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This study concerns the development of a series of finite difference codes for solving 

one-dimensional two-phase flow problems. The ability to predict fluid movement in saturated 

and unsaturated soils is an important problem in many branches of science and engineering, 

including soil science, agricultural engineering, environmental engineering and groundwater 

hydrology. The research performed for this thesis is motivated by three main areas of study: blast 

densification in saturated sand, enhanced oil recovery and geothermal energy harvesting. This 

study models imbibition fronts in rigid porous skeleton resulting from varying boundary and 

initial conditions by solving governing equations for two-phase flow using the Picard and fourth-

order Runge Kutta methods with finite difference spatial approximations. The numerical results 

were validated using experimental data from Melean et al. (2003) and Touma and Vauclin 

(1986). Results indicate that the numerical approximations yield accurate and practical 

estimations of the infiltration variables of interest.  
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CHAPTER 1  

INTRODUCTION 

1.1 Research Objectives  

1.1.1 Numerical Simulators 

This thesis focuses on developing a series of finite difference codes for solving one-

dimensional two-phase flow problems. The research is motivated by three main areas of study: 

blast densification in saturated sand, enhanced oil recovery, and geothermal energy harvesting.  

The goal of this project is subdivided as follows: (a) to develop and validate a numerical 

solver capable of simulating 1-D two phase incompressible flow problems with a constant flux 

boundary at the inflow; (b) to develop and validate a numerical solver capable of simulating 1-D 

two phase incompressible flow problems with constant pressure boundaries, and (c) to develop 

and validate a numerical solver capable of simulating 1-D two phase compressible flow 

problems with varying boundary conditions.  

1.1.2 Supporting Experimental Procedures 

This research is performed in support of a larger project investigating the dynamics of 

soil densification and multiphase flow under blast loading.  The models produced in this study 

will support the interpretation of experimental data to be collected in the 2017-2018 academic 

year. The goal of these experiments is to design and conduct a series of one-dimensional 

experiments on high-rate gas injection (i.e. blasting) in saturated sand to validate the governing 

equations and computational results. A rudimentary schematic of the test setups under 

development is shown in Figure 1.1.  
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Figure 1.1 Experimental Setups 

 

The set up consists of a thick-walled acrylic tube filled with clean sand (e.g. the Ottawa 

20/40 sand) saturated by de-aired water and capped by porous stones. Nitrogen gas will be the 

gas agent in the injection or explosion study so that the assumption of zero mass exchange 

between phases remains valid. Along the tube, multiple compressive piezoelectric elements will 

be installed to measure the pressure wave (p-wave) velocity at different cross sections. This data 

will be used to track the propagation of the gas front during the test.  

1.2 Scope of the Study 

The research completed within the scope of the study is organized into three different 

objectives to accomplish the threefold purpose outlined in section 1.1.  

1.2.1  Objective 1 

Objective I, discussed in Chapter 3, addresses part (a) of the purpose by examining the 

critical aspects of a two-phase incompressible flow system subject to a constant flux boundary at 

the inflow. The system’s governing equations are summarized and then organized into a 

numerical simulator based on the modified Picard method. The solver is validated using the oil-

water invasion data reported by Melean et al. (2003).  
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1.2.2 Objective II 

Objective II, discussed in Chapter 4, addresses part (b) of the purpose by examining the 

critical aspects of a two-phase incompressible flow system subject to constant pressure 

boundaries. Again, the governing equations are summarized and then organized into a coupled 

numerical solver based on the modified Picard method. This numerical solver is validated by a 

comprehensive examination of the simulated results.   

1.2.3 Objective III 

Objective III, discussed in Chapter 5, addresses part (c) of the purpose by examining the 

critical aspects a two-phase compressible flow system. Once again, the governing equations are 

summarized, and then implemented into two separate numerical simulators based on the fourth-

order Runge-Kutta method and the modified Picard method. Finally, these final simulators are 

validated using the experimental data by Touma and Vauclin (1986). 

1.3 Arrangement of the Thesis 

The thesis is organized into six chapters, as follows. Chapter 1 includes the purpose and 

outlines the scope of the study. Chapter 2 reviews the problem statement, discusses relevant 

background information and motivates the development of the three solvers. This chapter also 

highlights the main approaches used by researchers in the past to model two phase flow 

problems, as well as the approaches used in this study to model two-phase flow problems and the 

advantages and disadvantages of each. Chapter 3 describes in detail the development and 

validation of the numerical solver capable of simulating a 1-D two-phase incompressible flow 

system subject to a constant flux boundary at the inflow. This chapter includes a parametric 

study and discussion analyzing the solver’s response to varying several model parameters. This 

solver is validated by fitting the numerical solutions to experimental data given by Melean et al. 
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in 2003. Chapter 4 describes in detail the development and validation of the coupled numerical 

solver capable of simulating a 1-D two phase incompressible flow system subject to constant 

pressure boundaries. Chapter 5 describes in detail the development and validation of the 

numerical solver capable of simulating a 1-D two-phase compressible flow system subject to 

varying boundary conditions based on Binning and Celia’s 1992 formulation. To validate these 

results, the numerical solver is compared to the experimental solutions given by Touma and 

Vauclin in 1986. The computational performance of the Backward-Euler Picard iteration scheme 

is also compared to an explicit RK4 formulation. Chapter 6 summarizes the accomplishment of 

the threefold purpose for the study and discusses future directions of the research.
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CHAPTER 2  

BACKGROUND AND MOTIVATION 

2.1 Current Research Direction 

The concurrent, unsteady flow of two fluids in porous media has long been of interest in 

Earth science. The ability to predict fluid movement in saturated and unsaturated soils is an 

important problem in many branches of science and engineering, including soil science, 

agricultural engineering, environmental engineering and groundwater hydrology (Celia, 

Bouloutas, & Zarba, 1990). Specifically, the dynamics of the simultaneous flow of two fluids is 

important in numerous engineering problems such as the extraction of hydrocarbon in deep 

geological reservoirs, geothermal energy harvesting, enhanced oil recoveries, hydraulic fracking, 

as well as ground improvement using gas products in geotechnical engineering. Depending on 

the field of research and its application, researchers continue to focus primarily on the behavior 

of both water-oil and water-air systems.  

2.2 Motivation 

Researchers at the University of Colorado Boulder wish to model the imbibition fronts in 

a rigid porous media resulting from varying boundary conditions. These predictions will 

eventually be used as a comparison point for novel experimental data to be collected in the next 

stage of the project.  

2.3 Problem Statement  

The goal of this project is to produce accurate and practical estimations of the infiltration 

variables of interest during imbibition processes resulting from varying boundary conditions.  

2.3.1 Idealized Examples of the Invasion of Wetting and Nonwetting Fluids  

Suppose a rigid porous skeleton with some initial porosity φ is initially fully saturated by 

a nonwetting fluid, like oil. At time t0 = 0 the skeleton is suddenly subjected to the invasion of a 
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wetting fluid, like water. The saturation profile within the porous skeleton will resemble Figure 

2.1 below at times t1 and t2, assuming t0 < t1 < t2.  

 
Figure 2.1 Schematic of the invasion of a nonwetting fluid. 

 

As the wetting front moves through the soil skeleton, the nonwetting fluid is 

simultaneously displaced. This infiltration front moving through the porous media may also be 

called an imbibition front.  

Similarly, one can also imagine the invasion of a nonwetting fluid as seen in Figure 2.2.  

 
Figure 2.2 Schematic of the invasion of a wetting fluid. 
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2.3.2 Boundary Conditions  

The same numerical simulators can be used to model the invasion of wetting and 

nonwetting fluids by imposing different initial and boundary conditions.  

While there are a few different ways to enforce both wetting and nonwetting invasions, 

for this project, the only methods considered were varying the flux at the inflow boundary and 

varying the pressure at the inflow boundary.  For example, one can enforce the invasion of a 

wetting fluid by imposing the flux of the wetting fluid at the inflow, or by enforcing a low 

suction pressure at the inflow relative to the rest of the porous medium. Similarly, the invasion of 

a nonwetting fluid can be enforced by varying pressure and flux conditions at the inflow 

boundary.  

In most of the models developed for this research, the outflow boundary is considered as 

a constant pressure boundary to resemble the typical open-end condition in most experimental 

studies.  

2.4 Governing Principles of Two-Phase Flow Problems  

2.4.1 Darcy’s Law  

Darcy’s Law is perhaps the most common model used to describe fluid flow through a 

saturated porous medium. For a 1-D system, Darcy’s Law can be written in terms of pressure as 

follows:  

 
dP

Q
dx




    (2.1) 

where Q is the total flow per unit area through the porous medium, κ is the intrinsic permeability 

of the porous medium, µ is the dynamic viscosity of the fluid and dP/dx is the pressure gradient, 

or potential, which is defined as the change of pressure over the length of interest (FracFocus, 

2017).  
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 If gravity is considered and the 1-D column is placed in a vertical configuration, Darcy’s 

Law should be modified to incorporate a gravity term: 

 
P

Q G
x






  
  

 
  (2.2) 

where Q is the rate of flow per unit area in the vertical direction, ρ is the density of the fluid and 

G is the gravitational constant.  

When faced with problems considering the flow of two immiscible fluids flowing 

simultaneously, it is necessary to distinguish between the flow of the wetting and nonwetting 

fluids. A wetting fluid is defined as a fluid capable of maintaining a surface contact angle less 

than 90° with the solid surface. A nonwetting fluid is defined as any fluid that equilibrates with a 

solid surface with a contact angle greater than 90°. As an example, water can be considered as a 

wetting fluid and oil or air can be considered as nonwetting fluids. See Figure 2.3 for reference.  

 
Figure 2.3 Distinguishing between wetting and nonwetting fluids based on their contact angle with the solid surface. 

 

The total flow in a two-phase flow system can be separated into the flow of the wetting 

and nonwetting fluids. In a saturated two-phase flow system, the total flow and degree of 

saturation can be defined as follows:  

 w nwQ q q    (2.3) 

 1w nwS S    (2.4) 
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where Q is the total flow within the porous medium, qw and qnw are the flow of the wetting and 

nonwetting fluids respectively, and Sw and Snw are the degrees of saturation of the wetting and 

nonwetting fluids respectively. Note that for a two-phase system, the system is always 

completely saturated by the two phases (see equation (2.4) for reference).  

For incompressible fluid phases, the total flux Q is a constant throughout the domain and 

becomes only a function of time, which is controlled by the boundary condition. Note that this 

conclusion is only valid for 1-D scenarios, and that for 2-D and 3-D systems, only a much 

weaker conclusion, 0 Q , can be drawn from assuming incompressible fluid phases 

In the case of two-phase flow, Darcy’s Law for fractional flows of wetting and 

nonwetting fluids must be modified by a relative permeability term as follows:  

 

( )

( )

( )

rw w w
w w

wrm m m
m m

m rnw nw nw
nw nw

nw

k S P
q G

xk S P
q G

x k S P
q G

x







 




   
  

    
    

          

  (2.5) 

where the subscript m can be substituted as subscripts w and nw denote the wetting and 

nonwetting fluids, respectively. In the above equations, the variables Pw and Pnw are defined as 

the pressures of the wetting and nonwetting fluids respectively. The relative permeability, kr, is a 

function of the degree of saturation and is discussed further in section 2.4.3.  

The difference in the pressure of the nonwetting and wetting fluids is defined as the 

capillary pressure, or suction pressure.  Often, it is this difference in pressure that drives the flow 

of the wetting or nonwetting fluids, the so-called capillary drive. The capillary pressure, Pc is a 

function of the degree of saturation of the wetting fluid as follows:  

 ( )nw w c wP P P S      (2.6) 
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where Π(Sw) represents a relationship between the capillary pressure and the saturation of the 

wetting fluid, known as the soil water retention curve, which is discussed further in section 2.4.2.  

2.4.2 Soil Water Retention Curve  

The soil water retention curve is a relationship between the water content and the water 

potential that can be used to estimate various parameters describing the behavior of unsaturated 

soil. There are several models that can be used to obtain an estimation of the soil water retention 

curve. Each model results in a slightly different estimation, and unfortunately no unified model 

exists to date which can be used for all soil types (Rahimi, Rahardjo, & Leong, 1997). Several 

researchers have proposed different models, including Brooks & Corey in 1964, Brutsaert in 

1966, van Genuchten in 1980 and Fredlund et al. in 1994 (Rahimi, Rahardjo, & Leong, 1997).  

For this research, the van Genuchten model was used to predict the degree of saturation 

based on the capillary pressure at that point. The relationship between the degree of saturation 

and capillary pressure as defined by van Genuchten is given as follows:  

 
0

1

1 (1 / )

M

w r
e N

r c

S S
S

S P p

 
   

  
  (2.7) 

where Se is the effective degree of saturation. Solving for the degree of saturation of the wetting 

fluid in equation (2.7) gives the following equation:  

 
0

1
(1 )

(1 / )

M

w r rN

c

S S S
P p

 
   

 
  (2.8) 

where Sr is the residual saturation, p0 defines the suction air entry value, N is a model parameter 

that is related to the pore size distribution of the porous medium, and M is defined as follows:  

 1 1/M N    (2.9)  
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 In general, larger N values reflect a wider pore size distribution, and larger p0 values 

correspond to smaller average pore sizes.  For example, the value of N is generally larger for 

sand-like soils than clay-like soils, and p0 values for clays are generally larger for clay-like soils 

than sand-like soils. A van Genuchten model representation of the proposed soil water retention 

curves can be seen in Figure 2.4.   

 
Figure 2.4 Example soil water retention curves for sand and clay based on the van Genuchten model. In this figure, the residual 

degree of saturation Sr is 5%.  

 

The highly nonlinear nature of the capillary drive is the primary source of many 

mathematical difficulties in deriving close-form solutions to two-phase flow problems 

(McWhorter & Sunada, 1990). In the past, realistic behavior of the capillary drive has been 

captured through numerical solutions (Fokas & Yortsos, 1982), and only limited analytical 

solutions with simplifying assumptions have been obtained (Buckley & Leverett, 1942), 

(McWhorter & Sunada, 1990).  

2.4.3 Relative Permeability 

The relative permeability of a fluid is a function of its corresponding volume fraction. 

One may think of the relative permeability as a type of scaling factor as follows:  

 effective rk     (2.10) 
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At intermediate wetting fluid contents, the effective intrinsic permeability of the wetting 

fluid will assume some intermediate value between zero and κ (Morel-Seytoux, 1973), scaled by 

the value of the relative permeability, kr, which lies between zero and one. For example, if a 

wetting fluid flows alone in a porous medium and occupies the entire pore space, the effective 

permeability should be identical to the intrinsic permeability of the porous medium κ (i.e. krw = 

1). Similarly, when the porous medium is completely occupied by a nonwetting fluid, the 

pathways for the transporting wetting fluid are all lost and the effective permeability of the 

wetting fluid approaches to zero (i.e. krw = 0).  

For this study, the relative permeabilities of the wetting and nonwetting fluids are defined 

as a function of the saturation of the wetting fluid based on the Mualem’s 1976 model as follows:   

 

1/ 2

1/ 2

(1 (1 ) )

1 (1 )

M M

rw w w

M M

rnw w w

k S S

k S S

   


  

  (2.11) 

where M is a model parameter between zero and one that varies based on the type of soil making 

up the porous media, as given in equation (2.9). Figure 2.5 shows how the relative permeabilities 

of wetting and nonwetting fluids vary as a function of water saturation with varying M (or N) 

values based on Mualem’s 1976 model.  
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Figure 2.5 Relative permeability of wetting and nonwetting fluids as a function of the water saturation based on Maulem's 1976 

model. 

 

2.4.4 Richard’s Equation  

In studying vadose zone hydrology, the classical Richard’s equation is often invoked to 

model the transport of fluids (Hillel, 1980). Richard’s equation is a very specific form of the 

mass balance equation where the compressibility of the fluid is neglected, solid deformation is 

ignored and the air pressure is assumed to be constant. These assumptions are valid for this 

research in the specific case of constant Pnw conditions. Even though the governing equations for 

the more general case of two-phase flow are not strictly the same as “Richard’s Equation,” they 

do bear prominent similarities, and it is for this reason that the following discussion is included.   

Richard’s equation governing unsaturated flow can be written in several different forms, 

with either moisture content, θ, or pressure head, h, acting as the dependent variable. Three 

standard forms exist and can be identified as the “h-based” form, the “θ-based” form and the 

“mixed” form, where in the mixed both moisture content and pressure head are dependent 

variables (Celia, Bouloutas, & Zarba, 1990). These equations are given as follows:  

h-based: 

 ( ) ( ) 0
h K

C h K h h
t x

 
   

 
  (2.12) 
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θ-based: 

 ( ) 0
K

D
t x


 

 
   

 
  (2.13) 

Mixed: 

 ( ) 0
K

K h h
t x

 
   

 
  (2.14) 

where C(h) ≡ dθ/dh is the soil-water retention relationship discussed in section 2.4.2, K(h) is the 

unsaturated hydraulic conductivity, D(h) ≡ K(θ)/C(θ) is the unsaturated diffusivity and x denotes 

the length of the sample (Celia, Bouloutas, & Zarba, 1990). Before the 1990s, many researchers 

in hydrology used either the h-based or θ-based formulation to approximate the numerical 

solutions (Celia, Bouloutas, & Zarba, 1990). However, beginning in the 1990s, researchers began 

to realize that h-based solutions to Richard’s equation tend to exhibit mass balance problems 

(Celia, Bouloutas, & Zarba, 1990). Researcher also observed that the θ-based formulation, while 

able to conserve mass, can be problematic because the diffusivity D(θ) increases to infinity when 

the degree of saturation of the wetting fluid is near zero, and that the water content θ is not 

constant across interfaces between different mediums. The mixed formulation does not exhibit 

any of these problems, and for this reason, the mixed-form formulation of the mass balance 

equation was used in this project.  

For this project, the mass balance equation is written with the pressure, P, as the 

independent variable and the degree of saturation, Sw, as the dependent variable. An intermediate 

step is to convert the water content and pressure head to degree of saturation and pressure using 

the following relationships:  

 m mS    (2.15) 

 m mP gh   (2.16) 
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where φ is the porosity of the soil.  

2.4.5 The Mass Balance Equation 

The most general form of mass balance equation for phase m can be written as:  

     0m m m mS q
t x
  

 
 

 
  (2.17) 

By substituting Darcy’s Law as in equation (2.5), the mass balance equation becomes: 

    
( )

0rm m m
m m m m

m

k S P
S G

t x x


   



      
     

     
  (2.18) 

This version of the mass balance equation governs the vertical flow of compressible 

fluids in a deformable solid skeleton. However, depending on the characteristics of the system 

being analyzed, the mass balance equation may be simplified. The version of the mass balance 

equation required for the numerical solvers is derived at the beginning of each chapter.  

2.5 Model Development using Numerical Methods  

Solutions to ordinary and partial differential equations can be achieved via mathematical 

techniques (often referred to as analytical methods) such as method of separation of variables 

and transform methods. However, for practical boundary conditions or for highly nonlinear 

systems, the closed form solution often cannot be obtained, and thus numerical methods are 

necessarily invoked to approximate their solutions. The nonlinear nature of Richard’s equation, 

specifically the soil water retention relationship and the relative permeabilities of the fluids, is 

what has steered researchers to apply numerical methods to solve the unsaturated flow equation 

(Celia, Bouloutas, & Zarba, 1990). However, even with numerical methods, Richard’s equation 

can display singularities under certain formulation and difficult to solve in many cases.  
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2.5.1 Finite Difference Method  

Typically, the spatial domain is approximated using the finite difference methods or the 

finite element method coupled with a simple one-step Euler time-marching algorithm. Research 

has shown that, when solving Richard’s equation for unsaturated flow, finite element methods 

are generally inferior to finite difference methods, as finite element methods may result in 

oscillatory solutions even when mass is conserved (Celia, Bouloutas, & Zarba, 1990). For this 

reason, a finite difference approximation with the implicit Euler backward algorithm was applied 

to approximate the spatial domain in all numerical solvers developed for this project.  

2.5.2 Implicit Modified Picard Method  

Throughout the development of numerical solutions for unsaturated flow, the implicit 

Picard scheme has attracted the most attention due to its relatively straightforward 

implementation procedure (i.e. no need to derive Jacobian matrix as compared to the Newton-

Raphson method), and it has the advantage of being unconditionally stable (i.e. no limitation on 

the size of time step as compare to explicit methods). 

For three of the four solvers developed for this project, the specific method used to 

approximate the solution was developed by Celia and coworkers in 1987 (Celia, Ahuja, & 

Pinder, 1987), a method that they referred to as an implicit “modified Picard” method. This 

method, in contrast to the original Picard method, represents the time derivative of water content 

(or saturation) such that a small change in this value can be represented in terms of pressure head 

(or pressure), the so called “mixed form.” This method demonstrates excellent mass balance in 

the numerical solutions with both finite difference and finite element approximations in space.  
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2.5.3 Explicit Fourth-Order Runge-Kutta Method  

The final solver developed for this project is based on the explicit fourth-order Runge-

Kutta method. In general, explicit methods tend to be much easier to implement, but have a 

limited maximum time step and thus lead to more computationally expensive solutions. The 

explicit fourth-order Runge-Kutta method was selected to provide a comparison point for the 

implicit solver of the compressible two-phase flow problem. 
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CHAPTER 3  

TWO-PHASE HORIZONTAL FLOW SYSTEM OF INCOMPRESSIBLE  

FLUIDS SUBJECT TO CONSTANT FLUX BOUNDARIES 

 

3.1 Overview 

3.1.1 Objective 

A numerical solver was developed using MATLAB to model two-phase incompressible 

flow problems subjected to a constant flow rate boundary condition at the inflow with varying 

initial conditions. Comparison with the experimental data by Melean et al. (2003) shows that the 

approximation methods used yield accurate and practical estimations of the infiltration variables 

of interest.  

3.1.2 Governing Equation for the Invasion of a Wetting Fluid  

This derivation models the invasion of a wetting fluid assuming both fluids are 

incompressible fluids in a rigid porous medium.  

As in section 2.4.5, the mass balance equation in its most general form is written as 

follows: 

     0m m m mS q
t x
  

 
 

 
  (3.1) 

 Since the fluids are assumed to be incompressible, the density of the fluids can cancel out 

of both terms. Since the fluids are assumed to be in a rigid porous medium, the porosity is 

constant with respect to time and can be removed from the derivative.  Based on these 

assumptions, the mass balance equation is simplified as follows for wetting and nonwetting 

fluids: 

 0w wS q

t x

 

 
 

  (3.2) 

 0nw nwS q

t x

 

 
 

  (3.3) 
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Since the sum of the degrees of saturation of the wetting and nonwetting fluids is always 

1, adding equations (3.2) and (3.3) gives the following:  

 
( )

0w nwq q

x

 



  (3.4) 

where the total flux is expressed as follows: 

 t w nwq q q    (3.5) 

From equation (3.4), it can be concluded that the total flux is constant with respect to the 

spatial domain. Assuming the flow is in the horizontal direction, there is no gravitational effect 

and the flux of the wetting and nonwetting fluids can be defined as in section 2.4.1 by Darcy’s 

Law as follows: 

 
rw w

w

w

k P
q

x





 



  (3.6) 

 
rnw nw

nw

nw

k P
q

x





 



  (3.7) 

Substituting equations (3.6) and (3.7) into (3.2) and (3.3), one obtains:  

 0w rw w

w

S k P

t x x






   
  

   
  (3.8) 

 0nw rnw nw

nw

S k P

t x x






   
  

   
  (3.9) 

A third governing equation is given based on the total degree of saturation in the medium 

as follows: 

 1w nwS S    (3.10) 

At this point, there are four unknowns, Sw, Pw, Snw and Pnw, but only three equations, so a 

fourth equation is needed to complete the system. The fourth equation is the van Genuchten 
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model for the soil water retention curve, which is discussed in section 2.4.2 to provide a 

relationship between the capillary pressure and the degree of saturation of the wetting fluid as 

follows:  

  
0

1
1

(1 / )

M

w r rN

c

S S S
P p

 
   

 
  (3.11) 

where constants M and N are model parameters based on the pore size distribution of the porous 

medium. 

Based on the definition of capillary pressure ( c nw wP P P  ), Darcy’s Law for wetting 

fluid can be rearranged as follows: 

 
( )1 w w w nw c

rw

q P P P

k x x





  
 

  
  (3.12) 

 
1

nwnw nw

rnw

Pq

k x








 
  (3.13) 

Subtracting (3.13) from (3.12) gives the following equation:  

 
1 w w nw nw c

rw rnw

q q P

k k x

 



  
   

  
  (3.14) 

Since the sum of the flux of the wetting and nonwetting fluids is equal to the total flux, 

the flux of the nonwetting fluid can be defined as follows: 

 nw t wq q q    (3.15) 

With this information, the mass balance equation can be written as follows:  

 
/

0
/ / / /

w nw rnw c
t

w rw nw rnw w rw nw rnw

S k P
q

t x k k x k k x

 


   

     
     

        
  (3.16) 

Equivalently, equation (3.16) can be expressed as follows: 
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 0w nw rw rw rnw c
t

w rnw nw rw w rnw nw rw

S k k k P
q

t x k k x k k x

 


   

     
     

        
  (3.17) 

This is the governing equation for incompressible two-phase horizontal flow subjected to 

a constant flux boundary conditions. The following notations are introduced to simplify the 

implementation:  

 ( ) nw rw
w w

w rnw nw rw

k
h S

k k



 



  (3.18) 

 ( ) rw rnw
w w

w rnw nw rw

k k
g S

k k



 



  (3.19) 

 ( )w t w wH q h S   (3.20) 

 ( )w w wG g S   (3.21) 

Equations (3.20) and (3.21) are defined for later generalizations of the same code to solve 

a nonwetting invasion system.  

With these simplifications, the mass balance equation can be written as follows:  

   0w c
w w

S P
H G

t x x x

    

       
  (3.22) 

Equation (3.22) is the version of the mass balance equation that was discretized and 

approximated using a modified Picard approximation.  

3.2 Model Development 

3.2.1 Discretization 

A finite difference approximation with the implicit Euler backward algorithm was 

applied to discretize the governing equation as follows: 
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1 1 1

1/2 1/2

1 1 1 1

1 11 1

1/2 1/2

( )

1
0

n n n n

w j w j w j w j

n n n n

c j c j c j c jn n

w j w j
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t x
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G G

x x x



  

 

   

  

 

 


 

  
   
    

  (3.23) 

where the superscript n represents the current time step and the subscript j represents the current 

node. Subscripts j+1/2 and j-1/2 represent half nodes adjacent to the current node j.  

3.2.2 Modified Picard Iterations 

The Picard method operates by solving for the variables of interest iteratively. The 

modified Picard iteration for equation (3.23) is written as follows:  

 

1, 1 1, 1,

1/2 1/2

1, 1 1, 1 1, 1 1, 1

1 11, 1,

1/2 1/2

( )

1
0

n m n n m n m

w j w j w j w j

n m n m n m n m

c j c j c j c jn m n m

w j w j

S S H H

t x

P P P P
G G

x x x



   

 

       

  

 

 


 

  
   
    

  (3.24) 

where the superscript m represents the current iteration. At the m
th

 iteration, all values are 

known, and the values at the m+1 iteration represent the unknown values being solved for. The 

capillary pressure variables at the m+1 iteration can be approximated by adding an incremental 

value as follows:  
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The saturation variable at the m+1 iteration is approximated as follows:  
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where the variable C is defined based on the van Genuchten model of the soil water retention 

curve as follows:  
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  (3.29) 

Equation (3.24) can be further written in terms of the unknown, δPc, by substituting 

equations (3.25), (3.26), (3.27), (3.28) and (3.29):  
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3.2.3 Solving for the Variables of Interest  

This equation is then solved for the unknown δPc term at the next iteration (m+1) for all 

nodes (j=1, 2…J-1, J) as follows:  
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This equation is then formulated into a matrix to solve for the δPc vector as follows: 



25 

 

 

1 1 1 1

2 2

1 1

1 1

1 1

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

c

c

c j j

c j j

c j j

c J J

J J c J

B C P R

P R

P R

A B C P R

P R

P R

A B P R















 

 

 

   
  
  
  
  
  
    
  
  
  
  
  
  

    J

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (3.32) 

where R represents all known values in the equation, boxed in green in equation (3.31), the blue, 

yellow and purple boxes represent the known values in front of the variables being solved for, 

which are the δPc terms boxed in red.  

3.2.4 Constant Flux Boundary at the Inflow Boundary Conditions 

The first and last nodes (j = 1 and j = J) are formulated slightly differently than the rest 

of the matrix, as they are the nodes that enforce the constant flux boundary condition.  

Since this solver enforces a constant flux boundary at the inflow (j = 1 at x = 0), Darcy’s 

Law for the flux of a wetting fluid governs the boundary node:  
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At the boundary where x = 0, the flux of the nonwetting fluid is zero so qw = qt. Then 

equation (3.33) can be written as follows:  
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From here, equation (3.34) may be approximated using the modified Picard 

approximation as follows:  
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which is solved for the δPc increments similarly to equation (3.30): 
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The inflow boundary condition is then implemented in the code as follows:  
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3.2.5 Constant Pressure Boundary Condition at the Outflow  

At the outflow (j = J at x = L), a constant pressure boundary is maintained to resemble 

the typical open-end conditions in most experimental studies. Based on the input pressure out the 

outflow, the change in pressure δPc at the J
th

 node is zero. This is easily enforced as follows:  
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The matrices discussed in equations (3.32), (3.37) and (3.39) were combined to form one 

large matrix. Each diagonal in the matrix was built as an independent vector before assembling 

the tri-diagonal matrix to be solved using the Thomas algorithm.  

3.2.6 Implementation in MATLAB 

The code solves the matrices above by taking an initial guess for the capillary pressure at 

all nodes at the initial time t0 = 0. The code iterates through once, and calculates the error as 

follows:  

 max( ( ))cerror abs P   (3.40) 

If the calculated error is less than some set tolerance, set to be tol =1E–04, then two 

successive iterations give very little change in the calculated Pc values and convergence is 

reached. As an example, consider the first time step. When the change in pressure between 

successive iterations is smaller than the set tolerance, convergence is reached for the first time 

step. Following this, these values become the new initial guess for the second-time step, and the 

code begins to iterate until convergence is reached for the second time step. Then the Pc values 

determined in the second time step become the initial guess for the third time step, and so on. 

This process continues until the desired end time is reached.  

3.3 Parametric Study 

A parametric study was performed by varying different model parameters in the code. 

The purpose of the parametric study was two-fold: to analyze how changing various model 

parameters affects the shapes and velocity of the imbibition front, and to eventually produce a 

best-fit comparison to the Melean’s data of imbibition fronts, which is discussed in section 3.4.  
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3.3.1 Experimental Background 

Melean and coworkers performed an experimental study on the horizontal dispersion of 

imbibition fronts in an incompressible fluid oil-water system. The 40cm long soil sample was 

made of quartzitic grains and confined in a glass cylinder with a diameter of 3cm. Injection 

velocities were varied, and data points were collected using X-ray tomography (Melean, Broseta, 

Hasmy, & Blossey, 2003). The input parameters extracted from Melean’s paper are listed in 

Table 3.1. 

Table 3.1 Input parameters given by Melean et al. (Melean, Broseta, Hasmy, & Blossey, 2003) 

Parameter Symbol Value Unit

Intrinsic Permeability K sat  or κ 1.00E-09 m
2

Wetting Fluid Viscocity μw 8.90E-04 kg/m/s

Nonwetting Fluid Viscocity μnw 1.03E-04 kg/m/s

Inflow of Wetting Fluid q varies mL/hr

Porosity ϕ 0.35 -

Length x 0.4 m  

Melean and coworkers neglected to provide any information regarding the initial suction 

throughout the sample Pc,init, and soil water retention curve parameters, including the SWRC N-

value, the residual saturation Sr, and the entry pressure p0. As mentioned, a parametric study was 

performed by varying each of these parameters independently. 

3.3.2 Baseline Case 

A baseline case was selected as a starting point for the parametric study. The input 

parameters for the baseline case are presented in  Table 3.2. 
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Table 3.2 Input parameters for the baseline case used in the parametric study 

Parameter Symbol Value Unit

Intrinsic Permeability K sat  or κ 1.00E-09 m
2

Wetting Fluid Viscocity μw 8.90E-04 kg/m/s

Nonwetting Fluid Viscocity μnw 1.03E-04 kg/m/s

Inflow of Wetting Fluid q w 100 mL/hr

Porosity ϕ 0.35 -

Length x 0.4 m 

N-Value N 3.4 -

Air Entry Pressure p0 300

Initial Capillary Pressure Pc,init 1200 Pa

Residual Saturation Sr 0.1 -  

The simulated wetting front and capillary pressure profile for the baseline case are 

presented in Figure 3.1 and Figure 3.2. 

 
Figure 3.1 A baseline case for the imbibition fronts for a two-phase incompressible flow system subject to a constant flux 

boundary condition of 100 mL/hour compared against the Melean et al. 2003 experimental data. 

 

From Figure 3.1, it is observed that, in general, the shape of the fronts is correct. 

However, with the listed input parameters, the peak degree of saturation is lower and the wetting 

front is travelling too fast as compared to the experimental data by Melean et al.  
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Figure 3.2 A corresponding baseline case for the pressure profiles for a two-phase incompressible flow system subject to a 

constant flux boundary condition of 100 mL/hour. 

 

Figure 3.2 presents the suction profiles corresponding to the wetting fronts presented in 

Figure 3.1.  

3.3.3 Vary Soil Water Retention Curve (SWRC) Parameter N 

The first parameter studied in the parametric study was the soil water retention curve N-

value discussed in section 2.4.2.  

 
Figure 3.3 Varying SWRC N-values to understand the effects on the imbibition fronts for a two-phase incompressible flow system 

subject to a constant flux boundary condition of 100 mL/hour. Fronts are compared against the Melean et al. 2003 experimental 

data. 

 

From Figure 3.3, it is observed that higher N-values create more gradual wetting front 

through the porous medium. Also, higher N-values result in a higher degree of saturation at the 
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entry boundary. This difference in degree of saturation is directly related to pressure difference 

throughout the porous medium via the SWRC. For larger N-values, the difference of Sw either 

sides of the front is related to the traveling speed of the front. Recall that the system is subjected 

to constant flux boundary, which means that for a given time the injected volume of fluid is fixed 

and the area underneath the Sw(x) profiles at a given time should be the same. This ‘constant 

area’ constraint implies that the faster the front it travelling, the less saturated the tailing area is.  

One might conclude, based on Figure 3.3, that water can travel more easily through clay-

like soils than sand-like soils. This, however, is not correct because more variables need to be 

altered to reflect true sand-like soils and clay-like soils, including the entry pressure (p0) and the 

intrinsic permeability κ.  

One can conclude, however, that higher N-values indicate a lower effective permeability 

during the invasion of wetting phase, which means a slower travelling speed of the front through 

the porous medium.  

 
Figure 3.4 Corresponding pressure profiles to varying SWRC N-values. 

 

Figure 3.4 shows the pressure profiles corresponding to the wetting fronts shown in 

Figure 3.3 
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3.3.4 Vary Initial Suction present throughout the Porous Media 

The second parameter analyzed during the parametric study was the initial suction value, 

which represents the suction present in the porous media prior to the injection of the wetting 

fluid.   

 
Figure 3.5 Varying initial suction, Pc, input values to understand the effects on the imbibition fronts for a two-phase 

incompressible flow system subject to a constant flux boundary condition of 100 mL/hour. Fronts are compared against the 

Melean et al. 2003 experimental data. 

 

From Figure 3.5, it is observed that even relatively large differences in initial suction 

have very little effect on the shapes of the imbibition fronts. It can be observed, though, that 

larger initial suction values slow down the traveling of wetting phase through the porous 

medium. This makes sense, as larger initial suction values indicate an initially drier soil sample. 

If the soil is initially very dry, it is more difficult for the front to move through the medium. This 

is because higher initial suction values mean a smaller relative permeability of the wetting front, 

which reduces the ease and traveling velocity of the wetting front in the medium.  
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Figure 3.6 Corresponding pressure profiles to varying initial suction, Pc, values. 

 

Figure 3.6 presents the pressure profiles corresponding to the wetting fronts shown in 

Figure 3.5. Note that the pressure differences between the profiles are caused by the imposed 

initial conditions.  

3.3.5 Vary the Residual Saturation within the Porous Media 

The next parameter analyzed in the parametric study was the residual saturation, which 

represents the degree of saturation of the wetting fluid present in the porous media prior to the 

injection of the wetting fluid.  Note that a nonzero value for the residual degree of saturation 

means that, even if you have an infinitely high initial suction making the media as dry as 

possible, there will still be some initial nonzero degree of saturation in the porous media. 
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Figure 3.7 Varying residual saturation, Sr, input values to understand the effects on the imbibition fronts for a two-phase 

incompressible flow system subject to a constant flux boundary condition of 100 mL/hour. Fronts are compared against the 

Melean et al. 2003 experimental data. 

 

From Figure 3.7, it is observed that higher values of residual saturation result in a wetting 

front with a much shallower slope and faster travelling speed. Similar to the arguments made in 

section 3.3.4, an initially wet sample improves the ease at which the front can travel through the 

media and thus increases the travelling speed of the front. A higher degree of residual saturation 

leads to a higher relative permeability, which leads to a faster travelling speed of the front.  

 
Figure 3.8 Corresponding pressure profiles to varying residual saturation, Sr, values. 

 

Figure 3.8 presents the pressure profiles corresponding to the saturation profiles shown in 

Figure 3.7. 
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3.3.6 Vary the Entry Pressure  

The final parameter analyzed during the parametric study was the entry pressure, p0. The 

entry pressure, similar to the SWRC N-value, reflects the type of soil present in the porous 

media.  Typically, higher entry pressures resemble clay-like soils and lower entry pressures 

resemble sand-like soils.  

 
Figure 3.9 Varying entry pressure, p0, input values to understand the effects on the imbibition fronts for a two-phase 

incompressible flow system subject to a constant flux boundary condition of 100 mL/hour. Fronts are compared against the 

Melean et al. 2003 experimental data. 

 

From Figure 3.9, it is observed that higher entry pressures result in wetting fronts 

travelling relatively quickly with shallow slopes. With a higher entry pressure, it is easier for the 

soil to get wet during the wetting process. This indicates that the relative permeability of the 

water relatively increases with a high entry pressure, which increases the speed of the front. 

Looking at Figure 3.9, one might conclude that water can travel more easily through 

clayey soils than sandy soils. Again, this conclusion is incorrect. The reason the front travels 

faster through soils with a higher entry pressure is because varying the entry pressure alone is not 

enough to represent a clay-like soil, as other parameters including the intrinsic permeability and 

SWRC N-values need to be altered as well.  
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Figure 3.10 Corresponding pressure profiles to varying entry pressure, p0, values. 

 

Figure 3.10 presents the pressure profiles corresponding to the saturation profiles shown 

in Figure 3.9.  

3.4 Model Validation 

The model was validated by synthesizing the results from the parametric study in section 

3.3 to produce a “best fit” to the experimental data captured by Melean et al. in 2003 with an 

inflow rate of 100 mL/hr. Table 3.3 presents the “best fit” parameters used to match the 

experimental data captured by Melean et al. when qw = 100mL/hr.  

Table 3.3 Best fit parameters based on experimental data from Melean et al. in 2003.  

Parameter Symbol Value Unit

Intrinsic Permeability K sat  or κ 1.00E-09 m
2

Wetting Fluid Viscocity μw 8.90E-04 kg/m/s

Nonwetting Fluid Viscocity μnw 1.03E-04 kg/m/s

Inflow of Wetting Fluid q w varies mL/hr

Porosity ϕ 0.35 -

Length x 0.4 m 

N-Value N 4.0 -

Air Entry Pressure p0 300

Initial Capillary Pressure Pc,init 1700 Pa

Residual Saturation Sr 0.05 -  
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Figure 3.11 and Figure 3.12 present the best fit imbibition fronts and the corresponding 

pressure profiles.  

 
Figure 3.11 Input parameters were selected to produce the best fit to the Melean et al. 2003 experimental data for the imbibition 

fronts of a two-phase incompressible flow system subject to a constant flux boundary condition of 100 mL/hour. 

 

 
Figure 3.12 Corresponding pressure profiles for the imbibition fronts’ best fit to the Melean et al. 2003 experimental data with 

an inflow rate of 100 mL/hr. 

 

From Figure 3.11 and Figure 3.12, it is observed that the simulated solution matches the 

experimental data captured by Melean et al. moderately well when the inflow rate is 100 mL/hr, 

but the simulated fronts are travelling a little bit too quickly to match the data. Unfortunately, 

with such large flow rates, the shapes of the curves change very little with varying input 

parameters, as observed in the parametric study in section 3.3. Input parameters would need to be 
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varied greatly to produce a “better best fit” to Melean’s data with an injection rate of 100mL/hr. 

However, researchers found that the solver is extremely sensitive to the input parameters 

(discussed further in section 3.6.2), and time constraints limited researchers from finding the best 

fit possible.  

Despite this, model validation continued, and the next step in model validation was to use 

the same parameters listed in Table 3.3 to try to capture the experimental response with a 

different input flowrate, e.g. comparing the predicted saturation profiles with the data collected 

under an injection flow rate of 300 mL/hr and 3 mL/hr.   

Figure 3.13 and Figure 3.14 show the imbibition fronts and the corresponding pressure 

profiles resulting from changing the flow rate of the wetting fluid qw to 300 mL/hr.  

 
Figure 3.13 Input parameters were selected to produce the best fit to the Melean et al. 2003 experimental data for the imbibition 

fronts of a two-phase incompressible flow system subject to a constant flux boundary condition of 300 mL/hour. 

 

It is observed from Figure 3.13 that, again, the simulated fronts are travelling a little bit 

too fast to match the data collected by Melean and coworkers when the injection rate is 

300mL/hr. This is likely due to the same factors affecting the imbibition fronts with an injection 

rate of 100mL/hr.  
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Figure 3.14 Corresponding pressure profiles for the imbibition fronts’ best fit to the Melean et al. 2003 experimental data with 

an inflow rate is 300 mL/hr. 

 

Figure 3.14 presents the suction profiles corresponding to the wetting fronts shown in 

Figure 3.13.  

The paper by Melean et al. also gives experimental data corresponding to an injection 

rate of 3 mL/hr. Figure 3.15 and Figure 3.16 show the wetting fronts and the corresponding 

pressure profiles resulting from changing the flow rate q to 3 mL/hr.  

 
Figure 3.15 Input parameters were selected to produce the best fit to the Melean et al. 2003 experimental data for the imbibition 

fronts of a two-phase incompressible flow system subject to a constant flux boundary condition of 3 mL/hour. 
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Figure 3.16 Corresponding pressure profiles for the imbibition fronts' best fit to the Melean et al. 2003 experimental data with an 

inflow rate of 3 mL/hr. 

 

From Figure 3.15, it observed that, with the input parameters listed in Table 3.3, 

researchers were unable to match Melean’s experimental data for an inflow rate of 3mL/hr. This 

is discussed further in section 3.6.1.  

3.5 Nonwetting invasion 

The numerical simulator capable of modelling the two-phase horizontal flow system of 

incompressible fluids subject to constant flux boundaries was formulated so that it could model 

both wetting and nonwetting invasions by changing one variables in the inputs. The code was 

written such that changing the variable flag to 1 or 2 changes the invasion from wetting to 

nonwetting, respectively. The MATLAB code for the invasion of a nonwetting fluid is functions 

exactly as it does for the invasion of a wetting fluid. Additionally, though the development is not 

discussed in this thesis, the code can also be modified slightly to solve the classical Richard’s 

equation.  

3.5.1 Governing Equation for the Invasion of a Nonwetting Fluid  

A similar derivation as discussed in section 3.1.2 can be performed for the invasion of a 

nonwetting fluid in a rigid porous medium. The resulting governing equation is given as follows:  
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 0w w rnw rw rnw c
t

w rnw nw rw w rnw nw rw

S k k k P
q

t x k k x k k x
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     
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  (3.41) 

where the following substitutions were made to simplify the model:  

 
w rnw

nw

w rnw nw rw

k
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
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
  (3.42) 

 
rw rnw

nw

w rnw nw rw

k k
g
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

 



  (3.43) 

 nw t nwH q h    (3.44) 

 nw nwG g   (3.45) 

With these substitutions, the mass balance equation modeling the invasion of a 

nonwetting fluid can be written as follows: 

   0w c
nw nw

S P
H G

t x x x

    

       
  (3.46) 

This is the equation that is then discretized and approximated using the modified Picard 

approximation to give the solution resulting from the invasion of a nonwetting fluid.  

3.5.2 Discretization 

The discretization of equation (3.46) using a finite difference approximation with the 

implicit Euler backward algorithm is performed as follows:  
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  (3.47) 

where the superscript n represents the current time step and the subscript j represents the current 

node. Subscripts j+1/2 and j-1/2 represent half nodes adjacent to the current node j.  
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3.5.3 Modified Picard Method 

The modified Picard iteration for equation (3.47) is written as follows: 
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  (3.48) 

where the superscript m represents the current iteration. At the m
th

 iteration, all values are 

known, and the values at the m+1 iteration represent the unknown values being solved for. From 

this point, the variables of interest in equation (3.48) are put into a large matrix and solved for 

the same way as discussed in section 3.2.3.  

3.5.4 Constant Flux Boundary Condition at the Inflow  

The inflow boundary node for the invasion of a nonwetting fluid is governed by Darcy’s 

Law for the flux of a nonwetting fluid as follows: 

 

1 1
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 


  (3.49) 

At the inflow boundary where x = 0, the flux of the wetting fluid is zero so qnw = qt. Then 

equation (3.49) can be written as follows:  
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From here, equation (3.50) may be approximated using the modified Picard 

approximation as follows:  
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  (3.51) 
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The boundary for the invasion of a nonwetting fluid are implemented into the code 

exactly as discussed for the invasion of a wetting fluid in section 3.2.4.  

3.5.5 Constant Pressure Boundary Condition at the Outflow  

At the outflow, (j = J at x = L), a constant pressure boundary is maintained to resemble 

the typical open-end conditions in most experimental studies. This means that δPc at the J
th

 node 

is zero. This is easily enforced exactly the same as in section 3.2.5. 

3.5.6 Simulated Invasion of a Nonwetting Fluid  

Table 3.4 presents the input parameters used to model a nonwetting invasion in a porous 

medium.  

Table 3.4 Input parameters used to model a nonwetting invasion 

Parameter Symbol Value Unit

Intrinsic Permeability K sat  or κ 1.00E-09 m
2

Wetting Fluid Viscocity μw 8.90E-04 kg/m/s

Nonwetting Fluid Viscocity μnw 1.03E-04 kg/m/s

Inflow of Wetting Fluid q nw 100 mL/hr

Porosity ϕ 0.35 -

Length x 0.4 m 

N-Value N 2.0 -

Air Entry Pressure p0 600

Initial Capillary Pressure Pc,init 700 Pa

Residual Saturation Sr 0.1 -  

Figure 3.17 and Figure 3.18 show the simulated response of the system during the 

invasion of a nonwetting fluid.  
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Figure 3.17 Imbibition fronts for the invasion of a nonwetting fluid resulting from the two-phase incompressible flow system 

subject to a constant flux boundary condition of 15 mL/hr.    

 

 
Figure 3.18 Corresponding pressure profiles for the simulated invasion of a nonwetting fluid. 

 

3.6 Discussion 

3.6.1 Fitting parameters given by Melean et al. 

With the set of input parameters listed in Table 3.3, the numerical simulator developed 

for incompressible two-phase flow subject to a constant flux boundary condition at the inflow 

produces a moderately good match to the experimental data when injection rates of 100 and 

300mL/hr is considered. However, at much smaller injection rates, the shapes of the 
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experimental and simulated imbibition fronts are extremely different.  There may be a few 

different reasons for this.  

During an initial parametric study, the simulator was used to match Melean’s data for an 

injection rate of 3mL/hr. This study revealed that extremely – perhaps unrealistically – low 

values for entry pressure (p0 = 4Pa) and initial suction (Pc,init = 10Pa) were necessary in order to 

match Melean’s data for an injection rate of 3 mL/hr,. This value of p0 = 4Pa is extremely low, 

as it should be closer to p0 = 200-300Pa to model the quartzitic grains with radii ≈ 100μm used 

in Melean’s experimental study. Such a low entry pressure value is capable of influencing the 

shape of the soil water retention curve drastically. See Figure 3.19 for reference. 

 
Figure 3.19 The effects of entry pressure on the shape of the soil water retention curve. 

 

 An extremely low value for the entry pressure creates a much sharper soil water retention 

curve. It is believed that this low entry pressure influenced through the solution greatly.  

 See Table 3.5 for the input parameters selected based on the initial parametric study to 

produce a best fit to Melean’s experimental data with an injection rate of 3mL/hr in Figure 3.20.  

Table 3.5 Alternative set of best fit parameters based on experimental data from Melean et al. in 2003 
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Parameter Symbol Value Unit

Intrinsic Permeability K sat  or κ 1.00E-09 m
2

Wetting Fluid Viscocity μw 8.90E-04 kg/m/s

Nonwetting Fluid Viscocity μnw 1.03E-04 kg/m/s

Inflow of Wetting Fluid q w varies mL/hr

Porosity ϕ 0.35 -

Length x 0.4 m 

N-Value N 1.6 -

Air Entry Pressure p0 4

Initial Capillary Pressure Pc,init 400 Pa

Residual Saturation Sr 0.1 -  

 
Figure 3.20 New set of input parameters selected to match the experimental data given for an injection rate of 3mL/hr given by 

Melean et al. in 2003. System is a two-phase incompressible flow system subject to a constant flux boundary of 3 mL/hr.  

 

 From Figure 3.20, it is exciting to see a very good match the Melean’s experimental data. 

Unfortunately, this new set of input parameters does not produce a suitable match for the higher 

flow rates of 100 and 300mL/hr. See Figure 3.21 and Figure 3.22 for reference.  
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Figure 3.21 New set of input parameters selected to match the experimental data given for an injection rate of 3mL/hr given by 

Melean et al. in 2003. System is a two-phase incompressible flow system subject to a constant flux boundary of 3 mL/hr. 

 

 
Figure 3.22 New set of input parameters selected to match the experimental data given for an injection rate of 3mL/hr given by 

Melean et al. in 2003. System is a two-phase incompressible flow system subject to a constant flux boundary of 3 mL/hr. 

 

 One possible reason why these imbibition fronts do not match well with higher flow rates 

could be due to the aforementioned unrealistically low air entry pressure. 

Another possible reason why these experimental and simulated imbibition fronts do not 

match well with higher flow rates could be due to the effects of viscous fingering in the 

experimental results from Melean and coworkers. Viscous fingering is a phenomenon that occurs 

when a more viscous fluid (i.e. oil) is displaced by a less viscous fluid (i.e. water). In the case of 

viscous fingering, the more viscous fluid initially fills the voids in a porous medium is driven 
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forwards by the pressure of the less viscous driving fluid, and an unstable interface may develop 

between them (Saffman & Taylor, 1958). See Figure 3.23 and Figure 3.24 for reference.  

 
Figure 3.23 1-D Effects of Viscous Fingering 

 

 
Figure 3.24 2-D effects of viscous fingering in a Hele-Shaw cell (youtube.com, 2013) 

 

3.6.2 Convergence Issues  

It should be noted that the convergence of this numerical simulator is extremely sensitive. 

Relative to those parameters presented in Table 3.3, higher SWRC N-values, higher injection 

rates, and higher entry pressures all require extremely small spatial and temporal step sizes to 

converge, which greatly increases the computational cost. Though not investigated through this 
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research, it is possible that updating all variables used in the parametric study could result in a 

more stable and robust simulator.  

As discussed in section 2.5, the used of the implicit modified Picard method to 

approximate the solution should have led to a relatively stable and robust numerical solution. 

However, this was not the case for this special scenario. At this point, it was suspected that 

explicit RK4 method could provide equivalent or superior computational performance than 

implicit Picard scheme in this special case.  It was this realization that led researchers to compare 

this scheme to the explicit RK4 formulation for the compressible solver discussed in Chapter 5.  
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CHAPTER 4  

TWO-PHASE HORIZONTAL FLOW SYSTEM OF INCOMPRESSIBLE  

FLUIDS SUBJECT TO CONSTANT PRESSURE BOUNDARIES 

 

4.1 Overview 

4.1.1 Objective 

A coupled numerical simulator was developed using MATLAB to model two-phase 

incompressible flow problems subjected to constant pressure boundary conditions at the inflow 

and the outflow and varying initial conditions. This solver was validated by analyzing the results 

obtained for the infiltration variables of interest, specifically the total flux throughout the 

medium.  

4.1.2 Governing Equations  

Like the previous derivation in section 3.23.1.2, this derivation models the invasion of a 

wetting fluid assuming both fluids are incompressible fluids in a porous medium. This difference 

between this derivation and the previous derivation, is that this derivation models a constant 

pressure boundary at the inflow. Therefore, the assumption that the total flux qt is independent of 

time is no longer valid, and one has to solve two equations simultaneously. For this reason, a 

coupled solver capable of solving two equations was developed.  

The beginning of this derivations is identical to the derivation in section 3.1.2 up until the 

handling of the mass balance equations for the wetting and nonwetting fluids with Darcy’s Law 

substituted in as shown in equations (4.1) and (4.2) 

 0w rw w

w

S k P

t x x






   
  

   
  (4.1) 

 0nw rnw nw

nw

S k P

t x x






   
  
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  (4.2) 
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For the nonwetting phase equation (4.2), it is convenient to take advantage of the 

following two relations:  

 1w nwS S    (4.3) 

 nw c wP P P    (4.4) 

Following this, the saturation and pressure of the nonwetting phase can be eliminated 

from equation (4.2) as follows:  

 
( )
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  (4.5) 

The following substitutions were made to simplify model development: 
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k
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


   (4.6) 

 
rnw

nw
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k
A




   (4.7) 

Then the governing equations (4.1) and (4.5) can be written as follows:  

 0w w
w

S P
A

t x x

   

     
  (4.8) 

 
( )

0w c w
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S P P
A

t x x

    

      
  (4.9) 

Equations (4.8) and (4.9) are the two mass balance equations that govern the model. 

These equations were discretized and approximated using a modified Picard approximation.  

4.2 Model Development 

4.2.1 Discretization  

The governing equations were discretized using a finite difference approximation with 

the implicit Euler backward algorithm as follows:  
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where the superscript n represents the current time step and the subscript j represents the current 

node. Subscripts j+1/2 and j-1/2 represent half nodes adjacent to the current node j.  

4.2.2 Modified Picard Iterations  

The modified Picard iterations for equations (4.10) and (4.11) are written as follows:  
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where the superscript m represents the current iteration. At the m
th

 iteration, all values are 

known, and the values at the m+1 iteration represent the unknown values being solved for. The 

capillary and wetting fluid pressure variables at the m+1 iteration can be approximated by adding 

an incremental value as follows:  

 1, 1 1, 1, 1

1 1 1

n m n m n m

j j jP P P    

      (4.14) 

 1, 1 1, 1, 1n m n m n m

j j jP P P        (4.15) 

 1, 1 1, 1, 1
1 1 1

n m n m n m
j j jP P P    
      (4.16) 

The saturation variable at the m+1 iteration is approximated as follows:  
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where the variable C is defined based on the van Genuchten model of the soil water retention 

curve as follows:  
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Using the incremental approximations in equations (4.14), (4.15), (4.16) and (4.17), 

equations (4.12) and (4.13) can be approximated as follows:  
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with the unknowns being δPw and δPc.  

4.2.3 Solving for the Variables of Interest  

Equations (4.19) and (4.20) are then solved for the unknown increments δPw and δPc as 

follows:  
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These two equations are then formulated into a matrix to solve for the increments δPw 

and δPc as follows:  

c 
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  (4.23) 

where R represents all known values in the equations, and the vectors a, b, c, d, e, f, and g 

represent the known values in front of the variables being solved for, which are the δPw and δPc 

terms boxed in red. Note that the first and last nodes (j = 1 and j = K) are formulated slightly 

differently than the rest of the matrix, as they are the nodes that enforce constant flux boundary 

condition 

4.2.4 Constant Pressure Boundary Condition at the Inflow 

Based on the input pressure out the inflow, the change in pressure δPc at the first node is 

zero. Constant pressure boundary conditions were enforced at the inflow (j = 1 at x = 0) 

according to the following governing equations:  

 11 0cP    (4.24) 

 11 0wP    (4.25) 

These are easily enforced in the solver as follows:  

c 
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  (4.26) 

4.2.5 Open-End (Constant Pressure) Boundary Condition at the Outflow  

Based on the input pressure out the outflow, the change in pressure δPc at the J
th

 node is 

zero. To simulate an open-ended column, a constant pressure boundary condition was enforced 

at the outflow. At the outflow (j = K at x = L), the governing equations are given as follows: 

 1 0c JP    (4.27) 

 1 0wJP    (4.28) 

These are easily enforced as follows:  
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4.3 Model Validation  

Unfortunately, researchers were unable to find any experimental results that could be 

used to validate this model. Additionally, no analytical solutions exist as Richard’s equation 

assumes constant gas pressure (Pnw = constant), and McWhorter’s solution is only valid for a 

specific soil water retention curve (McWhorter & Sunada, 1990).  Given the lack of experimental 

data and analytical solutions, the model was validated by looking at the shapes of the curves for 

the variables of interest and making sure that the shapes look as anticipated given the nature of 

the system. The simulator was run with the inputs presented in Table 4.1 to perform the 

validation process.  

Table 4.1 Input parameters selected to validate the simulation of the two-phase horizontal flow system of incompressible fluids 

subjected to constant pressure boundary conditions.  

Parameter Symbol Value Unit

SWRC N -Value N 2.6 -

Air Entry Value p 0 1200

Intrinsic Permeability K sat  or κ 1.00E-09 m
2

Wetting Fluid Viscocity μw 8.90E-03 kg/m/s

Nonwetting Fluid Viscocity μnw 1.03E-03 kg/m/s

Porosity ϕ 35 -

Length x 50 cm

Residual Saturation S r 0.1 -  

Table 4.2 Constant pressure boundary conditions used to validate the coupled numerical simulator. 

Parameter Symbol Value Unit

Wetting Pressure at the Inflow Pw,left 10000 Pa

Nonwetting Pressure at the Inflow Pnw,left 10135 Pa

Wetting Pressure at the Outflow Pw,right 3000 Pa 

Nonwetting Pressure at the outflow Pnw,right 10135 Pa  

The plots for the wetting front, the pressure of the wetting and nonwetting fluids, the 

capillary pressure, the flux of the wetting and nonwetting fluids and the total flux are presented 

in the figures below.  



59 

 

 
Figure 4.1 Imbibition fronts for a two-phase compressible flow system subject to constant pressure boundary conditions at both 

ends.  

 

 
Figure 4.2 Wetting pressure profiles for a two-phase compressible flow system subject to constant pressure boundary conditions 

at both ends. 
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Figure 4.3 Nonwetting pressure profiles for a two-phase compressible flow system subject to constant pressure boundary 

conditions at both ends. 

 

 
Figure 4.4 Suction profiles for a two-phase compressible flow system subject to constant pressure boundary conditions at both 

ends. 
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Figure 4.5 Wetting flux profiles for a two-phase compressible flow system subject to constant pressure boundary conditions at 

both ends. 

 

 
Figure 4.6 Nonwetting flux profiles for a two-phase compressible flow system subject to constant pressure boundary conditions 

at both ends. 
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Figure 4.7 Total flux profiles for a two-phase compressible flow system subject to constant pressure boundary conditions at both 

ends. 

 

In general, the shapes of the curves on all these figures look correct. The input constant 

pressure boundary conditions enforced cause the invasion of a wetting fluid, and the wetting 

fronts in Figure 4.2 and the suction profiles in Figure 4.4 indicate that the system is indeed 

experiencing wetting invasion. In addition to analyzing the saturation profiles, perhaps the model 

can be at least partially validated by analyzing the total flux plot in Figure 4.7. This plot indicates 

that the total flux through the medium is a constant value throughout the domain, which is 

expected for a system of incompressible fluids subjected to constant pressure boundary 

conditions.  

One way that this model could be validated, however, is to change the viscosity of the 

nonwetting fluid to a very small value and compare the solution with existing solutions to 

Richard’s equation, or by using the solver developed for Chapter 3. Unfortunately, this step 

would require significant time, and due to time constraints, researchers deemed it important to 

move forward with the compressible solver discussed in Chapter 5.  
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4.4 Discussion 

4.4.1 Model Improvement 

This model could be improved by implementing the governing equations that model the 

invasion of a nonwetting fluid, and adding a variable flag that allows researchers to switch the 

boundary conditions at both ends of the sample easily. This would allow researchers to 

investigate how two incompressible fluids, like oil and water, interact and behave during both 

wetting and nonwetting invasions with varying boundary conditions. With these alterations, this 

model could be a useful tool to scientists and engineers in the petroleum industry concerned with 

enhanced oil recovery, hydraulic fracking or similar problems.  

4.4.2 Convergence  

It is exciting to note that this code does not experience convergence issues to the same 

extent as the code developed for Chapter 3. This may be because of the way the coupling 

equations were formulated and solved, or possibly because realistic values were used for all 

input parameters. In the next chapter, researchers use the same strategy to solve for compressible 

two-phase flow problems. 
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CHAPTER 5  

TWO-PHASE VERTICAL FLOW SYSTEM OF COMPRESSIBLE 

FLUIDS SUBJECT TO VARYING BOUNDARY CONDITIONS 

 

5.1 Overview  

5.1.1 Objective 

Research has shown that the effects of the compressibility of air during water-infiltration 

of unsaturated soil columns are not negligible (Morel-Seytoux, 1973). The final numerical 

simulators developed for this project model the two-phase vertical flow of compressible fluids 

subjected to varying boundary conditions.  Comparisons with Touma and Vauclin’s 1986 

experimental data show that the approximations used in the methods of the solution yield 

accurate and practical estimations of the infiltration variables of interest.  

5.1.2 Governing Equations  

Like in the previous derivations, one can start with the mass balance equation written in 

its most general form as in equation (2.17).  

Identically to previous derivations, the fluids are assumed to be in a rigid porous medium 

so the porosity is considered constant with respect to time and can be taken out from the 

derivative. The mass balance for the wetting and nonwetting fluids can be defined as follows: 

 0w w w wS q

t x

 

 

 
 

  (4.30) 

 
0 0nw nw nw nwS q

t x

 

 

 
 

  (4.31) 

Such treatment introduces two new unknowns, the density of wetting and nonwetting 

fluids, in the system, and thus requires two new constitutive equations to close it. These two 

equations, often referred as the equations of state, give the relationships between the density and 

pressure:  
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where ρw0 and ρnw0 are the initial densities of the fluids, Pw0 and Pnw0 represent the initial 

pressures of the fluids, and Cw represents the compressibility of water.  

Equation (4.32) comes from a simple linear model of water as follows:  

 0 0( )w w w w wC P P V V     (4.34) 

where Vw represents the volume of the fluid and the subscript 0 represents the same substance at 

the initial time and some time t0 < t. Since /w wV mass   and the mass of the fluid is constant, 

equation (4.34) can be rearranged to form equation (4.32).  

Equation (4.33) comes from the ideal gas law PV nRT  as follows:  

 0 0 0 0PV n RT

PV nRT





  (4.35) 

where P is the pressure, V is the volume, n is the amount of substance, R is the universal gas 

constant, T is the temperature, and the subscript 0 represents the same substance at the initial 

time and some time t0 < t. If the temperature of the gas does not change, the equation (4.35) can 

be combined as follows:  

 
0 01 1

1 0

PVPV
T

n n
    (4.36) 

Where n/V can be understood as the density of the substance, ρ. Following this, equation 

(4.36) can be arranged as the equation of state as follows: 
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  (4.37) 
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which is identical to equation (4.33).  

The flux of the wetting and nonwetting fluids can be defined as in section 2.4.1 by 

Darcy’s Law as follows:  
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Equation (4.30) can be expanded as follows for wetting fluids:  
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The neglection of the fourth term in equation (4.40) follows the assumption that water, 

the wetting fluid, is only slightly compressible and the spatial variation of its density can be 

neglected (Celia & Binning, 1992). Substituting the flux in equation (4.38) into equation (4.40) 

gives the following:  
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For the nonwetting phase equation (4.31), it is convenient to take advantage of the 

following equation:  

 1w nwS S    (4.42) 

Following this, the saturation of the nonwetting phase Snw can be eliminated from 

equation (4.31):  
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  (4.43) 

which can be further expanded as follows:  
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Note that the fourth term in equation (4.44) cannot be eliminated as in equation (4.40) 

since air is significantly more compressible than water.  Supplying Darcy’s Law for the flux of a 

nonwetting fluid in equation (4.39) into equation (4.44) gives the following:  
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Equations (4.41) and (4.45) are the two equations governing the numerical solver 

simulating the two-phase vertical flow of two compressible fluids subjected to varying boundary 

conditions at the inflow. The following substitution were made to simplify model development:  
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Then the governing equations can be written as follows:  
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Equations (4.48) and (4.49) are the two mass balance equations that were discretized and 

approximated using a modified Picard approximation as well as an fourth-order Runge-Kutta 

method.  
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5.1.3 Enriching the Soil Water Retention Curve  

The boundary conditions at the outflow require a new variable representing the residual 

saturation of the nonwetting fluid, Srnw. This variable was added to the van Genuchten soil water 

relationship as follows:  
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  (4.50) 

The implication of adding this variable is that the soil water retention curve does not start 

from 1wS   at  0cP   but rather 1w rnwS S   at 0cP   . This allows the predicted wetting profile 

to be contained below a certain Sw limit, as observed in experiments. The residual degree of 

saturation of the nonwetting fluid is discussed further in section 5.5.1.  

5.2 Model Development using the Modified Picard Method  

5.2.1 Discretization  

A finite difference approximation with the implicit Euler backward algorithm was 

applied to discretize equations (4.48) and (4.49) as follows: 
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  (4.51) 
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where the superscript n represents the current time step, subscript j represents the current node, 

and subscripts j+1/2 and j-1/2 represent half nodes adjacent to the current node j.  

5.2.2 Modified Picard Method  

The modified Picard iteration for equations (4.51) and (4.52) is performed as follows:  
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  (4.53) 

 

 
1, 1 1, 1

0 0

1, 1 1, 1

11, 1, 1,

1/2 1/2 1/2

1, 1 1, 1

11, 1, 1,

1/2 1/2 1/2

1

1

n m n n m n

w j w j nw j nw j

nw w nw

n m n m

nw j nw jn m n m n m

nw j nw j nw j

n m n m

nw j nw jn m n m n m

nw j nw j nw j

S S p p
S

t t

p p
B G

x

x p p
B

x

   

 

 

   

   

  

  

   

  

  

 
  

 

 
   


 

 


0

G

 
 
 

 
  
   
  

  (4.54) 

where the superscript m represents the current iteration. At the m
th

 iteration, all values are 

known, and the values at the m+1 iteration represent the unknown values being solved for. The 

pressure variables at the m+1 iteration are approximated by adding an incremental value as 

follows:  
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The saturation variable at the m+1 iteration is approximated as follows:  
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where the variable C is defined based on the van Genuchten model of the soil water retention 

curve as follows:  
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  (4.59) 

By substituting equations (4.55), (4.56), (4.57), (4.58) and (4.59) into equations (4.53) 

and (4.54), the equations to be solved by Picard method can be expressed as follows:  
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with the unknowns being δPw and δPnw.  
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5.2.3 Solving for the variables of interest  

Equations (4.60) and (4.61) are then solved for the unknown increments δPw and δPnw as 

follows:  
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  (4.62) 
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These two equations are then formulated into a matrix to solve for the increments δPw 

and δPnw at the j
th

 node simultaneously as follows:  
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  (4.64) 

where R represents all known values in the equations, and the vectors a, b, c, d, e, f, and g 

represent the known values in front of the variables being solved for, which are the δPw and δPnw 

terms boxed in red. Note that the first and last nodes (j = 1 and j = K) are formulated slightly 

differently than the rest of the matrix, as they are the nodes that enforce constant flux boundary 

condition 

5.2.4 Constant Pressure Boundary Condition at the Inflow  

This solver is capable of switching between boundary conditions by switching the flag. 

The first boundary condition implemented in the solver was the constant pressure boundary 

conditions (open ends) at both ends of the porous media.  

At the inflow (j = 1 at x = 0), the governing equations are given as follows:  

 11 0wP    (4.65) 

 11 0nwP    (4.66) 

These are easily enforced in the solver as follows:  
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  (4.67) 

5.2.5 Constant Flux Boundary Condition at the Inflow 

The second type of boundary condition enforced is a constant flux boundary for the 

wetting and nonwetting fluids at the inflow (j = 1 at x = 0). The governing equations are given as 

follows:  
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Equation (4.68) and (4.69) can be rearranged to solve for the unknowns as follows:  
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Then, the boundary conditions at the inflow are enforced as follows:  
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  (4.72) 

5.2.6 Open-End Boundary Condition at the Outflow 

To simulate an open-ended column, a constant pressure boundary condition was used. At 

the outflow (j = K at x = L), the governing equations are given as follows:  

 1 0wJP    (4.73) 

 1 0nwJP    (4.74) 

These are easily enforced as follows:  
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5.2.7 Closed-End Boundary Condition at the Outflow  

To simulate a closed-end boundary condition at the outflow, constant flux conditions 

were enforced for both the wetting and nonwetting fluids, qnwJ = 0 and qnwJ = 0, at the outflow. 

The governing equations for the wetting and nonwetting fluids are given as follows:  
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Equations (4.76) and (4.77) can be rearranged as follows:  
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These two boundary conditions are implemented in the model as follows:   
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5.3 Model Development using the Fourth-Order Runge-Kutta Method  

In an attempt to validate the model built using the modified Picard method, another 

solver was implemented using the error controlled fourth-order Runge-Kutta method (RK4). For 

this solver, the same two governing equations were discretized and approximated.  

5.3.1 Discretization  

In the RK4 method, discretization was performed using the explicit Euler Forward finite 

difference approximation. Equations (4.48) and (4.49) are discretized as follows:  
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Equations (4.81) and (4.82) can be rewritten in terms of nwP

t




 and wP

t




 as follows:  

 

 
1 1

0 0 0

1 1

1/2 1/2 1/2 1/2

1
0

n n

nw j w jn n n n n n

w j j w j w j w j j

n n n n

w j w j w j w jn n n n n

w j w j w j w j w j

p p
C S C

t t

p p p p
B G B G

x x x

     

  

 

 

   

 
 

 

     
        

          

  (4.84) 

 

  
1 1

0 0 0

1 1

1/2 1/2 1/2 1/2 1/2 1/2

1

1
0

n n
w jn n n n n n nw

nw j j w j nw j nw j j

n n n n

nw j nw j nw j nw jn n n n n n

nw j nw j nw j nw j nw j nw j

p p
C S C

t t

p p p p
B G B G

x x x

     

   

 

 

     

 
  

 

     
        

          

  (4.85) 



78 

 

5.3.2 Solving for the Variables of Interest 

To implement the RK4 method, equations (4.84) and (4.85) are rearranged to solve for 

the unknowns nwP

t




 and wP

t




 as follows: 
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From here, one needs to solve a linear system:  
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In this way, the solver is able to take known values of the variables at the current time 

step and solve the changes in pressure at the next time step.  

5.3.3 Fourth-Order Runge-Kutta Method  

The RK4 solver operates as follows:  
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Or, more conveniently:  
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Using RK4, the four orders of changes in pressure are calculated as follows:  
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The solver updates the pressure as follows:  
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The error can be defined as follows:  

 1, 1 1, 1{ ( ), ( )}n n n n
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The RK4 solver has the ability to update the time step Δt as needed based on the error. If 

the error is larger than some set tolerance, the above calculation is abandoned and run again with 

a reduced time step, which is calculated as follows:  

 

0.2

new

TOL
t t

ERROR
     (4.98) 

If the error is smaller than the set tolerance, the update is accepted and the time step is 

increased for the next iteration as follows:  
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5.3.4 Constant Pressure Boundary Condition at the Inflow  

Since the RK4 solver defines the change in pressure at the first node directly, it is 

extremely easy to enforce constant pressure boundaries at the inflow by assigning the variables 

as follows:  

 1 0wP    (4.100) 

 1 0nwP    (4.101) 

5.3.5 Constant Flux Boundary Condition at the Inflow   

A constant flux boundary at the inflow is governed by Darcy’s Law for the wetting and 

nonwetting fluids at the first node:   
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In order to incorporate the flux of the wetting fluid at the inflow, equations (4.102) and 

(4.103) can be rearranged to define the pressure of the fluids at the inflow as follows: 
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These variables may be directly input in the code to enforce the boundary conditions.  

5.3.6 Open-End Boundary Condition at the Outflow  

Since the RK4 solver defines the change in pressure at the last node directly, constant 

pressure boundaries at the outflow are defined as follows:   

 0wJP    (4.106) 

 0nwJP    (4.107) 

Identically to the constant pressure boundary at the inflow discussed in section 5.3.4, the 

constant pressure boundary at the outflow is also easily enforced by assigning the variables as 

stated in equations (4.106) and (4.107).  

5.3.7 Closed-End Boundary Condition at the Outflow  

Similar to the closed end boundary conditions discussed in section 5.2.7,  this boundary 

can be enforced according to Darcy’s Law for the nonwetting fluid at the last node:   
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Equations (4.108) and (4.109) can be rearranged to solve the pressure of the nonwetting 

fluid at the outflow as follows:  
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5.3.8 Model Comparison between Picard and RK4 Solvers  

A comparison study between the Picard and RK4 solvers was performed to confirm that 

both solvers give the same solution. The input parameters for the comparison study are listed in 

Table 5.1 and Table 5.2.  

Table 5.1 Input parameters used to compare Picard and RK4 solvers 

Parameter Symbol Value Unit

SWRC N -Value N 2.4 -

Intrinsic Permeability K sat  or κ 1.00E-11 m
2

Wetting Fluid Viscocity μw 8.90E-04 kg/m/s

Nonwetting Fluid Viscocity μnw 1.81E-05 kg/m/s

Compressibility of Water Cw 5.10E-10 Pa
-1

Density of Water ρw 1000 kg/m
3

Density of Air ρnw 1.225 kg/m
3

Inflow of Wetting Fluid q 8 cm/hr

Porosity ϕ 0.37 -

Length x 93.5 cm

Residual Saturation S r 0.085 -

Residual Saturation of Nonwetting 

Fluid 
S rnw 0.15-0.25 -

 

Table 5.2 Constant pressure boundary conditions used to compare Picard and RK4 solvers 

Parameter Symbol Value Unit

Wetting Pressure at the Inflow Pw,left 10000 Pa

Nonwetting Pressure at the Inflow Pnw,left 10134 Pa

Wetting Pressure at the Outflow Pw,right 3000 Pa 

Nonwetting Pressure at the outflow Pnw,right 10135 Pa  

For the comparison study between the Picard solver and the RK4 solver, the variables of 

interest include the degree of saturation of the wetting fluid, the wetting fluid pressure, the 

nonwetting fluid pressure, the capillary pressure, and the flow both the wetting and nonwetting 

fluids. The following figures present a comparison between variables of interest from the Picard 

and RK4 solvers at t = 0.05 seconds. 
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It is important to note that in the following figures the gravitational constant pulls along 

the direction of x.  

 
Figure 5.1 A comparison between the simulated degree of saturation from the Picard and RK4 solvers. 

 

 
Figure 5.2 A comparison between the simulated pressure of the wetting fluid from the Picard and RK4 solvers. 
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Figure 5.3 A comparison between the simulated pressure of the nonwetting fluid from the Picard and RK4 solvers. 

 

 
Figure 5.4 A comparison between the simulated capillary pressure from the Picard and RK4 solvers. 

 

 
Figure 5.5 A comparison between the simulated flux of the wetting fluid from the Picard and RK4 solvers. 
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Figure 5.6 A comparison between the simulated flux of the nonwetting fluid from the Picard and RK4 solvers. 

 

From Figure 5.1 to Figure 5.6, it is plain to see that the two solvers produce essentially 

identical solutions. It is important to note, however, that both solver require small step sizes to 

produce the essentially identical solutions.  

Table 5.3 Step sizes for the Picard and RK4 solvers required to produce (essentially) identical solutions.  

Picard RK4

dt s 0.001 0.001

dx m 0.001 0.001

Step Size
Step Unit

 

It should be noted that larger step sizes (for either solver) produce disagreement between 

the two solutions.  

From this comparison study, researchers were able to debug problems with both solvers 

based on the overall results. Following much study and analysis, it was determined that these 

results are correct for the input parameters used. The results are further validated using Touma 

and Vauclin’s 1986 experimental data.  
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5.3.9 Computational Time Comparison between Picard and RK4 Solvers  

As discussed in section 2.5, though explicit methods are usually easier to implement, they 

also have maximum allowable step sizes and are generally more “computationally expensive.” 

This was confirmed by the two solvers developed for modelling compressible flow.  

The following comparison for the two solvers represents constant pressure boundary 

conditions at the inflow and the outflow. Table 5.4 presents the initial input parameters used in 

the comparison, and Table 5.5 presents the run time taken for the initial parameters, and how the 

run time for each solver changes when the different input parameters are varied.   

Table 5.4 Initial parameters used to compare Picard and RK4 Solvers 

Parameter Symbol Value Unit 

Spatial Step dx 0.01 m

Timestep dt 0.01 s

Tolerance for Error tol 1.00E-04 -

Length x end 1 m

Run Time t end 0.02 s  

Table 5.5 Varying input parameters to observe the effects on the computational time of each solver 

Picard RK4

Initial Comparison 0.67 2.33

dx = 0.001 m 3.98 28.54

dt = 0.001 s 2.41 2.29

tol = 1.00E-06 0.69 19.99

Time Elapsed (s)
Parameter

 

From Table 5.5, one can see the RK4 method generally takes much longer to run than the 

Picard method, with the one exception to this observation being reducing the temporal step size. 

This is because the RK4 solver has the ability to adjust the temporal step size between successive 

iterations based on the error. In general, however, it is evident that the RK4 solver runs 

significantly slower than the Picard solver, with the maximum being almost 30 times slower 

when the tolerance for error is decreased. Though the variable tolerance has a different 
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fundamental meaning in each solver, it is still easy to see why researchers prefer the Picard 

method for solving Richard’s equation.  

5.4 Model Validation  

5.4.1 Experimental Background 

The Picard model was validated by producing a best fit to the experimental data captured 

by Touma and Vauclin (1986). Touma and Vauclin’s experiments model the vertical dispersion 

of imbibition fronts in a compressible water-air system. The 93.5cm deep vertical column of 

sandy soil was subjected to varying boundary conditions and water injection velocities. 

Volumetric water content at varying times was measured by attenuation of gammy rays emitted 

by a 241 Am, 100 mCr source (Touma & Vauclin, 1986). Touma and Vauclin’s paper gives the 

inputs presented in Table 5.6.  

Table 5.6 Experimental Parameters given by Touma and Vauclin (Touma & Vauclin, 1986) 

Parameter Symbol Value Unit

Intrinsic Permeability K sat  or κ 1.00E-11 m
2

Wetting Fluid Viscocity μw 8.90E-04 kg/m/s

Nonwetting Fluid Viscocity μnw 1.81E-05 kg/m/s

Porosity ϕ 0.37 -

Length x 93.5 cm  

Table 5.7 presents the boundary conditions extracted from Touma and Vauclin’s paper.  

Table 5.7 Boundary conditions for matching Touma  and Vauclin's experimental data 

Parameter Symbol Value Unit

Wetting Flux at the Inflow qw0 varies cm/hr

Nonwetting Pressure at the Inflow Pnw,left 10134 Pa

Wetting Pressure at the Outflow Pw,right 3000 Pa 

Nonwetting Pressure at the outflow Pnw,right 10135 Pa  
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5.4.2 Soil Water Retention Curve Calibration 

The soil water retention curve in the model was calibrated based on Touma and Vauclin’s 

experimentally determined curve:  

 
Figure 5.7 Calibration of the solver based on the experimentally determined soil water retention curve data processed with φ = 

0.43 (Touma & Vauclin, 1986).  

 

The calibrated soil water retention curve parameters are given in Table 5.8.  

Table 5.8 Calibrated soil water retention curve parameters 

Parameter Symbol Value Unit

SWRC N -Value N 2.35 -

Air Entry Value p 0 2300 Pa

Residual Saturation S r 0.085 -

Residual Saturation of Nonwetting 

Fluid 
S rnw 0.15-0.25 -

 

The reason the residual degree of saturation varies between Srnw = 0.15-0.25 is likely due 

to an error in the experimental set up, i.e. inconsistent sample preparation or other uncertain 

factors. 

5.4.3 Model Validation 

Figure 5.8 and Figure 5.9 present the best fit imbibition fronts with injection rates of 

8.3cm/hr and 20cm/hr respectively at the inflow and an open-end boundary condition at the 
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inflow. It is important to note that in the following figures the gravitational constant pulls along 

the direction of x.  

  
Figure 5.8 Best fit to Touma and Vauclin's experimental data for the imbibition fronts of a two-phase compressible flow system 

subject to a constant flux boundary condition of 8.3 cm/hr at the inflow and an open-end boundary condition at the outflow. Note 

that Srnw = 0.25.   

 

 
Figure 5.9 Best fit to Touma and Vauclin's experimental data for the imbibition fronts of a two-phase compressible flow system 

subject to a constant flux boundary condition of 20 cm/hr at the inflow and an open-end boundary condition at the outflow. Note 

that Srnw = 0.15.  

 

It is exciting to observe, that for the open-ended outflow boundary experiments with 

varying injection rates, the simulator’s solutions are very close to Touma and Vauclin’s 

simulated solution, and also a very good match to Touma and Vauclin’s experimental data.  
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5.5 Discussion  

5.5.1 Introduction of Residual Saturation of the Nonwetting Fluid  

The residual degree of saturation was introduced in this chapter after the shapes of the 

plots for the variables of interest were observed without this term. As discussed in section 5.1.3, 

the introduction of the residual degree of saturation of the nonwetting fluid “caps” the maximum 

degree of saturation observed according to the following equation  

 max 1w rnwS S    (4.112) 

For Touma and Vauclin’s experiment with Qw = 8.3 cm/hr, the maximum degree of 

saturation observed is approximately Sw = 0.75, so the corresponding residual degree of 

saturation of the nonwetting fluid is set at Srnw = 0.25. Similarly, the maximum degree of 

saturation observed with Qw = 20 cm/hr, the maximum degree of saturation observed is 

approximately Sw = 0.85, so the corresponding residual degree of saturation of the nonwetting 

fluid is set at Srnw = 0.15.  

5.5.2 Unusual Curve Shapes Observed  

Researchers noted that Touma and Vauclin report only the initially observed volumetric 

water content profiles for all simulations. It was observed that the profiles change dramatically as 

the wetting fluid infiltrates through the porous medium. See Figure 5.10 through Figure 5.15 for 

reference.  

Note that the following figures present plots for the variables of interest for simulations 

without the Srnw term in equation (4.50). Also note that in the following figures, the gravitational 

constant pulls to the right.  
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Figure 5.10 Imbibition fronts for all specified time increments.  

 

 
Figure 5.11 Wetting pressure profiles for all specified time increments.  

 

 
Figure 5.12 Nonwetting pressure profiles for all specified time increments.  
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Figure 5.13 Capillary pressure profiles for all specified time increments.  

 

 
Figure 5.14 Flux of the wetting fluid for all specified time increments.  

 

 
Figure 5.15 Flux of the nonwetting fluid for all time increments. 
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From these figures, one can see that the shapes are very unusual. Even through Touma 

and Vauclin only reported the initial Sw profile shortly after the onset of water injection, the 

dramatic drop in the Sw profile predicted by the solver was unexpected.  

To remedy this, the van Genutchen model was modified by including a residual degree of 

saturation for the nonwetting fluid, hence the soil retention curve does not start from 1wS   at 

0cP   but rather 1w rnwS S   at 0cP   , a modification that allows the nonwetting fluid to drain at 

the outflow. Even with this change, however, the plot shapes are still unusual. Researchers 

observed that closed-end simulations did not exhibit the same unusual curves.  

5.5.3 Closed-End Boundary Condition  

Touma and Vauclin’s closed-end experiments show that the velocity of the wetting front 

slows down significantly relative to the open-end experiments. The simulator’s solution does not 

reflect this. Figure 5.16 presents the simulator’s solution and Touma and Vauclin’s simulated 

response and experimental data. Note that in the following figure, the gravitational constant pulls 

along the direction of x.  

 
Figure 5.16 An attempt to fit Touma and Vauclin's experimental data for the imbibition fronts of a two-phase compressible flow 

system subject to a constant flux boundary condition of 20 cm/hr at the inflow and an closed-end boundary condition at the 

outflow. 
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The simulated solution for the closed-end system does not match Touma and Vauclin’s 

simulated solution nor their experimental data. Researchers ran a comparison study between the 

open and closed-end simulations to understand the reason for this discrepancy. The following 

figures present a comparison between the infiltration fronts, nonwetting pressure profiles and 

nonwetting density profiles of open and closed-end simulations at time t = 1200 seconds.  

 
Figure 5.17 Comparison between imbibition fronts for open-end and closed-end simulations. 

 

 
Figure 5.18 Comparison between nonwetting pressure profiles for open-end and closed-end simulations. 
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Figure 5.19 Comparison between nonwetting fluid density profiles for open-end and closed-end simulations. 

 

From Figure 5.17, it is observed that the simulated wetting fronts travel at approximately 

the same velocity for both open and closed end-boundary conditions at the outflow. This is 

starkly different from the experimental results observed by Touma and Vauclin.  

Fundamentally, it makes sense that a closed-end simulation should produce a higher 

nonwetting fluid (air) pressure and subsequently a higher air density throughout the sample 

relative to an open-end simulation. Figure 5.18 and Figure 5.19 reflect this.  Based on this, 

researchers conclude that the numerical solver produces a fundamentally accurate solution, but 

that, for this specific set of input parameters, the differences in nonwetting fluid pressure 

observed are not large enough to influence the velocity of the wetting front. It is possible that a 

different set of input parameters could better capture Touma and Vauclin’s experimental data.  

5.5.4 Convergence Improvement 

Like the model developed for Chapter 4, this model does not exhibit convergence issues 

similar to those experienced with the constant flux solver discussed in Chapter 3. This Picard 

model for compressible systems is quite robust, even with increasing SWRC N-values, higher 

injection rates and higher air entry values. This may be because of the way the coupled 
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governing equations were formulated and solver, or possibly because realistic values were used 

for all input parameters.  
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CHAPTER 6  

CONCLUDING REMARKS AND FUTURE WORK 

 

6.1 Summary of Conclusions  

In this thesis, researchers have solved the governing equations for two phase flow in a 

rigid porous skeleton using modified Picard and RK4 methods. Some major conclusions are 

summarized as follows:    

1. With a generic treatment of the advection diffusion equation discussed in Chapter 3, the 

cases of wetting fluid invasion, nonwetting fluid invasion, and, though not 

comprehensively discussed in this thesis, the classical Richard’s equation can be 

recovered in the same code framework. 

2. During the injection of wetting fluid, the effects of varying the SWRC N-value, the initial 

suction Pc, air entry pressure p0, and the residual saturation Sr were observed. It was 

observed that higher N-values create a faster-travelling, more gradual wetting front 

through the porous medium, higher initial suction values slow down the speed of the 

wetting front in the porous medium, and higher residual saturation and higher air entry 

values increase the travelling speed of the wetting front.  

3. The effects of viscous fingering may be non-negligible when a less viscous fluid is 

displacing a more viscous fluid, depending on the set of input parameters selected.  

4. It was observed that the convergence the solver developed for Chapter 3 is fairly sensitive 

to varying model parameters, especially with increasing wetting fluid injection rates qw. 

A higher injection rate requires finer spatial and temporal discretization to enhance 

convergence in the modified Picard solver. This effect is not observed to the same extent 

for the solvers discussed in Chapters 4 and 5.  
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5. In the cases that explored in this thesis, the numerical performance of the modified Picard 

solver far exceeds the performance of the RK4 solver. 

6. Though not observed with the set of input parameters selected, the effect of air trapping 

during wetting may be more significant with a different set of input parameters, as 

confirmed by the experimental data by Vauclin and the simulation results in Chapter 5.  

6.2 Future Work  

Future tasks that should immediately follow this thesis include the following: 

1. To model blast in a 1-D context, the constant pressure boundary solver should be 

modified to reflect the pressure-volume relation of the encapsulated gas at the location of 

detonation.  

2. For higher flow rates and blasting scenarios, the flow equation Darcy’s Law may need to 

be replaced by the Forchheimer equation to reflect the nonlinear effects due to inertia at 

microscale.  Calculations of Reynold’s numbers during blasting scenarios will be used to 

confirm this.  

3. Most importantly, a third governing equation should be implemented with porosity (or 

equivalently, displacement u) as an unknown. Advanced constitutive models for sand will 

be implemented to properly coupled the fluid flow with mechanical deformation of soil 

during blasting. 

The above extensions will allow a more realistic simulation of the explosion studies to be 

performed in the 2017-2018 academic year.  
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CODE APPENDIX 
 

Incompressible Flow subjected to a Constant Flux Boundary at the Inflow 

Main Code  

clear 

close all 

clc 

  

%units: s, m, kg, N, Pa 

%define global variables and soil properties (van Genuchten) 

  

global Ksat N M p0 mu_w mu_nw q phi Sr flag 

  

flag = 1;                                % 1-wetting invasion;  

                                         % 2-nonwetting invasion 

Ksat = 1e-09;                            % m^2 

N = 2.0;  

M = 1-1/N; 

p0 = 300;                                % Pa 

mu_w = 0.89e-03;                         % kg/m/s (water) 

mu_nw = 1.03e-03;                        % kg/m/s (oil) 

q = 100/(3600*1000*1000*pi*(.015)^2);    % flow (m/s) 

phi = 0.35; 

Sr = 0.05;  

  

% Temporal Discretization 

dt =.1; % s 

tend = 3620; % s 

t = dt:dt:tend; 

  

% Spatial Discretization 

dx = 0.001;                              % m 

xend = 0.4;                              % m 

x = 0:dx:xend;  

J = length(x); 

  

% Initial and Boundary Conditions  

initpc = 2000;                           % Pa 

pcleft = initpc;  

pc0 = initpc*ones(length(x),1); 

Sw0(1:J,1) = Swfuns_vec(pc0(1:J,1)); 

  

% Initialize 

pcold = pc0; 

Swold = Sw0; 

  

% Time Loop 

nt = length(t); 

reverseStr = ''; 

for it = 1:nt 

    time = (it-1)*dt; 

     

    % Initial Guesses 

    pc = pcold;  
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    Sw = Swold; 

     

    % Constant Pressure BC at the outflow  

    pc(J,1) = initpc;                   

  

    % Initialization for Picard Iteration    

    iter = 0;  

    error = 999; 

     

    % Solve for dPc via Picard iteration 

    while (error > 1.e-4) && (iter < 100) 

  

        G(1:J,1) = Gfuns_vec(pc(1:J,1)); 

        H(1:J,1) = Hfuns_vec(pc(1:J,1)); 

        C(1:J,1) = cpcfuns_vec(pc(1:J,1)); 

         

        % Take Harmonic Average for 1/2 nodes 

        Gmean(1:J-1,1) = 2./(1./G(1:J-1,1)+1./G(2:J,1)); 

        Gminus = [0;Gmean]; 

        Gplus = [Gmean;0]; 

        Hmean(1:J-1,1) = 2./(1./H(1:J-1,1)+1./H(2:J,1)); 

        Hminus = [0;Hmean]; 

        Hplus = [Hmean;0]; 

         

        % Define a,b,c and r vectors 

        switch flag 

            case 1 

                a = [0; Gminus(2:J-1)/dx^2; 0]; 

                b = [Gplus(1,1)/dx; phi*C(2:J-1)/dt - (Gplus(2:J-1)+... 

                    Gminus(2:J-1))/dx^2;1]; 

                c = [-Gplus(1,1)/dx; Gplus(2:J-1)/dx^2; 0]; 

                r = [Hplus(1,1)-q+Gplus(1,1)/dx*(pc(2,1)-pc(1,1)); ... 

                    -phi*(Sw(2:J-1)-Swold(2:J-1))/dt-(Hplus(2:J-1)-... 

                    Hminus(2:J-1))/dx-1/dx^2*(Gplus(2:J-1).*(pc(3:J)-... 

                    pc(2:J-1))-Gminus(2:J-1).*(pc(2:J-1)-pc(1:J-2))); 0]; 

                 

            case 2 

                a = [0; Gminus(2:J-1)/dx^2; 0]; 

                b = [Gplus(1,1)/dx; phi*C(2:J-1)/dt - (Gplus(2:J-1)+... 

                    Gminus(2:J-1))/dx^2; 1]; 

                c = [-Gplus(1,1)/dx; Gplus(2:J-1)/dx^2; 0]; 

                r = [Hplus(1,1) + q + Gplus(1,1)/dx*(pc(2,1)-pc(1,1)); ... 

                    -phi*(Sw(2:J-1)-Swold(2:J-1))/dt - (Hplus(2:J-1)-... 

                    Hminus(2:J-1))/dx - 1/dx^2*(Gplus(2:J-1).*(pc(3:J)-... 

                    pc(2:J-1))-Gminus(2:J-1).*(pc(2:J-1)-pc(1:J-2))); 0];        

        end 

  

        %solve for dpc using Thomas algorithm 

        dpc = mythomas(a,b,c,r); 

        error = max(abs(dpc)); 

         

        %update 

        pc = pc + dpc; 

        pc(pc<0) = 0; 

        Sw(1:J,1) = Swfuns_vec(pc(1:J,1)); 

        switch flag 

            case 1 
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                qvar(1:J-1,1) = Hmean + Gmean/dx.*(pc(2:J)-pc(1:J-1)); 

            case 2 

                qvar(1:J-1,1) = -Hmean - Gmean/dx.*(pc(2:J)-pc(1:J-1)); 

        end       

  

        iter = iter + 1; 

    end 

          

    % update "old" values for next time-step 

    pcold = pc; 

    Swold = Sw; 

  

    % save Sw and Pc variables 

         if time == 200 

             Sw900 = Sw; 

             Pc900 = pc;  

         end 

          

         if time == 400  

             Sw1800 = Sw; 

             Pc1800 = pc;  

         end 

          

         if time == 600  

             Sw2700 = Sw; 

             Pc2700 = pc;  

         end 

          

         if time == 3600  

             Sw3600 = Sw; 

             Pc3600 = pc;  

         end   

          

    % Plotting for Animation 

    % Plotting Sw 

    subplot(3,1,1) 

    plot(x,Sw)                      

    ylim([0 1])                           

    xlim([0 xend]) 

    title('Sw vs. x') 

    ylabel('Degree of saturation, S_w') 

    xlabel('x (m)') 

     

    % Plotting Pc 

    subplot(3,1,2) 

    plot(x,pc)                       

    ylim([0 inf]) 

    xlim([0 xend]) 

    title('suction vs. x') 

    ylabel('Suction, p_c') 

    xlabel('x (m)') 

     

    % Plotting Qw 

    subplot(3,1,3) 

    plot(x(1:J-1)+1/2*dx,qvar) 

    xlim([0 xend]) 

    ylim([0 1.2*q]) 
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    title('q vs. x') 

    ylabel('Flux, q (m/s)') 

    xlabel('x (m)') 

     

    % Print 

    msg = sprintf('Current time: %d,     Pcleft:%d,     Number of iteration: 

%d \n',time,pc(1),iter); 

    fprintf([reverseStr, msg]); 

    reverseStr = repmat(sprintf('\b'), 1, length(msg)); 

  

    if (iter >= 100) 

        disp 'no convergence' 

        return 

    end 

     

    % Refresh 

    pause(0.001) 

end 

 

Sw_funs 

function Swval = Swfuns_vec(pcval) 

%theta(psi) function - water content - suction relationship 

  

global N M p0 Sr  

Swval = 1./(1+(pcval/p0).^N).^M.*(1-Sr)+Sr; 

  

end 

 

Kfuns 

function [K] = Kfuns_vec(pcval) 

%unsaturated hydraulic conductivity function 

  

global Ksat M 

Sw = Swfuns_vec(pcval); 

K = Ksat.*sqrt(Sw).*(1-(1-Sw.^(1./M)).^M).^2; 

K(pcval<0) = Ksat; 

  

end 

 

Gfuns 

function [G] = Gfuns_vec(pcval) 

%unsaturated hydraulic conductivity function 

  

global Ksat mu_w mu_nw  

Sw = Swfuns_vec(pcval); 

Krw = Krwfuns_vec(Sw); 

Krnw = Krnwfuns_vec(Sw); 

  

G = Ksat*Krw.*Krnw./(mu_w*Krnw+mu_nw*Krw); 

  

end 
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Hfuns 

function [H] = Hfuns_vec(pcval) 

%unsaturated hydraulic conductivity function 

 

global mu_w mu_nw q flag 

Sw = Swfuns_vec(pcval); 

Krw = Krwfuns_vec(Sw); 

Krnw = Krnwfuns_vec(Sw); 

  

switch flag 

    case 1 

        h = mu_nw*Krw./(mu_w*Krnw+mu_nw*Krw); 

        H = q*h; 

    case 2 

        h = mu_w*Krnw./(mu_w*Krnw+mu_nw*Krw); 

        H = -q*h; 

end 

  

end 

 

Krwfuns 

function [Krw] = Krwfuns_vec(Swval) 

  

% given the degree of saturation of the wetting fluid determine the 

% relative conductivity of the wetting fluid  

  

global M  

Krw = sqrt(Swval).*(1-(1-Swval.^(1/M)).^M).^2;  

  

end 

 

Krnwfuns 

function [Krnw] = Krnwfuns_vec(Swval) 

% given the degree of saturation of the wetting fluid determine the 

% relative conductivity of the wetting fluid  

  

global M 

Krnw = sqrt(1-Swval).*(1-(1-(1-Swval).^(1./M)).^M).^2; 

  

end 

 

cpcfuns  

function cpcval = cpcfuns_vec(pcval) 

%specific moisture capacity function 

  

global N p0 Sr 

cpcval = (-N+1)*((pcval/p0).^N+1).^(-2+1/N).*(pcval/p0).^(N-1)/p0.*(1-Sr); 

cpcval(pcval<0) = 0; 

  

end 
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mythomas 

function x = mythomas(a,b,c,r) 

  

% L-U Decomposition  

J = length(b); 

f(1,1) = b(1,1); 

g(1,1) = c(1,1)/b(1,1); 

e(1,1) = 0; 

for j = 2:J 

    e(j,1) = a(j,1); 

    f(j,1) = b(j,1)-a(j,1)*g(j-1,1); 

    g(j,1) = c(j,1)/f(j,1); 

end 

% solving [L]y = r for y 

y(1,1) = r(1,1)/f(1,1); 

for j = 2:J 

    y(j,1) = (r(j,1)-e(j,1)*y(j-1,1))/f(j,1); 

end 

%solving [U]x=y for x 

x(J,1) = y(J,1); 

for j = J-1:-1:1 

    x(j,1) = y(j,1)-g(j,1)*x(j+1,1); 

end 

 

Incompressible Flow subjected to Constant Pressure Boundaries  

Main Code 

clear 

close all 

clc 

  

% units: s, m, N, Pa 

% define globals  

  

global Ksat N M mu_w mu_nw p0 phi Sr flag  

  

Ksat = 1e-09;                               % m^2 

N = 1.6;  

M = 1-1/N; 

mu_w = 0.89e-03;                            % kg/m/s (water) 

mu_nw = 1.03e-03;                           % kg/m/s (oil) 

p0 = 1200;                                  % reference pressure (Pa) 

qw0 = 3/(3600*1000*1000*pi*(.015)^2);       % flow (m/s) 

qnw0 = 0;  

phi = .35;  

Sr = .1;   

  

flag = 2;                                   % flag 1: constant Pressure BC  

                                            % flag 2: constant Flow BC  

  

% Temporal Discretization 

dt = .001;                                  % seconds 
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tend = 3*3600 + 100;                        % seconds 

t = dt:dt:tend; 

  

% Spatial Discretization 

dx = 0.0001;                                % m 

xend = 0.4;                                 % 0.4m long domain 

x = 0:dx:xend;  

J = length(x)*2;                            % total number of unknowns  

K = length(x);                              % total number of nodes  

  

% Define initial pressure at the inflow 

leftPc = 10135-10000;                       % Pa 

leftPw = 10000;                             % Pa 

  

% Define initial pressure throughout the sample  

initPc = 10135-3000;                        % Pa 

initPw = 3000;                              % Pa 

Pc0 = initPc*ones(K,1);                          % length K 

Pw0 = initPw*ones(K,1);                          % length K 

  

% calculate Sw 

Sw0(1:K,1) = Swfuns_vec(Pc0(1:K,1));             % length K 

  

  

% assign old time step values for the first timestep  

Pcold = Pc0;                                     % length K 

Pwold = Pw0;                                     % length K 

Swold = Sw0;                                     % length K 

  

  

% Time Loop 

nt = length(t); 

for it = 1:nt 

    time = (it-1)*dt; 

  

    % Initial Guess 

    Pc = Pcold;  

    Pw = Pwold;  

    Sw = Swold; 

     

    % Set Pc and Pw at the both ends of the sample based on B.C.   

    switch flag 

        case 1             

            Pc(1,1) = leftPc; 

            Pw(1,1) = leftPw; 

            Pc(K,1) = initPc; 

            Pw(K,1) = initPw; 

        case 2 

            Pw(K,1) = initPw;  

            Pc(K,1) = initPc;  

    end  

     

    % Initialization for Picard iteration 

    iter = 0;  

    error = 999; 

     

    % Picard Iteration  
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    while (error > 1.e-4) && (iter < 100)  

        % Evaluate nonlinear functions Krnw(Sw), Krw(Sw) at every node  

        Krw(1:K,1) = Krwfuns_vec(Sw(1:K,1));        % length K 

        Krnw(1:K,1) = Krnwfuns_vec(Sw(1:K,1));      % length K 

         

        % Evaluate cfuns (dSw/dPc) 

        C(1:K,1) = cfuns_vec(Pc(1:K,1));            % length K  

         

       

        % Form Aw and Anw at sets of 2 nodes 

        Aw(1:K,1) = Ksat*Krw(1:K,1)/mu_w;           % length K 

        Anw(1:K,1) = Ksat*Krnw(1:K,1)/mu_nw;        % length K 

               

        % Take harmonic average of Aw and Anw at every node  

        Awmean(1:K-1,1) = 2./(1./Aw(1:K-1,1)+1./Aw(2:K,1)); 

        Awminus = [0; Awmean];  

        Awplus = [Awmean; 0];  

        Anwmean(1:K-1,1) = 2./(1./Anw(1:K-1,1)+1./Anw(2:K,1)); 

        Anwminus = [0; Anwmean];  

        Anwplus = [Anwmean; 0];   

         

        % Form mat 

        mat(1:2:J-1,1) = Pc;  

        mat(2:2:J,1) = Pw;  

  

        % Indexing 

            % odd nodes: solve for dPc  

            % even nodes: solve for dPw 

             

        a(1:3) = 0;                                 % outside of matrix 

        a(5:2:J-3) = 0;                             % Pc eqn 

        a(4:2:J-2) = 1/dx^2*Anwminus(2:1:K-1);      % Pw eqn 

        a(J-1:J) = 0;                               % B.C. 

         

        b(1:2) = 0;                                 % outside of matrix  

        b(3:2:J-3) = 0;                             % Pc eqn  

        b(4:2:J-2) = 1/dx^2*Anwminus(2:1:K-1);      % Pw eqn 

        b(J-1:J) = 0;                               % B.C. 

         

        c(1) = 0;                                   % outside of matrix  

        c(2) = 0;                                   % B.C.  

        c(3:2:J-3) =  1/dx^2*Awminus(2:1:K-1);      % Pc eqn 

        c(4:2:J-2) = phi/dt*C(2:1:K-1) - 1/dx^2*(Anwplus(2:1:K-1) ... 

            + Anwminus(2:1:K-1));                   % Pw eqn 

        c(J-1:J) = 0;                               % B.C. 

         

         

        switch flag  

            case 1 

                d(1:2) = -1;                        % B.C. 

            case 2 

                d(1) = 0;  

                d(2) = Anwplus(1,1)*1/dx;  

        end  

        d(3:2:J-3) = -phi/dt*C(2:1:K-1);  

        d(4:2:J-2) =  -1/dx^2*(Anwplus(2:1:K-1) + Anwminus(2:1:K-1)); 

        d(J-1:J) = -1;                              % B.C. 
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        switch flag 

            case 1 

                e(1:2) = 0;                         % B.C. 

            case 2 

                e(1) = Awplus(1,1)*1/dx;  

                e(2) = Anwplus(1,1)*1/dx;  

        end  

        e(3:2:J-3) = -1/dx^2*(Awplus(2:1:K-1) + Awminus(2:1:K-1)); 

        e(4:2:J-2) = 1/dx^2*Anwplus(2:1:K-1); 

        e(J-1) = 0;                                 % B.C. 

        e(J) = 0;                                   % outside of matrix  

         

         

        switch flag 

            case 1 

                f(1:2) = 0;                         % B.C. 

            case 2 

                f(1) = 0; 

                f(2) =  -Anwplus(1,1)*1/dx;       

        end 

        f(3:2:J-3) = 0;                             % Pc eqn 

        f(4:2:J-2) = 1/dx^2*Anwplus(2:1:K-1);       % Pw eqn 

        f(J-1:J) = 0;                               % outside of matrix  

         

        switch flag  

            case 1 

                g(1:2) = 0;                         % B.C. 

            case 2 

                g(1) = -Awplus(1,1)*1/dx;  

                g(2) = -Anwplus(1,1)*1/dx;  

        end  

        g(3:2:J-3) = 1/dx^2*Awplus(2:1:K-1);        % Pc eqn 

        g(4:2:J-4) = 0;                             % Pw eqn     

        g(J-2:J) = 0;                               % outside of matrix  

         

         

        switch flag  

            case 1 

                r(1) = 0;                           % left B.C. (Pc eqn) 

                r(2) = 0;                           % left B.C. (Pw eqn) 

            case 2 

                r(1) = qw0 +  1/dx*Awplus(1,1).*(Pw(2)-Pw(1));  

                r(2) = qnw0 + 1/dx*Anwplus(1,1).*(Pc(2)+Pw(2)-Pc(1)-Pw(1));  

        end  

        r(3:2:J-3) = phi*(Sw(2:1:K-1)-Swold(2:1:K-1))/dt - ... 

            1/dx^2*Awplus(2:1:K-1).*(Pw(3:1:K)-Pw(2:1:K-1)) + ... 

            1/dx^2*Awminus(2:1:K-1).*(Pw(2:1:K-1)-Pw(1:1:K-2)); % Pc eqn 

        r(4:2:J-2) = -phi*(Sw(2:1:K-1)-Swold(2:1:K-1))/dt - ... 

            1/dx^2*Anwplus(2:1:K-1).*(Pw(3:1:K)+Pc(3:1:K)-... 

            Pw(2:1:K-1)-Pc(2:1:K-1)) + 1/dx^2*Anwminus(2:1:K-1)... 

            .*(Pw(2:1:K-1)+Pc(2:1:K-1)-Pw(1:1:K-2)-Pc(1:1:K-2)); % Pw eqn 

        r(J-1) = 0;                                 % right B.C. (Pc eqn) 

        r(J) = 0;                                   % right B.C. (Pw eqn) 

         

        R = r';                             % transpose to solve for del   
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        m = diag(a(4:J),-3) + diag(b(3:J),-2) + diag(c(2:J),-1) + ... 

            diag(d) + diag(e(1:J-1),1) + diag(f(1:J-2),2) + ... 

            diag(g(1:J-3),3);  

        

        del = m\R; 

        error=max(abs(del)); 

        mat =  mat + del;  

         

        mat(mat<0)=0;  

               

        Pc = mat(1:2:J-1,1);                        % length K 

        Pw = mat(2:2:J,1);                          % length K 

        Sw=Swfuns_vec(Pc);                          % length K 

         

        iter=iter+1; 

         

    end  

  

    qw = -Awmean.*(Pw(2:K)-Pw(1:K-1))/dx; 

    qnw = -Anwmean.*((Pw(2:K)-Pw(1:K-1))+(Pc(2:K)-Pc(1:K-1)))/dx; 

    qt = qw + qnw; 

     

    % Update 

    Pcold = Pc; 

    Pwold = Pw; 

    Swold = Sw; 

    Pnw = Pc + Pw;  

    

        % save variables  

         if time == 3600  

             Sw3600 = Sw1; 

             Pc3600 = Pc;  

             Pw3600 = Pw;  

             Pnw3600 = Pnw;  

             qw3600 = qw;  

             qnw3600 = qnw;  

         end 

          

         if time == 2*3600  

             Sw7200 = Sw1; 

             Pc7200 = Pc;  

             Pw7200 = Pw;  

             Pnw7200 = Pnw;  

             qw7200 = qw;  

             qnw7200 = qnw;  

         end 

          

         if time == 3*3600  

             Sw10800 = Sw1; 

             Pc10800 = Pc;  

             Pw10800 = Pw;  

             Pnw10800 = Pnw;  

             qw10800 = qw;  

             qnw10800 = qnw;  

         end 

     

    % Plotting for Animation 
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    % Plotting Sw 

    subplot(7,1,1) 

    plot(x, Sw) 

    xlim([0 xend]) 

    ylim([0 1.1]) 

    title('Coupled Solver Results') 

    ylabel('S_w') 

    xlabel('x (m)') 

     

    % Plotting Pc 

    subplot(7,1,2) 

    plot(x, Pc) 

    xlim([0 xend]) 

   ylabel('P_c') 

    xlabel('x (m)') 

     

    % plotting Pc 

    subplot(7,1,3) 

    plot(x,Pw) 

    xlim([0 xend]) 

    ylabel('P_w') 

    xlabel('x (m)') 

     

    % Plotting Pnw  

    subplot(7,1,4) 

    plot(x, Pnw) 

    ylabel('P_n_w') 

    xlabel('x (m)') 

     

    % Plotting Qw 

    subplot(7,1,5) 

    plot(x(1:K-1),qw) 

    ylabel('Q_w') 

    xlabel('x (m)')  

     

    % Plotting Qnw  

    subplot(7,1,6) 

    plot(x(1:K-1),qnw) 

    ylabel('Q_n_w') 

    xlabel('x (m)')  

  

    % Plotting Qtot 

    subplot(7,1,7) 

    plot(x(1:K-1),qnw+qw) 

    ylabel('Q_t_o_t') 

    xlabel('x (m)')  

     

    % Print 

    [t(it), iter] 

     

    if (iter >= 100) 

        disp 'no convergence' 

        return 

    end 

     

    % Refresh 

    pause(0.001)%to refresh 
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end  

         

Swfuns 

function Swval = Swfuns_vec(Pcval) 

% given the capillary pressure determine the degree of saturation of the 

% wetting fluid  

  

global N M p0 Sr  

Swval = 1./(1+(Pcval/p0).^N).^M.*(1-Sr)+Sr; 

  

end 

 

Krwfuns 

function [Krw] = Krwfuns_vec(Swval) 

% given the degree of saturation of the wetting fluid determine the 

% relative conductivity of the wetting fluid  

  

global M 

  

Krw = sqrt(Swval).*(1-(1-Swval.^(1/M)).^M).^2;  

  

end 

 

Krnwfuns 

function [Krnw] = Krnwfuns_vec(Swval) 

% given the degree of saturation of the wetting fluid determine the 

% relative conductivity of the wetting fluid  

  

global M 

Krnw = sqrt(1-Swval).*(1-(1-(1-Swval).^(1./M)).^M).^2; 

  

end 

 

cfuns  

function cval = cfuns_vec(pcval) 

% change in saturation over change in pressure 

  

global N p0 Sr 

cval = (-N+1)*((pcval/p0).^N+1).^(-2+1/N).*(pcval/p0).^(N-1)/p0.*(1-Sr); 

cval(pcval<0) = 0; 

  

end 

 

Compressible Flow Subjected to Varying Boundary Conditions (Picard) 

Main Code 

clear all;  

close all;  
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clc; 

  

% define globals 

global flag Ksat N M mu_w mu_nw p0 phi Sr Srnw Cw rhow0 rhonw0 Pw0 Pnw0 grav  

  

Ksat = 1e-11;                                   % m^2 

N = 2.35; 

M = 1-1/N; 

mu_w = 0.89e-03;                                % kg/m/s (water) 

mu_nw = 1.81e-05;                               % kg/m/s (air) 

p0 = 2100;                                      % reference pressure (Pa) 

phi = .37;                                      % calibrated porosity  

Sr = .085;    

Srnw = .25; 

Cw = 5.1e-10;                                   % 1/Pa 

rhow0 = 1000;                                   % kg/m3 (water) 

rhonw0 = 1.225;                                 % kg/m3 (air) 

grav = 9.81;                                    % m/s2 

  

flag = 8;                      % flag 1: Pw0 and Pnw0 constant at left B.C.  

                               % flag 2: qw0 and Pnw0 constant at left B.C.  

                               % flag 7: qw0 and qnw0 constant at left B.C. 

                               % flag 8: qw0 and qnw0 constant at left and 

right 

qw0 = 20/(3600*100);                            % flow (m/s) % given 

qwJ = 0; 

qnw0 = 0; 

  

  

% Temporal Discretizaion 

dt = 0.1;                                       % seconds 

tend = 1441;                                    % seconds 

t = dt:dt:tend; 

  

% Spatial Discretizaion 

dx = 0.01; % m 

xend = 93.5;                                    % 0.935 long domain 

x = 0:dx:xend; 

K = length(x);                                  % total number of nodes 

J = length(x)*2;                                % total number of unknowns 

  

% define initial pressures at the left boundary and throughout the sample 

leftPw = 10000; 

leftPnw = 10135-rhonw0*grav*xend; 

leftPc = leftPnw-leftPw; 

initPw = 10000; % adjusted this to fit initial curve of Sw 

initPnw = 10135;  

initPc = initPnw-initPw; 

  

Pw0 = linspace(initPw-rhow0*grav*xend,initPw,K)'; 

Pnw0 = linspace(leftPnw,initPnw,K)'; 

Pc0 = Pnw0-Pw0; 

  

  

% calculate Sw based on Pc0 

Sw0(1:K,1) = Swfuns_vec(Pc0(1:K,1)); 
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% assign old time step values for the first timestep 

Pwold = Pw0;                                                % length K 

Pnwold = Pnw0;                                              % length K 

Pcold = Pc0;                                                % length K 

Swold = Sw0;                                                % length K 

  

% Time Loop 

nt=length(t); 

for it=1:nt 

    time=(it-1)*dt; 

     

    % initial guess 

    Pw = Pwold;     

    Pnw = Pnwold;  

    Pc = Pcold; 

    Sw = Swold;                                             % length K 

     

    % Left B.C. 

    switch flag   

        case 1 

            Pw(1,1) = leftPw; 

            Pnw(1,1) = leftPnw; 

            Pc(1,1)=leftPc; 

            Pw(K,1)=initPw; 

            Pnw(K,1) = initPnw; 

            Pc(K,1) = initPc;            

        case 2 

            Pnw(1,1) = leftPnw;  

            Pc(1,1) = leftPc;   

            Pw(K,1)=initPw; 

            Pnw(K,1) = initPnw; 

            Pc(K,1) = initPc;   

  

        case 7  

            Pnw(1,1) = leftPnw;  

            Pc(1,1) = leftPc;  

            Pc(K,1) = initPc;  

        case 8 

            Pc(1,1) = leftPc;  

            Pc(K,1) = initPc;  

    end  

         

         

    % Initialization for Picard iteration 

    iter = 0; 

    error = 999; 

     

    % Picard Iteration 

    while (error > 1.e-4) && (iter < 100) 

         

        % evaluate nonlinear functions Krnw(Sw), Krw(Sw) at every node 

        Krw(1:K,1) = Krwfuns_vec(Sw(1:K,1));                % length K 

        Krnw(1:K,1) = Krnwfuns_vec(Sw(1:K,1));              % length K 

         

        % evaluate nonlinear functions rhow(Pw), rhonw(Pnw) at every node 

        rhow(1:K,1) = rhowfuns(Pw(1:K,1)); 

        rhonw(1:K,1) = rhonwfuns(Pnw(1:K,1));  
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        % take harmonic average of rhow and rhonw  

        rhowmean(1:K-1,1) = 2./(1./rhow(1:K-1,1)+1./rhow(2:K,1)); 

        rhowminus = [0;rhowmean]; 

        rhowplus = [rhowmean;0]; 

        rhonwmean(1:K-1,1) = 2./(1./rhonw(1:K-1,1)+1./rhonw(2:K,1)); 

        rhonwminus = [0;rhonwmean]; 

        rhonwplus = [rhonwmean;0];         

         

        % Evaluate cfuns (dSw/dPc) 

        C(1:K,1) = cfuns_vec(Pnw(1:K,1)-Pw(1:K,1));           % length K 

         

        % Form Aw and Anw (dP/drho)                           % length K 

        Aw(1:K,1) = rhow0*Cw./(1-Cw.*(Pw-Pw0)).^2; 

        Anw(1:K,1) =  rhonw0./Pnw0; 

         

        % Form Bw and Bnw                                     % length K 

        Bw(1:K,1) = Ksat*Krw(1:K,1)/mu_w; 

        Bnw(1:K,1) = Ksat.*Krnw(1:K,1)/mu_nw; 

        % take harmonic average of Bw and Bnw at every node 

        Bwmean(1:K-1,1) = 2./(1./Bw(1:K-1,1)+1./Bw(2:K,1)); 

        Bwminus = [0;Bwmean]; 

        Bwplus = [Bwmean;0]; 

        Bnwmean(1:K-1,1) = 2./(1./Bnw(1:K-1,1)+1./Bnw(2:K,1)); 

        Bnwminus = [0;Bnwmean]; 

        Bnwplus = [Bnwmean;0]; 

         

        % Form mat 

        mat(1:2:J-1,1) = Pw; 

        mat(2:2:J,1) = Pnw; 

         

         

         

        % Form vectors a,b,c,d,e,f,g,R 

        a(5:2:J-3) = 0;                 % nature of matrix 

        a(4:2:J-2) = 0;                 % no dPwj-1 term in eqn 2         

         

        b(3:2:J-3) = -1/dx^2*rhow(2:1:K-1).*Bwminus(2:1:K-1); ... 

            % dPwj-1 in eqn 1 

        b(4:2:J-2) = -1/dx^2*rhonwminus(2:1:K-1).*Bnwminus(2:1:K-1); ... 

            % dPnwj-1 in eqn 2 

               

        c(3:2:J-3) = 0;                                   % no dPnwj-1 in eqn 

1 

        c(4:2:J-2) = 1/dt*phi*rhonw(2:1:K-1).*C(2:1:K-1); % dPwj in eqn 2 

  

         

        switch flag  % B.C.  

            case 1                      % Pw0 and Pnw0 constant 

                a(1:3) = 0;             % outside of matrix 

                a(J-1:J) = 0;           

                 

                b(1:2) = 0;             % outside of matrix 

                b(J-1:J) = 0;            

                 

                c(1) = 0;               % outside of matrix 

                c(2) = 0;                

                c(J-1:J) = 0;            
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                d(1:2) = 1;             

                d(J-1:J) = 1;            

                 

                e(1:2) = 0; 

                e(J-1) = 0;             

                e(J) = 0;               % outside of matrix 

                 

                f(1:2) = 0; 

                f(J-1:J) = 0;           % outside of matrix 

                 

                g(1:2) = 0; 

                g(J-2:J) = 0;           % outside of matrix 

                 

                r(1:2) = 0;  

                r(J-1:J) = 0;            

            case 2  

                a(1:3) = 0;             % outside of matrix 

                a(J-1:J) = 0;            

                 

                b(1:2) = 0;             % outside of matrix 

                b(J-1:J) = 0;           

                 

                c(1) = 0;               % outside of matrix 

                c(2) = 0;                

                c(J-1:J) = 0;           

                 

                d(1) = -1/dx*Bwplus(1,1); 

                d(2) = 1;  

                d(J-1:J) = 1;            

                 

                e(1:2) = 0; 

                e(J-1) = 0;             

                e(J) = 0;               % outside of matrix 

                 

                f(1) = 1/dx*Bwplus(1,1); 

                f(2) = 0; 

                f(J-1:J) = 0;           % outside of matrix 

                 

                g(1:2) = 0;  

                g(J-2:J) = 0;           % outside of matrix 

                 

                r(1) = qw0 + Bwplus(1,1)*((Pw(2)-Pw(1))/dx-  

    rhowplus(1,1)*grav); 

                r(2) = 0; 

                r(J-1:J) = 0;            

            case 4  

                a(1:3) = 0;             % outside of matrix 

                a(J-1:J) = 0;            

                 

                b(1:2) = 0;             % outside of matrix 

                b(J-1:J) = 0;            

                 

                c(1) = 0;               % outside of matrix 

                c(2) = 0;                

                c(J-1:J) = 0;           
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                d(1) = -1/dx*Bwplus(1,1);  

                d(2) = -1/dx*Bnwplus(1,1); 

                d(J-1:J) = 1;            

                 

                e(1:2) = 0;  

                e(J-1) = 0;             

                e(J) = 0;               % outside of matrix 

                 

                f(1) = 1/dx*Bwplus(1,1); 

                f(2) = 1/dx*Bnwplus(1,1);  

                f(J-1:J) = 0;           % outside of matrix 

                 

                g(1:2) = 0;  

                g(J-2:J) = 0;           % outside of matrix 

                 

                r(1) = qwJ + Bwplus(1,1)*((Pw(2)-Pw(1))/dx-... 

                    rhowplus(1,1)*grav); 

                r(2) = qnw0 + Bnwplus(1,1)*((Pnw(2)-Pnw(1))/dx-... 

                    rhonwplus(1,1)*grav); 

                r(J-1:J) = 0;            

            case 7 % ct qw0 qnw0 at inflow, ct pw0 and qnw0 at outflow  

                a(1:3) = 0;             % outside of matrix 

                a(J-1:J) = 0;            

                 

                b(1:2) = 0;             % outside of matrix 

                b(J-1) = 0;              

                b(J) = -1/dx*Bnwminus(K);  

                 

                c(1) = 0;               % outside of matrix 

                c(2) = 0;                

                c(J-1:J) = 0;                           

                 

                d(1) = -1/dx*Bwplus(1,1);  

                d(2) = -1/dx*Bnwplus(1,1); 

                d(J-1) = 1;              

                d(J) = 1/dx*Bnwminus(K,1);  

                 

                e(1:2) = 0;  

                e(J-1) = 0;              

                e(J) = 0;               % outside of matrix 

                 

                f(1) = 1/dx*Bwplus(1,1); 

                f(2) = 1/dx*Bnwplus(1,1);  

                f(J-1:J) = 0;           % outside of matrix 

                 

                g(1:2) = 0;  

                g(J-2:J) = 0;           % outside of matrix 

                 

                r(1) = qw0 + Bwplus(1,1)*((Pw(2)-Pw(1))/dx-... 

                    rhowplus(1,1)*grav); 

                r(2) = qnw0 + Bnwplus(1,1)*((Pnw(2)-Pnw(1))/dx-... 

                    rhonwplus(1,1)*grav); 

                r(J-1) = 0; % B.C.        

                r(J) = qnw0 + Bnwminus(K,1)*((Pnw(K)-Pnw(K-1))/dx-... 

                    rhonwminus(K,1)*grav);   

            case 8 % ct qw0 qnw0 at inflow, ct pw0 and qnw0 at outflow  

                a(1:3) = 0;             % outside of matrix 
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                a(J-1:J) = 0;            

                 

                b(1:2) = 0;             % outside of matrix 

                b(J-1) = -1/dx*Bwminus(K);  

                b(J) = -1/dx*Bnwminus(K);  

                 

                c(1) = 0;               % outside of matrix 

                c(2) = 0;                

                c(J-1:J) = 0;                          

                 

                d(1) = -1/dx*Bwplus(1,1);  

                d(2) = -1/dx*Bnwplus(1,1); 

                d(J-1) = 1/dx*Bwminus(K,1); 

                d(J) = 1/dx*Bnwminus(K,1);  

                 

                e(1:2) = 0;  

                e(J-1) = 0;                  

                e(J) = 0;                   % outside of matrix 

                 

                f(1) = 1/dx*Bwplus(1,1); 

                f(2) = 1/dx*Bnwplus(1,1);  

                f(J-1:J) = 0;               % outside of matrix 

                 

                g(1:2) = 0;  

                g(J-2:J) = 0;               % outside of matrix 

                 

                r(1) = qw0 + Bwplus(1,1)*((Pw(2)-Pw(1))/dx-... 

                    rhowplus(1,1)*grav); 

                r(2) = qnw0 + Bnwplus(1,1)*((Pnw(2)-Pnw(1))/dx-... 

                    rhonwplus(1,1)*grav); 

                r(J-1) = qwJ + Bwminus(K,1)*((Pw(K)-Pw(K-1))/dx-... 

                    rhowminus(K,1)*grav);         

                r(J) = qnw0 + Bnwminus(K,1)*((Pnw(K)-Pnw(K-1))/dx-... 

                    rhonwminus(K,1)*grav);                 

        end 

         

        d(3:2:J-3) = -1/dt*phi*rhow(2:1:K-1).*C(2:1:K-1) + 1/dt*phi*... 

            Sw(2:1:K-1).*Aw(2:1:K-1)+ 1/dx^2*rhow(2:1:K-1).*... 

            (Bwplus(2:1:K-1)+Bwminus(2:1:K-1));     % dPwj in eqn 1 

        d(4:2:J-2) =  -1/dt*phi*rhonw(2:1:K-1).*C(2:1:K-1) +... 

            1/dt*phi*(1-Sw(2:1:K-1)).*Anw(2:1:K-1) + 1/dx^2*... 

            (rhonwplus(2:1:K-1).*Bnwplus(2:1:K-1)+rhonwminus(2:1:K-1).*... 

            Bnwminus(2:1:K-1));                     % dPnwj in eqn 2 

  

  

        e(3:2:J-3) = 1/dt*phi*rhow(2:1:K-1).*C(2:1:K-1);  % dPnwj in eqn 1 

        e(4:2:J-2) = 0;                                   % no dPwj+1 in eqn 

2 

  

        f(3:2:J-3) = -1/dx^2*rhow(2:1:K-1).*Bwplus(2:1:K-1);       

            % dPwj+1 in eqn 1 

        f(4:2:J-2) = -1/dx^2*rhonwplus(2:1:K-1).*Bnwplus(2:1:K-1);  

            % dPnwj+1 in eqn 2 

         

        g(3:2:J-3) = 0; % no dPnwj+1 in eqn 1 

        g(4:2:J-4) = 0; % nature of matrix 
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        r(3:2:J-3) = 1/dt*phi*rhow(2:1:K-1).*(Sw(2:1:K-1)-Swold(2:1:K-1))... 

            + 1/dt*phi*Sw(2:1:K-1).*Aw(2:1:K-1).*(Pw(2:1:K-1)-... 

            Pwold(2:1:K-1)) - 1/dx*rhow(2:1:K-1).*(Bwplus(2:1:K-1).*... 

            ((mat(5:2:J-1)-mat(3:2:J-3))/dx-rhowplus(2:1:K-1)*grav)-... 

            Bwminus(2:1:K-1).*((mat(3:2:J-3)-mat(1:2:J-5))/dx-... 

            rhowminus(2:1:K-1)*grav));                  % eqn 1 

        r(4:2:J-2) = -1/dt*phi*rhonw(2:1:K-1).*(Sw(2:1:K-1)-Swold(2:1:K-

1))... 

            + 1/dt*phi*(1-Sw(2:1:K-1)).*Anw(2:1:K-1).*(Pnw(2:1:K-1)-... 

            Pnwold(2:1:K-1)) - 1/dx*(rhonwplus(2:1:K-1).*Bnwplus(2:1:K-1)... 

            .*((mat(6:2:J)-mat(4:2:J-2))/dx-rhonwplus(2:1:K-1)*grav)-... 

            rhonwminus(2:1:K-1).*Bnwminus(2:1:K-1).*((mat(4:2:J-2)-... 

            mat(2:2:J-4))/dx-rhonwminus(2:1:K-1)*grav)); % eqn 2 

  

        R = r'; % transpose to solve for del 

         

        m = diag(a(4:J),-3) + diag(b(3:J),-2) + diag(c(2:J),-1) + diag(d)... 

            + diag(e(1:J-1),1) + diag(f(1:J-2),2) + diag(g(1:J-3),3); 

         

        del = m\-R; 

        error = max(abs(del)); 

        mat =  mat+del; 

                 

        Pw = mat(1:2:J-1,1);                                % length K 

        Pnw = mat(2:2:J,1);                                 % length K 

        Pc = mat(2:2:J,1)-mat(1:2:J-1,1);                   % length K 

        Pc(Pc<0) = 0;  

        Sw = Swfuns_vec(Pc);                                  % length K 

         

        iter = iter + 1; 

    end 

     

    % Update 

    Pwold = Pw; 

    Pnwold = Pnw; 

    Pcold = Pc; 

    Swold = Sw; 

     

    % Save Variables 

    if time == 0.05*3600 

        Sw05 = Sw;  

    end  

     

    if time == 0.10*3600 

        Sw10 = Sw; 

    end  

     

    if time == 0.15*3600 

       Sw15 = Sw;  

    end  

     

    if time == 0.20*3600 

        Sw20 = Sw;  

    end  

     

    if time ==0.25*3600 

        Sw25 = Sw;  
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    end  

  

    if time == 0.3*3600 

        Sw30 = Sw;  

    end  

     

    if time == 0.35*3600 

        Sw35 = Sw;  

    end  

    if time == 0.4*3600 

        Sw40 = Sw;  

    end  

     

    % Calculate Flux  

    qw = -Bwmean.*((Pw(2:K)-Pw(1:K-1))/dx - rhowmean*grav); 

    qnw = -Bnwmean.*((Pnw(2:K)-Pnw(1:K-1))/dx - rhonwmean*grav); 

    qt = qw + qnw; 

  

    % Animated Plots 

    % Plotting Sw 

    subplot(6,1,1) 

    plot(x,Sw) 

    xlim([0 xend]) 

    ylim([0 1.1]) 

    title('Coupled Solver Results (Compressibility)') 

    ylabel('S_w') 

    xlabel('x (m)') 

  

    % Plotting Pw 

    subplot(6,1,2) 

    plot(x, Pw) 

    xlim([0 xend]) 

    ylabel('P_w') 

    xlabel('x (m)') 

     

    % Plotting Pnw 

    subplot(6,1,3)  

    plot(x, Pnw) 

    xlim([0 xend]) 

    ylabel('P_n_w') 

    xlabel('x (m)') 

     

    % Plotting Pc 

    subplot(6,1,4) 

    plot(x, Pc) 

    xlim([0 xend]) 

    ylabel('P_c') 

    xlabel('x (m)') 

     

    % Plotting Qw 

    subplot(6,1,5) 

    plot(x(1:K-1),qw) 

    ylabel('Q_w') 

    xlabel('x (m)')  

     

    % Plotting Qnw 

    subplot(6,1,6) 



121 

 

    plot(x(1:K-1),qnw) 

    ylabel('Q_n_w') 

    xlabel('x (m)')  

     

    % Print 

    [t(it), iter] 

     

    if (iter >= 100) 

        disp 'no convergence' 

        return 

    end 

     

    % Refresh 

    pause(0.001) 

end 

   

Swfuns 

function Swval = Swfuns_vec(Pcval) 

% given the capillary pressure determine the degree of saturation of the 

% wetting fluid  

  

global N M p0 Sr Srnw 

Swval = 1./(1+(Pcval/p0).^N).^M.*(1-Sr-Srnw)+Sr; 

  

end 

 

cfuns 

 
function cval = cfuns_vec(pcval) 

% change in saturation over change in pressure 

  

global N p0 Sr Srnw 

cval = (-N+1)*((pcval/p0).^N+1).^(-2+1/N).*(pcval/p0).^(N-1)/p0.*(1-Sr-Srnw); 

cval(pcval<0) = 0; 

  

end 

 

Krwfuns 

function [Krw] = Krwfuns_vec(Swval) 

% given the degree of saturation of the wetting fluid determine the 

% relative conductivity of the wetting fluid  

  

global Ksat N M mu_w mu_nw p0 q phi Sr  

Krw = sqrt(Swval).*(1-(1-Swval.^(1/M)).^M).^2;  

  

end 

 

Krnwfuns 

function [Krnw] = Krnwfuns_vec(Swval) 

% given the degree of saturation of the wetting fluid determine the 

% relative conductivity of the wetting fluid  
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global Ksat N M mu_w mu_nw p0 q phi Sr  

Krnw = sqrt(1-Swval).*(1-(1-(1-Swval).^(1./M)).^M).^2; 

  

end 

 

rhowfuns 

function [rhow] = rhowfuns(Pwval)  

% given the pressure of the wetting fluid, determine the density of the 

% wetting fluid  

  

global Ksat N M mu_w mw_nw p0 phi Sr Cw rhow0 rhonw0 Pw0 Pnw0  

rhow = rhow0./(1-Cw.*(Pwval-Pw0));  

  

end 

 

rhonwfuns 

function [rhonw] = rhonwfuns(Pnwval)  

% given the pressure of the wetting fluid, determine the density of the 

% wetting fluid  

  

global rhonw0 Pnw0  

rhonw = rhonw0.*(Pnwval./Pnw0); 

  

end 

 

Compressible Flow Subjected to Varying Boundary Conditions (RK4) 

Main Code 

clear all;  

close all; 

clc; 

  

% define globals 

global flag Ksat N M mu_w mu_nw p0 phi Sr Cw rhow0 rhonw0 Pw0 Pnw0 grav dx K 

qw0 Srnw 

  

Ksat= 1e-11;                                    % m^2 

N = 2.35; 

M = 1-1/N; 

mu_w = 0.89e-03;                                % kg/m/s (water) 

mu_nw = 1.81e-05;                               % kg/m/s (air) 

p0 = 2100;                                      % reference pressure (Pa) 

phi = .311;                                     % calibrated porosity 

Sr = .05;  

Srnw = 0.25;  

Cw = 5.1e-10;                                   % 1/Pa 

rhow0 = 1000;                                   % kg/m3 (water) 

rhonw0 = 1.225;                                 % kg/m3 (air) 

grav = 9.81;                                    % m/s2 
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flag = 1;                   % flag 1: Pw0 and Pnw0 constant at left B.C.  

                            % flag 2: qw0 and Pnw0 constant at left B.C.   

  

  

% Temporal Discretizaion 

dt = 0.0001;                                    % seconds 

tend = 0.05;                                    % seconds 

t = 0:dt:tend; 

  

% Spatial Discretizaion 

dx = 0.01;                                      % m 

xend = 0.935;                                   % 0.935m long domain 

x = 0:dx:xend; 

K = length(x);                               

  

% Initial Conditions  

leftPw = 10000; 

leftPnw = 10135-rhonw0*grav*xend; 

leftPc = leftPnw-leftPw; 

rightPw = 10000; 

rightPnw = 10135; 

rightPc = rightPnw-rightPw; 

qw0 = 8/(3600*100); % flow (m/s) 

        

Pw0 = linspace(rightPw-rhow0*grav*xend,rightPw,K)'; 

Pnw0 = linspace(leftPnw,rightPnw,K)'; 

Pc0 = Pnw0-Pw0; 

  

% calculate Sw based on Pc0 

Sw0(1:K,1) = Swfuns_vec(Pc0(1:K,1)); 

  

% assign old time step values for the first time step 

Pw = Pw0;                                                   % length K 

Pnw = Pnw0;                                                 % length K 

Pc = Pc0;                                                   % length K 

Sw = Sw0;                                                   % length K 

  

  

% Substepping Control 

TOL = 1e-04; 

growth = 0.2; 

dt_upper = 1; 

  

t = 0; 

reverseStr = ''; 

while t < tend 

     

    switch flag % boundary conditions  

        case 1 

            Pw(1,1) = leftPw; 

            Pnw(1,1) = leftPnw; 

            Pc(1,1) = leftPc; 

            Pw(K,1) = rightPw; 

            Pnw(K,1) = rightPnw; 

            Pc(K,1) = rightPc; 

        case 2 

            if t==0 
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                Pw(1,1) = leftPw; 

            else 

                Pw(1,1) = Pw(2,1)+(qw0/Bwmean(1,1)-rhowmean(1,1)*grav)*dx; 

            end 

            Pnw(1,1) = leftPnw;  

            Pc(1,1) = leftPnw -Pw(1,1);  

            Pw(K,1) = rightPw; 

            Pnw(K,1) = rightPnw; 

            Pc(K,1) = rightPc;                    

    end  

         

  

    % RK4 (call EEFD) 

   

    [dPw1_dt,dPnw1_dt] = EFFD(Pw,Pnw); 

         

    [dPw2_dt,dPnw2_dt] = EFFD(Pw+dPw1_dt*dt/2,Pnw+dPnw1_dt*dt/2); 

  

    [dPw3_dt,dPnw3_dt] = EFFD(Pw+dPw2_dt*dt/2,Pnw+dPnw2_dt*dt/2); 

     

    [dPw4_dt,dPnw4_dt] = EFFD(Pw+dPw3_dt*dt,Pnw+dPnw3_dt*dt); 

     

    % defined for error 

    Pw_new1 = Pw+dPw1_dt*dt; 

    Pnw_new1 = Pnw+dPnw1_dt*dt; 

     

    % real value  

    Pw_new2 = Pw+1/6*(dPw1_dt+2*dPw2_dt+2*dPw3_dt+dPw4_dt)*dt; 

    Pnw_new2 = Pnw+1/6*(dPnw1_dt+2*dPnw2_dt+2*dPnw3_dt+dPnw4_dt)*dt; 

     

    % error and substepping 

    ERROR = max(max(abs(Pw_new2-Pw_new1)),max(abs(Pnw_new2-Pnw_new1))); 

     

    if ERROR > TOL 

        % abandon this update, reduce time step 

        dt = dt*abs(TOL/ERROR)^growth; 

    else        

         

        % accept the update and plot variables  

            % everything is defined to plot q variables 

        Pw = Pw_new2; 

        Pnw = Pnw_new2; 

        Pc = Pnw - Pw; 

        Sw = Swfuns_vec(Pc); 

         

        rhow = rhowfuns(Pw); 

        rhowmean(1:K-1,1) = 2./(1./rhow(1:K-1,1)+1./rhow(2:K,1)); 

        Krw = Krwfuns_vec(Sw); 

        Bw = Ksat*Krw/mu_w; 

        Bwmean(1:K-1,1) = 2./(1./Bw(1:K-1,1)+1./Bw(2:K,1)); 

        qw= - Bwmean.*((Pw(2:K)-Pw(1:K-1))/dx - rhowmean*grav); 

         

        rhonw = rhonwfuns(Pnw); 

        rhonwmean(1:K-1,1) = 2./(1./rhonw(1:K-1,1)+1./rhonw(2:K,1)); 

        Krnw = Krnwfuns_vec(Sw); 

        Bnw = Ksat.*Krnw/mu_nw; 

        Bnwmean(1:K-1,1) = 2./(1./Bnw(1:K-1,1)+1./Bnw(2:K,1)); 
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        qnw = - Bnwmean.*(((Pw(2:K)-Pw(1:K-1))+(Pc(2:K)-Pc(1:K-1)))/dx - ... 

            rhonwmean*grav); 

         

        % adjust time step 

        dt = dt*abs(TOL/ERROR)^growth; 

        dt = min(dt,dt_upper); % dt will never be larger than 1 second  

        t = t+dt; 

         

        % Animated Plots 

        % Plotting Sw 

        subplot(6,1,1) 

        plot(x,Sw) 

        xlim([0 xend])% x-axis range 

        ylim([0 1.1]) 

        title('Coupled Solver Results (Compressibility)') 

        ylabel('S_w') 

        xlabel('x (m)') 

         

        % Plotting Pw 

        subplot(6,1,2) 

        plot(x, Pw) 

        xlim([0 xend]) 

        ylabel('P_w') 

        xlabel('x (m)') 

         

        % Plotting Pnw 

        subplot(6,1,3) 

        plot(x, Pnw) 

        xlim([0 xend]) 

        ylabel('P_n_w') 

        xlabel('x (m)') 

         

        % Plotting Pc 

        subplot(6,1,4) 

        plot(x, Pc) 

        xlim([0 xend]) 

        ylabel('P_c') 

        xlabel('x (m)') 

         

        % Plotting Qw 

        subplot(6,1,5) 

        plot(x(1:K-1),qw) 

        ylabel('Q_w') 

        xlabel('x (m)') 

         

        % Plotting Qnw 

        subplot(6,1,6) 

        plot(x(1:K-1),qnw) 

        ylabel('Q_n_w') 

        xlabel('x (m)') 

         

        % Print 

        msg = sprintf('Current time: %d',t); 

        fprintf([reverseStr, msg]); 

        reverseStr = repmat(sprintf('\b'), 1, length(msg)); 

         

        % Refresh 
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        pause(0.0001) 

    end 

end 

 

EFFD  

function [dPw_dt,dPnw_dt]=EFFD(Pw,Pnw) 

% Euler Forward Finite Discretization  

% solves for dPw/dt and dPnw/dt given Pw and Pnw vectors 

  

global flag Ksat mu_w mu_nw  phi Cw rhow0 rhonw0 Pw0 Pnw0 grav dx K 

     

Pc = Pnw-Pw; 

Sw = Swfuns_vec(Pc); 

  

rhow = rhowfuns(Pw); 

rhowmean(1:K-1,1) = 2./(1./rhow(1:K-1,1)+1./rhow(2:K,1)); 

rhowminus = [0;rhowmean]; 

rhowplus = [rhowmean;0]; 

rhonw = rhonwfuns(Pnw); 

rhonwmean(1:K-1,1) = 2./(1./rhonw(1:K-1,1)+1./rhonw(2:K,1)); 

rhonwminus = [0;rhonwmean]; 

rhonwplus = [rhonwmean;0]; 

  

C = cfuns_vec(Pc); 

  

Aw = rhow0*Cw./(1-Cw.*(Pw-Pw0)).^2; 

Anw =  rhonw0./Pnw0; 

  

Krw = Krwfuns_vec(Sw); 

Bw = Ksat*Krw/mu_w; 

Bwmean(1:K-1,1) = 2./(1./Bw(1:K-1,1)+1./Bw(2:K,1)); 

Bwminus = [0;Bwmean]; 

Bwplus = [Bwmean;0]; 

  

Krnw = Krnwfuns_vec(Sw); 

Bnw = Ksat.*Krnw/mu_nw; 

Bnwmean(1:K-1,1) = 2./(1./Bnw(1:K-1,1)+1./Bnw(2:K,1)); 

Bnwminus = [0;Bnwmean]; 

Bnwplus = [Bnwmean;0]; 

  

switch flag 

    case 1 % ct pressure 

        dPw_dt(1,1) = 0; 

        dPw_dt(K,1) = 0; 

        dPnw_dt(1,1) = 0; 

        dPnw_dt(K,1) = 0; 

    case 2        

        dPw_dt(1,1) = 0; 

        dPw_dt(K,1) = 0; 

        dPnw_dt(1,1) = 0; 

        dPnw_dt(K,1) = 0; 

end  

  

m11 = phi*Sw(2:K-1).*Aw(2:K-1)-phi*rhow(2:K-1).*C(2:K-1); 

m12 = phi*rhow(2:K-1).*C(2:K-1); 
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m21 = phi*rhonw(2:K-1).*C(2:K-1); 

m22 = phi*(1-Sw(2:K-1)).*Anw(2:K-1)-phi*rhonw(2:K-1).*C(2:K-1); 

  

r1 = rhow(2:K-1)./dx.*(Bwplus(2:K-1).*((Pw(3:K)-Pw(2:K-1))/dx-... 

    rhowplus(2:K-1)*grav)-Bwminus(2:K-1).*((Pw(2:K-1)-Pw(1:K-2))/dx... 

    -rhowminus(2:K-1)*grav)); 

r2 = 1/dx.*(rhonwplus(2:K-1).*Bnwplus(2:K-1).*((Pnw(3:K)-Pnw(2:K-1))/dx... 

    -rhonwplus(2:K-1)*grav)-rhonwminus(2:K-1).*Bnwminus(2:K-1).*... 

    ((Pnw(2:K-1)-Pnw(1:K-2))/dx-rhonwminus(2:K-1).*grav)); 

  

dPw_dt(2:K-1) = m22./(-m12.*m21+m11.*m22).*r1 - m12./(-

m12.*m21+m11.*m22).*r2; 

dPnw_dt(2:K-1) = - m21./(-m12.*m21+m11.*m22).*r1 + m11./(-

m12.*m21+m11.*m22).*r2; 

  

end 

 

Swfuns 

function Swval = Swfuns_vec(Pcval) 

% given the capillary pressure determine the degree of saturation of the 

% wetting fluid  

  

global N M Sr Srnw 

Swval = 1./(1+(Pcval/p0).^N).^M.*(1-Sr-Srnw)+Sr; 

  

end 

 

cfuns 

function cval = cfuns_vec(pcval) 

% change in saturation over change in pressure 

  

global N M p0 Sr Srnw 

cval = (-N+1)*((pcval/p0).^N+1).^(-2+1/N).*(pcval/p0).^(N-1)/p0.*(1-Sr-Srnw); 

cval(pcval<0) = 0; 

  

end 

 

Krwfuns 

function [Krw] = Krwfuns_vec(Swval) 

% given the degree of saturation of the wetting fluid determine the 

% relative conductivity of the wetting fluid  

  

global M 

Krw = sqrt(Swval).*(1-(1-Swval.^(1/M)).^M).^2;  

  

end 

 

Krnwfuns 

function [Krnw] = Krnwfuns_vec(Swval) 

% given the degree of saturation of the wetting fluid determine the 
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% relative conductivity of the wetting fluid  

  

global M  

Krnw = sqrt(1-Swval).*(1-(1-(1-Swval).^(1./M)).^M).^2; 

  

end 

 

rhowfuns 

function [rhow] = rhowfuns(Pwval)  

% given the pressure of the wetting fluid, determine the density of the 

% wetting fluid  

  

global Cw rhow0 Pw0   

rhow = rhow0./(1-Cw.*(Pwval-Pw0));  

  

end 

 

rhonwfuns 

function [rhonw] = rhonwfuns(Pnwval)  

% given the pressure of the wetting fluid, determine the density of the 

% wetting fluid  

  

global rhonw0 Pnw0  

rhonw = rhonw0.*(Pnwval./Pnw0); 

  

end 
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