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ABSTRACT

We perform no-core full configuration calculations for the Lithium isotopes, 6Li, 7Li, and 8Li

with the realistic nucleon-nucleon interaction JISP16. We obtain a set of observables, such as

spectra, radii, multipole moments, transition probabilities, etc., and compare with experiment

where available. We obtain underbinding by 0.5 MeV, 0.7 MeV, and 1.0 MeV for 6Li, 7Li, 8Li

respectively. Magnetic moments are well-converged and agree with experiment to within 20%.

We then introduce the One-Body Density Matrix. We present a method to remove the

spurious center-of-mass component from the space-fixed density distribution. We present space-

fixed and translationally-invariant density distributions for various states of 6Li, 7Li, and 8Li.

We also examine select translationally-invariant density distributions from the ground state

and several excited states of 9Be. The resulting translationally-invariant densities can be used

to examine convergence issues and better represent features of the nuclear shape. Convergence

properties of these density distributions shed light on the convergence properties of experimental

one-body observables.

We then present a method to calculate the space-fixed and translationally-invariant Wigner

Function using our One-Body Density Matrices. We present a novel visualization of these

Wigner Functions.
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CHAPTER 1. Introduction

The rapid development of ab initio quantum many-body methods for solving finite nuclei

has opened a range of nuclear phenomena for evaluation to high precision using realistic inter-

nucleon interactions. The many-body approach adopted in this work is referred to as the no-core

full configuration (NCFC) method (1; 2; 3). The NCFC method produces the stationary state

solutions of the nuclear Hamiltonian eigenvalue problem. The eigenvalues represent the many-

body spectra and the eigenfunctions represent the wavefunctions. From the wavefunctions

we evaluate additional experimental observables. When sufficient computational resources are

available, we quantify uncertainties in the theoretical results.

We investigate light nuclei where spurious center of mass (cm) motion effects must be

removed to ensure precise results. For this reason, the traditional harmonic oscillator (HO)

basis is adopted. This enables us to isolate and remove spurious cm motion effects from all

observables and from the one-body density matrices that encode reduced information derived

from the many-body wavefunctions. A further advantage in using the HO basis is its ease in

performing analytical evaluations and straightforward matrix element calculations (6).

We evaluate the nuclear Hamiltonian matrix and solve for its low-lying eigenvalues and

eigenvectors using a set of finite set of single-particle HO states. The HO states are characterized

by two basis space parameters, the HO energy h̄Ω and the many-body basis space cutoff Nmax.

Nmax is defined as the maximum number of total oscillator quanta allowed in the many-body

basis space above the minimum for that nucleus. Independence of both parameters h̄Ω and

Nmax signals numerical convergence; for bound states, exact results are attained in the limit of

a complete (infinite dimensional) basis. For the spectra we use an extrapolation to the complete

basis space and we quantify the uncertainties due to the extrapolation.

In this work, we evaluate nucleon densities and observables such as spectra, radii, and
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multipole moments. We work in a HO basis where the many-body wavefunctions are super-

positions of Slater determinants. A Slater determinant of HO single-particle wavefunctions

possesses 3A coordinates and is, therefore, overcomplete with respect to the internal (3A-3)

coordinates. That is the superposition of Slater determinants produces wavefunctions that

specify the motion of the cm of the system even though our nuclear Hamiltonian is free of cm

components. Therefore, we adopt and develop techniques to control and remove the cm motion

effects. In this work, we introduce a technique for unfolding the cm motion from the one-body

density. This allows us to obtain the translationally-invariant densities, without any smearing

effects from the cm motion. Indeed, as we will show, salient details of the density are often

enhanced in the translationally-invariant density, compared to the single-particle densities that

are commonly used in configuration interaction calculations.

We further investigate the properties of single-particle motion in the nucleus by considering

its Wigner Function(7). This allows one to take an object used primarily to calculate static

observables and consider dynamic processes.

1.1 Basic Terminology and Second-Quantized Notation

For the purposes of this work, several inner products and operators will now be defined

using the traditional Dirac bra-ket notation and creation/destruction operators.

H0 | α〉 = εα | α〉 (1.1)

〈~r | α〉 = φα(~r) (1.2)

〈~q | α〉 =

∫
d3r〈~q|~r〉〈~r|α〉

= φ̃α(~q) (1.3)

where H0 is defined below, r represents a nucleon coordinate, q represents its momentum, and

φ̃i is the Fourier transform of φi. Greek indeces such as α, β,etc. represent sets of single-particle

quantum numbers and they are defined according to the chosen set of commuting observables

appropriate for the system. For example, one may define a Greek index to represent, {n, l,m}

for a spinless particle in a spherical potential;{n, l, s, j,mj} for a particle with spin s in a spher-

ical potential, etc. H0 represents a generic single-particle Hamiltonian which gives an energy
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eigenvalue εα when acting upon the state |α〉. The φ(~r)’s are HO wavefunctions in coordinate

space and the φ̃(~q) are HO wavefunctions in momentum space. The HO wavefunctions are

further discussed in Section 1.4.

Second quantization provides a convenient formalism to express operators, basis states, and

observables in the many-body framework. As this work is concerned solely with fermionic

systems, we use the following conventions:

a†α | 0〉 = | α〉 (1.4)

a†α | α〉 = 0 (1.5)

aα | 0〉 = 0 (1.6)

aα | α〉 = | 0〉 (1.7){
aα, a

†
β

}
= δαβ (1.8)

{aα, aβ} = 0 (1.9){
a†α, a

†
β

}
= 0 (1.10)

Through Eq. 4, we see that when we act on the vacuum, represented by |0〉, with the creation

operator, a†α, we obtain the state defined by |α〉. Eq. 5 is a second-quantized form of the

Pauli exclusion principle. Applying a raising operator to the same state does not create a

second particle in the identical state. Eq. 6 shows that when an annihilation operator acts

on the vacuum, a vanishing result is obtained, while in Eq. 7, an annihilation operator acts

on its corresponding state, leaving only the vacuum. The remaining Eqs. 8-10 present the

conventional anticommutation relations for fermions.

Second quantization allows one to write down the Hamiltonian and represent the basis

states:

H0 =
∑
α,β

〈α | H0 | β〉a†αaβ (1.11)

HI =
1

4

∑
α,β,γ,δ

〈αβ | H(2)
I | γδ〉a†αa

†
βaδaγ

+
1

36

∑
α,β,γ,δ,ε,ζ

〈αβγ | H(3)
I | δεζ〉a†αa

†
βa
†
γaζaεaδ



4

+
1

576

∑
α,β,γ,δ,ε,ζ,η,θ

〈αβγδ | H(4)
I | εζηθ〉a†αa

†
βa
†
γa
†
δaθaηaζaε (1.12)

| Φi〉 = {a†αa
†
βa
†
γ ...a

†
ω}i | 0〉 =| α, β, γ, ..., ω〉 (1.13)

The first term in the expression given for HI is the two-body interaction; the second term is

the three-body interaction, and the third term is the four-body interaction. H
(K)
I represents a

K-body Hamiltonian. The fractional coefficients in front of the multi-body terms ensure that

there is no over-counting, and can be easily calculated as 1
(NK !)2

, where NK represents the

number of independent “bodies” the Hamiltonian term incorporates.

Now, where repeated indices imply summation, the two-body Hamiltonian becomes:

H =
1

4

∑
α,β,γ,δ

〈αβ | HI | γδ〉a†αa
†
βaγaδ

=
∑

α<β,γ<δ

〈αβ | HI | γδ〉a†αa
†
βaγaδ

=
1

4
Hαβγδα

†β†γδ (1.14)

where we have omitted the superscript for compactness of notation as we address only NN

interactions henceforth, and,

Hαβγδ ≡ 〈αβ | HI | γδ〉 (1.15)

Note that in the m-scheme, the NN interaction conserves angular momentum projection so that

mα +mβ = mγ +mδ.

1.2 Many-Body Methods

1.2.1 A Historical Overview of the Nuclear Shell Model

In 1932, Heisenberg ushered in the era of microscopic nuclear structure physics (8) by

introducing the concept that protons and neutrons comprise the nucleus. Soon after, Bartlett

(9) presented an analogy comparing the nucleus to an electronic system: ”If an analogy with

the external electronic system subsists, then the α−particle may represent a closed s-shell, with

two neutrons and two protons, while 16O is obtained by adding on a closed p-shell with six

neutrons and six protons.” Bartlett continued to heavier systems, eventually making the claim

that all nuclei with A≤144 exhibit clear shell structure (10).
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The nuclear shell model was then further explored by Elasser (11; 12; 13; 14). Elasser

hypothesized that since, in contrast with the electronic shell model, there is no large central

force to be considered, so the level structure may be different and should be explored with

experiment. Elasser’s analysis of α−decays (13) showed that the proton and neutron shell

closure numbers are independent of each other.

The shell model began to gain more widespread consideration in 1936 upon the publication

of a famous review article by Bethe and Bacher (15). Bethe and Bacher made the claim that

when a nucleus has a configuration resulting in all full shells, that nucleus would be particularly

stable. They also made the claim that when a new shell is occupied, the binding energy of

the particle in the new shell would be less than those particles that contributed to a closed

shell. Bethe and Bacher also urged caution when comparing nuclear shell structure to electronic

shell structure. They argued that the leading order approximation of single-nucleon energies

alone would not be sufficient to predict shell structure. This approximation must be used

in combination with inter-nucleon interactions and configuration mixing. They summarize:

”Therefore, apparent deviations from the simple shell structure expected should of course be

attributed to the crude approximation used. Under no circumstances do such deviations justify

far-reaching ad hoc assumptions.” However, they did go on to claim that the shell model theory

will fail for heavier nuclei, though the claim was not fully justified.

There were no more significant shell model developments until 1948(16; 17; 18; 19). A wealth

of experimental data had been acquired in the previous decade, and led Maria Goeppert Mayer

(who won the Nobel Prize with Eugene Wigner and J. Hans Jensen in 1963) to make the claim

that there is strong experimental evidence for the ”magic numbers,” 20, 50, 82, and 126. Her

hypothesis was based on binding energies, isotopic abundance, and experimentally observed

magnetic dipole moments. She showed that the nucleon separation energy was approximately

30% lower just beyond the magic numbers.

Drawing inspiration from Mayer, Feenberg and Hammack (20; 21) presented single-particle

level schemes that worked with Mayer’s magic numbers. Feenberg and Hammack claimed that

the 2s orbit closed the shell at magic number 20, full 1f and 1g shells will be closed at magic

number 50, and the 1h and 2d orbits are fully occupied at magic number 82. Nordheim (22)
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agreed with the magic numbers, but not the level scheme presented by Feenberg and Hammack

that reproduced them. Nordheim proposed that the 2s and 1d orbits closed to give the magic

number 20, the 1f, 2p, and 2d orbitals are fully occupied for the magic number 50, and the 1g

and 2f orbits are fully occupied for the magic number 82. There was not enough experimental

evidence to determine which of the many shell closure possibilities led to the magic number,

126.

Progress in nuclear shell theory at this time was being held up by conflicts between mag-

netic dipole moment calculations based on model assumptions and experiment. Schmidt (23)

proposed that the magnetic moments could be plotted as functions of spin. These plots would

be known as ”Schmidt lines.” Schmidt found two parallel lines corresponding to the magnetic

moments of even or odd nuclei. Because these lines did not closely intersect with experimental

data, Schmidt claimed that the simple picture of the shell model must be augmented with

corrections to explain the experimental deviation from calculation.

The behavior that Schmidt displayed was viewed as consistent with LS coupling, where L is

the total orbital angular momentum for a nucleus and S is its total spin. The magnetic moments

that lay close to a Schmidt line were considered evidence for a single value of L that couples

to the spin. The problem with this is it became extremely difficult to construct closed shells

at the higher magic numbers that were consistent with the experimental magnetic moments.

Mayer solved this problem in 1950 (19) by introducing a strong spin-orbit interaction in

which state spins of odd-even nuclei were assumed to be given by the spin of the partially

unoccupied orbital so that J = j, the total nuclear angular momentum equal to the total angular

momentum of the single-particle filling the unoccupied shell. (19) explains all of the previously

hypothesized magic numbers with a jj-coupling scheme in the shell model. This model was also

discovered independently by Haxel, Jensen, and Seuss(24; 25). Though this phenomenological

shell model is still not perfect, Mayer, Jensen, Haxel, and Seuss laid a foundation that is still

used today and can even be found in the work presented in this thesis. Further, a main goal

of this thesis is to derive nuclear structure features from first principles that are traditionally

explained by the phenomenological shell model.

Until 1975, research into the phenomenological shell model was primarily focused on de-
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termining effective NN interactions from experimental data and theoretical models of free NN

interactions (26; 27; 28). Around 1975, a number of difficulties were encountered, including

spurious CM contributions, the neglect of higher-body interactions (NNN and above), and poor

convergence due to the tensor component of the NN force (Vary-Sauer-Wong effect). Progress

was slow until the early 1990’s, when significant computational resources became more avail-

able to the research community. This made new approaches, such as the No-Core Shell Model

(NCSM), possible.

1.2.2 No-Core Shell Model

Traditionally, to calculate effective shell-model operators, a model space with a full closed

shell core would be defined and additional nucleons would be restricted to the valence space, a

set of single-particle states above the filled core states. For light nuclei, however, it is possible

to consider a model space that allows all nucleons to contribute. This would be considered a

No-Core Shell Model (NCSM). (29; 30)

In the NCSM, we begin with the translationally-invariant Hamiltonian for the A-nucleon

system:

HA = Trel + V =
1

A

∑
i<j

(~pi − ~pj)2

2m

+
∑
i<j

Vij , (1.16)

where m is the nucleon mass (in this case, taken to be 938.92 MeV, the average of the proton and

neutron masses), and Vij is the combination of the NN interaction and the Coulomb interaction.

We specifically discuss NN interactions in what follows but the techniques are easily generalized

to input multi-body interactions. Next, we add the HO cm Hamiltonian to Eq. 1.16 where:

Hcm = Tcm + Ucm (1.17)

Ucm =
1

2
AmΩ~R2 (1.18)

~R =
1

A

A∑
i=1

~ri. (1.19)

The HO Hcm will be subtracted later so that it does not influence the translationally invariant

properties of the many-body system. The addition of the HO cm term is convenient, and allows
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us to write the modified Hamiltonian:

HΩ
A =

A∑
i=1

Ti +
∑
i<j

Vij +
A∑
i=1

1

2
AmΩ2~r2

i (1.20)

=
A∑
i=1

hi +
A∑
i<j

[
Vij −

mΩ2

2A
(~ri − ~rj)2

]
(1.21)

where we have,

hi = − h̄2

2m
∇2
i +

1

2
mΩ~r2

i . (1.22)

We then follow Da Providencia and Shakin (31) and Lee, Suzuki, and Okamoto (32) and

perform a unitary transformation of the Hamiltonian, which accommodates short-range two-

body correlations:

H = e−SHΩ
Ae

S . (1.23)

We choose S such that H and HΩ
A have the same symmetries and eigenspectra in the subspace

K of the full Hilbert space. The subspace is defined by the chosen cutoff Nmax introduced

above.

We now develop an a-body (a ≤ A) effective Hamiltonian:

H = H(1) +H(A) (1.24)

where,

H(1) =
A∑
i=1

hi (1.25)

H(A) =

(A
2

)(A
a

)(a
2

) A∑
i1<i2<...<ia

Ṽi1i2...ia , (1.26)

with,

Ṽi1i2...ia = e−S
(a)
HΩ
a e

S(a) −
a∑
i=1

hi (1.27)

where S(a) is an a-body operator;

HΩ
a =

a∑
i=1

hi +
a∑
i<j

Vij (1.28)
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Thus, the effective Hamiltonian, HNmax,Ω, on the subspace K of the full Hilbert space can

be expressed as a sum of progressively higher many-body interactions (30):

H(A)
Nmax,Ω

= H(1) + V(2)
Nmax,Ω

+ V(3)
Nmax,Ω

+ ...+ V(A)
Nmax,Ω

(1.29)

where V(a)
Nmax,Ω

is an a-body interaction operator. Recall from Eq. 1.7 that when an N-body

operator acts on an system of a nucleons, the result is zero when a < N . Therefore, we define

the Hamiltonian shown in Eq. 1.29 as the effective Hamiltonian on the Hilbert space given by

our Nmax truncation. Thus, the sequence of interactions, V(2)
Nmax,Ω

,V(3)
Nmax,Ω

, ...,V(A)
Nmax,Ω

provide

the building blocks to construct the complete A-body Hamiltonian.

In the NCSM, we observe that as Nmax → ∞, Eq. 1.29 will need only the original inter-

actions as the full Hilbert space is recovered. Because it is not practical to take Nmax → ∞,

we must select a calculable subspace in Eq. 1.29. We seek to achieve a large enough value for

Nmax and the number of bodies, a, so that we can truncate Eq. 1.29 after few (2 or 3) body

terms.

We can divide the full space into a model space defined by the value of Nmax and the Q

space representing what is omitted from the P space. We use the operators P and Q with

P +Q = 1. Now it is possible to specify the transformation operator, Sa using the decoupling

condition:

Qae
−S(a)

HΩ
a e

S(a)
Pa = 0 (1.30)

where,

PaS
(a)Pa = QaS

(a)Qa = 0 (1.31)

This method is known as the unitary-model-operator approach (96). It a solution of the form:

S(a) = arctanh(ω − ω†) (1.32)

where the operator, ω, satisfies the condition:

ω = QaωPa. (1.33)

After this point, the sequence of calculational ingredients is the same as in the NCFC approach,

and is described below.
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1.2.3 No-Core Full Configuration

The NCFC approach is similar to the NCSM (29). The main differences are that in the

NCFC approach we do not use the Lee–Suzuki renormalization procedure (33) which is com-

monly employed in the NCSM; and more importantly, we retain the variational principle and

estimate the numerical accuracy of our results based on the rate of convergence and dependence

on the basis space parameters (2; 3).

We begin with the translationally-invariant Hamiltonian for the A-body system in relative

coordinates, shown in Eq. 15. All many-body basis states are included with HO quanta up to

and including the amount governed by the Nmax truncation. Thus, if the highest HO single-

particle state for the minimal HO configuration has N0 HO quanta, then the highest allowed

single-particle state in the truncated basis will have N0 +Nmax HO quanta. Furthermore, our

calculations are ’No-Core’ configuration interaction calculations. This means that all nucleons

participate in the interactions on an equal footing.

As we increase Nmax, and approach convergence, we expect physical observables to become

independent of both the HO parameter h̄Ω and the truncation parameter Nmax. However, due

to current limits to our finite basis, our calculations do show some parameter dependence, even

in the largest basis spaces. As we discuss shortly, we apply previously established extrapolation

tools to take the continuum limit of the binding energy.

The HO basis for single-particle states, in combination with this many-particle Nmax trun-

cation, leads to exact factorization of the nuclear wavefunctions into a cm wavefunction and a

translationally-invariant (ti) wavefunction:

Ψ(~ri) = ΦΩ
cm(~R)⊗ φti (1.34)

where ~R = ( 1
A)
∑A
i=1 ~ri and φti depends only on intra-nucleon coordinates. In order to separate

the cm excited states from the low-lying states of interest, we adopt the Lawson method (34)

whereby we add a Lagrange multiplier term, λ(HΩ
cm − 3

2 h̄Ω), to the many-body Hamiltonian,

Eq. 1.16,

H = HA + λ(Hcm −
3

2
h̄Ω) . (1.35)
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The ”3/2 hw” factor represents the zero point energy of the cm motion. With λ positive,

states with cm excitations are separated by multiples of λh̄Ω from the states with the lowest

HO cm motion. Since the Lagrange multiplier term acts only on the cm coordinate, it is

independent of the intra-nucleon coordinates and it does not affect the energy eigenvalues or

the translationally-invariant wavefunctions φti of the low-lying states. Indeed, observables for

the low-lying states are independent of λ, as long as λh̄Ω is much larger than the excitation

energy of the highest state of interest.

In the truncated basis space, we can now write the many-body Schrödinger equation as a

finite matrix equation with a real, symmetric, sparse matrix. The eigenvalues of this matrix

give us the binding energy, and the corresponding eigenvectors give us the wavefunctions. In

any finite basis space, the eigen-energies satisfy the variational principle and show uniform

and monotonic convergence from above with increasing Nmax, allowing for extrapolation to the

infinite basis space. To obtain the extrapolated gs energy Egs(∞), we use a fitting function of

the form:

Egs(Nmax) = a exp(−cNmax) + Egs(∞) . (1.36)

This is an empirical method (1; 2; 3) that is valid within estimated uncertainties that we

now define. We assign equal weight to each of three successive values of Nmax at a fixed

h̄Ω and perform a regression analysis. The difference between extrapolated results from two

consecutive sets of three Nmax values is used as the estimate of numerical uncertainty associated

with the extrapolation. The optimal h̄Ω value for this extrapolation appears to be the h̄Ω that

minimizes the difference between the extrapolated energy and the result at the largest Nmax.

Typically, this corresponds to a h̄Ω value slightly above the variational minimum. Of course, the

extrapolated results should be independent of h̄Ω, within their numerical error estimates, and

we do check for such consistency. Furthermore, we often adjust our numerical error estimate

by considering the results over a range of 5 MeV in h̄Ω.

For other observables, we do not have a robust and reliable extrapolation method; we

therefore use the degree of (in)dependence from the basis space parameters h̄Ω and Nmax as a

measure for convergence as we describe further below on a case-by-case basis.
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1.3 Wavefunctions

In the many-body framework that we are using, we expand the nuclear wavefunction Ψ

in a basis of Slater determinants of single-particle HO states. Note that we use single-particle

coordinates, rather than relative coordinates, in the nuclear wavefunction. That means that our

wavefunctions, and therefore, our one-body density matrices calculated as expectation values

of one-body operators, will include cm motion.

The normalized wavefunction is given by the slater determinant:

Ψ =
1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φa1(x1) φa1(x2) ... φa1(xn)

φa2(x1) φa2(x2) ... φa2(xn)

...
...

...

φan(x1) φan(x2) ... φan(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.37)

(50) The φ’s are single-particle Three Dimensional Harmonic Oscillator Wavefunctions (TD-

HOWF). The TDHOWF potential is given by:

U(r) =
1

2
mΩ2r2 (1.38)

where m represents the mass of the nucleon, which we take to be average of the neutron and

proton mass (938.92 MeV). Insertion of this potential into the Schrödinger equation with the

simplification ν ≡ mΩ
2h̄ , we obtain the wavefunction:

ψnlmms = Nnlr
le−νr

2
L
l+ 1

2
n (2νr2)Y m

l (θ, φ)χsαms (1.39)

where L
l+ 1

2
n (2νr2) represents an associated Laguerre Polynomial and is defined using the Ro-

drigues formula:

Lqµ(z) =
ezz−q

µ!

dµ

dzµ
(zµ+qe−z), (1.40)

Y m
l (θ, φ) is a spherical harmonic, and χsαms is a Pauli spinor. The normalization factor, Nnl,

is given by:

Nnl =

√
2(2ν)l+3/2Γ(n+ 1)

Γ(n+ l + 3/2)
(1.41)

(30)(51)
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When using an LS coupling configuration, a group of single-particle states is specified by

the orbits of each particle, denoted by n, the radial quantum number, and l, the orbital angular

momentum. For the case of coupled orbital and spin motion (coupled j representation), n

and l are used in combination with j, the total angular momentum of the single-particle. In

order to completely describe the many-body state, additional quantum numbers, such as mj

for the coupled-j representation or ml,ms for LS coupling, are necessary, depending on whether

LS-coupling or j-coupling is utilized (50). We call this the m-scheme because particle states

have specific m-values. It is important to note that for NN interactions, angular momentum

projection is conserved. The m-scheme and its associated symmetries are employed in this

work along with the coupled-j representation.

1.4 The JISP16 Interaction

1.4.1 A General History of NN Interactions

NN interactions, in general, are derived using the wealth of NN data that has been experi-

mentally observed, such as deuteron properties and scattering phase shifts. These interactions

could, in principle, be calculated from first principles using quantum chromodynamics, though

practically, this is currently not feasible. That is, successes with such derived interactions have

been quite limited (35)(36), in contrast with the potentials fit to the NN data.

The first NN interaction was presented in 1935 by Yukawa (37). Yukawa drew inspira-

tion from Bohr, Heisenberg, and Jordan (38), who, when they quantized the electromagnetic

field in 1925, showed that electromagnetic interactions were mediated by virtual particles (vir-

tual photons). Yukawa claimed that the inter-nucleon interactions were mediated by a (then

theoretical) particle he called the meson. Yukawa’s potential has the form:

V (r) = −g2 e
−µr

r
(1.42)

where g is an adjustable coupling constant and µ = mc/h̄.

The Yukawa potential successfully reproduced much experimental low-energy NN scattering

data. Yukawa then augmented his potential with spin-dependence and a tensor force arising

from the one-pion exchange potential (OPEP)(30).
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Many scientists built on Yukawa’s work. Many attempts were made at adding a repulsive

”hard core” to Yukawa’s potential (39), though the most popular modification came from Reid

with his soft-core potential(40). Modern potentials generally fit NN data to a high degree of

accuracy, such as the NN interaction adopted here and described below. In contrast to the work

of Yukawa and others that adopt a local NN interaction form, the one we employ is non-local

and therefore challenging to present in graphical form.

1.4.2 JISP16

The selection of an appropriate potential is one of the major factors that determines how

well one’s calculation compares to experiment. We adopted the NN interaction JISP16 (J-

matrix Inverse Scattering Potential optimized for nuclei up to 16O). JISP16 is a realistic NN

interaction initially developed from NN data using inverse scattering techniques. It is then

adjusted with phase-shift equivalent unitary transformations to describe light nuclei without

explicit three-body interactions (52; 53; 54). JISP16 provides good convergence rates for the

ground state (gs) energies of nuclei with A ≤ 16.

JISP16 is constructed in a HO basis using the J-matrix formalism of inverse scattering the-

ory. The NN potential matrix is obtained for individual partial waves independently. JISP16

can be thought of as an effective interaction since it has been phenomenologically tuned to

successfully reproduce energies and various observables for relatively light nuclei (A ≤ 16). As

such, it can be treated as a realistic NN interaction which simulates (through the phenomeno-

logical tuning) NNN interaction contributions. One of the goals of this work is to derive an

extensive set of results for the Li isotopes that greatly expand the available results for JISP16

to compare with experiment.

Though it is known that certain effects, e.g., meson exchange currents, can contribute

significantly to certain observables (i.e., magnetic moments and transitions), we do not take

these effects explicitly into account. We may therefore expect some deviation from experiment.

This is discussed in greater detail below (see discussion on calculated magnetic observables).

In order to eliminate ambiguities arising from the phase-equivalent transformation, we in-

voke a phenomenological ansatz that the NN potential matrix for uncoupled partial waves is
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a tridiagonal matrix, which would make the JISP16 potential an inverse scattering tridiago-

nal potential (ISTP). This provides computational simplicity and storage benefits in that the

ISTP matrix has the minimum number of non-vanishing off-diagonal NN matrix elements for

any basis space.

In order to fully understand the J-matrix inverse scattering approach, we summarize several

defining relations here(54). The Schrdinger equation for a partial wave with fixed orbital

angular momentum, l, is:

H lψlm(E,~r) = Eψlm(E,~r) (1.43)

where ψlm(E,~r) = ul(E,r)
r Y m

l (r̂). The radial component of the wavefunction is expanded in

terms of radial HOWF’s, defined above:

ul(E, r) =
∞∑
n=0

anl(E)Rnl(r) (1.44)

This wavefunction is a solution to the infinite set of equations:

∞∑
n′=0

(H l
nn′ − δnn′E)an′l(E) = 0 (1.45)

where the Hamiltonian is defined such that:

H l
nn′ = T lnn′ + V l

nn′ (1.46)

T ln,n−1 = −1

2

√
n(n+ l + 1/2) (1.47)

T ln,n =
1

2
(2n+ l + 3/2) (1.48)

T ln,n+1 = −1

2

√
(n+ 1)(n+ l + 3/2) (1.49)

(1.50)

V L
nn′ is assumed to be non-vanishing for the same matrix entries as the kinetic energy operator

and has an upper limit to n and n’, above which it is taken to be zero. This defines a cutoff in

the model space for V L
nn′ which we define as N ( n and n′ ≤ N). Above that cutoff, the model

space, shown in Eq. 1.45 takes the form:

T ln,n−1an−1,l(E) + (T lnn − E)anl(E) + T ln,n+1an+1,l(E) = 0 (1.51)
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This equation produces two independent solutions. These solutions can be taken to be a

superposition of regular solutions, Snl(E), and irregular solutions, Cnl(E), where:

anl(E) = cosδ(E)Snl(E) + sinδ(E)Cnl(E) (1.52)

and

Snl(E) =

√
πνn!

Γ(n+ l + 3/2)
ql+1 exp(−q2/2)Ll+1/2

n (q2) (1.53)

Cnl(E) = (−1)l
√

πνn!

Γ(n+ l + 3/2)

1

qlΓ(1/2− l)
exp(−q2/2)Φ(−n− l − 1/2,−l + 1/2; q2)(1.54)

where Φ(a, b; z) is a confluent hypergeometric function (55), where q =
√

2E and δ(E) is the

scattering phase shift.

For the internal portion of the model space, the solutions for anl(E) are given by:

anl(E) = GnNT
l
N,N+1aN+1,l(E) (1.55)

where the matrix elements

Gnn′ = −
N∑
λ′=0

〈n|λ′〉〈λ′|n′〉
Eλ′ − E

(1.56)

are calculated using eigenvalues, (Eλ), and eigenvector components, (〈n|λ〉), of the truncated

Hamiltonian. One can calculate the phase shift for orbital angular momentum l at energy at

the center-of-mass scattering energy E using the relation:

tanδ(E) = −
SNl(E)−GNNT lN,N+1SN+1,l(E)

CNl(E)−GNNT lN,N+1CN+1,l(E)
(1.57)

In the inverse scattering J-matrix approach, we take the phase shift from Eq. 1.57 to be known

at any energy. The eigenvalues and eigenvectors are then extracted from this information.

This is performed by first assigning a rank to the desired potential matrix (N). For a finite-

dimensional matrix, it will be possible to define the phase shift for a finite energy interval. As

the matrix increases in rank, the phase shift is able to be defined for larger and larger energy

intervals.

Knowing the phase shift δ(E), we can use Eq. 1.52 to calculate aN+1,l(E). One can find

the eigenvalues, Eλ through the transcendental equation:

aN+1,l(Eλ) = 0 (1.58)
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In order to calculate the eigenvectors, it can be shown that:

aNl(Eλ) = |〈N |λ〉|2αλl T lN,N+1 (1.59)

where,

αλl =
daN+1,l(E)

dE
|E=Eλ (1.60)

The eigenvectors of the truncated Hamiltonian should be orthonormal such that:

N∑
λ=0

〈n|λ〉〈λ|n′〉 = δnn′ (1.61)

Because 〈N |λ〉’s are components of the eigenvectors, we should have:

N∑
λ=0

〈N |λ〉〈λ|N〉 = 1 (1.62)

though, in general, this is violated. While 〈N |λ〉 can describe the phase shifts, it cannot be

used to construct a Hermitian Hamiltonian matrix. In order to work around this problem, we

modify Eq. 1.62 so that 〈N |λ = N〉 corresponds to the highest eigenvalue, EN . Because this

voids the description of phase shifts at energies that differ from the highest eigenvalue, the

phase shift description is restored through variation of EN .

It should be noted that any of the phase equivalent transformations employed that do not

change both the truncated eigenvalues and eigenvector components, give a potential matrix

that leads to the same δ(E) phase shift for all values of E. In order to resolve this ambiguity,

we invoke the ansatz mentioned above that the potential matrix is tridiagonal, as discussed in

(54). The Hamiltonian can then be defined:

H l
00〈0|λ〉+H l

01〈1|λ〉 = Eλ〈0|λ〉 (1.63)

H l
n,n−1〈n− 1|λ〉+H l

nn〈n|λ〉+H l
n,n+1〈n+ 1|λ〉 = Eλ〈n|λ〉 (1.64)

H l
N,N−1〈N − 1|λ〉+H l

NN 〈N |λ〉 = Eλ〈N |λ〉 (1.65)

Once the Hamiltonian matrix elements have been calculated, the potential interaction matrix

elements can be trivially extracted:

V l
nn = H l

nn − T lnn (1.66)

V l
n,n±1 = H l

n,n±1 − T ln,n±1 (1.67)
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1.4.3 Previous Calculations with JISP16

Over the past decade, the JISP16 interaction has been used quite successfully to describe

ground state energies, as can be seen in Table 1.1. Table 1.1 displays recent published calcula-

tions of ground state energies using both the full JISP16 interaction and the bare interaction

and compares with experiment. One of the goals of the present work is to increase the size

of the model space for 6Li and 7Li from Nmax = 12, 10 to Nmax = 16, 14 for 6Li and 7Li re-

spectively. We also add data for 8Li. While the work in the table was performed using either

NCSM or NCFC calculations, JISP16 has been used by a variety of groups using a range of ab

initio techniques, as will be discussed below.

The hyperspherical harmonic approach has been used in combination with JISP16 (42)(43)

in order to calculate various observables in 3H, 3He, 6Li and 6He. These results compare

favorably with our results as can be seen in Tables 1.2 and 1.3. In these tables, we present

binding energies and Gamow-Teller matrix elements calculated in the NSCM/NCFC approach

and compare with the hyperspherical harmonic approach and experiment. We can see that not

only are the two methods in good agreement with each other, but in agreement with experiment

as well.

JISP16 has also been used in the Monte Carlo Shell Model (MCSM) (44). Results obtained

in the MCSM compare well to those obtained in the NCSM/NCFC approach. In Table 1.4,

we display results for binding energies, root-mean-square (RMS) radii, and magnetic dipole

moments. The discrepancy between the two methods is generally less than a few percent.

One of the greatest triumphs of the JISP16 interaction is the prediction and subsequent

observation of the low-lying spectroscopy of the exotic, highly unstable, 14F(45)(46). Ab ini-

tio calculations performed with JISP16 predicted a 1− excited state between the 2− gs and

the 2nd excited state, a 3− state. These papers showed that ab initio techniques using the

JISP16 interaction are useful for much more than a theoretical verification of experiment; the

calculations can also be used to make predictions and guide experiment.

Not only does JISP16 have a successful history of comparison to the gs energies and spectra

of light nuclei, it successfully describes the NN data with good precision.. When compared with
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the 1992 np database, JISP16 has a χ2/d = 1.03 and χ2/d = 1.05 for the 1999 np database

(47). In Table 1.5 we show the χ2/d measurement for several of the current popular potentials.

We see that JISP16 is comparable to other contemporary potential, with the exception of the

N3LO NN interaction, which JISP16 outperforms considerably.

1.5 Lanczos Algorithm

Because the matrix is extremely sparse, we employ the Lanczos algorithm. The Lanczos

algorithm is a well-known adaptation of power methods to determine eigenvalues and eigen-

vectors. It is particularly useful for sparse matrices (56), to perform a partial diagonalization

of the Hamiltonian matrix.

Lanczos recursion was first described in (57) and forms the backbone of various procedures

used to compute eigenvalues and eigenvectors of real symmetric matrices. The basic algorithm

is described below, where we begin with an n-dimensional, square, real, symmetric matrix,

denoted by M, and ~v1 as a randomly generated vector with unit norm. We also define β1 ≡ 0

and v0 ≡ 0. Now, for i=1,2,...m, we need to define the Lanczos vector, ~vi as well as the scalar

quantities, αi and βi+1:

αi ≡ ~vTi M~vi (1.68)

βi+1~vi+1 = M~vi − αi~vi − βi~vi−1 (1.69)

βi+1 ≡ ~vTi+1M~vi (1.70)

For m=1,2,...n, we define a tri-diagonal Lanczos matrix, Tm, which has the following form:

Tm =



α1 β2 0

β2 α2 β3

β3 α3
. . .

. . .
. . . βm−1

βm−1 αm−1 βm

0 βm αm


(1.71)

It can be seen that ~vi+1 is calculated by orthogonalizing the vector M~vi with respect to the

previously calculated vectors, ~vi−1 and ~vi.
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When full convergence is reached,

Tm = V̄MV (1.72)

where the transformation matrix, V comprises the vectors ~vi. One can approximate the eigen-

values of M by using the eigenvalues of Tm (56). The eigenvectors of M can be simply

calculated by multiplying the transformation matrix, V by the eigenvectors of Tm.
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Nucleus Experiment Bare Effective h̄Ω Nmax

3H 8.482 8.354 8.496(20) 7 14
3He 7.718 7.648 7.797(17) 7 14
4He 28.296 28.297 28.374(57) 10 14
6He 29.269 - 28.32(28) 17.5 12
6Li 31.995 - 31.00(31) 17.5 12
7Li 39.245 - 37.59(30) 17.5 10
7Be 37.600 - 35.91(29) 17 10
8Be 56.500 - 53.40(10) 15 8
9Be 58.165 53.54 54.63(26) 16 8
9B 56.314 51.31 52.53(20) 16 8
10Be 64.977 60.55 61.39(20) 19 8
10B 64.751 60.39 60.95(20) 20 8
10C 60.321 55.26 56.36(67) 17 6
11B 76.205 69.2 73.0(31) 17 6
11C 73.440 66.1 70.1(32) 17 6
12B 79.575 71.2 75.9(48) 15 6
12C 92.162 87.4 91.0(49) 17.5 6
12N 74.041 64.5 70.2(48) 15 6
13B 84.453 73.5 82.1(67) 15 6
13C 97.108 93.2 96.4(59) 19 6
13N 94.105 89.7 93.1(62) 18 6
13O 75.558 63.0 72.9(62) 14 6
14C 105.285 101.5 106.0(93) 17.5 6
14N 104.659 103.8 106.8(77) 20 6
14O 98.733 93.7 99.1(92) 16 6
15N 115.492 114.4 119.5(126) 16 6
15O 111.956 110.1 115.8(126) 16 6
16O 127.619 126.2 133.8(158) 15 6

Table 1.1 Binding energies (in MeV) of nuclei obtained with the bare and effective JISP16
interaction are compared with experiment. The results presented in this work up-
date the Li isotope entries in this table. Uncertainties are defined in Sec. 1.2 and
apply to the corresponding number of significant figures as appear in parenthesis.
(41)
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Nucleus Experiment NCSM/NCFC Hyperspherical Harmonic

3H 8.482 8.496(20) 8.367(20)
3He 7.718 7.797(17) 7.661(17)
6He 29.269 28.70(13) 28.32(28)
6Li 31.995 31.46(5) 31.49(3)

Table 1.2 Binding energies of light nuclei calculated using the NCSM/NCFC approach are
compared with those calculated in the Hyperspherical Harmonic approach and ex-
periment. Theory results are based on the JISP16 NN interaction. Energies are
given in MeV. Hyperspherical Harmonic energies are taken from (42)(43) Uncer-
tainties are defined in Sec. 1.2 and apply to the corresponding number of significant
figures as appear in parenthesis.

Nucleus Experiment NCSM/NCFC Hyperspherical Harmonic

6Li 2.161 2.225(2) 2.227(2)

Table 1.3 GT matrix elements of 6Li calculated using the NCSM/NCFC approach are com-
pared with those calculated in the Hyperspherical Harmonic approach and experi-
ment. Hyperspherical Harmonic matrix elements are taken from (43).

Nucleus Method E(MeV) 〈r2〉1/2(fm) µ(µN )

4He NCFC 28.738 1.379

MCSM 28.738 1.379
6He NCFC 23.684 1.813

MCSM 23.701 1.813
6Li NCFC 27.168 1.846 0.832

MCSM 27.168 1.846 0.835
7Li NCFC -33.202 1.901 2.993

MCSM -33.276 1.899 3.036
8Be NCFC -50.756 1.960

MCSM -50.756 1.957
10B NCFC -42.338 1.836 0.509

MCSM -42.331 1.837 0.503
12C NCFC -76.621 1.723

MCSM -76.621 1.723

Table 1.4 Various observables calculated in the MCSM approach and the NCSM approach
are compared. MCSM results are taken from (44). NCSM/NCFC results are taken
from (2). In both cases, JISP16 was used as the NN interaction Comparisons were
made a similar sized model spaces, defined in (44).
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Interaction 1992 1999

JISP16 1.03 1.05

AV18 1.08 1.07

CD-Bonn 1.03 1.02

N3LO - 1.10

Table 1.5 χ2/d values are shown for various NN interactions for the 1992 and 1999 np
databases. JISP16 values are from (47). N3LO values are from (48). Other values
can be found in (49).
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CHAPTER 2. The One Body Density Matrix

2.1 Background and Definitions

The One Body Density Matrix (OBDM) was first introduced by Löwdin in 1955 (93). The

nonlocal version is defined:

ρ(~x′1, ~x1) = A

∫
Ψ∗(~x′1, ~x2, ..., ~xA)Ψ(~x1, ~x2, ..., ~xA)d3x2....d

3xA (2.1)

Where Ψ’s are the many-body wavefunctions defined in section 1 and A is the total number in

nucleons. The vector ~xi represents a combination of a spatial coordinate, ~ri, and a spin coordi-

nate, ~si. Including spin as well as other quantum numbers (such as isospin) is straightforward so

we will not burden the notation with these complexities at the present level of treatment. The

diagonal elements represent the local OBDM and are represented by ρ( ~x1, ~x1). The non-local

OBDM can be related to the local OBDM through the relation:

ρ( ~x1) =

∫
ρ( ~x1

′, ~x1)δ( ~x1 − ~x1
′)d3x′1 (2.2)

These are normalized such that:

∫
ρ(~x1)d3x1 = A (2.3)

and we say that the probability to find the particle in question in the region d~x is ρ(~x)d~x.

We will begin to define the OBDM in terms of single particle wavefunctions instead of many-

body wavefunctions. As such, the numerical subscripts on the coordinate variables will be

suppressed.

For the purposes of this work, we are interested in the spin-independent OBDM. In order

to construct this quantity, we simply sum over the spin degree of freedom and identify the

probability of finding a particle (of any spin) in the region d3r as ρ(~r)d3r.
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The OBDM can also be constructed from the single particle HO wavefunctions that make

up our single-particle basis space. The OBDM can be expressed as:

ρfi(~r, ~r′) =
∑
α,β

ρfiαβψα(~r′)ψβ(~r) (2.4)

where a Greek subscript, α for example, represents a set of single-particle quantum numbers

(nα, lα, jα,mα, τz,α). The coefficients, ρifαβ are the matrix elements of a space-fixed OBDM and

are calculated through:

ρfiαβ = 〈Ψf |a†αaβ|Ψi〉. (2.5)

It should be noted that the single-particle wavefunction, ψ, is actually a sum of the single-

particle wavefunctions defined in Eq. 1.39. In our basis, the particles are defined through

the quantum numbers, (nα, lα, jα,mα, τz,α), where mα is the magnetic projection of the total

angular momentum quantum number, jα. The TDHOWF’s are defined using the quantum

numbers, n, l,ml. Therefore, one must couple orbital angular momentum (l) and spin (s) into

j through:

ψα(r) =
∑
ml,ms

〈lαmlsαms|jαmjα〉φnαlαmlχsαms (2.6)

The local one-body density in the space-fixed (sf) coordinate system is defined by:

ρfisf (~r) =
∑
α,β

ρfiαβ ψ
?
α(~r) ψβ(~r) . (2.7)

and is once again normalized to the number of nucleons

∫
ρfisf (~r)d3r = A . (2.8)

We say that the one-body density is space-fixed (sf) because it includes contributions from

the center of mass (cm) motion of the many-body wavefunctions Ψ(~r1.....~rA). This results

from our use of single-particle coordinates as opposed to relative coordinates in the nuclear

wavefunction. The resulting one-body density distributions will therefore include contributions

from the cm motion. However, because of the exact factorization of the cm wavefunction and

the translationally-invariant wavefunction, see Eq. (1.34), this density is actually a convolution
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of the cm density ρΩ
cm and the translationally-invariant (ti) density ρti

ρΩ
sf(~r1) =

∫
ρti(~r1 − ~R) ρΩ

cm(~R) d3R, (2.9)

where we suppress the state labels for simplicity and insert a superscript Ω to signify the

dependence on the HO basis space used in the evaluation of the eigenfunctions.

For the HO basis, ρΩ
cm is a simple Gaussian (the gs density of Hcm) with explicit dependence

on Ω that smears out ρti. This smearing can obfuscate interesting details of ρti. Furthermore, it

introduces a spurious dependence on the basis parameter Ω into ρΩ
sf that masks the convergence.

Even in the limit of a completely converged calculation, the single-particle density ρΩ
sf depends

on Ω, whereas ρti becomes independent of the basis.

In order to eliminate these smearing effects and to help develop a physical intuition for

the ab initio structure of a nucleus, it would be helpful to see the coordinate space density

distributions free of spurious cm motion. This can be achieved by a deconvolution of the cm

density and the translationally-invariant density using standard Fourier methods (51):

ρti(~r1) = F−1
[
F [ρΩ

sf(~r1)]

F [ρΩ
cm(~R)]

]
(2.10)

where F [f(~r)] is the 3-dimensional Fourier transform of f(~r). At convergence, the dependence

on Ω should cancel on the RHS of this equation. That means that after this deconvolution, we

can better investigate the convergence of the density.

2.2 The OBDM in Operator Notation

In order to perform these Fourier transforms in an analytic and computationally inexpensive

manner, we first perform a multipole expansion on the sf one-body density. In order to facilitate

this, consider the local density operator (58):

ρ̂sf(~r) =
A∑
k=1

δ3(~r − ~rk)

=
A∑
k=1

δ(r − rk)
r2

∑
lm

Y ?m
l (r̂k)Y

m
l (r̂) (2.11)
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where r̂ is the unit vector in the direction ~r, and Y m
l (r̂) is a spherical harmonic. Note that it

has the property:

Y −ml (r̂) = (−1)mY ?m
l (r̂) . (2.12)

Inserting this operator into the many body state, |AλiJiMi〉, where A represents the number

of nucleons, Ji is the total angular momentum, Mi is the angular momentum projection, and

λi represents all other quantum numbers, we find:

ρsf (~r) =
∑
Kk

Y ∗kK (r̂)〈AλfJfMf |
A∑
j=1

δ(r − rj)
r2

Y k
K(r̂j)|AλiJiMi〉, (2.13)

which, via the Wigner-Eckert theorem, becomes:

ρsf (~r) = (−1)Jf−Mf

( Jf K Ji

−Mf k Mi

)

×Y ∗kK (r̂)〈AλfJf ||
A∑
j=1

δ(r − rj)
r2

YK(r̂j)||AλiJi〉. (2.14)

Note that for a generic operator, TK , (59):

〈λfJf ||TK ||λiJi〉 =
1

K̂

∑
α,β

〈α||TK ||β〉〈λfJf ||(a†αãβ)(K)||λiJi〉 (2.15)

where K̂ =
√

2K + 1,

(a†αãβ)(K) =
∑

mjα ,mjβ

(−1)
jβ−mjβ 〈jαmjαjβmjβ |Kk〉a

†
αaβ, (2.16)

and

ãj,mj = (−1)j−mjaj,−mj . (2.17)

From Eq. 2.15, it follows that the quantity to be calculated is:

〈α||ρ̂||β〉 = 〈α||
A∑
j=1

δ(r − rj)
r2

||β〉〈α||YK(r̂i)||β〉 (2.18)

where (50)

〈α||
A∑
j=1

δ(r − rj)
r2

||β〉 = Rα(r)Rβ(r) (2.19)

〈α||YK(r̂j)||β〉 =
(−1)jα+1/2

√
4π

ĵαĵβ l̂α l̂β〈lα0lβ0|K0〉
{ jα jβ K

lβ lα
1
2

}
(2.20)
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and Rα(r) is the radial component of the TDHOWF, φ, given by:

Rnl(r) =

[
2(2ν)l+3/2Γ(n+ 1)

Γ(n+ l
2 + 3

2)

]1/2

e−νr
2
L
l+ 1

2
n (2νr2)

(2.21)

with L
l+ 1

2
n as the associated Laguerre polynomials.

From the above, we arrive at the desired result:

ρsf(~r) =
∑
K

〈JMK0|JM〉√
2J + 1

Y ?0
K (r̂) ρ

(K)
sf (r) (2.22)

where ρ
(K)
sf (r) is the Kth multipole of the sf density. For initial and final states with spin J ,

the multipoles range from K = 0 to K = 2J . As we will see below, this multipole expansion

greatly simplifies the Fourier transforms needed for the deconvolution.

With a HO single-particle basis, each multipole is given by

ρ
(K)
sf (r) =

∑
Rα(r)Rβ(r)

−1

K̂
〈lα

1

2
jα||YK ||lβ

1

2
jβ〉

×〈AλJ ||(a†αãβ)(K)||AλJ〉 (2.23)

2.3 Deconvolution

As shown in Eq. 2.10, in order to isolate the ti density, we perform a series of Fourier

transforms. We use the relation:

∫
d3r exp(i~q · ~r) ρ(K)

sf (r) iKY ?0
K (r̂) = ρ̃

(K)
sf (q) Y ?0

K (q̂) ,

(2.24)

where the multipole component of the density in momentum space is expressed as

ρ̃
(K)
sf (q) = 4π

∫
jK(qr) ρ

(K)
sf (r) r2dr (2.25)

with jK the spherical Bessel Functions of the first kind. Thus, the deconvolution of each

multipole gives:

ρ
(K)
ti (r) =

1

2π2

∫
jK(qr)

ρ̃
(K)
sf (q)

ρ̃cm(q)
q2dq (2.26)
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where,

ρ̃cm(q) =
ρ̃

(0)
cm(q)

2
√
π

(2.27)

=
8
√

2√
π
ν3/2

∫ ∞
0

e−2νR2
sin(qR)

qR
R2dR

For spherically symmetric nuclei, this deconvolution simplifies even further because we only

have one term in the multipole expansion, K = 0

ρ
(0)
ti (r) =

1

2π2

∫ ∞
0

sin(qr)

qr

ρ̃
(0)
sf (q)

ρ̃cm(q)
q2dq , (2.28)

and the 3-dimensional ti density is simply,

ρti(~r) =
ρ

(0)
ti (r)

2
√
π

(2.29)

without any angular dependence.

Another advantage of the multipole expansion is that it allows for a straightforward cal-

culation of the (sf or ti) density for any magnetic projection M , once the multipoles ρ(K)(r)

are known. The multipoles ρ(K)(r) are completely determined from reduced matrix elements,

which do not depend on M . The only dependence of ρsf(~r) on M is entirely through the

explicitly M -dependent Clebsch–Gordan coefficients in Eq. (2.22).

2.4 Observables

The OBDM can be used to calculate any one-body observable. A complete set of static

and one-body transition matrix elements can be used to calculate a two-body observable. In

this section, formulae to calculate various observables using the OBDM or one-body density

distribution (OBDD) are presented.

2.4.1 Electromagnetic Observables

To leading order, the electric multipole moment is given by:

q̂kK =

∫
ρp(~r)r

KY k
Kd

3r (2.30)
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where ρp represents the one-body proton density distribution and K represents the degree of

the multipole radiation. Mass instead of charge observables can also be calculated for the

neutron OBDDs using similar equations,i.e., replacing ρp with ρn would give the expression

for the mass quadrupole moment rather than the electric quadrupole moment. The reduced

transition rate is:

B(E,K) =
∑
k,Mf

|〈 AλfJfMf |
∫
ρp(~r)r

KY k
Kd

3r|AλfJiMi〉|2 (2.31)

The fact that ρ(r)rKY k
K is an irreducible tensor of degree K leads to the necessary condition

that |Jf − Ji| ≤ K ≤ Jf + Ji in order for B(E,K) to be non-vanishing. Using our definition

for ρ, as well as the Condon-Shortley phase convention, one can see that (50):

B(E,K) =
∑
k,Mf

〈AλfJfMf |
∑
j

rKj Y
k
K(r̂j)|AλfJiMi〉2 (2.32)

(2.33)

Where the sum is over the protons. Utilizing the Wigner-Eckert Theorem leads us to(50):

B(E,K) =
1

2Ji + 1
|〈AλfJf ‖ Q̂K ‖ AλfJi〉|2 (2.34)

Q̂kK =
∑
α,β

〈α|q̂µλ |β〉a
†
αaβ (2.35)

Once we have obtained the one-body density matrix elements ραβ (OBDMEs), we can easily

calculate observables that can be expressed as one-body operators. For initial and final states

with total angular momentum Ji,f and possibly additional quantum numbers λi,f , but with the

same magnetic projectionM , the matrix elements using the canonical one-body electromagnetic

current operator E2 are given by

M if
E2 = 〈λfJfM |E2|λiJiM〉

=
∑
αβ

ρfiαβ 〈α|
∫
r2Y 0

2 (r̂)d3r|β〉 , (2.36)

with α and β restricted to the protons only (τz = 1
2). The fact that the OBDM includes cm

motion does not matter for E2 matrix elements (nor for M1 matrix elements discussed below):
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the cm wavefunction is an s-wave, and does not contribute to the integral due to the factor

Y 0
2 (r̂).

For comparison with experiments, it is more convenient to convert these M -dependent

matrix elements to reduced matrix elements using the Wigner–Eckart theorem (50). For a

proper tensor operator TKk, the reduced matrix element is defined by:

〈λfJf ||TK ||λiJi〉 = 〈λfJfMf |TKk|λiJiMi〉

×
√

2Jf + 1

〈JfMfKk|JiMi〉
(2.37)

provided that the Clebsch–Gordan coefficient in the denominator, 〈JfMfKk|JiMi〉 (following

the conventions of Ref. (50)), is not zero. In terms of the reduced E2 matrix elements, reduced

E2 transition rates are given by (60):

B(E2; i→ f) =
1

2Ji + 1
〈λfJf || E2 ||λiJi〉2 (2.38)

in units e2 fm4. The quadrupole moment is conventionally defined through the E2 matrix

element for M = J :

Q =

(
16π

5

)1/2

〈λJM = J | E2 |λJM = J〉 (2.39)

and can also be expressed in terms of the reduced matrix element as (60):

Q =

(
16π

5

)1/2 1

Ĵ
〈JJ20|JJ〉〈λJ || E2 ||λJ〉 (2.40)

in units e fm2.

The matrix elements for the M1 transitions and magnetic moments receive contributions

both from the proton and neutron intrinsic spins and from the proton orbital motion. Again,

we consider only the canonical one-body electromagnetic current operator, in which case they

can be calculated from the OBDMEs:

Mfi
M1 = 〈λfJfM |M1|λiJiM〉

=
∑
αβ

ρfiαβ 〈α|
1

2
(1 + τz)(L+ gpσ) +

1

2
(1− τz)gnσ|β〉

where gp = 5.586 and gn = −3.826 are the proton and neutron gyromagnetic ratios in nuclear

magneton (µN ) units; the quantities L, σ and τ represent the conventional orbital angular
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momentum, spin and isospin operators. In terms of the reduced M1 matrix element, the M1

transition rates are given as (60)

B(M1; i→ f) =
1

2Ji + 1
〈λfJf || M1 ||λiJi〉2 (2.41)

in units µ2
N , and the magnetic moment is defined as,

µ =

(
4π

3

)1/2

〈λJ || M1 ||λJ〉 (2.42)

in units µN .

2.4.2 Gamow-Teller Transitions

The Gamow-Teller (GT) matrix element (MGT ) also is not affected by the cm contribution

to the one-body density. MGT is related to the OBDM through the relation:

〈Jf |MGT |Ji〉 =
∑
αβ

ραβ〈α|M̂GT |β〉 (2.43)

where M̂GT = σzτ−. In order to obtain the single-particle expectation value, we proceed as

follows:

〈α|M̂GT |β〉 = 〈jαmαλα|PM̂GTP |jβmβλβ〉 (2.44)

where λ is restricted to the quantum numbers n, l. P is the parity operator which performs a

parity transformation (inversion). In three dimensions, this simply flips the sign of the spatial

coordinates. We say that a function is symmetric under the parity transformation when, for

a generic function f(x), f(−x) = f(x), and antisymmetric if f(−x) = −f(x). As our code,

MFDn, works on one nucleus at a time, we assume that isospin is a good quantum number and

one of the nuclear states can be considered an isobaric analogue of the parent transition nucleus.

We therefore neglect the isospin lowering operator and our calculation relies solely on the spin

operator, σz. It would be impractical to read in wavefunctions from previously calculated nuclei

as I/O operations can be a major bottleneck in massively parallel calculations. Note that:

〈jαmαλα|PM̂GTP |jβmβλβ〉 = δλαλβ 〈jαmα|PM̂GTP |jβmβ〉 (2.45)
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where,

|jm〉 =
∑
mlms

〈lmlsms|jm〉|lml〉|sms〉. (2.46)

We now see that: and hence,

〈Jf |M̂GT |Ji〉 =
∑
αβ

ραβδλαλβ
∑
mlms

〈lmlsms|jm〉2ms. (2.47)

2.4.3 RMS radius

The radii calculated by MFDn are heavily influenced by the cm component of the one-body

density. In order to calculate the most realistic RMS radius from the OBDD, the ti component

must first be isolated. There are approximate corrections that can be made, however, if one is

unable to perform the deconvolution.

The RMS radius is related to the OBDD through the relation:

〈r2〉1/2 =

[∫
ρti(~r)r

2d3r∫
ρti(~r)d3r

]1/2

(2.48)

and can be related to the sf OBDD through (61):

[∫
ρti(~r)r

2d3r∫
ρti(~r)d3r

]1/2

=

[∫
ρsf (~r)r2d3r∫
ρsf (~r)d3r

− 3b2

2A

]1/2

(2.49)

where,

b =
h̄c√
h̄Ωmc2

(2.50)
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CHAPTER 3. Non-Density Results

3.1 GS Energy and Excitation Spectra

The gs energies of the Li isotopes as a function of the HO energy, h̄Ω, are shown at a

sequence of Nmax values in Fig. 3.1. We also provide the extrapolated gs energy as a function

of h̄Ω, as described above. Our results with JISP16 for selected spectral and other observables

of 6Li,7Li, and 8Li are summarized in Tables 3.1, 3.2, and 3.3 and compared with experiment

when available.

The gs energy for 6Li is rapidly converging as indicated by the emerging independence of

the two basis parameters (Nmax, h̄Ω). The convergence is most rapid around h̄Ω = 17.5 to

20 MeV, where the variational upper bound on the energy is minimal. Our extrapolated gs

energy (2) shows that the system is underbound by 0.50 MeV. Excitation energies are well

converged at higher Nmax (12 and above) values, at least for 3+ and 0+ states. Note that these

states are narrow resonances: the experimental width of the 3+ is 24 keV and the width of the

first excited 0+ is 8 eV.

The excitation energy of the first 2+ state, shown in Fig. 3.2 is much less converged, and

shows a systematic increase with increasing h̄Ω. Such h̄Ω-dependence of the excitation energy is

typical for wide resonances as observed in comparisons of NCSM results with inverse scattering

analysis of α-nucleon scattering states (62; 1). In light of these previous analyses, the significant

h̄Ω-dependence seems commensurate with the large experimental width of 1.3 MeV for this 2+

state.

The gs energy for 7Li converges much the same as the gs energy for 6Li. Once again, the

variational upper bound on the energy is minimized between h̄Ω values of 17.5 and 20 MeV.

From Table 3.2 we see that the gs energy is underbound by about 0.67 MeV. The gs energy



35

Figure 3.1 The gs energy of 6Li, 7Li, and 8Li for a sequence of Nmax values (indicated in the
legends) as a function of the HO energy. The extrapolated gs energy is shown
at specific values of h̄Ω with undertainties (defined in the text) indicated as error
bars.

and excitation energies compare favorably to other methods and interactions (63; 64).

We evaluated the low-lying states in basis spaces up to Nmax = 14. We only consider isospin

1
2 states – the lowest isospin 3

2 has more than 10 MeV excitation energy. The lowest five states

in the excitation energy spectrum compare well with experiment and the correct level ordering

is preserved as shown in Fig. 3.2. The excitation energy of four of these five states shows rapid

numerical convergence with Nmax and stability with respect to variations in the HO energy.

However, the convergence of the lower of the two 5
2

−
states is significantly slower. Indeed,

experimentally this state has a large width of 0.88 MeV, whereas the width of the other states

is less than 0.1 MeV. Thus, as in 6Li, we again observe a good correlation between experimental

width and convergence rate of excitation energies.
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Figure 3.2 The excitation spectra of 6Li, 7Li, and 8Li for a sequence of Nmax values (indicated
in the legends) as a function of the HO energy.

The gs energy for 8Li converges much the same as the gs energies previously shown. The

variational upper bound on the energy is minimized between h̄Ω values of 20.0 and 22.5 MeV,

slightly higher than the ligher isotopes. From Table 3.3 we see that the gs energy is underbound

by about 1.0 MeV.

In addition to the gs, we examined several narrow low-lying states: the lowest two excited

states, which are narrow states, with a width of 33 keV or less, as well as a narrow low-lying

4+ state at 6.53 MeV with a width of 35 keV. We do not consider isospin 2 states – the lowest

isospin 2 has more than 10 MeV excitation energy. The excitation energies obtained with

JISP16 compare reasonably well with the experimental excitation energies, though the level

splittings are a bit too large (see Fig. 3.2). The convergence of the spectrum is similar as for

the other Li-isotopes, though the convergence of the 4+ state is somewhat slower than expected
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based on its small width. In our calculations there are several additional states below this 4+

state, which is typically the 8th state in our calculated spectrum, depending on the basis space;

experimentally, it is the 7th observed state.

Both the gs binding energy and the excitation energies calculated with JISP16 compare

favorably to those calculated with alternative realistic NN interactions, i.e. Argonne V18,

CD-Bonn, INOY, and SRG evolved N3LO interactions (63; 65; 66; 67). However, with the

addition of appropriate three-body interactions, such as Illinois-2 (63; 75) or chiral three-body

forces (68; 69; 70), one can obtain somewhat better agreement with data than with the NN-only

interaction JISP16.

3.2 Radii

In Fig. 3.3, we show the dependence of the RMS point-proton radius on the basis space

parameters Nmax and h̄Ω for 6Li. It appears that this radius is converging less rapidly than the

gs and excitation energies. Furthermore, the convergence is neither monotonic nor uniform: at

small values of the HO energy the radius tends to decrease with increasing Nmax, whereas at

larger values of h̄Ω the radius increases with increasing Nmax; around h̄Ω = 10 to 12.5 MeV

the RMS radius is nearly independent of Nmax. Because of this, it is difficult to make real-

istic estimates of uncertainties for radii and other long-range observables such as quadrupole

moments which exhibit similar patterns.

The convergence patterns shown in Fig. 3.3 may be understood from the following ob-

servation: since the HO wavefunctions fall off like a Gaussian, e−cr
2

while the true nuclear

wavefunction falls off like an exponential, e−dr, observables whose calculations are weighted

towards the tail of the wavefunction, such as the RMS radius, will converge slower than those

observables that depend less on the tails, such as the energy and the magnetic moment (see

below). Furthermore, it is well known that the RMS radius, and also other long-range operators

such as the quadrupole moment, are minimally affected by the short-range correlations (71; 67).

And the value of h̄Ω that minimizes the gs energy is not necessarily the value of h̄Ω that best

represents the long-range behavior of the wavefunction.

In Fig. 3.4 we show the radial density distribution for two sets of finite basis spaces, with
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Figure 3.3 The RMS point-proton radius of the gs of 6Li as a function of HO energy at
various Nmax values (top left) and as function of Nmax at various values of the
HO energy (bottom). The RMS point-proton radius of the gs of 7Li and 8Li as
a function of HO energy at various Nmax values are also shown (bottom left and
right, respectively)

h̄Ω = 10 and 17.5 MeV respectively. The lower panel shows that the exponential tail is much

better represented in a HO basis with h̄Ω = 10 than in a HO basis with 17.5 MeV, and that

the long-range behavior of the one-body density is therefore converging much more rapidly

in a HO basis with h̄Ω = 10, and rather poorly converging in the HO basis that minimizes

the gs energy. That is, the radial density calculated with h̄Ω = 10 MeV shows much more

consistent long-range behavior at the three highest Nmax values than the density calculated

with h̄Ω = 17.5 MeV. This leads us to the conclusion that while the value of h̄Ω that minimizes

the gs energy is an appropriate value when calculating gs and excitation energies, as well as

magnetic observables, this value is not appropriate for calculations of observables that depend



39

Figure 3.4 The angle-averaged density of the 6Li gs for various Nmax values at h̄Ω = 10 and
17.5 on a linear (left) and semi-logarithmic (right) scale.

primarily on long-range correlations, even in the moderately large basis spaces considered here.

There is no a-priori reason why any two observables should converge with the same pattern

in the basis space parameters (Nmax, hw). Hence we seek the optimal (Nmax, hw) values for

each observable. We we will quote results for long-range observables at the h̄Ω value where the

RMS radii for various Nmax values intersect as seen in the top portion of Fig. 3.3, rather than at

the h̄Ω value that minimizes the gs energy. To be specific, for the Li-isotopes under discussion

here, we simply take the results at h̄Ω = 10 to 12.5 MeV (where the Nmax dependence appears

to be minimal) as our approximation to the converged value of the RMS radius. In a similar

fashion, we will cite results for the region of minimal Nmax dependence for other observables

that depend primarily on long-range correlations. Such observables include RMS radii, E2

moments, and B(E2) transitions. Robust extrapolations to the infinite basis space and reliable

error estimates for these observables remain an open question. Density distributions will be

discussed in more detail in subsequent chapters.

In order to convert measured nuclear charge radii, 〈r2
c 〉1/2, to point-proton radii, we use (72)

〈r2
pp〉 = 〈r2

c 〉 −R2
p −

N

Z
R2
n −

3h̄2

4M2
p c

2
(3.1)

Here, R2
p = 0.769(12) fm2 is the RMS proton charge radius, R2

n = −0.177(4) fm2 the RMS

neutron charge radius, Mp the proton mass, 〈r2
c 〉so the spin-orbit charge density, and 3h̄2

4M2
p c

2 ≈

0.033 fm2 the Darwin–Foldy correction. In addition to these correction terms there is also a
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spin-orbit contribution to the charge radius, but this contrubution is model-dependent, and (for

the nuclei discussed here) less than 1% for realistic wavefunctions (73). For the experimental

radii we use the values of Ref. (73), which were obtained from high-precision laser spectroscopy

measurements of isotope shifts in combination with the 6Li charge radius as absolute reference.

Using the 7Li charge radius as reference in combination with the same isotope shifts gives radii

that are about 2% to 3% smaller than the ones we have listed in the tables below (74).

The RMS point proton radii for 7Li and 8Li show similar convergence properties to that

of 6Li. The obtained RMS point-proton radii are similar to those obtained with CD-Bonn;

both CD-Bonn and JISP16 give results that are about 10% too small compared to experiment.

INOY (65) gives an even smaller radius, whereas AV18 plus Illinois-2 leads to a radius (75)

that is closer to the experimental value for the isotopes examined in this work.

3.3 Electromagnetic Observables

Fig. 3.5 displays the magnetic dipole moments and magnetic dipole transition rates to the gs

for selected states of 6Li, 7Li, and 8Li. These observables converge quickly, and for calculations

at Nmax = 12, are almost independent the HO energy. In fact, most of the magnetic observables

are already reasonably well converged (to within 10%) atNmax = 8, with the noticable exception

of the two 5
2

−
excited states of 7Li. This is partially due to a strong state mixing between

these two states. We require larger basis spaces to fully differentiate these states, because they

are close together in energy, and their quantum numbers are identical.

Our estimate for the infinite basis space results for magnetic dipole observables is based

on the residual dependence on Nmax and h̄Ω over a 10 MeV window in h̄Ω. This window

does include the optimal h̄Ω for the extrapolations and the variational upperbound, but is not

necessarily centered around these values. Our numerical error estimate is the RMS sum of the

variation with h̄Ω over this window and the difference between the results in the two largests

Nmax calculations (rounded up), i.e. treating the variation with each of the two basis space

parameters as independent sources of numerical uncertainties.

With JISP16, the magnetic moments of the gs of 6Li and 7Li is about 2% and 10% too low

respectively. This could easily arise from our neglect of meson-exchange currents in our current
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calculations. GFMC calculations with AV18 plus Illinois-2 three-body forces (76) found that

the magnetic moment of the 7Li gs receives a 10% correction from meson-exchange currents,

changing the magnetic moment from 2.9 µN to 3.2 µN . It is quite remarkable that our result

for the magnetic moment, with the naive pointlike M1 operator, is in fact quite close to the

obtained with CD-Bonn, with INOY, and with AV18 plus Illinois-2, all about 10% below the

experimental datum. (Note that the exchange current correction to the 6Li gs magnetic moment

was only 2% in Ref. (76).)

The B(M1) from the first excited state to the gs is about 20% too low compared to experi-

ment for 7Li. The transition from the second excited state to the gs of 6Li is approximately 8%

lower than experiment. Again, this is in qualitative agreement with the findings of Ref. (76):

with AV18 plus Illinois-2 there is about 10% increase in the M1 transition matrix element due

meson-exchange currents, which results in a 20% increase in the corresponding B(M1).

The convergence properties of the calculated magnetic dipole observables of 8Li are similar

to those for 6Li and 7Li discussed above. Because we can only go up to Nmax = 12, the

numerical error estimates are slightly larger than for 6Li and 7Li. The gs magnetic moment is

approximately 20% lower than experiment. This seems reasonable, in light of our discussions

of magnetic moments above, that this discrepancy is at least partially due to the fact that

we do not incorporate meson-exchange currents. Note that CD-Bonn gives a similar magnetic

moment as JISP16, but that INOY provides a moment that is slightly closer to experiment,

and AV18/IL2 gives a magnetic moment in excellent agreement with data; however, the effect

of meson-exchange currents is unclear for this nucleus. The B(M1) transition rates from the 1+

and 3+ to the gs are 20% and 50% lower than experiment, but the experimental error bars are

large. The magnetic moment of the 4+ state is remarkably well converged, despite its excitation

energy not being very well converged.

Proton and neutron E2 moments for 6Li, 7Li, and 8Li are shown in 3.6; B(E2) transitions

are shown in 3.7. Issues relating to the convergence properties of the E2 moments or B(E2)

transitions and their associated extrapolations have been discussed above.

In the case of 6Li, the electric quadrupole moment of the gs is actually quite well converged,

and in excellent agreement with the experimental value - perhaps better than might be expected
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due to basis space limitations and long-range nature of the quadrupole moment operator. The

transition rates do not fare nearly so well in this case. The transition from the first excited

state to the gs differs from experiment by about 40 %, while the transition from the third

excited state to the gs differs by approximately 70 %.

The electric quadrupole moment of the gs of 7Li differs from experiment by about 20 %.

The B(E2) transition rate from the first excited state to the ground state differs by about 33 %.

For this isotope, it is plain to see that the NNN interactions (AV18/IL2) perform significantly

better than JISP16 (an NN interaction) (77; 63; 75).

The electric quadrupole moment of the gs of 8Li differs from experiment by about 20 %.

There is no experimental data available for comparison for the B(E2) transition rates. Once

again, we see that the NNN interaction performs significantly better than JISP16. Other

NN interaction data is not available at the time of this publication. It appears that while

convergence rates may have a significant effect on RMS radii, their effect is much more difficult

to quantify here. For the radii, we chose a HO energy (h̄Ω) at which the observable’s dependence

on Nmax was minimized. This gave values for the radii that were relatively close to experiment

and compared well to alternative interactions. For the case of the E2 moment or its related

transition, this strategy worked well in the case of 6Li, but much less so for 7Li and 8Li. For

these cases, the use of a NNN interaction seems to make a larger difference.

3.4 Gamow-Teller Transitions

The (0+, 1) excited state of 6Li is the isobaric analog of the ground state of 6He, and can

be used to calculate the Gamow–Teller transition between 6Li and 6He. Assuming isospin

symmetry, the Gamow–Teller matrix element MGT is to good approximation given by

MGT =
∑
α,β

ρifαβ 〈α|στ+|β〉 (3.2)

and is related to the half-life (78) through

|MGT|2 =
1

fA
fV
g2
A

2π3 ln 2/(G2|Vud|2)

(fT1/2)tm5
e

(3.3)
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where gA = 1.2695(29) is the axial constant, fA
fV

= 1.00529 accounts for the difference in

the statistical rate function of the vector and axial-vector transitions, me is the mass of the

electron, G = 1.166371(6) · 10−11MeV−2 is the Fermi coupling constant, and Vud = 0.9738(4)

is the CKM matrix element that mixes the quarks involved in the decay. Our MGT result,

presented in Table 3.1, compares quite well to that calculated in (78) using the hyperspherical-

harmonic expansion method with the same (JISP16) interaction; they also obtained a value of

MGT = 2.227. It is interesting to note that Ref. (78) found the exchange current corrections

to the GT matrix element to be of the order of a few percent.
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Figure 3.5 The M1 moments (left) and B(M1) transitions (right) are shown at various Nmax

values as a function of the HO energy for 6Li, 7Li, and 8Li (top to bottom).
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Figure 3.6 The E2 neutron moments (left) proton moments (right) are shown at various Nmax

values as a function of the HO energy for 6Li, 7Li, and 8Li (top to bottom). Note
that the E2 moments for neutrons are matter quardupole moments.
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Figure 3.7 The E2 neutron moments (left) proton moments (right) are shown at various Nmax

values as a function of the HO energy for 6Li, 7Li, and 8Li (top to bottom).
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6Li Expt. JISP16 AV18/IL2 CD-B INOY

Eb(1+, 0) 31.994 31.49(3) 32.0(1) 29.07 32.3(2)

〈r2
pp〉1/2 2.45(5) 2.3 2.39(1) 2.25 2.14

Ex(3+, 0) 2.186(2) 2.56(2) 2.2(2)

Ex(0+, 1) 3.56(1) 3.68(6) 3.4(2)

Ex(2+, 0) 4.312(22) 4.5(3) 4.2(2)

Ex(2+, 1) 5.366(15) 5.9(2) 5.5(2)

Q(1+, 0) -0.082(2) -0.077(5) -0.32(6) -0.066 0.080

Q(3+, 0) - -4.9

µ(1+, 0) 0.822 0.839(2) 0.800(1) 0.843 0.843

µ(3+, 0) - 1.866(2)

B(E2;(3+, 0)) 10.7(8) 6.1 11.65(13)

B(E2;(2+, 0)) 4.4(23) 7.5 8.66(47)

B(M1;(0+, 1)) 15.43(32) 14.2(1) 15.02(11)

B(M1;(2+, 0)) - < 0.001 0.002(1)

B(M1;(2+, 1)) 0.1 (3) 0.05(1)

MGT 2.170 2.227(2) 2.18(3)

Table 3.1 Selected 6Li observables calculated up through Nmax = 16. The energies are
in MeV; the RMS point-proton radius is in fm; the quadrupole moments are in
e fm2; the magnetic moments are in µN ; the B(E2) transition rates are in e2fm4;
and the B(M1) transition rates are in µ2

N fm2. All listed transitions are to the
ground state. The energies are obtained from extrapolations to the infinite basis
space, with error estimates as discussed in the text; the dipole observables as well
as the gs quadrupole moment are converged within the quoted uncertainty; the
other quadrupole observables observables and the RMS point-proton radius are
evaluated at h̄Ω = 12.5 MeV. We used Ref. (73) for the experimental value of the
RMS radius and Ref. (78) for GT matrix element; the other experimental values
are from Refs. (79; 80). AV18/IL2 data are from Refs. (76; 77; 63; 75) and include
meson-exchange corrections for the dipole observables; CD-Bonn and INOY data
are from Ref. (65), and were calculated at Nmax=16 and h̄Ω=11 and 14 MeV
respectively for CD-Bonn and INOY, with the INOY gs energy extrapolated to the
infinite basis space.
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7Li Expt. JISP16 AV18/IL2 CD-B INOY

Eb(3
2

−
) 39.244 38.57(4) 38.9(1) 35.56 39.6(4)

〈r2
pp〉1/2 2.30(5) 2.2 2.25(1) 2.22 2.05

Ex(1
2

−
) 0.477 0.52(6) 0.2(1)

Ex(7
2

−
) 4.630(1) 5.25(5) 4.9(1)

Ex(5
2

−
1

) 6.680(50) 7.1(2) 6.6(1)

Ex(5
2

−
2

) 7.460(10) 8.1(1) 7.2(1)

Q(3
2

−
) -4.06(8) -3.2 -3.6(1) -3.20 -2.79

Q(7
2

−
) - -5.0

Q(5
2

−
1

) - -6.0

Q(5
2

−
2

) - 2.3

µ(3
2

−
) 3.256 2.954(5) 3.168(13) 3.01 3.02

µ(1
2

−
) - -0.76(1)

µ(7
2

−
) - 3.3(1)

µ(5
2

−
1

) - -0.90(2)

µ(5
2

−
2

) - -0.39(5)

B(E2;1
2

−
) 15.7(10) 10.2 16.2(5)

B(E2;7
2

−
) 3.4 5.1 9.92(14)

B(E2;5
2

−
1

) - 1.5

B(E2;5
2

−
2

) - <0.1

B(M1;1
2

−
) 4.92(25) 3.89(2) 4.92(7)

B(M1;5
2

−
1

) - 0.002(1)

B(M1;5
2

−
2

) - 0.02(1)

MGT

Table 3.2 Selected 7Li observables calculated up through Nmax = 14, with the same units
as in Table 3.1. The energies are obtained from extrapolations to the infinite
basis space, and the magnetic dipole observables are nearly converged, with er-
ror estimates as discussed in the text; the RMS point-proton radius and electric
quadrupole observables are evaluated at h̄Ω = 12.5 MeV. Experimental values are
from Refs. (73; 79; 80). AV18/IL2 data are from Refs. (76; 77; 63; 75) and include
meson-exchange corrections for the dipole observables; CD-Bonn and INOY data
are from Ref. (65), and were calculated at Nmax=12 and h̄Ω=11 and 16 MeV re-
spectively for CD-Bonn and INOY, with the INOY gs energy extrapolated to the
infinite basis space.
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8Li Expt. JISP16 AV18/IL2 CD-B INOY

Eb(2+) 41.277 40.3(2) 41.9(2) 35.82 41.3(5)

〈r2
pp〉1/2 2.21(6) 2.1 2.09(1) 2.17 2.01

Ex(1+) 0.981 1.5(2) 1.4(3)

Ex(3+) 2.255(3) 2.8(1) 2.5(3)

Ex(4+) 6.53(2) 7.0(3) 7.2(3)

Q(2+) 3.27(6) 2.6 3.2(1) 2.78 2.55

Q(1+) - 1.2

Q(3+) - -2.0

Q(4+) - -3.4

µ(2+) 1.654 1.3(1) 1.65(1) 1.24 1.42

µ(1+) - -2.2(2)

µ(3+) - 2.0(1)

µ(4+) - 1.84(1)

B(E2;1+) - 1.9

B(E2;3+) - 4.6

B(E2;4+) - 1.9

B(M1;1+) 5.0(16) 3.7(2)

B(M1;3+) 0.52(23) 0.25(5)

MGT

Table 3.3 Selected 8Li observables calculated up through Nmax = 12, with the same units
as in Table 3.1. The energies are obtained from extrapolations to the infinite
basis space, and the magnetic dipole observables are nearly converged, with er-
ror estimates as discussed in the text; the RMS point-proton radius and electric
quadrupole observables are evaluated at h̄Ω = 12.5 MeV. Experimental values are
from Refs. (73; 81; 82). AV18/IL2 data are from Refs. (75; 63) and does not in-
clude meson-exchange corrections for the magnetic moment; CD-Bonn and INOY
data are from Ref. (65), and were calculated at Nmax=12 and h̄Ω=12 and 16 MeV
respectively for CD-Bonn and INOY, with the INOY gs energy extrapolated to the
infinite basis space.
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CHAPTER 4. Density Results

4.1 Select Li Results

A closer look at the 3-dimensional one-body densities, free of spurious cm effects, helps

to develop a physical intuition for the ab initio structure of a nucleus. Although it is easier

to perform the deconvolution of the cm density after integrating out all angle-dependence,

one can also deconvolute the full 3-dimensional density. However, a detailed investigation of

the numerical convergence can be challenging for these 3-dimensional densities since different

regions will likely converge at different rates. This can be seen in Fig. 4: the interior region of

the density appears to be converging nicely while the tail region is much more dependent on

the Nmax truncation. We therefore present all our 3-dimensional density distributions in the

largest basis space at h̄Ω = 12.5 MeV only, where the RMS radius, as well as the quadrupole

moments (which are closely related to the shape of the wavefunction), generally appear to be

reasonably converged.

In order to produce the density that represents the actual shape of a specific state of a

nucleus in a translationally-invariant (inertial) frame, we set MJ = J for all our calculations of

the local density. We select the maximal positive angular momentum projection along axis of

quantization, the z-axis. This also seems like the natural choice since the quadrupole moment

Q is defined as the E2 matrix element at J = MJ (or equivalently, to the reduced E2 matrix

element). Note that even though we calculate 3-dimensional density distributions, our results

are symmetric under rotations around the z-axis: the wavefunctions have azimuthal symmetry.

Fig. 4.1 shows the matter density for the lowest two states of 6Li. Both states are oblate

(wider in the horizontal direction - perpendicular to the z-axis), though the (1+, 0) state is

nearly spherical whereas the (3+, 0) state is strongly oblate (elongated along the x-axis). Indeed,
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Figure 4.1 The y = 0 slice of the translationally-invariant matter density in the x-z plane for
the gs of 6Li (left, J = 1) is contrasted with the density for the first excited state
(right, J = 3). These densities were calculated at Nmax = 16 and h̄Ω = 12.5 MeV.

the relative deformation of the translationally-invariant densities for the gs and first excited

state is implied by the results in Table 3.1 for their respective quadrupole moments. The gs

has a negative calculated quadrupole that is near zero, in close agreement with experiment. In

contrast, the first excited state has a large and negative calculated quadrupole moment.

In the literature, one often encounters the long-established collective model, which works

in an intrinsic (non-inertial) reference frame. This often causes confusion when describing

the shape of a nuclear density distribution. In order to clarify this, it is worth commenting

that our use of the terms “prolate” and “oblate” characterize the shapes in the inertial frame,

not a body-fixed axis as is common for discussions of shapes in the collective model (60). In

the inertial frame of reference positive quadrupole moments correspond to prolate shapes and

negative quadrupole moments correspond to oblate shapes.

Fig. 4.2 illustrates the effect of MJ on the density distribution as we see the oblate shape

of the density at MJ = 3 (top left) morph into the prolate shape at MJ = 0 (bottom right).

Calculating the density when J 6= MJ gives a density whose azimuthal symmetry axis is not

aligned with the spin, e.g. at MJ = 0 the spin is aligned with the x-y plane, perpendicular

to the z-axis. The oblate shape we found at MJ = 3 is now also perpendicular to the z-axis.

On the other hand, we do have an azimuthal symmetry around the z-axis. Therefore, what we
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Figure 4.2 The y = 0 slice of the translationally-invariant matter density in the x-z plane for
first excited 3+ state of 6Li with Mj = 3, 2, 1, 0 clockwise from the top left.
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Figure 4.3 The y = 0 slice of the gs matter density of 7Li before (left) and after (right) decon-
volution of the spurious cm motion. These densities were calculated at Nmax = 14
and h̄Ω = 12.5 MeV.

obtain is an oblate shape perpendicular to the z-axis, but with its principle axis (symmetry

axis) averaged over all directions in the x-y plane. This results in a prolate shape at MJ = 0,

as we see in the bottom panel of Fig. 4.2. Note that we see the same for the E2 matrix element:

with MJ = 0, the E2 matrix element for this state is positive, but the corresponding quadrupole

moment, shown in Table 3.1, is negative.

The effect of the cm motion on the density is shown in Fig. 4.3 for the gs of 7Li. The left

panel shows the space-fixed (sf) density including the cm motion, ρΩ
sf(~r). Whereas the right

panel shows the translationally-invariant density, ρti(~r). The smearing of the density due to

the cm motion leads to a diminished central density; the sf density has a central value of 0.204

nucleons/fm3 while the ti density has a central value of 0.233 nucleons/fm3.

The cm motion smearing spreads out the sf density leading to a slower falloff and a larger

radius than the ti density. Furthermore, the ti density has a more pronounced oblate shape

than the sf density, as would be expected from smearing with a spherically-symmetric function

that averages out the non-spherical details. In order to characterize the degree of deformation,

we compare the ratio of the long axis to the short axis of the elliptical density slices. The ratio

of the long to short axes at half central density is 1.78 for the ti density and 1.60 for the sf

density. Note that the extent of the smearing effect from cm motion depends on the HO energy

of the basis. The sf density depends on h̄Ω, even in the limit Nmax →∞, whereas the ti density
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Figure 4.4 The y = 0 slices of the translationally-invariant proton densities for the first
excited 5

2

−
state (left) and for the second excited 5

2

−
state (right) of 7Li. These

densities were calculated at Nmax = 14 and h̄Ω = 12.5 MeV.

becomes independent of the basis in this limit.

Fig. 4.4 contrasts proton densities of the fourth and fifth excited states of 7Li. Although

their quantum numbers are equal, (Jπ, T ) = (5
2

−
, 1

2), they have other features that make them

quite distinct. Experimentally, the first excited 5
2

−
is broad, whereas the second excited 5

2

−
is

narrow: their experimental resonance widths are 0.88 MeV and 0.09 MeV respectively. Indeed,

as may be expected, our calculated excitation energy is better converged for the higher of these

two states. Furthermore, our calculations show significant differences in their structure: the

first excited 5
2

−
has a large negative quadrupole moment, while the second has a moderate

positive quadrupole moment (see Table 3.2). Indeed, the density shown in the left panel of

Fig. 4.4 is strongly oblate. In contrast the density shown in the right panel shows a moderately

prolate shape (we note again that the densities are symmetric around the azimuthal axis, which

is the vertical axis is these plots). Another noteworthy difference is observed in the magnitude

of the central proton density: the more diffuse (5
2

−
, 1

2)1 state has a central proton density of

only 0.08 protons/fm3 while the (5
2

−
, 1

2)2 state has a central proton density of 0.12 protons/fm3,

50% higher.

As discussed above, the quadrupole moments and B(E2) transition rates are not well con-

verged due to basis space limitations. In spite of these limitations, the quadrupole moments

allow us to qualitatively understand the shape of the proton densities of these states: prolate
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Figure 4.5 The y = 0 slice of the translationally-invariant proton (left) and neutron (right)
densities of the 2+ gs (top) and the first excited 4+ state (bottom) of 8Li. These
densities were calculated at Nmax = 12 and h̄Ω = 12.5 MeV.

for the 2+ gs and the first excited 1+, but oblate for the first excited 3+ and 4+ states. Indeed,

that is what we see in the left-hand panels of Fig. 4.5, where we plot these densities for the gs

and for the 4+ state.

Interestingly, the neutron density differs by more than a simple scale change from the proton

density for these two states, as can be seen from the right-hand panels of Fig. 4.5. In the 2+

state, the deformation of the neutrons is significantly larger than that of the protons, whereas

in the 4+ state, the deformation of the neutrons is much smaller than that of the protons. This

could be experimentally tested using experiments such as PREX (97), which measures neutron

mass distributions.

A case of special interest can be seen in the top right panel of Fig. 4.5, or in more detail
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Figure 4.6 The y = 0 slice of the translationally-invariant neutron density (left) of the 2+ gs
of 8Li. The space-fixed density for the same state is on the right. These densities
were calculated at Nmax = 12 and h̄Ω = 12.5 MeV.

in Fig. 4.6. In the left panel of Fig. 4.6 we clearly see non-trivial neutron clustering that is

obfuscated in the sf frame (right), highlighting the importance of the deconvolution procedure

and the significance of the translationally-invariant density. Furthermore, the ti density (left

panel) has a significantly higher density in the central region than the sf density (right panel).

Both the ti and the sf densities are normalized to give the same integrated density of five

neutrons. That means that the sf density is smeared out over a larger region, and falls off to

zero slower than the ti density. This is also evident in Fig. 4.3, where we contrasted the sf and

ti matter density of the gs of 7Li: the central density is significantly higher in the ti frame than

in the sf frame.

Another way of visualizing these densities is by plotting their multipole components, ρ(K)(r),

as is done in Fig. 4.7 for the 2+ gs and the first excited 4+ state of 8Li. Qualitatively, the

multipole components look very similar for the protons and neutrons in the ground state. The

main difference seems to be that the proton densities fall off more rapidly with r than the

neutron densities. This is understandable since this is a neutron-rich system and the single-

neutron removal energy is less than that of the single-proton removal energy. Note, however,

that in comparing in comparing Figs. 4.6 and 4.7 the clustering of the neutrons in the gs of

8Li, shown in the left panel of Fig. 4.6, is not evident from the multipole components ρ(K) of

the neutron density displayed in the top right panel Fig. 4.7. Thus, even though the radial
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Figure 4.7 The multipole components ρ
(K)
ti (r) of the proton (left) and neutron (right) densi-

ties of the 2+ gs (top) and the first excited 4+ state of 8Li. These densities were
calculated at Nmax = 12 and h̄Ω = 12.5 MeV. Monopole and quadrupole distribu-
tions for the gs are all positive. The K = 4 distributions for the gs are negative
in the interior and positive in the tail region. For the 4+ state, the monopoles
are positive while the quadrupole is negative for the protons and negative for the
interior of the neutrons. Both K = 4 distributions are positive for the 4+ state.

multipole densities of the protons and neutrons look qualitatively similar, the corresponding

3-dimensional densities look qualitatively different.

On the one hand, the monopole proton and densities of the first excited 4+ state of 8Li

are similar to those of the ground state, with the proton density falling off more rapidly than

the neutron density. On the other hand, the higher multipole components ρ(K)(r) of the first

excited 4+ state of 8Li look are qualitatively quite different than those of the ground state,

as well as different for the protons and the neutrons. The quadrupole density of the neutrons

in the 4+ state have a node, in contrast to those of the protons. Neither the proton nor the
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neutron octupole density has a node in the 4+ state, whereas both the proton and the neutron

octupole density has a node in the ground state.

We provide another view of the multipole content of the local non-spherical charge-dependent

density distributions for the gs of 8Li in Fig. 4.8. Here, we plot the various multipole compo-

nents for the proton density (left panels) and neutron density (right panels) defined as their

total contribution to the total density - i.e. as the respective full terms contributing to the sum

given in Eq. 2.23. The angular dependences are governed by the spherical harmonic factors.

These densities reveal significant differences between the protons and the neutrons at each

multipolarity. Note, in particular, that the neutron quadrupole density has larger (in magni-

tude) features than the proton quadrupole density. While, for the hexadecapole densities, the

situation is reversed with the protons having larger (in magnitude) features.

To determine the relative density distributions, it is often convenient to subtract the proton

density from the neutron density (or vice-versa). In Fig. 4.9, we show the neutron minus

proton density of the gs of 8Li. We see that the proton density is slightly higher in the center

of the nucleus, while the neutron density is higher everywhere else, and notably so above and

below the center along the azimuthal axis. Fig. 4.9 shows indications of clustering (localization

of a group of nucleons in a subvolume of the nucleus) more clearly that simply presenting the

neutron density alone.

Although these densities are not (yet) fully converged, we feel that the qualitative features

will persist in the limit of a complete basis. In particular salient differences between different

states and/or between the proton and neutron densities are likely to survive such a limit.

4.2 Selected Be Results

The following density distributions were calculated from OBDM’s provided by Maris et al

(83). We present results for the gs, 2nd excited state. and 7th excited state of 9Be. These

densities provide an overview of typical interesting features we see in 9Be. We continue to see

indications of neutron clustering in these figures as well as proton clustering in the gs and 7th

excited state. The indications of proton clustering are likely due to the extra proton when

compared to the Li isotopes. Neutron minus proton density distributions show the localization
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in different regions of both species of particles. These results further show the importance of

the deconvolution procedure. They indicate that the deconvolution is more important as the

number of nucleons increases.

In Fig. 4.10, we examine the ti densiy of the protons, neutrons, and neutrons minus protons

of the 3/2− gs of 9Be. We see indications of possible clustering in both the proton and neutron

densities. The proton density is slightly higher in the center, and the neutron density is higher

everywhere else, as expected, due to the number of neutrons. The neutrons appear to form a

toroidal shell around the higher central proton density.

In Fig. 4.11, we examine the ti densiy of the protons, neutrons, and neutrons minus

protons of the 2nd excited state (Jπ = 5/2−) of 9Be. In this case the proton and neutron

density distributions have opposite signed quadrupole moments. Qprot = −2.2 and Qneut = 0.2.

This is apparent from the obviously oblate proton distribution and nearly spherical neutron

distribution. As we have seen before, the proton density is higher than the neutron density

only in the center. As expected, due to the oblate shape of the proton density distribution, the

neutrons outweigh the protons most significantly along the azimuthal axis.

In Fig. 4.12, we examine the ti densiy of the protons and neutrons of the 7th excited state

(Jπ = 9/2−) of 9Be. Both the proton and neutron density distributions have a strong prolate

shape and appear to form a toroid in the x-y plane.
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Figure 4.8 The y = 0 slices of the translationally-invariant proton (left) and neutron (right)
densities of the 2+ gs of 8Li. From top to bottom, we present the monopole,
quadrupole and hexadecapole densities respectively. These densities were calcu-
lated at Nmax = 12 and h̄Ω = 12.5 MeV.
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Figure 4.9 The y = 0 slices of the translationally-invariant neutron density minus the proton
density ofthe 2+ gs of 8Li. The proton and neutron densities were calculated at
Nmax = 12 and h̄Ω = 12.5 MeV.

Figure 4.10 The y = 0 slices of the translationally invariant proton density (top left), neutron
density (top right), and neutron minus proton density (bottom) of the 3/2− gs of
9Be. These densities were calculated at Nmax = 10 and h̄Ω = 12.5 MeV.
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Figure 4.11 The y = 0 slices of the translationally invariant proton density (top left), neu-
tron density (top right), and neutron minus proton density (bottom) of the 2nd

excited state (J=5/2−) of 9Be. These densities were calculated at Nmax = 10 and
h̄Ω = 12.5 MeV.

Figure 4.12 The y = 0 slices of the translationally invariant proton density (left) and neutron
density (right) of the 7th excited state (J=9/2−) of 9Be. These densities were
calculated at Nmax = 10 and h̄Ω = 12.5 MeV.
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CHAPTER 5. The Wigner Function

The Wigner Function (WF) is a quantum-mechanical analog to the classical phase space

distribution. The WF was first introduced by Wigner in (7) as the Fourier transform of a

non-local OBDM:

W (~R, ~p) =

(
1

2π

)3 ∫
d3ye−i~p·~yρ(~r1 +

~y

2
, ~r1 −

~y

2
), (5.1)

where ~R = ~r1 + ~r2. Many basic observables, e.g., matter density, momentum density, etc., are

calculated using the same integrals over the WF as one would use in classical physics (84). The

WF is often used as a starting point for semi-classical approximations.

The WF in nuclear physics has been used to study fragmentation cross sections (85), dy-

namics and surface vibrations of heavy ion collisions (86), and to calculate the smoothly varying

regions of the binding energies of nuclei (87). The WF can also be used to calculate the kinetic

energy density (84).

The WF is normalized such that:∫
W (~R, ~p)d3R = ρ̃(~p) (5.2)∫
W (~R, ~p)d3p = ρ(~R) (5.3)

(5.4)

In this section, we provide derivations for a sf and ti WF. We then introduce a novel method

to display the full 6-dimensional WF.

5.1 Derivation of Space Fixed Wigner Function

We begin with the sf OBDM as it is output from MFDn:

ρfiαβ = 〈Ψf |a†αaβ|Ψi〉. (5.5)
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In subsequent expressions, we will supress the superscript, fi for compactness of notation.

Using Eq. 5.5 we construct the non-local density distribution:

ρsf (~r1, ~r1
′) =

∑
αβ

ραβφ
∗
α(~r1)φβ(~r1

′) (5.6)

where α represents the quantum numbers n, l, j,mj . We will let Latin indices represent the

quantum numbers n, l,ml. The product of two TDHOWF’s in the n, l, j,mj basis is:

φα(~r1)φβ(~r1
′) =

∑
mlms

δmjαmjβ 〈lαmlsms|jαmj〉〈lβmlsms|jβmj〉φi(~r1)φj(~r1
′), (5.7)

where i = {nα, lα,ml}.

Which gives us the OBDM:

ρ(~r1, ~r1
′) =

∑
i,j

cijφ
∗
i (~r1)φj(~r1

′) (5.8)

where

cij = ραβ〈lαmlsms|jαmj〉〈lβmlsms|jβmj〉 (5.9)

The Wigner function for a single term of the OBDM is

Wij(~R, ~p) =

(
1

2π

)3 ∫
d3ye−i~p·~yφ∗i (~r1 +

~y

2
)φj(~r1 −

~y

2
). (5.10)

The Wigner function for the entire OBDM is

W (~R, ~p) =
∑
i,j

cijWij(~R, ~p). (5.11)

In order to solve the Wigner function analytically, we must use the Talmi Transformation,

which states that, for two generic TDHOWF’s:

ψn1l1m1(~q1)ψn2l2m2(~q2) =
∑
〈l1m1l2m2|λµ〉〈lmLM |λµ〉(nlNLλ|n1l1n2l2λ)

×ψnlm(~q)ψNLM ( ~Q) (5.12)

where ~q = ~q1 − ~q2 and ~Q = (~q1+~q2)
2 . This leads to:

Wij(~R, ~p) =
(−1)m1

(2π)3

∫
d3ye−i~p·~y

∑
〈l1m1l2m2|λµ〉〈lmLM |λµ〉(nlNLλ|n1l1n2l2λ)

×φnlm(~y)φNLM (~R) (5.13)
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where (nlNLλ|n1l1n2l2λ) is a Talmi-Moshinsky Bracket, defined in (50). Note that we use the

Spherical Harmonic convention:

Y −ml (θ, φ) = (−1)mȲ m
l (θ, φ). (5.14)

Because our calculations are done in the m-scheme, we have mjα = mjβ, so m1 = m2 and

µ = 0. We can now show that

Wij(~R, ~p) =
(−1)m1

(2π)3

∫
d3ye−i~p·~y

∑
〈l1 −m1l2m1|λ0〉〈lmL−m|λ0〉(nlNLλ|n1l1n2l2λ)

×φnlm(~y)φNL−m(~R) (5.15)

The Fourier Transform of a TDHOWF is well-known and has the form

1

(2π)3/2

∫
d3qe−i~p·~qψnlm(~q) = i2n+lψnlm(~p) (5.16)

Our Wigner Function then becomes

Wij(~q, ~p) =
(−1)m1

(2π)3/2

∑
〈l1 −m1l2m1|λ0〉〈lmL−m|λ0〉(nlNLλ|n1l1n2l2λ)

i2n+lφnlm(~p)φNL−m(~R) (5.17)

Using the following form of the single-particle TDHOWF,

φnlm(~r) =

[
2(n!)

Γ(n+ l + 3
2)

]1/2

rle−r
2/2L

l+ 1
2

n (r2)Y m
l (θφ) (5.18)

where L
l+ 1

2
n is an Associated Laguerre Polynomial and Y m

l is a Spherical Harmonic, r is in

units of νr, p is in units of p/ν, our Wigner Function becomes

Wij(~R, ~p) =
(−1)m1

(2π)3/2

∑
〈l1 −m1l2m1|λ0〉〈lmL−m|λ0〉(nlNLλ|n1l1n2l2λ)[
4n!N !

Γ(n+ l + 3
2)Γ(N + L+ 3

2)

]1/2

plRLe−(R2+p2)

L
l+ 1

2
n (p2)Y m

l (p̂)L
L+ 1

2
N (R2)Y −ml (R̂)i2n+l (5.19)

The WF can now be written as:

Wij(~R, ~p) =
(−1)m1

(8
√

2π5/2)

∑
〈l1 −m1l2m1|λ0〉〈lmL−m|λ0〉(nlNLλ|n1l1n2l2λ)
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[
2n+N+l+L+4n!N !

(2n+ 2l + 1)!!(2N + 2L+ 1)!!

]1/2[
(2l + 1)(2L+ 1)(l − |m|)!(L− |m|)!

(l + |m|)!(L+ |m|)!

]1/2

(−1)n+ l
2

+mplRLe−(R2+p2)L
l+ 1

2
n (p2)L

L+ 1
2

N (R2)

Pml (cos(θp)P
m
L (cos(θR))e−im(φR−φp) (5.20)

Each value of m has a corresponding -m, so we can further simplify our expression to arrive at

the final result:

Wij(~R, ~p) =
(−1)m1

(8
√

2π5/2)

∑
4x(−1)n+ l

2
+m

[
2n+N+l+L+4n!N !(2l + 1)(2L+ 1)(l − |m|)!(L− |m|)!

(2n+ 2l + 1)!!(2N + 2L+ 1)!!(l + |m|)!(L+ |m|)!

]1/2

〈l1 −m1l2m1|λ0〉〈lmL−m|λ0〉(nlNLλ|n1l1n2l2λ)

plRLe−(R2+p2)L
l+ 1

2
n (p2)L

L+ 1
2

N (R2)

Pml (cos(θp)P
m
L (cos(θR))cos[m(φR − φp)] (5.21)

where x = 0 when m = 0 and x = 1 when m 6= 0. The sum is over 2n1 + l1 + 2n2 + l2 =

2n+ l + 2N + L; m = 0,min(l, L); and min(|l1 − l2|, |l − L|) ≤ λ ≤ min(|l1 + l2|, |l + L|)

5.2 Derivation of Translationally Invariant Wigner Function

Following the method of Yabana (88), we write the sf density distribution as a convolution

of the cm density distribution and the ti density distribution:

ρfisf ( ~rA, ~rA
′) =

∫
d3r1...d

3rA−1Ψ0

(∑A−1
i=1 ~ri + ~rA

A

)
Ψ∗0

(∑A−1
i=1 ~ri + ~rA

′

A

)
Ψf

(
~ξ1, ..., ~ξA−2, ~rA −

∑A−1
i=1 ~ri
A− 1

)
Ψi

(
~ξ1, ..., ~ξA−2, ~rA

′ −
∑A−1
i=1 ~ri
A− 1

)
(5.22)

where the Ψ0 is a 0s TDHOWF. The ~ξj
′
s are Jacobi coordinates defined by:

ξi =
A∑
j=1

Tij ~rj (5.23)

where (i = 1, ..., A) and Tij is defined by:

Tij ≡ −1/i, j = 1...i

1, j = i+ 1(i 6= A);TAj =
1

A
, j = 1...A

0, j = i+ 2...A. (5.24)
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We now introduce the Jacobi coordinates for a system of A-1 particles:

ξ̂j = ξj(j = 1...A− 2)

ξ̂A−1

A−1∑
r=1

~ri
A− 1

. (5.25)

We now change variables from {~ri} to {~ξi}(i = 1...A− 1) and rewrite Eq. 5.22 as:

ρfisf ( ~rA, ~rA
′) =

∫
d3ξ̂1...d

3 ˆξA−1Ψ0

(
(A− 1) ~̂ξA−1 + ~rA

A

)
Ψ∗0

(
(A− 1) ~̂ξA−1 + ~rA

′

A

)
×Ψf ( ~̂ξ1, .., ~̂ξA−1, ~rA − ~̂ξA−1)Ψ∗i (

~̂ξ1, .., ~̂ξA−1, ~rA
′ − ~̂ξA−1). (5.26)

Eq. 5.26 can be further rewritten through use of Eq. 2.4:

ρfisf =

∫
d3ξΨ0

(
(A− 1)~ξ + ~rA

A

)
Ψ∗0

(
(A− 1)~ξ + ~rA

′

A

)
×
∑
ij

ρtiij( ~rA − ~ξ, ~rA′ − ~ξ). (5.27)

We now explicitly insert the cm density distribution and change variables from ~rA, ~r
′
A through

the relation:

~r =
~rA + ~r′A

2

~y = ~rA − ~r′A (5.28)

and change ~ξ to −~ξ + ~r. Eq. 5.26 can now be rewritten as:

ρsfij (~r +
~y

2
, ~r − ~y

2
) =

∫
d3ξ

(
2A

π

)3/2

exp

[−2(A− 1)2

A

(
~ξ − A

A− 1
~r

)2

− y2

2A

]
×
∑
ij

ρtiij(
~ξ +

~y

2
, ~ξ − ~y

2
). (5.29)

This equation can be inverted to isolate the ti density distribution:

ρtiij(
~ξ +

~y

2
, ~ξ − ~y

2
) =

(
1

2π

)3(A− 1

A

)3

exp

[
y2

2A

∫
d3rd3k

× exp

[
i~k

(
A− 1

A
~ξ − ~r

)
+
k2

8A

]
ρsfij (~r +

~y

2
, ~r − ~y

2
). (5.30)

We now perform the Wigner Transform on Eq. 5.30. We first define:

W
(ti)
ij (~ξ, ~p) ≡

(
1

2π

)3 ∫
d3ye−i~p·~yρ

(ti)
ij (~ξ +

~y

2
, ~ξ − ~y

2
). (5.31)
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We see that:

W
(ti)
ij (~ξ, ~p) =

(
1

2π

)6(A− 1

A

)3 ∫
d3rd3kd3yexp

[
y2

2A

]
exp

[
i~k

(
A− 1

A
~ξ − ~r

)
+
k2

8A

]
(5.32)

×ρsfij (~r +
~y

2
, ~r − ~y

2
). (5.33)

We use the definition of the OBDM to rewrite this as:

W
(ti)
ij (~ξ, ~p) =

(
1

2π

)6(A− 1

A

)3 ∫
d3rd3kd3y exp

[
y2

2A

]
exp

[
i~k

(
A− 1

A
~ξ − ~r

)]
× exp

[
k2

8A

]
φ∗i (~r +

~y

2
)φj(~r −

~y

2
). (5.34)

As above, we perform a Talmi transformation (Eq. 5.12) on the TDHOWF’s:

W
(ti)
ij (~ξ, ~p) =

(
1

2π

)6(A− 1

A

)3 ∫
d3rd3kd3y exp

[
y2

2A

]
exp

[
i~k

(
A− 1

A
~ξ − ~r

)]
exp

[
k2

8A

]
×
∑
〈limiljmj |λ0〉〈lmLM |λ0〉(nlNLλ|nilinjljλ)φnlm(~y)φNLM (~r). (5.35)

We now define

φ(x)(~y) ≡ exp

[
y2

2A

]
φ(~y). (5.36)

This simply changes the length parameter in the gaussian term of the TDHOWF. While φ(x)(~y)

is not a true TDHOWF, it still has a simple analytic solution to the Fourier transform. Inserting

this definition into Eq. 5.35:

W
(ti)
ij (~ξ, ~p) =

(
1

2π

)6(A− 1

A

)3 ∫
d3rd3kd3y exp

[
i~k

(
A− 1

A
~ξ − ~r

)]
exp

[
k2

8A

]
(5.37)

×
∑
〈limiljmj |λ0〉〈lmLM |λ0〉(nlNLλ|nilinjljλ)φ

(x)
nlm(~y)φNLM (~r).(5.38)

We now define:

φ̃(ξ)(~p) ≡
∫
d3ye−i~p·~yφ(x)(~y). (5.39)

This leads to:

W
(ti)
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(
1

2π
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exp
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=

(
1

2π
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)3∑
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×
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[
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(
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)]
exp

[
− i~k · ~r

]
exp

[
k2
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]
φNLM (~r). (5.40)
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We now define:

φ̃NLM (~k) ≡
∫
d3re−i

~k·~rφNLM (~r) (5.41)

Our ti Wigner Function now becomes:

W
(ti)
ij (~ξ, ~p) =

(
1

2π

)6(A− 1

A

)3∑
〈limiljmj |λ0〉〈lmLM |λ0〉(nlNLλ|nilinjljλ)φ̃

(ξ)
nlm(~p)

×
∫
d3k exp

[
i~k ·

(
A− 1

A
~ξ

)]
exp

[
k2

8A

]
φ̃NLM (~k). (5.42)

Once again we modify the TDHOWF and define:

φ(p)(~ξ) ≡
∫
d3k exp

[
i~k ·

(
A− 1

A
~ξ

)]
φ̃NLM (~k) (5.43)

which leads to our final result:

W
(ti)
ij (~ξ, ~p) =

(
1

2π

)6(A− 1

A

)3∑
〈limiljmj |λ0〉〈lmLM |λ0〉(nlNLλ|nilinjljλ)

×φ̃(x)
nlm(~p)φ

(p)
NLM (~ξ) (5.44)

5.3 Results

In Fig. 5.1 we compare the sf and ti WF’s for the gs of 6Li. These WF’s were calculated at

Nmax = 2 and h̄Ω = 15MeV . The region shown in the figure is the y = 0 slice of coordinate

space. The arrows represent the momentum vector that maximizes the WF. Because the WF

is a pseudo-probability distribution, these momentum vectors can be considered to be the most

likely momentum at that point in coordinate space.

The WF by itself can be challenging to interpret in even systems restricted to 1 dimension

in coordinate space and 1 dimension in momentum space. Calculating the WF in its full 6

dimensional form adds even new challenges in the interpretation. In Fig. 5.1, we notice that

the ti WF has more structure, as expected, but this structure is very difficult to interpret.

We notice that the momentum vectors trend to the left throughout the majority of the space

presented. The apparent visual asymmetry is an artifact of the choice of the visualization

method. In both the sf and ti WF’s, we notice an off-axis line which appears to separate

the momentum vectors into two different orientations. While the sf WF has these vectors
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colliding, the ti WF shows a more subtle shift. The ti WF also shows more symmetry than its

sf counterpart.

Further exploration in both the size of the calculation and over a range of proton and

neutron numbers is necessary to comment further on these figures.
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Figure 5.1 The y = 0 slices of the WF for the gs of 6Li. These were calculated at Nmax = 2
and h̄Ω = 15MeV . The arrows represent the momentum vector that maximizes
the WF. The sf WF is shown on the top. The ti WF is shown on the bottom.
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CHAPTER 6. Concluding Remarks

We have performed no-core full configuration calculations for the Lithium isotopes, 6Li,

7Li, and 8Li with the realistic NN interaction JISP16. Several observables obtained (gs en-

ergies, excitation energies, magnetic dipole moments and reduced magnetic dipole transition

probabilities) compare well with both experiment and alternate methods and interactions. For

certain observables that are more sensitive to long-range correlations (the RMS radius, elec-

tric quadrupole moments, and reduced quadrupole transition probabilities) we were unable

to obtain full convergence, though they also compare favorably with alternate methods and

interactions.

One-dimensional and three-dimensional translationally-invariant one-body density distri-

butions were calculated for various ground and excited states of 6Li, 7Li, 8Li, and 9Be. These

one-body density distributions provide an excellent framework for visualization of nuclear shape

distortions and clustering effects. The associated one-body density matrix in the HO basis pro-

vides a compact form of all of the quantum one-body information for a given nuclear state. We

have made several predictions about the relative differences between neutron and proton den-

sity distributions in Li and Be isotopes. With recent advancements in experimental techniques

(97), it is now practical to test these predictions.

To improve our convergence, especially for matrix elements of long-range operators, we

would require significant increases in basis space sizes (increased Nmax) and/or alternatives

to the HO single-particle basis. Recent advances in the “Importance-Truncated No-Core Shell

Model” (89; 90), the “Symmetry-Adapted No-Core Shell Model (SANCSM)” (91) and the “No-

Core Monte Carlo Shell Model” (92) are promising new methods for accessing much larger basis

spaces.

Further advances in NN interactions, as well as three-body forces, could also help resolve
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Nucleus Previous Nmax Previous Result Current Nmax Current Result Expt.

6Li 12 31.00(31) 16 31.49(3) 31.994
7Li 10 37.59(30) 14 38.57(4) 39.244
8Li - - 12 40.3(2) 41.277

Table 6.1 Current binding energies for Li isotopes are compared with previous results and
experiment.

some of the residual differences between theory and experiment. Of course, there is also the

possibility that four-body forces may play a significant role.

In Table 6.1, we can see that increasing the model space has not only enhanced our agree-

ment with experimental results, but also shrunk the magnitude of the error estimate by approxi-

mately one order of magnitude. Unfortunately, due to the nature of the monotonic convergence,

increasing the size of the model space will give us diminishing returns; while the size of the

Hamiltonian matrix will still increase by approximately one order of magnitude for each in-

crease in Nmax, our error bars and experimental agreement will not continue to improve as

quickly as the matrix expands. While the SANCSM makes some progress in overcoming these

difficulties, it is still to early to determine whether or not it will be successful. It is also im-

portant to note that, when using only NN interactions, we are currently unable to quantify the

convergence rate of long-range observables. Because of these convergence problems, it is likely

that we will need to not only revise the JISP16 interaction, but also include NNN and possibly

NNNN terms in order to improve on our current results.

Expressions for the full 6-dimensional space fixed and translationally- invariant Wigner

Function were derived. In the literature, the Wigner Function is typically presented as a

function of a single coordinate dimension and single momentum dimension. Interpretation of

the 6D proved difficult, and as such, we tend not to think of the Wigner Function as an end

product by itself, but rather a middle step to more interesting calculations in future work, e.g.,

fragmentation cross sections.
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