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Abstract 

Mattos, Kaitlin Jean (M.S., Environmental Engineering) 

Water Resources and Reuse for Remote Arctic Communities  

Thesis directed by Professor Karl G. Linden 

 

Access to safe water and effective sanitation is an issue of major concern in developing 

communities. While most of the international focus on water, sanitation and hygiene is on 

improving water quality in communities that don’t have access to clean water resources, the 

challenge in rural cold climate communities is making sure a sufficient quantity of water is 

available to households for drinking and washing. Traditional piped utilities and pump-and-haul 

systems are expensive and difficult to build, operate and maintain in rural cold climate 

communities. Instead, unserved communities self-haul water to their homes and drastically 

reduce the volume of water that they use each day for drinking, washing and cleaning. The 

decreased quantity of water used in unserved communities has been linked to increased rates of 

skin, respiratory and gastrointestinal infections. 

This research evaluates two alternative water resources that could increase the quantity of 

water available for hygiene purposes in rural Alaska: rainwater catchment systems and a 

household greywater reuse system. Rainwater samples were collected and analyzed from 48 

catchment tanks in nine villages. Overall, rainwater quality was very high and met US EPA 

drinking water standards in >80% of cases without any treatment required. Depending on the 

weather patterns in the village, rainwater use could be increased to account for 13-40% of annual 

household water use if proper infrastructure is used and best management practices are followed. 
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A pilot household greywater reuse system was built and operated daily for nine months in 

Alaska to determine whether water can be produced onsite that is safe for human contact. Sixty 

gallons of water were produced per day under normal and stress conditions, meeting state and 

federal water quality standards. Wash water had low TOC (total organic carbon), turbidity and 

conductivity, normal pH, and high UV transmittance. The treatment process provided at least 18-

log10 reduction of viruses and >8-log10 bacteria. While the treatment system produced sufficient 

wash water to protect health, the concentrated wastes produced by the system could pose a threat 

to the household if proper waste disposal methods are not facilitated along with installation of 

the reuse systems.  
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Chapter 1: Water, sanitation and hygiene in rural Alaska 

 

Water and sanitation in rural and developing areas 
The lack of water and sanitation in developing communities around the world is well 

documented by local, national and international groups that have been working for decades to 

improve the situation. The Joint Monitoring Program of the World Health Organization estimates 

that approximately 2.5 billion people don’t have access to improved sanitation and about 800 

million lack access to improved drinking water worldwide (World Health Organization 2015), 

but these numbers increase when examining communities that lack either access to basic services 

or access to safely managed services.  

While water and sanitation access has been expanding rapidly in recent decades with 

international commitment to the Millennium Development Goals in 2000 (United Nations 2015) 

and the Sustainable Development Goals in 2015 (World Health Organization 2015), rural and 

remote areas are still far behind in making progress on providing these services (World Health 

Organization and UNICEF 2004; Ford et al. 2017). Rural areas are a particular challenge for the 

provision of safe drinking water and properly managed sanitation services because they often 

lack economies of scale, access to supplies and materials, nearby municipally-managed utilities 

to support their operations, and technical design, operation and maintenance expertise (Pitzer and 

Sudman 2008; Haddaway 2017). Funding does not go as far in rural areas, and often the limited 

funding for water projects that provide new coverage to previously unserved rural areas has to be 

shared with recurrent investments that are needed by urban areas (Hutton and Bartram 2008). 

Additionally, some rural communities are so inaccessible for travel or communications that they 

are nearly forgotten by the larger jurisdictions of which they are a part, such as in the US where 
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many small communities are without access to improved water and sanitation even though the 

country is considered to have 100% coverage (World Health Organization 2017). Further, many 

rural residents are part of low-income, minority, or indigenous groups and are historically 

underserved, making them vulnerable to adverse health impacts that often come alongside lack 

of access to safe water and sanitation services (for examples in rural Alaska, see T. K. Thomas et 

al. 2016). To intensify the situation, rural areas often provide challenging engineering conditions 

because of remoteness, lack of infrastructure, difficult terrain, and extreme weather or climatic 

conditions (for examples in rural Alaska see Hickel et al. 2017; US Arctic Research Commission 

2015). In spite of and because of all of these challenges, improving water and sanitation services 

in underserved rural communities around the world needs to become a specific and prioritized 

undertaking for researchers, engineers and social scientists in the immediate future. 

 

Situation in rural Alaska 
The state of Alaska is home to a population of approximately 740,000 people dispersed 

across 570,640 square miles of land (US Census Bureau 2017). With an average population 

density of just over one person per square mile, the state can be divided into two regions: the 

remote rural areas that contain less than 10% of the population spread out in 150 communities 

over 395,000 square miles, and the urban economy-base of the state which contains 90% of the 

population in 200 communities over 175,000 square miles (see Figure 1). The remote rural areas 

are mostly in the north and west of the state, and the community members there are 78% Alaska 

Natives whose households subsist on a mixture of cash, subsistence fishing and hunting, sharing 

and non-cash trading, based on a 2008 report (Goldsmith). These areas are rarely served by road 

and railways, and therefore are only accessible by air services year-round, coastal/river boat or 
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barge and all-terrain vehicles in the warmer months, and snow machine in the colder months 

(Figure 2). Because jobs and other economic opportunities are scarce in the remote rural areas, 

poverty is widespread and reliance on government jobs and public assistance programs is very 

common (Goldsmith 2008). 

 

Figure 1: The population density map of Alaska shows that the majority of boroughs/census 

areas have fewer than 10,000 residents who are spread out across large tracts of land. The 

urban centers of Anchorage, Fairbanks and Juneau are not easily accessible to many of these 

communities (Alaska Department of Labor and Workforce Development 2010).  
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Figure 2: The road system and fuel distribution areas of the state of Alaska. Only region 2 (in 

green) has road and rail access. Region 1 (blue) is served primarily by the Alaska Marine 

Highway and air services. Region 3 (yellow) is exclusively accessible by coastal or river boat or 

barge, air services, and off-road trail or snow vehicles (Alaska Department of Environmental 

Conservation 2017a). 
 

The lack of improved water and sanitation services in over 3,300 rural Alaska homes 

(Alaska Department of Environmental Conservation 2017b) is related to the remoteness and 

difficulty of living in rural Alaska. Communities in rural Alaska are classified into three 

categories based on their level of water and sewer access: “served”, where most homes have 

piped water and sewer; “underserved”, where piped utilities are not available but a closed-haul 

system provides water and sanitation services; and “unserved” where less than 55% of homes 

have water or sanitation services. Most unserved communities have access to a “washeteria” that 

has potable water, laundry and shower available for varying fees, but residents must self-haul 

water to their homes, usually in 5-gallon buckets. These communities often use outhouses (pit 

latrines) or honey buckets (5-gallon buckets) for human waste (Hickel et al. 2017). The lack of 

in-home piped water has been linked to higher hospitalization for pneumonia, influenza and 

respiratory syncytial viruses (Hennessy et al. 2008) and to higher incidences of respiratory, skin 
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and gastrointestinal infections (T. K. Thomas et al. 2016). The high prevalence of water-washed 

diseases, as opposed to waterborne diseases, in rural Alaska is probably related to observed in-

home water reuse practices that many households observe, such as reusing the same wash basin 

for multiple hand-washings or using hand-wash water for household cleaning. While these 

extreme water conservation techniques demonstrate a concern for hygiene and cleanliness, they 

may also increase health risks to families (Hickel et al. 2017) that don’t have sufficient quantity 

of water or suitable water treatment and disinfection techniques available. Meanwhile, 

unimproved sanitation in the villages has been hypothesized to contribute to increased risk for 

fecal-oral transmitted diseases (Chambers et al. 2009), since residents in unserved or underserved 

villages are more likely to come into contact with human waste.  

Water and sanitation has been an ongoing priority for public and private organizations in 

Alaska for over 50 years with varying progress and success (US Arctic Research Commission 

2015), but Alaska lags behind the rest of the United States in percent of the population with 

access to modern water and sanitation services (Hennessy et al. 2008), in part because of the 

unique challenges that face engineering projects in cold climate regions. Infrastructure projects 

in cold climate regions must be completed during certain times of the year (usually late spring, 

summer or early fall) when materials can be delivered and worksites are accessible, specific 

(often expensive) materials must be used that can hold up to temperatures reaching -40 degrees 

Fahrenheit and intense snow and icefall events, and special consideration must be taken into 

insulation for utilities to protect the infrastructure and fragile permafrost. Thus, typical water and 

sanitation solutions for other rural areas must be specifically adapted or rewritten for remote 

Alaska communities. 
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Water quantity – demand 
An initial step for providing in-home water and sanitation services to unserved villages in 

Alaska is determining how much water is desired and required for health and hygiene purposes. 

The World Health Organization (2017) recommends 2 gallons/capita/day (g/c/d, equivalent to 

7.5 liters/capita/day, L/c/d) for consumption for highly vulnerable members of the population 

(breast-feeding mothers with average levels of activity in higher-than-average temperatures) and 

5 g/c/d (20 L/c/d) for personal and food hygiene purposes. Thomas et al. (2016) observed that 

houses in rural Alaska used a mean of 1.5 g/c/d (6 L/c/d) before they had piped water services 

and 25 g/c/d (97 L/c/d) after receiving reliable piped water services in the home. These volumes 

varied between homes based on the household characteristics and cultural and social traditions of 

the community. For example, women living alone with children used less than 0.25 g/c/d (<1 

L/c/d), while other households would use up to 1.8 g/c/d (6.8 L/c/d) before getting piped water 

(T. K. Thomas et al. 2016), likely because of the effort and cost of self-hauling water. Cultural 

and social traditions are likely to affect the types of water sources used and the use of water for 

hygiene purposes. For example, villages that make use of rainwater collection systems make use 

of more water in months when the resource is available. Some Alaska Native populations do not 

take traditional western baths, but use steam baths as their primary way to clean themselves.  

The state of Alaska prescribed a goal of providing 15 g/c/d (57 L/c/d) of “wash water” for 

hygiene purposes and 0.5 g/c/d of drinking water to unserved villages (Alaska Department of 

Environmental Conservation 2017b). For an average household of four people, this meant 60 

gallons per household (hh) per day (230 L/hh/d) of wash water and 2 gallons per household per 

day (8 L/hh/d) of drinking water. These targets are in between the WHO recommendations and 

the volumes observed by Thomas et al. to be correlated with decreases in many common 
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illnesses, and are therefore used in this study to examine possible alternative water resources that 

could be employed in rural Alaska.  

 

Water quality – fit for purpose 
Two significant parts of the challenge of providing sufficient quantities of in-home water 

and sanitation to rural villages in Alaska are 1) getting large quantities of water of appropriate 

quality to the home without introducing contamination and 2) removing wastes from the home 

without unmanaged human exposure. A relatively innovative way to manage this problem is by 

segmenting storage vessels, fixtures, piping and treatment into different systems based on 

expected uses and the associated required quality of water – that is, providing “water fit for 

purpose” (Muller 2010; Schimmoller and Kealy 2014). This framework for water treatment and 

management allows for water, energy, and money to be saved by using lower levels of treatment 

for water with lower level uses through substitution or regeneration (Grant et al. 2012). 

In rural Alaska, water fit for purpose and water reuse is already practiced. Many homes 

choose and change their water sources based on seasonal changes in their water resources and 

the intended uses within their household. For example, rainwater is widely used in some villages 

during the rainy season, but when temperatures get low, water is hauled from a watering hole 

drilled through the ice on a mostly frozen river. The river resource is abandoned during spring 

break-up when sediment levels get too high and begin to impact color and taste. Rainwater is 

considered to be a high-quality resource in some villages and is reserved for drinking and 

cooking, while chlorine-disinfected water from local washeteria will be used for non-

consumptive purposes. Similarly, people will reuse wash basin water to clean their floors, which 

they perceive to require a lower quality of water.  
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While employing a fit for purpose model can save energy and financial costs and can 

conserve scarce water resources, it can also introduce new risks. Oesterholt et al. (2007) found 

that when waters of different qualities were provided through separate plumbing systems to 

several homes in the Netherlands, instances of cross-connections, high bio-film growth, and 

incidental contact cause microbiologically unsafe conditions for members of the household. This 

example demonstrates that matching water quality to use within a household requires extra care 

and caution in order for health benefits to be realized. 

 

Untapped resources 
Because the worldwide demand for clean drinking water is increasing and the increasing 

burden of disposing of contaminated wastewaters is challenging existing water resources, the 

application of innovative technologies, management strategies and financing is required 

(Corcoran et al. 2010) to solve water and sanitation problems. Innovation will have to be applied 

to a variety of situations experiencing water issues, including remote military bases, refugee 

camps, desert communities, and areas struck by disasters. Compared to these other situations, 

rural Alaska has abundant, high quality water resources owing to the small numbers of people on 

large areas of land. However, in order for individuals to realize the health benefits of this water 

abundance, there must be new innovations for how to produce or transport this water directly to 

households with minimal effort and appropriate treatment. Expanding the use of rainwater 

catchment systems and developing and introducing onsite greywater treatment and reuse systems 

have the potential to help solve these problems. 
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Rainwater catchment systems 

The development of alternative decentralized water resources is highly recommended for 

addressing water scarcity problems (Mankad and Tapsuwan 2011; Massoud, Tarhini, and Nasr 

2009). While alternative resources, such as rainwater or surface water, are commonly used by 

communities that don’t have consistent access to water supply, they are often correlated with low 

water quantity and low quality (Majuru, Suhrcke, and Hunter 2016). Rainwater, however is often 

considered to be a high quality source where it is readily available, can be inexpensive to catch 

and store (Rahman et al. 2014), and can be immediately ready for use on-site without transport. 

However, water managers and government regulators are often reluctant to promote rainwater 

because of concerns about safe implementation, operation and management of catchment 

systems (Domènech, Heijnen, and Saurí 2012; Lye 1992).  

In rural Alaska, many communities trust and prefer rainwater to other water sources, but 

no large-scale studies have previously been done that examine the quality and quantity of 

rainwater that can be captured in the villages. Additionally, the extreme cold temperatures in 

much of Alaska during half of the year means that a lot of the precipitation falls as snow and not 

rain (Domènech, Heijnen, and Saurí 2012), and that outdoor catchment and storage materials can 

be compromised when cold weather hits. The potential opportunities and problems with 

rainwater quality and quantity are evaluated in Chapter 2 of this document.  

Onsite greywater treatment and reuse 

Compared to rainwater, household greywater is a much more reliable and consistent 

resource of much lower quality. Greywater reuse systems have traditionally been employed to 

address water scarcity concerns in dry areas or places with insufficient water for large 

populations (e.g. Al-Jayyousi 2003; Jeppesen 1996; A. Hurlimann 2011). However, greywater 

reuse is beginning to be employed in areas where other water resources are unreliable or 
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insufficient (e.g. Najm et al. 2017), but mostly for non-potable uses such as toilet flushing (e.g. 

Oesterholt et al. 2007; Campisano and Modica 2010; Christova-Boal, Eden, and McFarlane 

1996; Diaper et al. 2001) or agricultural purposes (Jhansi and Mishra 2013).  

Despite the slow uptake of this technology in more urbanized areas, small-scale onsite 

greywater reuse for potable or semi-potable (used here to mean safe for human contact but not 

approved for human consumption) purposes could be promising for rural Alaska because it 

would improve the quantity of water available within a household with minimal hauling 

requirements, and it would reduce the quantity of wastewater needing to be hauled from the 

home. The results of a demonstration household greywater reuse system project are presented in 

Chapter 3 of this document along with an analysis of the feasibility of this system for rural 

Alaska.  
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Chapter 2: Rainwater catchment systems 

 

Introduction 
Rural Alaskan communities often draw water for household use from multiple sources 

including piped water from treatment plants (where available), treated hauled water from 

washeterias, and untreated water from melting snow, rain water, rivers, lakes and streams. The 

majority of these water sources require labor intensive or expensive hauling practices that can 

also result in the contamination of good quality water. Making use of rainwater catchment 

systems that allow collection of water onsite is a promising alternative to hauling in communities 

without piped water, if the rainwater is of sufficient quality. Having a readily available water 

source onsite, such as a rainwater catchment tank, can also allow homes to increase the quantity 

of water they use for hygiene purposes, which has been linked to improved health in rural Alaska 

(Hennessy et al. 2008; T. K. Thomas et al. 2016). 

Rainwater is often assumed to be of high quality, but pathogenic microbes, metals and 

VOCs are often contaminants of concern in roof catchment systems (Lye 2002; Gould 2017; Lye 

1992). Pathogenic microbes such as coliforms, fecal coliforms, enteroviruses, Enterococci, 

Escherichia coli, Salmonella spp., Legionella spp., Clostridium perfringens, Campylobacter 

spp., Cryptosporidium spp., Giardia spp., and Pseudomonas aeruginosa have been detected in 

rainwater samples (Gould 2017; Lye 2002). Microbes in rainwater tanks have been attributed to 

a variety of illnesses including bacterial diarrhea, bacterial pneumonia, bacterial toxin, tissue 

helminth, and protozoal diarrhea (as summarized in Lye 2002). Some studies suggest that 

bacteria can be introduced to rain catchment systems by birds (Chidamba and Korsten 2015; 

Fewtrell and Kay 2007), small mammals, and dust particles, (Lye 2002) but direct causes and 

effects of microbial contamination in rain systems used for human consumption are poorly 
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understood. At least one study found that presence of a household rainwater cistern was 

associated with lower incidences of diarrhea among members of the household, possibly because 

use of rainwater was safer than use of other more contaminated water sources (Marcynuk et al. 

2013). 

Some heavy metals, such as magnesium and zinc (Gould 2017) are commonly detected in 

rain catchment systems but are not of major health concern. Lead, however, is a common metal 

constituent of rain systems that can be dangerous even at low levels (action level = 15 ug/L, 

micrograms per liter, US Environmental Protection Agency 2017) that could leach from roof 

construction materials or deposit from nearby industrial sources. Metals can be detected at higher 

concentrations when rainwater is more acidic, either due to atmospheric conditions or to higher 

quantities of organic matter decaying in the tank. Acidity itself is not a major concern for human 

consumption of rainwater (T. Thomas 1998). 

Some of the hesitation to accept and promote widespread use of rain catchment systems 

by regulatory bodies is related to the large number of small, individual systems that would need 

to be inspected and maintained.  Proper construction and maintenance has been shown to be 

connected to functionality and water quality (Domènech, Heijnen, and Saurí 2012) and it 

therefore an important concern for rural areas where construction and maintenance of such 

system is likely to be haphazard using any available materials, and systems are unlikely to be 

cleaned, monitored or tested with any regularity.  

Although the concerns about illnesses related to rainwater catchment are troubling for the 

villages in rural Alaska that are currently making use of this resource in their homes, the reality 

is that there are few other options for many of these remote places. Many communities prefer 

rainwater to other government-endorsed water sources. The difficult of accessing and 
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transporting other water to the home, the dislike of the taste of heavily chlorinated water, and the 

resulting low quantities of water used in the home in rural Alaska could be as problematic as the 

uncontrolled and unmonitored use of rainwater. The risks and rewards of different water 

resources needs to be evaluated.  

Research objectives 

Rainwater catchment samples in rural Alaskan villages were collected and analyzed to 

assess overall water quality, identify primary contaminants and to correlate any health-related 

contaminants to collection system characteristics, where available. Additionally, this study 

examined the microbial contamination of outdoor rain catchment containers compared to indoor 

point-of-use storage containers and compared general rainwater quality characteristics from rural 

villages to the quality of rainwater and tap water in Anchorage. Community meetings were used 

to understand how rainwater catchment contributes to total household water use, how much 

rainwater is collected compared to how much is available, and what concerns community 

members have about rainwater quality. Qualitative data from the community forum and village 

visits was evaluated to understand how the two different communities use rainwater. Rainwater 

usage information from the community was compared to data collected on catchment sizes and 

rainfall data from nearby weather stations to understand how much of the potential rainwater 

available to the community is being utilized in households. 

Even though rainwater is widely used, most published studies focus on warm weather 

regions (T. Thomas 1998; Lye 2002; Marcynuk et al. 2013; Rahman et al. 2014; Imteaz et al. 

2011; Jordan et al. 2008). There is a single published study on rainwater in rural Alaska that 

examines lead, copper and zinc, but overall water quality is not discussed (Hart and White 2006). 

The current study examines water quality and estimates community acceptance and quantity of 
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rainwater available for household use in rural Alaska. Further, because environmental data 

collection is difficult and expensive to collect in hard-to-reach places like the rural Arctic, this 

study took advantage of an earlier citizen science initiative that looked at rainwater samples in 

rural Alaska villages and incorporates citizen science data from 2015 into datasets collected by 

researchers in 2016. The data presented here provides a starting point for future evaluations of 

rainwater as a significant household water resource in rural Alaska. 

 

Methods 

Water quality samples and catchment observations 

Rainwater catchment samples were collected from households in two un-piped villages in 

rural Alaska to quantify water quality parameters from household catchments, to determine how 

rainwater quality compares to other source water qualities, and to evaluate microbiological 

contamination of indoor water quality compared to outdoor catchment water quality.  

At homes chosen for rainwater samples, observations were recorded of the roof material, 

collection system, collection vessel, water quantity and cleanliness, and presence of nearby wood 

burning (e.g. chimney smoke, wood pile, steam bath). The approximate number and size of 

collection vessels was determined and one vessel was arbitrarily chosen for sample collection. In 

less than 10% of homes, a resident gave instructions on which vessel to sample from based on 

the age of the water or the vessel being actively drawn from for use in the home. Water samples 

were taken wearing fresh nitrile gloves by dipping a 250mL (milliliter) sample bottle into the 

surface of the collection vessel and pouring the water into each container in the sampling kit. If 

there was a scoop or pitcher already in or connected to the catchment vessel or provided by the 

homeowner, it was used to fill the sampling kit bottles to simulate the collection of water the 
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exact way that the household would collect the water. In homes where the vessel had a spigot, 

the spigot was allowed to free-flow for three seconds before the collection bottles were filled. If 

the surface of the water in the storage vessel was frozen, this was recorded and the ice was 

broken with a piece of wood. Care was taken to not let the wood contact the liquid water. At 

each home, residents were asked if they currently had rainwater in use in a storage vessel inside 

the home, and if they would consent to a water quality sample for bacterial analysis. Where 

consented, these samples were taken by filling a sample bottle directly from a pitcher or vessel 

that the residents use on a regular basis.  

Two field blank samples were taken in each village using deionized water transported in 

sterile bottles from the University of Alaska Anchorage civil engineering laboratory. Two 

rainwater samples from each village were taken in duplicate from a single vessel by taking two 

samples, thoroughly mixing them and splitting them between two sets of sample bottles at a 

single site. In Kipnuk, turbidity measurements were taken onsite and in Koyukuk measurements 

were taken at the field laboratory within an hour of sampling with a portable field turbidimeter 

(HACH 2100Q). The turbidity sample bottle was rinsed at least twice with sample water before 

being filled and wiped down with delicate task wipes and the turbidity read. All other samples 

were transported back to Anchorage in coolers with ice packs at approximately 4 degrees Celsius 

and analyzed within 48 hours of collection. Conductivity (analytical method SM21 2510B), pH 

(analytical method SM21 4500-H B), total organic carbon (TOC, analytical method SM 5310B) 

and metals (analytical method SW6020A) samples were submitted to a certified laboratory in 

Anchorage for analysis. Metals assessed by the certified laboratory included aluminum, 

antimony, arsenic, barium, beryllium, cadmium, calcium, boron, chromium, cobalt, copper, iron, 

lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, silver, 



16 
 

sodium, thallium, vanadium and zinc. Ultraviolet absorbance (UVA) at 254nm wavelength was 

measured on a Cary 60 UV Vis spectrophotometer.  

Most probable number (MPN) of E. coli was measured using the Aquagenx 

Compartment Bag Test (CBT). Samples were collected and transported in the 100mL plastic 

bottles provided with the CBT test kits. Prior to analysis, samples were allowed to warm to room 

temperature and the chromogenic E. coli media were added and allowed to dissolve for 25-60 

minutes until the ampule containing the media turned white. Samples were incubated at 37 

degrees Celsius for 20-22 hours and enumerated according to the provided CBT MPN table 

(Sobsey 2017). Enterococci (total colony forming units per 100mL) were enumerated by filtering 

100mL of sample through a 0.45-micron membrane on a vacuum manifold, rinsing with 20-

40mL of sterile water, placing the membrane on a pre-poured membrane-Enterococcus Indoxyl-

B-D-Glucoside (mEI) agar plate and incubating the plates at 41 degrees Celsius for 24 hours (US 

Environmental Protection Agency, n.d.). Colonies were enumerated using a light and magnifying 

glass.  

Rainwater sample data from Kipnuk and Koyukuk in 2016 was compared to 19 samples 

from 8 villages taken from September to December 2015 through a citizen science initiative 

coordinated by Masters of Public Health student Elizabeth King at the University of Alaska 

Anchorage (King 2016). King recruited volunteers with existing travel plans in remote rural 

villages to carry a sampling kit and obtain a convenience sample of one or more rainwater 

catchment tanks and accompanying observational data about the catchment system during the 

course of their planned trip.  Rainwater sample collection protocols matched those used in 

Kipnuk and Koyukuk (described above), and volunteers were asked to self-rate the accuracy with 

which the protocol was followed after collecting the samples. Samples were stored in coolers 
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with snap-activated ice packs and gel ice packs for up to several days before being transported to 

Anchorage. E. coli samples were analyzed as described above by King at a University of Alaska 

Anchorage laboratory and pH, conductivity, TOC and metals were analyzed as described above 

by the same certified laboratory.  

Community meetings  

A community meeting was held in Kipnuk and Koyukuk in 2016 during the period of 

rainwater catchment sample collection. The meeting was coordinated by the University of 

Alaska Anchorage Alaska Water and Sewer Challenge team, but the use of rainwater as a 

household water source was discussed as well. Broad discussions were led by visiting scientists 

about water resources used in the home. Five questions addressing the use of rainwater were 

written on poster paper and hung on the walls for community members to respond to by posting 

sticky notes on the poster and adding their notes and ideas: 1) About what percent of water that 

you use in your home is rainwater in spring, summer and fall? 2) Do you have any concerns 

about the use of rainwater in your home? 3) How much rainwater (in gallons) do you collect 

each season? 4) If you could collect more rainwater, would you? And 5) What supplies would 

you need to build or expand your collection? Responses were recorded along with discussion 

notes and stories shared by community members during the meetings. 

Rainwater catchment potential estimation 

To evaluate the future possible contributions of rainwater to household water use in rural 

Alaska, theoretical rainwater catchment volumes were calculated for the villages of Kipnuk and 

Koyukuk. Estimates of total roof catchment area were made by measuring and averaging the 

square footage of at least 10 houses in each village using the measurement tool and a zoomed in 

image of the homes on Google Earth. Monthly rainfall and average temperature normals from 

1981-2010 were obtained from the Alaska Climate Research Center (2017) for Bethel and 
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Galena, which were the closest villages to Kipnuk and Koyukuk respectively for which data was 

available. Low estimates of annual rainfall were obtained by adding up the monthly rainfall 

values for all months where the average temperature was above 32 degree Fahrenheit (assuming 

that in months with an average temperature below 32 degrees F the precipitation fell as snow, not 

rain). High estimates of annual rainfall were obtained by taking the total rainfall indicated 

directly on the Alaska Climate Research Center website for each location. Total annual rain 

catchment estimates were calculated by multiplying the annual rainfall by the measured average 

square footage in each village. Individual rain catchment estimates for months with an average 

temperature above 32 degrees F were also calculated. 

 

Results 

Rainwater quality 

Forty-eight samples from nine villages (Figure 3) were analyzed between 2015 and 2016 

sampling periods and the water quality results are summarized in Table 1. 

In 2016, 21 rainwater samples were collected from Kipnuk on October 1, 2016 between 

10:30am and 5:30pm while it was overcast and actively raining. Over 80% of residential homes 

had rain catchment tanks (approximately 140 households). Samples were taken from every 5th 

house after homeowner permission was obtained. If permission was not given at the designated 

sampling house, the next closest house was sampled instead. Rain samples from Kipnuk had a 

turbidity of 1.05 ± 0.44 NTU (Nephelometric Turbidity Units, min=0.31, max=2.17) and an 

average UVT of 97%. 

Eight rainwater samples were collected in Koyukuk on October 15-16, 2016 between 

2pm and 7pm each day. Although many households in Koyukuk had gutters and containers set 
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up for rainwater collection, most houses had dumped their rainwater buckets the previous week 

because the rainwater was starting to freeze. Many residents said they were no longer using their 

rainwater but still had it stored outdoors and allowed samples to be taken if the water wasn’t 

frozen. Because so few homes still had rainwater available for sampling, samples were taken 

from every available home where permission was given. Rain samples from Koyukuk had a 

turbidity of 4.48 ± 5.8 NTU (min=0.31; max=18.4) and an average UVT of 87%.  

 

Figure 3: Locations of 2015 and 2016 rainwater catchment samples 
 

The 2015 citizen science study produced 19 samples from eight villages that were 

analyzed for TOC, conductivity, pH and metals. E. coli was tested via the Compartment Bag 

Test method, but all samples were several days outside of the holding time when the test was 

performed. The bacteria data (all 0 MPN/100mL) is not necessarily valid and is therefore not 

presented here. No rain catchment characteristic data was available from the 2015 study. 

Six of the 48 total samples from both years were above the MCL (maximum contaminant 

level) of 2.0 mg/L for TOC. Four of the six high samples were from Koyukuk in 2016 when 



20 
 

water catchments had already begun to freeze. The maximum TOC value observed was 5.7 

mg/L. Conductivity was 38.13 ± 34.74 and ranged from 3.30-217.00 mS/cm (micro-Siemens per 

centimeter) across all samples. Thirty samples were outside of the acceptable range of 6.5-8.5 

and on average the pH was 6.1. At least one sample with low pH (<6.5) was collected at each 

village except for Brevig Mission and Tununak (which only had one sample collected).  

None of the 48 samples were above the detection limit for arsenic, beryllium, boron, 

mercury, molybdenum, selenium, silver, thallium or vanadium. For several other metals, 

multiple samples read above the detection limit but were still below the national MCL, or no 

MCL was specified: barium (n=11 samples above detection limit but below MCL), calcium 

(n=12), chromium (n=1), cobalt (n=1), copper (n=6), magnesium (n=18), manganese (n=33), 

nickel (n=7), potassium (n=1), and sodium (n=34).  

Only eight samples were positive and above the National Primary (US Environmental 

Protection Agency 2017) or Secondary Drinking Water Regulations (US Environmental 

Protection Agency 2015) for one of the metal parameters tested. In Kipnuk, three homes had zinc 

levels >5000 ug/L (5140, 5910, and 5780 ug/L). In Koyukuk, one home had high levels of 

aluminum (259 ug/L), one home had high levels of iron (1530 ug/L) and lead (21.2 ug/L), and 

one home had high levels of aluminum (700 ug/L), antimony (6.51 ug/L), iron (1380 ug/L) and 

zinc (9890 ug/L). Two samples from Kipnuk that had cadmium levels over 10 times higher than 

the MCL of 2 ug/L were from a single house that was sampled both in 2015 (50.3 ug/L) and 

2016 (29.8 ug/L).  
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Table 1: Overall rainwater catchment water quality characteristics. N=48, units of ug/L unless 

otherwise specified. (Drinking water MCLs from US Environmental Protection Agency, 2015) 

Water 

Quality 

Parameter 

Detection 

limit (DL) 

Number of 

samples 

below DL 

Number of 

samples 

above DL 

Mean ± St. Dev. 

of samples 

above DL 

National 

Primary or 

Secondary 

Drinking Water 

MCL 

TOC (mg/L) 0.5 mg/L 26 22 1.84 ± 1.67 2.0 

Conductivity 

(mS/cm) 
1.0 mS/cm n/a n/a 38.13 ± 34.74 Not specified 

pH n/a n/a n/a 6.1 ± 0.7 6.5-8.5 

Aluminum 200 46 2 479 ± 221 50-200 

Antimony 3 47 1 6.5 6 

Barium 3 37 11 14.0 ± 12.8 2000 

Cadmium 2 45 3 27.7 ± 19.4 5 

Calcium 500 36 12 1652 ± 1318 Not specified 

Chromium 4 47 1 8.1 100 

Cobalt 1 47 1 1.1 Not specified 

Copper 6 42 6 165 ± 221 1000 

Iron 500 46 2 1455 ± 75 300 

Lead 1 37 11 5.77 ± 5.63 
Action Level = 

15 ug/L 

Magnesium 500 30 18 1152 ± 629 Not specified 

Manganese 2 15 33 9.11 ± 9.01 50 

Nickel 2 41 7 2.76 ± 0.46 Not specified 

Potassium 1000 47 1 2040 Not specified 

Sodium 1000 14 34 5685 ± 5030 Not specified 

Zinc 25 5 43 1851 ± 2259 5000 

 

Table 2 summarizes select rainwater quality parameters for each village versus the 

average across all samples, but most village sample sizes were too small for statistical analysis.  

Kipnuk data from 2015 (n=8) was compared to 2016 (n=20) to look at the consistency in 

select parameters over time. Both sets of samples were taken between September 29 and October 

1 each year, although seasonal variation in temperature, precipitation and wind are likely to 

affect this temporal comparison. TOC was very low in both years, with only 25% of samples 
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having detectable levels. pH was not significantly different between the two years (2015 mean = 

5.3, 2016 mean = 6.0, p = 0.12). Conductivity was significantly higher in 2016 (20.56 mS/cm) 

than in 2015 (47.96 mS/cm, p<0.0001). Magnesium was detected in over half of the samples in 

2016 but none of the samples in 2015. Nickel was detected in 75% of the samples collected in 

2015 but none of the samples in 2016. Sodium and zinc were detected in almost every sample in 

both years, while barium, cadmium, calcium, copper and lead were present in a fewer than 25% 

of samples in each year. Manganese was detected in approximately 50% of samples in each year.  

Table 2: Averages of selected rain catchment water quality parameters by village (non-detect 

samples were calculated to be at the detection limit for this analysis) 

Village No. of 

samples 

TOC 

(mg/L) 

Conductivity 

(mS/cm) 

pH Metals detected 

Alakanuk 2 3.70 16.35 5.9 Ba, Mn, Na, Zn 

Brevig 

Mission 
3 0.64 19.17 6.8 Ca, Pb, Mg, Mn, Na, Zn 

Hoonah 1 0.72 3.30 6.0 Ni 

Ketchikan 2 2.35 113.60 6.3 Ba, Ca, Cu, Pb, Mg, Mn, K, Na, Zn 

Kipnuk 28 0.54 41.11 5.8 
Ba, Cd, Ca, Cu, Pb, Mg, Mn, Ni, 

Na, Zn 

Kivalina 2 <0.50 88.45 6.2 Ba, Ca, Pb, Mg, Mn, Na, Zn 

Koyukuk 8 2.45 17.58 6.6 
Al, Sb, Ba, Cd, Ca, Cr, Co, Fe, Pb, 

Mg, Mn, Ni, Zn 

St. Mary’s 1 <0.50 9.2 5.4 Mn, Zn 

Tununak 1 0.54 31.6 6.7 Cu, Pb, Mn, Na, Zn 

OVERALL 48 1.11 38.13 6.1 n/a 

 

Bacteria analyses 

Fourteen out of 21 Kipnuk samples (Figure 4) and four out of eight Koyukuk samples 

(Figure 5) from 2016 tested positive for bacteria. Twenty out of 21 Kipnuk homes sampled and 

four out of eight Koyukuk homes sampled consented to collection of an indoor sample of stored 

rainwater in addition to the outdoor sample. Nine samples from outside rain catchments in 
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Kipnuk and three from Koyukuk were positive for E. coli, but only two of these homes in 

Kipnuk and one of these homes in Koyukuk also tested positive for E. coli in the indoor sample. 

One home in each village that tested positive in the indoor sample was negative in the outdoor 

sample. Seven homes in Kipnuk tested positive for Enterococci, but only three of these also had 

E. coli in the outdoor catchment. In Koyukuk, one sample was positive for Enterococci and that 

home also had E. coli in the outdoor sample. 

 

Figure 4: Bacteria results from Kipnuk rainwater catchments that were sampled for E. coli in 

indoor and outdoor containers and for Enterococci in outdoor containers. Out of 21 total 

samples, 6 were negative on all three bacteria tests. Nine homes tested positive for E. coli in the 

outside sample, two of which were also positive for E. coli inside and three of which were also 

positive for Enterococci outside. One additional sample only tested positive for E. coli inside the 

home and four additional samples only tested positive for Enterococci in the outside sample. No 

homes tested positive on all three bacteria tests. 
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Figure 5: Bacteria results from Koyukuk rainwater catchments that were sampled for E. coli in 

indoor and outdoor containers and for Enterococci in outdoor containers. Eight homes were 

sampled and four were negative for all three bacteria tests. Three households were positive for 

E. coli in the outside sample taken, one of which was also positive for E. coli inside and one of 

which was also positive for Enterococci in the outside sample. One additional sample tested 

positive for E. coli indoors only. No homes tested positive on all three bacteria tests. 

 

 

 

Table 3: Compartment Bag Test (E. coli) microbial health risk (Sobsey 2017) 
E. coli (CFU or 

MPN/100mL) 
Health Risk Category 

<1 Low risk/Safe 

1 – 10 Intermediate risk/Probably safe 

10 – 100 High risk/Probably unsafe 

>100 Very high risk/Unsafe 

 

Of the thirteen total samples that tested positive for E. coli, eight had <5 MPN/100mL, 

representing an intermediate risk and suggesting that the water is probably safe according to the 

Aquagenx sampling literature (Table 3). One Kipnuk sample had 32.6 MPN/100mL E. coli in the 
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outside sample and tested positive for Enterococci, and one Koyukuk sample had >100 

MPN/100mL E. coli (outside) and tested positive for Enterococci, suggesting high risk for E. coli 

and that the water was unsafe. One Kipnuk sample was at high risk for both the inside and 

outside sample taken, while one Kipnuk sample was at high risk for the inside sample and not the 

outside sample, and one Koyukuk sample was at high risk for the outside sample but not the 

inside sample. Of the eight samples that tested positive for Enterococci, only one had >2 

CFU/100mL (colony-forming units per 100mL of sample).  

E. coli samples from 2015 data collection were outside of holding time, and Enterococci 

was not analyzed in 2015. Therefore, all 2015 samples were non-detect for bacteria. 

Anchorage rain and tap water samples 

Average values of water quality parameters from the village rainwater samples were 

compared to the 2012 Anchorage Water and Wastewater Utility’s (AWWU) water quality report 

(Anchorage Water and Wastewater Utility 2012) for tap water in the municipal service area. 

Village rainwater samples had higher average TOC, chromium and lead levels than AWWU 

water (0.38 mg/L, 3 ug/L, 2.44 ug/L respectively), but lower levels of barium, copper, and nickel 

(AWWU average: 16.18 ug/L, 180 ug/L, 6.1 ug/L respectively). Village rainwater sample 

averages were slightly higher in TOC and pH than a single sample of rainwater measured at the 

University of Alaska Anchorage (0.85 mg/L TOC and pH 5.8).  

Catchment observations 

Catchment characteristic data was only available from the 2016 samples in Kipnuk and 

Koyukuk. All catchment systems in both villages collected water off of roofs made of metal 

siding. All systems collected rain off of a house, except one system that caught rain from a shed. 

Most homes used standards open gutters made of metal or plastic with a downspout. One home 
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had no gutter system and instead caught runoff where it collected into a drip on the corner of the 

roof. Four homes didn’t have downspouts, but some had tied strings to guide the water down 

from the gutter into the collection vessel. No standard first flushes apparatuses were observed, 

but several homes had clothing (e.g. socks) or cloth covering the end of their downspout or the 

top of the catchment vessel to serve as a filter for debris. All but two homes used metal (20%) or 

plastic (80%) barrels, garbage cans or tubs that were less than 100 gallons in volume. Many 

homes had multiple collection vessels either actively catching water from multiple locations or 

storing water for later use. The exceptions to this were one home that had a ~500-gallon plastic 

cistern and one home that collected water in a 15-foot long skiff that sat upright next to the 

home.  

Most homes left their catchment vessels uncovered, but ~15% used hard plastic or 

wooden covers and ~10% used mesh cloths as a cover. The lack of covers in Kipnuk may have 

been due to active rain collection happening while observations were being recorded. One third 

of the collection vessels in Kipnuk and over half of the vessels in Koyukuk had visible leaves, 

insects, and debris inside the containers. In Kipnuk, most homes indicated that rainwater is a 

preferred source of drinking and washing water in the home. In Koyukuk, homeowners in over 

half of the homes samples indicated that they do not use the water for drinking (only for 

cleaning/washing) or that they had stopped using it once it started to freeze a few weeks earlier.  

Community meetings 

The Kipnuk community meeting was held on September 30, 2016 with approximately 20 

community members in attendance representing at least 10 homes. Most participants said that 

they used rainwater as a key water source in their homes. Responses to the poster questions 

suggest that residents exclusively rainwater in the spring and summer and that 50% of the water 
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used in their home is rainwater in the fall. Community members were reluctant to estimate the 

quantity of rainwater that they collect, but two people recorded over 500 gallons collected each 

season. All respondents (n=6) indicated that they would like to collect more rainwater. Good 

roofing material, sturdy gutters and more storage containers were listed as needs to expand their 

systems. Concerns about the use of rainwater in the home included rust, dust from the road, bird 

poop, and smoke from nearby steam baths. 

The Koyukuk community meeting was held on October 15, 2016 with approximately 15 

community members in attendance. All participants were women heads-of-household. Most 

participants in Koyukuk were reluctant to discuss rainwater in person or to admit that they use it 

for drinking. Conversations with some community members during this visit and on previous 

occasions suggest that rainwater is widely used during the warmer months, but that residents are 

concerned that visiting officials will not approve of the practice. Several responses to the poster 

questions indicate that people collect 50-120 gallons per month in the spring, summer and fall. 

All respondents (n=5) said they would like to collect more rainwater if they had more and better 

gutters and holding tanks. Community members in Koyukuk did not state any concerns about the 

quality of rainwater, only about the volume that they were able to collect. Notably, many houses 

in Koyukuk only had a gutter on a single side of their pitched roof.  

Potential rainwater catchment volumes 

Kipnuk houses were approximated to have 750 ft2 and Koyukuk houses were 

approximated to have 625 ft2 of roof catchment area. Kipnuk and Koyukuk low and high 

estimates for total theoretical rain catchment volume per year is shown in Table 4. The low 

estimates were 70% and 60% of the high estimate volumes for Kipnuk and Koyukuk 

respectively. These estimates suggest that 6000-8600 gallons of rainwater per year could be 
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captured per home in Kipnuk, supplying water for 27-40% of the year. In Koyukuk, 2900-4800 

gallons/year/household could be captured, supplying 13-22% of the water for the home at a 

usage rate of 60 gallons per household per day, an estimated 10x increase from current water use 

for a household of four (T. K. Thomas et al. 2016).  

In order for this quantity of water to be harvested, homes would have to make use of all 

available roof area by installing gutters and downspouts in appropriate locations. Monthly 

variation in rainfall would require collection vessel volume totaling approximately 1500 gallons 

for Kipnuk and 900 gallons for Koyukuk. 

Table 4: Rainwater catchment potential in high and low rainfall scenarios.  

(*days of water supplied assumed 60 gallons used per household per day) 

 
Rain 

(in.) 

Roof area 

(ft2) 

Vol. of 

rain 

(gal/yr.) 

Days of water 

supplied by 

rain* 

% of year 

supplied 

by rain* 

Kipnuk 

High 

Low 

 

18.54 

12.87 

750 

 

8670 

6020 

 

144 

100 

 

40% 

27% 

Koyukuk 

High 

Low 

 

12.37 

7.45 

625 

 

4820 

2902 

 

80 

48 

 

22% 

13% 

 

 

Discussion 

Possible causes of contamination in individual samples 

Only ten of the 48 samples collected over both years had any water quality parameters 

other than TOC or pH that exceeded the US EPA drinking water regulations. Two of these 

samples (both with zinc levels >5000 ug/L) were from 2015 and no further data was available 

that might help explain the results. Three samples were collected in 2016 in Koyukuk from 

vessels that were at least partially frozen, and contained lots of debris. One of these contained 

high aluminum (259 ug/L), high TOC (4.85 mg/L) and unsafe levels of E. coli in the outdoor 
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sample, although the indoor E. coli sample was probably safe. The homeowner said that the 

water was not used for drinking, only for washing. Another sample contained high iron (1530 

ug/L), high lead (21.2 ug/L), and unsafe levels of E. coli in the outdoor sample. Cobalt (1.14 

ug/L) and barium (3.1 ug/L) was also detected in this sample but not above the MCL. This 

homeowner said that they had stopped using the water source several weeks previously when 

they noticed it was dirty, but they did not indicate why it became dirty. The third sample had 

high aluminum (700 ug/L), antimony (6.51 ug/L), iron (1380 ug/L), zinc (9890 ug/L) and TOC 

(5.16 mg/L). Barium (8.37 ug/L) and chromium (8.13 ug/L) were also detected, but not above 

the MCL. These anomalies could be attributed to the freezing of the water, the method of 

breaking up the ice to collect a sample, or the debris in the sample.  

Three samples from Kipnuk had concerning levels of E. coli in the sample but no other 

contaminants outside of the drinking water regulations. One home had unsafe E. coli levels in 

both the indoor and outdoor samples taken, which could be due to contaminated equipment used 

in the catchment system or to the spread of bacteria into the water from human or animal contact. 

Another home had unsafe levels in the outside sample but not the inside sample, suggesting that 

some, but not all, of the catchment containers could be contaminated or that the household 

practices point-of-use water treatment. The third home had unsafe levels in the inside sample but 

not the outside sample, suggesting that their source water may be safe but it is becoming 

contaminated on the way in or inside the home. 

Another home in Kipnuk had high levels of zinc (5780 ug/L) and detectable lead (1.89 

ug/L) that was under the action level. There were no atypical attributes of the catchment system 

that might explain these results, however the homeowner did express concern about insects that 
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were recently found in their rainwater catchment and inside some dead birds found in the area. It 

is unclear whether this anecdote is relevant to the quality of the rainwater in this home.  

The most alarming sampling results from this study came from a single home in Kipnuk 

that was sampled both in 2015 and 2016 and had high levels of cadmium both years (15-25 times 

the MCL). This home also had low pH, low levels of E. coli in the outside sample in 2016, and 

detectable levels of barium both years, although barium was not above the MCL. When both 

samples were taken, a 55-gallon drum labeled “Dow Frost” was observed next to the rainwater 

barrels, but the homeowner said that this barrel didn’t contain any chemicals and was not being 

used to store rainwater. No other catchment characteristics or sample collection anomalies were 

recorded that might explain these high contaminant levels. In each case, the homeowner was 

informed about the sample results and was contacted by public health officials connected to the 

University of Alaska who answered questions and encouraged the family to stop using their 

rainwater until further analysis could be done. The homeowner did not take any action based on 

these results.  

Rainwater is a high-quality resource 

Overall, rainwater has been shown to be a high-quality water source that is available in 

varying quantities in most rural Alaska villages. Almost 80% of the samples tested in nine 

villages were safe to drink based on EPA drinking water regulations. Additionally, rainwater was 

a culturally and socially acceptable and preferred water source in Kipnuk and Koyukuk, and has 

been shown to be widely used in other rural villages (King 2016). The use of rainwater collected 

onsite could greatly increase the quantity of water that households use for hygiene purposes 

without the additional cost, effort and risk of contamination that comes with hauling water in 
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from other sources. Even in relatively dry and cold areas like Koyukuk, rainwater potential could 

provide 60 gallons of water per household per day for over 20% of the year.  

Best practices for rainwater use 

Although rainwater can be very clean, the quality is localized and can vary based on the 

surrounding environment, climate, geography, and catchment system characteristics. To promote 

access to this high quality onsite water resource, government agencies, tribal authorities and 

community health practitioners should encourage the adoption of several best practices for 

rainwater catchment: 

1. All parts of the catchment system should be cleaned and inspected regularly 

2. Household waste and other contaminants should be kept far from catchment system 

components 

3. Gutters, downspouts and storage containers should be screened or covered to reduce 

debris entering the water supply 

4. Sanitary practices should be observed when drawing water from the storage tank and 

bringing it into the home 

5. Point-of-use disinfection options should be considered to ensure that water doesn’t 

contain microbial pathogens 

6. Catchment containers should be protected from debris and freezing whenever possible 

7. Rainwater should be periodically tested for bacteria, metals and other contaminants and 

action should be taken if any parameter readings fall outside of the EPA drinking water 

regulations 

8. Gutters should be installed on all sturdy parts of the roof and sufficient catchment 

containers should be provided to maximize catchment volume.  
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Future research needs 

This study represents a preliminary examination of the quality and quantity of rainwater 

available to rural Alaska villages, many of which do not have adequate alternative water 

resources for use in the home. A more comprehensive analysis of rainwater resources across the 

state is recommended to add robustness to this dataset and provide information on geographical, 

seasonal, temporal cultural and social trends in rainwater quality and use. The small number of 

samples collected in most of the villages in the present study made comparison between 

geographic locations difficult, however variation is highly likely based on factors such as nearby 

vegetation, bodies of water, wildlife, and industry. The possibility of using a citizen science 

approach and taking advantage of partnerships with other traveling professionals (such as nurses 

or pilots) to collect this data is promising and could help to overcome the hurdles of the cost and 

feasibility of travel to these remote locations (King 2016). However, citizen scientists must be 

carefully trained and observed and proper material and logistical support will need to be 

provided to ensure that accurate and useable data is collected. In the current study, 

microbiological parameters were drastically different in samples collected by trained scientists 

compared to those taken by citizen scientists. Citizen science programs should be carefully 

designed and executed if they are to be employed.  

Alaska native tribes are culturally diverse and have different preferences and concerns 

about water resources, and this likely extends to the use of rainwater in the home. More 

information about individual communities’ water source preferences and desires will be 

important for authorities to make decisions about how to improve and promote water quantity 

and access in rural villages. This need extends from outdoor infrastructure like rainwater 

catchment systems to indoor infrastructure such as indoor treatment and storage to see whether 

and how indoor behaviors can affect the ultimate water quality before it is used or consumed.  
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Chapter 3: Onsite water treatment and reuse 

 
 

Introduction 
Water reuse systems offer promising potential to address the water quantity problem in 

rural Alaska because they address the issues of producing clean water onsite and of treating 

wastewater and reducing wastewater removal needs. Traditionally, water reuse has been focused 

on large-scale systems (Jeppesen 1996) or on producing water for non-potable purposes (e.g. 

toilet flushing, Christova-Boal, Eden, and McFarlane 1996) and irrigation (Jhansi and Mishra 

2013). In rural Alaska, the needs for water reuse technology are for small systems that serve 

individual or clustered households and that produce high quality water that is potable or at least 

suitable for human contact and incidental consumption. 

Alaska Water Sewer Challenge 

In 2013, the Alaska Department of Environmental Conservation (ADEC) initiated a new 

effort called the Alaska Water and Sewer Challenge (AWSC) to tackle the problems discussed 

above and examine the feasibility of building household water reuse systems in rural Alaska with 

funding from the US EPA. The Alaska Water and Sewer Challenge focuses on decentralized 

water and wastewater treatment, recycling and the efficient use of water (Alaska Department of 

Environmental Conservation 2017b) by funding new research and development of single 

household greywater reuse systems that would be appropriate for cold climate environmental and 

social conditions. The goal of the AWSC is “to significantly reduce the capital and operating 

costs of in-home running water and sewer in rural Alaska homes” (Alaska Department of 

Environmental Conservation 2017b). In the third phase of the Challenge in 2015, ADEC funded 

three teams to build and test pilot systems for 18 months and to work closely with two unserved 

rural Alaska communities to understand community water supplies, preferences and needs.  
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Much of the data and information presented here was generated as part of the University 

of Alaska Anchorage (UAA) AWSC team’s work from January 2016 through July 2017. In 

addition to UAA, team partners included the University of Colorado Boulder, the Southern 

Nevada Water Authority, GV Jones and Associates, StreamlineAM, and the University of 

Southern California. Some of the data presented here is also included in the AWSC Phase 3 Final 

Report submitted to ADEC in July 2017. Additional project information, community input, pilot 

data, reports and photos can be found on the team website, reusewaterak.com. 

Research objectives  

The UAA AWSC system was designed in 2015 and a prototype pilot system was built in 

2016 and tested from July 2016 through July 2017. With only 30 gallons of source water added 

and 30 gallons of concentrated waste removed from the greywater system each week, the 

prototype wash water system produced 420 gallons of clean water each week to typical 

household water fixtures (shower, sinks, laundry machine) – 58 gallons of wash water (for 

hygiene purposes) and at least 2 gallons of drinking water per day. During the testing period, 

influent and effluent water quality samples were taken from and analyzed at the university 

laboratory and at a certified offsite laboratory for an array of water quality and microbiological 

parameters. The three water systems and the produced water qualities are described below. 

 

Toilet system 
The toilet system for the UAA AWSC system was completely separate from the drinking 

water and wash water (greywater reuse) systems, and therefore is an individual module that can 

be modified independently of the other parts. Two different toilet configurations were used in the 

pilot system. Initially, a ceramic low-flow dual-flush toilet was installed that diverted flushwater, 
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urine and feces into a sealed 60-liter stainless steel haul container. The toilet used 0.3 liters (<.01 

gal) of wash water to flush urine and 2.5 liters (0.7 gal) of wash water for a full flush for feces. 

The container therefore had to be replaced with an empty container 1-2 times per week 

depending on use, and approximately 60 liters (16 gal) of water had to be input into the wash 

water system to replace the loss of water from the toilet, since that water was not being recycled 

and reused like at other fixtures. Having a ceramic flush toilet was a specific request of the 

partner community members in Kipnuk and Koyukuk during initial end user feedback 

conversations, so this toilet configuration was piloted for several months to demonstrate that a 

flush toilet could be incorporated into the water reuse system.  

The second toilet configuration was to use a Separette Villa urine-diverting dry toilet that 

would reduce hauling and water treatment costs by eliminating the use of wash water for toilet 

flushing. In this configuration, urine was diverted into a sealed tank or infiltrated directly into the 

ground on-site and solids were dried and hauled off-site or burned on-site. Many rural Alaskans 

are familiar with the Separette-style toilet because of the challenges of hauling large quantities of 

wastewater (including flushwater) from the home, but they are not preferred in many 

communities because they are considered unmodern. However, this toilet configuration puts no 

burden on the wash water/water reuse system and provides no additional haul effort, similar to  

continued use of honeybuckets or outhouse (pit latrines) in the villages. 
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Drinking water system 
The drinking water system was designed to 

use the best quality source water and produce the 

highest quality water within the pilot system. Source 

water of the homeowner’s choosing is poured into a 

6-gallon drinking water tank for pre-treatment 

storage and then is pumped on demand at 1.1 gallons 

per minute (GPM) through a 1 micron cartridge 

filter to remove debris. After filtration, the water is pushed through a low-pressure ultraviolet 

disinfection unit and dosed with at least 40 mJ/cm2 (milli-Joules per centimeter squared) of UV 

light before being dispensed through a specified and separate drinking water faucet (Figure 6).  

The drinking water tank and treatment system can be contained in a single cabinet within 

the home (e.g. underneath a kitchen counter) and drinking water faucet spigots can be located 

anywhere throughout the home (e.g. at the kitchen sink and bathroom sink). Treated washeteria 

water is the recommended source of drinking water since the system is designed to only provide 

microbial protection in waters with low turbidity (<1 NTU) and high ultraviolet transmittance 

(>95%). However, the system can provide additional drinking water quality enhancement to 

rainwater or surface water sources as well if they are preferred by the homeowner.  

 The drinking water system was tested three times during the pilot demonstration 

period. Water samples were sent to a certified laboratory in Anchorage where metals, mercury, 

fluoride, nitrate, nitrite, cyanide, VOCs, Total Coliforms and E. coli were measured (Table 5). 

 

 

Drinking
Water	Tank

CF

U
V

Kitchen	
sink

Bathroom	
sink

Level	Sensor

Figure 6: Drinking water treatment 

schematic 
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Table 5: Pre- and post-treatment drinking water quality compared to national standards (US 

Environmental Protection Agency 2017). 

Measured Parameter 

(mean ± standard deviation) 

Detection 

Limit (DL, 

laboratory) 

Average 

Pre-treatment 

(n=2) 

Average 

Post-treatment 

(n=3) 

National Primary 

Drinking Water 

MCL 

Metals scan: Barium (ug/L) 3.0 11.2 ± 0.3 12.5 ± 0.8 2000 

Metals scan: Lead (ug/L) 0.200 0.834 ± .730 2.158 ± 1.17 
Action Level = 

15 

Total coliform bacteria 

(CFU/100mL) 
1 

Not 

detected* 
Not detected 0 

E. coli (CFU/100mL) 1 Not detected Not detected 0 

VOC: Bromodichloromethane 

(ug/L) 
0.500 ** Not detected 0 

VOC: Chloroform (ug/L) 0.500 5.41 ± 1.08 3.90 ± 3.47 70 

VOC: Toluene (ug/L) 0.500 0.35 ± 0.49 0.18 ± 0.31 1000 

VOC: Total Trihalomethanes 

(ug/L) 
2.00 5.95 ± 1.17 4.03 ± 3.63 80 

All other VOCs Varies Not detected Not detected Varies 

Fluoride (mg/L) 0.200 
0.513 ± 

0.041 
0.459 ± 0.087 4.0 

Nitrate (mg/L) 0.100 
0.341 ± 

0.166 
0.233 ± 0.114 10 

Nitrite (mg/L) 0.100 Not detected Not detected 1 

Cyanide (mg/L) 0.0050 Not detected Not detected 0.2 

Mercury (ug/L) 0.200 Not detected Not detected 2 

*See team-identified challenge test information below. 

**One of two samples contained 0.61 ug/L Bromodichloromethane, one was non-detect. 

 

 The treated drinking water was not significantly different from Anchorage tap water 

for any parameter and complied with USEPA drinking water standards (US Environmental 

Protection Agency 2017) for all three sample days. 

 In addition to evaluating normal operation of the drinking water system, two challenge 

tests were conducted on the drinking water system to simulate introduced contamination or use 

different than recommended. In one test, source tap water from the University of Alaska 

Anchorage was spiked with 1% secondary wastewater effluent from a nearby wastewater 

treatment plant to simulate contamination of drinking water during haul. Residual chlorine in the 

source water likely killed the bacteria before it was treated through the drinking water system, 
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because Total Coliforms and E. coli were not detected in pre- or post-treatment samples. In a 

second test, source tap water was stored in the pre-treatment storage vessel within the 

demonstration home for five months and had a biofilm growing within the vessel prior to 

treatment to simulate disuse of the drinking water system or not cleaning the storage vessel. Pre-

treatment samples were not analyzed for this test, but post-treatment samples were normal for all 

parameters.  

 

Wash water system 
The wash water system is intended to produce water for human contact but not human 

consumption, and was designed to meet all US EPA drinking water regulations but to be used 

only for washing and hygiene purposes, including handwashing, bathing, showering, 

dishwashing, house cleaning and clothes washing. The system was required to reliably provide 

60 gallons of water per day. Challenge tests were executed that altered the normal flow regimes, 

challenged the physical components of the system and added additional contaminants to the 

system, and the treatment system configuration was adjusted when problems were identified to 

reach the goal of producing sufficient quantity and quality of reused water. Several different 

configurations of the pilot treatment system were tested over the 10-month demonstration period. 

The final version was operated from February 27 through July 5, 2017.  

Pilot system description 

In the final pilot system, the wash water system was operated through simulated use of a 

kitchen sink, bathroom sink and shower in a small house on the University of Alaska Anchorage 

campus. The fixtures were plumbed to use wash water from a treated reuse water storage tank 

based on a daily schedule that simulates home hygiene activities for a household of four people. 
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When wash water is dispensed through a fixture, synthetic concentrates containing household 

and personal hygiene products, food, dust, and secondary effluent from a wastewater treatment 

plant are simultaneously dispensed down the fixture drains to simulate inputs from actual 

hygiene uses. The combined wash water and synthetic concentrates create synthetic greywater 

that meets ANSI – NSF350 water reuse requirements (NSF International 2011). A laundry 

machine was not included in the household operation during this period, but laundry greywater 

was simulated in the system by allocating additional flow to the shower and dispensing a 

concentrated laundry greywater recipe into the shower drain. Each fixture operating within the 

house had a 50-mesh screen connected to its drain inside the home for pre-treatment before the 

greywater flowed to a collection tank in the treatment unit.  

The treatment unit sat on a skid and fit into a 10ft connex shipping container or in a 

vestibule inside or next to the home. The skid consisted of four 90-gallon tanks that contained 

water through different stages of treatment (Figure 7). Only two tanks were full at any given time 

and the others contained 5-15 gallons of water. Greywater flowing from the house fixture pre-

treatment was collected in the greywater tank where soap was removed via an Skimz Monzter 

SM253 DC Internal protein skimmer that was constantly cycling the greywater. Greywater (GW) 

was held in this tank until there was enough to warrant a treatment cycle. At the beginning of the 

treatment cycle, the wash water (WW) tank and nanofiltration (NF) feed tank were nearly empty, 

and the reverse osmosis (RO) membrane feed tank was nearly full with partially treated water 

from a previous treatment cycle. At the beginning of the treatment cycle, the GW tank was 

pumped through three cartridge filters of decreasing pore size (1um, 0.45um, 0.2um nominal) 

into the NF feed tank. The NF feed tank remained full while the RO feed (ROF) tank contents 

were pumped across a DOW Filmtec LC LE4040 reverse osmosis membrane, the concentrate 
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was returned to the ROF tank and the permeate stream was sent through two Viqua VH200 UV 

disinfection units in series before being stored for future use in the wash water tank. Then the NF 

feed (NFF) tank contents were treated across a DOW Filmtec NF 270 nanofilter membrane, the 

concentrate was returned to the NFF tank and the permeate went to the RO feed tank to refill for 

the next treatment cycle. Membranes and plumbing were rinsed with wash water after each 

treatment cycle to avoid biological regrowth and contamination between water qualities which 

used the same pump and plumbing sections. The WW tank was periodically ozonated to stop 

pathogen regrowth and maintain freshness of the water. This process was repeated daily to 

provide up to 60 gallons (230 liters) of water for household use, or more frequently for a larger 

volume for daily use.  

Because concentrates from the NF and RO membranes were sent back to their respective 

feed tanks for retreatment, the treatment cycle ended with 5-10 gallons of concentrated water in 

the NF and RO feed tanks. The NF feed tank concentrate was removed to an integrated waste 

haul container on the skid twice per week and the RO feed tank concentrate was removed once 

Figure 7: Wash water reuse/treatment system diagram showing the processes and chronology 

of the water treatment process. 
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per week. The waste haul tank was sealed and had a submersible pump in the bottom connected 

to a garden hose to allow for easy access and emptying. The waste haul container was emptied 

once per week, resulting in a total waste volume removed each week of approximately 30 gallons 

(120 liters). An equal volume of replacement water from tap, rainwater collection or surface 

water sources was then added once a week through the fixture drains inside the home. 

Water quality analysis methods 

To analyze the performance of the system and the quality of the produced wash water, 

samples were collected from each of the tanks at least three times per week during the pilot 

system operation through metal taps that drained from the bottom of the tanks. Sample taps were 

sterilized with 70% ethanol and wiped with a clean cloth before sampling. Bacteria samples were 

collected in sterile HDPE sample bottles and other water quality samples were collected in 

furnaced glass vials. Turbidity, pH, conductivity of each sample collected during the test period 

was analyzed within six hours of sample collection at the UAA water chemistry laboratory. 

Turbidity (NTU) was measured on a HACH 2100Q portable turbidimeter. pH was measured with 

a Thermo Scientific Orion Star A324 pH probe and conductivity (mS/cm) was measured with a 

Thermo Scientific Orion Star A222 conductivity probe. Samples were then refrigerated at 5 

degrees Celsius for 5-15 days before Total Organic Carbon (TOC, mg/L) was analyzed on a 

Shimadzu TOC-L CSH analyzer and ultraviolet absorbance (UVA) at 254nm wavelength was 

measured on a Cary 60 UV Vis spectrophotometer. Wash water samples were analyzed for Total 

Coliform and E. coli once a week during operation and other tanks were analyzed infrequently. 

Total Coliforms (CFU/100mL) were enumerated by serially diluting the water samples, filtering 

1 mL of sample through a 0.45-micron membrane on vacuum manifold, rinsing with 20-40 mL 

of sterile water and placing the membrane in a petri dish containing an absorbent cellulose pad 

soaked with 2mL of m-Endo broth (National Water Quality Monitoring Council 2017a). E. coli 
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(CFU/100mL) were enumerated through the same process but using HACH m-ColiBlue24 broth 

(National Water Quality Monitoring Council 2017b) on the cellulose pad. Greywater samples 

were only analyzed for conductivity and turbidity from this period, but greywater tank data was 

averaged with samples from previous prototype configurations because influent recipes did not 

change during the entire development and testing period. 

Additional wash water samples were collected twice a month and sent to a certified 

laboratory to be analyzed for color (SM21 2120B), odor (SM21 2150B), and MBAS (SM 

5540C).   

Water quality throughout the treatment system 

Feed tank water quality 

The GW, NFF and ROF tanks showed large variation over time across all parameters 

measured (Table 6). This is likely attributed to the cycle of concentration of wastes over a week-

long period of operation. pH of all tanks varied but was usually in the normal range of 6-8. Water 

quality did not improve during the first treatment step between the GW and NFF tanks because 

the contribution of the cartridge filters towards water treatment was obscured by the 

concentrating of waste from the nanofiltration membrane rejection line. Bacteria, TOC and 

turbidity were considerably lower and UVA was higher in the ROF tank as compared to the NFF 

tank.  
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Table 6: Water quality characteristic summaries for each tank in the wash water treatment 

system. In each cell, top line is average, middle line is range and bottom is number of samples. 

 Greywater 

Tank 

Nanofiltration 

Feed Tank 

Reverse 

Osmosis 

Feed Tank 

Wash Water 

Tank 

AWSC WW 

contract 

requirements 

Total 

Coliforms 

(CFU/100mL) 

108 

106 – 109 

n=25 

108 

107 – 108 

n=17 

107 

105 – 107 

n=16 

Not detected* 

Not detected 

n=19 

Not detected 

 

E. coli 

(CFU/100mL) 

106 

104 – 107 

n=8 

106 

105 – 107 

n=9 

104 

102 – 105 

n=10 

Not detected 

Not detected 

n=17 

Absent 

Conductivity 

(mS/cm) 

1.136 

0.095 – 6.827 

n=155 

0.699 

0.101 – 2.943 

n=60 

0.996 

0.188 – 3.623 

n=60 

0.017 

0.004 – 0.087 

n=67 

Not specified 

pH 

6.9 

6.1 – 8.1 

n=114 

6.9 

6.3 – 7.7 

n=60 

7.3 

6.5 – 8.4 

n=60 

6.66 

5.57 – 7.74 

n=64 

6.0-9.0 

TOC (mg/L) 

201.5 

0.2 – 973.8 

n=105 

196.0 

19.3 – 775 

n=61 

21.2 

2.5 – 194.8 

n=60 

0.7 

0.2 – 1.6** 

n=68 

10 mg/L 

Turbidity 

(NTUs) 

50.0 

1.2 – 203 

n=141 

109.9 

3.5 – 493 

n=60 

8.9 

0.8 – 81.4 

n=60 

0.13 

0.07 – 0.23 

n=67 

Avg: 5 NTU 

Max: 10 NTU 

UVA254  

(cm-1) 
No data 

1.5 

0.2 – 3.7 

n=59 

0.20 

0.03 – 1.60 

n=59 

0.003 

0 – 0.016 

n=68 

Not specified 

Color No data No data No data Not detected Not specified 

Odor No data No data No data 

< 4.75  

< 1.0 – 13.5 

n=5*** 

“Not 

offensive” 

Oil film and 

foam (MBAS) 
No data No data No data Not detected 

Not 

detectable 

*Two additional Total Coliform samples detected 1 and 10 CFU/100mL (June 4 and 8, 2017 

respectively) when the ozone in the wash water tank was turned off to simulate a failure scenario 

during the household illness challenge test described below.  

**TOC of 9.62 mg-C/L was measured once upon startup of Version 2 when a new RO membrane was 

loaded without any rinsing to clean out chemical preservatives. 

***Three of the five samples were non-detect for odor. Odors of 13.5 and 7.27 were detected on 20 

March and 18 April 2017 respectively. These are attributed to the end of a membrane life or new 

membrane installation. The ozone in the wash water tank was turned off in June 2017 for a household 

illness challenge test, resulting in odor detections of 30.6 (7 June 2017) and 19 T.O.N. (13 June 2017). 

These two samples are not included in the summary statistics in the table.  
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Wash water quality 

The wash water quality was very stable (Figure 8) and met all contract requirements 

established by ADEC as part of the Alaska Water and Sewer Challenge. Total coliforms and E. 

coli were absent (except for two samples at very low levels, discussed below). Conductivity was 

low and pH was in the required range in most samples. Turbidity and TOC were on average 10x 

lower than the contract requirements. Color and MBAS were not detected in any samples.  

The changing of RO membranes was associated with abnormally high TOC (9.62 mg/L) 

in at least one instance. The ozone component of the system was added to ensure that bacteria 

regrowth did not affect stored wash water and to improve odor with higher water age if the  

  

 

Figure 8: Wash water quality parameters from final pilot system configuration. 
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system was unused for several days. While the system operated at desired water quality 

specifications most days without ozone, two positive bacteria samples and two positive odor 

detections were seen when the ozone was turned off. 

Water quality during stress tests 

The pilot system was challenged under a variety of different daily flow regimes and 

intermittent periods of disuse to ensure that consistent wash water quality was produced during 

abnormal use. These tests are described in NSF350 (wash efficiency stress, power/equipment 

failure, wash vacation stress, and wash surge stress) and no significant change in wash water 

quality was observed when these changes were made.  To assess the durability of the system in 

winter conditions, the system was shut down and allowed to freeze for three weeks in December 

2016. Upon restart, water of acceptable quality was produced with minimal repairs required. 

In addition to the flow and equipment challenges, three contaminant challenge tests were 

performed on the system which are described below along with the water quality results. A Pine-

sol challenge test was performed where Pine-sol cleaning solution was used to mop the floor of 

the house and the mop bucket was dumped down the drain. There was no noticeable change in 

any water quality parameter after the challenge test with most parameters at undetectable levels, 

pH=6.3 and conductivity=9.8 mS/cm.  

A urine challenge test was performed where urine was added to the shower drain daily 

for four days to simulate someone urinating in the shower. Internal wash water quality samples 

indicated no noticeable changes in any water quality parameter after the challenge test. During 

this period, the wash water conductivity was 0.009 mS/cm, pH was 6.78, turbidity was 0.11 

NTU, and TOC was 0.44 mg/L. Certified samples analyzed three days after the urine challenge 
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test showed no significant differences from normal weeks, with a pH of 6.5 and conductivity of 

6.2 mS/cm.  

Finally, a gas/oil challenge test where an oil/gas mixture was poured onto a rag and 

washed into the sinks in the house to simulate someone repairing four-wheelers and snow 

machines at home, as is common in rural Alaska. For 14 days after washing this mixture into the 

kitchen sink, benzene, ethylbenzene, toluene and xylene (BTEX) samples were taken daily to be 

analyzed at ARS Aleut Analytical, LLC. There was no noticeable change in any wash water 

quality parameter after the challenge test with most parameters at undetectable levels. The pH of 

the wash water was 6.5 and the conductivity was 6.7 mS/cm. Samples were taken and sent to an 

external laboratory from May 16-29, 2017 to sample for Benzene, Toluene, Ethylbenzene and 

Total Xylenes. None of these compounds were detected during this time period. 

The completion of these challenge tests demonstrates that the pilot system can produce 

consistently high-quality wash water under normal and abnormal operation circumstances and 

can handle some misuse while still providing safe water.  

Hauled waste hazards and risks 

Because the household treatment system is likely to require that homeowners have a 

larger-than-normal role in operating and maintaining their system and that they may be 

responsible for disposing of concentrated waste, the concentrated waste haul container water 

quality was measured twice during the pilot system operation. The waste haul was found to have 

108.5 CFU/100mL of Total Coliforms and 106.7 CFU/100mL of E. coli. The average turbidity was 

230 NTU, conductivity was 3.23 mS/cm, pH was 7.0, and TOC was 193.7 mg/L. The high levels 

of bacteria are of concern, and a sanitary hauling process and best practices must be put in place 

to ensure that the person responsible for hauling the waste is protected.  
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Whole household illness simulation 

Introduction 

Onsite household water reuse is an innovative approach to decreasing the incidence of 

water-washed diseases in unserved rural Alaskan homes. However, recycling the water of a 

single home repeatedly could lead to an accumulation of hazardous chemicals and pathogens that 

are connected to household exposure or behaviors. Although some evidence points towards 

larger multi-user building reuse systems having higher risk of pathogen exposure due to longer 

pipes, more people, longer water residence times and more cross-connections, (Sharvelle et al. 

2017) individual household systems with irregular water quality monitoring and high operation 

and maintenance requirements from homeowners present a different set of risks. For example, an 

entire family contributing greywater to a household reuse system is more likely to be exposed to 

pathogens and become sick at the same time than is an entire village contributing to a more 

centralized treatment system. Use of a single household reuse system could result in a higher 

pathogen concentration entering and lingering in the household wastewater system. The 

minimum infectious doses of viruses can vary from <10-2 to >10 viruses/mL depending on the 

type of virus, method of exposure, and health of the individual (Yezli and Otter 2011; Schiff et 

al. 1983), therefore even small numbers of pathogens ending up in wash water could be harmful 

to a household (Gerba and Haas 1988). 

To determine whether pathogens collect and ultimately break through treatment barriers 

(Hu et al. 2003) in a household-scale system, the AWSC wash water system was challenged with 

a virus and monitored daily for two weeks. The aim of this study was to determine how much 

virus removal occurs at each step of the treatment process, whether pathogens collect in the 

water reuse system and breakthrough treatment barriers, and whether pathogens could ultimately 
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get into finished hygiene water and re-expose family members to disease. Pathogens could 

collect in the water reuse system at very high concentrations and breakthrough treatment barriers. 

High stability (slow die-off) of enteric viruses in greywater over time (Rose et al. 1991) suggests 

that pathogens could linger in wastewater haul tanks and re-expose family members to disease 

when they haul waste.  

Within the UAA AWSC pilot system, only the wash water system was tested for a whole 

home illness. The drinking water system does not recycle and uses high quality source water.  

The toilet system is sealed for hauling to prevent exposure during haul.  Because the drinking 

water and toilet pose minimal risk for re-infection exposure, they were not included in the whole 

household illness grey water recycling system challenge test.  

Methods 

Whole household virus challenge and monitoring 

A whole household illness challenge was performed June 3-22, 2017 by spiking the pilot 

system with the F+-specific RNA coliphage MS2 (ATCC 15597-B1) and quantifying virus 

concentrations after each component of the treatment system. MS2 is an enteric virus surrogate 

and was chosen as a worst-case scenario to assess re-infection potential because of its greater 

resistance to disinfection versus bacterial pathogens, and its structural and physical similarity to 

pathogenic human viruses such as norovirus (Dawson et al. 2005) and adenovirus (Valegard et 

al. 1990). 

Prior to the virus challenge, the stability of MS2 was examined in water from each of the 

four water treatment tanks (GW, NFF, ROF and WW) over a 24-hour period. During the virus 

challenge, 1011 PFU/mL (plaque-forming units per mL) MS2 was spiked daily into the fixture 

drains (185 mL into the shower, 55 mL into the kitchen sink, and 65 mL into the bathroom sink) 
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from day 0-6 (Figures 9-10). Each day, approximately 60 gallons (230 liters) of wash water and 

synthetic greywater concentrate also flowed into the fixture drains through 50-mesh stainless 

steel screens during normal operation of the pilot system (see above), accumulating in the 

greywater tank over a 12-hour period. The GW and ROF tanks (“ROFpre” samples) were 

sampled approximately 20 hours after the daily spike and before the daily batch treatment began. 

The nanofilter feed tank was sampled one hour later after the first treatment step was complete 

and the NFF tank was full. The pre-UV samples were collected during the second treatment step 

while water was being treated from the ROF tank across the RO membrane and through the UV 

unit from a plastic valve sterilized with 70% ethanol and wiped down with a clean cloth. While 

pre-UV samples were being collected, a valve connecting the RO membrane effluent line to the 

UV unit was closed to ensure that no UV-treated water back-flowed into the sample container. 

The ROF (“ROFpost” samples) and WW tanks were sampled immediately after treatment when 

they were full each day (Figure 9). All samples except pre-UV were collected via metal taps that 

drained from the bottom of the tanks and were sterilized with 70% ethanol and wiped with a 

clean cloth. Although the wash water system is designed to have two UV reactors in series and 

periodic ozone dosing of the WW tank during normal operation, only a single UV unit was 

turned on during the whole household virus challenge and the ozone was turned off. 

Microbiological samples were collected in sterile HDPE sample bottles and other water quality 

samples were collected in furnaced glass vials.  
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Figure 9: Household virus challenge spike and sampling schematic 

 

 

Figure 10: Household virus challenge timeline 
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After the seven-day spiking period, samples continued to be taken from all sample 

locations on the same schedule as described above daily from days 7-13 to monitor virus 

persistence within the reuse system after the loading period ended. The concentrated waste haul 

tank was sampled on the designated haul days during the testing period (day 6 and 13) to 

examine the virus concentration within the hauled waste. 

Throughout the whole household virus challenge experiment, the system was operated 

normally (as described above). Concentrated waste from the NFF and ROF tanks was moved 

from the tanks to the concentrated waste haul container on regular semi-weekly and weekly 

schedules respectively.  The concentrate waste haul tank was emptied weekly. On day 7 the NF 

membrane reached its minimum flux and was replaced, and the concentrated waste from the NFF 

tank was moved to the concentrated waste haul container during the replacement process.  

System component virus challenge 

Virus reduction across the reverse osmosis membrane was quantified individually on 

June 22, 2017 when 3000 mL of 1012 PFU/mL titer MS2 was spiked into approximately 300 

liters (80 gal) of water in the reverse osmosis feed tank and allowed to mix turbulently as the 

batch of water was treated across the DOW Filmtec LE LC 4040 reverse osmosis membrane. 

Samples were collected immediately before treatment started from the reverse osmosis feed tank 

and twice during treatment from a sampling tap located after the reverse osmosis membrane and 

before the UV reactor.  

Disinfection capability of the UV system was quantified individually with a bench-scale 

test because spiking virus into the pilot system immediately before the UV reactor was 

logistically infeasible. Instead, 30 liters of dechlorinated tap water were spiked with MS2 to 

achieve at least 106 PFU/mL and pumped through a single Viqua VH200 at 0.8, 1.0 and 1.2 
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GPM to simulate flow through the pilot system UV system. Water samples were collected of the 

source water at the beginning and end of the experiment and of the UV effluent three times while 

the pump was running. The UV transmittance of the spiked water was modified using Lignon 

Sulfonic Acid (LSA) to quantify the range of virus reduction across influent water with 70%, 

90% and 97% UV transmittance. The UV reactor was rinsed with at least 60 liters of clean 

dechlorinated tap water between each water quality and each water quality was run on a different 

day. Concurrent with each Viqua VH200 experiment, the same influent water was aliquoted into 

4mL petri dishes and exposed in duplicate to 0, 20, 40, 60, 80, 100, and 120 mJ/cm2 of 

collimated low-pressure ultra-violet light (Bolton and Linden 2003).  

Water quality analyses 

Turbidity (NTU, HACH 2100Q portable turbidimeter), pH (Thermo Scientific Orion Star 

A324), and conductivity (mS/cm, Thermo Scientific Orion Star A222) of each sample collected 

during the test period was analyzed within six hours of sample collection at the University of 

Alaska Anchorage water chemistry laboratory. Samples were then refrigerated at 5 degrees 

Celsius for 5-15 days before TOC analysis (non-purgeable organic carbon on a Shimadzu TOC-

L CSH analyzer) and ultraviolet absorbance (UVA) at 254nm measurement (Cary 60 UV Vis 

spectrophotometer). Total Coliforms (CFU/100mL) were enumerated by vacuum filtering 1 mL 

of serial dilutions (GW, NFF, ROFpre, ROFpost) or 100mL of sample (pre-UV, WW) through a 

0.45-micron membrane, rinsing with 20-100 mL of sterile water and placing the membrane in a 

petri dish containing an absorbent cellulose pad soaked with 2mL of m-Endo broth (National 

Water Quality Monitoring Council 2017a). Bacteria plates were incubated at 36 degrees Celsius 

for 24 hours and enumerated using a light and handheld counter.  
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MS2 analyses 

For the household illness simulation, MS2 samples were held on ice for up to 6 hours 

after sample collection and then frozen at -20 degrees Celsius for up to one month before being 

shipped to GAP EnviroMicrobial Services Ltd. for analysis. GAP analyzed MS2 samples by 

adding one mL of (pFamp)R E. coli (ATCC 700891), 20 mL of molten Trypton Yeast Extract 

Glucose agar with triphenyl tetrazolium chloride and 1-2 mL of serially-diluted sample to a 

culture tube, mixing by inversion, and pouring the agar into a sterile Petri dish. Plates were 

incubated at 35 degrees Celsius for 18-24 hours. Clear, round plaques were counted and results 

were reported as plaque-forming units per milliliter of sample (PFU/mL). Duplicates were run of 

each sample and an arithmetic mean was taken for final data analysis.  For bench tests of the UV, 

samples were serially diluted within six hours of collection and 0.1mL of sample was added to 

0.1mL of log-phase Famp E. coli and 10 mL of autoclaved double-strength tryptic soy agar with 

ampicillin and streptomycin in a sterile glass tube. Tubes were mixed by gently rolling them 

upright between the hands and poured into a sterile petri dish (US Environmental Protection 

Agency 2001). All samples were plated in duplicate. Plates were incubated at 35 degrees Celsius 

for 14-18 hours. Clear, round plaques were counted with a light and magnifier and results were 

reported as [Number of plaques counted on all plates containing a particular sample] ÷ [Total 

volume of original sample plated] PFU/mL. Sample replicates were averaged for final data 

analysis. If no plaques were observed at a 0 dilution, the concentration of MS2 was recorded as 1 

÷ [Total volume of sample plated], resulting in a method detection limit of 5 PFU/mL. 

Data analysis 

Daily water quality samples (conductivity, UVA-254, pH, turbidity and TOC) analyzed 

during the whole household virus challenge were averaged and compared to the same parameters 

from the wash water system before MS2 was introduced (where data was available) by two-
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tailed t-tests with unequal variances. UVA-254 was converted to UV transmittance (UVT) using 

the formula UVA = 2 – log10(UVT). Log10 reduction of viruses was quantified as 

LOG10(Cbefore/Cafter) for paired treatment steps (GW/NFF, NFF/ROFpost, ROFpre/pre-UV, pre-

UV/WW) or for pre- and post-exposure for the bench Viqua and collimated beam tests, with C 

indicating the average concentration of MS2 (PFU/mL) across all replicates plated for a given 

day. The low-pressure UV light dose was plotted against the log10 reduction for the collimated 

beam experiment to obtain a quadratic equation relating the two variables for each UVT (Figure 

15). This equation was used to determine a reduction-equivalent dose based on the log10 

reductions calculated at each flow rate and UVT in the Viqua system.  

Results 

Water quality 

The GW tank had significantly higher conductivity and turbidity during the MS2 spike 

than in samples prior to the virus challenge. The ROFpost samples were comparable to pre-spike 

data for conductivity and UVA-254, but pH and TOC were significantly lower and turbidity was 

significantly higher during the MS2 spike than previously. The WW tank samples were 

comparable to pre-spike levels on all parameters except TOC which was significantly lower 

during the MS2 spike than during the previous operation period (Table 7).  
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Table 7: Water quality summary for samples before and after MS2 fixture spike. ND = no data. 

Tank 

Sample 

Conductivity 

(mS/cm) 

UVA-254  

(cm-1) 
pH 

Turbidity 

(NTU) 

TOC  

(mg/L) 

pre-

spike 

MS2 

spike 

pre-

spike 

MS2 

spike 

pre-

spike 

MS2 

spike 

pre-

spike 

MS2 

spike 

pre-

spike 

MS2 

spike 

GW 
0.173 0.230 ND 0.330 ND 6.34 13.8 21.0 ND 20.04 

p=0.05 ND ND p<0.001 ND 

NFF 
ND 0.349 ND 0.641 ND 6.44 ND 34.9 ND 31.13 

No comparable data was available from the NFF tank prior to the MS2 spike. 

ROFpost 
0.799 1.113 0.119 0.145 7.48 6.98 4.3 7.4 14.89 8.77 

p=0.23 p=0.29 p<0.001 p=0.04 p<0.01 

ROFpre 

ND 1.033 ND 0.137 ND 6.88 ND 6.0 ND 7.67 

No comparable data was available from the ROF tank before treatment each day prior to 

the MS2 spike. 

pre-UV 
ND 0.040 ND 0.002 ND 5.85 ND 0.11 ND 0.47 

No comparable data was available from the post-RO pre-UV line prior to the MS2 spike. 

WW 
0.015 0.016 0.003 0.004 6.61 6.61 0.12 0.14 0.63 0.41 

p=0.77 p=0.06 p=0.99 p=0.07 p<0.01 

 

The GW tank, pre-UV, and WW tank water quality samples were consistent over time for 

all parameters except for a large day-to-day variation in the WW tank pH (Figure 11). The NFF 

tank parameters fluctuated predictably every 3-4 days coinciding with the NF concentrate 

wasting day (day 3, 6, 7, 10, 13): turbidity and TOC would decrease and UVT would increase 

immediately after the wasting day, while conductivity and pH stayed consistent throughout the 

wasting cycle. The ROFpre and ROFpost samples also showed weekly fluctuations with 

conductivity, turbidity, TOC and pH decreasing after the wasting day (day 6 and 13) and UVT 

increasing. The ROFpre tank showed these changes one day after the ROFpost tank due to the 

timing of the concentrate wasting versus sample collection times (Figure 7).  
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Figure 11: Conductivity, pH, TOC, turbidity, UVT and UVA in samples from six different points 

in the wash water treatment system during the whole household viral challenge with MS2. 
 

Bacteria removal through the treatment process 

Total Coliforms and E. coli were consistent in each tank throughout the experiment, with 

some small daily fluctuations (Figure 12). Total Coliforms occurred in the synthetic greywater 

on the order of 108 CFU/100mL and E. coli occurred at 106-107 CFU/100mL. No consistent and 

significant decrease in either indicator occurred between the GW tank and the NF feed tank 

because of regrowth and the concentrated waste that accumulates in the NF feed tank. Nearly 2-
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log10 reduction of both TC (total coliforms) and E. coli occurred across the nanofilter, and >4-

log10 reduction of both TC and E. coli occurred across the reverse osmosis membrane. Less than 

102 CFU/100mL of Total Coliforms and no E. coli were detected in the pre-UV samples, so log10 

reduction could not be accurately measured across the UV unit. 

 

Figure 12: Total coliform (left) and E. coli (right) concentrations at six different sampling points 

in the wash water treatment system show relative stability in bacteria concentrations within each 

tank over time. 
 

Virus removal through the treatment process 

MS2 fluctuated less than one log and was therefore considered stable in water from each 

of the treatment tanks for at least 24 hours (Figure 13). The concentrations of MS2 at each 

sampling point over the entire experiment are shown in Figure 14. An initial concentration of > 

107 PFU/mL of MS2 was achieved in the GW tank on each day of fixture spiking. During the 

seven-day spiking period, this concentration was maintained from the GW tank to the NFF tank. 

After the fixture spike period ended, the concentration of MS2 in the GW tank dropped to 104 

PFU/mL over two days and slowly decreased on subsequent days. Because of the waste being 

concentrated in the NFF tank, after spiking, the NFF MS2 concentration dropped much more 

slowly to 105 PFU/mL after seven more days.  
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Figure 13: Concentration of MS2 in sample water from each tank in the treatment process over 

24 hours during a bench-scale stability test. 
 

 

Figure 14: MS2 concentration within the treatment system during the seven-day fixture spike 

experiment and for seven days after daily MS2 spiking ended. 
 

The nanofiltration membrane averaged 2.5-log10 reduction of MS2 over the 14-day test 

period. Average concentrations of MS2 in the ROF tank were >105 PFU/mL during the spike 

period, but dropped to slightly over 103 PFU/mL by the end of the experiment. Preliminary 
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experiments suggested log10 reduction across the RO membrane to be >103, so MS2 was spiked 

directly into the ROF tank to quantify its treatment capacity.  An initial MS2 concentration of 

109.7 PFU/mL in the ROF tank was reduced to 101.3 PFU/mL in the RO membrane effluent, 

resulting in 8.4-log10 reduction of MS2.  

MS2 concentrations in the GW, NFF and ROF tanks declined slowly after the seven-day 

spiking period ended. MS2 was detected at low levels in four pre-UV sample during the entire 

experiment, and only two WW samples were above the detection limit (Figure 14).  

 

 

The Viqua VH200 system demonstrated a 5.5 to 7-log10 reduction of MS2 at 97% UVT 

and a flow rate of 0.8-1.2 GPM (Figure 16). Log10 reduction decreased to 5-5.7 log10 of MS2 at 

90% UVT and to 3-4.6 log10 of MS2 at 70% UVT (Figure 16). The average UVT of treated 

water immediately before UV disinfection (pre-UV) in the pilot system is >99% (Table 7). At 

this UVT and 1.0 GPM flow rate, a single Viqua VH200 system is expected to deliver 

approximately 200 mJ/cm2 (Figures 15-16) of low-pressure ultraviolet radiation to disinfect the 

wash water before use. This dose decreases as UVT decreases or as flow rate increases. If the 

Figure 15: Log10 reduction curves of MS2 in a low-pressure UV 

collimated beam reactor for waters with three different UVTs. 



60 
 

UV disinfection were applied to water immediately after nanofiltration but without with RO 

treatment step, the UVT would be 71-76% and the reduction equivalent dose would be less than 

100 mJ/cm2 (Figures 15-16). 

 

Figure 16: Reduction equivalent dose and log10 reduction of MS2 for the Viqua VH200 UV 

component of the wash water treatment system. 
 

Concentrated waste haul results 

The concentrate waste haul container had an average conductivity of 2.79 mS/cm, pH of 

6.9, turbidity of 164 NTU and TOC of 172 mg/L. Total coliforms were detected at 108.6 

CFU/100mL and E. coli at 106.6 CFU/100mL. The waste haul container had an MS2 

concentration of 108.1 PFU/mL on day 6 of the spiking experiment and dropped to 107.1 PFU/mL 

by day 13, six days after spiking ended.  

Discussion 

Bacteria and virus removal in wash water treatment system 

The pilot water reuse system demonstrated high log10 reduction of virus: 2.5-log10 across 

the NF membrane, 8.4-log10 across the RO membrane, and >7-log10 from single UV unit.  The 

total potential of this system is at least 18-log10 reduction of virus and at least 8-log10 bacteria 

based on naturally-occurring microbes. Use of a different endogenous bacteria performance 

surrogate such as Staphylococcus (Shoults and Ashbolt 2017) or evaluation of bacteria reduction 
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by a spike test would likely give higher and more accurate estimates of bacteria reduction in the 

treatment train.  

During the seven days of spiking, MS2 concentration in each tank immediately hit a 

maximum and did not accumulate over that maximum during subsequent spiking, suggesting that 

break-through of the treatment and disinfection processes may not be a concern in this system. 

The system was tested with a single UV disinfection unit providing an estimated dose of 200 

mJ/cm2 of UV light to the finished wash water, however the pilot system is normally run with 

two UV units in series followed by periodic ozone dosing in the wash water tank to maintain the 

freshness of the water and prevent regrowth of pathogens. These added steps should result in a 

much higher total protection against microbial pathogens. 

The water quality parameters measured fluctuated between tanks, over time, and from 

pre-MS2 spike levels to the levels observed during the household virus challenge. While finished 

(WW) water quality was always very high and free of viruses and bacteria, the fluctuations in the 

intermediate tanks may cause undesirable stress on the membranes or lead to operation issues in 

the long term. The NF membrane had to be replaced after only seven days during the MS2 

fixture spike, which was 1-3 weeks earlier than the normal replacement schedule and could be 

related to the virus fouling the membrane and leading to shower operation of the treatment 

system. Additional data on how and why different water quality parameters change over time 

and whether they can be used as indicators for maintenance tasks or as alarms for changes in 

WW quality would be beneficial for future systems. 

Water reuse infection risk 

MS2 was highly stable in each tank over time, and the very slow ebb in MS2 

concentrations of the GW, NFF and ROF tanks and the high concentration of MS2 in the 
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concentrated waste haul container after 14 days suggests that viruses can linger in the treatment 

system for weeks or months after it is initially introduced. The concentrating process in the NFF 

and ROF tanks and the recycling of water within the system with minimal haul-in and haul-out 

requirements could represent a risk when high concentrations of a pathogen are introduced to the 

system. This risk is directly relevant to members of the household if homeowners are responsible 

for hauling concentrated waste out of the system. As with the toilet system described above, a 

sealed sanitary haul system must be developed to limit re-exposure to viruses during haul. In 

many Alaska villages, wastewater is disposed of in open sewage lagoons where the risk of 

community members being exposed to pathogens is high and dependent on community and 

environmental conditions. An equally or more important challenge than establishing a high-tech 

household water treatment system is ensuring that all wastewater streams are safely and properly 

disposed of in rural Alaska.  

Even though the virus signature lingered at high concentrations for over a week after 

spiking ended and even though the concentrate haul container had high levels of the virus in the 

waste to be hauled, the pilot system produced high quality wash water for over two weeks. The 

small numbers of viruses detected in the WW on day 4 and 12 are more likely to indicate false 

positives or contaminated samples than they are to be indications of systematic virus 

breakthrough into the finished wash water. However, because many human enteric and 

respiratory viruses have very low minimum infectious doses and a high range of infectious 

doses, it is critical to ensure that wash water is completely free of pathogens. The use of both UV 

disinfection units and periodic ozone dosing (Shin and Sobsey 2003) in the wash water tank is 

likely to provide this extra protection. 
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Other pilot system performance targets 
In addition to the requirement of the system providing 60 gallons of water per day of 

acceptable quality for drinking and hygiene purposes, the Alaska Department of Environmental 

Conservation outlined several other performance targets for the AWSC, described below.  

Capital cost per system 

ADEC defined that the capital costs for a single household system cannot exceed 

$160,000 including freight, equipment, materials, labor, installation, water heater and indoor 

plumbing. The UAA system total meets this requirement with a single system capital cost of 

approximately $136,300 which increases to $155,600 if 12-month operation costs and 

cooperative development costs are included (Table 8). Although this cost seems very high for a 

single household in a rural community, the state of Alaska is accustomed to having high 

investment costs in utilities for the rural villages and is willing to pay the cost. 

Table 8: Capital and operational costs for a single household reuse system 
Category Cost 

Capital costs 

• On-site reuse kit 

• Shipping by barge 

• Construction and installation 

Sub-total 

 

$100,000 

$3,600 

$32,700 

 

$136,300 

Monthly operation costs 

Water haul, waste haul, 

electrical, fuel, cooperative, 

consumables 

12-month Sub-total 

 

$150 

 

 

$1,800 

Cooperative development 

Building, parts, tools, water 

quality monitoring equipment 

contributions 

 

$17,500 

TOTAL $155,600 
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Operation and maintenance costs and parts availability 

Monthly operation and maintenance costs cannot exceed $135 (representing 5% of the 

Median Household Income of rural communities) per the AWSC requirements and a local 

cooperative is expected to be developed to be responsible for maintenance and repair of all the 

systems within a community for a membership fee of $40 per month. Replacement parts must 

also be available for purchase or shipping to the communities within a reasonable time period 

and cost. The UAA system has a monthly operation cost of $110 plus the $40 required 

cooperative fee, and therefore satisfies this requirement. Additional research into membrane 

optimization could decrease this cost even further, but lack of training and proper management 

of the system could greatly increase operation and maintenance costs. A complex, novel water 

reuse system could fail catastrophically, as other poorly operated and unmaintained water and 

sewer systems in rural Alaska have in the past, unless great lengths are taken to make operation 

of the system as simple as possible and provide for long- and short-term maintenance costs and 

expertise. Sustainable initiatives such as private-public partnerships or business initiatives related 

to the water reuse systems are highly recommended to ensure that operation and maintenance is 

feasible and perpetual for the life of the system. 

Acceptance and use by end users  

ADEC required that input from residents of rural communities be incorporated and the 

system be acceptable for use by residents, especially onsite water reuse components. The UAA 

team made every effort to work with two communities to get end-user feedback during the 

prototype development and testing process. However, because water and sanitation projects have 

been ongoing in rural Alaska for decades without universal success, many end users are getting 

tired of being probed for their input when they see little or no progress for their homes. Increased 

and directed education and outreach is needed to help residents understand why traditional piped 
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systems are unfeasible, how water reuse works, and how water reuse systems would provide 

desired health benefits. In some areas people don’t want the added benefits of running water in 

their home if it will come at the expense of complex technology and high maintenance inputs. 

Freeze/thaw recovery capability  

One requirement of the AWSC was for systems to be able to be left unheated in a rural 

home for several weeks without damage and become operational with minimal effort. The UAA 

system was tested with a three-week outage during which the system was emptied and allowed to 

freeze to ambient temperatures (~10 degrees F). It was warmed and recovered with little effort 

and produced high quality water after this period, although critical to this success was proper 

preparation and maintenance before the freeze period. 

Constructability, durability, modularity, feasibility 

Finally, the AWSC specified that the reuse system require minimal floor space, withstand 

everyday use and occasional neglect and abuse, and be run with minimal expertise; that it be 

maximized for installation, maintenance, and to allow homeowner preference; and that it be 

appropriate for building and operating in rural Alaska, taking into consideration extreme 

temperatures, permafrost, remoteness, off-road villages, community acceptance and federal and 

state agencies who will participate in the funding and installation. The UAA system uses 

common parts readily available in Anchorage and Fairbanks and the costs summarized above 

include funds to stock the proposed village cooperative with these parts prior to widespread 

installation in a village. The system is highly modular, allowing a household to choose the 

specific fixtures they desire and to modify the volume of water available to those fixtures by 

increasing how often the treatment system is run. However, providing a system that is high-tech, 

low maintenance and allows for occasional neglect in extremely cold and remote areas is 
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incredibly difficult. Appropriate community engagement, training, and operation and 

maintenance support must complement the technology provided to make this system successful. 
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Chapter 4: Conclusions and future steps 

 
 

Potential of untapped water resources 
The combined use of rainwater and greywater reuse could provide part of the solution to 

water, sanitation and hygiene problems in remote areas. Rainwater is naturally of high quality 

but not always predictable and only seasonally available. Greywater is predictably and 

consistently available but requires higher degrees of treatment. This has been suggested before 

(Dixon, Butler, and Fewkes 1999), but the research described above demonstrates that the 

resources and technology are available to provide adequate treatment and implement this 

approach in rural Alaska.  

Implementation challenges 

Importantly, the research described above was context-specific. Rainwater quality and 

quantity was evaluated in specific unserved Alaska villages, and an onsite greywater treatment 

system was constructed and challenged with inputs, flow regimes, and operation conditions that 

would likely be experienced in rural Alaska. The specificity of these solutions to the distinct 

communities where they will be employed is important. Although we recommend that rainwater 

catchment systems be expanded further into rural communities with state assistance for 

infrastructure and regular water quality monitoring, this approach should not be seen as one-size-

fits-all for all underserved communities. Similarly, although greywater reuse has been shown to 

be possible on a household scale in cold climates, the solution may not be appropriate under 

some conditions. 

Water quality and quantity problems are related to technological, social, cultural, 

economic and political issues (Elimelech 2006). Despite the technical feasibility of these two 
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alternative water resources to provide increased quantity of water in homes, the financing, 

operation and maintenance, and social and cultural acceptability factors still need to be worked 

out.  

The financing requirement of rainwater catchment systems in unserved rural villages is 

minor, but the large-scale and long-term implementation of a government-supported rainwater 

program should also involve education and outreach, periodic water quality sampling, and 

possibly the distribution of point-of-use disinfection systems. While rainwater can improve the 

quantity of water available in the home, safe and sanitary methods for removing used greywater 

and wastewater from the home must be simultaneously implemented. Consideration of these 

factors may increase the cost of a rainwater approach. 

The cost of single household greywater reuse system, at $155,000, is incredibly high for 

most decision makers in water short regions, but the US federal government and state of Alaska 

have demonstrated a willingness to fund this cost. The state should continue research on user 

willingness to pay (Cara Lucas, personal communication) and consider how much to subsidize 

these projects to ensure that they are appropriately valued and used by the beneficiaries. 

Substantial savings could be found if treatment systems are shared between households, however 

the costs of piping water to and from a treatment system that is not immediately within the home 

may outweigh the benefits of a reuse system over traditional piped services from centralized 

water and wastewater treatment plants. The sharing of treatment systems would also depend on 

household size, layout and village characteristics and should be tested further before 

implementation. 

The operation and maintenance costs of a rainwater catchment system are quite low, but 

there is still a major concern about how to manage greywater and wastewater once water use is 
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increased with these systems. Additionally, storage requirements will increase and safe and clean 

storage containers must be managed. In villages where more rainfall can be captured than can be 

used during the rainy season, indoor storage or freeze prevention should also be considered. 

The operation and maintenance of a household greywater reuse system should be a major 

cost and concern for regulators looking to implement this technology. Although the Alaska 

Department of Environmental Conservation described the development of a cooperative in each 

village that would be responsible for stocking parts and assisting homeowners with regular 

operation and maintenance, the realization of this vision will present many of the same problems 

that go along with traditional piped and pump-and-haul water services. The reuse system requires 

parts be available and easy to replace and identify, and that there be sufficient redundancy and an 

alert system so that the household isn’t at risk of illness when the system isn’t functioning 

properly. In the absence of parts, engaged and interested community members, and reliable 

outside technical support, the reuse system will likely fall out of use quickly. An operation and 

maintenance strategy must be developed and implemented before any technology installation 

moves forward. 

Finally, rainwater is already highly socially and culturally acceptable in most 

communities in rural Alaska, although it is unclear how many people use it or would be willing 

to use it as a primary resource over other desired natural and treated water sources. However, 

greywater reuse for the types of household uses described in this study still have some social 

acceptance barriers to overcome. Public acceptance has been linked to positive perceptions and 

knowledge about the water source, awareness of water scarcity, and previous experience using 

alternative water resources (Dolnicar, Hurlimann, and Grün 2011), but also depends on the level 

of contact with the recycled water (Mankad 2012; A. C. Hurlimann and McKay 2006). The reuse 
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system described here requires high levels of contact with the water (e.g. showering) compared 

to current village reuse practices (e.g. reusing hand wash basin water for more handwashing) and 

compared to other household water reuse systems (e.g. toilet flushing and gardening, e.g. 

Oesterholt et al. 2007). Communities are more likely to accept this level of reuse if the early 

introduction of the systems comes along with optional use opportunities, social marketing 

campaigns, and raised awareness about the risk of illness that comes with low water use.  

Alaska Water and Sewer Challenge lessons learned 

The Alaska Water and Sewer Challenge was a noble initiative by the state to encourage 

the development of innovative solutions to rural Alaska’s water quantity problems. While the 

technologies developed as part of the Challenge were interesting and may be viable, other 

aspects of the real challenge of providing water to rural Alaska were not sufficiently addressed. 

After over at least 50 years of attempting engineering solutions to water and wastewater issues in 

these communities, it is time to acknowledge that engineering alone will not cure WASH in rural 

Alaska. More research and funding must be applied to looking at social and cultural factors and 

specific behaviors that can be changed. Carefully designed education and outreach initiatives, 

behavior change campaigns and operation and maintenance programs are critical to the 

sustainability of any technological innovation introduced to improve water access in the villages. 

 

The future of WASH in rural Alaska 
It is hard to imagine the future discovery of a single solution that will solve all of the 

water, sanitation and hygiene problems in rural Alaska. More likely, future progress will be 

made through the careful collaboration of village councils, community members, WASH 

champions, government regulators and funders, and social and technical experts who will 
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evaluate the enabling environment of individual communities and choose hybrid solutions that fit 

those circumstances. Rather than walking away after a project is built or a program selected, 

these stakeholders will have to continue to reevaluate and ensure there is an environment that 

supports long-term sustainability of their solutions.    
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