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SUMMARY

Decision makers are continuously required to make choices in environments with in-

complete information. This dissertation seeks to understand and, ultimately, support the

wide range of decision making strategies used in environments with incomplete informa-

tion. The results show that the standard measure of incomplete information, i.e., total

information, is insufficient for understanding and supporting decision makers faced with

incomplete information. Instead, the distribution of information is often a more impor-

tant determinant of decision making performance. Two new measures of the distribution

of incomplete information were introduced (option imbalance and cue balance, Chap. 4)

and tested across three computer simulations of 18 variations of decision making strategies

within hundreds of environments and millions of decision tasks with incomplete informa-

tion (Chap. 5-7). The simulations were powered by a new general linear model of decision

making which can efficiently and transparently model a wide range of strategies beyond the

traditional set in the literature (Chap. 3). Of the many potential mediators of the relationship

between the distributions of incomplete information and performance, only the strategies’

estimates of missing information were significant in the computational studies (Chap. 5-7).

For strategies with accurate estimates, only total information determined accuracy, while

for strategies with inaccurate estimates, accuracy was maximized when option imbalance

was low and cue balance was high. The simulation results were partially contradicted by

a human-subjects study (Chap. 8) in which decision makers with accurate estimates were

affected by option imbalance and cue balance in the same manner as inaccurate estimates

– suggesting that some distributions might simply be difficult regardless of the estimates

(Chap. 8). These results support the argument that decision support should modify the

presentation of information away from difficult distributions. This argument was codified

into heuristic information acquisition and restriction rules which, when tested, increased

strategy accuracy without probability and cue weight information (Chap. 6-7).
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Decision support systems are intended to improve decision making effectiveness and ef-

ficiency (Todd and Benbasat, 1999). Designing decision support systems depends upon a

thorough understanding of the factors that affect decision making performance. The exten-

sive research on decision making within the fields of economics, psychology, and human

factors has contributed to defining and characterizing the effect of various contexts on deci-

sion making performance. However, one fundamental context of decision making has been

left understudied, the impact of incomplete information.

Time pressure, high information acquisition costs, information overload, or ill-structured

environments have all been shown to cause people to make decisions with incomplete in-

formation. Engineers, doctors, pilots, and warfighters are only a few of the myriad of pro-

fessions for whom success depends upon operating in some or all of these environmental

conditions.

One of the primary ways that a decision support system developer can assist these

decision makers within environments with incomplete information is to have the system

dynamically change what information it presents to the user (referred to as modification

of content in Feigh et al., 2012). To determine what information should or should not be

presented requires a fundamental understanding of how distributions of incomplete infor-

mation affect decision making effectiveness and efficiency. However, prior to this disser-

tation, the three most relevant research domains for on decision making with incomplete

information (fast-and-frugal heuristics, consumer and marketing research, and probabilistic

evidence acquisition) were limited in either their ability to characterize what information

should be presented or not presented (specificity), explain the effect of incomplete infor-

mation in a wide range of environments (comprehensiveness), or support decision makers
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in their real-world environments (practicality).

The fast-and-frugal heuristics research program uses mathematical, computational, and

human-subjects studies to show that heuristics, simple rules that use little information, can

often be just as accurate or even more accurate than analytic, so-called ‘optimal,’ statistical

models, particularly in decision tasks with low amounts of information (e.g. Gigerenzer

et al., 1999; Todd et al., 2012). With respect to characterizing various distributions of

incomplete information, total information has been the only measure (Martignon and Hof-

frage, 2002; Garcia-Retamero and Rieskamp, 2008; Hogarth and Karelaia, 2005a). This

means that there are no descriptions for how various distributions of the same amount of

information might affect the effectiveness and efficiency of decision making. So, while the

results of the fast-and-frugal heuristics research program are comprehensive and practical,

they lack specificity for this problem.

In addition to total amount of information, consumer and marketing research has de-

veloped some specific measures of incomplete information: common attributes (values are

available for all considered options) and unique attributes (values are available for one op-

tion but not others) (Slovic and MacPhillamy, 1974; Kivetz and Simonson, 2000). These

descriptions of distributions of incomplete information are specific, but they have not been

systematically tested (computationally or mathematically) on a diverse set of environments

so that they can be incorporated into more formal decision theory. Therefore, these mea-

sures of incomplete information lack the comprehensiveness necessary to guide decision

support system design.

Lastly, probabilistic frameworks for evidence acquisition describe many methods for

determining what piece of information should be acquired (or presented) to encourage bet-

ter decisions (for a review, see Nelson, 2005). However, these methods require reliable

assessments of probabilities which are almost impossible to achieve in real-world environ-

ments and are often too opaque or complex to be confidently used by decision makers (Kat-

sikopoulos and Fasolo, 2006; Katsikopoulos et al., 2008). These probabilistic frameworks
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have been and can be used to specifically identify what information should be acquired;

however, they are essentially unusable in many real-world environments.

Given the limitations individually affecting each of these diverse research domains, this

dissertation integrates them into a general understanding of decision making with incom-

plete information which has the ability to characterize what types of information should be

presented or not presented, explain the effect of incomplete information in a wide range

of environments, and support decision makers in their real-world environments. The path

toward this general understanding is guided by two research questions.

1.1 Research Question 1: Do some distributions of incomplete information result in

better decision making performance than others? If so, when and why?

Decision making is formally described as the act of choosing between two or more options

to maximize some measure of utility through the assessment of cues which characterize

the options. To achieve the goal of choosing the option with the maximum criterion, de-

cision makers employ strategies which are defined as the overall methods, or sequences of

options, for searching through a decision problem space (Payne et al., 1993). Incomplete

information occurs when one or more cues (or cue scores) are unknown to the decision

maker. In this dissertation, an individual cue can either be complete unknown or known.

The two decision tasks in Fig. 1.1 show two decision tasks that are identical except

for having different distributions of incomplete information. For both Decision Task A

and Decision Task B, there are three known cue scores and three unknown cue scores

(denoted by the question marks). The goal is to select the fastest route between two points

– representing the fundamental decision task of many path planning applications.

Based on previous research, which only measured decision making performance as

a function of total information, no inference could be made about which distribution of

incomplete information in Fig. 1.1 would result in higher accuracy for the decision maker.

Essentially, the two decision tasks could be considered equivalent. Examining the two

3



Option 1

Option 2

Distance
Cue 1

Traffic
Cue 2

Heavy

15

Road Type
Cue 3

5

?

?

?

Decision Task A

Option 1

Option 2

Distance
Cue 1

Traffic
Cue 2

Heavy

?

Road Type
Cue 3

5

?

Highway

?

Decision Task B

Figure 1.1: Two decision tasks of the same scenario with different distributions of incom-
plete information. Question marks refer to unknown cue scores.

decision tasks, however, it seems obvious that they should not be considered equivalent.

Decision Task A at least has one cue score known for each option whereas Decision Task

B only has information about Option A.

Leveraging the consumer and marketing research, these two options would be consid-

ered different. The options in Decision Task A has one common cue (Distance) and one

unique cue (Traffic, Option 1) whereas in Decision Task B, all the cues are uniquely known

for Option 1. However, it is not known how these different distributions of common and

unique cues affect decision making effectiveness or efficiency across a wide range of deci-

sion environments.

To address RQ1, a computer simulation engine was constructed that could evaluate

the accuracy of a wide-range of decision making strategies for any decision scenario1 and

any combination of incomplete information. Using this simulation engine, three computer

simulation studies were conducted using the same computer techniques and datasets (con-

taining decision options) that founded the recent advances in decision making research

(e.g. Payne et al., 1990; Czerlinski et al., 1999; Hogarth and Karelaia, 2006; Katsikopou-

los et al., 2010). The important concentration for this dissertation was the effort to define

measures of incomplete information and directly measure their effect on decision making

accuracy, including their interactions with components of the decision making strategies

and other well-studied environmental and task parameters (characteristics of the datasets

1This research focuses on decision tasks with two options and three-to-five cues, but the simulation engine
is capable of processing any number of options and cues.
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and scenarios that have been shown to affect performance).

A human-in-the-loop (HITL) experiment was then used to validate the impact of these

measures on decision making accuracy. As with the computer simulation studies, the set-up

of the HITL experiment was based on other researchers’ HITL experiments whose partici-

pants made decisions with incomplete information (Garcia-Retamero and Rieskamp, 2009;

Rieskamp and Hoffrage, 2008). The HITL experiment in this dissertation is the first to

focus on how specific distributions of incomplete information affect the effectiveness (ac-

curacy) and efficiency (decision time) of decision makers.

1.2 Research Question 2: Can it be determined which information to acquire or

restrict without using probabilities, cue weights, or cue scores? If so, when and

why?

RQ2 is a question of the value or usefulness of a piece of information to a decision maker.

From decision analysis, the common analytical methods of measuring value of information

require reliable assessments of probabilities (the probability that an option is the correct

decision given a specific value for one of its cues), cue weights (the relative importance of

cues), and cue scores (the value for an option’s cue as used by the decision maker) (Nelson,

2005, 2008). However, there are multiple environmental issues with using these analytic

methods in decision support (Katsikopoulos and Fasolo, 2006; Katsikopoulos et al., 2008).

First, real-world problems can exhibit statistical dependencies which create computational

issues in calculating probabilities and cue weights. Second, an operator may not be able to

provide accurate estimates of probabilities and cue weights to the DSS. Third, the analytic

process may seem too cumbersome, too complex, and too opaque to the operator causing

the operator to be reluctant to use the DSS or accept its suggestions. Lastly, as these meth-

ods have focused on acquisition, they do not provide suggestions as to what information

could be restricted from the operator, to alleviate the growing issue of information overload

(Fasolo et al., 2007).
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Figure 1.2: Information acquisition and restriction from an initial decision task.

Given these issues, this dissertation leverages the conclusions of RQ1 to develop heuris-

tic information acquisition and restriction rules that are simple, transparent, and do not rely

on probabilities, cue weights, or cue scores. Once preferences between distributions of

incomplete information can be made (the conclusions of RQ1), then it follows that pref-

erences can be made in terms of acquiring and restricting information so that certain dis-

tributions of incomplete information are achieved or avoided (see Fig. 1.2). Since the

preferences between distributions of incomplete information do not rely on probabilities,

cue weights, or cue scores, the resulting information acquisition or restriction rules do not

rely on them either.

To determine whether these heuristic information acquisition and restriction rules are

useful, the simulation engine was used. First, general preferences between types of distribu-

tions of incomplete information were codified into simple rules for information acquisition

and restriction which were shown to be effective at an aggregate level. Then to understand

the effectiveness of the rules at the individual decision task level, the computer simulation

engine was modified to measure the change in accuracy across a sequence of distributions

of incomplete information. The results enabled the understanding of how components of
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the decision making strategies and the environmental parameters affect the performance of

the heuristic information acquisition and restriction rules.

1.3 Framing the Decision Task

Almost all behavioral decision making research using computer simulations utilize a deci-

sion task in which each option is encountered simultaneously (non-sequential or single) in

an environment which does not change with time or actions (static). Modeling this simpler

form of decision making was the original representation of decision tasks (Raiffa, 1968)

and has been the starting point for many studies. Most notably, many of the foundational

studies supporting the adaptive decision maker program (Payne et al., 1993) and the fast-

and-frugal heuristics program (Czerlinski et al., 1999; Katsikopoulos, 2010; Todd et al.,

2012) have been based on these single, static tasks.

This dissertation follows these foundational studies and will focus solely on how ana-

lytic and heuristic strategies perform in static, single decision tasks with incomplete infor-

mation (see Fig. 1.3). A single, static decision task can be represented as a table of options,

cues, and cue values as shown in Figs. 1.1 and 1.2.

Since these types of tasks are the building blocks of sequential, dynamic tasks, the

results of studying these simpler tasks can still have implications for more complicated

sequential and dynamic tasks. Future work will take the results of this dissertation and

apply it to model and study tasks in which options are encountered at different times based

on the environment or actions (sequential) in an environment which does change with time

(dynamic).

Sequential decision tasks are those in which options are encountered asynchronously

(most commonly, one at a time) resulting in a potential cost for searching through or waiting

for the next options (Dudey and Todd, 2001; Todd, 2007). Alternately, following the driving

example used in Fig. 1.1, sequential decision making is a down-selection process found in

many path planning activities. There are typically multiple routes from home to work,
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Figure 1.3: Decision making for this dissertation will examine how analytic and heuristic
strategies perform in static, single decision tasks with incomplete information.

but as you drive, you are consistently eliminating routes from being able to be chosen.

Therefore, the task could be broken down into many single, static decisions in which the

goal is to determine which decision options to eliminate from the task or when to eliminate

options, rather than select one specific option initially.

Dynamic decision tasks are sequential decision tasks with added difficulty of 1) a dy-

namic environment that changes as a function of the decision maker’s actions or the na-

ture of the environment (Dudey and Todd, 2001; Gonzalez, 2005), and 2) time-delayed

responses of the environment to actions made by the decision maker (Gonzalez, 2005).

More advanced models incorporate multiple aspects of cognition such as the interaction

between memory, learning, and environment such as ACT-R (Anderson, 2007). Given that

dynamic decision tasks are sequential, they can also be broken down into single, static deci-

sions. However, the challenge for these tasks is that the action-feedback loop can have very

specific impacts on performance that are not easily generalized (Bertuccelli et al., 2009;

Gonzalez, 2005).
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Table 1.1: Dissertation organization.

Chapter Title

Chap. 1 Introduction and Motivation
Chap. 2 Literature Review
Chap. 3 General Linear Model of Judgment and Decision Making
Chap. 4 Models, Measures, and Mediators of Decision Making Performance
Chap. 5 Accuracy, Effort, and Distributions of Incomplete Information
Chap. 6 Heuristic Information Acquisition and Restriction Rules for Decision Support
Chap. 7 Determinants of Decision Making with Incomplete Information
Chap. 8 Validation Human-Subjects Study
Chap. 9 Discussion
Chap. 10 Summary and Future Research Directions

1.4 Dissertation Overview

There are 9 chapters in this dissertation in addition to this introduction (Table 1.1). Chapter

2 provides the necessary background to understand the research questions and methodology

used in this dissertation. Topics covered include the historical developments of understand-

ing human rationality, why people typically make decisions with incomplete information,

and the established measures and mediators of decision making performance. Chapter 3

introduces a general linear model of decision making with incomplete information that was

used for computer simulations and related mathematical results. The general linear model

also shows how various contextual features of decision making relate to decision making

accuracy. Chapter 4 introduces the measures of incomplete information and places them

within a full contextual model of the determinants of decision making accuracy. Chapters

5-7 comprise the three computer simulation studies of decision making with incomplete

information. The computer simulations provided the initial results showing the importance

of option imbalance and cue balance (Chaps. 5 and 7), and the potential for heuristic in-

formation acquisition and restriction rules (Chaps. 6 and 7). The human-subjects study in

Chapter 8 showed that distributions of incomplete information had an effect on participants

with accurate estimates, unlike the computer simulation studies. Chapter 9 discusses the
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major contributions and their relationship to the general research of decision making and

decision support. Lastly, Chapter 10 summarizes the entire dissertation and provides many

directions for future research.
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CHAPTER 2

LITERATURE REVIEW

This dissertation builds upon a large history of economics, psychology, and decision sup-

port system literature to construct a more complete understanding of decision making with

incomplete information. The foundation starts in Sec. 2.1, which explains how bounded

rationality split from the traditional research of unbounded rationality. Bounded rationality

advocates for research into how humans make judgments and decisions when information,

computation speed or power, are limited. Section 2.2 examines the specific situations that

have been shown to cause humans to make decisions with incomplete information. Sec-

tion 2.3 addresses the question of whether people actually need to process complete and

abundant information in the first place. Rather than viewing people’s use of less-than-

all-available information as evidence of irrationality, increasing amounts of research has

shown that people can and do use fewer cues, fewer known cue values, simpler models,

and less training while still making accurate decisions. In comparison, it is clear that most

research has focused on how various components of people’s decision making strategies

are affected by incomplete information, leaving the direct study of incomplete informa-

tion in the decision task relatively unstudied. Section 2.4 describes normative and heuristic

decision support methods for modifying incomplete information and shows how the lack

of study of incomplete information has left only normative methods (requiring accurate

knowledge of cue weights, cue scores, and probabilities) to guide information acquisition

and restriction methods.

2.1 Human Rationality

Competing views of human rationality attempt to explain how people process the informa-

tion available to them when making judgments and decisions. The division between un-

11



bounded and bounded rationality is the most fundamental split in decision making theory.1

As defined by Todd (2007, pp. 1318, emphasis added), “unbounded rationality says that

decisions should be made by gathering and processing all available information, without

concern for the human mind’s computation speed or power,” whereas bounded rationality

says that decisions are made within constraints such as the human mind’s limited compu-

tation speed or power, or limited information.

Unbounded rationality suggests that decision makers should be provided with as much

information as possible so that they can make the decision by processing as much infor-

mation as possible. There are two problems with this perspective (see Sec. 2.2). The first

is descriptive: people do not generally make decisions by processing as much information

as possible. The second problem is prescriptive: providing decision makers with as much

information as possible does not provide a good basis for building decision support systems

(Katsikopoulos and Fasolo, 2006).

Simon (1955, p. 99), famously and influentially, responded to the unbounded rationality

perspective by challenging researchers to “replace the global rationality of economic man

with a kind of rational behavior that is compatible with the access to information and the

computational capacities that are actually possessed by organisms, including man, in the

kinds of environments in which such organisms exist.” This counterpoint to unbounded

rationality is now known as bounded rationality.

Three additional works in the 1950’s similarly influenced the study of judgment and de-

cision making research (Edwards, 1954; Meehl, 1954; Hammond, 1955). Edwards (1954)

integrated the psychological ideas of human behavior with the economic decision theory

on the topics of riskless choices, risky choices, transitivity in decision making, games, and

statistical decision functions. Hammond (1955) developed statistical representations of

Brunswick’s (1943) Lens Model, providing the first quantitative measurements of the rela-

1For more recent and more comprehensive reviews of the judgment and decision making literature see
the following: Kleinmuntz (1990); Goldstein and Hogarth (1997); Katsikopoulos et al. (2008); Mosier and
Fischer (2010); Katsikopoulos (2011).
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tionship between the environment and the behavior of judges in the environment. Meehl

(1954) published a comparison of clinical (human intuition) versus actuarial (statistical or

mechanical) judgment that was the first comprehensive test of human judgment. The results

showing that clinicians were usually outperformed by actuarial methods were extremely

provocative and provided the model for many comparisons today between normative-rational

and heuristic decision making methods (Katsikopoulos et al., 2008).

All four works (Simon, 1955; Edwards, 1954; Meehl, 1954; Hammond, 1955) guided

researchers toward studying how decision making occurs in the real world, leading to the

emergence of two different research paradigms based on bounded rationality. The first

paradigm acquiesced to the limitations of the human mind but searched for the limitations

in order to overcome them. This paradigm is summarized as “we would, and should, all be

unboundedly rational, if only we could” (Todd, 2007, p. 1319). For example, Tversky and

Kahneman’s “heuristics-and-biases” research found that people to not necessarily judge

uncertainty according to the rules of probability and statistics as they are influenced by

framing and other cognitive biases (Tversky and Kahneman, 1974; Kahneman et al., 1982;

Kahneman and Tversky, 1984). This perspective of human cognitive suboptimality has

resulted in searches for methods to debias people, in other words, to fix their behavior

(Kleinmuntz, 1990; Todd, 2007).

The second and contrasting paradigm emerged more recently showing that decision

makers can make good, and potentially optimal, decisions with simple rules or heuris-

tics that use little information and process it quickly. This work is embodied by three

research frameworks. First, within the adaptive decision maker framework, people trade

a strategy’s cost (the effort required to use the strategy) against the benefits (the perceived

accuracy of the strategy) and select a strategy with the best effort-accuracy trade-off in

a given environment (Payne et al., 1988, 1990, 1993; Marewski and Link, 2014). Sec-

ond, within the naturalistic decision making framework, people faced with time pressure,

uncertainty, ill-defined goals, and other complexities in familiar and meaningful environ-
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ments, have been shown use various strategies such as matching strategies to situations,

experience-based knowledge modeling, and implementable-based strategy selection (Klein

et al., 1988; Orasanu and Connolly, 1993; Klein and Calderwood, 1996; Klein, 2008; Lip-

shitz et al., 2001). Third, within the fast-and-frugal heuristics framework, people use the

bounds on rationality of simplicity, speed, and frugality as a mechanism for simple, robust,

and accurate strategies that adapt to the environment and ecology (Gigerenzer and Gold-

stein, 1996; Gigerenzer et al., 1999; Gigerenzer and Gaissmaier, 2011; Todd et al., 2012).

Notably, Keller et al. (2010) argued that the independent frameworks of naturalistic deci-

sion making and fast and frugal heuristics can ultimately be synthesized into a “naturalistic

heuristics” framework.

To directly show how this new paradigm of heuristic decision making can justify the

previously considered cognitive suboptimiality of human decision making, Gigerenzer (2004,

p. 66, Table 4.1) provided examples of “phenomena that were first interpreted as ‘cognitive

illusions’ but later revalued as reasonable judgments given the environmental structure.”

Given the current need for studying decision making with incomplete information, there is

potential for this dissertation to revalue further cognitive illusions as reasonable. For ex-

ample, decision makers in paired comparison tasks tend to overweight ‘common’ attributes

(cues that have information known for both options) and underweight ‘unique’ attributes

(cues that have information known for only one option) (Slovic and MacPhillamy, 1974;

Kivetz and Simonson, 2000). This tendency was robust to various debiasing techniques

(Slovic and MacPhillamy, 1974): (1) measuring all dimensions on the same scale, (2) pre-

warning subjects about the bias in favor of common attributes, (3) providing feedback (after

each judgment) that promotes equal weighting of dimensions, (4) providing monetary re-

wards for equal weighting of dimensions, and (5) providing detailed information about the

distributions of the values of the attributes. By studying incomplete information directly,

the mathematical, computational, and human-subjects studies in this dissertation should be

able to determine if or when the focus on common attributes is rational.
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2.2 Incomplete Information

The adaptive decision maker, naturalistic decision making, and fast and frugal heuristics

frameworks all support the bounded rationality perspective that people make decisions

without gathering or processing all possible information. This section explains the four

major reasons why people do not or cannot make decisions with incomplete information:

time pressure, high information acquisition costs, too much information, and incomplete

information in the environment. While they are separated for discussion, they are often

coincident.

2.2.1 Time Pressure

Dudey and Todd (2001, pp. 195–196) established an evolutionary argument for time pres-

sure as the reason why humans use heuristics:

“Humans and other animals frequently must make decisions in as rapid a

manner as possible. To hesitate is often to be lost, whether this means los-

ing an opportunity for a meal or a mate to a competitor, or losing one’s life

or limb to a predator or otherwise hostile environment. Organisms seeking to

make choices and take action as quickly as possible can either speed up the

input side of the decision process, reducing the time needed to gather informa-

tion on which to base those choices, or speed up the processing/output side,

reducing delays in processing the information and converting it into behavior.

While evolution has developed faster processing mechanisms over the eons

(e.g. myelinization to increase nerve impulse travel speed), the greatest time

advantage is likely to come from reducing the amount of information sought

before making a decision (Todd and Gigerenzer, 2000).”

As described above, there are two general causes of time pressure: opportunity cost and

individual decision limits. Rieskamp and Hoffrage (2008) empirically identified that when
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time pressure was high for both types, people used heuristics. Previous studies supported

this conclusion that under time stress people tend to focus their attention on fewer, more

important pieces of information, and thus use a more selective information search (Payne

et al., 1988; Maule, 1994; Rieskamp and Hoffrage, 1999).

2.2.2 High Cost of Information

Information acquisition can cost time, as in time pressure. However, what if there is no time

pressure but the information costs another resource? For example, a stock broker may need

to know which company’s stock to buy, but each piece of information about a company

costs money and the stock broker only has a fixed amount of initial money (see Experiment

3 in Bröder, 2000), or an engineering designer may need to run costly experiments to

explore a design space (Heller, 2013; Jones et al., 1998). In studies like these, people

have been show to prefer heuristics when the cost of information is high (Bröder, 2000;

Newell and Shanks, 2003; Newell et al., 2003). The explanation of this result is identical to

time pressure: when acquiring or processing information costs more time, money, or other

commodity than people want to spend, then they use heuristics to focus on fewer, more

important pieces of information, in order to save time, money, etc. while retaining as much

accuracy as possible.

2.2.3 Too Much Information

People also tend to restrict their information search when too much information is provided

(Kivetz and Simonson, 2000; Fasolo et al., 2007). This perspective was introduced as “in-

formation (over)load” in consumer research in the 1970’s with a self-described controversy

(Malhotra et al., 1982) as to whether more information was better (Russo, 1974; Summers,

1974; Wilkie, 1974) or worse (Jacoby et al., 1974a,b; Malhotra, 1982).

By now it is commonly accepted that more information has the potential to be worse

and this perspective is often referred to as ‘the tyranny of choice’ (Fasolo et al., 2007, in
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reference to Schwartz, 2003). The tyranny of choice is increasingly relevant as techno-

logical advancements have introduced online shopping, big data, and geonomic medicine,

among others. Note also that, although the discussion regarding too much information has

focused on too many options, researchers have also investigated too may cues with simi-

lar results (Fasolo et al., 2007; Malhotra, 1982). The abundance of available information

for decision makers can make the decision difficult and dissatisfying (e.g., Beattie et al.,

1994; Schwartz, 2003). One example is regret aversion, where anticipated regret promotes

regret-minimizing decisions rather than risk-minimizing decisions (Zeelenberg et al., 1996;

Zeelenberg and Beattie, 1997). Beyond dissatisfaction or difficulty of decision making with

too much information, investigation of the accuracy-effort trade-off showed that the amount

of effort required to make a decision can lead people to use heuristics because normative-

rational strategies require processing of information about all options and all cues (Payne

et al., 1988, 1990, 1993).

2.2.4 Incomplete Information in the Environment

The most salient cause of people making decisions with incomplete information is that not

all information was available, either because it was difficult to discern, not provided, or

other environmental causes. Two separate sets of literature have directly examined this

type of incomplete information: naturalistic decision making and consumer marketing.

Naturalistic decision making “typically takes place in a world of incomplete and im-

perfect information. The decision maker has information about some part of the problem

but not others” (Orasanu and Connolly, 1993, p. 8). The study of naturalistic decision

settings provides a varied source of potential environmental reasons for decision making

with incomplete information (Orasanu and Connolly, 1993; Lipshitz et al., 2001; Klein

et al., 1988; Klein, 1993, 2008). Of the eight naturalistic decision settings described by

Orasanu and Connolly (1993, p. 7), two are particularly relevant to decision making with

incomplete information: ill-structured problems and uncertain dynamic environments. Ill-
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structured problems occur when significant work needs to be done to develop appropriate

options and determine the cue scores which might be related by complex causal links. Un-

certain dynamic environments occur when the environment can change quickly, i.e., within

the time frame of the required decision, and the information may be ambiguous or of poor

quality.

In consumer marketing environments, marketers have significant control over the infor-

mation provided, or not provided, to consumers and the manner in which this information

is presented (Kivetz and Simonson, 2000). In relation to the information overload discus-

sions, Kivetz and Simonson (2000, p. 427) have studied the opposite case for consumer

decision making information:

“Even when complete information is potentially available, obtaining at-

tribute [scores] for all options and making comparisons is typically much easier

for some attributes (e.g. price) than for others (e.g. reliability). Accordingly,

a common problem consumers face is making choices with complete and eas-

ily compared information on some attributes but only partial (or difficult to

compare) information on other attributes.”

Because of this difficulty, some have argued that in actual consumer decision making, con-

sumers rarely have complete information (Dick et al., 1990; Simmons and Lynch, 1991;

Ross and Creyer, 1992).

2.3 Less is More

The previous section described the myriad of reasons why people make decisions with

incomplete information: time pressure, high information acquisition costs, too much infor-

mation, and incomplete information in the environment. But, how much information do

people need to make good decisions? The push of modern technology argues that gath-

ering and analyzing all available information with all available tools will result in more
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accurate decisions. In other words, more resources means more accuracy. Yet, beyond the

advertising and normative-rational perspectives, recent computational and human-subject

studies suggest that, in many environments, less is actually more (Todd, 2007). Rather than

viewing people’s use of less-than-all-available information as evidence of irrationality, in-

creasing numbers of studies are showing that people do use or could use fewer cues, fewer

known cue values, simpler models, or less training while still making accurate decisions

(for reviews, see Gigerenzer et al., 1999; Todd et al., 2012).

2.3.1 Fewer Cues

The hallmark of both the naturalistic decision making and the fast-and-frugal heuristics

program is that people tend to use heuristics to focus on few, important cues, even in envi-

ronments with abundant information. In many comparative tests among analytic strategies

and heuristic strategies for judgment and decision making the heuristic strategies which

rely on fewer cues have shown to be just as, or more, accurate and have been shown to

often better match the strategies people use.

There are conditions to this broad statement about the usefulness of using fewer cues.

It is true that focusing on the most important cues typically results in lower proportion of

value loss when ignoring cues (Fasolo et al., 2007). This is especially true when cues are

positively correlated and validities unequal. However, equally important cues with negative

correlations can create ‘unfriendly’ environments for heuristic strategies using fewer than

all cues (Shanteau and Thomas, 2000).

One group of well-studied strategies that use fewer cues is the one-reason decision

heuristics. Gigerenzer and Gaissmaier (2011) categorized these one-reason decision heuris-

tics into two classes. The first class is the “one-clever-cue” heuristics which rely on a single

cue to make decisions. For example, animals do not analytically compute trajectories in

three-dimensional space when intercepting incoming prey or catching objects. Instead,

they use a gaze heuristic with maintains a constant optical angle between their target and
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themselves in order to position themselves (Gigerenzer, 2007; McLeod and Dienes, 1996).

Even beyond the instinctual example of the gaze heuristic, single-cues can be useful in the

business settings of predicting consumer behavior. For example, how do commercial re-

tailers distinguish between active customers who will purchase again versus those who are

inactive and will not purchase again? The hiatus heuristic states that customers who have

not purchased within a certain number of months (the hiatus) are inactive, and otherwise,

are active (Wbben and v. Wangenheim, 2008). The hiatus heuristic was compared to a state-

of-the-art Pareto negative binomial distribution model (Pareto/NBD) which used 40 weeks

of customer data of apparel, airline, and music purchases. While the hiatus heuristic only

required a single value threshold from experts, it correctly classified 83%, 77%, and 77%

of customers in each respective domain, compared to the Pareto/NBD model’s 75%, 74%,

and 77%. More generally, one-clever-cue heuristics have been shown to perform well in

environments where there is high variability in relative importance of cues, high cue redun-

dancy, and small sample sizes (Hogarth and Karelaia, 2005a, 2007; Katsikopoulos et al.,

2010).

The second class of one-reason heuristics expands the one-clever-cue to sequential

search through multiple cues, referred here as multiple-clever-cue heuristics. The exemplar

strategy of multiple-clever-cue heuristics is take-the-best (TTB) which searches through

cues in rank-order, stops when one cue discriminates, then selects the option with the posi-

tive cue score (Gigerenzer and Goldstein, 1996). For 2-option decision tasks, an individual

cue discriminates when one option has a positive cue score and the other option have a

negative or unknown cue score. Due to the discrimination rule, TTB will tend to stop its

information search before evaluating all available information from all available cues. The

ability for TTB to evaluate multi-cue decision tasks, has enabled many of the surprising

results of one-clever-cue heuristics to be replicated in broader mathematical and simula-

tion studies: high performance in environments with moderate to high variability in cue

weights, moderate to high cue redundancy, and environments with dominant options (Hog-
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arth and Karelaia, 2005a,b, 2006; Katsikopoulos et al., 2010; Katsikopoulos, 2013; Şimşek,

2013).

Human-subjects studies have expanded this perspective to show that people often use

heuristics instead of analytic strategies which evaluate all available cues in each task (Gigeren-

zer and Gaissmaier, 2011). In consumer choice, people tend to use heuristics like TTB to

eliminate most items from further consideration, identifying the final group of items to

more thoroughly evaluate (Kohli and Jedidi, 2007). In residential burglary, expert groups

of experienced burglars and police officers, were shown to be best predicted by TTB

whereas a novice group of graduate students were shown to be best predicted by an an-

alytic weighted-additive strategy (Garcia-Retamero and Dhami, 2009). In situations of

high individual choice time pressure and opportunity costs, participants were shown to be

better represented by a lexicographic strategy like TTB rather than the weighted-additive

strategy (Rieskamp and Hoffrage, 1999, 2008).

Viewed through the perspective of judgment theory, one-reason decision strategies be-

come fast-and-frugal trees (FFTs) which have also been shown to have similar accuracy

to analytic models in simulations, while requiring fewer cues for categorization. FFTs are

classification trees that have “n+ 1 exits, with one exit for each of the first n− 1 cues and

two exits for the last cue” (Luan et al., 2011, p. 320). They have become a popularly stud-

ied tool for decision support and have been shown to be quick to use, easy to remember,

and accurate across many domains: medical (Green and Mehr, 1997; Fischer et al., 2002;

Katsikopoulos et al., 2008; Jenny et al., 2013, 2015; Jenny, 2016), military (Keller et al.,

2014; Keller and Katsikopoulos, 2016), and financial (Aikman et al., 2014). Their trans-

parency and consistency have aided their adoption among professionals (Katsikopoulos

et al., 2008).

In a comprehensive comparative study by Jenny and her colleagues (2015; 2016), lever-

aged the simpler cue structure of FFTs as a useful decision aid for emergency medicine

doctors to categorize patients presenting with nonspecific complaints as either low or high
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morbidity. These patients present particular issues for emergency departments because they

are difficult to accurately triage and diagnose, yet delayed decisions can result in adverse

outcomes. To support better decisions, Jenny and her colleagues compared 18 statistical

and machine learning algorithms, including the most complex machine learning algorithm,

random forest, to the FFT (referred to as STEL) and the physicians’ “looking ill” (LI)

cue. In terms of area under the ROC curve, the random forest and the FFT achieved near-

identical performance, 0.82 and 0.81, whereas LI achieved 0.65. In terms of required cues,

however, they could not be more different. The random forest classification tree had 14

cues whereas the FFT had only 4.

2.3.2 Fewer Known Cue Values

The direct result of time pressure, high information acquisition costs, too much informa-

tion, and incomplete information in the environment, is that decision makers face tasks

with missing cue values and must make decisions with fewer known cue values. Despite

this direct relationship, few studies have examined how accuracy is affected by incomplete

information in the decision task. Those that have studied incomplete information, have

only measured total information, the total amount of known cues values, largely ignoring

how that information is distributed. In sum, these studies have shown that more informa-

tion is better, but that heuristic strategies are more robust to environments with few known

cue values than analytic strategies.

In decision tasks with binary cues, Martignon and Hoffrage (2002) showed that TTB

had higher accuracy than the analytic strategy, Dawes’ Rule, when the total information

was low or scarce. As total information increased toward high or abundant information,

the accuracy of Dawes’ Rule increased while the accuracy of TTB stayed about the same.

The additional information does not increase the accuracy of TTB because the decision is

likely to be made during the first few cues. However, since Dawes’ Rule (like most analytic

strategies) allows lower-ranked cues to compensate for higher-ranked cues, the increased
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information enabled the strategy to compensate for any mistakes that would have been

made with less information.

Payne et al. (1990) also showed that the accuracy of TTB was less affected by decreas-

ing total information than analytic strategies in a comparison of multiple decision making

strategies. Time pressure was used to stop decision making strategies in the middle of

their information search which forced strategies to make decisions with missing cue val-

ues. Their computational study showed that severe time pressure reduced the accuracy of

WADD by over 80%, and while LEX (similar to TTB) also experienced reduced accuracy,

the reduction was only approximately 20%.

Why is TTB so robust to decision making environments with fewer known cue values?

Many studies with complete information had shown the effectiveness of TTB and other

one-reason heuristics as a result of fit between the environment and the strategy, particu-

larly variability in cue weights and cue redundancy (Hogarth and Karelaia, 2005a,b, 2006;

Katsikopoulos et al., 2010; Katsikopoulos, 2013; Şimşek, 2013). However, it was Garcia-

Retamero and Rieskamp (2008, 2009) who showed that, for decision making tasks with

incomplete information, how strategies estimate missing information is essential to achiev-

ing high accuracy in decision tasks with missing cue values. In fact, the mechanism of

estimating missing information has a stronger impact on accuracy than the mechanism of

integrating the known information. In general there are three potential estimates: positive

(replace the missing cue value with a high cue value, assuming the missing information is

positively correlated with the criterion), negative (replace the missing cue value with a low

cue value, assuming the missing information is negatively correlated with the criterion),

or average (replace the missing cue value with the average value of the cue, assuming the

missing information is not correlated with the criterion). For both heuristic and analytic

strategies, matching the assumption about the relationship between missing information

and the criterion value is the key to achieving high accuracy.

In summary, TTB and other heuristics are more robust than analytic methods in envi-
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ronments with few known cue scores because of their reliance on only a few, important

cues, and their accurate assumptions about the correlation between missing information

and the environment.

2.3.3 Simpler Models with Less Training

Some researchers have argued that, while heuristics look simple on the surface, by using

simple models with fewer cues, they actually require complex calculations to apply, such

as ordering the cues or determining the relationship between the cues and the environment

(Juslin and Persson, 2002; Newell, 2005; see Hilbig, 2010, for a broader critique). It is

accepted that linear regression models and advanced machine learning algorithms are com-

plex models requiring large amounts of training data for good performance, but how much

complexity is inherent in the naturalistic decision making strategies and fast-and-frugal

heuristics? The two research programs have diverse but equally important responses to this

question.

Naturalistic Decision Making

The naturalistic decision making program would respond that yes, their strategies are based

on experience and expertise, but the difficulty is matched to their decision makers as the

strategies are simply formalizations of the cognitive processes people are already using.

For example, the simple-looking questions of “will [the plan] work?” and “are the cues

relevant?” within the models of recognition-primed decision making (Klein, 1993) and

recognition/meta-recognition (Cohen et al., 1996) certainly belie the complexity of the an-

swers. Expertise and experience are essential to forecasting potential results of implemen-

tation (will the plan work?) and knowing the relevance of the information provided by

different cues (are the cues relevant?). However, the need for experience and expertise is

not an exceptional requirement to perform the strategy effectively; they are the foundation

of the strategies themselves. The entire set of naturalistic decision making strategies is
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founded on the understanding of “how people make decisions in real-world contexts that

are meaningful and familiar to them” (p. 332, Lipshitz et al., 2001).

This does not mean that only experts with large amounts of prior data can use naturalis-

tic decision making strategies. In fact, one of the main successes of the naturalistic decision

making program has been to implement effective training programs to communicate these

strategies in order to help novices perform like experts. The most striking example comes

from a pair of studies which compared a standard military model of tactical decision mak-

ing to a proposed naturalistic decision making model (Ross et al., 2004; Thunholm, 2003).

In the standard model, three courses of actions are generated and evaluated, each are com-

pared, then the best is selected. In the naturalistic decision making model, the first course of

action generated is evaluated and used if satisfactory. If the course of action is not satisfac-

tory, then reevaluate the situation and generate a new course of action. In tests with military

commanders in the United States (Ross et al., 2004) and Sweden (Thunholm, 2003), the

naturalistic decision making model was described by the commanders as more natural and

comfortable than the military standard, reduced planning time by 30% and 20%, respec-

tively, and resulted in better courses of action. Why was the naturalistic decision making

strategy more effective and efficient, even though it was more ambiguous (and potentially

more complex) than the military standard? Because it was structured around the inherent

capabilities of experts now known to researchers: theses decision makers do not generate

and compare option sets, they use prior experience to rapidly categorize situations; they

rely on a synthesis of their experiences; and they do not await outcomes of gambles, they

actively shape events (Klein, 2008; Rasmussen, 1983; Hammond et al., 1987).

Fast-and-Frugal Heuristics

The fast-and-frugal heuristics program would agree with the naturalistic decision making

program’s response about the importance of experience and expertise, but the mathematical

and computational formalizations of fast-and-frugal heuristics have contributed direct re-
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sults showing that heuristics are fairly robust to errors resulting from smaller training data

sizes (Czerlinski et al., 1999; Hogarth and Karelaia, 2006; Martignon et al., 2008; Brighton

and Gigerenzer, 2012).

Katsikopoulos et al. (2010) directly compared two variants of TTB (with continuous

or binary cues) to the benchmark strategies of multiple linear regression (MR) and naı̈ve

Bayes (NB), in a range of training data sizes across 19 datasets. For every amount of

training data, ranging from 3 objects to 50% of the training dataset, TTB with continuous

cues outperformed NB and MR by an average of 5%. In fact, NB and MR with continuous

cues performed at the same predictive accuracy as TTB with binary cues. Furthermore,

with only seven objects, TTB with continuous cues achieved a performance close to the

maximum achieved by any model with 50% of the training dataset.

Further analysis by Katsikopoulos et al. (2010) showed that the success of TTB was a

result of the “robust beauty” of cue directions, the correlation between the cue value and the

criterion. Analysis of their data showed that cue order actually did not matter that much.

For small training data sizes of “two to eight objects, it [was] more likely that the three

most valid cues were ranked incorrectly than at least one of them [was] ranked correctly”

(p. 1261, Katsikopoulos et al., 2010). In total, the mean correlation between the accuracy of

TTB and the accuracy of the cue order, only achieved around 0.20 across all training data

sizes. Conversely, the mean correlation between the accuracy of TTB and the accuracy

of the cue directions, was over 0.60 for 2-object training datasets decreasing linearly to

approximately 0.35 for 10-object training datasets. They concluded that minute samples

do not represent the true cue order but do provide assistance with cue order and the more

informative cue direction.

Through comparison testing, the fast-and-frugal heuristics research program has es-

sentially concluded that although the complexity and flexibility of analytic models lead to

better fit of known data than heuristics, the models do not necessary lead to better predic-

tions of unknown data (p. 464, Gigerenzer and Gaissmaier, 2011). Martignon et al. (2008)
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showed that fast-and-frugal trees (FFTs) had similar performance in prediction tasks across

30 real-world datasets as compared to classification and regression trees (CART) and lo-

gistic regression (LR). The FFTs were shown to be 14% and 6% less accurate than CART

and LR in fitting tasks but only 2% and 4% less acurate in prediction tasks with 50% of

the training data. Brighton and Gigerenzer (2012) performed a similar comparison of TTB

to CART, a nearest-neighbor classifier, and Quinlan’s decision tree induction algorithm,

across 20 datasets. Within each dataset, TTB had consistently higher accuracies than other

strategies in prediction tasks with training data sizes ranging from just 5 objects to nearly

the complete training dataset.

2.4 Information-Based Decision Support

Decision support systems (DSSs) and decision tools assist humans in making decisions that

more closely resemble the decision one would make with complete and perfect informa-

tion. There are many aspects of DSS design and evaluation (e.g. Silver, 1988, 1990; Todd

and Benbasat, 1999; Feigh et al., 2012) and types of decision tools (e.g. Kleinmuntz and

Schkade, 1993; Edwards and Fasolo, 2001; Katsikopoulos and Fasolo, 2006). Therefore,

just as judgment and decision making research can be founded in the overcoming or em-

bracing of bounded rationality perspectives (Sec. 2.1), so can the prescriptions for how to

acquire or restrict information, referred to as ‘information-based decision support’ in this

dissertation.

The two types of decision support, normative and heuristic,2 mirror the two paradigms

of unbounded and bounded rationality research as shown in Table 2.1. Normative decision

support uses DSSs and decision tools to assist the implementation of normative decision

making strategies, debiasing the decision wherever possible. Conversely, heuristic deci-

sion support uses DSSs and decision tools to extend the capabilities already present within
2This dichotomy is an updated and recontextualized version of the two ‘schools of thought’ described

by (Stabell, 1987) and reviewed by (Todd and Benbasat, 1999). The dichotomy is also mirrored in the
new behavioral economics and policy perspectives of nudging (Thaler and Sunstein, 2009) versus boosting
(Grüne-Yanoff and Hertwig, 2016).
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Table 2.1: Comparison of normative and heuristic decision support methods.

Normative Support Heuristic Support

Examples Decision analysis: Bayes’ rule, ex-
pected utility, subjective expected
utility (Edwards and Fasolo, 2001);
Optimal experimental design (Nel-
son, 2005; Meder and Nelson,
2012; Nelson et al., 2010); Nudging
(Thaler and Sunstein, 2009)

Natural frequency formats; frugal
multiattribute models; fast-and-
frugal trees (Katsikopoulos and
Martignon, 2006); Boosting
(Grüne-Yanoff and Hertwig, 2016)

Pros Used when decision makers have
to justify decisions (Tetlock, 1983;
Tetlock and Kim, 1987); Analyz-
ing large datasets and decision tasks
(e.g. 3000 options) (Edwards and
Fasolo, 2001)

Easier to communicate, easy to
apply (Elwyn et al., 2001; Fis-
cher et al., 2002; Jenny, 2016) Us-
able with limited time, information,
and computational resources (Kat-
sikopoulos et al., 2008, p. 458)

Cons Necessary information often not
available (Green and Mehr, 1997;
Elwyn et al., 2001); Requires re-
liable assessments of probabili-
ties, attributes weights, and values
which are difficult to obtain (Kat-
sikopoulos and Fasolo, 2006)

Lack of accountability (Tetlock,
1983; Tetlock and Kim, 1987); In-
complete feedback to refine at-
tribute rankings, weights, and judg-
ments (Katsikopoulos et al., 2008,
p. 447 and 458)

decision makers, particularly during the implementation of heuristic decision strategies.

Importantly, as Katsikopoulos and Fasolo (2006) argue, these two perspectives should not

be seen as competitive but as synergistic, because they are each valid for different environ-

ments and decision makers.

Normative Decision Support

Normative decision support is exemplified by the three steps decision analysts perform

(Katsikopoulos and Fasolo, 2006, p. 960): “1) they help the decision maker assess the

probabilities of all possible outcomes of each available option; 2) they help assess the

weights of all attributes for each option; and 3) they help combine these judgments and

then suggest the option with the highest overall value.” Decision analysis extensively uses
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Bayes’ rule, expected utility theory, and subjective expected utility theory (Edwards and

Fasolo, 2001).

Most relevant to this dissertation, the formal information acquisition methods for judg-

ment and decision making have focused on normative Bayesian optimal experimental de-

sign (OED) models which provide a framework for evaluating the utility of queries (ques-

tions about which information to acquire). OED models focus on expected utility maxi-

mization (Savage, 1954) where utility is defined according to some quantification of the

value of information.3 Therefore, to identify which piece of information should be ac-

quired, the OED methods require reliable assessments of probabilities, cue weights, and

cue values.

The study of OED models have two main results. First, the most comprehensive com-

petitive test of various OED models by Nelson et al. (2010) showed that people’s choices

about which questions to ask prior to categorizing an object best matched probability gain,

whose utility function measures the improvement in the expected probability of making the

correct choice by acquiring that information (Baron, 1985). Nelson et al. (2010) were care-

ful to note that although they were the first to competitively test OED models, much more

work needs to be done to generalize the results to other contexts such as medical diagno-

sis or scientific-hypothesis testing. Second, the OED models have found wide adoption in

statistical modeling and designs of experiments. The measures of the value of information

have been leveraged to sequentially sample a design space in order to fit a model to data,

or to iteratively search for the optimum value of a design space (Jones et al., 1998).

Heuristic Decision Support

Heuristic decision support has been developed to address situations where the normative

decision analysis tools are not practical. These heuristic tools are exemplified by natural

frequency formats, frugal multi-attribute models, and fast-and-frugal trees. Specifically,

3 Nelson (2005, 2008) provides a review of various OED methods while Meder and Nelson (2012, Ap-
pendix, Table A1) provide a more comprehensive table of OED methods.
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each of these three tools, in order, address the psychological and environmental limita-

tions in each of the three tools required for normative decision tools (Katsikopoulos and

Fasolo, 2006, pp. 961–962): matching probability elicitation required for Bayes’ theorem

to better match human judgment; reducing effort required for calculating multi-attribute

utility; and making quick, transparent, and accurate decisions instead of maximizing sub-

jective expected utility, especially when the computation is intractable or the inputs cannot

be obtained.

Heuristic decision making strategies (and their judgment equivalents, Katsikopoulos,

2013) are versions of information acquisition methods, but only when two conditions are

satisfied: (1) the distribution of available information to be acquired is fixed and (2) the

decision maker or judge is starting the task without any previously considered information.

For example, take-the-best searches for the highest-ranked cue and selects the option with

the highest positive score on the cue (Gigerenzer and Goldstein, 1996). If that cue does

not discriminate, then the cue with the second-highest validity is evaluated to determine

discrimination, and so on.

However, due to these restrictive conditions, there are no formal heuristic information

acquisition methods relevant for DSS design, even given the large number of mathemat-

ical, computational, and human-subjects studies. DSSs are capable of violating the first

condition because they can restrict or guide information available to a decision maker – in

other words, the distribution of available information can be modified. The second con-

dition can be violated when some information is already known to the decision maker for

some reason, e.g., experience or learning. Therefore, there is a need for understanding

how information acquisition and restriction can can be performed in a heuristic manner:

modifying distributions of incomplete information to increase the performance of decision

making strategies without the need for probabilities, cue weights, and cue values.
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2.5 Summary

Synthesizing the literature related to decision theory and decision support has shown that

there are open questions related to how people make decisions with incomplete informa-

tion. It is clear that people, either by choice or by environmental causes, do not make

decisions using all possible or available information, and often heuristics can be quite ac-

curate in these environments. However, studies of decision making have only partially

answered how the incomplete information affects decision making accuracy: focusing on

total information alone, ignoring the varied distribution of information between options and

between cues. As a result, the only clear method for information-based decision support

(acquisition or restriction) is based on normative methods requiring accurate measures of

cue weights, probabilities, and cue values. Therefore, answering the two research ques-

tions of this dissertation will address significant gaps in the decision theory and decision

support related to incomplete information: 1) how do various distributions of incomplete

information affect decision making performance, and 2) how can information acquisition

and restriction methods be designed which do not require probabilities, cue weights, or cue

values?
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CHAPTER 3

GENERAL LINEAR MODEL OF JUDGMENT AND DECISION MAKING

Judgment and decision making are two separate perspectives within the paradigm of bounded

rationality. They are “motivated by different questions, forming two different ‘foci’ of the

emerging field... [proceeding] rather independently until relatively recently” (Goldstein

and Hogarth, 1997, p. 4). As defined by the research community (Table 3.1), judgment and

decision making have related but distinctly different research interests. Judgment is the pro-

cess of perceiving and understanding the environment (or the state of the world) whereas

decision making is the process of choosing a course of action from a set of options. One

of the most significant open questions within the domain of judgment and decision making

research is how to integrate the two (Katsikopoulos, 2013).

A survey of developments in judgment and decision making research shows that this

integration has already begun, but remains unfinished. In a review of the literature, Kat-

sikopoulos (2011) showed that lexicographic strategies (e.g. Take-the-Best, TTB) and

equal-weight strategies (e.g. Tallying) can be used for both characterizing a single option

(judgment) and choosing between options (decision making). For example, Tallying has

been referred to as both a judgment (Gigerenzer and Gaissmaier, 2011) and decision mak-

ing strategy (Payne et al., 1990) in various publications. The two heuristic strategies, TTB

and Tallying, have even been formally transformed into categorization trees and referred to

as fast-and-frugal trees (Martignon et al., 2008).

This chapter presents a general linear model that further conceptually and mathemat-

ically integrates judgment and decision making to make the argument that, from the per-

spective of an information process model, they are equivalent. Both judgment and decision

making require descriptions of cues that describe options (cue values) which can be known

or unknown (incomplete information) and therefore missing cue values must be estimated
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Table 3.1: Definitions of judgment and decision making.

Judgment Decision Making

Similar terms Classification, categorization,
generalization, perception

Preferential choice, inference,
judgmentc

Research
Questionsa

How do people integrate multiple,
probabilistic, potentially
conflicting cues to arrive at an
understanding of a situation, a
judgment? How accurate are
peoples judgments? Does
judgment improve with training
and experience? How does
human judgment compare with
actuarial prediction? How do
people identify relevant cues and
the proper weights to assign to
them? How does the nature of the
task environment affect learning
and performance?

How do people decide on a
course of action? How do people
choose what to do next,
especially in the face of uncertain
consequences and conflicting
goals? Do people make these
decisions rationally? If not, by
what psychological processes do
people make decisions? Can
decision making be improved?

Normative
Measures of
Performanceb

Linear and logistic regression,
classification and regression trees,
and Bayesian networks

Linear utility function

a Goldstein and Hogarth (1997, p. 4)
b Katsikopoulos (2013, p. 337)
c The language of judgment and decision making research can sometimes be confusing when pre-

sented as single names without definitions. Katsikopoulos (2011) defines judgment as the answer to:
is one option’s criterion value higher than the other? He then defines categorization as the answer to:
does a single option belong to one category or another? Therefore, what he refers to as judgment and
categorization, I refer to as decision making and judgment, respectively. The confusion hints at the
potential for equivalency between the two perspectives.

(estimates of missing information). The cue values are integrated based the sign of the cor-

relation between the cues and the criteria (cue direction) and the relative importance of the

cues (cue weights). The only difference between judgment and decision making within this

model is that judgment examines one option (or aspect of the environment) at a time and

outputs a single value describing that option whereas decision making compares judgments

of multiple options and outputs a choice of one option.1

1This perspective follows the work of Hogarth and Karelaia who used essentially the same probabilistic
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The general linear model can represent almost any combination of components for both

judgment and decision making: cue weights, utility functions, and estimates of missing in-

formation, for m-options, n-cues, and any distribution of incomplete information. Section

3.1 describes the general linear model and all of its variables and components – expanding

and reformulating the first publication of the model (Canellas and Feigh, 2016b). Section

3.2 shows how specific variants of judgment and decision making strategies can be repre-

sented using the general linear model. The section concludes the chapter by showing how

the algebraic general linear model can be formulated as a matrix equation form for fast

computational simulations along with a validation of two models of fast-and-frugal trees.

The contribution of this chapter is to provide a single, unifying framework for repre-

senting, modeling, and simulating a wide range of judgment and decision making strate-

gies. This framework is important because it provides three major benefits to the research

community. First, the general linear model allows for specificity in model selection and de-

scription. It is common to refer to strategies using proper names (Take-the-Best, Tallying,

etc.) which can leave ambiguity in how to appropriately represent and model the strategy,

and limit intuition as to how two strategies may or may not be different. This results in fur-

ther ambiguity as to whether various studies are even comparable to each other. Second, for

the engineers, designers, and decision analysts, this model enables the simulation of a wide

range of judgment and decision making strategies quickly and easily – and transparently –

in a single equation. Rather than implementing an algorithmic tool or specialty code, it is

an equation that can be looked-up and implemented. It can be used to perform sensitivity

studies on the robustness of overall designs or the interaction of components across ranges

of judgment and decision making strategies. Third, the simple, representative form can

link together human-subjects, computational, and mathematical studies completed by var-

ious research programs such as fast-and-frugal heuristics and naturalistic decision making

(Canellas and Feigh, 2016b).

models to study binary choice (2005a) and judgment between to two states (2007).
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3.1 The General Linear Model

The general linear model of judgment and decision making is:2

Ci =
n∑

j=1

wj · Uj

(
ej + (avi,j − ej)zi,j

)
(3.1)

Judgments and decisions are made within an environment which is represented by an

m-by-n matrix, A, of options and cues, respectively. Each entry of A is a cue value (avi,j)

representing the state of option i ε{1, ...,m} with respect to cue j ε{1, ..., n} in the cue’s

natural or original sensed units. The first distinction of the general linear model is made

between whether the task is to make a judgment or a decision. The goal of judgment is to

evaluate information about a single option (i = 1) characterized by n-cues to categorize

the option using the criterion, C. The goal of decision making is to evaluate information

about multiple options (i ≥ 2) characterized by n-cues to select the option that maximizes

the criterion, C.

Individual cue values can be known (zi,j = 1) or unknown (zi,j = 0). If known, the

operator uses the cue value (avi,j). If unknown, the operator must estimate the missing cue

values (ej). The cue values (either known or estimated) are then converted to cue scores

(asi,j , which have units useful for the formal judgment and decision making process) through

utility functions (Uj : (avi,j, ej) → asi,j). In some cases, the utility functions convert the

cue values to binary cue scores through cue directions (dj) and comparing cue values to

cutoff values (cj) with thresholds (∆j). Once the cue scores have been determined, they

are combined with cue weights (wj) to determine the option’s criterion, Ci.

The general form in Eq. 3.1 can model almost any combination of the components for

2 An alternate presentation of Eq. 3.1 uses the notation of Katsikopoulos et al. (2014), where a general
option is referred to as A instead of through a subscript i:

CA =

n∑
j=1

wj · Uj

(
ej + (avj (A)− ej)zj(A)

)
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both judgment and decision making shown in Table 3.2: cue weights, estimates of missing

information, and utility functions, form-options, n-cues and any distribution of incomplete

information. The subscripts of the variables in Eq. 3.1 are particularly important. The cue

weights (wj), estimates of missing information (ej), and utility functions (Uj) are defined

with respect to cues only, whereas there is a unique information state (zi,j) for each cue

value (avi,j).

The general linear model of judgment and decision making builds from the foundational

and ubiquitous mathematical model of judgment and decision making: the weighted utility

function (also referred to as the multi-attribute utility fuction, Raiffa, 1968). As shown

in Eq. 3.2, the weighted utility function calculates the criterion of a specific option, i, by

multiplying each cue’s weight, wj , by the utility of each cue value, Uj(a
v
i,j). This form

generally assumes that all cue values are known to the decision maker and leaves the utility

function undefined.

Ci =
n∑

j=1

wj · Uj(a
v
i,j) (3.2)
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Table 3.2: Definitions of the parameters of the general linear model and the alternative
names used in judgment and decision making literature.

Component (Alternate Name) Parameter Definition

Goal Objective of decision making

Criterion (option scores) C Utility of the option with respect to the
goal

Options (Alternatives, Objects) i Separate, discrete courses of action or
states of the world

Cues (Attributes, Predictors) j Descriptive dimensions of the options

Cue values avi,j State of the option with respect to the
cue in its natural units

Cues scores asi,j State of the option with respect to
the cue in units useful to the decision
maker

Cue weights (Validity) wj Relative quality of the cue to predict-
ing the criterion

Utility function Uj Converts the cue values to cue scores.

Information state zi,j Indicates whether the corresponding
cue value is known (1) or unknown (0)

Estimate of missing information ej The estimated cue value when the cue
value is unknown

Cue direction (Polarity) dj Sign of the correlation between the cue
scores and criterion

Cutoff value c The value of a cue used by utility func-
tions to covert cue values to binary cue
scores.

Thresholds ∆ Defines what difference between two
cue values is large enough to be mean-
ingfully different.

To account for the possibility of unknown information, the argument of the utility func-

tion is modified in Eq. 3.3 to include 1) a binary variable, zi,j , accounting for whether the

corresponding cue value is known (zi,j = 1) or unknown (zi,j = 0), and 2) a variable that

specifies the cue value estimated by the decision maker when actual cue value is uknown,
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ej (see Eqs. 3.4 and 3.5, respectively).

Ci =
n∑

j=1

wj · Uj

(
ej + (avi,j − ej)zi,j

)
(3.3)

Uj(zi,j = 1) = Uj(a
v
i,j) (3.4)

Uj(zi,j = 0) = Uj(ej) (3.5)

To account for the two most common variants of utility fuctions, the general linear

model in Eq. 3.3 is split into two forms. First, an ‘exact’ utility function assumes that

the cue values are already in usable form with the correct magnitudes and cue directions

(Uj(x) = x, Eq. 3.6). The ‘binary’ utility function in Eq. 3.7 converts the cue values to

binary cue scores represented by 1 and 0 (e.g. yes and no, or positive and negative). The

binary utility function accounts for: 1) cue directions (d), the sign of correlation between

the cue values and the criterion, 2) the cutoff values (c) that distinguish between the two

binary states, and 3) the threshold values (∆), the minimum difference between two cue

values to be meaningfully different.

Ci =
n∑

j=1

wj ·
(
ej + (avi,j − ej)zi,j

)
(3.6)

Ci =
n∑

j=1

wj ·H
[
dj

(
ej + (avi,j − ej)zi,j

)
− (dj · c) + ∆j

]
(3.7)

The following subsections provide more detail about the cue weights, the estimates of

missing information, and the utility functions.
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Table 3.3: Mathematical representations of the components of the general linear model.

Type Mathematical Representation

Cue weights: the relative importance of cues (wj)
Magnitude, ordered vj
Ordered, non-compensatory wj >

∑
k>j wk

None or equal 1

Estimates: Estimating missing information (ej)
Positive max asj
Average āsj
Median ãsj
Negative min asj

Utility function: maps the state of the option in its natural units to a general utility (Uj)
Exact 1
Binary, pre-specified cutoff, positive cue direction H[avi,j − (cj −∆)]
Binary, pre-specified cutoff, negative cue direction H[−avi,j + (cj + ∆)]
Binary, relative cutoff, positive cue direction H[avi,j − (max avj −∆)]
Binary, relative cutoff, negative cue direction H[−avi,j + (min avj + ∆)]

3.1.1 Cue Weights

The cue weights, wj , within a task measure the relative importance of each cue for predict-

ing the criterion. There are three aspects of cue weights (magnitude, order, and compen-

satoriness) and different judgment and decision making strategies use and ignore different

aspects. Magnitude is the numerical value of the importance of the cue (vj), typically on a

ratio scale of 0 to 1, although other scales are possible. There are many methods for getting

the magnitude of cue weights, from eliciting weights from human-subjects (e.g., Edwards

and Fasolo, 2001) to calculating weights from information about the cue values and cri-

terion scores (e.g., regression weights, ecological validity, success validity, or conditional

validity, as described in Martignon and Hoffrage, 2002). Ordered cues are ranked and eval-

uated from most to least important. Whereas order can be determined from magnitude,

some strategies are only concerned with order, not magnitude. Compensatoriness is the

measure of whether a high score on a lower-ranked cue can compensate for a low score on

a higher-ranked cue (Martignon and Hoffrage, 2002; Hogarth and Karelaia, 2006). If cues
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can compensate, the weights are defined as compensatory whereas if cues cannot compen-

sate, the weights are defined as non-compensatory.

3.1.2 Estimates of Missing Information

Garcia-Retamero and Rieskamp (2008, 2009) suggest that there are four ways that individ-

uals estimate missing information: positive (max asj), negative (min asj), using the average

of past observations for replacement (āsj), or using the most frequent observation of the

available information as a placeholder (ãsj). Figure 3.1 shows how the utility function maps

cue values to cue scores, but for scores that are unknown, assumes some standard cue

score. For strategies that use binary utility functions, positive and negative estimates are

typically represented as 1 and 0, respectively, because those are the upper and lower bounds

of the possible cue scores (asi,j). Furthermore, to represent the use of binary cues with three

states of cue scores, {0, 0.5, 1}, the average or median estimate (which is preferred to 0,

but less preferred than 1) should be set equivalent to the cutoff value, ej = cj . Appendix

A.1.1 describes how a specific form of non-compensatory cue weights (wj = 41−j) allows

strategies to use binary utility functions with three-state cue scores {0, .5, 1}.

3.1.3 Utility Function

Though the general form in Eq. 3.1 allows any utility function to be used, commonly stud-

ied strategies typically have one of two forms of the utility function: exact or binary. Exact

utility functions use cue values as the cue scores because the cue values were already in

units useful to the operator and the cue directions are already accurate in relationship to the

cue weights (Uj(x) = x). Binary utility functions transform the cue values into binary cue

scores such as 1 or 0, yes or no, and positive or negative.3

The binary utility functions use the Heaviside function, H(x) in Eq. 3.8, such that if

3Binary cue scores are commonly used within fast-and-frugal heuristics framework and heuristics have
been shown to perform particularly well in binary cue environments (Hogarth and Karelaia, 2005a,b; Kat-
sikopoulos, 2013).
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Figure 3.1: Example of how missing cue score information results in estimated cue scores.
The estimate of missing information, e, is set to 0.5.

the argument, x, is greater than 0, the result is 1; if the argument is less than 0 the result

is 0; and, if the argument is equal to 0, the result is 0.5. By modifying the argument as

shown in Eq. 3.9, and simplified in Eq. 3.10, the Heaviside function can account for 1) the

sign of correlation between the criterion and the cue (dj , referred to as cue directions, Kat-

sikopoulos et al., 2010, or cue polarity, von Helversen et al., 2013); 2) the cutoff value (c)

that distinguishes between the two binary states; and, 3) the threshold applied to determine

if the difference between two options is large enough to tell them apart meaningfully (∆j ,

Luan et al., 2014; also referred to as just noticeable differences, JND, Payne et al., 1990).

A visualization of this binary utility function in Fig. 3.2 shows how the three parameters
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Figure 3.2: Binary utility functions for negative and positive cue directions accounting for
cue values (av), cutoff value (c), and just noticeable differences (∆).

affect the relationship between the cue values and their utility (or cue score).

H[x− c] =


0, for x < c

0.5, for x = c

1, for x > c


(3.8)

Uj(x) = H
[
djx− dj(c− dj∆j)

]
(3.9)

Uj(x) = H
[
djx− djc+ ∆j

]
(3.10)

The cue directions split the binary utility function into two equations based on whether

the cue values positively correlate with the criterion score (d = 1) or whether the cue values

negatively correlate with the criterion score (d = −1), as shown in Table 3.4. Knowledge

of cue directions represents familiarity or experience with a task, such as a driver knowing

that increased traffic tends to correlate with increased time to destination – a positive cue

direction. In a simulation study, Katsikopoulos et al. (2010) showed that the ordinary infor-

mation of correct cue directions in small samples can increase the accuracy of TTB more
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Table 3.4: The four variants of the binary utility function along two dimensions: positive
or negative cue directions, and prior or relative cutoff values.

Prior (c = cj) Relative (max \min(avj ))

Positive (d = 1) H[avi,j − (cj −∆j)] H[avi,j − (max avj −∆j)]
Negative (d = −1) H[−avi,j + (cj + ∆j)] H[−avi,j + (min avj + ∆j)]

than having the correct rank-order of cues, even though TTB assumes the cues are searched

in rank-order. In a human-subjects study of judgment and decision making, von Helversen

et al. (2013) showed that participants with knowledge of cue directions mastered an envi-

ronment faster (fewer learning tasks required, better learning performance, and better task

performance) than participants without knowledge of the cue directions. Given these recent

results, it is, perhaps, no surprise that cue directions can even be used as the foundation for

a linear model for judgment and decision making by setting the weights equivalent to the

cue directions (wj = 1 or −1). These unit-weight models (e.g., Dawes’s Rule and Tally-

ing) have been shown to be efficient and effective in many environments (Gigerenzer et al.,

1999; Martignon and Hoffrage, 2002).

The cutoff value, c, can be specified prior to the decision task or relative to other cue

values in the decision task. When defining a cutoff value prior to the decision task (cj),

the value should be set by an analysis of the environment. However, there are methods

for analytically defining the cutoff value from cue value data (Slegers et al., 2000): the

median-split model which uses the median of the cue values (ãvj , and is by far the most

commonly used method), and the δ model which calculates the cutoff value by algorithmi-

cally determining when a cue discriminates.

Alternatively, the cutoff value can be set relative to the other cue values being consid-

ered so that cues values are mapped to a cue score of 1 only when they are the best, either

the maximum or minimum cue values depending on the cue direction. These relative-cutoff

binary utility functions have been largely studied with respect to lexicographic strategies

(e.g., Tversky, 1969; Czerlinski et al., 1999; Katsikopoulos et al., 2010; Luan et al., 2014).
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One of the most interesting results showed that, across 19 environments, TTB with rela-

tive cutoff values significantly outperformed TTB with prior-specified (median-split) cutoff

values, and even multiple regression and naı̈ve Bayes models with continuous cues (Kat-

sikopoulos, 2010).

The threshold value, ∆, is used to describe what difference between two cue values is

large enough to tell them apart meaningfully. For example, within a driving task, a differ-

ence in distance of one mile or less between two options may not be meaningful (∆ = 1),

or a difference of five minutes in travel time may not be meaningful (∆ = 5). A thresh-

old value is a fundamental part of satisficing strategies known as lexicographic semiorders,

which search in rank order and only stop to make a decision when the difference between

the options exceeds the threshold (e.g., Tversky, 1969; Bettman et al., 1990; Kohli and Je-

didi, 2007; Luan et al., 2014). The most common threshold value used in simulation studies

has been zero – often because when ignored in modeling and simulation, the threshold is

effectively zero. But in the first systematic analysis of thresholds, across 39 real-world

task environments, Luan et al. (2014) showed that a threshold of zero actually resulted in

the best inferences for relative-cutoff, binary utility strategies. The implication of a zero

threshold in relative cutoff strategies is that the strategies truly follow the lexicographic

strategy generally described as take the best and ignore the rest.

3.1.4 Categorizing or Choosing

While the calculation of the criterion makes no distinction between judgment and decision

making, the two task types diverge from each other once the criterion is known. Decision

making strategies calculate the criterion of two or more options (i ≥ 2) and then select the

option with the maximum criterion. The first version of the decision making goal function,

GDM in Eq. 3.12, is the simplest form: identify the option i which maximizes the criterion,

Ci. The second version of the decision making goal function accounts for the potential

requirement that in order to distinguish between two options, a threshold, ∆′, must be
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exceeded (e.g. for lexicographic semi-orders described in Sec. 3.1.3). If the goal function

returns multiple elements, typically one option is selected randomly from within the set of

elements or the threshold is disregarded such that the option with the absolute maximum

criterion is selected.

GDM = argmaxi(Ci) (3.11)

GDM = argmaxi

(
H
[
Ci −

(
max(Ci)−∆′

)])
(3.12)

Judgment strategies, on the other hand, use the goal function, G, to covert the criterion

of a single option (i = 1) to a category that describes the state of the environment. For

judgment, G is related to the utility functions described in Sec. 3.1.3. If an exact utility

function is used, there is no general method for mapping the criterion value to a category

and possibly the criterion can be used as the value itself. However, for binary utility func-

tions, G can leverage an understanding of the cue weights to assign a unique category to

each unique criterion value. The Heaviside function causes the criterion for any option to

be a sum of the cue weights for two-state cue scores {0, 1} and a sum of the cue weights

and halves of cue weights for three-state cue scores {0, 0.5, 1}. Therefore, the number of

unique criterion values generated by the judgment strategy is equivalent to the maximum

possible categories.

Two major types of goal functions can be specified based on the type of cue weights

for binary utility functions. Judgment strategies with non-compensatory cue weights can

categorize every combination of cue scores for both two-state and three-state cue scores, 2n

and 3n categories, respectively. Judgment strategies with equal cue weights can categorize

n+ 1 and 2n+ 1 for two-state and three-state cue scores, respectively.

Figure 3.3 provides categorization trees for non-compensatory cue weights with two

cues and shows how there are unique criterion values and therefore, unique categories, for
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Figure 3.3: Categorization tree representation of the general linear model for judgment
with non-compensatory cue weights and either two cue score states {0, 1} or three cue
score states {0, 0.5, 1}.

each combination of cue scores. The exponential relationship between cues and categories

is a result of the geometric series used to calculate cue weights. Every cue weight is greater

than the sum of all lower-ranked cues (except at the limit of infinity). Therefore, as the cate-

gorization progresses down through each cue, the potential criterion values is incrementally

limited to non-overlapping ranges. The count of unique categories possible for both non-

compensatory and equal cue weights for given number of cues are provided in Table 3.5

and a complete description of categories for three cues is provided in Appendix A.1.2.
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Table 3.5: Count of unique categories possible for both non-compensatory and equal cue
weights, for a given number of cues.

2-state binary function: {0,1} 3-state binary function: {0,0.5,1}
Cues (n) Non-Compensatory Equal Non-Compensatory Equal

n 2n n + 1 3n 2n + 1

1 2 2 3 3
2 4 3 9 5
3 8 4 27 7
4 16 5 81 9
5 32 6 243 11
6 64 7 729 13
7 128 8 2187 15
8 256 9 6561 17
9 512 10 19 683 19

10 1024 11 59 049 21

3.2 Modeling and Simulation

3.2.1 Modeling Decision Making

Given the multitude of decision making strategies that have been studied, there is typically

confusion as to what ways various strategies are the same or different (e.g. Tallying, Kat-

sikopoulos et al., 2010, versus Equal-Weighting, Payne et al., 1988). In other cases, when

reading it can be difficult to know exactly how to model the strategy being described as au-

thors may not specify what estimates or thresholds are being used and just reference a strat-

egy by name, e.g. Take-the-Best. The general linear model provided in Sec. 3.1 has 4 pa-

rameters that, when defined, can fully specify a judgment or decision making strategy in ad-

dition to the goal function.4 Table 3.6 contains the specific parameters for six well-studied

decision making strategies: Take-the-Best (TTB), Minimalist, Tallying (TAL), Weighted-

Additive (WADD), Multiple Regression (MR), and Equal-Weighting (EW). However, fol-

4The cue values, (av), and incomplete information (z) are given by the environment. The cue directions
can either be assumed to be correct or generated from a sample of the environment (Katsikopoulos et al.,
2010), but in either case are not a formal part of specifying a strategy. Similarly, the threshold value (∆) is
typically not specified and assumed to be zero (Luan et al., 2014).
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lowing the footnotes of the table shows that there is still ambiguity in the definitions. The

following equations are the mathematical form of each of the strategies:

CTTB =
n∑

j=1

41−j ·H
[
dj · avi,j · zi,j − dj · ãj + ∆j

]
(3.13)

CMIN =
n∑

j=1

41−rand(j) ·H
[
dj · avi,j · zi,j − dj · ãj + ∆j

]
(3.14)

CTAL =
n∑

j=1

H
[
dj · avi,j · zi,j − dj · ãj + ∆j

]
(3.15)

CWADD =
n∑

j=1

vj ·H
[
dj

(
āj + (avi,j − āj)zi,j

)
− dj · ãj + ∆j

]
(3.16)

CMR =
n∑

j=1

βj ·
(
āj + (avi,j − āj)zi,j

)
(3.17)

CEW =
n∑

j=1

(
āj + (avi,j − āj)zi,j

)
(3.18)

3.2.2 Modeling Judgment

Through the use of specific cue weights and goal functions, the general linear model is a

linear classifier capable of calculating a score, or criterion, based on many components (cue

weights, utility functions, incomplete information, estimates of missing information, cue

directions, thresholds, and cutoff values). Specifically, the general linear model can repre-

sent classification trees with up to 3 cue values (or edges) per cue (or node) as indicated

in Sec. 3.1.4. While this general linear model is not a method for generating classification

trees, it is capable of representing a vast amount of classification trees. Therefore, if a

judgment problem can be formulated as a classification tree, then this general linear model

can likely handle it.

These types of judgments do not explicitly account for the more complex methods

of judgments as described in domains such as naturalistic decision making theory (Klein,
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Table 3.6: Parametrization of well-studied judgment and decision making strategies with respect to the general linear model.

Strategy Take-the-Best(TTB)a, Minimalistc Tallying (TAL) d

Determ. Elim. by Aspects (DEBA)b

Utility function (U) Binary Binary Binary
Cue weights (w) Non-CF, orderede: 41−j Non-CF, random: 41−j Equal: 1
Estimatesg (e) Negative: 0 Negative: 0 Negative: 0

Cutoff values (c) Prior-medianf: ãj Prior-medianf: ãj Prior-medianf: ãj

Strategy Weighted-Additive (WADD)h Multiple Regression (MR)i Equal Weighting (EW)d

Utility function (U) Binary Exacta Exact
Cue weights (w) Ecological validitye: v Regression Equal: 1
Estimatesg (e) Average: āj Average: āj Average: āj

Cutoff values (c) Prior-medianf: ãj N/A Prior-medianf: ãj
a TTB was introduced by Gigerenzer and Goldstein (1996) and has been one of the most commonly studied strategies (e.g. Katsikopoulos

et al., 2010; Mata et al., 2007; Dieckmann and Rieskamp, 2007; Hogarth and Karelaia, 2006; Martignon and Hoffrage, 2002).
b Deterministic Elimination by Aspects (DEBA) was introduced by Hogarth and Karelaia (2005b) and is equivalent to TTB (Katsikopou-

los, 2013).
c Minimalist was introduced by Gigerenzer and Goldstein (1996) as a form of TTB in which the cues are ordered randomly (e.g. Kat-

sikopoulos et al., 2010; Katsikopoulos and Martignon, 2006; Hertwig and Todd, 2003; Martignon and Hoffrage, 2002).
d Introduced by Dawes and Corrigan (1974) and Dawes (1979) as a single idea that cue weights could be equal and effective. TAL and

EW have evolved to be sometimes interchangeable and sometimes not (e.g. Canellas et al., 2015; Katsikopoulos and Martignon, 2006;
Katsikopoulos et al., 2010; Gigerenzer and Goldstein, 1996; Payne et al., 1990). In this table are split by their use of binary or exact utility
functions. Exact still typically converts all cue scores to the same range to make the equal-weighting meaningful.
e Ecological validity is commonly used for ordering TTB cues and as the cue weights for WADD weighted additive, though others can

be used (Martignon and Hoffrage, 2002).
f Medians are the standard cutoff value for binary functions – sometimes referred to as ‘dichotomized by median-split’ (e.g. Gigerenzer

and Goldstein, 1996; Czerlinski et al., 1999; Hogarth and Karelaia, 2006) but relative cutoff values have also been used (Katsikopoulos
et al., 2010).
g Garcia-Retamero and Rieskamp (2008, 2009) examined both WADD and TTB with all four variants of estimates of missing information

(positive, negative, average, and ignore).
i Katsikopoulos (2010) used multiple regresssion with both binary and exact (continuous) cue scores.
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Table 3.7: List of matrices for the matrix form of the general linear model of judgment and
decision making.

Variables Elements Rows Columns Description

A avi,j m n Cue values
W wj 1 n Cue weights
E ej 1 n Estimates of missing information
Z zi,j m n Information states
D dj 1 n Cue directions
C cj 1 n Cutoff values
∆ ∆j 1 n Threshold values
X 1 m 1 Transformation matrix

2008). For example, the well-regarded recognition-primed decision making model in which

options are generated sequentially, then judged as to their likely effectiveness, will require

the integration of the judgment and decision making models into a cascading decision

model – an important area of future work described in Sec. 10.2.2.

3.2.3 Simulating Judgment and Decision Making

The major benefit of the algebraic form of the general linear model is that it provides

transparency with regards to what strategy and environment is being modeled. However,

just as important, if not more important, is that the algebraic form can be converted into

matrices so that the criterion scores can be calculated for any scale of m-options and n-

cues using matrix multiplication. Table 3.7 describes the seven matrices of parameters that

characterize judgment and decision making strategies. The eighth matrix, X , is used solely

to transform the matrices of size 1× n into matrices of size m× n.

Two matrix equations represent the general linear model: Eq. 3.19 for strategies with

exact utility functions from Eq. 3.6, and Eq. 3.20 for strategies with binary utility functions

from Eq. 3.7. Two notes about the mathematical notation: 1) the �-symbol represents the

Hadamard product which is the element-wise multiplication of two matrices, and 2) the H

in Eq. 3.20 represents the Heaviside function as described in Sec. 3.1.3.
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C = [XE + (A−XE)� Z]W T (3.19)

C =

[
H
[
XD �

(
XE + (A−XE) ◦ Z

)
−X (D � C) + X∆

]]
W T (3.20)

3.2.4 Example: Simulating Fast-and-Frugal Trees

To show the ability of the general linear model to model and simulate strategies, this sub-

section simulates two fast-and-frugal trees (FFTs, a type of judgment and classification

tree) and shows that the statistical results are equivalent to an online benchmarking tool,

the Adaptive Toolbox Online.5 FFTs were selected as a representative example for three

reasons. First, the Adaptive Toolbox Online is a freely available tool maintained by the

Center for Adaptive Behavior and Cognition who helped popularize FFTs. Therefore,

readers themselves can validate the results of the general linear model. Secondly, FFTs

have become a popularly studied tool for decision support (e.g. Jenny et al., 2013; Luan

et al., 2011). These simple classification trees have been shown to be quick to use, easy

to remember, and accurate across many domains: medical (Green and Mehr, 1997; Fischer

et al., 2002; Katsikopoulos et al., 2008), military (Keller and Katsikopoulos, 2016), and

financial (Aikman et al., 2014). Lastly, as of this dissertation, there has been no general

mathematical model of FFTs6 – so this is the first presentation of a complete mathematical

form for these increasingly popular decision support tools.

Formally, an FFT is “a decision tree that has n + 1 exits, with one exit for each of the

first n−1 cues and two exits for the last cue” (Luan et al., 2011, p. 320). The two exemplar

5The Adaptive Toolbox Online is maintained by the Center for Adaptive Behavior and
Cognition (ABC) at the Max Planck Institute for Human Development. The website
(http://www.dotwebresearch.net/AdaptiveToolboxOnline) provides a graphical user interface to easily
build fast-and-frugal trees and analyze their performance.

6Appendix A.1.3 has a description of the the two-parameter formalization of FFT’s by Martignon et al.
(2008). Their formalization is limited in that they do not allow cue directions and categorizations to be defined
independently, restrict the number of categories to two, and do not provide a way to account for incomplete
information.
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Figure 3.4: Two exemplar fast-and-frugal trees for categorization.

FFTs that will be simulated are provided in Fig. 3.4. The task is to categorize a sample

of 1,473 cases of married women as either using (1, or signal) or not using (0, or noise)

contraceptives by examining three cues: the number of children ever born (numerical, from

0 to 12), the wife’s education (categorical, from 1-low to 4-high), and whether the wife was

now working (binary, 0-yes, 1-no).7 The cues are searched in the same order in both FFTs

(A and B), but other aspects change: the cutoff values, whether no’s or yes’s lead to exits,

whether no’s or yes’s lead to noise or signal. The general linear model can fully specify both

FFTs as shown in Table 3.8 with no modifications or assumptions about the relationship

between the cue scores and the cue directions.

Both FFT’s were modeled using Adaptive Toolbox Online and using the general linear

model to show that their performances were equivalent (as shown in Table 3.9); thus vali-

dating a significant portion of the general linear model. FFT performance is characterized

using measures from signal detection theory (Luan et al., 2011; Martignon et al., 2008;

7More information about the dataset is provided in Appendix A.1.4.
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Table 3.8: Parameter values for two exemplar fast-and-frugal trees.

Variables Example A Example B

A [n child, edu, work] [n child, edu, work]
W [1, 0.25, 0.0625] [1, 0.25, 0.0625]
E [1, 1, 1] [1, 1, 1]
Z [1, 1, 1; 1, 1, 1] [1, 1, 1; 1, 1, 1]
X [1; 1; 1] [1; 1; 1]
D [-1, 1, -1] [1, -1, 1]
C [1.5, 2.5, 0.5] [2.5, 1, 0.5]
∆ [0, 0, 0] [0, 0, 0]
S [0, 1, 1] [0, 1, 1]

Table 3.9: Performance measures for both example FFT’s showing identical results be-
tween the online tool (ATO) and the general linear model (GLM).

Example A Example B
Statistics ATO GLM ATO GLM

True Positive 673 673 87 87
True Negative 280 280 757 757
False Positive 349 349 132 132
False Negative 171 171 497 497
Frugality 2.003 2.003 1.849 1.849

Jenny et al., 2013). The first four statistical measures represent the error matrix (or confu-

sion matrix) which count the number of cases for which the FFT’s correctly or incorrectly

identified the signal or noise. From these counts, essentially all other performance metrics

of FFT’s can be calculated. The last measure, frugality, is not a measure of signal detection

theory, but was introduced to measure how ‘fast-and-frugal’ the FFT would be in practice

(Martignon et al., 2008). The frugality of an FFT is the mean number of cues, across all

options, that are used to make a judgment.

3.3 Representing Experience, Effort, and Time Pressure

The previous sections have developed representative mathematical models of many judg-

ment and decision making strategies, however, no component was explicitly labeled expe-
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rience, effort, or time – three very important characteristics of judges and decision makers.

Nevertheless, there are techniques for modeling and representing these contexts, as de-

scribed in the following subsections.

3.3.1 Experience

There are two ways to represent experience in the general linear model: first, when select-

ing the components or strategies used to represent the operator, and second, when gener-

ating values for components. One very general synthesis of the FFH literature on strategy

selection is that experts or decision makers with high time pressure, high information ac-

quisition costs, information overload, or ill-structured environments tend to make decisions

matching heuristic strategies (relying on fewer, more important, cues). Novices or decision

makers with low time pressure and low information acquisition costs tend to make deci-

sions matching normative strategies (relying on many cues, e.g. a linear weighted additive

model). For more thorough summaries of the FFH literature see Katsikopoulos (2011),

Gigerenzer and Gaissmaier (2011), and Todd et al. (2012).

Beyond strategy selection, models and simulations approximate levels of experience

and expertise by using different proportions of datasets, which represent the environment,

when training the models. A novice may have very little experience with the environment

and thus will base their judgments or decisions on only a few examples, whereas an expert

will use information from many prior examples to make judgments and decisions. The

relative level of expertise (or the proportion of the dataset used to train models) affects

the types and amount of error in defining components of the models: the cue weights

(wj , e.g. Gigerenzer and Goldstein, 1996; Czerlinski et al., 1999), cue directions (dj , e.g.

Katsikopoulos et al., 2010; von Helversen et al., 2013), estimates of missing information

(ej), cutoff values (cj), and thresholds (∆j). Therefore, experts are usually assumed to be

“properly calibrated” in a modeling sense (Katsikopoulos et al., 2014, p. 155):

“The decision maker... knows how to code the attributes [cues] aj so that
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the weights wj are positive and is able to order the wj according to their mag-

nitude. These assumptions are particularly plausible when the decision maker

is familiar with the choice.”

3.3.2 Time and Effort

The literature of judgment and decision making support the bounded rationality perspec-

tive that people make decisions without gathering or processing all possible information.

As described in Sec. 2.2, the most salient cause for making decisions with incomplete infor-

mation is that not all information was available either because it was difficult to discern or

not provided. These difficulties can create high information acquisition costs that are lim-

ited by time, money, cognition (effort), or some other resource. Typically, the limitations

on time and effort are often used as proxies for each other in empirical and computational

studies.

Limits on time and effort has been shown to affect the types of components and strate-

gies used by judges and decision makers. Rieskamp and Hoffrage (2008) empirically iden-

tified that when time pressure was high in terms of both opportunity cost and individual

decision limits, people used heuristics as opposed to normative decision strategies. This

confirmed previous findings that people focus their attention on more important informa-

tion, and thus use a more selective information search (e.g. Payne et al., 1988; Maule,

1994; Rieskamp and Hoffrage, 1999). Therefore, limits on time and effort, in addition to

expertise, tends to result in the use of heuristic strategies that focus on a few, important

cues.

Direct computational simulations of strategy performance with time or effort constraints

have typically counted the number of elementary information processes to perform a strat-

egy or its associated time (Payne et al., 1990). For example, through human-subjects

studies, Bettman et al. (1990) estimated that it required 2.23 seconds to multiply a sin-

gle cue value by a cue weight and therefore a lexicographic strategy (e.g. TTB) would
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require an average of 8.7 seconds to analyze a 2-option, 2-cue decision task while a norma-

tive weighted additive strategy would require 18.4 seconds. Related computational studies

tracked the amount of time being used by strategies as they progressed through each deci-

sion and stopped the strategy when the time limit was reached (Payne et al., 1993). While

this dissertation does not present a method for incorporating measures of elementary infor-

mation processes into the general mathematical form, it is an important avenue of future

work.

Outside of using direct time and effort estimations, mathematical models can approxi-

mate limits on time and effort as their functional equivalent: incomplete information. As

the available time and effort decreases, less information can be processed. Similar to stud-

ies of high time pressure and limits on effort, studies have shown that heuristics can perform

well in environments with low total information (Martignon and Hoffrage, 2002; Garcia-

Retamero and Rieskamp, 2009). These synchronous results support the general thesis of

the FFH program that people use the bounds on rationality such as lack of time and lack

of information as a mechanism for simple, robust, and accurate strategies that adapt to

the environment and ecology (Gigerenzer and Goldstein, 1996; Gigerenzer et al., 1999;

Gigerenzer and Gaissmaier, 2011; Todd et al., 2012).

3.4 Summary

The general linear model presented in this chapter overcomes many of the limitations in-

herent to previous studies of naturalistic decision making, heuristic decision making, and

weighted-utility models of decision making. The general linear model is transparent as it

allows for specificity in model selection and environments at the component-level. The gen-

eral linear model is representative as it can approximate expertise and various heuristic and

naturalistic strategies. The general linear model is simple as it can be looked-up and used

without specialty codes. Lastly, the general linear model supports applied work because

it can model unique combinations of components without being restricted to previously-
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studied or established models of decision making.

The general linear model is not without its limitations. The primary limitation is caused

by the same mechanism that makes the general linear model fast and transparent: each

option is evaluated independently, even in decision making tasks. Therefore, in decision

tasks with multiple options it is not clear how to incorporate the measures of effort or

time into the model, nor how to account for certain types of decision strategies that rely

on comparisons between options (satisficing and elimination by aspects). Additionally,

there is no set of monotonically decreasing weights that mimic the compensatory strategy

of Take Two (Dieckmann and Rieskamp, 2007) or two-cue confirmation (Karelaia, 2006).

Future work will focus on how to address these limitations and how to develop a method

of statistically fitting decision makers in real-time.
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CHAPTER 4

MODELS, MEASURES, AND MEDIATORS OF DECISION MAKING

PERFORMANCE

Decision makers are situated within an environment that shapes both the decision task and

their decision making strategy. Based on an information process model of decision making,

this chapter introduces a new theoretical model in Sec. 4.1 of how context (characteristics

of the environment and strategies) determines decision making accuracy in decision tasks

with incomplete information. The rest of the chapter follows the structure of the model

which serves as a reference list of all the measures (Sec. 4.2) and mediators (Sec. 4.3) of

decision making accuracy that will be measured in the following computational (Chap. 5-7)

and human-subjects studies (Chap 8).

4.1 Models

A synthesis of the decision theory and behavioral decision making literature enables the

construction of a basic model of contextual determinants of decision making accuracy as

shown in Fig. 4.1. Environmental and task parameters, the decision making strategy, and

incomplete information all affect decision making accuracy. An extensive amount of lit-

erature has been focused on how strategy and environment interact to affect accuracy in

decision tasks with complete information in the decision task (Czerlinski et al., 1999; Hog-

arth and Karelaia, 2005b, 2007; Katsikopoulos et al., 2010; Hogarth and Karelaia, 2005a,

2006; Katsikopoulos, 2011; Gigerenzer and Gaissmaier, 2011; Todd et al., 2012). A much

smaller number of studies have focused on decision making with incomplete information,

but they are also limited by the singular focus on amount of information, not the distribu-

tion of incomplete information (see Sec. 2.3.2, Martignon and Hoffrage, 2002; Payne et al.,

1990; Garcia-Retamero and Rieskamp, 2008).
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Figure 4.1: Model of contextual determinants of decision making accuracy based on prior
literature.
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Figure 4.2: Model of contextual determinants of decision making accuracy based on the
research presented in this dissertation.
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The prior literature provided useful methods of how future studies could be designed to

analyze distributions of incomplete information but their results do not have direct impli-

cations for two research questions governing this dissertation: how does incomplete infor-

mation affect decision making performance, and how can decision support tools increase

accuracy by acquiring and restricting information without probabilities, cue weights, and

cue values?

The new model of contextual determinants of decision making accuracy in Fig. 4.2

was constructed to better explain the interaction of incomplete information and decision

support on the performance of decision makers than prior literature. By comparing the two

models, one can see the incorporation of new measures and mediators. The new model –

and its supporting research in this dissertation – makes three main contributions to current

decision theory.

First, the model introduces two new measures of decision making accuracy in Sec. 4.2:

full information accuracy (FIA) and achievement. Full information accuracy is the ac-

curacy of the strategy with full information. Achievement is the relative accuracy of the

strategy with incomplete information scaled to be bounded by the minimum accuracy of

random decisions and the maximum accuracy of full information accuracy. Achievement

was introduced to separate the maximum achievable accuracy controlled by the fit of the

environment and the decision making strategy (the focus of most prior studies), away from

the effects of incomplete information on performance.

Second, the model separates the context variables that are innate to the environment

and task (environmental and task parameters) from those which are under the control of the

decision maker or can be addressed by decision support methods or training (strategy and

incomplete information). This separation is mostly used for framing purposes rather than

functional, but it is an important perspective. For decision makers in uncertain environ-

ments, they may not have control over, or even understand the nuanced characteristics of

their environment and task. What they do have control over is what strategy they use and
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what information they want to integrate to come to a decision. These are the two aspects in

which training and decision support can augment the skills of the decision makers: strategy

selection and assessing incomplete information.

Third, the model introduces two new measures in Sec. 4.3 to more completely charac-

terize distributions of incomplete information within a decision task: option imbalance and

cue balance. Option imbalance measures the difference in amount of information between

the most known option and the least known option. Cue balance counts the number of cues

which have known values for each option.

4.2 Measures

Decision making performance can be viewed through the perspective of cost and benefit:

the benefit is making the decision that maximizes the criterion value whereas the cost is the

effort, time, money, or other resource expended to make the decision. Accuracy is clearly

displayed in the contextual model of decision making in Fig. 4.2, however, this section will

also focus on how effort and time are measured in computational and empirical studies.

4.2.1 Accuracy

The two new measures of decision making accuracy enable us to decompose the overall

accuracy of a strategy into measures of accuracy based on how well the strategy fits the

environment (full information accuracy, F ) and how well the strategy performs within the

limits of the fit (achievement, G). These two additional terms are inspired by the under-

lying logic of the lens model of judgment in Fig. 4.3 introduced by Brunswik (1943) and

quantified by Hammond and his colleagues (Hammond, 1955; Hammond et al., 1964). The

lens model attempts to describe the relationship between the environment and the behavior

of organisms in the environment. The lens model uses a linear regression between the data

used by the judge and the actual criterion values to compute a correlation matrix of all the

cues and the two dependent variables. In decision making, the overall accuracy is equiva-
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Figure 4.3: Lens Model with labeled statistical parameters (Cooksey, 1996; Bass, 2002;
Rothrock and Kirlik, 2003).

lent to the lens model’s achievement index, r, which is the correlation between the actual

criterion and the judge’s predicted criterion – thus, r has a maximum value of 1. The lens

model equation for calculating the achievement index is presented in Eq. 4.1:

ra = GReRs + C
√

1−R2
e

√
1−R2

s (4.1)

Just as a focus on overall accuracy within decision making limits the explanation power

of decision analysis, the lens model accounts for the fact that achievement index alone does

not explain why a judge’s performance may change in different contexts. The achievement

index is partially a product of how consistent the judge is in executing his or her strategy

(cognitive control, Rs), how predictable the environment is with a linear model (environ-

mental predictability, Re), and how much linear knowledge the judge has about the en-

vironment (task knowledge, G). The following example from Bass (2002, p. 27) helps

explain the terms’ interactions:
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“To take an example, a particular human judge may demonstrate an achieve-

ment of (only) 0.75 on a traffic conflict prediction task. As the relationship

above indicates, it could be that the judge’s knowledge of the environment

is limited (G = 0.75) but the environment is fully predictable (Re = 1.0)

and the judge is perfectly consistent in executing his or her judgment strategy

(Rs = 1.0). On the other hand, the judge might have perfect linear knowledge

and cognitive control but be working in an environment that is less than fully

predictable (Re = 0.75). Finally it could be the case that the environment is

fully predictable and the judge has perfect knowledge but makes judgments

inconsistently (Rs = 0.75).”

Just as the achievement index in the lens model is governed by the interaction of en-

vironmental predictability, cognitive control, and task knowledge, so too decision making

accuracy with incomplete information is governed by the analogous components of full in-

formation accuracy (F ), random decision accuracy (R), and achievement (G) as shown in

Fig. 4.2 and Eq. 4.2. The accuracy of a strategy is generally bound by its full information

accuracy as an upper limit and by random decision accuracy (R) as a lower limit. Full

information accuracy measures accuracy of the decision making strategy with complete in-

formation (or knowledge) of the decision task. Full information accuracy approximates the

fit of the strategy to the environment. Random decision accuracy measures the degenerate

strategy of selecting at random. This is analogous to cognitive control as it is the default

action when a decision maker cannot actively make a decision.

The relative values of F and R can be grouped into three pairings based on their im-

plications for decision support and incomplete information: First, if F is higher than R,

then more information should generally increase accuracy and a decision support system

should help the decision maker execute the strategy appropriately. Second, if F is very

close to R, then than no matter how much more information is provided or how well the

decision maker executes the strategy, there will be little gain in accuracy compared to just
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selecting at random. Third, if F is lower than R, then the strategy is mismatched to the

environment and helping the decision maker execute the strategy better will only serve to

decrease overall accuracy.

G =
A−R
F −R

(4.2)

Achievement (G), measures the decision making accuracy between the minimum ac-

curacy of random selection (R) and maximum accuracy of full information accuracy (F ).

The measure describes how much of the maximum possible accuracy was achieved by the

decision maker in the task with incomplete information. Achievement is a useful construct

because it accounts for the limitations on performance due the fit of the strategy to envi-

ronment (F ) and the lack of the ability to make a decision (R).

The example in Fig. 4.4 shows how achievement can help differentiate between the

effects of the strategy fit to the environment and the effects of incomplete information.

Assume that there are two strategies (X and Y) used within a two-option decision task (R =

50%), with two different full information accuracies such that strategy X (F (X) = 95%) is

better fit to the environment than strategy Y (F (Y ) = 65%). These two different strategies

are applied to two specific distributions of incomplete information (1 and 2). The difference

in accuracy between the two distributions for both strategies is 5%, which may make it

seem like neither strategy would prefer one distribution to the other. However, through the

perspective of achievement, it is clear that Strategy Y strongly prefers Distribution 1 (67%)

to Distribution 2 (33%).

4.2.2 Effort and Time Required

Effort and time measure the total use of cognitive resources or time required to complete

the decision making or judgment task (Payne et al., 1990). Both can be a measure and

a mediator of decision making performance. As a measure of performance, judges and

decision makers often have the goal of minimizing the amount of time and effort required
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Figure 4.4: Description of accuracy and achievement.

to make a judgment or decision. As a mediator of performance, perception of how much

effort or time is required to perform a strategy is used to feed back into the strategy selection

process (Todd and Benbasat, 1999).

In human-subjects and computational studies, time and effort are used as proxies for

each other because time is more easily measured in human-subjects studies whereas effort

is more easily measured in computational studies. In human-subjects studies, measuring

time required is as simple as measuring the time from the presentation of the task to the

decision. Computational studies have used elementary information processes (EIPs) to

estimate the mental effort required to perform various strategies (Payne et al., 1988, 1990;

Mata et al., 2007; Payne et al., 1996). Based on estimates of time required for each EIP

(as shown in Table 4.1), one can then calculate the total time required to perform a strategy

(Bettman et al., 1990). However, even though EIPs had been used in these referenced

studies, none explicitly stated how EIPs were mapped to the strategies.
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Table 4.1: List of elementary information processes (EIPs) with time estimates (Bettman
et al., 1990; Payne et al., 1990).

Time (s) Elementary Information Process Description

1.19 Read a single decision option’s value for an cue into working
memory. Value is defined as the measurable quantity of cue in its
standard units.

Estimate a decision option’s score on an cue. Score is defined
as the estimated utility (desirability) of the quantified cue value.

0.84 Add two cue scores together.

0.32* Calculate the size of the difference of two decision options
on an cue; equivalent to the number of subtraction signs in any
calculation.

0.09* Compare two numbers (cue scores, decision option scores, etc.)
to determine greater than, less than, or equal; equivalent to the
mathematical operators <, >, and =.

2.23 Weigh one cue score by its cue weight; equivalent to the number
of multiplication signs required in any weighting calculation.

1.80 Eliminate a decision option from consideration.

1.80 Choose the preferred decision option and end the process.

Move to the next element or cue of the task environment.
*Not significantly different from zero at p < 0.05 (Bettman et al., 1990)

The measure of effort for a strategy within a scenario is the total count of EIPs required

to choose a decision option. If necessary, it can be assumed that each EIP requires the same

amount of time or mental effort and a decision maker does not place greater importance

on one EIP versus another. This assumption that all EIPs require the same amount of

time or mental effort should not greatly affect the conclusions because simulation studies

have shown that assuming all EIPs require equal time and effort leads to almost identical

conclusions as studies without the assumption (Payne et al., 1988, 1996).
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4.3 Mediators

4.3.1 Strategy

To achieve the goal of choosing the option with the maximum criterion, decision makers

employ strategies which are defined as the overall methods, or sequences of options, for

searching through a decision problem space (Payne et al., 1993). Due to the variety and

number of published strategies for decision making, this dissertation examined a subset

of well-studied strategies to span the range from analytic to heuristic decision making:

Weighted Additive (WADD), Equal-Weighting (EW), Tallying, Take Two, and Take-the-

Best (TTB).

To characterize this broad range of decision making strategies, we leverage the component-

strategy general linear model (GLM) of decision making strategies from Chap. 3 as shown

in Table 4.2. The GLM constructs strategies by combining variations of three components:

utility functions, cue weights, and estimates of missing information. Utility functions de-

scribe how the strategy converts cue values describing the environment into cue scores with

units useful for decision making. Cue weights describe how strategies measure the relative

importance of each cue for predicting the criterion. Estimates of missing information de-

scribe how strategies estimate the cue value when it is unknown. As the process of each

strategy is described below, the variations of the components will be specified.

WADD makes decisions by first calculating the criterion of each option by multiplying

each of the cue weights by their respective cue scores and then selecting the option with

the highest criterion. WADD uses compensatory cue weights meaning that it does not have

any restrictions on what the cue weights should be, allowing high scores on lower-weighted

cues to potentially compensate for low scores on higher-weighted cues. When cue values

are unknown, WADD estimates the cue score as the average of typical cue scores. Since

we assume that the strategies do not have any prior information about the distribution of

the cue scores, the estimate is 0.5 – the expected value of the binary attribute scores. If the
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Table 4.2: Description of the five selected decision making strategies using the general linear model of decision making in Chap. 3.

Strategy Weighted Additive
(WADD)

Equal-Weighting
(EW) Tallying Take Two Take-the-Best

(TTB)

(Operationalization) (Payne et al., 1990) (Payne et al., 1990)
(Gigerenzer and
Goldstein, 1996)

(Karelaia, 2006;
Dieckmann and

Rieskamp, 2007)

(Gigerenzer and
Goldstein, 1996)

What type of cue
scores are used? Binary Binary Binary Binary Binary

How to estimate
missing information? Average (0.5) Average (0.5) Negative (0) Negative (0) Negative (0)

What types of cue
weights? Compensatory Equal Equal Compensatory Non-Compensatory

Describes what type
of decision maker?

Design decisions
and multi-attribute
decision making

(Park, 2004);
Complex underlying
processes (Hogarth
and Karelaia, 2007;

Einhorn et al.,
1979); Novice

decision makers
(Garcia-Retamero
and Dhami, 2009)

When cue weights
are difficult to

estimate, predict, or
be agreed upon
(Dawes, 1979);

Cues are from “from
diverse and

incomparable
sources” (Dawes,

1979, p. 574)

Similar to EW;
Examples include

eye exams for
detecting stroke

(Kattah et al., 2009)
and avoiding

avalanche accidents
(McCammon and

Hägeli, 2007)

Young adults (Mata
et al., 2007); Low

information
redundancy

(Dieckmann and
Rieskamp, 2007)

Time stressed
decision making
(Rieskamp and

Hoffrage, 2008);
Consumer choice
(Kohli and Jedidi,

2007); Expert
decision making

(Garcia-Retamero
and Dhami, 2009)
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criterion scores are equal, then WADD randomly selects between the equivalent options.

EW uses a process identical to WADD except that it does not use cue weights, thus the

cue weights are all equivalent (Dawes and Corrigan, 1974; Dawes, 1979). The criterion of

each option is calculated by adding all of the cue scores together and selecting the option

with the highest criterion score.

Unlike WADD and EW, the heuristic strategies of Tallying, Take Two, and TTB cat-

egorize the binary cue scores as positive if 1, negative if 0, and unknown cue values are

estimated as negative (0). The positive or negative categorization can be conceptualized as

a judgment of that cue score as being good or bad, respectively.

Tallying makes decisions by counting the number of positive cues and selecting the

option with the most positive cues (Gigerenzer and Goldstein, 1996). If two or more options

are equivalent in the number of positive cues, Tallying randomly selects between the tied

options.

TTB searches through cues in rank-order, stops when one cue discriminates, then se-

lects the option with the positive cue score (Gigerenzer and Goldstein, 1996). For 2-option

decision tasks, an individual cue discriminates when one option has a positive cue score and

the other option have a negative or unknown cue score. The non-compensatory cue weights

represent the fact that once a cue discriminates, the decision will not change regardless of

the information processed for lower-ranked cues (Martignon et al., 2008). Ultimately, if no

cue discriminates, then TTB selects randomly between the options.

Take Two uses an identical process as TTB with a modification requiring that two cues

discriminate in favor of the selected option (Karelaia, 2006; Dieckmann and Rieskamp,

2007). Though this may seem to be a small difference, it is significant as it allows for lower-

ranked cues to compensate while TTB is strictly non-compensatory. In both instances

where Take Two processes were introduced (Karelaia, 2006; Dieckmann and Rieskamp,

2007), they were “developed to overcome the descriptive shortcomings of TTB,” (Hogarth

and Karelaia, 2007, p. 735), i.e., the experimental results showing that, in some cases,
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people seek information beyond the first discriminating cue.

4.3.2 Environmental Parameters

Environmental parameters are commonly studied as mediators of decision making, both

in simulation and empirical studies.1 There is no particular definition of what is and is

not an environmental parameter. Therefore, in this dissertation, environmental parameters

are defined as intensive characteristics of the decision task: properties of the environment

that do not change based on the knowledge or lack of knowledge of the cue scores within

an individual decision task. For example, redundancy is an environmental parameter that

measures the amount of correlation between the cues. Neither the number of cues known

within a specific decision task, nor the values of the cues within a specific decision task,

affect the value of redundancy for a decision making environment.

Environmental parameters are of particular interest to the study of judgment and deci-

sion making in the perspective of bounded rationality. Todd et al. (2012) introduced eco-

logical rationality to explain that within the specific ecologies (environments) that judges

and decision makers are placed in, they are often rational - though they may not follow the

tenants of normative, unbounded rationality. This focus on environmental parameters has

led to the identification of many parameters that affect judgment and decision making per-

formance; for example, the number of cues (e.g. Payne et al., 1990; Hogarth and Karelaia,

2006), predictability (e.g. Karelaia and Hogarth, 2008), redundancy (e.g. Dieckmann and

Rieskamp, 2007; Hogarth and Karelaia, 2007), variability (e.g. Payne et al., 1990; Hogarth

and Karelaia, 2005a; Gigerenzer and Gaissmaier, 2011), and distribution (e.g. Martignon

and Hoffrage, 2002; Hogarth and Karelaia, 2005a, 2006, 2007).

So much research has been completed that the environmental parameters listed in this

section can be considered well studied. The following subsections define each of the envi-

ronmental parameters studied in this dissertation, along with a summary of how they have

1This dissertation uses the term environmental parameters (Hogarth and Karelaia, 2007) while other works
have used the term environmental structures (Gigerenzer and Gaissmaier, 2011; Todd et al., 2012).
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been shown to affect decision making performance of the five strategies from Sec. 4.3.1.

(For reviews of environmental parameters, see Karelaia and Hogarth, 2008; Hogarth and

Karelaia, 2007; Todd et al., 2012.)

Cues

The number of cues describes the size of the decision task, in conjunction with the number

of options. Isolating the specific effect of number of cues on the performance of deci-

sion making strategies is difficult due to the correlation with other environmental parame-

ters. For example, mathematical analysis shows that if one assumes a random distribution

of cue weights, as the number of cues increases, the likelihood that the cue weights are

non-compensatory decreases (matching the cue weight structure of heuristics like take-the-

best) and the likelihood that the cue weights are compensatory increases (matching the cue

weight structure of analytic strategies like equal weighting or weighted additive) (Hogarth

and Karelaia, 2006). As discussed in Sec. 4.3.2, matching the distribution of cue weights to

the strategy is a strong positive influence on decision making accuracy. In a meta-analysis

comparing the effects of various environmental parameters on the accuracy of judgment

models in 249 environments from 86 articles, the number of cues had the least explanatory

power as compared to redundancy, cue weights (variability and distribution), functional

form in the ecology (predictability), expertise, and learning (Karelaia and Hogarth, 2008).

So although many simulation studies evaluate a range of numbers of cues, they rightfully

caveat their interpretations of decreased or increased accuracy by discussing distribution di-

rectly (Hogarth and Karelaia, 2006) or other related parameters such as variability (Payne

et al., 1990, 1993).

With respect to the studies in this dissertation, the decision tasks will only include 3 to

5 cues. This range is used in order to reduce analytical complexity and because it is seen as

“sufficient to understand what people can actually do within limited information processing

constraints” (Hogarth and Karelaia, 2006, p. 246).
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Distribution

Distribution of cue weights is categorized into three groups (Hogarth and Karelaia, 2007):

non-compensatory (non-CF), when the cue weights are ordered in magnitude the weight

of each attribute exceeds the sum of those smaller than it (Martignon and Hoffrage, 2002);

equal-weighted (equal-CF), all cue weights are equivalent; and compensatory (CF), all

other combinations of cue weights. Distribution of cue weights has been extensively stud-

ied so the conclusion is fairly straightforward: when the distribution of cue weights in the

environment matches the representative cue weights of the strategy, the strategy fits the

environment, resulting in high accuracy (Hogarth and Karelaia, 2007; Payne et al., 1993;

Karelaia and Hogarth, 2008; Hogarth and Karelaia, 2005a, 2006). Thus, TTB and Take Two

have the best accuracy in non-compensatory environments, EW and Tallying have the best

accuracy equal-weighted environments, and WADD has the best accuracy in compensatory

environments.

Redundancy

Redundancy is the average of the absolute values of correlation coefficients between the

cues (Hogarth and Karelaia, 2005a; Karelaia and Hogarth, 2008). High levels of redun-

dancy (0.50) indicate that the cues are strongly correlated, facilitating the interchangeability

of cues which could contribute to improving the reliability of heuristic decisions because

information can be reduced without significant reductions in accuracy (Karelaia and Hoga-

rth, 2008; Dieckmann and Rieskamp, 2007). Low levels of redundancy (0.10) are also pos-

sible. Simulations by Dieckmann and Rieskamp (2007) showed that TTB, Take Two, and

NB (similar to WADD) had higher accuracy in environments with low redundancy than in

environments with high redundancy. More specifically, Hogarth and Karelaia (2007) used

simulations to show that in compensatory (CF) environments TTB performs best when re-

dundancy is high; however, in non-compensatory (non-CF) environments, TTB performs

best when redundancy is low.
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Note that this measure of redundancy, due to the absolute values, does not account for

whether cues are positively or negatively correlated. These respective cue correlations have

been termed ‘friendly’ and ‘unfriendly’ environments for heuristics because positively cor-

related cues facilitate the replacement of cues whereas negatively correlated cues (Shanteau

and Thomas, 2000). Though friendly and unfriendly environments will not be studied in

this dissertation, the general consensus is that environments can be considered unfriendly to

heuristics using fewer cues only if there are negative correlations among equally weighted

attributes (Fasolo et al., 2007).

Variability

Variability of cue weights is the difference between the maximum and minimum cue weights

(Hogarth and Karelaia, 2005a; Gigerenzer and Gaissmaier, 2011; and referred to as disper-

sion by Payne et al., 1990). For normalized cue weights, low dispersion is typically around

0.10 while high dispersion is 0.50 or higher.2 Hogarth and Karelaia (2005a) showed that in-

creasing variability increases the accuracy of a single cue heuristic (similar to TTB), equal

weighting, and multiple linear regression. However, as stated in the description of cue

weight distributions, the effects of variability are overtaken by the match of the strategy’s

cue weights to the environment’s cue weights.

Predictability

Environmental predictability (Re, hereafter referred to as predictability), from the lens

model, measures the linear relationship between the cues and the criterion: how predictable

is the criterion with an optimal linear model? Specifically, predictability is calculated as

the R2 value of the linear least-squares regression model for the dataset with the criterion

as the dependent variable and the cue scores as the independent variables. Most of the

2While trends are easily comparable across different studies, when comparing specific values of variability
is it important to account for the types of cue weights being used. Ecological validity weights are bounded
from 0 to 1, whereas the Goodman-Kruskal rank correlation weights are a rescaling of ecological validity
weights to bounds of -1 to 1 (Martignon and Hoffrage, 2002).
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research using predictability comes from the study of judgment with the general consen-

sus that accuracy across all strategies is lower in nonlinear environments (Karelaia and

Hogarth, 2008).

4.3.3 Task Parameters

As opposed to environmental parameters, task parameters characterize individual decision

tasks without respect to the overall environment or intensive features. Two important pa-

rameters will be examined in the computational studies: dispersion and dominance.

Dispersion

Dispersion describes the difference in cue values between options. The simulation uses

the mean absolute deviation about the mean (MADM) to calculate this context feature in

accordance with Payne et al. (1990) who calculated the dispersion between varying cue

weights. Though Payne et al. (1990) did not mention the exact method for calculating

dispersion, MADM is a standard measure of statistical dispersion and can scale to any

number of options and cues, as long as there ratio scale cue values.

Dispersion was only used the computer study in Chap. 5 with a cue value scale between

0 and 100. Therefore, three levels of dispersion were categorized based on the value of

MADM: 1) Low dispersion occurs when two decision options are, on average, very similar

across all four decision cues (MADM ≤ 5); 2) Medium (5 < MADM < 15); and 3) High

(15 ≥ MADM) dispersion occur when two options are noticeably different. The low and

high dispersion levels corresponded to the exemplars used in Payne et al. (1990).

Dominance

Dominance is defined as whether one option has a greater cue value for every cue than the

other option. There are three categories of dominance for a two-option decision: 1) Strong

dominance occurs when one option has a better cue value for every cue than the other
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option; 2) Weak dominance occurs when one option has a better cue value for at least cue

and never has a worse cue value than the other option; and 3) Non-dominance occurs when

each option has at least one cue value which is better than the other option. In contrast

to dispersion, which is a holistic comparison between two decision options, dominance

compares the individual cue values between options.

4.3.4 Incomplete Information

Decision making with incomplete information refers to unknown cue values within the

decision task (Martignon and Hoffrage, 2002; Garcia-Retamero and Rieskamp, 2008). In-

complete information is often caused by time pressure, high information acquisition costs,

too much information, or incomplete information in the environment (see Sec. 2.2). Prior

to the research presented in this dissertation, the only direct measure of incomplete in-

formation in traditional decision theory was total amount of information (Martignon and

Hoffrage, 2002; Garcia-Retamero and Rieskamp, 2008; for an exception in consumer and

marketing research see Kivetz and Simonson, 2000). To better describe the distribution of

incomplete information two new measures have been introduced: option imbalance (OI)

and cue balance (CB).3 The two measures of information balance, option imbalance and

cue balance, measure whether there is equal distribution of information between options

and within cues, respectively.

As described in Chap. 3, each decision task is made up m options, each with n cues.

An individual option is represented as i and cue as j. The matrix of known and unknown

cue scores is denoted Z such that if option i’s j th cue score is known to the decision maker

zi,j = 1 whereas zi,j = 0 indicates that option i’s j th cue score is unknown to the decision

maker. The counts for the three measures (total information, option imbalance, and cue

balance) are calculated within the brackets of Eqs. 4.3-4.8 and shown in Fig. 4.5. Due to

the variation in maximum values for each measure resulting from the changing number of

3Option imbalance is new name for information imbalance (Canellas et al., 2014, 2015; Canellas and
Feigh, 2017). Cue balance is a new name for complete attribute pairs (Canellas and Feigh, 2014, 2017).
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Decision Tasks

Measures of Incomplete Information

C D E

BA

Figure 4.5: Measures of distributions of incomplete information.

cues, the measures are calculated as percents of the maximum values to enable comparison.

There are two versions of each of the three measures, with the versions separated by

the number of cues used to convert the count into a ratio. Fixed versions of the measures

divide the counts by the total number of cues in the task, n. Relative versions of the

measures divide the counts by the number of cues for which there is a known cue for

any option, n′. The relative measures are introduced to give a more specific understanding

of the distribution of incomplete information. For example, in a decision task with one

cue, two options, and all information known, the fixed and relative cue balance is 100%. If

you add one more cue with no known information, the fixed cue balance decreases to 50%

while the relative cue balance stays at 100% (see decision task B in Fig. 4.5).
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Total Information

Total information (TI), as calculated in Eq. 4.3, measures a scale of how much information,

or data, the decision maker has regarding the decision event. Total information is varied by

changing the number of cue values known for each decision option. 100% total information

indicates that the decision task is fully known by the decision maker whereas 0% total

information indicates that the decision maker has no information about the decision task.

Relative total information (TI’) only considers the total information relative to the cues

that have some known information. Previous work is in agreement that more information

generally increases accuracy of decision making strategies though the amount of increase is

dependent on the strategy (Martignon and Hoffrage, 2002; Garcia-Retamero and Rieskamp,

2008).

TI =

[
m∑
i=1

(
n∑

j=1

zi,j

)]
· 100

m · n
(4.3)

TI ′ =

[
m∑
i=1

(
n∑

j=1

zi,j

)]
· 100

m · n′
(4.4)

Option Imbalance

Option imbalance (OI), as calculated in Eq. 4.5, measures the difference in total infor-

mation between the option with the most information and the option with the least infor-

mation.4 Option imbalance is similar to total information but captures the distribution of

information for situations in which more information is known about one option than an-

other (e.g. one is a default option). 100% option imbalance indicates that the decision

maker has full information about one option and no information about the other; whereas

0% option imbalance indicates that the decision maker has equal information about both

4In publications prior to this dissertation, option imbalance was referred to as information imbalance
(Canellas et al., 2015; Canellas and Feigh, 2017). Option imbalance is now the preferred name because it
specifies the term as a measure of information imbalance between options.
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options. Relative option imbalance (OI’, Eq. 4.6) measures the option imbalance only with

respect to the cues that have some information known.

OI =

[
maxi

(
n∑
j

zi,j

)
−mini

(
n∑
j

zi,j

) ]
· 100

n
(4.5)

OI ′ =

[
maxi

(
n∑
j

zi,j

)
−mini

(
n∑
j

zi,j

) ]
· 100

n′
(4.6)

Cue Balance

Cue balance (CB), as calculated in Eq. 4.7, measures how many cues have all values known

for all options.5 100% cue balance indicates that every cue has a known cue score for every

option, whereas, 0% cue balance indicates that no cues have a known cue score for every

option. Due to the cue-wise information search that many strategies use (e.g. TTB and

Take Two), cue balance measures how many fully informed comparisons of options these

strategies are able to make.

CB =

[
n∑

j=1

1n

(
m∑
i=1

zi,j

)]
· 100

n
(4.7)

CB′ =

[
n∑

j=1

1n

(
m∑
i=1

zi,j

)]
· 100

n′
(4.8)

4.4 Summary

This chapter introduced a conceptual model of how context influences the decision making

accuracy of decision tasks with incomplete information. The model separates the context

variables that are innate to the environment (environmental parameters) from those which

5In publications prior to this dissertation, cue balance was referred to as complete attribute pairs (Canellas
and Feigh, 2014, 2017). Cue balance is now the preferred name as it compliments option imbalance and
because the term can scale to more than two options (‘pair’ was a specific reference to two-option decision
tasks).
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are under control of the decision maker or which can be addressed by decision support tools

or training (strategies and incomplete information). The conceptual model guides the rest

of this dissertation by listing measures and mediators of accuracy that will be examined

in the following computational (Chap. 5-7) and human-subjects studies (Chap. 8). The

introduction of two new measures of accuracy (full information accuracy and achievement)

and the two new measures of incomplete information (option imbalance and cue balance)

will help the following studies better explain how incomplete information affects decision

making performance and what heuristic information acquisition and restriction methods

can be defined to support better performance.
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CHAPTER 5

COMPUTER SIMULATION STUDY 1: ACCURACY, EFFORT, AND

DISTRIBUTIONS OF INCOMPLETE INFORMATION

The results in this section are an integrated version of the the following articles: Canellas

et al., 2014; Canellas and Feigh, 2014; and Canellas et al., 2015.

How does incomplete information affect decision making accuracy? How are strategies

differentially affected by changing distributions of incomplete information? Can informa-

tion acquisition and restriction methods which only rely on knowledge of the distribution

of incomplete information increase decision making accuracy? These are the motivating

questions of this dissertation. The three studies discussed in this chapter and the next two

(Chap. 6 and Chap. 7) address these questions through computer simulations which rep-

resent the performance of decision making strategies in a variety of environments with

incomplete information while measuring accuracy, effort, and task and environmental pa-

rameters (for a comprehensive list of measures and mediators, see Chap. 4). The results

raised further questions that could only be addressed with a human-subject study which is

reported in Chapter 8.

The purpose of this computational study is to document the required effort and obtain-

able accuracy when using different decision strategies and to understand the influence of

the distribution of incomplete information on the two measures. The goal is to apply this

understanding in the design of decision support systems (DSSs) that are capable of adapt-

ing to the differential needs of each decision strategy. As stated by Todd and Benbasat

(1999, pp. 370), “it is clear that ‘engineering’ effort considerations as a conscious part of

DSS design is central to the notion of guiding the decision maker towards the objective of

‘working smarter’ [yet the question remains as to] how can such guidance be provided?”
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In particular, this study aims to improve understanding of how DSSs can provide guidance

for information acquisition or restriction.

Decision makers are known to commonly operate under scenarios of incomplete infor-

mation due to lack of available information or limited resources (Sec. 2.2), yet simulation

studies (Payne et al., 1990) and empirical studies (Rieskamp and Hoffrage, 2008) compar-

ing or identifying decision strategies have focused explicitly on time pressure. Studying

incomplete information outside of time pressure enables the identification of previously

unstudied relationships between different measures of incomplete information and the ac-

curacy of, and amount of effort required when using, selected decision making strategies.

To this end, a simulation engine has been developed that allows for evaluation of specific

decision strategies as independent modules (see Fig. 5.1). The simulation measures ac-

curacy and effort in accordance with cost-benefit (effort-accuracy) framework simulations

(Payne et al., 1993), while also incorporating two new measures of distribution of incom-

plete information within a decision task: option imbalance and cue balance (see Sec. 4.3.4).

The purpose of identifying these new relationships is to use them to suggest novel DSS

information acquisition and restriction measures for decision makers with incomplete in-

formation. Building upon the literature describing how DSSs may acquire or restrict the

information search of decision makers (Todd and Benbasat, 1999; Silver, 1990; Nelson,

2005), this simulation engine has the capability to simulate information acquisition and re-

striction by approximating information search patterns. Following a series of distributions

of incomplete information with increasing information approximates information search

patterns or potential methods for acquisition, and following a series of distributions with

decreasing information approximates methods for restricting information. Previous work

studying time pressure cannot be leveraged in DSS design in this way, because DSSs cannot

easily alter many of the factors that produce time pressure.
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Decision Making Strategies

Weighted-Additive Model of 
Reality (WADD-REAL)

Correct Option: 2

Incomplete Information: 
Total Information: 6 (75%)

Cue Balance: 2 (50%)
Option Imbalance: 2 (50%)

WADD
Chosen Option: 1

EIPs: 34

Take-the-Best
Chosen Option: 2

EIPs: 11

Tallying
Chosen Option: 2

EIPs: 25

EW
Chosen Option: 1

EIPs: 26

1 4

5

6

7

REALITY DECISION MAKER

3

Environmental Parameters
Dispersion: 12.5 (Medium)
Dominance: Non-dominant

2

a1 a2 a3 a4

O1 ? ? 80 40

O2 40 60 40 60

a1 a2 a3 a4

O1 0 0 1 1

O2 1 1 1 1

a1 a2 a3 a4

O1 40 20 80 40

O2 40 60 40 60

0.4 0.3

Information Availability
(28 Combinations)

Decision Task
(88 Scenarios)

Cue Values
(48 Combinations)

0.2 0.1 0.4 0.3 0.2 0.1Weights: Weights:

Figure 5.1: Model of the simulation engine for decision making with incomplete infor-
mation used in this study: (Box 1) Combinations of cue values are generated represent-
ing a unique instance of the environment. From this set of environmental cue values, the
two environmental parameters of dominance and dispersion are calculated (Box 2) and the
weighted-additive environmental model identifies the correct option (Box 3). (Box 6) The
decision maker receives the decision task in which some of the environmental values are
unknown (Box 4). This information availability could represent sensor status or reliability.
(Box 5) From the information availability (Box 4), the measures of incomplete informa-
tion are calculated. (Box 7) This decision task is input into each decision making strategy
which output their chosen option and the elementary information processes (EIPs) so that
accuracy and effort can be measured.

5.1 Method

The focus of this study is to determine how three measures of incomplete information (to-

tal information, option imbalance, and cue balance) and two task parameters (dominance

and dispersion) impact the accuracy of and effort required when using two heuristic (take-

the-best, TTB; and Tallying) and two analytic strategies (weighted-additive, WADD; and

equal-weighting, EW). The study also investigated how the mechanisms of the strategies

themselves affect obtainable accuracy and required effort. To this end, a computational

simulation was used to evaluate the decision making strategies under identical scenarios.

The decision task simulation has three variables: decision strategy, cues scores, and distri-

bution of incomplete information.
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5.1.1 Scenario Generation

Each cue for each option had two possible information availability levels (cue value known,

1, or cue value unknown, 0) and four possible cue values (20, 40, 60, and 80). With these

two factors and associated levels a full factorial DOE was created which resulted in 28×48

(16, 777, 216) decision tasks for each decision strategy.

5.1.2 Measuring Accuracy

For this study, correct decisions were determined by the option with the higher criterion

determined by the weighted additive model of decision making without incomplete in-

formation using cue weights, w = {0.4, 0.3, 0.2, 0.1}, referred to as WADD-REAL. It is

acknowledged that the research on ecological rationality which stresses that the correct

strategy for defining accuracy depends on the task environment, and our future work will

investigate alternative methods for selecting the correct decision. However, for this initial

investigation, which is based on generic tasks with no objectively correct option, WADD-

REAL is a justifiable definition of a correct decision. Reasons for selecting WADD-REAL

include its use as the criterion for multi-attribute decision accuracy within the cost-benefit

framework upon which this study is founded (Payne et al., 1993), and that “true” utility

functions for assessing accuracy of decision strategies are still commonly assumed to be

a linear function of the attributes (Katsikopoulos, 2013). Accuracy, therefore, is defined

as the percentage of scenarios in which a decision making strategy chooses the correct

decision.

5.1.3 Measurement of Effort

Within decision making, effort can be characterized as the total use of cognitive resources

required to complete the task (Payne et al., 1990). As described in Sec. 4.3, the compu-

tational forms of the decision strategies enable them to be decomposed into elementary

information processes (EIPs). Table 5.1 adapts the nine EIPs to each decision making strat-
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Table 5.1: Mapping of elementary information processes (EIPs), which approximate effort,
to the individual decision making strategies.

WADD/EW TALLYING TTB

1) Read [#1] all 8
cue values into the
simulation (8 EIP).

1) Read [#1] all 8 cue val-
ues into the simulation (8
EIP).

1) Read [#1] two cue val-
ues into the simulation (2
EIP).

2) Estimate [#2]
the cue scores from
the cue values, using
unity function or set to
50 if unknown (8 EIP).

2) Estimate [#2] the cue
scores from the cue values, us-
ing unity function. Do not es-
timate if cue values are un-
known (0 EIP if 0 total infor-
mation, 8 EIP if 8 total infor-
mation).

2) Estimate [#2] the cue
scores from the cue values, us-
ing unity function. Do not es-
timate if cue values are un-
known. (0 EIP to 2 EIP).

3) Weight [#9]
each cue score by the
provided cue weights
(8 EIP). EW does not
perform this step.

3) Compare [#5] all
known cue scores to the cut-
off score of 50 to determine
positive or negative cues. (0
EIP to 8 EIP).

3) Compare [#5] the
known cue scores to the cut-
off score of 50 to determine
positive or negative cues (0
EIP to 2 EIP).

4) Add [#3] the
weighted cue scores
together for each op-
tion to get two option
scores (8 EIP).

4) Add [#3] the number of
positive scores for each op-
tion. (0 EIP to 8 EIP).

4) Compare [#5] the cue
scores of each option (1 EIP).

5) Compare [#5]
the criterion for each
option to determine
which is larger (1
EIP).

5) Compare [#5] the crite-
rion for each option to deter-
mine which is larger (1 EIP).

5A) If one option has a pos-
itive cue and the other has
a negative or unknown cue,
then Choose [#8] the op-
tion with the positive cue (1
EIP).

6) Choose [#8]
the decision option
with the higher cri-
terion OR choose at
random if criteria are
equal (1 EIP).

6) Choose [#8] the deci-
sion option with the higher
criterion OR choose at ran-
dom if criteria are equal (1
EIP).

5B) If otherwise, repeat 1-
5 process with next highest
weighted cue. If no more
cues, Choose [#8] at ran-
dom (1 EIP).

Not all EIPs from Sec. 4.2.2 are used due to the nature of the strategies.
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egy. EIPs have been used to measure mental effort in both empirical and simulation studies

of decision making (Payne et al., 1990; Bettman et al., 1990; Mata et al., 2007).

5.2 Results

The results presented in the following subsections describe the effects of measures of in-

complete information (total information, option imbalance, cues balance) and task param-

eters (dominance and dispersion) on the accuracy and effort for each decision strategy.

Table 5.2 presents each of the measures of incomplete information, the number of gener-

ated tasks matching each level of incomplete information, accuracy, and effort required.

Table 5.3 presents each of task parameter (dispersion and dominance), the number of gen-

erated tasks matching each level, accuracy, and effort required. These results do not include

scenarios in which the options are equivalent (cue scores for Option 1 are identical to Op-

tion 2) or unknown (total information is 0) as these scenarios only constitute 0.8% of the

total and would result in a random guess for all the decision strategies. The results include

the 4.0% of the scenarios in which option scores as calculated by WADD-REAL were equal

to each other such. Both options in these tasks are treated as correct. All results are reported

as significant at the α = 0.001 level to reflect the large size of the dataset. Results for accu-

racy were analyzed using contingency tables and logistic regression with a χ2 distribution

as the accuracy metric effectively became count data. Results for correlations were ana-

lyzed using Spearman’s rank correlation coefficient. Results for effort were analyzed using

a multi-phase analysis with effort requirements (EIP counts) as the response variable.

5.2.1 Strategy

Strategy had a significant effect on accuracy (χ2(3, 6.66E7) = 558, 294, p < 0.0001).

This result was expected as each of the strategies have significantly different methods of

choosing decision options. The following subsections will describe how the accuracy of

each strategy is differentially affected by the measures of incomplete information.
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Table 5.2: Average accuracy of, and effort required when using, decision strategies for each level of each measure of incomplete
information.

Incomplete Tasks Accuracy Effort (EIP Count)Information

Total Info. Tasks WADD EW TTB Tallying WADD EW TTB Tallying
Count
12.5% 522,240 63.7% 63.7% 59.1% 57.9% 32.0 24.0 18.3 12.5
25.0% 1,827,840 68.8% 66.9% 63.4% 61.2% 32.0 24.0 16.3 15.0
37.5% 3,655,680 73.1% 71.4% 66.8% 64.1% 32.0 24.0 15.0 17.5
50.0% 4,569,600 77.1% 74.1% 69.8% 66.8% 32.0 24.0 14.2 20.0
62.5% 3,655,680 81.1% 78.0% 72.9% 69.6% 32.0 24.0 13.7 22.5
75.0% 1,827,836 85.4% 80.7% 76.2% 72.6% 32.0 24.0 13.5 25.0
87.5% 522,232 90.6% 84.8% 80.2% 76.1% 32.0 24.0 13.6 27.5

100.0% 65,276 100.0% 87.8% 84.8% 80.9% 32.0 24.0 14.1 30.0
Option Tasks WADD EW TTB Tallying WADD EW TTB TallyingImbalance
100% 130,560 77.0% 73.8% 57.0% 54.7% 32.0 24.0 12.3 20.0
75% 1,044,480 77.1% 74.5% 61.9% 58.5% 32.0 24.0 13.3 20.0
50% 3,655,676 77.1% 73.9% 66.8% 63.6% 32.0 24.0 14.1 20.0
25% 7,311,352 77.1% 74.7% 70.9% 68.0% 32.0 24.0 14.7 20.0
0% 4,504,316 77.4% 74.2% 72.8% 70.1% 32.0 24.0 14.8 20.1
Cue Tasks WADD EW TTB Tallying WADD EW TTB TallyingBalance

100% 65,276 100.0% 87.8% 86.2% 80.9% 32.0 24.0 14.1 30.0
75% 783,352 89.2% 83.7% 80.2% 75.9% 32.0 24.0 14.2 26.7
50% 3,525,116 82.5% 78.9% 74.5% 71.5% 32.0 24.0 14.3 23.3
25% 7,050,240 76.9% 74.4% 68.9% 66.9% 32.0 24.0 14.3 20.0
0% 5,222,400 71.8% 69.7% 63.5% 62.3% 32.0 24.0 14.2 16.8
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Table 5.3: Average accuracy of, and effort required when using, decision strategies for each level of each task parameter: dispersion and
dominance.

Environmental Tasks Accuracy Effort (EIP Count)Parameter

Dispersion Tasks WADD EW TTB Tallying WADD EW TTB TallyingLevel
Low 391,680 62.1% 62.5% 55.4% 55.9% 32.0 24.0 16.9 20.0

Medium 12,586,787 76.4% 73.9% 69.2% 66.3% 32.0 24.0 14.8 20.0
High 3,667,917 81.3% 77.2% 73.7% 70.1% 32.0 24.0 13.2 20.0

Dominance Tasks WADD EW TTB Tallying WADD EW TTB Tallying

Non- 11,676,946 73.9% 69.1% 68.3% 63.3% 32.0 24.0 14.3 20.0
Weak 4,308,479 83.0% 85.1% 71.8% 73.7% 32.0 24.0 15.2 20.0
Strong 660,959 97.1% 98.0% 85.0% 86.9% 32.0 24.0 13.7 20.0
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Table 5.4: Analysis of effect of strategy, total information, dominance, and disperson on
effort required to perform TTB.

Phase 1: Analysis 1 DF F

Strategy 3 4,030,019*
Total Information 7 614,309*
Strategy×Total Information 21 629,299*
Total information×Dominance 14 2,289*
Strategy×Total Information×Dominance 42 2,289*

Phase 1: Analysis 2 DF F

Strategy 3 136,935*
Total Information 7 45,839*
Strategy×Total Information 21 20,284*
Total information×Dispersion 14 7,495*
Strategy×Total Information×Dispersion 42 7,495*

DFE for all analyses: 6.66E7; *p<0.0001

The effect of strategy on the effort required to choose options was analyzed during the

first phase of effort analysis with the two, three-way ANOVA calculations with the predic-

tors of: (1) strategy, total information, and dominance, and (2) strategy, total information,

and dispersion. Both calculations showed that all main effects, two-way interactions, and

three-way interactions were significant except for dispersion or dominance as main effects

and dispersion or dominance two-way interactions with strategy; see Table 5.4.

The three-way interactions, though seemingly complex, were expected because of the

differential effect of total information, dispersion, and dominance, across the four strate-

gies’ effort requirements as explained in Table 5.1. The effort required to make a decision

using the WADD or EW strategies is, by definition, not affected by the total information.

The number of EIPs required to use either strategy for a two-option, four-cue decision re-

mains constant at 34 and 26 EIPs, respectively, for all scenarios. This invariance to total

information occurred because both strategies perform their standard processes regardless

of how many attribute scores are known – by rule, unknown cue values are estimated to be

50. Conversely, for Tallying and TTB, steps 2 and 3 in their decision making processes are

dependent on the number of attribute scores known so their effort requirements are affected
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by total information. Lastly, the effort requirements of WADD, EW, and Tallying, by def-

inition, are not affected by dispersion or dominance because they have no mechanism in

the middle of the decision making process to choose an option based on some intermedi-

ate option scores. The discrimination mechanism of TTB enables multiple decisions to be

made within a single decision making process such that if the decision options’ cue values

have high dispersion (very different) or are strong dominant (one option has better attribute

scores for all attributes) then TTB tends to select an option early, altering the amount of

effort required.

5.2.2 Total Information

Total information was analyzed within each strategy and had a significant effect on the

accuracy of each of the strategies: WADD (χ2(7, 1.66E7) = 357, 907, p < 0.0001), EW

(χ2(7, 1.66E7) = 204, 428, p < 0.0001), TTB (χ2(7, 1.66E7) = 192, 136, p < 0.0001),

and Tallying (χ2(7, 1.66E7) = 124, 694, p < 0.0001). As was expected, for each strategy

there was a positive correlation between total information and mean accuracy, as total infor-

mation increased so did accuracy: WADD (ρ = 1.0000, p < 0.0001), EW (ρ = 1.0000, p <

0.0001), TTB (ρ = 1.0000, p < 0.0001), and Tallying (ρ = 1.0000, p < 0.0001). The re-

sults in Table 5.2 match the conclusion made by Martignon and Hoffrage (2002) that as

total information decreases, the differences in accuracy between the heuristic and the ana-

lytic strategies decrease. Specifically, as the number of known cue values decreased from

all cue values known (100% total information) to one cue value known (12.5% total in-

formation), the difference in the mean accuracy between WADD and TTB decreased from

13.8% to 5.8%, and between WADD and Tallying the difference decreased from 19.1% to

5.8%.

Total information had a more complicated effect on the amount of effort required by

each strategy. As shown in Fig. 5.2, the two heuristic strategies require differential infor-

mation depending on the cue scores resulting in changes in effort requirements whereas
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the effort requirements for the two analytic strategies are invariant to total information.

From the second phase ANOVA calculation, total information had a significant effect on

the amount of effort required by Tallying (F (7, 1.66E7) = 2.88E7, p < 0.0001) and TTB

(F (7, 1.66E7) = 5, 016, p < 0.0001). The positive linear correlation (Fig. 5.2) between

total information and the EIP count for Tallying is nearly monotonic (ρ = 0.9596, p <

0.0001) as a result of the strategy comparing more cue scores to the cutoff score as total in-

formation increases. The effort required to perform TTB has only a slightly negative linear

correlation with total information (ρ = −0.0250, p < 0.0001).

The third phase of analyses of effort requirements focused on TTB by using two, two-

way ANOVA calculations with TTB effort as the response variable. The first calculation in-

cluded total information and dominance as the independent variables and showed that total

information was a significant main effect (F (7, 1.66E7) = 2, 368, p < 0.0001), dispersion

was not a significant main effect, but the interaction term was significant (F (14, 1.66E7) =

2, 362, p < 0.0001). Similarly, the second two-way ANOVA calculation included total

information and dispersion as the independent variables and showed that total informa-

tion was a significant main effect (F (7, 1.66E7) = 5, 672, p < 0.0001), dominance was

not a significant main effect, but the interaction term was significant (F (14, 1.66E7) =

7, 737, p < 0.0001). Figure 5.3 shows the two-way effects of total information and disper-

sion and total information and dominance on the effort requirements.

In both Fig. 5.2 and Fig. 5.3 total information has a non-linear effect on the effort re-

quirements of TTB. In Fig. 5.2, the highest average effort required for any total information

less than 87.5% (12.8 EIPs) occurred when total information was at its lowest, 12.5%. As

total information increased to 50%, the average effort decreased to its minimum of 12.1

EIPs, then increased from 50% to 100% total information to 14.1 EIPs. In Fig. 5.3, where

the total information effects are separated by levels of dispersion and dominance, the min-

imum effort requirements for total information occur at 25% for low dispersion, 37.5%

for medium dispersion, 100% for high dispersion, 50% for non-dominant, 37.5% for weak
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Figure 5.2: Effect of total information on the distribution of effort requirements for decision
strategies. The markers indicate the mean EIP count.

dominant, and 75% for strong dominant. These non-linear results emphasize the fact that

the effort for TTB is directly dependent on how many attributes it must search through

until one discriminates. In strong dominant or high dispersion scenarios, the likelihood

of an attribute discriminating is much higher than non-dominant or low dispersion scenar-

ios enabling TTB to make decisions earlier. In summary, these results show that as total

information increases, there is a point where TTB, on average, does not benefit from the

additional attribute score information because it has already made a decision (Martignon

and Hoffrage, 2002).

Examining the effort requirements by total information in Fig. 5.2 reveals that, on av-

erage, heuristics often require less effort than analytic strategies. However, the amount of

effort heuristics require varies considerably. The variance in the effort required for Tallying

increases from 0.25 to 2.00 as the total information increases from 12.5% to 100%. The

variance is caused by Step 4 of Tallying (see Table 5.1) in which the strategy adds the num-

ber of positive cue values. Since the range of the potential number of cue values which can
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Figure 5.3: Effect of total information, dispersion, and dominance on the effort require-
ments of TTB.

be positive increases with increasing total information, the variability increases. Specifi-

cally, the range between the maximum and minimum number of EIPs required for Tallying

at any one level of total information is equivalent to the number of cue values known. For

example, with 3 cue values known (total information of 37.5%) the effort required to per-

form Tallying ranges from 16 to 19, whereas with 8 cue values known (total information of

100%) the effort required ranges from 26 to 34.

The range in Tallying effort requirements is relatively well-bounded, but the range for

TTB is noticeably larger: from 12.5% to 100% total information, the range increases from

9 to 21. An explanation for this effect comes from the discrimination mechanism. Taking

the example where only one cue score is known and it is from the highest weighted cue,

if the cue score is higher than the cutoff score, then the discrimination criterion is met and

TTB will have required 6 EIPs. However, if the cue score is less than the cutoff score and

does not discriminate, TTB will search through the remaining cues, finding each remaining

cue score unknown, resulting in a maximum possible 15 EIPs. This large range indicates

that, in some decision tasks, knowing just the amount of total information and nothing else
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about the specifics of the strategy is insufficient to predict the effort required. For exam-

ple, though TTB may, on average, require much less effort than analytic strategies or even

Tallying in many scenarios, how much less will depend largely on how much information

is needed to discriminate between the options. These findings suggest that in terms of

effort, heuristics are only particularly effective when the number of cues required for dis-

crimination is low. Experienced personnel tend to use heuristics, while novices tend to use

analytic strategies (Garcia-Retamero and Dhami, 2009; Gigerenzer and Gaissmaier, 2011).

Our results present a possible effort-based explanation of this phenomenon: experts limit

their effort (and may produce decision more quickly) by relying on fewer, more important,

cues whereas novices may use multiple cues. Since novices may not have preferences for

cues or know which is the most important – information that experts would have gained

through experience – they may spend more time evaluating cues or have a wider threshold

for discrimination (several cues must discriminate, not just one), thus leading to a pro-

longed search and greater effort (Dieckmann and Rieskamp, 2007; Karelaia, 2006). Thus

the presumed benefits of reduced effort obtained through heuristics would vanish.

5.2.3 Option Imbalance

Option imbalance was analyzed within each strategy and included in this study to aug-

ment total information by examining how the distribution of incomplete information could

affect the accuracy of, and effort required to perform, decision strategies. This analy-

sis examined the information generated by varying total information and grouped it dif-

ferently to specifically focus on the distribution of information across the cues. The re-

sults show that option imbalance had a statistically significant effect on accuracy of each

of the decision making strategies: WADD (χ2(4, , 1.66E7) = 164, p < 0.0001), EW

(χ2(4, , 1.66E7) = 894, p < 0.0001), TTB (χ2(4, , 1.66E7) = 89, 623, p < 0.0001) and

Tallying (χ2(4, , 1.66E7) = 83, 000, p < 0.0001). As shown in both Table 5.2 and the white

markers in Fig. 5.4, average accuracy for WADD and EW decreases only 0.4% and 0.6% as
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option imbalance increases from 0% to 100%. However, TTB and Tallying with 0% option

imbalance have an accuracy of 72.8% and 70.1%, respectively, while with 100% option

imbalance (all cue values are known for one option only and no cue values are known

about the other option) their respective accuracy is 57.0% and 54.7%. As expected, op-

tion imbalance had no statistically significant effect on the effort of the analytic strategies,

WADD and EW. Conversely, option imbalance did have a statistically significant effect on

the effort of the heuristic strategies: TTB (F (4, 1.66E7) = 21, 249, p < 0.0001) and Tal-

lying (F (4, 1.66E7) = 1, 311, p < 0.0001). It must be noted however, that the size of the

effect of option imbalance on the effort of Tallying is likely very small. The average effort

required to perform Tallying is 20.0 for all levels of option imbalance except 0% when the

average effort increases by 0.1.

To better understand the effect of option imbalance on the accuracy of decision strate-

gies, a new metric was introduced, information bias: the percentage of scenarios in which a

decision strategy selects the option with the most total information. In two-option decision

scenarios with option imbalance (i.e. one option has more information than the other), a

strategy with an average information bias of 50% indicates that in 50% of tasks, the strategy

selected the option with more information and in the other 50% of scenarios the strategy

selected the option with less information. Since this simulation examined all combinations

of option imbalance, in half of the scenarios with option imbalance, the correct option will

also be the one with more information and in the other half of those scenarios, the correct

option will have less information than the incorrect option. Therefore, in this study, an in-

formation bias of 50% indicates that a strategy has no preference toward selecting options

with more or less information.

Information bias was analyzed within each decision strategy and had a statistically sig-

nificant effect on the accuracy: WADD (χ2(1, 1.66E7) = 36, p < 0.0001), EW (χ2(1, 1.66E7) =

17, p < 0.0001), TTB (χ2(1, 1.66E7) = 253, 293, p < 0.0001), and Tallying (χ2(1, 1.66E7) =

239, 708, p < 0.0001). Although information bias has a statistically significant effect on the
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Figure 5.4: Effect of option imbalance on the accuracy and information bias of decision
strategies. Accuracy data is indicated by the white markers whereas information bias data
is indicated by the gray markers. Since this study examines a two-option decision task, an
information bias of 50% indicates that a strategy has no preference toward selecting options
with more information.

accuracy of WADD and EW, the size of the effect in these results is negligible. Figure 5.4

shows that WADD and EW had no preference for options with more or less information

(50% information bias) and constant accuracy across all levels of option imbalance. In

contrast, the increase in information bias to values above 50% for the heuristic strategies

correlates with the decrease in their accuracy. This result indicates that when option imbal-

ance is high, TTB and Tallying will choose the option with more total information almost

independently of selecting the option with the highest overall score.

Since option imbalance measures the difference in the total information available for

each decision option, it approximates the number of pairwise comparisons that TTB and

Tallying have to make between known and unknown option cue values. When comparing

known and unknown cue values, the discrimination mechanism is biased in favor of de-

cision options with more information because unknown scores are treated as if they were
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Table 5.5: Statistical significance of the effect of option balance on the accuracy of each
decision strategy within each paired level of total information.

WADD EW TTB Tallying

χ2(2, 2.35E6)
4,687* 1,783* 13,234* 4,112*

Pair(12.5%v25%)
χ2(4, 8.23E6)

17,288* 7,450* 61,746* 51,367*
Pair(37.5%v50%)
χ2(3, 5.48E6)

16,140* 5,286* 34,775* 37,007*
Pair(62.5%v75%)
χ2(1, 5.88E5)

12,161* 414* 1,379* 779*
Pair(87.5%v100%)

*p<0.0001

negative scores. As a result, low option imbalance indicates that fewer of these known-

unknown comparisons will be made, thus decreasing the likelihood of TTB or Tallying

being biased towards the option with more information.

5.2.4 Total Information and Option Imbalance

Further analysis of the accuracy of decision strategies confirmed that the accuracy of heuris-

tics is a function of option imbalance and total information. Although option imbal-

ance is a function of total information, within each pair of levels of total information

(12.5% and 25%, 37.5% and 50%, 62.5% and 75%, and 87.5% and 100%), the effect

of option imbalance on the accuracy of each strategy was statistically significant (see

Table 5.5). For example, for all scenarios in which total information was either 37.5%

or 50%, option imbalance has a statistically significant effect on the accuracy of TTB

(Pair(37.5%v50%),χ2(4, 8.23E6), p < 0.0001); thus supporting the results shown in Fig. 5.5-

TTB that decreasing option imbalance while keeping total information relatively constant,

increases accuracy.

The results support the widely-documented finding that, when using analytic strategies,

accuracy increases proportionally with the amount of information about the scenario (as-

suming all the information is both correct and relevant). Figure 5.5 uses a heatmap format
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Figure 5.5: Heatmap of the effect of combinations of total information (x-axis) and option
imbalance (y-axis) on the accuracy (intensity of gray shading). Empty boxes indicate that
the combination of option imbalance and total information is not possible with this sim-
ulation. For example, for a total information of two, there are only two levels of option
imbalance possible: zero (both cue values are known about one option) or two (one cue
value is known about each option).

where total information in on the x-axis, option imbalance is on the y-axis, the values in-

side the boxes indicate the mean accuracy of all scenarios with that combination, and the

intensity of the shading mirrors the level of accuracy (darker is better). Figure 5.5 shows

that for all strategies, the combination of decreasing option imbalance and increasing total

information produces higher accuracy.

More generally, for any individual level of total information, a decrease in option im-

balance resulted in an increase, or equivalent, accuracy (except for 25% total information

for WADD). This result is particularly applicable to the heuristic strategies in Fig. 5.5.

For example, if 4 cue values are known (50% total information), when the information is

distributed such that option imbalance is 100%, the accuracy of TTB is 54.7% (top row);

however, if the available information is redistributed such that option imbalance is 0%, then

the accuracy increases to 72.0% (bottom row).
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The results in Fig. 5.5 seem to indicate a trade-off between total information and option

imbalance for heuristic strategies. Movement along the diagonal in which option imbal-

ance decreases and total information decreases may result in an increase in accuracy: ‘bet-

ter’ option imbalance and ‘worse’ total information may result in ‘better’ accuracy. This

suggests that there may be scenarios in which decision makers employing TTB or Tally-

ing could increase their accuracy by removing correct and relevant cue values to decrease

option imbalance – trading known information away for a decrease in option imbalance to

increase accuracy. This is exemplified by observing the average accuracy results for TTB

and Tallying at 72.8% and 68.8%, respectively, when six cue values are known (75% total

information) and option imbalance is 50%. By removing one cue value from the decision

task to decrease option imbalance to 25% and decrease total information to 62.5%, the

accuracy of TTB and Tallying increase to 73.5% and 71.0%.

5.2.5 Cue Balance and Total Information

Cue balance is a measure of the distribution of known and unknown information defined

as the number of cues which have known values for all options (see Sec. 4.3.4). Analyzing

the accuracy and effort of decision making strategies with respect to cue balance in Ta-

ble 5.6, shows that TTB and Tallying are affected by cue balance while WADD and EW

are only affected by total information. The trends for the overall results show that decision

tasks with the highest cue balance for a given level of total information indicate when TTB

and Tallying will have the highest accuracy for that given level of total information. Fur-

thermore, tasks with only balanced cues have higher accuracy than some tasks with more

information but fewer balanced cues.

The exact values provided in Table 5.6 are visualized in Fig. 5.2.5. Defining the com-

binations of total information and cue balance in coordinates of (total information, cue

balance), the tasks with the maximum number of balanced cues for each level of total

information, (2,1), (3,1), (4,2), (5,2), (6,3), always have the highest accuracy for TTB and
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Table 5.6: Accuracy and EIP count for each decision making strategy for all 14 combina-
tions of total information and cue balance values.

Total Cue WADD EW TTB Tallying
Information Balance Acc. Eff. Acc. Eff. Acc. Eff. Acc. Eff.

1 0 63.7% 32 63.7% 24 57.9% 18.1 57.9% 12.5
2 0 69.0% 32 66.8% 24 61.8% 15.6 60.8% 15.0
3 0 73.2% 32 71.3% 24 64.6% 13.5 63.1% 17.5
4 0 77.0% 32 73.8% 24 66.6% 11.8 64.9% 20.0
2 1 67.1% 32 67.1% 24 63.7% 19.2 63.7% 15.0
3 1 72.9% 32 71.6% 24 67.0% 16.4 65.4% 17.5
4 1 77.1% 32 74.1% 24 69.2% 14.2 67.0% 20.0
5 1 80.9% 32 77.8% 24 70.7% 12.3 68.4% 22.5
4 2 77.0% 32 74.7% 24 72.6% 17.3 70.2% 20.0
5 2 81.3% 32 78.3% 24 74.2% 14.9 71.1% 22.5
6 2 85.2% 32 80.6% 24 75.2% 12.9 72.1% 25.0
6 3 86.6% 32 81.3% 24 79.8% 15.5 75.6% 25.0
7 3 90.6% 32 84.8% 24 80.3% 13.5 76.1% 27.5
8 4 100.0% 32 87.8% 24 86.2% 14.1 80.9% 30.0

Tallying for that level of total information. Conversely, WADD and EW are nearly invariant

to cue balance as the accuracy is constantly increasing as a function of total information.

Table 5.6 and Fig. 5.2.5 also illustrate the importance of cue balance relative to total

information. For TTB and Tallying, for many combinations of total information and cue

balance, decreasing cue balance and increasing the total information results in a slight

decrease in accuracy. This occurs for combinations (3,1) and (4,2) relative to (4,0) and

(5,1), respectively.

With respect to total information, increasing total information without increasing cue

balance has diminishing increases in accuracy for TTB, and Tallying. For WADD and EW,

increasing total information without increasing cue balance provides consistent increases

in accuracy. For TTB, increasing the total information from (2,1) to (3,1) increases the

accuracy by 3.3% while increasing the total information from (6,3) to (7,3) increases the

accuracy by 0.5%. Another perspective shows that as total information increases, the im-

portance of increasing cue balance increases. Increasing the total information in such a
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Figure 5.6: Accuracy of each decision making strategy for each combination of total infor-
mation and cue balance.

way that the number of balanced cues increases, results in significantly higher increases

in accuracy than increasing total information in such a way that cue balance remains the

same. For example, for TTB, from (5,2) to (6,2) accuracy increases 1.0% whereas from

(5,2) to (6,3) accuracy increases 5.6%. This suggests that different cue values are more

valuable to search for during the information search process of decision makers. A search

technique maximizing the cue balance at each step of the process would produce higher

accuracy than any other technique for this 2-option decision task.
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5.2.6 Dispersion

The converging nature of the accuracy of the analytic and heuristic strategies as the dis-

persion decreased suggests that, of the three dispersion levels, low dispersion scenarios

offer the best accuracy-effort trade-off for heuristics. Comparing low and high dispersion

scenarios, the difference between the most accurate analytic strategy and the most accu-

rate heuristic increased from 6.6% to 8.6%. Additionally, Fig. 5.7 shows that the median

of the differences between the overall option scores with low dispersion is 5 whereas the

median for high dispersion is 18. The differences indicate that in scenarios with low dis-

persion, the median loss for choosing the incorrect option is 5 whereas the median loss

for choosing the incorrect decision in a scenario with high dispersion is 18 yet could be as

high as 60. Lastly, TTB and Tallying, on average, require less effort (14.2 and 20 EIPs,

respectively) compared to WADD and EW (34 and 26 EIPs, respectively) in scenarios with

low dispersion. Therefore, of the three dispersion levels, low dispersion scenarios have

(1) the smallest difference between the accuracies of heuristic and analytic strategies, (2)

the smallest median loss for choosing the incorrect decision, while retaining the effort re-
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quirement in favor of heuristics, and (3) heuristics maintain their decreased effort required

(especially TTB). Nonetheless, in some applications a decreased accuracy of 6% in which

the difference in overall score between the two options is 5 may be too much, even given

the reduced effort requirement (e.g. aiming at a target). In others, particularly iterative

decisions, the impact is not as severe. Therefore the question of its significance becomes

more a matter of the operator’s objectives and measures of significance, factors which were

beyond the scope of this investigation.

5.2.7 Dominance

The effect of dominance on the accuracy of each strategy was analyzed within each strategy

and shown to be statistically significant: WADD (χ2(2, 1.66E7) = 376, 050, p < 0.0001),

EW (χ2(2, 1.66E7) = 741, 942, p < 0.0001), TTB (χ2(2, 1.66E7) = 147, 699, p < 0.0001),

and Tallying (χ2(2, 1.66E7) = 301, 933, p < 0.0001). In contrast, the only strategy whose

effort could be affected by dominance was TTB and in that case, dominance was shown

to have a statistical significant effect (F (2, 1.66E7) = 31, 615, p < 0.0001). TTB is the

only strategy whose effort requirements were affected by dominance because an increase in

dominance by definition increases the likelihood that an attribute will discriminate, and thus

reduces the amount of attributes TTB needs to search through. The increase in likelihood

of discrimination is due to strong dominant scenarios having no attributes in which both

options have the same score whereas in non-dominant scenarios, attributes with equivalent

scores for both options is possible. On the other hand, the other strategies’ effort require-

ments are not affected because dominance is a description of the attribute scores and thus

aggregates all the levels of total information.

Across all levels of dominance, the analytic strategies had higher average accuracy

than the heuristic strategies. However, which strategy within each type had the higher

accuracy depended on the presence of dominance and the use of attribute weights. In

non-dominant scenarios, the two strategies that used attribute weights to choose options,
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WADD and TTB, had approximately 5% higher accuracy than their respective analytic and

heuristic counterparts, EW and Tallying. Conversely, in scenarios where a decision option

was weakly or strongly dominant over the other option, EW had 2.1% and 0.9% higher

accuracy than WADD while Tallying had 1.2% and 1.4% higher accuracy than TTB.

The use of attribute weights increased the accuracy of WADD and TTB relative to EW

and Tallying in non-dominant scenarios because of the choice of WADD-REAL to de-

termine correct decisions. In non-dominant scenarios, different attributes favor different

options, so weighing attributes in a manner similar to reality is necessary to make accurate

decisions. Since EW and Tallying do not use attribute weights in their decision making

processes, they are less likely to combine the attribute scores in a way that matches the

relative attribute importance inherent in WADD-REAL. If the correct decision was deter-

mined by an EW or Tallying strategy with full information, WADD and TTB would likely

have lower accuracy than EW or Tallying. By definition, with full information in weak or

strong dominant scenarios, the attribute weighting is unnecessary as any combination of

the attributes will indicate the same correct option. Therefore, the slight deviation between

WADD and EW, and TTB and Tallying, in weak or strong dominant scenarios is due to the

changes in incomplete information – not whether the strategies used attribute weights.

This effect of varying levels of total information within different levels of dominance

especially affects the effort requirements of TTB as shown in the third phase of analyses

of effort requirements (see Sec. 5.2.2 and Fig. 5.3). For each level of total information

except for 12.5% total information (where the three levels of dominance require the same

average effort, 12.75), the order of effort requirements from least to most are strong, non-,

then weak dominant scenarios. More specifically, as the total information increased, the

difference in average effort requirements increased from less than 2 EIPs at 50% total in-

formation, to more than 5 EIPs at 100% total information. There are two separate reasons

for the differences between the effort requirements of strong dominance and non-dominant

scenarios, and the high effort requirements of weak dominance. Strong dominant scenar-
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ios require less effort than non-dominant scenarios because of strong dominant scenarios

have a much higher likelihood of discriminating than non-dominant scenarios, increasing

the chance that TTB will discriminate between options at earlier searched attributes. The

high effort requirements for weak dominant scenarios is due to the large numbers of low

dispersion scenarios being weak-dominant. Low dispersion scenarios have the highest ef-

fort requirements of the three dispersion levels because, as stated in Sec. 5.2.6, the two

attributes are so similar that even with increased information TTB cannot discriminate eas-

ily. Therefore, even though the scenarios are weak dominant, the low levels of dispersion

still make it difficult for TTB to discriminate, thus increasing the effort requirements.

5.3 Discussion

The results indicate how the distributions of incomplete information within decision tasks

affect the accuracy and effort of decision making strategies. Two principle results were

found: 1) context features matching naturalistic decision settings result in heuristic strate-

gies being closest in accuracy to analytic strategies; 2) the variability in the distribution

of the effort requirements of the heuristic strategies for each level of total information in-

dicates that the effort requirements of heuristics may not always be as favorable as prior

studies have shown; and 3) the tradeoffs between option imbalance and total information,

and between cue balance and total information, suggests new insight for DSS information

acquisition and restriction. These results occur even within an environment with an accu-

racy measurement biased toward analytic strategies. The next computer studies, therefore,

leverage real-world datasets to examine the potential for these tradeoffs to apply to more

general environments.

5.3.1 Heuristics in Naturalistic Decision Contexts

In our simulation, context features that resemble naturalistic decision settings commonly

faced by decision makers (Orasanu and Connolly, 1993) resulted in the minimum differ-
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ence between the accuracies of analytic and heuristic strategies. The naturalistic context

features occurred with low total information, low dispersion, or non-dominant options. As

the three context features of total information, dispersion, and dominance approached the

low end of their possible values, the accuracy of analytic and heuristic strategies became

more and more similar. These results extend the studies of Payne et al. (1990) who simu-

lated decision situations to examine the impact of dispersion of the weights, while confirm-

ing their results that the presence of non-dominant options in the decision task resulted in a

decrease in the difference in accuracy between analytic and heuristic strategies. Similarly,

the results confirm the observation by Martignon and Hoffrage (2002) that in scenarios

with low total information, the accuracy of TTB and Tallying will become close to the ac-

curacy of WADD. While they were generated in naturalistic settings, our results provide

initial, but not robust, support for the argument that heuristics can be ecologically ratio-

nal in situations commonly encountered by decision makers (Todd et al., 2012) because

they can produce greater accuracy than analytic strategies. With respect to performance

on accuracy, our simulation was biased in favor of WADD. However, when the amount of

information available, the dispersion between cue values, or the level of dominance among

options decreased, the tested heuristic strategies performed almost as well as WADD in

terms of accuracy. We believe this indicates that there is value in conducting additional

studies of heuristic decision making strategies like TTB and Tallying under conditions of

incomplete information when the standard of accuracy is not WADD-REAL, but a more

objective reality.

5.3.2 Variability in Effort for Heuristics

The variability in the distribution of the effort requirements of the heuristic strategies for

each level of total information highlights a more nuanced effort-accuracy trade-off than pre-

viously shown by the averaged results in Payne et al. (1990). The standard interpretation of

the effort-accuracy trade-off is that people use heuristics to save effort while retaining suf-
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ficient accuracy as compared to analytic strategies. Contrary to the argument that heuristics

save effort, analysis of the effect of total information on the distribution of effort require-

ments has shown that in some scenarios TTB and Tallying may not save much effort. The

key is to use them judiciously in the correct decision context.

The level and variability of effort would be affected by changes to the assumption that

all EIPs require equal time and effort. This assumption was based on prior similar work by

Payne et al. (1990, 1996) in which assuming equal time and effort for each EIP produced

almost identical conclusions as using time estimates for the EIPs. Though the variability in

TTB and Tallying is due to the nature of the strategies, replacing counts of EIPs with time

estimates for EIPs as a measure (Bettman et al., 1990) would likely result in a change in

the variability. Two prominent EIPs in the decision strategies, Compare, used by Tallying

and TTB, and Add, used by Tallying, take different amount of time to perform – 0.20 s for

Compare and 0.84 s for Add.

The variability in effort highlights the importance of expertise in selection of decision

making strategies by decision makers. Many studies have shown that the decisions of

experienced professionals are more likely to be predicted by simple heuristics than WADD,

whereas novice participants are better predicted by WADD (for a review see Gigerenzer and

Gaissmaier, 2011). This study shows that the simple building blocks of TTB and Tallying,

particularly the discrimination rule and cue-substitution rule (TTB only) cause variability in

effort. These building blocks, which enable heuristics to generally achieve high accuracy

with low effort, are not always beneficial and have the potential to become a detriment

to accuracy and effort. This result suggests that novices may use analytic strategies due

to their clear process and constant effort requirements which makes the strategies easier

to implement and effort easier to predict. Heuristics, however, require expertise because

knowing the important cues is not only required for high or sufficient accuracy but for

minimizing effort as well – knowing when to abandon or adapt the strategy if the context

features indicate that effort will not be saved (Simon, 1956; Klein, 1998).
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Some caution must be taken with these results which violate the assumption that heuris-

tics will always require significantly less information than analytic methods and that the

variance in effort requirements of heuristics are significantly higher than analytic strate-

gies. The assignment of EIPs to steps was based on the interpretation of the standard

models of these decision making strategies. All EIPs were weighted equally, though, in re-

ality, some EIPs may be more complex than others, requiring more time and effort (Payne

et al., 1990). Furthermore, assignment of the EIPs requires decomposition of these deci-

sion strategies which may be open to interpretation. Consequently, different EIP weights

or decompositions may yield different results.

While they did not focus on the variance of heuristic strategies, previous studies of

decision making effort did not report similar variance in participants using lexicographic

methods such as TTB (Mata et al., 2007; Rieskamp and Hoffrage, 2008). It is possible that

the lack of variance in those studies may have been caused by the fact that real decision

makers are unlikely to follow the formal processes of heuristic strategies (Hilbig, 2010).

More studies of decision makers in situations of incomplete information will be necessary

to determine the validity of these results.

5.3.3 Implications for Heuristic Information Acquisition and Restriction in Decision Support

The most important result is the analysis of the tradeoffs between option imbalance and

total information, and cue balance and total information. The tradeoffs suggest methods

for decision support systems (DSSs) to acquire and restrict information. Acquisition and

restriction can mitigate information bias to increase the accuracy of heuristic strategies or

decrease effort while keeping accuracy approximately the same, on average. Design for

restriction of information in DSSs, which limits decision makers from performing certain

actions, could use knowledge of the tradeoff between total information and option imbal-

ance or cue balance to make specific pieces of information less salient for the decision

maker. As discussed in Sec. 5.2.4, the accuracy of TTB and Tallying are almost constant
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when total information is decreased by one and option imbalance is decreased by one. As

discussed in Sec. 5.2.5, the accuracy of TTB and Tallying increase when total information

is decreased by one and cue balance is increased.

Although these analyses do not discriminate between the removal of information from

the highest or lowest ranked cue, a cue value would be removed or hidden from the op-

tion with more information (option imbalance) or the cue without all values known (cue

balance). Therefore, a DSS with knowledge of the relative importance of the cues and the

distribution of known cue values could attempt to hide the lowest-ranked cue value of the

option with more total information to increase the possibility of an accurate decision. An-

other possibility is for the DSS to not hide this information, but to make the information

less salient or require the user to take an extra step to access this data. For example, the

main page might display only the balanced cues and options, but could include a notation

indicating that more information is available if needed.

Hiding available information is counter-intuitive, but it reformulates the decision task

in a way to encourage the user to employ more efficient TTB and Tallying strategies. This

reformulation is similar to restructuring the input to an algorithm. An example of the

positive potential for restricting information is exemplified by Fig. 5.8 where cue values

are not known for Option 1 - Cue 3, nor Option 2 - Cues 1 and 4. In this task, if there is

no restriction on the part of the DSS then TTB and Tallying will have accuracies of 72.0%

and 71.8%. However, if a DSS were to restrict information by removing the lowest-ranked

cue’s score (Option 1 - Cue 4) in order to decrease option imbalance and decrease the

total information, the accuracy for TTB and Tallying will increase to 72.7% and 74.1%

on average. This example is one of many in the simulation for which a decrease in total

information resulting in a decrease in option imbalance will cause no change or a slight

increase in accuracy for TTB and Tallying.

Questions regarding how the DSS would know which attribute is lowest ranked are

answered by prior research showing that determining a sufficiently accurate rank of the
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Figure 5.8: Effect of restriction of cue values by a decision support system (DSS) to re-
duce total information and option imbalance on the accuracy and effort of decision making
strategies. The accuracy, and effort required, for each decision strategy are the averages for
all combinations of cue values.

attributes would not be difficult. Katsikopoulos et al. (2010) showed that even when deter-

mining imperfect rank-orders of attributes from samples of information rather than perfect

knowledge of all information, TTB was still able to outperform multiple-regression in some

environments. Additionally, decision makers are known to learn rank-orders of attributes

from others through teaching and imitation (Gigerenzer and Gaissmaier, 2011).

5.4 Conclusion

To better understand how to design decision support systems to accommodate a range of

decision strategies, a simulation engine was designed to model the accuracy and required

effort of two analytic (weighted-additive and equal-weighting) and two heuristic (take-the-

best and tallying) decision strategies in over 16 million decision tasks. These scenarios had

varied levels of total information available, option imbalance, cue balance, dominance, and
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dispersion.

Three major conclusions were drawn from the results. First, heuristic strategies are

nearly as accurate as analytic strategies when decision task context features resemble nat-

uralistic environments. The set of scenarios used in this simulation extend previous work

studying these context features in isolation to show that in scenarios combining multiple

naturalistic context feature levels, heuristic strategies can produce levels of accuracy that

compare well with analytic strategies. Second, the effort requirements of heuristic strate-

gies may not be as predictable as prior studies have shown. Increased information may

sometimes result in more, rather than less, effort, and, surprisingly, even more effort than

analytic strategies. This reversed effect is due to the fundamental mechanisms, the building

blocks, of TTB and Tallying, but future studies should account for the costs associated with

specific types of effort. Third, the tradeoffs between total information, option imbalance,

and cue balance suggest that in certain instances, a DSS that supports heuristic strategies

may be able to help the strategies achieve greater accuracy by reducing the amount of infor-

mation they use. DSS designers can augment the standard analytic methods of information

acquisition by acquiring or restricting specific cue values to minimize option imbalance or

maximize cue balance.
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CHAPTER 6

COMPUTER SIMULATION STUDY 2: HEURISTIC INFORMATION

ACQUISITION AND RESTRICTION RULES FOR DECISION SUPPORT

The results in this section are a version of the following article: Canellas and Feigh, 2017.

How to handle incomplete information in decision support system (DSS) design is an

open question. Particularly in terms of modifying the content presented to the decision

maker (Feigh et al., 2012), are there situations when the DSS should acquire information

for or restrict information from the operator? If so, how? The DSS could leverage ana-

lytic information acquisition methods requiring reliable assessments of probabilities, cue

weights, and cue scores (Nelson, 2005, 2008; Meder and Nelson, 2012). However, there

are multiple environmental issues with using these analytic methods in decision support

(Katsikopoulos and Fasolo, 2006; Katsikopoulos et al., 2008). First, real-world problems

can exhibit statistical dependencies which create computational issues in calculating prob-

abilities and cue weights. Second, psychologically, an operator may not be able to provide

accurate information to the DSS regarding the probabilities and cue weights. Third, the

analytic process may seem too complex and too opaque to the operator causing the opera-

tor to be reluctant to use the DSS or accept its suggestions. Lastly, as these methods have

focused on acquisition, they do not provide suggestions as to what information could be

restricted from the operator.

Given these limitations, how can DSSs acquire or restrict information using methods

that do not rely on information about the probabilities, cue weights, and cue scores? The

promising avenue of research in the previous study (Chap. 5) examined how distributions

of incomplete information affect decision making performance. Decreasing the difference

in total known information between options (option imbalance) increases the accuracy of
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heuristic strategies and increasing the number of cues which have information known for

all options (cue balance) increases the accuracy of both analytic and heuristic strategies.

Based on this research, this study proposes four heuristic information acquisition and re-

striction rules that can guide DSSs in determining what information should be added or

removed from a decision task: acquire or restrict information to decrease option imbal-

ance, or to increase or maintain cue balance. Importantly the measures of option imbalance

and cue balance only require knowledge of what information is known or unknown – no

probabilities, no cue weights, no cue scores.

To determine if or when these four rules increase performance, they were simulated in

2-option decision tasks across 15 real-world datasets (Czerlinski et al., 1999) while mea-

suring their effects on the accuracy of five decision making strategies spanning the range

from analytic to heuristic. Three questions are addressed in the results: First, how often

and how much do the four rules increase accuracy? To this end, the simulation measured

the presence and magnitude of the changes in decision making accuracy using positive ac-

curacy count (PAC, the percent of times in which the rules resulted in a positive change in

accuracy), and average accuracy change (AAC, the average change in accuracy when using

the rules), respectively. Second, how do the components of decision making strategies af-

fect the effectiveness of the rules? Strategies are made of components that govern the type

of cue scores, cue weights, and estimates of missing information (Chap. 3). Understanding

the impact of components on the effectiveness of the rules enabled generalizations beyond

the five strategies studied. Third, how do the characteristics of the datasets (referred to as

environmental parameters) affect the effectiveness of the heuristic information acquisition

and restriction rules? Environmental parameters are the general descriptions of environ-

ments in which decision makers act. By linking the performance of heuristic information

acquisition and restriction rules to environmental parameters, DSSs can be more precise in

their acquisition and restriction of information. This study concluded with a mathematical

example showing how components and environmental parameters combine to mediate the
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effectiveness of the rules.

6.1 Background

To study the effectiveness of the heuristic information acquisition and restriction rules, first

requires a decision task, decision strategies, and measures of the decision environment.

This section begins with a description of the fitting decision task with binary cues used in

this study and concludes with the definitions of the proposed heuristic information acquisi-

tion and restriction rules. More information on the five strategies can be found in Sec. 4.3.1:

weighted-additive (WADD), equal-weighting (EW), Tallying, Take Two, and take-the-best

(TTB). Section 4.3.2 reviewed the measures of the environment that have the potential to

mediate the effectiveness of the rules: cues, predictability, redundancy, and variability. Full

information accuracy from Sec. 4.2.1 was also included as a potential mediator of the rules’

effectiveness.

6.1.1 Fitting Decision Task with Binary Cues

The goal of decision making is to choose one of multiple options in order to maximize some

measure of utility, also known as the criterion. The options are characterized by cue scores

which describe the utility of the option with respect to important aspects of the environment

(cues). The situation in which decision making occurs is referred to as the decision task.

The decision tasks for this study have 2 options, 3 to 5 cues, accurate cue weights and

cue directions, and binary cue scores. The decision tasks are generated from 15 datasets

introduced by Czerlinski et al. (1999). These datasets have become a common method

for benchmarking simulations as shown by their use in numerous simulations analyzing

judgment and decision making strategies (Gigerenzer and Goldstein, 1996; Czerlinski et al.,

1999; Martignon and Hoffrage, 2002; Hogarth and Karelaia, 2006; Katsikopoulos et al.,

2010; Katsikopoulos, 2013).

The cue weights were calculated as the ecological validity of the cues based on the
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complete datasets, such that this study is categorized as a fitting task (Martignon and Hof-

frage, 2002). This is differentiated from prediction tasks where cue weights are derived

from some subset of the datasets. Therefore, in this study there is neither deviation from

the ‘true’ cue weights (Hogarth and Karelaia, 2007) nor variability in the prior knowledge

(Katsikopoulos et al., 2010). The fitting task also results in accurate cue directions such

that the correlation between the cue and the criterion is positive: as a cue score increases

(decreases), the criterion increases (decreases) (Katsikopoulos et al., 2010). Accurate cue

directions are particularly necessary for the accuracy of decision making strategies (Kat-

sikopoulos et al., 2010).

The decision task consisted of binary cue scores meaning that each option was de-

scribed by cue scores equal to either 0 or 1. Katsikopoulos (2013) explained that this sim-

plification can be justified in many ways: many cues are naturally binary (e.g. color versus

black and white), decision makers may only be able to differentiate between or approxi-

mate good and bad, and choices can be made more manageable by treating a continuous

cue as binary. While potentially more manageable, using binary cue scores instead of their

original continuous form has been shown in some cases to decrease the performance of

decision strategies (Luan et al., 2014).

The use of a fitting task with accurate cue weights, accurate cue directions, and binary

cue scores does simplify this study away from the reality decision makers often face. How-

ever, these simplifications were necessary for this study to isolate strategy components,

environmental parameters, and incomplete information as the only factors that could affect

performance. Future examinations of heuristic information acquisition and restriction rules

will study prediction tasks with continuous cue scores to better generalize the results.

6.1.2 Heuristic Information Acquisition and Restriction Rules

Given a specific distribution of initial incomplete information, which cue value should be

provided to or removed from the decision maker to increase accuracy? This question of
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information search relates to the modification of content, one of the main capabilities of

decision support systems (DSSs): altering what information is presented to the decision

maker, including what categories of information are presented and at what level of detail

or abstraction (Feigh et al., 2012). As described in the introduction to this study, there is

a need for rules that can guide DSSs as to how to add and remove information to increase

the accuracy of decision makers in a computationally efficient, robust, and transparent way

(Katsikopoulos and Fasolo, 2006; Katsikopoulos et al., 2008).

Within the information acquisition literature there are no heuristic information acquisi-

tion and restriction rules for decision support. There are three reasons for the lack of these

rules. First, the information acquisition literature is generally focused on judgment tasks

(categorization or classification) not decision making tasks (selection between independent

options). The typical motivating question within information acquisition is: “How can one

anticipate the usefulness of possible information queries (questions, test, or experiments),

before the answer (query result, experiment result, or test outcome) is known?” (Meder and

Nelson, 2012, p. 120). For categorization tasks, both analytic methods (e.g. optimal exper-

imental design which requires reliable assessments of probabilities, cue weights, and cue

scores (Nelson, 2005, 2008; Meder and Nelson, 2012)) and heuristic methods (e.g. fast-

and-frugal trees which require only a rank-order of the cues and are capable of categorizing

after any single cue, Martignon et al., 2008; Luan et al., 2011) have been developed.

Second, the focus of the research has been on what information should be searched for

next (acquisition), ignoring the possibility that performance could potentially be increased

by removing information (restriction). Actively removing information is an extension of

the less-is-more effect: “when less information or computation leads to more accurate

[decisions] than more information or computation” (Gigerenzer and Gaissmaier, 2011, p.

453). The analytic optimal experimental design and heuristic fast-and-frugal trees both

only provide a process for acquiring more information.

Third, at first glance, heuristic decision making strategies could be considered heuristic
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information acquisition methods. They search through a decision task with rules describ-

ing what information they should acquire next. However, they do not account for how

distributions of incomplete information affect decision making performance such as those

examined in Chap. 5.

For example, imagine a driver deciding between two routes (A and B) with the goal

to select the fastest route, as shown in Fig. 6.1. The routes have the following cues in

order of importance: distance, amount of traffic, and road type. The driver could have

prior knowledge of some of the cue scores (traffic for route A and the road type for routes

A and B) but not others. If the DSS provided additional information based on TTB, it

would first acquire and present information about the distance of route A because distance

is the highest ranked cue. However, that would increase option imbalance and maintain the

number of balanced cues, likely decreasing the accuracy of the decision made.

Four heuristic information acquisition and restriction rules are proposed which provide

computationally efficient, robust, and transparent methods for adding and removing infor-

mation from a decision task:

• Option imbalance acquisition (OI-A): Increase total information while decreasing

option imbalance.

• Option imbalance restriction (OI-R): Decrease total information while decreasing

option imbalance.

• Cue balance acquisition (CB-A): Increase total information while increasing cue bal-

ance.

• Cue balance restriction (CB-R): Decrease total information while keeping cue bal-

ance constant.

Option imbalance acquisition and restriction are based on the results in Study 1 (Chap. 5)

showing that decreasing total information while decreasing option imbalance increased the
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Figure 6.1: Examples of the four heuristic information acquisition and restriction rules at
the individual decision task level for the exemplar driving scenario. The specific distribu-
tion of known and unknown information is denoted by white K’s and black ?’s, respectively.

accuracy of heuristic strategies (specifically, TTB and Tallying). In Fig. 6.1 the informa-

tion is imbalanced toward route A, so adding information to route B (OI-A) or restricting

information about route A (OI-R) is likely to increase accuracy of heuristic strategies.

Cue balance acquisition and restriction are also based on the results in Study 1 (Chap. 5)

showing that increasing total information without increasing cue balance had negligible ef-

fects on accuracy for TTB and Tallying, but increased the accuracy of WADD and EW.

Additionally, increasing total information while increasing cue balance significantly in-

creased accuracy for the heuristic strategies (TTB and Tallying). In Fig. 6.1 there is one

balanced cue for road type, so adding information to route B for traffic in order to add

another balanced cue (CB-A) or restricting information about route A for traffic (CB-R) is

likely to increase the accuracy of heuristic strategies.
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The two proposed heuristic information restriction rules are counter to a related compu-

tational study of WADD and TTB in which the strategies’ accuracies decreased when they

ignored cues for which one cue value was known and the other unknown (Garcia-Retamero

and Rieskamp, 2008). This method for ignoring cues was identical to CB-R in Fig. 6.1 but

was not formalized as restriction rules. Nevertheless, the prior results still suggest that if

decision makers do ignore cues in specific ways, then accuracy may be increased. This

follows the suggestion by Gigerenzer et al. (1991) that ignoring information could lead to

high accuracy if decision makers had incorrect estimates for the missing cue values.

6.2 Method

The effectiveness of the four heuristic information acquisition and restriction rules were

tested in a simulation of the five decision making strategies across 15 datasets with 2 op-

tions, 3 to 5 cues, and all combinations of incomplete information. The presence and

magnitude of increases in strategy accuracy at the environment level (as shown in Fig. 6.2)

were used as measures of effectiveness: 1) positive accuracy count (PAC): the percent of

times in which the rules resulted in a positive change in accuracy, and 2) average accuracy

change (AAC): the average change in accuracy when using the rules. A positive AAC value

for heuristic information acquisition indicates that adding a piece of information following

the rule results in a higher accuracy than adding a piece of information that does not follow

the rule. A positive AAC value for heuristic information restriction indicates that removing

a piece of information using the rule increases the accuracy of the strategy compared to not

removing any information.

An example of the AAC for OI-R is shown in Fig. 6.2-A: {0.6%, 1.1%, 1.3%, 2.0%, 2.9%}.

Since all five AAC values are positive, the PAC is 100%. These two metrics indicate that, in

aggregate, if the decision support system restricts incomplete information using OI-R for a

decision maker using TTB in the House dataset with 2-options and 3-cues, then the chance

of increasing the decision maker’s accuracy is 100% and the average change in accuracy is
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Figure 6.2: Example of option imbalance acquisition (OI-A) and restriction (OI-R) rules,
and cue balance acquisition (CB-A) and restriction (CB-R) rules for TTB strategy for the
House dataset with 3 cues. The comparisons of accuracy for acquisition are between the
two endpoints of the arrows and the comparisons of accuracy for restriction are shown by
the direction of the arrows. The change in accuracy is shown in bold-italic font.

1.58%.

Each set of AAC and PAC values are calculated for each rule as shown in Fig. 6.2. For

each combination of decision environment and decision strategy there is one PAC value

and between 3 and 14 AAC values – the number of AAC values changes based on the rule

and the number of cues.

The datasets often included more than 5 cues and more than 1 criterion such that there

were 25,069 decision environments that could have been generated from the 15 datasets

with unique combinations of 3, 4, and 5 cues and 1 criterion. Therefore only one set

of 3, 4, 5 cues and 1 criterion was chosen for each of the 15 datasets, resulting in 45

unique decision environments. The final 45 decision environments were selected in order

to remove correlations between the environmental parameters.

Table 6.1 shows the values of the environmental parameters for 5-cue decision tasks for
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Table 6.1: Environmental parameter values for the 5-cue decision environments.

Dataset Full Information Accuracy Pred. Redun. Var.
WADD EW Tallying Take Two TTB

Biodiversity 0.84 0.83 0.83 0.84 0.86 0.53 0.26 0.47
Boys 0.78 0.78 0.78 0.78 0.82 0.53 0.58 0.15
Car 0.75 0.78 0.78 0.75 0.72 0.57 0.21 0.16
Cities 0.81 0.83 0.83 0.81 0.81 0.86 0.22 0.23
Dropout 0.68 0.69 0.69 0.68 0.69 0.20 0.75 0.03
Fat 0.58 0.58 0.58 0.58 0.59 0.10 0.34 0.09
Fuel 0.79 0.83 0.83 0.79 0.79 0.51 0.25 0.16
Girls 0.74 0.76 0.76 0.74 0.76 0.44 0.51 0.18
Homeless 0.69 0.69 0.69 0.69 0.70 0.32 0.17 0.37
House 0.91 0.92 0.92 0.91 0.91 0.49 0.57 0.17
Oxygen 0.92 0.92 0.92 0.92 0.92 0.22 0.89 0.12
Pollution 0.77 0.79 0.79 0.78 0.77 0.48 0.34 0.17
Professor 0.81 0.81 0.81 0.81 0.82 0.70 0.30 0.43
Rainfall 0.69 0.73 0.73 0.69 0.68 0.33 0.12 0.13
Sleep 0.81 0.81 0.81 0.81 0.84 0.42 0.52 0.22

each dataset.1 For example, the parameters for the House dataset with 5 cues are 0.91 FIA

for WADD, Take Two, and TTB, and 0.92 FIA for EW and Tallying, 0.49 predictability,

0.57 redundancy, and 0.17 variability. For each level of cues, the distribution of the values

for FIA, predictability, variability, and redundancy spanned the range from low to high.

Within each of the 45 decision environments, every combination of two options was

combined with a full factorial combination of incomplete information. Each decision strat-

egy made a decision on each decision task combination of incomplete information and

options. Every option has a known criterion such that a decision strategy is considered to

make the correct choice when it selects the option with the higher dataset criterion. The

accuracy percentages in the boxes of Fig. 6.2 are the percent of tasks matching that combi-

nation of incomplete information in which the strategy selected correctly.

1Environmental parameters for 4-cue and 3-cue decision tasks are in Table A.5 and Table A.6, respectively.
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6.3 Results

Three results are described in the following subsections. In Sec. 6.3.1, the results of AAC

and PAC for each heuristic information acquisition and restriction rule for each decision

making strategy shows that the rules generally increase accuracy (Fig. 6.3 and Table 6.2). In

Sec. 6.3.2, the estimate of missing information is shown to be the main strategy component

mediating the effectiveness of the rules (Table 6.3). In Sec. 6.3.3, full information accuracy

(FIA) is shown to have the largest significant effect on AAC for every combination of rule

and decision making strategy. Of the rest of the environmental parameters with significant

effects, cues and predictability were the most common.

6.3.1 General Effectiveness of Heuristic Information Acquisition and Restriction Rules

The results presented in Fig. 6.3 and Table 6.2 show that the heuristic information acquisi-

tion rules tend to increase accuracy more than 86% of the time for each of the five strategies.

Said another way, it is almost always beneficial to gain a new piece of information using

the heuristic information acquisition rules regardless of the decision strategy. For heuristic

information restriction the results are more nuanced. Both of the restriction rules tend to

increase accuracy more than 71% of the time for Tallying, Take Two, and TTB, suggest-

ing that restricting information generally works for the heuristic strategies. However, for

WADD and EW, it is only beneficial to restrict a piece of information when using CB-

R. Using OI-R for the two analytic strategies tends to be slightly more likely to decrease

accuracy but with only a small magnitude.

Figure 6.3 shows the distributions of PAC (how often a given a rule increased the accu-

racy for each strategy) and AAC values (how much the accuracy of each strategy increased

on average by using a rule once). Table 6.2 summarizes the results of Fig. 6.3 by showing

the average PAC and AAC values. For example, for heuristics, the acquisition rules (OI-A

and CB-A) had nearly a 100% chance of increasing accuracy in aggregate (PAC) with an
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Table 6.2: Positive accuracy count (PAC) and average accuracy change (AAC) for each decision strategy when using heuristic informa-
tion acquisition and restrictions rules averaged across all decision environments.

Strategy Cue Weights Estimates

Option Balance Cue Balance

Acquisition Restriction Acquisition Restriction

PAC AAC PAC AAC PAC AAC PAC AAC

WADD Compensatory Average 88% 2.2 40% -0.1 86% 4.4 62% 3.5
EW Equal Average 89% 2.7 44% 0.3 88% 4.5 60% 3.6

Tallying Equal Negative 100% 10.1 93% 2.9 100% 4.5 71% 2.1
Take Two Compensatory Negative 100% 7.3 91% 1.5 100% 5.3 88% 2.9

Take-the-Best Non-Compensatory Negative 100% 6.8 86% 1.2 100% 5.5 90% 2.9

122



0
10
20
30
40
50
60
70
80
90

-5
0
5

10
15
20
25

A
ve

ra
ge

 A
cc

ur
ac

y 
C

ha
ng

e
(A

A
C

, %
)

Po
si

tiv
e 

A
cc

ur
ac

y 
C

ou
nt

(P
A

C
, %

)

Tallying Take Two Take-the-Best
(21) (27) (7) (10) (21) (23) (6) (7) (10) (21) (13) (12) (0) (2) (14) (13) (0) (10) (14) (13)

Weighted-Additive Equal-Weighting Tallying Take Two Take-the-Best
(3) (0) (0) (2) (10) (0) (0) (0) (1) (3) (1) (3) (1) (3) (1) (0) (1) (3) (1) (3)

Weighted-Additive Equal-Weighting

100

OI-A
OI-R

CB-A
CB-R

OI-A
OI-R

CB-A
CB-R

OI-A
OI-R

CB-A
CB-R

OI-A
OI-R

CB-A
CB-R

OI-A
OI-R

CB-A
CB-R

Figure 6.3: Average accuracy change (AAC) and positive accuracy count (PAC) when using each of the heuristic information acquisition
and restriction rules for each decision making strategy: option imbalance acquisition (OI-A) and restriction (OI-R), and cue balance
acquisition (CB-A) and restriction (CB-R). AAC measures the average change in accuracy of a strategy when using the rule and PAC
measures how often the change in accuracy is positive. Each individual box plot has 45 data points for PAC, 420 data points for OB-R for
AAC, and 285 data points for OB-A, CB-A, and CB-R for AAC. The box plots indicate the 25th percentile, median, and 75th percentile.
Data points (denoted by parentheses) are outliers if they lie outside the whiskers corresponding to approximately 2.7σ if the data was
normally distributed.
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average increase in accuracy (AAC) greater than 4.5%.

6.3.2 Effect of Strategy Components

The results in Table 6.2 and Fig. 6.3 suggest that the heuristic information acquisition and

restriction rules affect WADD and EW differently than Tallying, TTB, and Take Two. As

shown in Table 4.2 the strategies differ in only two components: how they measure the

relative importance of cues (cue weights) and how they estimate missing information. Fur-

thermore, only how the strategies estimate missing information matches the differences

found in Table 6.2 and Fig. 6.3: WADD and EW estimate missing cue weights as the av-

erage (0.5) while Tallying, Take Two, and TTB estimate missing information as negative

(0). This suggested that the main cause of the differences in effectiveness of the heuris-

tic information acquisition and restriction rules is due to how strategies estimate missing

information.

Linear models accounting for the main effects and interactions of cue weights and es-

timates of missing information were fit to the PAC and AAC results for each rule. The

results in Table 6.3 begin with the baseline (intercept) values describing the estimated PAC

and AAC values for strategies such as TTB which have non-compensatory cue weights and

estimate missing information as negative. Each additional column describes the relative

change in PAC and AAC from the baseline (non-compensatory cue weights and negative

estimates) to a different combination of cue weights and negative estimates. Interactions

were considered significant at the α = 0.001 level.

For example, the third column describes strategies like Tallying which use equal cue

weights and negative estimates of missing information. Compared to the baseline of non-

compensatory cue weights and negative estimates, this combination of components does

not have a statistically different PAC for OI-A, OI-R, or CB-A, but did have a statistically

significant difference in CB-R of -12%, indicating that the absolute PAC value is 66%.

The results in Table 6.3 show that how strategies estimate missing information has a
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Table 6.3: Significance of strategy components on the PAC and AAC values for each heuristic information acquisition and restriction
rule.

Cue Weights Non-Compensatory Compensatory Equal [Non-Compensatory] Compensatory

Estimates of missing information Negative [Negative] [Negative] Average Average

Positive Option imbalance acquisition 95%** 0% 0% -5%* 0%
Accuracy Option imbalance restriction 66%** 0% 3% -24%** -1%

Count Cue balance acquisition 94%** -1% 0% -6%** -1%
(PAC) Cue balance restriction 78%** -3% -12%** -6%* -7%*

Average Option imbalance acquisition 4.4** 0.4 2.0** -3.7** 1.1**
Accuracy Option imbalance restriction 0.6** 0.1 1.0** -1.3** 0.5**
Change Cue balance acquisition 5.1** -0.2 -0.7** 0.0 -0.5
(AAC) Cue balance restriction 3.4** -0.2 -0.5 0.8** -0.5

*< 0.001, **< 0.0001. The baseline (intercept) values are non-compensatory weights with negative estimates of missing information.
Each following column is the relative change in PAC and AAC from this baseline when the components are changed.

125



significant effect on the effectiveness for every rule except CB-A – likely because CB-

A reduces the use of estimates of missing information. Furthermore, for each significant

effect except CB-R, estimating missing information as 0.5 rather than negative resulted in

a decrease in the likelihood of a rule increasing accuracy (PAC) or the average increase in

accuracy (AAC).

The results in this subsection support previous research showing that how strategies es-

timate missing information can have a more significant effect on performance than how

strategies integrate information (cue weights) (Garcia-Retamero and Rieskamp, 2008).

Conceptually, it makes sense that the effectiveness of the heuristic information acquisi-

tion and restriction rules are mediated by how strategies estimate missing information.

Estimates of missing information are only necessary when information is incomplete. The

estimates make assumptions about cue scores which can be inaccurate. The assumption of

the three heuristics – that unknown cue values are negative – is a strong assumption that

was based on a predefined characteristic of the strategies, not information about the deci-

sion environment. Therefore, the rules increase accuracy for these strategies because the

rules attempt to restructure the decision task so that decisions are made with a focus on the

cues which have known information for all options. This attempts to decrease reliance on

estimates of missing information which may be incorrect (Gigerenzer et al., 1991).

6.3.3 Effect of Environmental Parameters

The heuristic information acquisition and restriction rules were shown in Table 6.2 to gener-

ally increase the accuracy of decision making strategies. The next objective is to determine

if any environmental parameters mediate the magnitude of the average accuracy change

(AAC) when using the rules. Table 6.4 shows the significance of the estimates of the co-

efficients for each environmental parameter regressed against the AAC values for all 20

combinations of the four rules and the five strategies. Results shown in Table 6.4 were

deemed significant at the α = 0.001 level.
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Table 6.4: Significance of environmental parameters on the AAC values for each combina-
tion of decision making strategy and heuristic information acquisition and restriction rule
using linear models.

Cues FIA Predictability Redundancy Variability

WADD

OI-R -0.4 8.6** -3.2** 5.9** -7.1**
OI-A -1.1** 16.1** -0.5 6.8** -7.9**
CB-R -2.3** 22.0** 2.1 8.0** -8.7
CB-A -2.4** 18.6** 6.0* 4.6 -5.8

EW

OI-R -0.6 8.8** -3.7** 6.7** -8.4**
OI-A -1.6** 17.0** -1.3 8.2** -10.3**
CB-R -2.2** 20.4** 2.6 6.9** -7.5
CB-A -2.1** 16.5** 6.7** 3.0 -3.1

Tallying

OI-R -0.6* 11.1** 0.9 2.8** -0.2
OI-A -1.9** 30.5** 7.5** 3.0 5.7
CB-R -1.1* 12.7** 1.1 4.7** -3.8
CB-A -1.3** 14.7** 6.5** 0.1 2.7

Take Two

OI-R -0.2 3.0** 1.4** -0.6 2.0**
OI-A -1.1* 16.5** 7.5** -1.5 9.9**
CB-R -1.4** 16.2** 1.2 5.7** -4.7
CB-A -1.8** 18.4** 6.4** 2.4 1.2

TTB

OI-R -0.3** 2.2* 1.0* -0.4 0.9
OI-A -1.1 15.0** 6.9** -1.2 9.1**
CB-R -1.5** 15.6** 1.3 5.7** -5.4
CB-A -1.8** 18.2** 6.6** 2.7 0.5

285 data points per statistical test for OI-A, CB-A, CB-R,
and 420 data points per statistical test for OI-R, *< 0.001, **< 0,0001

The results show that full information accuracy (FIA) had the largest, positive, signifi-

cant effect on AAC results for all 20 combinations. The rest of the environmental parame-

ters in order of number of significant cases were cues (13), predictability (12), redundancy

(10), and variability (7). The values in Table 6.4 for cues are the changes in AAC if the

number of cues is increased by one. The values in Table 6.4 for FIA, prediction, redun-

dancy, and variability are to the changes in AAC if the parameters increased by 100%.

Therefore, if the full information accuracy (FIA) of a decision maker using TTB increases

by 10% for a given dataset then the average accuracy change when using CB-A should
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increase by 1.82% (10% of 18.2%).

Similar to the explanation of the estimates of missing information results in Sec. 6.3.2,

the positive correlation between FIA and AAC is likely because the rules are restructuring

the distribution of information so that decisions are made with a focus on the cues which

have full information – approximating decisions with FIA. For example, if the CB-R was

used as much as possible within a two-option decision task, it would reduce the distribution

of incomplete information such that there were only balanced cues. Therefore, the accuracy

of the decisions would depend on the accuracy of the cues with full information, which are

correlated with strategies’ full information accuracy.

The reason that FIA had larger and more significant effects on AAC than the other envi-

ronmental parameters (cues, predictability, variability, and redundancy) is that changes in

FIA is the culmination of other environmental parameters affecting accuracy. As described

in Sec. 4.3.2, most of the previous research on environmental parameters examined how

they affected accuracy in decision tasks with full information. In other words, those previ-

ous studies were measuring the effect of other environmental parameters on FIA. Therefore,

changes in predictability, redundancy, and variability, alone without changes in FIA, should

not generally affect the effectiveness of the rules.

Changes in the number of cues require a footnote to this generalization because they

can affect the specific magnitude of individual AAC values. As shown in Table 6.4, the

coefficient estimates for cues are always negative, meaning that as the number of cues

increase, the AAC decreases for all strategies. This negative correlation is a result of the

increased size of the decision task. For example, as the number of cues increases, there is

an increase in the amount of information needing to be acquired or restricted to decrease

option imbalance by the same percentage. Thus, with the same FIA, an increase in number

of cues will result in each individual acquisition or restriction affecting AAC by a smaller

amount – not necessarily decreasing accuracy.
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6.4 A Mathematical Explanation of Estimates and FIA as Mediators of Rule Effec-

tiveness

The two main mediators of the effectiveness of the rules were the estimates of missing

information and the full information accuracy of the strategy. A brief mathematical result

can show how these two mediators can be integrated into a more full understanding of the

rules: FIA sets the upper limit of the accuracy the rules can help the strategies’ achieve

and estimates determine how much accuracy changes when altering the distribution of in-

complete information. Further mathematical analyses will need to be conducted but this

example should provide an intuition.

Let’s imagine a one cue decision environment with two options, A and B. The correct

decision is to select option A which has a higher dataset criterion value than option B. The

decision maker will therefore make the correct decision when the decision maker’s utility

for option A is greater than option B as shown in Eq. 6.1 – cue weights are not included

because there is only one cue being considered. Using the component-based general linear

model of decision making from Chap. 3, the utility functions can be rewritten based on cue

scores (a), estimates of missing information (e) and incomplete information (z) as shown

in Eq. 6.2.

U(A) > U(B) (6.1)

e+ [a(A)− e]z(A) > e+ [a(B)− e]z(B) (6.2)

Table 6.5 shows the resulting accuracy for the four possible combinations of incomplete

information. The full information accuracy of the strategy is set when information is known

for both options (OI, 0%; CAP, 100%). Let’s assume that the cue scores are binary as was

the case in this study such that a(A) = 1 and a(B) = 0. Therefore, the FIA for this

decision task is the ecological validity of the cue (v, Martignon and Hoffrage, 2002): the

conditional probability of A being the correct option when a(A) = 1 and a(B) = 0.
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Table 6.5: Resulting decision equations and accuracy as a function of estimates of missing
information for a two-option, one-cue decision task with incomplete information.

z(A) z(B)
Option Cue Decision Accuracy

Imbalance Balance Equation (e = 1) (e = 0.5) (e = 0)

1 1 0% 100% 1 > 0 v v v
1 0 100% 0% 1 > e 50% v v
0 1 100% 0% e > 0 v v 50%
0 0 0% 0% e > e 50% 50% 50%

The results of the decision equations in Table 6.5 show that the accuracy of the strat-

egy with only one cue known (OI, 100%; CAP, 0%) depends on the estimate of missing

information. If the strategy estimates missing information as positive (e = 1), the strategy

would be as accurate as the cue’s validity when only Option B is known (v) but would

select randomly when only Option A is known (50%). The converse is true for estimating

missing information as negative (e = 0), when only Option A is known the accuracy is the

cue’s validity but when only Option B is known the accuracy is random. Furthermore, if

the strategy estimates missing information as an average cue score between 0 and 1, the

decision will be as accurate as the cue’s validity (v) both when only Option A is known

and when only Option B is known. Therefore, the average accuracy for the strategy for

scenarios with 100% IB and 0% CB is the average of 50% and v (avg(50%, v)) for the

positive and negative estimates, and v for the average estimate.

These small scale mathematical results support the overall simulation results. The goal

of the heuristic information acquisition and restriction rules is to reduce option imbalance

and increase cue balance. The FIA and the estimate of missing information determines the

effectiveness of the rules because they set the upper and lower limit of the strategy’s achiev-

able accuracy. From the math example, if a strategy was estimating missing information as

positive or negative (e.g. Tallying, Take Two, or TTB), then acquiring information would

increase the average accuracy from the average of 50% and v, to v (PAC, 100%, assuming

v is greater than avg(50%, v); AAC, v/2− 25%). However, if the strategy was estimating
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missing information as an average (e.g. WADD and EW), using the heuristic information

acquisition rule would not increase the average accuracy as both were equivalent to the

cue’s validity (PAC, 0%; AAC, 0%).

6.5 Discussion

The motivating question for this research was to identify how and when decision support

systems should acquire information for or restrict information from the operator. The re-

sults of the simulation and brief math analysis show that heuristic information acquisition

and restriction rules increase the accuracy of decision strategies in a majority of cases

(measured by PAC) and often substantially (measured by AAC), and are mediated by the

strategies’ full information accuracy and estimations of missing information. The follow-

ing subsections describe a synthesized version of the heuristic information acquisition and

restriction rules, expand upon the usefulness of the component-level abstraction of decision

making strategies, and identify the implications of the rules for developing decision support

systems.

6.5.1 Rules for Heuristic Information Acquisition and Restriction

The general rules for heuristic information acquisition and restriction are:

Acquire information to decrease option imbalance or increase cue balance,

or both.

Restrict information to decrease option imbalance, and maintain or de-

crease cue balance.

The pair of heuristic information acquisition rules or the pair of restriction rules cannot

always be performed together. However, if both the option imbalance and cue balance rules

were to be combined, the accuracy should likely be increased more than either in isolation.

The rules cannot always be performed together because option imbalance and cue balance
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are coupled, as shown in Fig. 6.1. For example, when acquiring information to decrease

option imbalance (OI-A), cue balance can either be increased (CB-A) or maintained –

never decreased. Given that OI-A and CB-A had high probabilities of increasing accuracy

(PAC) and high values of accuracy increases (AAC), it is inferred that decreasing option

imbalance while increasing cue balance would be the best option; but the current results

are not conclusive. Now that the general rules of heuristic information acquisition and

restriction have shown to be effective at the environment level, future work will need to

measure PAC and AAC values at the individual decision task level.

6.5.2 Components of Strategies: A New Level of Abstraction

The results extend the perspective that viewing strategies as a unique combination of com-

ponents will be a useful level of abstraction for studies investigating the determinants of

decision making performance. To understand the importance of this perspective, compare

the strategy-level insights versus the component-level insights.

At the strategy-level, WADD and EW are viewed as analytic strategies and Tallying,

Take Two, and Take-the-Best as heuristic strategies. Reviewing the results from Table 6.2

(excluding the component descriptions) and Fig. 6.3 would therefore suggest that there is

something specifically separating the two types of strategies. The heuristic information

acquisition rules increase accuracy less often for analytic strategies (86%-89%) than for

heuristic strategies (100%). Furthermore, for the heuristic information restriction rules,

OB-R increases accuracy less than 50% of the time for analytic strategies but 86% of the

time or more for heuristic strategies. However, what is it about the two groups of strategies

that makes the rules differentially effective? There is nothing obvious in the definitions of

heuristics, that they use simple rules and ignore part of the information (Gigerenzer and

Gaissmaier, 2011), that clearly explains these results.

The component-level abstraction of strategies in Sec. 6.3.2 showed that the differences

in effectiveness of the heuristic information acquisition and restriction rules were mostly

132



caused by how strategies estimated missing information and were not particularly affected

by cue weights – a result first found by Garcia-Retamero and Rieskamp (2008). Further-

more, the mathematical analysis based on the component-level abstraction in Sec. 6.4 pro-

vided preliminary justification for the interaction of estimates of missing information and

the full information accuracy.

The importance of accurately estimating missing information can be seen by the main

objective of the rules: to increase the cue-wise and option-wise balance of the distribution

of information. The rules acquire or restrict information to decrease option imbalance

and increase cue balance so that decision making strategies do not have to make decisions

in which one options’ cue value is known and another options’ cue value is unknown.

Essentially, the rules attempt to restructure the decision task so that decisions are made

with a focus on the cues which have all the information known thus reducing the reliance

on estimates of missing information.

6.5.3 Heuristic Decision Support and Decision Support for Heuristics

The effectiveness of the heuristic information acquisition and restriction rules showed both

the potential for heuristic decision support methods and a need for further research into

designing decision support specifically for heuristic decision makers.

The results show that decision support systems themselves can utilize heuristics that are

effective and efficient in order to help decision makers be effective and efficient. First, the

rules are generally effective. The acquisition rules are highly likely to increase accuracy

across a variety of strategies. The restriction rules are likely to increase accuracy for strate-

gies that estimate missing information as negative or positive and do not negatively impact

accuracy for strategies with average estimates. Second, the rules are transparent and easy

to communicate. The rules alter the distribution of information in order to create a balance

of information between options and within cues. Third, the rules require little information

and process that information quickly. The rules only require a count of how many cues are
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known for each cue and each option.

The differences in the effectiveness of the rules between strategies and components

suggest that effective support for heuristic decision making strategies can sometimes be

very different from effective support for analytic strategies. Using OI-R as the example, the

rule was more likely to increase accuracy and a larger change in accuracy for the heuristic

strategies (Tallying, Take Two, and TTB) than the analytic strategies (EW and WADD).

While it was determined that this difference is largely due to how the strategies estimate

missing information, the results still suggest that decision support system design should

account for the entire range of strategies and constituent components.

Furthermore, removing available information from a decision maker (OI-R and CB-R)

was shown to be an effective, if counterintuitive, method of decision support. In appli-

cation, heuristic information restriction rules could be used if there is not enough time

(Rieskamp and Hoffrage, 2008), money (Bröder, 2000), or capacity (Fasolo et al., 2007)

for the decision maker to process all of the available information; or if the decision maker

has a tendency to exhibit information bias. Further research is needed to determine how to

implement information restriction appropriately in a decision support tool and to relate it

to previous research on decision making strategies which ignore cues with missing infor-

mation (Garcia-Retamero and Rieskamp, 2008).

6.6 Conclusion

This study presented heuristic information acquisition and restriction rules for decision

support which can address some of the psychological and environmental issues that make

analytic information acquisition challenging. The simulation results showed that the rules

are generally effective for increasing the accuracy of decision making strategies (especially

for acquisition), transparent and easy to communicate (create a balance of information

between options and within cues), and require little information to perform (only requiring

knowledge of the distribution of known and unknown information).
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Simulation and mathematical analyses based on a component-level abstraction of strate-

gies were used to identify the main mediators of the rules’ effectiveness as the strategies’

estimate missing information and full information accuracy. Further research is needed to

fully describe how strategy components and environmental parameters interact to affect the

performance of the rules at the task level. The results should ultimately provide an impetus

for the development of heuristic methods of decision support and decision support methods

specifically for heuristic decision making strategies.
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CHAPTER 7

COMPUTER SIMULATION STUDY 3: DETERMINANTS OF DECISION

MAKING WITH INCOMPLETE INFORMATION

This study aims to comprehensively address the questions of incomplete information and

heuristic information acquisition and restriction only initially addressed in the previous two

studies. The first study (Chap. 5) showed that measuring total information is insufficient for

fully characterizing the effects of incomplete information on decision making performance.

Using an artificial dataset with a weighted-additive model for defining the criterion, the

accuracy of heuristic strategies like take-the-best and tallying were shown to be affected not

just by total information but by the balance of information between options and within cues.

Option imbalance, the difference in the amount of information known for the most well-

known and the least-well known, was shown to negatively affect the accuracy of heuristic

strategies as it increased – essentially forcing the heuristic strategies to select at random

when sufficiently high. Cue balance, the count of how many cues have known values

for all options, was shown to positively affect that accuracy of heuristic strategies as it

increased. In fact, for heuristic strategies, the results suggested that reducing information

while reducing option imbalance or increasing cue balance could actually increase decision

making accuracy.

These tradeoffs between total information, option imbalance, and cue balance were

formalized into heuristic information acquisition and restriction rules in the second study

(Chap. 6): option imbalance acquisition (increase total information while decreasing op-

tion imbalance), option imbalance restriction (decrease total information while decreasing

option imbalance), cue balance acquisition (increase total information while increasing cue

balance), and cue balance restriction (decrease total information while keeping cue bal-

ance constant). Using 15 real-world datasets and measuring the changes in accuracy using
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aggregate-level averages, the rules were shown to be quite effective. The acquisition rules

were shown to increase accuracy by 2%-4% for for weighted-additive and equal-weighting,

and by 5%-10% for take-the-best and tallying. Even the restriction rules showed promise,

particularly cue balance restriction which increased accuracy on average by 2%-4%.

To goal of this third study is to address the methodological limitations of prior studies

through a comprehensive simulation of decision making with incomplete information. In-

stead of artificial datasets, seven real-world datasets resulting in 306 environments, from

the UCI Machine Learning Database will be used (Lichman, 2013). Instead of studying

the well-known, named strategies of take-the-best, tallying, and weighted-additive, three

fundamental components of decision making strategies will be varied independently: cue

weights, estimates of missing information, and cutoff type (see Chap. 3). Instead of mea-

suring the effectiveness of the information acquisition and restriction rules at the aggregate-

level, the change in accuracy for individual acquisition and restriction of each cue value will

be measured.

The paper is structured around the three motivating questions of this dissertation. First,

how does incomplete information affect decision making accuracy? The single variable

results show that generally, increasing total information, reducing option imbalance, and

increasing complete attribute pairs, increase accuracy of all strategies.

Second, how are strategies differentially affected by these distributions of incomplete

information? Strategies’ estimates of missing information are shown to have the most

significant effect on decision making accuracy with incomplete information, followed by

cutoff type, and lastly, cue weights. This confirms and expands previous work by Garcia-

Retamero and Rieskamp (2008) showing that to achieve highest accuracy with incomplete

information, a strategy must match the estimate of missing information to the environment,

nearly independent of the cue weighting method. The two-way interactions between the

measures of incomplete information show that when the estimates matched the environment

(in this study, median estimates matched the uniform distribution of missing information),
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the accuracy of the decision making strategies become almost entirely dependent on total

information, irrespective of option imbalance or cue balance. However, when strategies’

estimates did not match the environment (positive and negative estimates in this study),

option imbalance became the major determinant of decision making accuracy, more so

than total information or cue balance.

Third, can information acquisition and restriction methods, which only rely on knowl-

edge of the distribution of incomplete information, increase decision making accuracy?

In short, yes, they can, depending on the estimates of missing information. On average,

heuristic information acquisition methods were able to increase accuracy by 1% for strate-

gies whose estimates matched the environment and up to 4% for strategies whose estimates

did not match the environment. In restriction, the best outcomes were to achieve an in-

crease in accuracy of less than 1%, especially for strategies whose estimates did not match

the environment.

This study concludes with discussions of how cue weights and total information are

insufficient ways to characterize decision making with incomplete information, and the

implications of the heuristic information acquisition and restriction rules.

7.1 Background

7.1.1 Incomplete information

Decision making with incomplete information refers to unknown cue values within the

decision task. Incomplete information is often caused by time pressure, high information

acquisition costs, too much information, or incomplete information in the environment

(see Sec. 2.2). Incomplete information within a decision task can be characterized along

three dimensions: total information, option imbalance, and cue balance. Total information

(TI) measures how many cue values are known within the decision task. Previous work

is in agreement that more information generally increases accuracy of decision making

strategies though the amount of increase is dependent on the fit between the strategy and the
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environment (see Chap. 5; Martignon and Hoffrage, 2002; Garcia-Retamero and Rieskamp,

2008). Option imbalance (OI) measures the difference in amount of known cues values

between the most-known option and the least-known option. Using an artificial dataset and

a linear model as the criterion, Chap. 5 showed that decreasing option imbalance drastically

increased the accuracy of heuristics like take-the-best and tallying but had no effect on

weighted-additive or equal-weighting. Cue balance (CB) measures the number of cues in

which cue values are known for all options. Using the same artificial dataset and a linear

model for accuracy, Chap. 5 showed that increasing cue balance has a positive effect on all

the strategies studied: take-the-best, tallying, weighted-additive, and equal-weighting.

The most interesting results arose when examining the interaction of the measures of

incomplete information, showing that reducing total information while reducing option

imbalance or maintaining cue balance could actually increase the accuracy of take-the-best

and tallying. The accuracy of weighted-additive and equal-weighting were only affected

by total information. These notable results for the two heuristic strategies suggested that

accuracy could be increased by reformulating the distribution of incomplete information

through acquisition or restriction to minimize option imbalance and maximize cue balance.

7.1.2 Heuristic Information Acquisition and Restriction Rules at the Aggregate-Level

In Chap. 6, the tradeoffs were formalized as heuristic information acquisition and restric-

tion rules: methods of adding or removing cue values from a decision task that do not

require knowledge of the cue values, cue weights, or probabilities, only the distribution of

incomplete information. Four specific rules were defined: option imbalance acquisition (in-

crease total information while decreasing option imbalance), option imbalance restriction

(decrease total information while decreasing option imbalance), cue balance acquisition

(increase total information while increasing cue balance), and cue balance restriction (de-

crease total information while keeping cue balance constant). The four rules were tested

for their effectiveness in increasing accuracy at the aggregate-level across 15 datasets with
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two options, and three to five cues. The aggregate-level of analysis refers to measures of

changes in decision making accuracy were calculated based on the averages of an entire

dataset, rather than each individual task.

The results of the simulation showed that the heuristic information acquisition and re-

striction rules had promise. Option imbalance acquisition resulted in an average accuracy

increase of 2% for weighted-additive and equal-weighting, and 6% to 10% for take-the-

best and tallying. In comparison, cue balance acquisition was more effective for weighted-

additive and equal-weighted, with an average accuracy increase of 4%, but less effective

for take-the-best and tallying, with an average accuracy increase of 5%. Even the restric-

tion rules showed promise. Of two the restriction rules, cue balance restriction had more

positive results, having an average accuracy increase for each strategy between 2% and

4%. Option imbalance restriction was effective in increasing the accuracy of take-the-best

and tallying by 1.2% and 2.9%, respectively, but having essentially no positive or negative

effect on the accuracy of weighted-additive or equal-weighting.

Using statistical analysis and a mathematical result, the effectiveness of the rules were

shown to be dependent on the estimates of missing information and not on the cue weights.

Extending the prior results by Garcia-Retamero and Rieskamp (2008, 2009), the strategies

that correctly modeled the relationship between the missing information and cue scores

(i.e. weighted-additive and equal-weighting estimated the uniformly missing information

as a median value) were more robust to the effects of incomplete information, and thus

did not benefit as much from the rules altering the distribution of information as those

strategies with incorrect models of the relationship (i.e. take-the-best and tallying estimated

the missing information as negative).

The analysis at the aggregate-level had limitations that the task-level analysis in this

study will overcome. The analysis did not account for the fact that cue balance and option

imbalance are coupled despite its mention in the discussion. Therefore, it is unknown how

the various acquisition and restriction rules should or should not be combined. Further-
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more, the aggregate-level analysis did not measure what specific cues were being removed

relative to the application of each rule, eliminating the possibility of examining how knowl-

edge of cue weights could impact the performance of the rules.

7.2 Method

The goal of this study was to characterize the effect of cue weights, cutoff types, and

estimates of missing information as interacting, independent variables on decision making

accuracy within various distributions of incomplete information and on the effectiveness of

acquiring or restricting information at the decision task level.

The accuracy of the decision making strategies was tested across the 7 datasets in Ta-

ble 7.1 from the UCI Machine Learning Database (Lichman, 2013). For each dataset,

all 2-option decision tasks with 5 cues and 1 criterion were investigated. To study in-

complete information, each 2-option decision task was combined with all combinations

of missing information and provided to each decision making strategy. Eighteen strate-

gies were constructed from all combinations of cue weights (compensatory, equal, and

non-compensatory), estimates of missing information (positive, negative, and median), and

cutoff types (prior and relative). The cue weights, estimates, and directions were calculated

based on all options in the dataset. To study the effectiveness of acquiring or restricting

cue values, within each 2-option decision task, all acquisitions and restrictions of each cue

value were performed and categorized as one of eight possible information acquisition or

restriction types in Table 7.2.

7.2.1 Strategies

The decision tasks in this study are paired comparison tasks in which the goal is to predict

which of two options has the higher criterion value. For example, it can be asked which of

two wind tunnel conditions causes higher sound pressure for a specific airfoil. The decision

can be based cues including the angle of attack or the free-stream velocity.
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Table 7.1: Characteristics of the seven datasets used in Study 3.

Dataseta Description Cues, Criteria Options Environments Total Tasks

Concrete Slump Choose the concrete with higher slum, flow, and com-
pressive strength based on components including ce-
ment, slag, fly ash, water, coarse aggregate, and fine
aggregate.

7, 3 103 63 3.31 E 5

Computer Hardware Choose the computer hardware with higher perfor-
mance (published or estimated) based on components
including memory, channels, and cycle time.

6, 2 209 12 2.61 E 5

Yacht Hydrodynamics Choose the sailing yacht with higher resistance based
on coefficients including prismatic, beam-draught,
and Froude numbers.

6, 1 308 6 2.84 E 5

Forest Fires Choose the forest location with higher area burned
based on weather factors including wind speed, tem-
perature, relative humidity, and rain.

8, 1 517 56 7.47 E 6

Energy Efficiency Choose the building with higher heating and cooling
loads based on features including surface area, wall
area, overall height, and glazing area.

8, 2 768 112 3.30 E 7

Concrete Compress Choose the concrete with higher compressive strength
based on components including cement, slag, fly ash,
water, coarse aggregate, and fine aggregate.

8, 1 1030 56 2.97 E 7

Airfoil Self-Noise Choose the wind tunnel condition with higher sound
pressure for NACA 0012 airfoil based on conditions
including angle of attack, frequency, and free-stream
velocity.

5, 1 1503 1 1.13 E 6

The datasets are available at the UCI Machine Learning Database: http://archive.ics.uci.edu/ml/datasets/.
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Table 7.2: Information acquisition and restriction types for the 2-option decision tasks.

Name Rule Cue Balance Option Imbalance

-4 Restriction -1 -1
-3 Restriction -1 1
-2 Restriction* 0 -1
-1 Restriction* 0 1
1 Acquisition 0 1
2 Acquisition* 0 -1
3 Acquisition* 1 1
4 Acquisition* 1 -1

*Examples of the heuristic information acquisition and
restriction rules studied in Chap. 6.

The decision making strategies in this study are combinations of three components

described by the general linear model of decision making in Chap. 3 and Eq. 7.1. Each

decision making strategy in this study is modeled using the binary utility function which

ultimately converts the cue values to binary cue scores before integrating them with the

cue weights. This choice is justified because the non-compensatory weights cannot be used

without binary scores, and the equal weights and compensatory weights from cue validities

require that the cue values are normalized in a consistent manner. However, future studies

will include exact utility functions so that models like multiple linear regression and logistic

regression can be compared.

Ci =
n∑

j=1

wj ·H
[
dj

(
ej + (avi,j − ej)zi,j

)
− (dj · cj) + ∆j

]
(7.1)

Cutoff type denotes whether the strategy requires the cue values to be dichotomized

using a cutoff value defined prior to the decision task (prior, P) or using a cutoff value

defined relative to the cue values within the task (relative, R). All strategies using prior

cutoffs in this study had cutoff values equivalent to the median of all cue values (cj = ãj).

Relative cutoffs compare each original cue value to either the maximum or minimum cue
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value within the decision task, depending on the cue direction (cj = max/min aj). Relative

cutoffs can approximate the use of continuous cues scores for non-compensatory weights

like take-the-best and other strategies which require binary cue scores Katsikopoulos et al.

(2010).

Cue weights (wj) define the relative importance of cues and generally describe how the

cue scores are integrated. Equal weights (E) sets all the cue weights equal (wj = 1). Non-

compensatory cue weights (N) represent strategies in which once a cue discriminates in

favor of an option, the decision will not change regardless of the information processed for

lower-ranked cues (Martignon et al., 2008) (wj = 41−j). Compensatory cue weights (C)

technically describes all other distributions of cue weights which are not equal nor non-

compensatory (Hogarth and Karelaia, 2006). However, in this study, compensatory cue

weights describes a type of strategy which does not have any preference for compensatory

or non-compensatory (wj = vj).

The cues weights for compensatory strategies and cue ordering for non-compensatory

strategies were calculated based on the frequentist cue validity (Gigerenzer and Goldstein,

1996),

v =
R

R +W
(7.2)

where R and W are the number of correct and incorrect decisions, respectively, based on

an individual cue.

Estimates (e) denote how the strategy estimates and replaces missing cue values: pos-

itive (P, maximum cue value, max avj ), median (M, âvj ), and negative (N, minimum cue

value, min avj ). As described in Sec. 3.1.3, the maximum and minimum cue values are

defined independently of the determination of cue directions (dj) – whether the cues are

positively or negatively correlated with the criterion. For each strategy the threshold was

set to zero (∆ = 0) meaning that any difference between two cue values is large enough

to tell them apart. This is the standard threshold value used in simulation studies as it has
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often been ignored and thus equivalent to zero.1

Combinations of the two cutoff types, three cue weights, and three estimates resulted

in 18 unique strategies which are presented in Table 7.3. The components represent large

sets of the three families of well-studies strategies based on their cue weights: tallying

and equal-weighting (EW), take-the-best (TTB), and weighted-additive (WADD). The tra-

ditional form of tallying is represented by the PNE model with prior cutoffs (P), negative

estimates (N) and equal weights (E), so that it chooses the option with the higher num-

ber of positive cue scores. The traditional form of TTB is represented by the PNN model

with prior cutoffs (P), negative estimates (N), and non-compensatory weights (N), so that it

chooses the option that discriminates on the highest-ranked cue i.e. a cue that has a positive

cue score for one option and an unknown or negative cue score for the other. The tradi-

tional form of WADD is represented by the RMC model with relative cutoffs (R), median

estimates (M), and compensatory weights (C), so that it sums the product of each cue score

and cue validity, selecting the option with the highest criterion.

CPNE =
n∑

j=1

H
[
dj

(
min avj + (avi,j −min avj )zi,j

)
− (dj · ãvj )

]
(7.3)

CPNN =
n∑

j=1

41−j ·H
[
dj

(
min avj + (avi,j −min avj )zi,j

)
− (dj · ãvj )

]
(7.4)

CRMC =
n∑

j=1

v ·H
[
dj

(
ãvj + (avi,j − ãvj )zi,j

)
− (dj ·max /min aj)

]
(7.5)

7.3 Results

7.3.1 One-Variable Effects

Figure 7.1 plots the average accuracy of each strategy as a function of each individual

measure of incomplete information. The plots for total information (top plot, Fig. 7.1)

1See Payne et al., 1990, for an exception and Luan et al., 2014, for a comprehensive study of thresholds.
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Table 7.3: Strategy codes for the 18 variations of the components of the strategies based on the general linear model of decision making.

Strategy Family Strategy Code Cutoff Type Estimates Cue Weights

Tallying and equal-weighting (EW)

PME (P) Prior (M) Median (E) Equal
RME (R) Relative (M) Median (E) Equal
PNE (P) Prior (N) Negative (E) Equal
RNE (R) Relative (N) Negative (E) Equal
PPE (P) Prior (P) Positive (E) Equal
RPE (R) Relative (P) Positive (E) Equal

Take-the-Best (TTB)

PMN (P) Prior (M) Median (N) Non-compensatory
RMN (R) Relative (M) Median (N) Non-compensatory
PNN (P) Prior (N) Negative (N) Non-compensatory
RNN (R) Relative (N) Negative (N) Non-compensatory
PPN (P) Prior (P) Positive (N) Non-compensatory
RPN (R) Relative (P) Positive (N) Non-compensatory

Weighted-additive (WADD)

PMC (P) Prior (M) Median (C) Compensatory
RMC (R) Relative (M) Median (C) Compensatory
PNC (P) Prior (N) Negative (C) Compensatory
RNC (R) Relative (N) Negative (C) Compensatory
PPC (P) Prior (P) Positive (C) Compensatory
RPC (R) Relative (P) Positive (C) Compensatory
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and cue balance (bottom plot, Fig. 7.1) showed the biggest differences occurred between

strategies using prior or relative cutoffs. Generally, strategies with prior cutoffs showed a

higher accuracy than strategies with relative cutoffs. The strategies, in order of decreas-

ing full information accuracy, were: prior non-compensatory (71%), prior compensatory

(70%), prior equal (68%), and then relative non-compensatory, compensatory, and equal

all at 63%. The trends of total information and cue balance showed that the accuracy of

strategies with prior cutoffs had larger increases than relative cutoffs.

As expected, median estimates, which correctly match the uniform distribution of miss-

ing information, do make the accuracy robust to option imbalance, regardless of the cue

weights or the cutoffs (middle plot, Fig. 7.1). The 6 strategies with median estimates main-

tained or even slightly increased their accuracy as option imbalance increased. Positive or

negative estimates, which incorrectly assume a positive or negative relationship between

the missing cue values and the criterion, were drastically affected by option imbalance.

When option imbalance increased from 0 to 5, accuracy reduced by 8% to 14%. When the

information between options was balanced, the accuracy of the strategies generally con-

verged the same accuracy, especially amongst strategies whose only differences were how

they estimated of missing information.

7.3.2 Two-Variable Interaction Effects

Each decision task is defined by not just one of these measures of incomplete information,

but by all three. So although, increasing total information, decreasing option imbalance,

and increasing cue balance, individually tend to result in greater accuracy for strategies, one

has to examine the two-way interactions as shown in Fig. 7.2. In sum, there are two types

of interactions based on whether the strategy estimated the missing information incorrectly

as positive or negative (left column of plots in Fig. 7.2), or whether the strategy estimated

the missing information correctly as the median (right column of plots in Fig. 7.2).

Strategies that estimated missing information incorrectly showed the tradeoffs discov-
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Figure 7.1: Accuracy of decision making strategies as a function of total information, op-
tion imbalance, and cue balance.
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Figure 7.2: Exemplar two-way interactions between the three measures of incomplete in-
formation. The left column showing the results of the PNN strategy represents strategies
whose estimates of missing information did not match the environment. The right column
showing the results of the PMN strategy represents strategies whose estimates of missing
information did match the environment.
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Table 7.4: Accuracy of decision making strategies with incomplete information. Cell colors are conditionally formatted with a blue-
white-red transition from low to high accuracy.

TI RNN PNN RNE PNE RMC PMC RPN PPN RPE PPE RMN PMN RME PME RNC PNC RPC PPC

0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
1 0.54 0.54 0.54 0.54 0.58 0.59 0.54 0.54 0.54 0.54 0.58 0.59 0.58 0.59 0.54 0.54 0.54 0.54
2 0.57 0.57 0.56 0.57 0.60 0.61 0.57 0.57 0.56 0.56 0.60 0.62 0.58 0.59 0.57 0.57 0.57 0.57
3 0.59 0.60 0.57 0.59 0.60 0.63 0.59 0.60 0.57 0.58 0.62 0.64 0.60 0.62 0.58 0.60 0.58 0.60
4 0.60 0.62 0.58 0.60 0.61 0.64 0.60 0.62 0.58 0.60 0.62 0.65 0.60 0.63 0.60 0.62 0.60 0.61
5 0.61 0.64 0.59 0.62 0.61 0.65 0.61 0.63 0.59 0.61 0.63 0.66 0.61 0.65 0.60 0.64 0.60 0.63
6 0.62 0.65 0.60 0.63 0.62 0.66 0.62 0.65 0.60 0.62 0.63 0.67 0.61 0.65 0.61 0.65 0.61 0.64
7 0.62 0.67 0.61 0.64 0.62 0.67 0.62 0.66 0.61 0.64 0.63 0.67 0.62 0.66 0.62 0.66 0.62 0.66
8 0.62 0.68 0.61 0.65 0.63 0.68 0.62 0.67 0.61 0.65 0.63 0.68 0.62 0.67 0.62 0.67 0.62 0.67
9 0.63 0.69 0.62 0.67 0.63 0.69 0.63 0.69 0.62 0.66 0.63 0.69 0.63 0.68 0.63 0.69 0.63 0.68

10 0.63 0.71 0.63 0.68 0.62 0.70 0.63 0.71 0.63 0.68 0.63 0.71 0.63 0.68 0.62 0.70 0.62 0.70

CB RNN PNN RNE PNE RMC PMC RPN PPN RPE PPE RMN PMN RME PME RNC PNC RPC PPC

0 0.58 0.60 0.57 0.59 0.61 0.64 0.58 0.60 0.57 0.58 0.62 0.64 0.60 0.62 0.58 0.60 0.58 0.59
1 0.61 0.63 0.59 0.61 0.61 0.65 0.61 0.63 0.59 0.61 0.62 0.65 0.60 0.64 0.60 0.63 0.60 0.62
2 0.62 0.66 0.60 0.63 0.62 0.66 0.62 0.65 0.60 0.63 0.62 0.66 0.61 0.65 0.61 0.65 0.61 0.65
3 0.62 0.68 0.61 0.65 0.62 0.68 0.62 0.67 0.61 0.65 0.63 0.68 0.61 0.66 0.62 0.67 0.62 0.67
4 0.63 0.69 0.61 0.67 0.63 0.69 0.63 0.69 0.61 0.66 0.63 0.69 0.62 0.68 0.63 0.69 0.63 0.68
5 0.63 0.71 0.63 0.68 0.62 0.70 0.63 0.71 0.63 0.68 0.63 0.71 0.63 0.68 0.62 0.70 0.62 0.70

OI RNN PNN RNE PNE RMC PMC RPN PPN RPE PPE RMN PMN RME PME RNC PNC RPC PPC

0 0.61 0.65 0.60 0.63 0.61 0.65 0.61 0.65 0.60 0.63 0.62 0.65 0.60 0.64 0.61 0.65 0.61 0.65
1 0.61 0.64 0.60 0.62 0.61 0.65 0.61 0.64 0.60 0.62 0.62 0.65 0.61 0.64 0.61 0.64 0.61 0.64
2 0.60 0.63 0.58 0.60 0.62 0.65 0.60 0.62 0.58 0.59 0.62 0.65 0.60 0.64 0.60 0.62 0.60 0.61
3 0.58 0.60 0.56 0.58 0.62 0.65 0.58 0.59 0.56 0.56 0.63 0.65 0.61 0.64 0.57 0.59 0.57 0.57
4 0.56 0.57 0.54 0.55 0.62 0.65 0.56 0.55 0.54 0.53 0.63 0.65 0.61 0.63 0.55 0.56 0.55 0.54
5 0.52 0.53 0.52 0.53 0.63 0.64 0.52 0.51 0.52 0.51 0.64 0.65 0.63 0.63 0.52 0.53 0.52 0.51
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ered in Chap. 5. Decreasing total information while decreasing option imbalance, tends to

increase or maintain accuracy. Decreasing total information while maintaining cue balance

tends to only slightly decrease accuracy. Overall, within the same amount of total infor-

mation, the best distribution of information is that in which cue balance is maximized and

option imbalance is minimized.

Strategies that estimated missing information accurately were robust to changes in op-

tion imbalance or cue balance: their accuracy simply increased when total information

increased and decreased when total information decreased. For these strategies, within the

same amount of total information, decreasing option imbalance or increasing cue balance

had essentially no effect.

These results expand the inferences made by Garcia-Retamero and Rieskamp (2008)

who showed that for strategies to achieve highest accuracy, estimates of missing informa-

tion must match distribution of missing information in the environment. In this simulation,

missing information was uniformly distributed. Therefore, missing information should be

estimated as the median, not as positive or negative. The results in Fig. 7.2 show that when

strategies match the environment they do not only have better accuracy overall, but their

accuracy becomes a function of only total information, largely unaffected by other aspects

of the distributions of incomplete information.

7.3.3 Heuristic Information Acquisition and Restriction Rules

As expected, the effectiveness heuristic information acquisition and restriction rules shown

in Fig. 7.3 follow the results of the two-way interactions: for the strategies that estimated

missing information correctly as the median, the effectiveness of the rules were driven

by total information, but for strategies that estimated missing information incorrectly as

positive or negative, the effectiveness was driven by option imbalance. The performance of

the various heuristic information acquisition and restriction rules was measured by positive

accuracy count (PAC, the percent of times in which the rules resulted in a positive change in
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accuracy) and average accuracy change (AAC, the average change in accuracy when using

the rules).2 The relative impact of the strategy components in order, again, ranged from

estimates of missing information which had a significant effect, to the cutoffs which had a

moderate effect, and finally to the cue weights which had almost no effect.3

For the strategies that estimated missing information correctly as the median, the re-

sults are actually best described through the differential effects of cutoffs. Relative cutoffs

with median estimates were essentially unaffected by the nuances of option imbalance or

cue balance: acquiring information resulted in an average increase of around 1% while

restricting information led to an average decrease of 1%. However, prior cutoffs preferred

that information be acquired or restricted in such a way that cue balance was maintained or

reduced, respectively.

For the strategies that estimated missing information incorrectly as positive or negative,

the best rules can be summarized as those that acquire or restrict information to reduce op-

tion imbalance, regardless of cue balance. Acquiring information while decreasing option

imbalance resulted in a 2% to 4% increase, increasing accuracy between 57% and 64% of

the time. Restricting information to decrease option imbalance resulted in 0.5% decrease

to 0.5% increase, increasing accuracy between 48% and 54% of the time.

The lack of influence of cue balance on these results is a little surprising – the negative

relationship for some strategies even more so. Prior work in Chap. 6 showed that restricting

total information while maintaining cue balance was an effective rule at the aggregate-level,

increasing accuracy by 2% to 4% regardless of estimates of missing information. That work

showed that acquiring total information to increase cue balance was even more effective,

increasing accuracy by 4% to 6% regardless of estimates of missing information. It was

thought that particularly for the strategies that estimated missing information incorrectly as

positive or negative cue values, increasing cue balance would be effective as it reduced the

2Note that the measures of acquisition in Study 2 compared acquiring information following the rules to
acquiring information not following the rules. Whereas in this study, the measures of acquisition compare
acquiring information following the rules to the current distribution of incomplete information.

3Complete numerical results are presented in Tables A.7 and A.8.
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Figure 7.3: Average accuracy change (AAC) for each information acquisition and restric-
tion type. Parentheses denote the change in cue balance and option imbalance, respectively.
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likelihood that decisions were made using the incorrect estimates of missing information.

It could be that since this prior analysis did not measure option imbalance and cue balance

simultaneously as was done in this study, the the option imbalance results were embedded

in the cue balance acquisition and restriction results.

The alternating heights of the bars in Fig. 7.3 is a result of the alternating use of prior

or relative cutoffs. The prior cutoffs almost always have the same direction of effectiveness

for each rule (increasing or decreasing accuracy) as their complimentary relative cutoffs,

but with a decreased magnitude. Therefore, it seems that in addition to estimating missing

information correctly, converting cues to binary using the median cue values rather than

relative cue values may make strategies more robust to changes in incomplete information.

In sum, the task-level results are more conservative than the aggregate-level results, but

still show the promise of heuristic information acquisition and restriction rules.4 When

the estimates do not match the environment, heuristic information acquisition and restric-

tion rules should try to reduce option imbalance regardless of their effects on cue balance.

However, when estimates do match the environment, heuristic information acquisition and

restriction rules should acquire information to not affect cue balance. The most effective

heuristic information restriction rule for median estimates was to reduce cue balance, but

that only achieved mixed results.

7.3.4 How Valuable is Cue Rank Information?

One of the key aspects defining the heuristic information acquisition and restriction rules

is that they do not use cue rank to determine which cue to acquire or restrict. However,

in many cases, there are potentially multiple cues that can be acquired or restricted that

satisfy the rules for reducing option imbalance or maintaining cue balance. Figure 7.4

answers the question: what if the heuristic information acquisition and restriction rules had

4Future work will measure the change in achievement, rather than accuracy, to make studies more com-
parable. It could be that the environments used in this study are just more difficult for the strategies than the
ones used in Chap. 6.
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cue rank information? By plotting the effectiveness of the rules against cue rank, it is clear

that the rules are at their most effective when restricting lower ranked cues and acquiring

higher ranked cues. This is not a surprising result but shows just how much more effective

the rules can be if combined with knowledge of cue rank. When acquiring the highest

ranked cue to reduce option imbalance, accuracy can increase between 1% and 5%. When

restricting the lowest ranked cue to reduce option imbalance, accuracy can decrease 1%

or even increase up to 2%. Alternatively, it is clear how variable the results of heuristic

information acquisition and restriction by cue rank, ranging by up to 2% for the same rule

and strategy, just based on the rank of the cue.

7.4 Discussion

7.4.1 Beyond Total Information and Cue Weights

Decision making with incomplete information is shown to be a fundamentally different

regime than the full information decision tasks commonly studied. Well-known decision

making strategies have been largely characterized and named by how they integrate the cue

values via cue weights. Heuristics like take-the-best use non-compensatory weights that

can make decisions using only one cue. Others, like tallying or equal-weighting, don’t use

cue weights, instead integrating all cues equally. These heuristics are typically contrasted

with strategies or models that use compensatory weights like multiple linear regression

or weighted-additive. These differences are important in full information decision tasks.

However, these differences break down as total information is reduced.

When there is incomplete information it becomes clear that two aspects largely deter-

mine the performance of decision making strategies: the estimates of missing information

and option imbalance. When the estimates of missing cue values match the environment

(i.e., median estimates if the cue values are uniformly missing as in this study), total infor-

mation becomes the main determinant of decision making accuracy. However, when the

estimates of cue values do not match the environment (i.e., the positive and negative esti-
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Figure 7.4: Average accuracy change (AAC) for each information acquisition and restriction type by cue rank. Parentheses denote the
change in cue balance and option imbalance, respectively.
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mates in this study), option imbalance becomes the main determinant of decision making

accuracy, not total information.

In the context of training and decision support for situations with incomplete informa-

tion, these results put the focus on how distributions of incomplete information are pre-

sented to decision makers and how decision makers can be supported to estimate missing

cue values accurately. How exactly to modify and present information in accordance with

minimizing option imbalance and maximizing cue balance is not yet known – particularly,

with respect to hiding and restricting information. In terms of information acquisition, di-

rect studies will be required to compare these heuristic information acquisition strategies to

the analytic, Bayesian information acquisition methods (Nelson, 2005; Meder and Nelson,

2012).

Additionally it is still an open question as to how good people are at estimating missing

information (Rieskamp et al., 2003; Rieskamp, 2006b). Garcia-Retamero and Rieskamp

(2009) showed that people could quickly adapt their estimates of missing information

from average estimates when information was uniformly missing to negative estimates

when missing information was correlated with negative cue values. However, studies like

Rieskamp (2006a) showed that people were slow to adapt to new environments, described

as an “inertia effect.” Another way to address the question of estimating the value of a

missing cue is to frame it as a judgment problem as in Chap. 3 and von Helversen and

Rieskamp (2009).

This issue of estimating missing information would be another useful point of synergy

between the fast-and-frugal heuristics community (where most of the direct studies of es-

timates of missing information have been done) and the naturalistic decision making com-

munity (who study expert decision makers in familiar contexts) (Keller et al., 2010). One

of the eight characteristics of naturalistic decision settings is uncertain, dynamic environ-

ments with incomplete and imperfect information (Orasanu and Connolly, 1993). Lipshitz

and Strauss (1997, p. 156) showed that participants dealing with a lack of information typ-
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ically used assumption-based reasoning to reduce uncertainty: “Construct a mental model

of the situation based on beliefs that are (1) constrained by (though going beyond) what

is more firmly known, and (2) subject to retraction when and if they conflict with new

evidence or with lines of reasoning supported by other assumptions.” Modeling or support-

ing this assumption-based reasoning might be a path toward better estimates of missing

information and thus, better decision making with incomplete information.

Alternatively, instead of relying on training or a person’s experience to estimate missing

cue values, decision support tools might be able to use analytic methods for estimating the

missing values (Arbuckle, 1996).

7.4.2 Information Acquisition Without Cue Weights, Cue Values, or Probabilities

Standard analytic information acquisition methods require reliable assessments of proba-

bilities, cue weights, and cue scores (Nelson, 2005, 2008; Meder and Nelson, 2012). How-

ever, these requirements face multiple environmental issues when used in the real-world

(Katsikopoulos and Fasolo, 2006; Katsikopoulos et al., 2008): First, real-world problems

can exhibit statistical dependencies which create computational issues in calculating prob-

abilities and cue weights. Second, psychologically, an operator may not be able to provide

accurate information to the DSS regarding the probabilities and cue weights. Third, the

analytic process may seem too complex and too opaque to the operator causing the opera-

tor to be reluctant to use the DSS or accept its suggestions. Lastly, as these methods have

focused on acquisition, they do not provide suggestions as to what information could be

restricted from the operator.

The rules examined in this study overcome these environmental issues to develop new

methods of information acquisition and restriction. When the estimates do not match the

environment, heuristic information acquisition and restriction rules should try to reduce

option imbalance regardless of their effects on cue balance. However, when estimates

do match the environment, heuristic information acquisition and restriction rules should
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acquire information to not affect cue balance. In general, the acquisition rules were shown

to increase the accuracy of strategies despite not using the rank order of the cues, the cue

values, or the probabilities. Accuracy increased more than 1% per acquisition for strategies

with correct estimates of missing information and up to 4% per acquisition for strategies

with incorrect estimates.

The restriction rules showed more mixed results. For strategies that estimated missing

information correctly, those that used prior cutoffs can restrict information to reduce cue

balance with negligible effects on accuracy, while those that used relative cutoffs should

not restrict information. For strategies with incorrect estimates of missing information,

restricting information to reduce option imbalance resulted in accuracy changes of plus-

or-minus 0.5%. In sum these restriction results provide a more formal foundation to the

prior results showing that specific cue values in a decision task can be removed without

compromising accuracy (see Sec. 2.3).

Future work will be required to directly compare the effectiveness of these heuris-

tic rules against analytic information acquisition methods which do use probabilities, cue

weights, and cue scores.

7.5 Conclusion

The previous studies of decision making with incomplete information in Chap. 5 and

Chap. 6 provided initial results toward new hypotheses of decision making performance

with incomplete information: that there is more to measuring incomplete information than

just total information; that there is more to strategy definitions than just their cue weights;

and that there are ways to effectively acquire and restrict information without knowledge

of cue weights and cue values. The results were labeled as initial because they had some

methodological limitations such as the use of artificial datasets, few decision making strate-

gies, and aggregate-level analysis. This study re-examined these hypotheses using a com-

prehensive study of seven real-world datasets, eighteen decision making strategies, and
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analysis at the task-level. The results confirmed each of these hypotheses while also pro-

viding deeper explanations. The balance of information between options and within cues,

interact with total information to determine decision making accuracy. Matching estimates

of missing information to the environment is essential for being robust in environments

with incomplete information. Acquiring and restricting information heuristically can be

an effective method for increasing or maintaining accuracy, respectively, even without the

knowledge cue weights, cue values, or probabilities.

With these hypotheses confirmed, the next step is to determine how the distributions

of incomplete information affect people’s decision making accuracy. In particular, does

having correct estimates of missing information make people’s decision making accuracy

robust to various distributions of incomplete information?
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CHAPTER 8

VALIDATION HUMAN-SUBJECTS STUDY

Computational studies in prior chapters have presented fairly conclusive results showing

the estimates of missing information and distributions of incomplete information are the

main determinants of decision making accuracy with incomplete information regardless of

decision strategy (Chap. 5-7). When the estimates of missing information match the envi-

ronment (estimating missing information as average cue values when missing information

is uncorrelated), only total information matters: more information increases accuracy, re-

gardless of its distribution. However, when the estimates of missing information do not

match the environment (estimating missing information as negative when when the miss-

ing information is uncorrelated), option imbalance and cue balance are more important that

total information: decreasing option imbalance and increasing cue balance increases accu-

racy. This experiment attempts to address an important follow-up question: does having

correct estimates of missing information make people’s decision making accuracy robust

to various distributions of incomplete information? 1

8.1 Background

An experiment was designed based on the contextual model of decision making accuracy

described in Chap. 4. The level of difficulty (task parameter) and incomplete information

were manipulated directly in the experiment and serve as the independent variables. Par-

ticipants were not controlled as to how they processed information (strategies) or estimated

missing information. The decision tasks were designed to elicit how participants estimated

missing information (positive, negative, average) but not how they processed information

1See Appendix A.3 for documentation of approval from Georgia Tech’s Institutional Review Board and
associated consent forms.
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because prior computer simulation studies (Chap. 7 and Garcia-Retamero and Rieskamp,

2008) and human-subjects studies (Garcia-Retamero and Rieskamp, 2009) have shown that

decision making performance with incomplete information is more determined by how peo-

ple estimate missing information than how they weigh and integrate the information. To

make the decision tasks independent of strategy, in each task, the traditional heuristic (take-

the-best, TTB) and analytic (weighted-additive, WADD) strategies with average estimates

of missing information would select the same option without selecting at random. The de-

pendent variables measured by the output of each decision task were 1) the accuracy of the

decision and 2) the time required to make the decision.

8.1.1 Difficulty

Difficulty is a task parameter which describes the magnitude of the difference between the

criteria of the two presented options. As the difference between the two options decreases,

the two options become more similar, and the difficulty of making the correct decision is

presumed to increase. The difference between option scores varied from 0 to 1. Difficulty

was categorized into 3 levels: low [0.60-0.85], medium [0.25-0.45], and high [0.05-0.13].2

8.1.2 Incomplete Information

Three measures are used to describe the distribution of incomplete information: total in-

formation, option imbalance, and cue balance (Sec. 4.3.4). Total information describes the

number of known cues available to the decision maker. Option imbalance measures the

difference in total known cues between two options. Cue balance counts the number of

cues for which cue scores are known for both options. For a two-option, four-cue decision

task, there are 22 unique distributions of incomplete information as described by these three

measures. This experiment studied the 13 distributions in which 2, 4, 6, and 8 cue scores

2These categories do not cover the entire span of 0 to 1 because the categories only correspond to the
range of differences represented in the selected strategies. Differences not categorized in these 3 levels were
not used in the experiment.
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were known.

The 13 distributions shown in Table 8.2 enabled the experimental results to be com-

parable to the simulation results of previous research of decision making with incomplete

information. By studying all 13 distributions, accuracy can be studied relative to each indi-

vidual measure of incomplete information and also the interactions. Previous research has

shown that, in general, accuracy of decision making strategies increases when total infor-

mation increases (Martignon and Hoffrage, 2002; Garcia-Retamero and Rieskamp, 2008;

Chap. 5 and Chap. 7), option imbalance decreases (Chap. 5 and Chap. 7), and cue balance

increases (Chap. 5 and Chap. 7).

The comparison within total information provided insights into how known cue scores

should be distributed within a decision task. The computer simulation studies in Chap. 5

and Chap. 7 showed that with fixed amount of total information, cue scores should be

distributed such that option imbalance is minimized and cue balance is maximized. For ex-

ample, this study examines five different ways that 4 known cue scores could be distributed

between two options, varying from 100% option imbalance to 100% cue balance.

8.1.3 Estimates of Missing Information

There at many ways that individuals estimate missing information of which three will used

in this experiment: positive, i.e., replace the missing cue value with a high cue value (as-

suming the missing information positively correlated with the criterion), negative, i.e.,

replace the missing cue value with a low cue value (assuming the missing information

negatively correlated with the criterion), or average, i.e., replace the missing cue value

with the average value of the cue (assuming missing information is not correlated with the

criterion). Garcia-Retamero and Rieskamp (2009) showed that decision makers have the

capability to correctly adapt their estimates of missing information to situations when the

missing cue scores tend to be negative and when the missing cue scores are uncorrelated

with any particular value. Participants correctly matched the environments by estimating
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missing information as negative and average cue scores, respectively. This adaptive behav-

ior is ecologically rational as it achieved the highest accuracy in those environments. In this

experiment, decision tasks are designed such that the missing information is uncorrelated

with average estimates resulting in the correct decision in every decision task for TTB and

WADD.

8.1.4 Interaction of Estimates of Missing Information and Distributions of Incomplete

Information

Estimates of missing information also have significant mediating effects on how distribu-

tions of incomplete information affect accuracy. Chapter 7 showed that when estimates of

missing information match the environment, accuracy of a wide range of decision making

strategies is only determined by total information and is unaffected by option imbalance or

cue balance (see Fig. 7.2). When estimates do not match the environment, option imbal-

ance and cue balance do mediate decision making accuracy. Since participants should be

able to adapt to using the correct average estimates of missing information, the decision

making accuracy of the participants should not be affected by changes in distributions of

incomplete information measured by option imbalance and cue balance.

8.2 Method

8.2.1 Participants

30 people (24 men and 6 women) with an average age of 24 years old participated in the

experiment, which took approximately 1.5 hours. Most students were from the School of

Aerospace Engineering at the Georgia Institute of Technology, with a total of 19 gradu-

ate students and 11 undergraduate students participating. Participants received a show-up

payment of $10, and an additional payment based on their performance (up to a maximum

total payment of $25.60), with an average total payment of $24.36.
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8.2.2 Decision Environment

The decision environment was based on characteristics of the decision making environ-

ment of an anti-aircraft warfare coordinator (AAWC) on a military ship (Rothrock, 1995;

Rothrock and Kirlik, 2003). Based on this background, the participants’ goal as an AAWC

is to determine which of two incoming targets is more dangerous (the decision criterion)

and should be engaged, based on four binary cues: altitude (low, high), speed (slow, fast),

distance from neutral air corridor (near, far), and size (small, large).

Constructing the relationship between the cue scores and criterion scores is an impor-

tant consideration when studying decision making accuracy - both specifically related to

human-subjects studies (Olsson et al., 2006; Pachur and Olsson, 2012) and generally with

respect to the environmental parameters described in Chap. 4 (validity, predictability, and

compensatoriness). The criterion model created for this experiment is a non-linear, non-

monotonic model as shown in Eq. 8.1. The first parentheses of Eq. 8.1 generates the

estimate of the danger of the incoming target based on a linear model of the target’s char-

acteristics: the target’s altitude, speed, and size. When the binary cue values equal 1, the

target is more dangerous than if the binary cue value is 0. Figure 8.1 visualizes the two

exemplar targets. The missile, a small (a4 = 1), high speed (a2 = 1) target at low altitude

(a1 = 1) is more dangerous than the transport aircraft, a large (a4 = 0), low speed (a2 = 0)

target at high altitude (a1 = 0). To make the decision environment more difficult and more

related to real-world tasks, the danger also had to be considered with respect to the tar-

get’s distance from an air corridor used for non-military transports. If the target is near the

corridor (a3 = 0) the danger is 70% less than if it were far from the corridor (a3 = 1).

C = (0.6 · a1 + 0.3 · a2 + 0.1 · a4) · (0.3 + 0.7 · a3) (8.1)

Table 8.1 show the 16 unique targets that were generated the binary cues. The decision

environment is characterized by the following environmental parameters: cue weights (as
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Figure 8.1: Visualization of the decision environment with reference to the two exemplar
targets: a missile with a high level of danger and a transport with a low level of danger.

calculated by frequentist ecological validity) (0.88, 0.73, 0.78, 0.59), compensatory class-5,

variability (0.29), redundancy (0.00), and predictability (0.85).

To better mimic the context of a AAWC, instead of presenting values of 0 or 1 to

the participants, the binary scores were transformed into context-relevant values based on

Rothrock (1995) and Rothrock and Kirlik (2003), as shown in Table A.10. For example,

size was mapped to radar cross-section with relevant values in units of m2. The bounds of

the cues were selected to be far enough apart that distinguishing between the two binary

states would be clear. The specific tasks are provided in Table A.3.2.

8.2.3 Task Design

To appropriately study the interaction of estimates of missing information and distributions

of incomplete information, the tasks were selected such that a participant’s selected options

will distinguish between their estimates of missing information and their ability to select
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Table 8.1: Options and criterion scores.

Option Cue 1, a1 Cue 2, a2 Cue 3, a3 Cue 4, a4 Criterion Score (C)
No. Altitude Speed Distance from Size Danger

Corridor

1 1 1 1 1 1.00
2 1 1 1 0 0.90
3 1 1 0 1 0.30
4 1 1 0 0 0.27
5 1 0 1 1 0.70
6 1 0 1 0 0.60
7 1 0 0 1 0.21
8 1 0 0 0 0.18
9 0 1 1 1 0.40

10 0 1 1 0 0.30
11 0 1 0 1 0.12
12 0 1 0 0 0.09
13 0 0 1 1 0.10
14 0 0 1 0 0.00
15 0 0 0 1 0.03
16 0 0 0 0 0.00

options correctly. Within each decision task used in this study, the correct decision can be

made by estimating missing information as the average, in between the two limits of the

high and low cue values. The process for generating and analyzing these decision tasks is

outlined in Fig. 8.2. The goal is to generate two decision tasks for each combination of

incomplete information (Table 8.2) such that an error matrix can be constructed from the

results with two dimensions of the decision maker’s accuracy (correct or incorrect) and two

estimates of missing information (negative estimates make correct decisions or positive es-

timates make correct decisions). These pairs of decision tasks are constructed such that,

for the same pair of options, flipping the distribution of incomplete information results a

reversal of the positive or negative estimates selecting correctly. From this pair of deci-

sions, participants’ strategies can be categorized in one of four ways: 1) negative estimates

of missing information, 2) positive estimates of missing information, 3) average estimates

of missing information with accurate decisions, and 4) average estimates of missing infor-
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Two decision tasks with the same two options but with flipped distributions of 

incomplete information.

Choosing an option in both tasks elicits two characteristics of the strategy: the 

estimate of missing information and the accuracy. The strategy can then be classified 

into four categories.

Figure 8.2: Designing decision tasks to elicit estimates of missing information, information
bias, and accuracy.

mation with inaccurate decisions. For the five combinations of incomplete information in

which estimates could not be elicited, tasks were selected such that all strategies (positive,

negative, average) select correctly.
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Table 8.2: 13 distributions of incomplete information examined in the experiment.

Total Option Cue Decision Task Measures
Information Imbalance Balance Accuracy Estimates

2 0 0  #
2 0 1  #
2 2 0   
4 0 0   
4 0 1   
4 0 2  #
4 2 0   
4 2 1   
4 4 0   
6 0 2   
6 0 3  #
6 2 2   
8 0 4  #

8.2.4 Materials and Procedure

For each decision task, participants were required to determine which of two targets was

more dangerous. Both targets were presented simultaneously as a set of 4 cues with their

corresponding cue weights, as described in Sec. 8.2.2: altitude (0.88), speed (0.73), dis-

tance (0.78), and size (0.59). The decision tasks were presented and answered using a

computer interface as shown in Fig. 8.3. The two targets and four cues were displayed in

a matrix of two rows and four columns. All cue scores that were designated as known cue

values were presented for the entire duration of the task. Cues scores were not searched

for, unlike other similar studies (Rieskamp and Hoffrage, 2008).

In the instructions, participants were told: “You will be asked to take on the role of an

anti-aircraft warfare coordinator (AAWC) with the duty to determine which of two incom-

ing targets is more dangerous and should be engaged by your weapons system. The data

collection phase of the study consists of 156 decision tasks of varying difficulty and level

of missing information. Within each decision task you will have 20 seconds to determine

which of the two incoming targets is more dangerous - there is always one target which is
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Figure 8.3: Example of the interface used in Experiment 1.

more dangerous. In addition to the show-up payment of $10, you will earn $0.10 for each

correct answer. Therefore, you have a chance to earn up to $25.60.” After each decision,

the interface indicated whether the participants choice was correct or incorrect, or that the

participant’s time expired. The decision task time limit was selected at 20 seconds for both

experimental and operational relevance. A previous study of time pressure by Rieskamp

and Hoffrage (2008) showed that participants experiencing high time pressure made de-

cisions in approximately 20 seconds for a 4-option, 5-cue decision task. With respect to

the operational constraints of integrated ship defense this time limit is at (or even slightly

above) the upper bound of reasonable “man-in-the-loop” processes due to the Earth’s cur-

vature, the sensor antenna height, and energy propagation effects (Prengaman et al., 2001,

p. 529).

The cues, cue scores, cue weights, thresholds, and cue directions were described to

each participant. For example, the altitude cue was described as: “The height of the tar-

get above sea level. Low altitude targets are considered to be more dangerous than high

altitude. Experienced AAWCs use 15,000 ft as the threshold. The information will be pre-

sented in a table format with the most useful variables decreasing from left to right. The
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interface presents information about usefulness and the threshold next to the titles for each

variable. Usefulness is defined in the following way: for example, when comparing tar-

gets to determine which is more dangerous, if you always choose the target with the lower

altitude, you would make a correct decision in approximately 88% of the decision tasks.”

As told to the participants, the cue weights and thresholds were displayed within the inter-

face and the cues were ordered from left to right with decreasing weights as shown in Fig.

8.3. This information was provided so that the variability between participant performance

would be largely based on incomplete information and how participants estimated missing

information.

The participants were then trained until their accuracy plateaued so as to minimize

learning effects during the data collection phase. Participants were presented with blocks

of 11 medium-difficulty decision tasks accounting for all 11 distributions of incomplete

information in Table 8.2 in which each variant of WADD and TTB strategy and estimates

would select the correct option. This excludes 2 distributions of incomplete information: 2

total information with 2 option imbalance, and 4 total information with 4 option imbalance.

In these distributions the strategies with negative estimates will never select the same option

as the positive estimates. The participants were considered to have completed learning if

the number of correct decisions in each of the previous 3 completed blocks differ by one or

fewer.

Each participant was trained within the first three blocks of training. Meaning that for

the first three blocks, their maximum and minimum block accuracy were different by no

more than one decision. The 30 participants’ accuracy after the three blocks (33 tasks)

were distributed as: 100% (n = 20); 97% (n = 4); 94% (n = 3); and 88% (n = 1).3

The data collection phase consisted of 6 blocks of 26 decision tasks. Within each block

there were 13 combinations of incomplete information each with 2 variations of correspon-

dence accuracy to determine the participants mechanism of estimating missing information

3Two participants’ training data was not saved due to computer malfunction.
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and accuracy. Three blocks were constructed for each level of difficulty which was mea-

sured by the magnitude of the difference between the option scores. The resulting exper-

iment has 13 levels of incomplete information, 2 accuracy-estimate variations, 2 levels of

difficulty, and 3 repetitions for a total of 156 decision tasks. To reduce order effects, the

order of blocks and the order of tasks within each block were counterbalanced using Latin

hypercube designs.

8.3 Results

The first analysis identified the largest set of blocks without significant learning effects on

accuracy and whether participants appropriately adapted their estimates to the environment.

Then, difficulty was examined as a potential mediator of decision making accuracy and time

required. Lastly, accuracy and time required were analyzed with respect to the distributions

of incomplete information in one-variable, two-variable, and three-variable combinations.

The analyses of the results are reported as follows. Analyses with accuracy as the

dependent variable used χ2 tests and analyses with time required as the dependent variable

used ANOVA tests. Significant results are reported at the α = 0.001 level. One standard

error bands are calculated as σ/
√
n.

8.3.1 Did Participants Adapt Their Estimates of Missing Information?

Participants were shown to best match strategies with average estimates throughout each

block: assuming missing information was a value between the limits of high and low cat-

egories (see Table 8.3). These estimates were identified by comparing the participants’

decisions to how each mechanism for estimating missing information would have decided.

Using outcome-based estimate identification only considers the participants’ decisions and

not the search processes (Garcia-Retamero and Rieskamp, 2009; Rieskamp and Hoffrage,

2008). Since using average estimates was the only mechanism that would result in correct

decisions in every task (see Table 8.3), these results provide further evidence for the hy-
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Table 8.3: Number of tasks in which strategies using different mechanisms for treating
missing information make different predictions.

Number of
Task Type Prediction Discriminating

Tasks
(All Blocks, Blocks 3-6)

Treating missing information TTBnegative

vs.

TTBpositive

(48, 32)
as negative vs. as the average WADDnegative TTBaverage

or positive WADDpositive

WADDaverage

Treating missing information TTBpositive

vs.

TTBnegative

(48, 32)
as positive vs. as the average WADDpositive TTBaverage

or negative WADDnegative

WADDaverage

Correct

vs. (60, 40)

TTBpositive

Correct use of TTB or WADD TTBnegative

using any estimate of missing TTBaverage Incorrect
information WADDpositive

WADDnegative

WADDaverage

pothesis that participants adapt their estimates to their environment (Garcia-Retamero and

Rieskamp, 2009).

Though participants were trained to a consistent accuracy, participants’ accuracy and

time required still showed learning effects during the data collection phase as shown in

Fig. 8.4. An ANOVA with predicted inferences as the dependent variable and block order

as the dependent variable, showed that block order across all six blocks had significant

effects on the participants’ use of positive [F(5, 4671) = 3.65, p < 0.003], negative [F(5,

4671) = 3.87, p < 0.002], and average estimates [F(5, 4671) = 14.83, p < 0.0001].

Given that participants were learning, ANOVA tests were conducted for each consec-

utive series of blocks with Block 6 (2 through 6, 3 through 6, 4 through 6, and 5 and 6)

to determine at what point participants started to use the average estimates consistently.

Blocks 3 through 6 was the largest set for block order have no effect on participants’ use of
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Block Order

50%

60%
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Predicted
Decisions
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Figure 8.4: Effect of block order on estimate used. For a participant using average esti-
mates, the average estimates would predict decisions in 100% of the tasks, and positive and
negative estimates would predict decisions in 69% of the tasks. Error bars represent one
standard error.

positive [F(3, 3114) = 0.24, p < 0.87], negative [F(3, 3114) = 0.03, p < 0.99], or average

estimates [F(3, 3114) = 2.17, p < 0.09]. Block order for blocks 2 through 6 did have a

significant effect on participants’ use of average estimates [F(4, 3893) = 7.52, p < 0.0001],

but not on positive [F(4, 3893) = 0.97, p < 0.42] or negative estimates [F(4, 3893) = 0.27,

p < 0.90]. Therefore, only the blocks 3-6 will be used in all following analyses.

For blocks 3 through 6, there was no significant effect of block order on accuracy

[χ2(3,3120) = 7.69, p < 0.05] but there was an effect on time required [F(3,3116) = 19.06,

p < 0.0001]. As shown in Fig. 8.5, there was a clear increase in accuracy (from 85.9% to

95.0%) and decrease in time required (from 5.54s to 3.93s) as participants faced more tasks

from block 1 to block 6.

The likely reason for the effect of block order on accuracy and time required was the

difference in the accuracy-estimate task type between the training and the data collection

phase of the experiment – in fact, this is the only major difference between the two phases.
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Figure 8.5: Effect of block order on accuracy and time required. Error bars represent one
standard error.

In the training phase, tasks were selected such that all three estimate mechanisms would

select correctly in each task. However, in the data collection phase only average estimates

would select correctly in each task, with positive or negative estimates being accurate in

69% of tasks. Previous studies have shown that participants adapt their estimate mecha-

nisms to the environment (Garcia-Retamero and Rieskamp, 2009). Therefore, participants

would not have been required to adapt their estimate mechanisms in the training, only once

the data collection phase began. By plotting the percent of participants’ decisions predicted

by each estimate in each block (Fig. 8.4), it is clear that the participants were correctly

adapting from a combination of negative and average estimates to only average estimates.

Therefore, in future experiments, the training tasks should be selected in the same manner

as data collection tasks in order to restrict learning to the training phase.
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8.3.2 Does Computational “Difficulty” Result in Human Decision Making “Difficulty”?

Difficulty was postulated as an environmental parameter that could mediate the perfor-

mance of human participants. Results showed that difficulty had no significant effect on

accuracy [χ2(1,3120) = 5.03, p < 0.03] or time required [F(1,3118) = 2.65, p < 0.1]. The

lack of effect is likely because what may be difficult according to the difference in crite-

rion value of the options may not be an observable difference for the participants. This is

particularly true if the participants used heuristic strategies like take-the-best which do not

calculate or estimate an overall criterion value, unlike weighted-additive.

8.3.3 Did Distributions of Incomplete Information Affect Decision Making Performance?

Participants were shown to use accurate, average estimates in greater than 94.3% of their

decision tasks in blocks 3 through 6, but the variance in accuracy and time required were

not explained by block order or difficulty. Based on the computational studies of decision

making with incomplete information in Chap. 7, because participants used average esti-

mates, total information should be the only measure of incomplete information to have any

significant effect on accuracy. These results show that total information did have significant

effects, but so did option imbalance and cue balance (Table 8.4).

Starting with the original measure of incomplete information, total information did

have a significant effect on accuracy [χ2(3,3120) = 19.84, p < 0.0002] and time required

[F(3,3116) = 21.45, p < 0.0001]. However, accuracy had a slight U-shape and the time

required plot is an inverted-U shape as shown in Fig. 8.6. From the perspective of total

information as a solitary measure of incomplete information, as total information increases,

accuracy and time required should increase monotonically. Computational representations

exemplify this assumption (Chap. 5 and Chap. 7; Payne et al., 1990; Garcia-Retamero and

Rieskamp, 2008). However, the U-shaped curves suggest that accuracy and time required

are being affected by factors in addition to total information.

The U-shaped curves can be explained as the effect of changing distributions of incom-
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Table 8.4: The average accuracy and time required for each of the 13 distributions of in-
complete information measured, sorted by accuracy.

Total Option Cue Time Required Accuracy
Information Imbalance Balance (Sec)

2 0 1 3.05 99.2%
4 0 2 3.52 99.2%
6 0 3 3.80 99.2%
8 0 4 4.08 99.2%
2 0 0 3.78 98.3%
4 0 1 4.65 97.1%
4 2 0 4.99 96.3%
6 0 2 5.19 95.8%
4 4 0 4.72 95.0%
4 0 0 4.88 94.2%
2 2 0 4.76 86.3%
4 2 1 5.27 85.4%
6 2 2 5.41 80.0%

plete information. Accuracy and time required were both significantly affected by both

option imbalance [χ2(2,3120) = 137.12, p < 0.0001; F(2,3117) = 47.39, p < 0.0001] and

cue balance [χ2(4,3120) = 30.49, p < 0.0001; F(4,3117) = 8.26, p < 0.0001], respectively.

For option imbalance, the highest accuracy (97.7%) and lowest time required (4.12 sec)

occurred when option imbalance was zero. For cue balance, the average accuracy and time

required with 0, 1, or 2 cue balance was 93.1% and 4.55 seconds, but participants showed

increased accuracy (99.1%) and decreased time required (3.94 sec) when cue balance was

higher (3 or 4).

A more thorough explanation of the single-variable effects lies in the analysis of two-

variable interactions of the measures of incomplete information as shown in Fig. 8.7. Once

again, even though the average estimates are accurate and should make accuracy only a

function total information, the accuracy and effort results in Fig. 8.7 are clearly affected by

option imbalance and cue balance, matching computational results of inaccurate estimates

in Chap. 7. In both two-variable interactions with total information, the maximum accuracy

and minimum time required occurred simultaneously and occurred independently of total
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Figure 8.6: Effect of total information, option imbalance, and cue balance on participants’
decision making accuracy and time. Error bars represent one standard error.
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information, when option imbalance was minimized and when cue balance was maximized.

Comparing cue balance and option imbalance directly showed that minimizing option im-

balance has a more positive effect on accuracy and time required than maximizing cue

balance.

Ultimately, the specific values of accuracy and time required are determined by the

collective interaction of the three variables of the distribution of incomplete information

(total information, option imbalance, and cue balance). Figure 8.8 displays a more nuanced

and accurate picture of how accuracy and time required are affected by total information

that cannot be seen in one-variable (Fig. 8.6) or even two-variable (Fig. 8.7) analyses. The

13 distributions of incomplete information are categorized into three groups:

– Green: These four distributions have cue balance maximized within each level of

total information [(2,0,1); (4,0,2); (6,0,3); (8,0,4)]. Each distribution resulted in the

same highest average accuracy, 99.2%, for any distribution. These distributions min-

imized time required within each level of total information.

– Yellow: These six distributions do not have the maximum cue balance, but, in all but

one case, they do not have the maximum option imbalance either: [(2,0,0); (4,0,1);

(4,2,0); (4,4,0); (4,0,0); (6,0,2)]. Each distribution showed reduced accuracy of 3%

to 5% from the green group distributions and an average increase in time required of

1 second.

– Red: These three distributions have the maximum option imbalance for two and six

cue scores [(2,2,0); (6,2,2)], and an option imbalance of two and cue balance of one

for four cue scores [(4,2,1)]. These three had lowest average accuracy (below 87%)

and the longest time required within each total information. Within this group, as

total information increased, accuracy decreased and time required increased.
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Figure 8.7: Two-variable interactions between the three measures of incomplete informa-
tion with performance measured in accuracy (left column) and time required (right col-
umn).
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Figure 8.8: Interaction of the distribution of incomplete information (total information,
option imbalance, and cue balance) on participants’ decision making accuracy and time
required, as a function of total information. Exemplar decision tasks with visual distribu-
tions of incomplete information are provided for each data point. The dark blocks indicate
known cue scores and white blocks indicate unknown cue scores. Error bars represent one
standard error.
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8.4 Discussion

Did the conclusions from computer simulations in Chap. 7 about the interaction between

estimates, distributions, and performance extend to human decision makers? Participants

successfully adapted to using correct, average estimates of missing information, but the

effects of the distributions of incomplete information matched the computational results of

decision makers with incorrect estimates of missing information. This raises some impor-

tant questions about a potential reality gap between computational models of human deci-

sion making with incomplete information and the humans themselves (Sec. 8.4.1), whether

certain distributions are just ‘unfriendly’ or ‘friendly’ regardless of estimates of missing

information (Sec. 8.4.2), and how future work can generalize the current results (8.4.3).

8.4.1 Falling into the Reality Gap

A reality gap occurs when virtual models struggle to reproduce the stochasticity of the real

world. Though this term is pulled from the robotics community (e.g., Jakobi et al., 1995),

the reality gaps have consistently been the motivational hurdles in the field of decision

making. Bounded rationality was posited by Simon (1955) as a counterpoint to the prevail-

ing models of humans as a completely rational ‘economic man.’ Tversky and Kahneman’s

heuristics-and-biases research characterized just how unlike economic models humans are,

finding that people do not necessarily judge uncertainty according to the rules of probability

and statistics, since they are influenced by framing and other cognitive biases (e.g., Tver-

sky and Kahneman, 1974; Kahneman et al., 1982; Kahneman and Tversky, 1984). Then,

two additional decision making paradigms have been developed to address what other re-

searchers believed were limitations in the heuristics-and-biases research to explain how

people used the bounds on their rationality in successful ways. The naturalistic decision

making framework, showed that people faced with time pressure, uncertainty, ill-defined

goals, and other complexities in familiar and meaningful environments, can perform very
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well by using various strategies such as matching strategies to situations, experience-based

knowledge modeling, and implementable-based strategy selection (e.g., Klein et al., 1988;

Orasanu and Connolly, 1993; Klein and Calderwood, 1996; Klein, 2008; Lipshitz et al.,

2001). Furthermore, the fast-and-frugal heuristics framework has shown that people use

the bounds on rationality of simplicity, speed, and frugality as a mechanism for simple,

robust, and accurate strategies that adapt to the environment and ecology (e.g., Gigerenzer

and Goldstein, 1996; Gigerenzer et al., 1999; Gigerenzer and Gaissmaier, 2011; Todd et al.,

2012).

Following in the succession of reality gaps between mathematical models, computa-

tional simulations, and human-subjects studies, decision making with incomplete informa-

tion is simply a new one. According to the computational simulation in Chap. 7, when

estimates match the environment, only total information should really affected accuracy,

and when the estimates do not match the environment, option imbalance and cue balance

should affect accuracy more so than total information. However, the results presented in

this study suggest that, in reality, there might only be one classification: regardless of

whether a decision maker’s estimates of missing information matches the environment,

their accuracy will be affected by the distribution of incomplete information. In this study,

decreasing option imbalance and increase cue balance generally increased accuracy and

decreased time required.

These results were unexpected as the mathematical model of decision making used in

the computational simulation in Chap. 7 accounts for a very broad range of decision making

strategies that have been shown to generally match participant’s strategies (Chap. 3 and

Chap. 4). Notably, the human-subjects study by Garcia-Retamero and Rieskamp (2009),

which explicitly studied estimates of missing information, did not report accuracy or time

required as a function of estimates of missing information and thus did not report any

difference between that study and their corresponding computer study (Garcia-Retamero

and Rieskamp, 2008). At this point, it may be that even when participants are shown
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to match their estimates of missing information to the environment, they should still be

supported and modeled as if their estimates do not match the the environment. At least

until the general linear model, and the broad number of strategies that model represents, can

account for the relative difficulty of certain types of distributions of incomplete information.

8.4.2 Friendly and Unfriendly Distributions of Incomplete Information

The results presented in this study suggest that some distributions of incomplete informa-

tion are simply difficult, even when a decision maker’s estimate of missing information

matches the environment. Leveraging the language of Shanteau and Thomas (2000), there

seem to be ‘friendly’ and ‘unfriendly’ distributions of incomplete information. Friendly

distributions have low levels of option imbalance and high levels of cue balance, whereas

unfriendly distributions have high levels of option imbalance and low levels of cue bal-

ance. These definitions leave out total information because at this point it seems to be a

secondary mediator of decision making performance as compared to option imbalance and

cue balance. As shown in Fig. 8.8, any friendly distribution (denoted by the color green)

had a higher accuracy and lower time required than any unfriendly distribution (denoted by

the color red), regardless of total information.

If these trends can be generalized through repeated studies and different task environ-

ments, there are significant implications for decision support. The goal of decision sup-

port systems would then be to modify the presentation of information from unfriendly to

friendly distributions. Within most unfriendly distributions, there is a friendly distribution

with less total information. Similarly, when starting from an unfriendly distribution, there

is almost always a clear path toward a friendly distribution through acquiring information.

Within this perspective, the computational results in Chap. 6 and Chap. 7 showed that

the effectiveness of heuristic rules for acquiring and restricting information depended on

whether the estimates matched the environment or not. When estimates of missing infor-

mation did not match the environment, the accuracy was significantly reduced when option
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imbalance increased and cue balance increased; however, when estimates did match the en-

vironment, the accuracy was almost exclusively dependent on total information. Therefore,

the conclusions were that when the estimates do not match the environment, heuristic in-

formation acquisition and restriction rules are quite useful and should try to reduce option

imbalance. However, when estimates do match the environment, the heuristic informa-

tion acquisition and restriction rules were much less useful and information should only be

acquired to maintain cue balance.

If the effectiveness of the heuristic information acquisition and restriction rules are less

effective when the estimates of missing information are accurate, the general usefulness of

the rules would be limited. The results in Garcia-Retamero and Rieskamp (2009) and here,

show that decision makers quickly and correctly adapt their estimates of missing informa-

tion when provided feedback on their accuracy. If decision makers adapt their estimates,

then the heuristic information acquisition and restriction methods would theoretically lose

much of their effectiveness.

In human-subjects, however, these initial results show that certain distributions of miss-

ing information may be friendly or unfriendly even when decision makers have accurate

estimates of missing information. If these results can be generalized, they would greatly

increase the environments in which these heuristic information acquisition and restriction

rules can be applied. Preliminarily, the results of this study suggest that regardless of the

estimates of missing information, reducing option imbalance and increasing cue balance

might be the best way to increase accuracy and decrease time required.

8.4.3 Generalizing the Results

Now that this reality gap between the mathematical and computational models and the hu-

man subjects has been found, there is much future work to be done to determine breadth

of these results. This experiment examined only two-option, four-cue decision tasks with

binary cue scores presented as continuous cue scores. These task attributes were chosen
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because they have been used frequently by others to examine decision making performance

(e.g., Garcia-Retamero and Rieskamp, 2008, 2009; Bröder, 2000; Gigerenzer and Gold-

stein, 1996; Newell et al., 2003). Specifically, this study intended to link the studies of

estimates of missing information by Garcia-Retamero and Rieskamp (2008, 2009) to the

study of distributions of incomplete information in Chap. 5-7.

There are opportunities to rerun this type of experiment in ways that will better gener-

alize these results. Only 13 distributions of incomplete information for this task size were

examined. To achieve a complete analysis, future work should examine all 22 combinations

of incomplete information. This would make comparisons to the computational results in

Chap. 7 easier. Then, similar to the computational studies, future experiments could use

larger decision tasks with more than two options and distinguish between participants who

use WADD or TTB so that results can be analyzed within and between strategies.

Lastly, more focus should be taken to understand how this can be accounted for within

the general linear model. Participants seemed to be stable in their estimates of missing

information but some unfriendly distributions of incomplete information seemed to account

almost exclusively for inaccuracy decisions.

8.5 Conclusion

The comprehensive computational study in Chap. 7 made a convincing argument that there

were two types of relationships between decision making accuracy, estimates of missing

information, and distributions of incomplete information. When the estimates matched the

environment, only total information affected accuracy. When the estimates did not match

the environment, option imbalance and cue balance significantly affected accuracy and

more so than total information. The results of this human-subjects study suggests that, in

reality, there might only be one classification: regardless of whether a decision maker’s

estimates of missing information matches the environment, their accuracy will be affected

by the distribution of incomplete information. Decreasing option imbalance and increase
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cue balance generally increases accuracy. The disagreement between the computational

and human-subjects studies highlights a potential reality gap for decision making models

predicting performance of decision makers with incomplete information. Future work will

be required to determine the extent of this singular classification and will have implications

for the potential of heuristic information acquisition and restriction rules.
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CHAPTER 9

DISCUSSION

To summarize, this dissertation has created a unified general linear model model of judg-

ment and decision making (Chap. 3), a contextual model of decision making with incom-

plete information (Chap. 4), completed three computer simulation studies (Chap. 5-7), and

a human-subjects study (Chap. 8) of decision making with incomplete information. This

chapter considers how all of this work comes together to identify the key contributions

(Table 9.1).

Table 9.1: Important contributions with further discussion in this chapter.

Section Topic

9.1 Unifying judgment and decision making strategies in a single mathematical
model.

9.2 Shedding the methodological bias toward examining only “well-studied”
strategies.

9.3 Revaluing the bias of overweighting common attributes as ecologically ra-
tional.

9.4 Showing that distributions of incomplete information matter, often more
than the total amount of information.

9.5 Defining heuristics for information acquisition and restriction.
9.6 Discovering a potential reality gap between what makes distributions diffi-

cult for people versus mathematical models of their strategies.

9.1 Unifying Judgment and Decision Making Strategies in a Single Mathematical

Model

The general linear model provides three major benefits to the research community. First, the

general linear model allows for specificity in model selection and description. It is common

to refer to strategies using proper names (take-the-best, tallying, equal-weighting, etc.)

which can leave ambiguity in how to appropriately represent and model the strategy, and
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limit intuition as to how two strategies may or may not be different. This results in further

ambiguity as to whether various studies are even comparable to each other. Second, for

the engineers, designers, and decision analysts, the model enables the simulation of a wide

range of judgment and decision making strategies quickly and easily – and transparently –

in a single equation. Rather than implementing an algorithmic tool or specialty code, it is

an equation that can be looked-up and implemented. It can be used to perform sensitivity

studies on the robustness of overall designs or the interaction of components across ranges

of judgment and decision making strategies. Third, the simple, representative form can link

together human-subjects, computational, and mathematical studies completed by various

research programs such as fast-and-frugal heuristics and naturalistic decision making by

linking models of experience and time pressure.

One of the most significant open questions within the domain of behavioral decision

making is how to integrate the two perspectives of judgment and decision making (Kat-

sikopoulos, 2013). A survey of developments in judgment and decision making research

shows that this integration has already begun, but remains unfinished (Katsikopoulos, 2011;

Martignon et al., 2008; Hogarth and Karelaia, 2005a, 2007). The general linear model from

Chap. 3 attempts to achieve this goal by conceptually and mathematically integrating judg-

ment and decision making to make the argument that, from the perspective of an informa-

tion process model, they are equivalent. The general linear model can represent almost any

combination of components for both judgment and decision making: cue weights, utility

functions, estimates of missing information, cutoff values, thresholds, and cue directions,

for m-alternatives, n-attributes and any distribution of incomplete information.

9.2 Shedding the Methodological Bias Toward Examining Only “Well-Studied” Strate-

gies

The main theoretical tool of the fast-and-frugal heuristics program (a major influence on

this dissertation) is to define “precise, computational models of heuristics that can be sub-
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mitted to extensive testing and analysis” (Keller et al., 2010, p. 264). The issue is that

only a few strategies have become ubiquitous and are now essentially the only “well-

studied” strategies: weighted-additive, equal-weighting, take-the-best, and tallying. They

are included as the main strategies numerous computational and human-subjects studies

(e.g., Czerlinski et al., 1999; Martignon and Hoffrage, 2002; Katsikopoulos and Martignon,

2006; Mata et al., 2007), including the first two computational studies in this dissertation

(Chap. 5 and 6).

While it is important to acknowledge and leverage the prior research on these strategies,

the near-exclusive focus limits the generalizability of the research results. What if people

are not using these strategies in these few, precise, computational forms? Hilbig (2010)

surveyed the literature showing that there are still questions as to whether and when deci-

sion makers actually use these strategies in their standard form. Recent efforts have tried

to address the generalizability question by modeling the well-studied strategies with vari-

ous cue score scales (Katsikopoulos et al., 2010) or various thresholds (Luan et al., 2014).

However, these studies just raise more questions about what heuristics have and have not

been studied, and which decision makers they represent. Is take-the-best with continuous

cue scores and non-zero thresholds instead of the original binary cue scores with thresholds

at zero still take-the-best? Within the context of decision making with incomplete informa-

tion the original descriptions of weighted-additive and equal-weighting make no mention

of how to estimate missing information, so what is their accurate computational model?

Can the current precise models accurately capture the difficulty of certain distributions of

incomplete information as identified in Chap. 8?

These concerns are analagous to the debates over medical eponyms, the practice of

naming diseases or conditions based on the name of a person or place (Rashid and Rashid,

2007; Mora and Bosch, 2010; Ma and Chung, 2012; Fargen and Hoh, 2014). There is

growing support to reduce and even abandon medical eponyms because they lack medical

accuracy and universality. Eponyms serve well as initial placeholders for describing a large
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set of conditions but as the understanding evolves, they often become too opaque to help

patients or even medical professionals clearly understand the disease or condition.

The general linear model presented in Chap. 3 enables researchers to better realize the

goal of precise computational models of decision making strategies. The model parameter-

izes strategies with up to six parameters: utility function, cue weights, estimates of missing

information, and if necessary, cutoff values, thresholds, and cue directions. Therefore, fu-

ture references to decision making strategies in research articles should also present the

mathematical model, or if not possible, present the computational form. Specifying the

mathematical models will also make it clear to researchers and readers how general the re-

sults of the studies are. Beyond the communication issues, the general linear model allows

researchers to quickly and easily study a broad range of decision making strategies.

9.3 Revaluing the Bias of Overweighting Common Cues (Attributes) as Ecologically

Rational

Marketing researchers Slovic and MacPhillamy (1974) and Kivetz and Simonson (2000)

showed that decision makers in paired comparison tasks tend to overweight ‘common’

cues (cues that have information known for both options) and underweight ‘unique’ cues

(cue that have information known for one option and not the other). This overweighting

tendency was robust to various debiasing techniques (Slovic and MacPhillamy, 1974): (1)

measuring all cue scores on the same scale, (2) prewarning subjects about the bias in favor

of common cues, (3) providing feedback (after each judgment) that promotes equal weight-

ing of dimensions, (4) providing monetary rewards for equal weighting of dimensions, and

(5) providing detailed information about the distributions of the values of the three cues. In

their conclusion, Slovic and MacPhillamy (1974, p. 194) argued that “further work [would]

be needed to determine how to minimize these biases.”

The computational and human-subjects studies in this dissertation show that focusing

on common attributes, termed in this dissertation as balanced cues, is ecologically rational.
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A decision making process is ecological rationality when it successfully exploits the struc-

ture of the information in natural environments (Goldstein and Gigerenzer, 2002; Todd

et al., 2012). The computer simulations in Chap. 5 and Chap. 7 showed that for strate-

gies that estimated missing information incorrectly, distributions of incomplete information

with only balanced cues resulted in higher accuracy than distributions with some balanced

cues and some unbalanced cues. Similar simulations showed that restricting information

toward only having balanced cues could increase decision making accuracy of strategies

that estimated missing information incorrectly (Chap. 6 and Chap. 7). Then the human-

subjects studies in Chap. 8 broadened these results by showing that even decision makers

who did estimate missing information correctly would also benefit from overweighting

common attributes, achieving increased accuracy and decreased time required.

It is quite clear with this research that the empirical human tendency to overweight

common attributes is likely ecologically rational, adding another entry to the list of biases

which have been revalued as ecologically rational (see Table 4.1, Gigerenzer, 2004).

9.4 Showing that Distributions of Incomplete Information Matter, Often More than

the Total Amount of Information

The major contribution of this dissertation is to prove that distributions of incomplete in-

formation matter. Measuring incomplete information simply as total information – as has

been done in many prior studies (Martignon and Hoffrage, 2002; Garcia-Retamero and

Rieskamp, 2008) – is insufficient to characterize its effect on decision making performance.

This dissertation introduced two new measures of distributions of incomplete information

(Chap. 4): option imbalance, the difference in number of cue scores known between the op-

tions with the most and least information; and cue balance, the number of cues which have

cue scores known for each option. Through multiple computer simulations (Chap. 5 and

7) and one human-subjects study (Chap. 8), these additional measures were shown to be

critical to understanding decision making performance with incomplete information: accu-
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racy, effort, and time required. Ultimately, distributions of incomplete information should

be measured via a three-variable triple (total information, option imbalance, cue balance).

Chap. 5 provided the initial computational results showing that option imbalance and

cue balance mattered, but only really with respect to heuristic strategies (take-the-best

and tallying) and not the analytic strategies (weighted-additive and equal-weighting). For

heuristics, decreasing option imbalance and increasing cue balance, ignoring total infor-

mation, would increase accuracy. Analytic strategies only had increased accuracy as total

information increased.

Chap. 7 used the general linear model to computationally study 18 strategies with vary-

ing cue weights, estimates of missing information, and cutoff types. Across many real-

world environments, it was shown that cue balance and option imbalance can significantly

affect decision making accuracy, but only when the estimates of missing information do not

match the environment. This result is explained by the fact that decreasing option imbal-

ance and increasing cue balance reduces the strategies’ reliance on the incorrect estimates

of missing information. When the estimates did match the environment, the accuracy of

strategies were almost entirely dependent on total information. These results generalized

the findings from Chap. 5 because the heuristics had used incorrect estimates while the

analytic strategies had used correct estimates.

These results raised one simple question: did these conclusions from computer simu-

lations about the interaction between estimates, incomplete information, and performance

extend to human decision makers? The human-subjects study in Chap. 8 showed some

surprising, though preliminary, results. Participants successfully adapted to use the correct

estimates for the environment, but their accuracy and time required were significantly af-

fected by option imbalance and cue balance, almost as if they were not using the correct

estimates.

These results suggested that some distributions of incomplete information may just sim-

ply be difficult, even when a decision maker’s estimate of missing information matches the
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environment. Leveraging the language of Shanteau and Thomas (2000), this implies that

there may be ‘friendly’ and ‘unfriendly’ distributions of incomplete information. Friendly

distributions have low levels of option imbalance and high levels of cue balance, whereas

unfriendly distributions have high levels of option imbalance and low levels of cue bal-

ance. These definitions leave out total information because at this point it seems to be

a secondary mediator of decision making performance as compared to option imbalance

and cue balance. Increased total information only increased the difference in accuracy and

in time required between the friendly and unfriendly distributions in the human-subjects

study (Chap. 8). The human-subjects results match the results of the prior computational

studies in Chap. 5 and 7 for strategies with incorrect estimates: friendly distributions of in-

complete information result in better performance (high accuracy and less time required),

whereas unfriendly distributions result in worse performance (low accuracy and more time

required).

9.5 Defining Heuristics for Information Acquisition and Restriction

Once the distributions of incomplete information were shown to affect decision making

performance, it followed that altering the distributions of incomplete information could be

a useful method of decision support. Specifically, information could be acquired (adding

one cue score) or restricted (removing one cue score) to make the distribution of incom-

plete information more friendly. This dissertation initially defined four specific heuristic

information acquisition and restriction rules that were posited to potentially increase deci-

sion making accuracy (Chap. 6): option imbalance acquisition (increase total information

while decreasing option imbalance), option imbalance restriction (decrease total informa-

tion while decreasing option imbalance), cue balance acquisition (increase total informa-

tion while increasing cue balance), and cue balance restriction (decrease total information

while keeping cue balance constant).

Importantly, these information acquisition and restriction rules do not require reliable
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assessments of probabilities, cue weights, and cue scores like the Bayesian analytic meth-

ods (Nelson, 2005, 2008; Meder and Nelson, 2012). By only relying on knowledge of

distribution of incomplete information, the heuristic information acquisition and restric-

tion rules should be able to overcome some of the limitations of their analytic counterparts

(Katsikopoulos and Fasolo, 2006; Katsikopoulos et al., 2008). First, real-world problems

can exhibit statistical dependencies which create computational issues in calculating prob-

abilities and cue weights. Second, psychologically, an operator may not be able to pro-

vide accurate information to a decision support system regarding the probabilities and cue

weights. Third, the analytic process may seem too complex and too opaque to the operator

causing the operator to be reluctant to use the DSS or accept its suggestions.

Two computer simulations tested these rules and others across hundreds of environ-

ments, millions of decision tasks with incomplete information, and almost 20 different

decision making strategies to determine their effectiveness (Chap. 6 and Chap. 7). Un-

surprisingly, just as the effect of distributions of incomplete information depended on the

accuracy of the estimates of missing information, so did the heuristic information acquisi-

tion and restriction rules.

Focusing on the more comprehensive results in Chap. 7, when the estimates did not

match the environment, heuristic information acquisition and restriction rules increased

accuracy when they reduced option imbalance. However, when estimates did match the

environment, only heuristic information acquisition increased accuracy and only when in-

formation was acquired without affecting cue balance. In general, the acquisition rules

were shown to significantly increase the accuracy of strategies: over 1% per acquisition for

strategies with correct estimates of missing information and up to 4% per acquisition for

strategies with incorrect estimates. The restriction rules showed more mixed results. For

strategies that estimated missing information correctly, those that used prior cutoffs can

restrict information to reduce cue balance with negligible effects on accuracy, while those

that used relative cutoffs should not restrict information.
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The results of the computational simulations suggested that the rules might be limited

in real-world application because they are much less effective when the estimates of miss-

ing information were accurate. The results in Garcia-Retamero and Rieskamp (2009) and

Chap. 8, have shown that decision makers quickly and correctly adapt their estimates of

missing information when provided feedback on their accuracy. If decision makers adapt

their estimates, then the heuristic information acquisition and restriction methods would

theoretically lose much of their effectiveness.

In the human-subjects study in Chap. 8, however, these initial results show that certain

distributions of missing information may be friendly or unfriendly even when decision

makers have the accurate estimates of missing information. Decreasing option imbalance

and increasing cue balance increased accuracy and decreased time required of participants

using accurate estimates. The corresponding heuristic information acquisition rules would

then seem to work for human decision makers regardless of their estimates.

Therefore, if the human-subjects results in Chap. 8 can be generalized, they would

greatly increase the environments in which these heuristic information acquisition and re-

striction rules can be applied. Preliminarily, the results of this study suggest that regardless

of the estimates of missing information, reducing option imbalance and increasing cue bal-

ance might be the best way to increase accuracy and decrease time required.

9.6 Discovering a Potential Reality Gap Between What Makes Distributions Difficult

for People Versus their Computational Representations

A reality gap occurs when mathematical models struggle to reproduce the stochasticity of

the real world. Though this term is pulled from the robotics community (Jakobi et al.,

1995), reality gaps have consistently been the motivational hurdles in the field of deci-

sion making. Bounded rationality was posited by Simon (1955) as a counterpoint to the

prevailing models of humans as a probabilistically rational ‘economic man.’ Tversky and

Kahneman’s “heuristics-and-biases” research then characterized just how unlike economic
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models humans are, finding that people do not necessarily judge uncertainty according to

the rules of probability and statistics because they are influenced by framing and other

cognitive biases (e.g., Tversky and Kahneman, 1974; Kahneman et al., 1982; Kahneman

and Tversky, 1984). Since then, two additional decision making paradigms have been

developed to address what other researchers believed were the heuristics-and-biases’ lim-

ited ability to explain how people used the bounds on their rationality in successful ways.

The naturalistic decision making framework, showed that people faced with time pressure,

uncertainty, ill-defined goals, and other complexities in familiar and meaningful environ-

ments, can perform very well by using various strategies such as matching strategies to

situations, experience-based knowledge modeling, and implementable-based strategy se-

lection (e.g., Klein et al., 1988; Orasanu and Connolly, 1993; Klein and Calderwood, 1996;

Klein, 2008; Lipshitz et al., 2001). Furthermore, the fast and frugal heuristics framework

has shown that people use the bounds on rationality of simplicity, speed, and frugality as

a mechanism for simple, robust, and accurate strategies that adapt to the environment and

ecology (e.g., Gigerenzer and Goldstein, 1996; Gigerenzer et al., 1999; Gigerenzer and

Gaissmaier, 2011; Todd et al., 2012).

Following in the succession of reality gaps between mathematical models, computa-

tional simulations, and human-subjects studies, the disagreement in results between the

computer simulation studies (Chap. 5 and Chap. 7) and the human-subjects experiment

(Chap. 8) is simply another one. In a comprehensive study of the interaction of estimates of

missing information, cue weights, and cutoff types, Chap. 7 showed that correct estimates

of missing information make decision making accuracy only a function of total informa-

tion. For strategies with incorrect estimates of missing information, their accuracy was

more influenced by option imbalance and cue balance. In contrast, in the human-subjects

experiment in Chap. 8, decision makers were shown to be using correct estimates of miss-

ing information but their accuracy was typical of decision makers with incorrect estimates

– having increased accuracy as option imbalance decreased and cue balance increased.
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This was a surprising result. The mathematical model of decision making used in this

dissertation (Chap. 3), and particularly in Chap. 7, accounts for a very broad range of de-

cision making strategies that have been shown to generally match participant’s strategies.

Additionally, the human-subjects study by Garcia-Retamero and Rieskamp (2009) explic-

itly studying estimates of missing information, did not report accuracy or time required

as a function of estimates of missing information and thus did not identify the difference

between their computer studies (Garcia-Retamero and Rieskamp, 2008) and their human-

subjects studies (Garcia-Retamero and Rieskamp, 2009). Future work will be required to

address this reality gap.

Narrowing the reality gap will likely require a mix of qualitative and mathematical

methods. It may be that the participants in the human-subjects study had their estimates

of missing information directly affected by the distribution of incomplete information. For

example, when there is a imbalanced distribution of incomplete information, participants

may be second-guessing their accurate estimates of missing information resulting in the

use of inaccurate estimates (i.e., their estimates were not stable). To measure this, partic-

ipants could be asked during each decision task to input the estimated value of missing

information or participants could report their overall estimate of missing information after

the experiment (Garcia-Retamero and Rieskamp, 2009). Once the relationship between

estimates of missing information and the distribution of incomplete information is found,

then a mathematical alteration to the general linear model could be introduced.

198



CHAPTER 10

SUMMARY AND FUTURE RESEARCH DIRECTIONS

10.1 Summary

Decision makers are continuously required to make choices in environments with incom-

plete information. This dissertation sought to understand and, ultimately, support the wide

range of decision making strategies used in environments with incomplete information.

Prior to this dissertation, incomplete information was measured almost exclusively by

the total amount of information (e.g., Martignon and Hoffrage, 2002; Garcia-Retamero

and Rieskamp, 2008). This dissertation conclusively showed that total information alone

is insufficient for understanding and supporting decision making accuracy and effort with

incomplete information. How the information was distributed was often a more important

determinant of decision making performance.

Two new measures of the distribution of incomplete information were introduced (op-

tion imbalance and cue balance, Chap. 4) and tested alongside total information across

three computer simulations of 18 variations of decision making strategies within hundreds

of environments and millions of decision tasks with incomplete information (Chap. 5-7).

The simulations were powered by a new general linear model of judgment and decision

making which is capable of efficiently and transparently modeling a wide range of strate-

gies beyond the traditional set in the literature (Chap. 3). Of the many potential mediators

of the relationship between the distributions of incomplete information and performance,

only the strategies’ estimates of missing information were shown to be significant in the

computational studies. For strategies with accurate estimates, only total information deter-

mined accuracy, while for strategies with inaccurate estimates, accuracy was maximized

when option imbalance was low and cue balance was high.
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Based on these results, heuristic rules were defined to guide information acquisition and

restriction based on altering the distribution of incomplete information to decrease option

imbalance and increase cue balance (Chap. 6-7), from unfriendly distributions to friendly

distributions. These rules do not require probability and cue weight information, unlike the

prominent Bayesian information acquisition methods (Nelson, 2005; Nelson et al., 2010;

Meder and Nelson, 2012), and thus allow the heuristic rules to overcome some major envi-

ronmental limitations of the Bayesian methods (Katsikopoulos and Fasolo, 2006). Similar

to the studies of incomplete information, the heuristic rules were simulated and shown to

increase accuracy for strategies with inaccurate estimates of missing information, and did

not significantly affect strategies with accurate estimates (Chap. 6-7).

The simulation results were partially contradicted in a human-subjects study (Chap. 8)

which showed that human decision makers with accurate estimates were strongly affected

by option imbalance and cue balance – suggesting that some distributions that might simply

be difficult or unfriendly regardless of the estimates of missing information. This reality

gap between the human decision makers and their computational representations is a new

open question in the decision making literature.

If the human-subjects study results can be generalized through repeated studies and dif-

ferent task environments, there are significant implications on decision support. The goal

of decision support systems would then be to modify the presentation of information from

unfriendly to friendly distributions. Within most unfriendly distributions, there is a friendly

distribution with less total information. Similarly, when starting from an unfriendly distri-

bution, there is a clear path toward a friendly distribution through information acquisition.
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10.2 Future Research Directions

There are numerous directions for future research based on this dissertation:

10.2.1 Expanding the General Linear Model

Create an R-package of the general linear model

Creating an computational package of the general linear model in the open-source R-

statistical software will increase is accessibility within the research community. The R-

package FFTrees1 is popular among the heuristics community for constructing and testing

fast-and-frugal trees but the general linear model developed in this dissertation should be

able do everything that package is capable of, and much more. Given that the mathemat-

ical model and its matrix-representation have already been defined, this should be a fairly

straightforward task.

Incorporate measures of time and effort

The primary limitation of the model is caused by the same mechanism that makes it fast

and transparent: each option is evaluated independently, even in decision making tasks.

Therefore, in decision tasks with multiple options it is not clear how to incorporate the

measures of effort or time into the model since many strategies – particularly heuristics –

will not process all the information provided in each option.

Develop a regression-fitting version of the general linear model

The variables of the current general linear model are actively selected by the user con-

structing the model based on knowledge of the decision maker. Future work should focus

on enabling the major variables in the model to be statistically fit to a decision maker with-

out explicit knowledge of the decision maker’s process, but with only the information about

1FFTrees is available at https://cran.rstudio.com/web/packages/FFTrees/index.
html.
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the environment, decision task, and decisions. This capability would enable the model to

be more easily incorporated into machine learning algorithms and experiments in which

the task cannot sufficiently constrained to elicit the major variables.

Incorporate variables to account for dynamic strategy change or selection

The current general linear model is a static representation of decision making, in conflict

with our knowledge that participants adapt their decision making strategies as a function

of context variables such as time pressure, environment, etc. (Hammond, 1988; Hollnagel,

1993; Marewski and Link, 2014). Clarifying how the model can adapt and represent dy-

namic decision making would be an important contribution but it is not yet clear how to

incorporate that into the model. Potentially the mathematics of strategy selection models

(e.g., Rieskamp, 2006a) or phase-change financial models (e.g., Howison, 1995) can be

used to model specific archetypes of decision makers and their transitions between strate-

gies.

Modeling naturalistic decision making with the general linear model

Keller et al. (2010) argued for the development of naturalistic heuristics, an integration of

the naturalistic decision making program with the fast-and-frugal heuristics program. Since

the general linear model was built upon the framework of the fast-and-frugal heuristics,

there is a potential to use the model to assist in mathematically representing naturalistic

decision making processes, especially with their focus on time pressure and experience.

Canellas and Feigh (2016b) already started to use the general linear model to integrate the

two programs formally, showing that the naturalistic decision making quick test process

could be modeled as a fast-and-frugal tree equivalent to the tallying heuristic. That suc-

cessful attempt, however, should only be viewed as evidence that much more integration is

possible.
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10.2.2 Judgment and Decision Making with Incomplete Information

Expand the capabilities of the general linear model for judgment

The general linear model has already been shown in Chap. 3 to be linear classifier capable

of calculating a score, or criterion, based on many components (cue weights, utility func-

tions, incomplete information, estimates of missing information, cue directions, thresholds,

and cutoff values). Specifically, it was shown that the general linear model can represent

classification trees with up to 3-edges per node. Future conceptual work will be required to

discuss implications of the model for other theories and models of judgment, e.g., the Lens

Model. Whereas the Lens Model characterizes various types of agreement between two

judges’ linear models (human and environment, human and automation, etc.), given that

the general linear model has many more subcomponents, agreements could be measured

with respect to additional parameters such as cutoffs, thresholds, estimates of missing infor-

mation, etc. Furthermore, given the general linear model’s formulation of fast-and-frugal

trees (essentially non-linear, heuristic judgments), agreements could be measured between

a fast-and-frugal tree and the human participants, especially when the Lens Model suggests

that there may be a non-linear relationship between the cues and criterion.

Construct a cascading judgment-and-decision making process model

The general linear model represents judgment and decision making as the same information

process. Therefore, the two domains are represented using the same parameters, inputs, and

outputs, just with different meanings. Judgment processes one option and outputs a clas-

sification of that one option. Decision making processes two or more options and outputs

the option with the highest criterion. Since the two processes share the same variables,

they should be able to be linked together in a meaningful way in order to model cascading

decision events: 1) many judgment processes are used to determine the cue values for mul-

tiple options and cues, 2) the decision process chooses the ‘best’ option, 3) based on the
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decision, the environment is acted upon, resulting in a new set of judgments to be made,

and the process is repeated again and again.

Examine fast-and-frugal trees with incomplete information

Fast-and-frugal trees (FFTs) have become a popularly studied tool for decision support

(e.g., Jenny et al., 2013; Luan et al., 2011). They have been shown to be quick to use, easy

to remember, and accurate across many domains: medical (Green and Mehr, 1997; Fischer

et al., 2002; Katsikopoulos et al., 2008), military (Keller and Katsikopoulos, 2016), and

financial (Aikman et al., 2014). Despite the increased adoption of FFTs there has not been

a clear accounting of incomplete information in the standard FFT form. As a result there

has not been a study of how incomplete information affects FFT performance despite the

prevalence of incomplete information in medial, military, and financial decision making.

The results of this dissertation should be able to advise the development of FFTs which

can support classification with incomplete information. The general linear model can be

used to easily and rapidly test FFTs and examine how their performance with incomplete

information relates to the results of this dissertation on the interaction between estimates

of missing information, incomplete information, and decision making performance.

Complete a more comprehensive human-subjects study of decision making with incomplete

information

The reality gap between the computer simulations in Chap. 7 and the human-subjects study

in Chap. 8, requires more investigation. The human-subjects study in Chap. 8 should be re-

peated with all 22 instead of 13 distributions of incomplete information. That would make

the human-subjects study results more easily comparable to the computational studies. If

the same results are found, it would also be a second independent set of participants indi-

cating that some distributions of incomplete information are difficult regardless of whether

the estimates of missing information are accurate.
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10.2.3 Heuristic Information Acquisition and Restriction Rules

Compare the heuristic information acquisition and restriction rules to Bayesian optimal

experimental design

The heuristic rules were tested across many environments and strategies in this dissertation

(Chap. 6 and Chap. 7) but their baseline comparison was whether accuracy increased by

following the rules as opposed to not following the rules. In the interest of competitive

testing, the performance of the rules should be compared to the Bayesian optimal experi-

mental methods of information acquisition (Nelson, 2005, 2008; Meder and Nelson, 2012).

The Bayesian methods require reliable assessments of probabilities, cue weights, and cue

scores, while the heuristic methods do not, making the comparison an interesting general

test of heuristic versus analytic methods.

Complete a human-subject study of heuristic information acquisition and restriction

The human-subjects study of decision making with incomplete information showed that

some distributions were difficult, or ‘unfriendly,’ regardless of the accuracy of the partici-

pants’ estimates of missing information (Chap. 8). This shows that the heuristic information

acquisition and restriction rules have the potential to improve accuracy of a wide range of

decision makers. A human-subjects study is needed to test the extent to which the rules

apply to human, not computational, decision makers. The human-subjects study could also

acquire information via the heuristic and the Bayesian methods to determine if participants

have difference in performance and a preference for one method or the other.

Develop and test a decision support tool implementing the heuristic information acquisition

and restriction rules

Implementation of these heuristic information acquisition and restriction rules is the ulti-

mate goal of this project. However, it is not clear at this point how the heuristic information
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acquisition and restriction rules manifest themselves in real decision support tools. There

are multiple options available to system and interface designers such as modifying content

within interfaces by changing the saliency of information or by providing some information

automatically while requiring active interaction to reveal other information (Feigh et al.,

2012).
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APPENDIX A

DISSERTATION APPENDICES

A.1 General Linear Model of Judgment and Decision Making

A.1.1 Extending Non-Compensatory Weights Beyond Strictly Binary Cues

Martignon and Hoffrage (“Proof of Theorem 3,” 2002, pp. 65–66) provided the original

proof that TTB decisions can be represented as a linear model with non-compensatory

weights. The cue weights had to be selected such that any cue’s weight was larger than the

sum of all the cue weights of lower ranked cues (Eq. A.1). By considering strictly binary

cues (e.g. a binary utility function producing cue scores of either 0 or 1), they solved Eq.

A.1 using a geometric series with 1/2 as the common ratio, as shown in Eq. A.2.

wj >
∞∑
k>j

wk (A.1)

wj =

(
1

2

)j−1

= 21−j (A.2)

Here I show that a cue weight generating function can be created for a binary utility

function with three states for cue scores: {0, 0.5, 1}, with the 0.5 representing situations

where it is unclear whether the cue value should be represented as a 0 or 1. This is partic-

ularly useful for tasks with incomplete information where a decision maker may want to

estimate missing cue values somewhere between 0 and 1 (Garcia-Retamero and Rieskamp,

2008, 2009).

First, to construct such a set of non-compensatory cue weights, three preferences be-

tween two alternatives (A and B) with incomplete information must be satified as shown

in Conditions 1–3. The arguments of A and B refer to the cue scores.
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Condition 1: A(1, 0, ..., 0), preferred to B(0, 1, ..., 1) (A.3)

Condition 2: A(1, 0, ..., 0), preferred to B(0.5, 1, ..., 1) (A.4)

Condition 3: A(0.5, 0, ..., 0), preferred to B(0, 1, ..., 1) (A.5)

Using the weighted utility function, the three conditions can be restated as inequalities

that must be satisfied:

Condition 1: w1 >
n∑

k=2

wj (A.6)

Condition 2: w1 > w1 · 0.5 +
n∑

k=2

wj (A.7)

Condition 3: w1 · 0.5 >
n∑

k=2

wj (A.8)

Condition 1 can be satisfied by the use of geometric series of at least common ratio

of 1/2 (Table A.1, assuming that there are less than infinite cues). To determine which

common ratios can account for the three-state binary cue scores, Conditions 2 and 3 (Eqs.

A.7 and A.8) are combined into the following equation with w1 = 1 as shown in Table A.1:

Table A.1: Potential geometric series for cue weights (wj) for various common ratios (r):
wj = rj−1.

r w1

∑n=∞
j=2 wj

1 1 ∞
1/2 1 1
1/3 1 1/2
1/4 1 1/3

1 > 0.5 >
n∑

j=2

wj (A.9)
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Therefore, of the standard common ratios, r = 1/4 is the largest that satisfies Condi-

tions 1, 2, and 3. The final form for the non-compensatory cue weight generating function

that can account for cue scores of {0, 0.5, 1} is presented in final form in Eq. A.10.

wj =
n∑
j

(
1

4

)j−1

=
n∑
j

41−j (A.10)

A.1.2 Cue weights to categories

Tables A.2 and A.3 show the specific criterion values for two-state and three-state cue

scores, respectively, for non-compensatory and equal cue weights.

Table A.2: Criterion values for all combinations of 2-state binary cue scores for three cues.
Non-compensatory cue weights generate 8 unique criterion values while equal cue weights
generate 4 unique criterion values.

Non-Compensatory Equal
as
1 as

2 as
3 C : wj = 41−j C : wj = 1

0 0 0 0 0
0 0 1 0.0625 1
0 1 0 0.25 1
0 1 1 0.3125 2
1 0 0 1 1
1 0 1 1.0625 2
1 1 0 1.25 2
1 1 1 1.3125 3
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Table A.3: Criterion values for all combinations of 3-state binary cue scores for three
cues. Non-compensatory cue weights generate 27 unique criterion values while equal cue
weights generate 7 unique criterion values.

Non-Compensatory Equal
as
1 as

2 as
3 C : wj = 41−j C : wj = 1

1 1 1 1.3125 3
0 1 1 0.3125 2
0.5 1 1 0.8125 2.5
1 0 1 1.0625 2
0 0 1 0.0625 1
0.5 0 1 0.5625 1.5
1 0.5 1 1.1875 2.5
0 0.5 1 0.1875 1.5
0.5 0.5 1 0.6875 2
1 1 0 1.25 2
0 1 0 0.25 1
0.5 1 0 0.75 1.5
1 0 0 1 1
0 0 0 0 0
0.5 0 0 0.5 0.5
1 0.5 0 1.125 1.5
0 0.5 0 0.125 0.5
0.5 0.5 0 0.625 1
1 1 0.5 1.281 25 2.5
0 1 0.5 0.281 25 1.5
0.5 1 0.5 0.781 25 2
1 0 0.5 1.031 25 1.5
0 0 0.5 0.031 25 0.5
0.5 0 0.5 0.531 25 1
1 0.5 0.5 1.156 25 2
0 0.5 0.5 0.156 25 1
0.5 0.5 0.5 0.656 25 1.5
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A.1.3 Prior Formalization of Fast-and-Frugal Trees

Martignon et al. (2008) formalized FFTs with two parameters: cue profiles (x) and splitting

profiles (S). Cue profiles are equivalent to a single alternative’s binary cue scores used in

the general linear model with one notable exception: the values in the cue profiles must be

coded so that a cue score of 1 indicates that the alternative (according to that cue) should

be assigned to Category 1 and a cue score of 0 indicates that the alternative (according to

that cue) should be assigned to Category 0. A splitting profile is a cue profile that describes

the FFT structure. An FFT assigns an alternative to Category 1 if and only if the cue profile

is lexicographically larger than the splitting profile. In simpler terms, the elements of the

splitting profile indicate the following: if Sj = 0, the FFT has an exit “yes” to Category 1,

and if Sj = 1, the FFT has an exit “no” to Category 0.

While requiring a relationship between cue directions and categorizations allows for a

compact notation – a single vector of 0’s and 1’s (the splitting profile) can specify an entire

FFT – it restricts the ability of modelers to specify their cue directions independently of

the categorizations and restricts the number of categories to 2 (though that is the standard

number in signal detection theory which has been used to formalize FFTs, Luan et al.,

2011). Therefore, for the general linear model presented in this thesis, there is no required

relationship between cue directions and categorizations; only together with the cue direc-

tions D can the splitting profile specify an FFT. The cue directions specify whether the exit

occurs because the cue value is less than the cutoff (-1) or more than the cutoff (1). The

splitting profile specifies the categorization of that exit. See Sec. 3.2.4 for an example of

FFTs using the general linear model.

A.1.4 Dataset Description for Fast-and-Frugal Trees Example

The dataset used for the two examples in Sec. 3.2.4, was accessed via the Adaptive Toolbox

Online. The original dataset is available at the UCI Machine Learning Database (Lichman,
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2013) which has a complete text description of the dataset1 as shown below. The Adaptive

Toolbox Online used “Contraceptive Method Used” (cm bin) as the criterion and con-

verted it to binary: 0, no-use, and 1, long-term or short-term use.

1. Title: Contraceptive Method Choice

2. Sources:

(a) Origin: This dataset is a subset of the 1987 National Indonesia Contraceptive

Prevalence Survey

(b) Creator: Tjen-Sien Lim (limt@stat.wisc.edu)

(c) Donor: Tjen-Sien Lim (limt@stat.wisc.edu)

(d) Date: June 7, 1997

3. Past Usage: Lim, T.-S., Loh, W.-Y. & Shih, Y.-S. (1999). A Comparison of Prediction

Accuracy, Complexity, and Training Time of Thirty-three Old and New Classification

Algorithms. Machine Learning. Forthcoming.

(ftp://ftp.stat.wisc.edu/pub/loh/treeprogs/quest1.7/mach1317.pdf)

or (http://www.stat.wisc.edu/ limt/mach1317.pdf)

4. Relevant Information: This dataset is a subset of the 1987 National Indonesia Con-

traceptive Prevalence Survey. The samples are married women who were either not

pregnant or do not know if they were at the time of interview. The problem is to pre-

dict the current contraceptive method choice (no use, long-term methods, or short-

term methods) of a woman based on her demographic and socio-economic charac-

teristics.

5. Numer of Instances: 1473

6. Number of Attributes (Cues): 10 (including the class attribute)
1https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
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Table A.4: Environmental parameters for the 5-cue decision environments.

Dataset Full Information Accuracy Pred. Redun. Var.
WADD EW Tallying Take Two TTB

Biodiversity 0.84 0.83 0.83 0.84 0.86 0.53 0.26 0.47
Boys 0.78 0.78 0.78 0.78 0.82 0.53 0.58 0.15
Car 0.75 0.78 0.78 0.75 0.72 0.57 0.21 0.16
Cities 0.81 0.83 0.83 0.81 0.81 0.86 0.22 0.23
Dropout 0.68 0.69 0.69 0.68 0.69 0.20 0.75 0.03
Fat 0.58 0.58 0.58 0.58 0.59 0.10 0.34 0.09
Fuel 0.79 0.83 0.83 0.79 0.79 0.51 0.25 0.16
Girls 0.74 0.76 0.76 0.74 0.76 0.44 0.51 0.18
Homeless 0.69 0.69 0.69 0.69 0.70 0.32 0.17 0.37
House 0.91 0.92 0.92 0.91 0.91 0.49 0.57 0.17
Oxygen 0.92 0.92 0.92 0.92 0.92 0.22 0.89 0.12
Pollution 0.77 0.79 0.79 0.78 0.77 0.48 0.34 0.17
Professor 0.81 0.81 0.81 0.81 0.82 0.70 0.30 0.43
Rainfall 0.69 0.73 0.73 0.69 0.68 0.33 0.12 0.13
Sleep 0.81 0.81 0.81 0.81 0.84 0.42 0.52 0.22

7. Attribute (Cue) Information2:

2. edu, Wife’s education (categorial) 1=low, 2, 3, 4=high

4. n child, Number of children ever born (numerical)

6. work, Wife’s now working? (binary) 0=Yes, 1=No

10. cm bin, Contraceptive method used (categorical) 1=No-use, 2=Long-term,

3=Short-term

A.2 Computer Simulation Studies

A.2.1 Study 2: Heuristic Information Acquisition and Restriction Rules for Decision

Support

Environmental Parameters for Each Dataset

2Only the three cues and the criterion used in the example are described here.
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Table A.5: Environmental parameters for the 4-cue decision environments.

Dataset Full Information Accuracy Pred. Redun. Var.
WADD EW Tallying Take Two TTB

Biodiversity 0.87 0.86 0.86 0.87 0.88 0.52 0.35 0.44
Boys 0.79 0.80 0.80 0.79 0.82 0.51 0.59 0.14
Car 0.73 0.77 0.77 0.73 0.72 0.53 0.25 0.14
Cities 0.84 0.86 0.86 0.84 0.83 0.86 0.19 0.22
Dropout 0.69 0.69 0.69 0.69 0.69 0.19 0.78 0.02
Fat 0.59 0.59 0.59 0.59 0.60 0.10 0.28 0.09
Fuel 0.79 0.81 0.81 0.79 0.79 0.49 0.35 0.05
Girls 0.78 0.78 0.78 0.78 0.80 0.44 0.65 0.12
Homeless 0.72 0.74 0.74 0.72 0.71 0.31 0.16 0.32
House 0.93 0.94 0.94 0.93 0.94 0.45 0.67 0.12
Oxygen 1.00 1.00 1.00 1.00 1.00 0.20 1.00 0.00
Pollution 0.78 0.78 0.78 0.78 0.78 0.47 0.44 0.10
Professor 0.86 0.87 0.87 0.86 0.86 0.69 0.37 0.30
Rainfall 0.70 0.74 0.74 0.70 0.68 0.32 0.11 0.06
Sleep 0.84 0.84 0.84 0.84 0.84 0.42 0.55 0.17

Table A.6: Environmental parameters for the 3-cue decision environments.

Dataset Full Information Accuracy Pred. Redun. Var.
WADD EW Tallying Take Two TTB

Biodiversity 0.90 0.90 0.90 0.90 0.90 0.52 0.49 0.28
Boys 0.81 0.82 0.82 0.81 0.82 0.50 0.54 0.04
Car 0.72 0.75 0.75 0.72 0.72 0.40 0.36 0.13
Cities 0.90 0.90 0.90 0.90 0.90 0.85 0.25 0.13
Dropout 0.69 0.70 0.70 0.69 0.69 0.19 0.72 0.01
Fat 0.60 0.60 0.60 0.60 0.60 0.09 0.27 0.07
Fuel 0.81 0.81 0.81 0.81 0.81 0.46 0.39 0.03
Girls 0.81 0.82 0.82 0.81 0.84 0.43 0.69 0.06
Homeless 0.73 0.77 0.77 0.73 0.73 0.30 0.24 0.32
House 0.96 0.96 0.96 0.96 0.97 0.41 0.82 0.06
Oxygen 1.00 1.00 1.00 1.00 1.00 0.20 1.00 0.00
Pollution 0.80 0.80 0.80 0.80 0.79 0.41 0.74 0.04
Professor 0.89 0.91 0.91 0.89 0.90 0.69 0.53 0.10
Rainfall 0.69 0.73 0.73 0.69 0.68 0.24 0.07 0.04
Sleep 0.88 0.87 0.87 0.88 0.88 0.39 0.66 0.08
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A.2.2 Study 3: Determinants of Decision Making with Incomplete Information

Strategy Equations

CPPE =
n∑

j=1

H
[
dj

(
max avj + (avi,j −max avj )zi,j

)
− (dj · ãvj )

]
(A.11)

CPME =
n∑

j=1

H
[
dj

(
ãvj + (avi,j − ãvj )zi,j

)
− (dj · ãvj )

]
(A.12)

CPNE =
n∑

j=1

H
[
dj

(
min avj + (avi,j −min avj )zi,j

)
− (dj · ãvj )

]
(A.13)

CRPE =
n∑

j=1

H
[
dj

(
max avj + (avi,j −max avj )zi,j

)
− (dj · maxminaj)

]
(A.14)

CRME =
n∑

j=1

H
[
dj

(
ãvj + (avi,j − ãvj )zi,j

)
− (dj · maxminaj)

]
(A.15)

CRNE =
n∑

j=1

H
[
dj

(
min avj + (avi,j −min avj )zi,j

)
− (dj · maxminaj)

]
(A.16)

(A.17)
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CPPN =
n∑

j=1

41−j ·H
[
dj

(
max avj + (avi,j −max avj )zi,j

)
− (dj · ãvj )

]
(A.18)

CPMN =
n∑

j=1

41−j ·H
[
dj

(
ãvj + (avi,j − ãvj )zi,j

)
− (dj · ãvj )

]
(A.19)

CPNN =
n∑

j=1

41−j ·H
[
dj

(
min avj + (avi,j −min avj )zi,j

)
− (dj · ãvj )

]
(A.20)

CRPN =
n∑

j=1

41−j ·H
[
dj

(
max avj + (avi,j −max avj )zi,j

)
− (dj · maxminaj)

]
(A.21)

CRMN =
n∑

j=1

41−j ·H
[
dj

(
ãvj + (avi,j − ãvj )zi,j

)
− (dj · maxminaj)

]
(A.22)

CRNN =
n∑

j=1

41−j ·H
[
dj

(
min avj + (avi,j −min avj )zi,j

)
− (dj · maxminaj)

]
(A.23)

(A.24)

CPPC =
n∑

j=1

v ·H
[
dj

(
max avj + (avi,j −max avj )zi,j

)
− (dj · ãvj )

]
(A.25)

CPMC =
n∑

j=1

v ·H
[
dj

(
ãvj + (avi,j − ãvj )zi,j

)
− (dj · ãvj )

]
(A.26)

CPNC =
n∑

j=1

v ·H
[
dj

(
min avj + (avi,j −min avj )zi,j

)
− (dj · ãvj )

]
(A.27)

CRPC =
n∑

j=1

v ·H
[
dj

(
max avj + (avi,j −max avj )zi,j

)
− (dj · maxminaj)

]
(A.28)

CRMC =
n∑

j=1

v ·H
[
dj

(
ãvj + (avi,j − ãvj )zi,j

)
− (dj · maxminaj)

]
(A.29)

CRNC =
n∑

j=1

v ·H
[
dj

(
min avj + (avi,j −min avj )zi,j

)
− (dj · maxminaj)

]
(A.30)

(A.31)
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Tradeoff Figures
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Figure A.1: Two-way interaction between total information and option imbalance for
strategies with prior cutoff values and each combination of estimates and weights.
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Figure A.2: Two-way interaction between total information and option imbalance for
strategies with relative cutoff values and each combination of estimates and weights.
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Figure A.3: Two-way interaction between total information and cue balance for strategies
with prior cutoff values and each combination of estimates and weights.
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Figure A.4: Two-way interaction between total information and cue balance for strategies
with relative cutoff values and each combination of estimates and weights.
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Figure A.5: Two-way interaction between cue balance and option imbalance for strategies
with prior cutoff values and each combination of estimates and weights.
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Figure A.6: Two-way interaction between cue balance and option imbalance for strategies
with relative cutoff values and each combination of estimates and weights.
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Heuristic Information Acquisition and Restriction Rules
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Table A.7: The average accuracy change of the information acquisition and restriction types.

Strategy Cue Scale Estimate Weights -4 -3 -2 -1 1 2 3 4
(-1, -1) (-1, 1) (0, -1) (0, 1) (0, 1) (0, -1) (1, 1) (1, -1)

RMC Continuous Median Compensatory 0.33 -0.09 -0.99 -1.38 0.99 1.38 -0.33 0.09
PMC Binary Median Compensatory -0.52 -1.11 -1.17 -1.65 1.17 1.65 0.52 1.11
RMN Continuous Median Non-CF 0.20 0.19 -1.05 -0.98 1.05 0.98 -0.20 -0.19
PMN Binary Median Non-CF -0.98 -1.04 -1.13 -1.04 1.13 1.04 0.98 1.04
RME Continuous Median Equal -0.15 0.10 -1.28 -0.89 1.28 0.89 0.15 -0.10
PME Binary Median Equal -1.13 -0.90 -1.46 -1.10 1.46 1.10 1.13 0.90
RNN Continuous Negative Non-CF 0.14 -1.53 -0.19 -2.21 0.19 2.21 -0.14 1.53
PNN Binary Negative Non-CF -0.43 -2.99 -0.35 -3.21 0.35 3.21 0.43 2.99
RNE Continuous Negative Equal 0.43 -1.59 -0.05 -2.28 0.05 2.28 -0.43 1.59
PNE Binary Negative Equal 0.13 -2.92 0.11 -3.06 -0.11 3.06 -0.13 2.92
RNC Continuous Negative Compensatory 0.48 -1.66 0.00 -2.42 0.00 2.42 -0.48 1.66
PNC Binary Negative Compensatory 0.20 -3.18 0.03 -3.54 -0.03 3.54 -0.20 3.18
RPN Continuous Positive Non-CF 0.14 -1.53 -0.19 -2.21 0.19 2.21 -0.14 1.53
PPN Binary Positive Non-CF -0.27 -3.21 0.04 -3.28 -0.04 3.28 0.27 3.21
RPE Continuous Positive Equal 0.43 -1.59 -0.05 -2.28 0.05 2.28 -0.43 1.59
PPE Binary Positive Equal 0.54 -3.43 0.60 -3.49 -0.60 3.49 -0.54 3.43
RPC Continuous Positive Compensatory 0.48 -1.66 0.00 -2.42 0.00 2.42 -0.48 1.66
PPC Binary Positive Compensatory 0.64 -3.69 0.61 -3.96 -0.61 3.96 -0.64 3.69
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Table A.8: The positive accuracy count of the information acquisition and restriction types.

Strategy Cue Scale Estimate Weights -4 -3 -2 -1 1 2 3 4
(-1, -1) (-1, 1) (0, -1) (0, 1) (0, 1) (0, -1) (1, 1) (1, -1)

PMC Binary Median Compensatory 48% 47% 46% 46% 54% 54% 52% 53%
PME Binary Median Equal 46% 47% 45% 46% 55% 54% 54% 53%
PMN Binary Median Non-CF 46% 46% 46% 47% 54% 54% 54% 54%
RMC Continuous Median Compensatory 51% 50% 46% 45% 54% 55% 49% 50%
RME Continuous Median Equal 49% 50% 45% 46% 55% 54% 51% 50%
RMN Continuous Median Non-CF 51% 51% 46% 47% 54% 53% 49% 49%
PNC Binary Negative Compensatory 52% 37% 49% 37% 51% 63% 48% 63%
PNE Binary Negative Equal 51% 38% 50% 39% 50% 61% 49% 62%
PNN Binary Negative Non-CF 50% 36% 48% 37% 52% 63% 50% 64%
RNC Continuous Negative Compensatory 53% 43% 50% 40% 50% 60% 47% 57%
RNE Continuous Negative Equal 52% 43% 49% 41% 51% 59% 48% 57%
RNN Continuous Negative Non-CF 54% 41% 51% 38% 49% 62% 46% 59%
PPC Binary Positive Compensatory 53% 37% 51% 37% 49% 63% 47% 63%
PPE Binary Positive Equal 51% 37% 51% 39% 49% 61% 49% 63%
PPN Binary Positive Non-CF 51% 36% 49% 37% 51% 63% 49% 64%
RPC Continuous Positive Compensatory 53% 43% 50% 40% 50% 60% 47% 57%
RPE Continuous Positive Equal 52% 43% 49% 41% 51% 59% 48% 57%
RPN Continuous Positive Non-CF 54% 41% 51% 38% 49% 62% 46% 59%
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A.3 Validation Human-in-the-Loop Experiment

A.3.1 Institutional Review Board Documents
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 Unit of the University System of Georgia                         An Equal Education and Employment Opportunity Institution 
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AAAssssssuuurrraaannnccceee        

Protocol Number: H16325 

       Funding Agency: Navy/ONR 

Review Type: Exempt, Category 2 

Title: Impact of Incomplete Information on Performance in a Naval Defense Task 

Number of Subjects: 120  

 

August 9, 2016 

Karen Feigh 

Aerospace Engineering 

0150 

 

Dear Dr. Feigh: 

 

The Institutional Review Board (IRB) has carefully considered the referenced protocol.  Your approval is 

effective as of 08/09/2016.  The proposed procedures are exempt from further review by the Georgia Tech 

Institutional Review Board. 

 

Minimal risk research qualified for exemption status under 45 CFR 46 101b. 2. 

 

DOD COMPLIANCE CONCURRENCE MUST BE OBTAINED BEFORE WORK WITH HUMAN 

SUBJECTS MAY BEGIN, DESPITE GEORGIA TECH IRB APPROVAL BEING ISSUED. 

Obtaining DOD compliance concurrence is the responsibility of the Principal Investigator.   

DOD compliance concurrence must be documented in the Georgia Tech IRB record.   

 

Thank you for allowing us the opportunity to review your plans.  If any complaints or other evidence of risk 

should occur, or if there is a significant change in the plans, the IRB must be notified.   

 

If you have any questions concerning this approval or regulations governing human subject activities, please 

feel free to contact Dennis Folds, IRB Chair, at 404/407-7262, or me at 404/385-5208.  

 

Sincerely, 

 

 
 

Scott S. Katz, MS, CIP 

Compliance Officer 

Georgia Tech Office of Research Integrity Assurance 

 

cc: Dr. Dennis Folds, IRB Chair 

        

Figure A.7: Georgia Tech Institute Review Board approval.
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Consent Form Approved by Georgia Tech IRB:  August 09, 2016 - Indefinite

School of Aerospace Engineering
Cognitive Engineering Center

Georgia Institute of Technology
Human Subject Consent 

1. Project Title: Impact of Incomplete Information on Performance in a Naval Defense Task
 

2. Principal Investigator: Dr. Karen Feigh, (404) 385-7686, karen.feigh@gatech.edu
Graduate Students:  Marc Canellas (marc.c.canellas@gatech.edu)
                                                  Rachel Haga (rachel.haga@gatech.edu)

3. Protocol and Consent Title:  Impact of Incomplete Information on Performance in a Naval Defense Task –
Experiment 1

4. Introduction:  You are being asked to participate in a research study. The purpose of this study is to examine
how different combinations of environmental factors can affect your decision making process in a naval defense
task. As a participant of this study, you will be interacting with a computer interface in order to make decisions
about how to engage with various targets in order to defend your ship(s). The scenarios presented are purely
hypothetical.    

5. Procedures: 
Introduction:  The introductory briefing:

o Seeks informed consent 
o Explains the experiment. 
o Details the schedule of events.
o Explains the interface.

Training Sets:  This training will familiarize you with the interface and the decision you will need to make. At 
the end of the training sets, you should feel comfortable with the interface and decisions.
Experimental Sets:  Prior to each experiment you will be given a brief description of the task you will perform. 
You will be required to make decisions within the time allotted. For each decision task presented, there is a 
correct answer.

The entire procedure will last approximately 4 hours.  You are free to request a break at any time.  

6. Foreseeable Risks or Discomforts: Every study involves some risk. This study is considered to have low risk.
There is  the same possibility  of  discomfort  or  fatigue while interacting with the interface that  you would find
interacting with a computer.

You will be provided breaks during the course of the experiment.

7. Benefits:  There are no direct benefits to you for participating in this research study. The study may help us
understand how decision makers perform in different environments and to design decision support systems.

8. Compensation/Costs: There is no cost to you. All participants will receive $10 for showing up as compensation
for your time. Then for each correct decision made in each task, you will receive $0.10.

Please note that U.S. Tax Law requires a mandatory withholding of 30% for nonresident alien payments of any
type.   Your  address  and  citizenship/visa  status  may  be  collected  for  compensation  purposes  only.   This
information will be shared only with the Georgia Tech department that issues compensation, if any, for your
participation.

9. Confidentiality: The information that you give in the study will be handled confidentially. Personal 
information about you will not be published or made available to any third party in any form. Your name will 

Figure A.8: Human-subjects study consent form approved by Georgia Tech Institute Re-
view Board - page 1.
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Consent Form Approved by Georgia Tech IRB:  August 09, 2016 - Indefinite

not be used in any report (pseudonyms such as ‘Participant X’ will be used), and we will be careful to ensure 
that no identifiable patterns in your actions and questionnaire responses (including demographic information 
such as your experience) are released in a way that would allow for any outsider to guess your identity. The raw
data will only be shared with the research team. Once the analysis and documentation of this experiment are 
complete, the video and audio files will be destroyed; electronic and paper stores of results will be archived in a
locked facility within the principal investigator’s Georgia Tech office or laboratory. To make sure that this 
research is being carried out in the proper way, the Georgia Institute of Technology Institute Review Board 
(IRB) will review study records. The Office of Human Research Protections may also look at study records.

10. Injury/Adverse Reactions: Reports of injury or reaction should be made to the Principal Investigator of this
research study. Neither the Georgia Institute of Technology nor the principal investigator has made provision for
payment of costs associated with any injury resulting from participation in this study. 

11. Contact Person: If you have questions about the research, call or write Dr. Karen Feigh at (404) 894-0199,
Montgomery  Knight  Building,  Room 419,  Georgia  Institute  of  Technology,  270  Ferst  Drive,  Atlanta  GA
30332-0150.

12. Voluntary Participation/Withdrawal:  You have the right to withdraw from the study at any time without
penalty.  The  audio  recordings  along  with  all  questionnaires  and  transcripts  will  be  destroyed  upon  your
withdrawal from the study.

13. Participant’s Rights: 
 Your participation in this study is voluntary. You do not have to be in this study if you don't want to be.
 You have the right to change your mind and leave the study at any time without giving any reason and

without penalty.
 Any new information that may make you change your mind about being in this study will be given to you.
 You will be given a copy of this consent form to keep.
 You do not waive any of your legal rights by signing this consent form.

If you have any questions about your rights as a research volunteer, call or write:

Ms. Melanie Clark
Office of Research Integrity Assurance
Georgia Institute of Technology
Atlanta, GA 30332-0420
Voice (404) 894-6942

Your signature below indicates that the researchers have answered all of your questions to your satisfaction, and that
you consent to volunteer for this study.

Subject’s Signature: ______________________________________ Date: _______________

Subject’s Name: ______________________________________

Investigator’s Signature: ___________________________________ Date: _______________

Investigator’s Name: ______________________________

Figure A.9: Human-subjects study consent form approved by Georgia Tech Institute Re-
view Board - page 2.
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A.3.2 General Experiment Information

A complete definition of a decision task requires not just a description of the cue scores,

but also a description of which cue scores are known or unknown to the decision maker.

Combinations of incomplete information were generated via a full factorial combination of

ones (denoting that a cue value is presented to the participant) and zeros (denoting that a

cue value is not presented to the participant), as shown in Table A.9. Combining the 16 op-

tions with 16 incomplete information combinations resulted in 32,640 decision tasks. Each

specific decision task had a unique decision task identity (ID) consisting of a concatenation

of option numbers and incomplete information numbers. For example, task ID [1.2.3.4] is

the decision task with Option 1 consisting of Option No. 1 and Incomplete Information

No. 2, and Option 2 consisting of Option No. 3 and Incomplete Information No. 4.

Table A.9: Incomplete information combinations.

Incomplete Cue 1, z1 Cue 2, z2 Cue 3, z3 Cue 4, z4
Information
No. Altitude Speed Distance from Size

Corridor

1 0 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 0 1 1
5 0 1 0 0
6 0 1 0 1
7 0 1 1 0
8 0 1 1 1
9 1 0 0 0
10 1 0 0 1
11 1 0 1 0
12 1 0 1 1
13 1 1 0 0
14 1 1 0 1
15 1 1 1 0
16 1 1 1 1
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Figure A.10: Criterion scores of the 16 options.

Table A.10: Transformations of experimental cue scores to presented cue scores for the
participants.

Cue Cue Cue Value Cue Value Increment
Score Lower Bound Upper Bound

Altitude (ft) Low (1) 500 5,000 500
High (0) 30,000 40,000 500

Speed (kts) Fast (1) 1,000 1,200 50
Slow (0) 200 400 50

Distance from Corridor (nm) Far (1) 40 50 2
Near (0) 10 0 2

Size (m2) Small (1) 0.1 1 0.1
Large (0) 80 100 5

Table A.11: Description of the decision task “Type” in Tables A.12 and A.13

Type A B-P B-N E-P E-N

Measures Bias N Y Y Y Y
Measures Estimates N N N Y Y

Unbiased, Accurate Average Estimates Y Y Y Y Y
Unbiased, Inaccurate Average Estimates N N N N N
Positive Biased Negative Estimates Y Y N N Y
Negative Biased Positive Estimates Y N Y Y N
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Table A.12: Description the three blocks of easy difficulty tasks: incomplete information,
type, and decision task ID.

Total Information Complete Type Trial A Trial B Trial CInformation Imbalance Attribute
Pairs

2 0 0 A 5.16.9.2 1.4.3.2 1.4.5.2
2 0 0 A 5.16.2.9 1.7.2.3 2.12.9.3
2 0 1 A 1.4.2.2 5.12.3.3 1.7.3.3
2 0 1 A 1.4.3.3 5.16.2.2 5.14.2.2
2 2 0 B-N 2.7.1.4 1.10.1.11 2.11.1.13
2 2 0 B-P 2.13.10.1 5.15.7.1 2.4.4.1
4 0 0 E-N 3.15.11.6† 4.15.11.6** 3.13.11.6**
4 0 0 E-P 2.13.6.11 2.10.6.11 2.14.6.11‡

4 0 1 E-N 4.5.6.13† 4.6.6.13† 3.14.11.7†

4 0 1 E-P 3.14.7.11† 4.14.7.11† 3.13.7.11**
4 0 2 A 1.7.7.7 2.13.7.7 2.7.4.4
4 0 2 A 2.12.7.7 1.8.10.10 1.7.6.6
4 2 0 E-N 2.11.2.15 5.12.2.15 2.13.5.12
4 2 0 E-P 5.14.15.2 5.16.15.2 2.11.12.5
4 2 1 E-N 1.4.9.15 5.14.2.12 5.15.5.14
4 2 1 E-P 2.8.12.9 2.4.12.9 5.15.14.2
4 4 0 E-N 5.14.1.16 2.11.1.16 5.12.1.16
4 4 0 E-P 2.11.16.1 5.12.16.1 2.4.16.1
6 0 2 E-N 4.14.12.8† 3.13.15.8† 3.13.12.8**
6 0 2 E-P 4.14.8.15† 4.14.8.12† 3.13.8.12**
6 0 3 A 5.12.14.14 5.14.15.15 1.10.14.14
6 0 3 A 2.13.8.8 1.7.12.12 1.8.15.15
6 2 2 E-N 2.4.10.16 1.4.10.16 5.12.6.16
6 2 2 E-P 2.7.16.10 2.4.16.13 5.14.16.4
8 0 4 A 1.7.16.16 2.11.16.16 5.16.16.16
8 0 4 A 2.13.16.16 1.3.16.16 1.10.16.16
*Extra-hard difficulty tasks: 0.02; **Medium-hard difficulty tasks: [0.17,0.24]

† Medium difficulty tasks: [0.27,0.43]; ‡ Extra-easy difficulty tasks: [0.90]
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Table A.13: Description the three blocks of hard difficulty tasks: incomplete information,
type, and decision task ID.

Total Information Complete Type Trial A Trial B Trial CInformation Imbalance Attribute
Pairs

2 0 0 A 5.6.2.5 9.10.2.9 4.7.5.3
2 0 0 A 3.8.9.3 13.16.2.9 3.7.2.3
2 0 1 A 8.10.5.5 3.7.5.5 7.13.9.9
2 0 1 A 4.7.5.5 11.14.5.5 13.16.3.3
2 2 0 B-N 12.14.1.11 7.13.1.11 11.15.1.10
2 2 0 B-P 13.15.7.1 8.13.13.1 12.15.6.1
4 0 0 E-N 4.7.11.6 7.13.11.6 8.13.11.6
4 0 0 E-P 12.14.6.11 4.13.6.11** 10.13.6.11**
4 0 1 E-N 8.13.11.7 7.13.11.7 4.13.11.7**
4 0 1 E-P 12.14.7.11 11.14.7.11 11.13.7.11*
4 0 2 A 13.14.6.6 12.15.7.7 8.12.11.11
4 0 2 A 11.15.7.7 7.11.11.11 11.15.13.13
4 2 0 B-N 12.14.5.12 7.13.3.14 11.15.3.14
4 2 0 B-P 3.8.15.2 3.8.12.5 4.8.12.5
4 2 1 B-N 7.12.2.8 12.15.3.8 8.11.3.12
4 2 1 B-P 13.15.15.9 4.8.15.5 4.7.14.2
4 4 0 B-N 12.15.1.16 13.14.1.16 7.11.1.16
4 4 0 B-P 3.8.16.1 5.6.16.1 3.7.16.1
6 0 2 E-N 7.13.12.8 4.13.15.8** 8.14.12.8**
6 0 2 E-P 12.14.8.12 12.14.8.15 11.13.8.12*
6 0 3 A 9.10.8.8 5.6.12.12 13.14.14.14
6 0 3 A 1.2.14.14 5.6.8.8 5.6.14.14
6 2 2 B-N 4.7.10.16 11.14.4.16 12.15.10.16
6 2 2 B-P 13.16.16.10 5.6.16.10 5.6.16.4
8 0 4 A 7.11.16.16 3.7.16.16 7.13.16.16
8 0 4 A 13.15.16.16 13.14.16.16 12.15.16.16
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APPENDIX B

PUBLICATIONS

B.1 Published Articles

B.1.1 Journal Articles

1. Canellas, M. C. and Feigh, K. M. (2017). Heuristic information acquisition and re-

striction rules for decision support. IEEE Transactions on Human-Machine Systems.

(In press)

2. Canellas, M. C. and Feigh, K. M. (2016b). Toward simple representative mathemati-

cal models of naturalistic decision making through fast-and-frugal heuristics. Journal

of Cognitive Engineering and Decision Making, 10(3):255–267

3. Canellas, M. C., Feigh, K. M., and Chua, Z. K. (2015). Accuracy and effort of

decision-making strategies with incomplete information: Implications for decision

support system design. IEEE Transactions on Human-Machine Systems, 45(6):686–

701

B.1.2 Conference Papers with Podium Presentations

1. Canellas, M. C. and Feigh, K. M. (2014). Heuristic decision making with incomplete

information: Conditions for ecological rationality. In Systems, Man and Cybernetics

(SMC), 2014 IEEE International Conference on, pages 1963–1970

2. Canellas, M. C., Feigh, K. M., and Chua, Z. K. (2014). Accuracy and effort of

decision making strategies with incomplete information. In Cognitive Methods in

Situation Awareness and Decision Support (CogSIMA), 2014 IEEE International

Inter-Disciplinary Conference on, pages 7–13
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B.1.3 Podium Presentations (Only)

1. Canellas, M. C., Feigh, K. M., and Haga, R. A. (2016). Mathematical representations

of human judgment and decision making in military contexts. In Military Operations

Research Society Emerging Techniques Special Meeting (MORS METSM) in Washington,

D.C.

B.1.4 Poster Presentations (Only)

1. Canellas, M. C. and Feigh, K. M. (2016a). A general linear model of fast-and-frugal

judgment and decision making. In Summer Institute on Bounded Rationality, in

Berlin, Germany

B.2 Planned

B.2.1 Journal Articles

• A General Linear Model of Judgment and Decision Making. Presents the devel-

opment of the general linear model of judgment and decision making strategies in

Chap. 3. Discusses the mathematical, computational, and theoretical contributions

of the model. Planned for Psychological Review or Journal of Mathematical Pscy-

hology.

• Determinants of Decision Making Accuracy with Incomplete Information. Presents

the results in Chap. 7 of decision making strategies with incomplete information ex-

tended to decision tasks with three options instead of two. Planned for Judgment and

Decision Making.

• The Reality Gap: What makes distributions of incomplete information difficult?

Presents the human-subjects study results in Chap. 8 as a contrast to the computer
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simulation studies (Chap. ??). Planned for Psychological Science or Journal of Ex-

perimental Psychology: General.

• As they are: Representing and supporting the heuristics of military decision

makers. Review of the capabilities of the general linear model for modeling and

simulating military decision makers. Additional review of the prior work analyzing

military heuristics from the naturalistic decision making and fast-and-frugal heuris-

tics programs. Planned for Military Operations Research Journal.

B.2.2 Magazine Articles

• As they are: Representing and supporting the heuristics of military decision

makers. Review of the capabilities of the general linear model for modeling and

simulating heuristic decision makers. Additional review of the prior work analyzing

military heuristics from the naturalistic decision making and fast-and-frugal heuris-

tics programs. Planned for Phalanx, the magazine for the Military Operations Re-

search Society.

237



BIBLIOGRAPHY

Aikman, D., Galesic, M., Gigerenzer, G., Kapadia, S., Katsikopoulos, K., Kothiyal, A.,

Murphy, E., and Neumann, T. (2014). Taking uncertainty seriously: simplicity versus

complexity in financial regulation. Financial Stability Paper 28, Bank of England.

Anderson, J. R. (2007). How can the human mind occur in the physical universe? Oxford

University Press, Inc.

Arbuckle, J. L. (1996). Full Information Estimation in the Presence of Incomplete Data.

Baron, J. (1985). Rationality and Intelligence. Cambridge University Press, Cambridge,

England.

Bass, E. J. (2002). Human-Automated Judgment Learning: A Research Paradigm Based

on Interpersonal Learning to Investigate Human Interaction with Automated Judgments

of Hazards. PhD thesis, Georgia Institute of Technology.

Beattie, J., Baron, J., Hershey, J., and Spranca, M. (1994). Determinants of decision atti-

tude. Journal of Behavioral Decision Making, 7:129–144.

Bertuccelli, L., Choi, H., Cho, P., and How, J. (2009). Real-time multi-uav task assignment

in dynamic and uncertain environments.

Bettman, J. R., Johnson, E. J., and Payne, J. W. (1990). A componential analysis of cogni-

tive effort in choice. Organizational Behavior and Human Decision Processes, 45:111–

139. Negative utility of expending effort is combined with the expected utility of decision

accuracy to predict the DM method.

Brighton and Gigerenzer, G. (2012). Ecological rationality: Intelligence in the world,

chapter How Heuristics Handle Uncertainty, pages 3–30. Oxford University Press.

238
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