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Abstract 
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Jeffrey D. Stanaway 
 

Chair of the Supervisory Committee: 
Professor Jonathan D. Mayer 

Epidemiology 
 
 

Outbreaks of hand, foot and mouth disease (HFMD) have become increasingly regular in the 

Asia-Pacific region, and China has experienced annual epidemics each year since 2007. This 

project studied large-scale environmental drivers of infectious disease, with a focus on 

understanding HFMD epidemics in China between 2008 and 2011. 

First, I assessed the potential of using associations with landscape pattern to 

discriminate diseases having a wild animal reservoir (wild-zoonoses) from those that do not, 

and tested the hypothesis that landscape, as measured by select land cover pattern metrics, is 

more strongly associated with the incidence of wild-zoonoses than with the incidence of 

diseases lacking a wild animal reservoir.  Quasi-Poisson regression models were used to 

estimate county-level associations between land cover pattern metrics and the incidence of 

three wild-zoonoses and eight diseases lacking a wild animal reservoir, for each county in the 

contiguous United States.  The absolute strengths of the associations between each pattern 

metric and each disease were compared to determine whether the strongest associations were 

observed with wild-zoonoses.  When sorted by absolute strength of association, wild-

zoonoses had the strongest associations with six of the ten pattern metrics (p=0.008), and 



 

with all four of the metrics that measure land cover shape (p=0.002), suggesting that 

associations with land cover pattern metrics may offer insight into the existence of a wild 

animal reservoir for an emerging or otherwise poorly understood infectious agent 

Second, I sought to fill important gaps in our understanding of the ecology of HFMD 

by looking at land cover and land cover pattern, and their associations with HFMD incidence 

in China. Univariate and multivariate associations were estimated between each of twelve 

landscape variables, plus population density, and HFMD incidence using quasi-Poisson 

regression models.  Decreased elevation and vegetation density were significantly associated 

with increased rates of HFMD; and increased division, disaggregation, and diversity of land 

cover types were associated with increased rates of HFMD.  The results suggest connections 

between landscape and HFMD incidence that warrant further investigation, and support 

previous studies that have found local transmission to be more important than distant 

transmission. 

Finally, several studies have found associations between weather and HFMD, 

suggesting that climate change could have a role in the recent growth of HFMD in China. I 

sought to determine if climate change could underlie the recent emergence and growth of 

HFMD in China by developing a weather-based predictive model of HFMD and applying that 

model to historical climate data. When monthly climate-based HFMD predictions were 

regressed against calendar time, I found evidence of a significant increasing secular trend, 

with predicted rates for 2011 being 94% higher than those for 1982 (Incidence rate ratio 

(IRR): 1.937; 95% confidence interval (CI): 1.933, 1.940). Most of the increase in the predicted 

HFMD incidence occurred between 2002 and 2011, with predicted rates for 2011 being 49% 

higher than those for 2001 (IRR = 1.490; 95% CI: 1.488,1.493). Our climate-based 



 

retrospective predictions suggest that changing climate should have made weather 

increasingly favorable to HFMD during our thirty-year study period and we find that the 

data are compatible with climate change playing a role in the recent growth of HFMD in 

China. 
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SECTION A: INTRODUCTION 

I. BACKGROUND 

Hand, foot and mouth disease (HFMD) is a syndrome that occurs in a small proportion of 

people infected with non-polio enteroviruses.  It is characterized by flu-like symptoms, rash 

on the hands and feet, oral lesions, loss of appetite, vomiting and diarrhea. Severe cases can 

produce neurological complications, including acute flaccid paralysis (AFP), 

cardiopulmonary complications and death.  HFMD is most commonly observed among 

children; and enterovirus 71 (EV71) and coxsakievirus A16 (CA16) are the most commonly 

implicated pathogens (heretofore referred to as HFMD agents). Transmission is thought to 

occur through fecal-oral routes and via respiratory droplets.1 

Since the mid-1990’s HFMD epidemics have become regular in the Asia-Pacific region 

and may be increasing in size and severity. Large-scale outbreaks of neurologically 

complicated HFMD have been reported in Malaysia (in 1997, 2000, 2003 and 2005), Taiwan 

(1998, 2000 and 2001), Australia (1999 and 2000), Singapore (2000 and 2006), Brunei (2006) 

and China (2007 onward).1  Since 2007, China has experienced large-scale annual epidemics, 

prompting the Chinese Ministry of Health to add HFMD to its list of mandated notifiable 

diseases in 2008.2,3  

The Chinese Center for Disease Control and Prevention (CCDC) began systematic 

surveillance of HFMD in 2008 and, in 2009 they initiated collaboration with the University 

of Washington and the Fred Hutchinson Cancer Research Center.  I became involved with 

the Seattle-based team in November of 2009, contributing to work on two grant proposals 

and a study modeling the spread of HFMD outbreaks in China.4 This study found, among 
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other things, strong associations between meteorological variables and HFMD incidence in 

China.  It also noted an annual northward movement of epidemics starting near the end of 

winter, with retraction to southern latitudes in autumn.  Thinking about these results within 

the larger context of our understanding of HFMD—and the viral infections that cause the 

disease—led me to questions about the underlying ecology of the disease: most notably, I was 

curious about the potential role of climate change in the recent growth of HFMD in the Asia-

Pacific region, and about the underlying drivers of the observed seasonality of HFMD 

outbreaks.  This dissertation is the product of those questions and it explores land cover 

pattern and climate as drivers of infectious disease incidence over space and time, with a 

focus on HFMD in China.   

 

II. RATIONALE 

Climate change and HFMD 

Several studies have found associations between meteorological variables and HFMD 

incidence, including positive associations between temperature and HFMD—though there 

may be a threshold temperature above which HFMD declines.5-15  These observed associations 

between weather and HFMD suggest that climate change could potentially underlie the 

recently observed growth of HFMD in the Asia-Pacific region and the newly established 

seasonal pattern of HFMD epidemics in China. While Ma et al6 and Urashima et al11 both 

considered the potential for a connection between climate change and HFMD, I have found 

no study that has directly investigated what role climate change may have played. With that, I 
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hoped to retrospectively investigate what role climatic changes may have had in the recent 

growth of HFMD in China.  

 

HFMD’s curious seasonality  

HFMD exhibits dramatic seasonality, almost certainly due to its association with weather, 

with the most notable peaks in incidence occurring near summer.5-7,16-18 Seasonal variability is 

most dramatic at higher latitudes and, while the overall pattern of increased incidence in the 

summer remains, the degree of seasonal variability is less dramatic at lower latitudes.5,16,19 

This pattern is consistent with the reported associations between meteorological variables 

and HFMD incidence.  That HFMD exhibits pronounced seasonality is neither unique nor 

terribly surprising, in itself, since we observe pronounced seasonality with many infections.  

Still, considering our understanding of HFMD’s epidemiology, I found the observed pattern 

curious and difficult to explain.  It is well accepted that HFMD agents (most notably EV71 

and CA16) are transmitted directly through both fecal-oral and oral-oral routes; with 

evidence suggesting that water-borne, food-borne and indirect transmission through fomites 

are also possible.1,5,6,19,20 If we believe that HFMD agents may be transmitted via only these 

routes, and between only humans, then we must classify HFMD as a non-vectored 

anthroponotic disease. And this, I felt, created a problem: how can we explain profound and 

consistent summertime peaks in the incidence of a viral agent within this transmission 

paradigm?   

I have found few authors who have suggested a potential mechanism for HFMD’s 

seasonality and I believe those proposed mechanisms conflict with evidence and our 
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understanding of the disease. Some have suggested that summer weather may improve the 

viability and survivability HFMD agents in the environment21; however, these viruses are 

known to survive longer with cool temperatures than with warmer ones. Others have 

suggested that the summertime peak may correspond with social gathering, children playing 

together outdoors, or some other driver of increased mixing between infected and susceptible 

hosts.6  And evidence does suggest that crowding and social gathering increase HFMD 

transmission.22  Still, playing outdoors would seem to offer less potential for transmission 

than would playing indoors, as children do in wintertime. Also, few social gathering events 

have a shared timing across all areas affected by HFMD. Focusing on children, among whom 

HFMD is the greatest problem, the most notable such event is school; and while there is 

evidence that bringing children together for school does increase HFMD risk,5,7 the 

infection’s peak season coincides with a period when children are typically out of school and 

on summer break. I therefore find the case for these mechanisms unpersuasive. Some spatial 

and temporal variability is likely the result of variability in public health practices and 

infrastructures.  These issues certainly affect the disease’s spatial distribution and likely drive 

secular temporal trends but, as these are not seasonal drivers, I don’t see how they can explain 

HFMD’s seasonality.  

From the perspective of established frameworks of infectious disease seasonality, 

therefore, it seems difficult to explain the pattern observed with HFMD: seasonal behaviors, 

pathogen survival, and seasonal changes in host immunity are all far more consistent with 

increased transmission in the winter than in the summer.  I, consequently, came to believe 

that either HFMD’s seasonality is driven by some novel and as of yet unidentified 
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mechanism, or that our understanding of its epidemiology is incomplete. And, with that, I 

suggested that one possible explanation is the existence of an unknown animal reservoir.  

Under this scenario, the northward movement of HFMD with the end of winter, and its 

southward retreat in the autumn, could result from the corresponding migratory movement 

of the animal reservoir; and associations with other meteorological variables could result 

from the effects of weather on the reservoir population (e.g. wet years could increase HFMD 

risk by increasing the reservoir’s food supply and, thereby, amplifying the reservoir 

population). Though clearly not the only plausible explanation, the existence of an animal 

reservoir is plausible.  And, while no direct evidence exists for an animal reservoir, other 

species of enteroviruses have been isolated from a variety of animals, suggesting the 

biological plausibility of inter-species transmission of enteroviruses.23-26  Moreover, with 60 to 

75% of emerging infectious diseases being zoonoses,27-29 the existence of an unknown animal 

reservoir for HFMD agents seemed possible, even if improbable.   

Definitively establishing the existence of an animal reservoir for HFMD agents would 

require data supporting an epidemiologic connection between human infections and the 

proposed reservoir species, and replicated laboratory confirmation of the relevant enterovirus 

(e.g. EV71 or CA16) infection occurring in the proposed reservoir species.  This approach to 

reservoir discovery would be long and expensive—it is similar to approach used in the roughly 

three-decade-long hunt for the natural reservoir of Ebola30,31—and the inductive rationale for 

an animal reservoir was too weak to warrant such a study in the case of HFMD.  First, I felt 

that studies of existing data were needed and, if the results of these studies strongly 

suggested the existence of an animal reservoir, then large-scale field studies might be 



 6 

warranted. With that, I thought that the rationale was adequate to warrant an investigation 

that could shed light onto the issue through an analysis of existing data.  I, consequently, 

began thinking about how existing data could be used to tackle this question.  

 

Applying existing data to reservoir discovery 

Conventionally, we can classify infectious agents by their means of transmission into those 

that are transmitted directly between two hosts (e.g. fecal-oral, sexual, or airborne 

transmission) and those that are transmitted indirectly (e.g. vector-borne, water-borne or 

food-borne transmission).  Some agents may be transmitted either directly or indirectly (e.g. 

norovirus, which may be transmitted directly, through aerosolized feces or vomit, or 

indirectly, through contaminated food).  Transmission can then be subdivided between 

anthroponotic, between humans, and zoonotic, between humans and other animals. This, then, 

gives us four categories: directly transmitted anthroponoses, directly transmitted zoonoses, indirectly 

transmitted anthroponoses, and indirectly transmitted zoonoses. From the perspective of a 

component-based transmission model, we can describe these four transmission categories as 

combinations of four components: agent, host, animal reservoir, and indirect vehicles (e.g. 

vectors and fomites).  Agent and host compose the minimum set of necessary components, 

and are the requisite components for direct anthroponotic transmission. We can also see that 

indirect transmission, which includes some transmission vehicle (e.g. vector or fomite), 

requires a more complex model than does direct transmission; and zoonoses, which include 

an animal reservoir, require a more complex model then do anthroponoses.32-34  Within this 

framework, the distribution of a disease arises from the joint distribution of both the 
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components of its transmission model and the factors influencing the interactions between 

these components. Simply put, diseases will occur only where and when their requisite 

transmission components exist and interact; and, beyond the presence of all the requisite 

components and component-interactions, incidence will be greatest in those places and times 

where components are most prevalent and their interactions are least restricted.  With that, 

transmission requires host-host interactions—in the case of directly transmitted agents—and 

reservoir-host interactions—in the case of indirectly transmitted agents.  Contact rate describes 

the frequency of such interactions and, all other things being equal, higher contact rates 

generate higher transmission rates.33,34  Thus, any factor that influences the contact rate 

between humans and animal reservoirs, but not human-to-human contact rates, should be 

more strongly associated with the incidence of zoonoses than with the incidence of 

anthroponoses.  

I hypothesized that patterns of land cover should strongly influence contact rates 

between infectious wild-animal reservoirs and susceptible humans, but should not strongly 

influence contact rates between infectious and susceptible humans. Most simply, susceptible 

humans and infective reservoir animals must interact for zoonotic transmission to occur 35,36; 

and the potential for that interaction is at least partially governed by landscape.   Similarly, 

Lloyd-Smith et al 37 described  the rate of zoonotic transmission as being governed by the 

rate, duration, and proximity of contact between the reservoir and humans, among other 

things. Because landscape influences the potential for such contact, landscape should, in 

turn, also be associated with the incidence of zoonotic diseases.  Empirically, this assumption 

is borne-out by evidence of increased mixing between humans and deer ticks resulting in 
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higher rates of Lyme disease.29,35 Likewise, factors including forest fragmentation and 

agricultural encroachment are associated with increased risk of emerging zoonoses: for 

example, the emergence of Nipah virus has been linked to agricultural expansion in Malaysia; 

roads constructed in uninhabited areas (e.g. logging and mining roads) have given bushmeat 

hunters access to previously inaccessible wilderness and the wildlife living therein, and have 

thus been implicated in the first emergence of human immunodeficiency virus (HIV) and 

simian foamy virus.29  In contrast, such associations would be unlikely between landscape 

and non-zoonotic diseases. 

Accordingly, we should systematically detect strong associations between land cover 

pattern and the incidence of wild-zoonoses (i.e. diseases having a wild-animal reservoir), but 

not detect such systematic associations between land cover pattern and the incidence of 

anthroponoses.  Moreover, land cover pattern can be quantified from existing remote sensing 

data through a variety of land cover pattern metrics, making it an excellent candidate variable 

for discriminating zoonotic and anthroponotic diseases using only existing data. 

 

What emerged 

I had hoped, therefore, to use associations with land cover pattern to investigate the possible 

existence of an animal reservoir for HFMD agents.  Before attempting to do so, I planned to 

first validate the use of land cover pattern for discriminating zoonotic and anthroponotic 

diseases against well-understood diseases in the United States. If associations with pattern 

metrics clearly and systematically differed between zoonotic and non-zoonotic diseases in my 

validation, then I hoped to take a first step in evaluating the possibility of an animal reservoir 
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for HFMD agents: I planned to compare the nature of HFMD's associations with various 

land cover pattern metrics to the nature of those same associations seen with the diseases in 

the validation study.  With further work, however, I found that my planned validation was 

better described as a proof-of-concept study, and that more validation and development 

would be needed before applying this proposed method to HFMD in China.  Consequently, 

what began as two tightly connected studies became two separate but related studies: first, a 

proof-of-concept study testing the hypothesis that land cover pattern is more strongly 

associated with the incidence of wild-zoonoses than with the incidence of diseases that lack 

such a reservoir; and, second, a descriptive study looking at associations between land cover, 

land cover pattern and HFMD incidence in China. 

 

III. SPECIFIC AIMS 

1. To explore the utility of studying associations between landscape pattern and disease 

incidence in determining if a disease has a wild animal reservoir; specifically, to test 

the hypothesis that land cover pattern metrics are more strongly associated with the 

incidence of wild-zoonoses than with the incidence of diseases that lack such a 

reservoir. 

 

2. To better understand the ecology of HFMD by describing its associations with land 

cover type and land cover pattern in mainland China. 
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3. To determine if climate change has produced weather that is increasingly favorable to 

HFMD and may, thereby, underlie the recent increase in HFMD activity in mainland 

China. 

 

I addressed each of these aims in a separate study.  In the next section, I present each of the 

three studies’ corresponding manuscript. 
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SECTION B: STUDY MANUSCRIPTS 

I. LAND COVER PATTERN AND WILD-ZOONOSES 

 
Abstract 

We assessed the potential of using associations with landscape pattern to discriminate 

diseases having a wild animal reservoir (wild-zoonoses) from those that do not, and tested the 

hypothesis that landscape, as measured by select land cover pattern metrics, is more strongly 

associated with the incidence of wild-zoonoses than with the incidence of diseases lacking a 

wild animal reservoir.  We obtained county-level incidence data from CDC National 

Notifiable Disease records data for three wild-zoonoses (Lyme Disease, Rocky Mountain 

Spotted Fever, and West Nile Virus) and eight diseases lacking a wild animal reservoir 

(Chlamydia trachomatis, Cryptosporidiosis, E. coli O157:H7, Gonorrhea, Legionellosis, 

Shigellosis, invasive group A Streptococcal disease, and Syphilis). Using GlobCover 2009 land 

cover data, we calculated 10 land cover pattern metrics for each county in the contiguous 

United States and modeled their associations with the county-level incidence of each of the 

eleven diseases using quasi-Poisson regression.  Finally, we compared the absolute strengths 

of the associations between each pattern metric and each disease to determine whether the 

strongest associations were observed with wild-zoonoses.  When sorted by absolute strength 

of association, wild-zoonoses had the strongest associations with six of the ten pattern 

metrics (p=0.008), and with all four of the metrics that measure land cover shape (p=0.002). 

While more work is needed to refine this method, our results suggest that associations with 

land cover pattern metrics may offer insight into the existence of a wild animal reservoir for 

an emerging or otherwise poorly understood infectious agent. 
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Background 

Sixty to 75% of all emerging infectious diseases (EID) are estimated to be zoonotic,27-29 and 

undetected animal reservoirs may exist for established infectious agents.  Given limited 

resources and the high cost of large-scale wildlife surveillance, a rapid and inexpensive 

screening tool may expedite the discovery of animal reservoirs, inform research and 

surveillance priorities, and allow the public health community to respond to EIDs more 

effectively.  To address this need, we propose a novel method through which surveillance data 

and remote sensing imagery may be used to investigate the existence of a wild animal 

reservoir for any poorly understood infectious agent, and conduct an exploratory analysis to 

ascertain the validity of such a method.   

We assume that mixing between humans and wild animals increases zoonotic disease 

transmission, and that mixing is governed—at least partially—by landscape.  Most simply, 

proximity between humans, infectious agents, and natural reservoirs is necessary for zoonotic 

transmission to occur.35,36  Similarly, Lloyd-Smith et al37 described  the rate of zoonotic 

transmission as being governed by the rate, duration, and proximity of contact between the 

reservoir and humans, among other things. Because landscape influences the potential for 

such contact, landscape should, in turn, also be associated with the incidence of zoonotic 

diseases.  Empirically, this assumption is borne-out by the historical evidence of increased 

mixing between humans and deer ticks resulting in higher rates of Lyme disease.29,35  

Likewise, factors including forest fragmentation and agricultural encroachment are 

associated with increased risk of emerging zoonoses.29  In contrast, such associations would 

be unlikely between landscape and non-zoonotic diseases. 
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A variety of land cover pattern metrics have been developed to quantify some aspect of 

land cover pattern: Simpson’s diversity index, for example, quantifies the diversity of land 

cover types seen in a given landscape.   Within the context of pattern metrics, a patch is a 

contiguous area of a single land cover type (e.g. a contiguous urban patch), a class is a 

category of land cover type (e.g. deciduous forest, urban, or open water), and a landscape is 

the total land area included in an analysis and comprises multiple patches and classes.5,38 

In this study we test the hypothesis that landscape, as measured by a variety of land 

cover pattern metrics, is more strongly associated with the incidence of wild-zoonoses (i.e. 

diseases having a wild animal reservoir) than with the incidence of diseases lacking a wild 

animal reservoir.  We then discuss the utility of different pattern metrics in predicting 

whether or not a disease has a wild animal reservoir. While we expect this method will 

imperfectly discriminate wild-zoonoses, it does offer the potential to provide a relatively fast 

and inexpensive means of screening suspected zoonotic agents for further study.  The need 

for quick and efficient responses to emerging infections39 makes this an attractive and 

promising approach.  

 

Methods 

Land Cover Data Sources & Processing 



 14 

We obtained data on land cover from the GlobCover 2009 land cover map.40  This is a 300 

meter (m) resolution map in which land cover is categorized into 22 classes as defined by the 

United Nations Land Cover Classification System (UN LCCS).  Of these, one class 

corresponds to artificial surfaces and urban areas, three classes correspond to areas that are 

either entirely or primarily agricultural, and the remaining 18 classes correspond to areas that 

Table 1.1: Land cover classes and their assigned values under the two-class scheme 

Value GlobCover class definition 50 Two-classes 

11 Post-flooding or irrigated croplands Developed 
14 Rainfed croplands Developed 
20 Mosaic Cropland (50-70%) / Vegetation (grassland, shrubland, forest) (20-

50%) 
Developed 

30 Mosaic Vegetation (grassland, shrubland, forest) (50-70%) / Cropland (20-
50%) 

Undeveloped 

40 Closed to open (>15%) broadleaved evergreen and/or semi-deciduous forest 
(>5m) 

Undeveloped 

50 Closed (>40%) broadleaved deciduous forest (>5m) Undeveloped 
60 Open (15-40%) broadleaved deciduous forest (>5m) Undeveloped 
70 Closed (>40%) needleleaved evergreen forest (>5m) Undeveloped 

90 Open (15-40%) needleleaved deciduous or evergreen forest (>5m) Undeveloped 
100 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) Undeveloped 
110 Mosaic Forest/Shrubland (50-70%) / Grassland (20-50%) Undeveloped 

120 Mosaic Grassland (50-70%) / Forest/Shrubland (20-50%) Undeveloped 
130 Closed to open (>15%) shrubland (<5m) Undeveloped 
140 Closed to open (>15%) grassland Undeveloped 

150 Sparse (>15%) vegetation (woody vegetation, shrubs, grassland) Undeveloped 
160 Closed (>40%) broadleaved forest regularly flooded - Fresh water Undeveloped 
170 Closed (>40%) broadleaved semi-deciduous and/or evergreen forest 

regularly flooded - Saline water 
Undeveloped 

180 Closed to open (>15%) vegetation (grassland, shrubland, woody vegetation) 
on regularly flooded or waterlogged soil - Fresh, brackish or saline water 

Undeveloped 

190 Artificial surfaces and associated areas (urban areas >50%) Developed 
200 Bare areas Undeveloped 

210 Water bodies Undeveloped 
220 Permanent snow and ice Undeveloped 
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are either entirely or primarily undeveloped (Table 1.1).  As edges between two undeveloped 

classes were not hypothesized to have any effect on the incidence of zoonotic diseases, we 

dichotomized the 22 native land cover classes, into only two: “natural” classes and 

“developed” classes.  Developed classes included those comprising primarily urban, artificial 

and agricultural land covers (Table 1.1).  

 Separate county-level land cover classification raster files were extracted using the 

boundaries defined in national county-level cartographic boundary shapefiles from the US 

Census Bureau’s TIGER geographic database. These county raster files were then analyzed 

using Fragstats 4.141  to calculate ten land cover pattern metrics: of these, four describe some 

element of patch shape (shape metrics), four describe the degree to which pixels of the same 

land cover class are aggregated or disaggregated (aggregation metrics), and the remaining two 

metrics describe patch area and diversity, respectively (Table 1.2). These metrics were selected 

based on their relevance to the hypothesis; and an effort was made to select diverse metrics 

that describe different aspects of pattern and avoid excessive redundancy.  Several of the 

metrics chosen operate inherently at the patch-level rather than the landscape-level; these 

metrics can describe pattern at the landscape-level, however, through statistics summarizing 

their distribution across all patches in a landscape.  For example, the perimeter-to-area ratio 

is calculated for each patch as the perimeter of that patch, divided by its area.  To evaluate 

this characteristic at the landscape-level, though, we can use the mean value of the 

distribution of patch-level perimeter-to-area ratios in that landscape.  The mean values of 

inherently patch-level metrics—including, perimeter-to-area ratio, fractal index, radius of  
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Table 1.2: Sum
m

ary of pattern m
etrics, including the theoretical range of values that each m

etric can take, and brief descriptions.  

M
etric (A

bbreviation) 
R

ange 
D

escription 

A
ggregation m

etrics 
 

 

C
ontagion  

(C
O

N
T

A
G

) 
0 < C

O
N

T
A

G
 ≤ 100  

Q
uantifies aggregation based on the degree to w

hich adjacencies in a landscape are betw
een pixels of 

the sam
e or differing classes.  Low

 values indicate that pixels of the sam
e class are clustered together; 

higher values indicate that pixels of the sam
e class are dispersed throughout the landscape and 

interspersed w
ith pixels of different classes. 

Landscape shape index  
(LSI) 

LSI ≥ 1 
LSI is calculated as a quarter of the total edge in a landscape (m

) divided by the square root of the 
area of that landscape.  H

igher values indicate greater disaggregation w
ithin the landscape and m

ay 
be indicative of a greater patch density or greater patch shape com

plexity. 
Patch density (PD

) 
PD

 > 0 
T

he num
ber of patches per hectare of landscape. 

Percentage of like 
adjacencies 
(PLA

D
J) 

0 ≤ PLA
D

J ≤ 100 
T

he percentage of pixel adjacencies in w
hich the adjacent pixels are of the sam

e class.  A
 value of zero 

w
ould indicate com

pletely disaggregated landscape (i.e. a checker board-like configuration), higher 
values indicating greater aggregation, and a value of 100 indicating a landscape in w

hich all pixels are 
of the sam

e class. 

A
rea m

etric 
 

 

R
adius of gyration, 

m
ean (G

YR
A

T
E

) 
G

YR
A

T
E

 ≥ 0 
T

he m
ean distance betw

een each pixel and the centroid of the patch that com
prises that pixel, in 

m
eters.  Larger values indicate m

ore expansive patches. 

D
iversity m

etric 
 

 

Sim
pson's diversity 

index (SID
I) 

0 ≤ SID
I < 1 

“SID
I equals 1 m

inus the sum
, across all patch types, of the proportional abundance if each patch 

type squared” and it “represents the probability that any 2 pixels selected at random
 w

ould be 
different patch types.” 8 

Shape m
etrics 

 
 

Fractal Index, m
ean  

(FR
A

C
) 

1 ≤ FR
A

C
 ≤ 2 

A
 m

odification version of PA
R

A
 that quantifies shape com

plexity but is unaffected by patch size.  For 
each patch It is calculated 2*ln(0.25p)/ln(a), w

here is p and a are the patch perim
eter and area, 

respectively.  H
igher values indicate greater shape com

plexity. 
Perim

eter-area ratio, 
m

ean (PA
R

A
) 

PA
R

A
 > 0 

T
he m

ean perim
eter-to-area ratio (m

/m
2) of all patches in a landscape.  H

igher values m
ay indicate 

either greater shape com
plexity or sm

aller patch-size. 

R
elated circum

scribing 
circle, m

ean (C
IR

C
LE) 

0 ≤ C
IR

C
LE

 < 1 
“C

IR
C

LE equals 1 m
inus patch area (m

2) divided by the area (m
2) of the sm

allest circum
scribing 

circle.” 8  H
igher values indicate patches that are slender and elongated. 

Shape index, m
ean  

(SH
A

PE
) 

SH
A

PE
 ≥ 1 

A
 m

odification version of PA
R

A
 that quantifies shape com

plexity but is unaffected by patch size.  For 
each patch It is calculated as a quarter of the perim

eter divided by the square root of the area.  A
 value 

of one indicates a square patch; higher values indicate greater shape com
plexity. 

 



 17 

gyration, related circumscribing circle, and shape index—were used in this study.  Detailed 

information on these pattern metrics is available elsewhere.5,38  

 

Disease Data Sources & Processing 

County-level incidence data were obtained from CDC National Notifiable Disease records.  

These data were collected by states through state-mandated reporting, and assembled by the 

CDC.  Diseases for this analysis were selected from the list of National Notifiable Diseases via 

systematic application of inclusion and exclusion criteria.  Diseases were eligible for inclusion 

if data were available for at least five consecutive years between 2001 and 2008; if, during 

these five years, reporting for the disease was mandated by at least forty states; and if the 

national incidence during each of these years exceeded 1,000 cases.  Moreover, diseases 

against which humans are vaccinated were also excluded.  An association might exist between 

landscape and vaccination rates (hypothetically, vaccination rates might be higher in urban 

areas, for example); if this were the case, then an association between land cover pattern and 

disease incidence would arise through two causal paths: first, through the direct effects of 

landscape on transmission potential (i.e. the casual pathway of interest), and second, through 

a pathway created by the association between landscape and vaccination rates.  And the 

presence of this second causal path, mediated by vaccination rates, would interfere with our 

ability to estimate the strength of any association between landscape and disease incidence 

that results from the causal path of interest.  Moreover, lack of comprehensive national data 

on county-level vaccination rates precluded blocking this secondary path by statistical 

adjustment.  The remaining diseases were then classified into three categories based on their 
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epidemiology within the contiguous United States10: those primarily transmitted to humans 

via a wild animal reservoir, herein referred to as wild-zoonoses (n=3); those for which 

transmission between humans and wild animal reservoirs occurs, but is not the primary 

mode of transmission, herein referred to as secondarily zoonotic (n=2); and those for which 

transmission between wild animals and humans is thought not to occur in the contiguous 

United States, herein referred to as non-wild-zoonoses (n=8).  For clarity, non-wild-zoonoses 

comprise anthroponoses and zoonoses having a reservoir that is not a wild animal (i.e. 

zoonoses with a domestic or livestock reservoir).  Given the ambiguous nature of secondarily 

zoonotic diseases, and the amount of misclassification that would inevitably result from 

classifying all cases of these diseases as either zoonotic or non-zoonotic, secondarily zoonotic 

diseases were excluded.  All remaining diseases were included in the analysis and include 

three wild-zoonoses (Lyme Disease (LYME), Rocky Mountain Spotted Fever (RMSF), and 

West Nile Virus (WNILE)) and eight non-wild-zoonoses (Chlamydia trachomatis (CHLYM), 

Cryptosporidiosis (CRYPT), E. coli O157:H7 (ECOLI), Gonorrhea (GONN), Legionellosis 

(LEGIO), Shigellosis (SHIG), invasive group A Streptococcal disease (STRA), and Syphilis 

(SYPH)).   

 Population estimates for each county during each year of disease reporting were 

obtained from the US Census Bureau.  For each disease and each county, the observed 

numbers of cases were calculated as the sum of all cases of that disease reported in that 

county during the five-year period.  For each disease, the national incidence rate was 

calculated as the total number of cases reported nationally during the five-year period, 

divided by the sum of the annual national population estimates for each of the same five 
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years (i.e. the total number of cases, divided by the number of person-years from which those 

cases arose).  The expected numbers of cases of each disease in each county were calculated as 

the product of the national incidence rate and sum of the annual population estimates for 

that county over the relevant five-year period.  These data were merged with the county-level 

landscape data based on Federal Information Processing Standard (FIPS) codes. 

 

Data Analysis 

In addition to calculating national case counts and incidence rates, for each disease we 

calculated medians and interquartile ranges (IQR) of the distributions of both county-level 

case counts and county-level incidence rates.   Similarly, we calculated to mean, standard 

deviation and range for each pattern metric.  Incidence rates were mapped for each disease 

using county-level choropleth maps to visually assess their spatial patterns. 

 Separate quasi-Poisson regression models were used to estimate the associations 

between each pattern metric and the incidence of each disease. The models took the form of, 

  (1.1)  

 

Where θi is the incidence rate in county i, xi is the value of the pattern metric, and β is 

the log of the incidence rate ratio (IRR) associated with each one unit change in metric x.  Of 

note, our model did not account for the spatial structure of the data.  Accurate estimation of 

standard errors and, in turn, accurate hypothesis testing require that one account for residual 

spatial dependence, when it is present; however, accounting for spatial dependence can dilute 

the observed associations. When interest lies in the model coefficients, but no inferences are 

ln(θi) = α+ βxi
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to be made (i.e. when the accuracy of standard errors is less important than the accuracy of 

coefficients), accounting for spatial dependence may yield misleading results.42 

For each model, the absolute value of the coefficient, β, was used to assess the absolute 

strength of the association between that pattern metric and disease.  That is, the direction of 

the association was not considered in evaluating the strength of the association.  The degree 

to which the strengths of associations between pattern metrics and disease incidence vary for 

zoonotic and non-zoonotic diseases was assessed separately for each metric and globally, 

considering associations with all metrics together.  

For each metric, diseases were sorted based on the absolute strengths of their 

associations with that metric and assigned ranks based on their sort order: the disease with 

the weakest association was assigned the rank of one, and the disease with the strongest 

association was assigned the rank of eleven.  Metrics that were more strongly associated with 

the three wild-zoonoses than with the eight non-zoonotic diseases (i.e. metrics for which the 

three zoonotic diseases occupied ranks nine through eleven) were considered to be perfectly 

consistent with our hypothesis.   Thus, each metric could be viewed as a Bernoulli trial, with 

success defined as ranks nine through eleven being occupied by our three zoonotic diseases.  

If the values of the pattern metrics were independent, we could calculate the probability of 

seeing the observed number of successes as a simple n choose k binomial coefficient problem; 

however, given the lack of independence, we estimated this probability via simulation.  For 

this, we shuffled the pattern metric variables such that the values of all metrics from a given 

county were randomly assigned to a different county, and then estimated the associations 

between each of these shuffled pattern metrics and the incidence of each disease.  When all of 
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the associations were estimated, that iteration was complete and the counties to which the 

pattern metrics were assigned were again shuffled.  After 1,000 iterations, the resulting 

distribution of number of successes was inspected.  Two-sided p-values were estimated as the 

proportion of these iterations in which an outcome occurred that was at least as extreme (i.e. 

at least as far from the null hypotheses) as that observed with the real data.  

Normalized incidence rate ratios (NIRR) were generated for ease of interpretation and 

to facilitate comparisons between metrics.  For each pattern metric, m, and each disease, d, 

the corresponding NIRR was calculated as the coefficient of the regression model, times the 

standard deviation, σ, of that metric, exponentiated: 

 

  (1.2)  

 

Thus, each NIRR represents the ratio of the expected incidence rates in two counties having 

values of a given pattern metric that differ by one standard deviation. 

ArcGIS version 10.0 (ESRI, Redlands, CA) was used for geospatial data management 

tasks and mapping, with scripting in Python 2.6; R version 2.12.0 was used for regression 

modeling and simulations; and Stata version 11.2 (StataCorp, College Station, Texas) was 

used for general data management and descriptive analyses. 

 

Results 

We used surveillance data from 2004 through 2008 for all diseases except E. coli O157:H7, 

for which we used data from 2001 through 2005.  Chlamydia was the most commonly  

NIRRdm = eβdm·σm
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Table 1.3: D
isease sum

m
ary statistics 

D
isease 

R
eporting 
years 

W
ild-

Z
oonosis 

N
ational 

C
ase C

ount † 
N

ational 
IR

‡ 
C

ases per C
ounty

† 
C

ounty IR
s

‡ 
M

edian (IQ
R

) 
M

edian (IQ
R

) 
C

hlam
ydia 

2004 - 2008 
N

o 
5,150,121 

347.1 
260 (81, 856) 

178.12 (109.4, 316.5) 
C

ryptosporidiosis 
2004 - 2008 

N
o 

35,285 
2.4 

2 (0, 7) 
1.05 (0, 3.2) 

E. coli O
157:H

7 
2001 - 2005 

N
o 

17,037 
1.2 

1 (0, 4) 
0.65 (0, 2.0) 

G
onorrhea 

2004 - 2008 
N

o 
1,696,361 

114.3 
42 (9, 222) 

27.32 (11.0, 91.0) 
Invasive group A

 
Streptococcal disease 

2004 - 2008 
N

o 
24,217 

1.6 
1 (0, 4) 

0.70 (0, 2.1) 
Legionellosis 

2004 - 2008 
N

o 
13,059 

0.9 
0 (0, 2) 

0.00 (0, 0.8) 
Lym

e D
isease 

2004 - 2008 
Yes 

122,175 
8.2 

0 (0, 3) 
0.00 (0, 1.2) 

R
ocky M

ountain 
Spotted Fever 

2004 - 2008 
Yes 

10,575 
0.7 

0 (0, 2) 
0.00 (0, 1.0) 

Shigellosis 
2004 - 2008 

N
o 

87,971 
5.9 

2 (0, 12) 
1.63 (0, 5.1) 

Syphilis 
2004 - 2008 

N
o 

189,477 
12.8 

3 (0, 14) 
1.81 (0, 5.3) 

W
est N

ile V
irus 

2004 - 2008 
Yes 

14,794 
1.0 

0 (0, 2) 
0.00 (0, 1.2) 

†C
um

ulative num
ber of cases over the five-year reporting period 

‡ Incidence R
ates per 100,000 person-years 
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occurring infection, with over 5 million cases reported during five-years.  Lyme disease was 

the most commonly occurring zoonotic infection, with over 122 thousand cases reported 

during five years (Table 1.3).  Summary statistics describing the distribution of pattern 

metrics are given in Table 1.4.  

 When sorted by absolute strength of their associations with each pattern metric, wild-

zoonoses were far more likely to occupy higher ranks than were other diseases.  Moreover, 

wild zoonoses occupied ranks nine through eleven (i.e. had the strongest associations) for 6 

of 10 pattern metrics (Figures 1.1–1.3).  Based on simulations, under the null hypothesis (i.e. 

wild-zoonoses and non-wild-zoonoses are equally likely to be most strongly associated with 

any given pattern metric), the probability of observing 6 or more successes out of 10 trials is 

approximately 0.004 (two-tailed p=0.008).   

 

Table 1.4: Means, standard deviations and ranges of county-level pattern metrics for all 
counties in the contiguous United States. 

Metric Mean (SD) Range 

Contagion (%) 72.09 (26.69) 0.00 – 99.97 

Fractal index, mean 1.03 (0.01) 1.00 – 1.07 

Landscape shape index 5.80 (4.67) 1.07 – 26.50 

Patch density (patches/hectare) 0.08 (0.08) 0.00 – 0.82 

Percentage of like adjacencies (%) 94.25 (6.20) 70.20 – 100.00 

Perimeter-to-area ratio, mean (m/m2) 92.38 (13.87) 0.37 – 120.05 

Radius of gyration, mean (meters) 1083.41 (2388.54) 250.39 – 65509.54 

Related circumscribing circle, mean 0.46 (0.09) 0.08 – 0.76 

Shape index, mean 1.26 (0.12) 1.01 – 2.13 

Simpson’s diversity index 0.13 (0.15) 0.00 – 0.50 
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Figure 1.1: Normalized incidence rate ratios (NIRR) for associations between 
each shape metric and each disease.  Associations with wild-zoonoses and 
diseases without wild-animal reservoirs are represented by light gray and dark 
gray bars, respectively.  Note that bar heights are shown on a log scale.
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Figure 1.2: Normalized incidence rate ratios (NIRR) for associations 
between each aggregation metric and each disease.  Associations with 
wild-zoonoses and diseases without wild-animal reservoirs are 
represented by light gray and dark gray bars, respectively.  Note that bar 
heights are shown on a log scale.
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Figure 1.3: Normalized incidence rate ratios (NIRR) for associations 
between area and diversity metrics and each disease.  Associations with 
wild-zoonoses and diseases without wild-animal reservoirs are 
represented by light gray and dark gray bars, respectively.  Note that bar 
heights are shown on a log scale.  
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 When the strengths of these associations were viewed by category of pattern metric, 

wild-zoonoses had the strongest associations with all four shape metrics (p=0.002)(Figure 1.1) 

and with two of the four aggregation metrics: percentage of like adjacencies and landscape 

shape index (p=0.08)(Figure 1.2).  Conversely, the three wild-zoonoses were not the diseases 

that were most strongly associated with the remaining metrics (radius of gyration and 

Simpson’s Diversity Index)(Figure 1.3).   

  

Discussion 

Our analysis found that most land cover pattern metrics were more strongly associated with 

rates of wild-zoonoses than they were with rates of non-zoonotic diseases, and that these 

differences were very unlikely to result from chance alone.  When assessing the ability of a 

pattern metric to discriminate between zoonotic and non-zoonotic diseases based on rank 

order of the absolute strength of association, as a group, shape metrics outperformed those 

from other categories.  Both of the non-shape metrics with which zoonotic diseases has the 

strongest associations (percentage of like adjacencies and landscape shape index) are 

classified as aggregation metrics, but landscape shape index does also capture patch shape 

complexity and, like several shape metrics, it is a function of the ratio between total length of 

patch edges found in a landscape to total area of that landscape.  This supports the 

underlying rationale for using land cover pattern to identify wild-zoonoses: greater patch 

edge offers greater opportunity for mixing between susceptible humans and infected wild-

animal reservoirs; and other aspects of land cover pattern, though potentially relevant, have a 

weaker influence on contact rates between humans and wild-animal reservoirs. 
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 For each metric the direction of the associations were the same with both RMSF and 

LYME; and associations with WNILE were always in the opposite direction.  Importantly, the 

similar associations seen between various pattern metrics and both RMSF and LYME do not 

arise from the diseases simply being collocated.  Conversely, the county-level incidence rates 

of the two diseases are essentially uncorrelated (ρ = –0.032).  Given the lack of colocation, the 

most plausible explanation for their similar associations with landscape pattern metrics is 

their common epidemiologic characteristics: both are wild-zoonoses that are transmitted via 

a tick vector and, as such, will be driven by similar patterns of land use and land cover.  This 

strongly supports the idea that associations with land cover pattern may offer insight into 

the epidemiology of a disease, at least with respect to tick-borne zoonoses.  Looking at their 

associations with specific pattern metrics, we see that a high mean perimeter-to-area ratio is 

associated with higher rates of both RMSF and LYME; conversely, their associations with 

other measures of patch shape complexity are all negative.  Since, the perimeter-to-area ratio 

is a function of both patch size and patch shape complexity, whereas other shape metrics are 

driven less by patch size, one possible explanation is that small but regularly shaped patches 

might favor these tick-borne infections.  Our limited spatial resolution could also be factor 

here: given the 300m resolution of our land cover data, shape complexity of small patches 

would not be well captured (e.g. regardless of its shape, any patch of less than 90,000m2 

would be appear as a single square pixel), whereas the nuances of the shapes of larger patches 

would be represented more accurately.  Further analyses with higher resolution land cover 

maps may be necessary to tease out these factors. 
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 West Nile was positively associated with all shape metrics, except perimeter-to-area 

ratio.  As above, this disparity may reflect the effect that patch size has on perimeter-to-area 

ratio or the effects of limited spatial resolution.  Interestingly, West Nile was the disease most 

strongly associated with related circumscribing circle; and this strong positive correlation 

suggests that elongated, linear patches favor West Nile—this is also consistent with the 

observed positive association of West Nile with both the fractal and shape indices, and its 

negative association with perimeter-to-area ratio.  Given the importance of birds as a 

reservoir of West Nile, and studies suggesting the role of bird migration in West Nile 

movement,43-45 it is plausible that these elongated, linear patches correspond to bird 

migration corridors. 

 The large sample size and geographic extent of our data offered excellent power.  

Moreover, the use of validated land cover data, based on remote sensing satellites, suggests 

little opportunity for exposure misclassification.  It is also worth noting that, while this is an 

ecological study, by using inherently group-level exposures and limiting our inferences to 

group level associations, we avoided cross-level inference, a common pitfall this design and 

thus eliminated the potential for ecological fallacy. 

The relatively small number of diseases included in the analysis, most notably, the 

small number of zoonotic diseases, limits the generalizability of these conclusions.  

Moreover, given differing population dynamics and patterns of land use in different regions 

of the world, it is not clear whether or not our results will generalize outside of the 

contiguous United States.  It is also unclear to what extent our results will generalize to other 

units of aggregation.  Here we must consider the modifiable areal unit problem (MAUP): 
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associations based on spatially aggregated data can vary depending on the size and 

configuration of the units of aggregation.  While we believe that, the scale of our aggregation 

units (i.e. counties) is appropriate to the scale of the underlying process of interest (i.e. 

interaction between humans and wild animals), we cannot know the extent to which our 

observed associations stem from our choice of aggregation unit, or from a zonation effect 

resulting from the shapes and configuration of counties.  More research will be needed to 

address these shortcomings.  Of note that the completeness of disease reporting may differ by 

county and, if reporting standards are systematically associated with landscape, this could 

introduce bias in our estimates of these associations.  Similarly, reported cases include only 

diagnosed cases.  Thus, another source of bias could exist if the percentage of cases that are 

diagnosed differs by county, and this difference is systematically associated with landscape.  

Finally, land cover is dynamic and should have changed in some areas both between the time 

the land cover and disease surveillance data were collected, and within each disease’s five-year 

surveillance period.  The result of such changes in land cover would almost certainly be non-

differential exposure misclassification and, consequently, estimated associations being bias 

toward the null.  Since only a very small proportion of the land area would be expected to 

have changed between the time of land cover and disease data collection, however, we expect 

this misclassification to be negligible. 

 This analysis suggests that associations with land cover pattern metrics may offer 

insight into the probability that a disease has a wild animal reservoir, and that shape metrics 

are likely to be the most useful.  While more work is needed to refine this method—validation 

with a larger number of diseases and over a greater diversity of geographic regions will be 
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essential—the results suggest great promise for using associations with landscape to detect 

zoonoses and develop risk maps for emerging zoonoses.  
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II. HAND, FOOT AND MOUTH DISEASE AND ITS ASSOCIATIONS WITH LAND COVER TYPE AND PATTERN 

 

Abstract 

Large-scale hand, foot and mouth disease (HFMD) outbreaks have been observed in China 

during each of the five years since 2007, leading the Chinese Ministry of Health to include 

HFMD in its list of mandated notifiable diseases in 2008.  While active research has improved 

our understanding of the disease, we know of no study to date that has investigated the 

landscape ecology of HFMD.  This study sought to fill important gaps in our understanding 

of the ecology of HFMD by looking at land cover and land cover pattern, and their 

associations with HFMD incidence in China, between 2008 and 2011, inclusive.  We 

developed a county-level dataset, including each county in mainland China, using HFMD 

surveillance data from the Chinese Center for Disease Control and Prevention, land cover 

data from GlobCover 2009, vegetation data from the Global Inventory Modeling and 

Mapping Studies, and elevation data from the Shuttle Radar Topography Mission’s Digital 

Elevation Model. We estimated both univariate and multivariate associations between each of 

twelve landscape variables, plus population density, using quasi-Poisson regression models.  

Decreased elevation and vegetation density were significantly associated with increased rates 

of HFMD; and increased division, disaggregation, and diversity of land cover types were 

associated with increased rates of HFMD. Our results suggest connections between landscape 

and HFMD incidence that warrant further investigation, and support previous studies that 

have found local transmission to be more important than distant transmission. 
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Background 

Hand, foot and mouth disease (HFMD) is a syndrome that occurs among a small proportion 

of people infected with non-polio enteroviruses.  It is characterized by flu-like symptoms, 

rash on the hands and feet, oral lesions, loss of appetite, vomiting and diarrhea. Severe cases 

can produce neurological complications, including acute placid paralysis (AFP), 

cardiopulmonary complications and death.  HFMD is most commonly observed among 

children, and enterovirus 71 (EV71) and coxsakievirus A16 (CA16) are the most commonly 

implicated pathogens. Transmission is thought to occur through fecal-oral routes and via 

respiratory droplets.1 

Since the mid-1990’s HFMD epidemics have become regular in the Asia-Pacific region 

and may be increasing in size and severity. Large-scale outbreaks of neurologically 

complicated HFMD have been reported in Malaysia (in 1997, 2000, 2003 and 2005), Taiwan 

(1998, 2000 and 2001), Australia (1999 and 2000), Singapore (2000 and 2006), Brunei (2006) 

and China (2007 onward).1  Since 2007, China has experienced large-scale annual epidemics, 

prompting the Chinese Ministry of Health to add HFMD to its list of mandated notifiable 

diseases in 2008.2,3  With the near-eradication of polio, EV71 is becoming an increasingly 

important cause of AFP, and some suggest that EV71 “has already made a bid to occupy the 

biological niche vacated by poliovirus.”46  The increasing size and frequency of HFMD 

outbreaks suggest that it is an important emerging public health problem. 

Still, little is known about the ecology of HFMD.  Analyses of surveillance data from 

the Chinese Center for Disease Control and Prevention (CCDC) reveal that the annual 

epidemics in China have moved across the country in a predictable wave moving roughly 
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from south to north with the end of winter, and several authors have found strong 

associations between weather and HFMD.7,9,10,12-15  Yet we know of no study to date that has 

investigated the landscape ecology of HFMD and, specifically, associations between land 

cover and HFMD.  

 Land cover class, as determined by remote sensing satellite data, describes the 

dominant type of land cover (e.g. urban, deciduous forest, and water) as visible from above.  

Land cover can be described not only by class, but also by pattern, and a variety of land cover 

pattern metrics exist, each quantifying some aspect of land cover pattern: contagion, for 

example, quantifies the degree to which areas of the same land cover class are aggregated or 

dispersed in a landscape.   Within the context of pattern metrics, a patch is a contiguous area 

of a single land cover type (e.g. a contiguous urban patch) and a landscape is the total land 

area included in an analysis and comprises multiple patches and classes.47,48  Finally, land 

cover can be described by derived indices such as the Normalized Difference Vegetation Index 

(NDVI), which quantifies the density of green vegetation based on the ratio of near-infrared 

and visible-red intensities.49  

This study seeks to fill important gaps in our understanding of the ecology of HFMD 

by looking at land cover and land cover pattern, and their associations with HFMD incidence 

in China.  Specifically, we derive county-level estimates of elevation, land cover type, land 

cover pattern and vegetation density, and estimate their associations with county-level 

HFMD incidence for each county in mainland China, for 2008 through 2011. 

 

Methods 
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Data Sources and Processing 

The CCDC provided data on all recorded HFMD cases from national surveillance records, 

based on mandatory reporting by hospitals and clinics, for each county in China between 

2008 and 2011, inclusive.  Cases were diagnosed clinically or by laboratory confirmation.  

Reporting was via a real-time, internet-based system, with coverage exceeding 90% of county-

level hospitals and 80% of clinics.7  These data included information on case sex, age, viral 

type (when tested), year of HFMD onset, case severity, and case fatalities.  With this, the 

CCDC also provided a county boundary shapefile and county-level demographic data.  For 

this study, we restricted cases to those occurring in mainland China, and linked case data to 

landscape data using China’s National Standard (Guo Biao (GB)) county codes.  Counties, 

and the cases reported within them, were excluded if their GB codes could not be matched to 

those of known counties.  Likewise, counties for which demographic data were unavailable 

were also excluded. 

County-level land cover type and pattern variables were derived from the GlobCover 

2009 land cover dataset, a global 300 meter classified land cover map with 22 land cover 

classes.50  Separate county-level land cover raster files were extracted from the GlobCover 

dataset and analyzed to calculate 1) the proportion of each county’s land area occupied by 

water, urban cover, agricultural cover, and snow and ice, respectively; and, 2) selected land 

cover pattern metrics to quantify aspects of land cover pattern including shape complexity, 

aggregation/disaggregation, and land cover diversity (Table 2.1).  For metrics that describe 

pattern at the patch-level (e.g. shape index), we used the mean value of that metric for all  
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patches in a given county to derive the county-level value of that metric.  We calculated all 

land cover pattern metrics twice: first, with land cover categorized in the original 22 classes; 

and, second, with land cover categories collapsed into only two classes, the first class 

corresponding to all human developed land cover types (e.g. urban and agricultural) and the 

second class corresponding to all undeveloped or natural land cover types (e.g. forest, 

grasslands, and permanent ice and snow).  Under the native classification scheme (i.e. the 22 

Table 2.1: Land cover classes and their assigned values under the two-class scheme 

Value GlobCover class definition 50 Two-classes 
11 Post-flooding or irrigated croplands Developed 
14 Rainfed croplands Developed 
20 Mosaic Cropland (50-70%) / Vegetation (grassland, shrubland, forest) (20-

50%) 
Developed 

30 Mosaic Vegetation (grassland, shrubland, forest) (50-70%) / Cropland (20-
50%) 

Undeveloped 

40 Closed to open (>15%) broadleaved evergreen and/or semi-deciduous forest 
(>5m) 

Undeveloped 

50 Closed (>40%) broadleaved deciduous forest (>5m) Undeveloped 
60 Open (15-40%) broadleaved deciduous forest (>5m) Undeveloped 

70 Closed (>40%) needleleaved evergreen forest (>5m) Undeveloped 
90 Open (15-40%) needleleaved deciduous or evergreen forest (>5m) Undeveloped 
100 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) Undeveloped 

110 Mosaic Forest/Shrubland (50-70%) / Grassland (20-50%) Undeveloped 
120 Mosaic Grassland (50-70%) / Forest/Shrubland (20-50%) Undeveloped 
130 Closed to open (>15%) shrubland (<5m) Undeveloped 

140 Closed to open (>15%) grassland Undeveloped 
150 Sparse (>15%) vegetation (woody vegetation, shrubs, grassland) Undeveloped 
160 Closed (>40%) broadleaved forest regularly flooded - Fresh water Undeveloped 

170 Closed (>40%) broadleaved semi-deciduous and/or evergreen forest 
regularly flooded - Saline water 

Undeveloped 

180 Closed to open (>15%) vegetation (grassland, shrubland, woody vegetation) 
on regularly flooded or waterlogged soil - Fresh, brackish or saline water 

Undeveloped 

190 Artificial surfaces and associated areas (urban areas >50%) Developed 

200 Bare areas Undeveloped 
210 Water bodies Undeveloped 
220 Permanent snow and ice Undeveloped 

 



 37 

classes described above) results would describe associations between disease incidence and 

overall landscape pattern and complexity.  Under a simplified scheme in which all natural 

classes were combined and all man-made classes were combined, results would offer insight 

into how the relationship between natural and developed environments influence disease 

risk.  The land cover types under these two classification schemes are outlined in Table 2.2. 

NDVI data were based on the NDVI from the Global Inventory Modeling and 

Mapping Studies (GIMMS), published by the Global Land Cover Facility (University of 

Maryland, College Park, Maryland)51 and derived by taking a maximum value composite49 of 

the six semimonthly datasets covering the summer of 2006, the most recent year included in 

the GIMMS data.  That is, a composite dataset was created wherein each pixel’s value was set 

equal to the maximum value of that pixel from each of the six semimonthly datasets from 

June through August of 2006.  The maximum-value composite produces a map in which each 

location’s peak vegetation density is used to define its NDVI, thereby eliminating the effect of 

seasonal and short-term fluctuations (e.g. lower vegetation density in the winter and during 

dry months). County-level NDVI values were then estimated separately for each county as the 

mean NDVI value for all non-water pixels in that county. 

Elevation data were from the Shuttle Radar Topography Mission’s (SRTM) Digital 

Elevation Model (DEM), produced by the U.S. Geological Survey (USGS).52  The county-level 

elevation variable was derived by taking, for each county, the mean value of elevation from all 

pixels falling within that county.   
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Table 2.2: Sum
m

ary of land cover variables, including the theoretical range of values that each m
etric can take, and brief descriptions.  

V
ariable 

R
ange 

D
escription 

Land cover type 
 

 

N
orm

alized D
ifference 

V
egetation Index (N

D
V

I) 
0 – 1 

Q
uantifies the density of green vegetation based on the ratio of near-infrared and visible-

red intensities.  H
igher values indicate greater vegetation density. 

Percent agriculture (%
) 

0 – 100 
Percentage of a county covered by prim

arily agricultural classes (values 11, 14 &
 20 in 

T
able 2.1) 

Percent ice and snow
 (%

) 
0 – 100 

Percentage of a county covered by perm
anent ice and snow

 (value 220 in T
able 2.1) 

Percent urban (%
) 

0 – 100 
Percentage of a county covered by prim

arily urban land cover (value 190 in T
able 2.1) 

Percent w
ater (%

) 
0 – 100 

Percentage of a county covered by open w
ater (value 210 in T

able 2.1) 

Land cover pattern 
 

 

C
ontagion  
(C

O
N

T
A

G
) 

0 – 100  
Q

uantifies aggregation and dispersion based on the degree to w
hich adjacencies in a 

landscape are betw
een pixels of the sam

e or differing classes.  H
igh values indicate that 

pixels of the sam
e class are clustered together; low

er values indicate that pixels of the sam
e 

class are dispersed throughout the landscape and interspersed w
ith pixels of different 

classes. 

C
orrelation length 

≥ 0 
Q

uantifies the connectedness, of a landscape.  It is the average distance one can travel 
w

hile rem
aining in a given patch, for all points in the landscape. 

Patch density (PD
) 

> 0 
T

he num
ber of patches per hectare of landscape; quantifies landscape division. 

Sim
pson's diversity index  

(SID
I) 

0 - 1 
“SID

I equals 1 m
inus the sum

, across all patch types, of the proportional abundance if 
each patch type squared” and it “represents the probability that any 2 pixels selected at 
random

 w
ould be different patch types.” 48 

Perim
eter-area ratio  

(PA
R

A
) 

> 0 
T

he m
ean perim

eter-to-area ratio (m
/m

2) of all patches in a landscape.  H
igher values m

ay 
indicate either greater shape com

plexity or sm
aller patch-size. 

Shape index  
(SH

A
PE) 

≥ 1 
A

 m
odification version of PA

R
A

 that quantifies shape com
plexity but is unaffected by 

patch size.  For each patch It is calculated as a quarter of the perim
eter divided by the 

square root of the area.  A
 value of one indicates a square patch; higher values indicate 

greater shape com
plexity.  C

alculated as the m
ean shape index for all patches in a county. 
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Descriptive analysis 

The case population was described by determining the number and percentage of cases 

falling into each category of sex (male or female), age (<1, 1-1.9, 2-2.9, 3-3.9, 4-4.9, 5-9.9, or 

≥10 years of age), causal virus type (CA16, EV71, or other), year of onset, and geographic 

region (central north, central south, central west, north east, south, south west, or west, as 

defined by Wang et al7), separately by case severity (case, severe case, or death).   Incidence 

rates (IR) within each aforementioned category were calculated as the total number of cases 

reported within that category during the four-year reporting period, divided by the number 

in the underlying population within that category, times four-years: 

 

  
(2.1)  

 

 

Where niy represents the number of cases in category i and year y, and Ni represents the size of 

the underlying population in category i. Mortality rates (MR) were calculated similarly, but 

with the total number of HFMD deaths divided by person-time.  Case fatality (CF) was 

calculated within each category, i, as the number of deaths in category i, divided by the 

number of cases in category i.  Similarly, the mean, standard deviation, and range of each 

landscape variable were calculated to describe their distributions. Finally, a county-level 

choropleth map was created to visualize the spatial distribution of HFMD incidence rates.   

Regression modeling 

IRi =

2011�

y=2008

niy

Ni · 4 years
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We fitted quasi-Poisson regression models to estimate associations between land cover 

variables and HFMD incidence rates at the county-level.  The quasi-Poisson model was used 

to accommodate overdispersion in the distribution of county-level case counts.  We first fit 

crude univariate models to separately assess the strength of the association between each 

land cover variable and HFMD incidence; and, then multivariate models to consider the joint 

associations between land cover variables and HFMD incidence. Population density was also 

included in our models as we felt that it could act as a confounder: population density 

should drive landscape (i.e. increasing population density would likely yield a larger 

proportion of urban land cover, lower NDVI, and greater disaggregation of natural land 

covers) and population density has been associated with HFMD incidence in previous 

studies.14,53,54 All models were repeated, first using pattern metrics calculated under the two-

class scheme, and, second using pattern metrics calculated under the 22-class scheme. 

Normalized incidence rate ratios (NIRR) were calculated to improve the 

interpretability and comparability of associations with different land cover variables: for land 

cover variable, v, the corresponding NIRR was calculated as the coefficient of the regression 

model, times the standard deviation, σ, of that metric, exponentiated: 

 

  (2.2)  

 

Thus, each NIRR represents the ratio of the expected incidence rates in two counties having 

values of a given land cover variable differing by one standard deviation. 

NIRRv = eβv·σv
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 ArcGIS version 10.0 (ESRI, Redlands, CA) was used for geospatial data management 

tasks and mapping, with scripting in Python 2.6.  Pattern metrics were calculated with 

FragStats 4.1 (University of Massachusetts, Amherst, MA).  R version 2.12.0 was used for 

regression modeling, and Stata version 11.2 (StataCorp, College Station, Texas) was used for 

general data management and descriptive analyses.   

 

Results 

A total of 5,225,804 cases were recorded in 3,375 counties during the four-year study period.  

Of these, 86,362 cases (1.65%) and 26 counties (0.77%) occurred outside of mainland China 

and were, consequently, not included in the analysis.  Records with erroneous county codes, 

corresponding to 438 county codes (12.98%) containing 12,120 cases (0.23%), were also 

excluded.  Finally, demographic data were unavailable for 25 counties (0.74%) containing 

17,721 cases (0.34%).  The remaining 5,109,601 cases (97.78%) from 2,886 counties (85.51%) 

were included in the analysis. Included and excluded cases were similar in terms of age, sex, 

virus type, and case severity; however, the distribution of year of onset differed between, with 

excluded cases being more likely to have occurred in 2011.  The presence of valid province 

codes for 97.4% of excluded cases also allowed for the comparison of spatial distribution of 

included and excluded cases; and excluded cases were more likely to be from south China 

than were included cases. 

Cases were predominately males (63.0%), and 82.5% were under four-years of age.  

While the highest IRs and MRs were observed among children between 1 and 2 years of age, 

CF was highest among those under 1 year of age and declined with increasing age.  Viral type  
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Table 2.3: C
haracteristics of all cases, severe cases, and fatal cases of hand, foot and m

outh disease (H
FM

D
) in m

ainland C
hina, betw

een 2008 and 2011.  
For each level of a characteristic, the num

ber of cases (N
), percentages of cases (am

ong those w
ith a know

n value of that characteristic)(%
), and the 

incidence rate IR
) are given.  M

ortality rates (M
R

) and case fatalities (C
F) are also given, w

here C
F is the proportion of all cases that resulted in death.  IR

s 
are given per 100,000 person-years, M

R
s are given per 1,000,000 person-years, and C

Fs are given per 100,000 cases. 

 
A

ll C
ases 

 
Severe C

ases 
 

D
eaths 

C
haracteristic 

N
 (%

) 
IR

 
  

N
 (%

) 
IR

 
  

N
 (%

) 
M

R
 

C
F 

T
otal 

 5,109,601  (97.8) 
99.4 

 
 63,367  (1.2) 

1.23 
 

 1,875  (0.04) 
 0.36  

36.7 
A

ge (years) 
  

  
 

   
  

 
   

  
 

 
 <1.0 

 750,917  (14.7) 
1127.0 

 
 12,933  (20.4) 

19.41 
 

 549  (29.3) 
 8.24  

73.1 
1.0-1.9 

 1,481,047  (29.0) 
2312.8 

 
 24,483  (38.6) 

38.23 
 

 751  (40.1) 
 11.73  

50.7 
2.0-2.9 

 1,159,033  (22.7) 
1844.9 

 
 13,385  (21.1) 

21.31 
 

 370  (19.7) 
 5.89  

31.9 
3.0-3.9 

 823,380  (16.1) 
1329.1 

 
 7,117  (11.2) 

11.49 
 

 136  (7.25) 
 2.20  

16.5 
4.0-4.9 

 429,890  (8.4) 
693.5 

 
 2,958  (4.7) 

4.77 
 

 46  (2.45) 
 0.74  

10.7 
5.0-9.9 

 394,849  (7.7) 
136.7 

 
 2,211  (3.5) 

0.77 
 

 22  (1.17) 
 0.08  

5.6 
10+ 

 70,471  (1.4) 
1.6 

 
 278  (0.4) 

0.01 
 

 1  (0.05) 
 0.00  

1.4 
U

nknow
n 

 14  —
–   

 – —
  

 
 – —

  —
–   

 – —
  

 
 – —

        
—

–   
 – —

  
 – —

 
Sex 

      
 

 
      

 
 

      
 

 
Fem

ale 
 1,893,064  (37.0) 

75.6 
 

 22,206  (35.0) 
0.89 

 
 641  (34.2) 

 0.26  
33.9 

M
ale 

 3,216,535  (63.0) 
121.9 

 
 41,161  (65.0) 

1.56 
 

 1,234  (65.8) 
 0.47  

38.4 
U

nknow
n 

 2  —
–   

 –—
  

 
 –—

  —
–   

 —
–—

  
 

 –—
  —

–   
 –—

  
 – —

 
V

irus type 
      

 
 

      
 

 
      

  
C

oxsakievirus A
16 

 43,801  (27.2) 
 – —

  
 

 1,212  (4.6) 
 – —

  
 

 18  (1.41) 
 – —

  
41.1 

E
nterovirus 71 

 82,250  (51.0) 
 –—

  
 

 21,240  (81.2) 
 –—

  
 

 1,179  (92.3) 
 –—

  
1433.4 

O
ther 

 35,135  (21.8) 
 –—

  
 

 3,707  (14.2) 
 –—

  
 

 81  (6.34) 
 –—

  
230.5 

U
nknow

n 
 4,948,415  —

–   
 –—

  
 

 –—
  —

–   
 –—

  
 

 –—
  —

–   
 –—

  
 –—

  
Year of onset 

      
 

 
      

 
 

      
 

 
2008 

 480,861  (9.4) 
37.4 

 
 2,897  (4.6) 

0.23 
 

 123  (6.56) 
 0.10  

25.6 
2009 

 1,141,174  (22.3) 
88.8 

 
 13,763  (21.7) 

1.07 
 

 342  (18.2) 
 0.27  

30.0 
2010 

 1,926,316  (37.7) 
149.8 

 
 29,330  (46.3) 

2.28 
 

 936  (49.9) 
 0.73  

48.6 
2011 

 1,561,250  (30.6) 
121.4 

 
 17,377  (27.4) 

1.35 
 

 474  (25.3) 
 0.37  

30.4 
R

egion 
 

 
 

 
      

 
 

      
 

 
C

entral N
orth 

 1,323,474  (25.9) 
104.1 

 
 33,719  (53.2) 

2.65 
 

 404  (21.5) 
 0.32  

30.5 
C

entral South 
 1,596,156  (31.2) 

108.2 
 

 14,007  (22.1) 
0.95 

 
 555  (29.6) 

 0.38  
34.8 

C
entral W

est 
 279,593  (5.5) 

74.4 
 

 1,917  (3.0) 
0.51 

 
 115  (6.13) 

 0.31  
41.1 

N
orth E

ast 
 280,697  (5.5) 

64.7 
 

 1,863  (2.9) 
0.43 

 
 90  (4.80) 

 0.21  
32.1 

South
 

 1,224,281  (24.0) 
171.9 

 
 7,258  (11.5) 

1.02 
 

 435  (23.2) 
 0.61  

35.5 
South W

est 
 373,467  (7.3) 

48.6 
 

 4,532  (7.2) 
0.59 

 
 270  (14.4) 

 0.35  
72.3 

W
est 

 31,933  (0.6) 
30.5 

  
 71  (0.1) 

0.07 
  

 6  (0.32) 
 0.06  

18.8 
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 Figure 2.1: C
ounty-level incidence rates of hand, foot and m

outh disease (H
FM

D
) for all counties in m

ainland C
hina, betw

een 
2008 and 2011, inclusive.  
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was determined for 3.2% of cases (n=161,186), of whom the majority had EV71 (51.0%); 

moreover, EV71 was responsible for a disproportionate fraction of severe cases (81.2%) and 

deaths (92.3%), suggesting it to be the more virulent causal agent.  Both incidence and CF 

appear to have peaked in 2010.  IRs were highest in the central south region, while CF was 

highest in the south west region (Table 2.3 and Figure 2.1). 

The mean percentage of each county’s land covered by agricultural, ice and snow, 

urban, and water were 46.0%, 0.3%, 6.6%, and 1.9%, respectively.   Counties ranged from very 

sparsely, to very densely vegetated (NDVI range: 0.04, 0.92), but had moderate vegetation 

density, on average (mean NDVI: 0.58).  The mean elevation was 757 meters (SD = 1,041), 

with counties ranging from less than one-meter to 5,152 meters above sea level.  Population 

density ranged from less than one person per square-kilometer (km2) to 53,136 people per 

km2 (Table 2.4). 

 Elevation was negatively associated with HFMD incidence, with a 1σ increase in 

elevation being associated with a 41% to 43% lower HFMD incidence, depending on the 

model.  Vegetation density was also negatively associated with HFMD, with each 1σ increase 

in NDVI being associated with a roughly 20% lower IR.  Each 1σ increase in the proportion of 

urban land cover was associated with a 12% to 19% greater incidence of HFMD.  The 

percentage of a county’s surface covered by open water was significantly positively associated 

with HFMD in the univariate models; however these associations were attenuated and no 

longer significant in the multivariate models.  In the univariate analysis, higher population 

densities were associated with higher rates of HFMD; however the direction of this 

association reversed when other variables were included in the model. 
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Table 2.4: Summary of the distributions of landscape exposure variables including, for each 
variable, the mean, standard deviation (SD), and minimum and maximum values (Range).  
The top portion of the table includes non-pattern metrics; the center and bottom portions 
include pattern metrics calculated under the two-class and 22-class schemes, respectively. 

Variable Mean (SD) Range 
Elevation (meters) 757  (1,040)  0.00  – 5,152  
Normalized Difference Vegetation Index 0.58 (0.15) 0.04  – 0.92 
Percent agriculture (%) 46.0 (30.5) 0.00  – 99.0 
Percent ice & snow (%) 0.26 (1.92) 0.00  – 52.4 
Percent urban (%) 6.62 (16.3) 0.00  – 100 
Percent water (%) 1.94 (4.75) 0.00  – 70.0 
Population density (population per km2) 1176 (3,620)  0.09   – 53,136  
     
Pattern metrics, two-classes 

Contagion (%) 44.6 (26.2) 0.00  – 99.9 
Correlation length (meters) 14,170 (13,830) 575  – 175,200 
Perimeter-to-area ratio (m/m2) 100 (15.2) 0.45  – 123 
Patch density (patches per hectare) 0.17 (0.10) 0.00  – 1.19 
Shape index 1.32 (0.11) 1.03  – 2.52 
Simpson's diversity index 0.29 (0.16) 0.00  – 0.50 
     

Pattern metrics, twenty-two-classes 
Contagion (%) 51.7 (14.9) 0.00  – 99.1 
Correlation length (meters) 7,312 (9,868) 409  – 139,900 
Perimeter-to-area ratio (m/m2) 106 (7.85) 10.9  – 118 
Patch density (patches per hectare) 0.90 (0.46) 0.01  – 3.01 
Shape index 1.23 (0.05) 1.05  – 1.60 
Simpson's diversity index 0.63 (0.20) 0.00  – 0.90 

 

 Under both classification schemes, increased land cover diversity, as measured by 

Simpson’s diversity index, was associated with increased HFMD incidence in the univariate 

analyses; none of these associations maintained significance in the multivariate models.  

Similarly, increased disaggregation and dispersion of land cover, as measured by contagion, 

were associated with increased HFMD in the univariate models; but these associations failed 

to maintain significance in the multivariate models.  Increasing landscape division, as 
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measured by patch density, was associated with increased HFMD incidence in all but the 

multivariate 22-class model; these associations were most pronounced under the two-class 

scheme, with NIRRs ranging from 1.07 to 1.20.  Increased connectedness, as measured by 

correlation length, was consistently and significantly associated with lower rates of HFMD.  

Associations between patch shape metrics (i.e. the shape index, and the perimeter-to-area 

ratio) and HFMD were less consistent.  Under the two-class scheme, increased patch shape 

complexity (shape index) was associated with increased HFMD, but only in the univariate 

analyses; no clear picture of associations with perimeter-to-area ratio was present.  Under the 

22-class scheme, shape index, but not perimeter-to-area ratio was slightly negatively 

associated with HFMD incidence (Table 2.5). 

 

Discussion 

Our results suggest that associations exist between several elements of landscape and HFMD 

incidence.  Our finding that higher elevation is associated with less HFMD is unsurprising: 

several studies have noted increased HFMD occurring with warmer temperatures7,9,10,12-15 and, 

given the strong effect of elevation on temperature, it is likely that elevation is acting as a 

crude proxy for temperature.  The effect of elevation may also be mediated by other 

components of weather, including humidity, which is both positively associated with HFMD 

and negatively associated with elevation.  Conversely, in the association observed between 

vegetation density (i.e. NDVI) and HFMD, it seems very unlikely that NDVI is acting as a 

proxy for weather: warm, humid weather favors both high vegetation density and high 

HFMD and, if NDVI were simply acting as a proxy for weather, we would expect a positive  
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Table 2.5: Normalized incidence rate ratios (NIRR) and 95% confidence intervals for 
associations between landscape variables and hand, foot and mouth disease (HFMD) 
incidence in mainland China, between 2008 and 2011.  For each variable, NIRRs are given 
under univariate and multivariate parameterization of quasi-Poisson models.  Univariate 
NIRRs for non-pattern variables (i.e. elevation, Normalized Difference Vegetation Index 
(NDVI), population density, and percent agriculture, ice and snow, urban and water) do not 
vary between the two-class and 22-class schemes, and are repeated for convenience. 
Metric Univariate Multivariate 

Two-Classes     
Elevation 0.57  (0.53, 0.62) * 0.59  (0.54, 0.64) * 
NDVI 0.81  (0.78, 0.83) * 0.81  (0.78, 0.84) * 
Percent agriculture 0.94  (0.91, 0.98) * 0.86  (0.82, 0.89) * 
Percent ice & snow 0.50  (0.25, 1.01) 0.93  (0.68, 1.26) 
Percent urban 1.15  (1.13, 1.18) * 1.12  (1.06, 1.19) * 
Percent water 1.13  (1.10, 1.15) * 1.02  (0.99, 1.05) 
Population density 1.07  (1.04, 1.09) * 0.78  (0.74, 0.83) * 
Contagion 0.95  (0.92, 0.98) * 1.02  (0.89, 1.17) 
Correlation length 0.48  (0.43, 0.52) * 0.60  (0.54, 0.67) * 
Perimeter-to-area ratio 1.02  (0.98, 1.06) 1.07  (1.01, 1.13) * 
Patch density 1.20  (1.16, 1.24) * 1.07  (1.02, 1.12) * 
Shape index 1.05  (1.02, 1.09) * 0.96  (0.92, 1.01) 
Simpson's diversity index 1.05  (1.01, 1.08) * 0.98  (0.87, 1.11) 

Twenty-two-Classes     
Elevation 0.57  (0.53, 0.62) * 0.59  (0.55, 0.64) * 
NDVI 0.81  (0.78, 0.83) * 0.80  (0.77, 0.83) * 
Percent agriculture 0.94  (0.91, 0.98) * 1.02  (0.97, 1.06) 
Percent ice & snow 0.50  (0.25, 1.01) 0.87  (0.64, 1.18) 
Percent urban 1.15  (1.13, 1.18) * 1.19  (1.13, 1.27) * 
Percent water 1.13  (1.10, 1.15) * 1.01  (0.98, 1.03) 
Population density 1.07  (1.04, 1.09) * 0.81  (0.76, 0.86) * 
Contagion 0.89  (0.86, 0.92) * 0.94  (0.84, 1.04) 
Correlation length 0.54  (0.50, 0.60) * 0.70  (0.62, 0.78) * 
Perimeter-to-area ratio 1.01  (0.98, 1.04) 0.98  (0.93, 1.03) 
Patch density 1.16  (1.12, 1.20) * 0.98  (0.92, 1.06) 
Shape index 0.91  (0.88, 0.94) * 0.86  (0.82, 0.90) * 
Simpson's diversity index 1.12  (1.08, 1.16) * 1.09  (0.99, 1.20) 

* Indicates that the 95% confidence interval excludes 1.0 
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association between NDVI and HFMD.  Instead, we observed a consistent and reasonably 

strong negative association between the two.  It is also unlikely that this association results 

from confounding by population density, since the association remained nearly unchanged 

in the multivariate models that included population density and percent urban land cover.   

 Our findings with regard to population density are interesting.  Previous studies have 

differed with regard to the association between population density and HFMD: Hu et al14 and 

Zhu et al54 found positive associations between population density and HFMD incidence; 

while Qiaoyun et al53 reported the greatest risk of HFMD outside of densely populated city 

centers.  As with Hu and Zhu, our univariate models found a positive association between 

population density and HFMD.  However, once adjusted for landscape variables in our 

multivariate analyses, we observed a significant negative association between population 

density and HFMD.  This suggests that the positive univariate association may actually be 

driven by elements of landscape, most notably, elevation (higher population densities and 

higher rates of HFMD both occur at lower elevations) and percent urban land cover (higher 

population densities and higher rates of HFMD both occur in counties with more urban land 

cover).  As with Qiaoyun, therefore, our findings suggest that sprawl and suburban 

landscapes—those with a great deal of developed and artificial land surface but lower 

population densities—may be those most favorable to HFMD.  HFMD risk may be lower in 

the most densely populated city centers, since improved public health infrastructures, and 

water supply and sanitation systems, for example, may be effectively reducing risk in these 

places. 
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 Positive associations with patch density and Simpson’s diversity index suggest that 

diverse and divided land cover favors higher HFMD rates.  That the effect of patch density 

was more pronounced under the two-class scheme suggests that anthropogenic land cover 

division is more relevant than natural division.  Similarly, the consistent and statistically 

significant associations seen between correlation length and HFMD suggest that HFMD 

occurs at greater rates in counties with disconnected patches.  The underlying mechanism for 

these associations is not entirely clear.  That said, if we believe that the observed large-scale 

patterns of spread (movement from south to north in the spring, for example) result from 

general diffusion of infections throughout populations, then these results do seem 

surprising.  Research in landscape ecology suggests that heterogeneous and fragmented 

landscapes should reduce the spread of disturbances (including “species-specific parasites”) 

that are restricted to a single habitat type, in this case developed or urban environments.55,56  

Our results, then, suggest that HFMD occurs most often in those counties with landscapes 

that present the greatest resistance to spread via broad population diffusion or percolation.  

This, in turn, suggests that the movement of HFMD epidemics may occur through 

introduction events in which an index cases initiates a seasonal outbreak in a community; or, 

alternatively, that the causal pathogens may maintain a broad distribution in environmental 

reservoirs but only produce outbreaks in those times and places when the weather is most 

favorable.  Wang et al7 attempted to parse transmission into “human-to-human within 

prefecture”, “human-to-human between prefecture” and “reservoir-to-human”, and found 

transmission within prefectures to dominate the later two types.  This is consistent with the 
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observed associations with landscape, which also suggest that HFMD transmission is 

primarily local.  

 It is possible that the associations observed in our county-level analysis would differ at 

other levels of spatial aggregation and we, therefore, cannot draw any conclusions about the 

influence of local landscape on an individual’s HFMD risk.  It is also possible that ecology 

would be better described for each causal agent separately (i.e. EV71 and CA16) than for 

HFMD as a whole; however, we felt that the small number of cases with a known viral type, 

and the resulting unstable virus-specific county-level estimates, would not have supported a 

meaningful and trustworthy analysis.  Moreover, as our data were limited to reported cases of 

HFMD, we have no information on cases that didn’t result in medical care and consequent 

capture by surveillance.  If spatial patterns of health care access or utilization are somehow 

associated with our landscape, then our estimates of the associations between landscape and 

HFMD may be biased.  Without information on county-level access and utilization, however, 

the presence and exact nature of such a bias would be difficult to predict.  Conversely, given 

our use of established and validated sources of land cover data, we see little opportunity for 

exposure misclassification.  Moreover, by analyzing data across all of mainland China, our 

results should be more broadly generalizable than if we had restricted our analysis to a 

smaller or more ecologically homogeneous area.  Finally, the large number of cases in our 

dataset offered excellent power and allowed us to include all of our predictor variables in a 

single multivariate model with very little chance of over-fitting.  

 Our results suggest connections between landscape and HFMD incidence.  We found 

that HFMD rates are highest in counties at lower elevations, with less dense vegetation, a 
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greater proportion of urban landscape, lower population densities, and more diverse and 

fragmented land cover.  The mechanisms underlying some of these associations are unclear 

and raise questions that may be useful in informing future research.  
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III. THE ROLE OF CLIMATE CHANGE IN THE GROWTH OF HAND, FOOT AND MOUTH DISEASE IN CHINA  

 

Abstract 

Outbreaks of hand, foot and mouth disease (HFMD) have become increasingly regular in the 

Asia-Pacific region, and China has experienced annual epidemics each year since 2007.  

Several studies have found associations between weather and HFMD, suggesting that climate 

change could have a role in the recent growth of HFMD in China. We sought to determine if 

climate change could underlie the recent emergence and growth of HFMD in China by 

developing a weather-based predictive model of HFMD and applying that model to historical 

climate data. When monthly climate-based HFMD predictions were regressed against 

calendar time, we found evidence of a significant increasing secular trend, with predicted 

rates for 2011 being 94% higher than those for 1982 (Incidence rate ratio (IRR): 1.937; 95% 

confidence interval (CI): 1.933, 1.940). Most of the increase in the predicted HFMD incidence 

occurred between 2002 and 2011, with predicted rates for 2011 being 49% higher than those 

for 2001 (IRR = 1.490; 95% CI: 1.488,1.493). Our climate-based retrospective predictions 

suggest that changing climate should have made weather increasingly favorable to HFMD 

during our thirty-year study period and we find that the data are compatible with climate 

change playing a role in the recent growth of HFMD in China. 

 

Background 

Hand, foot and mouth disease (HFMD) occurs in some cases of infection with non-polio 

enteroviruses, most notably infections with enterovirus 71 (EV71) and coxsakievirus 16 
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(CA16) among children under 5 years of age.1  Though historically responsible for only 

modest and sporadic outbreaks, since the mid-1990’s epidemics have become regular in the 

Asia-Pacific region and appear to be increasing in size and severity.  In that time, large-scale 

outbreaks of neurologically complicated HFMD have occurred in Malaysia (in 1997, 2000, 

2003 and 2005), Taiwan (1998, 2000 and 2001), Australia (1999 and 2000), Singapore (2000 

and 2006), Brunei (2006) and China (2007 through 2010).1  China has experienced annual 

epidemics each year since 2007, prompting the Chinese Ministry of Health to add HFMD to 

its list of mandated notifiable diseases in 2008.3   

In temperate regions HFMD exhibits pronounced seasonality, with the most notable 

peaks in incidence occurring in summer.5-7,16-18  Seasonal variability is most dramatic at higher 

latitudes and, while the overall pattern of increased incidence in the summer remains, the 

degree of seasonal variability is less dramatic nearer the equator.5,11,16,19 With that, a number 

of studies have looked at associations between meteorological variables and HFMD 

incidence.5-15  Studies generally agree that HFMD incidence is positively associated with 

higher temperatures, though there may be a threshold temperature above which 

transmission begins to decline. Less dramatically, there appears to be a modest, positive 

association between relative humidity and HFMD incidence. Most of the studies reviewed 

have found some association between precipitation and HFMD incidence, but they have 

differed with regard to the exact nature of that association: Wang et al7 found the greatest 

risk with medium to high precipitation, Ma et al6 found a positive association between 

precipitation and HFMD, and Hii et al5 found an inverted-U Association with incidence 

peaking after periods of moderate rain and lowest after periods of high rainfall. 
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These observed associations between weather and HFMD suggest that climate change 

could potentially explain the recently established seasonal pattern of HFMD epidemics in 

China. While Ma et al6 and Urashima et al11 both considered the potential for a connection 

between climate change and HFMD, we know of no study that has directly investigated what 

role climate change may have played, if any, in the recent growth in HFMD observed 

throughout the Asia-Pacific region.  

With that, we sought to determine if climate change could underlie the recent 

emergence and growth of HFMD in China.  We modeled the relationship between 

meteorological variables and HFMD incidence, aggregated by county and month, for years 

with surveillance data.  We then applied this model to historical climate data, to 

retrospectively predict the expected national HFMD incidence based on weather in each 

county and during each month from 1982 through 2011.  Finally, we tested for the presence 

of a secular temporal trend in these predictions to determine if changes in climate could 

underlie observed increases in HFMD in China. 

 

Methods 

Data Sources and Processing 

The Chinese Center for Disease Control and Prevention (CCDC) provided data on all 

recorded HFMD cases from national surveillance records, based on mandatory reporting by 

hospitals and clinics, for each county in China during each month between 2008 and 2011, 

inclusive.  Cases were diagnosed clinically or by laboratory confirmation.  Reporting was via a 

real-time, internet-based system, with coverage exceeding 90% of county-level hospitals and 
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80% of clinics.7  With this, the CCDC also provided a county boundary shapefile and county-

level demographic data.  For this study, we restricted cases to those occurring in mainland 

China, and linked case data to climate data on Guo Biao (GB) county codes.  Counties, and 

the cases reported within them, were excluded if their GB codes could not be matched to 

those of known counties.  Likewise, counties for which demographic data were unavailable 

were also excluded. 

Climate data were derived from the National Oceanic and Atmospheric 

Administration’s (NOAA) “Global summary of the day” (GSOD) data,57 recorded from a 

global network of ground-based weather stations.  We acquired data from all weather 

stations located in either mainland China, or within a 500 kilometer buffer surrounding 

mainland China.  This buffer was included to ensure adequate data for interpolation near 

borders.  Data availability was very limited prior to 1973; and, between 1973 and 1981, 

complete data were available from less than 8% of all stations in our study area.  To ensure 

sufficient data for robust interpolation, we, therefore, restricted our historical climate dataset 

to the period from 1 January 1982 through 31 December 2011.  For each weather station and 

each month, data were collapsed from their native daily frequency, to monthly frequency.  

Where a variable recorded a daily maximum (e.g. maximum temperature, maximum wind 

gust) or minimum (e.g. minimum temperature) we took the corresponding monthly 

maximum or minimum to derive the monthly value.  For all other variables, we took the 

monthly mean. Raster surfaces for each weather variable were generated for each month 

using cokriging with elevation as a covariate.  Elevation data were from the Shuttle Radar 

Topography Mission’s (SRTM) Digital Elevation Model (DEM), produced by the U.S. 
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Geological Survey (USGS).52  Finally, for each meteorological variable, and each month, we 

extracted a corresponding county-level variable by taking, for each county, the mean value of 

that meteorological variable from all pixels falling within that county.   

 

Model building 

We modeled the relationship between meteorological variables and HFMD incidence between 

2008 and 2011, the years during which the CCDC conducted nationwide HFMD surveillance, 

to develop a weather-based predictive model for HFMD.  We trained the model using data 

from 2008 through 2010, and withheld the data from 2011 as our validation set.  We chose 

the elements of weather to include in our model based on results of earlier studies that 

looked at associations between weather and HFMD.  These elements included temperature, 

humidity, wind speed, and precipitation. Multiple possible variables were available to 

represent temperature (mean, minimum, and maximum temperature), humidity (dew point 

and relative humidity) and wind speed (mean wind speed, maximum sustained wind speed 

and maximum wind gust).  Where alternate variables were strongly correlated only one 

variable was included in the model to avoid redundancy and problems with collinearity, and 

variable selection was based on Akaike information criterion (AIC); when they were not 

strongly correlated, multiple alternate variables were allowed in the model.  The final set of 

core variables comprised five: mean temperature, mean daily precipitation, mean relative 

humidity, maximum wind gust, and mean wind speed.  Previous authors have found non-

linear associations between weather parameters and HFMD7 and we, consequently, included 

quadratic terms for each meteorological variable in our model.  For each meteorological 
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variable, we then tested the effect of including its value from the prior month (i.e. one-month 

lagged variable).  Lagged variables were kept in the model if their inclusion resulted in a 

decrease in AIC (AIC-Δ) of at least 4.0.  This cut point was selected based on literature 

suggesting that, when comparing two nested models, an AIC-Δ of at least 4.0 indicates that 

evidence for the more parsimonious model is “considerably less” (AIC-Δ of 4.0-7.0) or 

“essentially none” (AIC-Δ of >10), relative to the larger model.58  Similarly, we tested for the 

effect of including interaction terms between meteorological variables, and retained those 

whose inclusion resulted in an AIC-Δ of at least 4.0.  Each predictor variable was centered 

about its mean and scaled to a neat value near its standard deviation (e.g. the standard 

deviation of temperature was 19.1°F and temperature was scaled so that its coefficient 

corresponded to the effect of a 20°F increase in temperature).  

 

Model validation 

We trained our model using data from 2008 through 2010, and tested its performance 

against data from 2011.  Predictive performance was quantified by calculating the coefficient 

of the correlation between the number of observed and predicted cases (r) and by the mean 

absolute error (MAE): 

 

  (3.1)  

 

Where n is the number of observations in the sample, Oi is the observed number of cases in 

observation i, and Pi is the model’s prediction of the number of cases in observation i.  

MAE =
1

n

n�

i=1

|Pi −Oi|
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Correlation coefficients and MAEs were calculated separately for the training and validation 

samples, and these calculations were repeated at two levels of aggregation: first, at the 

county-level, which was the level of aggregation of the data used to build the model, and in 

which each observation contains the number of cases in a given county and month; and, 

second, at the national-level, in which cases in all counties have been totaled by month.   

Finally, we plotted the time-series of the number of cases observed nationally, by month, 

against the model-based predictions to visually assess model fit and predictive accuracy. 

 

Modeling predicted change in HFMD over time 

We applied the predictive model to historical climate data and estimated the expected 

incidence of HFMD, based on weather, during each month, and in each county, from 1 

January 1982 through 31 December 2011.  These county-level predictions were totaled 

separately for each month to create a predicted monthly, national HFMD time-series.  We 

then fit a generalized estimating equations (GEE) Poisson regression model, with 

autoregressive (AR 1) correlation structure, calendar year, year-squared and indicator 

variables for calendar month as the independent variables, and predicted number of HFMD 

cases as the dependent variable.  Year was centered about its mean value (1996.5) and scaled 

so that the resulting coefficients corresponded to estimated change in HFMD with each ten-

year change in calendar date. 

The resulting function defined by the coefficients for calendar year and year-squared, 

therefore, represents the predicted secular trend in HFMD that we would expect to have 

occurred based on changes in climate.  In turn, a positive secular trend in these weather-based 
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predictions would suggest that climate has changed in a manner that is consistent with 

increased HFMD incidence.   

 

Results 

A total of 5,225,804 cases were recorded in 3,375 counties during the four-year surveillance 

period.  Of these, 86,362 cases (1.65%) and 26 counties (0.77%) occurred outside of mainland 

China and were, consequently, not included in the analysis.  Records with erroneous county 

codes, corresponding to 438 county codes (12.98%) containing 12,120 cases (0.23%), were also 

excluded.  Finally, demographic data were unavailable for 25 counties (0.74%) containing 

17,721 cases (0.34%).  The remaining 5,109,601 cases (97.78%) from 2,886 counties (85.51%) 

were included in the analysis. Of these 9.4% of cases (n=480,861) occurred in 2008, 22.3% 

(n=1,141,174) occurred in 2009, 37.7% (n=1,926,316) occurred in 2010, and 30.6% 

(n=1,561,250) occurred in 2011.  Monthly county-level incidence rates ranged from zero to 

13,314 per 100,000 person-years (mean: 93.8; standard deviation (SD): 218.6), and monthly 

county-level case counts ranged from zero to 4,668 cases (mean: 36.9; SD: 101.6).  Monthly 

national incidence rates ranged from 0.03 to 30.0 per 100,000 person-years (mean: 8.3; SD: 

7.5) and monthly national case counts ranged from 369 to 386,561 (mean: 106,450; SD: 

97,159).  Most cases were males (63.0%) and under 5 years of age (90.9%). 

 Weather varied widely throughout mainland China during the study period.  Mean 

monthly temperatures varied from -28.9° to 87.0°F, mean precipitation ranged from zero to 

0.87 inches, relative humidity ranged from 7.3% to 100%, mean wind speeds ranged from 0.9 

knots to 12.0 knots, and maximum monthly gust speeds ranged from 16.9 to 58.8 knots   
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Table 3.1: Summary of monthly county-level weather variables for mainland China 
from 1982 through 2011 

Variable Mean  (SD) Range 
Mean temperature (°F) 55.9  (19.1) –28.9,  87.9 
Mean precipitation (inches) 0.10  (0.09) 0.00, 0.87 
Mean relative humidity (%) 64.5  (14.2) 7.27, 100 
Mean wind speed (knots) 4.57  (1.20) 0.90, 12.0 
Maximum wind gust (knots) 37.3  (4.11) 16.9, 58.8 

 
 
 
(Table 3.1).  The period during which the CCDC conducted nationwide HFMD surveillance, 

2008 through 2011, was slightly warmer, less humid, and less windy than was the preceding 

26-year period. 

 Our final model of associations between meteorological variables and HFMD 

incidence included mean temperature, mean daily precipitation, mean relative humidity, 

maximum wind gust, mean wind speed, one-month lagged temperature, and the square of 

each variable.  Temperature was the only lagged variable that met our criterion for inclusion 

in the final model (i.e. AIC-Δ ≥ 4.0); no interaction terms met our inclusion criterion.  We 

found that HFMD risk was greatest at higher temperatures, and with lagged temperatures in 

the range of 50° to 55°F.  Within the range of their most common values, HFMD risk was 

greater with higher precipitation, higher humidity, higher mean wind speeds, and lower 

maximum gust speeds; though the directions of these associations reversed at extremely low 

or high values of these predictors (Figure 3.1).  All variables in the final model were 

significantly associated with HFMD incidence at p<0.05 and most were significant at p<0.001 

(Table 3.2). 
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Figure 3.1: Associations between weather variables and hand, foot and mouth disease 
(HFMD) incidence. Lines and shaded areas show the incidence rate ratios (IRR) and 
their 95% confidence intervals for the association between each weather parameter and 
HFMD incidence, relative to that variable’s mean (indicated by the small circle): dashed 
lines show crude, univariate associations; solid lines show associations from the final 
multivariate model.  The lower panel of each graph shows the histogram of the 
distribution of the weather variable, truncated at the 0.5th and 99.5th percentiles (i.e. the 
central 99% of the distribution).
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Table 3.2: Coefficients and 95% confidence intervals of the predictive model of hand, foot 
and mouth disease.  Each variable was centered on its mean and scaled to a neat value near its 
standard deviation. 

Predictor Coefficient   (95% CI) 
Temperature (20°F) 

    Linear 0.37 ** (0.18,  0.56) 
Squared 0.04 * (0.01,  0.07) 
Lagged, linear 4.16 ** (3.97,  4.35) 
Lagged, squared -0.78 ** (–0.81,  –0.75) 

     Precipitation (0.1 inches) 
    Linear 1.02 ** (0.96,  1.07) 

Squared -0.42 ** (–0.45,  –0.39) 

     Relative humidity (15%) 
    Linear -1.05 ** (–1.19,  –0.91) 

Squared 0.13 ** (0.11,  0.14) 

     Wind speed (1 knot) 
    Linear 0.32 ** (0.30,  0.33) 

Squared -0.08 ** (–0.09,  –0.07) 

     Maximum gust (5 knots) 
    Linear 1.57 ** (1.36,  1.79) 

Squared -0.14 ** (–0.16,  –0.12) 

     Intercept -18.23 ** (–19.05,  –17.42) 
*  p < 0.05 
** p < 0.001 
 

 We found that our model was able to capture the general timing and intensity of 

HFMD outbreaks in both the training and validation samples (Figure 3.2).  At the county-

level, the MAE was 34.0 cases in the training sample, and 39.0 cases in the validation sample, 

with correlation coefficients of 0.54 and 0.53, respectively.  At the national-level, the MAE was 

45,257 cases in the training sample and 33,747 cases in the validation sample, with 
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correlation coefficients of 0.78 and 0.93, respectively.  The similar correlation coefficients and 

MAEs in the training and validation sets at the county-level, and superior predictive 

performance in the validation set at the national-level suggests little, if any, over-fitting of 

our model.  When applied to historical climate data, our model predicted the largest 

outbreak in 2010, with the next three largest in 2011, 2009 and 2008, respectively; and these 

predictions correspond to largest reported outbreaks based on surveillance.  Our model also 

predicted the summertime peaks that have been widely observed with HFMD (Figure 3.3).   

While the predicted incidence fluctuates from year to year, a general upward trend is 

apparent, especially from 2006 onward (Figure 3.3).  When monthly climate-based HFMD 

 
 

Figure 3.2: Time series of the number of cases of hand, foot and mouth disease 
reported each month in mainland China, between 2008 and 2011 (solid line), and the 
number of cases predicted each month by the weather-based model (dashed line).  
Predictions for 2008 through 2010 are in the same sample used to train the regression 
model (long dashes); those for 2011 are in the validation sample (short dashes). 
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predictions were regressed against calendar time, we found significant positive associations 

with year and year-squared, relative to the middle of the predicted time-series (year 1996.5), 

indicating an increasing secular trend (Table 3.3), with predicted rates for 2011 being 94% 

higher than those for 1982 (Incidence rate ratio (IRR): 1.937; 95% confidence interval (CI): 

1.933, 1.940).  Predicted HFMD incidence remains low and relatively stable during the first 

two-decades of predictions; most of the predicted increase in HFMD incidence is seen in last 

ten-years, between 2002 and 2011, with predicted rates for 2011 being 49% higher than those 

for 2001 (IRR = 1.490; 95% CI: 1.488,1.493)(Figure 3.4).   

 

Discussion 

We found strong associations between weather and HFMD incidence in mainland China 

between 2008 and 2011, and developed a predictive model that successfully captured the  

 

 
Figure 3.3: Time series of the predicted number of hand, foot and mouth disease 
(HFMD) cases in mainland China, during each month from January 1982 through 
December 2011, based on associations with weather. 
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Table 3.3:  Incidence rate ratios (IRR) and 95% confidence intervals describing the 
association between calendar time and predicted hand, foot and mouth disease (HFMD) 
incidence.  Year is centered on its mean value and scaled, so that IRRs represent the relative 
change in incidence associated with each ten-year change from 1996.5. 

  IRR (95% CI) 
Year (per 10 years) 1.256 (1.255 , 1.257) 
Year (per 10 years), squared 1.114 (1.113 , 1.115) 

    Month 
   January 0.136 (0.136 , 0.137) 

February 0.200 (0.200 , 0.201) 
March 0.313 (0.312 , 0.313) 
April 0.625 (0.624 , 0.625) 
May  1.0  (Reference) 
June 0.968 (0.967 , 0.969) 
July 0.801 (0.800 , 0.802) 
August 0.484 (0.484 , 0.485) 
September 0.324 (0.323 , 0.324) 
October 0.262 (0.262 , 0.263) 
November 0.241 (0.240 , 0.241) 
December 0.155 (0.155 , 0.156) 

 

general timing and intensity of HFMD outbreaks, both in the subset of data used for training 

and in the subset set aside for validation.  Our model suggests that HFMD is favored by 

warmer temperatures, following moderately cool months, combined with moderately high 

precipitation, very high or very low relative humidity, and higher mean wind speeds with 

lower maximum gust speeds. These associations are consistent with the results of most prior 

studies of associations between weather and HFMD. 

 Our climate-based retrospective predictions suggest that changing climate should 

have produced weather increasingly favorable to HFMD during our thirty-year study period.  

While we cannot definitively establish climate change as the primary or partial cause of the 

observed increases in HFMD, our results suggest that the data are compatible with climate 
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change playing a role in these observed increases.  Of note, our model predicted an average of 

717,295 cases per year between 1982 and 2007, the period before large-scale annual outbreaks 

are known to have occurred.  While it is likely that some HFMD occurred in China during 

that period, it is almost certain that our climate-based predictions severely overestimate the 

number of cases prior to 2007.  If climate change has been the primary driver of increased 

HFMD in China, then this suggests that our model failed to capture some aspect of the 

connection between climate and HFMD: whether that is some aspect of weather not included 

Figure 3.4:  Secular trend and seasonal component of predicted hand, foot and mouth 
disease (HFMD) incidence, given as incidence rate ratios (IRR) relative to the center of 
the period (year = 1996.5) in the case of the trend component, and the peak incidence 
month (May) for the seasonal component. 
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in our model, an undetected interaction between different meteorological variables, or a 

threshold effect that we failed to detect.  More likely, however, climate change has been just 

one driver, and the observed increases in HFMD stem from some combination of changing 

climate, land use, demographics, population dynamics, and circulating enterovirus strains. 

 Our model may have also understated the strength of associations between weather 

and HFMD due to exposure misclassification arising from the relatively coarse temporal 

resolution of our data.  Our raw data, both weather and HFMD, were of daily temporal 

resolution.  Our decision to work at the monthly scale, rather than weekly, was based largely 

on the computational demands of cokriging more than 3,000 weather surfaces (360 months, 

times nine weather variables) which, at more than 20 minutes computational time per 

surface, required over six-weeks of total running time.  Developing a weekly dataset would 

have increased these demands by roughly four-fold. 

 Our data’s spatial and temporal dependence precluded the use of conventional 

resampling methods for model validation (e.g. traditional cross-validation or bootstrapping).  

While resampling methods exist for use with correlated data, they are less well established 

and their properties (e.g. bias) are less well understood.  Our analysis plan, consequently, 

specified split-sample validation; the data split for training and validation samples was 

specified a priori.  In retrospect, however, the results of our validation—most notably, the 

more accurate national-level predictions in our validation than training set—suggest that our 

split was fortuitous and that our validation likely overestimates our model’s out-of-sample 

predictive accuracy.   Some of the larger national-level prediction errors in our training 

sample appear to result from the model’s failure to fully capture the extent of the unusually 
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high peak incidence in the summer of 2010.  Still, the accuracy of the national-level 

predictions for 2011 is uncanny, both in absolute terms and relative to the accuracy of the 

predictions in each of the three prior years.   

 The degree to which our findings may generalize outside of China, to the larger Asia-

Pacific region, is not clear.  China’s vast area, physical adjacency to most countries in 

mainland Asia, and its climatic, ecological, and demographic diversity, do suggest, however, 

that our data may be moderately representative of the larger region. We, therefore, believe 

that our results may offer at least some insight into emergence and growth of HFMD in Asia 

and that they justify further study of the potential role of climate change in the growth of 

HFMD in the larger Asia-Pacific region outside of China. 

We found strong associations between meteorological variables and HFMD incidence 

in mainland China between 2008 and 2011, and developed a weather-based predictive model 

for HFMD.  Our model’s predictions, based on historical climate data from 1982 through 

2011, indicate that climate in China has changed in a manner that would favor increased 

HFMD, and strongly suggest that climate change has played a role in the recent growth of 

HFMD in China.  Our results suggest that additional research is needed of the potential role 

of climate change in the increased incidence of HFMD, and add to the growing body of 

research finding potential links between climate change and human health.  
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SECTION C: CONCLUSIONS 

These studies are applications of epidemiological and statistical methods toward three 

unique aims: 1) validation, 2) description, and 3) hypothesis testing.  They demonstrate the 

application of diverse methods including analyses of spatial and time-series data; application 

of regression models for description, prediction and hypothesis testing; pure spatial methods 

including cartography and kriging; and the application of data not commonly used in 

epidemiological research, including climate, elevation, land cover and vegetation data.  

Similarly, these studies demonstrate the application of advanced data management and 

processing techniques, including merging disparate data, spatial data linkages, geographic 

data management, raster processing and the calculation of land cover pattern metrics.  

Beyond making for a strong technical exercise, I believe that incorporating methods and data 

uncommon to epidemiological research helps advance the field by broadening its scope and 

enhancing its toolbox. 

 The validation study yielded promising results: they suggest that wild-zoonoses are, in 

fact, more strongly associated with land cover pattern, and support the theoretical 

justification for using associations with land cover pattern to distinguish wild-zoonoses from 

other disease types.  And while the wild-zoonoses were more strongly associated with land 

cover pattern, the nature and direction of these associations were not uniform for all three of 

the wild-zoonoses: the two tick-borne zoonoses (Lyme disease and Rocky Mountain Spotted 

Fever) had similar associations with land cover pattern metrics; however these associations 

were always in the opposite direction of those observed with West Nile Virus.  This suggests, 

beyond simply identifying wild-zoonoses, the pattern of associations found between a given 
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disease and a set of land cover pattern metrics may be a signature of a specific reservoir, 

vector, or mode of transmission.  It seems possible, then, that every disease could have a 

unique spatio-temporal signature that results from the combination of the separate spatio-

temporal signatures of each of its components and their interactions; and that signature then 

is reflected in the disease’s associations with land cover type and pattern, climate, 

demographics, season, and other ecological factors.  With that, diseases having shared 

epidemiological characteristics should also have spatio-temporal signatures with common 

features reflecting those shared characteristics.  These shared characteristics should, then, act 

as markers of those shared epidemiological characteristics. From this perspective, my 

dissertation may be the first step (among many, I'm sure) in identifying these unique 

signatures—and the markers of specific epidemiologic characteristics contained therein—

within associations between the physical environment (i.e. land cover pattern and climate) 

and disease incidence.  Clearly, more research is needed to validate these ideas, identify 

important signature elements and develop a functional predictive tool. 

 As I felt that further validation and development was first needed, I abandoned my 

original plans to use associations with land cover pattern to assess to potential existence of 

an animal reservoir for HMFD agents.  Nevertheless, informally comparing the associations 

found with HFMD to those found with the wild-zoonoses in the validation suggests that a 

wild animal reservoir is very unlikely: the associations found between land cover pattern and 

HFMD incidence were far weaker than those found with the wild-zoonoses in the validation.  

This conclusion is, of course, based on an informal comparison against an incompletely 

validated and incompletely developed method and should be interpreted with appropriate 
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caution.  The question remains, then, of the underlying drivers of HFMD’s seasonality and its 

associations with meteorological variables. 

 Despite our incomplete understanding of these underlying drivers, HFMD’s 

connection to weather is clear and has been found in several studies in different countries 

and years.  Modeling the associations between meteorological variables and HFMD, and 

applying this model to historical climate data, allowed me to estimate the effect that climate 

change could have been expected to have had on HFMD incidence in mainland China during 

the three-decade period from 1982 through 2011.  The results suggest that climate change 

should have caused a nearly two-fold increase in the expected incidence of HFMD in 

mainland China during that period; and, therefore, implicate climate change as a possible 

cause of the recently observed growth of HFMD in China.  And while I am not the first to 

suggest a possible connection between climate change and HFMD emergence, I believe that 

the research presented herein is the first to have specifically studied the possible connection, 

and the first to offer clear evidence of the potential role of climate change in the increased 

incidence of HFMD.  

 These studies demonstrate the application of diverse epidemiological and statistical 

methods and the use of data and methods that are uncommon in epidemiologic research.  

The results recommend directions for future research, implicate climate change as a driver of 

the recent emergence of HFMD in China, offer insight into HFMD’s landscape ecology, and 

demonstrate the potential utility of analyzing a disease’s associations with land cover pattern 

to better understand its underlying epidemiology.   
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