68(a) shows
the transverse wave along the interface at ¢ = 0.004(s). The profile of out-of-plane macro-element
displacement u’?} is similar in all cases except small differences in the amplitude of the deformations
between micromorphic continuum and classical continuum. It can be seen that at time ¢t = 0.0085(s)
when the transverse wave passed the interface (Fig.5.68(b)) the profiles of out-of-plane displacement
for all the four cases are different. Figure 5.69 show a comparison between the macro-element
displacement ug obtained from the finite strain analysis (large load amplitude model) and that
of the small load amplitude analysis (small strain analysis). Similar to the previous examples
the displacement from the small load amplitude analysis has been scaled to compare with finite
strain analysis. The finite strain analysis predicts a larger macro-element displacement component
ug in comparison with the scaled small load amplitude model. It is to be noted that the finite
strain wave travels at lower speed than the small strain wave. Figures 5.70 and 5.71 show contour
plots of the macro-element displacement components u’2‘ and ué‘ to visualize the longitudinal and
transverse waves for the micromorphic-classic plate model. In these figures, four different times
are selected to illustrate the longitudinal and transverse waves propagation in the plate. Figure
5.72 shows the macro-element velocity component u’g along the interface of the plate at the times
t =0.006(s) and ¢ = 0.0085(s). As mentioned earlier, wave velocity in classical continuum is higher
than that of micromorphic continuum. Note that this is not a general conclusion, and it is mainly
related to the selected elastic material parameters for micromorphic continuum. In Fig.5.72(a),
the velocity profile for all the four plate models are similar, however, their velocity amplitudes
are different. Figure 5.72(b) shows that when the longitudinal wave passed the micromorphic
and classical continuum interface the profile of velocity changes noticeably when it travels from
micromorphic to classical continuum. Figure 5.73 illustrates the second Piola Kirchhoff stress
component S%, along the interface. Similar to what is observed in the macro-element velocity
u% plots (Fig.5.72), at the time t = 0.006(s) (Fig.5.73(a)), the profile of second Piola Kirchhoff
stress component SSQ is similar for all four cases, however, differences in the stress amplitude are

noticeable. Figure 5.73 shows that the difference in the profile of the second Piola Kirchhoff stress
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S99 from the micromorphic-micromorphic and the micromorphic-classic with that of the classic-
classic and the classic-micromorphic becomes more evident. Figure 5.74 illustrates the micro-
displacement tensor component @32 along the width of the plate. Similar to what is observed in
previous examples, when the longitudinal compression wave is traveling, the micro-elements all
through the plate start deforming (for the micromorphic-micromorphic case, <I>}2‘2 in Fig.5.74(a) is
negative all through the plate) in micromorphic continuum. As the micro-elements are getting
compressed at the bottom of the plate, the micro-elements at top of the plate are under tension
(®h, turning to positive values) (Fig.5.74(b)). Figures 5.74(c) and 5.74(d) plot ®%, when the wave
is getting reflected off the bottom surface. Figure 5.75 illustrates the couple stress component
M3y, along the width of the plate at the times ¢ = 0.006(s), t = 0.0085(s), t = 0.0135(s), and
t = 0.0175(s). As explained in the previous examples, Mzh22 shows the spatial gradient along the
direction 2 of the micro-element stress multiplied by the spatial gradient of the relative position
vector. Therefore, when the micro-displacement component @’52 has a spatial gradient along the
width of the plate, the couple stress component M§22 will be non-zero along the width of the plate.
In all the couple stress component M£l22 plots in Fig.5.75 there is a peak (either positive or negative)
in the ]\/[2h22 profile along the width of the plate that indicates the peak of spatial gradient of the
micro-element stress. Note that the peak in the spatial gradient of micro-element stress can be use
as an indication of the location of the wave (no gradient in the micro-element stress of adjacent
micro-elements denotes there is no disturbance of wave at that location). Consequently, we have

non-zero micro-displacement tensor ®” at that location.
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Chapter 6

Conclusion, Current and Future Work

The research was devoted to presenting the micromorphic continuum theory (by Eringen) deriva-
tions for elasticity, elastoplasticity, and dynamics at finite strain, as well as physical motivation,
finite element analysis implementation, and interpretation of the micromorphic micro-structured
material modeling. The main focus of this research is on the discussion of the micro-structured
material modeling from the perspective of a micromorphic continuum for elasticity, elastoplastic-
ity, and dynamics at finite strain. A three dimensional finite element model has been developed
in Tahoe to be able to perform three dimensional micromorphic continuum simulations. To the
best of our knowledge, there are no micromorphic finite strain finite element analysis models es-
pecially in 3D or analytical solutions in the sense of Eringen in the literature to be comparable
with our model. Considering the inhomogeneity in terms of the deformable micro-elements in mi-
cromorphic continuum, the macroscopic mechanical response can be different in comparison with
the homogenized classical continuum models. The difference is dependent on factors including ma-
terial parameters (micro-element deformations), the size of micro-elements (the relative position
vector family (@), type of loading (bending and large rotation), and micromorphic BCs. Each of
these factors has been investigated through the numerical simulations. The material parameters
of micromorphic continuum play the main role in terms of the micro-element stiffness and their
deformation under loading. The larger micro-element deformations result into a more noticeable

inhomogeneity in the macroscopic mechanical response. The size of micro-element corresponds to
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the size of the material’s micro-structure in the micromorphic continuum description. Therefore,
the results of a material with finer micro-structure is closer to the classical continuum results. Types
of loading also affects the macroscopic behavior of the micro-structured materials in comparison
with the classical continuum models. Note that in bending and large torsion, the difference in the
macroscopic behavior obtained from micromorphic continuum for the micro-structured material
with the homogenized classical continuum model is more pronounced in comparison with those of
the uniaxial strain column simulation (micromorphic and classical continua are close). It is ev-
ident that the boundary conditions on the micromorphic dofs is crucial in terms of defining the
micro-element deformations and resulting inhomogeneity added through the couple stress terms.
We should keep in mind that the resolution of material modeling through micromorphic continuum
is higher than that of classical continuum, but, not as much as that of direct numerical simu-
lations (DNS). Micromorphic continuum theory is established based upon continuum mechanics
assumptions. Therefore, the micromorphic continuum picture from the micro-structure is obtained
through involving micro-elements and integral averaging over the macro-elements of a continuum
body without touching the material micro-structures explicitly. For multi-scale materials modeling,
sometimes it is worthwhile working with a micromorphic continuum to pick up more information
from an underlying DNS region. However, this may not be the case for all multi-scale modeling
problems. The decision can be made through observing the effect of micro-structural deformations
obtained from the DNS region and, if the inhomogeneity is pronounced, a micromorphic continuum

will provide better resolution for multi-scale material modeling.

6.1 Future Work

The following future work from the view point of finite element analysis can be envisioned such
that:
1- Developing micromorphic explicit finite element analysis to overcome numerical instabili-

ties in micromorphic dynamics
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2- Developing micromorphic poromechanics to simulate fluid flow through the micromorphic
solid skeleton
From the view point of physical motivation and micromorphic continuum application:
1- Calculating micro-deformation tensor x and micromorphic strain tensors to plot stress-
strain curves based on DNS and micromorphic filter.
2- Calibrating micromorphic constitutive parameters via the calculated micromorphic stress-
strain curves.
3- Simulating an integrated model with overlapping regions (DNS/micromorphic filter /micromorphic
continuum) and comparing the result with the model entirely simulated by DNS.
4- Applying micromorphic filter on elastoplastic DNS for better failure predictions through

micromorphic elastoplasticity.
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