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Background: Approximately 150,000 women undergo in vitro fertilization (IVF) each year to 

treat infertility. The success of IVF is limited, and the procedure is costly, time-consuming, and 

poses physical and emotional health risks to the patient. Therefore, generating personalized 

probabilities of live birth may assist patients and clinicians in decision-making. We sought to 

examine the ability of individual biomarkers, including anti-Müllerian hormone (AMH, a 

biomarker of ovarian reserve), and multivariable models to predict the probability of live birth 

prior to initiating stimulation for IVF. 

Methods:  We included fresh, autologous IVF cycles initiated between 2005 and 2011 from five 

U.S. infertility clinics. We developed and validated multivariable models predicting probabilities 

of live birth in 23,154 first IVF cycles, as well as in 8,184 second IVF cycles after a single prior 

failed cycle using varying levels of model complexity: (a) backwards stepwise logistic regression 

(p>0.2) with only parameter main effects, (b) with main effects and interactions, and (c) boosted 

regression trees. For first cycles, eligible predictors included those obtained at the baseline 

infertility evaluation (e.g., demographics, anthropometrics, pregnancy history, infertility diagnosis, 
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stimulation protocol); which were also examined in second cycles in addition to the treatment 

response in the previous failed cycle (e.g., dose of gonadotropins, egg and embryo 

characteristics, cycle outcome, etc.). For comparison, we fit age category and linear age models. 

Due to missing data we imputed 15 datatsets using multiple imputation by chained equations. In 

the 20% of data reserved for validation, we estimated the receiver operating characteristic curve 

(ROC), area under the ROC curve (AUC), and the difference in AUCs between all models, 

along with bootstrapped 95% confidence intervals (CIs). In a subsample of data from a single 

clinic, we evaluated the ability of AMH to predict live birth in all fresh, autologous IVF cycles 

from 2010-2011 (N=834) and compared to widely collected biomarkers of ovarian reserve, 

including age, antral follicle count (AFC), and follicle stimulating hormone (FSH). We estimated 

the ROC curves, AUCs, and difference in AUCs between biomarkers, along with bootstrapped 

95% CIs. We also evaluated the performance of AMH within subgroups based on age, body 

mass index (BMI), polycystic ovary syndrome (PCOS) status, and infertility diagnosis.  

Results: In first IVF cycles, all predictors were included in the main effects and interactions 

model. All multivariable models performed similarly (AUCs=0.67, 95% CIs=0.66, 0.69) and only 

slightly better than age-based models (age category AUC=0.64, 95% CI=0.63, 0.65; linear age 

AUC=0.65, 95% CI=0.64, 0.67). In second IVF cycles, many variables from the failed first cycle 

were included as predictors in addition to most baseline variables. Multivariable models 

performed only slightly better than age-based models (AUCs=0.63), with AUCs ranging from 

0.67 (main effects, 95% CI=0.65, 0.70) to 0.72 (boosted regression, 95% CI=0.68, 0.77). When 

we examined individual biomarkers of ovarian reserve, AMH, age and FSH had similar 

performance with AUCs ranging from 0.63 (95% CI=0.59, 0.67) to 0.67 (95% CI=0.64, 0.71); 

FSH had the poorest performance (AUC=0.55, 95% CI=0.51, 0.59). Only FSH had a 

significantly different AUC from AMH (difference=0.08, 95% CI=0.04, 0.13). No substantial 

differences in AMH performance were observed within subgroups. 
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Conclusion:  Multivariable models performed only slightly better than simple age-based models 

or models based on other single biomarkers of ovarian reserve. There was very little 

improvement in accuracy with increasing model complexity, with small or no differences when 

using boosted regression compared to stepwise techniques. All models/individual predictors had 

only modest performance with AUCs below 0.72. The minimal improvements in model 

performance for multivariable models are likely not substantial enough to warrant widespread 

clinical application, which would necessitate software development for calculating individualized 

probabilities. Despite the modest performance overall, there may be subgroups of women in 

whom the predictors and chance of live birth differ. Future investigations should examine 

whether models developed within relevant subgroups, such as those based on age, race, and 

diagnosis, have better performance.
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Chapter 1. Prediction modeling for live birth in in vitro fertilization: personalized 

predictions in first and second cycles 
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INTRODUCTION 

Infertility affects at least 6% of married or cohabitating couples [1], and the use of in vitro 

fertilization (IVF) as a treatment for infertility has become a mainstay since its first successful 

implementation over 40 years ago [2]. In 2011 approximately 152,000 IVF cycles were reported 

to the Society for Assisted Reproductive Technology (SART) in the United States [3], a 40% 

increase since 2001 [2]. Infants conceived using assisted reproductive technologies (including 

IVF) now account for approximately 1% of all births in the US [4]. Despite improvements in IVF 

techniques, the success of this procedure is still limited, with only 29% of cycles resulting in a 

live birth [3]. Further, IVF can be costly (average cost of $12,400 per cycle [5]) and time-

consuming, and it also poses risks to the patient. Therefore identifying a patient’s individual 

probability of having a successful cycle before its initiation could improve decision-making for 

both patients and physicians.  

Currently, clinicians often use cumulative information from similarly aged patients to 

estimate a woman’s probability of IVF treatment success, such as pregnancy or live birth [6]. In 

particular, U.S. clinicians use the publicly available SART data [3], which present probabilities of 

live birth stratified by predominantly age categories, to provide women with estimates of their 

chance of success. In other circumstances, physicians may use clinic-specific data to generate 

an individual center’s algorithm to estimate the likelihood of live birth for any given patient, but in 

which age would be a key determinant. Although chronological age can strongly influence 

fertility, the age-related rate of decline in fertility may vary dramatically between women. Indeed, 

the success of IVF can also be predicted by additional markers of ovarian reserve, as well as 

demographic, anthropometric, and infertility characteristics [7,8], as has been investigated in 

previous prediction models [9].  

Among the reported models that predict individualized probabilities of IVF success, most 

have included pregnancy as the measure of IVF success, whereas the ultimate goal of 

treatment for both patients and clinicians is a live birth. Even among those studies predicting live 
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birth, many have included predictors ascertained after ovarian stimulation. Inclusion of these 

predictors precludes model application before treatment initiation, the time when personalized 

predicted probabilities are most useful to patients. Furthermore, very few studies have been 

based on U.S. data. Across Europe eligibility criteria for IVF vary and may include, depending 

on the country: age limits, medical indications, marital or cohabitation status, and sexual 

orientation; and all EU countries have either partial or full insurance coverage of IVF [10]. 

Therefore, findings from European studies may not be applicable to U.S. populations that are 

not subject to these eligibility criteria. The few U.S.-based studies have had limited sample sizes 

and often used data from a single clinic, which may also limit applicability to the more than 400 

infertility clinics nationwide. Therefore we sought to develop a model to predict the probability of 

live birth in first IVF cycles using variables obtained prior to ovarian stimulation in a multi-center 

U.S. study population. 

Almost all models developed using U.S. or non-U.S. data have predicted IVF’s success 

probability (live birth or pregnancy) in either first cycles or in all cycles regardless of prior 

attempts. However, these models may not be applicable to women with a failed first cycle since 

patient characteristics and responses to treatment may differ between those with and without a 

live birth. Furthermore, because responses across cycles are likely correlated within a woman, 

predictors from the first failed cycle obtained after stimulation may be used to better predict live 

birth in second cycles compared to predictors obtained prior to stimulation in the first cycle. For 

these reasons, we also aimed to develop a model to predict the probability of live birth in second 

IVF cycles contingent on a single previous failed cycle using data obtained before stimulation in 

the second cycle.   
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METHODS 

 We conducted a retrospective cohort study to develop multivariable models predicting 

live birth in women (1) who had never previously undergone IVF, and (2) who had a single prior 

failed cycle. We split the dataset, using 80% of cycles for model development, and the 

remaining 20% for model validation. We used backwards stepwise logistic regression and, as a 

sensitivity analysis, boosted regression trees, to build the prediction models. Within cycle, we 

compared these models to (1) the expected probabilities based on age-stratified SART data, (2) 

a model with linear age only, and (3) to each other to estimate relative improvements in 

prediction. 

Data Source 

 We used electronic medical records data from five private infertility clinics located in (1) 

Washington State; (2) California; (3) Florida; (4) South Carolina; and (5) Washington, D.C., 

Maryland, Pennsylvania, Virginia, which are part of a larger national network of fertility centers. 

 The clinics included in the national network share a common electronic medical records 

system, along with a mechanism for creating queries accessible across clinic sites. However, 

the clinics are networked only administratively; each clinic remains autonomous in its clinical 

practice. Thus physician management and clinic-specific protocols guide the course of 

treatment for each patient, and these likely varied across the five clinics. To address the aims of 

this project, we created a standardized query that was applied to the electronic medical records 

database in each clinic.  

 This project was approved by the Institutional Review Board at the University of 

Washington.  

Study Subjects  

For all analyses, female patients undergoing autologous fresh IVF cycles with or without 

intra-cytoplasmic sperm injection (ICSI) between January 2005 and August 2010 were eligible 

for inclusion; those using donor eggs or cryopreserved eggs or embryos were excluded. All 
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analyses included women who received prior infertility services other than IVF or ICSI, such as 

intrauterine insemination (IUI). For first cycle analyses, eligible for inclusion were all female 

patients who had never previously undergone IVF treatment. We excluded women with a prior 

cycle at any clinic (ascertained by self-report or via medical records if prior cycles occurred at 

the same clinic). For second cycle analyses, female patients who had undergone a single prior 

cycle that did not result in a live birth, and who had a second cycle at the same clinic as the first 

were included.  

Outcome 

The primary outcome of interest was live birth (yes/no) in the cycle of interest, as 

reported by the patient. The outcome was obtained by the clinics via telephone follow-up with 

patients who self-reported the outcome. Because clinics are required to report to the Society for 

Assisted Reproductive Technology (SART), outcome data are nearly complete and are 

validated in compliance with SART guidelines [11]. Fewer than 2% of cycles have been reported 

to be discrepant between the SART and medical records data for cycle outcomes [2].  

Predictors 

First cycles. All potential predictors of live birth were determined a priori and selected 

from data recorded in the electronic medical record prior to ovarian stimulation. These variables 

included demographics (year of cycle initiation, age, race/ethnicity [White, Asian, Black, 

Hispanic, other]); anthropometrics (body mass index [BMI], height, weight); reproductive history 

(never pregnant/never live birth, ever pregnant/never live birth, ever pregnant/ever live birth); 

infertility diagnosis (diminished ovarian reserve [DOR], endometriosis, tubal factor, male 

infertility, ovulation disorders/polycystic ovaries [PCO], uterine factor, unexplained, other, or 

multiple factors); and the stimulation protocol to be used (antagonist, normal responder protocol, 

high responder protocol, and low responder protocol).  For cycles using a GnRH agonist 

(Lupron) for pituitary down-regulation, we defined suspected normal responders as those using 

GnRH agonist administered in long luteal protocol with standard agonist dosing [12]; and with 
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higher agonist dosing as suspected high responders. Because they are usually reserved for 

suspected poor responders, we categorized Lupron microdose, flare, and stop protocols as low 

responder protocols [13]. We categorized cycles with a GnRH antagonist separately (antagonist 

protocol).  We did not include clinic and year as eligible predictors, as their inclusion would 

preclude application to clinics outside of the sample and to future cycles. 

 Due to changes in required reporting to SART, height and weight became standard 

fields in clinic databases in 2007 and, as a result, were almost entirely complete as of 2008. 

However, this information was missing in earlier years, particularly for the Washington State 

clinic. Therefore, we abstracted these data on-site from the electronic medical records at the 

Washington State clinic.  

Second cycles. Variables included in the first cycle analyses were also eligible in 

second cycle analyses, with information updated from the second cycle (e.g., age reflected 

values at the time of the second, not the first, cycle). Variables obtained after stimulation in the 

prior failed cycle were also eligible as potential predictors. These included the total dose (IUs) of 

gonadotropins administered; number of days of stimulation; maximum estradiol level during 

stimulation; number of follicles >14 mm observed on ultrasound during stimulation; number of 

oocytes aspirated; number of germinal vesicle, metaphase I, and metaphase II oocytes; source 

of semen (partner/any donor); method of semen collection (ejaculation/other); number of 

oocytes fertilized via IVF and via ICSI; total number of oocytes fertilized; whether assisted 

hatching was performed in oocytes (no/at least some); number of embryos transferred; day of 

embryo transfer (<3, 3-4, 5, 6+, no transfer); whether preimplantation genetic diagnosis was 

performed (yes/no); human chorionic gonadotropin (hCG) level measured after embryo transfer; 

number of gestational sacs observed on ultrasound; fetal cardiac activity (FCA, number of 

distinct heartbeats identified); first cycle outcome (not pregnant; biochemical pregnancy; ectopic 

pregnancy; clinical intrauterine pregnancy resulting in spontaneous abortion, therapeutic 

abortion, or stillbirth); and whether any complications occurred in the cycle (yes/no). These 
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complications included anesthetic complications, hemorrhage, infection, side effects of 

medication, moderate hyperstimulation, severe hyperstimulation, complications from procedures, 

psychological stress, and other complications. 

Multiple imputation. For first cycles, almost all predictors had <3.5% missing data, 

except for race (10.9%) and biochemical pregnancies (40.1%); however, exclusion of women 

with any missing data would have reduced the sample size by half. Therefore, we used multiple 

imputation by chained equations to generate many complete datasets in which missing data 

were replaced with plausible values for both first and second cycles simultaneously [14]. 

Although 3-5 imputations were formerly considered sufficient for imputation [15], more recent 

data suggests that additional imputations are required particularly when the fraction of missing 

information is large [16]. Therefore, we created 15 imputed datasets, in which any observations 

with missing values were replaced with plausible values. 

Data analysis  

Model development.  Clinicians often estimate patients’ probability of IVF success by 

applying age group-specific observed probabilities of live birth reported in SART. Therefore, 

before fitting more complicated prediction models, for comparison purposes we assigned each 

subject a predicted probability based on her age group and the age group-specific live birth 

percentages reported in SART. We call this the “age category model.” Based on information 

reported to SART in 2011 for all autologous fresh cycles [3], we assigned live birth probabilities 

as follows: <35 years of age, 40.1%; 35-37 years, 31.8%; 38-40 years, 21.5%; 41-42 years, 

12.2%; and 43+ years, assigned 4.2%. Furthermore, we fit a model with age (continuous) as the 

only predictor, the “linear age model;” we compared the performance of these age-based 

predictions to the more complex multivariable prediction models described below. 

Before performing stepwise regression, we examined whether including higher-order 

(non-linear) age terms (age2 and age3) improved model fit over a linear term alone. Using the 

likelihood ratio (LR) test, we compared a model with age and age2 to an age-only model, and a 
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model with age, age2, and age3 to a model with age and age2. If inclusion of the higher order 

age term resulted in a p-value<0.05 for the LR test, the higher order term was included in the list 

of potential predictors.  

For the primary analyses, we employed backwards stepwise logistic regression to 

develop models predicting the probability of live birth versus no live birth. We initially included all 

potential predictors. After performing the regression with all variables, the predictor with the 

highest p-value was removed and the remaining model rerun. We repeated this process until all 

variables in the model were associated with live birth at a p-value of <0.2. We added the 

previously excluded variables back one at a time and included any that predicted live birth with 

a p-value of <0.2 to generate the final “main effects model”.  

To generate the “interaction model” we added interaction terms for some of the variables 

that could plausibly modify associations. For both first and second cycle analyses, we included 

an interaction between each predictor in the main effects model with age (continuous), weight, 

(continuous), BMI (continuous), reproductive history (never pregnant/never live birth, ever 

pregnant/never live birth, ever pregnant, ever live birth), and race (White, Asian, Black, and 

Hispanic; the other category was excluded because of limited sample size). We included 

interactions with age because at sufficiently advanced ages, other variables may not add any 

information to the predicted probability. Weight/BMI and pregnancy history were examined for 

interactions because despite other similar indicators of success, heavier women may have a 

lower probability of pregnancy or live birth compared to normal weight women [17], and women 

with a demonstrated capacity to become pregnant may have a greater probability than those 

without. Finally, we included interactions with race because known differences in reproductive 

potential across races [18] may affect the ability of other variables to predict IVF success. 

Interactions were added one at a time to each of the imputed datasets, and those with a Wald 

test p-value<0.05 in at least 11 of the 15 imputed datasets were further examined. Finally, all 

interactions meeting these criteria were entered together and retained in the final model only if 
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the Wald test p-values were <0.05 in at least 11 datasets. 

 For purposes of comparison to work by others, we employed boosted regression trees 

[19], which attempt to improve the predictive performance of a single model by fitting and 

combining many models [20]. Regression trees, which belong to the classification and 

regression tree (CART) family of models, are built by creating binary splits at various predictor 

values chosen to minimize prediction errors [20]. Boosted regression trees use boosting, a 

machine learning algorithm, to build and combine trees, leading to a linear combination of many 

trees [20]. With boosting, the first regression tree is fit to the available data; thereafter, each 

regression tree is fit to the residuals of the previous tree, modeling the variation not explained by 

the previous model [20]. We allowed up to 10,000 trees and up to 6-way interactions to 

generate the “boosted regression model.” To minimize overfitting, we shrunk estimates by a 

factor of 0.005 and employed bagging, whereby only 60% of observations in the development 

sample were used to fit a new tree to the residuals of the last tree. We fit boosted regression 

trees to each imputed dataset.  

 Model evaluation.  We performed internal model validation of the five models (age 

category, linear age, main effects, interaction, and boosted regression models) for both first and 

second cycles using the remaining 20% of data, which was independent of the model 

development sample.  Evaluating model development and validation in the same data can result 

in overfitting, leading to overly optimistic estimates of model performance [21]. Splitting the data 

reduces the degree of overfitting. 

We first assessed the discrimination of each model, the ability to distinguish women with 

a live birth from those without, using nonparametric estimates of the receiver operating 

characteristic (ROC) curve and area under the ROC curve (AUC). The ROC curve is a plot of 

the sensitivity versus 1-specificity across all possible thresholds of predicted probability. The 

AUC is the area under this curve, with a value of 0.50 indicating no discrimination and 1.00 for 

perfect discrimination. To determine which model had the best discrimination, we estimated the 
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difference in AUCs between each of the models (within cycle number). To explore the potential 

generalizability, we examined the AUC within each clinic and year of initiation. We also 

estimated the AUC within age categories (<35, 35-37, 38-40, 41-42, 43+ years of age) for each 

model to determine if they have better or worse performance in specific age groups that are 

relevant to clinicians.  

 We calculated each model’s sensitivity and specificity, which required defining a 

threshold of predicted probability above which subjects would be classified as having “high 

probability” of having a live birth (hereafter referred to as “live birth likely”) and below which they 

would be classified as having "low probability” (referred to as “live birth unlikely”). Sensitivity 

measures the proportion of subjects with the outcome of interest (live birth) correctly classified 

as live birth likely, and specificity the proportion of subjects without the outcome that were 

classified correctly as live birth unlikely. There is very little research investigating how estimated 

probabilities of success affect patients’ decision-making; however, decisions at a given 

predicted probability are likely influenced by many factors that vary among women, such as 

socioeconomic status and age. Therefore, we examined a number of different thresholds that 

may be relevant to defining live birth likely or unlikely, including 5%, 10%, 15%, 20%, and 25%.  

 For each threshold we also calculated each model’s positive and negative predictive 

values (PPV and NPV, respectively), which are influenced by the prevalence of live birth in the 

population. The PPV reflects the proportion of participants who had a live birth among those 

classified as live birth likely; the NPV is the proportion who did not have a live birth among those 

identified as live birth unlikely. These measures of accuracy provide estimates of how often the 

results based on the predictive model reflect the underlying condition (i.e., live birth).  

 We calculated standard errors for all measures of model performance by using a 

bootstrap procedure with 300 sampled datasets in order to obtain 95% confidence intervals. For 

the multiply imputed datasets, model performance (and performance measures' bootstrapped 
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standard errors) was calculated within each imputation, and Rubin’s Rules were applied to pool 

estimates across datasets [22]. 

To assess model calibration, i.e., agreement between predicted and observed outcomes, 

we generated calibration plots in which the predicted probability was averaged within deciles of 

predicted probability, as was the observed probability within the decile. We plotted the predicted 

vs. observed probabilities; perfect prediction occurs when observed and predicted probabilities 

are equal (e.g., on the 45 degree line). Furthermore, to examine the extent to which predicted 

probabilities varied within a given age and provided more individualized estimates than age 

alone, we plotted the predicted probabilities from the linear age, main effects, and interactions 

models by age for first and second cycles. 

For the boosted regression trees, we calculated the percent influence of each predictor 

(separately for each imputed dataset and then, for each predictor, averaged across the imputed 

datasets). Percent influence provides information about the relative importance of each 

predictor in the boosted regression tree [19]. Each split on a variable in a tree results in an 

increase in the log likelihood; the influence is the sum of the increase in log likelihood across all 

trees due to a particular variable, scaled to total 100 across all variables. The ROC curve and 

AUC, as well as the sensitivity, specificity, PPV, and NPV at the cutpoints, were calculated as 

for the other models. 

The second cycle models had many more potential predictors available and were 

developed in a selected, specific group of women. To determine if addition of information from 

the first cycle improved prediction in this group, we compared the AUC of the second cycle main 

effects and interactions models to the first cycle models applied to the second cycles, as 

described above. We also examined whether there were systematic differences in the 

predictions generated from the first and second cycle models by comparing the means of these 

predicted probabilities within each imputation and averaging.    
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RESULTS 

First cycles 

Across clinics, there were 23,247 first cycles. We excluded 93 first cycles with missing 

information on outcome, source of semen, and method of semen collection, as collinearity in 

variables used for imputation precluded their inclusion, resulting in 23,154 first cycles for 

analysis. The majority of women were 35 years of age or older and white, with BMI in the 

normal range (Table 1). Half the women had never been pregnant. The most common infertility 

diagnoses were unexplained (19.8%), male infertility (19.7%), and multiple factors (19.4%); the 

most common stimulation protocol was for normal responders. At 34.6%, the percentage of 

cycles resulting in live birth was slightly higher than the national average of 29.3% [3], and 

27.2% of women with a live birth had a multiple gestation. 

Model development. 

Age only models. When age alone was included in a model, for every 1-year increase in 

age, the odds of live birth decreased by 0.11 (OR=0.892, 95% CI=0.896, 0.898).  

Backwards stepwise regression. Using the LR test, age2 and age3 both improved model 

fit at the p<0.05 level, and were included as eligible predictors. In the 18,555 first cycles 

reserved for model development, age, age2, age3, weight, height, stimulation protocol, race, 

diagnosis, and pregnancy history were predictors in the main effects model (Table 2); only BMI 

was eliminated. 

 When we added interaction terms to the main effects model, interactions between age 

(linear) and (1) weight, (2) race (with exclusion of “other” race due to small cell sizes), and (3) 

infertility diagnosis were retained (Table 3), meaning that the relationship between age and the 

predicted probability of live birth differed by these variables. 

Boosted regression.  In the boosted regression model, age had the largest influence 

(52.2%, Figure 1). The next largest contributor was the type of stimulation protocol (10.4%), BMI 

(10.2%), infertility diagnosis (8.5%), weight (6.9%), race (5.3%), height (5.1%), and pregnancy 
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history (1.4%). 

Model performance. In general, all first cycle models performed similarly with AUCs 

ranging from 0.64 (95% CI=0.63, 0.65) for the age category model to 0.67 (95% CI=0.66, 0.69) 

for all multivariable models (Table 4). Differences between the models were minimal, ranging 

from -0.003 to 0.04. This similarity in models also was reflected in the ROC curves (Figure 2).  

Across clinics, the AUCs for the multivariable models varied from approximately 0.65 to 

0.70, with the smallest AUC consistently observed in the clinic with the fewest cycles (Table 5). 

AUCs also varied by year of cycle initiation across multivariable models from 0.64 to 0.70; 

however there was no consistent trend in these differences. Within age categories, multivariable 

models had the best performance in the women of advanced age (>43 years, Table 6), with 

AUCs ranging from 0.64 (95% CI=0.50, 0.78) to 0.69 (95% CI=0.56, 0.82). The smallest AUCs 

were in the women 41-42 years of age across multivariable models, with AUCs ranging from 

0.51 (95% CI=0.42, 0.60) to 0.53 (95% CI=0.43, 0.62). 

Across all thresholds and all models, sensitivity was high (>0.82) and specificity was low 

(<0.39), with moderate PPV (0.34-0.42) and high NPV (0.80-1.00, Table 7). The PPV and NPV 

are a function of the prevalence of live birth, which was 34.1% in the validation sample. With 

greater prevalence, the PPV would be higher and the NPV lower and vice versa with lower 

prevalence. At the lowest investigated threshold of 5% for defining live birth likely and unlikely, 

sensitivity was close to 1.00 for all models and specificity was approximately zero. At the 5% 

threshold, the PPV was 0.34 to 0.36 for all models, and the NPV was 0.93 for the main effects, 

0.94 for the age category and interactions, and approached 1.00 for the linear age and boosted 

regression tree models. At the highest threshold defining live birth likely and unlikely of 25%, 

sensitivities were 0.82 for the age category model and 0.88 for all other models; specificities 

ranged from 0.30 to 0.39. Across models, PPVs ranged from 0.39 to 0.42 and NPV from 0.80 to 

0.84. Although multivariable models performed better than the age category or the linear age 

model, no multivariable model emerged as superior in terms of AUC, sensitivity, specificity, PPV, 
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and NPV. 

 In the calibration plot, the predicted and observed probabilities within deciles were not 

far off from perfect calibration (equal predicted and observed probabilities) (Figure 3). There 

were no obvious systematic differences within models (e.g., all observations too high, too low, 

or too extreme). When we examined the predicted probabilities from the main effects and 

interactions model by age, there was substantial variability within a given age, as compared to 

the linear age model with only a single predicted probability for each year of age (Figure 4).  

Second cycles  

 Of the 15,133 women who did not have a live birth in their first IVF cycle, 8,283 elected 

to proceed with a second cycle at the same clinic (54.7%). Because of limited sample sizes at 

the extremes of age, we eliminated cycles in which the woman was less than 25 years or 

greater than 44 years of age (n=96); we also excluded 3 cycles for which the day of embryo 

transfer was missing. The remaining 8,184 were similar to the women in the first cycle analysis, 

except they were older, more likely to have been pregnant, more likely to have previously had 

spontaneous abortions and biochemical pregnancies, and were less likely to have normal or 

high response stimulation protocols (Table 1). The live birth rate was 29.0% in second cycles, 

slightly lower than first cycles.  

Model development. 

Age only model. When age alone was included in a model, for every 1-year increase in 

age, the odds of live birth decreased by 0.11 (OR=0.894, 95% CI=0.882, 0.906), as in the first 

cycles.  

Backwards stepwise regression. Using the LR test, age2 and age3 improved model fit 

and were included as eligible predictors in second cycle analyses. In the 6,534 first cycles 

reserved for model development, age, age2, age3, BMI, weight, stimulation protocol, race, and 

pregnancy history were selected from the second cycle predictors (Table 8). From the failed first 

cycle, total amount of gonadotropins, maximum estradiol, number of metaphase II (mature) 
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oocytes retrieved, whether assisted hatching was performed, the number of embryos 

transferred, whether PGD was performed, the day of embryo transfer, and whether any 

complications occurred in the cycle were included as predictors.  

 When we added interaction terms to the second cycle main effects model, interactions 

between (1) maximum estradiol (linear) and race (with exclusion of “other” race due to small cell 

sizes), and (2) BMI and day of embryo transfer (collapsing the <3 days and 4 days categories) 

were retained (Table 9). 

Boosted regression. Age had the largest relative influence (21.9%) in the boosted 

regression model, although it was smaller than in first cycles (Figure 5). The next largest 

contributors were maximum estradiol level (13.0%), total dose of gonadotropins administered 

(10.4%), number of metaphase II oocytes (7.6%), number of oocytes aspirated (6.7%), the 

number of follicles>14mm observed on ultrasound (5.7%), and BMI (5.5 %).  

Model performance. Once again, the age category and linear age models had the 

lowest AUCs at 0.63 (95% CI=0.60, 0.66 and 0.61, 0.66, respectively, Table 4). The main 

effects and interaction models performed slightly better with AUCs of 0.68 and 0.67 (both 95% 

CI=0.65, 0.70), respectively, with differences from the age category and linear age models 

ranging from 0.04 to 0.05. The boosted regression tree model had the largest AUC at 0.72 (95% 

CI=0.68, 0.77), which was an improvement of 0.09 over the age category and linear age models, 

and 0.05 compared to the main effects and interactions models (Figure 6).  

Across clinics, the AUCs were fairly similar for the multivariable models except for in the 

smallest clinic, where the AUCs were much lower between 0.34 and 0.47 (Table 5). In this clinic, 

increasing predicted probability of live birth was associated with decreased odds of live 

birth,resulting in AUCs below 0.50. AUCs also varied across multivariable models by year of 

cycle initiation, but without any consistent pattern. For all multivariable models, the AUCs were 

largest in women >43 years of age and smallest in those <35 years of age (Table 6). The 

improved AUC among the oldest age group was particularly pronounced in the boosted 
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regression model, with an AUC of 0.76 (95% CI=0.53, 1.00).  

Similar to first cycle analyses, sensitivity was high (>0.74) and specificity was low 

(<0.49), with low to moderate PPV (0.28 to 0.38) and high NPV (0.81 to apporaching 1.00, 

Table 7) for all models at a live birth rate of 27.9%. At the 5% threshold for defining live birth 

likely and unlikely, sensitivity was close to 1.00 for all models and specificity was near zero; the 

PPV was 0.28 to 0.30 and the NPV approached 1.00. At the 25% threshold, sensitivities ranged 

from 0.74 to 0.81 and specificities from 0.46 to 0.49; PPV ranged from 0.35 to 0.38 and NPV 

from 0.81 to 0.87. At this threshold, the boosted regression tree model had the best 

performance on all measures, although these improvements were quite small. 

 In the calibration plot, the predicted and observed probabilities within deciles were 

similar. The predictions were not systematically different from the observed probabilities, 

although the greatest disparities between observed and predicted probabilities occurred in the 

largest decile for all models (Figure 7). There was substantial variability in the predicted 

probabilities for the main effects and interactions models within age, similar to first cycle results 

(Figure 4). 

 When we applied the first cycle models to second cycles, predicted probabilities were 

larger than the second cycle predictions by about 0.0047 (0.47%) for the main effects and 

0.00049 for the interactions models (data not shown). The AUC of the first cycle main effects 

model applied to second cycles was 0.05 (95% CI=-0.05, -0.009) smaller than the second cycle 

main effects model, and 0.02 (95% CI=-0.034 -0.001) smaller for the interactions models. 
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DISCUSSION 

 In this study we investigated a number of models for predicting live birth. These models 

could assist patients and clinicians in decision-making about initiating IVF and repeating IVF 

after a prior failed cycle (second cycles). Despite the increase in use of IVF in the U.S., there 

are very few reports of models to predict live birth or ongoing pregnancy in U.S. populations 

among women undergoing IVF. Prediction models specific to U.S. populations using factors 

known prior to cycle initiation would be very useful because IVF is expensive [5], is rarely 

covered by insurance [23], and can have emotional [24] and health sequelae [25, 26]. Clinicians 

currently use population-based age-stratified estimates of live birth from SART data; however 

age alone may not provide the most accurate prediction of success. We found that multivariable 

models, produced through stepwise regression with or without interactions or boosted 

regression trees, performed slightly better than models using age categories or linear age. We 

observed that the prediction models performed best in the oldest group of women (>43 years of 

age) who have the lowest probability of live birth (<5%), which suggests that the models may 

prove to be particularly helpful in this group.  

Only three publications to date report on models to predict live birth, the ultimate 

outcome of interest, using data from U.S. populations [27-29]. Among these studies, two 

included both pre- and post-stimulation variables [27-28] to predict in first cycles; therefore, they 

are of little use to patients in deciding whether or not to proceed with treatment. The only U.S. 

study of pre-stimulation factors predicting live birth in first IVF cycles included data from Spain, 

Canada, and a single Boston, Massachusetts clinic and employed a boosted regression tree 

approach to model development [29]. The study included ~7,600 U.S. cycles, whereas we 

included data from five U.S. clinics, leading to the largest U.S. sample by far of almost 19,000 

cycles for model development. Choi et al reported that age of the patient was the most 

influential predictor (60.1%), followed by sperm count (9.6%), BMI (9.5%), day 3 serum follicle 

stimulating hormone (FSH, 5.0%), and antral follicle count (AFC, 4.5%), resulting in an AUC of 
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0.64 in the validation sample, slightly better than a boosted regression tree model with age 

alone (AUC=0.61). [29]. We obtained a similar but slightly larger AUC of 0.67 in the boosted 

regression tree model, in which age was the most influential predictor at 52.2%. However, this 

boosted regression tree model had no improvement in model performance over the various 

stepwise models, despite increased model flexibility. Although boosted regression trees initially 

held promise for improving predictions, more recent investigations suggest that logistic 

regression may perform similarly to boosting [30].  

Unlike Choi et al, we did not have complete information on sperm count, or the 

biomarkers of ovarian reserve, including FSH and AFC in the dataset, which may be important 

predictors of IVF success. These predictors are typically available to clinicians and have been 

associated with IVF outcomes [31-33]. However, we included stimulation protocol, which the 

physician determines a priori based on a number of patient characteristics including age, 

ovarian reserve markers, and infertility diagnosis, which ultimately may have served as a more 

comprehensive proxy for FSH and AFC alone. Indeed, stimulation protocol had the second 

highest influence in this sample (10.4%). Furthermore, a diagnosis of male infertility would likely 

reflect sperm parameters, such as sperm count, and the infertility diagnosis had the fourth 

highest influence (8.5%). We also did not have other potentially important predictors of live birth, 

such as smoking status [34] or duration of infertility [35]. Despite this missing information, 

because an extremely strong association between a predictor(s) and the outcome of interest is 

needed to improve classification, it is unlikely that inclusion of any of these missing predictors 

would lead to substantially better model performance [36]. Even associations that would 

typically be considered strong, such as an odds ratio of 2 or 3, do not lead to improvements in 

classification when added to existing prediction models [36,37]; none of the excluded variables 

have associations sufficiently strong to enhance classification. 

We also generated models for live birth prediction in a second cycle, as women with a 

prior failed cycle are a more specific group with possibly different treatment responses than all 



 

    19

women initiating IVF for the first time. In addition, information on the response to treatment in 

the prior cycle can presumably be leveraged to predict the probability of live birth in second 

cycles because of correlations within a woman. Therefore the opportunity exists to generate a 

more accurate prediction model within this subgroup. Indeed, we observed that when the first 

cycle models were applied to women with a second cycle after a prior failed cycle, the 

predictions were larger and the AUCs were smaller than the second cycle-specific models, 

although these differences were small.  

There has been only one report on a model predicting live birth specifically in second 

IVF cycles, using data from Stanford Hospital and Clinics [28]. Banerjee et al generated a 

boosted regression tree model predicting live birth in first IVF cycles using predictors obtained 

following stimulation. They subsequently adjusted this model for second cycle data to account 

for the typically worse treatment response in second cycles, without which predicted 

probabilities would be overestimated. The most influential factors were rate of blastocyst 

development (26%), the total amount of gonadotropins administered (10%), the number of 

eight-cell embryos available (9%), embryo cryopreservation (7%), age (6%), endometrial 

thickness (6%), and total number of embryos obtained (6%). Only age (21.9%) and the total 

amount of gonadotropins administered (10.4%) overlapped with the most influential predictors 

we observed in the boosted regression model. Other important contributors were maximum 

estradiol level (13.0%), number of metaphase II oocytes (7.6%), number of oocytes aspirated 

(6.7%), the number of follicles>14mm observed on ultrasound (5.7%), and BMI (5.5%). With the 

exception of BMI, these factors all reflect the response to stimulation with larger values 

indicating a better response, which at least partially contributes to an increased chance of live 

birth.  

We did not have information on embryo development, such as the rate of blastocytst 

development or the number of eight-cell embryos, nor did we have data on endometrial 

thickness as Banerjee et al did. However, oocyte characteristics such as the number of 



 

    20

metaphase II oocytes, number of oocytes aspirated, and the number of follicles>14mm during 

stimulation were all highly influential, and oocyte characteristics may be related to the embryo 

characteristics [38], and thus serve as proxies for these variables in the data. Despite this lack 

of information, in the validation sample of 230 second cycles the AUC of the Banerjee model 

was slightly lower than the current boosted regression tree model (0.68 vs. 0.72), with both 

models performing better than those with age alone. Similar to first cycles, the boosted 

regression tree model led to only slight improvements in AUC over the other multivariable 

models that had AUCs of ~0.68. 

We generated the second cycle model only in those women with an additional cycle after 

the first cycle failed, thus the sample was more specific and selected. In contrast, the Banerjee 

et al model was generated initially in first cycles, which included women who did and did not 

proceed with a second IVF cycle. However, their adjustment for differences between first and 

second cycle predictions likely would have mitigated these effects, as adjustment was based on 

those with a second cycle. Both models therefore may be biased in that they exclude 

information from women who opted out of treatment after a failed cycle, a group that may differ 

from those proceeding with treatment. In the current sample, first cycle treatment responses 

were similar between women who did and did not proceed with treatment, as were the 

probabilities of pregnancy estimated from the various first cycle models. Therefore use of this 

more selected sample likely did not bias the second cycle models appreciably.  

The multivariable models we generated had only moderate performance, all with AUCs 

of 0.67 to 0.72. For all models across varying thresholds defining live birth likely and unlikely 

(5% to 25%), sensitivities were high and specificities were low; most women who had a live birth 

were classified as live birth likely but few women without a live birth were classified as live birth 

unlikely. Even at the largest investigated threshold of 25% predicted probability, the PPV was 

only 0.35 to 0.40 across first and second cycle models, and at the lowest threshold of 5% the 

PPV was 0.28 to 0.34. However, in the infertility setting it may be more grievous to 
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inappropriately deter women from treatment (a false negative result) as compared to proceeding 

with treatment and having an unsuccessful cycle (a false positive result). Therefore, high 

sensitivity is desirable, even at the expense of low specificity.  

Because there is no universal probability at which all women would elect to proceed with 

treatment, we investigated a range of plausible values. With a national live birth rate of ~30%, 

many women must find this predicted probability acceptable to proceed with treatment, 

supporting the largest threshold of 25%. Women >42 years of age have a probability of live birth 

of <5%, yet almost 6,000 women each year undergo IVF at these ages, indicating a willingness 

to proceed with treatment despite very limited success [3]. Furthermore, Dutch women reported 

a willingness to pay €1000 (1350 U.S. dollars) out-of-pocket when the predicted live birth rate 

was 6% or more [39]. Therefore, even very low predicted probabilities may have sufficient value 

to warrant paying for treatment traditionally covered by insurance. In the U.S., where insurance 

coverage for infertility is uncommon, acceptable probabilities of live birth may vary based on 

socioeconomic status, among other factors. Indeed, income appears to be the most important 

predictor of pursuing infertility treatment among women who had an infertility evaluation [40].  

Despite the suboptimal performance of these models, personalized predictions may still 

be helpful in making treatment decisions. Almost 1/3 of women retrospectively reported being 

dissatisfied or only somewhat satisfied with the information provided on their chance of a live 

birth in IVF treatment, which was particularly true for women without a live birth (49%) [41]. 

Personalized predictions from one of the models reported here or in other publications may 

provide the additional information patients desire.  

However, a remaining question is whether use of more complex models leads to 

sufficiently improved performance to encourage widespread deployment in the clinical setting. 

For age-based models, like the linear age and age category models, simple normograms can be 

utilized to provide patients with individualized probabilities of live birth. However, for more 

complex multivariable models, software is required to estimate probabilities. With such small 
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differences between models in sensitivities and specificities across all cutoffs examined herein, 

improvements in the number of women appropriately classified would be small, even across all 

U.S. cycles within a year. 

Although these models had similar performance when evaluated in the entire sample, 

we did observe improved accuracy in subgroups, particularly among older women. We also 

observed interactions between age and a number of baseline characteristics (race, diagnosis, 

and BMI), suggesting that the relationships between some predictors and live birth vary within 

subgroups. Therefore, future investigations should consider developing models within particular 

subgroups of women in whom predictors could vary. These tailored prediction models may 

prove to perform better than models applicable to all women, and could be targeted to groups 

for whom the clinical utility would be high, such as those with the lowest probabilities or the most 

variability in outcomes.    
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TABLES 
 
Table 1.1. Characteristics of women undergoing their first in vitro fertilization  cycle and 
women undergoing a second cycle after a prior faile d cycle, 2005-2011  

 
First cycles 

Second cycles after 
prior failed cycle 

 
N % N % 

Total 23154 100.0 8184 100.0 
Year 2005 3011 13.0 752 9.2 

 
2006 2953 12.8 1118 13.7 

 
2007 3278 14.2 1267 15.5 

 
2008 3434 14.8 1365 16.7 

 
2009 3685 15.9 1343 16.4 

 
2010 3806 16.4 1301 15.9 

 
2011 2987 12.9 1038 12.7 

Age (years) <25 229 1.0 0 0.0 

 
25-29 2722 11.8 586 7.2 

 
30-34 7399 32.0 2250 27.5 

 
35-39 8799 38.0 3499 42.8 

 
40+ 4005 17.3 1849 22.6 

Race/Ethnicity Asian 3368 14.5 1228 15.0 

 
Black 2573 11.1 900 11.0 

 
Hispanic 1383 6.0 469 5.7 

 
Other 130 0.6 41 0.5 

 
White 13186 56.9 4869 59.5 

 
missing 2514 10.9 677 8.3 

Body mass index 
(kg/m 2) 

<18.5 (underweight) 664 2.9 224 2.7 
18.5-<25 (normal) 12797 55.3 4364 53.3 

 
25-<30 (overweight) 5232 22.6 1779 21.7 

 
30+ (obese) 3695 16.0 1342 16.4 

 
missing 766 3.3 475 5.8 

Height (feet) 0 to <5 449 1.9 147 1.8 

 
5 to <5.5 13524 58.4 4614 56.4 

 
5.5 to <6 8303 35.9 2907 35.5 

 
6+ 238 1.0 88 1.1 

 
missing 640 2.8 428 5.2 

Weight (lbs) <100 207 0.9 67 0.8 

 
100 to <150 13005 56.2 4457 54.5 

 
150 to <200 7159 30.9 2432 29.7 

 
200 to <250 1838 7.9 676 8.3 

 
250+ 227 1.0 90 1.1 

 
missing 718 3.1 462 5.6 
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Table 1.1, cont.  

  First cycles 
Second cycles after 

prior failed cycle 
  N % N % 
Gravidity 0 11611 50.1 3569 43.6 

 
1 5845 25.2 2331 28.5 

 
2 2914 12.6 1199 14.7 

 
3+ 2783 12.0 1084 13.2 

 
missing 1 0.0 1 0.0 

Term births 0 18553 80.1 6659 81.4 

 
1 3510 15.2 1190 14.5 

 
2+ 1089 4.7 334 4.1 

 
missing 2 0.0 1 0.0 

Premature births  0 22484 97.1 7915 96.7 
1 561 2.4 237 2.9 

 
2+ 105 0.5 31 0.4 

 
missing 4 0.0 1 0.0 

Spontaneous 
abortions 

0 17703 76.5 5569 68.0 
1 3642 15.7 1814 22.2 

 
2+ 1804 7.8 799 9.8 

 
missing 5 0.0 2 0.0 

Biochemical 
pregnancies 

0 12842 55.5 1767 21.6 
1 867 3.7 4889 59.7 

 
2+ 161 0.7 177 2.2 

 
missing 9284 40.1 1351 16.5 

Diagnosis Diminished ovarian reserve 1961 8.5 844 10.3 

 
Endometriosis 1120 4.8 408 5.0 

 
Tubal factor 2256 9.7 730 8.9 

 
Male infertility 4552 19.7 1585 19.4 

 
Other 1549 6.7 514 6.3 

 

Ovulation disorders/polycystic 
ovaries 1722 7.4 476 5.8 

 
Unexplained 4594 19.8 1652 20.2 

 
Uterine factor 317 1.4 142 1.7 

 
Multiple factors 4482 19.4 1722 21.0 

 
missing 601 2.6 111 1.4 

Stimulation 
protocol  

GnRH Antagonist 6409 27.7 3468 42.4 
GnRH Agonist     

 Normal response 10556 45.6 2074 25.3 

 
High response 2082 9.0 334 4.1 

 Low response 3953 17.1 2287 27.9 
 missing 154 0.7 21 0.3 
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Table 1.1, cont.      

  
First cycles 

 
Second cycles after 

prior failed cycle 
  N % N % 
Cycle canceled No 20260 87.5 6316 77.2 
 Yes 2894 12.5 1868 22.8 
Outcome Biochemical 9068 39.2 3714 45.4 

 

Clinical intrauterine 
pregnancy+ live birth 8021 34.6 2374 29.0 

 

Clinical intrauterine 
pregnancy+spontaneous 
abortion/stillbirth/therapeutic 
abortion  

1700 7.3 581 7.1 

 
Ectopic 178 0.8 66 0.8 

 
Not pregnant 4187 18.1 1449 17.7 

Number live born  0 15133 65.4 5810 71.0 
1 5842 25.2 1743 21.3 

 
2 2109 9.1 611 7.5 

 
3 70 0.3 20 0.2 
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Table 1.2. Parameter estimates for a model predicting live birth in first in vitro 
fertilization cycles, main effects only, 2005-2011 a (n=18555) 
  95% CI  
 Odds Ratio  LB UB p-value  
Age (years) 0.19 0.09 0.42 <0.001 
Age2 (years2) 1.06 1.03 1.08 <0.001 
Age3 (years3) 1.00 1.00 1.00 <0.001 
Weight (per 10 lbs) 0.98 0.97 0.99 <0.001 
Height (per 6 inches) 1.17 1.09 1.26 <0.001 
Stimulation protocol     

Antagonist 0.74 0.69 0.80 <0.001 
Normal response 1.00 reference - 
High response 1.33 1.19 1.49 <0.001 
Low response 0.63 0.57 0.70 <0.001 

Race     
Asian 0.74 0.67 0.82 <0.001 
Black 0.72 0.64 0.80 <0.001 
Hispanic/Latino 0.77 0.67 0.88 <0.001 
Other 0.68 0.44 1.05 0.08 
White 1.00 reference - 

Diagnosis     
Diminished ovarian reserve 0.64 0.54 0.76 <0.001 
Endometriosis 0.95 0.81 1.11 0.52 
Tubal factor 0.96 0.85 1.09 0.56 
Male factor 1.00 reference - 
Other 0.89 0.77 1.03 0.11 
Ovulation disorders/polycystic ovaries 1.28 1.13 1.46 <0.001 
Unexplained 1.07 0.97 1.18 0.21 
Uterine factor 0.76 0.57 1.02 0.07 
Multiple factors 0.82 0.74 0.91 <0.001 

Pregnancy history     
 Never pregnant/never live birth 1.00 reference - 
Ever pregnant/never live birth 0.93 0.86 1.00 0.47 
Ever pregnant/ever live birth 1.11 1.02 1.21 0.02 

Constant 4.15E+06 784.40 2.30E+10 <0.001 
CI-confidence interval, LB-lower bound, UB-upper bound 
aModel built using backwards stepwise logistic regression with p-value>0.1 for exclusion 
  
 



 

    30

Table 1.3. Parameter estimates for a model predicti ng live birth in first in vitro 
fertilization cycles, main effects and interactions , 2005-2011a (n=18431) 
  95% CI  

Odds Ratio LB UB p-value  
Age (years) 0.15 0.06 0.33 <0.001 
Age2 (years2) 1.06 1.04 1.09 <0.001 
Age3 (years3) 1.00 1.00 1.00 <0.001 
Weight (per 10 lbs) 0.87 0.80 0.94 <0.001 
Height (per 6 inches) 1.18 1.10 1.28 <0.001 
Stimulation protocol 

Antagonist 0.74 0.69 0.80 <0.001 
Normal response 1.00 reference - 
High response 1.33 1.19 1.47 <0.001 
Low response 0.63 0.57 0.70 <0.001 

Race 
Asian 0.18 0.08 0.41 <0.001 
Black 0.29 0.12 0.73 0.01 
Hispanic/Latino 0.41 0.14 1.23 0.12 
White 1.00 reference - 

Diagnosis 
Diminished ovarian reserve 0.21 0.04 1.13 0.07 
Endometriosis 0.85 0.21 3.37 0.82 
Tubal factor 2.10 0.73 6.03 0.17 
Male factor 1.00 reference - 
Other 0.15 0.05 0.47 0.001 
Ovulation disorders/polycystic ovaries 0.50 0.17 1.41 0.20 
Unexplained 1.20 0.51 2.86 0.67 
Uterine factor 0.05 0.003 0.83 0.04 
Multiple factors 0.99 0.44 2.24 0.99 
Pregnancy history 
Never pregnant/never live birth 1.00 reference - 
Ever pregnant/never live birth 0.92 0.85 0.99 0.04 
Ever pregnant/ever live birth 1.12 1.03 1.22 0.01 

Age*Weight 1.003 1.001 1.006 0.005 
Age*Race 0.004 

Age*Asian 1.04 1.02 1.07 <0.001 
Age*Black 1.03 1.00 1.05 0.05 
Age*Hispanic 1.02 0.99 1.05 0.27 
Age*White 1.00 reference - 
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Table 1.3, cont.  
  95% CI  
 Odds Ratio  LB  UB p-value  

Age*Diagnosis 0.002 
Age*Diminished ovarian reserve 1.03 0.99 1.08 0.19 
Age*Endometriosis 1.00 0.96 1.05 0.88 
Age*Tubal factor 0.98 0.95 1.01 0.15 
Age*Male factor 1.00 reference - 
Age*Other 1.05 1.02 1.09 0.002 
 Age*Ovulation disorders/polycystic ovaries 1.03 1.00 1.06 0.08 
Age*Unexplained 1.00 0.97 1.02 0.80 
Age*Uterine factor 1.08 1.00 1.17 0.06 
Age*Multiple factors 0.99 0.97 1.02 0.66 

Constant 2.84E+08 3.46E+04 2.33E+12 <0.001 
CI-confidence interval, LB-lower bound, UB-upper bound 

aModel built using backwards stepwise logistic regression with p-values>0.1 for exclusion; 
interaction terms included when p-values<0.05 
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Table 1.4. Area under the receiver operating characteristic curve (AUC) and differences 
between AUCs in models predicting live birth in fir st in vitro fertilization cycles and second 
cycles after a prior failed cycle, 2005-2011  
 First cycles Second cycles after a prior 

failed cycle 
   95% CI   95% CI 
Model  N AUC LB UB N AUC LB UB 
Age categorya 4599 0.64 0.63 0.65 1650 0.63 0.60 0.66 
Linear ageb 4599 0.65 0.64 0.67 1650 0.63 0.61 0.66 
Main effectsc 4599 0.67 0.66 0.69 1650 0.68 0.65 0.70 
Interactionsd 4572 0.67 0.66 0.69 1644 0.67 0.65 0.70 
Boosted regressione 4572 0.67 0.66 0.69 1644 0.72 0.68 0.77 

Differences          

Linear age vs. age 
category  

4599 0.01 0.009 0.02 1650 0.004 -0.004 0.01 

Main effects vs. age 
category 

4599 0.04 0.02 0.05 1650 0.05 0.02 0.07 

Interactions vs. age  
category 

4572 0.03 0.02 0.05 1644 0.04 0.02 0.07 

Boosted vs. age category 4572 0.03 0.02 0.04 1644 0.09 0.05 0.14 
Main effects vs. linear age 4599 0.02 0.01 0.03 1650 0.04 0.02 0.06 
Interactions vs. linear age 4572 0.02 0.01 0.03 1644 0.04 0.02 0.06 
Boosted vs. linear age 4572 0.02 0.01 0.03 1644 0.09 0.05 0.13 
Interactions vs. main effects 4572 -0.001 -0.004 0.002 1644 -0.003 -0.009 0.003 
Boosted vs. main effects 4572 -0.003 -0.008 0.001 1644 0.05 0.009 0.09 
Boosted vs. interactions 4572 -0.002 -0.007 0.003 1644 0.05 0.01 0.09 

CI-confidence interval, AUC-area under the receiver operating characteristic curve, LB-lower bound, 
UB, upper bound 
aAssigned probabilities of live birth based on age as follows: <35 years: 40.1%, 35-37 years: 31.8%, 
38-40 years: 21.5%, 41-42 years: 12.2%, >43 years: 4.2% 
bLinear term for age 
cBackwards stepwise logistic regression using a p-value>0.1 for exclusion, with main effects only (no 
interactions) 
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Table 1.4, cont.  
dBackwards stepwise logistic regression using a p-value>0.1 for exclusion, with main effects and 
interactions between variables 
eBoosted regression tree with up to 10000 regression trees, 6-way interactions, shrunk by a factor of 
0.005, and bagging of 60% of data 
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Table 1.5. Area under the receiver operating characteristic curve of models predicting live birth in first in vitr o 
fertilization cycle and second cycles after a prior  failed cycle by clinic and year of cycle initiatio n, 2005-2011 
    Linear Agea Main Effectsb Interactionsc Boosted 

Regressiond 

     95% CI   95% CI   95% CI  95% CI 
Clinic   N AUC LB UB AUC LB UB AUC LB UB AUC LB UB 
First cycles 1 641 0.66 0.62 0.70 0.68 0.64 0.73 0.68 0.64 0.73 0.68 0.64 0.72 

2 2757 0.65 0.63 0.67 0.67 0.64 0.69 0.67 0.65 0.69 0.66 0.64 0.68 
 3 96 0.58 0.45 0.70 0.65 0.51 0.79 0.65 0.51 0.78 0.65 0.52 0.78 
 4 558 0.67 0.63 0.72 0.69 0.65 0.74 0.70 0.65 0.74 0.69 0.64 0.74 
  5 547 0.65 0.61 0.70 0.69 0.65 0.74 0.69 0.64 0.73 0.69 0.64 0.74 
Second cycles 1 152 0.64 0.55 0.74 0.73 0.64 0.81 0.73 0.64 0.82 0.77 0.68 0.87 

2 1132 0.63 0.60 0.67 0.68 0.64 0.71 0.68 0.64 0.71 0.73 0.68 0.77 
 3e 20 0.57 0.24 0.90 0.34 0.04 0.63 0.37 0.07 0.66 0.47 0.16 0.78 
 4 189 0.68 0.57 0.78 0.70 0.59 0.81 0.69 0.58 0.80 0.75 0.66 0.85 
  5 157 0.58 0.47 0.68 0.60 0.50 0.71 0.59 0.48 0.69 0.64 0.52 0.75 

Year               
First cycles 2005 573 0.66 0.61 0.70 0.66 0.62 0.62 0.67 0.62 0.62 0.66 0.62 0.71 

2006 615 0.68 0.64 0.73 0.68 0.64 0.73 0.68 0.64 0.73 0.69 0.64 0.73 
 2007 629 0.67 0.63 0.71 0.70 0.66 0.74 0.70 0.66 0.75 0.69 0.65 0.73 
 2008 705 0.65 0.60 0.69 0.67 0.63 0.71 0.67 0.63 0.71 0.67 0.63 0.71 
 2009 749 0.67 0.63 0.71 0.69 0.64 0.73 0.69 0.65 0.73 0.68 0.64 0.72 
 2010 767 0.63 0.59 0.67 0.68 0.64 0.72 0.68 0.64 0.72 0.67 0.63 0.71 
  2011 561 0.63 0.58 0.68 0.64 0.60 0.69 0.64 0.59 0.69 0.65 0.60 0.70 
Second cycles 2005 247 0.59 0.49 0.69 0.60 0.52 0.52 0.59 0.52 0.52 0.66 0.57 0.75 

2006 235 0.62 0.54 0.70 0.72 0.52 0.68 0.71 0.52 0.67 0.78 0.70 0.86 
 2007 259 0.61 0.54 0.69 0.68 0.61 0.74 0.68 0.62 0.75 0.72 0.65 0.79 
 2008 277 0.66 0.59 0.73 0.66 0.60 0.73 0.66 0.59 0.72 0.70 0.63 0.77 
 2009 269 0.60 0.52 0.67 0.69 0.62 0.75 0.70 0.63 0.76 0.73 0.66 0.81 
 2010 241 0.68 0.62 0.75 0.71 0.65 0.78 0.71 0.65 0.78 0.76 0.69 0.83 
  2011 122 0.65 0.58 0.73 0.68 0.57 0.79 0.64 0.54 0.75 0.74 0.64 0.85 
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 Table 5,  cont.  
 CI-confidence interval, AUC-Area under the receiver operating characteristic curve, LB-lower bound, UB-upper 

bound 
 aLinear term for age 
 bBackwards stepwise logistic regression using a p-value>0.1 for exclusion, with main effects only (no interactions) 
 cBackwards stepwise logistic regression using a p-value>0.1 for exclusion, with main effects and interactions 

between variables 
 dBoosted regression tree with up to 10,000 regression trees, 6-way interactions, shrunk by a factor of 0.005, and 

bagging of 60% of data 
 eAUC<0.50 because increasing predicted probability of live birth associated with decreased odds of live birth in 

this subset 
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Table 1.6. Performance of models predicting live bi rth in first in vitro fertilization cycles and second cycles after 
a prior failed cycle by age category, 2005-2011 

   
Linear Agea Main Effectsb Interactionsc 

Boosted 
Regressiond 

    
95% CI   95% CI   95% CI 95% CI 

 
Age category N AUC LB UB AUC  LB UB AUC  LB UB AUC  LB UB 

First cycles <35 2067 0.56 0.53 0.58 0.60 0.58 0.63 0.60 0.58 0.63 0.60 0.58 0.63 

 35-37 1108 0.52 0.48 0.55 0.60 0.56 0.63 0.59 0.55 0.63 0.59 0.55 0.63 
38-40 913 0.55 0.51 0.59 0.58 0.54 0.62 0.59 0.54 0.63 0.59 0.54 0.63 
41-42 355 0.46e 0.38 0.54 0.51 0.42 0.60 0.53 0.43 0.62 0.52 0.43 0.62 

  >43 156 0.51 0.41 0.60 0.69 0.56 0.82 0.64 0.50 0.78 0.64 0.51 0.77 

Second 
cycles 

<35 547 0.49 0.45 0.54 0.57 0.52 0.62 0.57 0.52 0.62 0.65 0.58 0.73 
35-37 423 0.53 0.47 0.58 0.63 0.58 0.69 0.63 0.57 0.69 0.69 0.62 0.76 
38-40 430 0.53 0.47 0.59 0.66 0.60 0.72 0.63 0.56 0.69 0.71 0.63 0.78 
41-42 188 0.61 0.53 0.70 0.67 0.55 0.80 0.68 0.56 0.80 0.77 0.68 0.87 

  >43 62 0.50 0.22 0.79 0.68 0.31 1.05 0.69 0.30 1.08 0.76 0.53 1.00 
CI-confidence interval, AUC-area under the receiver operating characteristic curve, LB-lower bound, UB-upper bound 
aLinear term for age 
bBackwards stepwise logistic regression using a p-value>0.1 for exclusion, with main effects only (no interactions) 
cBackwards stepwise logistic regression using a p-value>0.1 for exclusion, with main effects and interactions between 
variables 
dBoosted regression tree with up to 10,000 regression trees, 6-way interactions, shrunk by a factor of 0.005, and 
bagging of 60% of data 
eAUC<0.50 because increasing predicted probability of live birth associated with decreased odds of live birth in this 
subset 
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Table 1.7. Performance of models pr edicting live birth in first in vitro fertilization  cycles and second cycles after a prior failed cycle  at 
various predicted probability thresholds for defini ng high versus low probability of live birth, 2005- 2011 

Threshold 
defining 
high vs. 
low risk  

First cycles Second cycles after a prior failed cycle 

Performance 
measures a 

Age 
category b 

Linear 
agec 

Main 
effects d 

Inter- 
actions e 

Boosted 
regression f 

Age 
category b 

Linear 
agec 

Main 
effects d 

Inter- 
actions e 

Boosted 
regression f 

5% Sens 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 
Spec 0.05 0.00 0.02 0.01 0.00 0.05 0.00 0.01 0.01 0.00 
PPV 0.36 0.34 0.34 0.34 0.34 0.30 0.28 0.28 0.28 0.28 

  NPV 0.94 - 0.93 0.94 1.00 0.93 - 0.97 0.97 - 
10% Sens 0.99 1.00 0.98 0.98 0.98 0.99 1.00 0.99 0.99 1.00 

Spec 0.05 0.00 0.08 0.07 0.07 0.05 0.00 0.08 0.09 0.02 
PPV 0.36 0.34 0.35 0.35 0.35 0.30 0.28 0.29 0.30 0.28 

  NPV 0.94 - 0.89 0.90 0.88 0.93 - 0.94 0.97 1.00 
15% Sens 0.96 1.00 0.96 0.96 0.96 0.94 1.00 0.95 0.95 0.97 

Spec 0.16 0.00 0.16 0.16 0.14 0.19 0.01 0.19 0.19 0.18 
PPV 0.38 0.34 0.37 0.37 0.37 0.32 0.28 0.31 0.31 0.31 

  NPV 0.89 1.00 0.88 0.87 0.88 0.88 0.94 0.92 0.91 0.95 
20% Sens 0.96 0.97 0.92 0.92 0.93 0.94 0.93 0.89 0.87 0.91 

Spec 0.16 0.09 0.23 0.23 0.23 0.19 0.18 0.34 0.35 0.34 
PPV 0.38 0.36 0.38 0.38 0.38 0.32 0.31 0.34 0.34 0.35 

  NPV 0.89 0.86 0.85 0.86 0.86 0.88 0.88 0.89 0.88 0.91 
25% Sens 0.82 0.88 0.88 0.88 0.88 0.74 0.74 0.77 0.75 0.81 

Spec 0.39 0.30 0.32 0.33 0.32 0.46 0.47 0.49 0.49 0.49 
PPV 0.42 0.39 0.40 0.40 0.40 0.36 0.35 0.37 0.36 0.38 

  NPV 0.80 0.83 0.83 0.84 0.84 0.81 0.82 0.84 0.84 0.87 
Sens – sensitivity, Spec – specificity, PPV – positive predictive value, NPV – negative predictive value 
aPPV & NPV calculated using probability of live birth observed in the study population 
bAssigned probabilities of live birth based on age as follows: <35 years: 40.1%, 35-37 years: 31.8%, 38-40 years: 21.5%, 41-42 years: 12.2%, >43 
years: 4.2% 
cLinear term for age 
dBackwards stepwise logistic regression using a p-value>0.1 for exclusion, with main effects only (no interactions) 
eBackwards stepwise logistic regression using a p-value>0.1 for exclusion, with main effects and interactions between variables 
fBoosted regression tree with up to 10000 regression trees, 6-way interactions, shrunk by a factor of 0.005, and bagging of 60% of data 
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Table 1.8. Parameter estimates for a model predicti ng live birth in second in vitro 
fertilization cycles after a prior failed cycle, ma in effects only, 2005-2011 a (n=6534) 

95% CI 
Odds Ratio LB UB p-value  

Variables from second cycle  
    Age (years) 0.09 0.01 1.02 0.05 

Age2 (years2) 1.08 1.01 1.16 0.03 

Age3 (years3) 1.00 1.00 1.00 0.02 

Body mass index (kg/m2) 0.97 0.95 1.00 0.05 
Weight (per 10 lbs) 1.03 0.99 1.08 0.14 
Stimulation protocol 

Antagonist 0.82 0.71 0.96 0.01 
Normal response 1.00 reference - 
High response 1.02 0.77 1.35 0.89 
Low response 0.95 0.80 1.13 0.58 

Race 
Asian 0.84 0.71 0.99 0.04 
Black 0.70 0.57 0.85 <0.001 
Hispanic/Latino 0.85 0.66 1.10 0.22 
Other 0.51 0.21 1.24 0.14 
White 1.00 reference - 

Pregnancy history 
Never pregnant/never live birth 1.00 reference - 
Ever pregnant/never live birth 1.15 1.02 1.31 0.03 
Ever pregnant/ever live birth 1.16 0.99 1.36 0.07 

Variables from prior failed cycle  
Total amount of gonadotropins (per 500 IUs) 0.97 0.95 0.99 <0.001 
Maximum estradiol (per 100 IUs) 1.005 1.001 1.010 0.02 
Metaphase II oocytes retrieved 1.02 1.01 1.04 <0.001 
Assisted hatching performed 

None 1.00 reference - 
At least some 0.88 0.75 1.02 0.10 

Embryos transferred  0.92 0.83 1.03 0.14 
Preimplantation genetic diagnosis 

No 1.00 reference - 
Yes 0.60 0.41 0.88 0.01 

Day of embryo transfer 
<3 days 0.32 0.04 2.60 0.29 
3 days 1.00 reference - 
4-5 days 1.05 0.90 1.24 0.53 
6+ days 0.97 0.76 1.23 0.79 
No transfer 0.64 0.48 0.84 0.001 
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Table 1.8, cont.  
  95% CI  
 Odds Ratio  LB  UB p-value  
Complications 

No 1.00 reference - 
Yes 1.56 1.03 2.38 0.04 

Constant 1.69E+11 0.10 2.97E+23 0.07 
CI-confidence interval, LB-lower bound, UB-upper bound, IU-international units 
aModel built using backwards stepwise logistic regression with p-values>0.1 for exclusion 
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Table 1.9. Parameter estimates for a model predicting live bir th in second  in vitro 
fertilization cycles after a prior failed cycle, ma in effects and interactions, 2005-2011 a 
(n=6491) 

95% CI 
Odds Ratio LB UB p-value 

Variables from second cycle  
    Age (years) 0.09 0.01 1.02 0.05 

Age2 (years2) 1.08 1.01 1.16 0.03 

Age3 (years3) 0.999 0.998 0.9999 0.02 

BMI (kg/m2) 0.99 0.96 1.02 0.33 
Weight (per 10lbs) 1.03 0.99 1.08 0.15 
Stimulation protocol 

Antagonist 0.83 0.71 0.96 0.01 
Normal response 1.00 reference - 
High response 1.03 0.78 1.37 0.81 
Low response 0.95 0.80 1.13 0.57 

Race 
Asian 0.75 0.56 1.02 0.07 
Black 0.82 0.60 1.13 0.23 
Hispanic/Latino 0.51 0.32 0.82 0.01 
White 1.00 reference - 

Pregnancy history 
Never pregnant/never live birth 1.00 reference - 
Ever pregnant/never live birth 1.14 1.00 1.30 0.05 
Ever pregnant/ever live birth 1.16 0.99 1.36 0.07 

Variables from prior failed cycle  
Total amount of gonadotropins (per 500 IUs) 0.97 0.95 0.99 0.001 
Maximum estradiol (per 100 IUs) 1.004 0.998 1.009 0.19 
Metaphase II oocytes retrieved 1.03 1.01 1.04 <0.001 
Assisted hatching performed 

None 1.00 reference - 
At least some 0.88 0.75 1.02 0.09 

Embryos transferred 0.93 0.84 1.04 0.19 
Preimplantation genetic diagnosis 

No 1.00 reference - 
Yes 0.59 0.41 0.87 0.01 

Day of embryo transfer 
<4 days 1.00 reference - 
4-5 days 1.81 0.89 3.67 0.10 
6+ days 5.09 1.52 17.09 0.01 
No transfer 0.95 0.44 2.02 0.89 
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Table 1.9, cont.  
  95% CI  

Odds Ratio  LB  UB p-value  
Complications    

No 1.00 reference - 
Yes 1.59 1.04 2.42 0.03 

Race*Maximum estradiol 0.01 
Asian*Maximum estradiol 1.00 0.99 1.02 0.38 
Black* Maximum estradiol 0.99 0.98 1.00 0.22 
Hispanic/Latino*Maximum estradiol 1.02 1.01 1.04 0.01 
White*Maximum estradiol 1.00 reference - 

BMI*Day of embryo transfer 0.04 
BMI*<4 days 1.00 reference - 
BMI*4-5 days 0.98 0.95 1.01 0.14 
BMI*6+ days 0.94 0.89 0.98 0.01 
BMI*no transfer 0.99 0.96 1.01 0.31 

Constant 1.43E+11 0.07 2.91E+23 0.08 
CI-confidence interval, LB-lower bound, UB-upper bound, BMI-body mass index, IU-
international units 
aModel built using backwards stepwise logistic regression with p-values>0.1 for exclusion; 
interaction terms included when p-values<0.05 



 

  

FIGURES 
 

 

Figure 1.1 . Influence of variables pre dicting live birth in second 
boosted regression model, 2005-2011 . The boosted regression model was built allowing up to 10,000 regression trees and 6
interactions, shrunk by a factor of 0.005 and bagging 60% of data
in the log likelihood; the influence is the sum of the increase in log likelihood across all trees due to a particular variab
total 100% across all variables. Age had the largest influence, follo
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Figure 1.2. Receiver operating characteristic curve s (ROC) for models predicting live 
birth in first in vitro fertilization cycles, 2005-2011.  The age category model assigned 
probabilities of live birth based on age as follows: <35 years: 40.1%, 35-37 years: 31.8%, 38-40 
years: 21.5%, 41-42 years: 12.2%; >43 years: 4.2%. The linear age model was based on a 
single linear age term. The main effects and interactions models were developed using 
backwards stepwise logistic regression with a p-value>0.1 for exclusion. The boosted 
regression model was built allowing up to 10,000 regression trees and 6-way interactions, 
shrunk by a factor of 0.005 and bagging 60% of data. All of the curves are very close together, 
reflecting similar model performance. 
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Figure 1.3. Calibration plot for models predicting live birth in first in vitro fertilization 
cycles, 2005-2011.  Calibration plots display the average predicted probability versus the 
average observed probability within deciles of predicted probability. Perfect calibration occurs 
when observed and predicted probabilities are equivalent. The age category model assigned 
probabilities of live birth based on age as follows: <35 years: 40.1%, 35-37 years: 31.8%, 38-40 
years: 21.5%, 41-42 years: 12.2%, >43 years: 4.2%. The linear age model was based on a 
single linear age term. The main effects and interactions models were developed using 
backwards stepwise logistic regression with a p-value>0.1 for exclusion. The boosted 
regression model was built allowing up to 10,000 regression trees and 6-way interactions, 
shrunk by a factor of 0.005 and bagging 60% of data. All models have good calibration with 
observed and predicted probabilities not far from perfect calibration.
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Figure 1.4. Predicted probabilities of live birth i n first in vitro fertilization cycles and second cycles after a pri or failed cycle 
by age in linear age, main effects, and interaction s models, 2005-2011.  The linear age model was based on a single linear age 
term. The main effects and interactions models were developed using backwards stepwise logistic regression with a p-value>0.1 for 
exclusion. In both first and second cycles, the predicted probabilities among women of the same age vary quite dramatically for the 
main effects and interactions model, compared to the linear age models. 



 

  

 

Figure 1.5. Influence of variables predicting live birth in sec ond 
boosted regression tree model, 2005-2011.  
way interactions, shrunk by a factor of 0.005 and bagging 60% of data.
increase in the log likelihood; the influence is the sum of the increase in log likelihood across all trees due to a particular variable, 
scaled to total 100% across all variables. Age had the strongest influence of all variables, followed by the maximum estradiol level, 
total dose of gonadotropins administered, the number of metaphase II oocytes retrieved, the number of follicles>14mm observed on 
ultrasound, and BMI (body mass index). All other variables had influences of <5%.
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Figure 1.6. Receiver operating characteristic curve s (ROC) for models predicting live 
birth in second in vitro fertilization cycles after a prior failed cycle, 20 05-2011. The age 
category model assigned probabilities of live birth based on age as follows: <35 years: 40.1%, 
35-37 years: 31.8%, 38-40 years: 21.5%, 41-42 years: 12.2%, >43 years: 4.2%. The linear age 
model was based on a single linear age term. The main effects and interactions models were 
developed using backwards stepwise logistic regression with a p-value>0.1 for exclusion. The 
boosted regression model was built allowing up to 10,000 regression trees and 6-way 
interactions, shrunk by a factor of 0.005 and bagging 60% of data. The boosted regression 
model has the best performance as it comes closer to the upper left corner (maximum sensitivity 
and specificity). The main effects and interactions models have overlapping curves, 
demonstrating similar performance. The age category and linear age models had the poorest 
performance with curves below the other models.
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Figure 1.7. Calibration plot for models predicting live birth in second in vitro fertilization 
cycles after a prior failed cycle, 2005-2011. Calibration plots display the average predicted 
probability versus the average observed probability within deciles of predicted probability. 
Perfect calibration occurs when observed and predicted probabilities are equivalent. The age 
category model assigned probabilities of live birth based on age as follows: <35 years: 40.1%, 
35-37 years: 31.8%, 38-40 years: 21.5%, 41-42 years: 12.2%, >43 years: 4.2%. The linear age 
model is based on a single linear age term. The main effects and interactions models were 
developed using backwards stepwise logistic regression with a p-value>0.1 for exclusion. The 
boosted regression model was built allowing up to 10,000 regression trees and 6-way 
interactions, shrunk by a factor of 0.005 and bagging 60% of data. All models have good 
calibration with observed and predicted probabilities not far off from perfect calibration. 
Deviations from perfect calibration are greatest for all models in the 10th decile.  
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Chapter 2. Prediction modeling for live birth in in vitro fertilization: anti-Müllerian 

hormone and other biomarkers of ovarian reserve  
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INTRODUCTION 

Since the introduction of in vitro fertilization (IVF) to treat infertility, clinicians have been 

interested in identifying a single test to reliably quantify ovarian reserve and ovarian aging. 

Ovarian reserve refers to the quantity and quality of follicles in the ovary at a given time [1], 

which declines with age ultimately leading to menopause. It is one measure of a woman’s 

fertility and can be used to predict the response to IVF, among other reproductive outcomes. A 

common measure of ovarian reserve is female age, because the number of oocytes decreases 

exponentially with age [2] in concert with a decrease in oocyte quality [3-6]. Other individual 

biomarkers of ovarian reserve, such as follicle stimulating hormone (FSH) and antral follicle 

count (AFC), are commonly measured as predictors of IVF success. Recently, anti-müllerian 

hormone (AMH) has emerged as a potential candidate to improve prediction of IVF success 

compared with other established markers of ovarian reserve. 

AMH is a dimeric glycoprotein of the transforming growth factor beta (TGFβ) family of 

growth and differentiation factors [7]. AMH is expressed in granulosa cells of primary follicles, is 

maximal in preantral and small antral follicles, and is not expressed in larger antral follicles [8]. 

Therefore, AMH is expressed in follicles that have undergone recruitment from the primordial 

follicle pool but have not been selected for dominance [9]. The release of AMH from ovarian 

granulosa cells is proportional to the number of developing follicles in the ovaries [8], thus 

reflecting ovarian reserve. Women with higher AMH levels have more developing follicles and 

greater ovarian reserve compared with women who have lower AMH levels. Indeed, higher 

AMH levels [10] and a slower rate of change in AMH [11] have been associated with longer time 

to menopause (i.e., greater ovarian reserve) after adjustment for age. Although AMH is not 

expressed in primordial follicles, the true measure of ovarian reserve, the number of recruited 

follicles correlates with the size of the primordial follicle pool [12] and the more clinically relevant 

outcome of response to ovarian stimulation. 
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AMH may be a better marker of ovarian reserve than FSH and AFC because it is 

independent of the menstrual cycle [13-15], which means it can be measured on any day of the 

cycle. Even endocrine influences such as hormonal contraceptive use [16], gonadotropin 

releasing hormone agonists [17], and pregnancy [18] do not significantly affect AMH 

measurement. In addition, while most other markers of ovarian reserve and aging (age, FSH, 

AFC) are distantly related to the initial development of primordial follicles, AMH production in 

follicles first appears in primary follicles. Substances related to earlier follicle development, like 

AMH, may correlate better with the size of the primordial follicle pool. 

Despite a number of studies demonstrating the ability of AMH to predict response to 

ovarian stimulation or pregnancy, few have assessed the role of AMH in predicting live birth [19-

26], the outcome of primary concern for patients. Furthermore, none of these studies have used 

data from the U.S., which may limit the generalizability of findings to U.S. populations. Across 

Europe, eligibility criteria for IVF vary and may include: age limits, medical indications, marital or 

cohabitation status, and sexual orientation; and all EU countries have either partial or full 

insurance coverage of IVF [27]. Therefore we sought to examine the ability of AMH to predict 

live birth in IVF cycles in the U.S. and to compare its predictive ability to other common 

predictors, such as age, FSH, and AFC. We also evaluated whether the predictive ability of 

AMH varied by age, body mass index (BMI), polycystic ovary syndrome (PCOS) status, and 

infertility diagnosis, since these factors may influence how well AMH predicts live birth. Lastly, 

we evaluated whether addition of AMH improved prediction of live birth in IVF in a previously 

developed multivariable model.
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METHODS  

Study Subjects  

We used electronic medical records data from a single infertility clinic located in 

Washington State. For all analyses, female patients undergoing autologous fresh IVF cycles 

with or without intra-cytoplasmic sperm injection (ICSI) between January 2010 and August 2011 

were eligible for inclusion; those using donor eggs or cryopreserved eggs or embryos were 

excluded. All cycles were eligible such that more than one cycle per woman could be included in 

analyses. 

 This project was approved by the Institutional Review Board at the University of 

Washington.  

Outcome 

The primary outcome of interest was live birth (yes/no) in the cycle of interest. The 

outcome was obtained by the clinic via telephone follow-up with patients who self-reported the 

outcome. Because this clinic is required to report to the Society for Assisted Reproductive 

Technology (SART), outcome data are nearly complete and are validated in compliance with 

SART guidelines [28]. Fewer than 2% of cycles had discrepancies between the SART and 

medical records data for cycle outcomes [29]. Only subjects with outcome data were included in 

analyses. 

Predictors 

 Predictors of live birth included age, FSH, AMH, and AFC. Subject’s date of birth was 

obtained at the initial clinic visit, from which age was calculated and recorded in the electronic 

medical record. As part of the initial infertility evaluation, blood draw was performed by 

venipuncture, typically before 9:30am. Samples were collected in a primary tube and allowed to 

clot for 15-20 minutes, after which they were centrifuged at 3600 rpm for 10 minutes to separate 

serum. For FSH measurement, serum samples were sent to the clinic’s central laboratory, 
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where they were measured the same day as collection. Samples that could not be sent to the 

lab the same day of blood draw were stored between 0 and +4°C and sent the next day. After 

analysis, serum was stored for one month between -25°C and -15°C. Basal FSH was measured 

in mIU/mL using the Immulite 2000 (Diagnostic Product Corporation, Los Angeles, CA, USA) 

assay according to the manufacturer’s protocol. The limit of detection for FSH was 0.1 mIU/mL. 

A third party laboratory, LabCorp, measured AMH for the clinic. After clotting and centrifugation, 

samples were frozen between -25°C and -15°C and sent to LabCorp for processing, which 

occurred within one day. AMH measurement was performed with the Diagnostic Systems 

Laboratory ELISA kit (Webster, TX, USA) following manufacturer protocols, with a limit of 

detection 0.1 ng/mL. For AFC, clinicians counted the number of follicles observed on vaginal 

ultrasound in each ovary; the total from both ovaries was the AFC. AFC was measured for the 

majority of subjects within seven days before the cycle start in order to obtain basal levels, but 

was not consistent with respect to day of the menstrual cycle. 

Not all women had AFC, FSH, and AMH measured in each cycle, therefore values from 

other cycles were included if they were measured within one year prior to the start of stimulation 

in the index cycle (“cycle start” hereafter), as there appears to be little inter-cycle variation in this 

timeframe [30]. To obtain basal and not stimulated AFC, we linked multiple cycles within a 

woman and excluded any values measured between the cycle start and the day of cancellation, 

retrieval, or transfer. We only included women in the analyses who had age, FSH, AFC, and 

AMH measured within one year prior to the cycle start. Women missing one or more of these 

values or who had had measurements outside of the year window were excluded. 

 Values below the limit of detection.  Both AMH and FSH have a lower limit of detection 

(LOD), below which the measurement cannot be obtained. Exclusion of these observations can 

lead to bias in the estimates of model performance; however, inclusion requires defining a 
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replacement value. Because <3% of AMH and <1% of FSH values were below the LOD, we 

replaced AMH and FSH values below the LOD with LOD/2. With such a small proportion of 

subjects affected by the LOD, simple replacement is unlikely to introduce substantial bias [31-

32].  

Data Analysis  

 Study sample characteristics.  We first examined the characteristics of women 

included and excluded from analyses to determine if there were any differences in these two 

groups that could potentially introduce bias. Characteristics included demographics, 

anthropometry, reproductive history, and infertility diagnosis, as well as the IVF cycle 

characteristics and response. We also examined the distribution of the various individual 

predictors of IVF success (age, FSH, AFC, and AMH), as well the timing of their measurement. 

 Individual predictors. We fit a logistic regression model with live birth as the outcome 

and a linear term for each of the predictors separately. We did not examine non-linear terms or 

transformations because measures for evaluating performance of single biomarkers are rank-

based and therefore would be equivalent regardless of model parameterization. We took into 

account repeated cycles per woman by using clustered sandwich estimators of the standard 

error for the logistic regression models, which was used to calculate all 95% confidence 

intervals (CI). We plotted the nonparametric receiver operating characteristic (ROC) curve for 

each predictor, which demonstrates the discrimination of the model -- the ability to distinguish 

women with and without a live birth. We also estimated the area under the ROC curve (AUC) 

and 95% CI. AUCs range from 0.50 to 1.00, with a value of 0.50 indicating no ability to 

discriminate and perfect discrimination at a value of 1.00. To determine if AMH performed better 

than the other predictors, we estimated the difference in AUCs between AMH and each of age, 

FSH, and AFC and 95% CIs. For the AUCs and differences in AUCs, 95% CIs were calculated 

using a bootstrap procedure with 1000 samples. Samples were drawn such that all cycles from 
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a particular woman were included if the woman was selected into the bootstrap sample, 

accounting for repeated cycles.  

Assessment of the predictors' sensitivity and specificity required defining a cutoff 

probability above which women would be classified as high probability of live birth (hereafter 

referred to as “live birth likely”) and below as low probability (“live birth unlikely”). Sensitivity is 

the proportion of women who had a live birth who were correctly classified as live birth likely; the 

specificity is the proportion correctly classified as live birth unlikely among those who did not 

have a live birth. Without perfect sensitivity and specificity (almost impossible in practice), some 

women will be misclassified (inappropriately assigned live birth likely or unlikely). The relative 

“costs” of these two types of misclassification may be unequal, but ascribing a specific or 

relative cost to each is often fraught with guesswork. However, in the infertility setting the goal is 

typically to minimize the number of women inappropriately classified as live birth unlikely (false 

negative rate, 1-sensitivity) who may be excluded from or opt out of treatment unnecessarily, 

which means maximizing the sensitivity. Therefore, across models we examined the specificity 

and 95% CI at various levels of sensitivity ranging from 0.80 to 0.99, with a corresponding false 

negative rate of 0.20 to 0.01. We also examined the positive and negative predictive values 

(PPV and NPV, respectively) at the various sensitivity levels, which are a function of the 

probability of live birth in the study population. PPV is the proportion of women who had a live 

birth among those classified as live birth likely; NPV is the proportion of women who did not 

have a live birth among those classified as live birth unlikely. A more accurate model would 

have higher specificity, PPV, and NPV at the selected sensitivities.  

 Sensitivity analyses. Bias may have been introduced due to the exclusion of women who 

were missing a value for one or more predictors. One concern about missing data is that at 

sufficiently high (or low) values of a particular biomarker, a clinician may have decided that 

measurement of other biomarkers would add no further value to assessing a patient’s prognosis. 
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Therefore women at the extremes of predictor values may have been excluded. To examine this 

possibility, we performed sensitivity analyses in which we estimated the AUC and 95% CI for 

each predictor among all women who had that specific predictor measured within one year of 

the cycle start, leading to different sample sizes for each predictor. We also examined the 

sensitivity of results to the window prior to the cycle start for retrieving biomarker values from 

the electronic medical record. In these analyses, we estimated the AUC and 95% CI using 

cutoffs of within 90 days and within 2 years prior to the cycle start.  

 Performance of AMH within subgroups. Because the association between AMH and IVF 

outcomes (pregnancy and live birth) has been reported to vary with women's age [33], we 

examined wither the AUC varied across age categories used by SART (<35, 35-37, 38-40, 41-

42, and >43 years) [34]. We also examined the AUC within categories of BMI 

(underweight/normal: <25kg/m2, overweight: 25 to <30 kg/m2, obese: >30kg/m2). On average, 

obese women have lower AMH levels than their normal weight peers even after adjustment for 

age and race [35], and they also have lower rates of live birth following IVF [36]; however it is 

unclear if these differences lead to variation in predictive ability of AMH across BMI categories. 

Furthermore, we evaluated whether polycystic ovary syndrome (PCOS) modified the 

AUC of AMH. PCOS is diagnosed when at least two of the following three features are present: 

(1) oligo- and/or anovulation, (2) clinical and/or biochemical signs of hyperandrogenism, and (3) 

polycystic ovaries on transvaginal ultrasonography [37]. AMH is 2-3 times higher in serum from 

women with PCOS than in women with normal ovaries [38], and the production of AMH within 

granulosa cells is also increased [39]. Despite these higher levels of AMH, which in general are 

associated with better IVF outcomes, women with PCOS have worse or similar outcomes as 

compared to non-PCOS women [40]. Therefore, the performance of AMH may vary between 

women with and without PCOS. Because we did not have complete information on PCOS status 

in the dataset, we used two proxy definitions for PCOS: (1) a diagnosis of ovulation 
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disorder/polycystic ovaries (PCO), and (2) a diagnosis of ovulation disorder/PCO and 

BMI>25kg/m2 because 1/3 to 1/2 of women with PCOS are overweight or obese [41].  

Lastly, because AMH reflects ovarian reserve, rather than other components of infertility, 

we examined whether the AUC of AMH varied by infertility diagnosis (diminished ovarian 

reserve, tubal factor, or male factor). A woman was classified into a particular diagnosis 

category if she had at least one indication for the diagnosis across the three available diagnosis 

variables and did not have an indication for the remaining two diagnoses of interest (e.g., 

women with an indication for two or more of the diagnoses of interest were excluded from 

analyses). 

Incremental improvement over age alone.  We also added AMH to age in a prediction 

model to examine if the two predictors together could improve performance over age alone. For 

these analyses we split the sample, using 80% for model development and 20% for model 

validation. In the development sample we examined various parameterizations of AMH (linear 

and log-transformed) in logistic regression models with a linear term for age. For the 

parameterization with the lowest p-value, in the validation sample we estimated the AUC and 

difference in AUC compared to an age-only model, along with 95% CIs, as described above. 

Furthermore, we estimated the AUC and 95% CI of this AMH and age model within the SART 

age categories described previously. 

Application to multivariable prediction model. In previous work, we developed 

multivariable models to predict the probability of live birth in women undergoing their first IVF 

cycle using predictors obtained prior to stimulation. A model built using backward stepwise 

logistic regression with a p-value>0.2 for removal included age, age2, age3, height (inches), 

weight (pounds), stimulation protocol to be used (antagonist, normal responder protocol, high 

responder protocol, and low responder protocol), race/ethnicity (White, Asian, Black, Hispanic, 

other), infertility diagnosis (diminished ovarian reserve [DOR], endometriosis, tubal factor, male 
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infertility, ovulation disorders/polycystic ovaries [PCO], uterine factor, unexplained, other, or 

multiple factors), and pregnancy history (never pregnant/never live birth, ever pregnant/never 

live birth, ever pregnant/ever live birth).  

 We assessed whether addition of AMH to this multivariable model improved prediction 

accuracy. The group of women included in this analysis differed from the group in which we 

developed and tested the multivariable prediction model and from the analyses described above. 

Here, we include only women with (1) a first autologous fresh IVF cycle, (2) initiated between 

2010 and 2011 in the Washington State clinic, and (3) an AMH value within one year of the 

cycle start. Because a large proportion (~50%) of women were missing at least one of the 

predictors, we used multiple imputation by chained equations to create 15 complete datasets in 

which missing data were replaced with plausible values, excluding AMH [42]. We split the 

dataset prior to imputation and used 80% to re-fit the multivariable model with and without AMH, 

removing the other category from race/ethnicity and the low responder protocol from the 

stimulation protocol due to small cell sizes.  

 We used the remaining 20% of observations to assess model performance. We plotted 

the ROC curve for the models with and without AMH, and estimated the AUC and 

corresponding 95% CI. To determine if AMH improved model discrimination, we obtained the 

difference in AUCs and 95% CIs associated with models that did and did not include AMH. We 

also calculated each model’s sensitivity, specificity, PPV, and NPV. We examined these 

measures of performance across a number of different cutoffs that may be relevant to defining 

live birth likely versus unlikely, including 5%, 10%, 15%, 20%, 25%.  

 We calculated standard errors for all measures of model performance by using a 

bootstrap procedure with 300 sampled datasets in order to obtain 95% CIs. For the multiply 

imputed datasets, model performance (and performance measures' bootstrapped standard 
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errors) was calculated within each imputation, and Rubin’s Rules were applied to pool estimates 

across datasets [43].
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RESULTS 

Study sample characteristics 

 There were a total of 1542 fresh autologous IVF cycles between 2010 and 2011; 834 

(54.1%) cycles had measurement of all biomarkers within the appropriate window and complete 

data on the outcome of the cycle (Table 1). Across the 834 cycles, the majority of women were 

35 years of age or older (59.0%), white (56.5%), of normal BMI (57.1%), and nulligravid (50.7%). 

The most common infertility diagnoses were male infertility (27.5%), multiple factors (24.8%), 

and DOR (12.5%). The live birth rate was 39.6%, and 22.4% of those with a live birth delivered 

two or more infants. Five hundred forty-five women had only one cycle included in analyses, 

112 had two, 29 had three, and two had four. Among excluded women, 212 only were missing 

one or more predictors, 202 only had measurements outside the 1-year window, and 1 only was 

missing the cycle outcome; 293 women were excluded for multiple reasons (data not shown). 

Cycles excluded from analyses were fairly similar, except they were less likely to have a 

diagnosis of male infertility, to have embryos transferred, to become pregnant, and to have a 

live birth. Women with included cycles had slightly lower values of AMH, larger values of AFC, 

and similar values of FSH to those women excluded from analyses (Table 2).  

Individual predictors 

 Logistic regression . When fitting a logistic regression model with each of the predictors 

and the dichotomous live birth outcome, we observed positive relationships with live for AMH 

and AFC, and negative relationships for FSH and age (Table 3).  

 Model performance . Across predictors, AUC values were similarly modest with the 

exception of FSH (Table 4). The AUC for AMH was 0.63 (95% CI=0.59, 0.67), 0.64 (95% 

CI=0.60, 0.67) for AFC, and 0.67 (95% CI=0.64, 0.71) for age. The AUC for FSH was smaller at 

0.55 (95% CI=0.51, 0.59). When comparing AMH to the other predictors, there was a 

substantial difference only from FSH (difference=0.08, 95% CI=0.04, 0.13); all other differences 
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were negligible (absolute value of differences<0.04). These differences were also reflected in 

the ROC curves (Figure 1), with FSH having a curve below that of the other predictors.  

 Across all sensitivities, specificities were smallest for FSH, ranging from 0.02 to 0.25 

(Table 5). Age had the largest specificities across all sensitivities, ranging from 0.06 to 0.49. 

Specificities for AMH were the second smallest across all sensitivities. These results reiterate 

the findings from the AUC and ROC curves that FSH has the poorest performance among the 

predictors and age had slightly better performance, but similar to AMH and FSH. Overall the 

specificity was quite low for all predictors even at the lowest sensitivity examined (0.80), with 

<50% of the women who did not have a live birth correctly classified as live birth unlikely. This 

percentage got substantially smaller with increasing sensitivity. Across all sensitivities and 

predictors, the PPV was moderate and the NPV was large, ranging from 0.40 to 0.50 and 0.66 

to 0.88, respectively.  

 Sensitivity analyses. Across all sensitivity analyses, AUCs were similar to the primary 

analysis for all predictors (Table 4).  

 Performance of AMH within subgroups. Across age groups, there was variability in the 

performance of AMH in predicting live birth (Table 6). Women younger than 35 years of age had 

lower performance than older age groups, with an AUC of 0.53 compared to a range of 0.57 

(35-37 years old) to 0.65 (38-40 years old). 

 Across categories of BMI, AUCs were similar, ranging from 0.62 to 0.63. 

 Performance was similar in women with and without PCOS when defined as a diagnosis 

of ovulation disorder/PCO (AUC of 0.63 vs. 0.62) and slightly better for women with PCOS when 

defined as a diagnosis of ovulation disorder/PCO in addition to being overweight or obese (AUC 

of 0.68 vs. 0.62). 
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 Within diagnoses, the performance of AMH in women with DOR and male infertility was 

similar with AUCs of 0.56 and 0.53, respectively. The AUC for tubal factor was slightly higher 

(AUC=0.65); however, confidence intervals were wide for all estimates. 

Incremental improvement over age alone 

 The logistic regression model with log-transformed AMH had a smaller p-value than 

linear AMH in the development sample. When we compared the performance of a model with 

log-transformed AMH and linear age (AUC=0.69, 95% CI=0.49, 0.66, data not shown) to age 

alone, there was very small improvement in AUC (difference in AUC=0.02, 95% CI=-0.0005, 

0.04).  

 Within age groups, the predictive ability of the AMH and age model was slightly better 

with increasing age with an AUC of 0.55 (95% CI=0.49, 0.61) and 0.58 (95% CI=0.50, 0.67) in 

women <35 and 35-37 years of age, respectively, and 0.62 (95% CI=0.47, 0.76) and 0.64 (95% 

CI=0.24, 1.05) in women 41-42 and >43 years of age, respectively (data not shown). However, 

CIs were overlapping for all age groups and were very wide for the oldest age groups. 

Application to multivariable prediction model   

 There were 718 women who underwent their first IVF cycle between 2010 and 2011 with 

complete outcome data, as well as an eligible AMH measurement. When we updated the 

multivariable model to include AMH, the AUC in the validation sample of 141 women was 0.69 

(95% CI=0.60, 0.79), almost identical to that in the model without AMH (Table 7). There was no 

difference in the AUC estimates (difference=-0.003, 95% CI=-0.03, 0.02) between these two 

models, which was also reflected in the ROC curves (Figure 2). 

 Sensitivities and specificities were similar for the model with and without AMH across all 

cutoffs defining live birth likely and unlikely, as were the PPVs and NPVs. 
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DISCUSSION 

In this study we investigated the ability of AMH to predict live birth in IVF cycles, and 

compared its performance to other established predictors, including AFC, FSH, and age. We 

were particularly interested in AMH because it displays less intra-cycle variability than AFC and 

FSH [44, 45] and is not altered by exogenous or endogenous endocrine influences [16-18]. 

Although a number of previous studies have examined AMH as a predictor of live birth in the 

infertility setting, this work was warranted because all other studies have utilized data from 

clinics outside of the U.S. where inclusion criteria for IVF, insurance coverage, and 

governmental regulations differ from the U.S. We hypothesized that AMH would outperform the 

other predictors since it is more directly related to the underlying ovarian reserve and may be 

more sensitive to its underlying changes [46]. Contrary to this hypothesis, models with AMH 

performed similarly to those with AFC or age, although slightly better than models with FSH: 

models with AMH had an AUC of 0.63, compared to 0.64 for AFC, 0.67 for age, and 0.55 for 

FSH. 

The predictive ability of AMH is consistent with that observed in other studies, in which 

AUCs ranged from 0.57 to 0.66 [20-24, 26]. The small variations may be attributable to sampling 

variability or to actual differences in study populations, including differences in sample size, 

geographic location, and eligible patient ages and infertility diagnoses. In addition, 

parameterizations of AMH have differed across studies (e.g., continuous vs. categorical). We 

were concerned that exclusion of subjects missing any biomarker values or those measured 

outside of the one-year window may have led to bias in estimated performance. However, AUC 

estimates in sensitivity analyses where the inclusion criteria were modified were almost identical 

to those in primary analyses, further supporting the stability of the findings within this study and 

across others. 

In almost all of the comparable studies, AMH performed similarly to other single 
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predictors of live birth, including AFC, FSH, and age, as we also observed [21, 23, 26]. Across 

these studies, different predictors emerged as superior based on statistical comparisons (AMH 

[21, 26], age [23]); however, these increases were quite small and likely would not translate to 

major improvements in classification. Consistent with previous investigations, all single 

predictors had low to moderate discrimination in the current study, with AUCs ranging from 0.55 

to 0.67, suggesting that none adequately distinguished women who went on to have a live birth 

from those who did not. The particularly low AUC for FSH may be attributable to its greater 

intra-cycle variability [45], as this biomarker was not measured on a particular day of the 

menstrual cycle, blunting its performance.  

Across acceptable sensitivities (0.80 to 0.99), all predictors had low to moderate 

specificities: among women who did not have a live birth <50% were correctly classified as live 

birth unlikely. We evaluated model performance at selected sensitivities because this allows 

comparison of specificities, PPVs, and NPVs across models without having to select an optimal 

cutoff for defining live birth likely versus unlikely, and criteria for optimizing may differ across 

clinicians and patients (e.g., different weighting of false positives and false negatives). 

Furthermore, as incorrectly refusing or deterring someone from treatment is a potentially more 

costly error than inappropriately proceeding with treatment, we examined model performance 

with fixed, small false negative rates (1-sensitivity).  

 Across all predictors, PPVs were moderate and NPVs were high, indicating that a 

negative test result accurately reflected the true outcome of the cycle (no live birth), but a 

positive test did not. Therefore, for women classified as live birth unlikely, the majority would not 

go on to have a live birth. However, less than 50% of women classified as live birth likely would 

actually have a live birth. With a high NPV a clinician may be more comfortable excluding a 

woman from treatment if classified as live birth unlikely, since the classification accurately 

reflects the underlying outcome (no live birth). Because PPV and NPV are influenced by the 
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prevalence of the outcome, their low and high values, respectively, are partially attributable to 

the low prevalence of live birth in IVF. With a greater prevalence of live birth, the PPV increases 

and NPV decreases. 

The limited ability of these markers to predict live birth is likely at least in part a function 

of the more distant relationship between measures of ovarian reserve and a live birth outcome. 

Ovarian reserve measures the quantity and quality of primordial follicles in the ovaries, but other 

factors affecting conception, implantation, and pregnancy loss are not necessarily captured by 

these single measures. In particular, factors that affect uterine receptivity and spontaneous 

abortion (aside from oocyte quality) are likely not reflected in predictors examined here. Indeed, 

adjustment for oocyte yield has been reported to nullify the association between AMH and live 

birth [26], suggesting AMH may only reflect quantity and quality of primordial follicles. 

Furthermore, the predictive ability of these ovarian reserve measures was substantially larger in 

some studies examining poor response or excessive response, typically defined by the number 

of oocytes retrieved, which is more closely related to ovarian reserve [19, 26]. However, live 

birth is ultimately the outcome of interest for both patients and physicians, and use of other 

outcomes can be misleading. Inclusion of women with male factor infertility may also have 

blunted the performance of the markers, as has been reported in one prior study [22], because 

ovarian reserve may be less informative for this infertility diagnosis. Indeed, the AUC was 

slightly lower for male factor than tubal factor infertility.  

We also examined whether addition of AMH to age could improve model performance 

and observed only a very small improvement in the AUC compared to an age-only model, 

suggesting little benefit to including AMH with age to determine individualized probabilities of 

live birth. Contrary to these findings, one study observed an AUC of 0.66 for a model with 

categories of age and AMH, with substantial improvements over age (AUC=0.55) alone [24], 

which was confirmed in external validation [25].  
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Furthermore, we evaluated whether addition of AMH to an extant multivariable prediction 

model improved prediction accuracy. In a model that included age, age2, age3, height, weight, 

stimulation protocol to be used, race/ethnicity, infertility diagnosis, and pregnancy history, 

addition of AMH did not improve model AUC, which was ~0.70 for models with and without AMH. 

AMH did not lead to better performance as measured by the sensitivity, specificity, PPV, and 

NPV either. The lack of improvement may be because AMH is not associated strongly enough 

with live birth to improve the AUC in an existing model that already includes many variables 

associated with live birth. It is underappreciated that associations typically considered moderate, 

such as an odds ratio of 2 or 3, do not lead to improvements in classification when added to 

existing prediction models [47,48], and each unit increase in AMH was associated with an odds 

ratio of only 1.13. 

We also examined the AUCs with various groups of women defined by age, BMI, and 

PCOS status. AUCs increased slightly with more advanced age. In women <35 years of age, 

the AUC was 0.53 and increased to 0.65 in women 38-40 years of age.  These findings are 

consistent with other studies, including one that reported an association between AMH tertile 

and live birth rate in women 34-37 years of age, but no association in those <34 and 38-41 

years of age [33]. In another study, the AUC of log-transformed AMH was 0.51 in women <35 

years of age, which was smaller than the AUC of 0.65 in women >35 years of age [22]. 

Therefore, AMH may be a more useful predictor of live birth in older women, in whom the 

probability of live birth is already diminished due to advanced ovarian aging.  

In obese women, AMH levels [35] and live birth rates [36] are reportedly lower than 

those of normal weight women; therefore, AMH may not be equally predictive of live birth across 

BMI. However, we observed that the AUC for AMH was almost identical within all groups of BMI. 

We also examined whether the predictive ability of AMH varied by PCOS status, as women with 

PCOS have reportedly higher levels of AMH [38] and lower or equivalent live birth rates 
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following IVF [40]. However, when we defined PCOS as a diagnosis of ovulation disorder/PCO, 

the AUCs were almost identical. Because this diagnosis may include many women without 

PCOS who have an unrelated ovulation disorder, we examined a more specific definition that 

included being overweight/obese, since ~50% of women with PCOS are obese [41]. With this 

definition the differences in AUCs were more apparent, with an AUC of 0.68 in women with 

PCOS compared to 0.62 in underweight or normal weight women without an ovulation 

disorder/PCO diagnosis. There were only 48 women who met this definition for PCOS, resulting 

in a wide confidence interval and an unstable estimate of the model performance. Therefore, 

these analyses should be repeated in another larger sample with an actual PCOS diagnosis 

based on Rotterdam criteria [37]. Furthermore, although live birth rates have been found to be 

similar in women undergoing IVF with and without PCOS, we observed higher rates in women 

with PCOS than without, which may have influenced these findings.  

We also examined whether the performance of AMH varied by the infertility diagnosis. 

Because measures of ovarian reserve, such as AMH, may be used to define a DOR diagnosis, 

they may have limited predictive ability within this subgroup. Indeed, mean and variability of 

AMH were smaller among women with DOR than male and tubal factor infertility. We observed 

that the AUC was similar among women with DOR and male infertility, and slightly higher for 

tubal factor. Because confidence intervals were wide, it is unclear if there are true differences in 

AMH performance by infertility diagnosis. 

In conclusion, models with AMH had similar accuracy to other single markers of ovarian 

reserve for predicting live birth following IVF, and all single predictors investigated had only 

modest prediction accuracy. Despite the lack of differences in accuracy across predictors, age 

may be the best predictor of live birth in practice as it is recorded for all patients, costs nothing 

to obtain, and does not require any invasive tests, such as vaginal ultrasound or blood draw. For 

practical reasons, AMH may be a better predictor than FSH and AFC, as the latter measures of 
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ovarian reserve (and particularly FSH) display more marked intra-cycle variability than AMH [44, 

45], thus necessitating measurement within a specific timeframe for comparability. We observed 

that AMH was a better predictor of live birth in some subgroups of women, particularly older 

women and women with PCOS. Future studies should aim to replicate these findings and to 

determine the underlying mechanisms for differences within these subgroups. Furthermore, 

because almost no studies have included AMH as an eligible predictor in multivariable 

prediction models, future investigations should incorporate this variable into model development 

steps. This work will further elucidate if AMH in combination with other known predictors 

facilitates identification of women likely to have or not have a live birth.
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TABLES 

Table 2.1. Distribution of patient and cycle charac teristics in included and 
excluded in vitro fertilization cycles, 2010-2011 
    

 
Excludeda Includedb 

 
N % N % 

Total 708 100.0 834 100.0 
Year 2010 309 43.6 460 55.2 

 
2011 399 56.4 374 44.8 

Age <25 7 1.0 2 0.2 

 
25-29 65 9.2 80 9.6 

 
30-34 205 29.0 260 31.2 

 
35-39 254 35.9 318 38.1 

 
40+ 177 25.0 174 20.9 

Prior in vitro 
fertilization cycles 

0 480 67.8 563 67.5 
1 162 22.9 195 23.4 

 2+ 64 9.0 76 9.1 
 missing 2 0.3 0 0.0 
Race Asian 104 14.7 136 16.3 

 
Black 20 2.8 14 1.7 

 
Hispanic 23 3.2 11 1.3 

 
Other 3 0.4 4 0.5 

 
White 383 54.1 471 56.5 

 
missing 175 24.7 198 23.7 

Body mass index 
(kg/m 2) 

Underweight 13 1.8 22 2.6 
Normal 377 53.2 476 57.1 

 
Overweight 164 23.2 205 24.6 

 
Obese 154 21.8 131 15.7 

Height (feet) <5 14 2.0 20 2.4 

 
5 to <5.5 400 56.5 490 58.8 

 
5.5 to <6 286 40.4 308 36.9 

 
6+ 8 1.1 16 1.9 

Weight (lbs) <100 5 0.7 9 1.1 

 
100 to <150 383 54.1 468 56.1 

 
150 to <200 223 31.5 295 35.4 

 
200 to <250 82 11.6 55 6.6 

 
250+ 14 2.0 7 0.8 

 
missing 1 0.1 0 0.0 

Gravidity 0 346 48.9 423 50.7 

 
1 170 24.0 221 26.5 

 
2 92 13.0 97 11.6 

 
3+ 100 14.1 93 11.2 
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Table 2.1, cont.       
    
  Excludeda Includedb 

  N % N % 
Diagnosis  Diminished ovarian reserve 71 10.0 104 12.5 

 
Endometriosis 45 6.4 40 4.8 

 
Tubal factor 47 6.6 67 8.0 

 
Male infertility 123 17.4 229 27.5 

 
Other 42 5.9 41 4.9 

 Ovulation disorders/polycystic 
ovaries 40 5.6 36 4.3 

 
Unexplained 72 10.2 75 9.0 

 
Uterine factor 8 1.1 11 1.3 

 
Multiple factors 169 23.9 207 24.8 

 
missing 91 12.9 24 2.9 

Stimulation 
protocol 

Antagonist 248 35.0 312 37.4 
Agonist     

 Normal responder 89 12.6 105 12.6 

 
High responder  351 49.6 416 49.9 

 
Low responder 3 0.4 1 0.1 

 
missing 17 2.4 0 0.0 

Cycle canceled No 625 88.3 775 92.9 

 
Yes 83 11.7 59 7.1 

Days of 
stimulation 

1 to 6 17 2.4 14 1.7 
7 to 13 675 95.3 796 95.4 

 
14+ 15 2.1 23 2.8 

 
missing 1 0.1 1 0.1 

Source of semen Donor 25 3.5 39 4.7 

 
Partner 683 96.5 795 95.3 

Method of semen 
collection 

Aspiration 23 3.2 24 2.9 
Biopsy 14 2.0 15 1.8 

 
Ejaculation 671 94.8 795 95.3 

Follicles >14mm 
observed on 
ultrasound prior 
to retrieval  

1 to 4 71 10.0 80 9.6 
5 to 9 220 31.1 306 36.7 
10 to 14 147 20.8 249 29.9 
15+ 100 14.1 140 16.8 

 
missing 170 24.0 59 7.1 
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Table 2.1, cont.  
      
  Excludeda Includedb 
  N % N % 
Follicles aspirated 0 12 1.7 4 0.5 

 
1 to 4 39 5.5 57 6.8 

 
5 to 9 155 21.9 187 22.4 

 
10 to 14 145 20.5 202 24.2 

 
15+ 282 39.8 329 39.4 

 
missing 75 10.6 55 6.6 

Oocytes fertilized  0 102 14.4 75 9.0 

 
1 to 4 189 26.7 219 26.3 

 
5 to 9 214 30.2 322 38.6 

 
10 to 14 107 15.1 143 17.1 

 
15+ 96 13.6 75 9.0 

Embryos 
transferred 

0 132 18.6 93 11.2 
1 152 21.5 227 27.2 

 
2 271 38.3 385 46.2 

 
3+ 144 20.3 128 15.3 

 
missing 9 1.3 1 0.1 

Day of embryo 
transfer 

<4 284 40.1 299 35.9 
4+ 283 40.0 441 52.9 

 
No transfer 141 19.9 94 11.3 

Outcome Biochemical pregnancy 250 35.3 332 39.8 

 

Clinical intrauterine pregnancy + 
live birth 

224 31.6 330 39.6 

 

Clinical intrauterine pregnancy + 
spontaneous abortion/stillbirth/ 
therapeutic abortion 

49 6.9 55 6.6 

 Ectopic 3 0.4 4 0.5 
 Not pregnant 172 24.3 113 13.5 
 missing 10 1.4 0 0.0 
Number live born 0 474 66.9 504 60.4 

 
1 177 25.0 256 30.7 

 
2 46 6.5 73 8.8 

 
3+ 1 0.1 1 0.1 

 
missing 10 1.4 0 0.0 

aCycles with one or more predictors missing or measured more >1 year prior to the cycle start or 
after the cycle start, or with missing cycle outcome data 
bCycles with all predictors available and measured within one year prior to the cycle start and 
complete cycle outcome data 
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Table 2.2. Distribution of predictors of  live birth  and timing of their measurement  in included 
and excluded in vitro fertilization cycles, 2010-20 11 

      
     Percentile  
Predictor  n mean sd min  25% 50% 75% max 
Included cycles         

Anti-Müllerian hormone (ng/mL) 814a 2.53 2.68 0.10 0.86 1.80 3.20 33.00 
Days from cycle start to 
measurement 834 -117.90 89.14 -364 -175 -90 -44 0 

Antral follicle count 834 16.20 10 0 9 14 21 70 
Days from cycle start to 
measurement 834 -7.95 24.08 -360 -5 -4 -2 0 

Follicle stimulating hormone  
(mIU/mL) 832b 7.79 3.54 0.91 5.78 7.19 8.82 36.00 

Days from cycle start to 
measurement 834 -100.11 82.00 -360 -139 -70 -36 0 

Age (years) 834 35.52 4.41 23 32 36 39 45 

Excluded cycles         

Anti-Müllerian hormone (ng/mL) 300 2.85 3.60 0.20 1.00 1.70 3.40 30.00 
Antral follicle count 708 10.36 11.17 0 0 9 16 58 
Follicle stimulating hormone  
(mIU/mL) 300 7.75 3.73 0.24 5.87 6.90 8.73 35.30 

Age (years) 708 35.73 4.58 21 32 36 40 47 
sd-standard deviation         
a20 cycles have anti-Müllerian hormone measurements below the limit of detection  
b2 cycles have follicle stimulating hormone measurements below the limit of detection  
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Table 2.3. Association between predictors and live birth in  in vitro fertilization cycles, 2010 -
2011 
 
    

95% CI 
Predictor Odds Ratio LB UB p-value 
Anti-Müllerian hormone (ng/mL) 1.13 1.06 1.19 <0.001 
Antral follicle count 1.04 1.03 1.06 <0.001 
Follicle stimulating hormone (mIU/mL) 0.94 0.90 0.99 0.01 
Age (years) 0.87 0.84 0.90 <0.001 
CI-confidence interval, LB-lower bound, UB-upper bound 
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Table 2.4. Area under the receiver operating characteristic  curve for predictors of live birth in in vitro fer tilization cycles, 
2010-2011 
     

    
Sensitivity analyses 

    
Availability of each 
individual predictor 

Measurement within 90 
days of cycle start 

Measurement within 2 
years of cycle start 

  95% CI   95% CI   95% CI   95% CI 
Predictor AUC LB UB n AUC LB UB n AUC LB UB n AUC L B UB 
Anti-Müllerian  
hormone (ng/mL) 0.63 0.59 0.67 1049 0.63 0.59 0.67 377 0.63 0.59 0.67 896 0.63 0.59 0.67 
Antral follicle count 0.64 0.60 0.67 1218 0.64 0.60 0.67 377 0.64 0.60 0.67 896 0.64 0.60 0.67 

Follicle stimulating  
hormone (mIU/mL) 0.55 0.51 0.59 996 0.55 0.51 0.59 377 0.55 0.51 0.59 896 0.55 0.51 0.59 
Age (years) 0.67 0.64 0.71 834 0.67 0.64 0.71 377 0.67 0.64 0.71 896 0.67 0.64 0.71 
Difference in AUC 
compared to anti-
Müllerian hormone 

               

Antral follicle count -0.004 -0.04 0.03             

Follicle stimulating  
hormone (mIU/mL) 0.08 0.04 0.13  

           

Age (years) -0.04 -0.08 0.001             

CI-confidence interval, AUC-area under the receiver operating characteristic curve, LB-lower bound, UB-upper bound  
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Table 2.5. Performance of predictors of live birth in in vitro fertilization cycles, 2010-2011 
   

Predictor 

Sensitivity  
Performance 
measure  

Anti-Müllerian 
hormone (ng/mL) 

Antral follicle 
count 

Follicle stimulating 
hormone (mIU/mL) 

Age 
(years) 

0.80 Specificity 0.37 0.39 0.25 0.49 
Positive PV 0.46 0.47 0.41 0.50 
Negative PV 0.75 0.76 0.66 0.77 

0.85 Specificity 0.30 0.32 0.21 0.37 
Positive PV 0.45 0.45 0.41 0.46 
Negative PV 0.76 0.77 0.68 0.78 

0.90 Specificity 0.22 0.27 0.17 0.28 
Positive PV 0.43 0.44 0.41 0.46 
Negative PV 0.78 0.80 0.72 0.78 

0.95 Specificity 0.17 0.13 0.08 0.20 
Positive PV 0.43 0.43 0.40 0.45 
Negative PV 0.83 0.80 0.71 0.81 

0.99 Specificity 0.05 0.04 0.02 0.06 
Positive PV 0.41 0.41 0.40 0.41 

  Negative PV 0.87 0.84 0.80 0.88 
CI-confidence interval, PV-predictive value 
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 Table 2.6. Area under the receiver operating characteristic curve for ant i-
Müllerian hormone in predicting live birth in in vitro fertilization by age, 
body mass index, polycystic ovary syndrome, and inf ertility diagnosis 
2010-2011 
     
    95% CI 
 N Live birth 

rate (%) 
AUC LB UB 

Age      
<35 342 54.1 0.53 0.47 0.59 
35-37 170 42.4 0.57 0.48 0.66 
38-40 201 26.9 0.65 0.56 0.74 
41-42 87 17.2 0.61 0.45 0.76 
>43 34 11.8 0.64 0.32 0.96 

Body mass index       
Underweight/normal 498 38.0 0.62 0.57 0.68 
Overweight 205 47.3 0.62 0.54 0.70 
Obese 131 33.6 0.63 0.52 0.74 

Diagnosis of o vulation 
disorder/polycystic ovaries  

     

No 723 38.9 0.62 0.57 0.67 
Yes 87 46.0 0.63 0.50 0.76 

Diagnosis of o vulation 
disorder/polycystic ovaries 
and overweight/obese  

     

No 446 37.2 0.62 0.57 0.68 
Yes 48 45.8 0.68 0.52 0.85 

Infertility diagnosis       
Diminished ovarian reserve 127 20.5 0.56 0.42 0.71 
Tubal factor 93 49.5 0.65 0.53 0.78 
Male factor 284 46.8 0.53 0.46 0.60 

CI-confidence interval, AUC-area under the receiver operating characteristic curve, LB-
lower bound, UB-upper bound 
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Table 2.7. Performance of multivariable models predicting l ive birth in first in 
vitro fertilization cycles with and without anti-Mülleri an hormone, 2010-2011 
 
 No AMH AMH Difference 
 AUC 0.70 0.69 -0.003 
 95% CI 0.60, 079 0.60, 0.79 -0.03, 0.02 
Cutoff of predicted 
probability defining 
live birth likely 
versus unlikely 

0.05 Sensitivity 0.97 0.97 
Specificity 0.02 0.01 
Positive PV 0.37 0.36 
Negative PV 0.63 0.39 

0.10 Sensitivity 0.96 0.96 
 Specificity 0.06 0.07 
 Positive PV 0.37 0.38 
 Negative PV 0.72 0.76 
 0.15 Sensitivity 0.94 0.94 
 Specificity 0.12 0.15 
 Positive PV 0.38 0.39 
 Negative PV 0.76 0.82 
 0.20 Sensitivity 0.92 0.93 
 Specificity 0.22 0.21 
 Positive PV 0.41 0.41 
 Negative PV 0.82 0.83 
 0.25 Sensitivity 0.88 0.88 
 Specificity 0.31 0.30 

 Positive PV 0.43 0.42 
   Negative PV 0.82 0.81   
AMH-anti-Müllerian hormone, AUC-area under the receiver operating characteristic curve, CI-
confidence interval, PV-predictive value 
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FIGURES 

 
Figure 2.1. Receiver operating characteristic curve s for predictors of live birth in in vitro 
fertilization cycles, 2010-2011.  The curves display the sensitivity and 1-specificity across all 
thresholds for defining live birth likely and unlikely, with more accurate models closer to the 
upper left-hand corner. Follicle stimulating hormone had the poorest performance with a curve 
below that of the other predictors. Antral follicle count, age, and anti-Müllerian hormone have 
similar performance with overlapping curves.   
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Figure 2.2. Receiver operating characteristic curve s for multivariable models predicting 
live birth in in vitro fertilization cycles with and without anti-Mülleri an hormone, 2010-
2011. Multivariable models were developed in previous work and included age, age2, age3, 
number of prior intrauterine insemination cycles, height, weight, stimulation protocol to be used, 
race/ethnicity, infertility diagnosis, and pregnancy history, with and without anti-Müllerian 
hormone. The curves display the sensitivity and 1-specificity across all thresholds for defining 
live birth likely and unlikely, with more accurate models closer to the upper left-hand corner. 
There was no difference in the models with and without anti-Müllerian hormone, indicating no 
improvement in model performance with the addition of anti-Müllerian hormone.  

 

 


