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University of Washington 

 

Abstract 

 

Intergenerational Transmission of Health Inequities: Early Life Socioeconomic Factors, Adult 

Cardiometabolic and Pregnancy Outcomes, and Potential Epigenetic Mechanisms in Young 

Adult Women. 

 

Jonathan Y Huang 

 

Chair of the Supervisory Committee: 

Daniel A Enquobahrie, MD, MPH, PhD 

Epidemiology 

 

Parental socioeconomic status (SES) experienced by a woman in utero may directly affect 

her adult health, independent of her life course experiences. Developmental programming of 

gene expression through DNA methylation may be involved. However, investigations using 

prevailing regression methods have been impeded by complex causal structures and 

unmeasured confounding. Using a U.S.-national, longitudinal cohort, we investigated the 

effect of mother’s education on (1) cardiometabolic risk and (2) pregnancy outcomes among 

women averaging 30 years of age. Using an Israeli birth cohort, we investigated 

associations between parental education and father’s occupational class on (3) DNA 

methylation at cardiometabolic genes in 32-year old women.  

(1) Using marginal structural models estimated by inverse probability weighting, we found 

young adult women whose mothers had higher educational attainment (e.g. college versus 

high school) had 40% lower risk (Odds Ratio = 0.60, 95% Confidence Interval: 0.45, 0.80) 
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of metabolic syndrome, independent of childhood maltreatment, adolescent overweight, 

adult SES, and behavioral risk. Additionally, there was evidence that women with more 

highly educated mothers were taller, thinner, and had a smaller waist, lower resting pulse 

rate, lower levels of inflammatory markers, and better blood sugar control.  

(2) Additionally, women born to more highly educated mothers who themselves bore 

children delivered newborns who were 90 grams heavier (95% CI: 20.8, 156.5), 

independent of childhood maltreatment, pre-pregnancy overweight, adult SES, and prenatal 

smoking. Moreover, results from (1) and (2) were robust to several sensitivity analyses 

including model alteration, data replacement, and quantitative bias analyses. 

(3) Finally, we found that lower SES at birth measured by father’s occupational class was 

associated with reduced methylation at the ABCA1 cholesterol transporter gene and the 

NR3C1 glucocorticoid receptor genes in 32-year old women, after adjusting for numerous 

parental and offspring characteristics. Similarly, fewer years of mother’s education was 

associated with reduced HSD11B2 glucocorticoid-inactivating enzyme gene methylation. 

However, such associations did not appear to mediate relationships between birth SES and 

young adult cardiometabolic risk. 

Overall, there appears to be substantial evidence that early life SES is independently related 

to adult women’s health and DNA methylation, however the mechanisms relating them 

require further elucidation.  
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To Claire and our baby boy.  

May we strive to leave the world a better place for all future generations.  
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What will you prescribe for the sick woman, doctor - you who have seen at a glance that the 

cause of her illness is general anemia, want of good food, lack of fresh air? Say, a good 

beefsteak every day? a little exercise in the country? a dry and well-ventilated bedroom? 

What irony! If she could have afforded it this would have been done long since without 

waiting for your advice. 

~ Peter Kropotkin, An Appeal to the Young (1880) 
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Introduction 

Background and Significance 

Health disparities between socioeconomic classes remains an intractable problem in the U.S. 

and globally. Although numerous risk factors across the life course have been identified, the 

causal mechanisms, and therefore the potential efficacy of interventions, are uncertain.1,2 

One segment of the life course that has recently garnered interest is early life including  

intrauterine and early post-natal life.2-7 In women, low parental socioeconomic status 

(SES)8,9 and childhood maltreatment10 are associated with increased risk of obesity, 

cardiovascular disease, diabetes, hypertension and early mortality11-17 as well as having low 

birth weight offspring.  

Developmental Origins of Health and Disease (DOHaD) theory suggest stressors 

experienced in early life may adversely influence fetal programming and organ growth and 

development15-17 and subsequent increased risk for adult cardiometabolic disease.18-24 

Among women of child-bearing age, this may also lead to poor response to the physical 

challenge of pregnancy and adverse birth outcomes,33 reinforcing health disparities27,28 and 

historical trauma34 across generations. Persistent and widening socioeconomic disparities in 

cardiometabolic disease and low birth weight infants (< 2500 grams) in the U.S. and 

globally suggest understanding early life mechanisms and identifying related interventions 

may be necessary to solve these intractable public health challenges.2,11-13 

However, empirical analysis of causal and mediating mechanisms explaining associations 

between early life SES and adult cardiometabolic risk (CMR) or pregnancy outcomes are 

lacking and methodologically challenging.25 Importantly, the temporal nature of a woman’s 

experiences across the life course, in utero, child, adolescent, and adult, should be explicitly 

incorporated into any analysis. Because life course mediators are sequentially dependent1 

and may be confounded by still other mediators, simple covariate adjustment models are 

often biased. Consequently, estimating the direct effect of a distant, early life exposure such 
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as SES on adult outcomes likely requires the application of nascent epidemiologic 

methods,25,35 such as marginal structural models.  

Additionally, current social theory suggests that the biological mechanism for persistent 

health disparities may be through epigenetic modifications of DNA following early life 

exposures to stress, poverty, or malnutrition.26-30 ‘Epigenetic’ refers to any heritable pre- or 

post- transcriptional regulation of DNA function – from DNA methylation, histone 

modification, or micro RNAs -- which occur without changes to the underlying DNA 

sequence. DNA methylation is of particular interest, as it can have wide-ranging effects 

during fetal development and beyond.14 Recent studies suggest that in utero exposure to 

stress hormones31,32 may program fetuses for increased cortisol secretion and stress 

reactivity, insulin resistance, poor kidney and vascular development, and obesity, through 

alterations in the methylation profile of important cardiometabolic and stress-related genes. 

In turn, this may make such individuals more susceptible to hypertension, diabetes, and 

other cardiometabolic diseases later in life.14  

While interest in DNA methylation is growing, it remains unclear how epigenetic 

mechanisms may be investigated in epidemiologic studies.32 Challenges include the 

characterization of early life exposures and assessment of DNA methylation, including 

timing, tissues-specificity, and candidate sites. While some studies have associated low 

early life SES and adulthood differences in methylation, 30,43,44 substantial evidence is 

lacking supporting the theory that early life SES may be related specifically to adult 

cardiometabolic health through epigenetic mechanisms. 
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Project Description 

In light of identified gaps in the literature, this dissertation seeks to clarify the causal 

relationship between early life socioeconomic status and adverse adult cardiometabolic risk 

and pregnancy outcomes among women, as well as the potential DNA methylation 

mechanisms thereof.  

Using the National Longitudinal Study of Adolescent Health (Add Health) and the Jerusalem 

Perinatal Study Family Follow-Up (JPS-1), described subsequently, we investigated the 

following three specific aims, corresponding to the three numbered chapters of this 

dissertation. Briefly: 

1. Using Add Health, we investigated whether there was evidence for a controlled direct 

effect of a woman’s early life SES on her cardiometabolic risk in young adulthood (mean 

age = 30 years). (Chapter 1) 

2. Using Add Health, we investigated whether there was evidence for a controlled direct 

effect of a woman’s early life SES on the birth weight of her first, singleton child. 

(Chapter 2) 

3. Using JPS-1, we investigated whether early life SES was associated with candidate 

cardiometabolic gene methylation in young adult women (mean age = 32 years). 

(Chapter 3) 

 

Study Settings 

The National Longitudinal Study of Adolescent Health (Add Health) is a school-based, 

nationally-representative, longitudinal study of United States adolescents enrolled in grades 

7 through 12 in 1994-95 (N = 90,118). In-home interviews were conducted in 1994-5 

(Wave I) with a subset of individuals and their parents, siblings, friends, and romantic 

partners to collect extensive information on demographics, health, attitudes, behaviors, and 

environment (N = 20,745). Individuals were followed for up to three additional waves of in-

home interviews: Individuals were re-interviewed in 1996 (Wave II), anthropometric 
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measurements were collected in addition to re-interview in 2001-2 (Wave III), and capillary 

whole blood collection was also collected in 2008-9 (Wave IV). The final round (Wave IV) 

included 80.3% of eligible participants (N = 15,70). Additional characteristics and 

documentation of the study design and sampling frame can be found on the Add Health 

website (www.cpc.unc.edu/projects/addhealth/). 

Individuals were eligible for specific aims 1 and 2 of this study if they were women, had a 

biological mother interviewed and participated in both Wave I and Wave IV interviews. For 

specific aim 2, women must have had at least one live birth during the course of the study. 

Consequently, 4,026 and 1,681 women were used for Aims 1 and 2, respectively. 

The Jerusalem Perinatal Study (JPS), is a longitudinal study following all births to residents 

of Jerusalem in the years 1974 through 1976 (N = 17,003). The JPS Family Follow-Up (JPS-

1) is an ancillary study conducted amongst a subset of JPS participants (mother-offspring 

dyads). Participants for JPS-1 were selected using a sampling scheme that oversampled for 

maternal pre-pregnancy overweight (body mass index ≥ 27 kg/m2) and extremes of 

offspring birth weight (≤ 2500 and ≥ 4000 grams). In JPS-1, peripheral blood samples were 

collected from offspring (N = 1,250) at an average age of 32 years, at which time various 

anthropometric measures were also taken. For specific aim 3, all JPS-1 offspring who were 

female (N = 613) women were included.       

Summary and Potential Impact 

This study seeks to use contemporary causal modeling method to investigate whether early 

life SES has a direct effect on adult outcomes amongst women, including cardiometabolic 

phenotype and birth outcomes. Additionally, it seeks to assess whether DNA methylation 

may have a potential role in mediating these associations. This work may provide evidence 

for the importance of early life in determining adult health.   

(End Introduction)  

http://www.cpc.unc.edu/projects/addhealth/
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Chapter 1 – Direct effects of maternal education at daughter’s birth on daughter’s 

adult cardiometabolic risk. 

Abstract 

Background: Studies of associations between maternal SES indicators and offspring 

cardiometabolic risk have had inconsistent results. We examined the direct effect of 

maternal education on daughter’s adult cardiometabolic risk using two modelling methods, 

adjusting for confounders and life course mediators. 

Methods: Using data from the National Longitudinal Study of Adolescent Health (1995-

2009), we identified female respondents whose biological mothers were interviewed (N = 

4,026). We defined maternal education as less than high school (HS), HS diploma or 

equivalent, or college degree at respondent’s birth. Using multivariate regression and 

marginal structural models (MSM), we estimated the controlled direct effect of maternal 

education on respondent’s adult (mean age = 28 years) body size, blood pressure, pulse, 

plasma glucose, C-reactive Protein (CRP), and risk of metabolic syndrome independent of 

mediating risk factors: adolescent maltreatment and overweight status, low adult education 

and household income, smoking and low physical activity. We evaluated sensitivity of our 

findings to model assumptions and missing data.  

Results: Eighteen percent (N = 720) of mothers had less than HS education at respondent’s 

birth. Multivariate regression and MSM suggested a 10-14% reduced CRP (MSM β = -13.8% 

[95% CI: -23.5%, -2.8%]) and a 30-40% reduced risk of metabolic syndrome (MSM OR = 

0.60 [95% CI: 0.45, 0.80]) associated with higher maternal education, independent of 

mediators. MSM analyses suggested additional associations with reduced waist 

circumference (3 cm), BMI (1 kg/m2), and glycated hemoglobin (1.3%). Findings were 

robust to our sensitivity analyses.  



Page 16 of 106 

 

Conclusions: Our models suggest a direct effect of maternal education on daughter’s 

cardiometabolic risk. Further research should consider additional mechanisms responsible 

for maternal early-life risk exposures to offspring cardiometabolic risk. 
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Background 

Maternal external environment around the time of pregnancy influences maternal health 

and is important in the developmental origins of offspring adult health and disease, due to 

organ development and metabolic programming events that occur during the perinatal 

period.1, 2 For instance, low maternal educational attainment is known to be a contributor to 

pregnancy stress, e.g. through resource availability and psychosocial preparedness for 

childbearing, that may contribute directly to excess fetal glucocorticoid exposure3-6 and 

subsequent adult cardiometabolic risk.7 Moreover, among female offspring, this mechanism 

may result in intergenerational transmission of disease risk through poor pregnancy 

outcomes.3-7 However, studies associating maternal education with offspring 

cardiometabolic outcomes in adulthood have shown mixed results. While Bouhanick, et al. 

found maternal completion of compulsory education (16 years) to be independently 

associated with reduced risk of offspring metabolic syndrome at age 45,8 Kvaavik, et al. 

found no association between maternal education and offspring body mass index, lipids, or 

blood pressure at 15, 25, or 40 years.9  

These inconsistent findings may be due to varying covariate adjustment while estimating 

direct effects of maternal education independent of known mediators and confounders. The 

relationship between early life and adult cardiometabolic outcomes is likely complex and 

mediators such as child-rearing environment10, 11 and adult socioeconomic stressors12, 13 

may themselves affect others mediators such as adolescent obesity or risky health 

behaviors.8-14 In such a setting, the likelihood of unmeasured mediator-outcome 

confounding is high and the estimation of direct effects through conventional covariate 

adjustment and mediation analysis can be biased.15-17 Other methods such as marginal 

structural models (MSMs) may better account for known psychosocial and biological 

mediators between maternal education and adult cardiometabolic risk.15-20 Nonetheless, 
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MSMs are still susceptible to unmeasured confounding and assumptions about causal 

structure, warranting additional sensitivity analyses.21,22 

The objective of the current study is to estimate whether maternal education at the time of 

her daughter’s birth, has a direct effect on the daughter’s body size, blood pressure, pulse, 

plasma glucose, inflammatory markers, and overall risk of metabolic syndrome in young 

adulthood, independent of known psychosocial and biological mediators: childhood 

maltreatment, adolescent overweight, adult socioeconomic status (SES), and adult smoking 

and physical activity. We improve on past work by incorporating life-course social and 

biological determinants of adulthood cardiometabolic risk in a causal mediation framework 

and conducting multiple sensitivity analyses to test robustness of findings to weight and 

model misspecification. 
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Methods 

Study Setting 

The current study was conducted in the setting of the National Longitudinal Study of 

Adolescent Health (Add Health), a nationally-representative, longitudinal study of 7-12 

grade United States adolescents that begun in 1994 (N = 90,118). In the Add Health study, 

in-home interviews were conducted with a core subset of respondents (randomly selected 

within school and sex strata) along with a parent, during which extensive information was 

collected on demographics, health, attitudes, behaviors, and environment. Additional 

respondents (and parents) were interviewed based on ethnic minority status, having 

siblings in the study, and/or being black with at least one college-educated parent (N = 

20,745 individuals). Respondents first interviewed in Wave I were followed for up to three 

additional in-home interviews in 1996 (Wave II), 2001-2002 (Wave III), and 2007-2008 

(Wave IV). Anthropometric measurements (Wave III) and capillary whole blood (Wave IV) 

were also collected. During Wave IV, 15,701 respondents (80.3% of eligible Wave I) were 

interviewed. Investigators calculated a grand sampling weight for respondents interviewed 

in all four waves to approximate the target population of U.S. adolescents in grades 7-11 in 

1994-5.23 This weight accounts for clustered sampling, attrition, and oversampling in 

longitudinal analyses.23  

Additional information on respondent characteristics, sampling frame, and protocols can be 

found on the Add Health site: www.cpc.unc.edu/projects/addhealth/. All data used for the 

current study were obtained through a restricted data access agreement between the 

University of Washington Center for Studies in Demography and Ecology (CSDE) and the 

Inter-university Consortium for Political and Social Research (ICPSR) at the University of 

Michigan. Research on these data has been approved by the Institutional Review Board of 

the University of Washington. 

http://www.cpc.unc.edu/projects/addhealth/
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Study Population 

Since we are interested in the potential intergenerational transmission of disease risk, 

respondents were included in this current study if they were women, had a biological 

mother interviewed during Wave I, and participated in Wave IV interview. There were 5,375 

respondents available based on these criteria. We excluded 129 (2.4%) respondents without 

a reported maternal education and 1,256 (23.4%) missing a Wave IV longitudinal grand 

sampling weight due to non-response in previous waves. Individuals missing this weight 

cannot be used for analysis, since their contribution to the target population cannot be 

estimated. Since non-response patterns are accounted for in the weights of the remaining 

individuals, the bias due to these exclusions should be minimal.23 Our final analytic data set 

included 4,026 respondents.  

Data Collection 

Primary Exposure – During Wave I (1994-5), a respondent’s mother was asked “How far did 

you go in school?” Responses were coded into three categories: less than high school 

diploma; high school diploma or GED certification, and completed college degree. Because 

we were interested in maternal education at or prior to respondent’s birth, we capped 

completed education to less than high school if she gave birth at or prior to 16 years (n = 

29) and high school diploma if she gave birth at or prior to 21 years (n = 93).  

Primary Outcomes – Respondent’s height, weight, waist circumference, blood pressure, and 

pulse rate were measured by study staff at Wave IV home visit. Mean arterial pressure 

(MAP = (systolic + 2 x diastolic) / 3), pulse pressure (PP = systolic – diastolic), and body 

mass index (BMI = weight in kilograms / height in meters squared) were calculated by 

study staff. Capillary whole blood was collected by finger stick, from which high-sensitivity C 

- reactive protein (hsCRP), glycated hemoglobin (HbA1c), and plasma glucose were 

assayed. Additional details for sample collection and quantification protocols can be found 
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under “Biological Data” at: http://www.cpc.unc.edu/projects/addhealth/design/wave4. We 

log-transformed hsCRP, HbA1c, and plasma glucose because their distributions were 

skewed.  

Metabolic Syndrome - Metabolic syndrome was defined using the American Heart 

Association / National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP 

III) guidelines for women.24 A respondent was defined to have evidence of metabolic 

syndrome by ATP III if she had three or more of the following: Waist circumference ≥ 88 

cm, elevated triglycerides ≥ 150 mg/dL or on drug treatment, reduced HDL < 50 mg/dL, 

blood pressure greater than 130/85 mmHg, and/or fasting glucose ≥ 100 mg/dL or on drug 

treatment. To adapt these criteria to available data, we substituted self-reported high 

cholesterol for the lipid measures and HbA1c ≥ 5.7% for the glucose measure (since we did 

not have a fasting glucose measure). This cutoff for HbA1c is a potential marker for pre-

diabetes.25 

Psychosocial mediators – Childhood maltreatment10,11 and adult socioeconomic status12,13 

are important psychosocial stressors in the respondent’s life course that may lie in the 

causal pathway between maternal education and cardiometabolic risk. In line with previous 

investigations in Add Health,26 we used self-reported incidents of neglect, physical abuse, 

and sexual abuse prior to 18 years of age to predict a maltreatment factor score. Factors 

scores were generated using principal component factor (PCF) analysis and quartimin 

rotations.27-29 Adult socioeconomic status (SES) was measured prior to our outcomes using 

two variables from Wave III: Self-reported total household income in dollars or, if the 

woman could not provide an exact amount, one the following approximates: $5,000; 

$12,500; $17,500; $25,000; $35,000; $45,000; $62,500; or $100,000, based on the mid-

point of categorical choices (capped at $100,000); and last completed year of education. A 

factor score for adult SES was predicted from these two indicated by PCF analysis and 

http://www.cpc.unc.edu/projects/addhealth/design/wave4
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quartimin rotations. Maltreatment and adult SES factor scores were also dichotomized at 

their medians to high/low categories. 

Biological mediators – Higher adolescent BMI and adult behavioral risk factors such as 

smoking and lack of physical activity increase adult cardiometabolic risk11, 12 and may be a 

consequence of lower maternal education and/or psychosocial stressors.11 Adolescent BMI 

was calculated from Wave I (mean age = 15) self-reported height and weight. Based on 

American Academy of Pediatrics guidelines, respondents up to 17 years old at Wave I were 

classified as having high childhood BMI if their BMI was greater than 85 percent of other 

respondents of the same age (Cutoff range: 25.3 – 27.3 kg/m2). Respondents 18 years or 

older were classified as high BMI if their BMI met or exceeded 25 kg / m2, according to adult 

standards. A behavioral risk factor score was calculated from Wave IV self-report of number 

of cigarettes smoked per month and number of various recreational physical activity events 

in the past week, using PCF analyses and quartimin rotations. High behavioral risk was 

defined as having a score higher than the median factor score. 

Confounders – Mother’s age at respondent’s birth is related to educational attainment and 

may be related to child-rearing practices and therefore psychosocial and biological stressors 

experienced by her daughter30,31 Similarly, maternal self-reported race is related to 

educational opportunity and attainment, as well as social and biological stressors 

experienced by the daughter throughout her life course.32,33 Maternal race was coded as 

non-Hispanic white, Hispanic white, black any ethnicity, or other non-white, with those 

reporting any mixed race not including black being accorded the last category. Both 

mother’s age at respondent’s birth and mother’s self-reported race were included as 

confounders in all analyses.  

Statistical Analysis 
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We first examined univariate demographic characteristics of the study population accounting 

for survey design. Next, we estimated the direct effect of maternal education (Xi) on the 

daughter’s anthropometrics and cardiometabolic risk markers (Yi) in early adulthood, 

independent of the daughter’s own life experiences, using two modelling approaches: 

Multivariate-adjusted linear (for continuous outcomes) or logistic (for dichotomous 

outcomes) regression models including all measured predictors of outcomes (Traditional 

Approach) and linear or logistic marginal structural models (MSM) estimated by inverse 

probability weights using dichotomous mediators (Causal Approach).  

Hypothesized causal structure - In each model we attempted to estimate the controlled 

direct effect of Xi on Yi after accounting for confounding by mother’s age at daughter’s birth 

(Gi) and mother’s self-reported race (Ri), as well as mediation / endogenous confounding by 

daughter’s life-course psychosocial and biological stressors: high childhood maltreatment 

prior to 18 years (Mi), adolescent overweight (Oi), low adult SES (Ai), and high adult 

behavioral risk (Bi). The relationships between exposure, mediators, confounders, and 

outcome are constrained only by temporality (Figure 1): Mother’s age and self-reported race 

precede all other factors, including mother’s education at daughter’s birth. Each of the 

mediators in the daughter’s life course is hypothesized to also affect all subsequent 

mediators (e.g. child maltreatment affects adolescent overweight, adult SES, and adult 

behavioral risk).  
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Figure 1. Causal diagram of hypothesized life course determinants of cardiometabolic risk. Each exposure and 
mediator is assumed to have an effect on all other mediators that occur subsequent to it. Directed edges are drawn 
with different patterns based on their source for visual effect only; they do not reflect any addition knowledge or 
specification about relationships. The asterisk (*) indicates the effect of interest: the direct effect of maternal 
education on daughter’s cardiometabolic risk measures. Confounders (C) represent a vector including maternal age 
at daughter’s birth (G) and maternal self-reported race (R). 

 

Traditional Approach: Multivariate regression – We first estimated direct effects 

conventionally by fitting the following multivariate-adjusted linear regression model in which 

the primary exposure, confounders, and mediators are included as predictors of continuous 

outcomes (a corresponding logit model was fit for binary outcomes):  

E[Yi | Xi = x, Ri = r, Gi = g, Mi = m, Oi = o, Ai = a, Bi = b] =     (1) 

β0 + β1X + β2R + β3G + β4M + β5O + β6A + β7B   

Under strong assumptions of no model misspecification, no interaction, and no unmeasured 

confounding,16 it is possible for equation (1) to give an unbiased estimate of the causal 

direct effect of maternal education on daughter’s anthropometrics and cardiometabolic risk 

makers as well as the causal direct effects of mediators. However, our model (Figure 1) 

implies mediator adjustment induces confounding through the mediator’s parents (i.e. 

collider stratification bias). We use this as a baseline to explore effect estimates from 

different covariates functional forms. 

Causal Approach: MSM estimated by inverse probability weighting – Next, we tested the 

controlled direct effect of maternal education (Xi) on daughter’s cardiometabolic risk 

markers (Yi) by fitting the following regression model: 

E[Yi | Xi = x, Mi = m, Oi = o, Ai = a, Si = s] =       (2) 

β0 + β1X + β2M + β3O + β4A + β5B    

weighting individual subjects by the inverse probability of their exposure to their given 

strata of G0 education, the baseline confounders, maternal age and race, and probability of 

exposure to the four dichotomous mediators. No interaction terms were included, as there 
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was not consistent evidence of additive interaction between the exposure and each of the 

mediators. Stabilized weights34 for G0 education (  
 ) were estimated by multinomial logistic 

regression to predict the probability for a given strata of G0 education given C confounders. 

Stabilized inverse probability weights (IPW) for mediators were calculated using logistic 

regression, giving regard to temporality (Figure 1):  

G0 education:     
  = 

         

         |        
       (3) 

Childhood maltreatment:    
  = 

         |        

         |                 
     (4) 

Adolescent overweight:   
  = 

         |        

         |                          
      (5) 

Adult SES:      
  = 

         |        

         |                                    
     (6) 

Adult behavioral risk:   
  = 

         |        

         |                                             
    (7) 

A correctly specified MSM gives the controlled direct effect of X on Y in a marginal 

population in which, potentially counter to the fact, all individuals are “unexposed” to the 

mediators, in our model, a marginal G1 population at lower risk of childhood maltreatment, 

adolescent overweight, low adult SES, and adult behavioral risk.  

Incorporating survey design – To account for sampling dependency introduced by the 

survey design and produce correct standard errors,23 each weight was estimated with the 

svy option after using the Wave IV grand sampling weights, clustering, and stratification 

variables for the svyset command. An overall weight (Woverall) was then generated for each 

subject using the product of the stabilized weights and the Wave IV grand sampling weight 

(  
   

):  

Overall Weight:   Woverall =   
  *   

  *   
  *   

  *   
 *   

   
   (8)  
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The svy option was subsequently used to fit model (2) using Woverall for the svyset 

command. An analogous method was described by Brumback, et al. employing PROC 

SURVEYREG in SAS.35  

Sensitivity Analyses 

Like other causal modeling methods, MSM effect estimations are subject to biases from 

misspecified causal models, mismeasurement, and unmeasured confounding.20,21 We 

examined qualitative robustness of our original MSM estimates to IPW modifications, 

alternate mediation models, and data replacement. 

IPW Modification - We re-fit model (2) after truncating inverse probability weights at the 1st 

/ 99th, 5th / 95th, and 10th / 90th percentiles. We also re-fit model (2) after changing the 

dependencies in the IPW equations (4-7) to reverse the presumed temporal relationship 

between childhood maltreatment and adolescent overweight and between adult SES and 

adult behavioral risk.  

Alternate Mediation – We re-fit model (2) using all discretely binary mediators, rather than 

dichotomized factor scores. Namely, childhood maltreatment was recoded as any or no 

episodes of neglect, physical abuse, or sexual abuse, adult SES was recoded as high school 

graduate at Wave III or not, and adult behavioral risk was recoded as any smoking and no 

physical activity. Adolescent BMI remained dichotomized at 25 kg/m2. Since approximately 

20% of our respondents still lived with parents at Wave III, we also re-fit model (2) adding 

respondent’s Wave VI (mean age = 28) SES as an additional mediator. Wave IV SES was 

defined by a factor score predicted from total household income, attained education, and an 

indicator if respondent would “still be in debt,” “break even,” or “have some left over” if she 

sold all of her assets to pay off her debts. This mediator was presumed to occur after Wave 

III SES, but prior to adult behavioral risk.  
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Data replacement – Finally, we tested sensitivity to missing values by alternately replacing 

all missing values for binary mediators to be alternately, an indicator of cardiometabolic risk 

(e.g. missing value for adult SES replaced with indicator of low adult SES) or an indicator of 

protection (e.g. missing value for adult SES replace with indicator of high adult SES). 

All data processing and analysis were conducted in STATA 12.1 MP (College Station, TX). 

Results  

Twenty-three percent (N = 919), 59% (N = 2,387), and 18% (N = 720) of respondents had 

mothers who reported at least a college degree, at least a high school diploma or GED, or 

less than a high school education, respectively (Table 1). The corresponding proportions 

accounting for survey design are 21%, 62%, and 17%, respectively. Accounting for survey 

design, 72% percent and 15% of mothers fell into study-defined categories of non-Hispanic 

white and black, respectively. Daughters of mothers with less than a high school education 

had a 14% greater prevalence of metabolic syndrome than daughters of college-educated 

mothers (21% versus 7%, respectively). Daughters of mother’s with less than a high school 

education were also more likely to experience psychosocial stressors (e.g. 13% greater 

prevalence of any childhood physical abuse) and behavioral risk factors (e.g. 9% greater 

prevalence of adult smoking) compared to daughters of college-educated mothers. 

Using covariate adjustment for confounders and mediators, we estimated that each higher 

level of maternal education is independently associated with a 1 beat-per-minute (bpm) 

slower (-2.2, -0.2) resting pulse rate, 10% lower (-19%, -0.5%) hsCRP, and 28% lower risk 

(OR = 0.72, [95 CI: 0.55, 0.94]) of metabolic syndrome in the daughter (Table 2). 

In MSM analyses, we found each higher level of maternal education had a direct effect of 3 

cm decreased (-4.8, -1.6) waist circumference, 1 kg/m2 decreased (-1.7, -0.2) BMI, 2 bpm 

slower (-2.7, -0.8) resting pulse rate,  14% lower (-23.55, -2.7%) hsCRP, and 1.3% lower 

(-1.9%, -0.7%) HbA1c, as well as 28% decreased risk (OR = 0.72, [95% CI: 0.57, 0.90]) 
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of overweight and 40% decreased risk (0.45, 0.80) of metabolic syndrome in the daughter 

(Table 3). 

Table 1. Study population characteristics, by maternal educational attainment. 

  Maternal educational attainment 

% (N) / mean (SD) Overall 
 

(N = 4,026) 

< High School 
Diploma 
(n = 720) 

High School Diploma 
or GED 

(n = 2,387) 

College Diploma or 
Higher 

(n = 919) 

Mother     
% White 60.9% (2,434) 38.6% (276) 65.3% (1,550) 66.9% (608) 

Age at daughter’s birth (years) 25.9 (5.3) 24.5 (6.3) 25.3 (5.1) 28.6 (4.0) 
     
Daughter – Childhood / Adolescent     

Ever neglected before age 18 49.9% (1,991) 50.9% (364) 50.8% (1,202) 46.8% (425) 
Ever physically abused before age 18 15.2% (607) 19.7% (140) 15.5% (368) 10.9% (99) 

Ever sexually abused before age 18 6.5% (261) 7.5% (53) 7.2% (170) 4.2% (38) 
BMI at Wave I (kg/m

2
) 22.2 (4.5) 23.2 (4.5) 22.3 (4.6) 21.3 (4.0) 
     

Daughter - Adulthood     
Years of formal education by Wave III 13.4 (1.9) 12.3 (1.7) 13.3 (1.8) 14.4 (1.7) 

% High school graduate by Wave III 90.1% (3,625) 78.2% (563) 90.7% (2,163) 97.9% (899) 
Average annual household income in 

Wave III (dollars)* 
31,510 

(38,220) 
28,533 (28,382) 31,418 (38,251) 34,079 (44,237) 

     
% Daily smoker at Wave IV 17.8% (712) 18.9% (135) 20.1% (477) 10.9% (100) 

Physical activity events in past week at 
Wave IV 

5.5 (5.3) 5.1 (5.2) 5.4 (5.2) 6.3 (5.4) 

     
Daughter - Adult Cardiometabolic 
Measures 

    

Height (cm) 163.7 (7.2) 161.9 (6.9) 163.8 (7.1) 164.9 (7.3) 
Weight (kg) 77.9 (22.3) 81.4 (23.9) 78.5 (22.1) 73.5 (20.7) 

Waist circumference (cm) 96.6 (18.2) 100.9 (18.7) 97.3 (18.2) 91.6 (16.5) 
BMI (kg/m

2
) 29.1 (8.1) 31.0 (8.9) 29.2 (7.9) 27.0 (7.4) 

Overweight (BMI > 25 kg/m
2
) 37.1% (1,475) 47.5% (335) 38.1% (902) 26.3% (238) 
     

Systolic blood pressure (mmHg) 119.8 (12.5) 120.3 (12.8) 120.1 (12.5) 118.6 (12.3) 
Diastolic blood pressure (mmHg) 76.8 (9.7) 77.3 (9.8) 76.9 (9.6) 75.9 (9.8) 

Mean arterial pressure (mmHg) 91.1 (10.0) 91.6 (10.3) 91.3 (10.0) 90.1 (10.0) 
Pulse rate (bpm) 75.9 (11.5) 76.7 (11.4) 76.4 (11.5) 74.0 (11.5) 

Pulse pressure (mmHg) 43.0 (7.9) 43.0 (7.7) 43.2 (8.0) 42.6 (7.7) 
     

Median random glucose (mg/dL) 101 (33.2) 100 (33.3) 101 (36.0) 100 (24.1) 
Median HbA1c (%) 5.5 (0.76) 5.5 (0.77) 5.5 (0.78) 5.4 (0.56) 

Median plasma hsCRP 2.9 (9.4) 4.1 (9.2) 3.0 (9.9) 2.3 (8.0) 
Diagnosed high cholesterol / lipids 7.3% (292) 7.9% (57) 7.0% (167) 7.4% (68) 

Evidence of metabolic syndrome** 12.3% (497)  17.9% (129) 12.4% (296) 7.8% (72) 

* Average household income is either the combined income of the daughter and her spouse / partner or the daughter and 
her family, if she lives with parents.  
** Based on AHA/NCEP guidelines, we classified a woman as having evidence of metabolic syndrome if she has at least three 
of the following: waist circumference ≥ 88 cm, HbA1c ≥ 5.7%, systolic blood pressure ≥ 130 mmHg, diastolic blood pressure ≥ 
85 mmHg, and/or physician diagnosis of high cholesterol. 
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Our sensitivity analyses using truncated inverse probability weights (Table 4), altered causal 

ordering of mediators (Table 5), discrete categorization of mediators (Table 6), an additional 

indicator of respondent’s Wave IV SES (Table 7), and missing mediator value replacement 

(Table 8), did not substantially alter the MSM estimates of direct effects. 

Table 2. Multivariate regression estimates of maternal education effect on daughter’s cardiometabolic risk. 

Linear Regression Estimates (
*
p < 0.05; 

**
p < 0.005; 

***
p < 0.0005) 

Measures β, [95 % Confidence Interval] p-value 

Height (cm) 0.91 [0.42, 1.40] 0.0003
***

 
Weight (kg) 0.83 [-0.64, 2.30] 0.267 

Waist circumference (cm) -1.14 [-2.43, 0.15] 0.083 
BMI (kg/m

2
) 0.006 [-0.48, 0.49] 0.981 

   
Systolic blood pressure (mmHg) 0.02 [-0.97, 1.01] 0.970 

Diastolic blood pressure (mmHg) -0.06 [-0.82, 0.71] 0.885 
Mean arterial pressure (mmHg) -0.03 [-0.83, 0.77] 0.939 

Pulse rate (beats per minute) -1.19 [-2.17, -0.21] 0.018
*
 

Pulse pressure (mmHg) 0.08 [-0.51, 0.66] 0.801 
   

Log hsCRP 
(untransformed hsCRP) 

-0.11 [-0.21, -0.005] 
(-10.3% [-19.1%, -0.5%]) 

0.039
*
 

Log HbA1c 
(untransformed HbA1c) 

-0.006 [-0.013, 0.001] 
(-0.6% [-1.3%, 0.1%]) 

0.100 

Log glucose 
(untransformed random plasma glucose) 

-0.002 [-0.019, 0.015] 
(-0.2% [-1.9%, 1.5%]) 

0.788 

Logistic regression estimates (
*
p < 0.05; 

**
p < 0.005) 

Measures OR, [95 % Confidence Interval] p-value 

Overweight (BMI > 25 kg/m
2
) at Wave IV (mean age = 28) 1.06 [0.88, 1.27] 0.532 

Evidence of metabolic syndrome
†
 0.72 [0.55, 0.94] 0.016

*
 

Note: Models are the linear association between increasing maternal education from < high school to high school 
graduate (or, high school graduate to college graduate) and either continuous outcome (linear regression), or log 

odds of binary outcome (logistic regression). 
 

Models are adjusted for: Maternal race and age at birth; Daughter’s BMI at Wave I (mean age = 15); frequency of 
childhood neglect, physical or sexual abuse; years of education and household income at Wave III (mean age = 22); 

number of cigarettes smoked in the past month; and number of physical activity events in the last week. 
 

† Based on AHA/NCEP guidelines, we classified women has having evidence of metabolic syndrome if she has at 
least three of the following: waist circumference ≥ 88 cm, HbA1c ≥ 5.7%, systolic blood pressure ≥ 130 mmHg, 

diastolic blood pressure ≥ 85 mmHg, and/or physician diagnosis of high cholesterol. 
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Table 3. Marginal structural model estimates of maternal education direct effect on various cardiometabolic 
measures estimated by inverse probability weighting. 

Linear Regression Estimates (
*
p < 0.05; 

**
p < 0.005; 

***
p < 0.0005) 

Outcome β, [95 % Confidence Interval] p-value 

Height (cm) 1.06 [0.56, 1.55] 4.2 x 10
-5***

 
Weight (kg) -1.60 [-3.60, 0.39] 0.115 

Waist circumference (cm) -3.18 [-4.78, -1.57] 0.0001
***

 
BMI (kg/m

2
) -0.95 [-1.69, -0.21] 0.012

*
 

   
Systolic blood pressure (mmHg) -0.50 [-1.53, 0.54] 0.344 

Diastolic blood pressure (mmHg) -0.55 [-1.35, 0.24] 0.169 
Mean arterial pressure (mmHg) -0.53 [-1.36, 0.29] 0.204 

Pulse rate (beats per minute) -1.78 [-2.74, -0.81] 0.0004
***

 
Pulse pressure (mmHg) 0.06 [-0.58, 0.70] 0.862 

   
Log hsCRP 

(untransformed hsCRP) 
-0.15 [-0.27, -0.028] 

(-13.8% [-23.5%, -2.8%]) 
0.016

*
 

Log HbA1c 
(untransformed HbA1c) 

-0.013 [-0.019, -0.007] 
(-1.3% [-1.9%, -0.7%]) 

0.0001
***

 

Log glucose 
(untransformed random plasma glucose) 

-0.006 [-0.021, 0.010] 
(-0.6% [-2.1%, 1.0%]) 

0.464 

Logistic regression estimates (
*
p < 0.05; 

**
p < 0.005) 

Outcome OR, [95 % Confidence Interval] p-value 

Overweight (BMI > 25 kg/m
2
) at Wave IV (mean age = 28) 0.72 [0.57, 0.90] 0.005

**
 

Evidence of metabolic syndrome
†
 0.60 [0.45, 0.80] 0.001

**
 

Note: Models are the linear association between increasing maternal education from < high school to high school 
graduate (or, high school graduate to college graduate) and either continuous outcome (linear regression) or log 

odds of binary outcome (logistic regression). 
 

The controlled direct effect of maternal education on cardiometabolic outcomes are estimated by adjusting for the 
following mediators: high childhood maltreatment; adolescent overweight; low adult SES (education and income); 

and high behavioral risk (high smoking and no physical activity), while weighting the sample using the inverse 
probability of, jointly: each of these mediators, the primary exposure, and survey sampling.  

 
The mediators are assumed to occur in the order listed above, meaning each mediator only has effects on the 

mediators subsequent to them. The effect is estimated for a marginal population where each individual has equal 
probability of exposure and mediators. 

 
† Based on AHA/NCEP guidelines, we classified women has having evidence of metabolic syndrome if she has at 
least three of the following: waist circumference ≥ 88 cm, HbA1c ≥ 5.7%, systolic blood pressure ≥ 130 mmHg, 

diastolic blood pressure ≥ 85 mmHg, and/or physician diagnosis of high cholesterol. 

 

Discussion 

We found robust evidence that attained maternal education at the time of a daughter’s birth 

has a direct effect on the daughter’s adult body size, pulse rate, inflammatory state, glucose 

control, and risk of metabolic syndrome. While some of these associations were observed 



Page 31 of 106 

 

when using conventional covariate adjustment models, evidence for a direct effect of 

maternal education on daughter’s adult cardiometabolic measures was uniformly stronger 

when estimated by MSM, which is more robust to unmeasured mediator-outcome 

confounding.16 Moreover, the qualitative interpretation of estimates from the MSM approach 

did not change under any of our sensitivity analyses for modeling assumptions and missing 

data. 

A number of studies have investigated associations between childhood socioeconomic status 

(SES) and adult cardiometabolic outcomes.11, 18, 38 A systematic review by Tamayo, et al. 

found some evidence for an independent association between parental SES, including 

parental education, and type 2 diabetes and obesity among adult offspring.11 The authors 

also identified childhood neglect and obesity and adult SES and health behaviors as 

important mediators.11 However, various investigators have highlighted significant 

weaknesses in the overall body of evidence due to the substantial heterogeneity in choice of 

exposure measures,11, 18 inconsistencies in accounting for life course psychosocial and adult 

SES measures,11, 18 and reliance on conventional regression methods18, 38 which are 

particularly vulnerable to unmeasured and endogenous confounding. For example, 

Bouhanick, et al. found offspring from the British National Child Development Study whose 

mothers had not completed compulsory education (16 years) by the time of the child’s birth 

had a 47% (OR = 1.47 [95% CI: 1.30 to 1.67]) higher risk of metabolic syndrome at age 

45 after adjusting for maternal antenatal characteristics.8 However, Kvaavik, et al. found no 

association between maternal education (categories: elementary, high school, 

high/comprehensive school, some college/university, completed college/university), 

ascertained approximately 13 years postpartum (i.e. and not at the time of birth), and 

offspring body mass index, lipids, or blood pressure at 15, 25, or 40 years in a Norwegian 

cohort, with or without adjustment for offspring characteristics.9 Our study improves on past 

work by focusing on maternal education at daughter’s birth as the exposure of interest, 
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explicitly incorporating salient mediators identified in past literature, and implementing MSM 

and associated sensitivity analyses.  

Maternal education at offspring birth may be a particularly important determinant of 

offspring cardiometabolic risk because of the association between lower maternal education 

attainment and exposure to greater stress during pregnancy.7, 30 Lower maternal 

educational attainment may increase fetal exposure to cortisol3, 41 and, in turn, this 

exposure to excess glucocorticoids may program poor life-time metabolic control and stress 

response in the offspring.3, 4, 6 One recent study found lower maternal education to be 

associated with increased placental expression of glucocorticoid-related genes.41 In related 

work, we found maternal education at offspring’s birth to be related to glucocorticoid-

related gene methylation in young adult women (Huang, et al.; manuscript in progress). 

Therefore, maternal educational attainment prior to offspring birth may a better indicator 

that paternal occupation or educational attainment. We utilized a measure of maternal 

education that was truncated based on her age at daughter’s birth. In our analytic 

population, this affected 3% of mothers, limiting their educational attainment to either high 

school graduate or less than high school. In fact, when we did not perform this truncation, 

therefore utilizing maternal education as a measure of childhood (rather than perinatal) 

SES, our estimates of effect were slightly reduced (results not shown).  

Another strength of our study was the inclusion of childhood maltreatment, prospectively 

collected adolescent BMI, adult SES, and adult smoking and physical activity, in our models. 

These are identified mediators of early life SES-adult cardiometabolic risk associations.11 

Moreover, we account for these mediators by employing a causal framework and MSM 

estimation by IPW. Prior studies employing traditional covariate adjustment for mediators 

may have produced biased estimates due to collider stratification: Using our proposed 

causal diagram as an example (Figure 1), the common practice of adjusting for adolescent 

overweight11 would bias the association between maternal education and child 
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maltreatment, and consequently bias estimates of the direct effect of maternal education, 

even if child maltreatment is additionally adjusted for.16, 39 Indeed, we found effect 

estimates to be smaller, and possibly negligible for waist circumference and HbA1c, when 

using the “traditional approach” of simple covariate-adjustment of our mediators (Table 2). 

Similarly, Nandi, et al. found a direct effect of childhood SES on risk of cardiovascular 

disease and diabetes was only observed using MSM but not when using covariate 

adjustment.18 Our study extends this work to other identified mediators, suggesting that 

their observed direct effects on cardiovascular disease may be explain in part by risk factor 

development in early adulthood.  

Two other strengths are worth noting: First, despite our study population exclusions, 

mothers in our study were similar to the distribution of race and educational attainment of 

all U.S. adult women in 1994-5 as estimated by the U.S. Census Bureau.36, 37 This suggests 

that effects estimated may also be generalizable to the cohort of U.S. female offspring aging 

into young adulthood in 2008-9.  Additionally, our work corroborates past work in the Add 

Health population which found an association between higher parental education (highest 

degree or certificate between mother and father) and a 5% lower C-reactive protein 

concentration among white women.40 We extend this previous study by investigating 

maternal education at the time of daughter’s birth, better characterizing exposure at a 

critical period of development, and including salient mediators within a causal framework.  

Potential limitations to our study deserve mention. First, our current study is based on 

complete case analyses. While there was relatively complete data on covariates, we were 

missing survey weights on a substantial proportion (23.4%) of our potential study 

population. To the extent that individuals who were lost to follow-up by Wave IV may differ 

from our available population, our estimates may be biased. However, individuals missing 

weights did not differ substantially from our analytic population with regards to maternal 

education, daughter’s mediators, or outcome measures (data not shown). Additionally, 187 



Page 34 of 106 

 

(4.6%) subjects were missing Wave III adult SES measures. However, our data 

replacement techniques (Table 8) showed replacing all mediator values with either extreme 

(i.e. indicator of risk or protection) did not substantially alter results. However, we cannot 

exclude the possibility that some other pattern of missing-ness may alter our 

interpretations. Additionally, it is possible a combination of one or more unmeasured 

confounders may fully explain our findings. Initially we had intended to perform a 

quantitative bias analysis for this possibility, in line with related work regarding pregnancy 

outcomes (Huang, et al.; manuscript in progress). However, due to the strengths of 

associations found, the bias analysis was judged to be unhelpful: For example, to fully 

explain the observed reduction in waist circumference, a confounder(s) would have to be 

unbalanced by more than 30% across educational levels and cause a 5 centimeter change. 

Nonetheless, we explored the possibility that several other potential confounders available 

from the data, including maternal report of breastfeeding duration and respondent’s age, 

might explain our findings. However, neither variable changed estimates for any of our 

models.  

Finally, we may have introduced residual confounding in our MSM estimates due to use of 

factor scores and dichotomized mediators. To verify that our results were not simply due to 

the parameterization of our mediators, we ran unweighted regression models adjusted for 

confounders and dichotomized mediators and found results similar to our conventionally 

adjusted models. Also, similar findings from MSM using discrete mediators (Table 6) and 

adding a Wave IV adult SES mediator (Table 7) reduces the likelihood that residual 

confounding may explain our findings.   

In summary, we incorporated existing knowledge about child- and adulthood socioeconomic 

and biological determinants of cardiometabolic risk to conduct a causal framework-based 

investigation of maternal education at offspring birth, an indicator of perinatal exposure to 

SES-related stressors, and cardiometabolic risk in young adult women. We provide evidence 
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for the direct effect of higher maternal education on thinness, reduced inflammatory 

markers, better glucose control, and lower overall risk of metabolic syndrome, independent 

of important mediating factors: childhood maltreatment, adolescent overweight, adult SES, 

and smoking and physical activity. Future empirical work should also consider the relevant 

causal components of education, improve measurement of other life course variables, and 

consider additional causal estimation methods that can relax more modeling assumptions. 

 

More broadly, this study contributes to the empirical evidence that interventions to prevent 

socioeconomic disparities must consider the early life and correspondingly, ascertaining the 

effect of such interventions may require measuring outcomes across multiple generations. 

Our findings suggest traditional covariate adjustment may mask early life SES-adult disease 

associations due to causal relationships between risk factors across the life course. The 

findings of this study and others employing MSM to estimate effects of early life SES on 

adult health suggest causal frameworks should be incorporated explicitly in future similar 

investigations.  
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Additional Tables for Sensitivity Analyses 

Table 4. Marginal structural model estimates of maternal education direct effect on various cardiometabolic 
measures estimated by inverse probability weighting – Weights truncated at the 5

th
 and 95

th
 percentiles. 

Linear Regression Estimates (
*
p < 0.05; 

**
p < 0.005; 

***
p < 0.0005) 

Outcome β, [95 % Confidence Interval] p-value 

Height (cm) 1.14 [0.69, 1.59] 1.6 x 10
-6***

 
Weight (kg) -1.84 [-3.47, -0.20] 0.028

*
 

Waist circumference (cm) -3.16 [-4.49, -1.84] 6.1 x 10
-6***

 
BMI (kg/m

2
) -1.06 [-1.67, -0.45] 0.001

**
 

   
Systolic blood pressure (mmHg) -0.54 [-1.48, 0.40] 0.260 

Diastolic blood pressure (mmHg) -0.58 [-1.34, 0.18] 0.135 
Mean arterial pressure (mmHg) -0.57 [-1.34, 0.21] 0.153 

Pulse rate (beats per minute) -1.77 [-2.72, -0.82] 0.0003
***

 
Pulse pressure (mmHg) -0.04 [-0.54, 0.63] 0.887 

   
Log hsCRP 

(untransformed hsCRP) 
-0.16 [-0.27, -0.05] 

(-14.9% [-23.6%, -5.2%]) 
0.004

**
 

Log HbA1c 
(untransformed HbA1c) 

-0.013 [-0.019, -0.007] 
(-1.3% [-1.9%, -0.7%]) 

3.3 x 10
-5***

 

Log glucose 
(untransformed random plasma glucose) 

-0.004 [-0.019, 0.010] 
(-0.4% [-1.9%, 1.0%]) 

0.538 

Logistic regression estimates (
*
p < 0.05; 

**
p < 0.005; 

***
p < 0.0005) 

Outcome OR, [95 % Confidence Interval] p-value 

Overweight (BMI > 25 kg/m
2
) at Wave IV (mean age = 28) 0.72 [0.59, 0.88] 0.001

**
 

Evidence of metabolic syndrome
††

 0.64 [0.48, 0.85] 0.002
**

 

Note: Models are the linear association between increasing maternal education from < high school to high school 
graduate (or, high school graduate to college graduate) and either continuous outcome (linear regression) or log 

odds of binary outcome (logistic regression). 
 

The controlled direct effect of maternal education on cardiometabolic outcomes are estimated by adjusting for the 
following mediators: high childhood maltreatment; adolescent overweight; low adult SES (education and income); 

and high behavioral risk (high smoking and no physical activity), while weighting the sample using the inverse 
probability of, jointly: each of these mediators, the primary exposure, and survey sampling.  

 
The mediators are assumed to occur in the order listed above, meaning each mediator only has effects on the 

mediators subsequent to them. The effect is estimated for a marginal population where each individual has equal 
probability of exposure and mediators. This model was estimated by truncating the estimated weights at the 5

th
 

and 95
th

 percentile to limit influential individuals at the extremes. 
 

† Based on AHA/NCEP guidelines, we classified women has having evidence of metabolic syndrome if she has at 
least three of the following: waist circumference ≥ 88 cm, HbA1c ≥ 5.7%, systolic blood pressure ≥ 130 mmHg, 

diastolic blood pressure ≥ 85 mmHg, and/or physician diagnosis of high cholesterol. 
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Table 5. Marginal structural model estimates of maternal education direct effect on various cardiometabolic 
measures estimated by inverse probability weighting – Presumed causal ordering changed. 

Linear Regression Estimates (
*
p < 0.05; 

**
p < 0.005; 

***
p < 0.0005) 

Outcome β, [95 % Confidence Interval] p-value 

Height (cm) 1.06 [0.57, 1.55] 3.9 x 10
-5***

 
Weight (kg) -1.62 [-3.61, -0.36] 0.107 

Waist circumference (cm) -3.20 [-4.79, -1.61] 0.0001
***

 
BMI (kg/m

2
) -0.96 [-1.69, -0.23] 0.011

*
 

   
Systolic blood pressure (mmHg) -0.50 [-1.53, 0.53] 0.337 

Diastolic blood pressure (mmHg) -0.55 [-1.34, 0.24] 0.168 
Mean arterial pressure (mmHg) -0.54 [-1.36, 0.29] 0.201 

Pulse rate (beats per minute) -1.78 [-2.74, -0.81] 0.0004
***

 
Pulse pressure (mmHg) 0.05 [-0.58, 0.69] 0.872 

   
Log hsCRP 

(untransformed hsCRP) 
-0.15 [-0.27, -0.03] 

(-14.0% [-23.7%, -3.0%]) 
0.014

*
 

Log HbA1c 
(untransformed HbA1c) 

-0.012 [-0.019, -0.007] 
(-1.3% [-1.9%, -0.7%]) 

0.0001
***

 

Log glucose 
(untransformed random plasma glucose) 

-0.006 [-0.021, 0.010] 
(-0.6% [-2.1%, 1.0%]) 

0.464 

Logistic regression estimates (
*
p < 0.05; 

**
p < 0.005; 

***
p < 0.0005) 

Outcome OR, [95 % Confidence Interval] p-value 

Overweight (BMI > 25 kg/m
2
) at Wave IV (mean age = 28) 0.72 [0.57, 0.90] 0.004

**
 

Evidence of metabolic syndrome
†
 0.60 [0.45, 0.91] 0.001

**
 

Note: Models are the linear association between increasing maternal education from < high school to high school 
graduate (or, high school graduate to college graduate) and either continuous outcome (linear regression) or log 

odds of binary outcome (logistic regression). 
 

The controlled direct effect of maternal education on cardiometabolic outcomes are estimated by adjusting for the 
following mediators: adolescent overweight; high childhood maltreatment; high behavioral risk (high smoking and 

no physical activity); and low adult SES (education and income), while weighting the sample using the inverse 
probability of, jointly: each of these mediators, the primary exposure, and survey sampling.  

 
The mediators are assumed to occur in the order listed above, meaning each mediator only has effects on the 

mediators subsequent to them. As shown by the list, this model differs from Tables 3 and 4 in that the presumed 
order of the two childhood mediators (maltreatment and overweight) and the two adulthood mediators (SES and 

risk factors) are both swapped. 
 

† Based on AHA/NCEP guidelines, we classified women has having evidence of metabolic syndrome if she has at 
least three of the following: waist circumference ≥ 88 cm, HbA1c ≥ 5.7%, systolic blood pressure ≥ 130 mmHg, 

diastolic blood pressure ≥ 85 mmHg, and/or physician diagnosis of high cholesterol. 
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Table 6. Marginal structural model estimates of maternal education direct effect on various cardiometabolic 
measures estimated by inverse probability weighting – Discrete mediators. 

Linear Regression Estimates (
*
p < 0.05; 

**
p < 0.005; 

***
p < 0.0005) 

Outcome β, [95 % Confidence Interval] p-value 

Height (cm) 0.99 [0.51, 1.48] 0.0001
***

 
Weight (kg) -1.25 [-3.21, 0.70] 0.206 

Waist circumference (cm) -2.48 [-3.94, -1.02] 0.001
**

 
BMI (kg/m

2
) -0.81 [-1.52, -0.11] 0.023

*
 

   
Systolic blood pressure (mmHg) -0.30 [-1.28, 0.67] 0.538 

Diastolic blood pressure (mmHg) -0.36 [-1.10, 0.38] 0.338 
Mean arterial pressure (mmHg) -0.34 [-1.11, 0.42] 0.379 

Pulse rate (beats per minute) -1.84 [-2.93, -0.75] 0.001
**

 
Pulse pressure (mmHg) 0.06 [-0.60, 0.71] 0.864 

   
Log hsCRP 

(untransformed hsCRP) 
-0.16 [-0.29, -0.024] 

(-14.5% [-25.0%, -2.4%]) 
0.021

*
 

Log HbA1c 
(untransformed HbA1c) 

-0.013 [-0.021, -0.005] 
(-1.3% [-2.1%, -0.5%]) 

0.002
*
 

Log glucose 
(untransformed random plasma glucose) 

-0.004 [-0.022, 0.014] 
(-0.4% [-2.2%, 1.4%]) 

0.659 

Logistic regression estimates (
*
p < 0.05; 

**
p < 0.005; 

***
p < 0.0005) 

Outcome OR, [95 % Confidence Interval] p-value 

Overweight (BMI > 25 kg/m
2
) at Wave IV 0.72 [0.59, 0.88] 0.002

**
 

Evidence of metabolic syndrome 0.62 [0.48, 0.80] 0.0003
***

 

Note: This model is similar to that from Table 3 with the exception that values for binary mediators are redefined as 
follows: High childhood maltreatment = any episodes of neglect, physical, or sexual abuse; High adolescent BMI = ≥ 

25 kg/m
2
; low early adult SES = high school education or less; and high adult risk factors = any self-reported 

cigarette smoking and no physical activity. Thus, no factor scores were used. 
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Table 7. Marginal structural model estimates of maternal education direct effect on various cardiometabolic 
measures estimated by inverse probability weighting – Add Low Wave IV SES as a mediator. 

Linear Regression Estimates (
*
p < 0.05; 

**
p < 0.005; 

***
p < 0.0005) 

Outcome β, [95 % Confidence Interval] p-value 

Height (cm) 0.88 [0.35, 1.41] 0.001
**

 
Weight (kg) -1.27 [-3.55, 1.01] 0.274 

Waist circumference (cm) -2.80 [-4.72, -0.89] 0.004
**

 
BMI (kg/m

2
) -0.76 [-1.61, -0.08] 0.076 

   
Systolic blood pressure (mmHg) -0.19 [-1.30, 0.91] 0.732 

Diastolic blood pressure (mmHg) -0.35 [-1.21, 0.51] 0.417 
Mean arterial pressure (mmHg) -0.30 [-1.19, 0.59] 0.508 

Pulse rate (beats per minute) -1.76 [-2.77, -0.76] 0.001
**

 
Pulse pressure (mmHg) 0.16 [-0.52, 0.84] 0.640 

   
Log hsCRP 

(untransformed hsCRP) 
-0.13 [-0.27, 0.01] 

(-12.1% [-23.6%, 1.0%]) 
0.069 

Log HbA1c 
(untransformed HbA1c) 

-0.012 [-0.021, -0.004] 
(-1.2% [-2.1%, -0.4%]) 

0.005
*
 

Log glucose 
(untransformed random plasma glucose) 

-0.014 [-0.031, 0.004] 
(-1.4% [-3.1%, 0.4%]) 

0.131 

Logistic regression estimates (
*
p < 0.05; 

**
p < 0.005; 

***
p < 0.0005) 

Outcome OR, [95 % Confidence Interval] p-value 

Overweight (BMI > 25 kg/m
2
) at Wave IV 0.78 [0.58, 1.05] 0.104 

Evidence of metabolic syndrome 0.72 [0.52, 1.01] 0.057 

Note: This model is similar to that from Table 3 with the exception low SES at Wave IV (mean age = 28) was 
included as an additional mediator, causally situated subsequent to low SES at Wave III but prior to Wave IV risk. 
SES at Wave IV was estimated by principle components factor analysis of last school completed, total household 

income, and a self-report of whether an individual would “still be in debt,” “break even,” or “have some left over” if 
they sold all their assets and used all savings to pay off debts, all at time of Wave IV interview. The predicted factor 

score was then dichotomized at the median with lower than median scores considered low SES.  
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Table 8. Marginal structural model estimates of maternal education direct effect on various cardiometabolic 
measures estimated by inverse probability weighting – Missing mediator values replaced. 

Linear Regression Estimates (
*
p < 0.05; 

**
p < 0.005; 

***
p < 0.0005) 

Outcome β, [95 % Confidence Interval] p-value 

Height (cm) 1.02 [0.53, 1.50] 0.0001
***

 
Weight (kg) -1.84 [-3.79, 0.11] 0.064 

Waist circumference (cm) -3.23 [-4.79, -1.67] 0.0001
***

 
BMI (kg/m

2
) -1.02 [-1.73, -0.32] 0.005

**
 

   
Systolic blood pressure (mmHg) -0.58 [-1.54, 0.37] 0.230 

Diastolic blood pressure (mmHg) -0.60 [-1.37, 0.17] 0.123 
Mean arterial pressure (mmHg) -0.60 [-1.38, 0.19] 0.136 

Pulse rate (beats per minute) -1.57 [-2.49, -0.66] 0.001
**

 
Pulse pressure (mmHg) 0.02 [-0.58, 0.62] 0.955 

   
Log hsCRP 

(untransformed hsCRP) 
-0.11 [-0.23, 0.01] 

(-10.1% [-20.2%, 1.2%]) 
0.076 

Log HbA1c 
(untransformed HbA1c) 

-0.013 [-0.019, -0.007] 
(-1.3% [-1.9%, -0.7%]) 

3.4 x 10
-5***

 

Log glucose 
(untransformed random plasma glucose) 

-0.002 [-0.017, 0.012] 
(-0.2% [-1.7%, 1.2%]) 

0.737 

Logistic regression estimates (
*
p < 0.05; 

**
p < 0.005; 

***
p < 0.0005) 

Outcome OR, [95 % Confidence Interval] p-value 

Overweight (BMI > 25 kg/m
2
) at Wave IV (mean age = 28) 0.73 [0.60, 0.88] 0.001

**
 

Evidence of metabolic syndrome
††

 0.61 [0.47, 0.80] 0.0003
***

 

Note: This model is identical to that from Table 3 with the except that missing values for the mediators high 
childhood maltreatment, high childhood BMI, low adult SES, and high adult risk factors were assumed to an 

indicator of risk. For example, if a subject was missing a value for high childhood BMI, this model assumes the 
individual did indeed have a BMI ≥ 25 kg/m

2
. 

 

 

 

 

 

 

 

 

(End Chapter 1)  
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Chapter 2 – Direct effect of grandmaternal educational attainment on birth weight 

and associated bias analyses 

Abstract 

Background: Distinguishing early life determinants of offspring low birth weight from more 

proximal determinants (i.e. life course characteristics) has been challenging. We examined 

the direct effect of grandmother’s (G0) education at the time of mother’s (G1) birth on 

offspring (G2) birth weight (BW). 

Methods: Using the National Longitudinal Study of Adolescent Health (1995-2009), we 

identified G1 and their first, live singleton (G2) (N = 1,681 pairs). G0 education was defined 

as less than high school (HS), HS diploma or equivalent, or college degree at G1 birth. We 

fit a structural equation model (SEM) incorporating G1 mediators: childhood maltreatment, 

pre-pregnancy overweight, low adult education and income, and prenatal smoking. Using 

marginal structural models (MSM), we estimated the controlled direct effect of G0 education 

on G2 BW independent of these mediators. We evaluated sensitivity to alternative models 

incorporating pre-term birth, modified weights, and data replacement. We used quantitative 

bias analysis to examine unmeasured confounding of the direct effect. 

Results: Mean BW (G2) was 3,259 grams and increased across G0 education (3,171; 3,267; 

and 3,339 grams, respectively). SEM estimated 54-grams increased G2 BW per higher level 

of G0 education (95% Confidence Interval: -14.0, 122.1), while MSM estimated 89-grams 

increased G2 BW (95% CI: 20.8, 156.5) in a marginal population. This estimate did not 

change substantively under sensitivity scenarios. Quantitative bias analysis suggested a 

single, unmeasured confounder would have to differ by more than 15% between exposure 

groups and affect BW by more than 150 grams to completely explain findings. 
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Conclusions: Our models suggest a direct effect of grandmaternal education on grandchild 

birth weight. This effect is robust to some model misspecification and unmeasured 

confounding. 
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Background 

Early life socioeconomic differences may contribute to a woman’s risk of low birth weight 

delivery, despite adult health1 and socioeconomic attainment.2 According to Developmental 

Origins of Health and Disease (DOHaD) theory, exposures occurring in utero, during which 

organogenesis and epigenetic programming occur, are potential determinants of adult 

metabolic capacity.3, 4 Lower maternal education during the perinatal period, an important 

indicator of low socioeconomic status and related stressors, may adversely affect 

intrauterine fetal development and programming of daughters5, 6 who may, in turn be at risk 

of adverse reproductive outcomes, including low offspring birth weight.6-10 However, the 

effects of grandmaternal education on the health and social trajectory of the mother may 

also explain birth outcome differences11, 12 and evidence of direct effects are inconsistent.10, 

13 One possible explanation is the lack of appropriate causal methods in past investigations 

of grandmaternal education and birth weight.14 

Incorporating perinatal exposures in life course investigations of adult health and disease 

outcomes is now well recognized.14 However, accounting for the complex causal structure 

between exposures with numerous mediators to outcomes remains challenging14, 15: 

Standard covariate-adjusted regression models introduce collider stratification bias in the 

presence of endogenous confounding and unmeasured confounders.15, 16 Moreover, 

developmental programming effect may produce heterogeneity in the response to 

mediators,17 suggesting violations of the consistency assumption when conditioning on 

them. Structural equation models (SEMs) have been favored to explicitly model complex, 

socio-biological causal structures,18 however they are limited by strong assumptions 

regarding both modeled and un-modeled relationships between covariates.19 Alternatively, 

marginal structural models (MSMs) estimated by inverse probability weighting may be used 

to obtain controlled direct effects of early life exposures.15,19,20 MSMs are superior to 

standard regression in addressing mediators and endogenous confounding21 and superior to 
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SEMs in requiring fewer assumptions about relationships amongst covariates.15 Nonetheless, 

MSM are still susceptible to unmeasured confounding and assumptions about causal 

structure.22-24 Consequently, sensitivity and quantitative bias analyses are still indicated to 

strengthen inference.22, 24 

This study aims to examine whether grandmother’s (G0) education at the time of the 

mother’s (G1) birth, has a direct effect on offspring birth weight (G2), using data from the 

National Longitudinal Study of Adolescent Health (Add Health). This study improves on past 

work in four ways: (1) prior life-course, social and biological determinants of birth weight 

are incorporated explicitly in a causal mediation framework, (2) effect estimates are 

compared to standard multivariate regression and SEM estimates, (3) sensitivity analyses 

are performed to test robustness to weight and model misspecification, and (4) quantitative 

bias analysis is implemented to estimate robustness to unmeasured confounding under 

simplifying assumptions. 
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Methods 

Study Design  

The National Longitudinal Study of Adolescent Health (Add Health) is a nationally-

representative, longitudinal study of 7-12 grade United States adolescents begun in 1994 (N 

= 90,118). In-home interviews were conducted with a core subset of respondents 

(randomly selected within school and sex strata) along with a parent, during which 

extensive information were collected on demographics, health, attitudes, behaviors, and 

environment. Additional respondents (and parents) were interviewed based on ethnic 

minority status, having siblings in the study, and/or being black with at least one college-

educated parent (N = 20,745 individuals). Respondents first interviewed in Wave I were 

followed for up to three additional in-home interviews in 1996 (Wave II), 2001-2002 (Wave 

III), and 2007-2008 (Wave IV). Anthropometric measurements (Wave III) and capillary 

whole blood (Wave IV) were also collected. During Wave IV, 15,701 respondents (80.3% of 

eligible Wave I) were interviewed.  

Investigators calculated a grand sampling weight for respondents interviewed in all four 

waves to approximate the target population of U.S. adolescents in grades 7-11 in 1994-5.25 

This weight accounts for clustered sampling, attrition, and oversampling in longitudinal 

analyses.25 Additional information on respondent characteristics, sampling frame, and 

protocols can be found on the Add Health site: www.cpc.unc.edu/projects/addhealth/. All 

data used for the current study were obtained through a restricted data access agreement 

between the University of Washington Center for Studies in Demography and Ecology 

(CSDE) and the Inter-university Consortium for Political and Social Research (ICPSR) at the 

University of Michigan. Research on these data has been approved by the Institutional 

Review Board of the University of Washington. 

Study Population 

http://www.cpc.unc.edu/projects/addhealth/
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Individuals (G1) were eligible for this current study if they were women, had a biological 

mother (G0) interviewed during Wave I, participated in both Wave I and IV interviews, and 

had at least one live birth during the course of the study. Since first born offspring are 

hypothesized to be more susceptible to adverse in utero programming from maternal 

constraint,26 we matched respondents to their first reported singleton birth (G2). There 

were 2,352 women who met eligibility criteria. We excluded 60 (2.6%) respondents without 

a recorded exposure status and 428 (18%) individuals missing a Wave IV grand sampling 

weight. Consequently, we included 1,876 respondents (G1) and their matched births (G2) 

for the current study.  

Measures 

Primary Exposure and Outcome – During Wave I (1994-5), a respondent’s mother (G0) was 

asked “How far did you go in school?” with responses we coded into three categories: less 

than high school diploma; high school diploma or equivalency (i.e. GED) certificate, and 

completed college degree. Because we were interested in G0 education at or prior to G1 

birth, we capped completed education to high school diploma if she gave birth at or prior to 

21 years (n = 86). G2 birth weight (grams) was reported by G1 during Wave IV interview. 

When compared to birth records, maternal recall of child birth weight has previously been 

found to be fairly accurate.10 

Psychosocial stress mediators – Childhood maltreatment27, 28 and adult socioeconomic 

status29 are important psychosocial stressors in the respondent’s (G1) life course that may 

be in the causal pathway between G0 education and G2 birth weight. In line with previous 

investigations in Add Health,28 we use self-reported incidents of neglect, physical abuse, and 

sexual abuse prior to 18 years of age to predict a maltreatment factor score. Factors scores 

were generated using principle component factor analysis and quartimin rotations.30, 31 Adult 

socioeconomic status (SES) closest to the time of G2 birth was measured using three 

variables: (1) self-reported total household income during Wave IV reported in dollars or, if 
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the woman could not provide an exact amount, one the following approximates: $5,000; 

$12,500; $17,500; $25,000; $35,000; $45,000; $62,500; or $100,000, based on the mid-

point of categorical choices (capped at $100,000); (2) attained education categorized by 

last school type completed; and (3) an indicator of whether G1 reported she would be in 

debt in response to the question “Suppose you and others in your household were to sell all 

of your major possessions (including your home), turn all of your investments and other 

assets into cash, and pay off all of your debts. Would you have something left over, break 

even, or be in debt?” Using these three measures, a factor score for adult SES was 

predicted through principle component factor analysis and quartimin rotations. If the 

respondent gave birth to G2 prior to 2001, a Wave III factor score was calculated instead 

excluding the 3rd (debt) measure, which was not asked in Wave III. Correlations between 

the two adult SES factor scores was moderate (r = 0.578; n = 1,665). For the purposes of 

weighting, maltreatment and adult SES factor scores were dichotomized at their median to 

high/low categories. 

Biological mediators – Higher pre-pregnancy BMI is consistently associated with maternal 

education and higher birth weights.32, 33 G1 pre-pregnancy BMI was calculated from either: 

Wave II self-reported height and weight if she gave birth at or prior to 2001, or study staff-

measured height and weight from Wave III, otherwise. Correlation between the two BMI 

measures was high (unadjusted Pearson’s r = 0.76; p < 0.0001). Pre-pregnancy overweight 

was categorized as a BMI ≥ 25 kg/m2. Prenatal smoking is associated with maternal 

education and lower birth weight.32-34 We coded it as any or none based on self-reported 

smoking during the index pregnancy.   

Confounders – Grandmother’s (G0) age at mother’s (G1) birth is related to grandmother’s 

educational attainment and may influence childrearing practices and therefore life-course 

psychosocial and biological stressors experienced by the mother (G1).35, 36 Similarly, G0 

self-reported race is related to G0 educational opportunity and attainment, as well as social 
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and biological stressors experienced by G1 throughout her life course.37,38 G0 race was 

coded as non-Hispanic white, Hispanic white, black any ethnicity, or other non-white, with 

those reporting any mixed race not including black being accorded the last category. Both 

G0 age at G1 birth and G0 self-reported race were included as confounders in all analyses.  

Statistical Analysis 

We first examined univariate demographic characteristics of the study population accounting 

for survey design. Next, we examined the possibility that in utero SES may affect future 

pregnancy outcome by estimating the direct effect of grandmaternal (G0) education (Xi) on 

the birth weight (Yi) of her daughter’s (G1) child (G2) that is not mediated by the 

daughter’s (G1) life experiences using three modeling approaches: A multivariate-adjusted 

linear regression model including measured predictors of G2 birth weight (Approach 1), a 

linear structural equation model (SEM) using dichotomous mediators (Approach 2), and a 

linear marginal structural model (MSM) estimated by inverse probability weights again using 

dichotomous mediators (Approach 3). All data processing and analysis were conducted in 

STATA 12.1 MP (College Station, TX). 

Hypothesized causal structure - In each model we attempted to estimate the controlled 

direct effect of Xi on Yi after accounting for confounding by G0 age at G1 birth (Gi) and G0 

self-reported race (Ri), as well as mediation / endogenous confounding by G1 life-course 

psychosocial and biological stressors: high childhood maltreatment prior to 18 years (Mi), 

pre-pregnancy overweight (Oi), low adult SES (Ai), and any prenatal smoking (Si). The 

relationships between exposure, mediators, confounders, and outcome are constrained only 

by temporality (Figure 1): G0 age at G1 birth and self-reported race precede all other 

factors, including G0 education at G1 birth. Each G1 mediator is hypothesized to also affect 

all subsequent mediators (e.g. child maltreatment affects pre-pregnancy overweight, adult 

SES, and prenatal smoking).  
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Figure 1. Causal diagram of hypothesized life course determinants of birth weight. Each exposure and mediator is 
assumed to have an effect on all other mediators that occur subsequent to it. Directed edges are drawn with 
different patterns based on their source for visual effect only; they do not reflect any addition knowledge or 

specification about relationships. The asterisk (*) indicates the effect of interest: the direct effect of G0 education 
on G2 birth weight. Confounders (C) represent a vector including G0 age at G1 birth (G) and G0 race (R). 

 

Approach 1: Multivariate linear regression – We first estimated direct effects conventionally 

by fitting the following multivariate-adjusted linear regression model in which the primary 

exposure, confounders, and mediators are included as predictors of G2 birth weight:  

E[Yi | Xi = x, Ri = r, Gi = g, Mi = m, Oi = o, Ai = a, Si = s] =     (1) 

β0 + β1X + β2R + β3G + β4M + β5O + β6A + β7S   

Under strong assumptions of no model misspecification, no interaction, and no unmeasured 

confounding,15 it is possible for (1) to give an unbiased estimate of the causal direct effect 

of G0 education on G2 birth weight as well as the causal direct effects of mediators. 

However, our model (Figure 1) implies mediator adjustment induces confounding through 

the mediator’s parents (i.e. collider stratification bias). We use Approach 1 as a baseline to 

explore effect estimates using different covariate functional forms and incorporate multiple 

imputation for missing data. 

Approach 2: SEM – We next estimated direct and indirect effects of G0 education by fitting 

an SEM of our hypothesized causal structure using dichotomous forms of our mediators 

(Figure 2). Like Approach 1, SEM makes strong assumptions of no model misspecification 
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and no unmeasured confounding with additional assumptions about covariate 

relationships.19 We use Approach 2 to explore qualitative verification of our hypothesized 

causal structure and serve as a reference for sensitivity analyses.  

Approach 3: MSM estimated by inverse probability weighting – Finally, we tested the 

controlled direct effect of G0 education (Xi) on G2 birth weight (Yi) by fitting the following 

regression model: 

E[Yi | Xi = x, Mi = m, Oi = o, Ai = a, Si = s] = β0 + β1X + β2M + β3O + β4A + β5S  (2) 

weighting individual subjects by the inverse probability of their exposure to their given 

strata of G0 education and probability of exposure to the four dichotomous mediators. No 

interaction terms were included, as there was not consistent evidence of additive interaction 

between each of the mediators and the exposure (Supplemental Table). Stabilized weights39 

for G0 education (  
 ) were estimated by multinomial logistic regression to predict the 

probability for a given strata of G0 education given a vector of C confounders. Stabilized 

weights for mediators were calculated using logistic regression, giving regard to temporality 

(Figure 1):  

G0 education:      
  = 

         

         |        
      (3) 

Childhood maltreatment:     
  = 

         |        

         |                 
    (4) 

Pre-pregnancy overweight:    
  = 

         |        

         |                          
     (5) 

Adult SES:       
  = 

         |        

         |                                    
    (6) 

Prenatal smoking:     
  = 

         |        

         |                                             
   (7) 

A correctly specified MSM gives the controlled direct effect of X on Y in a marginal 

population in which, potentially counter to the fact, all individuals are “unexposed” to the 
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mediators. In our model, this is a marginal G1 population at lower risk of childhood 

maltreatment, pre-pregnancy overweight, low adult SES, and any prenatal smoking.  

Incorporating survey design – To account for sampling dependency introduced by the 

survey design and produce correct standard errors,25 each weight was estimated with the 

svy option after using the Wave IV grand sampling weights, clustering, and stratification 

variables for the svyset command. An overall weight (Woverall) was then generated for each 

subject using the product of the stabilized weights and the Wave IV grand sampling weight 

(  
   

):  

Overall Weight:   Woverall =   
  *   

  *   
  *   

  *   
 *   

   
  (8)  

The svy option was subsequently used to fit model (2) using Woverall for the svyset 

command. An analogous method was described by Brumback, et al. employing PROC 

SURVEYREG in SAS.40  

Sensitivity Analyses 

Like other causal modeling methods, MSM effect estimations are subject to biases from 

misspecifed causal models, mismeasurement, and unmeasured confounding.11, 41 We 

addressed this through several sensitivity analyses: Specifically, we examine qualitative 

robustness of estimates to altered model specification including mediation by pre-term 

birth, data replacement techniques, and quantitative bias analysis informed by SEM.   

Model specification – Pre-term birth is an important mediator of low birth weight and may 

be of great causal interest.42, 43 Consequently, we re-fit our model adding an indicator for 

pre-term birth (< 37 weeks) and a corresponding probability weight to model (2). 

Additionally, we examined sensitivity of model (2) to: truncating weights at the 1st / 99th, 5th 

/ 95th, and 10th / 90th percentiles; including interaction terms in estimating weights (3) - 

(7); and reversing the presumed temporal relationship of adult SES and pre-pregnancy 
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overweight by adding adult SES to the denominator of (5) and removing pre-pregnancy 

overweight from the denominator of (6). 

Data replacement – Out of our total sample of 1,876, we had missing observations of pre-

pregnancy overweight and low adult SES for 78 (4.2%), maltreatment scores for 28 (1.5%), 

prenatal smoking for 3 (0.16%) women. Subjects missing mediator values did not differ 

systematically from those with complete data. To analyze the sensitivity of our analysis to 

covariate values missing at random conditional on available data, we re-fit model (1) using 

multiple imputation by chained equations to generate ten sets of possible values for missing 

binary mediators. For model (2), sensitivity to missingness was assessed by replacing 

missing values for G1 mediators and reweighting. Data replacement was conducted in three 

ways: first, all missing values were assumed to be indicative of risk (i.e. missing value for 

adult SES replaced with indicator of low adult SES); second, missing values of Wave III pre-

pregnancy overweight and Wave IV adult SES were replaced with their values from Waves 

II and III, respectively; and third, all values for these two mediators were replaced with 

their values from Waves II and III, respectively.   

Quantitative Bias Analyses – The no unmeasured mediator-outcome confounding 

assumption is critical to an unbiased estimate of controlled direct effect.12 To assess the 

robustness of model (2) to unmeasured confounding, we simulated the effects of a 

hypothetical, binary, mediator-outcome confounder.44-46 Assuming an unmeasured binary 

confounder U with no effect modification by G0 education, we specified ranges for two 

sensitivity parameters g and d with parameter g corresponding to the effect of U on G2 birth 

weight (i.e. change in birth weight grams) and d to the prevalence difference of confounder 

U between levels of exposure. By subtracting each combination of g x d from the β1 

coefficient and its 95% confidence limits estimated by model (2), we defined bounds within 

which our findings remain valid under the specified scenario. We set the ranges g and d to 

be feasible values drawn from our SEM modelling and consistent with the literature. For 
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example, since prenatal smoking is a strong determinant of birth weight observed in the 

literature,33,34 the upper limits for g were set to +/- 150 grams, close to the effect of 

prenatal smoking observed in our SEM (113 grams). Similarly, we set the upper limit of d, 

to be +/- 20%, close to the difference in prevalence of pre-natal smoking between high and 

low G1 adult SES estimated in our SEM (15%).   

Results  

Overall, 20.5%, 63.3%, and 16.2% of grandmothers (G0) in the analytic population 

reported at least < HS, HS or GED, or College diploma, respectively (Table 1). This 

represented 80.9% and 14.3% of the target population, respectively. Taking survey design 

into account, 71.1% and 16.2% of grandmothers fell into study-defined categories of non-

Hispanic white and non-Hispanic black. Mean birth weight for G2 was 3,265 grams (Table 

1).  

Using covariate-adjusted linear regression, we estimated a 54-gram higher G2 birth weight 

for each higher level of G0 education (β = 54.1, [95% CI: -14.0, 122.1]; Table 2), 

independent of mediators. After multiple imputation (analytic population N = 1,856; 99% of 

full sample), we estimated a 48-gram (95% CI: -16.5, 111.9) direct effect by covariate-

adjusted linear regression, which was not substantially different than complete case analysis 

(Table 2). 
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Table 1. Study population characteristics, by grand-maternal (G0) education. a 

  Grand-maternal (G0) educational status 

% (N) / mean (SD) Overall 
 

(N = 1,681) 

< High School 
Diploma 
(n = 345) 

High School 
Diploma or GED 

(n = 1,064) 

College Diploma 
or Higher 
(n = 272) 

Grandmother (G0)     
G0 % white 61.5 % (1,033) 46.4 % (160) 66.4 % (706) 61.4 % (167) 

G0 age at G1 birth (years) 24.8 (5.2) 24.2 (5.9) 24.7 (5.1) 26.1 (4.8) 
     
Mother (G1)     

G1 ever neglected 50.0 % (840) 49.0 % (169) 50.5 % (537) 49.3 % (134) 
G1 ever physically abused 18.1 % (304) 20.3 % (70) 17.7 % (188) 16.9 % (46) 

G1 ever sexually abused 8.1 % (136) 8.1 % (28) 8.0 % (85) 8.5 % (23) 
     

G1 BMI at Wave II (kg/m2) 22.7 (4.5) 23.3 (4.5) 22.6 (4.5) 22.0 (4.2) 
G1 BMI at Wave III (kg/m2) 26.7 (6.7) 27.4 (6.8) 26.6 (6.6) 26.0 (7.0) 

     
G1 % high school graduate 88.4 % (1,486) 79.4 % (274) 89.4 % (951) 96.0 % (261) 

G1 % in debt 22.6 % (375) 23.9 % (81)  22.0 % (231) 23.2 % (63) 
G1 average annual 

household income (in 2008 
dollars)b 

58,842 
 (41,878) 

47,681 
 (31,895) 

58,761  
(42,601) 

72,880 
 (45,670) 

     
G1 % any prenatal smoking 19.3 % (325) 19.1 % (66) 20.9 % (222) 13.6 % (37) 

     
Child (G2)     

Gestational age (weeks)c 39.1 (2.4) 39.2 (2.1) 39.1 (2.5) 38.9 (2.2) 
% preterm birthd  9.2 % (155) 9.0 % (31) 9.4 % (100) 8.8 % (24) 

G2 birth weight (grams) 3,265 (611.1) 3,220 (579.0) 3,268 (622.9) 3,309 (602.4) 
% low birth weight 9.3 % (156) 9.0 % (31) 9.4 % (100) 9.2 % (25) 

a 
Means, standard deviations, and percentages presented here correspond to those of the sample, i.e. survey 

weighting was not taken into account. 
b 

Average household income is either the combined income of the individual (G1) and her spouse / partner or the 
individual (G1) and her family, if she lives at home. If an individual responded by selecting an income category, she 
was assigned the mean of the category; i.e. a person reporting “5,000 to 9,999” would be assigned 7,500 dollars. 
c 
Estimated from the question “How many weeks early or late was your baby born?” with a response “on time” 

interpreted as 40 weeks. 
d 

Estimated as a gestational age < 37 weeks based on the question above. 
 

Table 2. Multivariate linear regression estimate of effect on G2 birth weight. (N = 1,681) 

Model β, [95 % Confidence Interval] p-value 

No Factor Scores1 45.4, [-28.0, 118.8] 0.223 
Childhood Maltreatment Factor 

Score Only2 
47.2, [-25.9, 120.2] 0.204 

Adult SES Factor Score Only3 45.6, [-26.5, 117.6] 0.213 
Both Factor Scores4 47.5, [-24.0, 119.1] 0.191 

Dichotomized Mediators5 54.1, [-14.0, 122.1] 0.118 
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Dichotomized Mediators After 
Multiple Imputation (N = 1,856) 

47.7, [-16.5, 111.9] 0.144 

Note: All models are adjusted for G0 age at G1 birth and G0 self-reported race.  
1
 Adjusted for number of events of neglect, physical abuse, and sexual abuse before age 18 (childhood 

maltreatment); G1 pre-pregnancy BMI (closest measurement before delivery); G1 education, household income, 
and ‘break even’ indicator at Wave IV (adult SES); and any G1 pre-natal smoking. 
2
 Adjusted for a childhood maltreatment factor score estimated from number of events of neglect, physical 

abuse, and sexual abuse before age 18 and other covariates from 
1
. 

3
 Adjusted for a factor score estimated from G1 education, household income, and ‘break even’ indicator at 

Wave IV and other covariates from 
1
. 

4
 Adjusted for maltreatment and adult factor scores, G1 pre-pregnancy BMI, and any G1 prenatal smoking. 

5 Adjusted for high childhood maltreatment (factor score higher than the median), G1 pre-pregnancy overweight 
(BMI > 25 kg/m

2
), low adult SES (factor score lower than the median), and any G1 prenatal smoking.   

 

 

Figure 2. Structural equation model with unstandardized coefficients. For better visual clarity, unstandardized point 
estimates with p < 0.05 are shown with their edges highlighted. The point estimate and 95% confidence interval 
(†) for the main effect are also shown. *p < 0.05; **p < 0.005. 

Using MSM estimated by inverse probability of treatment and mediator weights, we 

estimated a controlled direct effect of 89 grams increased (95% CI: 20.8, 156.5) G2 birth 

weight for each level higher of G0 education (Table 3) in a marginal population at lower risk 

of high childhood maltreatment, pre-pregnancy overweight, low adult SES, and any prenatal 

smoking. Even after incorporating pre-term birth as a mediator between G0 education and 

birth weight, we found evidence consistent with a direct effect of G0 education on G2 birth 

weight (Table 4). Using MSM, we estimated a controlled direct effect of 67-grams (95% CI: 

3.8, 130.5) increased G2 birth weight per level higher G0 education. Additionally, weight 
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truncation at the 1st/99th, 5th/95th, and 10th/90th percentiles, introducing interaction terms 

between G0 education and each mediator, and refitting the model with adult SES preceding 

pre-pregnancy overweight, each did not change estimates greatly. (Table 4) Replacing all 

missing mediators values as either “high” (i.e. high maltreatment, pre-pregnancy 

overweight, low adult SES, and any prenatal smoking) or “low” (the opposite) risk had 

minimal impact on the MSM-estimated direct effect (Table 4), This was also true of the two 

other replacement scenarios (Table 4).      

Table 3. Marginal structural model estimates of effect on G2 birth weight. (N = 1,681) 

 β, [95 % Confidence Interval] p-value 

G0 Education 88.7, [20.8, 156.5] 0.010 
High G1 Childhood Maltreatment -41.4, [-120.7, 37.9] 0.306 

G1 Pre-pregnancy Overweight (> 25 kg/m2) 73.7, [-10.7, 158.1] 0.087 
Low G1 Adult SES -118.6, [-198.2, -38.9] 0.004 

Any G1 Prenatal Smoking -118.0 [-208.6, -27.4] 0.011 

 

Table 4. Marginal structural model estimates of G0 education effect on G2 birth weight, under various 
scenarios. 

Scenario N 
β, [95 % Confidence 

Interval] 
p-

value 

Altered causal structure 

Added Pre-term delivery (< 37 weeks) 1,680 67.2, [3.8, 130.5] 0.038 
Order of G1 pre-pregnancy BMI and adult SES reversed 1,681 89.1, [21.3, 157.0] 0.010 

Weight manipulation 

Weight truncation at 1st / 99th percentile 1,681 85.7, [19.5, 152.0] 0.011 
Weight truncation at 5th / 95th percentile 1,681 88.5, [23.9, 153.1] 0.007 

Weight truncation at 10th / 90th percentile 1,681 86.9, [23.1, 150.7] 0.008 
Weights estimated with interactions 1,681 71.3, [0.583, 142.0] 0.048 

Data replacement 

Replace missing measures as “high risk” 1,856 84.9, [22.3, 147.4] 0.008 
Replace missing measures as “low risk” 1,856 83.3, [20.6, 145.9] 0.009 

Replace only missing measures of G1 pre-pregnancy BMI and 
adult SES with older measures 

1,795 81.7, [16.7, 146.7] 0.014 

Use older G1 pre-pregnancy BMI (Wave II) and adult SES 
(Wave III) measures 

1,685 93.5, [25.8, 161.2] 0.007 

 

Under the hypothetical bias scenario, we found that a single binary confounder would have 

differ to in prevalence between exposure groups by at least 15% and have an effect on G2 
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birth weight of 150 grams to fully explain our findings (Table 5). As previously noted,44-46 

this does not preclude the possibility that a non-binary confounder or set of confounders 

may also fully explain our findings. 

Table 5. The effect of an unmeasured binary confounder on the estimated controlled direct effect of 
G0 education on G2 birth weight, a quantitative bias analysis. (Adjusted β, [95% CI]) 

 g = -150 g g = -100 g g = -50 g g = 50 g g = 100 g g = 150 g 

d = -20% 58.7 
[-9.2, 126.5] 

68.7 
[0.8, 136.5] 

78.7 
[10.8, 146.5] 

98.7 
[30.8, 166.5] 

108.7 
[40.8, 176.5] 

118.7 
[50.8, 186.5] 

d = -15% 66.2 
[-1.7, 134] 

73.7 
[5.8, 141.5] 

81.2 
[13.3, 149] 

96.2 
[28.3, 164] 

103.7 
[35.8, 171.5] 

111.2 
[43.3, 179] 

d = -10% 73.7 
[5.8, 141.5] 

78.7 
[10.8, 146.5] 

83.7 
[15.8, 151.5] 

93.7 
[25.8, 161.5] 

98.7 
[30.8, 166.5] 

103.7 
[35.8, 171.5] 

d = -5% 81.2 
[13.3, 149] 

83.7 
[15.8, 151.5] 

86.2 
[18.3, 154] 

91.2 
[23.3, 159] 

93.7 
[25.8, 161.5] 

96.2 
[28.3, 164] 

d =  5% 96.2 
[28.3, 164] 

93.7 
[25.8, 161.5] 

91.2 
[23.3, 159] 

86.2 
[18.3, 154] 

83.7 
[15.8, 151.5] 

81.2 
[13.3, 149] 

d = 10% 103.7 
[35.8, 171.5] 

98.7 
[30.8, 166.5] 

93.7 
[25.8, 161.5] 

83.7 
[15.8, 151.5] 

78.7 
[10.8, 146.5] 

73.7 
[5.8, 141.5] 

d = 15% 111.2 
[43.3, 179] 

103.7 
[35.8, 171.5] 

96.2 
[28.3, 164] 

81.2 
[13.3, 149] 

73.7 
[5.8, 141.5] 

66.2 
[-1.7, 134] 

d = 20% 118.7 
[50.8, 186.5] 

108.7 
[40.8, 176.5] 

98.7 
[30.8, 166.5] 

78.7 
[10.8, 146.5] 

68.7 
[0.8, 136.5] 

58.7 
[-9.2, 126.5] 

Shading indicates the 95% Confidence Interval encompasses zero: To explain the observed direct effect of 
G0 education on G2 birth weight, a hypothetical unmeasured/mis-measured binary confounder would 
have to be lower amongst more-highly-educated grandmothers by 15% and decrease G2 birth weight by 
150 grams (or vice versa). As a comparison, any G1 pre-natal smoking was 6.4% lower amongst college-
educated grandmothers as compared to less than high-school education grandmothers and produced a 
118 gram reduction in G2 birth weight. 
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Discussion 

Overall, we found fairly robust evidence for a small controlled direct effect of grand-

maternal (G0) education at the time of a mother’s (G1) birth on the birth weight of the child 

(G2) independent of the mother’s mediating life course circumstances: We found evidence 

that an improvement of grandmother’s education from less than high school to college 

graduate increases child’s birth weight by approximately 180 grams (2 * 89 grams), in a 

marginal population where all mothers were at equal risk of childhood maltreatment, high 

pre-pregnancy BMI, low adult SES, and any prenatal smoking. Our findings are 

strengthened by our analytic methods; the robustness of estimates to model alternation, 

data replacement, and quantitative bias analyses; as well as the consistency of secondary 

findings (e.g. association of prenatal smoking and lower birth weight) with past literature. 

Lower grandmaternal educational status may be related to an adverse fetal programming 

environment for the mother5-10: Lower maternal education may cause the fetus to 

experience excess glucocorticoids (e.g. cortisol)6 which may program offspring HPA axis to 

chronically higher cortisol secretion in response to stressors.7 In women, higher chronic 

levels of cortisol can in turn lead to low birth weight offspring.7 However, prior empirical 

studies on the effect of grandparental education on birth weight have not provided 

consistent evidence10, 13: In a study of predominantly African American and low-income 

Whites, Astone, et al. found high grandmaternal education to be associated with a 181 gram 

increased birth weight among high school or less mothers.10 However, Kwok, et al. found no 

association between grandparental education and birth weight after adjusting for parental 

education.13 One potential limitation to past studies is use of simple covariate-adjustment 

models in the presence of endogenous confounders.21 While the use of MSM to estimating 

direct effect of SES on subsequent health outcomes in the presence of such confounding is 

increasingly common,20, 47 we believe the current study is the first to use MSM to provide 
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evidence for intergenerational effects of grandmaternal education on birth weight while 

applying multiple sensitivity and quantitative bias analysis to address known limitations.  

Several strengths are worth mentioning: First, prominent determinants of birth weight 

including pre-pregnancy BMI, prenatal smoking, and self-reported race33 and mediation by 

childhood maltreatment,27, 28 were explicitly included in our model. Second, we addressed 

the possibility of incorrect model specification and mismeasurement in our model by adding 

pre-term delivery as a mediator, altering the causal order of intermediates, and data 

replacement. We found these processes to have little influence on effect estimates. For 

example, it is plausible that adult SES actually influences pre-pregnancy BMI. Neither 

swapping the causal ordering of these mediators (through re-weighting) nor using prior 

measures of these mediators appeared to greatly affect our estimates. Our quantitative bias 

analysis suggests that a single binary confounder would have been fairly strong and 

imbalanced across exposure groups to fully explain our estimated direct effect. Fourth, 

confidence in our findings is also improved by the concurrence of secondary model findings 

with past literature: Notably, we observed greater effect sizes and strengths of association 

between G2 birth weight and the proximate mediators, prenatal smoking and adult SES, 

than the earlier mediators, pre-pregnancy BMI and high childhood maltreatment in our 

MSM. Also, the magnitude of birth weight reduction due to prenatal smoking was in line with 

findings from past meta-analyses.33, 48 Furthermore, our study agrees with past studies in 

the Add Health population which found G1 adult SES,28 prenatal smoking,28 and G1 obesity49 

to be directly associated with G2 birth weight.  

Some limitations to our study are worth highlighting: In spite of several sensitivity and 

biases analyses, model misspecification and unmeasured cofounding are still possible. 

Recent publications have questioned the ability of conventional observation methods to 

completely account for these issues.50, 51 Overall, we have attempted to address these 

limitations through sensitivity analysis in order to estimate an average causal effect for a 
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marginal population in the presence of model misspecification and the presence of 

unmeasured confounding. However, our study of relevant mediators and covariates was not 

exhaustive and our ability to incorporate several covariates potentially important to birth 

weight was limited. For example, we did not include information regarding respondent’s 

(G1) infection history or exposure to air pollution. Notably, the Add Health study was not 

designed to investigate characteristics surrounding the respondent’s (G1) birth, 

consequently we have few variables related to grandmaternal (G0) pregnancy and perinatal 

health. For example, we did not have information on grandmaternal nutrition or prenatal 

smoking. When breastfeeding duration was incorporated into our MSM analyses, point 

estimates and confidence intervals were virtually unchanged. Since our study relies almost 

solely on self-report (with the exception of Wave III BMI), bias due to measurement error is 

also a concern. Specifically, recall of childhood maltreatment and prenatal smoking may be 

differentially misclassified by grandmaternal and maternal SES. Notably, this may explain 

the unexpected finding of association between high childhood maltreatment and greater 

proportion of high SES in our SEM. However, women have been shown to be reliable 

reporters of infant birth weight.52 Additionally, while dichotomizing mediators was necessary 

in order to generate weights, this may have resulted in residual confounding and non-

exchangeability in our target marginal population. Nonetheless, when we dichotomized at 

other cut points, such as defining everyone below the 80th percentile of adult SES factor 

score as low SES and any maltreatment as high maltreatment, estimates did not 

substantially change. In fact, defining low adult SES as the bottom 20th percent of adult SES 

factor scores only strengthened the estimated association. Finally, it is possible G0 

education captures early post-natal experiences beyond in utero experience. We attempted 

to address this by including childhood maltreatment and pre-pregnancy BMI, which in many 

cases were measured in adolescence, as mediators in our model. To the extent that early 

childhood rearing practices have an impact on G2 birth weight, we are likely to see them 

mediated through these pathways.  
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Developmental Origins researchers have been cautioned to not ignore social, life-course 

context in their investigations11 and our study attempts to address this concern by explicitly 

examining prominent social and biological determinants of birth weight. We addressed 

assumptions of no-residual confounding and model specification assumptions through 

sensitivity analysis and still found evidence for the direct effect of grandmaternal education 

on offspring birth weight. Consequently, we believe we have provided evidence that 

supports early life social conditions should be a target for intervention and measurement in 

order to address disparities in pregnancy outcomes. Future empirical work should consider 

the relevant causal components of education, possible biological mechanisms (such as 

epigenetics), improved measurement of life course variables, and consider additional causal 

estimation methods, including those that relax more modeling assumptions.  

 

 

 

 

 

 

 

 

 

(End Chapter 2)  
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Chapter 3 - Early life socioeconomic status, candidate gene DNA methylation, and 

adult cardiometabolic phenotype in young adult women: the Jerusalem Perinatal 

Family Follow-Up Study. 

Abstract 

Background: Early life socioeconomic status (SES) has been related to adult cardiometabolic 

health. However, potential mechanisms such as epigenetics have not been well described. 

Methods: Among 613 adult women (mean age = 32 years) participants of the Jerusalem 

Perinatal Study Family Follow-Up we investigated associations between early life SES and 

DNA methylation at five cardiometabolic and stress response genes: ABCA1, INSIGF, LEP, 

HSD11B2, and NR3C1 (two regions). Early life SES was characterized by father’s 

occupational class (6 being ‘lowest’ to 1 being ‘highest’) and years of maternal and paternal 

education. Sequenom MassARRAY was used to profile methylation. We used multivariate 

linear regression to test associations between measures of early life SES and average, 

region-specific methylation, adjusted for maternal age at birth, prenatal smoking, country of 

origin, and parity. We examined whether methylation mediates the SES-adult phenotype 

relationship using exploratory product-of-coefficients mediation analyses under two 

presumed causal structures: with and without adjustment for a woman’s life course 

characteristics (adolescent overweight status, years of education, religiosity, marital status, 

number of children, and frequency of alcohol and cigarette use). All models were adjusted 

for age at blood draw and original stratified sampling criteria, maternal pre-pregnancy BMI 

and participant birth weight.    

Results: Average methylation ranged from 5.7% for HSD11B2 to 77.3% for INS-IGF. Each 

higher paternal occupational class was associated with a 0.5 %-point (95% CI: 0.004, 0.9; 

p = 0.048) and 0.4 %-point (95% CI: 0.1, 0.8; p = 0.022) higher ABCA1 and NR3C1 Exon 

1F region 2 methylation, respectively. Each additional year of maternal education was 

associated with a 0.08 %-point (95% CI: 0.02, 0.1; p =0.012) higher HSD11B2 

methylation. Only HSD11B2 or NR3C1 Exon 1F region 2 appeared to be related to adult 
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phenotype after adjustment for life course characteristics. However, there was not 

consistent evidence that methylation at these regions mediated early life SES-adult 

phenotype relationships (for all tests of indirect effect, p > 0.05). 

Discussion: We found evidence for associations between early life SES and adult 

methylation at regions in ABCA1, HSD11B2, and NR3C1. However, we did not find evidence 

for DNA methylation to mediate the relationships between early life SES and adult 

cardiometabolic phenotype. Future larger, replication studies in this population should 

consider addition SES measures including income, immigration status, and military service, 

sampling DNA at different time points and tissues, and study sampling structures that better 

allow for causal mediation analyses.  
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Background 

Early life exposure to adverse environments such as poverty, famine, and war may increase 

adult susceptibility to early mortality,1 cardiovascular disease,2,3 and, among women, poor 

pregnancy outcomes.4,5 6 Experiences of psychosocial stress in utero may have an important 

role in such relationships7 due to the putative programming of the fetal epigenome through 

DNA methylation, the process by which methyl groups are added to cysteine residues of 

cytosine-guanine (CpG) dinucleotides in the DNA sequence.8,9 Methylation of gene promoter 

regions is a common gene expression regulatory mechanism with profound implications in 

physiological processes such as X chromosome silencing as well as pathologic processes 

such as Silver-Russell syndrome, where intra-uterine growth restriction is caused by 

abnormal imprinting of the insulin-like growth factor (IGF2).10 In the context of early life 

exposures and development origins of adult disease, DNA methylation can play a key 

mediating role because (a) it is influenced by the intrauterine environment11-13; (b) it is a 

key component of fetal epigenetic programming8-14; and (c) it is mitotically stable and can 

persist throughout the adult life,6-10 and (d) it can be transmitted across generations.6-14 

Importantly, DNA methylation of growth, metabolism, and stress response genes8,11-14 may 

be programmed by excess exposure to the glucocorticoid cortisol resulting from prenatal 

stressors including low socioeconomic status (SES).7,15  

Several studies have found associations between maternal experiences of war16 and 

intimate partner violence17 and higher glucocorticoid receptor (NR3C1) methylation in 

neonates and adolescents, respectively. In utero exposure to famine has been associated 

with lower methylation at INSIGF, a shared promoter for IGF2, among adults.12,18 Moreover, 

less acute sources of adversity19 including low childhood socioeconomic position20-22 may 

also be associated with differential adult methylation: In a U.S. birth cohort, Tehranifar, et 

al. found lower family income at birth to be associated with a 19.7% lower methylation of 

the Sat2 repetitive DNA element in peripheral blood of adult women.21 However, there is a 
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lack of studies on associations between early life socioeconomic status (SES) and adult 

methylation status of specific cardiometabolic and stress response genes, such as NR3C1 

and INSIGF,23,24 and whether such associations might mediate early life SES-adult health 

relationships. Investigating such associations may provide mechanistic evidence for fetal or 

intergenerational effects of adverse socioeconomic conditions.25-28 Moreover, investigating 

these associations amongst women is important as intergenerational effects might be 

transmitted through a woman’s own pregnancy outcomes.6,26,27 

To this end, we investigated associations between measures of early life SES (measured by 

father’s occupational class and parental education) and variations of DNA methylation in 

specific cardiometabolic (ABCA1, INSIGF, LEP) and stress-related genes (HSD11B2, NR3C1) 

among young adult women (mean age = 32 years) participants of a birth cohort study. In 

line with previous studies, we hypothesized that lower early life SES would be associated 

with reduced HSD11B2 and increased NR3C1 methylation in young adulthood, as evidence 

of an adaptive response to excess perinatal glucocorticoids.7,30,31 Further, we hypothesized 

that lower early life SES would be associated with lower INSIGF and higher ABCA1 and LEP 

methylation.29 In secondary analyses, we investigated associations between DNA 

methylation and adult cardiometabolic profiles and whether methylation mediated early life 

SES and adult cardiometabolic phenotype relationships, using two models for mediation.  
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Methods 

Study setting and population - This study was conducted in setting of the Jerusalem 

Perinatal Study (JPS) which included all 17,003 births to residents of Jerusalem between 

1974 and 1976.32 Around the time of subjects’ birth in 1974-76, maternal demographic, 

medical history, and pregnancy course information, as well as subject’s birth weight were 

abstracted from birth certificates or maternity ward logs. Additional information on maternal 

immigration history, years of education, pre-pregnancy weight, height, smoking status, 

paternal occupation and years of education were collected by interview of the mother one or 

two days postpartum. In the JPS Family Follow-Up Study (JPS-1), a well characterized 

cohort of 1,400 mother-offspring dyads, oversampled on the basis of maternal pregnancy 

body mass index (ppBMI ≥ 27 kg/m2) and offspring birth weight (≤ 2500 grams or ≥ 4000 

grams), were identified and recruited from JPS participants. Offspring were only selected to 

participate in this follow-up if records showed they had been born as singletons, at ≥ 36 

weeks of gestation, and without any congenital malformations. Between 2007 and 2009, 

JPS-1 offspring were interviewed and examined as young adults (mean age = 32 years old). 

All JPS-1 female offspring with available blood samples (N = 613) were included in the 

current study. JPS and JPS-1 study protocols were approved by the University of 

Washington (Seattle, WA, USA) and Hadassah-Hebrew University Medical Center 

(Jerusalem, Israel) Institutional Review Boards and participants provided informed consent. 

Data Collection 

JPS-1 subjects were asked via telephone interview about years of education, marital status, 

religiosity (secular, traditionalist, religious, and ultra-orthodox), medical history and 

medications, and frequency of alcohol or cigarette use. They were also asked whether they 

had any children, and if so, whether any of them were born at term, but weighing less than 

2.5 kilograms. In a subsequent physical exam, anthropometrics and blood pressure as well 

as a peripheral blood sample were collected by standardized procedures (see below).32,33 
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Early life socioeconomic status (SES) exposures – Prenatal socioeconomic stress may be a 

complex construct with multiple dimensions.34 In line with previous studies, we chose four 

measures for early life SES: We defined our primary exposure as paternal occupational 

type, as reported by the mother during post-partum interview (Savitsky, et al., In Review). 

These occupational types were categorized into 6 classes, with 6 being the lowest class 

comprising manual occupations and 1 being the highest class comprising professional 

occupations. Paternal occupational class was dichotomized to ‘low’ (4-6) and ‘high’ (1-3) to 

match previous work. Since we did not hypothesize a specific threshold for the effect of 

socioeconomic related stress based on occupational class, we also evaluated paternal 

occupational class ordinally (i.e. 6 to 1). Additionally, we were interested in parental 

education as measures of early life SES. We defined maternal or paternal education as total 

number of years of education completed by mother or father, respectively. Past studies 

have found education to be highly correlated to other measures of prenatal socioeconomic 

status34 and is one of the strongest predictions of offspring methylation.24 

Candidate gene region selection and methylation profiling – Promoter regions from five 

genes of interest were selected based on prior literature on maternal perinatal adversity and 

offspring methylation as well as their putative role in cardiometabolic function and stress 

response: ABCA1 (cholesterol transport protein),23,29 HSD11B2 (glucocorticoid-inactivating 

enzyme),40-42 INS-IGF2 (insulin and insulin-like growth factor),23,24,29 LEP (leptin, an energy 

balance hormone),29 and NR3C1 (glucocorticoid receptor).16,17,43 Peripheral blood samples 

were used for DNA methylation profiling conducted at the Roswell Park Cancer Institute’s 

Genomics Shared Resource (Buffalo, NY, USA). Quantitative methylation analysis was 

performed with the Sequenom MassARRAY Compact System (San Diego, CA, USA) using 

standard, previously described methods.44-46 Briefly: 1 µg of genome DNA for each individual 

and CpG region of interest was bisulfite converted using the EZ DNA Methylation Kit (Zymo 

Research, Orange, CA). Converted DNA was then amplified by PCR using primers flanking 
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the regions of interest designed in MethPrimer.47 PCR products were then cleaved using 

Transcleave (Sequenom), purified with Clean Resin (Sequenom), and spotted onto a 384-

well SpectroCHIP (Sequenom) plate. Matrix-assisted laser desorption/ionization time-of-

flight (MALDI-TOF) mass spectrometry (MS) was conducted using a MassARRAY Analyzer 

Compact (Sequenom) to analyze cleavage products, with resultant methylation calls 

performed by the EpiTyper software v1.0 (Sequenom) and written to an Oracle 8i database. 

Each cleavage product corresponds to one CpG unit consisting of several proximal CpG sites 

with the output value being the proportion of sites in the unit that were methylated. 

Average methylation for each region of interest was then calculated by taking the arithmetic 

mean of all analyzed CpG units from the region to form one summary measure expressed as 

a percentage methylated (i.e. out of the entire region). Control runs of known methylation 

of 0%, 50%, and 100% were run for each CpG gene to assess for profiling bias. CpG units 

failing > 25% of methylation calls were excluded (N = 3 for ABCA1, 2 for LEP, 4 for NR3C1 

Region 1, and 2 for Region 2). No subjects were excluded on the basis of failed methylation 

calls. 

Adult Cardiometabolic Risk / Phenotype Outcomes – At the woman’s in-person physical 

exam around age 32, measurements were collected including height, weight, waist and 

pelvic circumference, systolic and diastolic blood pressures by study staff according to 

previously described protocols.32 We calculated body mass index (BMI) by the formula: 

(measured weight in kilograms) / (measured height in meters)2. We calculated waist to hip 

ratio (WHR) by the formula: (measured waist circumference in centimeters) / (measured 

pelvic circumference in centimeters) x 100%. Additionally, a fasting (≥ 8 hours since the 

last meal) peripheral blood sample was collected, immediately spun, and assayed for 

biomarkers in plasma including total cholesterol, high density lipoprotein (HDL) cholesterol, 

and low density lipoprotein (LDL) cholesterol assayed on the VITROS 5,1 FS Chemistry 

System (Ortho Clinical Diagnostics).32  
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We constructed three binary young adult health outcomes: obesity, metabolic syndrome, 

and any, term low birth weight offspring. Obesity was defined as a calculated BMI ≥ 30 

kg/m2. Metabolic syndrome defined based on International Diabetes Federation (IDF) 

criteria48: central obesity defined by waist circumference ≥ 90 cm or BMI ≥ 30 kg/m2 and at 

least two of the following: triglycerides > 150 mg/dL; HDL < 50 mg/dL; SBP > 130 mmHg; 

DBP > 85 mmHg; and/or fasting glucose > 100 mg/dL. During the young adult phone 

interview, a woman was asked whether she had any children and, if so, whether any were 

born at or near term, but weighing less than 2.5 kilograms (coded “yes” or “no”).  

Early life confounders – Data on maternal pre-pregnancy overweight (ppBMI ≥ 27 kg/m2), 

age at birth, immigrant from West, any prenatal smoking, and parity collected by post-

partum interview as well as a woman’s birth weight abstracted from medical records32 were 

included as potential confounders. Previous studies have shown maternal ppBMI, age, and 

race34 as well as maternal prenatal smoking and offspring birth weight24 to be relevant 

confounder of early life SES-methylation associations. Because of the relative homogeneity 

of the study population35 and similar to prior work (Savitzky, In Review), we used maternal 

immigration status in lieu of a racial classification. In past studies of this population, country 

of origin has been associated with SES and health outcomes.35 Finally, due to the potential 

relationship between birth order and putative fetal programing,36 we also adjusted for 

maternal parity. Since methylation is dependent on age,9 we adjusted for a woman’s age at 

blood draw in all analyses. 

Life course factors – While it is hypothesized that methylation status is established early in 

life,8,9 it is possible life course factors may mediate early life SES and adult methylation 

associations or predict adult methylation status independently. Such factors include: 

childhood overweight in grades 4-6 (approximately ages 10 to 12 years), years of 

education, religiosity, marital status, childbearing and parity, and any alcohol and tobacco 

use as self-reported by the woman during telephone interview (~age 32). These life course 
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factors may lie on the causal pathway between early life SES and adult methylation (and 

between early life SES and adult outcomes33) and yet they may also serve as confounders in 

the relationship between adult methylation and phenotype. Contemporary thought suggests 

including endogenous confounders in regression models may result in over-adjustment by 

removing some of the mediated effect.37 Since we are primarily interested in the total effect 

of early life SES, we exclude these life course factors in our primary analysis of early life 

SES-methylation associations. In assessing associations between adult methylation and 

phenotype, however, we adjust for these factors as potential confounders.  

Use of life course factors in mediation analyses - To explore the potential role of DNA 

methylation in mediating early life SES-adult phenotype relationships, we must make 

assumptions regarding the causal relationship of life course factors to adult methylation 

status. Since the precise role of DNA methylation as cause, mediator, or consequence of life 

course health processes is still in question38,39 and we only have measurement of adult 

methylation, we propose two models in our study: For an “early programming” model, we 

assume that methylation marks are set in early life, even though they are observed in 

adulthood (Figure 1). In assessing mediation through this models, we again do not adjust 

for life course factors as they can only be a consequence of DNA methylation status. For a 

“late effect” model, we assume that methylation marks are a consequence of life course 

factors (Figure 2). To test this model using comparable mediation methods, we adjust for 

life course factors despite prior reservations. To assess whether the early life SES-

methylation association may be unduly biased by these adjustments, we compare the 

qualitative interpretation of SES-methylation associations with and without adjustment for 

life course factors.  
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Figure 1. Methylation is established in early life. Under this causal diagram, a woman’s methylation 

status is established early in life by birth SES (E) and perinatal characteristics (C) and independent of 
subsequent life course mediators (M) such as childhood overweight, attained education, marital 
status, religiosity, childbearing, or substance use. The mediated effect of birth SES (E) on adult 
phenotype (Y) through methylation status (i.e. the indirect effect) is given by the dashed lines – any 
effect through life course mediators is captured by the total effect of methylation. 

 

 

Figure 2. Methylation is affected by life course mediators. Under this causal diagram, a woman’s 
methylation status is determined by birth SES (E), perinatal characteristics (C), and life course 
mediators (M). The mediated effect of birth SES (E) on adult phenotype (Y) is given by the dashed 
lines – only the effect through life methylation. 

 

Statistical Analysis – To estimate associations between early life SES and young adult 

methylation, we fit three multivariable linear regression models for average methylation at 

each of the six candidate gene regions (ABCA1, HSD11B2, INSIGF, LEP, NR3C1 Exon 1-F 

Region 1 and Region 2) predicted by each of the four exposures (low / high paternal 

occupational class; increasing paternal occupational class; increasing maternal years of 

education; increasing paternal years of education) and: (1) adjusting for woman’s age at 

blood draw and the stratification variables maternal pre-pregnancy overweight (≥ 27 kg/m2) 
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and woman’s birth weight category (≤ 2500 grams, 2501 to 3999 grams, ≥ 4000 grams); 

(2) also adjusting for early life confounders; and (3) also adjusting for life course factors. As 

mentioned above, adjustment for life course factors was primarily done to assess whether 

our “late effect” mediation model may be unduly biased. Up to 19 individuals (maternal 

education and woman’s cigarette use) were missing information for each variable, so 

multiple imputation by chained equations was used to estimate the influence of values 

missing at random (MAR) conditional on observed covariates on our estimates of early life 

SES-adult methylation associations.  

To estimate associations between adult methylation and phenotype, we fit two multivariable 

linear regression models for each of our continuous adult outcomes predicted by percent 

methylation at each of the six promoter regions: (1) Adjusted for woman’s age at blood 

draw and stratification variables; and (2) also adjusted for both confounders and mediators, 

as they serve as potential confounders of the methylation-phenotype relationship. Similarly 

we fit two multivariable logistic regression models for each of the binary adult outcomes: 

risk of obesity (BMI ≥ 30 kg/m2), risk of metabolic syndrome, and risk of reporting any 

term, offspring weighing less than 2.5 kilograms, predicted by percent methylation at each 

of the six promoter regions. Risk of low birth weight offspring was estimated only amongst 

women who had reported any births. Continuous biomarkers (e.g. cholesterol, HDL, LDL) 

were not log transformed in accordance with past studies32 as they did not deviate 

substantially for normality. 

Finally, for promoter regions that showed significant associations with a measure of early 

life SES and one or more adult outcomes, we explored potential mediation of that specific 

early life SES-adult phenotype relationship. We did this by estimating the indirect effects of 

the given early life SES measure on our set of adult outcomes, as mediated through percent 

methylation, using multivariate linear regressions and the standard product of coefficients 

approach,49 which has been formalized in a causal framework under assumptions of no 
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residual confounding (sequential randomization) and no interaction.49,50 As discussed in the 

section on life course factors, we operationalized two alternative causal structures for the 

developmental origins hypothesis: In the “early programming” model, we assumed that 

adult methylation status is a measure of methylation status established early in life (Figure 

1) and therefore independent of life course factors (childhood overweight, educational 

attainment, religiosity, adult marital status, and any alcohol or cigarette use). In this model, 

we estimated the direct effect of early life SES on adult phenotype conditional only on adult 

methylation. Implicitly, the estimates of indirect effect through methylation capture the 

effects of methylation on “subsequent” life course measures. In the “late effects” model, we 

allow that adult methylation may be affected by life course mediators (Figure 2) and adjust 

for them in models for both direct and indirect effects. In this way, we focus on the 

components of the effect of early life SES and methylation that do not involve measured life 

course events. Confidence intervals for calculated indirect effects were obtained by 

bootstrapping standard errors. We conducted all data analyses using Stata MP 13.1 

(StataCorp, College Station, TX, USA) and p < 0.05 was chosen as our indicator of model-

dependent statistical significance. Because we chose a small set of specific exposures and 

candidate genes a priori based on previous work, and in the interest of not increasing type 

II error, we elected not to perform any multiple testing corrections. Subsequently, we 

describe implications for this in the Discussion. 
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Results 

Overall, women with available blood samples included in our study did not differ 

substantially from the total female population (N = 715) of the JPS Family Follow-Up with 

regard to maternal characteristics and adult cardiometabolic measures, though women in 

our study sample were slightly less likely to have been low birth weight (13.1% vs. 14.5%), 

married (78.7% vs. 80.2%), or ultra-Orthodox (18.7% vs. 20.4%). Moreover, our study 

population was similar in characteristics to women from a previous study32 in this population 

(Table 1a). In our study, high paternal occupational class was associated with an average of 

3 more years of parental education each compared to low occupational class. Wives of high 

occupational class fathers were much more likely to have been immigrants from the West 

(22.7% versus 8.6%) and less likely to report any prenatal smoking (8.4% vs. 18.4%). 

Women with high occupational class fathers were more likely to report being overweight in 

the 4th to 6th grades (22.4% vs. 18.8%), had more years of education, were more likely to 

be married and identify as ultra-Orthodox, and have had more children, compared to low 

early life SEP women. Overall, adult methylation was tightly controlled: with the exception 

of the LEP promoter region, interquartile ranges were less than 10% methylation (Table 

1b). Compared to women with low early life SEP, high early life SEP women had higher 

mean methylation at ABCA1 (20.2% vs. 19.6%), INSIGF (77.4% vs. 77.2%), LEP (22.7% 

vs. 21.5%), and NR3C1 Region 2 (10.7% vs. 9.1%) and lower methylation at NR3C1 Region 

1 (6.4% vs. 6.8%), though differences appeared slight (Table 1b).  
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Table 1a. Study population characteristics, by father’s occupational class. 

  Father’s Occupational Class 

 Overall 
(N = 613) 

Low (Class 4-6) 
(n = 256) 

High (Class 1-3) 
(n = 357) 

Socioeconomic Status (SES) at Birth    
% Low paternal occupational class1 41.8% (256) -- -- 

Maternal education (years) 11.8 (3.3) 10.0 (3.0) 13.0 (3.0) 
Paternal education (years) 12.2 (4.0) 9.6 (2.9) 14.0 (3.6) 

    
Maternal Perinatal Characteristics    

Age at delivery (years) 28.3 (5.8) 27.8 (6.0) 28.7 (5.6) 
% Immigrant from the West 16.8% (103) 8.6% (22) 22.7% (81) 
Pre-pregnancy BMI (kg/m2) 24.3 (3.9) 24.5 (4.0) 24.2 (3.8) 

% Any smoking during pregnancy 12.6% (77)  18.4% (47) 8.4% (30) 
Parity2 2.0 (2.0) 2.0 (1.8) 2.0 (2.2) 

    
Daughter’s Perinatal Characteristics    

Birth weight (grams) 3,298 (599) 3,302 (597) 3,296 (602) 
% Low birth weight (< 2500 grams) 13.1% (80) 11.3% (29) 14.3% (51) 

    
Daughter’s Life Course Mediators    

% Childhood overweight3 20.9% (128) 18.8% (48) 22.4% (80) 
Years of education 14.9 (2.6) 14.4 (2.5) 15.3 (2.6) 

% Married 78.7% (474) 76.8% (192) 80.1% (282) 
% Ultra-Orthodox 18.7% (112) 6.5% (16) 27.4% (96) 

Number of children 2.4 (2.1) 1.9 (1.6) 2.7 (2.4) 
    

Daughter’s Adult Phenotype    
Height (cm) 162.0 (6.1) 161.7 (6.1) 162.2 (6.2) 
Weight (kg) 68.0 (14.7) 68.0 (15.1) 68.0 (14.5) 
BMI (kg/m2) 25.9 (5.4) 26.0 (5.4) 25.9 (5.5) 

Waist to Hip Ratio (%) 78.7 (6.2) 78.6 (5.8) 78.7 (6.5) 
    

Systolic blood pressure (mmHg) 99.6 (10.5) 99.3 (11.4) 99.9 (9.8) 
Diastolic blood pressure (mmHg) 69.6 (8.7) 69.5 (9.8) 69.6 (7.9) 
Serum total cholesterol (mg/dL) 183.7 (33.8) 186.0 (35.7) 182.1 (32.3) 

Serum HDL (mg/dL) 57.0 (15.1) 56.4 (14.7) 57.5 (15.3) 
Serum LDL (mg/dL) 108.1 (28.5) 110.2 (29.8) 106.6 (27.4) 

    
% Obese (≥ 30 kg/m2) 20.0% (122) 20.4% (52) 19.6% (70) 
Metabolic syndrome4 5.1% (31) 6.3% (16) 4.2% (15) 

% Any term, low birth weight children 13.5% (61) 13.5% (25) 13.4% (36) 
1 Defined by father’s occupational class being in the bottom half (i.e. 4-6). 
2 Number of self-reported previous live births, including those who have since died. 
3 Self-reported as “slightly overweight” or “significantly overweight” in grades 4 to 6 (around age 10 to 12 years). 
4 Based on International Diabetes Federation (2006) criteria, a subject has metabolic syndrome if she: Has central obesity defined as waist 
circumference ≥ 90 cm (~80th percentile) or BMI ≥ 30 kg/m2 AND at least two of the following: triglycerides > 150 mg/dL, HDL < 50 mg/dL, 
systolic blood pressure > 130 mmHg, diastolic blood pressure > 85 mmHg, and/or fasting glucose > 100 mg/dL. 
Note: All measures reported as mean (standard deviation) other than proportions, which are given as % (N). 
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Table 1b. Detailed Methylation (%) Distribution of Candidate Gene Promoter Regions. 

Gene (N) 
Location (GRCh37 / 

human genome build 19) 
# CpG 
sites 

Overall (N = 613) 
Low Class 
(n = 256) 

High Class 
(n = 357) 

Mean % 
(SD) 

Min 25%ile Median 75%ile Max 
Mean % 

(SD) 
Mean % 

(SD) 

ABCA1 
(N = 436) 

Chromosome 9: 
107,690,502-107,690,821 

27 
20.0% 
(7.3) 

6.6 14.5 18.6 24 58.5 
19.6% 
(7.2) 

20.2% (7.4) 

HSD11B2 
(N = 573) 

Chromosome 16: 
67,464,230-67,464,442 

6 
5.7% 
(2.1) 

0.5 4.5 5.3 6.3 22.8 
5.7%  
(2.2) 

5.7%  
(2.1) 

INS-IGF 
(N = 563) 

Chromosome 11: 
2,182,336-2,182,640 

4 
77.3% 
(5.4) 

44.5 75 77.8 80.5 97.5 
77.2% 
(5.4) 

77.4% (5.3) 

LEP 
(N = 470) 

Chromosome 7: 
127,881,051-127,881,408 

32 
22.2% 
(11.7) 

2.5 13.4 20.3 29.7 62.6 
21.5% 
(11.2) 

22.7% 
(11.9) 

NR3C1 Exon 1-
F.1 (N = 508) 

Chromosome 5: 
142,783,506-142,783,905 

47 
6.5% 
(2.7) 

2.8 5.4 6.2 7 48.8 
6.8%  
(3.7) 

6.4%  
(1.7) 

NR3C1 Exon 1-
F.2 (N = 317) 

Chromosome 5: 
142,783,885-142,784,247 

33 
10.1% 
(6.3) 

1.2 6.1 8.7 12.3 62.4 
9.1%  
(5.1) 

10.7% (7.0) 

 

Paternal class-adult methylation associations - Adjusting for woman’s age at blood draw and 

stratification variables (maternal pre-pregnancy overweight and woman’s birth weight 

category), high paternal occupational class (1-3) was associated with higher NR3C1 Region 

2 methylation (β = 1.5; p = 0.027), relative to low class (Table 2a). However, after 

adjusting for additional early life confounders (maternal age at birth, any prenatal smoking, 

country of origin, and parity), this association was no longer significant (Table 2b). Each 

higher category of paternal occupational class was associated with a 0.5 percentage-point 

higher ABCA1 (p = 0.033) and NR3C1 Region 2 (p = 0.008) promoter methylation, 

respectively (Table 2a). These associations remained statistically significant after adjusting 

for woman’s age, stratification variables, and other early life confounders (Table 2b). 

Education-adult methylation associations – Each greater year of maternal education was 

associated with a 0.7 percentage-point higher HSD11B2 promoter methylation (β = 0.07; p 

= 0.013; Table 2a). This persisted after additional adjustment for early life confounders 

(Table 2b). Each greater year of paternal education was associated with higher NR3C1 

Region 2 methylation (β = 0.02; p = 0.026; Table 2a). However, after adjusting for early 

life confounders, this relationship was no longer statistically significant (Table 2b).   
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Table 2a. Associations Between Early Life SES and Percent Candidate Gene Methylation.1 

Exposure 
ABCA1 HSD11B2 INS-IGF LEP NR3C1-1F.1 NR3C1-1F.2 

β (95% CI), p-value (p < 0.05 shaded) 

High Paternal  
Occupational Class2 

0.5 (-0.9, 1.9) 
p = 0.450 

-0.04 (-0.4, 0.3) 
p = 0.808 

0.2 (-0.7, 1.1) 
p = 0.681 

1.2 (-1.0, 3.4) 
p = 0.275 

-0.4 (-0.9, 0.2) 
p = 0.172 

1.5 (0.2, 2.9) 
p = 0.027 

Increasing Paternal  
Occupational Class3 

0.5 (-0.04, 0.9) 
p = 0.033 

-0.02 (-0.1, 0.1) 
p = 0.778 

0.1 (-0.2, 0.4) 
p = 0.517 

0.4 (-0.4, 1.1) 
p = 0.326 

-0.1 (-0.3, 0.1) 
p = 0.291 

0.5 (0.1, 0.9) 
p = 0.008 

Mother’s Years  
of Education 

0.2 (-0.02, 0.4) 
p = 0.085 

0.07 (0.01, 0.1) 
p = 0.013 

-0.04 (-0.2, 0.1) 
p = 0.595 

0.3 (-0.04, 0.6) 
p = 0.089 

0.02 (-0.07, 0.1) 
p = 0.683 

0.1 (-0.04, 0.3) 
p = 0.125 

Father’s Years 
of Education 

0.1 (-0.05, 0.3) 
 p = 0.154 

0.03 (-0.01, 0.08) 
p = 0.159 

-0.09 (-0.2, 0.03) 
p = 0.139 

0.2 (-0.1, 0.4) 
p = 0.254 

-0.02 (-0.08, 0.04) 
p = 0.581 

0.02 (0.02, 0.3) 
p = 0.026 

1 Adjusted for woman’s age at blood draw, maternal pre-pregnancy overweight (≥ 27 kg/m2), and woman’s birth weight category (≤ 2500 
grams, 2501 to 3999 grams, ≥ 4000 grams).  
2 High early life SEP (Father’s Occupational Class 1-3) versus low early life SEP (Class 4-6). 
3 Per unit father’s occupational class increase, i.e. From class 6 (Low) to class 1 (High). 
NOTE: Coefficients represent percentage-point change per unit exposure. 
 

 

Table 2b. Associations Between Early Life SES and Percent Candidate Gene Methylation, Adjusted for Maternal Characteristics.1 

Exposure 
ABCA1 HSD11B2 INS-IGF LEP NR3C1-1F.1 NR3C1-1F.2 

β (95% CI), p-value (p < 0.05 shaded) 

High Paternal  
Occupational Class 

0.4 (-1.1, 1.8) 
p = 0.600 

0.0002 (-0.4, 0.4) 
p = 0.999 

0.3 (-0.7, 1.2) 
p = 0.589 

0.8 (-1.4, 3.0) 
p = 0.490 

-0.4 (-1.1, 0.2) 
p = 0.156 

1.3 (-0.02, 2.6) 
p = 0.053 

Increasing Paternal  
Occupational Class 

0.5 (0.004, 0.9) 
p = 0.048 

-0.008 (-0.1, 0.1) 
p = 0.902 

0.1 (-0.2, 0.4) 
p = 0.449 

0.2 (-0.5, 1.0) 
p = 0.520 

-0.1 (-0.3, 0.1) 
p = 0.272 

0.4 (0.1, 0.8) 
p = 0.022 

Mother’s Years  
of Education 

0.2 (-0.003, 0.5) 
p = 0.053 

0.08 (0.02, 0.1) 
p = 0.012 

-0.1 (-0.2, 0.1) 
p = 0.454 

0.2 (-0.1, 0.6) 
p = 0.177 

0.02 (-0.1, 0.1) 
p = 0.691 

0.08 (-0.1, 0.3) 
p = 0.429 

Father’s Years 
of Education 

0.1 (-0.1, 0.3) 
p = 0.219 

0.04 (-0.003, 0.1) 
p = 0.068 

-0.1 (-0.2, 0.04) 
p = 0.159 

0.1 (-0.2, 0.4) 
p = 0.505 

-0.02 (-0.1, 0.04) 
p = 0.473 

0.1 (-0.02, 0.3) 
p = 0.081 

1 In addition to 2a, also adjusted for: maternal age at birth, any maternal smoking, maternal country of origin, mother’s parity. 

 

Sensitivity of models to life course factor adjustment – After further adjusting for potential 

life course mediators: childhood overweight, years of education, marital status, religiosity, 

number of children, alcohol and cigarette use and imputing missing values, qualitative 

associations between early life SES and adult methylation remained virtually identical: 

Increasing paternal occupational class was associated with a 0.6 percentage-point higher (p 

= 0.018) ABCA1 and 0.5 percentage-point higher (p = 0.039) NR3C1 Region 2 methylation 

(Table 2c). Each higher year of maternal education was associated with a 0.08 percentage-

point higher (p = 0.008) HSD11B2 methylation (Table 2c). 
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Table 2c. Sensitivity Analysis - Associations Between Early Life SES and Candidate Gene Methylation, Adjusted for Life Course Factors, 
Missing Data Imputed.1 

Exposure 
ABCA1 HSD11B2 INS-IGF LEP NR3C1-1F.1 NR3C1-1F.2 

β (95% CI), p-value (p < 0.05 shaded) 

High Paternal  
Occupational Class 

0.7 (-0.8, 2.3) 
p = 0.338 

0.002 (-0.4, 0.4) 
p = 0.994 

0.5 (-0.5, 1.4) 
p = 0.330 

0.8 (-1.5, 3.0) 
p = 0.503 

-0.6 (-1.5, 0.3) 
p = 0.169 

1.3 (-0.2, 2.8) 
p = 0.100 

Increasing Paternal  
Occupational Class 

0.6 (0.1, 1.1) 
p = 0.018 

-0.01 (-0.1, 0.1) 
p = 0.888 

0.2 (-0.1, 0.5) 
p = 0.250 

0.2 (-0.6, 1.0) 
p = 0.601 

-0.2 (-0.4, 0.1) 
p = 0.264 

0.5 (0.03, 0.9) 
p = 0.036 

Mother’s Years  
of Education 

0.2 (-0.02, 0.5) 
p = 0.066 

0.08 (0.02, 0.1) 
p = 0.008 

-0.04 (-0.2, 
0.1) 

p = 0.622 

0.2 (-0.2, 0.6) 
p = 0.345 

0.03 (-0.1, 0.1) 
p = 0.478  

0.09 (-0.1, 0.3) 
p = 0.436 

Father’s Years 
of Education 

0.2 (-0.04, 0.4) 
p = 0.112 

0.05 (-0.01, 0.1) 
p = 0.081 

-0.1 (-0.2, 0.1) 
p = 0.270 

p = 0.1 (-0.2, 
0.4) 

p = 0.456 

-0.04 (-0.1, 0.06) 
p = 0.425 

0.1 (-0.1, 0.3) 
p = 0.164 

1 In addition to 2b, also adjusted for: woman’s childhood overweight (10 – 12 years), years of education, marital status, religiosity, number of 
children, alcohol and cigarette use. Missing values for maternal education, pre-pregnancy overweight, smoking, and parity; father’s education; 
and woman’s marital status, years of education, religiosity, number of children, alcohol use, and cigarette use were imputed ten times using 
multiple imputation by chained equations. As a result, each regression only was missing a maximum of three subjects. 

 

Adult methylation-phenotype associations 

HSD11B2 – Adjusted for maternal and life course confounders, each 1%-point higher 

HSD11B2 promoter methylation was associated with 0.5 kg (95% CI: -1.0, -0.05) lower 

weight, 1.4 mg/dL (95% CI: -2.4, -0.3 lower cholesterol, 1.3 mg/dL (95%CI: -2.2, -0.4) 

lower LDL, and 12% higher risk (OR = 1.12, [95% CI: 1.00, 1.26]) of having any low birth 

weight offspring (Table 3).  

NR3C1 Exon 1F Region 1 - Adjusted for maternal and life course confounders, each 1%-

point higher NR3C1 Exon 1F Region 1 methylation was associated with 0.3 mmHg higher 

(95% CI: 0.08, 0.5) diastolic blood pressure in the fully adjusted model (p = 0.010; Table 

3b). 

NR3C1 Exon 1F Region 2 - Adjusted for maternal and life course confounders, each 1%-

point higher NR3C1 Exon 1F Region 2 methylation was associated with 0.1 cm (95%CI: 

0.02, 0.2) greater height (p = 0.019; Table 3).  

Additional associations and analyses - No significant associations were found for LEP or INS-

IGF2. Multiple imputation for missing values did not change estimates of association with 

adult phenotype greatly (not shown) and were substantively similar to Table 3.  
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Table 3. Associations Between Candidate Gene Methylation and Adult Phenotype, Adjusted for Confounders.
1
 

Phenotype Measure 
ABCA1 HSD11B2 INS-IGF LEP NR3C1-1F1 NR3C1-1F2 

β (95% CI), p-value (p < 0.05 shaded) 

Height (cm) 
-0.05 (-0.1, 0.03) 

p = 0.261 
-0.1 (-0.4, 0.1) 

p = 0.246 
0.001 (-0.1, 0.1) 

p = 0.976 
0.03 (-0.02, 0.07) 

p = 0.297 
0.01 (-0.2, 0.2) 

p = 0.919 
0.1 (0.02, 0.2) 

p = 0.019 

Weight (kg) 
-0.04 (-0.2, 0.1) 

p = 0.642 
-0.5 (-1.0, -0.05) 

p = 0.030 
-0.2 (-0.4, 0.04) 

p = 0.115 
0.05 (-0.06, 0.2) 

p = 0.349 
0.2 (-0.2, 0.6)  

p = 0.276 
0.05 (-0.2, 0.3) 

p = 0.659 

BMI (kg/m2) 
-0.0002 (-0.1, 0.1) 

p = 0.994 
-0.1 (-0.3, 0.02) 

p = 0.086 

-0.06 (-0.1, 
0.01) 

p = 0.091 

0.01 (-0.03, 0.05) 
p = 0.637 

0.07 (-0.06, 0.2) 
p = 0.294 

-0.01 (-0.1, 0.08) 
p = 0.833 

Waist-to-hip ratio (%) 
0.04 (-0.04, 0.1) 

p = 0.339 
0.01 (-0.2, 0.2) 

p = 0.930 

-0.01 (-0.1, 
0.08) 

p = 0.793 

-0.01 (-0.06, 
0.04) 

p = 0.609 

-0.05 (-0.2, 0.1) 
p = 0.530 

-0.004 (-0.1, 0.1) 
p = 0.949 

Systolic blood pressure (mmHg) 
0.01 (-0.1, 0.1) 

p = 0.877 
0.02 (-0.4, 0.4) 

p = 0.933 
-0.07 (-0.2, 0.1) 

p = 0.405 

-0.07 (-0.2, 
0.006) 

p = 0.070 

0.2 (-0.1, 0.4) 
p = 0.268 

0.04 (-0.2, 0.2) 
p = 0.688 

Diastolic blood pressure (mmHg) 
-0.01 (-0.1, 0.1) 

p = 0.863 
-0.07 (-0.4, 0.3) 

p = 0.664 

-0.08 (-0.2, 
0.06) 

p = 0.280 

-0.04 (-0.1, 0.02) 
p = 0.168 

0.3 (0.08, 0.5) 
p = 0.010 

-0.03 (-0.2, 0.1) 
p = 0.741 

Cholesterol (mg/dL) 
-0.1 (-0.6, 0.4) 

p = 0.649 
-1.4 (-2.4, -0.3) 

p = 0.013 
-0.01 (-0.5, 0.5) 

p = 0.960 
0.07 (-0.2, 0.4) 

p = 0.621 
0.5 (-0.3, 1.4) 

p = 0.234 
0.5 (-0.2, 1.1) 

p = 0.189 

HDL (mg/dL) 
0.01 (-0.2, 0.2) 

p = 0.931 
0.1 (-0.4, 0.7) 

p = 0.596 
0.002 (-0.3, 0.3) 

p = 0.987 
-0.02 (-0.2, 0.1) 

p = 0.728 
-0.08 (-0.4, 0.3) 

p = 0.657 
-0.04 (-0.2, 0.2) 

p = 0.675 

LDL (mg/dL) 
-0.1 (-0.5, 0.3) 

p = 0.615 
-1.3 (-2.2, -0.4) 

p = 0.005 
-0.03 (-0.4, 0.4) 

p = 0.904 
0.1 (-0.1, 0.3) 

p = 0.365 
0.5 (-0.1, 1.1) 

p = 0.111 
0.5 (-0.1, 1.1) 

p = 0.120 

Risk Measure OR (95% CI), p-value (p < 0.05 shaded) 

Risk of obesity (BMI > 30 kg/m2) 1.02 (0.98, 1.06) 
p = 0.290 

0.91 (0.81, 1.02) 
p = 0.113 

0.96 (0.91, 1.00) 
p = 0.054 

1.00 (0.98, 1.02) 
p = 0.785 

1.03 (0.96, 1.11) 
p = 0.401 

1.00 (0.96, 1.04) 
p = 0.972 

Risk of Metabolic Syndrome 0.95 (0.89, 1.02) 
p = 0.132 

0.79 (0.58, 1.08) 
p = 0.137 

1.00 (0.92, 1.08) 
p = 0.951 

0.99 (0.95, 1.04) 
p = 0.773 

0.92 (0.58, 1.48) 
p = 0.743 

1.02 (0.92, 1.13) 
p = 0.691 

Risk of Any Low Birth Weight 
Offspring 

0.96 (0.92, 1.00) 
p = 0.061 

1.12 (1.00, 1.26) 
p = 0.043 

1.04 (0.98, 1.11) 
p = 0.179 

0.98 (0.95, 1.01) 
p = 0.192 

0.84 (0.65, 1.08) 
p = 0.171 

0.95 (0.87, 1.03) 
p = 0.213 

1 In addition to covariates in 4a, also adjusted for: maternal age at birth, parity, prenatal smoking, and immigrant from West; and woman’s self-reported overweight 
at age 10-12, years of education, religiosity, marital status, number of children, frequency of alcohol consumption, and number of cigarettes smoked per day. 

 

Exploratory mediation analyses - Since HSD11B2 and NR3C1 Exon 1F Region 2 methylation 

were related to both exposure and outcome in our models, we explored their potential to 

mediate any relationships between early life SES and adult phenotype in our population. We 

did not find strong evidence that an effect of maternal education on adult phenotype was 

mediated by HSD11B2 through either the “early programming” (e.g. Direct effect of 

maternal education on metabolic syndrome risk p = 0.042, mediated risk through HSD11B2 

p = 0.211; Table 4a) or “late effects” (Table 4b) models. When assuming methylation status 

is set in early life by the “early programming” model, there was a suggestion of an indirect 

effect of increasing paternal class on 0.5 cm (95% CI: 0.0002, 0.1) increased height 

mediated through higher NR3C1 Exon 1F Region 2 methylation (p = 0.049; Table 5a). This 

effect was not statistically significant when assuming the “late effects” model (Table 5b). 
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Table 4a. Effects of increasing maternal education on daughter’s adult phenotype as mediated by HSD11B2,  “early 
programming” model.

1
 

Cardiometabolic  
Measure 

Total Effect of 
Increasing  

Years of Education
2
 

Effect of Increasing 
Education  

Not Mediated by HSD11B2 
Methylation

3
 

Indirect Effect 
Mediated  

Through HSD11B2
4
 

Percent Change  
Relative to Direct 

Effect
5
 

β (95% Confidence Interval), p-value (p < 0.05 shaded) 

Height (cm) 
0.1 (-0.07, 0.3) 

p = 0.231 
0.1 (-0.05, 0.3) 

p = 0.180 
-0.01 (-0.03, 0.004) 

p = 0.158 
-10% 

Weight (kg) 
-0.2 (-0.6, 0.2) 

p = 0.361 
-0.2 (-0.5, 0.2) 

p = 0.453 
-0.03 (-0.07, 0.001) 

p = 0.055 
+15% 

BMI (kg/m
2
) 

-0.1 (-0.3, 0.05) 
p = 0.172  

-0.1 (-0.3, 0.06) 
p = 0.211 

-0.01 (-0.02, 0.004) 
p = 0.169 

+10% 

Waist to Hip Ratio (%) 
-0.01 (-0.2, 0.2) 

p = 0.896 
-0.01 (-0.2, 0.2) 

p = 0.889 
0.001 (-0.02, 0.02) 

p = 0.934 
-10% 

Systolic Blood Pressure 
(mmHg) 

0.02 (-0.3, 0.3) 
p = 0.909 

0.01 (-0.3, 0.3) 
p = 0.934 

0.005 (-0.03, 0.04) 
p = 0.772 

+50% 

Diastolic Blood Pressure 
(mmHg) 

0.07 (-0.2, 0.4) 
p = 0.617 

0.08 (-0.2, 0.4) 
p = 0.592 

-0.005 (-0.04, 0.02) 
p = 0.725 

-6.3% 

Cholesterol (mg/dL) 
0.1 (-0.8, 1.0) 

p = 0.808 
0.2 (-0.7, 1.1) 

p = 0.637 
-0.1 (-0.2, 0.02) 

p = 0.113 
-50% 

HDL (mg/dL) 
0.4 (-0.07, 0.8) 

p = 0.101 
0.4 (-0.08, 0.8) 

p = 0.106 
0.005 (-0.04, 0.05) 

p = 0.845 
+1.3% 

LDL (mg/dL) 
0.04 (-0.7, 0.8) 

p = 0.918 
0.1 (-0.6, 0.9) 

p = 0.719 
-0.1, (-0.2, 0.01) 

p = 0.078 
-100% 

     

Cardiometabolic  Risk OR (95 % Confidence Interval), p-value (p < 0.05 shaded) 

Obese (BMI ≥ 30 kg/m
2
) 

0.97 (0.90, 1.05) 
p = 0.437 

0.97 (0.90, 1.05) 
p = 0.504 

0.99 (0.99, 1.00) 
p = 0.195 

-1% 

Metabolic syndrome 
0.85 (0.73, 0.99) 

p = 0.035 
0.86 (0.74, 0.99) 

p = 0.042 
0.98 (0.96, 1.01) 

p = 0.211 
-2% 

Any low birth weight 
offspring 

0.87 (0.77, 0.99) 
p = 0.041 

0.86 (0.75, 0.98) 
p = 0.023 

1.02 (1.00, 1.04) 
p = 0.108 

+2% 

1
 All models adjusted for maternal factors: age at daughter’s birth; whether she emigrated from the West, any prenatal 

smoking, parity, and pre-pregnancy BMI, as well as daughter’s age and birth weight. Models are estimated based on individuals 
with full data on maternal education, methylation, and outcome. 
2
 Total effect of years of maternal education on adult cardiometabolic measures.  

3
 Direct effect of years of maternal education on adult cardiometabolic measures, adjusted for percent HSD11B2 methylation. 

This assumes methylation is stable and not affected by woman’s life course mediators (i.e. childhood overweight and adult 
marital status, educational attainment, number of children, religiosity, and any smoking or drinking). 
4
 Standard errors bootstrapped over 50 replications.  

5
 Represents the proportion by which the mediated pathway through HSD11B2 methylation reduces or increases the observed 

direct effect. (e.g. If the direct effect of education is negative and the indirect effect is also negative, the percent change is 
positive.) 
6
 Percent change in odds of the outcome (calculated by OR – 1). 
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Table 4b. Effects of increasing maternal education on daughter’s phenotype as mediated by HSD11B2, “late effect” model.
1
 

Cardiometabolic  
Measure 

Total Effect of 
Increasing Education

2
 

Effect of Increasing 
Education  

Not Mediated by HSD11B2 
Methylation

3
 

Indirect Effect 
Mediated  
Through 

HSD11B2
4
 

Percent Change  
Relative to Direct 

Effect
5
 

β (95% Confidence Interval), p-value (p < 0.05 shaded) 

Height (cm) 
0.1 (-0.08, 0.3) 

p = 0.267 
0.1 (-0.07, 0.3) 

p = 0.214 
-0.01 (-0.03, 0.01) 

p = 0.310 
-10% 

Weight (kg) 
0.05 (-0.3, 0.4) 

p = 0.806 
0.09 (-0.3, 0.5) 

p = 0.642 
-0.04 (-0.1, 0.01) 

p  = 0.140 
-44% 

BMI (kg/m
2
) 

-0.02 (-0.2, 0.1) 
p = 0.808 

-0.01 (-0.1, 0.1) 
p = 0.942 

-0.01 (-0.03, 
0.007) 

p = 0.214 
+100% 

Waist to Hip Ratio (%) 
0.03 (-0.2, 0.2) 

p = 0.721 
0.04 (-0.2, 0.2) 

p = 0.721 

-0.0003 (-0.02, 
0.02) 

p = 0.978 
-0.8% 

Systolic Blood Pressure 
(mmHg) 

0.2 (-0.2, 0.5) 
p = 0.298 

0.2 (-0.2, 0.5) 
p = 0.304 

0.001 (-0.03, 0.03) 
p = 0.949 

+0.5% 

Diastolic Blood Pressure 
(mmHg) 

0.2 (-0.1, 0.4) 
p = 0.293 

0.2 (-0.1, 0.5) 
p = 0.269 

-0.01 (-0.04, 0.02) 
p = 0.581 

-5% 

Cholesterol (mg/dL) 
0.2 (-0.7, 1.1) 

p = 0.678 
0.3 (-0.6, 1.2) 

p = 0.471 
-0.1 (-0.3, 0.03) 

p = 0.110 
-33% 

HDL (mg/dL) 
0.04 (-0.4, 0.5) 

p = 0.871 
0.02 (-0.4, 0.5) 

p = 0.918 
0.01 (-0.05, 0.08) 

p = 0.685 
+50% 

LDL (mg/dL) 
0.3 (-0.5, 1.1) 

p = 0.486 
0.4 (-0.4, 1.3) 

p = 0.302 
-0.1 (-0.3, 0.03) 

p = 0.109 
-25% 

     

Cardiometabolic  Risk  

Obese (BMI ≥ 30 kg/m
2
) 

1.01 (0.93, 1.10) 
p = 0.819 

1.02 (0.94, 1.10) 
p = 0.705 

0.99 (0.98, 1.01) 
p = 0.370 

-1%
6
 

Metabolic syndrome 
0.91 (0.79, 1.05) 

p = 0.189 
0.92 (0.80, 1.06) 

p = 0.260 
0.98 (0.94, 1.02) 

p = 0.314 
-2%

6
 

Any low birth weight 
offspring 

0.87 (0.75, 1.00) 
p = 0.048 

0.85 (0.73, 0.98) 
p = 0.026 

1.02 (0.99, 1.04) 
p = 0.127 

+2%
6
 

1
 All models adjusted for maternal factors: age at daughter’s birth; whether she emigrated from the West, any prenatal 

smoking, parity, and pre-pregnancy BMI, as well as daughter’s age and birth weight. Also adjusted for daughter’s life course 
mediators: childhood overweight, years of education, marital status, religiosity, number of children, and frequency of alcohol 
and cigarette use. Models are estimated based on individuals with full data on maternal education, methylation, and outcome. 
2
 Total effect of years of maternal education on daughter’s cardiometabolic measures, adjusted for daughter’s life course 

mediators. 
3
 Direct effect of years of maternal education on daughter’s cardiometabolic measures, adjusted for mediators and percent 

HSD11B2 methylation.  
4
 Standard errors bootstrapped over 50 replications.  

5
 Represents the proportion by which the mediated pathway through HSD11B2 methylation reduces or increases the observed 

direct effect. 
6
 Percent change in odds of the outcome (calculated by OR – 1). 
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Table 5a. Effects of increasing paternal occupational class on daughter’s phenotype as mediated by NR3C1 Exon 1F.2, “early 
programming” model.

1
 

Cardiometabolic  
Measure 

Total Effect of 
Increasing  

Class
2
 

Effect of Increasing Class Not 
Mediated by NR3C1  

Exon 1F-2 Methylation
3
 

Indirect Effect 
Mediated  

Through NR3C1 
Exon 1F-2

4
 

Percent Change  
Relative to Direct 

Effect
5
 

β (95% Confidence Interval), p-value (p < 0.05 shaded) 

Height (cm) 
-0.04 (-0.5, 0.4) 

p = 0.854 
-0.1 (-0.5, 0.4) 

p = -0.675 
0.05 (0.0002, 0.1) 

p = 0.049 
-50% 

Weight (kg) 
-0.9 (-2.0, 0.2) 

p = 0.096 
-1.0 (-2.1, 0.1) 

p = 0.077 
0.06 (-0.09, 0.2) 

p = 0.406 
-6% 

BMI (kg/m
2
) 

-0.3 (-0.7, 0.08) 
p = 0.120 

-0.3 (-0.7, 0.08) 
p = 0.110 

0.01 (-0.05, 0.07) 
p = 0.737 

-3% 

Waist to Hip Ratio (%) 
0.2 (-0.3, 0.7) 

p = 0.363 
0.2 (-0.3, 0.7) 

p = 0.357 
-0.01 (-0.08, 0.07) 

p = 0.878 
-5% 

Systolic Blood Pressure 
(mmHg) 

-0.4 (-1.2, 0.3) 
p = 0.265 

-0.5 (-1.2, 0.3) 
p = 0.253 

0.02 (-0.09, 0.1) 
p = 0.720 

-4% 

Diastolic Blood Pressure 
(mmHg) 

-0.4 (-1.1, 0.3) 
p = 0.291 

-0.4 (-1.1, 0.3) 
p = 0.290 

-0.0003(-0.08, 
0.08) 

p = 0.994 
+0.1% 

Cholesterol (mg/dL) 
-2.3 (-5.4, 0.8) 

0.147 
-2.4 (-5.6, 0.7) 

p = 0.127 
0.1 (-0.3, 0.5) 

p = 0.501 
-4% 

HDL (mg/dL) 
0.06 (-1.1, 1.3) 

p = 0.923 
0.09 (-1.1, 1.3) 

p = 0.885 
-0.03 (-0.1, 0.07) 

p = 0.551 
-33% 

LDL (mg/dL) 
-1.8 (-4.4, 0.8) 

p = 0.183 
-1.9 (-4.5, 0.7) 

p = 0.146 
0.2 (-0.09, 0.4) 

p = 0.196 
-7% 

     

Cardiometabolic  Risk OR (95 % Confidence Interval), p-value (p < 0.05 shaded) 

Obese (BMI ≥ 30 kg/m
2
) 

0.85 (0.69, 1.04) 
p = 0.120 

0.85 (0.69, 1.04) 
p = 0.112 

1.00 (0.97, 1.03) 
p = 0.807 

-- 

Metabolic syndrome 
0.85 (0.60, 1.20) 

p = 0.361 
0.85 (0.60, 1.20) 

p = 0.346 
1.01 (0.92, 1.12) 

p = 0.787 
-1%

6
 

Any low birth weight 
offspring 

0.88 (0.64, 1.20) 
p = 0.412 

0.89 (0.65, 1.21) 
p = 0.453 

0.99 (0.96, 1.02) 
p = 0.570 

+1%
6
 

1
 All models adjusted for maternal factors: age at daughter’s birth; whether she emigrated from the West, any prenatal 

smoking, parity, and pre-pregnancy BMI, as well as daughter’s age and birth weight. Models are estimated based on individuals 
with full data on maternal education, methylation, and outcome. 
2
 Total effect of increasing early life SEP as defined by father’s occupational class at birth on adult cardiometabolic measures.  

3
 Direct effect of increasing early life SEP on adult cardiometabolic measures, adjusted for percent NR3C1 Exon 1F-2 methylation. 

This assumes methylation is stable and not affected by woman’s life course mediators. 
4
 Standard errors bootstrapped over 50 replications.  

5
 Represents the proportion by which the mediated pathway through NR3C1 Exon 1F-2 methylation reduces or increases the 

observed direct effect. 
6
 Percent change in odds of the outcome (calculated by OR – 1). 
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Table 5b. Effects of increasing paternal occupational class on daughter’s phenotype as mediated by NR3C1 Exon 1F.2, “late 
effects” model.

1
 

Cardiometabolic  
Measure 

Total Effect of 
Increasing Class

2
 

Effect of Increasing Class Not 
Mediated by NR3C1  

Exon 1F-2 Methylation
3
 

Indirect Effect 
Mediated  

Through NR3C1 
Exon 1F-2

4
 

Percent Change  
Relative to 

Direct Effect
5
 

β (95% Confidence Interval), p-value (p < 0.05 shaded) 

Height (cm) 
-0.01 (-0.5, 0.5) 

p = 0.955 
-0.07 (-0.5, 0.4) 

p = 0.770 
0.06 (-0.02, 0.1) 

p = 0.125 
-86% 

Weight (kg) 
-1.1 (-2.2, 0.01) 

p = 0.053 
-1.1 (-2.2, 0.02) 

p = 0.045 
0.04 (-0.09, 0.2) 

p = 0.547 
-4% 

BMI (kg/m
2
) 

-0.4 (-0.01, 0.8) 
p = 0.056 

-0.4 (-0.8, 0.01) 
p = 0.055 

-0.0002 (-0.05, 
0.05) 

p = 0.993 
+0.1% 

Waist to Hip Ratio (%) 
0.1 (-0.3, 0.6) 

p = 0.587 
0.1 (-0.3, 0.6) 

p = 0.577 
-0.004 (-0.05, 0.04) 

p = 0.882 
-4% 

Systolic Blood Pressure 
(mmHg) 

-0.3 (-1.0, 0.4) 
p = 0.405 

-0.3 (-1.1, 0.4) 
p = 0.378 

0.02 (-0.09, 0.1) 
p = 0.684 

-7% 

Diastolic Blood Pressure 
(mmHg) 

-0.3 (-1.0, 0.4) 
p = 0.441 

-0.3 (-1.0, 0.4) 
p = 0.454 

-0.01 (-0.1, 0.1) 
p = 0.851 

+3% 

Cholesterol (mg/dL) 
-2.4 (-5.7, 1.0) 

p = 0.165 
-2.6 (-6.0, 0.7) 

p = 0.125 
0.3 (-0.2, 0.7) 

p = 0.273 
-12% 

HDL (mg/dL) 
-0.2 (-1.4, 1.0) 

p = 0.765 
-0.2 (-1.4, 1.0) 

p = 0.791 
-0.02 (-0.1, 0.09) 

p = 0.713 
+10% 

LDL (mg/dL) 
-1.7 (-4.4, 1.1) 

p = 0.233 
-1.9 (-4.7, 0.8) 

p = 0.170 
0.3 (-0.06, 0.6) 

p = 0.115 
-16% 

     

Cardiometabolic  Risk OR (95 % Confidence Interval), p-value (p < 0.05 shaded) 

Obese (BMI ≥ 30 kg/m
2
) 

0.82 (0.64, 1.04) 
p = 0.103 

0.81 (0.64, 1.04) 
p = 0.100 

1.00 (0.98, 1.03) 
p = 0.890 

-- 

Metabolic syndrome 
1.27 (0.85, 1.89) 

 p = 0.246 
1.27 (0.85, 1.85) 

p = 0.245 
1.01 (0.61, 1.67)

4 

p = 0.976 
-1% 

Any low birth weight 
offspring 

0.88 (0.64, 1.22) 
p = 0.460 

0.90 (0.65, 1.25) 
p = 0.527 

0.99 (0.94, 1.03) 
p = 0.572 

+1% 

1
 All models adjusted for maternal factors: age at daughter’s birth; whether she emigrated from the West, any prenatal 

smoking, parity, and pre-pregnancy BMI, as well as daughter’s age and birth weight. Models are estimated based on individuals 
with full data on maternal education, methylation, and outcome. 
2
 Total effect of increasing early life SEP (6 through 1) as defined by father’s occupational class at birth on adult cardiometabolic 

measures.  
3
 Direct effect of increasing early life SEP on daughter’s cardiometabolic measures, adjusted for mediators and percent NR3C1 

Exon 1F-2 methylation.  
4
 Standard errors bootstrapped over 50 replications. One parameter’s standard error did not bootstrap well and a different seed 

number was required. 
5
 Represents the proportion by which the mediated pathway through NR3C1 Exon 1F-2 methylation reduces or increases the 

observed direct effect. 
6
 Percent change in odds of the outcome (calculated by OR – 1). 
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Discussion 

Overall, we found some evidence that lower early life SES, defined by lower paternal 

occupational class or fewer years of maternal education, were associated with reduced 

methylation at candidate genes ABCA1, HSD11B2, and NR3C1 Exon 1F. To our knowledge, 

the current study is the first to report associations between early life SES and methylation 

at these genes amongst young adult women. Moreover, findings for both early life SES-

adult methylation (Tables 2a-d) were fairly consistent across models, including after 

sensitivity measures such as adjustments for life course factors and multiple imputation. 

This suggests DNA methylation is influenced by early life environment, associated with adult 

disease risk, and potentially independent of life course events. This is consistent with a 

hypothesis of early life programming of cardiometabolic risk. However, in exploratory 

analysis, we did not find substantial evidence for average methylation in these regions 

mediating birth SES-adult phenotype relationships. 

While most studies of early life adversity have assessed methylation more globally,19-21,51  

several studies have investigated associations with candidate genes. For example, Appleton, 

et al. found an association between mothers with high school or greater educational 

attainment and a 9 percentage-point higher maternal-side placental methylation of the 

HSD11B2 glucocorticoid inactivating enzyme relative to mothers with less than a high school 

education (β = 8.8; p < 0.05; N = 444) after adjusting for maternal age, pre-pregnancy 

BMI, race, infant sex, and birth weight percentile.34 We found a positive association between 

maternal educational attainment and adult female offspring HSD11B2 leukocyte methylation 

adjusted for similar characteristics, albeit an order of magnitude lower (e.g. 12 years of 

education * 0.08 = ~1 percentage point higher for high school education). Despite a noted 

discordance between methylation of different offspring tissues,41,52 our findings suggest 

plausibility of a systemic, compensatory mechanism in response to early life adversity that 

persists into young adulthood, complementing findings by Appleton, et al.  
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Several studies have reported associations between maternal perinatal stress with 

differential NR3C1 methylation in newborn and adolescent offspring: Using principle 

components analysis, Mulligan, et al. found a positive association between maternal 

exposure to war stress and the first principle component of newborn NR3C1 promoter 

methylation from umbilical cord blood (Pearson’s correlation r = 0.57, p = 0.003).16 

Contrastingly, Radtke, et al. found intimate partner violence experienced by the mother 

during pregnancy was associated with a 2 percentage-point reduction in adolescent (mean 

age = 14.1 years) offspring NR3C1 promoter methylation (p < 0.05).17 We found evidence 

that lower paternal occupational class (early life SEP) was related to reduced young adult 

NR3C1 Exon 1F Region 2 methylation (β = -0.5 [95% CI: -0.9, -0.030]; p = 0.036). This 

region corresponds to a 363 base pair sequence (Chromosome 5: 142,783,885-

142,784,248; GRCh37 human genome build 19) 3’ of the identified Exon 1F regulatory 

region for the NR3C1 glucocorticoid receptor.52 Extending previous methylation profiling 

work in newborns16 and adolescents,17 our findings support the plausibility that early 

socioeconomic adversity may result in different NR3C1 methylation profiles in adults. This is 

relevant since response to glucocorticoids could be an important pathway relating early life 

adversity to adult cardiometabolic risk.7,31, 53 

We also found evidence for an association between higher early life SES and increased 

young adult ABCA1 methylation (adjusted 0.5 %-points per higher paternal occupational 

class, p = 0.048). One previous study by Tobi, et al. found an associations between famine 

exposure in early gestation and higher ABCA1 methylation (0.7 %-points relative unexposed 

siblings, p = 0.017) amongst older adults (~58 years of age).29 This study also found 

famine to be associated with increased INSIGF and decreased LEP methylation.29 However, 

we did not find associations between birth SES and LEP or INSIGF promoter methylation. 

Famine exposure may influence DNA methylation through different pathways than social 

stressors, including through overt, maternal nutritional deprivation of methyl donors like 
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folate.18,29,54 Therefore, famine exposure may have different associations to methylation 

profiles than early life socioeconomic status as we have measured it. Moreover, ABCA1, LEP, 

and INSIGF methylation been shown to be extra sensitive to external environment over 

time despite substantial concordance in studies of monozygotic twins.55 Our findings that 

associations with these gene regions did not exist even after adjusting for potential life 

course mediators suggests life course, postnatal factors may be substantially important for 

adult DNA methylation in these genes relative to early life SES.  

In this current study, we did not find strong evidence for candidate gene methylation 

playing a specific mediating role in early life SES-adult outcome relationships. We can 

identify several reasons for this: It is possible that our exploratory mediation model is 

incorrect due to improper model specifications or residual confounding. For example, while 

we adjusted for birth weight, for consistency with other studies34 and to account for 

stratified sampling, birth weight is likely an important mediator which captures much of the 

variance relating birth SES to adult outcome.14 While we did not find systematic evidence 

for simple additive interaction between exposure and mediators, there may be a more 

complex un-modelled relationship.49 Finally, the effect of early life SES may be exerted by 

pathways not captured by average methylation in these candidate gene regions.28 

There are several notable strengths to our study: First, we use state-of-the-art mass 

spectrometry methods to profile methylation at candidate genes previously found to be 

related to early life conditions and also pertinent to adult cardiometabolic function. 

Additionally, our study of 613 women is one of the largest attempting to relate in utero 

environment and candidate gene methylation in adult subjects. Consequently, we were able 

to detect effect sizes that were quite small. Moreover, we investigated potential associations 

amongst women given the potential importance of early life factors on reproductive 

outcomes and intergenerational transmission of health. Finally, our study is conducted 

amongst a well-characterized population with extensive information on maternal 
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demographics, pregnancy course, and offspring characteristics and biomarkers at an 

average age of 32 years.32 This study of births from 1974-76 in Jerusalem consists of a 

unique population subject to many historical stressors: The growth of the state of Israel 

since its formation in 1948 has been marked by large influxes of refugees and immigrants 

driven by religious and political pressures, as well as social strife from multiple wars.35 In 

our study population, 47% of mothers were born somewhere other than Israel and 

experienced several wars during their lifetimes.35,56 On the other hand, Israel has developed 

very rapidly as a modern market economy with female education averaging 16 years and a 

GDP per capital exceeding $36,000 USD as of 2013, making it 37th in the world.57 Persistent 

changes in DNA methylation subsequent to early life adversity may operate cyclically, over 

generations, to produce disproportionate morbidity and mortality.21,26,27 This phenomenon 

has particular implications for nations undergoing rapid transitions to industrial/post-

industrial economies. Recent improvements in later life conditions may mask increased 

susceptibility to morbidity due to early life and intergenerational adversity.58 Consequently, 

this population is ideal to study the effects of adverse maternal experience in the context of 

general socioeconomic improvement for the offspring generation. This context is unique and 

indeed our results show that adjustment for offspring life course factors changes 

associations very little.  

However, some limitations of the current study deserve mention. Notably, caution is needed 

in interpreting and generalizing our findings. For example, Israeli women are required to 

serve in the military following completion of the twelfth and final year of compulsory 

education. Women may defer such service if they are admitted to a University or other 

higher educational training opportunity, identify as ultra-Orthodox, or are pregnant. As a 

result, approximately half all women serve in the military32 in a manner that is dependent 

on education, childbearing, and religiosity. While our adjustment models account for these 

factors, the dynamics of life course stressors experienced by women in our study may be 
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unique to Israeli citizens. For example, our paternal occupational class measure groups 

fathers whose occupations are Yeshiva students (therefore, religious or ultra-Orthodox) as 

class 2, or ‘high’ SES. Previous studies have found this to be problematic (Savitsky, et al., 

In Review), as Yeshiva students and their families are generally poor and more likely to 

have poorer health. Despite this, we found that candidate gene methylation assocations 

generally occurred in the same direction based on different measures of SES, lending 

confidence to a more general association between stresses of early life SES and adult 

methylation status. Another limitation is our ability to only capture candidate gene DNA 

methylation in peripheral blood leukocytes at age 32. It is possible that developmental 

effects of early life SES may be exerted in different tissues, different genes, and at earlier 

ages.28,38,52 While we did not see substantial changes of estimates of associations when 

adjusting for life course mediators, we also did not have measures of newborn or infant 

methylation to directly test hypotheses regarding stable, early life programming. 

Nonetheless, early life methylation changes have been shown to occur systematically, 

across multiple organs, and persist over the life course.9,28,29 Finally, in an effort to limit 

Type II error at the cost of a higher potential for Type I error,59 we opted not to implement 

any adjustments for multiple hypothesis tests. We felt this was justified since our 

exposures, outcomes, and covariates were specified a priori from past research, with a 

reasonable expectation to find significant results. One correction we might have considered 

performing was for testing four measures of early life SES against each gene. Had we 

applied a Benjamin-Hochberg correction60 with a false discovery rate of 5%, each early life 

SES-adult methylation association would have to meet the threshold of p < 0.0125 (0.25 * 

0.05). Under this criterion, the positive association between maternal years of education 

and HSD11B2 methylation would still be statistical significant (p = 0.012), though 

associations with ABCA1 and NR3C1 would not be (Table 2b). 
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In summary, we found some evidence of association of early life SES with young adult 

methylation in cardiometabolic and stress response-related genes amongst young adult 

women. In this young adult population, we did not find significant evidence for mediation of 

the early life SES-adult phenotype relationship by average methylation at our candidate 

gene regions.  Future studies should evaluate the potential causal mechanisms (if any) and 

consequences of these relationships. This can include different parameterizations of early 

life SES sensitive to the specific relevance of the measure to mothers, measures of 

peripheral blood methylation at different time points (including early gestation, birth, and 

later life), and attempts to implement causal modeling and sensitivity analyses more robust 

to interactions and unmeasured confounding. The potential for methylation to be used for 

the early identification of cardiometabolic risk in individuals highlights the significance of 

future research in this area. 

 

 

 

 

 

 

 

 

 

(End Chapter 3) 
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Discussion 

Executive Summary 

Parental socioeconomic status (SES) experienced by a woman in utero may directly affect 

her adult health and reproductive outcomes through epigenetic mechanisms that are 

independent of her life course experiences. Using a U.S.-national, longitudinal cohort, Add 

Health, we investigated the effect of mother’s education on cardiometabolic risk and 

pregnancy outcomes among women averaging 30 years of age. Using an Israeli birth 

cohort, JPS-1, we investigated associations between parental education and father’s 

occupational class on DNA methylation at cardiometabolic genes in 32-year old women.  

(1) Using marginal structural models estimated by inverse probability weighting, we found 

young adult women whose mothers had higher educational attainment (e.g. college versus 

high school) had 40% lower risk (Odds Ratio = 0.60, 95% Confidence Interval: 0.45, 0.80) 

of metabolic syndrome, independent of childhood maltreatment, adolescent overweight, 

adult SES, and behavioral risk. Additionally, there was evidence that women with mothers 

who have higher education attainment were taller, thinner, and had a smaller waist, lower 

resting pulse rate, lower levels of inflammatory markers, and better blood sugar control.  

(2) Additionally, women born to mothers with higher educational attainment had children 

delivered who were 90 grams heavier (95% CI: 20.8, 156.5), independent of childhood 

maltreatment, pre-pregnancy overweight, adult SES, and prenatal smoking. Moreover, 

results from (1) and (2) were robust to several sensitivity analyses including model 

alteration, data replacement, and quantitative bias analyses. 

(3) Finally, we found that lower paternal occupational class was associated with reduced 

methylation at regions of the ABCA1 cholesterol transporter and the NR3C1 glucocorticoid 

receptor genes, after adjusting for numerous parental and offspring characteristics. 

Similarly, fewer years of mother’s education was associated with reduced HSD11B2 
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glucocorticoid-inactivating enzyme gene methylation. There was also evidence that reduced 

HSD11B2 methylation was associated with increased cardiometabolic risk markers. 

However, such associations did not appear to mediate early life SES and adult phenotype 

relationships. 

Overall, there appears to be substantial evidence that early life SES is independently related 

to women’s adult health, reproductive outcomes, and DNA methylation, however the 

mechanisms relating them require further elucidation.  

Strengths and Limitations 

A major strength of this dissertation is the use of rich longitudinal data sets, containing 

many measures of women’s health, socioeconomic status, and behaviors across her life 

course. Subsequently, marginal structural modeling (MSM) estimated by inverse probability 

weighting were used to estimate direct effects of early life SES while controlling for these 

inter-related mediators without introducing substantial bias. Moreover, several sensitivity 

analyses procedures were implemented specifically to address known limitations of the MSM 

method, namely assumptions about causal structure and unmeasured confounding. Finally, 

the likelihood of epigenetic mechanisms playing a role in this effect was tested directly by 

state-of-the-art quantification of candidate gene methylation through mass spectrometry. 

Notable limitations include the inability to control for other potential predictors of adult 

cardiometabolic phenotype including maternal smoking (in Add Health), nutritional factors, 

or environmental exposures such as air pollution. Also, we were unable to measure DNA 

methylation in either different tissues or different time points. Such measures would lend 

themselves to analysis better suited to evaluate the potential mediating effect of DNA 

methylation. Moreover, the stratified sampling method of the JPS study made implementing 

MSM difficult, thus we used a product of coefficients approach to mediation analysis, despite 

its known limitations in the presence of possible interactions and endogenous confounding. 
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Finally, we lacked biomarkers and other measures of early life exposure, such as maternal 

or fetal levels of cortisol. Thus, we could not investigate ways in which measures of early life 

SES may be directly related to the intrauterine environment.  

Public Health Significance 

Overall, this study suggests the importance of maternal education attainment for the health 

of her offspring. This was observed as increased cardiometabolic risk and lower birth weight 

amongst women whose mothers had lower education at the time of their birth. This is 

coupled with evidence that the effect is independent of the woman’s experiences through 

her own life and may be associated with epigenetic programming. This suggests any effects 

of early life socioeconomic differences on adult health cannot be corrected merely by 

improving the behaviors or socioeconomic conditions of adult women at risk of 

cardiometabolic disease or poor pregnancy outcome. Consequently, policies seeking to 

address women’s health disparities in adulthood should consider population level 

interventions to improve women’s SES while measuring outcomes in the next generation.  

Next Steps 

In our study, the use of MSM did not necessarily suggest where bias may have been 

introduced by traditional adjustment, perhaps we corrected endogenous confounding by 

racial perceptions when adjusting for race. More work should be done to describe factors 

that confound life course-outcome relationships that are also a consequence of the early life 

SES (i.e. endogenous confounders). Incorporating these factors will further strengthen 

evidence for causal effects of early life SES. Additionally, a natural extension of our current 

work is to implement MSM analyses with DNA methylation in a population where data 

collection, including methylation assays at different time points, may be more amenable. 

Samples should be drawn from multiple tissues, profiled across more gene regions, and 

assessed for differential expression, in order to strengthen mechanistic evidence.  
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Finally, our study suggests that public health intervention to address health disparities is 

incomplete without addressing early life or intergenerational conditions. Consequently, 

future efforts should be directed at identifying specific aspects of early life socioeconomic 

status, particularly maternal education, as targets for interventions. Furthermore, future 

work should consider how DNA methylation marks may be used as early indicators of adult 

health risk and how such biomarkers may also be used to inform interventions.   
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