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CHAPTER 1. Introduction

This chapter explains the role of the effective field theories in modern physics, especially

modern elementary particle physics. We start with a brief introduction to the Standard Model

(SM) which is currently the accepted theory of particle physics and, thus far, in superb agree-

ment with experiment. However, we will see that the SM cannot be the fundamental theory

of nature and can be viewed only as an Effective Field Theory (EFT) of nature. Examples of

the other EFTs later in the chapter will explain how we arrived at the SM, tested its various

predictions, and how they may help to find the physics beyond it.

1.1 Standard Model

The Standard Model of particle physics is a theory that describes three of the four known

fundamental interactions between the elementary particles that make up all matter. The two

components of the standard model are the electroweak theory, which describes the interactions

via the electromagnetic and weak forces, and quantum chromodynamics, the theory of the

strong nuclear force. Both theories are gauge field theories, which describe the interactions

between particles in terms of the exchange of a “messenger” particles that have one unit of

intrinsic angular momentum, or spin. The standard model has proved to be a highly successful

framework for predicting the interactions of quarks and leptons with great accuracy. Yet, it

has a number of weaknesses that leads to a search for a more complete theory of subatomic

particles and their interactions. For example, it cannot explain why there are three generations

of quarks and leptons; and it makes no predictions of the masses of the quarks and the leptons,

nor of the strengths of the various interactions.

All of the particles present in the standard model fall into one of the three groups: matter
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particles, force-mediating particles, and the Higgs boson. The matter particles described by the

standard model all have an intrinsic property known as ”spin,” whose value is determined to be

1/2, which means that they are fermions. As a result, they follow the Pauli exclusion principle

(in agreement with the spin-statistics theorem), which determines their ”material” quality. A

total of twelve different types of matter particles are known and accounted for by the standard

model. Six of these are classified as quarks (up, down, charm, strange, top, and bottom); and

the other six are classified as leptons (electron, muon, tau, and their corresponding neutrinos).

In addition, every particle has its antiparticle partner, which has the same mass and opposite

charge; and we specify these charges now.

Each quark can carry any one of three color charges - red, green, or blue, enabling them

to participate in the strong interactions. The up-type quarks (up, charm, and top quarks)

carry an electric charge of +2/3; and the down-type quarks (down, strange, and bottom) carry

an electric charge of -1/3, enabling both types to participate in electromagnetic interactions.

Leptons do not carry any color charge. They are color neutral; and, thus, they do not feel

strong force. The electron-type leptons (the electron, the muon, and the tau lepton) carry

an electric charge of -1, enabling them to participate in electromagnetic interactions. The

neutrino-type leptons (the electron neutrino, the muon neutrino, and the tau neutrino) carry

no electric charge, which prevents them from participating in electromagnetic interactions.

Both quarks and leptons carry flavor charges, including the weak isospin, enabling all particles

to interact via the weak nuclear interaction.

In contrast to matter particles, the known force-mediating particles of the Standard Model

have the spin of 1; i.e., all these particles are bosons. For this reason, they do not follow the

Pauli Exclusion Principle. There are three types of the force-mediating particles. First, we have

a photon which mediates the electromagnetic force between electrically charged particles. The

photon is massless and is well-described by the theory of quantum electrodynamics. Second, we

have the W+, W−, and Z gauge bosons which mediate the weak interactions between particles

of different flavors (all quarks and leptons). They are heavy, with the Z and W± having mass

of about 91.2 GeV and 80.4 GeV respectively. The weak interactions involving the W± act on
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the left-handed particles and the right-handed antiparticles exclusively. Moreover, as the W±

carry an electric charge of ±1, they couple to the electromagnetic interactions. The electrically

neutral Z boson interacts with both left-handed particles and antiparticles. These three gauge

bosons are grouped together and collectively mediate the electroweak interactions. Third,

we have the eight gluons which mediate the strong interactions between the color charged

particles (the quarks). Gluons are massless. The eightfold multiplicity of gluons is labeled by

a combination of a color and an anticolor charge, which means, for example, that quarks may

exchange a green-anti-blue gluon. The gluon has an effective color charge, and, thus, they can

interact among themselves. The gluons and their interactions (with quarks and themselves)

are described by the theory of quantum chromodynamics (QCD).

The Higgs particle is, as yet, a hypothetical particle invoked to explain why the carriers

of the electroweak force (the W and Z bosons) have mass. If this particle exist at all, it

requires an exceptionally large amount of energy to create and to observe it under laboratory

circumstances. It has no intrinsic spin; and thus, like the force-mediating particles which

also have integral spin, is also classified as a boson. The Higgs Boson plays a unique role in

the Standard Model and a key role in explaining the origins of the mass of other elementary

particles, in particular, the difference between the massless photon and the very heavy W and

Z bosons. In the electroweak theory, it generates the masses of the massive leptons (electron,

muon, and tau) and also of the quarks. As of 2007, no experiment has directly detected the

existence of the Higgs boson, but there is some indirect evidence for it. It is hoped that, upon

the completion of the Large Hadron Collider (LHC) at CERN, experiments conducted there

would bring experimental evidence confirming the existence of this particle.

1.2 Effective field theories

The basic premise of the effective field theories is that the dynamics at low energies (or

large distances) does not depend on the details of the dynamics at high energies (or short

distances). As a result, low energy physics can be described using an effective Lagrangian

that contains only a few degrees of freedom, ignoring additional degrees of freedom present at
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higher energies.

Very often, the process of integrating out irrelevant degrees of freedom is performed using

the renormalization group (RG) equations. Although this method does not always guarantee

the actual construction of effective field theories, the physical understanding of their structure

becomes more transparent through an RG analysis. To be more specific, imagine that in

the fundamental theory, there is a single mass scale M. Then, the effective field theory can

be constructed as an expansion in 1/M. This expansion would be useful if the maximum

momentum scale k of the scattering or other processes under consideration would satisfy the

condition k/M¿1. Since effective field theories are not valid at small length scales, they need

not be renormalizable.

1.2.1 Examples of effective field theories

• Fermi theory of beta decay

The most well-known example of an effective field theory is the Fermi theory of beta

decay. This theory was developed during the early study of weak decays of nuclei when

only the hadrons and leptons undergoing weak decay were known. The typical reactions

studied were:

n → p+ e− + νe (1.1)

µ− → e− + νe + νµ (1.2)

This theory postulated a pointlike interaction between the four fermions involved in

these reactions. The theory had great phenomenological success and was eventually

understood to arise from the gauge theory of electroweak interactions, which forms a

part of the standard model of particle physics. In this more fundamental theory, the

interactions are mediated by a flavour-changing gauge boson, the W, described above.

The enormous success of the Fermi theory has its roots in the fact that the W particle

has mass of about 80 GeV, whereas the early experiments were all done at an energy

scale of less than 10 MeV. It is this separation of scales that allowed Fermi to get by

without the W bosons in the theory and to think of the interaction as pointlike.
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• BCS theory of superconductivity

This is a theory of superconductivity developed by Bardeen, Cooper, and Schrieffer in

1957. Under certain conditions, attractions between two electrons due to a succession of

phonon exchanges can exceed slightly their Coulomb repulsion. The electrons of opposite

spin will then be weakly bound together, forming a so-called Cooper electron pair. The

length scale of these pairs is much larger than the wavelength of phonons. As a result,

it is possible to neglect the dynamics of phonons and construct a theory in which two

electrons interact at a point.

• In elementary particle physics, the effective field theory of QCD called chiral perturbation

theory has had success. This theory deals with the interactions of hadrons with pions or

kaons, which are the Goldstone bosons of spontaneous chiral symmetry breaking. The

expansion parameter is the pion energy/momentum. In the next chapter, this EFT will

be discussed in greater details.

• If a hadron contains one heavy quark (such as the bottom or charm), starting from QCD

Lagrangian, we may construct an effective field theory by performing a 1/mQ expansion.

This is the essence of the Heavy-Quark Effective Theory (HQET), and in the next chapter

we will present its field-theoretic realization.

• Heavy baryon chiral perturbation theory is an effective quantum field theory used to

describe the interactions of pions and baryons. It is an extension of the chiral perturbation

theory which just describes the low-energy interactions of pions. As the baryons are much

heavier than the pions, heavy baryon chiral perturbation theory uses a nonrelativistic

description of baryons compared to that of the pions. Higher order terms in the heavy

baryon Lagrangian come at higher orders of 1/mB where mB is the baryon mass. In

this thesis, all baryons and all hadrons containing bottom and/or charm quarks will be

treated as heavy.

• For hadrons containing two heavy quarks, an effective field theory which expands in pow-

ers of the relative velocity of the heavy quarks, called non-relativistic QCD (NRQCD),
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has been found useful, especially when used in conjunctions with lattice QCD.

• For hadron reactions with light energetic (collinear) particles, the interactions with low-

energetic (soft) degrees of freedom are described by the soft-collinear effective theory

(SCET).

• General relativity is expected to be the low energy effective theory of a full theory of

quantum gravity, such as string theory. The expansion scale is the Planck mass. One

of the EFT of gravity popular in literature called the Randall-Sundrum model will be

discussed in the next chapter.

• All of the condensed matter physics consists of writing effective field theories for the

particular property of matter being studied.

• Finally, as discussed above, the standard model of particle interactions can be only low

energy EFT.

With the upcoming start of the CERN LHC, our quest for the physics beyond the SM is

likely to give a signal. In our search for the fundamental theory of nature, the effective

field theories were proven to be a valuable tool (as in the case of the Fermi theory). In

the remaining chapters of this dissertation, we will see concrete applications of the EFT

to particle physics; and the next chapter describes the needed theoretical background.
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CHAPTER 2. Theoretical tools

This chapter provides field-theoretical description of the effective field theories used later in

this thesis. Due to the enormous amount of literature, this brief review cannot give a complete

survey, nor a proper historical introduction. My main effort is to point out their effective field

theories’ nature, and I apologize for any developments left out of the scope of this thesis.

2.1 Chiral perturbation theory

We start with the QCD Lagrangian, which has the form:

LQCD = Lg + Lq + Lm

Lg = − 1
4g2

Tr (GµνG
µν)

Lq =
Nf∑

f=1

ψ̄f iDµγ
µψf

Lm =
Nf∑

f=1

mf ψ̄fψf

Dµ = ∂µ − igAµ

Gµν = [Dµ, Dν ],

where Aµ is the gluon field, ψf is the quark field of the f -th flavor ( ψf = (u, d, c, s, t, b)),

Dµ is the covariant derivative, Gµν is the field strength tensor, and g is the color charge.

The term Lg describes pure gluon dynamics, the term Lq corresponds to the quark kinetic

energy and quark-gluon interaction, and the term Lm is responsible for the quark masses.

In the massless limit, the QCD Lagrangian (Lg + Lq) depends on only one dimensionless

parameter g. At the same time the strong coupling constant αs(µ) becomes scale dependent

due to renormalization. The scale parameter of QCD ΛQCD is determined from experiment.
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Provided the quarks are massless, the chirality (helicity) of a quark is conserved; and the QCD

Lagrangian is symmetric with respect to rotations in the flavor space independently for right-

and left-handed quarks. Thus, the massless QCD has the global symmetry described by the

group SU(NF )R × SU(NF )L. While the Lagrangian is chirally symmetric, the ground state

of the massless QCD (vacuum) does not have the same property because the chiral symmetry

is spontaneously broken. The characteristic feature of this spontaneous symmetry breaking is

the emergence of massless, pseudoscalar particles called Goldstone bosons (in the case of two

flavors, NF = 2, they correspond to the triplet of pions). The essence of the chiral perturbation

theory is to consider the quark mass term Lm as a perturbation. The mass term explicitly

breaks the chiral symmetry, so the Goldstone bosons get nonzero masses; and in the leading

order, the pion mass squared is proportional to the quark mass. Chiral perturbation theory

(CHPT, χPT) is an effective field theory constructed as an expansion in momenta and masses

of physical particles, which are considered to be small on a hadronic scale of about 1 GeV.

This approach is extended in baryon chiral perturbation theory, so that the meson interaction

with the ”heavy” baryons can be treated as well.

The Lagrangian is constructed by introducing every interaction of particles which is not

excluded by symmetry, and then ordering them based on the number of momentum and mass

powers. It is also common to compress the Lagrangian by replacing the single pion fields in

each term with an infinite series of all possible combinations of pion fields. One of the common

choices is to incorporate the light pseudoscalar Goldstone bosons into the matrix U = exp( iM
fπ

)

with a normalization in which the pion decay constant is fπ = 132 MeV. The matrix M is

explicitly given by

M =




√
1
2π

0 +
√

1
6η π+ K+

π− −
√

1
2π

0 +
√

1
6η K0

K− K̄0 −
√

2
3η



, (2.1)

and we will see an example of the other choice in Chapter 3. A similar matrix can be written

for the baryon octet.
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After this, the leading order chiral Lagrangian, which describes the interactions among the

Goldstone bosons is given by

L2 =
f2

8
tr(∂µU∂

µU †); (2.2)

and we will see how to write the interactions of these fields with heavy meson and baryon

fields later. But first, we need to have an appropriate formalism to deal with these heavy fields

which we discuss in the next section.

2.2 Heavy quark effective theory

HQET is an effective field theory, which may be obtained from QCD by performing a 1/mQ

expansion. The leading term corresponds to the infinite mass limit in which the heavy quark

acts as a static color source. The momentum pQ of the heavy quark scales with its mass; and,

thus, in order to arrive at the infinite mass limit, it is convenient to use the velocity v of the

heavy quark as the basic kinematic quantity. To this end, the heavy quark momentum is split

into a large part mQv and a residual part k, which is assumed not to scale with the heavy

mass. Thus,

pQ = mQv + k = mQ

(
v +

k

mQ

)
. (2.3)

We shall consider exclusively hadrons containing only a single heavy quark such that, in the

infinite mass limit, the velocity v of the heavy quark becomes simply the velocity of the heavy

hadron.

In order to write down a field theory which describes the static heavy quark, one needs to

go through the usual steps of the construction of an effective field theory, namely to integrate

out the heavy degrees of freedom.

In order to do that, we notice that a near on-shell Dirac spinor has two large and two small

components. We proceed by defining them as

Q(x) = e−imQv·x[hv(x) +Hv(x)], (2.4)

where

hv(x) = eimQv·x 1 + /v

2
Q(x) (2.5)
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are the large components, and

Hv(x) = eimQv·x 1− /v

2
Q(x) (2.6)

are the small components.

Inserting these definitions into the Dirac Lagrangian and solving the classical equation of

motion for the field Hv yields

Hv(x) =
1

2mQ + iv ·Di /D⊥hv(x), (2.7)

where iDµ
⊥ = iDµ − vµiv ·D.

In this way, one obtains

Q(x) = e−imQv·x
[
1 +

(
1

2m+ iv ·D
)
i /D⊥

]
hv(x) (2.8)

= e−imQv·x
[
1 +

1
2mQ

/D⊥ +
(

1
2mQ

)2

(−iv ·D) /D⊥ + · · ·
]
hv(x)

L = h̄v(iv ·D)hv + h̄vi /D⊥

(
1

2m+ iv ·D
)
i /D⊥hv (2.9)

= h̄v(iv ·D)hv +
1

2m
h̄v(i /D⊥)2ihv +

(
1

2m

)2

h̄v(i /D⊥)(−iv ·D)(i /D⊥)hv + · · · ,

where D is the covariant derivative of QCD, Q(x) is the heavy quark field in full QCD, and hv

is the static heavy quark moving with the velocity v. Note that hv corresponds to the upper

components of the full field since

P+hv = hv, P−hv = 0, P± =
1
2
(/v ± 1). (2.10)

The leading terms of these expansions define the static limit; the static Lagrangian

Lstat = h̄v(ivD)hv (2.11)

is a dimension-four operator and defines, in combination with the usual Lagrangian for the

light degrees of freedom, a renormalizable field theory.
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2.2.1 Heavy Quark Symmetries

In the case in which the bottom quark and the charm quark are assumed to be heavy, one

would write a static Lagrangian for both quarks

Lstat = b̄v(v ·D)bv + c̄v′(v ·D)cv′ , (2.12)

where bv (cv′) is the field operator for the b (c) quark moving with velocity v (v′). In particular,

the masses of the heavy quarks do not appear in the Lagrangian (2.12); and, as a consequence,

(2.12) in the case v = v′ exhibits an SU(2) Heavy Flavor Symmetry, which rotates the bv field

into the cv field.

The static heavy quark field hv is still a two-component object corresponding to the upper

component of the full heavy quark field Q. However, since both spin directions couple in the

same way to the gluons, we may rewrite the leading-order Lagrangian as

L = h̄+s
v (ivD)h+s

v + h̄−s
v (ivD)h−s

v , (2.13)

where h±s
v are the projections of the heavy quark field on a definite spin direction s

h±s
v =

1
2
(1± γ5/s)hv, s · v = 0. (2.14)

This Lagrangian has a symmetry under the rotations of the heavy quark spin; and, hence, all the

heavy hadron states moving with the velocity v fall into spin-symmetry doublets as mQ →∞.

The simplest spin-symmetry doublet in the mesonic case consists of the pseudoscalar meson

H(v) and the corresponding vector meson H∗(v, ε), since a 90◦-spin rotation R(ε) around the

rotation axis ε (vε = 0) yields

R(ε)|H(v)〉 = (−i)|H∗(v, ε)〉. (2.15)

In the heavy-mass limit, the spin symmetry partners have to be degenerate; and their

splitting has to scale as 1/mQ. Also, the symmetries imply relations between the matrix

elements involving the heavy quarks. For a transition between heavy ground-state mesons

H (either pseudoscalar or vector) with heavy flavor f (f ′) moving with velocities v (v′), one
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obtains in the heavy-quark limit

〈H(f ′)(v′)|h̄(f ′)
v′ Γh(f)

v |H(f)(v)〉 = ξ(vv′) Tr
{
H(v)ΓH(v)

}
, (2.16)

where Γ is some arbitrary Dirac matrix and H(v) are the representation matrices for the two

possibilities of coupling the heavy quark spin to the spin of the light degrees of freedom, which

are in a spin-1/2 state for the ground state mesons

H(v) =
√
MH

2





(1 + /v)γ5 0−, (q̄Q) meson

(1 + /v)/ε 1−, (q̄Q) meson with polarization ε.
(2.17)

Due to the spin and flavor independence of the heavy mass limit, the Isgur-Wise function ξ is

the only non-perturbative information needed to describe all heavy-to-heavy transitions within

a spin-flavor symmetry multiplet.

Similar statements may be derived for the spin symmetry doublets of the excited heavy

mesons and also for the baryons. For example, the corresponding analogue of the Isgur-Wise

function for the excited state heavy mesons will be called τ3/2,1/2, as we will see later.

2.3 Randall-Sundrum model

Our previous two examples of EFT were derived from approximate symmetries of QCD

Lagrangian. We now discuss the effective theory of gravity proposed in an attempt to solve one

of the puzzles left unexplained by the SM: TeV/Planck scale hierarchy problem. The model(s)

were proposed in 1999 by Lisa Randall and Raman Sundrum. Randall-Sundrum models (RS

models) imagine that the real world is a higher-dimensional Universe described by warped

geometry. More concretely, our Universe is a five-dimensional, anti-de Sitter space; and, in

the original model, the elementary particles, except for the graviton, are localized on a (3 +

1)-dimensional brane or branes. There are two popular models. The first, called RS1, has

a finite size for the extra dimension with two branes, one at each end. The second, RS2, is

similar to the first; but one brane has been placed infinitely far away, so there is only one brane

left in the model. Later in this thesis, we will see application of RS1 model in search for RS

gravitons; and now we will discuss it in more detail.
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The only new particles in RS1 model were Kaluza-Klein (KK) gravitons with no SM gauge

quantum numbers. Two 3-branes, one being ”visible” with the other being ”hidden”, with

tensions opposite to each other, rigidly reside at S1/Z2 orbifold fixed points, taken to be

φ = 0, π, where φ is the angular coordinate parameterizing the extra dimension. It is assumed

that the extra-dimensional bulk is only populated by gravity, and that the SM lies on the brane

with negative tension at φ = π. Gravity is localized on the Planck brane at φ = 0. The solution

to Einstein’s equations for this configuration, maintaining 4-dimensional Poincare invariance,

is given by the 5-dimensional metric

ds2 = e−2σ(φ)ηµνdx
µdxν + r2cdφ

2 , (2.18)

where the Greek indices run over ordinary 4-dimensional spacetime, σ(φ) = krc|φ| with rc

being the compactification radius of the extra dimension, and 0 ≤ |φ| ≤ π. Here, k is a scale of

order the Planck scale and relates the 5-dimensional Planck scale M to the bulk cosmological

constant. Here, it is assumed that the 5-dimensional curvature R5, where R5 = −20k2, satisfies

|R5| < M2 with M ∼Mpl (where Mpl ' 2.44× 1018 GeV is the reduced Planck mass) so that

this solution for the bulk metric can be trusted. Otherwise, higher order terms in the curvature

would need to be kept in the initial action to maintain self-consistency.

Examination of the action in the 4-dimensional effective theory in the RS scenario yields

M2
pl =

M3

k
(1− e−2krcπ) (2.19)

for the reduced effective 4-D Planck scale. A field on the SM brane with the fundamental

mass parameter m0 will appear to have the physical mass m = e−krcπm0. The TeV scales are

thus generated from fundamental scales of order Mpl via a geometrical exponential factor, and

the observed scale hierarchy is reproduced if krc ' 11− 12. Due to the exponential nature of

the warp factor, no additional large hierarchies are generated. This model thus provides an

interesting interpretation of the electroweak scale.

However, the fact that the SM fields live only on the TeV brane leaves higher-dimensional

operators in the 5D effective field theory suppressed only by the TeV scale which, in turn,

generates unacceptably large contributions to flavor changing neutral current (FCNC) and
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observables related to the SM electroweak precision tests (EWPT). A natural way to avoid

this problem is to allow the SM fields to propagate in the extra dimension. In this scenario,

there are KK excitations of the SM gauge and fermion fields, in addition to those of the

graviton. These states have mass in the TeV range and are localized near the TeV brane. The

SM particles are the zero-modes of the 5D fields, and the profile of a SM fermion in the extra

dimension depends on its 5D mass. By localizing light fermions near the Planck brane and

heavier ones near the TeV brane, the contributions to the FCNC and EWPT are suppressed

by scales À TeV. As a consequence, the KK graviton whose profile is peaked at the TeV brane

will couple mostly to the top quark, the Higgs (or, by equivalence theorem, to the longitudinal

W and Z bosons), and the KK excitations of the SM fields.

Experimentally, the fact that the underlying theory is higher-dimensional would be reflected

in the KK spectrum of the particles, shall they be found. Starting with the five-dimensional

action of the gauge theory and performing KK expansion of the 5-D fields, one arrives at the

effective 4-D description. Let us demonstrate it for the pure U(1) gauge theory, starting with

the action:

SA = −1
4

∫
d5x

√
−G G

MK
G

NL
FKLFMN , (2.20)

where
√−G ≡ |det (GMN ) |1/2 = e−4σ and FMN is the 5-dimensional field strength tensor given

by

FMN = ∂MAN − ∂NAM . (2.21)

Note that this definition does not involve the affine connection terms due to the antisymmetry

of FMN . After an integration by parts, Eq. (2.20) yields

SA = −1
4

∫
d5x

[
ηµκηνλFκλFµν − 2 ηνλAλ ∂4

(
e−2σ∂4Aν

)]
, (2.22)

where we have used gauge freedom to choose A4 = 0. This is consistent with the gauge invariant

equation
∮
dx4A4 = 0, which results from our assumption that A4 is a Z2-odd function of the

extra dimension. This choice eliminates A4 from the theory on the 3-brane, but it will not

disturb the gauge invariance of the action in the effective 4-dimensional theory, as we will see

below.
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Let the KK expansion of Aµ be given by

Aµ(x, φ) =
∞∑

n=0

A(n)
µ (x)

χ(n)(φ)√
rc

, (2.23)

with x4 = rcφ. Using the expansion in Eq. (2.22) and integrating over φ give

SA =
∫
d4x

∞∑

n=0

[
−1

4
ηµκηνλF

(n)
κλ F

(n)
µν − 1

2
m2

nη
νλA(n)

ν A
(n)
λ

]
, (2.24)

where F (n)
µν = ∂µA

(n)
ν − ∂νA

(n)
µ . In doing this, we have required that the φ-dependent wave-

functions satisfy the orthonormality condition

∫ π

−π
dφχ(m)χ(n) = δmn (2.25)

and the differential equation

−1
r2c

d

dφ

(
e−2σ d

dφ
χ(n)

)
= m2

n χ
(n) . (2.26)

The expression in Eq. (2.24) is the action for gauge fields A(n)
µ of mass mn in 4-dimensional

Minkowski space; and, as mentioned above, for the zero mode (with mn = 0), SA has 4-

dimensional gauge invariance.

Equipped with the theoretical background, we are now in a position to see how these

formalisms are applied in the particle physics research.
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CHAPTER 3. Decay Ω− → Ξ−π+π− in heavy-baryon chiral perturbation

theory

For our first application, we consider Ω− → Ξ−π+π− decay in the heavy-baryon chiral

perturbation theory. It is based on my work with my collaborators J.Tandean and G.Valencia

[1] where interested reader may find additional details.

3.1 Introduction

It was suggested many years ago that the decay Ω− → Ξ−π+π− should be dominated

by the Ξ∗0(1530) intermediate state [2, 3]. Under this assumption, the current Particle Data

Group (PDG) [4] branching ratio for Ω− → Ξ∗0π− has been deduced from the measurement of

B(Ω− → Ξ−π+π−) [5]. More recently, the HyperCP collaboration has reported a preliminary

measurement of Ω− → Ξ−π+π− that is very surprising in that the distribution of the Ξ−π+

invariant-mass apparently shows no evidence for the Ξ∗0(1530) dominance [6].

Motivated by this result, we revisit the calculation of the rate for this decay mode using

heavy-baryon chiral perturbation theory (HBχPT). We first present a leading-order calculation

that reproduces the expectation that the decay is completely dominated by the Ξ∗0(1530)

intermediate state.

We next explore whether higher-order contributions can reconcile the calculation with

the preliminary HyperCP result. To this end, we consider the effect of next-to-leading-order

diagrams, which occur at tree level.

In the spirit of the perturbation theory, all Feynman diagrams are drawn using effective

vertices as in Fig.3.1. These effective vertices are defined in Fig.3.2.
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3.2 Leading-order calculation

The amplitude for Ω− → Ξ−(pΞ

)
π+(p+

)
π−(p−

)
can be written in the heavy-baryon

approach as

M(Ω− → Ξ−π+π−) = −ūΞ

(
A+ p

µ
+ +A− p

µ
− + 2B+ Sv · p− pµ

+ + 2B− Sv · p+ p
µ
−
)
uΩµ , (3.1)

where A± and B± are independent form-factors and Sv is the spin operator. The most general

form of the amplitude has eight independent form-factors [2], and we have included here only

the ones that receive contributions from the leading-order and next-to-leading-order diagrams

that we consider. The partial decay width resulting from the amplitude above is

dΓ(Ω− → Ξ−π+π−) =
1

32
(
2πmΩ

)3 |M(Ω− → Ξ−π+π−)|2 dm2
Ξ−π+ dm

2
Ξ−π− , (3.2)

where m2
Ξ−π± =

(
pΞ + p±

)2 and

|M(Ω− → Ξ−π+π−)|2 = 4
3 mΩmΞ

{∣∣A+

∣∣2 p2
+ +

∣∣A−
∣∣2 p2

− + 2 Re
(
A∗+A−

)
p+ ·p−

+
[∣∣B+

∣∣2 +
∣∣B−

∣∣2 + Re
(
B∗+B−

)]
p2

+ p2
−

+ Re
(
B∗+B−

) (
p+ · p−

)2
}
, (3.3)

with p± denoting the three-momenta of the pions in the Ω− rest frame.

The chiral Lagrangian describing the interactions of the lowest-lying mesons and baryons is

written down in terms of the lightest meson-octet, baryon-octet, and baryon-decuplet fields [7,

8, 9]. As we saw in Chapter 2, the meson and baryon octets are collected into 3× 3 matrices ϕ

(this matrix is ϕ = M√
2

in Eq.2.1) and B, respectively; and the decuplet fields are represented by

the Rarita-Schwinger tensor Tµ
abc, which is completely symmetric in its SU(3) indices (a, b, c).

As also described in Chapter 2, the octet mesons enter through the exponential Σ = ξ2 =

exp(iϕ/f), where now the pion-decay constant f = fπ ≈ 93MeV due to the fact that ϕ = M√
2

in Eq.2.1.

In the heavy-baryon formalism [9], the baryons in the chiral Lagrangian are described by

velocity-dependent fields, Bv and Tµ
v . For the strong interactions, the Lagrangian at lowest
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order in the derivative and ms expansions is given by

Ls =
〈
B̄v iv

µ
(
∂µBv +

[Vµ, Bv

])〉
+ 2D

〈
B̄vS

µ
v

{Aµ, Bv

}〉
+ 2F

〈
B̄vS

µ
v

[Aµ, Bv

]〉

− T̄µ
v iv · DTvµ + ∆mT̄µ

v Tvµ + C (
T̄µ

v AµBv + B̄vAµT
µ
v

)
+ 2H T̄µ

v Sv · ATvµ

+ bD
〈
B̄v

{
M+, Bv

}〉
+ bF

〈
B̄v

[
M+, Bv

]〉
+ c T̄µ

v M+Tvµ (3.4)

where only the relevant terms are shown, 〈· · · 〉 ≡ Tr(· · · ) in flavor-SU(3) space, ∆m denotes

the mass difference between the decuplet and the octet baryons in the chiral limit, Vµ =

1
2

(
ξ ∂µξ†+ξ† ∂µξ

)
, Aµ = i

2

(
ξ ∂µξ†−ξ† ∂µξ

)
, DµT ν

klm = ∂µT ν
klm+Vµ

knT
ν
lmn+Vµ

lnT
ν
kmn+Vµ

mnT ν
kln,

and M+ = ξ†Mξ† + ξM †ξ, with M = diag(m̂, m̂,ms) = diag
(
m2

π,m
2
π, 2m

2
K −m2

π

)
/
(
2B0

)
in

the isospin-symmetric limit mu = md = m̂. The constants D, F , C, H, B0, bD,F , and c are

free parameters which can be extracted from the data.

As is well known, the weak interactions responsible for the hyperon nonleptonic decays

are described by a |∆S| = 1 Hamiltonian that transforms as (8L, 1R) ⊕ (27L, 1R) under

SU(3)L×SU(3)R rotations. It is also known empirically that the octet term dominates the

27-plet term. We therefore assume in what follows that the decays are completely character-

ized by the (8L, 1R), |∆I| = 1/2 interactions. The leading-order chiral Lagrangian for such

interactions is [8, 10]

Lw = hD

〈
B̄v

{
ξ†hξ , Bv

}〉
+ hF

〈
B̄v

[
ξ†hξ , Bv

]〉
+ hC T̄

µ
v ξ

†hξ Tvµ + H.c. , (3.5)

where h is a 3×3 matrix having elements hkl = δk2δ3l and the parameters hD,F,C can be fixed

from two-body hyperon nonleptonic decays.

From Lw together with Ls, we can derive the O(p0) diagrams displayed in Fig. 3.1 and

Fig. 3.2. They provide the leading-order contributions to the A± and B± form factors in

Eq. (3.1), namely

A
(0)
+ =

+C hC

6 f2
(
EΞ +E+ − m̄Ξ∗

) , (3.6a)

A
(0)
− = 0 , (3.6b)

B
(0)
+ =

−CH hC

18 f2
(
mΩ −mΞ∗

)(
EΞ +E+ − m̄Ξ∗

) , (3.6c)
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Figure 3.1 Diagrams contributing to Ω− → Ξ−π+π−. Each solid blob
represents an effective weak vertices which are defined in Fig.3.2
and strong vertices follow from Ls in Eq. (3.4).

B
(0)
− =

−C (D − F )hC

6 f2
(
mΩ −mΞ∗

)(
EΞ + E+ −mΞ

)

+
C H hC

27 f2
(
mΩ −mΞ∗

)(
EΞ + E+ − m̄Ξ∗

) , (3.6d)

where m̄Ξ∗ = mΞ∗ − i
2ΓΞ∗ .

Numerically, to evaluate the decay rates resulting from the form factors above, we employ

the tree-level values of the strong and weak parameters. Specifically,

D = 0.80 , F = 0.46 , |C| = 1.7 (3.7)

from the hyperon semileptonic decays and the strong decays T → Bϕ, but a tree-level value

of H is not yet available from data. Since nonrelativistic quark models [9] give 3F = 2D,

C = −2D, and H = −3D, which are well satisfied by D, F , and C, we adopt

H = −2.4 . (3.8)
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Figure 3.2 Contributions to the effective weak vertices up to NLO in
HBχPT contributing to Ω− → Ξ−π+π− . Weak vertices (de-
noted by x) follow at LO from Lw in Eq. (3.5) and at NLO from
L′w in Eq. (3.11b). Correspondindly, strong vertices follow from
Ls in Eq. (3.4) or L′s in Eq. (3.11a).

For the weak parameters, we have

hC = 3.42× 10−8 GeV , (3.9)

hD = −1.45 × 10−8 GeV, and hF = 3.50 × 10−8 GeV, extracted from a simultaneous tree-

level fit to the S-wave octet-hyperon and P-wave Ω− nonleptonic two-body decays, as hD,F

contribute not only to the octet-hyperon decays but also to Ω− → ΛK̄, whereas hC contributes

to Ω− → ΛK̄,Ξπ [10]. As seen above, hC is the only weak parameter in the lowest-order

contributions to Ω− → Ξ−π+π−.

The resulting branching ratio,

B(Ω− → Ξ−π+π−) = 5.4× 10−3 , (3.10)
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is roughly an order of magnitude larger than the preliminary number reported by HyperCP,

B(Ω− → Ξ−π+π−) = [3.6 ± 0.3(stat)] × 10−4 [6], and also the current PDG value, B(Ω− →
Ξ−π+π−) =

(
4.3+3.4

−1.3

)×10−4 [4]. In Fig. 3.3(a), we display the corresponding Ξ−π+ invariant-

mass distribution. As expected, these results are dominated by the Ξ∗ resonance. Notice that

the leading-order rate is proportional to |ChC |2 so there is a large parametric uncertainty in

this prediction. For example, if both C and hC were 30% smaller than the values we used,

the predicted rate would be four times smaller. The general dependence of the leading-order

branching ratio on |ChC | is shown in Fig. 3.3(b).

The HyperCP data is not available in a format suitable for direct comparison with our

result due to detector effects. However, their results indicate that a uniform phase-space

distribution is a much better fit to the data than a Ξ∗-dominated one [6]. In Fig. 3.4 we

plot the mΞ−π+ distributions resulting from our leading-order amplitude (solid curve) and

from assuming a uniform-phase-space decay distribution (dashed curve), both normalized to

reproduce the central value of HyperCP’s result. The structure of the leading-order amplitude,

from Eq. (3.6), with all the terms being proportional to ChC , is such that the Ξ∗ resonance is

always the dominant feature of the spectrum. This leads us to investigate in the next section

whether any of the next-to-leading-order corrections can modify the predicted spectrum in the

direction indicated by experiment.

3.3 Calculation to next-to-leading order

At the next-to-leading order, O(p), there are two types of contributions. The first type of

contributions is that in which the weak transition occurs only between mesons. To compute

these contributions, we need the leading-order, O(p2), strong and weak Lagrangians for mesons,

which are given respectively by [7, 11]

L′s = 1
4f

2
〈
∂µΣ† ∂µΣ

〉
+ 1

2B0f
2
〈
M+

〉
, (3.11a)

L′w = γ8f
2
〈
h∂µΣ ∂µΣ†

〉
+ H.c. , (3.11b)
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where the parameter γ8 is found from K → ππ data to be

γ8 = −7.8× 10−8 , (3.12)

the sign following from various predictions [12]. Notice again different normalization of the

first term in Eq.3.11 compared to Eq.2.2 due to different choice for the pion decay constant.

The contributions of the γ8 term are interesting because the |∆S| = 1 weak transitions in

the meson sector are larger than naive expectations. In particular, γ8 is several times larger

than its naturally expected value
(∼1 × 10−8

)
and therefore could make its contributions

numerically comparable to the lower-order ones.

With weak vertices from the γ8 term alone, plus strong vertices from Ls and L′s, we derive

the next-to-leading-order (NLO) diagrams displayed in Fig. 3.1 and Fig. 3.2, and contain kaons.

They provide the NLO contributions to the A± and B± form factors in Eq. (3.1), namely

A
(1)
+ =

−C γ8

f2

m2
π − s+−

m2
K − s+−

, (3.13a)

A
(1)
− = A

(1)
+ , (3.13b)

B
(1)
+ =

−C H
3f2

γ8m
2
π(

m2
K −m2

π

)(
EΞ + E+ − m̄Ξ∗

) , (3.13c)

B
(1)
− =

−C (D − F )
f2

γ8m
2
π(

m2
K −m2

π

)(
EΞ +E+ −mΞ

)

+
2C H
9f2

γ8m
2
π(

m2
K −m2

π

)(
EΞ +E+ − m̄Ξ∗

) . (3.13d)

In obtaining these results, we have used the relations

mΩ −mΞ∗ =
2c
3

(
ms − m̂

)
, m2

π = 2B0 m̂ , m2
K = B0

(
ms + m̂

)
, (3.14)

which follow from Ls and L′s.
There is another type of NLO contribution to the amplitudes. It is given by the two

remaining diagrams in Fig. 3.1 and Fig. 3.2 in which the weak vertices are from a NLO

Lagrangian. Many of the parameters in NLO Lagrangians are not known, and so it is not
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possible at present to include their contributions in a detailed way. The weak Lagrangian at

O(p) that generates Ω−Ξ∗π and Ω−Ξπ vertices is

L̃′w =
hΩΞ∗π
f

vα ∂απ
+ Ξ̄∗0 · Ω− +

h̃ΩΞ∗π
f

∂απ
+ Ξ̄∗0µ 2Sα

v Ω−µ

+
hΩΞπ

f
∂µπ+ Ξ̄0 Ω−µ + · · · , (3.15)

where only the relevant terms are displayed and hΩΞ∗π, h̃ΩΞ∗π, and hΩΞπ are unknown param-

eters. These two diagrams yield the NLO contributions

Ã
(1)
+ =

−C hΩΞ∗π E−√
6 f2

(
EΞ + E+ − m̄Ξ∗

) , (3.16a)

Ã
(1)
− = 0 , (3.16b)

B̃
(1)
+ =

−C h̃ΩΞ∗π√
6 f2

(
EΞ + E+ − m̄Ξ∗

) , (3.16c)

B̃
(1)
− =

(D − F )hΩΞπ√
2 f2

(
EΞ +E+ −mΞ

) +
2C h̃ΩΞ∗π

3
√

6 f2
(
EΞ +E+ − m̄Ξ∗

) . (3.16d)

Numerically, we adopt the parametric variations

0 ≤ ∣∣hΩΞ∗π
∣∣, ∣∣h̃ΩΞ∗π

∣∣, ∣∣hΩΞπ

∣∣ ≤ 2× 10−8 , (3.17)

where the upper limit is the expectation from naive dimensional analysis.

As mentioned above, there are additional NLO contributions that are not included in our

calculation above because they depend on more unknown parameters. We can still estimate

the uncertainty in our results arising from those terms by allowing the LO parameters to vary

between their value as obtained from tree-level fits and their value as obtained from one-loop

fits. For our numerics we will specifically consider parameter values obtained from fits at one-

loop order, which are available in the literature [9, 13, 14]. We begin by noticing that our

results in Eqs. (3.6), (3.13) and (3.16) show that f is a common factor affecting the overall

normalization only. Similarly, C is a common factor, except for the first term in Eq. (3.16d),

which is numerically small. Consequently, we fix f and C to their tree-level values, noting that
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the resulting decay rate scales with an overall factor C2/f4. In addition, we keep γ8 at its

value in Eq. (3.12), as it is well determined. Thus, the ranges of the strong parameters we

consider are

0.21 ≤ D − F ≤ 0.34 , −2.4 ≤ H ≤ −1.6 . (3.18)

On the other hand, since the range of the weak parameter hC from one-loop fits is large [14],

−2 ≤ 107hC ≤ 4, we let it vary so as to reproduce the experimental decay rates.

In Fig. 3.5(a) we display the branching ratios calculated from the leading-order (LO) and

the NLO amplitudes above. The black (dark gray) band in the figure shows the effects of

the parametric variations given in Eq. (3.18) on the branching ratio obtained from the LO

amplitude alone (the LO amplitude and only the γ8 terms in the NLO amplitude). The light-

gray region results from the LO and the NLO amplitudes considered above and varying the

parameters according to Eqs. (3.17) and (3.18). The dotted lines in this figure bound the range

3.3 ≤ 104 B(Ω− → Ξ−π+π−) ≤ 3.9 implied by the preliminary HyperCP data. Evidently, this

data can be reproduced in the three cases.

The corresponding mΞ−π+ distributions are plotted in Figs. 3.5(b) and (c) for hC < 0 and

hC > 0, respectively, with the variations of the other parameters for the different bands being

the same as in Fig. 3.5(a). The hC ranges used in (b) and (c) are 0.84 < 108 |hC | < 0.92 for

the black bands, −1.05 < 108 hC < −0.90 and 0.55 < 108 hC < 0.65 for the dark-gray bands,

and −1.8 < 108 hC < 0 and 0 < 108 hC < 1.4 for the light-gray bands, all of which have been

inferred from the corresponding bands in (a). The figures indicate that some softening of the

Ξ∗ dominance in the spectrum is possible with the inclusion of higher-order contributions.

3.4 Conclusions

We have evaluated the decay Ω− → Ξ−π+π− in heavy-baryon chiral perturbation theory.

At the leading order, we found a spectrum dominated by the Ξ∗(1530), as had been suggested

before. This shape is in conflict with the recent preliminary data from HyperCP. The total

branching ratio is also in conflict with experiment for the central values of C and hC , but it
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suffers from a large parametric uncertainty. This uncertainty, however, does not affect the

shape of the mΞ−π+ invariant mass distribution.

A complete calculation at next-to-leading-order contains too many unknown parameters to

be phenomenologically useful. We have investigated the effect of the NLO corrections in three

different ways. First, we considered the diagrams in which the weak transition occurs in the

meson sector. These corrections are induced by the low-energy constant γ8 which is known

from kaon decay. Second, we considered the NLO terms in the weak effective Lagrangian which

introduce three new effective constants. We studied the effect of these constants by varying

their value between zero and the value suggested by naive dimensional analysis. Third and

last, we varied the LO parameters in ranges that included their values as determined from

tree-level and one-loop fits to other hyperon decay modes. The difference between the two

kinds of fit is indicative of the size of NLO counter-terms that we have not included explicitly.

When all these factors are considered, we found that it is possible to lower the branching ratio

and soften the importance of the Ξ∗ in the mΞ−π+ distribution, as suggested by the data.

In this project we witnessed how the disagreement between experiment and LO theoretical

prediction shows the importance of NLO contributions. Even though the complete NLO pre-

diction was not possible, I benefited from this project in many ways. First, I learned how to

calculate experimentally observable quatities in chiral perturbation theory. The calculations in

this framework often show non-trivial interplay between various terms from different diagrams

or even different orders. Second, I learned the meaning of many phenomenological parameters

as well as experimental origin for their values. In the next chapter we will consider particles

containing charm and bottom quarks absent in this project. As we will see, they will be treated

in a different way.
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Figure 3.3 (a) Distribution of Ξ−π+ invariant-mass in Ω− → Ξ−π+π−

at leading order with parameter values in Eqs. (3.7)-(3.8), and
(b) its branching ratio as function of |ChC | with D−F and H
values in Eqs. (3.7) and (3.8).
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Figure 3.4 Distributions of Ξ−π+ invariant-mass in Ω− → Ξ−π+π−

obtained from our leading-order amplitude (solid curve)
and from the assumption of uniform-phase-space decay
distribution (dashed curve), both normalized to yield
B(Ω− → Ξ−π+π−) = 3.6× 10−4 .
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Figure 3.5 (a) Branching ratios for Ω− → Ξ−π+π− and (b,c) the cor-
responding distributions of Ξ−π+ invariant-mass. The black
(dark gray) band comes from the LO amplitude only (the LO
amplitude and the γ8 terms in the NLO amplitude), and the
light-gray band results from the LO and NLO amplitudes we
consider, as described in the text. The dotted lines in (a)
bound the range implied by the preliminary HyperCP data.
The dashed curves in (b) and (c) have been reproduced from
Fig. 3.4.
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CHAPTER 4. B-physics

In this chapter we consider applications of χPT and HQET to the decay of B mesons.

B-physics is a large and active field, and having large BaBar experimental group here at Iowa

State University (ISU) has allowed me to be in the frontier of experimental discoveries in it.

I concentrated on phenomenological analysis of latest measurements by BaBar collaboration

which were of interest to our experimental group at ISU. In particular, collaborating with

my adviser G.Valencia, we studied recently reported observation by BaBar of the decay mode

B− → D+
s K

−π− [15]. The D+
s K

− pair could come from intermediate charm resonances, and

we found that they play a significant role despite their masses lying below the m(DsK) produc-

tion threshold. As our investigation was undergoing in parallel with experimental analysis for

this decay mode, we continuously exchanged ideas with BaBar representatives (especially with

Soeren Prell and Vitaly Eyges) which provided me with invaluable physics input, especially

during my visit to SLAC. My other B-physics project with Dr.Valencia was focused on analysis

of weak radiative decays of B mesons [16]. With the B+ → D?+γ mode as a potential probe

for |Vub|, we reviewed the B → D?γ decay modes in the framework of HQET and χPT and

improved the existing LO results in the literature by including the positive parity intermediate

states. Then, we extended these ideas to the double radiative decay modes B → Dγγ and

found that positive parity states play an important role in both B → D?γ and B → Dγγ

channels. We now discuss both of these projects in detail and start with the weak radiative

decays of the B mesons first.
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4.1 Radiative B decays

We begin with the (tree-level) weak radiative decays of B mesons. We present a numerical

estimate for the inclusive b → Xcγ(γ) modes based on the free-quark decay. We then discuss

the B → D?γ modes in the framework of heavy quark effective theory and chiral perturbation

theory. Continuing along these lines, we will calculate the double radiative decay rates for the

B → Dγγ decay modes. We will find that the b→ Xcγγ rate is about an order of magnitude

larger than the corresponding b → Xsγγ rate. We also will find that the branching ratio for

the B → Dγγ mode with the biggest CKM angles is at the (few ×10−8) level, comparable to

predictions for B → Kγγ.

4.1.1 Introduction

The radiative penguin b decay of the form b → sγ has received much attention in the

literature because it is sensitive to certain types of physics beyond the standard model. The

Heavy Flavor Averaging Group (HFAG) quotes an average for the measured branching ratio

B(b → sγ) = (354+30
−28) × 10−6 [17]. Also, the double radiative decay mode b → sγγ has been

studied extensively due to the possibility of measuring it at a Super-B factory at the 10−7 level

[18], which is the level it is expected to occur in the standard model [20, 19].

We may also have a tree-level radiative b decay which proceeds via the charged current

as in b → Xcγ(γ) and b → Xuγ(γ) channels. These modes are expected to be dominated by

standard model physics and have received much less attention. To fill this gap, we begin with

a simple numerical estimate for these modes suggesting that b → Xcγγ can also be observed

at a Super-B factory. We then turn our attention to some of the exclusive modes.

4.1.2 b → Xcγ and b → Xcγγ

We work in the free quark approximation where b → Xcγ and b → Xcγγ arise from the

tree-level quark processes b→ cūdγ and b→ cūdγγ (we take Vud = 1). Our goal is to compare

these processes to the one-loop processes b→ Xsγ and b→ Xsγγ; and in order to do this, we

will use the CompHEP package [23].
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As the photon energy range studied by the Belle collaboration [24] is 1.8 GeV≤ Eγ ≤ 2.8 GeV,

this will be our first acceptance cut. We also impose a 5◦ ≤ θmin ≤ 20◦ separation on a mini-

mum angle θmin between the photon and the final state quarks, in parallel with b→ Xsγγ mode

discussed next [20, 19]. Using these cuts, we obtain rates Γ(b→ cūdγ) between 3× 10−18 GeV

and 5× 10−18 GeV, which translates into the branching ratio for the inclusive process:

B(b→ Xcγ) =
Γ(b→ cūdγ)th

Γ(b→ ce−ν)th
B(B+ → Xce

+ν)exp

∼ (7− 11)× 10−6. (4.1)

To obtain this number, we used Vcb = 0.0413 [25], B(B+ → Xce
+ν)exp = (11.15±0.26±0.41)%

[26] and quark mass values mb = 4.8 GeV, mc = 1.5 GeV which are the ones used in the theory

estimates of b → Xsγγ. In Figure 4.1 we show the photon energy spectrum for the case of

θmin = 5◦. We observe that the characteristic bremsstrahlung spectrum falls rapidly with

the photon energy and, for this reason, B(b → Xcγ) is much smaller than the penguin mode

B(b→ Xsγ) = (3.3± 0.4)× 10−4 [25] in this energy range.
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Figure 4.1 Photon energy spectrum in b→ Xcγ with θmin = 5◦.

Next we consider the double radiative mode B → Xcγγ in a similar way. We wish to
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compare it to the penguin process B → Xsγγ which has not been observed. We use instead

the theoretical calculation of Reina et. al. [20, 19] which finds B(B → Xsγγ) ∼ 3.7 × 10−7

(including Lowest Order (LO) QCD corrections and using the quark masses mentioned above).

In order to isolate two hard photons, they also require that the energy of each photon be larger

than 0.1 GeV, that the photon pair invariant mass be larger than 0.1mb, and that the photons

be separated from each other and from final state quarks by at least 20◦. They find a spectrum

that is sharply peaked at low Mγγ invariant mass.

For our calculation we estimate B → Xcγγ from the leading tree-level contribution b →
cūdγγ. With the same cuts used by Ref. [20, 19] for B → Xsγγ we obtain Γ(b → cūdγγ) =

1.9× 10−18 GeV; and this goes up to 3.2× 10−18 GeV if the angular cuts are relaxed to 10◦.

Proceeding as in Eq. (4.1), we arrive at

B(B → Xcγγ) ∼ (4.2− 7.2)× 10−6. (4.2)

In Figure 4.2 we show the two photon invariant mass distribution.
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Figure 4.2 M2
γγ distribution for the process b → Xcγγ with the cuts de-

scribed in the text.

Once again we see a spectrum that is strongly peaked at low invariant mass. Comparing



33

our results to those of Ref. [20, 19], it is clear that B → Xcγγ can be a significant background

to B → Xsγγ. Notice that the total rate for the double radiative decay mode is comparable

to that for b → Xcγ. This, of course, is due to the much tighter photon energy cuts imposed

in that case.

4.1.3 Exclusive Modes and HQET

In this section we collect the ingredients necessary to calculate the amplitudes for the ex-

clusive modes guided by heavy quark effective theory. We will extend the ideas presented in

Chapter 2, shaping them suitably for our current application.

A.Radiative decays of heavy mesons

Following our discussion in Chapter 2, the strong interactions involving the heavy meson

(0−, 1−) doublet (the lightest pseudoscalar and vector mesons containing one heavy quark) and

light pseudo-scalars are described by the effective Lagrangian (we drop the subscript v that

indicates the velocity of the heavy meson to simplify the notation) [27, 28, 29]

L = −iT r(H̄(Q)
a v ·DbaH

(Q)
b ) + gTr(H̄(Q)

a H
(Q)
b γνγ5A

ν
ba). (4.3)

In Eq. (4.3) we use the standard notation in which

• The heavy pseudoscalar and vector meson fields with heavy quark Q and light anti-quark

q̄a are destroyed and created by the field H
(Q)
a and its Hermitian conjugate. They are

given by

H(Q)
a =

1 + /v

2

(
P (Q)?

aµ γµ − P (Q)
a γ5

)
(4.4)

which transforms under chiral symmetry as H(Q)
a → H

(Q)
b U †ba. The Hermitian conjugate

matrix H̄(Q)
a = γ0H

(Q)†
a γ0.

• Mesons containing heavy anti-quarks Q̄ and light quarks qa are destroyed and created
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by the fields

H(Q̄)
a = (P (Q̄)?

aµ γµ − P (Q̄)
a γ5)

1− /v

2

H̄(Q̄)
a = γ0H

(Q̄)†
a γ0. (4.5)

• As usual, the pseudo-Goldstone boson octet, φ is incorporated into a 3×3 unitary matrix

Σ = exp (2iφ/fπ) which transforms under chiral symmetry as Σ → LΣR†. In Eq. (4.3)

they enter through the matrix ξ where Σ = ξ2 and the transformation properties of ξ

under chiral symmetry ξ → LξU † = UξR† define the matrix U . The charges of the light

quarks appear through the diagonal matrix Q with entries 2/3,−1/3,−1/3.

• The chiral covariant derivative and axial current in Eq. (4.3) are given by

Dµ
ab = δab∂

µ − V µ
ab = δab∂

µ − 1
2
(ξ†∂µξ + ξ∂µξ†)ab

Aµ
ab =

i

2
(ξ†∂µξ − ξ∂µξ†)ab. (4.6)

The leading order electromagnetic coupling is obtained from Eq. (4.3) by minimal substitu-

tion. However, the couplings arising from this procedure (for charged B and D mesons) do not

contribute to the processes B → Dγ or B → Dγγ as can be seen by explicit computation. The

lowest order electromagnetic coupling that will contribute to these processes is the transition

magnetic moment [30, 31, 32, 29]. For mesons containing a heavy quark, it can be written as

Lem = −eeQµ
(h)
a

4
Tr(H̄(Q)

a σµνH
(Q)
a )Fµν − eµ

(l)
a

4
Tr(H̄(Q)

a H
(Q)
b σµνQabFµν). (4.7)

The coupling consists of two terms corresponding to the decomposition of the electromagnetic

current into heavy and light quark parts,

µa = µ(h)
a + µ(l)

a =
eQ
ΛQ

+
ea
Λa
, (4.8)

where ea is the charge of the light-quark. The heavy quark contribution at leading order

in the 1/mQ expansion is given by ΛQ = mQ [33, 34]. The light quark contribution in the

SU(3) symmetry limit is usually called Λ−1
a = β [29]. This constant has been estimated in

vector meson dominance models [35] as well as in chiral quark models [36] (along with SU(3)
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breaking corrections). The leading SU(3) violations have also been calculated [31]. More

generally, the heavy quark contribution when the mesons have different velocity is modified to

µ
(h)
a = eQξ(ω)/mQ where ω = v · v′ and ξ(ω) is the Isgur and Wise function.

Eq. (4.7) generates the following amplitudes,

M(D?(η) → Dγ(q, ε)) = −ieµDε
µναβε?µηνqαvβ,

M(D?(η1) → D?(η2)γ(q, ε)) = eµD? (q · η1ε
? · η?

2 − q · η?
2ε

? · η1) , (4.9)

where we have defined µD? ≡ (µD(h)
a − µ

D(l)
a ). Analogous relations with µD,D? → µB,B? then

hold for the B system. In the heavy quark and SU(3) limits, the magnetic moments consist

only of the light quark contribution given by µa = eaβ. For our numerical estimates we will use

the leading magnetic moments as well as the magnetic moments in three models tabulated in

Ref. [32]: “χLM” a chiral loop model; “VMD” a vector meson dominance model; and “RQM”

a relativistic quark model.

The magnetic moments from Eq. (4.7) are defined for on-shell transitions between a vector

and a pseudo-scalar of the same mass. In our calculations one of the mesons will be off its

mass shell and the corresponding form-factors should be evaluated at k2 ∼ −δm2 for the

single radiative decay modes: eµ ≡ gM (0) → eµgM (−δm2) where δm ≡ mb −mc. On general

grounds one expects the form factor to change over a characteristic scale ΛQCD, so there is

large uncertainty associated with the use of the on-shell form factors. Formally, the results we

obtain correspond to the so called generally low velocity (GL) limit in which [21]

δm ∼ ΛQCD ¿ mb. (4.10)

Alternatively, one can model the momentum dependence of the form factors as was done in

Ref. [22] for the neutral modes. We will not include a momentum dependence of the form

factors in our estimates, but instead introduce two additional effects. First, we will keep

certain terms that are formally of order δm/mb arising from spin one propagators as described

later on. We will also consider additional heavy meson intermediate states; the positive parity

P-waves of the system Qq̄. However, we will neglect higher total spin resonances.
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The positive parity states that we include are predicted by HQET to lie in two distinct

multiplets: (0+, 1+)=(B0, B1) and (1+, 2+)=(B̃1, B2). Generically, we will refer to them as

B?? and will discuss the case of B mesons for definiteness, with corresponding results for D

mesons also used in our calculation. The velocity dependent fields are introduced in a manner

similar to the field H in Eq. (4.4) [37, 38]

S =
1
2
(1 + /v)[ /B1γ5 −B0]

Tµ =
1
2
(1 + /v)

[
Bµν

2 γν −
√

3/2B̃1νγ5(gµν − 1
3
γν(γµ − vµ))

]
(4.11)

The electromagnetic transitions between a member of these doublets and a member of the

(0−, 1−) doublet have also been discussed in the literature. Analogously to Eq. (4.7), the

couplings receive contributions from the heavy and light quark currents.

The heavy quark contribution to the (1+, 2+) to (0−, 1−) transition in the charm case

can be found in [39]. A simple way to reproduce those results consists of using the matrix

elements for < B??|V µ|B > obtained by Isgur and Wise [40] to match the effective Lagrangian

L ∼ Tr
(
H̄iγ

βTα
j QijFαβ

)
. Similarly, one can start from the Isgur and Wise results and

impose gauge invariance for the kinematic conditions we consider to obtain the heavy quark

contribution to the (0+, 1+) to (0−, 1−) transition.

The light quark contributions can be determined at leading order in chiral perturbation

theory in terms of two unknown constants,

L = − ie

Λ′3/2

Tr
(
H̄iT

α
j γ

βQijFαβ

)
− e

4Λ′1/2

Tr
(
H̄iSjσµνQijF

µν
)

+ h. c. (4.12)

Combining the heavy and light quark contributions for the T doublet leads to the am-

plitudes (we include only those that do not vanish at leading order in the 1/mQ and chiral

expansions)

M(B2(v, ε2) → B?(v, εV )γ(q, ε)) = −2
√

3eµT
B

(
εαβ
2 qαε

?
V βε

? · v − εµβ
2 ε?V βε

?
µq · v

)

M(B̃1(v, ε1) → B?(v, εV )γ(q, ε)) = i
√

2eµT
Bε

µναβqµε
?
νε

?
V αε1β

M(B̃1(v, ε1) → B(v)γ(q, ε)) = 2
√

2eµT
B (q · ε1v · ε? − q · vε1 · ε?) . (4.13)
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Similarly for the S doublet, we obtain

M(B1(v, ε1) → B?(v, εV )γ(q, ε)) = −ieµS
Bε

µναβqµε
?
νε

?
V αε1β

M(B1(v, ε1) → B(v)γ(q, ε)) = eµS
B (q · ε1v · ε? − q · vε1 · ε?)

M(B0(v) → B?(v, εV )γ(q, ε)) = eµS
B (q · ε?V v · ε? − q · vε?V · ε?) . (4.14)

Corresponding expressions for charm are obtained with the obvious replacements µT,S
B → µT,S

D .

For bottom, these effective coupling constants are

µT
B ≡

(
ebτ

3/2(1)
mb

+
ea

Λ′3/2

)
, µS

B ≡
(

2ebτ1/2(1)
mb

+
ea

Λ′1/2

)
. (4.15)

For the light quark contributions, Λ′3/2 corresponds to
√

3/(f − f ′) of Ref. [39]. Using their

estimate for the D system, we take Λ′3/2 ∼ (2.75− 3.5) GeV. Similarly, Λ′1/2 corresponds to Λ′

of Ref. [41] where it is estimated that Λ′1/2 ∼ 1.25 GeV. For the heavy quark contributions we

have used the Isgur-Wise functions τ1/2,3/2 estimated in Ref. [42] to be τ1/2,3/2(1) ∼ 0.24 (ξ3/2

of Ref. [39] corresponds to
√

3τ3/2) .

Finally, we will also need both (0+, 1+) to (0+, 1+) and (0+, 1+) to (1+, 2+) electromagnetic

transitions. The former receives heavy and light quark contributions, whereas the latter only

receives light quark contributions at order 1/mQ. They can be obtained from the Lagrangian

L = − eeQ
4mQ

Tr(S̄aσµνSa)Fµν− e

4Λ̃1/2

Tr(S̄aSbσµνQabFµν)− ie

Λ̃3/2

Tr
(
S̄iT

α
j γ

βQijFαβ

)
. (4.16)

The new constants Λ̃1/2,3/2 are not known. For our numerical estimates, we use Λ̃1/2 ∼ Λa and

Λ̃3/2 ∼ Λ3/2. With this choice, the magnetic transitions within the S multiplet are the same

as those between members of the H multiplet; for charm, for example, one has

M(D1(η) → D0γ(q, ε)) = −ieµDε
µναβε?µηνqαvβ,

M(D1(η1) → D1(η2)γ(q, ε)) = eµD? (q · η1ε
? · η?

2 − q · η?
2ε

? · η1) , (4.17)

and the corresponding expressions for the bottom. The (0+, 1+) to (1+, 2+) vertices for bottom
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are

M(B2(v, ε2) → B1(v, εV )γ(q, ε)) = i2eµTS
B

(
εαµνγεαβ

2 qβvµε
?
νε

?
1γ + εαµνγεαβ

2 qµvνε
?
βε

?
1γ

)

M(B̃1(v, εi) → B1(v, εf )γ(q, ε)) = −eµTS
B

√
2
3

(
q · εiε? · ε?f − q · ε?f ε? · εi

)

M(B̃1(v, ε1) → B0(v)γ(q, ε)) = i2eµTS
B

√
2
3
εαµνγqαvµε

?
νε1γ , (4.18)

and corresponding expressions for charm. We have defined

µTS
B ≡ ea

Λ̃3/2

. (4.19)

B.Weak transitions

Within the standard model, the effective weak Hamiltonian responsible for the ∆B = 1

transitions at tree-level is (with di = d or s)

H =
GF√

2
[V ?

cbVudi (C1Q
n
1 + C2Q

n
2 ) + V ?

ubVcdi (C1Q
c
1 + C2Q

c
2)] + h. c. (4.20)

where the neutral modes B0 → D̄0(D̄0?) are mediated by Qn
1 = (b̄di)V−A(ūc)V−A and Qn

2 =

(b̄c)V−A(ūdi)V−A; and the charged modesB+ → D+(D+?) are mediated byQc
1 = (b̄di)V−A(c̄u)V−A

and Qc
2 = (b̄u)V−A(c̄di)V−A respectively. 1 Our first task is to write the operators correspond-

ing to Eq. (4.20) in the heavy quark effective theory.

For the charged modes, this was already done in Ref. [21]. The operators Qc
1,2 can be

written in terms of their heavy (A,B) and light (a, b) degrees of freedom in the more general

form

OabĀB = Āγµ(1− γ5)aB̄γµ(1− γ5)b. (4.21)

As pointed out by Grinstein and Lebed [21], this form illustrates there are symmetry relations

that would allow one to extract the coupling of this effective Lagrangian from the measurements

of B − B̄ mixing.

For the charged transitions, this operator has to destroy a heavy quark and a light quark

of flavors (Ā, a) = (b̄, u) and create a heavy quark and a light quark of flavors (B̄, b) = (c, d̄i).
1For our numerical estimates, we will use the tree-level coefficients C1 = 0, C2 = 1.
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This operator transforms as a (6L, 1R) under the chiral symmetry and, as shown in Ref. [43],

Eq. (4.21) matches in the symmetry limit of the effective theory onto

OabĀB = βWTr
[
(ξacH

(Ā)
c )γµ(1− γ5)

]
Tr

[
(ξbdH̄

(B)
d )γµ(1− γ5)

]
(4.22)

As pointed out in Ref. [21], this same operator with (Ā, a) = (b̄, d) and (B̄, b) = (b, d̄)

is responsible for B − B̄ mixing; so that, in principle, the coefficient βW can be extracted

from experiment (for this case there is an additional color factor of 8/3). This heavy quark

symmetry relation is valid in the GL limit where mB −mD << ΛQCD and the four-velocity of

the B and D? mesons is the same. For our numerical estimates, we will use

βW =
1
4
fBfD

√
mBmD ∼ (0.034± 0.009) GeV3, (4.23)

where we used the decay constants fB = (191 ± 27) MeV [44] and fD = (225+11
−13 ± 21) MeV

[45]. This last one is in good agreement with the recent CLEO measurement fD = (222.6 ±
16.7+2.8

−3.4 MeV [46].

For the radiative decay modes that we consider in this chapter, there are no light pseu-

doscalars involved so we set ξ = 1 in Eq. (4.22) to obtain the matrix elements:

< D∗
v(η)|OabĀB|B∗v(η

′
) > = 4βW η · η′?,

< Dv|OabĀB|Bv > = 4βW ,

< D∗
v(η)|OabĀB|Bv > = −4βW η · v,

< B∗v(η)|OabĀB|Dv > = −4βW η · v, (4.24)

where η, η′ are the vector meson polarization vectors and v the B meson velocity. The last two

terms vanish when the condition v · η = 0 is used. We retain them because we will use them

beyond leading order in the heavy quark expansion later on, as they contribute known terms

of order (mb −mc)/mc.

The neutral modes involving the weak transition B0
i → D̄0 are mediated by the operators

Qn
1,2 in Eq. (4.20). To construct a matching operator in the effective theory, we notice that

they transform as (8L, 1R) under the chiral symmetry. We also need to extract the part of
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the operators responsible for destroying a heavy anti-quark (of flavor b) and creating a heavy

anti-quark (of flavor c). A possible match for Qn
2 of the current-current form is

O = Tr
[
H̄(c̄)

a γµ(1− γ5)H
(b̄)
f

] (
ξ†∂µξ

)
fa
. (4.25)

However, this operator does not contribute to the processes without light pseudo-scalars that

we are discussing.

A possible operator that does contributes to B0
i → D̄0 transitions at tree level is of the

form

O = β′WTr
[
(ξujH̄

(c̄)
j )γµ(1− γ5)

]
Tr

[
(ξdkH

(b̄)
k )γµ(1− γ5)

]
. (4.26)

This operator leads to matrix elements analogous to those in Eq.(4.24) with βW → β′W . As

was the case with the charged modes, there are other possible matches; but they lead to the

same result [43]. We have not found a way to determine β′W from symmetry relations and

must resort to the factorization model

β′W =
1
12
fBfD

√
mBmD =

βW

Nc
. (4.27)

An additional factor of 1/Nc = 1/3 relative to βW occurs because the contribution of Qn
2 to

these weak transitions in factorization requires a Fierz transformation and color rearrangement.

For weak transitions involving the positive parity states, B → D??, we have two new

operators for the S doublet. The operators Qc
2 and Qn

2 in Eq. (4.20) for the charged and

neutral modes can be matched in the factorization approximation into the operators

Qc
2 → −βWTr

[
(ξujH̄

(c̄)
j )γµ(1− γ5)

]
Tr

[
γµ(1− γ5)(S

(b̄)
j ξ†jd)

]

Qn
2 → −β′WTr

[
(ξujH̄

(c̄)
j )γµ(1− γ5)

]
Tr

[
γµ(1− γ5)(S

(b̄)
j ξ†jd)

]
(4.28)

for transitions of the form (0−, 1−)b → (0+, 1+)c. The extra minus sign is chosen so that the

coefficients βW and β′W are the same as those in Eqs. (4.23) and (4.27) if we take the decay

constants and masses of the two doublets to be the same. This is approximately true for the

decay constants in the analysis of Ref. [42] based on QCD sum rules.

The T = (1+, 2+) multiplet does not participate in the weak transitions in this approxima-

tion since its decay constant vanishes [47].
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The matrix elements obtained from Eq. (4.28) (and corresponding ones for (0−, 1−)b →
(0+, 1+)c transitions) that do not involve light mesons are then

< D∗
v(η)|Qc

2|B1v(η
′
) > = −4βW η · η′ ,

< Dv|Qc
2|B0v > = −4βW ,

< D∗
v(η)|Qc

2|B0v > = 4βW η · v,

< Dv|Qc
2|B1v(η′) > = 4βW η? · v, (4.29)

and the same expressions with βW → β′W for the neutral modes. Finally, we will need weak

transitions from (0+, 1+)b → (0+, 1+)c. They follow from an effective Lagrangian like the one

in Eq. (4.22) with S fields replacing H fields and produce matrix elements with the same sign

as those in Eq. (4.24).

4.1.4 B → D?γ

We now turn our attention to the single radiative decay for exclusive channels and begin

with the kinematics of this decay.

Kinematics

The most general amplitude for decays of the form M → V (η)γ(q, ε) consistent with elec-

tromagnetic gauge invariance can be written in terms of two form factors. Labeling the mo-

mentum of the initial state M with its four velocity in its rest frame, p = MMv, and denoting

the polarization of V, γ by η, ε respectively

M(M → V γ) = ε?µ
[
iFM εµναβv

νqαη?β + FE

(
q · η?vµ − q · vη?

µ

)]
. (4.30)

Summing over the photon and vector meson polarizations, the partial decay rate is given by

Γ(M → V γ) =
E3

γ

4πM2
M

(|FM |2 + |FE |2
)
. (4.31)

For the heavy meson formalism in which the meson fields are normalized as

< M(v′, k′)|M(v, k) >= 2v0δvv′(2π)3δ3(~k − ~k′), (4.32)
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the decay rate becomes instead

Γ(M → V γ) =
E3

γ

4π
EV

MM

(|FM |2 + |FE |2
)
, (4.33)

where we have used exact kinematics, otherwise in the heavy quark symmetry limit EV = MM

as well.

Calculation

Both the charged B+ → D?+γ and neutral B0 → D̄?0γ modes have been estimated before.

We begin with the charged mode discussion of Ref. [21]. With the ingredients introduced in

the previous section, it is straight-forward to compute the amplitude from the two diagrams

in Figure 4.3.

D*B B*D*DB

Figure 4.3 Pole diagrams responsible for B → D?γ at leading order in
heavy quark and chiral theories.

For the process B+
v → D?+

vi (η)γ(q, ε), we find a leading order amplitude containing only a

magnetic form factor: FM = (FM )LOr
+
µ with

(FM )LO (B+ → D?+
i γ) ≡

√
2GFV

?
ubVcdiβW e

(
µD+

mB+ −mD?+

)

r+µ ≡
(

1 +
µB+

µD+

2mB+

mB+ +mD?+

)
. (4.34)

Similarly, for the neutral modes FM = (FM )LOr
0
µ with

(FM )LO(B0
i → D̄?0γ) =

√
2GFV

?
cbVudiβ

′
W e

(
µD0

mB0 −mD?0

)

r0µ ≡
(

1 +
µB0

µD0

2mB0

mB0 +mD?0

)
. (4.35)

Using the leading order magnetic moments and the GL limit to evaluate these amplitudes

yields r+µ = −1, r0µ = 1/2. Combining this with exact kinematics for the phase space, one
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obtains 2

Γ(B+ → D?+
i γ) =

G2
F

36
|V ?

ubVcdi
|2 α (

βWβr+µ
)2 m?

D

m4
B

(mB −mD?)(mB +mD?)3

Γ(B0
i → D̄?0γ) =

G2
F

9
|V ?

cbVudi
|2 α (

β′Wβr0µ
)2 m?

D

m4
B

(mB −mD?)(mB +mD?)3. (4.36)

We wish to emphasize that these results exhibit a high sensitivity to non-leading contribu-

tions to the magnetic moments. With exact kinematics (i.e. taking mB 6= mD) and using the

three models for magnetic moments in Table 8 of Ref. [32], one finds

χ− loop : r+µ = −6.3, r0µ = 0.28,

V MD : r+µ = −4.7, r0µ = 0.38,

RQM : r+µ = −4.7, r0µ = 0.50. (4.37)

These numbers lead to predicted rates that are larger than the leading order prediction by

factors between 16 and 36 for the charged modes. For the neutral modes the effect is more

modest. Allowing the magnetic moments to vary in the ranges predicted by these models

results in the rates

0.7× 10−7 <∼ B(B0 → D̄?0γ) <∼ 4.6× 10−7,

1.5× 10−8 <∼ B(B0
s → D̄?0γ) <∼ 3.0× 10−8,

3.6× 10−9 <∼ B(B+ → D?+γ) <∼ 4.9× 10−9,

0.7× 10−7 <∼ B(B+ → D?+
s γ) <∼ 1.0× 10−7. (4.38)

There is also a significant uncertainty from the use of gM (0) for the electromagnetic transitions,

when in these reactions one should use gM (k2 ∼ −E2
γ ∼ −(2 GeV)2).

We now consider two types of higher order corrections to these results that are counterpart

to additional terms present in the pole model calculation of the neutral modes in Ref. [48, 22].

They correspond to the diagrams shown in Figure 4.4.

The first diagram (Figure 4.4a) contributes beyond leading order in the heavy quark sym-

metry when we allow for mB 6= mD. It generates an electric amplitude from corrections to the
2Our rate for the charged process is a factor of 9 smaller than the result obtained in Ref. [21] which corresponds

to this limit.
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c)

1BBD*1D

b)

D*0DBD*

a)

B D*

B

d)

D*

Figure 4.4 Non-leading contributions to B → D?γ: a)P ∗ − P weak tran-
sitions that vanish in the mB = mD limit; b-d) additional pole
contributions from positive parity states.

leading order 1− propagator fixed by reparametrization invariance

FE(B+ → D?+
i γ) = −

√
2GFV

?
ubVcdi

βW e

(
µD?+

mB+ −mD?+

)(
1− m2

B

m2
D

)
. (4.39)

The next two diagrams (Figure 4.4b,c) involve an intermediate positive parity state that can

be either the D0 or the D1 from the S multiplet. They generate an electric and magnetic form

factor respectively that can be written as

FE(B+ → D?+
i γ) = −

√
2GFV

?
ubVcdiβW e

(
µS

D+

mB+ −mD0

)

FM (B+ → D?+
i γ) = −

√
2GFV

?
ubVcdiβW e

(
µS

D+

mB+ −mD1

)(
1− m2

B

m2
D1

)
. (4.40)

Finally, the last diagram (Figure 4.4d) involving an intermediate B1 meson contributes to the

electric form factor as

FE(B+ → D?+
i γ) = −

√
2GFV

?
ubVcdi

βW eµS
B+

(
2mB

m2
B −m2

D?

)
. (4.41)
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Analogous results are obtained for the neutral mode with the obvious replacement V ?
ubVcdi

βW →
V ?

cbVudi
β′W and magnetic moments and masses appropriate for neutral mesons. Combining all

these partial results, we finally obtain

FM (B+ → D?+
i γ) =

√
2GFV

?
ubVcdi

βW e

(
µD+

mB+ −mD?+

)
(4.42)

·

1 +

µB+

µD+

2mB+

mB+ +mD?+

+
µS

D+

µD+

m2
B −m2

D+
1

m2
D+

1

mB −mD∗+

mB −mD+
1


 ,

FE(B+ → D?+
i γ) = −

√
2GFV

?
ubVcdiβW e

(
µS

D+

mB+ −mD∗+

)

·
(
mB −mD∗+

mB −mD+
0

− µD∗+

µS
D+

m2
B −m2

D∗+

m2
D∗+

+
µS

B+

µS
D+

2mB

mB +mD∗+

)
.

With the range of magnetic moments provided by the three models, we find

1.2× 10−5 <∼ B(B0 → D̄?0γ) <∼ 3.1× 10−5,

0.7× 10−6 <∼ B(B0
s → D̄?0γ) <∼ 1.7× 10−6,

0.6× 10−7 <∼ B(B+ → D?+γ) <∼ 1.0× 10−7,

0.6× 10−6 <∼ B(B+ → D?+
s γ) <∼ 1.4× 10−6. (4.43)

These ranges indicate only the uncertainty in the magnetic moments; in particular, they do

not include the uncertainty in βW or any other parameters. For comparison, Grinstein and

Lebed obtained B(B+ → D?+
s γ) = 2 × 10−8 [21] (when we correct their number for the

missing factor 1/9). As mentioned before, the charge mode exhibits a large sensitivity to

the value of the magnetic moments due to a partial cancellation between the two terms in

Eq. (4.34). This sensitivity is milder when the additional terms are included as can be seen

from the range in Eq. (4.43). Similarly, we can compare our result to that of Ref. [22], B(B̄0 →
D?0γ) = 9.2 × 10−7. Again this result has the same order of magnitude as the leading order

contribution, Eq. (4.35), and the larger number in Eq. (4.43) is due to the contributions of

the positive parity states. The prediction for B(B̄0 → D?0γ) in Eq. (4.43) is, in fact, close

to the experimental upper bound B(B̄0 → D?0γ) < 2.5 × 10−5 [49]; and part of the range

is already excluded. For comparison, a recent calculation finds B(B̄0 → D?0γ) ∼ 1.6 × 10−6
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[50] using a different framework. Although smaller than our range in Eq. (4.43), this result is

not incompatible with ours given the large uncertainty illustrated by the differences between

Eqs. (4.38) and (4.43).

4.1.5 B → Dγγ and HQET

We are now in a position to estimate the B → Dγγ amplitudes and let us start with the

kinematics again.

Kinematics

The amplitude for decays of the type M →M ′γγ, with M,M ′ pseudoscalar mesons,

M(M(p) →M ′(p3)γ(k1, ε1)γ(k2, ε2)) = ε?µ(k1)ε?ν(k2)Mµν(p, k1, k2), (4.44)

is well known from the kaon literature [53]. The most general decay amplitude Mµν(p, k1, k2)

consistent with electromagnetic gauge invariance and Bose symmetry contains four form fac-

tors. We write them here in terms of the velocity of M in its rest frame, so that p = MMv as

it appears within the HQET.

Mµν =
A(z, y)
M2

M

(k2µk1ν − gµνk1 · k2) + i
C(z, y)
M2

M

εµναβk
α
1 k

β
2 (4.45)

+
2B(z, y)
M2

M

[v · k1vνk2µ + v · k2vµk1ν − v · k1v · k2gµν − k1 · k2vµvν ]

+ i
D(z, y)
M2

M

[
v · k1εµναβk

α
2 v

β + v · k2εµναβk
α
1 v

β + (vµεναβγ + vνεµαβγ)kα
1 k

β
2 v

γ
]
,

where

y =
v · (k1 − k2)

MM
, z =

(k1 + k2)2

M2
M

, r =
MM ′

MM
. (4.46)

The relation between these dimensionless variables and the energy of the two photons is

E1 =
1
4
MM ((z + 2y + 1)− r2)

E2 =
1
4
MM ((z − 2y + 1)− r2). (4.47)

Recently, Hiller and Safir [54] have claimed in the context of B → Kγγ that there are three
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additional form factors,

M ′
µν = i

C+(z, y)
M3

M

[
k1 · k2εµναβ(kα

1 + kβ
2 )vβ + (k2µεναβγ + k1νεµαβγ)kα

1 k
β
2 v

γ
]

(4.48)

+ i
C−(z, y)
M3

M

[
k1 · k2εµναβ(kα

1 − kα
2 )vβ − (k2µεναβγ − k1νεµαβγ)kα

1 k
β
2 v

γ
]

+ i
D−(z, y)
M2

M

[
v · k1εµναβk

α
2 v

β − v · k2εµναβk
α
1 v

β + (vµεναβγ − vνεµαβγ)kα
1 k

β
2 v

γ
]
.

It is well known, however, that these form factors are not independent and can be reduced to

the ones in Eq. (4.45). This follows from the fact that in four dimensions there are at most

four linearly independent four vectors, and this gives rise to the Schouten identity [55]. In this

case all three terms in Eq. (4.49) reduce to the second form factor in Eq. (4.45) so that

M ′
µν =

(
MMyC

+(z, y) +
MM

2
(
1 + z − r2

)
C−(z, y)−D−(z, y)

)
εµναβk

α
1 k

β
2 . (4.49)

The physical region in the dimensionless variables z and y is given by

0 ≤ |y| ≤ 1
2
λ1/2(1, r2, z), 0 ≤ z ≤ (1− r)2, (4.50)

with

λ(a, b, c) = a2 + b2 + c2 − 2(ab+ ac+ bc). (4.51)

Note that the invariant amplitudes A(z, y), B(z, y) and C(z, y) have to be symmetric under

the interchange of k1 and k2 as required by Bose symmetry, while D(z, y) is antisymmetric.

Using the definitions (4.45), the double differential rate for unpolarized photons and conven-

tionally normalized meson fields is given by (in the rest frame of M)

∂2Γ
∂y∂z

=
MM

29π3
[z2( |A+B|2 + |C|2 ) (4.52)

+ ( |B|2 + |D|2 ) (y2 − 1
4
λ(1, r2, z))2].

With HQET normalization for the meson fields and with the two photons retaining their

usual normalization, Eq. (4.53) is replaced by

∂2Γ
∂y∂z

=
M2

MEM ′

29π3
[z2( |A+B|2 + |C|2 ) (4.53)

+ ( |B|2 + |D|2 ) (y2 − 1
4
λ(1, r2, z))2],
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of course, in the heavy quark limit EM ′ →M ′ as well.

Calculation

For the process B → Dγγ there are 5 diagrams involving only the H doublet, shown

schematically on Fig.4.5. Diagrams Fig.4.5 (d) and (e) vanish at leading order due to the

condition vµ(gµν − vµvν) = 0 at the weak vertex, and we are left with three LO diagrams.

Two of these diagrams have a B −D weak transition and the third one has a B? −D? weak

transition. In all cases the two photons are emitted from magnetic dipole couplings on the

external legs.

B* DB*B

B* DBB

(e)(d)

(c)

DD*

DD*B*B

DD*DB

B D*

(a) (b)

Figure 4.5 Pole diagrams responsible for B → D?γγ at leading order in
heavy quark and chiral theories.

A straightforward calculation then yields the desired amplitude for B0 → D̄0γγ. In terms

of the form factors defined in Eq.4.45, we find

A = −Cn

[
µ2

D

∆m
(

1
∆m−E1

+
1

∆m− E2
) +

µ2
B

E1E2

+ µBµD(
1

E1(∆m− E1)
+

1
E2(∆m− E2)

)
]
,

B = −A
2
, (4.54)
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where E1 and E2 are photons energies, ∆m ≡ mB −mD, and we have defined

Cn ≡ 2
√

2πGFαemβ
′
WV ?

cbVudM
2
B. (4.55)

Using these lowest order form factors, we find a large range for the double radiative decay

rates depending on the model used for the magnetic moments; for the mode with most favored

Cabibbo-Kobayashi-Maskawa (CKM) angles,

0.3× 10−10 <∼ B(B0 → D̄0γγ) <∼ 3.5× 10−10. (4.56)

This large sensitivity to the input parameters is due in part to a cancellation between the

terms involving the magnetic moments for the charm and bottom mesons. To illustrate this,

we write

µD = −rµµB, (4.57)

and show in Figure 4.6 Γ(B0 → D̄0γγ) as a function of rµ. We use the RQM magnetic moment

for the B; and we normalize the rate to its value when rµ ∼ 2.87, the value of µD in the RQM.

1 2 3 4 5
rΜ

5

10

15

20

25

G
Hr ΜL

Figure 4.6 Γ(B0 → D̄0γγ) as a function of rµ. We use the RQM magnetic
moment for the B and we normalize the rate to its value when
rµ ∼ 2.87, the value of µD in the RQM.
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d)

DH1
~
BB

{ B  , B*}

c)

D1
~
DH

b)a)

D{ H,S }1,1{ D }D* D{ H,S } BB

B

Figure 4.7 Additional diagrams involving particles from the (0+, 1+) and
(1+, 2+) doublets. H(S) stands for either of the H(S)-multiplet
members

We next consider two other types of contribution. First, the non-leading contributions

from diagrams d and e. They arise from corrections to the 1− propagator that are fixed by

reparametrization invariance resulting in

C =
Cn

2

[
µDµD?

∆m
m2

B −m2
D

m2
D

(
1

∆m− E1
+

1
∆m− E2

)
+
µBµB?

E1E2

m2
B −m2

D

m2
B

]
(4.58)

D = −Cn

2

[
µDµD?

∆m
m2

B −m2
D

m2
D

(
1

∆m−E1
− 1

∆m− E2

)
− µBµB?(E2 −E1)

E1E2(E1 + E2)
m2

B −m2
D

m2
B

]
.

Additional contributions arise when the positive parity states appear as in Figure 4.7. The

contributions from the S multiplet are

A = −Cn

[
µS

DµD

∆m
m2

B −m2
D

m2
D

(
1

∆m− E1
+

1
∆m−E2

)
− µS

BµB

E1E2

m2
B −m2

D

m2
B

]
(4.59)

B =
Cn

2


µ

S
D(µS

D + µD
m2

B−m2
D

m2
D

)

∆m

(
1

∆m− E1
+

1
∆m− E2

)
+
µS

B(µS
B − µB

m2
B−m2

D

m2
B

)

E1E2




C = −Cn

2

[
µS

D

∆m
(µD − µS

D

m2
B −m2

D

m2
D

)
(

1
∆m−E1

+
1

∆m− E2

)
+

µS
B

E1E2
(µB − µS

B

m2
B −m2

D

m2
B

)
]

D =
Cn

2
[

µS
D

∆m
(µD + µS

D

m2
B −m2

D

m2
D

)
(

1
∆m− E1

− 1
∆m−E2

)
(4.60)

− µS
B(E2 −E1)

E1E2(E1 + E2)
(µB + µS

B

m2
B −m2

D

m2
B

) ].
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,B* D,D*1D1BB
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a)

1
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Figure 4.8 Additional diagrams involving particles from the (0+, 1+)
and(1+, 2+) doublets. S stands for either of the S-multiplet
members

The contributions from intermediate T doublet states are

B = 4Cn

[
(µT

D)2

∆m

(
1

∆m−E1
+

1
∆m− E2

)
+

(µT
B)2

E1E2

]
(4.61)

C = −2Cn

[
(µT

D)2

∆m
m2

B −m2
D

m2
D

(
1

∆m−E1
+

1
∆m− E2

)
+

(µT
B)2

E1E2

m2
B −m2

D

m2
B

]

D = −2Cn

[
(µT

D)2

∆m
m2

B −m2
D

m2
D

(
1

∆m−E1
− 1

∆m− E2

)
− (µT

B)2(E2 −E1)
E1E2(E1 +E2)

m2
B −m2

D

m2
B

]
.

Additional contributions from SS and TS multiplet transitions are shown in Figure 4.8. We
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split them into those from diagrams with two members of the S doublet:

B =
Cn

2


µ

S
DµD?

m2
B−m2

D

m2
D

∆m
(

1
∆m−E1

+
1

∆m− E2
)−

µS
BµB?

m2
B−m2

D

m2
B

E1E2

+ µS
Bµ

S
D(

1
E1(∆m−E1)

+
1

E2(∆m−E2)
)
]
,

C = −Cn

2
[
µS

DµD

∆m

(
1

∆m− E1
+

1
∆m−E2

)
+
µS

BµB

E1E2

− (µS
BµD − µS

DµB)(
1

E1(∆m− E1)
+

1
E2(∆m− E2)

)], (4.62)

D = −Cn

2
[
µS

DµD

∆m

(
1

∆m− E1
− 1

∆m−E2

)
− µS

BµB(E2 − E1)
E1E2(E1 +E2)

+ (µS
BµD + µS

DµB)(
1

E1(∆m− E1)
− 1
E2(∆m− E2)

)],

and those from diagrams with one member of the S doublet and one member of the T doublet:

B =
2Cn√

3

[
µT

Dµ
TS
D

∆m
m2

B −m2
D

m2
D

(
1

∆m− E1
+

1
∆m− E2

)
+
µT

Bµ
TS
B

E1E2

m2
B −m2

D

m2
B

]

C =
4Cn√

3

[
µT

Dµ
TS
D

∆m

(
1

∆m−E1
+

1
∆m− E2

)
− µT

Bµ
TS
B

E1E2

]
(4.63)

D =
4Cn√

3

[
µT

Dµ
TS
D

∆m

(
1

∆m−E1
− 1

∆m− E2

)
+
µT

Bµ
TS
B (E2 − E1)

E1E2(E1 +E2)

]
.

In a similar manner we obtain the result forB± → D±γγ with the replacements VcbVudβ
′
W →

VubVcdβW , for B0
s → D0γγ with Vud → Vus and B± → D±

s γγ with VcbVudβ
′
W → VubVcsβW .

Numerically, we find the following ranges for the branching ratios when we vary the mag-

netic moments over the range predicted in the three different models:

1.7× 10−8 <∼ B(B0 → D̄0γγ) <∼ 8.0× 10−8,

0.8× 10−9 <∼ B(B0
s → D̄0γγ) <∼ 4.3× 10−9,

0.6 · 10−11 <∼ B(B± → D±γγ) <∼ 2.0 · 10−11,

1.1 · 10−10 <∼ B(B± → D±
s γγ) ∼ 3.6 · 10−10. (4.64)

Once again these ranges include only variations of the rates with the magnetic moments in the

χLM, VMD and RQM. They do not include other uncertainties such as that in the value of

βW .
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It is instructive to examine some of the features of the differential decay rates, and we do

so for the mode with most favorable CKM angles, B0 → D̄0γγ. We first plot in Figure 4.9 the

normalized differential decay rate as a function of z, the dimensionless photon pair invariant

mass defined in Eq. (4.46). The distribution does not have any thresholds as our calculation

does not include absorptive parts. It is peaked at the higher invariant masses. To evaluate
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Figure 4.9 Normalized differential decay rate for B0 → D̄0γγ as a function
of the photon pair invariant mass.

the limits of the heavy quark expansion, we first show in Figure 4.10 the double differential

decay rate as a function of the energies of the two photons as a density plot. The darker

regions correspond to the most populated ones. The distribution is dominated by the region

in which both photons tend to have similar energy between 1 and 2 GeV. This indicates that

the approximation of constant magnetic moments for the photon emission vertices is slightly

better for the double radiative decay modes than it was for the single radiative decay mode

where Eγ ∼ 2.3 GeV. However, it is clear that a substantial uncertainty remains due to this

approximation.

Finally, we show again the normalized differential decay rate as a function of ω = v · v′
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Figure 4.10 Density plot for the double differential decay rate for
B0 → D̄0γγ as a function of the two photon energies.

in Figure 4.11. Here we see that the distribution is peaked at ω ∼ 1.1, not too far from the

symmetry limit. The heavy quark expansion should be better behaved for these modes than

it is for the single radiative decays where ω ∼ 1.5.

Additional contributions

We turn our attention to potential contributions with a different topology that have not ap-

peared so far. Specifically, we have in mind contributions in which the weak decay B → DX is

followed by the electromagnetic X → γγ vertex. We do not have a systematic way to include

these contributions, but we illustrate them with a few examples. In any case, if there is a

dominant contribution of this form, the photon pair invariant mass would be concentrated

around MX and would be easy to isolate experimentally.

An example of this topology with a cc̄ resonance is B → Dηc → Dγγ. Using the narrow
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Figure 4.11 Normalized differential decay rate for B0 → D̄0γγ as a func-
tion of ω = v · v′.

width approximation, one finds Γ(B → Dγγ) = Γ(B → ηcD) · B(ηc → γγ). Experimentally,

it is known that B(ηc → γγ) = 4.3 · 10−4 [25]. For the weak vertex we can use a recent

perturbative QCD (pQCD) calculation as an illustration, B(B → ηcD) = 1.28 · 10−5 [51]. This

then leads to a contribution B(B0 → D̄0γγ) ∼ 5.5 ·10−9 smaller than our result in Eq. 4.64. A

different estimate B(B → ηcD) = 1.52 · 10−7 [52] would make this contribution even smaller.

Another charmonium resonance with a measured two photon width is the χc0(1P )(0+). Since

the measured branching ratio is B(χc0(1P )(0+) → γγ) = 2.6 ·10−4, similar to that for ηc → γγ

we expect, at most, a similar contribution to the double radiative B decay.

We expect much larger contributions from the light pseudoscalars. This can be illustrated

using the measured rates for B(B0 → D̄0X), X = π0, η, η′, which are all at the 10−4 level, and

the respective two photon widths which range from nearly 100% for the π0 to a few percent

for the η′. These contributions would, however, be easily separated experimentally as the two

photon invariant mass distribution would correspond to sharp peaks at the respective mX .
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4.1.6 Summary and Conclusions

We studied the weak radiative decays of B mesons that occur at tree-level in the Standard

Model. We presented a numerical estimate for the inclusive double radiative decay b→ Xcγγ

based on a free quark decay calculation. Our estimate indicates that this mode is about an

order of magnitude larger than the double radiative penguin mode b→ Xsγγ. As such, it can

be studied at future Super-B factories.

We applied the HQET formalism in connection with the study of the single radiative

exclusive modes of the form B → D?γ. We first reproduced existing results in the literature

for both charged and neutral modes with a leading order calculation including only the (0−, 1−)

doublet as intermediate states. These calculations exhibit a large sensitivity to the value of the

electromagnetic couplings due to a partial cancellation. We then improved these lowest order

results by including certain known terms of order (mb −mc)/mc as well as by introducing the

positive parity doublets S and T as intermediate states. These two ingredients significantly

enhance the predictions as they remove the cancellation that occurs at lowest order. The

framework is a good approximation in the mb ∼ mc limit, but significant corrections are

expected for the physical values of quark masses.

Finally, we extended the calculations to the double radiative decay modes of the form

B → Dγγ. Once again we found significant cancellations between the lowest order terms and

a much larger rate when the positive parity states are included in the calculation. The mode

with the most favorable CKM angles is predicted at the 10−8 level, comparable to predictions

for B → Kγγ.

We expect the HQET formalism to work best in the case when the velocity of the heavy

hadrons remains constant during the transition. Whereas this is kinematically impossible in

the single radiative decay modes, there are regions of phase space in the double radiative decay

modes where this could be tested (in principle at least). We illustrate these regions with plots

of the relevant differential decay rates.
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4.2 The role of D∗∗ in B → DSKπ decay

Our next example deals with the recently reported observation of the decay mode B− →
D+

s K
−π− by the The BaBar collaboration. We will investigate the role played by the D??

excited meson states resonances in this decay mode using HQET. Although these resonances

cannot appear as physical intermediate states in this reaction, their mass is very close to the

D+
s K

− production threshold and may, therefore, play a prominent role. We will pursue this

possibility to extract information on the properties of the strong D??DM couplings. As a

byproduct of this analysis, we will point out that future super-B factories may be able to

measure the D0
0D

?γ radiative coupling through the reaction B− → D?γπ−.

4.2.1 Introduction

The BaBar collaboration has recently reported the observation of the decay mode B− →
D+

s K
−π− with a branching ratio B(B− → D+

s K
−π−) = (2.02± 0.13stat± 0.38syst)× 10−4 and

the D+
s K

− invariant mass spectra shown on Fig.4.12 [56].
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Figure 4.12 The D+
s K

− invariant mass spectra for the B− → D+
s K

−π−.
The histogram shows the non-resonant signal Monte Carlo
events distribution, scaled to the number of events in the data
signal region [56].
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This decay mode is different from the mode B− → D??π− → D+π−π− observed by Belle

[57] in that the D?? resonances are too light to decay into D+
s K

−. Nevertheless their masses

[57],

mD??
0

= (2308± 17± 15± 28) MeV

mD??
2

= (2461.6± 2.1± 0.5± 3.3) MeV, (4.65)

are sufficiently close to the threshold for production of D+
s K

− that we can entertain the pos-

sibility of them playing a significant role in B− → D+
s K

−π− as “quasi-resonant” intermediate

states. This hypothesis is supported by Fig.4.12, as the D+
s K

− spectra is incompartible with

the three-body phase space [56].

We use HQET to investigate this possibility. This study will serve as a probe of the

properties of the D??DM interactions, where M is a member of the light pseudoscalar meson

octet. In particular, we can check the SU(3) relations in strong D?? decay. In addition, an

analysis of a distribution with respect to the angle between the pion and kaon momenta can

further constrain the D0
2 tensor couplings.

Schematically, our procedure consists of splitting the decay B− → D+
s K

−π− into “quasi-

resonant” and non-resonant contributions as depicted in Figure 4.13, where, again, we are

using the effective vertices which we will specify later.

If the D?? resonances were heavy enough to decay into D+
s K

−, we would expect the “quasi-

resonant” contribution to dominate. Furthermore, in the narrow width approximation the

production and decay processes would factorize; and we could study the properties of the strong

decay vertex. We investigate the extent to which the “quasi-resonant” process dominates by

first computing the amplitudes with the aid of HQET. We then normalize the resulting rates

to the two-body B− → D0
0,2π

− weak decay rates and use this as a constraint on the weak

transition. Finally, we study the behavior of the normalized rates for different parametrizations

of the weak vertex, treating the residual dependence on the weak vertex as an indication of

the extent to which the “quasi-resonant” contribution dominates.
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Figure 4.13 Decomposition of the decay mode B− → D+
s K

−π− into con-
tributions that are mediated by a D?? that is near its mass
shell and those that are not.

4.2.2 Formalism

We use the HQET formalism to describe the interactions involving the heavy meson (0−, 1−)

doublet, its excited positive parity partners (0+, 1+) and (1+, 2+), and light pseudo-scalar

mesons [27, 58, 28, 37, 29, 32]. We again follow standard notation to incorporate the light

pseudo-scalars as the Goldstone bosons of spontaneously broken chiral symmetry through the

matrix ξ = exp( iM
fπ

) with a normalization in which the pion decay constant is fπ = 132 MeV

(the matrix M is explicitly given in Eq.2.1).

Similarly, the heavy meson doublets are described by the following fields and their conju-
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gates,

(0−, 1−) → H =
1 + /v

2
( /P ∗ − Pγ5), H̄ = γ0H

†γ0

(0+, 1+) → S =
1 + /v

2
( /P1γ5 − P0), S̄ = γ0S

†γ0

(1+, 2+) → Tµ =
1
2
(1 + /v)

[
Pµν

2 γν −
√

3/2P̃1νγ5(gµν − 1
3
γν(γµ − vµ))

]
,

T̄µ = γ0T
†µγ0. (4.66)

At leading order in the heavy quark and chiral expansions, the strong interaction mediated

decays of the form H,S, T → HM are described by the Lagrangians [27, 58, 28, 38]

LH = g Tr
[
Hγµγ5A

µH̄
]
,

LS = h Tr
[
Sγµγ5A

µH̄
]
+ h.c. ,

LT =
h1

Λχ
Tr

[
Hγλγ5(DµA

λ)T̄µ
]

+
h2

Λχ
Tr

[
Hγλγ5(DλAµ)T̄µ

]
+ h.c., (4.67)

where the axial current is given by

Aµ ≡ i

2
(ξ†∂µξ − ξ∂µξ

†), (4.68)

and the traces are over Dirac and flavor indices. For our numerical estimates we will use the

values |h′| = |(h1 +h2)/Λχ| ≈ 0.5 GeV−1, h = −0.52 and g = 0.4 [59, 32]. We will also replace

fπ → fK ∼ 1.3fπ where appropriate.

It is a simple exercise to write the corresponding weak vertices describing the transitions

from a b-quark meson to a c-quark meson. In this case, however, we do not expect a reliable

description of the weak transition as the mb −mc mass difference is larger than Λχ. We will

use the HQET framework to parametrize the weak transitions in a manner similar to that of

Ref. [60]. We then treat the result as a phenomenological description of the weak transition in

terms of three free parameters that are constrained by the two body decays B− → D0
0,2π

−.

The dominant short distance operator responsible for the decays B− → D+
s K

−π−, B− →
D+π−π− is an SU(3) octet of the form c̄γµ(1− γ5)bd̄γµ(1− γ5)u. We use standard techniques

[61] to introduce this operator into the HQET formalism. We first construct the matrix λ12

with λ12
i
j = δi

1δ
2
j to represent the SU(3) properties of the operator. We then pretend that λ12
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transforms as λ12 → Lλ12L
† under chiral symmetry and construct chiral symmetric operators

that include λ12. The transformation properties under chiral symmetry of the other relevant

objects are HQ → HQU
†, H̄Q → UH̄Q, ξ → LξU †, and ξ† → Uξ†L†. With these ingredients

we construct the effective weak Lagrangian beginning with the Hb → Hc transitions. There is

only one term without derivatives (the sign is chosen to match the notation in [16]),

LW = β′WTr
[
Hbξ

† γµ(1− γ5) λ12 ξH̄
c̄ γµ(1− γ5)

]
. (4.69)

There is also a unique term with one derivative,

LW1 = ikH Tr
[
HbjH̄

c̄jγµ(1− γ5)
]
Tr

[
ξ†λ12∂

µξ
]
. (4.70)

Even though the operator Eq. 4.70 is formally suppressed by one order in the momentum

expansion with respect to the one in Eq. 4.69, we will keep both of them for several reasons.

First, because in a matching to the underlying quark-operator Eq. 4.69 is suppressed by 1/Nc

with respect to Eq. 4.70; second, because we do not really expect the momentum expansion to

be relevant in b → c transitions; and third, because Ref. [60] finds that an interplay of these

two operators is necessary to describe the B− → D+π−π− decay. For all these reasons we will

limit our discussion of the weak transitions to these two operators. In particular we will also

ignore small contributions proportional to Vub, as well as perturbative QCD corrections to the

Wilson coefficient of the quark operator.

For weak transitions of the form Hb → Sc, we consider two weak operators analogous to

Eqs. 4.69 and 4.70 obtained by replacing Hc → Sc. In principle these operators have different

coefficients than those in Eqs. 4.69 and 4.70. However, we estimate all the weak coefficients in

naive factorization where the constant β′W for Hb → Sc transitions is related to the constant

β′W for Hb → Hc transitions by the factor (fD0

√
mD0)/(fD

√
mD). For our estimates we take

this factor to be one. Several models to estimate the quantities in this ratio are discussed in

Ref. [60], resulting in the ratio differing from one by factors of at most two. In all the models

considered in Ref. [60], the two constants have the same sign.

For weak transitions involving a T field, Eq. 4.69 will not have an analogue in this approx-

imation (the tensor decay constant vanishes [32, 62, 63, 64]). The single weak operator in this
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case reads

LT = ikTTr
[
vαT̄

α
v′γµ(1− γ5)Hv] Tr[ξ†λ12∂

µξ
]
. (4.71)

The kH , kS and kT coefficients are related in factorization, with their relative signs being given

by those of the Isgur-Wise functions [40] ξ(ω), τ1/2,3/2(ω). The factorization results that we

use are

β′W =
GFVcbVud√

2
1
12
fBfD

√
mBmDB1

kH = −GFVcbVud√
2

f2
πξ(ω)B2

kS = 2
GFVcbVud√

2
f2

πτ1/2(ω)B2

kT =
GFVcbVud√

2

√
3τ3/2(ω)f2

πB3. (4.72)

In order to treat these weak vertices as a phenomenological parametrization, we have introduced

“bag factors” B1,2,3 that are equal to 1 in simple factorization but that we will allow to vary.

We will also use recent estimates for the IW functions in the light-front formalism [65], taking

ω ≡ v · v′ ≈ 1.26, an average for the range (1 - 1.53) that occurs in our application. We thus

use ξ(ω) ≈ 0.7, τ1/2(ω) ≈ 0.25, and τ3/2(ω) ≈ 0.35. In addition, we take fB = 191 MeV and

fD = 225 MeV. The relative sign of the constants βW and kS is important to reproduce the two

body decay B− → D0
0π
−, as discussed in Ref. [60]. Here we use the sign implied in Eq. 4.72

which reproduces the measured B− → D0
0π
− rate with bag parameters close to one.

Notice that this framework will describe all the non-resonant diagrams in terms of the

same coupling constants as the “quasi-resonant” diagrams. Our strategy is thus to fix as many

constants as possible from the on-shell two-body decay modes B− → D??π− and then use

these results, supplemented with the HQET description of the strong D?? couplings, to predict

the three-body decay mode.

4.2.3 B− → D+
s K−π− and the D?? resonances

We are now in a position to investigate the contribution of the D?? resonances to the B− →
D+

s K
−π− process. Our strategy will be to compute the amplitude with the ingredients given

in the previous section, schematically splitting it into the two terms pictured in Figure 4.13. In
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the limit in which the quasi-resonant states dominate, it is possible to make reliable predictions

that depend only on the theory of the strong D??DM transitions because the weak production

vertex and the strong decay vertex factorize, as they do in the narrow width approximation

for a resonant channel. The weak transition can then be eliminated in favor of the measured

B− → D+π−π−. This approach completely fails as the non-resonant contribution becomes

dominant in which case the two decay modes are not directly related. The formalism in the

previous section will serve to interpolate between these two extremes, allowing us to explore

the sensitivity of our result to the weak couplings.

We begin by computing the B− → D+
s K

−π− amplitude from the diagrams shown in

Fig.4.14. To construct these diagrams, we note that weak transitions involving the T multiplet

arise only from Eq. 4.71, so the corresponding vertices always involve a π−.
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Figure 4.14 Diagrams contributing to B− → D+
s K

−π−. For diagrams of
the form (a), the strange B intermediate states go with a pion
emission from the weak vertex (denoted by an x).

The calculation proceeds as follows. We work in the B rest frame in which the heavy
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meson has four velocity vµ = (1, 0, 0, 0). After a weak light meson emission, we solve for

the velocity of the charmed heavy meson, v′ for D0
0,2, D

0∗, using exact kinematics so that the

residual momentum in the intermediate heavy meson propagator corresponds exactly to its

off-shellness. For a weak vertex with pion emission, we use

v′ = (
mB − Eπ

MD+
s K−

,− ~pπ

MD+
s K−

), ω = v · v′ =
m2

B +M2
D+

s K−

2mBMD+
s K−

; (4.73)

whereas for a weak vertex with a kaon emission, we use

v′′ = (
mB − EK

MD+
s π−

,− ~pK

MD+
s π−

). (4.74)

To determine phenomenological values for our “bag factors,” we use the experimental results

[57],

B(B− → D0
0π
−)B(D0

0 → D+π−) = (6.1± 0.6± 0.9± 1.6)× 10−4

B(B− → D0
2π
−)B(D0

2 → D+π−) = (3.4± 0.3± 0.6± 0.4)× 10−4, (4.75)

supplemented with the theoretical input for the strong D?? decays as in [60, 66]. For the

central values then,

B(B− → D0
0π
−) = 9.1× 10−4

B(B− → D0
2π
−) = 8.7× 10−4. (4.76)

The weak decay rates B− → D0
0π
− and B− → D0

2π
− can be calculated in the above framework

with the results being

Γ(B− → D0
0π
−) =

ED0
0
Eπ

8πmBfπ

[
4β′Wω0

(
1 + h

mB +mD0
0

2mD0
0

)
−
kSEπ(mD0

0
−mB)

mD0
0

]2

,

Γ(B− → D0
2π
−) =

k2
TED2Eπ(ω2

2 − 1)2(mB +mD2)
2

12π2mBf2
π

, (4.77)

where ω0 =
E

D0
0

m
D0

0

= 1.362 and ω2 =
E

D0
2

m
D0

2

= 1.306. Setting these predictions, Eq. 4.77, equal to

the values in Eq. 4.76, we find B2 as a function of B1. For our numerics we will use the three

pairs B1 = 1, B2 = 1.13; B1 = 1.308, B2 = 1; and B1 = 1.15, B2 = 1.06. This comparison has

also been used to fix the relative sign of kS with respect to β′W . From the second line it also

follows that B3 = 1.3.
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We neglect mass splittings between members of a doublet, H,S, T , but include mass split-

tings between the different doublets. In addition, we set the pion mass to zero. We find it

convenient to evaluate scalar products involving v′ in the D+
s K

− center of mass frame.

All this results in the following amplitudes. The three “quasi-resonant” diagrams (those

that contain a D0
0 meson in Fig.4.14.b,c) give:

MS = − h

fπfK

v′ · qK
MD+

s K− −mD0
0

[
4β′Wω

(
1 + h

mB +MD+
s K−

2MD+
s K−

)
− kSEπ(MD+

s K− −mB)

MD+
s K−

]
,

(4.78)

with Eπ evaluated in the B rest frame. This D0
0 contribution by itself has an MD+

s K− invariant

mass distribution shown as the solid line in Fig.4.15.
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Figure 4.15 MD+
s K− invariant mass distribution for B1 = 1, B2 = 1.13 for:

a) diagrams involving aD0
0 (solid line); b) diagrams involving a

D0
2 (dashed line) and c) all other diagrams: for h′ > 0 (dotted

line) and for h′ < 0 (dash-dotted). Interference terms between
(a), (b), and (c) are not shown.

There is one “quasi-resonant” diagram with an intermediate tensor D??
2 state (Fig.4.14.b).

It yields an amplitude,
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MT =
h′kT

fπfK(MD+
s K− −mD0

2
)

{
qπ · v′

[
(EK − ωqK · v′)2 − 1

3
(1− ω2)(m2

K − (qK · v′)2)
]

− (ω + 1)
[
(qπ · qK − qπ · v′qK · v′)(EK − ωqK · v′)− 1

3
(m2

K − (qK · v′)2)(Eπ − ωqπ · v′)
]}

,

(4.79)

where Eπ,K are evaluated in the B rest frame. By itself the D0
2 contribution has an MD+

s K−

invariant mass distribution shown as the dashed line in Fig.4.15.

Finally, there are the “non-resonant” diagrams that we divide into two groups. The dia-

grams from Fig.4.14.a,d give

Mother = −4β′Wω

fπfK

(
1− hqπ · v′

MD+
s K− −mB

)
+
hkS(vD+

s
− v′′) · qπ v′′ · qK

fπfK(MD+
s π− −mB0

0s
)

(4.80)

+
4β′W g(qπ · qD − qπ · v′qD · v′)
fπfK(MD+

s K− −mB)mD

− gkH(qπ · qK − qπ · v′′qK · v′′)
fπfK(MD+

s π− −mB?
s
)

(
2qD · qπ
mBmD

+
mD

mB
+ 1)

− h′kT

fπfK(MD+
s π− −mB2s)

{
(v′′ · vD+

s
+ 1)

[
(qπ · qK − qπ · v′′qK · v′′)

× (qK · vD+
s
− v′′ · vD+

s
qK · v′′)− 1

3
(m2

K − (qK · v′′)2)(qπ · vD+
s
− v′′ · vD+

s
qπ · v′′)

]

− qπ · v′′
[
(qK · vD+

s
− v′′ · vD+

s
qK · v′′)2 − 1

3
(1− (v′′ · vD+

s
)2)(m2

K − (qK · v′′)2)
] }

.

Diagrams from Fig.4.14.b,c containing a D0∗ intermediate state give:

MD? = − 4gβ′W
fπfK(MD+

s K− −mD?)

[
1− kH

4β′W
qπ · v′

]
(EK − ωqK · v′)

+
g(qπ · qK − qπ · v′qK · v′)
fπfK(MD+

s K− −mD?)

[
−kH(ω + 1) +

4gβ′W
MD+

s K− −mB∗

]
. (4.81)

To obtain the partial contribution from the “non-resonant” diagrams to the MD+
s K− invariant

mass distribution, it is necessary to know the sign of h′. Since this sign is not known, we

present results for both signs shown as dotted and dash-dotted lines in Figure 4.15.

We now show the full result obtained by adding all contributions. This is not equal to the

sum of the three curves in Figure 4.15 because that decomposition ignored the interference
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between different terms. With h′ < 0, we obtain a total B(B− → D+
s K

−π−) = 1.63 × 10−4;

and with h′ > 0, we find B(B− → D+
s K

−π−) = 1.24 × 10−4. The corresponding MD+
s K−

invariant mass distributions are shown in Fig.4.16 for three values of B1 and B2 as described

earlier.
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Figure 4.16 MD+

s K− invariant mass distributions with B1 = 1, B2 = 1.13
(solid), B1 = 1.15, B2 = 1.06 (dotted), B1 = 1.308, B2 = 1
(dashed) for (a) h′ < 0 and (b) h′ > 0.

4.2.4 Discussion

A.Angular distributions

We now turn our attention to angular distributions and the additional information they

provide. In particular, by studying the angular distribution dΓ(B− → D+
s K

−π−)/d cos θ for

the angle θ between the momenta of the pion and the kaon in the D+
s K

− center of mass

frame, we can extract the amplitudes with different angular momentum. This frame would

correspond to the rest frame of the D?? if it were produced as a physical intermediate state,

so that this is the angular distribution that would normally be used to determine the spin of

the resonance. In B− → D+
s K

−π− there is no resonance in the physical region, but we expect

the different contributions to the rate to exhibit different angular distributions depending on

the virtual intermediate state. This is made evident by rewriting the amplitudes in the D+
s K

−

center of mass frame. We find that the total amplitude in this frame can be written as a

linear superposition of Legendre polynomials in cos θK−π− (the angle between the K− and π−
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momenta in the D+
s K

− center of mass frame),

M(B− → D+
s K

−π−) = M0P0(cos θK−π−) +M1P1(cos θK−π−) +M2P2(cos θK−π−) + · · ·
(4.82)

With sufficient statistics it should be possible to fit the observed angular distribution to this

form and to extract the different Mi components.

In terms of these components, we can write the differential decay rate as3

dΓ(B− → D+
s K

−π−)
dMD+

s K−
=
ED+

s
|~p ?

K ||~pπ|
4(2π)3mB

[
|M0|2 +

1
3
|M1|2 +

1
5
|M2|2 + · · ·

]
, (4.83)

and compare the different contributions, which correspond to theD+
s K

− system having angular

momentum 0, 1 or 2 respectively.

Within our framework, the partial amplitudes are predicted to be,

M0 = − hE?
K

fπfK(MD+
s K− −mD0

0
)

{
4β′Wω

[
1 + h

MD+
s K− +mB

2MD+
s K−

−
E?

π(MD+
s K− −mD0

0
)

E?
K(MD+

s K− −mB)

]

− kSE
?
π

MD+
s K− −mB

mB

}
− 4β′Wω

fπfK
+ a0

M1 =
g|~qπ||~qK |

fπfK(MD+
s K− −mD∗0)

{
4β′W

[
1
mB

− g

MD+
s K− −mB∗

+
MD+

s K− −mD∗0

(MD+
s K− −mB∗)mD

]

+ kH

MD+
s K− +mB

mB

}
+ a1

M2 =
2
3
h′kT |~qπ|2|~qK |2

fπfK

MD+
s K− +mB

(MD+
s K− −mD0

2
)m2

B

+ a2. (4.84)

In Eq. 4.84 we have shown explicitly the contributions to the J = 0, 1, 2 amplitudes from the

diagrams with an intermediate, “quasi-resonant” D0
0, D

?0, and D0
2 respectively. Additional

contributions arise from the non-resonant diagrams; in particular, the diagrams in which B0
0s,

B0∗
s and B0

2s are exchanged with the K− connected to the B vertex and the π− connected

to the D+
s vertex contribute to all values of angular momentum. We denote their projections

into J = 0, 1, 2 by a0, a1, a2 and evaluate these contributions numerically. We show this

decomposition in Fig.4.17 for B1 = 1, B2 = 1.13 as a function of D+
s K

− invariant mass.

In Figure 4.17 we see that the contribution from M0 is peaked at low MD+
s K− and that the

height of the peak depends on the sign of h′ through the interference between quasi-resonant
3The starred energies and momenta are evaluated in the D+

s K− center of mass frame.
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Figure 4.17 Contributions to the decay rate from different spin amplitudes
for B1 = 1, B2 = 1.13 with: (a) h′ < 0, (b) h′ > 0. In
both cases the solid line corresponds to M0, the dotted line to
M1 and the dashed line to M2. Higher spin contributions are
negligible and are not shown.

Table 4.1 Partial branching ratios for spin amplitudes.

h′ > 0 h′ < 0
B0(B− → D+

s K
−π−) 4.4× 10−5 5.3× 10−5

B1(B− → D+
s K

−π−) 3.6× 10−5 5.6× 10−6

B2(B− → D+
s K

−π−) 4.3× 10−5 1.0× 10−4

BJ>2(B− → D+
s K

−π−) 4.2× 10−8 5.4× 10−7

and non-resonant diagrams. It is larger for h′ < 0 where the non-resonant background is

smaller in the low MD+
s K− region as seen in Figure 4.15. This peak reflects the presence of

the D0
0 resonance just outside the physical region, and its height is sensitive to the mass of the

D0
0 as illustrated in Figure 4.18. In that figure we show the result with the central value of

Eq. 4.65 as a solid line, and the one standard deviation values (adding all errors in quadrature)

of mD0
0

as dashed and dotted lines.

Figure 4.17 also shows a large difference between the size of theM1 contribution for different

signs of h′, and this may be exploited to determine this sign. Similarly, the contribution from

M2 is significantly larger when h′ < 0 providing another handle on determining this sign. To

further quantify the different contributions, we show the respective partial branching ratios in

Table 5.1.
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Figure 4.18 Scalar component of Γ(B− → D+
s K

−π−) for three different
values of mD0

0
corresponding to the central value in Eq. 4.65

(solid), and to the one standard deviation values (dashed, dot-
ted), with h′ > 0.

B.Dependence on the parametrization of the weak vertex

In Figure 4.16 we have already presented results for three different pairs of values for B1

and B2. These correspond to different parametrizations for the weak vertex that reproduce the

central value of the two body decay rates. We see from that figure that the variations are not

large in the low MD+
s K− region. We now explore in more detail the dependence of the total rate

on these parameters. To this end, we first normalize the total decay rate Γ(B− → D+
s K

−π−)

to the rate Γ(B− → D0
0π
−) calculated in Eq. 4.77. We then plot this ratio as a function of

the “bag factor” B1 while adjusting B2 in such a way that B− → D0
0π
− remains fixed to its

experimental (central) value in Figure 4.19a.

We see that the ratio changes by about a factor of two when we span the value of B1 from

1/2 to 2 (recall B1 = 1 in naive factorization). This variation indicates that our prediction

for the full rate B(B− → D+
s K

−π−) is not robust over the full kinematic range and that the

process is not dominated by the D??
0 quasi-resonance. In the figure we also show the 1-σ band

from the BaBar measurement [56], and we see that our prediction for the total rate is in good

agreement.
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Figure 4.19 Normalized Γ(B− → D+
s K

−π−) as a function of B1 factor
for: a) full kinematic range; and b) scalar contribution in the
MD+

s K− ≤ mD0
0

+ 2ΓD0
0
∼ 2.8 GeV range. The horizontal

lines in (a) show the 1-σ range from the BaBar measurement
[56]. In both cases the solid line corresponds to h′ > 0 and the
dashed line to h′ < 0.

Following our general discussion, we might expect to do better if we limit the range for

MD+
s K− to values closer to the physical mD0

0
mass, since this would enhance the relative

contribution of the “quasi-resonance”. For illustration, we repeat the above exercise including

only the partial branching ratio B0(B− → D+
s K

−π−) from the region MD+
s K− ≤ mD0

0
+

2ΓD0
0
∼ 2.8 GeV. We also limit the comparison to the scalar contribution to the rate, as

this is the one that could be dominated by the D0
0 quasi-resonance. We show these results in

Fig.4.19b. We notice a slight improvement in the form of reduced dependence of our prediction

on the parametrization of the weak vertex. However, there is still a large dependence on the

parametrization of the weak vertex as the ratio varies by a factor of about two in the range

0.5 < B1 < 2. This is not surprising as Figure 4.17 already showed that there is a large

non-resonant contribution present.

4.2.5 B− → D0
0,2π

− → D0∗γπ−

We end with a brief discussion of the radiative decays D0
0,2 → D∗

0γ. Our framework

should be more reliable for the decay chains B− → D0
0,2π

− → D∗
0γπ

− because in this case

the resonance is in the physical region and should dominate the amplitude. In this case

the approximation in which the weak production of D0
0,2 and the subsequent radiative decay
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factorize should be more reliable.

The production rates B− → D0
0,2π

− were already obtained in Eq.4.76. The radiative decays

of the D0
0,2 can be readily extracted from the vertices in Ref. [16] (see Eqs. 13,14,15,A4 in that

reference). We find

Γ(D0
0 → D0∗γ) = (eµS

D)2 · E
3
γ

mD0
0

· ED∗0

4π
≈ 0.09MeV,

Γ(D0
2 → D0∗γ) = (eµT

D)2 · E
3
γ

mD0
2

· ED∗0

π
≈ 0.20MeV. (4.85)

Numerically, we used the results µS
D = 2ecτ1/2(1)

mc
+ eu

Λ′
1/2

≈ 0.75GeV −1 and µT
D = ecτ3/2(1)

mc
+

eu
Λ′

3/2
≈ 0.33GeV −1 with input parameters discussed in Ref. [16].

Using ΓD0
0

= 276 MeV and ΓD0
2

= 45 MeV, we find B(D0
0 → D0∗γ) = 3.3 × 10−4 and

B(D0
2 → D0∗γ) = 4.5 × 10−3. With sufficient statistics to observe these modes, it will then

be possible to extract the coupling constants µS
D and µT

D. We present the result for D0
2 for

completeness, as it has already appeared in the literature [39].

4.2.6 Conclusions

We have analyzed the mode B− → D+
s K

−π− using HQET to parametrize “quasi-resonant”

and non-resonant contributions. With the aid of angular analysis, it should be possible to

extract the contributions of virtual intermediate states with spin 0, 1, or 2 leading to the

D+
s K

− final state.

The spin zero partial rate receives a large but not dominant contribution from the D0
0

intermediate state. This means that it is not possible to test the D0
0D

+
s K

− vertex in a model

independent way. However, we have seen that the HQET description gives a picture for this

decay that can be tested qualitatively at least. The shape of the MD+
s K− distribution for this

partial rate depends both on the precise value of the D0
0 mass, as well as on the relative size

of the non-resonant contributions.

The spin one contribution can be almost as large as the spin zero contribution if h′ > 0.

This is quite surprising as this is dominated by an intermediate D?0 with a mass significantly

below threshold. This reinforces the conclusion that the decay is not dominated by the D??
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resonances, although they play an important role. A determination of this contribution should

provide strong evidence for the sign of h′.

The contribution of spin two is also very large and strongly dependent on the sign of h′

indicating that it is not saturated by the “quasi-resonant” D0
2 state. Contributions of spins

higher than two are negligible.

Given the large mb −mc mass difference, we do not expect the momentum expansion to

describe this weak decay quantitatively. In particular, the pion and kaon in the non-resonant

diagrams are not soft for most of the kinematically allowed range. However, we have provided

a mixed framework that uses HQET to describe strong transitions and a naive factorization

to describe weak transitions in terms of a few phenomenological parameters. This framework

also provides a model for the non-resonant terms and produces a qualitative description for

this decay mode that can be used to compare with experiment and to extract information on

the signs and SU(3) properties of the strong couplings.
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CHAPTER 5. Search for gravitons in RS model

In our final application of the EFTs we will work beyond the SM. In the search for the

new physics many models have been proposed trying to address theoretical problems present

in the SM. Although every model predicts certain collider signatures these signatures may

overlap with each other depending on the detailed workings and the parameter values within

them. Thus, it is very important to search for the most unique signals in our quest for the

next unifying theory. In this way, discovery of spin-2 gravitons at the LHC would be signal for

the theory predicting TeV gravity scale. One of the most popular scenarios for the TeV scale

gravity is the Randall-Sundrum model and in this chapter we will see how the RS gravitons

may reveal themself at the LHC.

5.1 Introduction

As we discussed in Chapter 2, the original Randall-Sundrum [67] model with a warped

extra dimension along with extensions provides the possibility for a simultaneous solution

to Planck-weak hierarchy problem as well as the flavor puzzle in the Standard Model. The

most distinctive feature of this scenario is the existence of Kaluza-Klein (KK) gravitons whose

masses and couplings to the SM fields are set by the TeV scale. In realistic versions of this

framework, the flavor structure of the SM is addressed through localization of fermions in the

warped bulk compared to the models where all SM fieds were localized on the TeV brane. In

this framework, the largest coupling of the gravitons to the observed particles is to the top

quark and unphysical Higgses (W±
L and ZL) with the KK graviton (G) masses predicted to

be >∼ 4 TeV. We now study the resonant production of the gravitons and their subsequent

decay to WLWL pair. We will find that, with 300 fb−1 integrated luminosity of data, the
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semileptonic G → W (→ lνl)W (→ 2jets) mode offers a good opportunity to search for the

RS KK graviton mode with mass lighter than ∼ 3-3.5 TeV at the CERN LHC. Efficient WW

mass reconstruction in the semileptonic mode combined with an analysis of dilepton mass

distribution in the purely leptonic channel, pp → W (→ lνl)W (→ l′νl′) may help to observe

KK Z ′ and KK graviton separately. Suitably defined average energy of the charged lepton in

the semileptonic mode may be used to distinguish decays from longitudinal versus transverse

W-bosons.

The promising channels to observe RS gravitons are those where produced gravitons are

decaying to fields localized near the TeV brane. Search for the KK gravitons using its decays to

the top quarks was performed in [68]. The 4-lepton signal through the decay to a pair of ZL’s

was studied in [69]. Reconstruction possibility of the Z’s via their leptonic decays makes this a

uniquely clean mode. Both analyses concluded that with ∼ 100-300fb−1 of data provided by

LHC the gravitons of masses up to ∼2 TeV can be probed.

In this chapter we will study purely leptonic G → WLWL → lν̄ll
′νl′ and semileptonic

modes, i.e. (W → lν)(W → jets) from the decay of WL pair [70]. Our analysis will suggests

that we may be able to observe RS KK graviton mode with mass up to about ∼ 3-3.5 TeV

as well as to separate its contribution from that of the RS KK Z ′; thus, if they exist at all,

providing strong evidence in favor of the RS framework [71]. Our strategy relies on the fact

that in the class of models we are working mG
1 ≈ 1.5mZ′

1 for the lightest KK masses of the

graviton and the gauge fields [72]. Thus, since Z ′ has only 2/3 of the graviton mass and since

cross-section falls quickly as we go up in mass of the resonance being produced, we may expect

that the gauge KK modes would be more accessible [73, 74, 75]. Then, by making use of

the above relationship between masses, we may look for the presence of the graviton in some

other mode(s) where they could be well separated. In particular, we will show that using the

purely leptonic mode to observe KK Z ′ (where graviton contribution will be hard to see due

to its higher mass), we then may use the semileptonic mode with the knowledge of Z ′ mass to

pin down the graviton contribution. However, the last channel is challenging as it requires to

distinguish two collimated jets from highly boosted W boson from one QCD jet. Therefore, in
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addition to WW irreducible SM background, we include W + 1 jet background in our study

for this mode.

The reason for the enhancement of the graviton signal in the WW channel compared to the

ZZ mode lies in the fact that the branching ratio (BR) to a WL pair is twice as big as the BR

to a ZL pair. In addition to that, Br(W → hadrons) ≈ 2/3 and Br(W → lν) ≈ 1/9 compared

to Br (Z → l+l−) ≈ 3.3% , where l indicates each type of the lepton, not sum over them [76].

Also, it is worth mentioning that a RS graviton decays to top quark pairs about ∼ 70% of the

time compared to ∼ 15% for a WL pair. The important point for the tt̄ final state, however, is

that KK gluon couples to the top pair as well and surpasses graviton production [73, 74]. Also,

the reconstruction of such energetic tops far away from the tt̄ production threshold might be

an additional challenge.

The main experimental problem in using the WW final state with subsequent leptonic

decays is the presence of one or two neutrinos. In particular, we most probably will not be

able to reconstruct WW mass in the leptonic case; although this channel will be a useful

discovery channel to reveal the existence of KK gauge bosons. Then, we will show that the

semileptonic mode should be able to see both signals as they will be well separated due to the

significant mass differences mentioned before.

To summarize, our channels allow us to probe first RS KK graviton mode with mass below

3-3.5 TeV and, also, to distinguish it from the contributions of RS spin-1 KK gauge bosons.

Certainly, the full establishment of the existence of spin-2 graviton from the RS model will need

combined analysis of modes discussed later in this chapter with other decay modes considered

before in the literature [68, 69]. The role of the ZLZL mode is extremely important as this

mode is forbidden for Z ′’s to decay into. Note, though, that the “gold-plated” nature of this

special mode, with each Z decaying to e+e− and µ+µ−, comes at the price of needing a higher

luminosity [71]. Thus, with the strategy discussed above and better statistics in (semi)leptonic

modes of W’s, we may optimistically have evidence for the RS gravitons.
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5.2 Model

We closely follow the model discussed in [69] and briefly review it here. As discussed

above, we allow SM fields to propagate in the extra dimension and distribute fermions along it

to generate observed mass spectrum without introducing additional hierarchies. SM particles

are identified with zero-modes of 5D fields, and the profile of the fermion in the extra dimension

depends on its 5D mass. As was shown before [77, 78, 79], all fermion 5D masses are O(1)

parameters with the biggest one, among the SM quarks, being that of the top quark. To specify

the model even further, the top quark is localized near the TeV brane; and the right-handed

isospin is gauged [80]. We consider tR being on the TeV brane (see discussion of the other

possibilities in [69], for example). At the end of the day, we are left with three parameters

to be measured experimentally. We define them as c ≡ k/MPl the ratio of the Anti de Sitter

(AdS) curvature k to the Planck mass; µ ≡ ke−πkR which monitors gauge KK masses with the

first few being (2.45, 5.57, 8.7...)×µ; and finally, parameter ν ≡ m/k, which defines where the

lightest fermion with bulk mass m is localized. For the tR on the TeV brane, νtR ≈ 0.5; and

parameters c and µ will remain free in our analysis.

5.2.1 Low energy constraints on model parameters

As experimental measurements have placed restrictions on the RS model parameters values,

different specific models have been proposed in the literature in order to soften them. The

RS version with small KK masses, down to 1 TeV, which are consistent with all current

experimental constraints on the fermion structure was constructed in [81]. An interesting

variant of the warped extra dimension based on 5D minimal flavor violation was presented in

[82]. The model allows to eliminate current RS flavor and CP problem with a KK scale as low

as 2 TeV.

Now, we review constraints placed on the warped extra-dimension model with custodial

isospin symmetry [80], which we adopt here. Implications of the observed BB mixings were

discussed in [83]. In the model of [80], B-mixing is mainly accommodated by tree level exchange

of KK gluons. In [83], the CP-violating effects on the Bd system were shown to provide
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M
(1)
gluon >3.7 TeV constraint with 1σ uncertainty. Phenomenological constraints from lepton-

flavor-violations were discussed in [84]. After extensive analysis of B → K∗l+l′− modes,

only the B → K∗ee decay was found to have sizable new physics effects. With negligible

SM contributions, current experimental bounds were translated into the lepton bulk mass

parameters. For the first KK gauge boson mass of 2-4 TeV, 10-20% deviation from the SM

results were found which can be probed in the near future. Other B-factory signals were studied

in [85]. Finally, regions of parameter space that successfully reproduce the fit to electroweak

precision observables with KK excitations as light as ∼ 3 TeV were studied in [86].

While current theoretical constructions suggest that lightest KK gauge bosons have masses

>∼ 3 TeV and therefore mG
>∼ 4 TeV, we believe that these models are still being developed;

and therefore, for now, it is best to search for experimental signatures with the widest latitude.

This point, in particular, was also emphasized in [87].

5.2.2 Couplings of KK gravitons

After these brief remarks we can write the couplings relevant to our discussions here.

Since the graviton couples to the energy-momentum tensor, all couplings have generic form

C00nhµνT
µν (“00n” signifies that we are considering only coupling of the nth KK graviton to the

SM fields which are zero-modes of the 5D fields). Magnitude of the coupling constants depend

on the overlap of the particle wavefunctions in the extra-dimension (effects of the running

gravitational coupling due to existence of non-Gaussian fixed point were analyzed in [88, 89]).

We present coefficients C00n in Table 5.1 along with partial decay widths for dominant decay

channels for the lightest KK (n=1) graviton which will be the focus of our analysis; see also

[69]. WLWL, ZLZL and hh decay channels illustrate equivalence theorem once again (which is

valid up to (MW,Z/mG)2 where mG is the graviton mass).

The suppression in coupling of the graviton to the gluons follows because gauge boson has

a flat wavefunction and thus its couplings to the graviton is suppressed by the volume of the

bulk πkR ≈ 35. For the same reason, decay of gravitons to transverse W and Z bosons as well

as photons are suppressed by this volume factor. The masses of the KK gravitons are given
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Table 5.1 Couplings of the nth level KK graviton to the SM fields. tR
assumed to be localized on the TeV brane. Parameter mG

1 is the
mass of n=1 graviton and xG

1 = 3.83 is the first root of the first
order Bessel function. Nc = 3 is number of QCD colors.

SM fields C00n Partial decay widths for n=1 graviton
gg(gluons) c

2πkRµ negligible
WLWL 2c/µ (cxG

1 )2mG
1 /480π

ZLZL 2c/µ (cxG
1 )2mG

1 /960π
tRt̄R c/µ Nc(cxG

1 )2mG
1 /320π

h h 2c/µ (cxG
1 )2mG

1 /960π

by mn = xnµ where xn is n’th zero of the first order Bessel function. Notice that we do not

need qq̄G coupling as it is Yukawa-suppressed and graviton production is dominated by gluon

fusion.

In this model the total width of the graviton is found to be ΓG = 13(cxG
1 )2mG

1
960π which is split

between 4 dominant decay modes to WLWL, ZLZL, tRt̄R and hh in the ratio 2:1:9:1. Taking

c ∼ 1, the total graviton width is ∼ 6% of its mass and is very close to the corresponding

width for RS KK Z′ in the same model [75].

5.3 Production and decay of KK gravitons

We are now in position to calculate the matrix element for the gg→ Gn → WLWL. The

details can be found elsewhere [90, 69]:

M(gagb →WLWL) =
c2

πkRµ2
· 2A+−00δab

s− (mG
n )2 + iΓG

nm
G
n

(5.1)

where, A+−00 = A−+00 = 1
2(β̂2 − 2)ŝ2sin2θ̂ is the only independent helicity amplitude for the

decay to longitudinal W bosons. W boson velocity β̂2 = 1 − 4M2
W /ŝ and all hatted variables

refer to the parton center of mass frame. We see that the amplitude has sin2θ̂ behavior

characteristic of the WL pair in the final state. This implies that our signal events will be

concentrated in the central rapidity region, and we will exploit this fact later to separate our

signal from SM background.
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This amplitude gives the parton level cross-section [69]:

dσ̂(gg →WLWL)

dcosθ̂
=
|M |2β̂
512πŝ

, (5.2)

and the proton level cross-section is obtained by convolving the parton level cross-section with

gluon PDF’s:

σ(pp→WW ) =
∫
dx1dx2fg(x1, Q

2)fg(x2, Q
2)σ̂(x1x2s). (5.3)

Note that the total cross-sections for the EW boson final states are related by σ(pp→ G→
WLWL) = 2 × σ(pp → G → ZLZL). Numerical results for our 2→2 process can be found in

[69] (where the ZL final state was used) which agrees with our current calculation.

5.4 Battling SM background

We now discuss the relevant decay modes of the W bosons.

If both W’s decay hadronically, we face huge QCD background and, therefore, this mode

is unlikely to be useful. Thus, in the rest of this chapter, we concentrate on pure leptonic and

semileptonic decay modes of the W pair and consider the former first.

5.4.1 Pure leptonic mode: e±µ∓ final state

Due to the significant boost of the W’s, neutrino’s pT in this mode will be almost back to

back, and, therefore, missing energy information will be lost. We require the W’s to decay to

different lepton flavors since in SM there is no basic 2 → 2 partonic process giving two different

high transverse momentum lepton flavors in the final state. After this, leading irreducible SM

backgrounds for our l+l′− /ET final state are W+W− → l+l′− /ET and Z/γ∗ → τ+τ− → l+l′− /ET

(where l 6= l′).

With two neutrino’s in the final state, we might not reconstruct the resonant W boson

mass. However, we will show that even looking only at the leptons (at this point by leptons

we mean primarily e and µ; see, however, further discussion on τ ’s later) may provide enough
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data to discover the RS graviton, given a suitable set of cuts. We will show that such cuts give

S/B >∼ 1 for mass of the first KK graviton mode mG
1
<∼ 3 TeV.

5.4.2 Semileptonic mode

For semileptonic channel we have highly collimated decay products for both W’s. For the

hadronic side, it implies that 2 jets from the W decay are likely to appear as one “fat” W-jet.

This leads us to consider W + 1 jet which will be the leading background for this decay mode

compared to irreducible SM WW production and W + 2 jets (which will be suppressed due

to the 3 body phase-space). On the leptonic side, due to small angular separation between

missing neutrino and charged lepton, we may estimate longitudinal (L) component of the ν ′s

momentum as

pL
ν ≈

/ET p
L
l

pTl

, (5.4)

which means that lepton’s and neutrino’s pseudorapidities are the same; and they are separated

only in the transverse plane. Beyond this approximation, accuracy of the reconstructed leptonic

W mass M2
W = (pl + pν)2 will depend on the accuracy of the /ET measurement which, in turn,

depends on the ability to resolve substructure in the “fat” hadronic W-jet. Now, WW mass

reconstruction M2
WW = (plν + pjj)2 will depend on how effectively hadronic W side can be

reconstructed. We will elaborate on this later.

5.5 Acceptance cuts and results

We now present our results as well as specify selection criteria for signal events. We

estimated SM background with the aid of the COMPHEP package [23]. For our graviton

signal, we used Mathematica program and partially cross-checked them with COMPHEP. For

an additional check, we confirmed results of Ref.[69] for σ(pp→ G→ ZLZL), as was mentioned

before. The CTEQ5M PDF’s were used throughout (in their Mathematica distribution package

[91] as well as intrinsically called by COMPHEP).
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5.5.1 Pure leptonic mode: e±µ∓ final state

As a starting point, before imposing any cuts, we reproduced results of Ref.[92] which finds

σ(pp→ e+νeµ
−ν̄µ) ≈ 610 fb and is dominated by WW production. We cross-checked our WW

production results with Ref.[75] as well.

We impose basic acceptance cuts as

|ηl| < 3, pTl
> 50GeV, /ET > 50GeV, (5.5)

where ηl is the pseudorapidity of the charged lepton.

In Fig.5.1a,b we show the total cross-section for pp → lνll
′ν̄l′ (where l 6= l′) and expected

number of events per 300 fb−1 as a function of mG for our signal. The corresponding SM

background is ≈ 24 fb and is dominated by the WW production with contribution from Z/γ∗ →
τ+τ− → l+l′− /ET process being about an order of magnitude smaller, which also is in good

agreement with corresponding results of Ref.[75].
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Figure 5.1 (a) Total signal cross-section for pp → lνl′ν̄l′ , and (b) corre-
sponding number of events for 300 fb−1. Basic cuts from Eq.5.5
are applied and c=1. Corresponding SM background is ≈ 24 fb
and is independent of the graviton mass.

We see that as the SM background dominates, we need to look for additional cuts to

improve signal observability. Invariant dilepton mass may provide additional information to

enhance our S/B ratio. In Fig.5.2 we show dilepton invariant mass distributions for signal and

corresponding background where mG =2 TeV and 3 TeV values were chosen.
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Figure 5.2 (Color online) Dilepton invariant mass distributions for graviton
masses of 2 TeV (dashed red) and 3 TeV (solid blue). Dotted
curve corresponds to the SM background.

We observe that the SM background distributions tend to peak at low dilepton invariant

mass while signal events concentrate in the middle mass region dictated by the decay of the

very massive object. This allows us to define cuts on dilepton mass. For the masses shown on

Fig.5.2, for example, we have chosen them as

mG = 2 TeV : mll′ > 1 TeV

mG = 3 TeV : mll′ > 1.5 TeV (5.6)

to improve the statistical significance of the signal further. Table.5.2 shows the statistical

results after all the cuts defined above were applied. We notice that the SM background was

reduced significantly while the signal was roughly reduced by half. Throughout the chapter

Poisson statistics CL to observe at least one signal event will be appropriate description if the

number of background events < 10. When needed, these CL are given in brackets next to the

corresponding statistical significances in Gaussian statistics.

In the model we are working, there will also be a contribution to the signal from the KK

Z ′. If we use the mass ratio of this model mG
1 ≈ 1.5mZ′

1 , we observe, for example, that a 3 TeV

graviton should appear along with a 2 TeV Z′. Interestingly, we find that the total production
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Table 5.2 Purely leptonic mode cross-sections [in fb] and S/B ratios after
basic and dilepton mass cuts in Eq.5.5 and Eq.5.6 were imposed.
Poisson statistics CL is appropriate description if the number of
background events < 10.

2 TeV Basic cuts Dilepton mass cut # of events/300 fb−1 S/B S/
√
B

Signal 0.22 0.1 30 2.5 8.7
Background 24 0.04 12

3 TeV Basic cuts Dilepton mass cut # of events/300 fb−1 S/B S/
√
B (CL)

Signal 0.0087 0.004 1.2 0.6 0.8 (64% )
Background 24 0.007 2.1

cross-section for 2 TeV graviton and Z ′ are very similar in magnitude (it is about 16 fb for

Z ′ [75] compared to 10 fb for graviton) and shape. Thus, 2 TeV graviton contribution in

Fig.5.2 may be numerically viewed as the one coming from Z′. After this observation, Fig.5.2

represents signal cross-section for 3 TeV graviton along with SM background and 2 TeV RS

Z ′. Similarly for 2 TeV graviton, 1.33 TeV Z ′ needs to be considered and so on. As two

contributions are mixed up in this channel, it might be easier to “reserve” this channel for Z ′,

since corresponding graviton contribution will be negligible. Stated differently, if enhancement

in dilepton mass due to these states will be observed experimentally, most probably Z′ will

have a dominant effect. Then, Fig.5.2 may be used to define a proper cut on dilepton mass

variable to remove this Z ′ background (for example, for 3 TeV graviton mll > 2 TeV will

work). Of course it might happen, that the lightest KK Z ′ and graviton masses are actually in

different ratio and we need other measurement(s) to interpret enhancement in dilepton mass.

In the next section we will show that semileptonic mode may provide this additional handle.

5.5.2 Semileptonic decay

As discussed above, leptonic W mass for this mode can be reconstructed; and W + 1 jet is

a leading background. As in the case of the leptonic mode, we define basic selection cuts as

|ηl,j | < 1, pTl
> 50GeV, /ET > 50GeV, pTj > 100GeV, (5.7)
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and in Fig.5.3 we show the expected number of signal and background events, both integrated

over one half of the graviton width. Assuming again that mG ≈ 1.5mZ′ , the Z′ contribution is

negligible in this WW invariant mass window because Z′ and graviton total widths are ∼ 5%

of their mass, while, the mass difference between Z′ and graviton is ∼ 50% of Z′ mass; this

also assumes that the Z ′ mass is established by the pure leptonic mode.
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Figure 5.3 The total signal (solid) and SM background W + 1 jet (dot-
ted) cross-section (integrated in mG±ΓG/2 window) after cuts
specified in Eq.5.7 were applied.

We see that the background is severe; and, therefore, its reduction is a serious and chal-

lenging issue. One quantity that may help to resolve the problem is a jet-mass, which is the

combined mass of the vector sum of 4-momenta of all hadrons making up the jet. For the sig-

nal, we expect jet-mass to peak at MW . Along these lines, as it was shown in Ref.[75], the cut

on the jet-mass 75 < Mjet < 125 GeV gives a substantial rejection of the background events

(≈ 70% ) while accepting most of the signal. Also, EM calorimeter, due to its finer segmen-

tation, may allow to improve jet-mass resolution, since signal W events are expected to have

two separated EM cores. For further discussion on this issue, we refer to Ref.[75, 93, 94, 95].

In an attempt to specify the selection cuts further, in Fig.5.4 (note that the scale is linear)

we show the lepton energy distribution for graviton masses mG = 2 TeV and mG=3.5 TeV
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for the same conditions as in Fig.5.3. We observe that by defining appropriate cuts on lepton

energy signal observability can be improved. We define them as

mG = 2 TeV : 0.2 TeV < Elepton < 1 TeV

mG = 3.5 TeV : 0.5 TeV < Elepton < 1.4 TeV (5.8)

and show resulting statistics in Table.5.3. We observe that with 300fb−1, it is possible to reach

1σ effect for 3.5 TeV graviton.
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Figure 5.4 Differential lepton energy distribution for the signal (solid) and
SM W + 1 jet background (dotted) (integrated in mG ± ΓG/2
window) after cuts specified in Eq.5.7 were applied for (a)
mG=2 TeV and (b) mG=3.5 TeV.

With efficient hadronic W mass reconstruction, we have another case when most of the

hadronic QCD background can be separated; and we are left with WW as the only irreducible

background. Fig.5.5 shows results for this situation with c ≡ k/MPl =1 and 2 (see Ref.[69] for

the discussion of the range of c). Notice that for Fig.5.5, we integrated over (mG ± ΓG) WW

invariant mass window compared with (mG ± ΓG/2) window for Fig.5.3.

We see that in the c=1(2) case, the gravitons up to 3.5 TeV (4 TeV) mass might have

enough events to be observed with good statistical significance; see Table 5.3. The dependence

of the SM WW background on the c value follows from the fact that mG ± ΓG integration

region is not constant since ΓG ∼ c2 .

In parallel with leptonic mode, we need to remember that we have a neutral gauge bosons
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Table 5.3 Semileptonic mode signal cross-sections [in fb] and S/B ratios
along with W + 1 jet and WW SM backgrounds. Signal 1 and
the corresponding W + 1 jet background results were obtained
after cuts in Eqs.5.7,5.8 were imposed and mG ± ΓG/2 integra-
tion region was chosen. Signal 2 and corresponding WW back-
ground results were obtained after |ηW | <1 cut and integrated
in mG ± ΓG window.

2 TeV Cuts # of events/300 fb−1 S/B S/
√
B

Signal 1 [c=1] 1.7 510 1.04 23
W + 1 jet background [c=1] 1.64 492

Signal 2 [c=1] 2.0 600 13.3 90
WW background [c=1] 0.15 45

Signal 2 [c=2] 7.8 2340 7.8 135
WW background [c=2] 1.0 300

3.5 TeV Cuts # of events/300 fb−1 S/B S/
√
B (CL)

Signal 1 [c=1] 0.01 3 0.33 1 (54% )
W + 1 jet background [c=1] 0.03 9

Signal 2 [c=1] 0.02 6 2.9 4.1 (99% )
WW background [c=1] 0.007 2.1

Signal 2 [c=2] 0.07 21 1.4 5.4
WW background [c=2] 0.05 15
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Figure 5.5 (Color online) (a) The total signal (solid) and SM background
(dashed) cross-section (integrated in mG ± ΓG window) for
pp → W (lν)W (jj) after |ηW | < 1 cuts were applied for c=1
(red) and c=2 (blue) values, (b) Corresponding number of
events for 300 fb−1.

Z′ produced (through qq̄ annihilation or vector boson fusion processes) which might conse-

quently decay to WL pair [75]. Using mG
1 ≈ 1.5mZ′

1 in Fig.5.6 we show that for 2 TeV Z ′ and

corresponding ∼ 3 TeV graviton signals are well separated as a function of reconstructed WW

invariant mass. Thus, by putting a MWW > 3 TeV cut, the Z′ signal will become negligible and

enhancement in total cross-section is due to graviton only ( we obtain graviton cross-section

to be 0.04 fb after MWW > 3 TeV cut). Now, 2 TeV Z ′ can be discovered with 5σ statistical

significance for an integrated luminosity of 100 fb−1 in purely leptonic channel as was shown in

[75] and there the 3 TeV RS graviton contribution will be negligible. Thus, assuming that W

+ 1 jet background will be manageable (for example by means discussed above) and Z′ mass is

estimated from some other mode (from purely leptonic one we considered above, for example)

we may expect to confirm existence of RS graviton in semileptonic channel. Clearly, even if

the above relation between masses of these lightest KK modes will not turn out to be true or

some other resonance(s) will appear in this channel, WW mass spectrum measurement should

still provide an important additional information.
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Figure 5.6 Contributions of the 2 TeV gauge boson and 3 TeV graviton to
the pp → W (lν)W (jj) process. Cuts specified in Eq.5.7 were
applied and c=1.

5.6 Discussion

We saw in previous sections that (semi) leptonic modes fromWL pair decay have a potential

to discover RS graviton up to about (3.5 TeV) 3 TeV of mass. To increase statistics, we might

expect to use τ leptons which will give us combinatorial factor of 3 and 3/2 for leptonic and

semileptonic modes respectively from additional decay channels; therefore, the inclusion of the

τ ’s can help appreciably. The reason for optimism on the issue of the detection of the τ ’s is

that ∼500 GeV energy τ ’s have a decay length of l = γτc ≈ 20 mm and, thus, might leave

visible tracks in the detector [96]. For mG
>∼ 3.5 TeV, higher luminosities are required which

will scale our results accordingly [97]. Similarly, upgrades of the center of mass energy at LHC

[98] can extend the reach in KK mass.

So far, the study of the RS gravitons was based either on the total cross-section or recon-

structed graviton mass measurements. We might try to exploit unique spin-2 nature of the

graviton which might be challenging in our channels. For example, one might be tempted to

use lepton pseudorapidity which, due to the high boost of the decaying W’s, will be ∼sin2θ



90

behavior of the basic 2→2 underlying scattering process. But high-energy W+
L W

−
L produc-

tion in the SM and RS Z′ decaying to two WL also have this behavior and, thus, will be

indistinguishable in shape from our signal.

Also, we might use information on lepton energy to establish that W’s from our graviton

decay are longitudinally polarized. This analysis is most promising in semileptonic mode be-

cause, as discussed in section IV B, in this mode WW mass can be reconstructed. Leptons

from WL decay will be preferentially emitted in the direction of the spin axis which is per-

pendicular to the direction of W motion. Thus, lepton and neutrino will tend to have the

same energy in the lab frame, compared to decay of transversely polarized W’s where they are

emitted in the direction of the W motion and, thus, one of the W decay products will carry

most of the energy. Now, suppose we have a negatively charged W decay. To confirm that W’s

from our graviton decay are longitudinally polarized we calculated the average lepton energy

in the lab frame from the decay of polarized W bosons and summarized our results in Table

5.4. We notice that the average for the longitudinally and transversely polarized W’s (which is

the average of left-handed and right-handed polarizations) is the same and equal to
√
s/4. To

distinguish between longitudinal and transverse polarizations, we divide signal events into two

groups: events in the first group will have charged lepton energy bigger than the neutrino’s

energy; and in the second group, the neutrino’s energy will be bigger. The fact that lepton’s

energy is bigger (smaller) implies that lepton’s 3-momentum in the W rest frame is parallel

(antiparallel) to W’s 3-momentum in the lab frame. We calculated the average lepton energy in

the lab frame from the decay of polarized W bosons for the events in each group and presented

our results in Table 5.4 as well. We see that this analysis could be used to confirm that W’s

from our graviton decay are longitudinally polarized as, presumably, average lepton energies

will match the (8 + 3β)
√
s/32 and (8− 3β)

√
s/32 values for the signal events in the first and

second group respectively. For a positively charged W decay, the results for the left-handed

and right-handed rows in Table 5.4 need to be switched.
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Table 5.4 Average lepton energies in the lab frame from the decay of polar-
ized W− bosons. For a W+ decay, the results for the left-handed
and right-handed rows need to be switched.

W polarization Average Average for group 1 Average for group 2
Longitudinal

√
s/4 (8 + 3β)

√
s/32 (8− 3β)

√
s/32

Left-handed (2 + β)
√
s/8 (28 + 17β)

√
s/112 (28− 17β)

√
s/112

Right-handed (2− β)
√
s/8 (28 + 17β)

√
s/112 (28− 17β)

√
s/112

5.7 Conclusion

In this chapter, we have considered resonant production of the first RS KK graviton mode

via gluon-fusion process followed by its subsequent decay to WLWL pair. We focused on

leptonic and semileptonic final states and found that with 300fb−1 of data, LHC may discover

first RS KK graviton with masses below ∼ 3 TeV and 3.5 TeV in these modes respectively. We

also incorporated potential KK Z ′ signal in both modes and analyzed its combined effect with

RS graviton. Taking the RS prediction for the lightest KK masses, mG
1 ≈ 1.5mZ′

1 , we showed

that these signals are well separated in reconstructed WW invariant mass in the semileptonic

mode. For the purely leptonic eµ mode, where resonance mass reconstruction is problematic,

the above mass relationship hints to the domination of the Z ′ events as corresponding graviton

mass will be higher. Nevertheless, we demonstrated that even in that mode appropriate choice

of cuts in dilepton invariant mass may be able to distinguish these contributions as well.

Finally, it is worth mentioning that the discovery of first RS graviton mode will shed the light

on the scale of the physical processes on the TeV brane Λπ as mG
1 = x1cΛπ.
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