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Abstract 
 
 
 

The purpose of this study was to examine the effects of tryptophan, the amino 

acid precursor to serotonin, on neuropsychological performance.  A dietary method of 

tryptophan manipulation was employed to temporarily raise, lower, or maintain 

circulating levels of tryptophan within the body, allowing the resulting cognitive and 

affective sequelae to be measured.  A total of 73 participants (50 females, 23 males) 

completed this mixed-design, double-blind study.  Participants were quasi-randomly 

assigned to one of three tryptophan conditions (augmented, depleted or balanced) and 

were provided with breakfast, lunch and a snack. A comprehensive neuropsychological 

test battery was administered 1.5 hours after completion of lunch.  Analyses were 

conducted on each gender separately.  No significant results were found for females.  For 

the males, however, significant between-group differences were found for the Rey-O 

delayed recall, with those in the Depletion group scoring significantly higher than those 

in the Balanced or Augmented conditions.  Males in the Augmented condition also 

performed better than those in the Balanced or Depleted condition on the speed 

component of the Ruff 2 & 7 Selective Attention Test.  With regards to affect, males in 

the Augmented group demonstrated a near-significant difference on the PANAS positive 

affect scale on the fourth PANAS administration compared to those in the Depleted 

group.  These differences in positive affect levels seem to be primarily driven by the 

trend in excitement levels between males in the Augmented and Depleted conditions over 

time. Results of this study support the hypothesis that dietary manipulations aimed at 
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altering tryptophan levels had an effect on some cognitive tests and positive affect, at 

least with regards to males.  
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Effects of tryptophan manipulation on neuropsychological performance 

 
Human behaviour is continuously influenced by factors stemming from the 

external environment and from internal systems.  The reaction to these stimuli is 

mediated by the central nervous system (CNS), in part through chemical messengers 

known as neurotransmitters (see Appendix A for glossary of terms).  Of all the 

neurotransmitters in the mammalian CNS, serotonin, one of the main metabolic products 

of tryptophan, has received a great deal of interest within the literature.  In particular, the 

focus of most research studies on serotonin has been on the association between the 

neurotransmitter and mood (Benkelfat, Ellenbogen, Dean, Palmour, & Young, 1994; 

Flory, Manuck, Matthews & Muldoon, 2004; Heninger, Delgado, Charney, Price & 

Aghajanian, 1992; Smith, Pihl, Young, & Ervin, 1987; S. N. Young, Smith, Pihl, & 

Ervin, 1985).  However, a growing body of evidence suggests that serotonin also plays a 

role in many cognitive functions (e.g., Lieberman, 2003).  Given that serotonin and it’s 

precursor (tryptophan) are derived from foods that are consumed (Sirek & Sirek, 1970), 

there is growing support for the notion that diet can produce reliable effects on 

tryptophan levels and thus, on cognitive performance (e.g., Dye, Lluch & Blundell, 

2000), presumably through the serotonergic pathway (one of the major pathways 

resulting from tryptophan metabolism).  In order to examine this notion, the 

neurochemistry behind tryptophan entering the body and becoming converted to 

serotonin will first be reviewed.  Following this review, the role of serotonin innervation, 

function, and the neuroanatomical structures related to the serotonergic system, as well as 

those related to the other pathways of tryptophan metabolism, will be discussed.  Finally, 
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this paper will examine the methods by which tryptophan levels can be manipulated.  

This study will investigate the effects of tryptophan on neuropsychological performance. 

 
Neurochemistry Review 

 In order to fully understand the ways in which tryptophan can exert its influence 

on cognitive and affective responses to stimuli in the environment, it is first necessary to 

understand the neurochemical bases of serotonin synthesis via tryptophan metabolism.  

The entire process begins with the ingestion of nutrients that are metabolized in order to 

provide the necessary amino acids for neurotransmitter synthesis to occur.  Thus, the first 

step in this process begins with the amino acids. 

 
The Amino Acids 

Three of the main components in the mammalian central nervous system (CNS) – 

peptides, amines, and non-essential amino acids (Wurtman, Hefti & Melamed, 1981) – 

are heavily dependent upon the ingestion and/or creation of amino acids.  Amino acids 

are critical to proper nutrition and are the building blocks of both proteins and peptides.  

Although proteins are essential macronutrients responsible for the growth and 

development of the body, including bones, skin, muscle and blood, as well as for the 

repair of tissues (Blass, 1994), it is the peptides that are a major component of the 

mammalian CNS.  Peptides are the chemical messengers of the CNS and are broadly 

distributed throughout the nervous system (Brownstein, 1994).   

When amino acids are broken down, amines are the resulting product. Amines, 

which comprise the second main component of the CNS, are involved in the production 

of neurotransmitters.  Based on their structure, amines are the building blocks of either 
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the catecholamines (e.g., epinephrine, norepinephrine, or dopamine) or the indolamine 

serotonin (Pinel, 2006).  Serotonin in an example of a monoamine, meaning it is 

synthesized from a single amino acid.  Compared to amino acids, monoamines are a 

group of small-molecule neurotransmitters that are produced by cell bodies that are 

mainly located in the brain stem (Pinel, 2006).  Neurotransmitters are released more 

diffusely from monoamines than from amino acids as their axons are highly branched 

with many varicosities (i.e., swellings along the axon of the presynaptic neuron that 

release neurotransmitters), enabling more widespread release of neurotransmitters into 

the extracellular space (Bunin & Wightman, 1999) serving a neuromodulatory function.   

The third main component of the mammalian CNS is that of the non-essential 

amino acids.  There are twenty standard amino acids, of which twelve are classified as 

non-essential; the remaining eight are comprised of essential amino acids.  The title of 

“essential” versus “non-essential” relates not to the importance of a given amino acid, as 

all are crucial for optimal health, but rather it relates to the means by which the body 

obtains the amino acids.  Non-essential amino acids, such as glutamine, can be 

synthesized by the human body from essential amino acids or via the catabolism of 

proteins.  Essential amino acids such as tryptophan, however, cannot be produced by the 

body and thus they must be obtained through the ingestion of food (Wurtman, et al., 

1981).  The distinction between the eight essential amino acids (isoleucine, leucine, 

lysine, methionine, phenylalanine, threonin, tryptophan, and valine) (V. R. Young, 1994) 

and the three semi-essential amino acids (histidine, tyrosine, and arginine) is that the 

latter can be synthesized by the adult human body but not by infants and growing 

children whose metabolic pathways are in the process of development (V. R. Young, 
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1994).  Both essential and non-essential amino acids are the major constituents involved 

in the creation of proteins (Barondes, 1974; Blass, 1994).   

Although not strictly one of the three essential components of the mammalian 

CNS, essential amino acids play a major role in neurotransmitter synthesis.  Based upon 

their chemical composition, essential amino acids can be classified into the aromatic 

amino acids (tryptophan, tyrosine, phenylalanine and histidine), the branched-chain 

amino acids (leucine, isoleucine, and valine), and the other amino acids (threonine and 

methionine) (Cooper, Bloom & Roth, 1996; Paul & Southgate, 1978; Wurtman et al., 

1981).  All three groups are examples of ‘large neutral amino acids’ (LNAAs), a term 

used to describe amino acids that compete with each other for uptake into the brain and 

subsequent neurotransmitter synthesis (Curzon, 1985; Wurtman et al., 2003).  Brain 

levels of neurotransmitters will change depending on the levels of the precursor(s) in the 

blood plasma, as will changes in blood plasma levels of competing LNAAs (Fernstrom & 

Wurtman, 1972).  Ultimately, however, it is the transport systems of the blood-brain 

barrier that determine which transmitters will gain access to the brain. 

 
The Blood-brain Barrier 

The blood-brain barrier is comprised of capillary endothelia with tight junctions 

between cells that create a continuous membrane separating the brain from circulating 

blood and preventing many harmful or toxic substances from gaining access to the brain 

(Betz, Goldstein & Katzman, 1994; Brightman, Reese & Feder, 1970; Oldendorf, 1976; 

Pinel, 2006).  According to Oldendorf, there are two ways in which molecules can cross 

the blood-brain barrier: 1) lipid-mediation, through which lipid-soluble molecules can 

easily pass; and 2) carrier-transport systems, in which special transport carriers are 
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needed to carry the molecules through the blood-brain barrier.  As LNAAs are not lipid-

soluble (Betz et al., 1994), Pardridge and others (Pardridge & Oldendorf, 1977; 

Wurtman, et al., 2003) posit that there is a special transport system for LNAAs that 

enables them to cross the blood-brain barrier.  As many of the LNAAs serve as 

neurotransmitter precursors, they must compete with each other for access to the carrier 

molecules (Pardridge & Oldendorf, 1977). Thus, those LNAAs with the highest blood 

plasma concentrations are most likely to gain access to the carrier molecules, enabling 

them to cross the blood-brain barrier and thus to alter the levels of brain neurotransmitters 

(Cooper et al., 1996).  Essential amino acids that serve as precursors to catecholamines or 

indolamine are readily admitted via the leucine-preferring system (L-system), whereas 

the alanine-system (A-system) serves to limit entry of the non-essential amino acids and 

actively transports them out of the brain (Betz et al., 1994; Oldendorf, 1971).  In other 

words, the essential amino acids are rapidly and broadly swept into the brain from the 

blood, whereas the non-essential amino acids are not as readily exchanged (Oldendorf, 

1971).  It is for this reason that Pardridge and Oldendorf (1977) state that  “… the blood-

brain barrier amino acid transport probably is the limiting factor in determining 

availability of amino acids in the brain” (p. 8).  Thus, even though the essential amino 

acids can cross the blood-brain barrier with greater ease, they must compete for access to 

the carrier systems.  It is this function, in addition to the ratio of each amino acid, which 

serves to limit the synthesis of neurotransmitters.   

 
Tryptophan:LNAA Ratios 

An additional factor that influences the rate of amino acids crossing the blood-

brain barrier is the ratio of each amino acid and whether or not there is competition with 
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other molecules for carrier transport.  For example, tryptophan is the least abundant of the 

amino acids (Paul & Southgate, 1978; Wurtman, 1970; Wurtman & Fernstrom, 1972; 

Wurtman et al., 1981).  As mentioned previously, the LNAAs (which include tryptophan) 

compete with each other for access to the blood-brain barrier transport molecules.  Thus, 

the other LNAAs gain access to transport carriers and cross the blood-brain barrier in 

greater volumes than tryptophan simply because they are more abundant.  The reasons for 

the greater abundance of the other LNAAs as compared to tryptophan are at least three-

fold. First, although the main source of tryptophan is from dietary protein (Munro, 1974), 

tryptophan comprises only a fraction of the total amino acid content of most dietary 

protein (approximately 1 to 1.6% compared to 25% for the LNAAs) (Wurtman, 1970). 

For this reason, the ingestion of protein greatly increases levels of the LNAAs, thereby 

maintaining the lowered tryptophan:LNAA ratio.  Second, half of all tryptophan that is 

ingested is excreted in the urine without being converted into serotonin (Sirek & Sirek, 

1970).  Finally, tryptophan is the only LNAA that is metabolized by the liver into 

kynurenine, which in turn is used in the synthesis of niacin; a key function of niacin is the 

metabolism of carbohydrates.  Since enzymes found in the liver can also break 

tryptophan into smaller proteins, the actions of the liver result in less tryptophan being 

available for systemic circulation (Brown, 1980).  

Thus, it is clear that there are many factors at work to maintain the 

tryptophan:LNAA ratio.  According to Fernstrom and Faller (1978), “… competition 

among tryptophan and other large neutral amino acids in blood is a very important, and 

perhaps dominant, determinant of tryptophan uptake into the brain” (p. 1537).  There are, 

however, two ways in which the ratio of tryptophan to LNAAs can be altered, which in 
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turn will alter the rate of transport of the different amino acids across the blood-brain 

barrier.  The first method of raising plasma tryptophan levels is by ingesting greater 

quantities of tryptophan-containing foods or supplements.  Although this might seem like 

a good technique in principle, it is in fact a poor method of altering the tryptophan levels.  

This is because ingesting dietary protein, albeit the main source of tryptophan, also raises 

the levels of LNAAs competing for transport across the blood-brain barrier.  For 

example, consuming a meal that contains 10% protein will raise tryptophan in levels that 

are proportionate to the raise in LNAAs (Fernstrom & Faller, 1978; Fernstrom & 

Wurtman, 1972). Thus, brain tryptophan levels will actually decrease due to increased 

competition from the other LNAAs that utilize the same transport carrier (Blass, 1994).  

According to Teff, Young, and Blundell (1989), even 4% protein in an otherwise protein-

free meal will prevent a rise in tryptophan levels compared to that of the LNAAs, while 

an amino acid mixture (100 g) that does not contain tryptophan will effectively reduce 

tryptophan plasma levels by 70 to 90% (S. N. Young, Ervin, Pihl & Finn, 1989).  Thus, it 

is clear that simply raising tryptophan levels will not suffice in adequately altering the 

tryptophan:LNAA ratio.   

The alternative method, which appears to be the most rapid and most effective 

means of altering the tryptophan:LNAA ratio, is by lowering levels of the other LNAAs 

through the ingestion of carbohydrates (i.e., “carb-loading”).  The consumption of 

carbohydrates results in an increase in insulin levels, which in turn lowers plasma levels 

of the LNAAs by drawing them into the surrounding tissue (Wurtman et al., 1981).  

Tryptophan, however, is impervious to this effect, presumably because approximately 70 

to 80% of plasma tryptophan is albumin-bound which prevents its penetration into 
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peripheral cells (Blum et al., 1992; Lyons & Truswell, 1988; McMenamy, Lund & 

Oncley, 1957).  Thus, ingesting carbohydrates essentially clears the way for tryptophan to 

travel to the blood-brain barrier and gain priority access to the carrier transport molecules 

which deliver it into the brain where it can be synthesized into serotonin. 

 
Serotonin Synthesis 

 All neurotransmitters are synthesized from precursors that are stored as tissue 

proteins until needed.  The essential amino acid tryptophan serves as the precursor for the 

indolamine serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter found throughout 

the brain and body.  Originally discovered due to its effects on smooth muscle 

contraction, serotonin was simultaneously yet independently discovered by Ersparmer 

(1940) in Italy and by Rapport, Green and Page (1948) in Cleveland, USA.  Both groups 

noticed that following blood clotting a substance was found within the serum that 

appeared to cause vasoconstriction.  The “tonic” effect of the serum substance was 

eventually termed “serotonin” and was subsequently found to have a wide array of effects 

on the body (Sirek & Sirek, 1970).   

 As shown in Figure 1, serotonin is created via a three-step process, starting with 

the precursor tryptophan.  Through the utilization of a single oxygen atom, the rate-

limiting enzyme tryptophan hydroxylase (which is only found in cells that produce 5-HT) 

converts tryptophan into 5-hydroxytryptophan (5-HTP) (Frazer & Hensler, 1994; Sirek & 

Sirek, 1970).  Serotonin is almost immediately synthesized once tryptophan is converted 

to 5-HTP (Cooper et al., 1996) through the action of the aromatic amino acid 

decarboxylase, an enzyme that removes a carboxyl group (Sirek & Sirek, 1970).  The 

resultant 5-HT is eventually degraded by monoamine oxidase through the removal of an 
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amine group (Sirek & Sirek, 1970).  The main product generated through the catabolism 

of 5-HT is 5-hydroxyindole acetic acid (5-HIAA), which is excreted through the urine 

(Frazer & Hensler, 1994).  It is estimated that the average human expels between 1 and 

10 mg of 5-HIAA per day (Sirek & Sirek, 1970).  As aromatic amino acid decarboxylase 

is not normally saturated in the human brain, levels of 5-HT can thus be boosted either 

through increasing 5-HTP itself (e.g., via supplementation), or by increasing tryptophan 

(e.g., via the ingestion of carbohydrates) which will in turn increase levels of 5-HTP, and 

thus of 5-HT (Frazer & Hensler, 1994).  Furthermore, although 5-HTP is only found in 

trace amounts in the brain (Frazer & Hensler, 1994), it is lipid-soluble (unlike 

tryptophan), and is therefore able to cross the blood-brain barrier without a carrier 

transport.  In this way, 5-HTP can act directly to increase brain serotonin levels (Murray, 

1998).  It is important to note, however, that of the approximate 10 mg of 5-HT found in 

an adult male (Sirek & Sirek, 1970), only about 1-2% of that total amount is found in the 

brain.  Within the brain, however, the pineal gland acts as the factory for producing 5-HT 

as it contains the enzymes necessary to convert tryptophan into 5-HT (Frazer & Hensler, 

1994).  The metabolic activity of the pineal gland, which is located outside of the blood-

brain barrier, is directly influenced by external factors such as light from the environment 

(via sympathetic innervation) that regulate the daily rhythmic cycle of 5-HT synthesis 

(Cooper et al., 1996).    
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Figure 1.  Flow chart depicting the enzymes responsible for converting tryptophan into 

serotonin (5-HT). 
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In order for tryptophan, 5-HTP, or any other precursor to successfully change the 

rate of neurotransmitter synthesis, however, five conditions must be met: 1) food 

consumption must produce equivalent increases in the amount of neurotransmitter 

precursors in the plasma levels; in other words, there must be no mechanism working to 

keep plasma levels within a strictly controlled and constant range; 2) a mechanism must 

be in place to enable the precursor access to the brain via the blood-brain barrier; 3) 

raising plasma levels of the precursor must be able to further saturate transport carriers so 

as to increase the amount of a given precursor gaining access to the brain (i.e., transport 

carriers must maintain a sub-threshold level of saturation); 4) there must be a low affinity 

between the enzyme and the precursor, resulting in poor binding and inefficient catalysis; 

the precursor will act as the rate-limiting factor in the genesis of the neurotransmitter; and 

5) the enzyme must be free of significant inhibitory feedback from the creation of its 

product (i.e., it must not “turn itself off” after producing a specific amount of its 

neurotransmitter) (Wurtman et al., 1981).  With regards to these conditions, Carlsson and 

Lindqvist (1978) have found that the enzyme tryptophan hydroxylase is only 50 to 75% 

saturated with tryptophan, indicating that the enzyme is not normally saturated in the 

mammalian brain (Cooper et al., 1996; Curzon & Knott, 1974; Frazer & Hensler, 1994; 

Gessa & Tagliamonte, 1974; S. N. Young, 1993).  Further, Lovenberg, Jequier, and 

Sjoerdsma (1968) posit that there is no evidence to suggest that 5-HT inhibits tryptophan 

hydroxylase, thereby decreasing its own rate of production.  Of note, Gallager and 

Aghajanian (1976) did find evidence that the rate of firing of 5-HT neurons in the raphe 

nuclei slows after the administration of large doses of tryptophan, resulting in decreased 

release, and perhaps decreased generation, of 5-HT.  However, since such instances do 
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not normally occur without external manipulation, it appears that there is minimal 

feedback control of 5-HT synthesis under normal conditions.  Thus, according to Spring 

(1986), tryptophan meets all five conditions for ensuring successful alteration of the rate 

of serotonin synthesis.  

Up until this point, we have discussed the process of metabolism by which the 

amino acid tryptophan gets converted into serotonin, the indolamine neurotransmitter 

involved in many different functions throughout the brain and body.  This next section 

will detail the routes of serotonin innervation within the brain and will discuss the 

specific neuroanatomical structures innervated by these pathways that are implicated in 

various cognitive functions.  There is, however, a gap in this literature that cannot fully 

be bridged as not enough is currently known about the effects of tryptophan manipulation 

on neuroanatomical function.  A better understanding of these pathways would enable 

more precise and accurate predictions about the role of tryptophan on specific 

neuroanatomical structures and functions. 

 
Serotonin Innervation and Functional Neuroanatomy 

 Serotonergic neurons have diffuse branching axons innervating much of the CNS 

(Frazer & Hensler, 1994; Tork, 1990).  The majority of their somas can be found along 

the brainstem midline, especially in the raphe nuclei of the brainstem, the pons and 

medulla (Cooper et al., 1996; Frazer & Hensler, 1994). These latter nuclei act as 

“variable ratio sensors” (Wurtman et al., 1981, p. 323) by keeping the rest of the brain 

informed about the body’s metabolic status.  This information is in turn used to help 

determine which actions should be carried out next (e.g., deciding which foods should be 

consumed at the next meal).  In more general terms, serotonin receptors are located 
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throughout the brain and spinal cord (e.g., the amygdala, hippocampus, hypothalamus, 

and substantia nigra, as well as all layers of the cerebral cortices) (Graeff, 1997; Molliver, 

1987; Palacios, Waebar, Hoyer & Mengod, 1990), with each area being responsive to 

certain types of input and nonresponsive to others.  Forebrain regions in control of 

physiological functions are the termination points for ascending projections, while the 

spinal cord is the end terminal for descending projections (Tork, 1990).  Until its release 

into the synapse via exocytotic mechanisms (Sanders-Bush & Martin, 1982), vesicles in 

the terminal buttons of the pre-synaptic neuron store the serotonin molecules.  The rate of 

release is determined by the rate of firing of serotonergic cells (Frazer & Hensler, 1994).  

Once released, the activity of 5-HT is terminated via reuptake at the serotonergic 

terminals.  Generally speaking, the serotonergic pathways emerge from the dorsal and the 

medial raphe nuclei and project to various neuroanatomical structures (Takagi, Shiosaka, 

Tohyama, Semba & Sakanaka, 1980).  The routes of serotonergic innervation throughout 

the brain, however, are extensive, influencing several different and, in many cases, 

overlapping neuroanatomical structures and functions.  The specific contributions of 

these structures to cognitive functioning are the focus of this next section.    

 Memory and Learning.  Many different regions of the brain are involved in 

different types of memory.  The most well-known of these structures is the hippocampus, 

a pair of seahorse-shaped structures that line the inner fold of each side of the temporal 

lobes (Lezak, Howieson & Loring, 2004).  The ventral hippocampus receives 

serotonergic innervation from dorsal raphe projections, whereas the dorsal hippocampus 

receives serotonergic innervation from the medial raphe nuclei (Graeff, 1997; Molliver, 

1987; Steckler & Sahgal, 1995).  The hippocampus plays a major role in normal learning 
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and retention, quickly associating and integrating information from multiple cortical 

areas (Eichenbaum & Cohen, 2001).  Serving as an index of where each memory is 

stored in the neocortex (Schacter, Norman, & Koutstaal, 1998), the hippocampus encodes 

information about events and the context in which they occurred, as well as the thoughts 

and emotions that were triggered by them.  These multiple pieces of information (i.e., 

“new” memories) are then consolidated and stored in the neocortex as “older” memories 

(Fuster, 1995).  The hippocampus plays a particular role in spatial memory as the 

perceptual and memory systems are closely linked (Zola & Squire, 2000). 

 The dorsomedial nucleus of the thalamus is also implicated in memory.  It has 

significant reciprocal pathways to the prefrontal cortex (Graff-Radford, 2003), as well as 

receptive pathways with the amygdala, temporal cortex, hypothalamus and interthalamic 

nuclei (Afifi & Bergman, 1998).  The dorsomedial nucleus of the thalamus receives 

serotonergic innervation via dorsal raphe projections (Cooper et al., 1996; Steckler & 

Sahgal, 1995).  Damage to these projections or to the dorsomedial thalamic nucleus 

would presumably result in decreased availability of serotonin which would result in 

functional impairments in memory.  

 The neostriatum, part of the basal ganglia, is also involved in memory.  More 

specifically, it is involved in procedural memory (Fuster, 1995), and it also plays a role in 

devising novel solutions to new situations (Saint-Cyr & Taylor, 1992).  The neostriatum 

and the basal ganglia both receive serotonergic innervation via dorsal raphe projections 

(Cooper et al., 1996; Graeff, 1997; Steckler & Sahgal, 1995). 

 Several components of the limbic system, which is comprised of numerous 

structures including the amygdala, the cingulate gyrus, and the hippocampus 
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(Markowitsch, 2000), are also involved in learning and memory.  The limbic system, 

which is spread through the brain stem (e.g., reticular activation system) and the cortex 

(e.g., olfactory bulb of the frontal cortex) (Lezak et al., 2004), are involved in memory, 

emotions, and motivation (Damasio, 1994; Markowitsch, 2000).  The limbic system 

receives serotonergic innervation from both dorsal and medial raphe projections (Cooper 

et al., 1996; Graeff, 1997; Steckler & Sahgal, 1995).  The mammillary bodies and the 

fornix, two other limbic components which are located within the posterior part of the 

hypothalamus, aid in the retention and consolidation of memories.  The fornix connects 

the hippocampal areas of the forebrain with those of the mammillothalamic regions of the 

limbic system (Markowitsch, 2000); damage to the mammillary bodies impairs memory 

processing (Tanaka, Miyazawa, Akaoka & Yamanda, 1997).  The amygdala, a small 

almond-shaped structure found deep in the anterior portion of the temporal lobe, is also 

involved in memory formation and consolidation by way of object recognition (Mishkin 

& Appenzeller, 1987) and by providing an emotional component to memories (Doty, 

1990).  It has extensive connections with many areas of the brain, including the nuclei in 

the brain stem, cerebral cortex, hypothalamus, thalamus, hippocampus, and basal ganglia 

(Lezak et al., 2004).   

 Lastly, the cerebellum, which is attached to the brainstem at the base of the brain, 

plays a role in memory and learning through its non-motor connections to the thalamus 

and via input received from the frontal, partietal and superior temporal cortices 

(Schmahmann & Sherman, 1998).  In this way, the cerebellum influences learning and 

memory in general (Nyberg, 1998), as well as working memory (Desmond, Gabrieli, 

Wagner, Ginier, & Glover, 1997).  Temporal, parietal, frontal and cerebellar cortices, as 
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well as all layers of the cerebral cortex, receive the majority of their serotonergic 

innervation from the dorsal raphe nuclei (Graeff, 1997; Molliver, 1987).    

Overall, the literature on serotonergic influences on memory are inconsistent as 

Riedel, Eikmans, Heldens and Schmitt (2005) found that citalopram, a selective serotonin 

reuptake inhibitor (SSRI), results in impairments in delayed memory recall, whereas 

others have found that increased levels of serotonin improved memory and learning (e.g., 

Luciana, Burgund, Berman & Hanson, 2001; Park et al., 1994).   

Attention.  As with memory, many different neuroanatomical structures are 

employed in the process of arousal and attending to stimuli.  The reticular formation is a 

network of reciprocal nerve fibers connecting the lowest part of the brainstem (the 

medulla oblongata) to all major cortical tracts.  The reticular formation contains the 

reticular activating system which is involved in attention through its arousal of the 

cerebral cortex (Mesulam, 2000).  The reticular activating system is responsible for 

alertness and for maintaining wakefulness (Mirsky, 1989).  Lesions to this system result 

in disturbances in sleep and general responsivity (Lezak et al., 2004).  Serotonergic 

innervation is mainly received from dorsal raphe projections (Steckler & Sahgal, 1995). 

 The thalamus also plays a role in attention (Corbetta, Miezin, Dobmeyer, 

Shulman & Petersen, 1991) by way of its connections with the reticular activating system 

(Steriade, Jones & Llinas, 1990).  The thalamus, a pair of small, oval-shaped structures 

lying along both sides of the third ventricle within the forebrain and above the 

hypothalamus, is known as the “relay station” of the limbic system and of the brain as a 

whole as it is involved in many different functions and has extensive reciprocal and 

topographically organized cortical connections, including pathways to the premotor, 



  Tryptophan     17   

prefrontal, temporal and parietal cortices (Kolb & Whishaw, 1996; Sherman & Koch, 

1998).  The role of the thalamus in attention is illustrated by reductions in awareness to 

stimuli on the side opposite the damaged thalamus (Heilman, Watson, & Valenstein, 

2003).  As with the dorsomedial nucleus, the thalamus receives serotonergic innervation 

via dorsal raphe projections (Cooper et al., 1996; Steckler & Sahgal, 1995).   

 Components of the limbic system also play a role in attention.  The ability to 

attend to stimuli is influenced by the amygdala (Eichenbaum & Cohen, 2001), but also by 

the cingulate cortex, a structure located deep within the brain above the corpus callosum.  

The amygdala has projections that terminate in the anterior portion of the cingulate 

cortex, influencing attention (Chelazzi & Corbetta, 2000), whereas the posterior portion 

is, in part, innervated by the hippocampus, thereby also implicating it in memory 

functions (Mesulam, 2000).  Serotonergic innervation to the amygdala is via dorsal raphe 

projections (Steckler & Sahgal, 1995), whereas the cingulate cortex receives its 

innervation from medial raphe projections.    

 The cerebellum is also known to play a role in attention (Middleton & Strick, 

2000a), and lesions to the white matter of the intercerebral conduction pathways that link 

the two hemispheres results in impairments in attention (Filley, 2001).  As mentioned 

previously, the cerebellum is innervated by dorsal raphe projections (Cooper et al., 1996), 

whereas both the dorsal and the medial raphe projections are likely involved in 

innervating the white matter (Cooper et al., 1996; Graeff, 1997; Steckler & Sahgal, 

1995).   

Taken together, increasing serotonin would be expected to improve attention 

(Lieberman, Falco & Slade, 2002) through an effect on the reticular activation system, 
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resulting in increased arousal and vigilance.  However, greater levels of serotonin may 

also impede certain aspects of attention (e.g. auditory and visual attention; Schmitt et al., 

2000) and vigilance (Riedel et al., 2005) presumably by way of an inhibitory effect on the 

amygdala, the thalamic nuclei or cerebellar structures. 

Executive Functioning.  The term ‘executive functioning’ is a catch-all phrase 

pertaining to most higher-level cognitive functions, including such diverse functions as 

planning, cognitive flexibility, and abstract reasoning, among others.  Thus, it is not 

surprising that, as with memory and attention, many different neuroanatomical structures 

are involved in these diverse functions.  For example, several researchers have found that 

the cerebellum, though primarily thought of for its motor control, plays a role in abstract 

reasoning (Middleton & Strick, 2000a), planning (Dow, 1998), set-shifting (Le, Pardo, & 

Hu, 1998), and information processing speed (Botez, Gravel, Attig, & Vezina, 1985), as 

well as in more language-based functions such as linguistic processing (Leiner, Leiner, & 

Dow, 1989), and word generation (Raichle, 2000).  It does this through its non-motor 

pathways.  Lesions to these pathways would presumably decrease the amount of 

serotonin available to the structures innervated by these cerebellar pathways and, 

although it has been found that information processing slows as a result (e.g., Botez et al., 

1985), it is unclear whether any effects on these cognitive processes result from decreases 

in brain tryptophan (and thus, presumably, serotonin) (e.g., Fischer, Colombani, 

Langhans & Wenk, 2002; Hughes et al., 2003; Luciana et al., 2001; Rogers et al., 1999; 

Schmitt et al., 2000). 

Each of the three main areas of the frontal cortex (premotor, motor and prefrontal 

cortices) is differentially innervated, albeit with some overlap.  The premotor cortex, 



  Tryptophan     19   

which is responsible for selecting a movement, receives input from the prefrontal cortex 

and parietal areas, whereas the motor cortex, which is responsible for carrying out a 

movement, projects to the basal ganglia and red nucleus (involved in motor 

coordination).  The prefrontal cortex, which receives its input from the parietal and 

temporal lobes, projects to the cingulate cortex, the basal ganglia, the amygdala and the 

hypothalamus (Kolb & Whishaw, 1996); this area is involved in the control of executive 

functions.  The frontal cortex is innervated by both medial and dorsal raphe projections 

(Graeff, 1997).  On a simplistic level, the frontal cortex is considered the primary 

location of executive functioning, although it is known that input into these functions are 

provided by most neuroanatomical structures in the brain (Lezak et al., 2004).  Lesions to 

the frontal lobes tend to produce deficits in “reciprocal relationships between the major 

functional system” (Lezak et al., 2004, p. 78).  This includes the limbic, sensory, motor 

and executive systems, resulting in deficits of integrating such varied constructs as 

memory, attention, drive, motivation, social behaviour and motor function (Barrash, 

Tranel & Anderson, 2000; Damasio & Van Hoesen, 1983; Lezak et al., 2004).   

The basal ganglia, a bundle of nuclei comprised of the caudate, putamen and 

globus pallidus, as well as the amygdala, subthalamic nucleus and substantia nigra, sits at 

the base of the cerebral hemispheres.  The caudate nucleus and putamen receive direct 

input from the cerebral cortex, whereas the substantia nigra and the globus pallidus 

project to the cerebral cortex via the thalamus (Lezak et al., 2004).  Reductions in 

cognitive flexibility (i.e., the ability to change cognitive strategies to meet new demands) 

are noted after damage to the basal ganglia (Lawrence, Sahakian, Rogers, Hodge, & 
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Robbins, 1999).  Collectively, these regions are innervated by serotonergic projections 

from the dorsal raphe nuclei (Graeff, 1997; Steckler & Sahgal, 1995).   

Overall, certain aspects of executive functioning, such as novel solution 

generation, have been found to improve with increased serotonin levels (Kurup & Kurup, 

2003), whereas other functions, such as verbal fluency and strategy planning, have been 

found to improve with decreasing serotonin levels (Park et al., 1994; Schmitt et al., 

2000).  It is thus unclear from the literature the exact ways in which increases or 

decreases in serotonin levels (as assessed via tryptophan manipulation) affect cerebellar, 

basal gangliar, and frontal cortical functioning.  

 Emotional Regulation.  Many different neuroanatomical structures are involved in 

the processing, production and memory of emotionally-charged stimuli.  The 

hypothalamus, which is located just above the brain stem but below the thalamus, 

influences the activity of the pituitary gland in order to control and coordinate such 

activities of the endocrine and autonomic nervous systems as circadian rhythms, hunger, 

thirst, fatigue and body temperature (Pinel, 2003; Rolls, 1999).  Protective emotional 

reactions such as fear or rage are also controlled by this structure (Lezak et al., 2004).  

According to Flynn, Cummings and Tomiyasu (1988), depending on the location of the 

hypothalamic damage, a myriad of symptoms may emerge, such as obesity or reductions 

in drive or responsivity.  Alterations in mood have also been implicated in damage to 

hypothalamic pathways (Andreasen, 2001).  Serotonergic innervation to the medial and 

periventricular hypothalamus is received by dorsal raphe projections (Graeff, 1997; 

Steckler & Sahgal, 1995), whereas the lateral hypothalamus receives medial raphe 
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projections (Graeff, 1997; Molliver, 1987).  Thus, damage to these pathways would 

presumably reduce the amount of serotonin available to the hypothalamus.  

 Through its role as a relay station for the limbic system, the thalamus exerts an 

influence on emotional responding.  It has been found that damage to the thalamus results 

in apathy, emotional flattening and reductions in drive (O’Connor, Verfaellie, & Cermak, 

1995).  The cingulate cortex, part of the limbic system, has also been implicated in 

emotional responding (Rolls, 1999).  As stated above, the thalamus and the cingulate 

cortex are innervated by dorsal and medial raphe projections, respectively (Graeff, 1997; 

Steckler & Sahgal, 1995).    

 The amygdala, which is also a component of the limbic system involved in 

emotional behaviour, has extensive innervation from the hypothalamus and is implicated 

in emotional responding (Lezak et al., 2004), processing and learning (Bechara, Damasio, 

Damasio, & Lee, 1999).  Through its connection to the ventral hippocampus, the 

amygdala also plays a role in memories of emotional events (Pinel, 2003).  Lesions to the 

amygdala dampen the expression of emotional states and aggressive behaviour 

(Aggleton, 1993; Brodal, 1981).  Amygdalar lesions would also presumably decrease 

availability of serotonin in the brain, and it has been found that decreases in tryptophan, 

the precursor to serotonin, results in increased levels of aggression (Cleare & Bond, 

1995; Pihl et al., 1995).  The amygdala receives serotonergic innervation from dorsal 

raphe projections (Graeff, 1997; Steckler & Sahgal, 1995).   

 The basal ganglia are also implicated in emotional experiences, as it has been 

documented that bilateral damage to these structures results in flattening of emotional 

expression (Bhatia & Marsden, 1994).  Damage to the circuitry of the non-motor 



  Tryptophan     22   

pathways of the basal ganglia are also implicated in several psychiatric disorders, 

including depression (e.g., Middleton & Strick, 2000b).  As mentioned above, 

serotonergic innervation to the basal ganglia is via dorsal raphe projections (Graeff, 1997; 

Steckler & Sahgal, 1995).   

 Fine Motor Control.  The last area of functional neuroanatomy to be discussed in 

this section pertains to motor control.  The pons, which literally means “bridge”, is a 

small structure on the brainstem above the medulla that is responsible for carrying 

sensory signal up to the thalamus, and for sending signals down from the cortex.  It 

serves as a major pathway between the cerebellum and the cerebral cortex (Lezak et al., 

2004).  Together, the pons and cerebellum are responsible for kinesthetic and postural 

control, fine-tuning motor impulses from the cerebral cortex (Lezak et al., 2004).  These 

areas are innervated by dorsal raphe projections (Steckler & Sahgal, 1995).  Damage to 

either area results in difficulty with coordination and fine motor control (Barlow, 2002; 

Caplan, 2001).  It has been reported within the literature that increased serotonin results 

in problems of motor coordination (e.g., Luciana et al., 2001) and slowed motor response 

time (e.g., Markus et al., 1998).  Increased levels of serotonin may thus exert an 

inhibitory effect upon the pons and cerebellum, thereby reducing motor speed and 

response times (e.g., Luciana et al., 2001; Markus et al., 1998). 

 
Serotonin, Mood and Cognitive Performance 

As mentioned earlier, much of the research on 5-HT has focused on the role of 

serotonin in mental disorders and physiological disturbances.  Indeed, serotonin has been 

implicated in many different disorders, such as depression (e.g., Sobczak et al., 2002), 

attention-deficit hyperactivity disorder (e.g., Barrickman, Noyes, Kuperman, Schumacher 
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& Verda, 1991), and sleep, arousal and insomnia (e.g., Lieberman et al., 1983), among 

others.  Of the numerous disturbances in which 5-HT has been implicated, however, 

depression is a disorder commonly dealt with by clinical psychologists (Ormel, et al., 

1994).  Thus, it comes as no surprise that there is a growing literature on the effects of 

depression on cognitive performance.  For instance, it has been reported that depression 

can result in lower scores on measures of executive functioning (e.g., Rogers et al., 2004; 

Veiel, 1997; but see Mitchell & Phillips, 2007), memory (e.g., Austin, Mitchell & 

Goodwin, 2001), working memory (e.g., Harvey et al., 2004), speed of processing and 

motor performance (e.g., Gualtieri, Johnson & Benedict, 2006; Sobin & Sackeim, 1997), 

intelligence (e.g., Hartlage, Alloy, Vazquez & Dykman, 1993) and attention (e.g., Porter, 

Gallagher, Thompson & Young, 2003).  The mechanism behind this relationship between 

cognition and depression, however, is still somewhat unclear.  It can be surmised that 

since depression is associated with reductions in serotonin levels (Frazer & Hensler, 

1994), it could be that lower levels of tryptophan (or its metabolite, 5-HTP) are crossing 

the blood-brain barrier, resulting in lower levels of serotonin production and activity.  

This could in turn directly affect the neuroanatomical structures that are known to play a 

role in a given cognitive function.  For instance, it has been reported in the literature that 

reductions in hippocampal volume are frequently noted in those suffering from 

depression (e.g., Campbell, Marriott, Nahmias & MacQueen, 2004; Videbech & 

Ravnkilde, 2004; but see Vythilingam, et al., 2004).  Cortisol levels are often found to be 

elevated in those suffering from depression (e.g., Monteleone, 2001), and chronic 

elevation of cortisol is known to both reduce hippocampal activity and increase 

hippocampal atrophy (McAuley et al., 2009).  Furthermore, stress is known to inhibit 
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hippocampal neurogenesis, a process that normally occurs throughout the lifespan, and to 

reduce dendritic branching (Jacobs, van Praag & Gage, 2000).  Reductions in dendritic 

branching, as well as atrophy within the hippocampus, would both result in decreased 

hippocampal volume.  Thus, it could be that the lowered levels of serotonin, such as are 

found in those with depressions (e.g., Wichers & Maes, 2002), affect memory via direct 

effect on the hippocampus (and possibly other neuroanatomical structures involved in 

this cognitive process). 

According to Cook (1991), there is growing evidence to support such interactions 

between serotonin, mood and cognitive performance.  These processes likely occur in the 

limbic system (described above), areas of the brain heavily innervated by serotonergic 

projections.  Further evidence of the relationship between serotonin and cognitive 

performance lies within the hippocampus, a structure known to play a major role in long-

term memory (LTM).  As described above, if the serotonergic pathways projecting to the 

hippocampus are compromised, or if there is a change in the amount or rate of firing of 

serotonergic cells, hippocampal functioning could be altered as a result.  The thalamus, 

which receives serotonergic projections from the dorsal raphe nuclei, is known to play a 

role in attention (Corbetta et al., 1991) and thus, alterations in the activity of this pathway 

or region could result in disruptions in information processing due to poor attention.   

Taken together, the discussions in the previous two sections on functional 

neuroanatomy and the relationship between mood, serotonin and cognition provide 

evidence that many cognitive and affective processes are, in fact, affected by serotonin 

and the serotonergic pathways known to affect neuroanatomical structures.  
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Relationship between Serotonin, Depression and Antidepressants 

 As discussed above, depression is one of the most commonly seen psychological 

disorders dealt with by clinicians.  One way in which depression is treated is via 

pharmacological intervention with antidepressant medications.  There are three main 

classes of antidepressant medications used in the treatment of depression.  The oldest 

class is known as the tricyclic antidepressants and they exert their effects by blocking the 

reuptake of serotonin and norepinephrine.  These actions on the serotonergic system are 

thought to regulate mood (Murray, 1998). Monoamine oxidase inhibitors (MAOIs) work 

by decreasing the rate at which the MAO enzyme breaks down monoamine 

neurotransmitters, thus increasing the availability of serotonin, dopamine, epinephrine 

and norepinephrine in the synapse.  A third class of medication is known as the serotonin 

reuptake inhibitors.  These drugs exert their influence by nonselectively inhibiting the 

uptake of serotonin and other monoamines, thereby increasing their concentrations in the 

synapse.  The selective serotonin reuptake inhibitors (SSRIs), however, only block the 

reabsorption of serotonin, thus making them of the greatest interest here.  Since the SSRIs 

work by blocking the reuptake of serotonin into presynaptic neurons, greater amounts of 

serotonin are available in the synapse (Murray, 1998).  This increase in serotonin 

availability increases the inhibitory activity of presynaptic receptors, thereby decreasing 

the firing rate of the serotonergic neuron (Blier & de Montigny, 1994; Nutt et al., 1999).  

This negative feedback mechanism results in an initial inhibition of the firing rate of the 

raphe nuclei.  After this initial inhibitory period, the concentration of serotonin in the 

synapse begins to increase over the course of several weeks until serotonin levels reach 

therapeutic levels within the cortex (Nutt et al., 1999).   There is documentation within 
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the literature that SSRIs are an effective treatment for depression (e.g., Kraft, Slager, 

McGrath & Hamilton, 2005; Pallanti, & Sandner, 2007; Rossi, Barraco & Donda, 2004;  

Zohar, & Westenberg, 2000; but see Hotopf & Barbui, 2004; Kirsch, Moore, Scoboria, & 

Nicholls, 2002) as they have generally been found to improve negative mood states in 

both normal, non-depressed persons, and in patients with depression (e.g., Barge-

Schaapveld, Nicolson, van der Hoop, & DeVries, 1995; Barton, et al., 2008; Bell, 

Abrams, Nutt, 2001; Delgado et al., 1990).  Of interest, however, is that there is research 

documenting the efficacy of serotonergic precursors, such as 5-HTP, as being equal to 

those of SSRIs in treating depression.  For instance, Poldinger, Calanchini and Schwarz 

(1991) conducted a clinical trial wherein patients diagnosed with depression where given 

either 100mg of 5-HTP three times a day, or 50mg of the SSRI fluvoxamine three times a 

day for a period of six weeks.  At the end of the six-week trial, 5-HTP was not only found 

to be as effective as the SSRI at treating depressive symptoms, but it also produced fewer 

side effects.  These results echo those of van Praag (1981) who similarly found in his 

study that daily doses of 200mg of 5-HTP were as effective as the tricyclic antidepressant 

clomipramine at alleviating symptoms, again with fewer side effects.  Further support for 

these findings comes from the literature on acute tryptophan depletion and SSRI use.  For 

instance, Delgado and colleagues (1990) induced acute tryptophan depletion in a group of 

patients diagnosed with depression who were being successfully treated with SSRIs.  Of 

the 21 patients in this study, two-thirds of them experienced a relapse in their depressive 

symptoms following tryptophan depletion.  Upon consuming a normal meal, it took 

between 24 and 48 hours for remission to return.  The authors found that free plasma 

tryptophan levels were negatively correlated with depression scores during the depletion, 
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with more tryptophan in the plasma resulting in lesser degrees of depression.  These 

results have been replicated in the literature by several other researchers (e.g., Booij, Van 

der Does, Haffmans, & Riedel, 2005; Nutt et al., 1999; O’Reardon et al., 2004) which, 

when taken together with the literature on SSRIs, indicates that reductions in serotonergic 

activity may be implicated in depressive symptoms in certain groups of people (Cooper et 

al, 1996).   

The relationship between serotonin and depression, however, is far from clear as 

there is documentation within the literature that selective serotonin reuptake enhancers 

(SSREs) such as tianeptine, which act to increase the reuptake of serotonin at the 

synapse, also result in improvements in symptoms of depression (Defrance, Marey & 

Kamoun, 1988;  Mennini, Mocaer & Garattini, 1987).  Thus, although it is unclear 

whether increases or decreases in serotonergic activity have greater implications for the 

treatment of depression, it does appear that serotonin is in some way involved in 

depressive symptoms. 

   
Effects of Other Tryptophan Metabolites on Brain Function 
 

There is also growing evidence, however, that other metabolites of tryptophan 

affect neuroanatomical function and thus, cognitive performance.  Such metabolites are 

created when tryptophan circulating in the bloodstream passes through the liver, which 

can result in one of four possible outcomes: 1) tryptophan is returned, unchanged, into the 

bloodstream for use elsewhere in the body; 2) liver enzymes break tryptophan down into 

smaller proteins; 3) tryptophan gets converted into 5-HTP; or 4) tryptophan is converted 

into kynurenine (Murray, 1998).  As kynurenine is a convulsant responsible for proper 

muscle function, an excess of kynurenine can result in damage to the muscles.  Normally, 
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the liver produces greater quantities of kynurenine (used in the production of niacin) than 

5-HTP.  However, heightened or chronic stress can upset the balance even more by 

decreasing the supply of the enzyme necessary to produce 5-HTP, resulting in even less 

5-HTP being produced and thus lowering the production of 5-HT in the brain  (Murray, 

1998).  Kynurenic acid, which is produced by the kynurenine pathway and released by 

astrocytes, is critical for memory and learning (Potter, 2009).  This is because the 

hippocampus is heavily innervated by glutamatergic neurons and glutamatergic 

neurotransmission is mediated by NMDA (N-methyl-D-aspartate) receptors.  Kynurenic 

acid acts as an NMDA receptor antagonist, meaning that it reduces the chances that the 

calcium ion channel (which is controlled by NMDA) will open.  The opening of this 

channel is essential for long-term potentiation (i.e., the protracted increase in 

communication that occurs between the pre- and the post-synaptic neuron when they are 

stimulated at the same time) (Carlson, 2007), which is, in turn, thought to be a major 

underlying mechanism in learning and memory (Bliss & Collingridge, 1993).  Thus, 

greater amounts of kynurenine result in less 5-HTP in the brain, leading to less serotonin 

production in the brain, but more kynurenic acid, an NMDA antagonist the makes it less 

likely that long-term potentiation will occur.  Together, these processes reduce both 

learning and memory within the hippocampus.  

 The NMDA receptors are also thought to play a role in developmental neural 

plasticity (Cooper et al., 1996).  These receptors have agonist receptor sites for glutamate 

and for glycine, both of which must be activated if the ion channel is to open (Dingledine 

& McBain, 1994).  However, kynurenic acid by-products, such as quinolinic acid, act as 

antagonists of the glycine receptor site (Dingledine & McBain, 1994), working to 
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decrease the chances of the NMDA-regulated ion channel opening, and thereby 

decreasing the likelihood of long-term potentiation occurring.  Quinolinic acid is an 

excitatory neurotoxin, meaning that it binds to a neuron and causes damage or cell death 

due to its stimulation.  In this way, quinolinic acid may play a role in neurotoxicity 

induced by NMDA (Cooper et al., 1996).  Quinolinic acid has also been implicated in 

neurodegeneration within the rat hippocampus, resulting in cognitive impairment 

(O’Neill, Morgan, & Brioni, 1998).  Fortunately, glial cells release kynurenate, a by-

product of kynurenine, to serve a neuroprotective role within the brain (Cooper et al., 

1996).  It can thus be seen that the different by-products of tryptophan metabolism have 

differing effects on the neurochemistry of the brain.  Quinolinic acid, a neurotoxin, may 

produce memory impairments, whereas kynurenate works to protect the brain from these 

neurotoxic effects.  If there is an imbalance in these neurochemicals, the chances of long-

term potentiation and thus learning and long-term memory, may be decreased.   

Lastly, there is some evidence that melatonin, another tryptophan metabolite, 

plays a role in cognitive functioning.  Melatonin is created in the pineal gland, which 

houses all the necessary enzymes to turn tryptophan into serotonin; serotonin is then 

converted into melatonin (Frazer & Hensler, 1994).  Aside from its role in circadian 

rhythms, melatonin has been implicated in the inhibition of long-term potentiation in the 

rat hippocampus (Soto-Moyano et al., 2006) and in deficits in learning and memory in 

mice (Larson et al., 2006).   Thus, if there are alterations in the amount of tryptophan 

reaching the brain, a ripple effect could be seen wherein less serotonin is created, 

resulting in less melatonin, which in turn could lead to decreased performance on 

learning and memory tasks. 
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Taken together, it is clear within the literature that there are many different 

pathways in which tryptophan can affect the neurochemical balance in the brain which 

may in turn produce changes in cognitive performance by way of influencing 

neuroanatomical functioning.  

 
 

Effects of Tryptophan Augmentation or Depletion 
on Neuropsychological Performance 

 
Amino Acid Protocol 

One method of assessing the effects of tryptophan metabolites on affect and 

cognitive performance is via acute tryptophan depletion.  As discussed previously, 

depletion works by decreasing the tryptophan:LNAA ratio, resulting in marked decreases 

of tryptophan compared to the LNAAs competing for transport across the blood-brain 

barrier.  By depleting tryptophan levels, researchers can quantify and measure the effects 

of lower tryptophan levels on cognition.  The most common means of accomplishing 

depletion is by ingesting a mixture of amino acids (prepared as a drink) containing all the 

essential amino acids except for tryptophan.  The balanced, or placebo, condition in such 

studies sees the addition of L-tryptophan to the depletion mixture.  In studies that include 

acute tryptophan augmentation, a larger dose of tryptophan is added to the mixture than 

that added for the balanced drink.  At this point, a note on the terminology used within 

the literature is necessary as there are several terms that are used almost interchangeably 

when referring to acute tryptophan depletion (e.g., ATD, protein-loading) or to acute 

tryptophan augmentation (e.g., ATA, carbohydrate-loading).  For parsimonious reasons, 

the remainder of this paper will employ the term ‘depletion’ to denote ‘acute tryptophan 

depletion’ or ‘protein-loading’, and the term ‘augmentation’ will be used to refer to 
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‘acute tryptophan augmentation’ or ‘carbohydrate-loading’.  The term ‘balanced’ will be 

used in reference to the ‘balanced condition’. 

Among the first to examine the effects of acute tryptophan depletion were S. N. 

Young and colleagues (S. N. Young, Smith, Pihl & Ervin, 1985), who found marked 

decreases in free and total plasma tryptophan levels following ingestion of the depletion 

mixture, and drastic increases following ingestion of the balanced drink.  This method 

has since been employed by numerous researchers who have found similar results when 

examining the effects of depletion on total and/or free plasma tryptophan levels (e.g., 

Hughes et al., 2003; Schmitt et al., 2000).  With evidence that this protocol produced 

reliable alterations in plasma and total free tryptophan levels, attention was turned to the 

effects such manipulations would have on mood and cognition given that alterations in 

plasma tryptophan levels would presumably result in an alteration in brain serotonin 

production and release.   

In order to examine the effects of depletion on memory and learning, Park and 

colleagues (1994) recruited 12 male participants and randomly assigned them to a 

depletion or to a balanced group. Both researchers and participants were blind to the 

drink composition, and all participants took part in both conditions separated by a 

minimum of 7 days between test sessions.  On both occasions, participants were provided 

with a 52 g amino acid drink (S. N. Young and colleagues (1985) employed a 100 g 

protocol), and blood samples were drawn both before ingesting the drink and 

approximately 4 hours later, just prior to commencing the neuropsychological testing.  

The domains of executive functioning, visual/visuospatial pattern learning and memory, 

attention, and working memory were tested using the Cambridge Neuropsychological 
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Test Automated Battery (CANTAB), a computerized neuropsychological test battery.  

Participants also completed visual analogue scales to measure their perceived level of 

sadness, anxiety, irritability, concentration, and energy levels, along with a computerized 

test of autobiographical memory.  Researchers found that total free and plasma 

tryptophan levels were lowered following the depletion condition, but remained the same 

following the balanced condition.  Overall, it was found that although neither mood nor 

autobiographical memory was affected by depletion, certain types of learning and 

memory (i.e., learning and remembering new rules and visuospatial pairings) were 

reduced by depletion.  In addition, neither attention nor working memory showed any 

effect of depletion.  The authors concluded that low tryptophan levels result in poor 

consolidation of information in memory and thus lower scores on measures of long-term 

memory (LTM) and learning.   

The finding that depletion results in transient decreases in learning has been 

corroborated by several others.  For instance, using the same protocol as S. N. Young’s 

group (S. N. Young et al., 1985), Rogers and colleagues (1999) found reductions in 

visual discrimination learning following depletion (compared to a balanced condition), 

with participants demonstrating marked difficulty learning new stimulus-reward pairings. 

In this study, participants’ ability to shift attention to now-relevant stimuli dimensions 

remained intact.  In addition, both total and free tryptophan levels were lowered by the 

depletion but not by the balanced protocol.  These results were interpreted to suggest that 

cortical and subcortical regions undergo a change in neuromodulation that is affected by 

serotonin (Rogers et al., 1999).   
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Transient decreases in LTM have also been noted by Riedel and colleagues 

(1999), who examined mood and cognition in tryptophan-depleted participants with and 

without a family history of depression.  Using S. N. Young’s protocol (1985), Riedel and 

colleagues found that, compared to a balanced condition, depletion resulted in lower 

scores on tests of LTM. More specifically, reductions in delayed recall and recognition 

response time and sensitivity were apparent 6 hours after ingesting the drink.  No effects 

were found on perception, motor function, or short-term memory 6 or 24 hours after the 

initial drink, despite participants receiving 10 g booster portions 7, 11 and 13 hours after 

the initial ingestion of the drink and the low-tryptophan meals at lunch and dinnertime.   

Further, although no differences were found between groups with and without a family 

history of depression on the neurocognitive tests, depletion did produce lower moods in 

those with a family history of depression, a finding similar to that of Benkelfat and 

colleagues (1994).  It should be noted, however, that 7 female participants (four of whom 

were in the depletion condition) withdrew from Riedel’s study due to nausea induced by 

the amino acid drink (three of whom vomited).  This point highlights the fact that the 

amino acid mixture is not only extremely potent, but also highly unpalatable, which 

increases the odds of protocol-induced confounds within the study.  For instance, it is 

possible that even mild or unreported nausea may affect cognitive performance, making it 

more difficult to discern true effects from those produced by objectionable testing 

procedures.  The disagreeable taste of the amino acid mixture has been reported by 

several other researchers (e.g., Greenwood, Lader, Kantameneni, & Curzon, 1975; 

Hughes et al., 2000; Park et al., 1994; Riedel et al., 1999), many of whom have tried to 

improve its taste by mixing flavoured concentrates or chocolate syrup into the drink.  
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Nonetheless, regardless of the palatability of the protocol, the literature seems to suggest 

that depletion results in reductions in LTM and has the potential to influence mood, 

particularly in those who are susceptible to depression (Benkelfat et al., 1994).  

 The effects of depletion on attention, however, are not as clear.  For instance, 

using the same amino acid mixture employed by Park’s group (1994), Coull and 

colleagues (1995) examined the effects of depletion on emotional selective attention as 

measured by a focused attention task and an attentional searching task. On both tasks, the 

words “left” or “right” served as targets, and the distractors were words selected from 

four groups of words with emotional valence (e.g., “choke” or “panic”).  The attentional 

searching task added a component of compatibility such that compatible trials were those 

in which the target word “left” (or “right”) appeared on the left side (or the right side, 

respectively) of the computer screen; incompatible trials were those in which the targets 

did not match the side of the screen on which they were presented (i.e., the word “left” 

appeared on the right-hand side of the screen).  As with other studies employing acute 

tryptophan depletion, participants took part in both the depletion and the balanced 

conditions, with no less than 1 week between testing sessions. On both occasions, testing 

began 4 hours after ingesting the drink.  The authors concluded that depletion did not 

affect focused attention, but they reported shorter response latencies when stimuli were 

incompatible on the attentional search task; emotional valence did not affect this 

relationship (Coull et al., 1995).   

These findings are at odds with those of Schmitt and colleagues (2000), who 

administered a comprehensive neuropsychological battery to determine the effects of 

depletion on executive functions, memory, language, processing speed, mood, and 
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attention.  They used the 100 g protocol and administered a 10 g maintenance dose 6 

hours later.  All participants took part in both the depletion and balanced conditions, 

which were separated by at least 7 days; blood samples were collected at multiple times 

on both days.  Overall, Schmitt’s group found that although depletion did not affect 

planning (bolstering the findings of Park et al., 1994), processing speed, or divided 

attention, it did produce significant improvements in both auditory and visual focused 

attention.  A possible reason for the divergence in findings is that whereas Coull and 

colleagues (1995) utilized the same amino acid mixture as Park’s group (52 g), Schmitt’s 

group utilized the protocol employed by S. N. Young and colleagues (100 g) and 

included maintenance doses.  It is likely that the greater dose of each amino acid, as 

found in the 100 g mixture, results in greater “depletion” of tryptophan as the levels of 

the other LNAAs increase and crowd out tryptophan for transport across the blood-brain 

barrier.  The higher dose of amino acids ostensibly results in greater cognitive changes.  

Schmitt’s group reports that, compared to the balanced condition, plasma tryptophan 

levels dropped 64% from baseline and the tryptophan:LNAA ratio fell by 33% from 

baseline 9 hours after ingesting the drink. Coull’s group, on the other hand, did not report 

the drop in plasma tryptophan levels attained by their manipulation.  However, as Coull 

employed the same protocol as Park and colleagues, it is likely that plasma and total free 

tryptophan was similarly drastically decreased.  Of note, however, is that neither Park’s, 

Coull’s, nor Schmitt’s group altered the amount of the amino acid mixture based on 

participants’ body mass.  Indeed, it seems that the norm within the literature is to provide 

all participants, regardless of gender or body mass, with the same quantity of the amino 

acid mixture (but see Fischer et al., 2002). While it is not doubted that these variables 
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may affect the degree to which tryptophan levels are altered, the fact that most studies do 

not control for these confounds makes generalization of these findings quite difficult.   

Schmitt’s group also found that verbal fluency scores improved 5 hours following 

ingestion of the depletion mixture (compared to baseline measures), supporting the notion 

that serotonin is important for proper frontal lobe functioning.  This conclusion is based 

on the fact that verbal fluency tasks result in increased activation in the frontal lobes 

during imaging studies (Brannen et al., 2001).  Further, Schmitt’s results corroborated 

Park’s (1994) assertion that serotonin reduces certain aspects of learning and memory as 

they found evidence of decreased LTM memory in light of spared short-term memory 

and retrieval abilities.  An interesting point, however, is that Schmitt and Park both found 

reductions in LTM despite using different volumes of the amino acid mixture (100 g 

versus 52 g, respectively), suggesting that decreases in LTM are robust findings 

regardless of the degree of serotonin depletion.  Schmitt and colleagues point out, 

however, that although Park’s group did find selective reductions in learning and memory 

(as measured by the number of trials needed to learn spatial locations on a paired 

associates learning task), they failed to find such effects on any of the actual memory 

tests that were employed.  Schmitt’s group suggests that this is due to the fact that the 

memory tests utilized by Park’s group did not measure memory for material learned and 

consolidated after a considerable delay.  For this reason, Schmitt’s group makes the point 

that, “[M]emory tests which do not incorporate delayed assessment or do not require 

long-term storage of new information are likely to fail to detect memory deficits of acute 

tryptophan depletion” (p. 27).   
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 Few of the studies discussed thus far have included a neuropsychological test 

battery as comprehensive as that employed by Hughes and his colleagues (2003) in their 

efforts to examine the effects of tryptophan depletion on mood and cognitive functioning.  

In contrast to Schmitt’s group (2000), whose battery contained several computerized tests 

and experimental tasks, Hughes’ battery assessed a wide range of domains, including 

attention and executive functioning, verbal learning and memory, visuospatial learning 

and memory, and mood, using both paper-and-pencil and CANTAB tests.  A group of 20 

males were tested using the 52 g drink protocol; each participant took part in both the 

depletion and the balanced conditions, with no less than 7 days between testing sessions.  

On each test day, blood samples were drawn at four separate times, and testing began 4 

hours after ingesting the initial drink.  Analysis of the blood assays showed that there 

were no significant between group differences in baseline measures of either total plasma 

or free tryptophan levels.  For the depletion condition, both total plasma and free 

tryptophan decreased over time, remaining at depletion levels of 60.7% and 56.9% at 330 

minutes, respectively.  For the balanced condition, however, total tryptophan increased 

by 33.6% at 240 minutes, but was depleted to a level of 6.8% below baseline by 330 

minutes.  Free tryptophan levels were increased by 71.8% at 240 minutes, but had 

reduced to 28.5% by 330 minutes time.  Taken together, these findings demonstrate that 

the manipulation successfully altered total plasma and free tryptophan levels.  

Nonetheless, test results showed that the tryptophan manipulation failed to produce any 

decline in cognitive functioning or any changes in mood.  These findings stand in stark 

contrast to the literature discussed previously in that several researchers have detected 

poorer performance within these same domains.  Bolstering Hughes’s findings, however, 
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are those of Shansis and colleagues (2000) who similarly found no effect of depletion on 

mood, attention, and memory using a healthy male sample.  Shansis’ team suggested that 

the discrepancy between their findings and those of others (e.g., Park et al., 1994) could 

be due to the testing instruments employed. That is, Park’s group used the Cambridge 

Neuropsychological Test Automated Battery, which is known to be sensitive to subtle 

neuropsychological (i.e., cognitive) changes (Shansis et al., 2000), whereas Shansis used 

paper-and-pencil tests.  However, unlike Shansis’ group, Hughes’ group employed three 

of the same measures from the battery employed by Park’s group: the Tower of London, 

Attentional Set-shift, and the Paired Associates Learning tests.  Thus, while it is possible 

that Shansis did not select measures that are sensitive enough to detect subtle cognitive 

changes brought on by depletion, it does not explain why Hughes, who administered the 

same protocol as Park and who also had a larger sample size than Park, found no 

significant results.  As Hughes and colleagues point out, the failure to measure delayed 

memory or recognition, the degree of tryptophan (and thus serotonin) depletion or 

disruption, and any individual differences in the degree of sensitivity to depletion, 

including gender or body mass, or some combination of these factors may be responsible 

for the inconsistency of findings. 

 Regardless of the contradictory findings, the common factor between all of the 

studies discussed thus far is that they have only examined depletion in comparison to a 

balanced condition; that is, not a single one of these studies employed an augmented 

condition.  The administration of an augmented condition is important as it enables us to 

learn about what happens when we raise tryptophan concentrations to abnormally high 

levels and the effects that this has on cognitive functioning.  To overcome this gross 
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oversight, Luciana and colleagues (2001) conducted one of the only studies found for this 

review that examined cognitive functioning by employing both a depletion and an 

augmentation condition (no balanced condition was used).  Using S. N. Young’s (1985) 

100 g amino acid protocol, participants took part in both conditions, separated by a 

minimum of 7 days.  Assessing the domains of working memory, executive functioning, 

short-term memory and attention, and motor speed and accuracy, Luciana’s group found 

several interesting differences between the depletion and the augmented groups.  For 

instance, although both conditions lowered participants’ scores of positive affect (as 

measured by the PANAS; Watson, Clark, & Tellegen, 1988), the depletion group 

exhibited faster response times on the Grooved Pegboard Test, more digits correct on the 

backward trial of the Digit Span test, and better ability at processing sad affective content 

compared to the augmented group.  Conversely, although the augmentation group 

exhibited decreased motor coordination (as evidenced by the number of drops on the 

Grooved Pegboard Test), they made fewer errors of omission on a letter-cancellation test.  

No discernable differences were found between the two groups on the Digit Span forward 

trial, Spatial Span, verbal fluency, or spatial working memory.  In both the depletion and 

augmentation conditions, total plasma tryptophan concentrations were significantly 

lowered and raised, respectively, compared to baseline levels. Overall, the authors 

concluded that augmentation results in transient reductions in affective and verbal 

working memory (as measured by the Digit Span Backward trial), as well as decreased 

motor-coordination while sparing (and even enhancing) immediate vigilant attention.  

Taken together, Luciana’s group concluded that these findings are consistent with the 

notion that increased serotonin activity results in a reduction of the flow of information, 
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leading to declines in motor coordination, working memory, and short-term attention.  

Perhaps more importantly, results of this study demonstrate that just as depletion effects 

performance, so too does augmentation, highlighting the necessity of researchers 

including an augmented condition in future research to further our understanding of the 

effects of augmentation on neuropsychological performance. 

Overall, it is clear that there is considerable controversy and contradiction within 

the literature on the effects of depletion and augmentation. This seems to be related to the 

following factors: a) the tests selected for use in the study, many of which do not always 

correspond with the instruments most widely used in clinical settings; b) the use of amino 

acids, which often result in adverse effects such as nausea or vomiting; c) gender ratios, 

which are rarely equal, especially as many studies only include males or provide no 

information on gender distributions; and d) high attrition rates and small sample sizes, 

making generalization of test results difficult.  In an attempt to address some of these 

issues (e.g., nausea and small sample sizes), researchers have begun to look to other 

methods of altering tryptophan (and thus serotonin) levels, the most common of which is 

the administration of carbohydrate-rich, protein-poor meals.   

 
Dietary Manipulations 

 The effect of diet on brain serotonin levels is also unclear as there are many 

factors influencing whether tryptophan will increase brain serotonin production or 

release.  As discussed previously, merely ingesting tryptophan-rich foods does not 

necessarily alter brain- serotonin levels as it could get metabolized before it can cross the 

blood-brain barrier, or prevented from easily crossing the blood-brain barrier due to 

competition from the other LNAAs.  This is because the volume of the LNAAs also 
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increase due to the ingestion of dietary proteins, thereby reducing the tryptophan:LNAA 

ratio.  Ingesting carbohydrates in a protein-poor meal, however, appears to avoid both 

issues by increasing insulin, thereby sweeping the LNAAs into the surrounding tissues 

and allowing tryptophan to easily cross the blood-brain barrier to aid in the synthesis of 

serotonin.   

 Using the dietary method of altering tryptophan levels, Markus and colleagues 

(1998) studied the effects of carbohydrate-rich meals (designed to augment tryptophan 

levels) in comparison to protein-rich meals (designed to deplete tryptophan levels) on 

mood and memory in stress-prone participants during a stress-inducing task.  Participants 

were divided into two groups, high-stress (n = 24) and low-stress (n = 24), based upon 

their scores on the Inadequacy Scale of the Dutch Personality Inventory (Luteijn, Starren, 

& van Dijk, 1975).  All participants were randomly assigned to start with either the 

carbohydrate-rich/protein-poor meal, or the protein-rich/carbohydrate-poor meal. Each 

participant took part in both conditions, which were separated by a 4-week period.  On 

each testing day, participants ate breakfast upon arriving at the testing site, followed by a 

snack 1.25 hours later.  Lunch was served 45 minutes after consumption of the snack.  

The test battery, which was administered 1.5 hours after lunch, was preceded by the 

collection of a blood sample.  The battery consisted of the Profile of Mood States, a stress 

induction task (a mental arithmetic task completed during noise interference), and a 

computerized memory scanning task measuring accuracy and response times.  The first 

main effect Markus’s group reported was that the ingestion of the carbohydrate-rich diet 

increased the tryptophan:LNAA ratio, rising from 0.074 on the protein-rich test day to 

0.105 on the carbohydrate-rich day.  They also reported that regardless of stress group, 
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the carbohydrate-rich meal resulted in slower reaction times on the computerized 

memory task.  The authors concluded that the ingestion of carbohydrates increased brain 

tryptophan levels, and thus that the synthesis and activity of brain serotonin was also 

increased. They noted that this, in turn, resulted in slowed response times.  Thus, their 

prediction that a carbohydrate-rich meal would protect stress-prone people from 

deteriorations in mood and cognitive performance in the face of a stressful task was met.  

Markus and colleagues assert that increased serotonin synthesis and activity likely 

mitigated the stress-response of the high stress group by increasing their sense of control 

in an otherwise uncontrollable situation (the stress-induction task).  The general 

conclusion to be drawn from this study, however, is that carbohydrate-loading increased 

the tryptophan:LNAA ratio in a similar manner as the amino acid protocol, and 

neurocognitive effects were observed as a result.  Thus, it seems that the dietary method 

can be used as an alternative to the amino acid protocol as a means of altering the rate of 

production and release of serotonin.  

 The utility of manipulating diet to measure the effects of varying macronutrients 

on performance and mood has been shown by many other researchers.  For instance, to 

study the effects of tryptophan augmentation, Lieberman et al., (2002) provided 143 US 

Army soldiers with one of three carbohydrate drinks: 6% by volume, 12% by volume, or 

a placebo mixture, all of which looked and tasted identical.  This was a between-subjects 

study, with each soldier assigned to only one condition. No blood samples were collected.  

The soldiers engaged in several physically demanding tasks throughout the day while 

wearing vigilance monitors (specialized watches). When soldiers heard the monitors 

beep, they had to respond as quickly as possible by pressing a button on the monitors.  
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Response times were utilized as an indication of vigilance.  Profile of Mood States mood 

questionnaires were also completed at three separate times throughout the day.  The 

authors found dose-related increases in sustaining vigilance and alertness, such that those 

in the 12% per volume group performed the best and those in the placebo group 

performed the worst, declining in vigilance at every designated test period.  Dose-related 

effects were also found for confusion on the Profile of Mood States, wherein those in the 

placebo group scored as more confused than either of the carbohydrate groups, with the 

12% group being the least confused.  The authors conclude that during times of sustained 

physical activity, carbohydrates aid in the maintenance of vigilance and enable optimal 

cognitive functioning. 

 The finding that carbohydrates enhance attention and decision times, however, 

has not been replicated by all researchers.  In a study by Fischer and colleagues (2002), 

participants were randomly assigned to one of three dietary groups: high-

carbohydrate/low-protein (i.e., augmentation), low-carbohydrate/high-protein (i.e., 

depletion), or a balanced condition.  All participants took part in each condition, with 

exactly 1 week separating each test condition.  In each case, the cream-like meals were 

identical in taste, texture, and colour.  Blood samples were collected and the cognitive 

domains of motor performance, information processing, short-term memory and 

peripheral attention were assessed.  Overall, the authors found that cognitive 

performance, especially short-term memory, was greatest following the high-protein meal 

or the balanced meal, whereas the high-carbohydrate meal resulted in the poorest 

performance, producing only transient improvements in attention and decision times.  
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Neither the carbohydrate nor the protein meal affected peripheral attention, which the 

authors credited to a lack of sensitivity of the measure employed. 

  However, comparing protein (a depletion method) and two carbohydrate meals 

(one high in starch and one high in sugar, designed to augment tryptophan levels), Smith, 

Leekam, Ralph, and McNeill (1988) found that the carbohydrate meals resulted in slowed 

response times to peripheral targets whereas the protein meal resulted in greater 

distractibility on a centralized target-detection task.  In addition, there were no overall 

effects of meal composition on attention or mood.  Taken together, these findings suggest 

that protein increases vigilance and alertness compared to carbohydrates. 

 It has been found, however, that the effects of carbohydrates on performance 

differ depending on age and gender.  For instance, Spring, Maller, Wurtman, Digman, 

and Cozolino (1983) examined the effects of protein and carbohydrates on a group of 

younger (aged 18-39 years) and older (aged 40-65 years) participants, each of whom 

were assigned to one of four groups: high-protein breakfast, high-protein lunch, high-

carbohydrate breakfast, or high-carbohydrate lunch.  Utilizing the Stanford Sleepiness 

Scale, the Profile of Mood States, visual analogue mood scales, an auditory response time 

task and a dichotic shadowing task measuring information processing of sustained and 

selective attention, they found significant effects for meal type, gender, and time of the 

meal.  That is, those who consumed the high-protein meal performed with greater 

accuracy on the dichotic shadowing task, whereas there was no effect of meal on the 

auditory response time task.  However, compared to the protein meals, the carbohydrate 

meals produced a greater feeling of sleepiness in women than in men, and a greater sense 

of calmness in men than in women.  Furthermore, the protein meal resulted in those in the 
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older age group feeling more tense and less calm if it was ingested at breakfast time, 

whereas performance was worse on the dichotic shadowing task (i.e., sustained selective 

attention) following carbohydrates at lunchtime.  The authors concluded that the 

consumption of a high-carbohydrate lunch affected concentration in older participants, 

likely resulting from faltering attention.   

In an older sample of adults, however, Kaplan, Greenwood, Winocur, and 

Wolever (2001) found that carbohydrates, as well as protein and fat, improved several 

aspects of cognition in individuals 61-79 years of age.  In this study, each participant took 

part in all four conditions, ingesting one drink (protein, carbohydrate, fat or placebo, 300 

mL each) every 3-7 days.  Within 15 minutes of consuming the drink, participants were 

administered three verbal memory tests: a list-learning task (testing immediate recall), 

and both an immediate and a delayed paragraph recall test.  As fillers during the delay 

period, the Trail Making Test (Reitan, 1958) and an attention task were completed.  All 

three drinks (save for the placebo) were found to improve delayed paragraph recall, with 

a trend towards improved immediate recall.  More specifically, the carbohydrate drink 

was found to improve performance on the Trails task and delayed paragraph recall in 

men, whereas the protein drink resulted in greater immediate paragraph recall and the fat 

drink improved attention.  Since all three drinks aided in increasing memory, the authors 

concluded that all three macronutrients likely exert different effects upon cognitive 

function. 

 Thus, it should be clear that the neuropsychological effects of tryptophan are 

varying and contradictory, especially when differing methodologies (i.e., amino acid 

protocol or dietary protocol) and manipulations (i.e., depletion or augmentation) are 
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considered.  For instance, recall that Coull and colleagues (1995) found no effect of 

depletion on attention using the 52 g amino acid protocol, whereas Schmitt’s group 

(2000) found that focused attention improved with the ingestion of a depletion 100 g 

protocol drink.   Luciana and colleagues (2001) found that a 100 g augmentation mixture 

resulted in better attention than a 100 g depletion mixture.  However, Hughes’s team 

(2003) found that depletion using the 52 g protocol had no effect on any domain of 

cognitive functioning.  Within the dietary manipulation literature, Markus’s research 

group (1998) found that carbohydrates reduced response times, a finding in direct 

contradiction to that reported by Lieberman’s group (2002).  Despite such 

inconsistencies, however, there do appear to be several relatively reliable findings due to 

tryptophan manipulation.  It appears that depletion, produced either via the amino acid 

protocol or the carbohydrate manipulation, is related to declines within the areas of LTM 

(Park et al., 1994; Riedel et al., 1999; Rogers et al., 1999) and mood (in susceptible 

individuals) (Luciana et al., 2001; Riedel et al., 1999; but see Hughes et al., 2003 and 

Shansis et al., 2000), with mixed results for effects on attention (Coull et al., 1995; 

Hughes et al., 2003; Lieberman et al., 2002; Schmitt et al., 2000; Shansis et al., 2000), 

response time (Lieberman et al., 2002; Markus et al., 1998) and verbal fluency (Schmitt 

et al., 2000).  Conversely, augmentation seems to result in transient reductions in 

affective and verbal working memory, as well as motor coordination, while enhancing 

immediate vigilant attention (Luciana et al., 2001) (see Table 1 for summary of findings 

in the literature). 
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Table 1   
 
Summary of Selected Findings Within the Literature  
 
Research Group    Manipulation Design  Conditions  Effect of  Findings  
              Method      Employed 
 
Park et al., 1994    amino acid  within  depletion &  depletion - no effect on mood 
     n =  12 M       balanced    - lower scores on LTM 
 
Rogers et al., 1999    amino acid  between depletion &  depletion - reductions in visual discriminant 
     n = 31 (15 M)      balanced     - intact ability to shift attention 
      
Riedel et al., 1999    amino acid  mixed  depletion &  depletion - reductions in LTM scores 
     n = 27 (12 M)      balanced    - lower mood in those with family 
                history of depression 
 
Coull et al., 1995    amino acid  within  depletion &  depletion - no effect on attention 
     n = 12a       balanced   
 
Schmitt et al., 2000    amino acid  within  depletion &  depletion - no effect on planning, processing  
     n = 20 (10 M)      balanced      speed or divided attention 
             - improvements in auditory and  
               focused attention 
             - delayed improvements in verbal 
                fluency 
             - reductions in LTM scores 
 
Hughes et al., 2003    amino acid  within  depletion &  depletion - no reductions on scores in any 
     n = 20 M       balanced       neuropsychological domains 
             - no reductions in mood scores 
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Shansis et al., 2000    amino acid  within  depletion &   depletion - no reductions in mood, attention or  
     n = 12 M       balanced       memory scores 
 
Luciana et al., 2001    amino acid  within  depletion &  depletion - faster response times 
     n = 19a       augmentation        vs.  - improvements in working memory 
            augment. - improvements in processing sad  
                affect 
 
           augment. - reductions in affective processing 
                vs.  - reductions in verbal working  
           depletion    memory 
             - decreased motor coordination 
             - enhanced vigilant attention 
 
Markus et al., 1998     diet  mixed  depletion &  augment. - slower response times 
     n = 48 (13 M)      augmentation   
 
Lieberman et al., 2002    diet  between augmentation & augment. - improvements of vigilance & 
     n = 143 M       balance        attention 
             - lower scores on confusion ratings 
 
Fischer et al., 2002    diet  within  augmentation,  depletion - improvements in STM 
     n = 15 M       depletion &   & balanced 
        balanced 
 
           augment. - transient improvements in attention 
                and response times 
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Smith et al., 1988    diet  within  augmentation  augment. - slower response times 
     n = 11 (5 M)      & depletion 
 
Spring et al., 1983  diet  between augmentation  augment. - greater feeling of sleepiness in              

n = 184 (129 M)      & depletion       women 
                  - greater feeling of calmness in men 
             - poor performance on dichotic 
               shadowing task (at lunch only) 
 
           depletion - greater accuracy on dichotic  
               shadowing task 
             - greater feeling of tenseness and  
               reduction in feelings of calmness  
               in older adults (at breakfast only) 
 
Kaplan et al., 2001  diet  within  augmentation,  augment. - improved delayed paragraph recall 
     n = 22 (11 M)      depletion,     - improvements in Trail Making Test 
        balanced & fat 
 
           depletion - improved delayed paragraph recall 
             - greater immediate paragraph recall 
 
           balanced - no effect 
 
           fat  - improved delayed paragraph recall 
                improved attention 
 
 
a = no gender information provided 
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Purpose and Hypotheses of the Present Study  

The purpose of this study is to examine the effects of tryptophan on 

neuropsychological performance.  Thus, the following hypotheses have been made:  

Hypothesis 1: Depletion will result in lower scores on measures of LTM;  

Hypothesis 2: Depletion will result in lower mood scores;  

Hypothesis 3: Augmentation will lead to lower scores on measures of working 

memory;  

Hypothesis 4: Augmentation will result in functional improvements within the 

areas of attention and vigilance;  

Hypothesis 5: The balanced group will score higher than the depletion group on 

verbal LTM and on mood indices, and higher than the augmentation 

group on verbal working memory;  

Hypothesis 6: The balanced group will score lower than those in the augmentation 

group on tests of attention and vigilance; 

 
Exploratory analyses will also be conducted in order to examine any group differences 

that may arise on items comprising the composite attention and working memory scores, 

as well as any differences on the individual items of the PANAS. 

The benefits of employing a dietary manipulation outweigh those of the amino 

acid protocol for several reasons. First, it is easy to attain the necessary materials – they 

are all readily available at any local grocery store.  Second, it is affordable for most 

researchers and requires no special equipment or access to resources.  With the amino 

acid protocol, each individual amino acid powder must be purchased separately and then 

mixed in the appropriate amounts.  Using the dietary method, foods can be purchased 
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fresh, and possibly even in bulk, and stored in a refrigerator until needed.  Third, it is 

better tolerated by participants, with lower chances of experiencing ill-effects (e.g., 

nausea, vomiting, etc.).  Fourth, it is less aversive (Vered et al., 2001) given that 

participants are taking part in an activity (eating food) not typically associated with stress 

and anxiety.  Lastly, it has potentially important implications for improving transient or 

occasional cognitive, physiological, or affective problems, including furthering our 

understanding of “emotional eating”.   

Unlike the present study, the majority of research within the literature does not 

include an augmented, a depleted and a balanced meal condition (e.g., Coull et al., 1995; 

Park et al., 1994; Rogers et al., 1999).  Although Fischer and colleagues (2002) similarly 

employed all three conditions in the form of “cream-like” meals, all 15 of their 

participants were male.  As the present study included both males and females, it will 

enable us to better tease apart the effects of tryptophan on neuropsychological 

performance for both males and females.  What is more, many studies within the 

literature (e.g., Fischer et al., 2002; Rogers et al., 1999; Smith et al., 1988) do not include 

a comprehensive neuropsychological battery comprised of tests and measurements that 

are widely used within clinical settings; the present study does include such a battery, 

allowing for greater ecological validity.   The present study also included the 

administration of commonly consumed foods, as opposed to the potent and potentially 

aversive amino acid mixtures used by some researchers (e.g., Riedel et al., 1999; Schmitt 

et al., 2000), allowing for further ecological validity.  Lastly, although the majority of the 

research within the literature has employed within-subjects designs (e.g., Hughes et al., 

2003), many have noted high attrition rates due to repeated testing sessions or reactions 
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to the amino acid protocol (e.g., 26% attrition rate in Riedel et al., 1999).  Further, 

although a within-subjects design allows for comparison within the same participant 

across all three conditions, thereby eradicating such between-subject confounds as 

individual differences, it does introduce the possibility of such confounds as practice 

effects due to repeated testing, test expectancy, order effects (of test condition), fatigue 

and attrition, as mentioned previously.  By employing a mixed design with between-

subjects test variables, the present study avoided those pitfalls, thereby enabling the 

collection of data from a larger sample with a lower attrition rate and fewer confounds 

due to repeated testing.  

The benefits and strengths of employing a dietary manipulation to investigate the 

effects of tryptophan manipulation on neuropsychological performance will help 

elucidate the role played by tryptophan on cognitive functioning. 

   
 

Method 

Participants 

Participants were recruited in two ways.  The primary method involved recruiting 

undergraduate students enrolled in a psychology course at the University of Windsor who 

had signed up for the online participant pool.  These students received course credit in 

exchange for taking part in this study.  A list of students who had signed up for the pool 

and who met our criteria for Body Mass Index (BMI) range (greater than 18.5, the lower 

cut-off for ‘underweight’, and less than 29.9, the upper cut-off for ‘overweight’) was 

emailed to the researcher.  Those students were then sent an email advertisement for the 

study (see Appendix B for Study advertisement).  This advertisement explained that in 
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order to take part in the testing session, participants must first complete an in-person 

screening interview, after which time they may elect to sign up for the testing session if 

they are eligible to do so.  The screening session of the study was worth a total of 0.5 

course credits and the testing session was worth a maximum of 5.5 bonus points, 

provided the participant completed the entire session.  Those who were interested 

contacted the researcher and an appointment was set up to take part in the screener (see 

Appendix C for study screener).  The secondary method of recruitment was comprised of 

posters which were placed throughout the campus community inviting students from 

other faculties to take part in the screener, with the option of signing up for the study 

should they be eligible (see Appendix D for poster advertisement).  Those who were 

interested in taking part contacted the researcher and in return were sent the email 

advertisement of the study.  If upon reading the email advertisement they were still 

interested in participating, an appointment was made to take part in the screening session.  

Of note, these participants were not eligible to earn bonus points towards their course(s).  

Thus, this was a two-part study consisting of a screening session (lasting approximately 

half an hour) and a testing session (lasting approximately 5.5 hours).  All participants 

who signed up for and successfully completed the testing session, regardless of the 

recruitment method, were given the option of having their name entered into a draw to 

win 1 of 2 gift cards each valued at $50 CAD to either Devonshire Mall or Future Shop 

(the winners had the option of choosing their reward).  Ethics approval was gained by the 

University of Windsor Research Ethics Board and informed consent was obtained from 

all participants before completing both the screener and the testing session (see Appendix 

E for the test screener consent form and Appendix F for the testing session consent form).  
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A total of 103 participants were screened for inclusion in this study, of which 82 were 

eligible to take part in the testing session.  Of those deemed eligible, 73 participants 

successfully completed the testing session.  Participants were split across conditions in 

the following manner: 25 in the Augmented group (17 female, 8 male), 25 in the 

Balanced group (17 female, 8 male), and 23 in the Depleted group (16 female, 7 male) 

(see Procedures for details on group assignment).  All participants in this study regularly 

ate breakfast and lunch, were not colour blind, and had no motor problems.  None of the 

females were pregnant or lactating.  Complete demographic information for each group 

can been seen in Table 2. 

 
Design  

This study employed a double-blind, mixed design.  Pre- and post-test measures 

of working memory (the Digit Span – backward trial) and affect (PANAS; Watson, Clark 

& Tellegen, 1988) served as within-subject variables to assess the success of the 

tryptophan manipulation (depletion, augmentation or balanced).  All other test measures 

were between-subject variables.  A maximum of 30 days separated the screening and 

testing sessions. 

 
Procedures 
 

Screening Session.  All participants who signed up for the screen came into the 

laboratory and, after signing an informed consent form, completed an initial screening 

interview with the author (see Appendix C).  During this interview, participants were 

assessed for suitability for inclusion in the study according to the following criteria: 

absence of food allergies (especially peanuts); confirmation of a body mass index (BMI) 
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Table 2 

Demographic Information for Each Condition 

Variable Augmented 

(N = 25) 

Balanced 

(N = 25) 

Depleted 

(N = 23) 

Age M (SD) 

     Females 

     Males 

21.6 (3.1) 

21.4 (2.92) 

22.1 (3.72) 

22.6 (3.38) 

22.5 (3.13) 

22.9 (4.09) 

21.3 (2.51) 

20.6 (2.00) 

23.0 (2.89) 

Gender N (%) 

     Female 

     Male 

 

17 (68) 

8 (32) 

 

17 (68) 

8 (32) 

 

16 (69.6) 

7 (30.4) 

Screeners N                                103 

     Ineligible                                 17 

     Declined Test Session               3 

     No Show                                   1 

     Completed/Eligible                 82 

   

Testers N                                      82 

     No Shows                                 3 

     Cancellations                            4     

     Administration Errors               2 

     Final Sample                           73   

   

ESL N (%) 

     Yes 

     No      

 

7 (28) 

18 (72) 

 

9 (36) 

16 (64) 

 

8 (34.8) 

15 (65.2) 
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Education M (SD) 

     Female 

     Male 

15.0 (2.5) 

14.9 (2.64) 

15.3 (2.31) 

15.4 (2.36) 

15.7 (2.40) 

14.69 (2.27) 

15.11 (2.22) 

14.4 (1.89) 

16.6 (2.29) 

BMI M (SD) 

     Female 

     Male 

22.4 (2.57) 

22.0 (2.48) 

23.4 (2.64) 

22.56 (2.88) 

22.0 (2.95) 

23.75 (2.48) 

22.70 (3.02) 

21.8 (2.69) 

24.6 (2.98) 

Weight (lbs) M (SD) 

     Female 

     Male 

 

126.7 (13.9) 

167.4 (28.9) 

 

136.88 (17.5) 

165.88 (21.4)

 

131.56 (14.00) 

167.29 (11.69) 

Physical Activity Level (weekly)  N  

     Female 

          Not at all 

          Minimal (walking to school) 

          Quite (3-5 times/week) 

          Very (6+ times/week) 

     Male 

          Not at all 

          Minimal (walking to school) 

          Quite (3-5 times/week) 

          Very (6+ times/week) 

 

 

1  

12  

4 

0 

 

0 

2 

5 

1 

 

 

1 

8 

6 

2 

 

0 

5 

2 

1 

 

 

0 

1 

14 

1 

 

0 

1 

5 

1 

Frequency of Food Consumption  N  

     Female 

          Fast (0-2 hours) 

 

 

5 

 

 

2 

 

 

4 
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          Average (3-5 hours) 

          Slow (6+ hours) 

     Male 

          Fast (0-2 hours) 

          Average (3-5 hours) 

          Slow (6+ hours) 

11 

1 

 

2 

4 

2 

14 

1 

 

0 

6 

2 

12 

0 

 

1 

5 

1 

Beck Depression Inventory – II  

     (BDI - II) Score M (SD) 

     Female 

     Male 

 

 

3.24 (4.06) 

5.38 (4.31) 

 

 

6.12 (5.12) 

5.00 (4.66) 

 

 

4.63 (3.48) 

8.14 (4.67) 

History of Depression N  

     Female 

     Male 

 

1 

0 

 

0 

0 

 

0 

0 

History of Anxiety N  

     Female 

     Male 

 

0 

0 

 

0 

0 

 

0 

0 

Family History of Depression N  

     Female 

     Male 

 

6 

2 

 

4 

1 

 

2 

0 

Smoker N  

     Female 

     Male 

 

1  

1 

 

1 

1 

 

0 

2 

Birth control use (female) N  10  5 8 
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Hours of sleep/night  M (SD) 

     Female 

     Male 

 

6.88 (1.38) 

7.06 (1.05) 

 

7.79 (1.03) 

7.56 (1.08) 

 

7.50 (1.26) 

6.86 (1.11) 

Amount of caffeine (daily) N  

     Female 

          Low (0-1 drinks/day) 

          Medium (2-3 drinks/day) 

          High (4 drinks/day) 

     Male 

          Low (0-1 drinks/day) 

          Medium (2-3 drinks/day) 

          High (4 drinks/day) 

 

 

13 

4 

0 

 

5 

2 

1 

 

 

14 

2 

1 

 

5 

2 

1 

 

 

14 

2 

0 

 

4 

3 

0 
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between the values of 18.5 and 29.9; absence of chronic or current physical illness, 

including gastrointestinal disorders such as Crohn’s disease, irritable bowel syndrome, or 

lactose intolerance as these conditions have been shown to impede absorption of nutrients 

(Murray, 1998); no neurological, endocrine or metabolic disorders; no current medication 

use (including SSRIs, MAOIs, narcotics, anti-psychotics, anxiolytics, or stimulants); no 

irregular diets (i.e., no ‘fad’ diets or skipping meals) or eating disorders; and no current 

episode of acute anxiety or depression. The Beck Depression Inventory – II (BDI-II; 

Beck, Steer, & Brown, 1996) was administered to measure current levels of depression.  

If a participant had a BDI score of 30 or greater (indicating severe depression), follow-up 

questions were asked as to the nature and severity of symptoms, including the likelihood 

of them hurting themselves or others.  Any participant who scored in this range would 

have been provided with appropriate referrals to the Windsor Regional Hospital Mood 

and Anxiety Clinic, the Windsor Mood Disorders Self-Help Group, or the Student 

Counseling Centre on campus; this information was also listed on the consent forms, of 

which participants kept a copy.  If anyone was currently suicidal or thinking about 

committing suicide, they would have been referred to the Community Crisis Centre (there 

is a telephone in the laboratory available for such use).  Of note, no participant obtained a 

score of 30 or greater, and as a precaution, the author pointed out the referral information 

to any participant who obtained a score of 10 or greater.  Furthermore, suicidal ideation 

was not endorsed by any participant.  History of anxiety or depression, family history of 

mental illness, and diagnoses of diabetes were also documented, as was the typical 

amount of caffeine, alcohol and tobacco consumed daily, and the average number of 

hours of sleep per night.  Information was also obtained about the participant’s level of 
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physical activity, frequency of food consumption, type and frequency of food cravings, 

and use of oral birth control (for women).   

At this point, if a participant was deemed eligible to continue after the screen, the 

participant was given the option of signing up for the testing session.  To take part in the 

testing session, participants must have agreed to fast 12 hours prior to initiation of testing.  

They were informed that on the day of testing, they would be provided with breakfast, 

lunch and two snacks.  They were also informed that the session would begin at 9 am and 

would last approximately 5 hours, although the actual testing would only take place 

during the last 1.5 hours of this 5 hour period.  Participants were told that in the time 

between breakfast and the commencement of testing, they would be required to remain in 

the common waiting room (they were allowed to study, read, listen to music, and/or 

entertain themselves with their laptops; sleeping was not allowed).  Lastly, participants 

were shown a list of foods they may be asked to eat when they come in to take part in the 

study (this allowed for the screening and confirmation of food allergies and/or 

sensitivities).  If the participant agreed to these conditions, an appointment was made for 

the participant to come back another day to take part in the study.  Each participant was 

instructed to abstain from alcohol consumption the day before testing, and to get a good 

night’s sleep (ranging from 7-10 hours, or whatever is considered average for each 

particular person) the night prior to coming in.  Every effort was made to accommodate 

the participant’s school schedule (i.e., essay due dates and exams) when booking the 

testing session.  Each participant thus came to the laboratory once for a screening session 

and once for the testing session.  The author was responsible for conducting the screening 

sessions with participants, as well as for the quasi-randomization of participants into each 
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of the three meal conditions (augmented, balanced, or depleted tryptophan), matched for 

BMI and gender.  In order to achieve quasi-randomization, BMI scores were split into 

lower (18.5-21.5), middle (22-25.5) and higher (26-29.9) scores for both males and 

females, with the aim of recruiting an equal number of males and females from each 

range of scores.  In other words, the aim was to obtain an equal number of lower-male, 

lower-female, middle-male, middle -female, higher-male and higher-female participants 

for inclusion in this study.  For example, if the first participant was a middle-male, he 

might randomly have been assigned to the Augmentation condition.  Thus, the next 

middle-male would have been randomly assigned to either the Depletion or the Balanced 

condition.  The third middle-male will thus be assigned to whichever condition is still 

empty for that gender and BMI range.  The same process was repeated for female 

participants.  Within each gender, an equal number of participants from each BMI range 

were assigned to each meal condition.  As condition assignment was completed by the 

author and not by the research assistants who administered the neuropsychological test 

battery, the maintenance of a double-blind research design was thus ensured.  A total of 

103 participants were screened for this study, 82 of whom met eligibility criteria for 

inclusion in the testing session. 

The meals for each participant were put together the night before each testing day 

by the author and labeled according to a master menu key (known only to the author), 

thereby ensuring that the research assistants administering the test battery were blind to 

the condition to which participants had been assigned.  On the day of testing, the author 

provided participants with their meals and snacks, as well as with fresh copies of the 

PANAS at the designated times.  The author was also responsible for ensuring that 
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participants completed their entire meal, and for removing all food trash from the waiting 

room (to ensure that the research assistants could not inadvertently deduce to which 

condition participants were assigned).  The author informed participants that they were 

not to divulge any information to the research assistant with whom they were paired 

regarding the foods that were consumed.  Participants were run either one or two at a 

time, depending on recruitment and availability of the research assistants.  Although each 

participant worked with a separate research assistant once the testing started at 12:30 pm, 

participants were together in the common waiting room during the time between 

breakfast and the commencement of the testing (i.e., from 9 am until 12:30 pm).  The 

author was responsible for checking in with participants during this wait period.  A total 

of three research assistants were utilized in this study.   

 
Testing Session.  On the testing day, participants arrived at the laboratory by 8:45 

am.  Once they had signed the informed consent, they were quickly surveyed to ensure 

they had met with the previously discussed pre-conditions for taking part in the test 

session (namely: fasted for 12 hours, avoidance of alcohol and drugs the previous day, a 

minimum of 6 hours sleep and no caffeine since the previous day).  This brief screen was 

conducted with each participant, one-on-one, by the author (on days when two 

participants were being run concurrently, a research assistant would conduct this brief 

screen with one of the participants). Upon confirmation that these conditions were met, 

the participant was administered a brief measure of attention (the Digit Span) and was 

then brought into the waiting room.  Once in the waiting room, the participant filled out 

the first PANAS while their breakfast was prepared and served at 9 am.  Immediately 

after breakfast and again after the first snack, which is provided at 10:15 am, each 
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participant filled out a PANAS.  Lunch was provided at 11 am, after which the PANAS 

was completed for a fourth time.  Given that research has shown that several hours are 

required for plasma and free tryptophan levels to reach peak depletion (e.g., Benkelfat et 

al., 1994), all participants completed the neuropsychological battery at 12:30 pm, 1.5 

hours after the provision of lunch (3.5 hours after the first meal was consumed).  This is 

in line with Markus’s methodology.  The fifth PANAS was completed just prior to the 

administration of the test battery.  The test battery took less than 1.5 hours to complete, 

after which time participants completed the sixth and final PANAS, followed by the 

second and final administration of the Digit Span.  Taken together, the PANAS and the 

Digit Span (backward condition) served as within-subject indicators of the effectiveness 

of the tryptophan manipulation, enabling pre- and post-test comparisons in affect and 

cognitive performance.  At this point, all participants were provided with the option of a 

final snack to replete tryptophan levels and to help offset any possible reactions to 

tryptophan augmentation or depletion (see Table 3 for schedule of events).  Water was 

available ad libitum.  Of the 82 participants deemed eligible to take part in this study, 3 

failed to show up on the day of testing, 4 cancelled their testing session, and 2 

administration errors resulted in a total of 73 participants successfully completing the 

testing session.  Participants were split across conditions in the following manner: 25 in 

the Augmented group (17 female, 8 male), 25 in the Balanced group (17 female, 8 male), 

and 23 in the Depleted group (16 female, 7 male).  
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Table 3   

Schedule of Events 

 Time   Activity        Administered by 
 
8:45 am Arrive at lab, consent, pre-screen   Author 
 
8:50 am Complete pre-test     Author 

8:55 am Complete PANAS     Author 

9:00 am Breakfast is served     Author 

9:20 am PANAS is completed     Author 

10:15 am  Snack is served     Author 

10:30 am PANAS is completed     Author 

11:00 am Lunch is served     Author 

11:20 am PANAS is completed     Author 

12:25 pm PANAS is completed     Author 

12:30 pm Neuropsychological test battery begins  RA 

2:00 pm Final PANAS is completed once    Author 

neuropsychological test battery has finished   

2:05 pm Final snack is served     Author 
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Dietary Manipulations 

The meals created for each of the three conditions were modeled after the diets 

provided by Markus and colleagues (1998) (see Appendix G for composition of meals 

and snacks).  As Markus’s group did not provide the exact amount of each food provided 

to participants, instead citing only the total amount of carbohydrates, protein, fat and 

calorie intake in each meal, all meals for this study were created and analyzed by the 

author using the NutritionData website (NutritionData, 2009).  This website enables the 

user to input the amount and type of food and creates a recipe label listing the total grams 

of carbohydrates, protein, fat, calories, and other nutritional facts about the foods 

contained therein.  In this way, it was possible to replicate the menus created by Markus’s 

group so as to obtain the same carbohydrate:protein ratios (see Table 4 for macronutrient 

content of each condition).  Thus, the ratios employed in the present study are in keeping 

with those employed by Markus such that the augmentation meal in the present study 

contained 18.2 times more carbohydrates than proteins, and the depletion meal in the 

present study contained 1.47 times more carbohydrates than proteins.  As Markus’ group 

did not employ a balanced meal, the balanced meal in the present study was devised to 

have a carbohydrate:protein ratio between those used in the augmentation and depletion 

meals.  Thus, the balanced meal has 8.37 times more carbohydrates than proteins.  The 

final snack, composed of a pineapple cup and a yogurt cup, was chosen as these foods are 

known natural sources of tryptophan (Murray, 1998; Schmitt et al., 2000). 
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Table 4 
 
Macronutrient Content of Each Condition 

 
Meal Type 

     Augmented  Depleted     Balanced 
 
Carbohydrates  
 Total grams        200        57          174 
 % of meal          67        19            58 
 % RDA           67        19            58 
 
Protein 
 Total grams         11        39            21 
 % of meal         15        45              2 
 % RDA         22        78            42 
 
Fat 

Total grams         11        23            26 
 % of meal         18        36            40 
 % RDA         17        35           0.4 
 
Calories 
 Total grams        931       881          988 
 
  
Note: Macronutrient content of these meals based on a 2,000 calorie diet.  The 
Recommended Daily Allowance (RDA) for each macronutrient, based on a 2,000 calorie 
diet for males and females aged 4 and over as indicated by the Canada Food Inspection 
Agency (“Chapter 6”, n.d.), is as follows: Carbohydrates = 300 g; Protein = 50 g; Fat = 
65 g.  All meals were modeled after those used by Markus and colleagues (1998) and 
were created and analyzed using the NutritionData website (NutritionData, 2009). 
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Neuropsychological tests administered 

The following is a list of the neuropsychological test measures that were utilized 

in this study, organized by test domain.  A brief description of each test is provided, 

along with the scoring criteria that were employed.  The interested reader is directed to 

Lezak et al., (2004) for further detail regarding these measures.   

 
Executive Functioning 

Verbal Fluency (‘F’, ‘A’, ‘S’ + Animals; Benton, 1968) 

The FAS is a measure of verbal fluency that assesses language generation and 

executive functions.  Participants were instructed to list as many different words as 

possible in one minute that start with a specific letter while abiding by the following 

rules: no names or proper nouns (e.g., Brenda or Baltimore), no numbers, and no variants 

of a word (e.g., bank, banks, banked).  For each of the three letters, participants were 

allotted one minute to respond.  The total score was the total number of correct words 

(i.e., non-perseverative words that did not break any of the rules) for all three letters, 

combined into a single score.  On the semantic fluency task, participants were instructed 

to name as many different animals as they could in one minute (e.g., mammals, reptiles, 

birds, insects, etc.).  The total score on the semantic trial was the total number of real 

animals produced in one minute that were not perseverative.  In both the phonemic and 

semantic conditions, rule breaks were coded as responses that were a number, a name or 

proper noun, or that constituted a variation of a previously stated word (e.g., paint, 

paints); perseverative responses were coded when a word was repeated more than once.  

Test-retest reliability for the FAS is quite high, over r = .70 for both the phonemic and the 

semantic trials (Basso, Bornstein, & Lang, 1999; Harrison, Buxton, Husain, & Wise, 
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2000). With regards to validity, the FAS is highly correlated with other measures of 

verbal fluency (e.g., the Controlled Oral Word Association Task, which uses the letters 

‘C’, ‘F’, ‘L’), ranging from .85 to .94 across varying populations and settings, including 

healthy controls (M. J. Cohen & Stanczak, 2000; Lacy, Gore, Pliskin & Henry, 1996).   

 
Stroop Color-Word Test (SCWT; Golden, 1978; Stroop, 1935) 

 Although it is often utilized as a measure of selective attention, the Stroop is 

considered a measure of cognitive control as it requires the inhibition of pre-potent (i.e., 

automatic) responses, forcing participants to ignore task-irrelevant stimuli.  The version 

of the Stroop employed in this study (Golden, 1978) consisted of three separate trials: 

word reading (black ink); colour naming (red, blue and green ‘X’s), and the colour-word 

reading interference task (e.g., the word “red” written in blue ink). On this latter task, 

participants were required to ignore the typed word and to name the colour of the ink in 

which the words were typed.  Participants were allotted 45 seconds for each of the three 

trials.  Scores were calculated for each individual trial, producing a Word Score, a Color 

Score and a Color-Word Score.  An overall interference score was also derived by 

subtracting the participant’s age and education predicted color-word score from the actual 

color-word score achieve by the participant.  The interference score indicates the degree 

to which participants are able to inhibit pre-potent responses.  Test-retest reliability has 

been reported at r = .86 for the Word trial, at r = .82 for the Color trial, and at r = .73 for 

the Color-Word trial (Golden, 1975).  Chafetz and Matthew (2004) report moderate to 

high validity, and there is a moderate correlation between the Interference score and other 

measures of prepotent response inhibition (e.g., time of the stop-signal task, r = .56; May 
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& Hasher, 1998) and attention (r = .31 with errors of omission on continuous 

performance tasks; Weinstein, Silverstein, Nader & Turnbull, 1999). 

 
Emotional Stroop (paper-and-pencil) 

 The emotional Stroop employed in this study followed the same principles as the 

Stroop Color Word Test, with the exception that the words listed in the latter two trials 

were emotionally salient.  Modeled after the 1978 Golden version of the Stroop, four 

trials were administered: reading of neutral words (e.g., hat, swim, book); colour naming 

of neutral words; colour naming of negative words (e.g., disaster, failure, pathetic); and 

colour naming of positive words (e.g., happy, smile, clean). Each trial contained 100 

words.  For the latter three trials, participants were required to name the colour of the ink 

in which the words were printed.  A total of 45 seconds was allotted for each trial.  Scores 

were calculated for each individual trial, producing a Word Score, a Color Score and a 

Color-Positive Word Score, and a Color-Negative Word Score.  An overall total 

interference score was also derived by subtracting the participant’s combined score for 

the Positive and the Negative Word Scores from the combined Word and Color Score.   

In creating the emotional Stroop test used in this study, a review of the literature 

provided information pertaining to the appropriate word parameters to employ.  Larsen, 

Mercer, and Balota (2006) analyzed the lexical characteristics of words used in emotional 

stroop experiments.  From the studies they analyzed that utilized negative, positive, and 

neutral conditions, we chose to use the neutral and positive word lists from Compton, 

Heller, Banich, Palmieri, and Miller (2000).  Since these lists contained 12 words, we 

eliminated two words in order to fit our format (i.e., 10 positive, 10 negative and 10 

neutral words).  Since the negative word list from Compton’s study included words of a 
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threatening nature, as opposed to a purely negative emotional nature, we created our own 

negative word list by utilizing the online MRC Psycholinguistic Database 

(http://www.psy.uwa.edu.au/mrcdatabase/uwa_mrc.htm) (Coltheart, 1981).  We limited 

our word search to match the lists employed by Compton and Larsen’s groups in terms of 

word length, number of syllables, concreteness, imageability, and familiarity.  All words 

were one syllable and 3-6 letters long.  The concreteness, imageability, and familiarity 

ratings for the positive word list used in Compton’s study were 359, 435, and 609, 

respectively, whereas the ratings for the neutral word list were 373, 442, and 624, 

respectively.  Limits in the Psycholinguistic database were set at 100 higher and lower 

than these ratings.  The concreteness, imageability, and familiarity ratings for the 

negative word list created for this study were 358, 436, and 540, respectively.  These 

ratings were similar to those of the neutral and positive lists used by Compton’s group.         

 
Attention/Concentration 

Digit Span (DS; from the Wechsler Adult Intelligence Scale –Third Edition (WAIS-III); 

Wechsler, 1997)  

 The Digit Span is a measure of auditory attention span and working memory.  In 

this task, participants were required to listen to and repeat an aurally presented string of 

numbers that increased in length with each successive trial. The task was discontinued 

following errors on both digit strings within a trial.  The task was then completed in a 

backward condition wherein participants were required to repeat a string of aurally 

presented numbers backwards (i.e., in the reverse sequence as was presented). The 

backwards condition, which taps into the domain of working memory, is thus the harder 

of the two conditions.  Discontinuation on the backward condition occurred when both 

http://www.psy.uwa.edu.au/mrcdatabase/uwa_mrc.htm


  Tryptophan     71   

digit strings within a trial were incorrect.  The total number of digits correctly recalled in 

both the forward and the backwards trials were calculated by simple summation of 

correct responses, resulting in a total forward score, a total backward score, and an 

overall total score.  Scores range from 0-16 on the forward condition, and from 0-14 on 

the backward condition.  Scores on the backward condition were employed as pre- and 

post-test measures of the tryptophan manipulation as there is evidence in the literature 

that this task is sensitive enough to differentiate between tryptophan augmentation and 

deletion (e.g., Luciana et al., 2001).  The reliability of the Digit Span subset is high (r = 

.90).  Digit Span correlates the best with the Letter-Number Sequencing subtest from the 

WAIS-III (r = .57), and demonstrates a moderate correlation with the Verbal Scale (r = 

.51) (Sattler, 2001). 

 
Letter-Number Sequencing (from WAIS-III; Wechsler, 1997) 

 Letter-number Sequencing is a measure of working memory and attention that 

involves the aural presentation of complex auditory material (letters and numbers) that 

the participant must mentally manipulate and reproduce according to specific criteria 

(i.e., letters in alphabetical order, followed by numbers in numerical order).  There is no 

time limit on this task, and discontinuation occurred when all three trials of an item are 

incorrect. The total number of correct trials was calculated.  The reliability of the Letter-

Number Sequencing subtest is high (r = .82), demonstrating a moderate correlation with 

the Verbal Scale of the WAIS-III (r = .62).  Of the other subtests comprising the WAIS-

III, Letter-Number Sequencing best correlates with Digit Span (r = .57) (Sattler, 2001). 
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Digit Symbol – Coding (from WAIS-III; Wechsler, 1997) 

 Digit Symbol – Coding is a task of visual attention and working memory.  In this 

task, participants were required to re-code a series of symbols using the key-code 

provided at the top of the page.  This is a timed task, and discontinuation occurred after 

two minutes had lapsed.  The total number of correctly recoded symbols served as the 

score for this task.   The Digit Symbol – Coding subtest of the WAIS-III is reliable (r = 

.84) and demonstrates a moderate correlation with the Performance Scale (r = .50) 

(Sattler, 2001). 

 
Ruff 2 & 7 Selective Attention Test (Ruff & Allen, 1996)  

 The Ruff 2 and 7 Selective Attention Test is a selective visual cancellation task 

that assesses the difference between automatic and controlled visual search (i.e., 

processing speed).  In this task, participants were presented with 20 blocks of stimuli, 

each of which consisted of either three rows of letters (automatic search) or three rows of 

numbers (controlled search).  Participants were instructed to cross off (with a pen) all of 

the 2’s and 7’s that they could within a 15 second block of time.  At the end of each 15 

second period of time, participants were instructed to stop and to continue with the next 

block of stimuli.  This task takes a total of 5 minutes to complete and is scored according 

to both speed and accuracy of automatic and controlled search.  Thus, for the letter trials, 

the following scores were derived: Automatic Detection Speed (i.e., total number of 

correct hits), Automatic Detection Errors (i.e., the total number of errors) and Automatic 

Detection Accuracy scores (calculated in the following manner: Automatic Detection 

Speed divided by the sum of the Automatic Detection Speed score plus the Automatic 

Detection Errors score, multiplied by one hundred).  For the digit trials, scores were 
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derived for Controlled Search Speed (i.e., total number of correct hits), Controlled Search 

Errors (i.e., the total number of errors), and Controlled Search Accuracy (i.e., Controlled 

Speed score divided by the sum of Controlled Search Speed score plus Controlled Search 

Errors, multiplied by one hundred).  Total Speed and Total Accuracy scores, as well as 

Speed Differences, Accuracy Differences, and Total Difference were also calculated by 

adding or subtracting speed and accuracy scores, respectively.  Ruff and Allen (1996) 

report that Speed scores yield higher test-retest reliability than do Accuracy scores; 

Lemay, Bedard, Rouleau, and Tremblay (2004) found a .85 correlation between Speed 

scores.  Although content validity is mainly based on theoretical grounds (Strauss, 

Sherman, and Spreen, 2006), it has been reported that Digit Symbol, which also assesses 

processing speed, is the test most highly correlated with the Ruff 2 & 7 (r = .35-.40) and 

in normal samples it is not correlated with other tests designed to measure attention (e.g., 

Digit Span, Stroop; Ruff & Allen, 1996).  

 
Trail Making Test (Trails A & B; Reitan, 1958) 

The Trail Making Test is a speeded visual attention task involving simple 

sequencing of numbers.  On the first trial (Trails A), participants were instructed to 

connect the numbers on the page as quickly as they could without taking their pen off of 

the page. The second trial (Trails B) was essentially the same task save for the fact that it 

entails alternating between letters and numbers, making it the more complex of the two 

tasks.  This is a timed test requiring participants to connect the circles of letters (or letters 

and numbers) as quickly as possible. The total time required for each condition served as 

the score on each trial.  Dikmen, Heaton, Grant, and Temkin (1999) report reliability for 

both Trails A (.79) and Trails B (.89) as adequate to high, respectively.  There is a modest 
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correlation between Trails A and B (r = .31-6), a range that is thought to reflect the 

greater cognitive demand of the latter as opposed to the former trial (Heilbronner, Henry, 

Buck, Adams, & Fogle, 1991). 

 
Memory  

California Verbal Learning Test - II (CVLT-II; Delis, Kramer, Kaplan, & Ober, 2000) 

 The CVLT-II is an aurally presented list learning task requiring the participant to 

learn and recall verbal information immediately after presentation.  There are five 

learning trials, in which the list is repeated each time after which the participant must 

reproduce as many words from the list as possible.  An interference trial was 

administered, followed by Short-Delay Free Recall and Short-Delay Cued Recall trials.  

After a 20 minute delay, Long-Delay Free Recall, Long-Delay Cued Recall, and Long-

Delay Recognition trials were administered. Thus, scores were calculated for: Trials 1-5 

Recall Total Correct; List B Free Recall Correct; Short-Delay Free Recall; Short-Delay 

Cued Recall; Long-Delay Free Recall; Long-Delay Cued Recall; Free Recall Intrusions; 

Cued-Recall Intrusions; Total Intrusions; Total Repetitions; Long-Delay Recognition; 

Long-Delay Recognition False Positives; and Long-Delay Forced Choice Recognition 

Accuracy.  According to the test manual, reliability is high (r = .80-.89) for Trials 1-5 

Recall Total Correct, Short- and Long-Delayed Free Recall, and Total Recognition.  The 

test manual also reports validity scores ranging from .60-.69 for Free-Recall Intrusions to 

.80-.89 for Long-Delayed Recognition False Positives.   
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Rey-Osterrieth Complex Figure Test (R-OCFT; Rey, 1941; Osterrieth, 1944) 

 The R-OCFT measures a participant’s ability to accurately copy a complex figure 

onto a sheet of paper.  Successful completion requires that participants be able to 

accurately perceive and synthesize the numerous components of the figure.  After the 

copy trial, immediate (3 minute delay) and delayed (25-35 minute delay) recall trials 

were administered to assess the integration, memory and synthesis of the figure.  

Participants also completed a recognition trial to help determine whether performance 

was affected by difficulties with perception, synthesis, or retrieval of complex visual 

information.  Thus, scores were calculated for Immediate Recall, Delayed Recall, 

Recognition Total Correct, Copy, and Time to Copy, as well as for Recognition True 

Positives, Recognition False Positives, Recognition True Negatives and Recognition 

False Negatives.  Meyers and Meyers (1995) report reliability scores of r = .76 for 

Immediate Recall, of r = .89 for Delayed Recall, and of r = .87 for Recognition Total 

Correct.  According to Strauss and colleagues (2006), the R-OCFT is a valid measure of 

visual-construction (via the copy trial) and memory (recall and recognition trials). 

 
Mood/Affect 

Positive and Negative Affect Scale (PANAS; Watson, Clark, & Tellegen, 1988) 

 The PANAS is a self-report inventory comprised of both a negative affect and a 

positive affect subscale.  Each scale consists of 10 items, and participants were required 

to rate (on a 5-point scale) how well each descriptor described them at that particular 

moment.  Examples of negative descriptors are irritable, distressed, guilty, or scared; 

positive descriptors include such items as determined, strong, enthusiastic, or proud.  

Watson (1988) reported correlations of between -. 12 to -.26 for the PANAS scales, 
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indicating that the negative affect and the positive affect scales are independent of one 

another.  With regards to validity, Watson (1988) stated that “[a]ll of the scales are 

reasonably convergent with other measures of the same factor, and one must conclude 

[that the NA and PA] scales have comparable correlates and lead to similar conclusions” 

(p. 138).  Discriminant validity between the NA and PA scales has also been reported, 

with correlations in the range of r = -.48 (Warr, et al., 1983) to r = .54 (Watson, 1988). 

 
Beck Depression Inventory-II (BDI-II; Beck, Steer, & Brown, 1996)  

 The BDI-II is a self-report inventory consisting of 21 items, each of which is 

scored on a four-point scale.  Indecisiveness, Mood, and Sense of Failure are examples of 

items on the scale, each of which pertains to a particular symptom of depression.  The 

scores for each item were summed together to arrive at a total score; lower scores 

translate into lesser degrees of depression.  A score of 30 or greater indicates severe 

depression.  If a participant scored in this range, follow up questions were asked by the 

researcher as to the nature and severity of symptoms, including the likelihood of the 

participant hurting him or herself or others.  No participants scored in this range.  As a 

precaution, all participants who scored 10 or above were provided with referrals to the 

appropriate services, all of which have their contact information listed on the consent 

form signed by the participant.  If anyone had of endorsed the suicide item, they would 

have been walked over to the Student Counseling Centre at the CAW by the researcher.  

No one endorsed this item.  The BDI-II was only administered as part of the screening 

procedures in order to ensure no current depression; it was not administered during the 

testing session.       

 



  Tryptophan     77   

                                                

Results 

 Prior to analyses, all variables were examined for accuracy of data, missing 

values, normality and outliers.  Of the 73 participants who completed this study, five 

participants failed to complete one of the six PANAS forms and thus these participants 

with missing data were excluded from analyses relevant to the PANAS; all other analyses 

contained data from all 73 participants.  Data was screened for multivariate outliers using 

Mahalanobis’s distances, and none were found.  All assumptions of analyses of variance 

(ANOVA), multivariate analyses of variance (MANOVA) and repeated measures were 

met (or corrected for).  Raw test scores were used in all analyses, and data was analyzed 

using SPSS for Windows Version 17 (SPSS Inc., Chicago, IL, USA).   

 A correlation matrix was conducted in order to examine the relationship between 

the background variables (e.g., age, education, physical activity level, BDI score, etc.) 

and all cognitive and affective measures.  Results of this analysis can be seen in Table 5. 

As can be seen from Table 5, several key measures did not correlate with any 

background variables (e.g., CVLT Long Delay Recall, Rey-O Delayed Recall); every 

background variable correlated with at least one test measure.  

As we were unable to recruit equivalent numbers of males and females, it was unclear 

whether there were any gender differences on the background variables of English as a 

Second Language (ESL), eating frequency1, level of physical activity2 or BMI.  This was 

an important consideration as many researchers within the field have collected data only

 
1 ‘Eating frequency’ is the term used in this document to refer to the average number of hours between 
eating each meal or snack as reported by the participant during the screening session. 
2  Levels of physical activity was measured via self-report by each participant during the screener.  A 4-
point Likert scale was utilized, enabling participants to report their levels of physical activity during a 
typical week as either “Not at all” (i.e., no exercise of any kind), “Minimal” (e.g., walking to school), 
“Quite” (physical activity 3-5 times per week), or “Very” (physical activity 6 or more times during the 
week).  See Appendix C for more detail. 
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Table 5 
 
Correlations Between Background Variables and Tests Comprising Predictions and Composite Scores a. 
 
Test      Age Educb.    BMIc     Weight         Height      Eating        Sleep      BDIe        Physical 
               (lbs)            (in.)       Freq.d  (hrs)               Activity f 
 
1. CVLT-II g Long Delay Recall .22 .28     .18         .12   -.03       -.10 -.09    -.17  -.04 
 
2. Rey-O Delayed Recall  .12 .20     .21         .10   -.07        .18 -.16    -.03  -.22 
 
3. Stroop Interference   .09 .09    -.14        -.11    .01       -.06  .10     .00  -.20 
 
4. Trails A    -.25* -.20    -.28*        -.33**   -.19        .16  .25*    -.05   .16 
 
5. Trails B    -.13 -.06    -.10        -.20   -.16         .07  .14     .07   .13 
 
6. Ruff 2 & 7 Total Speed   .25* .29*     .22         .31**    .23        -.05 -.02     .02  -.20 
 
7. Ruff 2 & 7 Total Accuracy   .12 .15    -.24         -.05    .14        -.12 -.08    -.11  -.40  
 
8. Digit Symbol Coding   .01 .09    -.07         -.08    -.00        -.32**  .15    -.15  -.14 
 
9. Letter Number Sequencing   .01      -.04    -.02          .09     .14        -.23  .00    -.09  -.25 
 
10. EStroop Positive Interference      -.08      -.10    -.08         -.02     .07        -.24*  .15     .08  -.10 
 
11. EStroop Negative Interference    -.06 .04    -.08         -.22    -.21        -.35** -.10    -.21  -.12 
 
12. Digit Span 2 Total   .30* .24*     .05          .13     .11         -.02  .07    -.26*  -.34 
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Test      Age Educb.    BMIc     Weight         Height      Eating        Sleep      BDIe        Physical 
               (lbs)            (in.)       Freq.d  (hrs)               Activity f 
 
13. FAS h Total   .33** .20     .17          .05    -.05          .05  .05    -.17  -.16 
 
14. Working Memory   .27* .17   .08  .17    .13         -.13    .05     -.22  -.32 
 
15. Attention    .11 .16  -.18            -.06    .09         -.17    .16     -.17  -.34 
 
16. Positive PANAS i 1  .20 .13   .03  .13    .16          .20    -.22      .04   .13 
 
17. Positive PANAS 2  .08 .04   .03  .10    .11          .13    -.24      .05   .07 
 
18. Positive PANAS 3            -.02     -.04   .01  .15    .20          .07    -.21      .10   .11 
 
19. Positive PANAS 4            -.01 .00  -.11  .04    .15          .14    -.30*      .11   .13 
 
20. Positive PANAS 5  .04 .04   .01  .12    .16          .06    -.34**    .16   .13 
 
21. Positive PANAS 6  .04 .50  -.05  .08    .18             .01    -.24       .11   .17 
 
22. Negative PANAS 1            -.14      -.18   .07  .12    .14          .02    -.13       .58**  .20 
 
23. Negative PANAS 2            -.09      -.12   .08  .06    .02          .09   -.09       .51**  .10 
   
24. Negative PANAS 3            -.15     -.17   .16  .08   -.04          .04   -.18       .58**  .20 
 
25. Negative PANAS 4            -.12      -.16  .07  .09    .07         -.03     .03       .58**  .13 
  
26. Negative PANAS 5            -.12       -.19  .11  .08    .02         -.04    -.05       .54**  .15 
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Test      Age Educb.    BMIc     Weight         Height      Eating        Sleep      BDIe        Physical 
               (lbs)            (in.)       Freq.d  (hrs)               Activity f 
 
27. Negative PANAS 6            -.08       -.11  .09  .08    .05          .04    -.01       .49**  .06 
 
** p < .01, * p < .05 
a Collapsed across gender; b Education (years); c Body Mass Index; d Eating Frequency = average time (hrs) between each meal and/or 
snack; e Beck Depression Inventory - II score; f biserial correlation conducted on dichotomized (i.e., ‘low’ and ‘high’) variable; g 
California Verbal Learning Test-II; h ‘F’, ‘A’, ‘S’ verbal fluency test; i Positive And Negative Affect Scale.  Note. All PANAS 
correlations excluded participants with missing data (n = 68).  
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on males (e.g., Fischer et al., 2002; Hughes et al. 2003; Lieberman et al., 2002; Park et 

al., 1994) or females (e.g., Nabb & Benton, 2006).  Thus, examining each gender 

separately allowed us to better compare our findings to those in the literature.   

Looking at each gender separately, ESL proportions did not differ for females 

[χ²(2, N = 50) = .01, p =.994] or males [χ²(2, N = 23) = 1.10, p =.577].  With regards to 

eating frequency, it had been suggested by Craig (1986) that the amount of time between 

each meal is likely to influence the effect of the manipulation on performance in that 

those with a faster metabolism may have a different peak level of augmentation or 

depletion than those with a slower metabolism.  For this reason, a chi-square analysis was 

also conducted on eating frequency, demonstrating no significant group differences for 

either females [χ²(4, N = 50) = 2.60, p =.627] or males [χ²(4, N = 23) = 2.63, p =.622].    

The chi-square analysis examining the proportions of physical activity levels across meal 

types for females, however, violated the assumption of expected frequencies, with more 

than 20% of the cells having an expected cell count of less than 5, thus rendering this 

analysis uninterpretable.  Examination of the chi-square table illustrated that the lowest 

(i.e., ‘Not at all’) and highest (i.e., ‘Very’) categories of physical activity for each meal 

condition were the cells with expected frequency counts of less than 5.   

This analysis was repeated for the males, with the same result being obtained.  

The assumption of expected frequencies was violated, as all nine cells had an expected 

cell count of less than 5, again rendering the analysis uninterpretable.  Examination of 

cell counts in the chi-square table, it is evident that the lowest category (i.e., ‘Not at all’), 

which was not endorsed by any males, and the highest category (i.e., ‘Very’) of physical 
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activity for each meal condition were the cells that violated the assumption of expected 

frequencies most gravely.   

Since the values in the ‘Not at all’ and ‘Very’ categories for both the females and 

the males rendered the analyses uninterpretable due to their low levels of endorsement, 

we collapsed across these more extreme activity levels to instead create two categories of 

physical activity.  The ‘low’ category was generated by collapsing across the ‘Not at all’ 

and the ‘Minimal’ levels of activity, whereas the ‘high’ category was created by 

collapsing across the ‘Quite’ and the ‘Very’ levels of activity.  By doing so, the chi-

square analysis of physical activity levels no longer violated the assumption of expected 

frequencies for females.  Levels of physical activity (using these dichotomized ‘low’ and 

‘high’ physical activity levels) were significantly disproportionate across meal conditions 

for females [χ²(2, N = 50) = 16.86, p =.000].  The Augmented group had a greater 

proportion of participants within the ‘low’ level of physical activity (n = 13, 76.5%), 

whereas the Depleted group had a greater proportion of participants within the ‘high’ 

category of physical activity (n = 15, 93.8%) (see Table 6).   

A chi-square analysis examining levels of physical activity (using the 

dichotomized ‘low’ and ‘high’ physical activity levels) was also conducted for the males 

and demonstrated a violation of the assumption of expected frequencies.  Since more than 

20% of the cells had an expected cell count of less than 5, the analysis was 

uninterpretable (see Table 7).   



  Tryptophan     83   

Table 6 

Chi-square Results for Proportion and Percent Total of Dichotomized Physical Activity 

Levels by Meal Type for Females 

 
    Physical Activity Levels 

     Low             High                
Meal           Count (%)                   Count (%)          
 
      
Augmented                   13 (76.5)               4 (23.5)   
 
Depleted                    1 (6.3)           15 (93.8)   
 
Balanced                    9 (52.9)             8 (47.1)    
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Table 7 
 
Chi-square Results for Proportion and Percent Total of Dichotomized Physical Activity 

Levels by Meal Type for Males 

    Physical Activity Levels 
     Low             High                
Meal           Count (%)                   Count (%)          
 
      
Augmented                   2 (25.0)*                6 (75.0)   
 
Depleted                    1 (14.3)*            6 (87.5)*   
 
Balanced                    5 (62.5)*            3 (37.5)    
      
*expected cell count of less than 5. 
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When BMI was analyzed separately for each gender, no significant difference 

emerged between meal types for either the females [F(2, 47) = .02, p =.985, partial η2= 

.00] or the males [F(2, 20) = .43, p =.656, partial η2= .04] (see Table 8 for group means 

and SDs).   

Overall, no gender differences were found for ESL or eating frequency.  Levels of 

physical activity, although significant for the females when dichotomized into ‘low’ and 

‘high’ levels of activity, was not significantly correlated with any of the variables on 

which the predictions were based.  Thus, despite there being an unequal proportion of 

levels of physical activity among female participants in Augmented and Depleted 

conditions (respectively), it does not appear that this difference was great enough to 

influence test scores.  For this reason, level of physical activity is excluded from all 

further analyses.  For exploratory purposes, however, all female analyses were repeated, 

examining low- and high-activity level participants separately on each test measure.  The 

results were largely the same.  The only significant difference was on the EStroop 

Positive Interference for the high-activity females [F(2, 24) = 3.84, p =.036, partial η2= 

.24].  Post-hoc comparisons showed a significant difference between those in the 

Augmented group (M = 12.00, SD = 4.24; n = 4) and those in the Depleted group (M = 

2.80, SD = 7.04; n = 15).  With regards to BMI, when taken together with the results of 

the correlation matrix and above mentioned ANOVA, results of these analyses indicate 

that the BMI distribution is equal between meal groups and the difference is thus not 

large enough to influence test scores.  For this reason, BMI was excluded from further 

analyses.  This is in keeping with the norm within the literature in that researchers may  
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Table 8 

Mean and Standard Deviation of BMI Scores by Gender and Meal Type 

 
    BMI Score 

     Female    Male 
Meal Type   M  SD  M  SD 
 
      
Augmented   21.97  2.48  23.38  2.64  
 
Depleted   21.84  2.69  24.64  2.98  
 
Balanced   22.00  2.95  23.75  2.48 
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control for BMI when recruiting participants (e.g., Markus et al., 1998; Nabb & Benton, 

2006), but they do not include it in subsequent analyses.   

 
Effects of the Tryptophan Manipulation 
 

Working memory and self-report affect indices have been found to be sensitive 

measures in previous studies examining the effects of tryptophan manipulation on 

neuropsychological performance (e.g., Kanarek & Swinney, 1990; Lieberman et al., 

2002; Luciana et al., 2001).  For this reason, the Digit Span Backwards scores and the 

PANAS NA and PA scores over time were employed to serve as indicators of the 

effectiveness of the tryptophan manipulation.  In order to assess whether the dietary 

method of tryptophan manipulation successfully altered levels of circulating tryptophan 

in females, a one-way ANCOVA of meal type (augmentation, depletion, or balanced) 

was conducted on the Digit Span Backward Time 2 raw scores, with the Digit Span 

Backward Time 1 raw score entered as a covariate.  There was no main effect of meal 

type [F(2, 46) = .61, p =.549, partial η2= .03].  As expected, however, Digit Span 

Backward Time 1 score was a significant covariate [F(1, 46) = 24.54, p =.000, partial η2= 

.35].  An identical analysis was conducted for the male participants.  As with the females, 

there was no main effect of meal type [F(2, 19) = .34, p =.713, partial η2= .04], but Digit 

Span Backward Time 1 score was a significant covariate [F(1, 19) = 15.04, p =.001, 

partial η2= .44].  These results indicate that there were no significant between group 

differences for either females or males on the Digit Span Backward Time 2 score, one of 

the two pre- post-test measures selected to examine the effectiveness of the manipulation 

(see Table 9 for mean scores on Digit Span Backward 2 scores split by gender and meal 

type). 
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Table 9 

Mean and Standard Deviation of Test Scores on Digit Span Backward 2 Scores by 

Gender and Meal Type 

 
       Digit Span Backward 2 Scores 

     Female    Male 
Meal Type   M  SD  M  SD 
 
      
Augmented   8.47  2.27  8.63  2.62  
 
Depleted   8.19  2.51  8.71  2.56  
 
Balanced   7.29  2.42  7.50  2.73  
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In order to determine whether mood scores changed over time as a function of the 

manipulation, a repeated measures ANOVA of meal type on the NA scale of the PANAS 

(administrations 1 through 6) was conducted for each gender separately. For the females, 

Mauchly’s test indicated that the assumption of sphericity had been violated for the main 

effect of NA, χ²(14) = 60.28, p =.000.  Thus, degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity (ε = .65 for the main effect of NA).  The 

main effect of NA was not significant [F(3.24, 149.23) = 1.23, p =.301, partial η2= .03], 

nor was the main effect of meal type [F(2, 46) = .08, p =.923, partial η2= .00].  The 

interaction between NA and meal type was also not significant [F(10, 230) = .42, p 

=.936, partial η2= .02].  

These analyses were repeated for the males.  As with the females, Mauchly’s test 

indicated that the assumption of sphericity had been violated for the main effect of NA, 

χ²(14) = 54.57, p =.000.  Thus, degrees of freedom were corrected using Greenhouse- 

Geisser estimates of sphericity (ε = .50 for the main effect of NA).  The main effect of 

NA was not significant [F(2.52, 40.24) = 4.00, p =.019, partial η2= .20], nor was the main 

effect of meal type [F(2, 16) = .51, p =.611, partial η2= .06].  The interaction between NA 

and meal type was also not significant [F(10, 80) = 1.14, p =.343, partial η2= .12] (see 

Table 10 for mean NA scale scores split by gender and condition).   

An identical set of repeated measures ANOVAs were conducted examining the 

effect of meal type on the PA scale of the PANAS (administrations 1 through 6) for each 

gender.  For the females, Mauchly’s test of sphericity indicated that the assumption of 

sphericity had been violated for the main effect of PA, χ²(14) = 34.48, p =.002.  Thus, 

degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε =  
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Table 10 

Mean and Standard Deviation of Test Scores on Negative Affect (NA) Scale by Gender 

and Meal Type 

    NA Scale Scores 
             Female                        Male  
Meal Type   M  SD  M  SD 
 
      NA Scale 1 
      
Augmented   12.69  4.25  14.17  5.91  
 
Depleted   12.56  3.48  12.83  3.66  
 
Balanced   12.47  4.35  15.57  4.04  
 
 

NA Scale 2 
      
Augmented   11.50  2.76  12.17  2.48  
 
Depleted   12.44  4.46  12.17  3.25  
 
Balanced   11.76  4.76  12.86  2.48 
 
       

                  NA Scale 3 
      
Augmented   12.38  3.14  12.67  3.08  
 
Depleted   12.44  3.03  12.17  3.37  
 
Balanced   11.71  2.95  12.86  1.95  
 
 

NA Scale 4 
      
Augmented   11.88  3.69  12.17  1.94  
 
Depleted   12.13  2.47  11.83  2.56  
 
Balanced   12.18  3.19  12.29  1.80 
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NA Scale Scores 
             Female                        Male  
Meal Type   M  SD  M  SD 
       

             NA Scale 5 
   
Augmented   12.06  2.79  12.67  2.66  
 
Depleted   12.00  2.16  11.50  1.52  
 
Balanced   12.00  2.96  13.00  2.31  
 

 
NA Scale 6 

      
Augmented   12.19  4.02  12.33  2.34  
 
Depleted   13.31  5.21  13.67  3.61  
 
Balanced   12.47  2.18  16.57  6.90 
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.76 for the main effect of PA).  There was no significant main effect for PA [F(3.80, 

174.93) = 1.69, p=.157, partial η2= .04].  The main effect of meal type was also not 

significant [F(2, 46) = .59, p =.599, partial η2= .03].  There were no significant 

interactions between PA and meal type [F(10, 230) = .17, p =.998, partial η2=.01].   

These analyses were repeated for the males.  As with the females, there was no 

significant main effect for PA [F(5, 75) = .95, p =.455, partial η2= .06].  The main effect 

of meal type was also not significant [F(2, 15) = .66, p =.530, partial η2= .08].  There 

was, however, a significant interaction between PA and meal type [F(10, 75) = 2.19, p 

=.028, partial η2= .23].  Post-hoc comparisons indicate that there was a near-significant 

difference between meal types on the fourth administration of the PA, t(15) = -2.13, r = 

.48, with those in the Augmented group scoring lower than those in the Depleted group.  

As this value is equal to the established p = .05 cut-point for a significant finding and is 

only present on one of the six PANAS administrations, it is likely that this result is 

spurious and not meaningful (see Table 11 for mean PA scale scores split by gender and 

condition).  

Overall, these analyses indicate that there were no significant between group 

differences for males or for females on pre- and post-test affective scores as measured by 

the PANAS NA and PA scales. 

 
Hypothesis 1: Depletion will result in lower scores on measures of LTM. 

An ANOVA was conducted examining the effect of meal type on the CVLT 

Long-delay Free Recall scores for females.  There was no significant main effect of meal 

type on the total number of words recalled during the long-delay free recall [F(2, 47) = 

.13, p =.882, partial η2=.01].  An identical analysis was conducted for the male  
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Table 11 

Mean and Standard Deviation of Test Scores on Positive Affect (PA) Scale by Gender 

and Meal Type 

 
    PA Scale Scores 

     Female    Male 
Meal Type   M  SD  M  SD 
 
      PA Scale 1 
      
Augmented   26.69  5.75  29.50  6.57  
 
Depleted   23.75  6.95  31.00  6.60  
 
Balanced   23.76  7.01  32.14  9.19  
 
 

PA Scale 2 
      
Augmented   26.38  2.27  26.17  8.89  
 
Depleted   23.38  9.16  30.80  6.14  
 
Balanced   23.53  7.15  31.14  9.23 
 
       

                  PA Scale 3 
      
Augmented   26.56  7.66  28.83  10.76  
 
Depleted   24.56  7.62  34.80  4.09  
 
Balanced   24.35  7.37  31.00  12.52  
 
 

PA Scale 4 
      
Augmented   26.63  8.50  24.00*  8.67  
 
Depleted   24.25  6.66  35.00  4.90  
 
Balanced   25.12  7.21  31.29  10.13 
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PA Scale Scores 
     Female    Male 
Meal Type   M  SD  M  SD 
       

             PA Scale 5 
   
Augmented   25.88  8.45  28.50  7.79  
 
Depleted   24.69  8.30  36.80  5.50  
 
Balanced   24.41  9.10  30.00  7.57  
 

 
PA Scale 6 

      
Augmented   28.38  8.29  31.33  6.53  
 
Depleted   25.75  8.42  32.60  3.78  
 
Balanced   25.76  10.65  29.00  12.82 
 
*p =.05 
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participants.  The assumption of homogeneity of variance was violated, however, 

necessitating the use of the Brown-Forsythe F correction for unequal group sizes; the   

Brown-Forsythe correction is a robust test of the equality of means.  Using this 

correction, the main effect of meal type on total words recalled was not significant [F(2, 

12.07) = .73, p =.493, partial η2= .07]. 

An identical ANOVA was also conducted to examine the effect of meal type on 

Rey-O Delayed Recall scores for females.  The main effect of meal type on the number 

of elements correctly recalled during the long-delay recall trial was not significant [F(2, 

47) = .22, p =.806, partial η2= .01].  This same analysis was conducted for the male 

participants, wherein a significant main effect of meal type was found [F(2, 20) = 5.21, p 

=.015, partial η2= .34].  Post-hoc comparisons indicate that males in the Depleted 

condition scored significantly higher on the Rey-O Long Delay subtest than did those in 

the Balanced condition (see Table 12 for mean scores on the CVLT Long Delay Free and 

the Rey-O Long Delay split by gender and meal type). 

Taken together, the prediction that depletion would result in lower scores on 

measures of LTM was not met.  In fact, males in the Depleted group scored significantly 

higher than did males in the Balanced condition and higher (though not significantly) 

than those in the Augmented condition on Rey-O Long Delay Recall, a measure of 

visuospatial LTM.   

 
Hypothesis 2: Depletion will result in lower mood scores.  

This prediction was tested by conducting a repeated measures ANOVA with the 

NA and PA scores from all six administrations of the PANAS.  Although this measure 

was used to assess the efficacy of the tryptophan manipulation, it was also employed in  
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Table 12 

Mean and Standard Deviation of Test Scores on the CVLT Long Delay Free Recall and 

the Rey-O Long Delay by Gender and Meal Type 

          Test 
     Female    Male 
Meal Type   M  SD  M  SD 
 

                                CVLT-Long Delay 
    
Augmented   13.65  2.18  11.63  4.14 
 
Depleted   13.38  2.34  13.14  2.12 
 
Balanced   13.24  7.05  13.13  1.55 
      
 

                              Rey-O Long Delay 
 

Augmented   21.88  7.15  21.06 c  4.28 
 
Depleted   20.50  5.68  25.21a  5.71 
 
Balanced   20.65  7.05  16.63 b  5.44 
                                
a p <.05  Significantly different from b but not significantly different from c; b is not 
significantly different from c.  
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examining the prediction that tryptophan depletion will lower mood scores as it directly 

measures changes in self-reported affect throughout the testing session. The prediction 

was also assessed by conducting an ANOVA with the Positive and Negative Interference 

scores for the Emotional Stroop.   

As detailed in the repeated measures ANOVA described in the Effects of the 

Tryptophan Manipulation section, four analyses were conducted looking at the NA and 

PA scales of the PANAS for each gender separately.  There were no significant main 

effects for NA or for meal type, nor were there any significant interactions between NA 

and meal type for either the females or the males.  For the PA analysis, no significant 

main effects were found for PA or for meal type for either gender, nor were there 

significant interactions between PA and meal type for females. There was, however, a 

significant interaction between PA and meal type for the males on the 4th administration 

of the PANAS.  This interaction, although significant, is not interpretively meaningful.  

 An ANOVA of meal type on Emotional Stroop Negative Interference scores was 

conducted for each gender.  No significant main effect was found for meal type on 

negative interference scores for females [F(2, 47) = .11, p =.899, partial η2= .01], or for 

males [F(2, 20) = .14, p =.874, partial η2= .01].   

An identical set of analyses were conducted using the Positive Interference score 

of the Emotional Stroop.  The main effect of meal type on positive interference scores 

was not significant for females [F(2, 47) = .79, p =.459, partial η2= .03], or for males 

[F(2, 20) = .02, p =.985, partial η2= .00] (see Table 13 for mean scores on the Positive 

and Negative EStroop test split by gender and meal type). 
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Table 13 

Mean and Standard Deviation of Test Scores on the Negative and Positive EStroop by 

Gender and Meal Type 

         Test 
     Female    Male 
Meal Type   M  SD  M  SD 
 

                                EStroop Negative Interference 
    
Augmented   10.06  6.18  5.38  5.55 
 
Depleted   9.31  6.67  4.43  5.38 
 
Balanced   8.88  9.24  3.88  6.45 
      
 

                              EStroop Positive Interference 
 

Augmented   5.35  6.97  1.50  6.55 
 
Depleted   3.06  6.88  1.86  4.10 
 
Balanced   6.29  8.64  2.00  6.37 
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Taken together, these analyses indicate that the prediction that those in the 

Depletion group would score lower on measures of mood was not met. 

 
Hypothesis 3: Augmentation will lead to lower scores on measures of working memory.   
 

To assess this prediction, participants’ total raw scores for Letter-number 

Sequencing, verbal fluency and Digit Span (total score on the second administration) 

were converted into z-scores which were then averaged to arrive at a composite working 

memory score for each participant.  An ANOVA was conducted examining the effect of 

meal type on the working memory composite scores for females.  There was no 

significant main effect of meal type on working memory scores [F(2, 47) = 1.29, p =.286, 

partial η2= .05].  The same analysis was conducted for males, indicating that the main 

effect of meal type on working memory scores was not significant [F(2, 20) = .18, p 

=.837, partial η2= .02] (see Table 14 for mean scores on the working memory composite 

split by gender and meal type).  Thus, the prediction that those in the Augmented 

condition would obtain lower scores on measures of working memory was not met. 

 
Hypothesis 4: Augmentation will result in functional improvements within the areas of 

attention and vigilance.  

To test this prediction, a composite attention score was created for each 

participant.  This was done by converting raw scores for the measures of attention into z-

scores and averaging them to arrive at a composite attention score for each participant.  

The following tests were included in this composite score:  Digit Span total score (from 

the second administration); Letter-number Sequencing total score; Digit-symbol Coding 

total score; Ruff 2 & 7 Total Speed and Total Accuracy scores; Trails A time; and Trails  
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Table 14 

Mean and Standard Deviation of Test Scores on the Working Memory Composite by 

Gender and Meal Type 

    Working Memory Composite Score 
     Female    Male 
Meal Type   M  SD  M  SD 
 
      
Augmented   .13  .64  .03  .92  
 
Depleted   -.01  .89  .29  .86  
 
Balanced   -.27  .63  .04  1.04 
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B time.  An ANOVA of meal type on composite attention scores was conducted for the 

females.  Results of this analysis revealed no significant main effect of meal type on 

attention composite scores [F(2, 46) = .10, p =.904, partial η2= .00].  The same analysis 

was conducted for the males, again revealing no significant main effect of meal type on 

attention composite score [F(2, 19) = .80, p =.464, partial η2= .08] (see Table 15 for mean 

attention composite scores split by gender and meal type).  Thus, the prediction that 

Augmentation would result in functional improvements in attention and vigilance was not 

met. 

 
Hypothesis 5: The balanced group will score higher than the depletion group on LTM 

and on mood indices, and higher than the augmentation group on working memory.   

These hypotheses, which were tested via the analyses for Hypotheses 1 through 3 

(detailed above), were not met as neither females nor males in the Balanced group 

obtained statistically significant higher scores than those in the Depleted or Augmented 

groups on these measures.  Females in the Balanced group did not score higher than the 

females in the Depletion group on the CVLT Long-delay Free Recall [F(2, 47) = .13, p 

=.882, partial η2= .01].  Similarly, there were no significant group differences between 

females on the Rey-O Delayed Recall [F(2, 47) = .22, p =.806, partial η2= .07].  Scores 

on the CVLT Long-delay Free Recall were also not significantly different between males 

in the Balanced and Depleted groups [F(2, 12.07) = .73, p =.493, partial η2= .01].  Scores 

on the Rey-O Delayed Recall, however, were significantly different between males in the 

Balanced and Depleted groups [F(2, 20) = 5.21, p =.015, partial η2= .34], with those in 

the Depleted group obtaining higher scores than those in the Balanced group (see Table 

12 for mean scores).  Overall, the prediction that the Balanced group would score higher  
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Table 15 

Mean and Standard Deviation of Test Scores on the Attention Composite by Gender and 

Meal Type 

 
    Attention Composite Score 

     Female    Male 
Meal Type   M  SD  M  SD 
 
      
Augmented   -.00  .54   .10  .39  
 
Depleted    .03  .48  -.02  .35  
 
Balanced    .06  .37  -.17  .49 
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than the Depleted group on measures of LTM was not met.  In fact, males in the 

Balanced group scored significantly lower than those in the Depleted group on the Rey-O 

Delay Recall, a measure of visuospatial LTM (see Hypothesis 1 for further details).   

 The hypothesis that those in the Balanced group would obtain higher scores in 

the mood indices was also not met.  Neither the females [F(2, 46) = .08, p =.923, partial 

η2= .00] nor the males [F(2, 16) = .51, p =.611, partial η2= .06] in the Balanced group 

scored higher than those in the Depletion group on the NA scale of the PANAS.  

Similarly, there were no group differences on the PA scale for the females [F(2, 46) = 

.59, p =.599, partial η2= .03] or for the males [F(2, 15) = .66, p =.530, partial η2= .08].  

Females in the Balanced group also failed to score higher than the Depletion group on the 

Emotional Stroop Negative [F(2, 47) = .11, p =.899, partial η2= .11] or Positive [F(2, 47) 

= .79, p =.459, partial η2=.03] Interference trials.  Similarly, males in the Balanced group 

failed to score higher than those in the Depletion group on either of the Negative [F(2, 

20) = .14, p =.874, partial η2= .01] or Positive [F(2, 20) = .02, p =.985, partial η2= .00] 

Interference trials of the Emotional Stroop (see Table 13 for mean scores).  Taken 

together, these analyses demonstrated that the Balanced group did not score higher than 

the Depletion group on mood indices (see Hypothesis 2 for further details). 

The hypothesis that those in the Balanced group would score higher than those in 

the Augmented group on measures of working memory was also not met for either the 

females F(2, 47) = 1.29, p =.286, partial η2=.05]  or the males [F(2, 20) = .18, p =.837, 

partial η2= .02] (see Table 14 for mean scores; see Hypothesis 3 for further details).   

Overall, hypotheses made in Hypothesis 4 were not met as neither the females nor 

the males in the Balanced group obtained statistically significantly higher scores than 
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those in the Depleted group on measures of LTM and mood, and they did not obtain 

statistically significant higher working memory scores than those in the Augmented 

groups. 

 
Hypothesis 6: The balanced group will score lower than those in the augmentation group 

on tests of attention and vigilance.   

As discussed in the ANOVA of meal type on attention composite scores detailed 

in Hypothesis 4, neither the females [F(2, 46) = .10, p =.904, partial η2= .00] nor the 

males [F(2, 19) = .80, p =.464, partial η2=.08] in the Balanced group obtained a lower 

score on tests of attention and vigilance than did those in the Augmented group (see 

Table 15 for mean scores; see Hypothesis 4 for greater details).  Thus, this hypothesis 

was not met as there were no statistically significant between group differences on the 

attention composite. 

 
Exploratory Analyses 

 Exploratory analyses were also conducted in order to assess whether there were 

any group differences on the other cognitive measures comprising the composite scores 

or on the individual items of the PANAS.  As the nature of exploratory analyses is to 

examine whether any findings emerge that would warrant further exploration in future 

research, no corrections for multiple comparisons were conducted; we were more 

concerned with Type II error (i.e., sensitivity) than with Type I error (i.e., specificity) (S. 

Miller, personal communication, March 17, 2010).  In keeping with previous analyses, 

females and males were analyzed separately.   
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 In an exploratory way, the individual items of the PANAS were analyzed in order 

to examine the individual affects (e.g., upset, interested, enthusiastic) captured by the 

PANAS.  As initial exploratory analyses, a MANOVA was conducted for each gender 

examining the effect of meal type on the difference scores for each item.  The difference 

scores were created by subtracting the score on PANAS Time 6 from the score on 

PANAS Time 1 for each individual item, resulting in 20 difference scores, one for each 

item on the PANAS.  No significant between group differences emerged for females for 

any of the items (see Table 16).   

This analysis was repeated for the male participants.  A significant between group 

difference was found for males on the Excited difference scores [F(2, 16) = 3.81, p 

=.044, partial η2= .32] (see Table 17).  Post-hoc comparisons indicate that the Excited 

item was significantly different between the Balanced and Depleted groups, t(16) = 2.51, 

p =.023, r =.47.   

In order to determine whether or not the individual items on the PANAS were in 

fact stable and reliable across time, test-retest reliability analyses were conducted on the 

NA scale as prior research has found the NA scale to be the most sensitive to tryptophan 

manipulation.  These analyses, which were conducted on the Balanced group, 

demonstrated that the NA is in fact stable over time, r = .78, p <.01.  Further examination 

revealed that the Excited item is also reliable over time, with an average correlation of r 

=.72 (when collapsed across gender) or of r =.80 (when only males are included).  As 

difference scores have an inherently greater degree of error in them compared to repeated 

measures analyses, it was unclear whether there was, in fact, a change in excitement 

levels over time.  For this reason, a repeated measures ANOVA was conducted on meal  
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Table 16 
 
MANOVA for Each PANAS Item for Females 

PANAS Item    df  F  partial η2   p 
 
Interested   2  .22  .01  .807 
 
Distressed   2  2.29  .09  .113 
 
Excited   2  .08  .00  .921 
 
Upset    2  .14  .01  .870 
 
Strong    2  .27  .01  .767 
 
Guilty    2  .24  .01  .791 
 
Scared    2  .04  .00  .965   
 
Hostile    2  .97  .04  .386 
 
Enthusiastic   2  .22  .01  .801  
 
Proud    2  .19  .01  .827 
 
Irritable   2  1.44  .06  .248 
 
Alert    2  .40  .02  .674 
 
Ashamed   2  .18  .01  .839 
 
Inspired   2  .03  .00  .966 
 
Nervous   2  .76  .03  .474   
 
Determined   2  .25  .01  .784 
 
Attentive   2  .54  .02  .588 
 
Jittery    2  .02  .00  .982 
 
Active    2  .85  .04  .432 
 
Afraid        2  .05  .00  .951   

     Error   46    
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Table 17 
 
MANOVA for Each PANAS Item for Males 
  
PANAS Item    df  F  partial η2   p 
 
Interested   2  .23  .03  .794 
 
Distressed   2  .95  .12  .408 
 
Excited   2  3.81  .32  .044 
 
Upset    2  1.75  .18  .206 
 
Strong    2  1.44  .15  .266 
 
Guilty    2  .84  .10  .449 
 
Scared    2  .61  .07  .556   
 
Hostile    2  2.02  .20  .165 
 
Enthusiastic   2  1.30  .14  .301  
 
Proud    2  2.58  .24  .107 
 
Irritable   2  1.01  .11  .385 
 
Alert    2  .31  .04  .739 
 
Ashamed   2  .26  .03  .777 
 
Inspired   2  .68  .08  .521 
 
Nervous   2  1.16  .13  .338   
 
Determined   2  1.30  .14  .300 
 
Attentive   2  .22  .03  .809 
 
Jittery    2  1.22  .13  .321 
 
Active    2  1.16  .13  .340 
 
Afraid        2  1.10  .12  .358 
 Error   16    
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type on Excited scores for all 6 times (male participants only).  Mauchly’s test of 

sphericity indicated that the assumption of sphericity had been violated for the main 

effect of Excited, χ²(14) = 27.72, p =.017.  Thus, degrees of freedom had been corrected 

for using Greenhouse-Geisser estimate of sphericity (ε = .65 for the main effect of 

Excited).  There was no significant main effect for Excited [F(3.24, 51.88) = .53, p =.677,  

partial η2= .03].  The main effect of meal type was also not significant [F(2, 16) = 2.64, p 

=.102, partial η2= .25], nor was the interaction between Excited and meal type [F(10, 80) 

= 1.49, p =.158 , partial η2= .16] (see Table 18 for mean Excited scores by meal type over 

time).   

Although the overarching omnibus analysis was not significant, post-hoc 

comparisons were examined for exploratory purposes to see if any trends existed within 

the data.  Post-hoc comparisons indicate that the Excited item was significantly different 

between the Augmented and Depleted groups on Time 4, t(16) = -2.74, p =.015, r = 0.75, 

Time 5, t(16) = -2.14, p =.048, r = 0.47, and on Time 6, t(16) = -2.12, p =.050, r = 0.47.  

These post-hoc comparisons indicate a trend wherein those in the Depleted group 

experienced a fairly modest, but linear, increase in excitement level over time, whereas 

excitement was lowered between administration two through four before increasing 

drastically by the sixth administration for those in the Augmented group.  Participants in 

the Balanced condition demonstrated a subtle decrease in excitement levels over time 

(see Figure 2 for mean Excited scores by meal type over time). 

Taken together, these analyses suggest that there is a trend between meal type and 

level of excitement, indicating that those in the Depleted group experienced an increase 

in level of excitement as the study progressed, whereas those in the Augmented group  
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Table 18 

Mean and Standard Deviation of Excited Item Over Time for Males 

 
        Administration 

Meal Type     M  SD   
 

                                Excited 1 
    
Augmented     2.00    .63   
 
Depleted     3.00    .89   
 
Balanced     3.14  1.07    
 

                               
Excited 2 

 
Augmented     2.50    .84   
 
Depleted     3.00  1.27   
 
Balanced     3.00  1.16   
 

                               
Excited 3 

 
Augmented     2.17  1.33   
 
Depleted     3.17    .41   
 
Balanced     3.00  1.29   
                                

                               
Excited 4 

 
Augmented     1.83    .98   
 
Depleted     3.50    .55   
 
Balanced     2.71  1.38   
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Administration 
Meal Type     M  SD   

                         
         Excited 5 

 
Augmented     2.50    .84   
 
Depleted     3.67    .82   
 
Balanced     2.71  1.11   
                                

                              
Excited 6 

 
Augmented     2.50    .84   
 
Depleted     3.67    .52   
 
Balanced     2.57  1.27   
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Figure 2.  Mean Excited scores by meal type over time. 
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experienced a dip in excitement levels followed by a steady increase in excitement 

towards the latter half of the testing session.  The subtle decrease in excitement 

experienced by the Balanced group over time was not statistically significant.  These 

findings may provide some limited evidence for the effect of the manipulation. 

 Oneway ANOVAs were conducted on all other tests and measures employed in 

this study in order to examine the effect of meal type on neuropsychological and 

emotional performance; females and males were analyzed separately.  As can be seen in 

Table 19, the only significant result was found for male participants on the Ruff 2 & 7 

Total Speed subtest [F(2, 20) = 4.68, p =.022, partial η2= .32]; all other analyses failed to 

reject the null hypothesis.  Post-hoc Bonferroni comparisons on the Ruff 2 & 7 Total 

Speed subtest revealed significant differences in mean time scores between the 

Augmented and Balanced groups but not between the Augmented and Depleted groups, 

or between the Balanced and Depleted groups.  The Augmented group obtained a mean 

speed score of 112.50 (SD = 16.44), the Balanced group obtained the fastest speed score, 

with a mean score of 88.38 (SD = 17.44), and the Depleted group obtained a mean speed 

score of 104.86 (SD = 13.91).  There was no significant difference in time scores between 

the Augmented and the Depleted group, or on any other measures for either females or 

males. 

 
Discussion  

 In this study, the effects of tryptophan manipulation on cognitive functioning and 

affective state were examined.  More specifically, a dietary method of tryptophan 

manipulation was employed in order to assess any differences in performance produced 

by tryptophan augmentation as compared to tryptophan depletion or balanced tryptophan  
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Table 19 

ANOVAs on the Effect of Meal Type on All Test Measures Examined in Exploratory 

Analyses, Separated by Gender 

  
Test      df  F  partial η2   p 
 
Digit Symbol Coding 
     Female    2, 47    .13  .01  .878 
     Male    2, 20  1.26  .11  .305 
 
FAS  
     Female    2, 47    .71  .03  .495 
     Male     2, 20  1.16  .10  .334 
 
Letter Number Sequencing  
     Female    2, 47  .87  .04  .425 
     Male    2, 20  .22  .02  .808 
 
Stroop Interference  
     Female    2, 44  .25  .01  .783  
     Male    2, 18  .15  .02  .865 
 
Ruff 2 & 7 Total Accuracy 
     Female    2, 46    .86  .04  .428 
     Male    2, 19  2.00  .17  .163 
  
Ruff 2 & 7 Total Speed  
     Female    2, 46    .12  .01  .890 
     Male    2, 20  4.68  .32  .022 
 
Trails A Time (sec) 
     Female    2, 47  3.16  .12  .052  
     Male    2, 20  2.01  .17  .160 
 
Trails B Time (sec) 
     Female    2, 47    .66  .03  .521  
     Male    2, 20  1.03  .09  .374 
 
Digit Span 2 Total  
     Female    2, 47  .98  .04  .383  
     Male    2, 20  .24  .02  .787 
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levels.  Although the cognitive measure of pre-test/post-test differences (Digit Span 

Backwards) failed to detect any significant between group differences for either males or 

females, there were marginally significant group differences in positive affect between   

males in the Augmented and Depleted group.  These differences in PA levels seem to be 

primarily driven by the trend in excitement levels between males in the Augmented and 

Depleted conditions over time.  Group differences were also found for the males on a 

visuospatial measure of long-term memory, as well as on a measure of attention and 

concentration.  Results of this study support the hypothesis that dietary manipulations 

aimed at altering tryptophan levels had an effect on some cognitive tests and positive 

affect, at least with regards to males.  

 
Did the manipulation affect affect? 

Of all the measures employed in this study, it was believed that the PANAS 

would be the most sensitive to tryptophan manipulation and it can thus be viewed as a 

check on the efficacy of the manipulation.  Although no significant results emerged on 

the NA scale for either the males or the females, indicating that participants reported no 

change in negative affect, a marginally significant finding emerged for males on the PA 

scale, but not for females.  More specifically, it was found that on the fourth 

administration of the PANAS (which was administered immediately after lunch), males 

in the Depleted group scored higher on the PA scale than did males in the Augmented 

group.  As only one of the six administrations demonstrated a near-significant effect of 

meal type, with all others being not significant, it is likely that this finding is spurious and 

not interpretively meaningful.   Thus, despite this trend,  no meaningful results emerged 

on either the NA or the PA scale for either the females or the males, indicating that 
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participants reported no increase or decrease in overall negative or positive affect.  This 

finding was somewhat unexpected as it was predicted that negative affect (i.e. NA scale 

scores) would be affected, whereas a subtle change in positive affect was actually found.   

The results of the study by Luciana and colleagues (2001), however, are the 

opposite as they found that tryptophan depletion resulted in transient decreases in 

negative affect, and a lowering of positive affect, whereas tryptophan augmentation had 

no effect on negative affect, but lowered positive affect.  Their findings seem to indicate 

that positive affect can be decreased by either augmentation or depletion of tryptophan, 

whereas the effect on negative affect is transient at best.  This is in contrast to the finding 

by several researchers that negative affect is most affected by augmentation of 

serotonergic transmission (and thus, presumably, tryptophan; e.g., Bodkin et al., 1997; 

Shelton & Brown, 2000; Shelton & Tomarken, 2001), which would indicate that 

increased serotonin likely plays a role in reducing feelings of general distress (Dichter et 

al., 2005).  Reviewing the literature on the effects of tryptophan manipulation on mood 

and affect, however, illustrates that there is no consensus within the field.  For instance, 

many researchers have found no effect of tryptophan manipulation on mood (e.g., 

Hughes et al., 2003; Park et al., 1994; Shansis et al., 2000; Smith et al., 1988), whereas 

many others have found that tryptophan depletion lowers mood (e.g., Benkelfat et al., 

1994; Luciana et al., 2001; Riedel et al., 1999; Schmitt et al., 2000; Spring et al., 1983; 

Young et al., 1985).   

One possible reason for the lack of an effect of tryptophan manipulation on NA 

scores in the present study is that perhaps the manipulation was not as strong as expected.  

Another possibility is that the inclusion of a macronutrient-manipulated breakfast, lunch 



  Tryptophan     116   

and snack for each participant lessened (or even perhaps eradicated) the effects of 

tryptophan manipulation on negative affect.  For instance, many of the studies within the 

literature include only a macronutrient-manipulated breakfast or lunch and few include 

snacks (e.g., Fischer et al., 2002; Riedel et al., 1999; Spring et al., 1983; Wurtman et al., 

2003).  This makes comparison between studies difficult as each study will thus report 

differing amounts of carbohydrates, proteins, fats and calories in their meals.  For 

instance, Wurtman and colleagues employed breakfasts in their study and reported a total 

of 175.70 calories for the high carbohydrate meal, and 34.29 calories for the high protein 

meal.  In the present study, those in the Augmented condition (i.e., high carbohydrate 

condition) ingested 931 calories in total, whereas those in the Depleted condition (i.e., the 

high protein condition) consumed a total of 881 calories.  Since the present study 

included two meals and a snack, the calorie intake was thus much higher, making it 

difficult to determine whether the manipulation was too weak, or whether there were too 

many competing macronutrients for subtle differences in affect to emerge.   

An alternative possibility for the lack of an effect of tryptophan manipulation on 

negative affect is that perhaps macronutrient content does not exert a strong influence in 

the first place, which would consequently make detecting changes difficult.  In line with 

this notion, Teff, Young and Blundell (1989) reported that a carbohydrate meal 

containing as little as 4% protein will counteract the rise in availability of tryptophan to 

the brain that would otherwise occur.  However, in a study that sampled lumbar 

cerebrospinal fluid from 3 normal pressure hydrocephalus patients, Teff, Young, 

Marchand, and Botez (1989) found that neither carbohydrates nor protein, ingested 2.5 

hours prior to lumbar puncture, resulted in significantly altered levels of central nervous 
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system tryptophan or serotonin.  While it is possible that this conclusion was the result of 

either too little time elapsing between treatment and measurement of the effect, by the 

small sample size, or by the sample characteristics (i.e., normal pressure hydrocephalus 

patients), it does raise the question of how much of a given macronutrient is required to 

influence tryptophan or serotonin levels in the brain and spinal cord, and over what time 

is this change detectable?  In a more recent study by Lindseth, Petros, Jensen, Lindseth 

and Fossum (2006) that examined the effects of macronutrients on the flight performance 

of pilots, it was found that a high-fat diet resulted in significantly better performance than 

the high-carbohydrate, high-protein or control diets.  Furthermore, they concluded that 

when on the high-protein diet, pilots performed the worst.  These contradictory findings 

suggest that the effects of protein (or carbohydrates) on tryptophan availability are not 

straightforward.  In the present study, the Augmented group had 15% of its total caloric 

intake comprised of protein, whereas the Balanced meal only had 2% of it’s calories 

coming from protein.  In consideration of the findings by Teff, Young and Blundell, the 

Balanced group should have displayed some effect of tryptophan manipulation given that 

there was not enough protein to quash the emergence of tryptophan-driven effects.  

Regarding the statement by Teff, Young, Marchand, and Botez, however, both groups 

should have demonstrated some effect of tryptophan based solely on the premise that 

protein content does not appear to matter.  Fischer and colleagues (2002) had concluded 

that their lack of tryptophan-related findings was due to a protein content in the meals 

that was still too high, based on the idea that even 4% protein would abolish effects; the 

same could possibly be said for the present study regarding the Augmented group.  

However, we are not convinced that this is the case in the present study as there appears 
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to be no clear consensus on how much protein is required, if any at all, to erase 

tryptophan-mediated effects on affect (or cognition).  Further, S. N. Young (1993) states 

that, “[s]ince few meals eaten by humans will contain less than 4% protein, serotonin-

mediated changes in behaviour after carbohydrate meals are unlikely to be a normal 

physiological phenomenon” (p. 240). 

A final possible reason for the lack of findings of an effect of tryptophan 

manipulation on NA scores pertains to screening criteria as it seems likely that the 

exclusionary criteria used during recruitment would play a critical role in the outcome.  

For instance, previous studies have found differing effects of tryptophan manipulation on 

mood when studying those with a family history of depression (e.g., Riedel et al., 1999), 

personal history of mood disorder (e.g., Price, Charney, Delgado & Heninger, 1991; S. N. 

Young, 1993), stress level (e.g., Markus et al., 1998), and even age or gender (Spring et 

al., 1983).  The present study employed very rigorous exclusionary criteria which makes 

it possible that it over-controlled for potential confounding factors, thereby decreasing the 

likelihood that any effect would emerge.  While this certainly reduces the likelihood of 

making a Type I error, it begs the question as to whether the over-stringent controls made 

it difficult for more subtle effects to be detected (i.e., Type II error).  Reviewing the 

literature, it is clear that there is no standard set of exclusionary criteria for this line of 

research.  For example, the requirements for many studies were merely being ‘healthy’ 

and free from medication/drug use (e.g., Blum et al., 1992; Coull et al., 1995; Park et al., 

1994).  Some studies did not list exclusion criteria at all, only stating that participants 

were interviewed about their medical and/or psychiatric history (e.g. Lyons & Truswell, 

1988; Wurtman et al., 2003).  On the other hand, some studies employed very strict 
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controls similar to those used in the present study (e.g., Luciana et al., 2001; Riedel et al., 

1999; Schmitt et al., 2000) and still found effects of the tryptophan manipulation on 

affect (and cognition).  All of these studies, however, employed within-subjects designs 

and all (with the exception of Fischer and colleagues, 2002) utilized an amino acid 

tryptophan depletion protocol.  The present study utilized a mixed design with a dietary 

manipulation of tryptophan.  Thus, it is possible that the use of strict exclusionary 

criteria, in conjunction with the mixed design and dietary tryptophan manipulation 

employed in the present study, prevented the emergence of affective differences.  The 

mechanism behind such action, however, is still unclear as there are others within the 

literature who found effects of tryptophan using a dietary manipulation, including those 

who employed between-subject designs but who did not utilize strict exclusionary criteria 

(e.g., Spring et al., 1983).  Thus, there is some degree of interplay between these three 

factors (controls, design and mode of manipulation) that influences whether or not effects 

on mood are detected.  As more research is conducted within this field, a consensus 

should begin to emerge that will indicate which methods and controls provide the most 

accurate and replicable results as to the effect of tryptophan on positive and negative 

affect. 

With regards to specific affects comprising the NA and the PA scales, exploratory 

repeated measures analyses of individual affects on the PANAS detected a trend for 

males, indicating group differences in levels of excitement on the fourth, fifth and almost 

the sixth administrations; no significant group differences were found for either gender 

on any of the individual affects.  More specifically, it was found that those in the 

Depleted group demonstrated a fairly linear (albeit modest) increase in excitement over 
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time, whereas those in the Augmented group demonstrated a dip in excitement from 

administration two through four before experiencing a drastic increase in excitement by 

time six.  A limitation of exploratory analyses is that the risk of committing a Type I error 

(i.e., of finding a result that is not really there by rejecting the null when it is actually 

true) is increased.  It is possible that this is the case in the present study as it is difficult to 

interpret, from a theoretical perspective, the reason for increased excitement levels in 

males in the Augmented and Depleted conditions, the two conditions in which 

participants received opposite carbohydrate:protein proportions in their meals, whereas 

those in the Balanced condition demonstrated a minor decrease in excitement levels.  

Since this finding was not predicted from the outset and does not have a theoretical basis 

to support it, any interpretation must be handled with caution.  Regardless, one possible 

explanation is that perhaps it is not the macronutrient content per se, but rather the 

ingestion of greater than normal amounts of dietary components (i.e., carbohydrates or 

proteins) that is driving this finding, which could also explain why those who received a 

balanced diet demonstrated a minor decrease in level of excitement.  This decrease would 

not be surprising when one considers that participants were in the lab from 8:45am until 

roughly 2pm, a span of approximately 5 hours, during which time it would seem 

plausible that activity levels and the degree of alertness would decrease.  It is difficult to 

maintain a high level of arousal over an extended period of time, so the body naturally 

begins to lower its degree of arousal in response.  In the current sample, however, the 

average score (collapsed across gender and meal type) on the Alert item at time 6 was 

3.43 (out of 5), indicating a ‘Moderate’ degree of alertness, which is actually slightly 

higher than the average rating of 2.75 (out of 5) that indicated only a ‘Slight’ degree of 
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alertness at the start of the study.  In a similar vein, scores on the Active item did not 

decline over time, with an average score of 2.24 (out of 5) on the sixth administration, 

compared to an average score of 2.68 (out of 5) on the first administration.  These results 

show that in fact, a minor increase in levels of alertness and activity were found over 

time, not the expected decrease.   

With regards to why the Excited item would be most sensitive to the 

manipulation, as opposed to the PA scale in general, it has been reported by Watson, 

Clark and Carey (1988), that “[p]ositive affect is a dimension reflecting one’s level of 

pleasurable engagement with the environment” (p. 347).  Excitement can also be seen as 

a pleasurable state of being – we get excited about events to come, or about things we are 

presently experiencing.  As to why there would be differing levels of excitement over 

time for the different meal types, however, is somewhat more difficult to understand.  

Recall that in the present study significant differences between the Augmented and the 

Depleted group were found for level of excitement at Time 4, Time 5 and almost at Time 

6 (for males only), with those in the Depleted group displaying the greatest levels of 

excitement at all times.  More specifically, Time 4 represents the fourth administration of 

the PANAS, which was completed immediately after lunch, and Time 5 (i.e., the fifth 

administration) was immediately before the test battery began.  Immediately after lunch, 

those in the Augmented group experienced the lowest levels of excitement which might 

be explained by the finding that carbohydrate-rich foods result in decreased feelings of 

dysphoria, alertness and general distress, and increased feelings of calmness 

(Christensen, 1993; Christensen, Krietsch, & White, 1989; Pühringer, Wirz-Justice, Graw, 

LaCoste & Gastpar, 1976; Spring et al., 2008).   Recall that carbohydrate consumption 
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leads to increased insulin secretion which acts to draw the large neutral amino acids 

(LNAAs), with the exception of tryptophan, into the surrounding tissue.  This action 

enables tryptophan to pass through the blood brain barrier with little competition, where 

5-HTP synthesis occurs, which is immediately converted into serotonin.  This process 

results in increased serotonin synthesis and activity within the limbic system, including 

the amygdala and the prefrontal cortex, which in turn produces a feeling of calmness and 

even euphoria (Pühringer, et al., 1976).  It is also known that 5-HTP raises endorphin 

levels in the brain and endorphins act as the body’s natural defense against pain and 

stress of all kinds (physical, psychological, and emotional) (Murray, 1998).  Thus, greater 

levels of 5-HTP in the brain result in more endorphins being released, which in turn 

decreases feelings of stress (Murray, 1998).  This decrease in stress could in turn result in 

decreased levels of excitement.   

Conversely, the (male) Depleted group in the present study experienced higher 

levels of excitement over time than did the Augmented group, which seems indicative of 

greater sympathetic nervous system arousal.  In the present study, the depleted meal was 

composed of the lowest level of carbohydrates and the highest level of protein (57 g of 

carbohydrates and 39 g of protein, compared to 200 g of carbohydrates and 11 g of 

protein in the Augmented condition); thus, it should be expected that the effects of the 

depleted meal would be opposite to those of the augmented meal.  The finding that those 

in the Depleted group experienced the highest levels of excitement over time could be 

interpreted to indicate that protein increases one’s level of excitement.  Ingestion of 

protein has also been linked with self-reported ratings of happiness.  For instance, Verger, 

Lagarde, Batejat and Maitre (1998) stated that participants reported feeling happier after 
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consuming a protein meal than after a ingesting a protein-free meal.  However, a study by 

DeCastro (1987) reported the opposite result from protein consumption.  In his study he 

had participants keep a detailed food diary for 9 consecutive days and found that over the 

9-day period those who reported a protein-rich diet also reported greater overall levels of 

depression.  Reconciling these divergent findings is difficult and likely stems from 

differing samples, designs and methodologies.   

As should be clear, the findings pertaining to the relationship between protein, 

carbohydrates and mood are not entirely straightforward as several researchers have 

noted that although ingestion of simple carbohydrates leads to increased feelings of 

energy in the short-term (e.g., Blouin et al., 1991; Thayer, 1987), in the long-term they 

result in increased feelings of fatigue and lower energy levels (e.g., D. P. Wyons & I. 

Wyons, unpublished data).  Further, as discussed earlier, protein has been found to 

influence feelings of happiness and depression (DeCastro, 1987; Verger et al., 1998).  In 

the present study, participants in the Augmented condition consumed carbohydrates for 

an extended period of time (breakfast, lunch and a snack), resulting in decreased 

excitement levels following the morning snack.  The Depleted group, however, exhibited 

a subtle increase in excitement levels over time.  By contrast, those in the Balanced 

group, whose meals contained carbohydrate:protein ratios between those ingested by the 

other two groups, demonstrated a minor decrease in excitement over time.  While it is not 

clear from the literature exactly what effect specific macronutrients have on excitement 

levels, it has generally been found that increases in negative mood typically follow the 

consumption of lunch (Craig, 1986; Kanarek, 1997).  This conclusion was supported by 

males in the Augmented condition of the present study.  Nonetheless, these 
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interpretations must be made with caution as there are many factors that can influence 

these findings, including the size of the meal, it’s caloric and macronutrient content, 

whether the participant is a habitual breakfast-eater, and whether the foods ingested were 

similar to those normally consumed by participants at home (Kanarek, 1997; Lloyd, 

Rogers, Hedderley, & Walker, 1996).  It is evident that further research within the area of 

the effects of specific macronutrients on individual affects is needed before a clearer 

picture can begin to emerge. 

Overall, the effect of macronutrients on specific affects or scales is not clear 

within the literature.  For instance, Lieberman and colleagues (1983) found that 

tryptophan resulted in reduced alertness, as measured by the Visual Analogue Mood 

Scale (VAMS), whereas scores on the fatigue-inertia scale of the POMS were increased 

and scores on the vigor-activity scale of the POMS were decreased.  In a later study 

conducted by Lieberman (Lieberman et al., 2002), carbohydrates were found to increase 

alertness and decrease scores on the confusion scale of the POMS.  These results seem 

contradictory in light of the fact that carbohydrate consumption has been shown to 

increase tryptophan levels in the blood (e.g., Fernstrom & Wurtman, 1971) and has been 

found to increase alertness by some researchers (Lieberman et al., 2002) and to decrease 

alertness by others (Lieberman et al., 1983).  Thus, the results of Lieberman’s respective 

studies seem to indicate that tryptophan both increases and decreases levels of alertness.  

Taken together, the results of the present study and those in the literature highlight the 

need for more research examining not just positive and negative affect on the whole, but 

specific affects as well, so that a greater understanding of the influence of tryptophan on 

mood and affect can begin to emerge.   



  Tryptophan     125   

Did the manipulation affect cognitive functioning? 

 In an attempt to determine the effect of tryptophan manipulation on cognitive 

functioning, the present study employed measures aimed at testing the domains of 

memory (specifically long-term memory), attention/concentration, and executive 

functioning.  The Digit Span Backwards was also utilized as a measure of the 

effectiveness of the manipulation as there is some evidence within the literature that it is 

sensitive enough to detect the effects of tryptophan manipulation (Kanarek & Swinney, 

1990; Luciana et al., 2001).  The present study, however, failed to replicate these 

findings.  This result in and of itself does not necessarily indicate that the tryptophan 

manipulation did not work, but rather it may indicate that Digit Span Backwards may not 

be sensitive enough to detect these effects.  This issue of test sensitivity has also been 

raised with regards to difficult to measure constructs such as attention.  It has been 

suggested that paper-and-pencil tests such as those employed in the present study may 

not be sensitive enough to detect subtle changes in cognitive functioning produced by 

altered levels of brain tryptophan (e.g., Hoyland, Lawton & Dye, 2008; Shansis et al., 

2000).  This argument does not hold in light of the fact that the CANTAB battery, which 

is known to be sensitive to subtle neuropsychological changes and which was employed 

by Hughes’s group (2003) and Park and colleagues (1994), has also failed to reliably 

detect tryptophan-induced changes in cognitive performance.  Park’s group found that 

low levels of tryptophan resulted in poor consolidation of information, which in turn 

resulted in lower scores on measures of long-term memory and learning.  Conversely, 

despite utilizing the exact same depletion methodology as Park, employing many of the 

same CANTAB tests, and recruiting a larger sample size, Hughes’s group failed to find 
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any significant effects of tryptophan depletion on neuropsychological performance, 

including long-term memory.  Thus, it appears that even tests deemed to be highly 

sensitive to subtle changes in cognitive function, such as those produced by tryptophan 

manipulation, fail to produce replicable results.  Hoyland and colleagues (2008) go one 

step further by stating that “[i]t is feasible that commonly employed tasks may be 

inadequate measures of performance that mask real effects” (p. 74).  In their review of 

the macronutrient effects of food on cognition, they concluded that task difficulty seems 

to be the best indicator of task sensitivity in that tasks that require the greatest cognitive 

load are most sensitive to macronutrient manipulations. 

Regardless, significant group differences were found on a visuospatial measure of 

LTM.  It was predicted that those in the Depletion group would score lower on measures 

of LTM.  This prediction was in part supported by the finding that males in the Depleted 

group scored differently than the other two groups on LTM measures.  The prediction 

that they would score lower, however, was not met as males in the Depleted group scored 

significantly higher than did males in the Balanced group on the Rey-O long delay recall; 

no effect was found for the males on the verbal LTM test, or for females on either the 

verbal or the visuospatial measure of LTM.  The finding for the males on the Rey-O was 

somewhat unexpected for the simple reason that most researchers only measure verbal 

LTM (e.g., Kaplan et al., 2001; Riedel et al., 1999; Schmitt et al., 2000), whereas those 

that do employ visuospatial measures of LTM (e.g., Hughes et al., 2003; Shansis et al., 

2000) find no effect of meal type.  Both Hughes and Shansis, however, employed a 

within-subject design and used the amino acid protocol for altering tryptophan levels.  

The present study employed a mixed-design, and used a dietary manipulation for 
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tryptophan.  Thus, it is possible that the difference in findings could be related to 

methodology.  In particular, it seems to bolster the notion broached earlier that extreme 

amounts of specific macronutrients could influence cognitive functioning, as the 

Depleted group, who ingested low levels of carbohydrates but high levels of protein, 

performed significantly better than those in the Balanced group, who did not receive 

greater-than-normal amounts of protein (or carbohydrates).  Indeed, Kaplan and 

colleagues (2001) state that “the ingestion of energy, regardless of source, appears to 

improve memory” (p. 691).  They found that carbohydrates, protein and fat intake all 

improved delayed paragraph recall in their sample of elderly adults (aged 61-79), 

although protein in particular enabled participants to recall more details during the delay 

recall than on the immediate recall trial.  Why this would be so is somewhat unclear.  It is 

known, however, that protein-containing foods increase phenylalanine, from which 

tyrosine is synthesized (Curzon, 1985).  Tyrosine, in turn, is the precursor to dopamine, 

norepinephrine and epinephrine, the latter two of which are known for their excitatory 

effect in readying the body for activity and for increasing alertness (Kolb & Whishaw, 

1996; Spring, 1986).  According to Lieberman and colleagues (1983), however, “tyrosine 

appears to have little or no effect on rested, unstressed volunteers” (p. 246).  Dopamine, 

on the other hand, plays a role in memory by way of dopaminergic connections between 

the basal ganglia and substantia nigra (Kolb & Whishaw, 1996).  Thus, it could be that 

the findings by Kaplan’s group are mediated by dopaminergic processes.  Memory 

impairments for nonverbal stimuli, such as objects or drawings, however, are known to 

result  from damage to the right temporal lobe and surrounding areas, including the 

amygdala, hippocampus, and prefrontal cortex (Kolb & Whishaw, 1996).  As discussed 
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earlier, the hippocampus in particular plays a role in spatial memory as the memory and 

perceptual systems are closely linked (Zola & Squire, 2000).  The thalamus also plays a 

role in memory in that connections between the temporal and prefrontal cortices pass 

through the thalamus.  Neocortical and brainstem systems, including acetylcholine, 

serotonin and norepinephrine systems, all provide input to the temporal lobe and other 

regions involved in memory processes (Kolb & Whishaw, 1996).  Together, these 

processes can lead to greater LTM for visuospatial information. 

  During exploratory analyses, a significant between-group difference was also 

found for males on the Ruff 2 & 7 Selective Attention Test, with those in Augmented 

group obtaining a faster speed score than those in the Balanced group; no difference was 

found for females.  A possible explanation for the findings with males could be due to 

cerebellar function, as this area of the brain, although primarily thought of for its motor 

control, is involved in speed of information processing (Botez et al., 1985).  It does this 

through its non-motor pathways, connecting to the thalamus and receiving input from the 

frontal, parietal and superior temporal cortices (Schmahmann & Sherman, 1998).  These 

pathways also influence working memory (Desmond et al., 1997), as well as general 

memory and learning (Nyberg, 1998).  Together, these functions are all required in order 

to successfully complete the Ruff 2 & 7, as the speed with which the task is completed 

also requires being able to keep the rules of the task in working memory during 

completion.  The majority of the serotonergic innervation to all layers of the cerebral 

cortex, including temporal, parietal, frontal and cerebellar cortices, comes from the dorsal 

raphe nuclei (Graeff, 1997; Molliver, 1987).   Thus, a reduction to the amount of 

serotonin available to the structures would likely result from lesions to these cerebellar 
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pathways.  Although it has been reported in the literature that the speed of information 

processing slows as a result of such lesions (e.g., Botez et al., 1985), it is not yet clear 

whether this outcome is due to decreased tryptophan or due to some other process 

influenced by such lesions.  For instance, Smith and colleagues (1988) found that 

response times to peripheral stimuli on a visual search task were slowed following a high 

carbohydrate lunch (i.e., increased tryptophan), whereas those in the high-protein 

condition (i.e., reduced tryptophan) experienced greater distractibility to non-relevant 

stimuli.  These results do not concur with those of the present study, which found faster 

response times for those in the Augmented (i.e., increased tryptophan) condition 

compared to those in the Balanced and Depleted conditions.  An important difference 

between these studies, however, is that although both employed a dietary method of 

manipulating tryptophan, Smith’s group utilized a within-subject design, whereas the 

present study used a mixed-design.  Furthermore, the present study analyzed each gender 

separately, whereas the study by Smith did not, resulting in a total sample size of 23 

males in the present study, versus a mixed sample of 11 participants (5 males, 6 females) 

in the latter study.  Regardless, the effect of tryptophan manipulation on visual search 

tasks is not unanimous within the literature.  For instance, Fischer and colleagues (2002) 

reported transiently improved attention following carbohydrate consumption (although 

they concluded that the balanced and protein conditions resulted in better overall 

cognitive performance), whereas several groups have failed to find any effect of 

augmented or depleted tryptophan (Hughes et al., 2003; Luciana et al., 2001; Shansis et 

al., 2000).  As with Smith’s group, the studies that failed to detect any between-group 

differences all employed a within-subjects design.  As has been discussed previously, 
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reconciling the results of the present study with the findings in the literature is difficult 

due to the utilization of differing methods of manipulation and different research designs.  

Thus, there are several possible reasons for such discrepancies between the 

present study and those reported in the literature.  For instance, as has been discussed 

earlier, there appears to be no real consensus within the field as to the best way to 

manipulate tryptophan levels.  There is ample evidence, as presented above, to suggest 

that at least within those studies that found significant results, the amino acid protocol is 

equally effective as the dietary (carbohydrate-loading) method at altering tryptophan 

levels.  However, even among researchers using the same method, there is little 

consistency with regard to dose, with researchers employing macronutrient protocols 

ranging from 25g to 100g (e.g., Ford, Scholey, Ayre, & Wesnes, 2000; Green, Taylor, 

Elliman, & Rhodes, 2001; Hughes et al., 2003; Park et al., 1994; S. N. Young et al., 

1985).  Within the dietary literature, there is even less consistency with regards to dose or 

type of manipulation, with some studies employing carbohydrate or macronutrient drinks 

(e.g., Kaplan et al., 2001; Lieberman et al., 2002), some utilizing full meals or foods (e.g. 

Markus et al., 1998; Smith et al., 1988; Spring et al., 1983), and still others using cream-

like pastes or puddings (e.g., Fischer et al., 2002; Teff, Young & Blundell, 1989).  To 

further complicate matters, there is evidence that the time of day in which the protocol is 

administered, in conjunction with the age and gender of participants, also influences 

results (e.g., Craig, 1986; Spring et al., 1983).  Researchers have also employed different 

delay periods between administration of the depletion method and testing session, which 

may also influence results.  For instance, although Benkelfat and colleagues (1994) found 

that 5 hours are needed for tryptophan levels to reach their peak level of depletion 
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following the amino acid protocol, some researchers have tested participants 2 to 24 

hours after the manipulation (e.g., Coull et al., 1995; Markus et al., 1998; Reidel et al., 

1999; Schmitt et al., 2000), whereas others have tested participants only 15-30 minutes 

after ingestion of the macronutrient drinks (e.g., Kanarek & Swinney, 1990; Kaplan et al., 

2001).  Furthermore, some researchers have employed the use of maintenance doses 

throughout the testing session (e.g., Schmitt et al., 2000), and others still have made use 

of practice sessions in order to obtain baselines measures of performance (e.g., Fischer et 

al., 2002; Luciana et al., 2001; Riedel et al., 1999).  It has been postulated by Hoyland 

and colleagues (2008) that the inability of researchers to successfully and consistently 

replicate the findings reported in the literature is likely due to these issues of varying 

methodologies.  In other words, the paucity of research that employs the same tests and 

means of manipulation could be the very thing that is hindering progress within this field 

of research.   

Bellisle (2001) and others have pointed out that there are a myriad of other factors 

that can influence test results.  For instance, motivation, arousal, previous learning, time 

of day, fatigue, and individual characteristics and abilities could all lead to discrepant 

findings.  Craig (1986) posits that both the quantity and the quality (i.e., the 

carbohydrate:protein ratio) of the meal is also important, as is the “nature and 

disposition” (p. 163) of the person consuming the meal, such that a person accustomed to 

eating large meals will be less affected by the macronutrient components of a large meal 

than would a be person who usually eats smaller meals.  Further, he states that the 

amount of time between each meal is also likely to influence the outcome as someone 

who is hungry is likely to be more affected than is someone who is not hungry.  This 



  Tryptophan     132   

reasoning could be extended to include metabolic rate, as someone with a fast 

metabolism, who is used to eating more frequently, would likely react differently than 

would someone with a slower metabolism.  Nonetheless, metabolism is a variable not 

often accounted for within the literature (but see Smith et al., 1988) and is typically 

excluded from analyses.  Although the present study failed to detect any group 

differences for females or for males with regards to the average amount of time between 

each meal or snack (i.e., the eating frequency variable), it cannot be concluded that this 

variable is unimportant.  In the present study, participants were asked during the 

screening session how many hours typically pass between each meal or snack, which is 

admittedly an inaccurate measurement of metabolic rate, especially as participants 

reported guessing how many hours passed as they could not pin down the exact amount 

of time (on average) between each meal.  This could be a promising area of investigation 

as metabolism would influence the digestion speed of the meals consumed such that 

someone with a faster metabolism may have a different window of opportunity in which 

to measure cognitive or affective changes than would someone with a slower metabolic 

rate.   

Individual differences in neurotransmitter synthesis and activity would also 

presumably influence the effectiveness of tryptophan manipulation in that higher or lower 

baseline levels would result in greater or lesser amounts of depletion or augmentation.  

Along these lines, Steckler and Sahgal (1995) suggest that different and overlapping 

neurotransmitter systems, such as the cholinergic and serotonergic systems, exert 

different effects on cognitive processes and that manipulating availability of 

neurotransmitters in one system could influence the other.  In other words, a 
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compensatory process could emerge with one system taking over the function(s) of the 

incapacitated system until normal functioning is reestablished.  This could become even 

more apparent when individual differences in these systems get taken into account.   

Lastly, results of the present study also suggest that demographic variables may 

influence results to some degree and on some tests, a finding echoing that of Spring and 

colleagues (1983).  Unlike the finding by Sambeth and colleagues (2007), who stated that 

females carried the effect for results of tryptophan manipulation on (verbal) LTM, the 

present study only found results for males (on visuospatial LTM).  With regards to other 

demographic variables, it seems that the present study is one of the first to include 

demographic variables in the analyses.  Certain variables, such as ESL status, BMI, and 

eating frequency, were found to exert no influence on test results.  However, eating 

frequency, as discussed earlier with regards to metabolic rate, was not a well-designed 

measure so the results from this analysis are not entirely conclusive.  Level of physical 

activity, however, did demonstrate some influence on cognitive performance for the 

females.  It is possible that if data had been collected on a larger sample of males, and an 

interval level scale used instead of an ordinal scale, more significant findings would have 

emerged.  Future research should be sure to employ continuous measurements of physical 

activity, as well as metabolic rate and other key variables, in order to ensure more 

accurate analyses of factors potentially influencing the effect of tryptophan manipulation 

on cognitive and affective measures.    

 
Strengths of the Current Study 

This study has several notable strengths, the first of which is the inclusion of an 

augmented condition.  The majority of the studies in this field of research employ only a 
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depletion condition and a control (or, balanced) condition (e.g., Coull et al., 1995; Park et 

al., 1994), whereas the present study included both a depleted and an augmented 

condition, in addition to a balanced condition, in order to facilitate greater understanding 

of any between-groups difference that could emerge.  What is more, our stratification of 

participants allowed us to ensure that all three groups were comparable in terms of the 

age, education level, BMI, eating frequency, ESL status, and gender ratios of the 

participants.  Had we failed to do so, we may have missed finding important differences 

between the Augmented and Balanced conditions on the Ruff 2 & 7 Speed task and 

between the Depleted and Balanced conditions on the Rey-O delay recall task.  Thus, had 

other studies employed all three levels of manipulation, perhaps more findings would be 

present within the literature. 

Another strength to the present study is that our test battery was a fairly 

comprehensive assessment of cognitive functioning, consisting of reliable and well-

validated measures that are commonly used clinically.  Our inclusion of a visuospatial 

measure of LTM, a task often omitted from the test battery of other researchers, enabled 

the detection of group differences between males in the Depleted and Balanced 

conditions.   

A final strength to the present study, compared to many studies in the literature, 

pertains to the sample collected.  We obtained roughly the same female to male ratio in 

each of the three meal conditions (approximately 2:1, respectively), whereas many past 

studies have included only male (e.g., Hughes et al., 2003; Park et al., 1994) or only 

female participants (e.g., Nabb & Benton, 2006).  While it might be argued that the 

sample employed in the present study was too small, there are several findings within the 
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literature that support the sample size and gender split utilized.  A mega-analysis by 

Sambeth and colleagues (2007) was conducted on nine studies employing acute 

tryptophan depletion in order to investigate the effects of tryptophan depletion on 

declarative LTM and the mediating variables of age, gender and serotonergic 

dysregulation.  Their results indicate that tryptophan depletion results in lower scores on 

measures of delayed (and, to some degree, immediate) recall, but that the effect is larger 

for women.  Further, they noted that gender was the only variable found to be a factor of 

serotonergic vulnerability.  The difference in tryptophan levels between the depletion and 

control conditions was 9.90 for females (effect size = .60), but only 4.13 for males (effect 

size = .29).  They calculated that the sample size required for a power of .8 (deemed a 

large effect size, according to Cohen, 1992) is 19 for females, but 74 for males.  This 

female sample size is not altogether dissimilar from that collected in the present study 

(Augmented = 17 females; Balanced = 17 females; Depleted = 16 females; total female n 

= 50).  Cohen (1992) states that for a three group ANOVA with a large effect size (.8) 

using alpha at .05, a total of 21 participants per group are required; this number is less 

than that collected in the present study, provided we collapse across gender (Augmented, 

n = 25; Balanced, n = 25; Depleted, n = 23) .  If gender is considered (i.e., a six group 

ANOVA), a total of 14 participants per meal and gender group would be needed (Cohen, 

1992).  The present study has more than 14 participants in each meal condition (collapsed 

across gender), but admittedly fewer than 14 males per meal condition when gender is 

taken into account.  There are, however, more than 14 females in each condition.  

Further, as discussed by Sambeth’s group (2007), the effect of tryptophan manipulation is 

carried by females, not males, which suggests that our current female sample size is 
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likely adequate.  This point is particularly relevant as the mega-analysis by Sambeth and 

colleagues (2007) only included studies that employed verbal measures of LTM.  As the 

present study found effects for males on a measure of visuospatial LTM, our smaller 

male sample size is likely not an issue.  Lastly, examination of the sample sizes of other 

between-subject studies within the literature that employed a dietary manipulation of 

tryptophan reveals that most contain cell sizes that are either comparable to, or much 

smaller than, those in the present study (for both males and females).  For example, 

Vered (2001) reported cell sizes of between 4 and 6, Rogers and colleagues (1999) report 

cell sizes of between 7 and 8, and Markus’s group (1998) reports cell sizes ranging from 

6 to 18.  Other, larger studies, such as Spring and colleagues (1982) do not explicitly state 

their cell sizes, only informing the reader that their 184 participants were split into 4 

groups, that 129 were male, 55 were female, and that 81 were aged 18-36, whereas 103 

were aged 40-65.  Similarly, Lieberman’s group (2002) collected a total sample size of 

143 male participants randomly assigned to three groups, but does not indicate the exact 

number of participants per condition, leaving the reader to speculate that approximately 

47 participants were in each condition.  Lastly, Nabb and Benton (2006) report that they 

collected data on 189 female participants who were then split into 8 groups with between 

23 and 25 participants each.  Overall, these studies indicate that the sample size of the 

present study is at least comparable to, if not greater than, the standard reported within 

the literature which, when taken together with the findings of Sambeth’s group and the 

established power analyses of Cohen (1992), indicate the adequacy of the sample in the 

present study.  Thus, the sample size in this study may be considered a relative strength in 

comparison to many studies (particularly those employing a between-subjects design), 
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but also a weakness in terms of Cohen’s established levels of adequate power (but only 

with regard to the males). 

Regardless, what is of interest is that unlike Sambeth and colleagues’ (2007) 

findings that females carry the effect for tryptophan depletion lowering verbal LTM, the 

present study found that males carried the effect for tryptophan depletion improving 

visuospatial LTM.  This finding is perhaps due to gender effects showing that males are 

better at visuospatial tasks than are females (Burnett et al., 1982; Kaploun & Abeare, 

2007; Lewis & Harris, 1990; Linn & Petersen, 1985; Peters et al., 1995) (although these 

findings largely disappear when degree of hemispheric lateralization is taken into 

account; e.g., Burnett, Lane & Dratt, 1982; Kaploun & Abeare, 2007; McGlone & 

Kertesz, 1973; McGlone, 1980).  It is also possible that the smaller sample of males 

(compared to females in this study) made individual differences stand out more, allowing 

them to influence results more than would be the case with a larger sample of males.  

Lastly, it could be that these findings are the result of some peculiarity of the sample that 

cannot be accounted for and that may not likely be replicated by other researchers.  

Whatever the reason, future research should be sure to include equal numbers of men and 

women in their sample as this appears to be an important factor in influencing results.   

Overall, these factors indicate that our investigation was a strong test of the 

hypothesis that dietary manipulation of tryptophan levels affects cognitive functioning 

and affective processes. 

 
Limitations of the Current Study 

There are, however, some limitations to this study.  First, in deference to the 

within-subject design commonly found within the literature, the present study employed a 
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mixed design.  Although such a design does introduce inter-individual variability that 

would otherwise be absent in a within-subject study, it does reduce the chances of test 

expectancy and repeated testing influencing results, as well as enabling the recruitment of 

larger sample sizes with lower attrition rates.  This latter point is key as differences in the 

findings of previous studies and the present one could be due to sample size of the males.  

Thus, it could be that individual differences get disproportionately represented in small 

within-subject studies due to the lack of variability within the sample itself.  This could 

be the reason for the results found for the PANAS PA and the trend in Excitement levels 

for males in the present study.  This problem is avoided by mixed designs employing 

between-subject variables with larger samples.   

Another limitation was that we were unable to draw blood assays in order to 

assess for alterations in free and total plasma levels of tryptophan, resulting in the 

inability to definitively discern whether or not the dietary manipulation successfully 

altered circulating tryptophan levels.  As several other studies reported in the literature, 

however, have similarly failed to draw blood samples from participants (e.g., Kanarek & 

Swinney, 1990; Lieberman et al., 2002; Smith et al., 1988; Spring et al., 1983), it was not 

felt that this was a strong limitation.  There are, in addition, several theoretical and 

practical reasons for rightfully excluding the use of blood assays.  For instance, although 

sampling blood would enable us to determine whether the dietary manipulation 

successfully altered circulating tryptophan levels, it does not allow us to definitively 

determine whether the levels of tryptophan in the brain have been similarly altered.  

Based on this data, we can infer that a change has occurred, but we have no way of 

directly measuring brain tryptophan levels or the levels of its metabolites, including 
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serotonin.  One means of measuring tryptophan metabolism is to measure levels of 5-

HIAA (the end product of metabolized serotonin) in cerebral spinal fluid (CSF).  It has 

been assumed that CSF levels of 5-HIAA indicate how much serotonin has been 

produced and released in that higher levels of CSF 5-HIAA would correlate with greater 

serotonergic activity.  For example, in a study by Carpenter and colleagues (1998), a 

sample of 5 healthy participants (3 male, 2 female) underwent a tryptophan depletion 

protocol (amino acid drink) and then had their lumbar CSF sampled every 15 minutes 

over a 13.5 hour time span.  The researchers utilized 5-HIAA as a measure of central 

serotonin levels, and collected blood samples to measure plasma levels.  Despite the 

counterintuitive findings that a 92% drop in CSF 5-HIAA levels and an 85% decrease in 

blood tryptophan levels occurred, no behavioural or mood changes were found following 

tryptophan depletion.  From these results, there can be no doubt that tryptophan levels 

changed (at least in free-circulating blood levels), but whether these changes lead to 

decreases in brain tryptophan or its metabolites, such as serotonin, is unclear.  Further, it 

is unclear as to whether such changes in blood serum tryptophan levels are even related 

to CSF tryptophan levels.  It has been found by several researchers (e.g., Perez-Cruet, 

Chase & Murphy, 1974; S. N. Young et al., 1976), however, that it is not CSF tryptophan 

levels, but rather free tryptophan blood serum levels, that correlate with CSF 5-HIAA.  

Together, these findings suggest that CSF 5-HIAA levels can only be used to indirectly 

estimate the degree of change in central nervous system tryptophan and serotonin levels 

(Carpenter et al., 1998; Degrell & Nagy, 1990; Nishizawa et al., 1997).  What is more, 

Anderson and colleagues (1990) assert that since serotonin concentrations in CSF are 

extremely low and the current methods available for detecting subtle changes in central 
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(i.e., brain) CSF are imprecise, it is not clinically useful to assess central serotonin 

activity via CSF analysis.  Furthermore, Garelis, Young, Lal and Sourket (1974) assert 

that lumbar CSF may include 5-HIAA from brain or spinal catabolism of serotonin, 

highlighting the fact that lumbar CSF may not be directly related to brain (i.e., 

ventricular) CSF.  Urinanalysis of 5-HIAA levels has also been utilized to detect 

serotonergic production and release throughout the body.  As discussed earlier, an adult 

male human body contains approximately 10 mg of serotonin; roughly 1-2% of that 10 

mg is found within the brain (Sirek & Sirek, 1970).  Thus, 5-HIAA in urine could be 

from tryptophan metabolism anywhere in the body, not just in the brain.  Furthermore, 5-

HIAA is usually only found in very small quantities in urine as larger amounts are 

indicative of carcinoid tumors (Feldman, 1986).  Thus, it is clear that urinalysis of 5-

HIAA is an inadequate means of measuring brain tryptophan or serotonin as there is no 

way to determine if the 5-HIAA is a result of central or peripheral tryptophan 

metabolism.   

 Overall, it should be clear that although blood assays would enable one to ensure 

whether or not a tryptophan manipulation actually altered serum levels of tryptophan 

within the circulating blood, it is an inadequate measure of brain tryptophan levels.  

Furthermore, there is no direct way to measure tryptophan or serotonin levels in the brain 

as neither lumbar nor ventricular tryptophan or serotonin levels can directly assess the 

availability of these substances in the brain.  Taken together, these findings suggest that 

employing blood assays as a measure of tryptophan levels in the brain is not necessarily a 

requirement in this field of research as it is at best an indirect method of inference. 
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Is Dietary Manipulation An Effective Means of Measuring Tryptophan Manipulation? 
 

Although the present study did not detect as many effects of tryptophan 

manipulation as would have been hoped, there are several reasons why it is felt that the 

dietary method of tryptophan manipulation is worth pursuing.  As discussed earlier, it is a 

relatively inexpensive and a much more feasible means of manipulating tryptophan levels 

(compared to the amino acid protocol), enabling more researchers who do not have large 

research grants to implement this method.  Purchasing fresh foods and bulk items is 

relatively economical, even for those with small research budgets.  This fact alone should 

make it a much more appealing alternative to researchers looking to work within this 

field of study.  Using different samples and designs, several researchers have shown that 

dietary methods of tryptophan manipulation do produce cognitive and affective changes 

in participants (e.g., Fischer et al., 2002; Lieberman et al., 2002; Markus et al., 1998; 

Smith et al., 1988).  As more researchers employ this method, our knowledge about the 

effects of dietary manipulations will continue to increase which will help bring about 

some consensus within the field as to the appropriate amounts of each food, and other 

methodological and research issues concerning the effects of tryptophan upon cognition 

and affect. 

Furthermore, it must be kept in mind that this line of research is still in its infancy.  

While it is true that the backbone of this field of study arguably started in 1948 with the 

isolation of serotonin, it has hopefully been made clear that no consensus has been 

reached as to the appropriate design and method of this type of research.  At present, the 

literature is a veritable cornucopia of differing sample sizes and demographics, 

methodologies (dietary or amino acid mixture), designs (within-, between-, and mixed-
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designs), and other possibly confounding variables that make it extraordinarily difficult to 

arrive at consistent, replicable, and generalizeable results.  As more researchers pursue 

this line of study greater consensus will begin to emerge within the literature, which 

should also help bring us closer to a unified theory.   

It must also be kept in mind that this line of research is incredibly complex.  All 

research must take into account such variables as individual differences and other 

confounding factors, but within this field of study there are a myriad of other factors that 

could bear weight upon the outcome, such as inherent differences in macronutrient 

metabolism and catabolism, as well as the production and activity of resulting 

neurotransmitters.  The interplay between different amino acids and macronutrients, as 

well as between different neurotransmitters, may also influence whether or not effects of 

the tryptophan manipulation are detected.  In other words, the same manipulation may be 

much stronger for one participant than for another, even though all other variables are 

similar.  For this reason, this field of study may be better suited to the examination of 

manipulation responders versus non-responders.  By investigating these two groups 

separately, we may begin to get a better picture of what makes someone a responder 

versus as non-responder, as well as the ways in which they differ cognitively and 

affectively following tryptophan manipulation. 

The importance of this line of research cannot be overstated.  It is not just students 

or patients that would benefit from a greater understanding of the effects of tryptophan on 

neuropsychological performance.  If consumption of everyday foods was found to result 

in significant effects on cognition or affect, then it is possible that in our daily lives we 

are inadvertently affecting our baseline level of functioning.  What is more, we could 
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unknowingly be exacerbating existing conditions or conditions to which we are 

predisposed (e.g., depression).  For instance, patients taking monoamine oxidase 

inhibitors (MAOIs) for the treatment of depression must limit foods high in tyramine, 

such as cheese, alcohol, and chocolate to prevent spikes in blood pressure that could lead 

to stroke (McCabe, 1986).  While it is not being argued that tryptophan, found in the 

levels present in everyday food, exert the same effects as major antidepressant 

medications, it could be that even trace amounts of tryptophan could interact with 

medications taken for various conditions.  It is possible that even small amounts of 

tryptophan or other macronutrients could be enough to produce, without our even being 

aware of it, variations in our day-to-day behaviour (including mood, cognition, and 

physiological or metabolic states).  Maier and Watkins (2000) have proposed a similar 

idea regarding our immune systems, suggesting that since we are continuously coming 

into contact with unknown pathogens, variations in our spontaneous “normal” behaviour 

are caused by immune system responses.  Further, they state that in response to immune 

system activation, serotonin is released in the hippocampus, highlighting the complexities 

of human neuropsychological function and the many factors that can influence them. 

Overall, it should be clear that the complexities of this field of research make it 

difficult to boil down results to one simple set of findings.  The ease and accessibility of 

employing a dietary manipulation of tryptophan in order to investigate the effects of 

tryptophan manipulation on cognitive and affective outcomes should make this field of 

study more appealing to researchers, and through increased research the complexities of 

this area of research will begin to unravel.   
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Summary and Future Directions 

 In conclusion, although no significant results were found for females, significant 

effects were found for males on the Rey-O delay recall, and the Ruff 2 & 7 Total Speed 

measure, as well as minor differences in PA and excitement levels over time.  These 

findings are relatively unique within the literature as few studies have found significant 

results for PA (as opposed to NA), or for visuospatial LTM, especially for males.  

Although some caution must be exercised in comparing the results of the present study to 

those of within-subject studies, it is apparent that the current study found effects of 

tryptophan manipulation that, to the best our knowledge, have not yet been reported 

within the literature.  Unlike Lieberman and colleagues (2002), the present study did not 

find that carbohydrates resulted in increased vigilance in males, nor did it result in greater 

sleepiness in women, or greater calmness in men (Spring et al., 1983).  Furthermore, no 

between-subject studies employing a dietary method of tryptophan manipulation found 

any effect of tryptophan on visuospatial LTM or on tests of selected visual attention.  

Hoyland and colleagues (2008) bolster the belief of the author that the lack of consensus 

within the literature pertaining to the effects of tryptophan manipulation could at least in 

part be due to the variability of research designs and methods, with too few studies 

employing the same means of manipulating tryptophan or of measuring its effect.  They 

also suggest that different foods likely produce cognitive effects along differing 

timelines, and thus it might be best if performance (on cognitive measures) was assessed 

on multiple occasions following the manipulation in order to assess differences in 

performance across time.  Furthermore, there is a lack of consensus within the literature 

as to whether manipulating tryptophan levels in healthy participants, such as in the 
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present study and many others (e.g., Lieberman et al., 2002; Luciana et al., 2001; Riedel 

et al., 1999), leads to findings as robust as those seen in psychiatric populations (e.g., 

Benkelfat et al., 1994; LeMarquand et al., 1998).  Thus, a combination of participant 

characteristics, sample size, method of manipulation and test sensitivity could all be 

responsible for the lack of consistent findings within this field of research.   

 Future directions for this field of study should include the analysis of tryptophan 

manipulation responsiveness (as suggested earlier), coding participants as either 

responders or non-responders.  This idea had occurred to the author of the present study 

after completing data collection.  However, as this was not an a priori analysis, it was 

discovered that the data from the present study do not lend themselves to coding 

participants as responders or not.  For this type of analysis to be done, a greater range of 

scores must be available on the pre- and post-test measures used to assess the 

effectiveness of the manipulation.  The PANAS and Digit Span Backwards scores did not 

provide the ranges required to discern not only whether someone responded to the 

manipulation, but also whether or not they responded in the predicted direction based on 

their meal condition.  Responder analyses were attempted, but they were deemed 

meaningless as the categories for ‘responder’ or ‘non-responder’ were far too narrow, 

making it impossible to accurately determine whether a participant did in fact respond to 

the manipulation (in the manner predicted or not).  Future studies should consider this 

analysis from the start of their design conception and should detail exactly how they will 

define and code for responsiveness in order to ensure an adequate range of scores is 

attainable. 
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  Other, more technologically complex designs should also be considered for 

future research.  For instance, PET studies employing the injection of radio-labelled 

tryptophan would also provide a wealth of information concerning whether exogenous 

doses of tryptophan actually increase brain tryptophan (and therefore serotonin 

production and release), and whether such changes are detectable via behavioural or 

affective output.  In a study by Perreau-Linck and colleagues (2007) using PET, 

professional actors were instructed to self-induce a particular mood state (happy, sad or 

neutral, counterbalanced across 3 testing days) and were then injected with radio-labelled 

tryptophan (11C-labelled α-methy-L-tryptophan, a synthetic version of L-tryptophan that 

crosses the blood-brain barrier and is used to estimate serotonin synthesis within the 

brain).  Although no changes were detected in free or total venous tryptophan levels, the 

researchers found that serotonergic activity in the right anterior cingulate cortex was 

positively correlated with self-induced happiness, whereas a negative correlation was 

found between self-induced sadness and the subcallosal region of the right anterior 

cingulate cortex.  These results indicate that even though measurable levels of free 

circulating tryptophan did not appear to change, changes to serotonin activity within the 

brain were detected.  In a similar vein, Praschak-Reider and colleagues (2004) conducted 

a tryptophan depletion study using PET with 8 currently-remitted depressed patients.  

Although they measured a drop of 86% in total tryptophan plasma following tryptophan 

depletion, they failed to detect any changes in brain serotonin levels or activity.  The 

tryptophan depletion did, however, induce a transient relapse of depressive symptoms in 

6 of their 8 participants, indicating that small changes in brain serotonin levels are 

sufficient to induce short-term relapse in depressed patients normally being treated with 
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SSRIs.  Taken together, these studies seem to suggest that even small changes in brain 

tryptophan or serotonin levels can lead to changes in activity in neuroanatomical 

structures known to be implicated in mood.  Future studies should include a more 

comprehensive assessment of other neuropsychological functions, such as memory or 

attention.  Hoyland and colleagues (2008) suggests that the following tests seem most 

consistently sensitive to macronutrient manipulation: the serial sevens task (a measure of 

working memory); free word recall with delay trials (verbal LTM); and cued word recall 

(verbal LTM).  Thus, the inclusion of measures similar to these should be employed in 

PET studies. 

As a follow-up to the present study, a mixed-design study should be employed 

with both between- and within-subject participants being recruited.  Such a design will 

allow the direct comparison of these two methods to help determine which is the stronger 

design.  This finding would guide researchers in deciding which design to utilize in future 

research.  A larger sample size for both between- and within-subject samples, with equal 

gender ratios in each condition, should be obtained to further strengthen the findings of 

the present study and to prevent possible power issues from confounding results.  The 

inclusion of additional sensitive measures, such as those suggested by Hoyland and 

colleagues (2008), should also be employed to provide the widest net for catching any 

between-group or between-condition effects of tryptophan manipulation on 

neuropsychological performance.   

Overall, through future research that employs the above-discussed methods of 

measuring and assessing tryptophan and serotonin levels in the brain, a better 
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understanding of the effects of tryptophan manipulation on neuroanatomical, cognitive 

and affective functioning should begin to emerge. 
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Appendix A 

Glossary of Terms 

 

CNS Central Nervous System: the part of the nervous system comprised 

of the brain and spinal cord that coordinates activities of the body. 

LNAAs Large Neutral Amino Acids: a term used to describe amino acids 

that compete with each other for uptake into the brain and 

subsequent neurotransmitter synthesis. 

5-HT The chemical name for the neurotransmitter 5-hydroxytryptamine 

(aka: serotonin), the final end product of tryptophan metabolism. 

5-HTP The chemical name for 5-hydroxytryptophan, the amino acid 

metabolite of tryptophan and the precursor to serotonin (5-HT).  

5-HIAA The chemical name of 5-hydroxyindoleacetic acid, the primary 

metabolite of serotonin (5-HT) that is excreted in the urine. 

Depletion The term used to denote acute tryptophan depletion produced 

either via the amino acid protocol drink, excluding the amino acid 

tryptophan, or via dietary manipulations (i.e., protein-loading). 

Augmentation The term used to denote acute tryptophan augmentation produced 

either via the amino acid protocol drink, with the inclusion of 

increased amounts of the amino acid tryptopahn, or via dietary 

manipulations (i.e., carbohydrate-loading). 

Balanced The term used to denote the balanced condition between acute 

tryptophan depletion and acute tryptophan augmentation, produced 
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either via the amino acid protocol drink, wherein the proportion of 

LNAAs produces an equal effect as the amount of tryptophan on 

plasma levels, or via dietary manipulations (i.e., the 

carbohydrate:protein ratio produces an even balance between 

LNAAs and tryptophan). 

BMI Body Mass Index: a measure of body fat based on weight and 

height. 
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Appendix B 

Study Advertisement (Participant Pool) 

Participant Pool Recruitment Statement – Effects of Food on Cognition 
 
Hello, 
 
 My name is Kristen Kaploun and I am a PhD Candidate in the Clinical 
Neuropsychology program here at that University of Windsor.  I am contacting you in the 
hopes that you are interested in taking part in my research study examining the effect of 
food on cognition.  This is a two-part study, requiring participants to first take part in a 
screening session; it is this session for which I am now recruiting participants. 
 The purpose of this screen is to determine your eligibility for inclusion in the study 
entitled, “The Effects of Food on Cognition”.  This screening is completely non-invasive. 
If you volunteer to participate, you will be asked to come into the laboratory for 
approximately 30 minutes in order to complete a screening interview.  During the 
interview, you will be asked to provide information about your medical history and 
general health, as well as other demographic criteria (e.g., age, gender, program of study).  
The screen is worth 0.5 credits.  If you are deemed eligible to continue, and you wish to 
do so, a separate appointment will be set up for you to come in and take part in the testing 
session.  The testing session takes approximately 5.5 hours, during which time you 
receive breakfast, lunch and two snacks.  The testing session is worth 5.5 credits and the 
chance to win one of two $50 gift cards (more information will be provided about the 
study during the screening session).   
 If you are interested in taking part, please email me at: hodgesk@uwindsor.ca  and 
we can set up an appointment. The screening will take place in the basement of Chrysler 
Hall South, Room 73. 
 
 I thank you in advance and I look forward to hearing from you. 

mailto:hodgesk@uwindsor.ca
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Appendix C 
 

SCREENER 
 

Effects of Food on Cognition 
 

*Are you allergic to peanuts?  □  No  □  Yes   
If Yes, please leave now  _____________________________________ 
 

Date: ____________________ 
 
Age: _____ 
 
Sex: _____    ESL?: _____ 
 
Weight: ________    
 
Height: ________ 
 
BMI: ________ (BMI category: ______________________) 

• Underweight = <18.5    (less than 17.5 = anorexia) 
• Normal weight = 18.5 - 24.9  
• Overweight = 25 - 29.9  
• Obesity = BMI of 30 or greater  

Do you have any food allergies?  □  No □  Yes            
If Yes: ______________ 

Chronic illnesses? (incl. Crohn’s disease, celiac disease, IBS, lactose intolerance) 

• __________________________________ 
• __________________________________ 
• __________________________________ 
• __________________________________ 
• Do you have diabetes?   □  No □  Yes           If ‘Yes’, Type  I   or   II  ?   

Current illnesses?  

• __________________________________ 
• __________________________________ 
• __________________________________ 
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• __________________________________ 

Current medications? (incl. birth control, vitamins, herbal supplements, allergy or 
asthma meds) 

• __________________________________ 
• __________________________________ 
• __________________________________ 
• __________________________________ 

Exclusionary: SSRIs, MAOIs, narcotics, anti-psychotics, anti-depressants, anxiolytics 
(anti-anxiety)  

Do you use any recreational drugs? 
□  No □  Yes        If Yes: _____________________________________ 

Hallucinogens: PCP, angel dust, ketamine, Special K, LSD, acid, 
MDMA/methamphetamine, ecstasy, mescaline, peyote, psilocybin 
(mushrooms) 

Frequency: _________________________  Amount: ______________________ 

Pain Killers: Codeine, opium, heroin, morphine, smack, Vicodin, methadone, 
Dilaudid, Oxycodone/Oxycontin, Percodan  

Frequency: _________________________  Amount: ______________________ 

Tranquilizers: Benzodiazepines, Valium, Ativan, Diazepam, pentobarbital, 
amobarbital, Seconal, roofies, Nembutal, barbituates, inhalants, 
alcohol 

Frequency: _________________________  Amount: ______________________ 

Stimulants: Cocaine, coke, crack, amphetamines, methamphetamines, speed, 
crystal meth, ice, crank, Ritalin, tobacco, caffeine 

Frequency: _________________________  Amount: ______________________ 

Marijuana: Marijuana, pot, weed, hashish, hashish oil 

Frequency: _________________________  Amount: ______________________ 

Steroids: Any kind: _______________________________________  

Frequency: _________________________  Amount: ______________________ 
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Any prescription? □  No □  Yes        Yes: _________________________________ 

Do you smoke?  □  No  □  Yes     

If Yes: How many per day?_________      How long have you smoked? ________     

Is your diet irregular? □  No 

□  Yes: ________________________________________ 

 Does your weight tend to fluctuate? □  No □  Yes        Range: _____________ 

 Have you ever / do you ever binge eat?   □  No □  Yes   When last?_______ 

 Have you ever been diagnosed with: Anorexia Nervosa □  No    □  Yes 
      Bulimia  □  No    □  Yes  

 Do you usually eat breakfast?  □  No □  Yes         

 Do you usually eat lunch?  □  No □  Yes         

 

Athleticism:  □  Very   □  Quite       □  Minimal        □  Not at all 
   (daily)           (3-5 time/wk)  (e.g., walk to school)   (e.g., drive to school) 

 

Metabolic Rate:  How often do you eat during a normal day (every X hours): ______ 

 Do you eat more than most people at each meal?   □  No □  Yes 

 What types of foods do you crave the most? ______________________________ 

Current Depression? □  No 

□  Yes:_______________________________________________ 

Current Anxiety? □  No 

□  Yes:_______________________________________________ 
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Family history of mental illness? (include who has what disorder) 

• __________________________________ 
• __________________________________ 
• __________________________________ 
• __________________________________ 

 
History of stroke, seizures or other neurological impairments/injuries? (incl. age of 
injury and most recent event) 

• __________________________________ 
• __________________________________ 
• __________________________________ 
• __________________________________ 

 
How many hours of sleep do you get in a typical night? _______________________ 

 Do you feel rested upon waking? ____________________________________ 

 
How much caffeine do you typically consume in a day? 

□  Pop: ________      □  Coffee: ________ □  Decaf Coffee: _________       

□  Decaf Pop: ______     □  Tea: ________  □  Decaf Tea: _________ 

□  Chocolate: ________         □  Hot Chocolate: ________  

□  Energy Drinks: _________   □  Other: _________ 

Do you ever take caffeine pills? ______________________________________ 

 

Other: 

Are you pregnant?  □  No      □  Yes 

Stage of menstrual cycle (females only): Last day: _______________________ 

      First day: _______________________ 
 

General 

How did you find out about this study? ___________________________________  

 Recruitment method (circle one): Participant Pool Poster 
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What motivated you to take part in this study? 

________________________________________________________________________ 

 
Are you a student? □  No      □  Yes 
 
If ‘Yes’, what is your Major? ____________________________________________ 

 What year are you currently in? ______________________ 

If ‘No’, what kind of work do you do? _______________________________________ 
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Appendix D 
 

Study Advertisement (Community Sample) 
 

INTERESTED IN THE EFFECTS OF FOOD ON 
COGNITION? 

 
Women and men 17 years or older are invited to participate 

in a study exploring the effects of food on cognitive performance. 
 

Participation is voluntary and confidential. 
Participants will receive breakfast, lunch and two snacks, as well as the 

chance to win 1 of 2 gift cards valued at $50 for a total of 6 hours of their 
time (30 minutes for the pre-screening, and 5.5 hours for the testing session). 
 

This study is being conducted by Kristen Kaploun, M.A., a clinical 
neuropsychology doctoral student at the University of Windsor, and her 

research advisor, Dr. Chris Abeare, Ph.D. The research study has received 
ethics clearance from the University of Windsor Research Ethics Board. 

 
For further information about this study, please contact Kristen at 

hodgesk@uwindsor.ca. 
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Appendix E – Screener Consent Form 

 

 
 
 

CONSENT TO PARTICIPATE IN SCREEN 
 

To determine eligibility for participation in the study entitled, “The Effects of Food on Cognition” 
 
Title of Study: The Effects of Food on Cognition 
 
You are asked to participate in a research screen for a study conducted by Kristen Kaploun, MA 
(student researcher) and Dr. Chris Abeare, PhD (faculty supervisor), from the Psychology 
Department at the University of Windsor.  This screen comprises a part of Kristen Kaploun’s PhD 
Dissertation.   
 
If you have any questions or concerns about the research, please feel free to contact Kristen 
Kaploun at hodgesk@uwindsor.ca, or Dr. Chris Abeare at 519-253-3000, ext. 2231. 
 
 
PURPOSE OF THE STUDY 
 
The purpose of this screen is to determine your eligibility for participation in the study, “The 
Effects of Food on Cognition”. 
 
 
PROCEDURES 
 
If you volunteer to participate in this screen, we would ask you to do the following things: 
 
Screening Procedures: 
 
Upon signing up for the study, you will be asked to come into the laboratory.  Upon providing 
informed consent, you will be asked to complete an initial screening interview.   You will be asked 
you will be asked to provide information about your medical history and general health, as well as 
other demographic criteria (e.g., age, gender, program of study).  If you are deemed eligible to 
participate in the study and you wish to do so, a separate appointment will be made for you to 
return to the lab to take part in the study.  The screening session should last approximately 30 
minutes and will take place one-on-one with the examiner in the basement of Chrysler Hall South, 
Room 73.  It is worth 0.5 credits. 
 
Exclusionary Criteria: 

Participants will be excluded if they meet criteria for any of the following: 

- Obesity, Anorexia, or Bulimia (other eating disorders) 
- Diabetes 
- Food allergies 
- Lactose intolerance 
- Irritable Bowel Syndrome (IBS) 

mailto:hodgesk@uwindsor.ca
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- Crohn’s disease 
- Celiac disease 
- Other chronic illnesses (incl. Endocrine and metabolic disorders) 
- Current depression 
- Current anxiety 
- Illicit drug use (e.g., marijuana, narcotics) 
- Stimulants (incl. more than the equivalent of 5 cups of coffee/day, or 1 package of 
cigarettes/day) 
- Current medication use (incl. SSRIs, MAOIs, psychotropic medications, cold 
medications such as Nyquil) 
- History of neurological disorders/impairments 

 
POTENTIAL RISKS AND DISCOMFORTS 
 
All information provided is completely confidential.  However, it is possible that by participating in 
this screen, you may experience discomfort discussing medical and health matters.  If so, you 
may elect to skip certain questions and still remain in the screen.   
 
If by taking part in this screener you experience certain negative feelings, such as anxiety, 
sadness or worry, and you would like to talk to someone about these feelings, here is a list of 
local resources that we encourage you to contact:  
 
The Student Counseling Centre     CAW Student Centre 

Room 293 2nd Floor  
(519) 253-3000 Ext. 46160 
Email: scc@uwindsor.ca 

  
Windsor Regional Hospital Mood and Anxiety Clinic               (519) 257-5125 

 
Windsor Mood Disorders Self-Help Group                                 (519) 979-5089 
 
Community Crisis Centre                                                             (519) 973-4435 
 
 
POTENTIAL BENEFITS TO SUBJECTS AND/OR TO SOCIETY 
 
By participating in this screen, you will learn about the different variables that may influence the 
effects of meal composition on cognitive performance.  If you are deemed eligible to take part in 
the study upon completion of the screen, you will learn more specific information regarding the 
impact of food choices on cognition.  The scientific community, society and those involved in 
helping patients who experience transient or occasional cognitive, affective, or physiological 
problems could benefit from a greater understanding of role played by various food components 
on mood and cognition.   
 
 
PAYMENT FOR PARTICIPATION 
 
As a participant, you will earn 0.5 credits for participating in this screen.   If you are deemed 
eligible for taking part in the testing session and you wish to do so, you will be able to earn up to 
an additional (and maximum of) 5.5 credits for completing the study (please note that credits 
cannot be “banked” from one semester to another).   If you are deemed eligible to take part in the 
testing session, more information will be provided about the procedures, at which point you may 
decide if you want to take part.  Even if you chose to not take part in the testing session (i.e., 
upon hearing the details it is not of interest to you), you will still earn the 0.5 credits for taking part 
in the screening session. 

mailto:scc@uwindsor.ca
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CONFIDENTIALITY 
 
Any information that is obtained in connection with this study and that can be identified with you 
will remain confidential and will be disclosed only with your written permission.  Your identity will 
be known to the researcher for the purposes of scheduling and compensation only and any 
information collected will be kept in file cabinets and locked up in the laboratory.  Upon entering 
the lab for the study screen, you will be assigned an ID number.  This number is kept on a master 
key alongside your name and contact information.  All data that is subsequently collected will be 
identifiable by ID number only.  All data will be stored in cabinets and locked up in the laboratory; 
the master key, which will be stored separately from all data, will also remain locked in the 
laboratory.  Data will be retained, locked away in this fashion, for at least two (2) years until the 
study is completed and accepted for publication. 
 
 
PARTICIPATION AND WITHDRAWAL 
 
You can choose whether to be in this screen or not.  If you volunteer to be in this screen, you may 
withdraw at any time.  However, please note that if you decide to withdraw from the screen, you 
will only be compensated for the time in which you participated (i.e., a maximum of 0.5 credits).  
The investigator may withdraw you from this research if circumstances arise which warrant doing 
so (for example, if you fail to follow test instructions, or if it is deemed unsafe for you to continue 
to participate).  As a participant in this study, you will have the option of removing your screening 
data from the study. 
 
 
FEEDBACK OF THE RESULTS OF THIS STUDY TO THE SUBJECTS 
 
Participants will have the option of learning the results of the study (not the screen) simply by 
contacting the researcher.  Those who are ineligible for participating in the study will be notified 
and provided with the reason for their exclusion.  Participants who complete the study may also 
log onto the REB website and read the results of this study by selecting it from the available list. 
 
Web address: http://www.uwindsor.ca/reb 
Date when results are available: April 30, 2011 
 
 
SUBSEQUENT USE OF DATA 
 
This data will be used in subsequent studies. 
 
 
RIGHTS OF RESEARCH SUBJECTS 
 
You may withdraw your consent at any time and discontinue participation without penalty. If you 
have questions regarding your rights as a research subject, contact:  Research Ethics 
Coordinator, University of Windsor, Windsor, Ontario, N9B 3P4; Telephone: 519-253-3000, ext. 
3948; e-mail: ethics@uwindsor.ca 
 
 
SIGNATURE OF RESEARCH SUBJECT/LEGAL REPRESENTATIVE 
 
I understand the information provided for the screen for the study “The Effects of Food on 
Cognition” as described herein.  My questions have been answered to my satisfaction, and I 
agree to participate in this screen.  I have been given a copy of this form. 
 

http://www.uwindsor.ca/reb
mailto:ethics@uwindsor.ca
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______________________________________ 
Name of Subject 

 
______________________________________  ___________________ 
Signature of Subject       Date 

 
 
SIGNATURE OF INVESTIGATOR 
 
These are the terms under which I will conduct research. 
 
 

_____________________________________  ____________________ 
Signature of Investigator      Date 
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Appendix F – Testing Session Consent Form 
 

 
 

CONSENT TO PARTICIPATE IN RESEARCH – TESTING SESSION 
 
 
Title of Study: The Effects of Food on Cognition 
 
You are asked to participate in a research study conducted by Kristen Kaploun, MA (student 
researcher) and Dr. Chris Abeare, PhD (faculty supervisor), from the Psychology Department at 
the University of Windsor.  This study comprises Kristen Kaploun’s PhD Dissertation.  
 
If you have any questions or concerns about the research, please feel free to contact Kristen 
Kaploun at hodgesk@uwindsor.ca, or Dr. Chris Abeare at 519-253-3000, ext. 2231. 
 
 
PURPOSE OF THE STUDY 
 
The purpose of this study is to determine the effects of different foods on cognitive performance.  
 
 
PROCEDURES 
 
If you volunteer to participate in this study, we would ask you to do the following things: 
 
Testing Procedures: 
 
On the day of testing, informed consent will be obtained along with a short intake survey.  You will 
have been randomly assigned to one of three conditions, each of which receive a different set of 
meals.  Upon completing the intake survey you will be provided with breakfast; lunch, and two 
snacks will also be provided before the end of the testing session.  Please note that you will not 
have the option of refusing to eat some or all of the food provided during this study.  If you do not 
wish to eat some or all of the food that is provided, you are free to withdraw at any time.  If you 
chose to exercise this right, please note that you will only be compensated for the time in which 
you participated (i.e., you will not receive the full 5.5 credits; please see ‘Participation and 
Withdrawal’ section below for further details).  One and a half hours following the provision of 
lunch, you will complete the test battery, comprised of several paper-and-pencil measures aimed 
at assessing various cognitive functions (e.g., attention).  Indices of mood and affect will also be 
administered upon arrival at the laboratory on the day of testing, after each meal, and upon 
completion of the test battery.   
 
The total length of time for participation will be approximately 5.5 hrs done in one sitting (the 
actual testing session will last approximately 1.5 hours).  During the waiting period, you must 
remain in the waiting room (save for washroom breaks).  You will be allowed to study, read, 
watch a movie on the computer or play a board game; you will not, however, be permitted to eat 
or sleep.  Water will be provided upon request.  This study will take place one-on-one with the 
examiner in the basement of Chrysler Hall South, Room 73 (the same room as the screening 
interview). 
 
 
 

mailto:hodgesk@uwindsor.ca
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Exclusionary Criteria: 

Participants will be excluded if they meet criteria for any of the following: 

- Obesity, Anorexia, or Bulimia (other eating disorders) 
- Diabetes 
- Food allergies 
- Lactose intolerance 
- Irritable Bowel Syndrome (IBS) 
- Crohn’s disease 
- Celiac disease 
- Other chronic illnesses (incl. Endocrine and metabolic disorders) 
- Current depression 
- Current anxiety 
- Illicit drug use (e.g., marijuana, narcotics) 
- Stimulants (incl. more than the equivalent of 5 cups of coffee/day, or 1 package of 
cigarettes/day) 
- Current medication use (incl. SSRIs, MAOIs, psychotropic medications, cold 
medications such as Nyquil) 
- History of neurological disorders/impairments 

POTENTIAL RISKS AND DISCOMFORTS 
 
It is possible that by participating in this study, you may experience a mild alteration of your mood 
(e.g., mild irritation or lowering of mood).  Any such effects, if experienced at all, will be mild and 
transient, consistent with what might occur had you skipped breakfast or lunch.  The snack 
provided upon completing the testing will help return your mood to baseline levels should any 
deviation occur.   
 
If by taking part in this study you experience certain negative feelings, such as anxiety, sadness 
or worry, and you would like to talk to someone about these feelings, here is a list of local 
resources that we encourage you to contact:  
 
The Student Counseling Centre     CAW Student Centre 

Room 293 2nd Floor  
(519) 253-3000 Ext. 46160 
Email: scc@uwindsor.ca 

  
Windsor Regional Hospital Mood and Anxiety Clinic               (519) 257-5125 

 
Windsor Mood Disorders Self-Help Group                                 (519) 979-5089 
 
Community Crisis Centre                                                             (519) 973-4435 
 
 
POTENTIAL BENEFITS TO SUBJECTS AND/OR TO SOCIETY 
 
You will learn about the effects of meal composition on mood and cognitive performance.  The 
scientific community, society and those involved in helping patients who experience transient or 
occasional cognitive, affective, or physiological problems could benefit from a greater 
understanding of role played by various food components on mood and cognition.   
 
 
 
 

mailto:scc@uwindsor.ca
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PAYMENT FOR PARTICIPATION 
 
Participants will earn up to a maximum 5.5 course credits for participating in, and completing, this 
study (please note that credits cannot be “banked” from one semester to another).  The screening 
session (completed previously) is worth 0.5 credits.  Thus, by fully completing this study, 
participants can earn up to a total of 6 credits (0.5 for the screening session, and 5.5 for the 
testing session).  Completion of the study will also deem the participant eligible for inclusion (if 
s/he so wishes) in a draw to win 1 of 2 gift cards valued at $50 CAD to either Devonshire Mall or 
Future Shop.  Please refer below (“Participation and Withdrawal”) for information regarding 
withdrawing from this study. 
 
 
CONFIDENTIALITY 
 
Any information that is obtained in connection with this study and that can be identified with you 
will remain confidential and will be disclosed only with your written permission.  Your identity will 
be known to the researcher for the purposes of scheduling and compensation only and any 
information collected will be kept in file cabinets and locked up in the laboratory.  Upon entering 
the lab for the study screen, you were assigned an ID number.  This number is kept on a master 
key alongside your name and contact information.  All data that is subsequently collected will be 
identifiable by ID number only.  All data will be stored in cabinets and locked up in the laboratory; 
the master key, which will be stored separately from all data, will also remain locked in the 
laboratory.  Data will be retained, locked away in this fashion, for at least two (2) years until the 
study is completed and accepted for publication. 
 
 
PARTICIPATION AND WITHDRAWAL 
 
You can choose whether to be in this study or not.  If you volunteer to be in this study, you may 
withdraw at any time.  However, please note that if you decide to withdraw from the study, you 
will only be compensated for the time in which you participated.  In other words, if you completed 
2 hours of the study, you will receive 2 credits; if you completed 4 hours, you will receive 4 
credits.  Also, choosing not to complete the testing session will deem you ineligible for inclusion in 
the draw to win 1 of 2  gift cards valued at $50 CAD to either Devonshire Mall or Future Shop.  
However, as a participant in this study, you may refuse to answer any questions you do not want 
to answer and still remain in the study.  The investigator may withdraw you from this research if 
circumstances arise which warrant doing so (for example, if you fail to follow test instructions, or if 
it is deemed unsafe for you to continue to participate). Lastly, in the event that you choose to 
withdraw from the study, you will still receive the credits you earned for participating in the screen 
(i.e., you will not be docked previously earned points).  As an example, if you withdrew from the 
study after 2 hours, you would have earned a total of 2.5 credits – 2 for the study, and 0.5 for the 
screener completed previously.  As a participant in this study, you will have the option of 
removing your data from the study.   
 
 
FEEDBACK OF THE RESULTS OF THIS STUDY TO THE SUBJECTS 
 
Participants will have the option of learning the results of the study simply by contacting the 
researcher.  They may also log onto the REB website and read the results of this study by 
selecting it from the available list. 
 
Web address: http://www.uwindsor.ca/reb 
Date when results are available: April 30, 2011 
 
 
 

http://www.uwindsor.ca/reb
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SUBSEQUENT USE OF DATA 
 
This data will be used in subsequent studies. 
 
 
RIGHTS OF RESEARCH SUBJECTS 
 
You may withdraw your consent at any time and discontinue participation without penalty. If you 
have questions regarding your rights as a research subject, contact:  Research Ethics 
Coordinator, University of Windsor, Windsor, Ontario, N9B 3P4; Telephone: 519-253-3000, ext. 
3948; e-mail: ethics@uwindsor.ca 
 
 
SIGNATURE OF RESEARCH SUBJECT/LEGAL REPRESENTATIVE 
 
I understand the information provided for the study “The Effects of Food on Cognition” as 
described herein.  My questions have been answered to my satisfaction, and I agree to 
participate in this study.  I have been given a copy of this form. 
 
 

______________________________________ 
Name of Subject 

 
______________________________________  ___________________ 
Signature of Subject       Date 

 
 
SIGNATURE OF INVESTIGATOR 
 
These are the terms under which I will conduct research. 
 
 

_____________________________________  ____________________ 
Signature of Investigator      Date 

 

mailto:ethics@uwindsor.ca
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Appendix G 

 
Composition of tryptophan augmented (ATA), tryptophan depleted (ATD), and balanced 

(B) meals and snacks. 

 
 
 

Augmentation Meal 

    

          Breakfast 

    

Bread – 1 slice (26 g) 
Low-fat margarine – 1 tbsp (14 g) 
Grape jam – 1 oz (28 g) 
Tea – black decaf – 1 cup (8 fl oz) (237 g) 
Sugar (in tea) – 2 tsp (4 g) 
Grape juice – 1 cup (253 g) 
          Snack 
Black coffee (decaf) – 1 cup (8 fl oz) (237 g)
Sugar (in coffee) – 2 tsp (4 g) 
3 Musketeer candy bar – 1  2.13 oz bar (60 
g) 
          Lunch 
Bread – 1 slice (26 g) 
Low-fat margarine – 1 tbsp (14 g) 
Grape jam – 1 oz (28 g) 
Grape juice – 1 cup (253 g) 

 
Depletion Meal 

          Breakfast 

    

Bread – 2 slices (26 g each) 
Low-fat margarine – 1 tbsp (14 g) 
Cheese – low-fat mozzarella – 1 oz (28 g) 
Tea – black decaf – 1 cup (8 fl oz) (237 g) 
Milk (in tea) – whole milk – 1 oz (28 g) 
          Snack 
Coffee – decaf – 1 cup (8 fl oz) (237 g) 
Milk (in coffee) – 1% milk – 1 oz (28 g) 
Peanuts – roasted with salt – 1 oz (28 g) 

Lunch 
Bread – 2 slices (26 g each) 
Low-fat margarine – 1 tbsp (14 g) 
Roast beef – lean – 1 oz (28 g) 
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Balanced Meal 
          Breakfast 

    

Bread – 1 slices (26 g each) 
Butter – salted – 1 pat (5 g) 
Grape jam – 2 oz (28 g each) 
Tea – black decaf – 1 cup (8 fl oz) (237 g) 
Sugar (in tea) – 2 tsp (4 g each) 
          Snack 
Black coffee (decaf) – 1 cup (8 fl oz) (237 g)
Sugar (in coffee) – 2 tsp (4 g) 
Milk – 1% milk – 1 oz (28 g) 
2 fun-size “3 Musketeers” candy bars -   
     (28 g) 
          Lunch 
Bread – 2 slices (26 g each) 
Peanut Butter (unsalted) – 1 oz (28 g) 
Grape jam – 1 oz (28 g) 
Grape juice – 1 cup (253 g) 
 
 
Final Snack for all groups: 
      Yogurt cup  

Pineapple fruit cup  
 
 
 
 
 
 
 
 
All meals were modeled after those used by Markus and colleagues (1998).  They were 
created and analyzed using the NutritionData website (NutritionData, 2009).  RDA 
values based on a 2,000 calorie diet for males and females aged 4 and over as indicated 
by the Canada Food Inspection Agency 
(http://www.inspection.gc.ca/english/fssa/labeti/guide/ch6e.shtml#a6_3). 

http://www.inspection.gc.ca/english/fssa/labeti/guide/ch6e.shtml#a6_3
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