
A METHODOLOGY TO ACHIEVE MICROSCOPIC/MACROSCOPIC CONFIGURATION

TRADEOFFS IN COOPERATIVE MULTI-ROBOT SYSTEMS DESIGN

Volume I

A Thesis

Presented to

The Academic Faculty

By

Jean-Guillaume Durand

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

School of Aerospace Engineering

Georgia Institute of Technology

May 2017

Copyright © 2017 by Jean-Guillaume Durand

A METHODOLOGY TO ACHIEVE MICROSCOPIC/MACROSCOPIC CONFIGURATION

TRADEOFFS IN COOPERATIVE MULTI-ROBOT SYSTEMS DESIGN

Approved by:

Prof. Dimitri N. Mavris, Advisor

School of Aerospace Engineering

Georgia Institute of Technology

Prof. Daniel P. Schrage

School of Aerospace Engineering

Georgia Institute of Technology

Dr. Éric Feron

School of Aerospace Engineering

Georgia Institute of Technology

Dr. Jean-Marc Moschetta

Département Aérodynamique, Energétique et Propulsion

Institut Supérieur de l’Aéronautique et de l’Espace

Dr. K. Daniel Cooksey

School of Aerospace Engineering

Georgia Institute of Technology

Date Approved: February 9, 2017

Il n’y a qu’au pied du mur que tu vois si t’es aussi fort que tu crois.

Kery James

To my family

To Ludovic Brodut †

v

REMERCIEMENTS

À ce point tournant de mon éducation, il est de mon devoir de montrer ma gratitude

envers les acteurs ayant rendu possible l’obtention de ce diplôme. Tout d’abord, mon

maître de thèse Dr. Dimitri Mavris pour sa confiance dès mes premiers trimestres à Georgia

Tech et son soutien répété au cours de ces quatre dernières années. Son expérience

inégalable dans le milieu aéronautique est venue enrichir le présent travail de par ses

nombreuses remarques perspicaces. Je tiens également à remercier mes autres encadrants

de thèse pour avoir régulièrement revu mon travail et assuré sa qualité. Dr. Jean-Marc

Moschetta et Dr. Éric Feron qui ont suivi mon parcours depuis mes années à l’Institut

Supérieur de l’Aéronautique et de l’Espace (Supaero) et qui ont su apporter un point de

vue extérieur à l’ASDL (Aerospace Systems Design Laboratory) ainsi qu’une perspective

autre à la problématique principale de cette thèse. Dr. Schrage pour ses apports sur les

concepts d’optimisation et de conception. Dr. K. Daniel Cooksey pour son suivi au jour le

jour qui a permis de continuellement ajuster le cadre et les hypothèses de ce travail. Dr.

Kelly Griendling pour avoir aidé à l’édification des bases fondatrices du projet de

recherche.

Outre mes tuteurs de thèse, je tiens à remercier les quelques amis qui ont

accompagné mon parcours. En particulier, Emmanuelle Charlot, pour avoir été mon

soutien continu et mon réconfort dans les pénibles années précédant ma thèse. Telle une

promesse restée immuable face aux auspices changeants, Nivedita Ravi, sans qui la

présente thèse n’existerait pas, sans qui je ne me serais jamais embarqué dans l’aventure

du doctorat. Frédéric Burgaud, pour son implication méticuleuse et ses nombreux conseils

techniques lors des différentes étapes de cette thèse. Christopher Frank, pour ses

recommandations et pour avoir été un exemple de rigueur et d’organisation sur la

réalisation d’un doctorat. Houssam Assany, pour ces longues discussions tardives et

enrichissantes sur les aspects techniques ainsi que les répercussions d’une telle entreprise.

David Alléos, pour son soutien régulier au cours de ces quatre années loin de France.

J’adresse également un grand merci à mes amis et autres camarades qui ont de près ou de

loin, à un moment ou un autre, croisé mon chemin au cours de mes années à Georgia Tech.

Enfin, bien entendu et de manière plus générale, je remercie ma famille, proche et

éloignée, comme elle a su au fil des années me soutenir de manière inconditionnelle dans

ce projet académique tout comme dans les autres. Plus particulièrement mes parents,

Isabelle Julienne Durand et Jean-François Durand, comme ce que je suis devenu n’est que

le fruit et reflet de leur éducation. Ma sœur Mélodie et mon frère Lénaïc, pour m’avoir

donné l’inspiration et la force de donner l’exemple du mieux que je pouvais. Une famille

qui aura su faire de ses rêves une réalité, pour un enfant qui à l’époque dessinait des avions

sur feuilles de papier.

vi

ACKNOWLEDGMENTS

At this turning point of my education, it is my duty to express my gratitude to the

protagonists who made this degree possible. First of all, my main thesis advisor Dr. Dimitri

Mavris for his trust from my very first semesters at Georgia Tech and his repeated support

during these past four years. His unmatched experience in the aerospace field enriched the

present work with his many insightful remarks. I also really want to thank my other thesis

supervisors for regularly reviewing my work and certifying its quality. Dr. Jean-Marc

Moschetta and Dr. Éric Feron who have been following my journey since my years at the

Institut Supérieur de l’Aéronautique et de l’Espace (Supaero), and who were able to bring

an external point of view to the approach of the Aerospace Systems Design Laboratory

(ASDL) and share another perspective to the main problematic of this thesis. Dr. Schrage

for his contributions on optimization and design concepts. Dr. K. Daniel Cooksey for his

day-to-day follow-up which allowed a continuous adjustment of the scope and assumptions

of this work. Dr. Kelly Griendling for helping in establishing the groundwork of the thesis

proposal.

Besides my supervisors, I want to acknowledge the few friends who accompanied

my peregrination. In particular, Emmanuelle Charlot, for bringing continuous support and

comfort during the distressful years preceding the thesis. As a promise remained immune

to changing circumstances, Nivedita Ravi, without whom the present thesis would not be,

without whom I would not have embarked in the Ph.D. adventure. Frédéric Burgaud, for

his meticulous implication and his technical advice throughout the different stages of this

thesis. Christopher Frank, for his guidance and for being an example of rigor and

organization for the completion of a Ph.D. degree. Houssam Assany, for the late, long, and

enriching discussions about technical aspects and repercussions of such an undertaking.

David Alléos, for his regular support all through these four years away from France. I also

would like to say a big thank you to my friends and classmates who, in one way or another,

crossed my path during my years at Georgia Tech.

At last, naturally and in a more general way, I thank my family, immediate and

distant, as it supported me unconditionally over the years in this academic project as well

as in other endeavors. More importantly my parents Isabelle Julienne Durand et Jean-

François Durand, since what I have become is none other than the fruit and the reflection

of their education. My sister Mélodie and my brother Lénaïc, for giving me the strength

and inspiration to lead by example the best I could. A family which translated dreams into

reality for a kid who used to draw planes on pieces of paper.

vii

TABLE OF CONTENTS

REMERCIEMENTS .. v

ACKNOWLEDGMENTS ... vi

LIST OF TABLES ... xi

LIST OF FIGURES ... xiv

LIST OF EQUATIONS ... xxiii

LIST OF SYMBOLS AND ABBREVIATIONS .. xxvii

SUMMARY .. xxix

CHAPTER 1 Motivation .. 1

1.1 Brief overview of the research objective .. 2

1.2 The potential of unmanned systems .. 3

1.2.1 The advantages over human operators .. 4

1.2.2 A growing market ... 11

1.2.3 A fleet getting more diverse .. 19

1.2.4 The limitations .. 27

1.3 The growth of multi-robotics .. 37

1.3.1 A field inspired by nature ... 39

1.3.2 An increase in capability ... 48

1.3.3 Application to real-world problems .. 56

1.3.4 The limitations .. 58

1.4 Summary ... 64

1.4.1 Research objective .. 65

viii

1.4.2 Research challenges .. 68

CHAPTER 2 Problem definition ... 74

2.1 Introductory example .. 75

2.2 Bridging the gap from microscopic to macroscopic level 85

2.2.1 Swarm engineering: a lack of maturity ... 86

2.2.2 A diversity of design methods .. 102

2.3 Exploring a large design space ... 124

2.3.1 Generating alternatives in a multi-architecture multi-level design space ... 129

2.3.2 Optimizing in a multi-architecture multi-level design space 146

2.4 Summary ... 168

CHAPTER 3 Proposed approach .. 170

3.1 Establishment of performance metrics.. 171

3.1.1 Parallelism efficiency metrics ... 172

3.1.2 Introduction of marginal quantities ... 187

3.1.3 Benchmarking ... 195

3.2 Design space definition ... 200

3.2.1 The design variables ... 200

3.2.2 Alternatives generation ... 204

3.3 Alternatives evaluation ... 205

3.3.1 Microscopic level: the agents.. 207

3.3.2 Macroscopic level: the swarm .. 210

3.3.3 Agent-based simulation .. 213

3.3.4 Testbed mission .. 219

ix

3.4 Decision-making process .. 224

3.5 Verification and validation ... 225

3.6 Summary ... 226

CHAPTER 4 Linking microscopic and macroscopic levels 232

4.1 An improvement for the design of multi-robot systems 232

4.1.1 Global optimization algorithm .. 236

4.1.2 Sequential optimization algorithm .. 236

4.1.3 Verification and validation ... 240

4.1.4 Experimentation .. 240

4.1.5 Conclusions ... 257

4.2 Mesoscopic modeling ... 259

4.2.1 Canonical mission ... 260

4.2.2 Macroscopic model ... 265

4.2.3 Microscopic model.. 266

4.2.4 Mesoscopic model .. 274

4.2.5 Verification and validation ... 280

4.2.6 Characterization .. 281

CHAPTER 5 Multi-architecture multi-level design space exploration 291

5.1 Generation of alternatives: the tree of reduced morphological matrices 292

5.1.1 Step 1: morphological reduction ... 293

5.1.2 Step 2: morphological tree .. 298

5.1.3 Implementation ... 301

5.1.4 Verification and validation ... 323

x

5.1.5 Characterization .. 325

5.2 Design optimization: the bi-level genetic algorithm 345

5.2.1 Implementation ... 346

5.2.2 Verification and validation ... 364

5.2.3 Characterization .. 376

CHAPTER 6 Conclusion .. 394

6.1 Research summary .. 394

6.2 Closing the loop: MASDeM ... 399

6.3 Key contributions .. 403

6.4 Perspectives of future research ... 407

APPENDIX .. 410

REFERENCES .. 642

VITA... 666

xi

LIST OF TABLES

Table 1.1: Manned vs. unmanned mission cost comparisons [32] 11

Table 1.2: Swarm robotics taxonomy axes [101] ... 44

Table 2.1: Example 1 designs ... 83

Table 2.2: Example 2 designs ... 85

Table 2.3: Overview of multi-robot simulators .. 89

Table 2.4: Design methods review.. 118

Table 2.5: Analysis methods review ... 119

Table 2.6: UAV capabilities by category .. 131

Table 2.7: Review of alternatives generation methods ... 137

Table 2.8: Notional UAV morphological matrix .. 140

Table 2.9: Enhanced morphological matrix .. 140

Table 2.10: Review of multi-objective optimization techniques 156

Table 2.11: Comparison of MDO frameworks [149], [195], [199] 162

Table 3.1: Marginal quantities for the introductory example ... 191

Table 3.2: Marginal quantities over complete design space ... 193

Table 3.3: A disparity of metrics .. 196

Table 3.4: A set of unified metrics .. 199

Table 3.5: Notional morphological matrix at the macroscopic level 204

Table 3.6: Swarm control architectures .. 212

Table 3.7: Agent-based simulation platforms comparison ... 218

Table 4.1: Results of experiment 1.1 .. 243

xii

Table 4.2: Results of experiment 1.2 .. 245

Table 4.3: Results of experiment 1.3 .. 247

Table 4.4: Results of experiment 1.4 .. 249

Table 4.5: Results of experiment 1.6 .. 253

Table 5.1: One option chosen per feature ... 295

Table 5.2: Grouping of alternatives into architectures .. 298

Table 5.3: Example of empennage morphological matrix .. 307

Table 5.4: Fixed-wing architecture morphological interface .. 308

Table 5.5: Multirotor architecture morphological interface ... 309

Table 5.6: Macroscopic level morphological interface ... 310

Table 5.7: Morphological interface for the airship architecture 311

Table 5.8: Morphological interface for the ornithopter architecture [232], [233] 312

Table 5.9: Options compatibility indexing convention... 313

Table 5.10: Number of compatible alternatives .. 318

Table 5.11: Number of reduced alternatives ... 320

Table 5.12: Average number of function calls for the test functions 327

Table 5.13: Outer loop test function values .. 366

Table 5.14: Improved convergence with elitism... 382

Table 5.15: Main effect of elitism rate .. 384

Table 5.16: Optimizer characterization for stall-based convergence 392

Table 5.17: Optimizer characterization for precision-based convergence 393

Table 6.1: Summary of research questions and hypotheses ... 395

xiii

Table A-1: KKT analysis for inner loop constraints ... 426

Table A-2: KKT analysis for outer loop constraints ... 430

Table A-3: Optimum of the Michalewicz test function .. 436

xiv

LIST OF FIGURES

Figure 1.1: Unmanned aerial vehicles used in military operations [1] 3

Figure 1.2: Cost of main DoD programs [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18,

19, 20, 21] ... 6

Figure 1.3: Example of aerial imagery solutions .. 7

Figure 1.4: USAF aircraft cost per flight hour [27] .. 9

Figure 1.5: Imaging cost per platform [31] ... 10

Figure 1.6: UAV global market forecast [33, 34, 35, 36] ... 12

Figure 1.7: An example of drone airspace integration [38] .. 13

Figure 1.8: Total U.S. UAS Systems in the National Airspace System [33, 39] 14

Figure 1.9: Expected military UAV revenues (Europe) [40] .. 15

Figure 1.10: Drone programs from the giant tech companies .. 16

Figure 1.11: Parrot A.R. Drone 2.0 price evolution [47, 48] .. 17

Figure 1.12: Price reduction for Phantom 2 variants [49, 50] .. 18

Figure 1.13: Civil micro quadcopter UAV market [53] ... 20

Figure 1.14: Examples of classical and unconventional designs 22

Figure 1.15: Interface of ArduPilot [65, 66] ... 23

Figure 1.16: Notional family of reconfigurable aircraft [67] .. 25

Figure 1.17: Use of 3D printing on a quadcopter design [69] .. 26

Figure 1.18: Use of 3D printing on a fixed-wing design [70] .. 26

Figure 1.19: Equivalent DJI Phantom battery life over time [72, 73, 74] 28

Figure 1.20: Network settings of the Parrot Bebop drone [78] ... 31

xv

Figure 1.21: Taking advantage of fleet diversity [83, 84] .. 34

Figure 1.22: Total personnel for drone combat air patrols [86, 87, 88, 89, 90] 35

Figure 1.23: Approval of drone use to kill high-level terrorism suspects overseas [91] .. 36

Figure 1.24: Example of robotic swarm [94] .. 38

Figure 1.25: Swarm behaviors in nature ... 40

Figure 1.26: Swarm behavior rules in Particle Swarm Optimization [106] 45

Figure 1.27: Holes avoidance through group reconfiguration [112] 49

Figure 1.28: Chain formation for a narrow passage [112] .. 50

Figure 1.29: Five robots collectively tackle a 14cm step [112] .. 50

Figure 1.30: Cooperative transport using quadrotors ... 51

Figure 1.31: Area surveillance by UAVs [115] .. 52

Figure 1.32: Multiple observations of a map landmark .. 53

Figure 1.33: Bridge construction using distributed action [116] 54

Figure 1.34: Representation of a UAV-based search and rescue operation [119] 57

Figure 1.35: Representation of a multi-UAS military system [117] 58

Figure 1.36: Establishment of the research objective ... 67

Figure 1.37: An extremely large design space .. 70

Figure 1.38: Prevalence of cost considerations in early design phases 72

Figure 2.1: Decomposition of the research objective ... 74

Figure 2.2: Example of mapping configuration for 3 agents .. 76

Figure 2.3: Distance back to initial mapping point ... 78

Figure 2.4: Evolution of mapping time with the design variables (example 1) 81

Figure 2.5: Contours for mapping rate and system cost (example 1) 82

xvi

Figure 2.6: Evolution of mapping time with the design variables (example 2) 84

Figure 2.7: Missing link between macroscopic and microscopic level 90

Figure 2.8: Example of sequential swarm design optimization .. 94

Figure 2.9: Example of global swarm design optimization .. 94

Figure 2.10: Wing design by sequential disciplinary optimization 96

Figure 2.11: Optimization in supply chain management .. 98

Figure 2.12: Swarm engineering methods taxonomy [95] .. 102

Figure 2.13: Architecture-based SoS engineering process ... 106

Figure 2.14: Probabilistic finite state machine design .. 108

Figure 2.15: Virtual physics-based design .. 109

Figure 2.16: Capabilities of current design space exploration techniques...................... 126

Figure 2.17: [173] proposed approach .. 127

Figure 2.18: Proposed approach ... 129

Figure 2.19: A capability-based taxonomy of UAVs [178] .. 130

Figure 2.20: Force-field analysis .. 133

Figure 2.21: Morphological matrix reduction ... 142

Figure 2.22: Example of morphological matrix tree ... 143

Figure 2.23: Proposed alternatives generation method ... 144

Figure 2.24: Partial ordering and Pareto frontier sampling .. 153

Figure 2.25: Proposed optimization scheme ... 166

Figure 2.26: Summary of the problem definition process .. 169

Figure 3.1: Generic top-down design decision support process 170

Figure 3.2: Amdahl’s law ... 175

xvii

Figure 3.3: Gustafson’s law compared to Amdahl’s law .. 177

Figure 3.4: Heterogeneous parallelization .. 179

Figure 3.5: Limits of parallelization for the introductory example 181

Figure 3.6: Controlled systems characteristic times ... 183

Figure 3.7: Visualization of LOPE for the introductory example 185

Figure 3.8: Detail of LOPE at 5% for the introductory example 185

Figure 3.9: All LOPE quantities for the introductory example 186

Figure 3.10: Sensitivity analysis around optimum design .. 187

Figure 3.11: A taxonomy of existing UAVs ... 202

Figure 3.12: Review of hypothesis 3.1 ... 205

Figure 3.13: Agent modeling breakdown ... 207

Figure 3.14: Proposed agent-based model architecture .. 214

Figure 3.15: Representation of the testbed mission .. 219

Figure 3.16: Aerial imagery [218] .. 221

Figure 3.17: Orthomosaics [218] .. 221

Figure 3.18: Common geometric transformations .. 222

Figure 3.19: Ortho-rectification process ... 222

Figure 3.20: Mosaicking [222] ... 223

Figure 3.21: Surface models [218].. 223

Figure 3.22: Summary of the research process ... 227

Figure 3.23: Proposed design space exploration technique summary 228

Figure 4.1: Sequential optimization without correlation .. 234

Figure 4.2: Sequential optimization with correlation ... 235

xviii

Figure 4.3: Micro-macro optimizer ... 237

Figure 4.4: Macro-micro optimizer ... 238

Figure 4.5: Plot of experiment 1.1 .. 242

Figure 4.6: Plot of experiment 1.2 .. 245

Figure 4.7: Plot of experiment 1.3 .. 247

Figure 4.8: Plot of experiment 1.4 .. 249

Figure 4.9: Plot of experiment 1.5 .. 252

Figure 4.10: Plot of experiment 1.6 .. 253

Figure 4.11: 3D visualization of principal component analysis 254

Figure 4.12: 2D representation of principal component analysis 255

Figure 4.13: Heterogeneous canonical example ... 256

Figure 4.14: Robotarium project logo ... 260

Figure 4.15: Robotarium testbed... 261

Figure 4.16: GRITBots robot platform ... 262

Figure 4.17: Rendezvous trajectories on Robotarium implementation [226] 264

Figure 4.18: PR2 robot model ... 267

Figure 4.19: CAD model of the GRITBots ... 268

Figure 4.20: Simulated GRITBots model ... 269

Figure 4.21: Microscopic model architecture ... 271

Figure 4.22: Pose tracking system simulation .. 271

Figure 4.23: Robotarium arena and GRITBots in the Gazebo simulator 273

Figure 4.24: Different levels of detail for aircraft models .. 274

Figure 4.25: Unicycle model representation ... 276

xix

Figure 4.26: Graphic interface of the mesoscopic model ... 280

Figure 4.27: The increasing level of detail of the implemented GRITBot models 281

Figure 4.28: Consensus time metric.. 282

Figure 4.29: Section view of consensus time response for v = 1cm/s 283

Figure 4.30: Robot trajectories for N=3 and v=8 cm/s ... 284

Figure 4.31: Precision of the models on the consensus position metric 285

Figure 4.32: Precision of the models for the consensus time metric 286

Figure 4.33: Average runtime of the different models ... 288

Figure 4.34: Notional representation of the precision of mesoscopic modeling 290

Figure 5.1: Example of compatibility matrix .. 294

Figure 5.2: Number of filled elements in compatibility matrix 296

Figure 5.3: Regrouping of options .. 297

Figure 5.4: Example of morphological tree .. 300

Figure 5.5: Multi-level morphological tree ... 301

Figure 5.6: Proposed UML class diagram for the morphological tree 303

Figure 5.7: Compatibility matrices ... 314

Figure 5.8: Compatibility matrices pattern ... 315

Figure 5.9: Recursive count of compatible alternatives .. 317

Figure 5.10: Problem conditioning ... 319

Figure 5.11: Effect of options removal on overall reduction .. 321

Figure 5.12: Initial morphological tree before reduction .. 322

Figure 5.13: Number of function calls versus number of design variables 326

Figure 5.14: General effect of morphological reduction .. 328

xx

Figure 5.15: Limits of morphological reduction ... 330

Figure 5.16: Influence of factor k on morphological reduction 331

Figure 5.17: Contours of morphological reduction profitability 332

Figure 5.18: Influence of the number of rows on morphological reduction 333

Figure 5.19: Influence of the number of options per row on morphological reduction .. 334

Figure 5.20: Strategies of options removal ... 335

Figure 5.21: Influence of options removal strategy on morphological reduction........... 336

Figure 5.22: Notional morphological reduction on a bi-level problem 338

Figure 5.23: Relative morphological reduction .. 339

Figure 5.24: Influence of problem size on bi-level morphological reduction 340

Figure 5.25: Complete morphological reduction on bi-level problem 341

Figure 5.26: Influence of both levels on morphological reduction 342

Figure 5.27: Variables profiler for morphological reduction .. 343

Figure 5.28: High-level architecture of the proposed bi-level optimizer 346

Figure 5.29: Dynamic size allocation for inner loop chromosomes 347

Figure 5.30: Dynamic size allocation formulae .. 348

Figure 5.31: Population initialization at every instantiation ... 350

Figure 5.32: Population initialization at every generation .. 351

Figure 5.33: Elite retention with elite memory ... 353

Figure 5.34: Elite retention with buffer only .. 354

Figure 5.35: Full vs. partial heterogeneity .. 356

Figure 5.36: Genetic algorithm vs. full factorial... 359

Figure 5.37: Simplified expression for full factorial approach 361

xxi

Figure 5.38: Choosing between full factorial or genetic algorithm 362

Figure 5.39: Outer loop test function offsets .. 366

Figure 5.40: Design variables nomenclature .. 368

Figure 5.41: Variables ordering in the inner loop design vectors 369

Figure 5.42: Inner loop test function visualization ... 370

Figure 5.43: Inner loop test function sectional cut ... 371

Figure 5.44: Effect of elitism .. 377

Figure 5.45: Effect of elitism rate ... 380

Figure 5.46: Effects of elitism on the outer loop .. 382

Figure 5.47: Detail on effect of elitism ... 383

Figure 5.48: Initial effects of elitism ... 384

Figure 5.49: Effect of partial heterogeneity and elitism ... 386

Figure 5.50: Effect of heterogeneity type on stall-based outer loop convergence 387

Figure 5.51: Effect of heterogeneity type on stall-based inner loop convergence 388

Figure 5.52: Effect of heterogeneity type on precision-based outer loop convergence .. 390

Figure 5.53: Increased convergence instability with partial heterogeneity 391

Figure 6.1: Summary of the research process ... 398

Figure 6.2: Steps of MASDeM ... 400

Figure A-1: Constraints on the first design variable ... 427

Figure A-2: Constraints on the second design variable .. 428

Figure A-3: Constraints on two design variables .. 428

Figure A-4: Ackley function representation ... 432

xxii

Figure A-5: Dixon-Price function representation ... 433

Figure A-6: Griewank function representation over a varied range 434

Figure A-7: Levy function representation ... 435

Figure A-8: Michalewicz function representation .. 437

Figure A-9: Local representation of the Michalewicz function 437

Figure A-10: Rastrigin function representation .. 438

Figure A-11: Rosenbrock function representation .. 439

Figure A-12: Rotated Hyper-Ellipsoid function representation...................................... 440

Figure A-13: Schwefel function representation .. 441

Figure A-14: Sphere function representation .. 442

Figure A-15: Styblinski-Tang function representation ... 443

Figure A-16: Sum of squares function representation .. 444

xxiii

LIST OF EQUATIONS

Equation 1.1: n multi-choose k ... 69

Equation 1.2: Non-linearity of the design space ... 71

Equation 2.1: Total mission time .. 77

Equation 2.2: Mapping time for each agent .. 77

Equation 2.3: Distance from base to mapping area .. 77

Equation 2.4: Distance traveled during mapping phase.. 78

Equation 2.5: Distance to return to the base ... 79

Equation 2.6: Total distance ... 79

Equation 2.7: Final expression for total mapping time ... 80

Equation 2.8: Cost structure .. 80

Equation 2.9: Optimization problem formulation ... 148

Equation 2.10: Linear aggregate function ... 149

Equation 2.11: Nonlinear aggregate function ... 150

Equation 2.12 .. 151

Equation 2.13: Overall evaluation criterion .. 152

Equation 2.14: Weighted p-norm of the objectives .. 154

Equation 3.1: Speedup formula... 173

Equation 3.2: Parallelism efficiency ... 173

Equation 3.3: Parallelized execution time .. 173

Equation 3.4: Amdahl's law derivation ... 174

Equation 3.5: Parallel efficiency with Amdahl’s law ... 174

xxiv

Equation 3.6: Workload-based speedup formula .. 175

Equation 3.7: Parallelized workload ... 176

Equation 3.8: Gustafson’s law derivation ... 176

Equation 3.9: Heterogeneous Amdahl’s law speedup .. 178

Equation 3.10: Heterogeneous Gustafson’s law speedup ... 178

Equation 3.11: Solution of the parallelization toy example .. 179

Equation 3.12: First order system equation .. 183

Equation 3.13: Marginal Group Performance ... 189

Equation 3.14: Numerality Marginal Group Performance ... 189

Equation 3.15: Marginal Group Cost .. 190

Equation 3.16: Marginal Group Efficiency .. 190

Equation 3.17: Execution index .. 197

Equation 3.18: Completion index ... 198

Equation 3.19: Cost index ... 198

Equation 4.1: Uncorrelated example function .. 234

Equation 4.2: Correlated example function .. 235

Equation 4.3: Mathematical formulation of the rendezvous problem 263

Equation 4.4: First metric formula for the macroscopic model 265

Equation 4.5: Second metric formula for the macroscopic model 266

Equation 4.6: Laplacian matrix for N=5 agents .. 272

Equation 4.7: Kinematic model of a unicycle robot ... 276

Equation 4.8: Dynamics of the Gritbots controller ... 277

Equation 4.9: Inverse control commands for the Gritbots .. 278

xxv

Equation 4.10: System identification model ... 278

Equation 4.11: Final values for system identification .. 279

Equation 5.1: Number of alternatives from morphological analysis 294

Equation 5.2: Number of filled elements in compatibility matrix 296

Equation 5.3: Total number of alternatives for a combinatorial row 305

Equation 5.4: Surrogate model for the number of function calls 327

Equation 5.5: General equation for bi-level morphological reduction 342

Equation 5.6: Overall numerality constraints ... 354

Equation 5.7: Individual numerality constraints ... 355

Equation 5.8: Outer loop optimization problem ... 355

Equation 5.9: Inner loop optimization problem .. 355

Equation 5.10: Outer loop test function .. 365

Equation 5.11: Inner loop test function... 367

Equation 5.12: Optimal value for design variable i .. 368

Equation 5.13: Optimal value for the test function variables ... 369

Equation 5.14: Test function for the complete algorithm ... 372

Equation 5.15: Constrained outer loop optimization problem .. 375

Equation 5.16: Constrained inner loop optimization problem .. 375

Equation A-1: Unconstrained verification function for the optimizer 416

Equation A-2: Gradient of the verification function ... 418

Equation A-3: Hessian definition.. 419

Equation A-4: Hessian matrix for the verification function ... 420

xxvi

Equation A-5: Hessian matrix evaluated at the stationary point..................................... 420

Equation A-6: Unconstrained global optimum ... 421

Equation A-7: Minimum value of the test function at the unconstrained optimum 421

Equation A-8: Constrained outer loop optimization problem ... 422

Equation A-9: Constrained inner loop optimization problem ... 422

Equation A-10: Constrained optimization problem .. 423

Equation A-11: Standard form for the constrained optimization problem 423

Equation A-12: Lagrangian of the verification optimization problem 424

Equation A-13: Lagrangian derivative with respect to the inner loop design vector 424

Equation A-14: Lagrangian derivative with respect to the inner loop design vector 425

Equation A-15: KKT conditions for inner loop constraints.. 425

Equation A-16: Derivation of the inner loop constrained optimum 427

Equation A-17: KKT conditions for the outer loop .. 429

Equation A-18: Matricial form of inter-robot collision constraints 446

Equation A-19: World boundaries constraints .. 447

Equation A-20: Matricial form of world boundaries constraints 447

Equation A-21: Quadratic program based controller .. 448

xxvii

LIST OF SYMBOLS AND ABBREVIATIONS

AADL Architecture Analysis and Design Language (AADL)

AI Artificial Intelligence

AMM Augmented Morphological Matrix

ASDL Aerospace Systems Design Laboratory

BLISS Bi-Level Integrated System Synthesis

CFD Computational Flow Dynamics

DAI Distributed Artificial Intelligence

DoD Department of Defense

DoE Design of Experiments

DOF Degrees of Freedom

FAA Federal Aviation Administration

GSD Ground Sampling Distance

GUST Georgia Tech UAV Simulation Tool

HALE High Altitude Long Endurance

HTA Heavier Than Air

IOS Individual, Organizational, and Societal

IRMA Interactive Reconfigurable Matrix of Alternatives

JTRS Joint Tactical Radio System

LiPo Lithium Polymer

LOCUST Low-Cost UAV Swarming Technology

LOPE Limit Of Parallel Effectiveness

LTA Lighter Than Air

LTE Long-Term Evolution

NASA National Aeronautics and Space Administration

NBI Normal Boundary Intersection

NED North-East-Down (frame)

NNC Normalized Normal Constraint

xxviii

MALE Medium Altitude Long Endurance

MASDeM Multi-Agent Systems Design Methodology

MAV Micro Air Vehicle

MDO Multidisciplinary Design Optimization

MGC Marginal Group Cost

MGE Marginal Group Efficiency

MGP Marginal Group Performance

MUAV Micro Unmanned Aerial Vehicle

OEC Overall Evaluation Criterion

ONR Office of Naval Research

PFSM Probabilistic Finite State Machine

PID Proportional–Integral–Derivative

PSO Particle Swarm Optimization

R&D Research and Development

RC Radio-Controlled

SoS System of Systems

SysML Systems Modeling Language

TIES Technology Identification Evaluation Selection

TIF Technology Impact Forecasting

TOPSIS Technique for Order Preference by Similarity to Ideal Solution

TRIZ Theory of Inventive Problem Solving

TUAV Tactical Unmanned Aerial Vehicle

UAS Unmanned Aircraft System

UAV Unmanned Aerial Vehicle

URDF Unified Robot Description Format

US United States (of America)

VEGA Vector Evaluated Genetic Algorithm

xxix

SUMMARY

The exponential growth experienced by the robotics sector over the past decade has

fostered the proliferation of new architectures. Optimized for specific missions, these

platforms are in most cases limited by their embarked computational power and a lack of

full situational awareness. More robust, flexible, scalable, and inspired by nature, group

robotics represent an interesting approach to overcome some limitations of these single

agents and take advantage of the heterogeneity of the current robotics fleet. Their essence

lies in accomplishing more complex synergistic behaviors through diversity, simple rules,

and local interactions. However, the design of robotic groups is complex as decision-

makers have to optimize the group operation as well as the performance of each individual

unit, for the group performance. In particular, key questions arise to know whether

resources should be allocated to the characteristics of the group, or to the individual

capabilities of its agents in order to meet the established requirements.

Current methods of swarm engineering tend to perform sequential optimization of

the microscopic level (the agents) and then the macroscopic level (the group), which results

in suboptimal architectures. In this context, efficiently comparing two different groups or

quantifying the superiority of a group versus a single-robot design may prove impossible.

Same goes of the determination of an optimal architecture for a given mission. With a

special emphasis on aerial vehicles, the present research proposes to establish a

methodology to achieve microscopic/macroscopic configuration tradeoffs in the design of

cooperative multi-robot systems.

xxx

The resulting product is the MASDeM: Multi-Agent Systems Design Methodology.

A novel multi-level multi-architecture morphological approach is first introduced to

facilitate design space exploration, and a mesoscopic level simulation-based design method

is used to bridge the gap between microscopic and macroscopic levels. Using these first

blocks, an innovative optimization technique is suggested based on two interconnected

loops which differs from the classical sequential approach presently used by the research

community.

Results of this research show that simultaneous optimization can have clear benefits

if applied to the design of multi-robot systems and on particular cases, average

improvements of 16 percent were observed on the main performance metric. The proposed

optimizer proves to be a key enabler for fully heterogeneous swarms, a capability which is

not possible in the current paradigm. Moreover, the optimization algorithm was efficiently

designed and exhibits a speedup of at least 50 percent when compared to current

techniques. Finally, the exploration of the design space is effectively carried out with a

combination of morphological reduction, morphological tree representation, and

mesoscopic modeling. Indeed, applied to multi-robot systems, such models prove being

several times faster than usual simulation approaches while remaining in the same range

of accuracy.

This work is divided into two volumes with the appendix detailed in the second volume.

Keywords: Conceptual design, Multi-robotics, Swarm engineering, Mesoscopic, Design

Optimization

1

CHAPTER 1

MOTIVATION

Automation is part of the quest for comfort of human beings and enables to

autonomously carry out processes with minimal human intervention. It has been

experiencing a relentless growth from even before the invention of the printing press by

Gutenberg, the Jacquard loom or the centrifugal governor of Watt, to modern autonomous

robots. The development of the robotics field unleashes a new potential for the automation

of jobs that were only accomplished by humans so far. In particular, mobile unmanned

systems provide advantages over human operators in many tasks including transportation

of goods and people, delivery, or surveillance missions. This spectrum of robot operations

is getting wider and wider as the current fleet is getting more diverse in terms of

architectures and capabilities. Nonetheless, individual robots experience several

limitations, some of which can be addressed through swarming. Directly inspired by nature,

multi-robotics solutions such as robotic swarms propose increased capabilities over

individual agents and enable to capitalize on the heterogeneity of the current fleet of robots.

However, designing such systems of systems is a challenging task and the advantages of

multi-robot systems over single-robot solutions need further examination. Their

democratization remains impeded by the lack of a standard design process, delaying the

use of multi-robot systems in industrial applications. This first section studies in greater

detail these elements, drawing attention to certain needs leading to the research objective

of this work.

2

1.1 Brief overview of the research objective

In order to ease the reader into understanding this research, the first chapter builds

up on a series of observations in the field of multi-robot systems design:

 A growing diversity of drone types is now available and multi-robot collaboration

may overcome the limitations of single robot platforms.

 Designing a multi-robot system requires much more commitment than for a single

agent, such systems also tend to be confined to experimental applications.

 Multi-agent systems do not always perform “better” than single agents, most of the

community focuses on homogeneous and sub-optimal group configurations.

A set of corresponding complementary assertions is then deducted from these observations:

 There is a potential to take advantage of the diversity of the existing drone fleet.

 A standard physical design methodology is required for multi-robot systems.

 There is a need to compare the performance of optimized multi-robot systems

versus optimized single-robot platforms for a given mission.

Finally, these averments prompt the formulation of a unified research objective: the

fundamental problematic engendering this research. Hence, the goal will be to establish a

design methodology that enables the optimal design of multi-robot systems. In particular,

key trade-offs will be examined such as the compromise between the number of agents in

a group, and the individual capabilities of each agent of this group. The rest of this chapter

goes on to detail, assemble, and give ground to the motivation of this work on the

MASDeM: the Multi-Agent Systems Design Methodology.

3

1.2 The potential of unmanned systems

Thanks to dramatic improvements in computational power, battery life,

miniaturization, and complexity of sensors, unmanned systems are now an essential

constituent of military instrumentation and are finding their way into commercial and civil

applications. What were once considered as cumbersome vehicles are nowadays proving

as necessary assets for applications that were unforeseen a few years ago. Unmanned

systems have now become an integral part of military operations as the recent airstrikes

campaign in Syria and Afghanistan demonstrates [1].

Figure 1.1: Unmanned aerial vehicles used in military operations [1]

They are also being used more and more in commercial applications for mine

mapping, building inspection, crops monitoring, etc. This section examines what the

advantages proposed by unmanned systems are, as well as what their limitations consist in,

despite a growing heterogeneous market.

4

1.2.1 The advantages over human operators

The use of unmanned systems is justified as they provide advantages over human

operators and many of these benefits stem from the origins of automation. Indeed, the first

advantages of unmanned systems are to be able to carry out tasks that would be too

dangerous, complex, repetitive, or strenuous for human beings [2]:

 Dangerous operations include exploration of damaged buildings, mine clearance,

missions in hostile sea storms, or miscellaneous jobs in radioactive environments.

The hardware used in robots is more robust and resistant to environmental

conditions that could be threatening for human life. In particular, they are able to

withstand greater wear, shocks, and more extremes temperatures. For instance, the

design of an Unmanned Air Vehicle (UAV) does not account for the accelerations

and maneuverability constraints imposed by the human pilot on other manned

vehicles. Sometimes, the danger lies only in reaching a remote area such as a

collapsed building where small and aerial vehicles alone, more mobile than human

workers, can penetrate. The fact that robots are an expendable asset also enables to

send them on hazardous missions instead of humans [3].

 Complex tasks can consist of dense and accurate 3D mapping of a building or

precise parts assembly. Owing to their elaborate sensors such as cameras, laser

range finders, or else sonars, unmanned systems possess a much greater precision

in sensual perception than humans. This enhanced perception is critical for tasks

requiring accuracy.

 A typical repetitive process often carried out by unmanned systems nowadays is

surveillance of buildings or borders. Automation enables to encode the repetitive

5

sequences in the logic of the robot only once. To take care of other strenuous tasks,

powerful actuators make robots stronger than their human designers, and unmanned

systems are capable of carrying out demanding operations such as lifting heavy

payloads.

Thanks to the enhanced precision in terms of both perception and actuation,

efficient control schemes can be implemented on the platforms, enabling a greater

sensitivity in the required operations than with human operatives. This results in an

unerring robustness in tasks completion or in achieving quality standards. Consequently,

this consistency enables savings in wasted energy and materials, and the tasks are

accomplished with improvements in quality and precision when compared with human

workers. Additional savings in energy can be achieved by optimizing the behavior of the

robots. For instance, a current motivation mentioned by [4] and [5] is to design movement

patterns necessitating less acceleration energy. The controls are developed to calculate the

best trajectories for the robots from the standpoint of energy efficiency. For mobile robots,

this translates into an increase in operational range and endurance.

Additional advantages of unmanned systems over humans are cost related. In terms

of mobile robotics, they generally present a cheaper acquisition cost than their manned

counterparts despite the cost of automation and communication. The example of the

military can first be considered as it is the breeding ground for the democratization of

unmanned systems. Figure 1.2 presents the flyaway cost for the major defense acquisition

programs defined by the Department of Defense (DoD) of the United States of America.

6

Figure 1.2: Cost of main DoD programs [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21]

0.30

0.76

0.76

0.95

1.60

4.03

4.10

4.58

4.98

6.90

8.56

13.00

13.77

15.50

16.96

17.00

17.20

18.80

18.80

20.67

22.20

23.53

23.70

25.42

29.81

29.89

29.93

30.77

31.10

33.16

33.16

35.00

35.50

36.00

38.96

39.60

52.00

53.30

53.40

53.40

65.30

66.20

69.22

72.27

73.00

75.00

88.40

122.99

141.70

146.11

148.70

165.90

171.57

173.60

178.00

188.50

223.20

225.00

244.40

270.00

283.10

813.00

1,160.00

0.1 1 10 100 1000

RQ-11 Raven
T-38 Talon

Adv. Trainer Replacement T-X
TH-57 Sea Ranger (Bell 206)

C-21 (Learjet 35/36)
T-44 Pegasus
T-1 Jayhawk

U-28 (Pilatus PC-12)
MQ-1 Predator

T-6 Texan II (JPATS)
UH-72 Lakota LUH

OH-58 Kiowa Warrior
MQ-9 Reaper
RQ-7 Shadow

UH-60 Black Hawk
C-12 / MC-12W

T-45 Goshawk
F-16 Fighting Falcon
A-10 Thunderbolt II

MH-60S Seahawk
C-20 (Gulfstream III/IV)

RQ-21 Blackjack UAS
AV-8B Harrier II

UH-1Y Venom
CH-47 Chinook

AH-1Z Viper
MQ-8 Fire Scout

MH-60R Seahawk
F-15 Eagle/F-15E Strike Eagle

CSAR HH-60 RECAP
HH-60 Pave Hawk

C-9C Skytrain II
AH-64 Apache

P-3C Orion & EP-3E ARIES II
C-2A Greyhound
KC-135 / RC-135

EA-6B Prowler
C-27J Spartan JCA

Long Range Strike Bomber
B-52 Stratofortress

F/A-18E/F Super Hornet
C-37

V-22 Osprey
EA-18G Growler

C-40 Clipper
CH-53/MH-53

KC-10 Extender
RQ-4 / MQ-4C

E-6B Mercury/TACAMO
C-130 Hercules (all variants)

F-22 Raptor
C-5 Galaxy / C-5M Super Galaxy

P-8A Poseidon
E-2 (Advanced) Hawkeye

F-35 Lightning II (JSF)
KC-46A New Tanker

E-4B Adv. Airborne Com. Post
C-17 Globemaster III

E-8C Joint STARS
E-3 Sentry AWACS

B-1B Lancer
X-47B UCAS-D

B-2A Spirit

Unit flyaway cost (M$)

7

While UAS costs span the same spectrum as their manned counterparts, it should

be noted that the X-47 is a demonstrator only and that most unmanned systems tend to be

in the lower part of the graph. Also, considering the versatile missions of the diverse aircraft

presented on Figure 1.2, unmanned systems represent a less expensive option for fixed and

pre-established requirements. This is especially true for surveillance and reconnaissance

missions. These previous remarks highlight that unmanned systems are generally cheaper

alternatives than manned systems in terms of acquisition costs.

Focusing now on civilian applications and the example of aerial imagery, the

acquisition cost of the Landsat 8 imaging satellite is estimated at around $855 million

(including launch and operation) [22]. A Cessna 172 used for the same purpose would cost

around $300,000 while an automated mapping drone such as the senseFly’s eBee RTK

costs about $25,000 and a simple imaging drone like the popular DJI’s Phantom 3 is listed

at $1,000 (see Figure 1.3). As in the military, and although the satellite remains an

unmanned system, the difference is clear in terms of acquisition cost for small unmanned

air vehicles.

(a) DJI Phantom 3 [23]
(b) senseFly eBee RTK

mapping drone [24]
(c) Cessna 172 [25] (d) Landsat 8 [26]

Figure 1.3: Example of aerial imagery solutions

8

While this latter is reduced by preferring an unmanned system option to a human-

based one, cost savings are also encountered in utilization. Indeed, the savings in energy

and materials mentioned hereinabove can lower the utilization cost for a given task or

mission. Estimating the operational cost on an hourly basis is a difficult task when it comes

to comparing unmanned and manned operations. Their mission profiles can be quite

different as they generally do not fly at the same altitudes due to regulations or safety

factors. The capabilities of one or the other also affect the type of weather and time

conditions they can operate in. Moreover, the logistics involved in the transportation of the

systems are different since one can be easily driven to a location while manned systems

most likely have to be flown to the region of the mission. Unmanned systems tend to

require less maintenance since their equipment is commercial-off-the-shelf and is subject

to less safety requirements. However, the data gathered by UAS requires post-processing

steps while a pilot can visually process information during the flight: such phases incur

additional costs.

Emphasizing on the military applications first, many examples of cost per flight

hour are presented in Figure 1.4.

9

Figure 1.4: USAF aircraft cost per flight hour [27]

While the cost of the unmanned systems varies greatly from $3,679 to $49,089 per

flight hour, they are the cheapest solution for a given mission. Indeed, the Global Hawk

remains one of the most inexpensive solution in terms of very high altitude and long

endurance intelligence gathering whereas the same observation can be drawn for the

Predator and the Reaper drones in the domain of Medium Altitude Long Endurance

(MALE) missions.

This trend is also observed in commercial applications, for instance in aerial

photography and videography. Renting a fixed-wing aircraft or a helicopter typically

2,235

3,679

4,762

9,355

13,634

14,014

17,716

21,170

22,514

23,811

24,475

30,813

32,212

32,752

39,587

41,921

42,936

45,986

49,089

57,807

68,362

69,708

78,817

83,256

161,591

163,485

169,313

0 40,000 80,000 120,000 160,000 200,000

T-6A Texan II Turboprop Trainer

MQ-1B Predator Drone

MQ-9A Reaper Drone

T-38C Talon Jet Trainer

UH-1N Huey Helicopter

C-130J Hercules Cargo Plane

A-10C Warthog Attack Plane

KC-10A Extender Tanker

F-16C Viper Fighter

C-17 Globemaster Cargo Plane

HH-60G Pave Hawk Helicopter

U-2 Dragon Lady Spy Plane

C-20B VIP Plane (Senior Pentagon Officials)

MC-130H Combat Talon II Special Operations Plane

E-3B Sentry AWACS Radar Plane

F-15C Eagle Fighter

C-32A VIP Plane (Vice President, Cabinet Officers)

AC-130U Spooky Gunship

RQ-4B Global Hawk Drone

B-1B Lancer Bomber

F-22A Raptor Fighter

B-52H Stratofortress Bomber

C-5B Galaxy Cargo Plane

CV-22B Osprey Tilt-Rotor

VC-25A Air Force One

E-4B Flying Headquarters

B-2A Spirit Stealth Bomber

10

ranges from $300 to $1000 per hour [28], [29] with an additional fixed cost ranging from

$5,000 for simple shoots to $20,000 for a mounted gimbal solution [30]. Taking again

aerial imagery as an illustration, the operating cost is evaluated in terms of covered area.

While imaging cost quickly soars for UAVs as the area to be covered increases, this latter

solution still proves the cheapest and most precise for areas under 11 ha as shown on Figure

1.5.

Figure 1.5: Imaging cost per platform [31]

This point can be further supported by looking at the difference of cost for given

civilian applications as presented in Table 1.1.

11

Table 1.1: Manned vs. unmanned mission cost comparisons [32]

Mission Manned System Unmanned System

Sandhill Crane

Population Survey
$4,300 (government)

$35,000 (contractor)
 $2,600

Mesa County Landfill

Inspection
 $10,000 $300

Mesa County Gravel Pit

Inspection
 $10,000 $120

It can be noted that in the three missions examined, choosing unmanned systems

results in reductions in the total cost from one to two orders of magnitude.

Finally, the advantages of robots over a human workforce mentioned in this section

often give rise to manual labor replacement, incurring in turn additional cost savings.

Indeed, human workforce can be replaced for any of the pre-stated benefits: the assigned

task is too dangerous, strenuous, complex for a human being, or the exploitation cost of the

robot is simply cheaper than the one of the human operator.

Summary: This section showed that robots generally offer many advantages over humans:

they propose enhancements in rapidity, precision, and stability. This includes missions

unsuited for human operators and they are also cheaper most of the time. These incentives

partly explain the growth of the market of unmanned systems, studied in the next section.

1.2.2 A growing market

While the premises of Unmanned Aerial Vehicles (UAVs) were set at the beginning

of the century, the market analysis proposed here concentrates on what are considered as

12

modern UAVs thanks to developments in robotics over the last twenty years. In the past

decade, the unmanned vehicles market has experienced a tremendous growth in the military

as well as in civilian applications (Figure 1.6). Their use has been constantly increasing in

military operations since the terror attacks of September 11, 2001. They have now become

an integral part of military operations, as demonstrated by the recent airstrikes campaigns

in Syria and Afghanistan [1]. Comparably to many other cases, the expansion of unmanned

systems for military use has also triggered an accelerated transfer and development of this

technology into the civilian world. This democratization was fostered by the creation of

public drone community forums such as DYI Drones in 2008 and the first large scale

introduction of a public UAV model probably came with the release of the Parrot A.R.

Drone model in 2010. Despite the current lack of in-place regulations for many countries

and especially the United States, the growth of this market has been exponential for the last

few years and is expected to continue as showed on Figure 1.6.

Figure 1.6: UAV global market forecast [33, 34, 35, 36]

13

Many other forecasts are available and all differ in their predictions, possibly by

several orders of magnitude for the 2025 horizon [37]. Notwithstanding the absence of a

clear consensus for the size of the market over the next seven to ten years, most consulting

firms predict a strong growth. This lack of agreement between the forecasting parties stems

from the difficulties of making clear predictions about the UAV market. Some of its

segments are indistinct as some platforms are sold as general consumer products whereas

they are also advertised as professional vectors to be used for commercial purposes. As a

consequence, a distinction between the consumer and commercial drones market cannot

be drawn and both are considered as the same segment. Another source of uncertainty in

forecasting the drone market lies in the fact that very few countries have established legal

regulations for the operation of unmanned systems in their national airspace. For the U.S.,

the Federal Aviation Administration (FAA) has been working tightly with companies and

startups to help define the requirements of such airspaces. An example is the proposal by

Amazon to have low altitude airspaces allocated for automated vehicles as well as no fly

zones and free flight zones (Figure 1.7).

Figure 1.7: An example of drone airspace integration [38]

14

Since government policies control the use of the airspace and whether pilots can

operate beyond visual line of sight, this makes the drone industry a regulated market for

which forecasting is especially tough. In addition, the global drone industry did not wait

for regulations to be set up and is betting on a technology that could take years to be legal

and properly regulated [37]. This could possibly backfire on the market forecasts if the

regulations turn out to be more stringent than what was initially expected.

This advance of the market translates in an augmentation of the number of vehicles

in the National Airspace System (NAS): a proliferation of unmanned systems is expected

(Figure 1.8).

Figure 1.8: Total U.S. UAS Systems in the National Airspace System [33, 39]

15

The transfer from military to commercial use can also be noticed since the forecast

for civilian applications grows at a faster rate after the 2025 horizon. This can be explained

by the fact that UAVs can be used for many more purposes in the civilian world than in the

military: the long term market will be dominated by the civil side. The military has indeed

been acting as an early adopter for the technology, working on the maturation phase,

demonstrating its utility, and encouraging the idea of its use in non-military applications.

This population of vectors will most likely be dominated by MALE vehicles as it can be

seen on Figure 1.9 while the part of High Altitude Long Endurance (HALE) will be limited.

The Micro Unmanned Aerial Vehicle (MUAV) market will be the other field experiencing

a growth, as opposed to Tactical Unmanned Aerial Vehicles (TUAVs).

Figure 1.9: Expected military UAV revenues (Europe) [40]

0

200

400

600

800

1,000

1,200

1,400

1,600

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

TUAV MALE HALE MUAV

16

In addition, the adoption of the technology by giant commercial companies such as

Amazon, Google, or Facebook stimulates the emergence of the field and pulls smaller

startup companies into the market emulation (Figure 1.10). With its Prime Air service,

Amazon first started by advertising a revolutionary drone delivery program able to

distribute packages within thirty minutes of an order placement. Google shortly followed

by announcing its own drone-based delivery system named Wing, using a different

architecture. Finally Facebook proposed, through a very high endurance design, a different

utilization of drones aimed at providing remote areas with Internet.

(a) Amazon [41] (b) Google [42] (c) Facebook [43]

Figure 1.10: Drone programs from the giant tech companies

This growth is also facilitated by the maturation of the technology and the

advancements in other related fields such as battery densities, electronics miniaturization,

sensors development, as well as robotics intelligence. This facilitates the integration of

each of these disciplines on the vehicle, resulting in an enhanced general performance. In

addition, this drives the prices of drones to decrease, making them affordable to a wider

public, enabling their adoption for a broader range of civil applications. To mention an

expressive example, having easy-to-use agricultural drones equipped with cameras for less

than $1,000 represents for farmers a cheap way to tackle the increasing need of a data-

driven agriculture: crops monitoring for better water use and pest management [44].

17

A good benchmark to look at for this price reduction is one of the first product

released to the public market in 2010: the A.R. Parrot Drone. Over a period of two years

up to now, its average price has decreased by 33% (Figure 1.11). Despite several factors

affecting the manufacturing channel – such as the price of Lithium Polymer (LiPo)

batteries, the average price decrease can be thought of as a PC pricing-decrease model [45]

quite reminiscent of the rise of personal computing in the 1970s [46].

Figure 1.11: Parrot A.R. Drone 2.0 price evolution [47, 48]

The DJI Phantom drone and its different configurations constitute an additional

benchmark as they are currently amongst the most popular platforms: from 2013 to 2015,

an average reduction of 24% was observed on its price (Figure 1.12).

18

Figure 1.12: Price reduction for Phantom 2 variants [49, 50]

Furthermore, the DJI Phantom III, latest version of the drone, is expected to

experience a price drop of 47% in the next 5 years [45].

Summary: In the face of the complications in obtaining accurate market forecasts and

conflicting prediction models, it was established in this section that the unmanned aerial

systems field is experiencing a tremendous growth. This applies for both the military sector

as well as the public and commercial sectors. The recent involvement of major public

companies further cultivates the progress in the sector. On top of that, the cost reduction in

the manufacturing channel leads to lower prices, facilitating the adoption of the technology

by a wider public. The fertile ground above-mentioned gives rise to a number of new

unmanned systems configurations, focus of the next section.

19

1.2.3 A fleet getting more diverse

Owing to the introduction and rapid development of drone technology in the civil

world, many applications are envisaged and require new designs. Indeed, new operation

constraints encourage the need for increased vehicle capabilities and enhanced sensing

technology. As the spectrum of drone operations is widening, classical architectures such

as the quadcopter or the fixed-wing design become sub-optimal for original mission

requirements and novel solutions are considered. A quick search reveals that more than

745 military drone models exist today [51] and this number is most certainly even higher

for drones available to the general public. Focused mainly on unmanned aerial vehicles,

this section will examine the reasons and the extent of such a diversity. Some of these

observations also apply to ground robots and maritime unmanned systems.

As a consequence of the substantial amount of complex electronic equipment

onboard, a main limitation of unmanned aerial systems is endurance and their design has

become an exercise of energy conservation through optimization. This latter is hereby

defined as the act, process, or methodology of making a design as fully perfect, functional,

or effective as possible [52]. Each platform is thus optimized based on a specific

application and for exclusive mission requirements. Hence, despite a relative robustness, a

slight modification of the design or mission requirements will result in a suboptimal

configuration. This observation will be illustrated by taking the example of a classic one-

kilogram quadcopter designed for simple laser mapping purposes. If mission requirements

suddenly include the ability to locate heat sources in the created map, a solution would be

to add a thermal camera to the quadcopter. Such sensors are usually quite heavy and weigh

20

around one kilogram. However, the quadcopter was optimized for another payload and

cannot accommodate an additional sensor like a bigger manned vehicle could have. Hence,

in cases where a manned platform could have just been upgraded with an additional sensor,

unmanned systems often require whole new designs to adapt to new mission requirements.

This explains why many models and configurations of them exist.

Even for multirotor designs which might seem very similar at first glance,

fundamental differences exist between a tricopter and a quadcopter, or a hexacopter and an

octocopter. Configurations with many rotors are generally used for increased lifting

capability and redundancy purposes, but require different control schemes. Focusing only

on the quadcopter design, many designs and capabilities are available on the market. For

example, as it can be seen on Figure 1.13 where fifteen representative models are listed,

this variety is represented in terms of endurance and price, despite the fact that these

platforms all have the same basic architecture.

Figure 1.13: Civil micro quadcopter UAV market [53]

0

5

10

15

20

25

0

500

1,000

1,500

2,000

2,500

3,000

F
li

g
h

t
ti

m
e

(m
in

)

E
st

im
a
te

d
 p

ri
ce

 (
$
)

Model name

21

Besides the two typical designs and variations of the multirotor and the twin

boomer, exotic architectures have started to emerge to respond to original mission

requirements. Without having the pretention of listing all possibilities, a selection of

unusual designs is provided here below. A first and simple new architecture consists in

merging the capabilities of the two standard architectures: a hybrid design. Indeed in many

missions, the ability to cover long distances is desired, as well as the hovering faculty. A

notorious limitation of multirotor designs is their lack of endurance (Figure 1.13) since the

propulsion system has to sustain the whole weight of the platform in the air: an energy-

demanding task. Providing a multirotor with the ability to perform forward flight using an

assisting wing alleviates the weight ratio to be carried by the propulsion system only. This

hybrid design is already adopted by the delivery programs from Google and Amazon

(Figure 1.10). The forward flight configuration is used to cover distance while the hovering

capability is utilized for the precise delivery approach. Other unconventional architectures

may include:

 Non-planar multirotor: for full control in the air in terms of both translation and

orientation, orthogonal directions of action are required. A non-planar multirotor

has rotors arranged in orthogonal planes, ensuring that the vehicle can hover and

translate in any orientation, but also change its orientation at a given position in

space. A simply impossible task for conventional multirotors.

 Wall roller: mostly designed for building inspection, this architecture can get very

close to walls or ceilings and roll on them for detailed examination.

22

 Balloon: generally preferred for missions requiring extremely long endurance,

balloons however lack speed.

 Flapping wings: also referred to as ornithopters, these architectures are especially

coveted by the military for stealthy missions since flapping wings enable very small

sizes for the vehicle.

Some of these alternatives are presented in Figure 1.14 here below.

(a) Multirotor [54] (b) Twin boom design [55] (c) Helicopter design [56]

(d) Hybrid design [57] (e) Tilting wing hybrid design [58] (f) Non-planar hexarotor [59]

(g) Wall roller [60] (h) Balloon [61] (i) Ornithopter [62]

Figure 1.14: Examples of classical and unconventional designs

Very recent research also includes vehicles able to evolve both in water and in the

air, or on the ground and in the air [63], [64].

23

The emergence of such atypical designs is empowered by several key enablers, the

first one of them being the existence of an active open-source community. Communities

are essential as they facilitate the establishment of standards and norms for a given field,

the UAV sector being one in a dire need for regulations. They also accelerate the spread of

knowledge, critical in the case of sharing safety and privacy rules for the use of UAVs. An

example of such a community is DIY Drones [65], indisputably the reference in terms of

custom-made unmanned systems. Through forums and articles, communities put in relation

novices with more experienced users who provide feedback and advice on the proposed

designs. Such a public constitutes a fertile ground for the advent of new unconventional

designs similar to those displayed on Figure 1.14. One of the major accomplishments of

the DIY Drones community is to have created the first “universal autopilot” [65], virtually

providing the ability to turn any Radio-Controlled (RC) model into a fully-autonomous

UAV.

Figure 1.15: Interface of ArduPilot [65, 66]

24

Figure 1.15 shows that this universal autopilot allows for different architectures of

vehicles: multirotor, contra-rotating multirotor, helicopter, fixed-wing, and even rover. The

hardware itself is designed as a plug-and-play interface that can be just fixed on the vehicle

and rapidly wired with the different actuators and motors. Its code being open-source,

members have the possibility to modify it to account for custom architectures. In particular,

many modify existing commercial platforms in terms of design and automation to suit their

own mission requirements. This tool is now the reference universal autopilot and is used

by a very large public: general consumers, RC hobbyists, researchers, and even commercial

companies.

Although drastic changes in mission requirements often call for completely new

designs, moderate changes can be addressed through few alterations of an initial baseline:

an incentive for modularity. Indeed, it was established previously that the design of a UAV

is quite fixed for a given mission. However, unmanned systems sometimes strike by their

reduced size and even apparent simplicity, leading to wonder if slight design adjustments

around central blocks could possibly address minor mission variations. Moreover, a broad

spectrum of capabilities for a minimal cost is often a critical objective for recent projects.

This question is addressed by the field called design for modularity: another key enabler

for the diversity of the drone population. Using modularity, vehicles are reconfigured

between sorties based on a library of interchangeable components that could comprise

wings, tails, engines, and payloads [67]. For instance, a fixed-wing design is considered

with a predetermined fuselage and empennage. The wing can then be optimized for speed,

endurance, or transition flight in the same fashion that the payload can be customized for

25

imagery, communications, or surveillance purposes. Hence, three wings and three payload

packages can exist and be clipped on a single vehicle core. The fuselage and the empennage

can also possibly be declined in several configurations and all modules are quickly

assembled to obtain the final vehicle (see Figure 1.16). Thanks to modularity, an initial

design can be virtually duplicated in a spectrum of other configurations addressing

different mission requirements.

Figure 1.16: Notional family of reconfigurable aircraft [67]

An additional key enabler for the diversification of unmanned systems architectures

is rapid prototyping [68], [69], [70], [71]. Mainly performed using 3D printing or additive

layer manufacturing, it is a key enabler for modularity itself (Figure 1.17). These advanced

manufacturing techniques enable the production of cheap reconfigurable parts when

expensive molds were previously needed to do the same thing. This not only reduces the

26

cost of modularity in general but also the cost of unmanned systems in a broader

perspective.

(a) Quadcopter with scalable 3D-printed parts (b) Detail of the arm connection

Figure 1.17: Use of 3D printing on a quadcopter design [69]

It also permits the manufacturing of complex structures that are often the result of

design optimization algorithms. For instance, complicated structural meshes such as the

honeycomb mesh can be used to reduce the weight of some components like the wing (see

Figure 1.18) while maintaining its structural strength.

Figure 1.18: Use of 3D printing on a fixed-wing design [70]

27

Building on these observations, a first conjecture can be drawn:

Conjecture 1

There is a potential to take advantage of the upward diversity

of the existing drone fleet.

Summary: This section established on one hand that unmanned systems are subject to

stringent design constraints, notably on endurance and payload weight. This motivates the

need for a variety of models in order to be able to carry out the myriad of missions

anticipated by the growing market. On the other hand, it was showed that thanks to their

reduced cost, size, and sometimes complexity, unmanned systems designs are predisposed

to modularity and customization for evolving mission needs. Each design is then virtually

duplicable in an infinity of novel models, partaking in the population diversity. These

observations, coupled with the power of an open-source community as well as rapid

prototyping, were identified as key enablers for the proliferation of architectures for civil

applications and military purposes. In the next section, the limitations that could possibly

hinder the promising potential of unmanned systems are examined in detail.

1.2.4 The limitations

As a result of their particularity, unmanned systems are exposed to limitations and

constraints that manned systems might not encounter. The most widespread ones are their

lack of endurance, especially for micro-sized UAVs, and their deficiency in cognitive

behavior. Other drawbacks of unmanned systems, which motivate a progression towards

the research objective of this work, are also considered in this section.

28

On account of their often reduced size, unmanned systems are subject to limitations

in terms of the payload they can carry and this especially affects their batteries. As a result,

unmanned systems often exhibit a lack of endurance for the missions they are assigned to.

This applies particularly to micro-sized platforms and Micro Air Vehicles (MAVs) whose

size is of the order of thirty centimeters. Observing the example of quadcopters, these are

quite often used for mapping purposes but barely exhibit an autonomy of more than fifteen

minutes (Figure 1.13). This endurance remains insufficient to takeoff, perform the

calibration tasks, reach the mission area, build the map, exit the building, and finally return

to base. By looking at the history of the state of the art lithium-ion batteries in terms of

maximum capacity, it is possible by a simple rule of thumb to compute what would have

been the equivalent maximum battery life of a DJI Phantom over the years (Figure 1.19).

Figure 1.19: Equivalent DJI Phantom battery life over time [72, 73, 74]

29

Although this battery life has experienced subsequent improvements over the past

few years due to design optimizations and advancements in battery technology, it is still

very limited when compared to what bigger platforms are able to accomplish. Even

microdrones with fixed-wing configurations, which are supposed to last longer in the air

thanks to additional lift, still exhibit flight times under the hour [24]. Non-flying platforms

are also affected in the same fashion while they do not have such high requirements in

energy draw as their flying counterparts. This is a clear limitation for the missions that

unmanned systems are set to carry out.

The limited endurance mentioned hereinabove remains firmly coupled with the

amount of computational power and cognitive capabilities that it is possible to embark on

a robot. Indeed, the payload defines the power consumption required in operation not only

by its own current draw but also sometimes by its weight for aerial vehicles: hence doubly

affecting battery sizing. The design is thus an iterative loop since additional payload

requires additional power to stay in the air, which calls for more batteries, inducing an

increase in weight which in turn implies a more important need for power, and the loop

continues. For this lack of embarked computational power and hence cognitive capacities,

it is often said that robots are very good for things that humans consider as complex or

hard, but demonstrate quite poor performance for tasks deemed as standard. For instance,

it is very easy for an unmanned system to compute the exact distance to an object in its

environment, a task for which a human agent could only give a rough approximation just

by looking at it. In like manner, a robot can effortlessly perform thousands of mathematical

operations in no time, or lift a thousand pounds of the ground: operations for which humans

30

would experience great difficulty. However, unmanned systems often look clumsy and

uncertain when entering doors or windows whereas humans seamlessly walk through them,

instantly incorporating the information from all their senses. Robots similarly require

consequent computation time and complex algorithms to identify people or objects, a task

easily accomplished even by young children. In addition, the transition between the

different stages of a mission frequently turns out to be slow due to recalibration processes.

This lack of cognitive behavior on individual agents stems from a deficit of computational

power and full situation awareness which could be addressed by having other units

contribute to the tasks or sharing complicated processes across several robots.

The latter also impedes the autonomy of unmanned systems, making fully

autonomous missions almost impossible without a human supervision, causing the task to

be only semi-autonomous. Indeed, taking the example of military operations, local

operators manage the takeoff and landing phases directly at the airfield before putting the

asset on a holding flight pattern before remote operators based in the U.S. take over and

carry out the mission manually: the fully automated part of the mission is very limited in

terms of complexity. As a result, unmanned systems are inclined to stringent

communication link requirements so as to maintain constant supervision of the

whereabouts of the asset. This required communication link can be particularly hard to set

up, especially due to the very nature of the settings where unmanned systems operate:

environments with difficult or dangerous access for human beings.

Unmanned systems currently lack a dedicated and protected radio-frequency

spectrum required to ensure secure and continuous communications for their operations.

31

This worsens the probability that an unmanned aircraft will be vulnerable to unintentional

or intentional interference [75]. The RQ-170 Sentinel stealth drone incident of 2011

showed that, because of this communication link requirement, even military platforms can

supposedly be hacked [76]: an additional limitation to the use of unmanned platforms and

their communication protocols. Military applications have their own protocols such as the

Joint Tactical Radio System (JTRS) and even Long-Term Evolution (LTE) networks as

they provide a superior mobile bandwidth and low latency, ideal for datalinks transmitting

image and video information. LTE technology also enables the military to take advantage

of a wide network of vendors and it will most probably be the future for Unmanned Aircraft

Systems (UAS) communications [77]. However, most commercial and publicly available

unmanned systems presently use radio frequencies channels around 2.4 GHz, a bandwidth

compatible with Wi-Fi and thus with most mobile electronic devices. While this facilitates

the integration of UAS with existing technologies such as smartphones and laptops, the

range of such a solution is limited to a couple kilometers in the best case scenario and is at

risk for interference and hacking.

Figure 1.20: Network settings of the Parrot Bebop drone [78]

Legend

Most congested

Congested

Least congested

Free

32

As Figure 1.20 shows, a non-military UAS network might have to bet set up on

congested frequencies, especially in crowded areas. Using unprotected radio spectrum and

wireless technology for the use of unmanned aircraft systems constitutes a major security

and safety vulnerability. Indeed, disconnection of the communication link amputates the

UAS of its only means of control, as against manned systems in which a pilot is directly in

physical control of the aircraft.

Lost link is also a possibility when the command and control communication fails

between the UAV and its ground station due to environmental or technological

complications. Even though unmanned systems generally have pre-programmed

procedures to hover and recover the signal or safely return to base, no standardization has

been proposed by the FAA and air traffic controllers deal with the problem on a case-by-

case basis [75]. This is another hurdle in the quest for a standardized communication

protocol across all types of UAS.

On top of these previous, quite direct, limitations, unmanned systems are also

subject to more discreet limitations due to the uniqueness of each robot. Indeed, the

accumulation of capabilities on a single vector in order to increase its flexibility might end

up either oversizing it for simpler missions, or making it simply too expensive to use. A

good example of this assumption is the Fukushima nuclear incident of 2011, when many

robots were deemed too expensive to be put to work at the power plant. For many advocates

of automation, a perfect use case of robots is in case of a nuclear disaster for which humans

cannot be sent on the scene to look for survivors or evaluate and repair the damage. Yet,

after March 2011, none of the two robots designed for radiation possessed by Japan, a

33

country specialized in robotics breakthroughs, was sent on site [79]. Several plant operators

decided that robots were too expensive. The research community, who usually sends some

of their projects on disaster relief sites [80], also deemed that its platforms were too costly

of an asset to lose to radiation as it had already happened at the Chernobyl incident of 1986

[81].

Furthermore, the U.S. Department of Defense has issued a roadmap for the

integration of unmanned systems, underlying the factors that will influence their

development in the near future [82]. The roadmap points out the expeditious integration of

unmanned technologies in battlefield capabilities due to urgent operational needs after the

9/11 terror attacks. This results now in a critical need for interoperability and modularity

amongst existing platforms. Indeed, sensors, computers, and algorithms are evolving

rapidly, sometimes outpacing implementation capabilities. It is not rare that a new onboard

computation chip is released while its previous version has just been integrated with

success on existing vehicles. The Department of Defense proposes to reach this goal of

modularity and interoperability by addressing intra-platform challenges as well as inter-

platform challenges. Intra-platform modularity refers to the ability to easily transition

upgraded capability or hardware onto fielded systems in a plug-and-play fashion. While

this approach calls for an assimilation of modular design methods, it is important to note

that the modularity feature can also be achieved by putting to use the existing platforms in

a collaborative fashion. For example, consider a system of two robots 1 and 2, both

equipped with a computing unit A (see Figure 1.21). This chip has enough power to run

one algorithm only, either mapping or surveillance. A new chip B is released with increased

34

computing capabilities when compared to chip A. In order to perform mapping and

surveillance, a designer could choose to create a new platform 3 running both missions

thanks to the upgraded chip. This new vehicle would have to interface with the new

computing unit. However, the same capability of simultaneous mapping and surveillance

can be achieved by making vehicles 1 and 2 collaborate properly.

Figure 1.21: Taking advantage of fleet diversity [83, 84]

This integration of existing disparate assets is cost-effective since both vehicles are

already developed, a key benefit for the Department of Defense.

Besides, UAVs with advanced purposes tend to require a lot of manpower to fulfill

their mission. Most of them require at least a pilot and a sensor operator as direct operators,

not to mention the necessary personnel for deployment and communications. For example,

a single Predator UAV involves one pilot and two sensor operators, and it is estimated that

it takes around 82 personnel in total to run a mission [85]. The aim of the Air Force is to

have a ratio of around 10 crews for every drone combat air patrol [86], and even though

System 1 System 2

Chip A
Mapping

Chip A
Surveillance

Chip B
Mapping + Surveillance $ $ $$$

UAV 1 UAV 2 UAV 3

vs.

35

the actual ratio is between 8.1 and 8.5, it is still quite high compared to the requirements

of manned missions. The total personnel for these combat air patrols is estimated to 186

and presented on Figure 1.22.

Figure 1.22: Total personnel for drone combat air patrols [86, 87, 88, 89, 90]

This number is justified by the additional security measures required to operate

unmanned systems as opposed to manned vehicles and seems quite startling in view of the

automation purpose of UAS. With the contribution of enhanced cognitive capabilities as

well as communication protocol standards, many tasks could be automated and streamlined

in order to reduce this important inertia to perform a drone mission. In contrast, it is

important to notice that most civil and commercial UAS require one operator most of the

time to carry out a mission.

32%

24%

44%

• Takeoffs

• Landings

• Maintenance

• Pilots

• Sensor operators

• Imagery analysis

• Intelligence gathering

Airfield near combat zone (59)

U.S. drone air base (45)

Intelligence agencies (82)

36

Finally, the public opinion regarding drones suffers from several misconceptions

and concerns which are slowing down the democratization of the industry for civil

applications. Indeed, such platforms have widely been used, and advertised, for national

defense so far which makes it harder to imagine their non-military benefits. Until a few

years ago, there had been little acknowledgment of the use of unmanned systems for

agriculture, mapping, search and rescue, and humanitarian or disaster response. The fact

that it took more than a year for the FAA to establish a first set of rules, undoubtedly

insufficient, for the regulated use of unmanned air vehicles clearly, reveals that some

unease remains regarding their use in the civil world.

Figure 1.23: Approval of drone use to kill high-level terrorism suspects overseas [91]

General misconceptions highlighted by [92] are that UAS are dangerous to manned

aircraft and to people on the ground as they might collide and crash in populated areas.

They are also commonly considered as privacy threats and some residents sometimes shoot

drones trespassing over their property [93]. In fact, even the military drone program is

widely criticized for killing remotely and indiscriminately and does not show a clear

54%

18%

28%
Approve

Disapprove

Not sure

37

support from the American population (see Figure 1.23). These misconceptions leave the

UAS industry with a tricky case to make to show the positive impacts of drones.

Summary: This section highlighted that unmanned systems are subject to limitations

especially in terms of endurance and computational power. The induced lack of cognitive

behavior calls for an essential supervision. This latter is provided through complex

communication links which can be hard to put up in the operational environments of

unmanned systems. In addition to exposing the vehicles to hacking hazards, it sometimes

also requires additional manpower to be operated, incurring additional costs. Finally, their

integration in real-life operations was done quite hastily, leaving room for some

improvement in interoperability. The observations made throughout this section also show

that in some cases, using the capabilities of several unmanned systems could have liberated

the overall mission from several limitations: the broad spectrum of unmanned systems

architectures is not put to use. Finally, the public perception of unmanned systems is

negatively connoted which hinders the expansion of the industry. The next section

examines how some of these limitations can be tackled by making several individual robots

collaborate in a group.

1.3 The growth of multi-robotics

As it was hinted in the previous section, some of the limitations of individual

unmanned systems can be lifted by making several of them collaborate. The complexity of

some environments or missions might require a combination of robotic capabilities which

are too expensive to design on a single platform [81]. Cooperative teams of robots are

studied by the field of multi-robotics where many individual agents work together in a

38

coordinated fashion to accomplish a unique goal. Such solutions enable the entire system

to respond robustly, reliably, and flexibly to unexpected changes in the environment or in

the robot group itself. In particular, swarm robotics is a particular approach to collective

robotics and is inspired from the self-organized behavior exhibited in nature by social

animals such as fishes, birds, ants or bees. The main idea of swarm robotics is to obtain a

complex synergistic behavior through simple behavior rules and local interactions.

Figure 1.24: Example of robotic swarm [94]

Swarm robotics use simple robots compared to the complexity of the mission to

perform. The increase in capability over single robots comes from the collaboration aspect.

Since several robots are used, this gives robustness, flexibility, and scalability to the swarm.

This approach of collective robotics also represents an interesting way to capitalize on the

heterogeneity of the current fleet of robots described in the previous section. For its future

projects, the DoD stresses in its UAV integration roadmap the importance of several factors

such as interoperability, modularity, resilience, autonomy, and cognitive behavior [82].

The present distribution of operations is creating a need for robotic systems to become

39

increasingly interoperable. These characteristics match with the capabilities offered by

multi-robotics. Robot groups can be used in real-world applications for exploration,

surveillance, search and rescue, humanitarian demining, intrusion tracking, cleaning,

inspection, and transportation of large objects [95]. However multi-robotics is a complex

field and several of its limitations are exposed at the end of the present section.

1.3.1 A field inspired by nature

The observation of animal behavior has been used as a source of inspiration for the

development of individual robots and can also be used to gain insight into the creation of

cooperative groups of robots [81]. Hence, it is no surprise that the current research

underway in multi-robot systems can be classified quite similarly to the way animal

societies or colonies are. Indeed, a first consequent body of work concentrates on very large

numbers of robots that have limited individual capabilities but can generate complex

behaviors through cooperation: swarming systems. A second approach which can be

referred to as “intentional” cooperative robotics – or more generally cooperative robotics

[81], emphasizes higher-level intentional cooperation between robots that have a higher

level of intelligence. The first category can prove particularly suited for very repetitive

tasks over large areas while the second one may be more adequate for applications with

several distinct tasks. Both these approaches can possibly overlap in their missions, or even

assumptions, and they are described in the following paragraphs.

1.3.1.1 Swarm robotics

Particular subcategory of multi-robotics, swarm robotics has been gaining special

interest in the past decade. It takes its inspiration from societies of insects in which the

swarm can perform tasks that are beyond the capabilities of the individuals. Such collective

40

behaviors are observed in the dance of honey-bees, the nest-building of wasps, the

construction of mounds by termites, or in ants following trails. Figure 1.25 presents other

examples of such comportments. These latter were considered as mysterious for a long

time in the biology field and it was showed in the past few decades that individuals do not

require sophisticated knowledge to exhibit complex behaviors as a swarm [96]. Indeed,

there is no leader guiding the colony to accomplish an established goal and each agent does

not know the overall status of the swarm. The global knowledge is distributed amongst all

individuals which cannot accomplish the task without the rest of the group.

a) A ball of mackerel fish defends against sea

predators [97]
b) A bird swarm [98]

Figure 1.25: Swarm behaviors in nature

The agents are able to exchange information locally and these interactions modify

their behavior based on the previous changes made by their mates in the environment. The

self-organizing comportment emerges from the propagation of information throughout the

swarm. This former has external communication between its agents and their environment,

as well as internal communication between the agents themselves.

41

A couple detailed examples of swarm behaviors can be examined. For instance, ant

colonies can locate food sources the nearest to their nest without any single ant having this

precise information. Thanks to chemicals called pheromones laid down on the path to the

food source, ants can identify the shortest path. Indeed, ants returning first to the nest most

likely took the shortest path and other ants hence follow the same path, reinforcing the trail

of pheromone which encourages the colony to take this track [99]. As for bees, they have

scouts exploring areas around the nest to find decent locations for a new nest. Each scout

returns to the cluster and share their findings thanks to a dance, encouraging others to

explore the location. Once more individuals are convinced about the location, a favorite

location starts to emerge and the whole swarm finally flies to it. This swarm behavior

ensures the safety of the cluster and is quite efficient in finding the most suitable nest site

[100].

The fields of physics and chemistry present theories explaining how complex

collective behavior can emerge from interactions of agents behaving simply [96]. Swarm

robotics tries to mimic these behaviors to make simple robots accomplish complex

missions that cannot be carried out by a sole agent. In so doing, it has identified the

desirable properties of swarms of social insects to apply to swarm robotics. The first one

is robustness, the ability for the swarm to still function correctly if some of the agents fail

or if the environment experiences disturbances. Since robots can sometimes be expendable

assets as it was established in the first section, it may happen that a few agents are lost

during a mission. However, as opposed to single unit missions where the mission would

stop, a swarm should continue to operate with a reduced number of agents. A second

42

quality desirable for swarm robotics is flexibility: the swarm should be able to adapt to

different tasks and reallocate the roles of its agents based on the needs of the moment. This

is especially true if some agents of the swarm have diverse capabilities, a different layout

of the subtasks for the individuals of the swarm can result in a different synergistic goal

being accomplished. The last property observed in animal swarms and that is advantageous

for swarm robotics is scalability: the capability for the group to perform a mission

independently of the size of the swarm, from a few individuals to thousands of them [96].

This interesting aspect of swarm robotics enables to seamlessly add one or several robots

to the swarm and having them immediately contribute to the overall mission without

overwhelming reprogramming tasks. This can be done to improve the performance of the

swarm on a given task for instance.

Given these properties, a first definition of swarm robotics can be given [96]:

Swarm robotics is the study of how a large number of relatively simple

physically embodied agents can be designed such that a desired

collective behavior emerges from the local interactions among agents

and between the agents and the environment.

43

Based on [95], a set of conditions complements this characterization to establish

whether a multi-robot system constitutes a swarm or not:

i. The robots of the swarm must be autonomous robots, able to sense and actuate

in a real environment.

ii. The number of robots in the swarm must be large or at least the control rules

allow it.

iii. Robots must be homogeneous. There can exist different types of robots in the

swarm, but these groups must not be too many.

iv. The robots must be incapable or inefficient with respect to the main task they

have to solve, this is, they need to collaborate in order to succeed or improve

the performance.

v. Robots have only local communication and sensing capabilities. It ensures the

coordination is distributed, so scalability becomes one of the properties of the

system.

These properties can be compared to taxonomies found in the literature of multi-

robotic systems (see Table 1.2).

44

Table 1.2: Swarm robotics taxonomy axes [101]

Axis Description

Collective size

Number of robots in the collective.

Communication range

Maximum communication range.

Communication topology
 Of the robots in the communication range, those which

can be communicated with.

Communication bandwidth
 How much information the robots can send to each

other.

Collective reconfigurability
 The rate at which the organization of the collective can

be modified.

Process ability

The computational model used by the robots.

Collective composition

Are the robots homogeneous or heterogeneous?

The discrimination between swarm robotics and other multi-robot approaches can

be tricky to establish [95] especially when heterogeneous swarms are considered since they

might violate assumption (iii). This explains the divide in the literature about unique

definitions, characteristics, and taxonomies of swarm robotics as proposed by [102], [103],

[104], or again [105].

Finally, one may notice that robotics is not the only field trying to apply such

observations on biological swarms to science. Particle Swarm Optimization (PSO) for

instance, tries to apply swarm behavior rules to the field of optimization. A population is

randomly scattered in the design space and at each iteration of the algorithm, each agent

45

moves according to simple rules (see Figure 1.26) until the population converges on the

optimum of a given cost function over the design space.

(a) Separation (b) Alignment (c) Cohesion

Figure 1.26: Swarm behavior rules in Particle Swarm Optimization [106]

These elementary rules are the following:

 Separation: each agent tries to maintain a minimum distance with its surrounding

neighbors.

 Alignment: each agent steers towards the average heading of its neighbors.

 Cohesion: each agent tries to go towards the average position of its neighbors.

The resulting complex behavior from these simple rules is a performant

optimization method able to efficiently find global optimums where many other methods

fail.

1.3.1.2 Cooperative robotics

When time or efficiency constraints are placed on the mission, or when several

distinct tasks have to be performed, a more directed type of cooperation might be required

between the robots [81]. These missions generally involve smaller groups of agents when

46

compared to swarm robotics, and are more inclined to encourage heterogeneity. Instead of

using a functional decomposition of the robot as with the swarming approach, most of the

research on cooperative “intentional” robotics uses a more physical decomposition. The

approach is then separated into world, sensors, planning, and action modules, also known

as the sense-model-plan-act Artificial Intelligence (AI) paradigm [81]. The main focus of

this type of approach is to determine through analysis the proper action and coordination

scheme among the members of the group, in order for them to complete their mission. The

research community is mainly split into two bodies: a first one focusing specifically on

robotic implementation, and a second one applying Distributed Artificial Intelligence

(DAI) to more generic types of agents.

In the first body of research, the sense-model-plan-act architecture is implemented

with different layers of control. [107] hence proposes three layers: the planner level

managing tasks coordination and allocation, the control level ensuring proper task

execution by each robot, and the functional level for controlled reactivity. The method is

demonstrated on a box-pushing task with a group of two robots. Another organization of

layers is proposed by [108] using Petri Nets: a task planner, a task allocator, a motion

planner, and an execution monitor at the lowest level.

Other approaches utilize subscriptions and requests mechanisms to coordinate tasks

between the different robots of heterogeneous groups. For instance, [109] implements a

negotiation framework which robots use to recruit help when needed. A sign-board method

is used in [110], in addition to mutual exclusion algorithms.

47

By being centralized, these approaches lack fault tolerance and it is probable that a

failure in one of the robots or in the communication protocol would result in a failure of

the whole system [81]. Moreover, it makes it hard for multi-robot systems to deliver real-

time performance in dynamic environments due to the difficulties and limitations of an

implementation on physical robots.

 The second body of research is not as focused on robotics implementation but

proposes solutions to cooperation and conflict resolution for generic agents. These

approaches qualify as DAI and generally use negotiation-based mechanisms to perform the

task allocation between the agents. Such methods mentioned by [81] have agents

broadcasting requests for bids to perform the different subtasks of the mission. Agents

which are available, suitable, and willing to perform the tasks then respond to these

requests and the initiator selects the most suitable agent from the pool. DAI solutions have

shown successful implementations in a number of fields such as vehicle fleet monitoring

and air traffic control [81] but they have rarely been applied to groups of robots. Indeed,

such approaches usually rely on perfect world modeling assumptions with perfect sensing

and action capabilities, which does not correspond to the situation in which robots and their

noisy sensors and actuators evolve.

Summary: In this section, the essence of multi-robotics was captured from example

behaviors found in nature such as with swarms of ants or bees, bird flocking, or fish

shoaling. It relies on the fact that an elaborated collective behavior can emerge from a

group, surpassing the capabilities of its individual agents, using simple local interactions

48

and comportment rules. When applying these observations to the field of robotics, three

main characteristics are desirable: robustness, flexibility, and scalability. Example

definitions, assumptions, and characteristics of cooperative and swarm robotics were

established, despite a lack of consensus in the literature. The current work distances itself

from some of these assumptions in order to simplify the approach and focus on the design

methodology, hence evolving towards a more classical multi-robot problem, facilitating

heterogeneity. Supported by the different opposing views on its definition, a swarm is here

referred to as a group, possibly heterogeneous, of robots interacting to solve a complex

task for which the constituents are individually inapt. This definition will constitute the

main focus of this research and the words group and swarm will be used indifferently based

on this definition. The enhancements in mission competence that it is possible to obtain

from multi-robotics are then studied in the next section with implementation examples.

1.3.2 An increase in capability

The main advantage of multi-robotics lies in the very definition of it: obtaining a

complex behavior from the collaboration of simpler individual robots. In other words, it

presents the potential to bridge a gap in mission capabilities while making a minimum

investment on the development of an individual platform. It is then possible to unlock novel

abilities using a fleet of robots that is already at disposition. In addition to the three major

defining advantages mentioned in the previous section (i.e. robustness, flexibility, and

scalability), the different enhancements in robotics capabilities proposed by multi-robotics

can be separated in different categories [111].

49

Task enablement: in some cases, using a group of robots unlocks new possibilities for

missions that cannot be carried out by single robots. The most common example of this

enhancement is obstacle clearance using group reconfiguration [112]. Figure 1.27 shows

an example of how a group of robots can reconfigure itself in order to bridge a gap between

rocks in the environment.

Figure 1.27: Holes avoidance through group reconfiguration [112]

The robots of the group self-assemble using physical interconnections to constitute

a bigger entity capable of tackling the difficulties of the environment such as gaps, narrow

passages, or obstacles. Not only the sensing done by each of the robots helps the group in

understanding the nature and properties of the obstacle, but the robot itself is physically

used by the group to pass the obstacle.

50

Figure 1.28: Chain formation for a narrow passage [112]

In Figure 1.28, the chain of robots navigates through a narrow and deep passage

thanks to physical interconnections. Without this group behavior, each individual agent

would fall in the passage and break while the whole group is able to exert more traction

force and carefully negotiate its way.

Figure 1.29: Five robots collectively tackle a 14cm step [112]

The same type of group reconfiguration is used to help the robots pass an obstacle

as shown on Figure 1.29. The environments explored by robots can often be quite

51

unstructured or partially known. Displaying capabilities of mobility, robustness, and

versatility in such situations can be done thanks to multi-robotics.

Improved performance: when tasks to be performed can be parallelized, using groups to

decompose the main mission into subtasks can result in enhanced efficiency. Considering

the task of transporting loads using unmanned aerial vehicles such as quadcopters, using

several robots present a certain advantage for the performance of the mission (Figure 1.30).

(a) A single quadrotor with a

cable suspended load [113]
(b) Load being transported by three quadrotors [114]

Figure 1.30: Cooperative transport using quadrotors

For a situation in which a single robot is used to carry the load, this latter will be

subject to erratic accelerations and momentums that might compromise the integrity of the

load. This is especially true if the load is fragile or needs to be horizontal at all times – for

instance dangerous chemicals. However, by using at least three robots to carry the load,

this latter can be suspended in any desired configuration [114], hence augmenting the

performance of the initial system in which a single platform is used.

52

Distributed sensing: with multiple robots, the sensors of the system are distributed over

the whole environment, hence enabling information sharing and an enhanced perception of

the situation. A typical use case of this property is area surveillance: a group of drones is

assigned a certain area to detect suspicious activity or detect a given target. If the task were

to be performed by a single platform, this latter would have to perform a large loitering

flight pattern. It would most probably miss the detection of the target, especially if the size

of the surveillance area is large with respect to the resolution of the embarked detection

sensor. On the other hand, if a robotic group is used, the large area is covered by several

coordinated vectors, hence enabling a continuous surveillance of the whole area (Figure

1.31).

(a) A limited sensing resolution (b) Partition-based surveillance strategy

Figure 1.31: Area surveillance by UAVs [115]

Each individual drone is assigned an area optimized with respect to its own sensors

and capabilities [115]. For instance, fast aircraft can cover a large area at a reasonable

53

resolution while quadcopter are deployed at a lower altitude, covering smaller areas with

greater precision.

Another aspect of distributed sensing is that if the observations of several drones

overlap, it is possible to use all of the provided information to refine the observation and

increase the precision of the group. The example of mapping is explanatory: if a landmark

of the environment is observed several time, each observation of the landmark is used to

refine its position in the map (see Figure 1.32).

Figure 1.32: Multiple observations of a map landmark

As seen on the figure, each robot detects the landmark from a different angle with

an ellipsoid of uncertainty. This latter is more important along the axis of detection due to

the ambiguity in depth perception. The further the robot, the greater the uncertainty. The

information provided by all observations enables to obtain a reduced uncertainty on the

global position of the landmark. This may be roughly depicted by the superposition of the

54

ellipsoids. Each observation reduces the uncertainty along the axis of detection, resulting

in a more evenly distributed location uncertainty around the landmark.

Distributed action: in the same fashion as distributed sensing, distributed action is the fact

that the group of robots can perform tasks in different places simultaneously. This faculty

is linked with the possible parallelism of the tasks of the mission. An example of

application is bridge construction thanks to teams of robots: a group of robots can start

from one end of the bridge while a matching team starts from the opposite end of the bridge

(see Figure 1.33).

Figure 1.33: Bridge construction using distributed action [116]

Fault tolerance: having a robot failure in the group does not necessarily translate in the

failure of the whole mission. Owing to the redundancy of the system, the mission can still

be carried out with a limited number of robots. Using again the example of carrying a

payload at a given orientation with quadrotors, this mission can still be accomplished until

there are less than three robots in the group [114]. If the number drops below three, the

55

payload cannot be orientated anymore and supposing that the robots still have the lifting

power to sustain the payload in the air, the secondary mission of simply carrying the load

can still be performed. Hence, using groups of robots ensures of a certain redundancy and

resiliency in the mission.

Cost reduction: the exponential growth of the UAV sector described in the previous

section brings cheaper and cheaper individual units on the market. Consequently, this

decreases the cost of multi-robot systems in the same fashion [33], [45], [46]. The key cost

factor in multi-robotics comes from the definition: a complex goal is accomplished by

simpler units. In other words, each individual platform from the group is quite incapable

with respect to the overall goal of the mission. Given that simple robots are most probably

cheap, this implies that for a given complex mission, a multi-robot solution can possibly

be cheaper than a single-robot one. This cost difference can be illustrated with the example

of aerial imagery and distributed sensing, both previously studied. If a specific area has to

be imaged, satellite imagery can be obtained at cheap prices [22] but only at a given

periodicity. If a group of UAVs is used for the same purpose, the original investment will

be much cheaper than the initial investment for the satellite and the images can be updated

very quickly depending on the mission requirements. Using plenty of cheap and low

resolution sensors instead of a very expensive high resolution one, costs could hence be

decreased in some cases with the concept of distributed sensing. This is the type of tradeoff

study that motivates the present work.

56

Summary: This section showed that the possibilities unlocked thanks to multi-robotics are

present under several aspects. By exploiting parallelism in the tasks of a mission, this latter

can be completed more efficiently by using groups of collaborating robots. Multi-robotics

also provides the ability to perform certain tasks that are impossible for single robots. In

addition, using multiple robots distributes their sensors over the environment hence

providing a better perception owing to information sharing. Teams of robots can also

perform actions simultaneously at different locations and offer redundancy to increase the

reliability of the whole system. On top of that, multi-robotics sometimes offer a cost

advantage which is non-negligible at a time when projects are more and more driven under

tight budget requirements. While this type of observations clearly depends on case-by-case

considerations, the present research aims at providing techniques for the study of these

types of tradeoffs. The next subsection details two particular real-world applications of

multi-robotics to further motivate the current research.

1.3.3 Application to real-world problems

Amongst the numerous possible applications of multi-robotics mentioned earlier,

two are presented with greater detail in this section. These applications of search & rescue

and military operations have been chosen as they are being investigated by companies and

organizations, not research laboratories.

Search & Rescue: [117] identifies that the US Coast Guard spends more than $50M

annually on search & rescue missions, a cost mainly incurred by the expensive logistics

required in such operations. Search and rescue has already been performed by single robots

in many occasions such as for the World Trade Center in 2001, Hurricane Katrina in 2005,

57

Haiti in 2010, and more recently Fukushima in 2011 [118]. As established in the previous

sections, multi-robot systems and their distributed sensing capabilities offer the possibility

to quickly cover search areas and detect victims much more rapidly than current methods.

Figure 1.34: Representation of a UAV-based search and rescue operation [119]

Using autonomous recharging schemes as described by [120], such systems are able

to achieve extended endurance: a key asset for search and rescue missions. Moreover, the

units of the multi-robot system are possibly expendable in dangerous conditions. This topic

is currently being investigated for commercial applications by Saab [117].

Military operations: a study of current military systems by [121] identifies that they are

highly vulnerable to coordinated attacks such as the ones that could be carried out by multi-

robot systems. In particular, this study shows that any current military ship can be

neutralized by a group of only eight small UAS.

58

Figure 1.35: Representation of a multi-UAS military system [117]

This clear vulnerability motivates the US Navy [122] and the British Army [123]

to investigate the application of multi-robot systems for both offense and defense military

operations. The solutions are first studied for uncluttered open water environments and will

be later extended to land operations as the technologies of sense and avoid matures for

trees, buildings, power lines, vehicles, and pedestrians.

Multi-robotics addresses the significant performance enhancements achievable by

multi-robot systems. However, despite the increase in capability and possible real-world

applications described in the previous sections, it is quite complex to comprehend, hence

revealing several limitations exposed in the next subsection.

1.3.4 The limitations

The increase in capability offered by multi-robotics mostly comes at the cost of an

amplified complexity as a complete System of Systems (SoS) has to be designed instead

of a single robot only. According to the definitions provided in [124], a group of robots

classifies as a complex system due to a large number of components able to interact with

each other and the environment. In addition, the rules of the components may change over

59

time and are not always fully understood. Finally, the properties of the whole system cannot

be determined from the simple sum of its parts. A group of robots is hence hard to design

as it is larger in scope and is subject to a more complex integration of its elements. The

group (macroscopic level) has to be designed as well as the individual agents (microscopic

level). A non-exhaustive list of difficulties encountered when designing a system of robots

are [125]:

 A higher degree of uncertainty and risk compared to classical systems design

 The system is comprised of elements with different lifecycles

 The group may be comprised of robots which are not designed to fit the whole

system and which are integrated after their design is finished

 The requirements might be more ambiguous than for a single robot

 The group may have a continuous systems engineering which is never actually

finished. This is especially true if new systems keep being integrated in the group

in order to update it.

In addition, ground-based robots have been the norm in the field of robotics until a

few years ago, limiting the interest in design optimization for robots. Subject to more

stringent weight restrictions and other realities than ground robots, aerial robots design has

to include optimization steps. The focus in robotics has long been on intelligence and

software architecture more than on physical design. This complexity being a limitation in

itself also translates into several other limitations for the use of multi-robotics.

 A first drawback is interference, robots in a group can interfere with each other and

hinder the proper functioning of the group. In some worse cases, it can be

60

counterproductive. Interference may happen with collisions, which might possibly take

down the involved agents. Occlusion is also a common interference in groups of robots

when one robot happens to be in the field of view of the sensors of another robot. While

this can sometimes be helpful if the robots of the group have to detect each other, this

occludes a part of the environment which cannot be observed. The closer the robots are,

the more important the occlusion. These types of occlusion can also result in interference

in communications between the vectors of the group if one robot occluding two others

intercepts a message by mistake.

Another limitation given by the literature is that in some cases, uncertainty rises

concerning the intentions of other robots. This is especially true for group of robots

respecting exactly the assumptions of swarm robotics ensuring there is no centralized

control entity for the swarm. In addition to imposing complex communication requirements

on the group design, this assumption ensures that agents can only communicate with their

immediate neighbors. In this case it can be hard to share the intents of other robots since

there is no control overseeing the whole group. Indeed, coordination in this context requires

to know what the surrounding robots are actually doing, otherwise the agents might end up

competing instead of cooperating [96]. This limitation also calls for a robust decision-

making architecture in the group in order to make sure that all the orders are properly given

according to correct situations and not caused by miscommunication or occlusion between

the robots.

61

Additionally, the field of collaborative robotics in general is not yet established in

commercial applications and remains mostly confined to academic work such as the

systems developed in [126], [127], and [128]. It is still at a preliminary stage in the research

community and shy applications start to trigger interest only for the military with no known

successful deployment. For instance, the Office of Naval Research (ONR) has been

working on the Low-Cost UAV Swarming Technology (LOCUST) system and performed

successful demonstrations in launching a swarm of nine UAVs with autonomous

coordination [129]. Their next milestone is the deployment of 30 swarming Coyote UAVs

from a ship for endurance missions. Although these applications are outside the academic

environment, they remain confined to pure research and are not used in operation. Reasons

are varied and [96] mentions in particular: the need for a good laboratory infrastructure,

the difficulty in building non-linear and stochastic models of the robot groups, and the fact

that currently, no general method exists to go from the individual behavior to the group

behavior. [96] mentions this latter reason as a key obstacle in the elaboration of design

algorithms for swarming systems. As a matter of fact, most of the research community

focuses on the behavior design of multi-robot systems, leaving aside their physical design

[130]. These elements prompt the formulation of another key conjecture:

Conjecture 2

A standard physical design process for multi-robot systems

is needed to foster their democratization.

62

Note that in the scope of this research, design corresponds to the intellectual

engineering process of creating on paper a machine that either meets certain requirements

and performance objectives, or explores new concepts, technologies, and innovations

[131].

One additional drawback linked to multi-robotics and especially swarm robotics as

defined per its assumptions, is that it tends to focus on robots having the same capabilities.

As a matter of fact, one of the assumptions to exhibit “pure swarm” behavior is that the

robots must be homogeneous, and that the number of subgroups with different capabilities

is limited. Hence, most of the research community focuses on homogeneous groups with

cheap and absolutely identical robots. Few instances such as [132], [133], [134], [135],

[136], [137], or [138] consider heterogeneity in an extensive manner, and when they do, it

is focused on behavior design and not physical design of the agents and the group.

However, the utilization of robots with different capabilities could benefit to the mission

in terms of performance and unlock new collaboration capabilities. Considering mapping

and exploration missions for instance, fast robots could be used first for a preliminary pass

on the environment while slower robots could later refine the initial map.

Lastly, the cost advantage mentioned in the previous sections might not always

apply depending on the nature of the project of multi-robot design. This limitation does not

traditionally apply since multi-robot systems aim at using many cheap simple robots which

total cost still remains under the cost of complex platforms carrying out the same mission

(for instance the case of DJI Phantom quadrotors versus a satellite for Earth imagery).

63

However, it may apply mostly when comparing single-robot systems with multi-robot

solutions, and is exacerbated for heterogeneous groups. Indeed, for a heterogeneous group,

several different platforms are actually designed instead of a single robot. This could result

in a higher cost for the multi-robot solution in terms of development – and sometimes

procurement as well. This further motivates the study of cost tradeoffs between multi-agent

systems and single platform solutions.

In the presence of such limitations to the use of multi-robotics compared to its

advantages, one may wonder if there is an actual benefit in developing a multi-robot system

instead of a single-robot one. Indeed, most of the community tends to evaluate the

performance of multi-robot systems independently without having any benchmark

performance to compare it to. This is largely due to the fact that the field of swarm

engineering is lacking established standards. As mentioned in [101], “Collectives offer the

possibility of enhanced task performance, increased task reliability and decreased cost over

more traditional robotic systems. Although they have this potential, many possible

collective designs are neither more efficient, nor more reliable, nor more robust than a

comparable single (more complex) robot”. In particular, it also provides a quite exhaustive

analysis of situations in which multi-robot solutions would be preferable to single-robot

ones. However, no quantification of the advantage or disadvantage is provided. Other

studies such as [101], [133], and [134] investigate the question of whether it is more

efficient to distribute expertise rather than designing a unique expert robot. However, these

papers focus on very particular missions and lack generality: no methodology exists in

multi-robot engineering to perform such comparisons. Similar observations can be drawn

64

from [139], whereas it studies the tradeoffs between having a group as opposed to a single

robot, the comparison of different groups on a given mission seems to be a missing topic.

This leads to a third conjecture:

Conjecture 3

There is a need to evaluate and compare the real advantage of different optimized

multi-robot systems versus optimized single-robot solutions on a given mission.

Summary: The limitations highlighted in this section showed that the design of multi-

robot systems remains a quite complex problem, delaying their use in real-world

applications. From SoS design obstacles to stringent communication requirements, from

difficult decision-making architectures to possible development cost excess, all these

complications cause multi-robot systems to struggle in establishing themselves in the

commercial and even military worlds. This section also identified a need to evaluate and

quantify the possible improvement or deterioration resulting from choosing a multi-robot

architecture over a single-robot solution.

1.4 Summary

 With an emphasis on aerial systems, this motivation section started off by

describing the advantages offered by unmanned systems in terms of automation. Their

growing market unleashes a multitude of unforeseen applications, hereby fostering the

diversification of the robotic fleet in terms of designs and capabilities. However, this

broadening spectrum of architectures is not exploited. Moreover, the advantages that

unmanned systems offer might be shadowed by shortcomings in endurance and cognitive

65

behavior. These limitations can possibly be addressed by multi-robotics: a field inspired

by nature with groups of robots performing complex missions beyond the capabilities of

their simple individual components. This enables to tackle the limitations of single-system

solutions by being able to accomplish more complex missions. In addition, heterogeneous

groups of robots capitalize on the diversity of the current robotics fleet. Hence, it was

shown that multi-robotics can be a solution to the shortcomings of single unmanned

systems. Nonetheless, it was established that the advantage of multi-robot versus single-

robot solutions still has to be evaluated and quantified for equal mission requirements. For

instance, the tradeoff between the number of agents in a group (numerality) and the

technical capability of each individual would be interesting to study. The field of

collaborative robotics remains mostly confined to academia and is facing obstacles in its

democratization to commercial applications. The research is at a quite preliminary stage

and the applications demonstrated by the military are avant-gardist and far from

deployment in real-world situations. Moreover, multi-robotics experience several

limitations ranging from typical SoS design obstacles, stringent communication

requirements, difficult decision-making architectures, and possible development cost

excess. These complications motivate the need for a designer to quantify the possible

improvement or deterioration resulting from choosing a multi-agent architecture over a

single-robot solution. Moreover, the literature currently lacks methods for the designer to

intelligently make these choices.

1.4.1 Research objective

The first conjecture motivates a focus of this present work on the design of multi-

robot systems and especially heterogeneous groups. The second one encourages a focus on

66

a design process so as to increase the understanding of multi-robot systems and further

democratize their use for real-world applications, beyond academic and military research.

The third conjecture stimulates a research on the effects of numerality on the group

performance. In terms of design, the group numerality could be compensated by

technology enhancements on the single constituent platforms. Hence, to evaluate the real

benefits of a group over single robots, the tradeoff between the number of robots in the

group and the level of technological development of its agents must be studied. A

motivation hence emerges with a necessity to answer some questions such as:

 Does using a multi-robot system always provide increased performance for a given

mission?

 After a change in mission requirements, is it better to increase the group size or

increase the capabilities of each agent in order to still be able to complete the

mission?

 How to efficiently optimize groups of robots?

 Should a designer spend more time on developing the group architecture or on the

Research and Development (R&D) of individual agents?

 For a given mission, what is the optimal group architecture?

67

These observations lead us to consider the following research objective:

Research Objective

Establish a methodology that enables the optimum design of multi-robot

systems and the evaluation of tradeoffs between individual architecture

development and numerality to achieve group performance.

The whole research process involved in establishing this research objective is

outlined in Figure 1.36.

Figure 1.36: Establishment of the research objective

Swarms Robots Swarm Engineering

Observations 1 Observations 2 Observations 3

Assertion 1 Assertion 2 Assertion 3

Research Objective

• Many drone types are now
available
• This diversity is developing
• Single robot limitations can be

overcome by collaboration

• Designing a multi-robot system

requires much more commitment

than for a single agent
• They are confined to academia or

experimental and avant-gardist

military applications

• Groups might not always perform

“better” than single agents
• Very few group designs

possibilities are considered, mostly

homogeneous and sub-optimal

There is a potential to take
advantage of the diversity

of the existing drone fleet

A standard physical design process

for multi-robot systems is needed

to foster their democratization

There is a need to evaluate and
compare the real advantage of

different optimized multi-robot

systems versus optimized single-

robot solutions on a given mission

Establish a methodology that enables the optimum design of multi-robot systems and the evaluation of

trade-offs between individual architecture development and numerality to achieve group performance

68

1.4.2 Research challenges

Reaching this objective involves addressing several research challenges owing to

the novelty and complexity of multi-robot systems. The most important challenges, some

of which were mentioned in the previous portions, are recollected in the present section.

First, the design optimization of a group of robots results in the generation of an

extremely large design space, far beyond what is typically encountered in aerospace or

automotive industries for single vehicle design for instance. A given group configuration

consists of a combination of possibly different platforms, each one of them having its own

design combinations in terms of subsystems and many other design dimensions. To some

extent, the classical subsystems design space for single vehicles is now “multiplied” by the

number of agents composing the group, this number of vehicles possibly being another

design factor. This is well illustrated by considering the following toy problem:

A robotic group of three agents has to be designed from existing off-

the-shelf components and architectures. Two types of robots are

available, each with five subsystems and three possible technologies

for each of these subsystems. Determine the size of the design space,

i.e. the total number of different groups it is possible to generate

from this setup. All options are compatible with each other.

69

Solution: the decomposition of the problem first starts with the determination of the total

number of configurations for each type of robot. For five subsystems, a choice has to be

made between three technologies which results in 35 = 243 possible configurations for

each type of robot. Then there are two types of robots available (with exactly the same

architecture choices), making 243×2 = 486 the number of possible design choices for

each robot of the group. Finally, it is important to note that when listing the possible

combinations of robots in the group, the order does not matter. Indeed, a combination

“ABC” of robots A, B and C is the same in essence as the combination “BAC” as there is

one robot of each type in both combinations. Moreover, repetitions need to be accounted

for since a group can be comprised of the same robots. Hence, “AAC” or “BCB” are

possible combinations. The final step then consists of choosing 3 robots amongst 486

possible configurations, with repetition. From mathematics, the formula for a k-

combination from a set of size n is “n multi-choose k” given by:

Equation 1.1: n multi-choose k

((
𝑛
𝑘
)) = (

𝑛 + 𝑘 − 1

𝑘
)

With (𝑛
𝑘
) =

𝑛!

𝑘!(𝑛−𝑘)!
 the usual “n choose k” binomial coefficient. The size of the design

space is then ((
486
3
)) = (486+3−1

3
) = (

488
3
) = 19,250,136 possible group designs. As

it can be observed, a simple toy problem already generates a design space with close to

twenty million possible group configurations. Using real-world figures for the number of

technologies or subsystems then quickly results in extremely large design spaces. Note that

70

if incompatibilities between the different subsystems are taken into account, these numbers

would be lower. However, all things being equal, the number of possible configurations

would still remain comparatively higher than for single vehicle systems.

Figure 1.37: An extremely large design space

In addition, the number of possible designs grows exponentially with the

parameters of this toy problem and one quickly ends up generating unmanageable design

spaces which are orders of magnitude larger than for single-robot designs (see Figure 1.37).

To decrease this number of alternatives, partial heterogeneity can be considered: all robots

of a given architecture will have the same configuration. For instance, for a multi-robot

system “𝑄1𝑄2𝑄3𝑃1𝑃2” composed of three quadrotors 𝑄 and two planes 𝑃, it can be

assumed for simplification that all quadrotors will have the same configuration and that all

71

planes will have the same configuration so that the group finally reduces to “𝑄𝑄𝑄𝑃𝑃” with

now only two configuration choices instead of five.

Moreover, the architectures to be considered in the design optimization process

might also not be known a priori and have to be generated, which adds a degree of

complexity to the problem. This plethora of architectures may also have elements which

are not designed to be interfaced together. Hence, the compatibility of the configurations

has to be accounted for in the generation of these architectures.

An additional challenge stems from the very particularity of multi-robot systems,

and particularly swarming systems: their emergent behavior. Resulting from the

interactions between the agents of the group and their complex cognitive comportment,

this behavior is highly non-linear, possibly stochastic, and thus quite unpredictable for the

design process. Owing to this non-linearity, it is in general not possible to optimize each

agent individually in order to obtain an optimal swarm (see Equation 1.2).

Equation 1.2: Non-linearity of the design space

∑𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑎𝑔𝑒𝑛𝑡𝑠 ≠ 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑔𝑟𝑜𝑢𝑝

This distinction between additivity, non-linearity, and emergence as well as the

irreducible character of group properties is clearly established by [140]. A holistic approach

is required to consider the aforementioned interactions between the agents. Moreover, the

lack of link between the microscopic and the macroscopic layers of a multi-robot system

makes it hard to propagate design changes from the agents to the group behavior.

72

The design of multi-robot systems, systems of systems by definition, is also

multidisciplinary. In particular, cost considerations have to be emphasized as emerging

markets tend to neglect this aspect in early design phases (see Figure 1.38). Conceptual

design is the first step in the design process and is an initial response to a given design goal

[141]. The overall shape, size, weight, and performance of the vehicle are imagined based

on basic drivers but no detailed design occurs at this stage. Essential tradeoffs are

considered during the conceptual design phase.

Figure 1.38: Prevalence of cost considerations in early design phases

Many disciplines have to collaborate in the design process, sometimes with

conflicting impacts on the final performance, in order to create the group of robots. This

73

combination of technical design and financial considerations increases the difficulty of

multi-robot systems design.

 In addition to the challenges presented in general by systems of systems

engineering, no known robotic swarm is in commercial use and the design of multi-robot

systems is an emerging field. Consequently, there is a significant lack of historical data to

support the design process and obtain generic insights on multi-robot systems design. There

is also a lack of standards, accentuating the difficulties in establishing a clear design

framework. Additionally, no benchmark is currently available, which makes it hard to

quantify the outcome of the proposed research.

In order to tackle these challenges and fulfil the research objective, the assertions

(Figure 1.36) must be studied individually to identify competences which already exist or

need to be developed. By reviewing and comparing prevailing techniques, the next chapter

pinpoints potential research gaps to be bridged. This will support the definition of the

research problem and help establish the methods, tools, and processes needed to reach the

goals of the research objective.

74

CHAPTER 2

PROBLEM DEFINITION

The path to the research objective previously established is hindered by some

obstacles which must be addressed. The preceding chapter highlighted the principal

challenges to overcome: exploration and optimization in a very large design space, bridging

the gap from the microscopic level (the individual agents) to the macroscopic level (the

group) of a multi-robot system. These form the main research focuses studied by this

chapter in order to establish a proper problem definition.

Figure 2.1: Decomposition of the research objective

In particular, a literature review of pertinent areas is proposed to understand state-

of-the-art methods, their strengths but also their applicability, their assumptions, and their

shortcomings. This step helps in finding the most suitable practices to address the research

challenges and pinpointing deficits in the current literature through formal research

Bridging the gap between microscopic

level to macroscopic level
Exploring a large design space

Research Objective

Establish a methodology that enables the optimum design of multi-robot systems and the evaluation of

trade-offs between individual architecture development and numerality to achieve group performance

75

questions. Hypotheses are then developed as suggested solutions to the identified gaps with

the aim of structuring the rest of the present research process.

2.1 Introductory example

With the intention of familiarizing the reader with the research objective and

provide first insights on how a simulation-based approach may provide the link between

macroscopic and microscopic levels of a swarm, a canonical example is formulated in this

section. While this model is simplistic and corresponds to a basic 2D macroscopic model,

it provides key insights shaping the research questions and the rest of this research and is

to be extended with additional complexity. Consider the following problem formulation:

A homogeneous robotics swarm is to map a 2D area of size lx by ly.

The complete mission consists in reaching the interest area from base

(distance d0), map the area collaboratively, and return to base. One single

agent has the capability to map one unit area at a time. The areas 𝒜i to be

mapped by each agent i are allocated as shown on Figure 2.2. The mapping

mission starts from the top left corner of each sub-area, and follows a path

according to Figure 2.2, there are no obstacles to the agents. For simplicity,

it is assumed that it takes one unit of time to map a unit area so that a grid

cell is basically mapped once it is visited.

76

Figure 2.2: Example of mapping configuration for 3 agents

Let N denote the number of agents in the swarm and v, constant velocity of each agent,

be representative of the performance of a single agent. The mission performance of the

swarm is represented by T, the total time required to map the area. Each agent is assumed

to have a fixed cost of c0, the swarm has an instalment fixed cost of C0 for the ground

station for instance. The cost of technology is represented by a linear increase cv of the

cost of an agent with the velocity. The goal is to:

1. Link the microscopic level variable v, and the macroscopic level variable N through

swarm performance.

2. Assuming a maximum cost Cmax as a budget constraint, derive the optimum swarm

configuration in terms of cost and performance.

𝑑0

𝒜1 𝒜2 𝒜3

𝑙𝑦

𝑙𝑥

Base

77

Solution

1. The mission being finished once all agents are back at the base, the total time to carry

out the mission will be dictated by the slowest agent. Note that each agent 𝑖 is assigned to

map an area 𝒜𝑖 = 𝑙𝑥𝑖𝑙𝑦𝑖 with 𝑙𝑥𝑖 =
𝑙𝑥

𝑁
. In this particular case, since all agents have the same

constant velocity and the same area to map, this slowest agent is the one having to map the

area the furthest from the base: agent 𝑁. Denoting 𝑡𝑖 the time required by agent 𝑖 to perform

its part of the mission, this first observation is written:

Equation 2.1: Total mission time

𝑇 = 𝑚𝑎𝑥
𝑖∈⟦1,N⟧

(𝑡𝑖) = 𝑡𝑁

Each time ti is then obtained by considering the distance travelled di. Note that a

unit area is mapped in a unit of time as per the assumption stated earlier:

Equation 2.2: Mapping time for each agent

ti =
di
v
, ∀i ∈ ⟦1, N⟧

First, each agent has to travel the distance si from the base to its mapping area:

Equation 2.3: Distance from base to mapping area

si = d0 + (i − 1)lxi = d0 + (i − 1)
lx
N
, ∀i ∈ ⟦1, N⟧

78

Then, travel the distance mi required to map the sub-area 𝒜i:

Equation 2.4: Distance traveled during mapping phase

mi = (lyi − 1)lxi + lxi − 1 = lxilyi − 1 =
lxly

N
− 1 , ∀i ∈ ⟦1, N⟧

Note here that the result seems non-homogeneous at first, however considering the

mapping path described on Figure 2.2 we understand that the distance 𝑙𝑦𝑖 − 1 is travelled

𝑙𝑥𝑖 times, and the distance 𝑙𝑥𝑖 is travelled 𝑙𝑥𝑖 − 1 times. Also note that the mapping distance

does not depend on index 𝑖 which is consistent with the assumption that all agents map

equal areas. Finally, the distance 𝑏𝑖 to go back to the base depends on the configuration as

shown on Figure 2.3.

Figure 2.3: Distance back to initial mapping point

Start Start End

𝑙𝑦𝑖 − 1

𝑙𝑥𝑖 − 1

Start

End

Back to initial position

Mapping path

79

Hence, it can be written as:

Equation 2.5: Distance to return to the base

𝑏𝑖 = 𝑑0 + (𝑖 − 1)𝑙𝑥𝑖 + {

𝑙𝑥𝑖 − 1 𝑖𝑓 𝑙𝑥𝑖 even

√(𝑙𝑥𝑖 − 1)
2
+ (𝑙𝑦𝑖 − 1)

2
 otherwise

 , ∀𝑖 ∈ ⟦1, 𝑁⟧

= {

𝑑0 − 1 + 𝑖 𝑙𝑥𝑖 𝑖𝑓 𝑙𝑥𝑖 even

𝑑0 + (𝑖 − 1)𝑙𝑥𝑖 +√(𝑙𝑥𝑖 − 1)
2
+ (𝑙𝑦𝑖 − 1)

2
 otherwise

, ∀𝑖 ∈ ⟦1, 𝑁⟧

=

{

 𝑑0 − 1 + 𝑖

𝑙𝑥
𝑁
 𝑖𝑓
𝑙𝑥
𝑁
 even

𝑑0 + (𝑖 − 1)
𝑙𝑥
𝑁
 + √(

𝑙𝑥
𝑁
− 1)

2

+ (𝑙𝑦 − 1)
2
 otherwise

, ∀𝑖 ∈ ⟦1, 𝑁⟧

Hence, the total distance travelled by an agent i is:

Equation 2.6: Total distance

𝑑𝑖 = 𝑠𝑖 +𝑚𝑖 + 𝑏𝑖 , ∀𝑖 ∈ ⟦1, 𝑁⟧

=

{

 2(𝑑0 − 1) +

𝑙𝑥
𝑁
[2𝑖 − 1 + 𝑙𝑦] if

𝑙𝑥
𝑁
 even

2𝑑0 − 1 +
𝑙𝑥
𝑁
[2(𝑖 − 1) + 𝑙𝑦] + √(

𝑙𝑥
𝑁
− 1)

2

+ (𝑙𝑦 − 1)
2
 otherwise

Putting the result together we obtain the total time required to complete the mission

as a function of the microscopic variable 𝑣 and the macroscopic variable 𝑁:

80

Equation 2.7: Final expression for total mapping time

𝑇(𝑣, 𝑁) = 𝑡𝑁 =
𝑑𝑁
𝑣

=

{

1

𝑣
[2(𝑑0 + 𝑙𝑥 − 1) +

𝑙𝑥
𝑁
(𝑙𝑦 − 1)] if

𝑙𝑥
𝑁
 even

1

𝑣
[2(𝑑0 + 𝑙𝑥) − 1 +

𝑙𝑥
𝑁
(𝑙𝑦 − 2) + √(

𝑙𝑥
𝑁
− 1)

2

+ (𝑙𝑦 − 1)
2
] otherwise

For visualization purposes, this mapping time to be minimized can be transformed

into an objective to be maximized by considering the mapping rate: 𝑅(𝑣,𝑁) =
𝑙𝑥𝑙𝑦

𝑇(𝑣,𝑁)
. This

rate represents the speed at which the whole area is mapped.

2. This expression can then be plotted to gain insight on how the microscopic level and the

macroscopic level variables affect the swarm performance. It may also be used to derive

an optimal swarm architecture yielding the maximum performance while enforcing a cost

constraint. Given the above nomenclature, the total cost for the swarm system is given as:

Equation 2.8: Cost structure

𝐶 = 𝐶0 + 𝑁(𝑐0 + 𝑐𝑣 . 𝑣 + 𝑐𝑣2 . 𝑣
2)

The figures here below present such analysis results for 𝑑0 = 100 𝑚 and a map

size of 𝑙𝑥 = 100 𝑚 by 𝑙𝑦 = 100 𝑚. The cost is represented in notional units so that an

agent fixed cost is 𝑐0 = 3, the swarm fixed cost is 𝐶0 = 10 and a unit of individual

performance (velocity) increases the cost by 𝑐𝑣 = 1. The quadratic technology cost factor

81

𝑐𝑣2 is first set to zero. The cost constraint, or available budget, is fixed at 𝐶𝑚𝑎𝑥 = 70 for

the swarming solution. Finally, note that the mathematical formulation derived here above

is valid when 𝑁 is a divisor of 𝑙𝑥 due to the mapping navigation assumptions. However,

the plots are presented for various integer values of 𝑁 without distinction.

Figure 2.4: Evolution of mapping time with the design variables (example 1)

82

The first proposed graph (Figure 2.4) enables to understand how the microscopic

level and macroscopic level variables affect the performance of the system, here

represented by the mapping time 𝑇(𝑣, 𝑁). As one can expect, increasing the number of

agents in the swarm increases the mapping rate, or equivalently, decreases the mapping

time hence improving the mission performance. Enhancing the capabilities of each agent

constituting the homogeneous swarm also results in a performance improvement.

(a) Mapping rate contours (b) Swarm cost contours

Figure 2.5: Contours for mapping rate and system cost (example 1)

The design points which are just satisfying the cost constraint are represented in red

(Figure 2.4, Figure 2.5) and they can be seen following the 70-contour of cost with a

83

mapping rate of 20 m2/s and 40 m2/s for the numbers given in this particular case.

Optimization of the swarm design for this particular mission yields the following

characteristics:

Table 2.1: Example 1 designs

Design characteristic Sequential optimization Global optimization

Number of agents 4 5

Individual velocity (m/s) 10 8.90

Mission time 4 min 47 s 4 min 27 s

Total cost (notional cost units) 62 69.50

Note that when deriving the optimal design with the usual sequential optimization

approach (optimizing agents individually first, and then the group), a sub-optimal design

is obtained (in red). By being stuck at such a local optimum, a 7% performance degradation

is observed with the “global” optimization technique that optimizes both levels

simultaneously. In this particular example, the optimization seems to favor individual

performance over the numerality in the swarm.

By adding a quadratic velocity term to the cost with 𝑐𝑣2 = 0.3 and changing the

cost constraint to 𝐶max = 100, a different optimum comparison is obtained as shown on

Figure 2.6 and in Table 2.2.

84

Figure 2.6: Evolution of mapping time with the design variables (example 2)

As seen on Figure 2.6, the infeasible space due to the cost constraint now occupies

a larger portion of the design space. Indeed, owing to the quadratic cost term, the cost of

the system now increases more importantly with the velocity design variable.

85

Table 2.2: Example 2 designs

Design characteristic Sequential optimization Global optimization

Number of agents 2 7

Individual velocity (m/s) 10 4.30

Mission time 8 min 55 s 7 min 01 s

Total cost (notional cost units) 96 99.93

This time, the optimization tends to favor numerality over individual performance

by having many agents with a moderate velocity. One will note that the simultaneous

optimization technique offers an improvement of 27% in performance compared to the

sequential optimization scheme.

This example helps illustrate and understand the idea of tradeoffs between

numerality and individual performance, main component of this research. The agents are

modeled with one variable and the group behavior is fixed (although depending on the

number of agents and the size of the map) and is not overcomplicated with respect to the

complexity of the microscopic level. This is the type of tradeoff that is used in mesoscopic

models, detailed in the next subsection. The purpose of this present work is then to build

from this simplistic case, notably by adding additional levels of complexity: heterogeneity,

agent behavior, swarm intelligence, and possibly stochasticity and uncertainty.

2.2 Bridging the gap from microscopic to macroscopic level

The first principal research axis identified in this problem formulation is the lack

of a link between the behavior of the agents and the comportment of the group (Equation

1.2). This existing gap must be bridged in order to be able to obtain optimal group designs.

86

The emergent field of swarm engineering tries to address this design difficulty of multi-

robot systems and to standardize their design. Introduced by [142], the term of swarm

engineering refers to the emergent discipline aimed at forming systematic processes to

model, design, realize, verify, validate, operate, and maintain swarm robotics systems [95]

and to a larger extent, multi-robot systems. The formal method of swarm engineering as

defined by [142] consists of two steps: the generation of an appropriate group-based swarm

condition, and the generation of a behavior for each swarm agent that satisfies this

condition. Considering swarm engineering in a broader sense, the formalism of systems of

systems engineering provides a first approach to understand what tools and methods are

required in order to design a group of robots. Swarm engineering being a relatively new

field, it exhibits a certain lack of maturity which adds many limitations to its current

possibilities. In this section, a review of these restraints is proposed and by focusing on a

few of them, research questions are introduced. A multitude of specific swarm design

methodologies are then reviewed to gain depth in understanding swarm engineering and

possibly give first elements of response to the research questions.

2.2.1 Swarm engineering: a lack of maturity

It is not before the year 2000 that a first design procedure focused on multi-robot

systems and more particularly swarming systems was formalized by [142]. This makes the

field of swarm engineering quite recent and at a very early stage of its development.

Subsequently, this emergent discipline experiences several shortcomings which hampers

its understanding and delays its usage in civil applications.

87

To begin with, the development of swarm engineering is not homogeneous. The

areas of requirements analysis, performance measurement and maintenance are clearly

lagging behind more popular topics such as design and analysis which concentrate most of

the progress of the field [95]. Even in design and analysis, much emphasis is put on the

behavior of the individual agents and the behavior of the swarm, giving little attention to

the physical design of the robots [130]. Most of the time, a generic swarm of robots is built

focusing on the simplicity of the agents and their means of local interactions (cameras and

markers, infrared sensors, Wi-Fi…).

Once the swarm is built, the research focuses mainly on the implementation of new

behaviors for the swarm. It is likely that once swarming systems are introduced into real-

world applications, maintenance and performance areas will start being a concern for the

industry and this interest will transfer to the research community.

The development of design approaches is also held back by a lack of established

standard metrics to evaluate the performance of robot swarms. Few metrics are defined and

most of them are tightly related to specific applications and cannot be reused. For instance,

when considering a mapping and exploration application, relevant metrics can be the area

covered, the quality of the map, and the time to cover this area. However for construction

or pattern formation applications, such metrics would not make a lot of sense. This

particularity makes the design of swarming systems very application-specific, preventing

the establishment of a generic design method.

88

Additionally, the field is missing testbed applications and publicly available

datasets for the research community. These are essentials in order to test and benchmark

new design methods and algorithms. While foraging is commonly used as a test

application, it is limited and lacks an established standard scenario [95] that could be used

by researchers. Construction, also commonly used as a testbed, exhibits similar limitations.

This lack of standards hinders the comparison of different swarm robotics systems.

Swarm engineering is also impeded by the absence of an established simulator

which could be an enabler for the research community. An ideal simulator for multi-robot

purposes should first encompass features from typical robotics simulators: enable 3D

simulations and be modular to accommodate any type of robots. It should also be scalable

with respect to the number of robots. This is the main constraint for multi-robot simulators

as swarm robotics in particular might require an extremely high number of agents. In

addition, modularity is essential to be able to accommodate different scenarios. Finally, the

ideal swarm engineering simulator should be open-source to foster development by the

research community. Many mobile robotic simulators already exist and may be used for

experiments with multi-robot systems. Their differences lie mainly in their technical

characteristics but also the cost of their license [96]. These principal suites of simulators as

reviewed by [96] and [143] are summarized in Table 2.3 with their capabilities.

89

Table 2.3: Overview of multi-robot simulators

Simulator 3D Scalability Modularity Open-source

ARIA ●● ● YES

CARMEN ●●● YES

Gazebo ●●● ● ●●● YES

Microsoft Robotics Studio ●●● ● ●●● NO

MissionLab ●●● ● YES

Pyro ●●● ●● YES

Stage ●●● YES

SwarmBot3D ●●● ●●● YES

TeamBots ● YES

Webots ●●● ● ●● NO

The legend used for this table is the following:

The development environments which are the most used include Stage which

provides 2D simulation capabilities with a runtime scaling mostly linearly with the number

of robots up to 100,000. Gazebo is a 3D open-source simulator which notably includes

rigid-body physics and comprises a large library of robots and sensors. Webots is a

commercial mobile robotics simulator providing the same features and enabling multi-

robot simulations for up to 100 robots. Microsoft Robotics Studio is another simulator

developed by Microsoft Corporation. It enables multi-robot simulation but suffers from

discontinued official support since 2012. Finally, SwarmBot3D is a simulator designed

● Feature may be obtained by extension

●● Feature partially/decently supported

●●● Feature completely supported

90

specifically for the S-Bot platform of the SwarmBot project. It can be seen that none of

these simulator offers all the characteristics required for swarm engineering simulations.

As Table 2.3 also suggests, no existing solution proposes to address all the enabling

capabilities of the ideal multi-robot simulator.

Furthermore, highly non-linear relations from agent parameters to group behavior

[144] result in a lack of top-down design methods [95] and establish a gap in the design

flow. Indeed, as stated in [145], “one challenge in understanding self-organizing systems

is the micro–macro link, i.e., determining the relationship between global and local

behavior patterns and vice versa”. [96] also states that “no general method exists to go from

the individuals to the group behavior”. Due to the multitude of concurrent interactions

among multiple agents, the non-linear relationship between the variation in a design

parameter and its resultant repercussion on the group behavior is non-intuitive and hard to

control [144].

Figure 2.7: Missing link between macroscopic and microscopic level

Macroscopic
(Swarm)

?

Microscopic
(Agent)

91

This lack of a link between macroscopic and microscopic levels of a swarm is the

main obstacle faced by swarm engineering and the intuition of the human designer still

remains the main ingredient in the development of swarming systems [95].

Optimization of the different attributes of the group and its individual agents is part

of the traditional design process and the manifestation of this gap is a sequential

optimization with suboptimal results. This deficiency results in current methods of swarm

engineering tackling the design of swarming systems by performing a serialized

optimization: the microscopic level first (the agents), and then the macroscopic level (the

swarm). As a matter of fact, some of the research community also use in their swarms

existing platforms which are already optimized for their respective and completely

different missions. Amongst many other examples, [133] has the system designer creating

multi-robot systems by picking from a pool of available robots. [146] alters pre-existing

platforms to obtain a multi-robot system suited to the considered mission. [147] prepares a

swarming system for a competition using the most common quadcopter for the general

public: the A.R. Parrot Drone. These missions generally greatly differ in scope with the

type of mission that the swarm has to accomplish. Using these platforms, researchers then

attempt to obtain an optimal swarm by completing a second round of optimization. This

sequential process results in suboptimal designs since on one hand, it is unlikely that the

swarm takes advantage of the full capacities of its constituent agents, and on the other hand

the agents were never designed fully as the integral part of a swarm. In his study for

architecting systems, [125] is one of the first to highlight this incoherence in the design

process back in the early days of systems of systems engineering. Focusing on

communication aspects, it is stated that the resulting multi-robot system might be

92

comprised of agents which were not designed to fit the whole system. They are integrated

after their own design is finished.

While the lack of this micro-macro link is identified by many in the research

community [95], [96], [144], [145], there is no record of an attempt to quantify the possible

improvements which could be achieved in design performance if such a link was to be

established. This observation leads to the first research question:

Research question 1

Can multi-robot systems designs be improved by linking

microscopic and macroscopic levels?

Managing to link microscopic and macroscopic levels of a swarm in terms of design

optimization would consist in replacing the sequential optimization method with what is

generally referred to as a more “global” or “simultaneous” optimization approach. Hence,

to articulate a hypothesis regarding research question 1, the differences between sequential

optimization and global optimization are reviewed in detail.

This segregation between sequential and global optimization typically appears in

Multidisciplinary Design Optimization (MDO), a field used in the design of complex

systems. Swarms constitute a good example of such systems as they are “an assembly of

interacting members that is difficult to understand as a whole” [148]. Moreover, they are

characterized by an emergent behavior, a large number of design variables, and the

nonlinearity of the individual interactions. With the intention of coherently exploiting the

93

synergism of these mutually interacting components, MDO partitions the problem into

subsystems based on physical boundaries, functionality, disciplines, or even organizational

structure of a company. For the scope of this work on group robotics, the system is

decomposed based on physical boundaries: the different robots composing the swarm.

MDO problems are different from classical optimization problems as the design variables

feed into multiple analyses, the objective function depends on several analysis outputs, and

interdependencies might exist between the different analysis functions.

Sequential optimization involves optimizing the different constituents of a system

independently and sequentially, with their own set of constraints and cost function. For a

robotic swarm for instance, it means that the agents of the swarm are first optimized with

respect to individual mission requirements, the whole swarm is then optimized using this

set of pre-optimized agents, or vice-versa (Figure 2.8). On the other hand, global

optimization or simultaneous optimization tends to consider all constituents at once with

all their interactions, in order to derive an optimal complete system (Figure 2.9).

94

Figure 2.8: Example of sequential swarm design optimization

Figure 2.9: Example of global swarm design optimization

Agent 1

Swarm
Minimize mission cost

w.r.t. high level performance of agents

Agent 2 Agent 3

Mission requirements

Requirements agent 1 Requirements agent 2 Requirements agent 3

Optimum

agent 1
Optimum

agent 2
Optimum

agent 3

Optimum swarm

architecture

Agent 1 Agent 2 Agent 3

Mission Requirements

Optimum swarm

architecture

Swarm

95

A growing number of methods of MDO are available to perform global

optimization and they can be divided into two classes: monolithic or single-level

formulations, and multilevel formulations [149]. Single-level techniques use a single

optimizer at the system level and distribute the analysis to the partitioned subsystems. Such

methods tend to be easy to implement but they might not scale well for industrial settings

and for very large problems with many disciplines. On the other hand, multilevel methods

use an optimizer at the system level in addition to multiple other optimizers at the

subsystem level. By benchmarking different MDO algorithms, [149] clearly states that

strategies such as sequential optimization are often not able to find the true optimum of a

system and it is underlined that interactions between the components of the system must

be properly accounted for. This last statement is presumed to be true for multi-robot

systems, and the previous introductory example offers evidence of this suboptimal

behavior. One goal of this thesis is to examine this widely held assumption when applied

to multi-robot systems.

This statement is corroborated by [150] on an example of aerospace design: this

partial (sequential) optimization approach does not lead to the optimal design of the

complete system, except in special cases. On Figure 2.10, a wing is to be designed in order

to achieve a minimum value of an aggregate function of weight and drag. The system

optimizer acts on the span which is given to the aerodynamics group in charge of

minimizing the drag by determining an optimal twist distribution. The aerodynamics loads

acting on the wing are then forwarded to the structures group, in charge of minimizing the

weight of the wing with respect to the skin thickness.

96

Figure 2.10: Wing design by sequential disciplinary optimization

This process is iterated for different values of the wing span until an “optimum”

design is reached. It is shown that this type of sequential procedure yields 11% more drag

than an optimal solution derived with a global optimization technique [150]. Similar

conclusions are drawn from aeroelastic and dynamics considerations. This type of

optimization procedure is notably used in [151] where a bi-level algorithm is used: one

level dedicated to the design characteristics and high-level variables (material, curvature,

global thickness, struts…), and a second level reserved for design proportions (skin

thickness, cross-sections…).

Reference [152] also constated the possible improvements achievable through

simultaneous optimization by applying it to suborbital vehicles design programs. It was

shown that programs that do not properly account for the interactions between their

different business divisions (hence using sequential optimization schemes) proposed very

different programs than the optimal ones found by simultaneous optimization. An

System
min 𝐽 = 𝐷 + 𝑘.𝑊

w.r.t. span

Aerodynamics
min𝐷 for given lift, span

w.r.t. twist distribution

Structures
min𝑊 for given lift, span, loading

w.r.t. twist distribution

97

improvement of up to 14.1% was announced as a result of using a global optimization

scheme as opposed to a sequential one.

The difference between sequential and global optimization is also well illustrated

in the field of industrial engineering, and particularly for supply chain management

problematics. In such problems, a system of suppliers, manufacturers, transportation,

distributors, and vendors operate to transform raw materials to final products and supply

those products to customers. Optimization is applied so that each component of the chain

orders its necessary input in the right quantities, in order to be able to deliver the expected

output at the right time. The goal of supply chain management is then to minimize the cost

of the complete system despite conflicting objectives from the different facilities at stake

[153]. The most evident of these tradeoffs is that the customer desires a short time to

delivery at low prices while the warehouses focus on having low inventory to reduce their

operating costs. In this context, [154] compares sequential optimization to global

optimization on a simplified supply chain. In the first case, the agents of the chain derive

their respective optimal solution independently of the others whereas a complete integrated

supply chain system is considered for the second case (Figure 2.11).

98

(a) Sequential optimization

(b) Global optimization

Figure 2.11: Optimization in supply chain management

Hence in sequential management, each party optimizes its own profit with almost

no regard to how its decisions affect the other members of the supply chain. On the other

hand, a global optimization scheme tries to find what is best for the entire supply chain.

Although the global optimization scheme is harder to put in place for supply chain

management since all parties have to agree to share their inventory information, it results

in better performance of the overall system than in the sequential optimization case. A total

joint profit increase of 2.31% is demonstrated in the example of [154] and the results show

that the global optimization scheme is better than the sequential one.

In the light of this review of MDO, it appears that if a link can be formulated

between microscopic level and macroscopic level, global optimization schemes can be

used to optimize the design of a swarm, resulting in an improved performance when

System

Raw material Supplier Manufacturer Transportation Distributor Vendor Customers

Supply contracts, collaboration, information systems, decision support system

Raw material Supplier Manufacturer Transportation Distributor Vendor Customers

System

99

compared to the sequential optimization case. This can be formulated as the following

hypothesis:

Hypothesis 1

IF an approach leveraging the interdependence between

microscopic and macroscopic levels is used

THEN significant improvements in average performance can be

achieved in the design of multi-robot systems compared to

traditional sequential optimization schemes.

To validate this hypothesis, experiment 1 is implemented to compare the

performance of different multi-robot system designs on the same testbed mission. In

particular, typical questions to be answered by this experiment are:

 Can the micro-macro link provide clear benefits in multi-robot systems design?

 How much improvement can be obtained? To a greater extent, how do the two

methods compare?

 In which cases are both methods yielding similar results?

The first swarm design is obtained with a sequential optimization while the second

design is derived through global optimization. This experiment is to be repeated for several

swarm architecture choices in order to obtain clear conclusions. The necessary

requirements for such an experiment are detailed here below:

 Testbed mission: in this case a mapping/imaging mission (see section 3.3.4)

100

 Method to link microscopic and macroscopic level

 Sequential optimization algorithms

 Corresponding global optimization algorithm: for instance if a genetic algorithm is

used for the sequential optimization, then the same type of algorithm must be used

in the global optimization scheme.

Metrics to compare the two methods are also required in terms of number of

iterations, number of objective function evaluations, rapidity, stability, precision, and other

relevant optimization metrics (see [155]). Based on the questions to be answered, the

evaluation criteria for this experiment are: the percentage difference in the optimization

function values between sequential and global optimization cases, the proportion of test

cases where the difference is below a given limit as well as other insightful statistical

measures of the experiment. The optimal group performance will be assessed with respect

to the best known solution since no analytical derivation of the true optimum is feasible

[156].

The test cases involve first optimizing a set of architectures independently for a

testbed mission, and then optimizing a swarm composition based on these architectures for

the testbed mission. The second step is to perform the simultaneous optimization of both

the architectures and the swarm composition before comparing the two methods. This

comparison is to be repeated for different architectures and mission characteristics. In

particular, additional parameters which could be varied during the experiment may include

the problem size, the stopping criteria of the optimization procedures, their search

101

neighborhoods, and the move selection. A failure point for this experiment consists in the

case where both methods perform equally well or even when the global optimization

method performs statistically worse than the sequential approach. The first validation

criterion for hypothesis 1 is that based on statistical testing, global optimization yields a

superior main design performance on the testbed mission at a 95% confidence level. The

second criterion is that the computational time required is comparable to sequential

optimization. In particular, for the proposed methodology to be used and adopted by

designers, it is necessary to ensure that the global optimization procedure is not several

orders of magnitude slower than the sequential optimization procedure currently used in

the field.

This experiment is designed to provide quantifiable response elements to the

widespread claim that the absence of micro-macro link results in sub-optimal swarm

designs. However, to be able to carry out these experiments, at least one method to link the

microscopic level and the macroscopic level of the swarm has to be elaborated with an

emphasis on physical design. Focusing on conceptual design, central effort for this

research, another research question directly derives from the first research question:

Research question 2

How to link the microscopic and the macroscopic levels of a

multi-robot system for conceptual design purposes?

102

In order to bring elements of response and formulate a hypothesis, the next section

examines a multitude of possible design methods which could be utilized to link the

microscopic and the macroscopic levels of a swarm.

2.2.2 A diversity of design methods

Swarms include some additional particularities (see 1.3.1) which require dedicated

techniques for their design. Such design and analysis techniques fall under the definition

of swarm engineering as per [142] and are presented in this section based on the taxonomies

proposed by [95] (see Figure 2.12).

Figure 2.12: Swarm engineering methods taxonomy [95]

Design methods

Behavior-based design
methods

Probabilistic finite
state machine design

Virtual physics-based
design

Other design methods

Automatic design
methods

Evolutionary robotics

Probabilistic finite
state machine design

Virtual physics-based
design

Other design methods
Multi-robot

reinforcement learning

Analysis methods

Microscopic models

Macroscopic models

Real-robot analysis

103

The next two subsections examine both the design and analysis methods as they

represent possibilities in solving the micro-macro link problem. In particular, it is shown

that none of these methods currently answers exactly the research question envisaged in

the scope of this work. Design methods focus mainly on the design of behaviors as opposed

to physical design, and the analysis methods are completely uncoupled or unfeasible, hence

lacking of a link between microscopic level and macroscopic level of a swarm.

2.2.2.1 Design methods

The goal of the design steps is to create a swarm in terms of architecture, its

vehicles, as well as its functioning so that the group meets certain criteria or accomplishes

a given mission based on initial requirements. The aim of this section is to show that despite

an apparently high number of design methods, swarm engineering actually focuses mostly

on the behavioral design of the swarm, leaving aside the physical design of the agents,

main focus of this present work.

2.2.2.1.1 System of systems approach

The unique engineering challenges presented by robotic swarms seem to

correspond to the ones addressed by systems of systems engineering. Indeed, the goal in

designing a robotics swarm is to optimize the design of the swarm itself but also of its

agents individually so that they fit perfectly into the group. This section will present a

typical SoS approach to show how this field can be used to design multi-robot systems and

possibly swarm systems. A tentative definition of systems of systems given by [157] is:

104

Groups of systems, each of which individually provides its own mission

capability, that can be operated collectively to achieve an independent,

and usually larger, common mission capability.

This designation is to some extent reminiscent of the characterization given for

swarm robotics, hence consolidating a link between SoS engineering and swarm

engineering. The field of SoS engineering is an arising interdisciplinary methodology

focused on transforming individual capabilities into system of systems solutions [158]. In

particular, SoS engineering ensures that individual systems function as autonomous

constituents of one or more SoS, providing appropriate functional capabilities. The

management and operations part of SoS makes sure that political, financial, legal,

technical, social, operational, and organizational factors are considered. This includes the

perspectives and relationships of the stakeholders.

 The main challenges presented by [159] which are of main concern for system of

systems engineering are:

 Complexity is a major issue

 Management can overshadow engineering

 Initial requirements are likely to be ambiguous

 System elements operate independently

 Fuzzy boundaries cause confusion

 System elements have different life cycles

 SoS engineering is never finished

105

The individual systems are not necessarily designed with the goals of the whole

SoS in mind and the field also has to focus on the flow of data and resources between

systems that were most probably not designed to be interfaced. Moreover, testing and

evaluation of the overall system can prove difficult owing to the vague performance

criteria. Finally, system of systems engineering also emphasizes the importance of political

aspects of the design process. Indeed, system of systems are generally funded by a broad

range of sources due to the scope of such projects, making it difficult to align the goals of

each individual funding party with the overall SoS purpose.

In terms of design methods, SoS engineering first concentrates a large effort on

“architecting” [158], [160]: describing the fundamental organization of the system and its

components as well as their relationships to each other and the environment. The

architecture is usually established using a framework which defines specifications for each

“view”. Each view offers a unique perspective about the system and can be focused on

management or integration for instance. The main advantage of this step is to provide a

mean to organize, communicate, and document details about the systems, establish a

planning, and detect possible pitfalls in early designs. Key products of this phase are the

identification of requirements for the modeling and simulation step, a means of

communication between stakeholders and engineers and an evaluation of risks and costs.

 Modeling and simulation is then used as a second principal step to estimate

performance metrics and evaluate the goodness of a design alternative. The views

previously created help provide details needed for modeling the chosen architecture. The

106

link between the products of an architecture and a dynamic modeling and simulation

software is often established through an “executable architecture” [158]. To enable

executable architecting, the products from the architecture must be standardized, computer-

readable, consistent, and contain the information required by the modeling tools. Figure

2.13 summarizes the design process used in architecture-based SoS engineering.

Figure 2.13: Architecture-based SoS engineering process

Modeling for SoS can exhibit some challenges due to the complexity and emergent

behavior required for the mission to accomplish, the stochastic and dynamic nature of the

requirements, and non-linearity.

 Surrogate modeling may be used in the process and presents its own challenges

since as it was stated previously, the relation and propagation from individual agent

parameter (microscopic level input) to the overall swarm behavior (macroscopic level

output) is highly non-linear. Moreover, designers are very often interested in having a time-

dependent description of the behavior of the swarm rather than a non-dynamic model.

Hence, particular advanced surrogate modeling techniques and their associated Design of

Experiments (DoE) procedures are used for SoS engineering. Such SoS modeling

Architecting Modeling Simulation

Executable architecture Notional results Architecture

Executable node Operational node

107

techniques include mathematical graphs, Markov chains, discrete event simulations,

system dynamics, and agent-based modeling [158].

Finally, dealing with SoS engineering as opposed to classical systems engineering

can result in the generation of a very high number of data points and gigabytes of

information. Making sense of this data can reveal challenging and visual analytics tools

may be used as one of the last steps of the SoS engineering process to handle this type of

datasets. The purpose of such a step is to facilitate analytical reasoning for the decision-

makers and provide deep insights by using a broad spectrum of visual representations.

Analysts can then observe the data in multiple ways and also interact with it.

 This section has drawn a parallel between the design of swarming systems and the

field of systems of systems engineering. They share the same technical requirements of

optimizing individual systems in order for them to fit in a bigger system. The challenges

faced in the design of swarm robotics systems are similar to the ones encountered in SoS

engineering. Hence the techniques of SoS engineering can possibly apply to swarming

systems. An architecture-based design process was presented and justifies how some of its

tools are relevant for swarm engineering, in particular modeling and simulation. However,

such methods are not easily automated and tend to put more emphasis on managerial and

operational factors than swarm engineering does. Keeping the methodology of SoS

engineering in mind, swarm engineering also proposes a variety of swarm design methods

which are presented in the next section.

108

2.2.2.1.2 Behavior-based design

As the most common design method, behavior-based design consists in an iterative

process between the microscopic level and the macroscopic level of the swarm. The

individual behavior of each robot is implemented and improved until the desired collective

behavior is obtained. This type of approach enables to base the design on the behaviors

observed in animal swarms which can ease the design process since mathematical models

may already be available. This design method is based on trial and error and is typically a

bottom-up process. Several techniques of behavior-based design are introduced in this

subsection.

Probabilistic finite state machine design: during its mission, a robot uses the history of

its sensors inputs to support its decision process and change its state. Such behavior can be

modeled with Probabilistic Finite State Machines (PFSMs) where the transition between

each state (see Figure 2.14 (a)) occurs based on a probability which can be fixed or change

over time.

(a) Example of PFSM (b) Response threshold function

Figure 2.14: Probabilistic finite state machine design

Repel Wait

Approach

Robot close

𝑃𝑙𝑒𝑎𝑣𝑒 > 𝑟𝑎𝑛𝑑

𝑃𝑟𝑒𝑡𝑢𝑟𝑛 > 𝑟𝑎𝑛𝑑

109

For instance, [161] uses a fixed probability to implement an aggregation behavior

in which robots decide to move towards or away from other robots based on a fixed

probability. For time-varying or more generally non-constant probability, a mathematical

function depending on the parameters of the system is used such as the common response

threshold function (Figure 2.14 (b)) which is widely used for decision-making and task

allocation [95].

Virtual physics-based design: in this design method inspired by physics, each robot is

considered as a virtual particle exerting virtual forces on its counterparts. Individuals of the

swarm are also subjected to virtual forces emanating from the environment. The goals of

the mission are associated with attractive forces while obstacles may be modeled with

repulsive forces. For instance in the physicomimetics framework, a robot computes a

virtual force vector as 𝑓 = ∑ 𝑓𝑖(𝑑𝑖)𝑒
𝑗𝜃𝑖𝑛

𝑖=1 where 휃𝑖 and 𝑑𝑖 are the azimuth and distance of

the 𝑖-th perceived obstacle or robot. The function 𝑓𝑖 derives from an artificial potential

function such as the Lennard-Jones potential (Figure 2.15) where the potential increases

close to the obstacle or robot.

(a) Virtual physics based swarm

representation
(b) Lennard-Jones potential function

Figure 2.15: Virtual physics-based design

1

2

Environment
Robot

Virtual force

110

The stability and robustness of such methods can be proved theoretically and vector

quantities are easily added to obtain global behaviors. Moreover, a single mathematical

expression is required to account for the sensors inputs and translate these into actions.

Other design methods: other behavior-based methods are also presented by [95] such as

the Protoswarm scripting language enabling the automatic generation of individual

behavior scripts from a collective behavior. Another method focusing on the design of the

swarm as a whole – and not only on the behavior design, is the top-down method from

[162]. In this method swarm properties are first defined before the implementation of a

macroscopic model. A model checker then verifies the properties in the model before a

simulation implementation. Finally, the whole system is tested on real robots. This

methodology helps verifying formally that the final system satisfies the established

requirements, but remains a tedious iterative method based on trial and error.

2.2.2.1.3 Automatic design

Automatic design methods were created in the hope of reducing the effort of

developers when trying to create collective behaviors. They are further classified into

multi-robot reinforcement learning and evolutionary robotics.

Multi-robot reinforcement learning: robots can use reinforcement learning methods to

learn a behavior through trial and error based on interactions with the environment. Positive

or negative feedback is received by the robot based on its actions, encouraging a certain

type of them and finally converging into an overall optimal policy. Optimality is considered

here with respect to the policy that provides maximum reward from the interactions with

111

the environment. Reinforcement learning hence enables the generation of behaviors

without an explicit implementation from the developer.

Using this principle with multi-robot systems, the difficulty lies mainly into

dividing the global reward for the swarm into individual rewards for its agents: this is

known as the spatial credit assignment. In addition, other factors limit the feasibility of

multi-robot reinforcement learning. First, the considered state space is enormous since at a

given step of the learning process, the possible actions are virtually infinite. Indeed, all

possible decisions at the macroscopic level should be considered as well as all possible

actions from each of its robots, making the number of possibilities very high. Moreover,

the perception of the environment is imperfect and this latter is non-stationary as it evolves

due to the actions of the robots.

Evolutionary robotics: as another concept inspired by nature, evolutionary robotics uses

the Darwinian principle of natural selection and evolution in order to determine an optimal

individual behavior to implement. This method refers to the steps of a classical genetic

algorithm with individual behaviors as the individuals of the population. A random

population is first generated and evolves through cross-over and mutation until the fitness

of the population converges. The best individual of this population can be considered as

the best individual behavior. To evaluate the fitness of an individual of the population, the

mission of the swarm is executed with the given individual behavior (population

individual). Note that this particular design method is particularly suited for homogeneous

swarms since an individual of the population is only one individual behavior. In this design

112

methodology, an individual behavior can for instance be represented as a finite state

machine as presented earlier.

 Several other design methods that do not fit in any of the two previous categories

are presented by [95]. These methods present the same characteristic as multi-robot

reinforcement learning and evolutionary robotics as they focus on the behavior of the

swarm and not its physical design. For example, [163] proposed a multi-robot architecture

named L-ALLIANCE focused on task allocation in teams of robots.

2.2.2.2 Analysis methods

For the analysis phase, a swarm engineer focuses on checking in detail whether a

given design produces the expected behavior or not. As it was mentioned in the previous

sections, a swarm is modeled based on two different levels: the microscopic level which

represents the single individuals of the swarm, and the macroscopic level modeling the

characteristics of the entire group. Models which analyze swarming systems using both

levels of interaction are still under research, especially the link between the microscopic

level and the macroscopic level. Subsequently, the largest part of modeling techniques

focuses on one level at a time [95]. An additional analysis technique consists in checking

the implementation on real robots directly.

Microscopic models: they model each robot individually, accounting for its interactions

with the environment, but also with other robots. Microscopic models can have a lot of

detail in their implementation and vary from simple point masses, 2D representations, to

complete 3D models with physics and intricate simulations of sensors and actuators. A

113

microscopic model explicitly embodies the behavior of each individual robot and is mostly

analyzed through simulation. A benchmark to study scalability of such models was

proposed by [164] using the Stage simulator. It showed that for this particular case, real

time cannot be achieved once the population size exceeds a hundred entities in the most

constraining cases. While some noise models are available as plugins, Stage ignores sensor

noise. The simulator ARGoS presented in [165] is a modular and efficient simulator based

on the segregation of space into subspaces, each running on different physics engines. The

simulators studied in Table 2.3 can also be included in the microscopic models category

depending on the detail level used in their implementation.

Macroscopic models: they focus on the swarm as a whole at a high level and do not

consider each agent individually. A first approach to do so is to use rate and differential

equations to model proportions of robots in the swarm and their state at a given point in

time. However, modeling space and time dependency is difficult with such a method and

modeling the communication between the robots can also be problematical.

Another method of modeling the macroscopic level of a swarm is by using the

control and stability theory. Such techniques are used mainly in order to demonstrate

properties of the swarm such as its stability or the existence of a global behavior. For

instance, tools used to reveal such attributes are the Lyapunov stability theory, linear

discrete-time dynamical systems, or delay differential equations. These methods are based

on formal mathematical formulations but require many assumptions, not always satisfied

in robotic swarms.

114

Additional methods are described by [95] but once again focus on the high-level

behaviors of the swarm and not on its physical properties. For instance, [166] proved the

convergence of a social foraging behavior in the presence of noise thanks to Lyapunov

stability theory.

Mesoscopic models: closely linked to simulation, extensive microscopic models and

especially the 3D models, might contain too much detail for the purpose of conceptual

design as they model every sensor and actuator. Coupled with the large design space

exploration required for design optimization, this makes the use of detailed simulations

quite long. However, an advantage of microscopic models is that the level of detail

included can be varied and hence, adapted to conceptual design purposes. In particular, a

fine balance between microscopic and macroscopic level has to be used: a sort of

mesoscopic level modeling used to fill the gap between the aggregate level approach of

macroscopic models and the intricate detailing of microscopic techniques.

Etymologically, the prevocalic “mes” means middle or intermediate and

mesoscopic is usually defined as a scale between microscopic and macroscopic. The term

mesoscopic is also found in applications other than modeling, as with the field of

condensed matter physics for materials which length is between a quantity of atoms and

materials measuring a few micrometers. Mesoscopic is also used in meteorology where

mesoscale refers to weather systems smaller than cyclonic systems but larger than storm-

scale ones [167]. Indeed, the synoptic (macro) scale size is around 1,000 km, the cumulus

(micro) scale is below 5 km of horizontal dimensions and hence, the mesoscopic scale is

left in between for systems ranging from five to several hundred kilometers. The mesoscale

115

is even divided into smaller subclasses. In the field of fixed-wing design, the microscopic

scale would correspond to a complete dynamic model of the aircraft possibly including

subsystems, the macroscopic scale would correspond to first-principles energy equations

or even an agent-based model studying the interactions between aircraft, and the

mesoscopic scale could correspond to response surface equations as used in [160]. As a

limited microscopic model, mesoscopic models can be thought of as surrogates of

microscopic models.

Such mesoscopic simulation techniques are notably used in transportation traffic

management [168] and in Individual, Organizational, and Societal (IOS) research [169]

focused on modeling human behavior as social units. Mesoscopic methods balance the

required level of detail in different ways, for instance they may consider individual agents

modeling, but not their interactions. Additional techniques used in traffic management

include communicating cells of cars, queue-server approaches, or congregation of cars into

packets travelling the network thanks to a speed-density function [168], [170]. Mesoscopic

models are mainly applied when a sufficient detail of microscopic simulation is desirable

but infeasible due to the size of the network or when the available resources in coding and

debugging are limited. An example application to the aerospace field was proposed by

[171] to propose a convenient modeling technique for congested airports.

Real-robot analysis: due to the difficulty of simulating a system of systems and all the

details involved, an implementation on actual robots in order to validate behaviors is

critical. Real experiments with swarms of robots help assessing the robustness of the design

methods with respect to the noise present in sensors and actuators – amplified and spread

116

by the number of robots. It also tests the sensibility of the design to the simplifying and

sometimes very reducing assumptions used in the models described earlier. Some real-

robot implementations are just proofs of concept while other are extensive experiments. In

both cases, managing such a fleet of robots presumes some important laboratory facilities

and capabilities in buying or building a large number of platforms. Such experiments

consume a lot of resources which explains why more than half of the research in swarm

robotics presents simulation results without real-robot implementation. Moreover, these

experiments are carried out in controlled environments, far from the possible mission

conditions envisaged for real-world applications.

Collective robotics systems such as swarms are hard to design and the emergent

field of swarm engineering tries to tackle this challenging task. In addition to the SoS

engineering procedure, specific design methods of the swarm engineering field were

shortly presented in this section. Most of these methods created for that field actually tend

to focus on the implementation of behaviors with little or no focus on the physical design

and constitution of the swarm. Moreover, these methods mostly concentrate on going from

the macroscopic level to the microscopic level in order to derive the individual behavior of

the agents based on high-level requirements for the swarm. Finally, the analysis methods

try to include specificities from different levels but are still largely separated by level and

seem to fail in clearly solving for the micro-macro link, with a possible exception for

mesoscopic methods. However, these have never been used for swarm engineering. A

summary of the most promising techniques studied in this section is proposed in Table 2.4

117

and Table 2.5 to help choose an approach answering the second research question. This

comparison is based on the following criteria:

 Individual agent: quantifies whether the model is able to account for single agents

individually.

 Advanced individual capabilities: assesses whether the model may include a high

level of detailed modeling for the individual agents.

 Swarm behavior: measures if the method properly accounts for interactions

resulting in swarm behavior.

 Scalability: quantifies the ability of the model to maintain its performance when

the number of agents in the swarm is increased.

 Noise modeling: determines how easy it is to incorporate noise modeling in the

method.

 Can prove stability: evaluates whether the proposed method can be used to derive

the analytical stability of the swarm behavior.

 Modularity: rates how the model can be adapted to different types of swarming

missions.

 Implementation easiness: quantify how easy it is to use or implement the proposed

method. For instance, having to learn a new coding language results in a low score.

118

Table 2.4: Design methods review

Method

Advanced

individual

capabilities

Swarm

behavior

Scalable

Noise

modeling

Can

prove

stability

Modularity

Implementation

easiness

Physical

design

Behavior-based design methods

Probabilistic finite state machine design

●●

●●

●●●

●

●

●●

●

Virtual physics-based design

●

●●●

●●●

●●

●●●

●

●●●

●

Protoswarm

●●●

●●

●●●

●●

●●

●

●

Brambilla et al. (2012)

●●

●●●

●

●●●

●●

●●

●

●

Automatic design methods

Reinforcement learning

●●

●●●

●

●●

●

●

●

●

Evolutionary robotics

●●

●●●

●●

●●

●●

●

ALLIANCE (Parker 1996)

●●

●●

●●●

●

●●●

●

●

119

Table 2.5: Analysis methods review

Method
Individual

agent

Advanced

individual

capabilities

Swarm

behavior
Scalability Noise modeling

Can prove

stability
Modularity

Implementation

easiness

Microscopic level

Point masses model ●●● ●● ●●● ● ●●●

2D models ●●● ● ●● ●● ●●● ●●●

3D models ●●● ●●● ●●● ● ●●● ●●

Vaughan (2008) ●●● ●● ●●● ● ●●● ●●

Pinciroli et al. (2012) ●● ●● ●● ●●● ●● ●

SwarmBot3D ●●● ●●● ●●● ●●● ●

Mesoscopic level ●●● ●● ●● ●● ●● ●● ●●

Macroscopic level

Rate and differential

equations ● ● ●●● ●●● ●● ●●● ●

Classical control and

stability ● ● ●●● ●●● ● ●●● ●

Liu and Passino

(2004) ● ● ●●● ●●● ●●● ●●● ●

Real-robot analysis ●●● ●●● ●●● ● ●●

120

From Table 2.4, design methods seem to provide good capabilities in terms of

modeling a swarm behavior and most of them are quite scalable with the number of agents

in the swarm. However, they do not account very well for the physical design of the agents

since, as the previous paragraphs explained, they tend to primarily focus on behavior design

[130]. On the other hand, analysis methods (Table 2.5) do consider the physical properties

of the agents with a sufficient level of detail, especially microscopic models and real-robot

analyses.

First, macroscopic models account very well for swarm behavior requirements as

they try to follow a top-down approach. Often formulated as pure mathematical models,

they are very scalable and may be used to derive certain analytical properties of the swarm

such as its stability. However, such models are not the easiest to implement and they exhibit

a lack of detail for the modeling of the individual agents.

Real-robot analysis is a very precise modeling technique since it performs

experiments and missions with real robots to refine the design of the swarm. Although this

method accounts pretty well for sensors noise and other experiment uncertainties, it

remains impractical due to the time and cost commitment, especially in a conceptual design

phase.

Besides, microscopic models represent the agents with great detail but due to the

associated computational cost, they fail to scale efficiently with the number of agents.

Moreover, the few microscopic methods able to scale up properly are designed for very

specific types of missions and hence fail in the modularity category.

On the other hand, mesoscopic techniques are a tradeoff between modeling

simplicity and adequate detail considerations. Such techniques usually describe the agents

121

at a relatively high level of detail, putting less emphasis on their behavior and their

interactions which may be represented by macroscopic models. This type of detail balance

is matching quite well with one of the intentions established earlier on: putting emphasis

on the physical design of multi-robot systems at a conceptual design stage.

The previous observations based on a literature review of existing design

techniques for group robotics indicate that moderate microscopic models, also known as

mesoscopic models, seem the most adapted solution to solve the micro-macro link issue

for conceptual design. Indeed, while macroscopic models have the ability to simulate very

large groups of agents, they lack the level of detail required to account for the physical

design of robots. On the other hand, microscopic models are able to precisely model the

responses of individual agents but depend on many parameters, require extensive coding

and calibration [172], and are limited in scalability owing to their computational cost.

Originally used for transportation models and societal research, mesoscopic models fill the

gap by providing modeling for individual agents while constraining the interactional

behavior. They tend to have very strong capabilities for the modeling of both the agents

and the swarm, and some of them also scale properly with the number of agents: key

requirements to establish a micro-macro link in early design phases. This leads to the

formulation of the following hypothesis:

122

Hypothesis 2

IF a mesoscopic approach leveraging the speed of macroscopic

models and the accuracy of microscopic models is used

THEN microscopic and macroscopic levels can be efficiently

linked for conceptual design purposes

The experiment formulated with the purpose of validating this hypothesis is

described here below. Questions to be answered by this experiment include:

 How well does this apply to the conceptual design of multi-robot systems?

 In particular, is the approach fast enough for the exploration of a multi-architecture

multi-level design space?

 How does this compare to other design techniques? (microscopic and macroscopic

approaches)

Failure points for this experiment include cases when the simulation-based

mesoscopic approach performs worse than microscopic or macroscopic methods from the

literature. This is considered with respect to metrics relevant to conceptual design such as

rapidity and precision. When compared with the mesoscopic approach, it is specifically

expected that microscopic models perform much slower and with greater accuracy, and

that macroscopic models perform much faster but with quite poorer accuracy. The accuracy

metric is estimated based on whether or not the solution found by the approach is close

enough to the performance of the real system. Note that random iteration cases can be

tested on all methods to conclude on the rapidity of each one of them. However, for

123

complete insights on conceptual design, the whole optimization scheme has to be

eventually considered. A set of validation criteria for experiment 2 is the following:

 The mesoscopic approach is not slower than current multi-robotics systems design

space exploration methods

 The mesoscopic model of the tested mission is not slower than the microscopic

model

 The achieved fidelity is sufficient for conceptual design purposes (20 to 25%

validation error)

 The mesoscopic model of the tested mission is not less precise than the

macroscopic model

 Ideally, the mesoscopic model speed and accuracy are the “average” of those of

the microscopic and the macroscopic level

Required implementations for this experiment are:

 The testbed mission (see section 3.3.4)

 Mesoscopic model for a canonical mission: this model includes a detailed mission

analysis for the microscopic level but simple group dynamics for the macroscopic

level

 Microscopic and macroscopic models for the testbed mission for comparison

purposes

 A swarm design space exploration technique, detailed in the following section

124

2.3 Exploring a large design space

As identified with the research challenges mentioned in the formulation of the

research objective, the design of a group of robots quickly generates an extremely large

design space (Figure 1.37 page 70). This design space is multi-architecture as several types

of vehicles are considered, and also multi-level since not only there is a design space for

swarm design variables at the macroscopic level (number of agents and control scheme for

instance), but also for individual agents at the microscopic level (number of rotors and type

of battery for example). A pertinent design space exploration technique must then be

considered to account for this particularity and lead to an optimum swarm design. Before

proceeding further on design space exploration techniques, the principal terms relevant

with such a literature review must be clearly defined [173]:

 Features: functions or physical elements constituting a concept (for instance the

wing)

 Option: a technical possibility in implementing a feature (for example a delta wing)

 Alternative: a given set of design variables which are sufficient to fully define a

concept

 Architecture: a group of alternatives that can be described by the same design

variables (multirotors for instance)

 Configuration: a given set of design variables that freezes the design of a given

architecture (for example, a multirotor with 4 rotors, a battery of type LiPo and

700mAh capacity, arms of 10 cm long…)

125

As identified by [173], the literature distinguishes three main approaches to design

space exploration: typical design process, architecture selection, and architecture

configuration optimization.

The typical design process as mentioned by [173] is based on the infusion of

technologies on existing baselines used as a reference for enhanced designs. These methods

notably include top-down approaches such as Technology Impact Forecasting (TIF) [174],

and bottom-up techniques similar to Technology Identification Evaluation Selection

(TIES) [175]. These procedures try to reduce the overall risk and uncertainty by using very

detailed baseline models selected by experts. However, this practice restrains the

exploration of the design space to a limited local window around this baseline (Figure

2.16). The multitude of existing designs in the robotics field calls for broader design space

explorations in terms of architectures selection without the limitations brought by a single

baseline. Some exploration methods such as the one proposed by [176] require the

designers to manually input the different architectures before optimization steps. Other

architecture exploration methods such as [177], give advantage to a systematic generation

and comparison of architectures without enabling architecture optimization. Inspired by

the representations of [173], Figure 2.16 summarizes the capabilities of the three

approaches to realize that no existing techniques enable for a dense enough exploration of

the design space. Each patch represents an architecture and its size translates into the

coverage of the design space proposed by the exploration technique and its different

configurations.

126

Figure 2.16: Capabilities of current design space exploration techniques

The typical design process offers a very detailed design space exploration but very

limited in terms of coverage due to limited risk-taking. Architecture comparison methods

study many architectures but at a poor level of detail, often dictated by qualitative

assessments [173], and rarely considering more than one configuration. Finally,

architectures optimization techniques offer a better coverage around a few baseline

architectures at an intermediate detail level and with many configurations. Note that these

observations hold true for the different levels of the considered design space.

This literature review shows that there is currently no adequate method for properly

covering a multi-architecture multi-level design space for multi-robotics. This deficiency

identified in existing approaches leads to a third research question:

Legend

Typical design Architectures Comparison Architectures Optimization

Design

space
Coverage

Detail level

Poor Moderate Intricate

127

Research question 3

How can current conceptual design methods be adapted to account for

multi-architecture multi-level design space exploration?

As suggested by [173], a combination of architecture comparison and architecture

optimization methods would potentially provide the ability to fully explore the whole

design space with a proper coverage. Such a technique would be able to compare as many

architectures as with the comparison approach while providing a decent coverage for each

of these architecture thanks to the optimization step. Moreover, detailed physics-based

models would enable for an accurate level of detail (Figure 2.17).

Figure 2.17: [173] proposed approach

Architectures Comparison Architectures Optimization

C. Frank proposed approach

128

In particular, this method proposes solutions to some of the challenges mentioned

here above and to the limitations of each of the existing approaches. First, the set of design

variables describing the different alternatives of the “architectures comparison” method

might not be the same for the different architectures. Moreover, each architecture might

require its own optimization technique. Indeed, several baselines exist due to the possible

heterogeneity of the multi-robot system and the design space is quite scattered, from well-

known quadrotors to flapping wing designs. This prevents the use of a single optimization

algorithm which would have to both optimize architectures and compare them at the

macroscopic level. The architectures comparison method uses weak optimization processes

which use a set of generic variables common to all considered architectures. These

techniques are usually not able to precisely capture the different performance trends of

each architecture. On the other hand, architecture optimization techniques focus on a subset

of architectures which are described by the same design variables. Comparing these two

philosophies, a tradeoff appears between the number of architectures considered and the

achievable level of detail. The methodology proposed by [173] is able to systematically

generate alternatives for a single-level design space, and also optimize alternatives

described by different design variables. However, this method has to be adapted to the

design space of swarming systems, characterized by multiple levels in addition to multiple

architectures. Moreover, due to the extreme proportions of the design space, the accurate

modeling and simulation environments recommended by [173] cannot be implemented for

this work and mesoscopic models have to be considered instead. This proposed modified

approach is illustrated on Figure 2.18.

129

Figure 2.18: Proposed approach

After this brief explanation of the proposed approach philosophy, the third research

question may be broken down into two sub research questions focusing first on the

generation of alternatives and then on the optimization of the architectures, detailed in the

next subsections.

2.3.1 Generating alternatives in a multi-architecture multi-level design space

This first step has to provide the ability to generate alternatives which might not

have been studied yet and cannot consist in the sole enumeration of existing architectures.

In addition, one has to keep in mind that the alternatives are generated in order to be later

optimized. This optimization process might possibly be computationally expensive and as

a consequence, the number of generated alternatives should ideally be minimized. As a

consequence, full factorial or other large designs of experiments (DoEs) can be excluded.

Moreover, during the generation of alternatives, the number of possibilities may be reduced

Swarm

Macroscopic level

Agents

Microscopic level

Legend

Detail level

Mesoscopic

Design point

130

by considering compatibility between the different choices involved. For instance, a laser

range finder sensor, usually quite heavy, might not be compatible with ornithopter designs

which are typically tiny robots. This is well illustrated by the taxonomy of [178] shown on

Figure 2.19.

Figure 2.19: A capability-based taxonomy of UAVs [178]

STEALTH COMBAT
(e.g., Lockeed Martin RQ-170,
BAE Systems Taranis)

LARGE MILITARY-SPECIFIC
(e.g., IAI Heron, Northrop
Grumman Global Hawk)

MIDSIZE MILTARY & COMMERCIAL
(e.g., Boeing Insitu Scan Eagle,
Ghods Ababil)

HOBBYIST
(e.g., DJI Phantom)

HOBBYIST

Limited payload capacity

Limited range/persistence

High-definition
imagery/video
transmission

Autonomous GPS and
waypoint navigation

MIDSIZE MILITARY &
COMMERCIAL

Moderate payload capacity

Moderate
range/persistence

Advanced radar

Encrypted high-bandwidth
data links

Limited
jamming/electronic
warfare

Target identification and
designation

Communication relay
function

LARGE MILITARY SPECIFIC

Larger payload capacity

Long range/persistence

Low-probability-of-
intercept radar

Enhanced
jamming/electronic
warfare

Beyond line-of-sight
communications

Releasable missiles bombs

STEALTH COMBAT

Low observable features

Low-probability-of-
intercept/low-probability-
of-detection data links

Higher resistance to
adversary jamming

131

From one category to another, the capabilities vary greatly and it is important to

account for this type of classification. Indeed, for a homogeneous swarm imaging mission,

one could imagine large vehicles covering a wide area at a limited resolution from a high

altitude while smaller agents could cover pinpointed areas with an increased resolution at

lower altitudes. A quantification of the performance of such categories is provided in Table

2.6.

Table 2.6: UAV capabilities by category

Payload

Range

 Real-time Data

Transmission

Range

Endurance

Hobbyist

Few

kilograms

Few

kilometers

2 km

15 min

Midsize

Military

&

Commercial

100 kg

200 km

30 km

60 min

to

a few hours

Large

Military-

Specific

Over 1,000

kg

A few

thousand

kilometers

Global

(300 to 800 km

without satellites)

24 hours

or

more

Stealth Combat

Over 1,000

kg

A few

thousand

kilometers

Global

(300 to 800 km

without satellites)

5 to 24 hours

All the previously mentioned challenges give rise to the following sub research

question:

132

Research question 3.1

How can we systematically generate all feasible alternatives in a multi-architecture

and multi-level design space for further optimization?

To find response elements, existing methodologies of alternatives generation are

reviewed and compared in the next section.

2.3.1.1 Review of existing methods

Alternative generation methods range from creative thinking and brainstorming

techniques to more exhaustive and systematic approaches, from linear methods to intuitive

methods. Being able to automate the generation of alternatives is a key requirement to

satisfy the research objective and this section will then focus on linear creative thinking

techniques which use existing information to generate new ideas. [179] segregates such

methods into three groups. A group A where methods reorganize known information in

different ways by listing, dividing, combining, or manipulating it to yield new entry points

for solving problems. Example of such methods include false faces reversal, slice and dice

attribute listing, cherry split fractionation, or again think bubbles mind mapping. Group B

encompasses methods which are focused on categorization and are hence more systematic

and may possibly be automated. Methods from group B notably include force-field

analysis, morphological analysis, idea grids, diagramming, the phoenix method, and the

future fruit method. Finally, group C favors breaking out of old and established patterns of

thought in order to reach uncharted creative territory. It contains random stimulation, brute

thinking, forced connection, pattern language, and the talk to a stranger method. Once

again, the importance of automated alternatives generation motivates a focus on some of

133

the methods of group B. Common techniques are described here below and later leveraged

to provide possible answers to research question 3.1.

Force-field analysis: also dubbed tug-of-war, this method was introduced in 1946 by [180]

with main contributions to group dynamics and action research. It relies on the idea that a

status quo, in design configuration for example, is held in balance by a set of forces. Some

forces are driving and tend to promote change, while some other restraining forces attempt

to maintain the status quo. Force-field diagrams (Figure 2.20) help the designer understand

the “tug-of-war” between the forces at stake by representing the different forces and their

importance.

Figure 2.20: Force-field analysis

Force 3

Force 1

Force 2

Force 4

Status Quo

Desired change

Driving forces Restraining forces

Weak

Moderate

Strong

Intensity

134

The designer then moves away from the status quo by acting on each of the forces

enforcing the equilibrium. While this method is quite graphic, useful and easy to

understand, it remains rather subjective. Moreover, modifying one force in the diagram

might affect some of the other forces and this dependence is not accounted for in the

original method.

Theory of Inventive Problem Solving (TRIZ): translated from Russian to “Theory of

Inventive Problem Solving”, the TRIZ method is based on an extensive review of invention

patents and the identification of patterns in that study. The approach relies on 40 principles

and 76 standard solutions identified from the patterns and which may be applied to a status

quo in order to obtain non-compromise solutions. In particular, a contradiction matrix is

created to categorize conflictual elements and solve the issues thanks to successful past

implementations. Many variations of the TRIZ techniques exist and focus on different

stages of the process. Nevertheless, the TRIZ technique requires an important amount of

knowledge and data to be able to perform the patterns identification. Moreover [181]

underlines that this method is mainly human-oriented and challenging to implement on a

computer.

Morphological matrix: based on functional and physical decompositions of a system, the

morphological analysis lists all possible alternatives for a given function or feature [182].

In its matrix form, the rows represent the features while the columns represent the options

for that feature. This approach is very easy to automate on a computer given that a database

of features and options is available. However, as a full factorial approach, it tends to

135

generate a very high number of alternatives with a portion of incompatible ones. For

instance when designing a multirotor, an autopilot motherboard might not accommodate a

given number of rotors. To tackle this issue, the morphological matrix is often coupled

with compatibility matrices for each pair of features indicating whether an option is

compatible with another. If option 𝑖 of one feature is compatible with option 𝑗 for the other

feature, then element (𝑖, 𝑗) of the compatibility matrix is 1 and 0 otherwise. Considering a

system of 𝑛 functions, a total of 2𝑛 compatibility matrices is required. While this requires

additional work, the compatibility approach greatly reduces the number of total alternatives

and it has been implemented in many software suites.

Decision tree: this approach uses tree graphs to map all possible paths to reach an

alternative. Each node of the tree is a decision step between several options and

compatibility issues are already addressed at this level [183]. Decision trees are simple to

interpret and very flexible when adding new design options. Still, they require the designers

to consider all branching possibilities manually. Moreover, their implementation in terms

of data structures and memory management remains slightly harder than for a

morphological matrix.

Exploration for emergence: at the frontier between architectures generation and

optimization, [140] proposes a method to explore the design space by focusing on the

emergent behavior of swarming systems. Divergence measures are used with adaptive

sampling methods in order to yield the greatest amount of knowledge about emergence.

However, this approach is limited to pure swarming systems as defined by [95] and may

136

not be suitable for the more generic intentional cooperative robotics problems introduced

earlier.

Interactive Reconfigurable Matrix of Alternatives (IRMA): proposed as a collaborative

design tool, IRMA enables to incorporate tacit information into the concept selection

process [184]. Compatibility matrices and filtering options are used to downselect subsets

of architectures. The main advantage of the IRMA approach is to provide a traceable

reduction of an astronomically large design space to a manageable set of alternatives.

However, this method requires a thorough understanding of the technologies at stake in

order to populate the different filters. Moreover, IRMA is not very suitable for multi-level

design spaces without additional modifications. M-IRMA tries to tackle this issue by

handling different mapping levels based on a functional decomposition [185]. A qualitative

or quantitative measure of performance is performed on the alternatives based on low-

fidelity models, high-fidelity models, or physical experiments. While this enables a drastic

down-selection of the configurations not meeting requirements, it also critically slows

down the process. This is a problem for extremely large design spaces such as the one

considered in the scope of this research. Moreover, the filtering step is based on an

estimated performance of the system, which might not be accurate so early in the design

process. This might possibly eliminate designs which could actually be promising.

A summary of the different methods studied in this section is proposed in Table 2.7

with their different advantages and limitations.

137

Table 2.7: Review of alternatives generation methods

Method
Number of

alternatives

Can be

easily

automated

 Objectivity
Accounts for

compatibility
 Dynamic

Suitable for

mesoscopic

Force-field analysis [180] ●● ● ●

TRIZ [181] ●● ● ●● ●●

Morphological matrix [182] ● ●●● ●●● ●●●

Decision tree [183] ● ● ● ●●● ●

IRMA [184] ●●● ●●● ●● ●●●

M-IRMA [185] ●●● ●● ●● ●●● ●●

138

After reviewing the existing methods for generating design alternatives, the

decision tree seems quite interesting as it enables to easily add new alternatives and could

hence be a good candidate to implement a dynamic generation of alternatives which would

depend on the composition of the swarm. In addition, the morphological approach seems

appropriate and rigorous to consider a sufficient number of alternatives by decomposing

the system into features. As a matter of fact, one of its most common form is the

morphological matrix, used in numerous aerospace design methodologies [186], [187].

Moreover, [188] introduced the notion that the morphological analysis approach can be

used beyond the physical representation of individual systems and would hence be able to

represent the whole system even if this method has to be adapted to account for a dynamic

design space. This concept is introduced as the Augmented Morphological Matrix (AMM)

[188]. The morphological approach is extensive and may generate an extremely high

number of alternatives, a factor amplified by the need for iterations for the further

optimization algorithms. Hence, this number of alternatives needs to be reduced. Moreover,

the morphological approach does not account for the fact that the architectures should be

described by the same sets of design variables in order to be later optimized. Indeed, after

the alternatives generation process, several architectures with different design variables

might be given to the optimization algorithm but the set of variables to optimize for a

quadrotor is different than from an ornithopter design. Disabling some design variables

based on the architecture is not a viable option: these design variables might be considered

as good values by the optimization scheme and hence bias the optimum result for other

architectures where these silent design variables would not be needed. The morphological

approach has to be modified to account for this couple of challenges.

139

The method proposed by [173] is a first part of a solution to this research question

as it considers a multi-architecture morphological approach to design space exploration. It

first highlights that although a sequential use of conventional morphological and

compatibility matrices would enable a systematic generation of alternatives, it is

incompatible with further comparison and optimization of architectures [173]. A two-step

process is then proposed to address this issue. The first step consists in grouping options

which can be described by the same set of design variables. The main effect is to reduce

the number of options available for each of the features, thus reducing the total number of

architectures. The design variables which are used to describe the options of a given group

are then directly included in the optimization process. As a consequence, the number of

architectures is artificially reduced while the number of possible alternatives is increased

[173]. The second step of the process removes the features that are described by only one

group of options. As a result, the feature can be accounted for directly in the optimization

algorithm via the related design variables. A last step consists in computing the

conventional compatibility matrix out of this enhanced morphological matrix. An example

of this methodology is applied to a notional fixed-wing UAV morphological matrix in

Table 2.8 in order to obtain Table 2.9.

140

Table 2.8: Notional UAV morphological matrix

Features Options

Launch Self-propelled Catapulted Hand-launched

Landing Conventional Gliding Parachute

Wing Delta Swept wing Straight wing None

Vertical surface Vertical stabilizer Wing tip None

Jet engine Typical turbofan
Augmented

turbofan
Typical turbojet

Augmented

turbojet

432 alternatives

Looking at Table 2.8, all considered wings may be described by the same design

variables such as a sweep angle, a surface area and an aspect ratio. Hence, the three types

of wing are grouped and these corresponding design variables are integrated in the

optimization algorithm. As for the jet engine options, they can also all be described by a

unique set of design variables, triggering the removal of this feature from the

morphological matrix. The design variables will be directly considered in the optimization

process. These modifications being applied, Table 2.9 is obtained.

Table 2.9: Enhanced morphological matrix

Features Options

Launch Self-propelled Catapulted Hand-launched

Landing Conventional Gliding Parachute

Wing Yes No

Vertical surface Vertical stabilizer Wing tip None

54 alternatives

141

Note that on this particular example, the number of discrete architectures is divided

by 8 and this number grows exponentially with the size of the morphological matrix. This

approach helps in capturing all alternatives while decreasing the number of executions of

the optimization algorithm when compared to the approach of the sequential morphological

matrix. However, while this particular approach enables to accommodate multiple

architectures for design space exploration, it cannot directly be used for dynamic multi-

level design spaces where architectures combinations depend on the alternative chosen for

the upper level (swarm level). The next section constructs a hypothesis by leveraging these

design space exploration techniques into a novel approach.

2.3.1.2 Hypothesis

The proposed approach takes into account the fact that the design space is dynamic

and its size depends on the macroscopic level alternatives. Indeed, if at the macroscopic

level a set of four drones of architecture quadrirotor is chosen, the design space has to

expand to accommodate the possible design choices for the four agents. If a set of three

ornithopters and two trirotors is then chosen at the macroscopic level, the size of the design

space will be different. The steps of the proposed approach are described here below.

Step 1: perform the morphological matrix reduction

Using the steps introduced by [173] and described earlier, the total number of

alternatives for each architecture is reduced to prepare for the later optimization procedure.

This step is based on the set of morphological matrices available for each type of

architecture. For example, due to the different control schemes involved in their conception

and other particular features of each of these types, trirotors, quadrirotors, hexarotors, and

142

other octorotors might be better represented with different morphological matrices.

However, at a conceptual design point of view and with design space exploration purposes

in mind, these architectures can all be regrouped under one multirotor architecture in the

same fashion as the example of Table 2.8 and Table 2.9. As per the arguments of [173],

they can be regrouped under the same design variables such as the number of rotors, the

length of the arms, or the size of the central plate (Figure 2.21). Note that in addition,

groups of options represented by the same design variables are also regrouped.

Figure 2.21: Morphological matrix reduction

While this concept is applied here to the simple and predictable case of multirotors,

it is essential for the design space reduction step and the exploration of architectures in

general.

Quadrotor Hexarotor Octorotor

Multirotor

Trirotor

143

Step 2: build the tree of morphological matrices

In order to be able to account for the evolving size of the design space based on the

design choices made at the macroscopic level, a tree structure is implemented to keep track

of the different architecture composition configurations of the swarm. The root of the tree

is the macroscopic level morphological matrix while the leaves are the morphological

matrices for each of the constituting agents of the swarm. At the intermediary level are

conceptual or abstract morphological matrices used as templates for the leaves (Figure

2.22). Inspired by the decision tree approach described in the previous subsection, this

proposed method enables to have a dynamic morphological analysis of a swarming system

for generating alternatives.

Figure 2.22: Example of morphological matrix tree

For instance by considering Figure 2.22, the swarm level dictates how many

instances of plane or multirotor architectures are to be included in the design space. The

Plane Multirotor Dirigible Ornithopter

Macroscopic level

Microscopic level

Architecture level

Swarm

Agent 4 Agent 5 Agent 6 Agent 2 Agent 3 Agent 1

144

associated morphological matrices are generated as leaves under the corresponding

architecture. The tree also handles the case when there is only one instance as in the case

of the dirigible, and when there is no instance as for the ornithopter.

The whole proposed approach may be summarized by Figure 2.23 where both the

morphological reduction and tree representation steps are represented.

Figure 2.23: Proposed alternatives generation method

The elaboration of this technique then enables the formulation of the following

hypothesis:

Plane Multirotor Dirigible Ornithopter

Macroscopic level

Microscopic level

Architecture level

Swarm

Agent 4 Agent 5 Agent 6 Agent 2 Agent 3 Agent 1

145

Hypothesis 3.1

IF a tree of reduced morphological matrices is used

THEN all feasible alternatives can be generated in a

multi-architecture and multi-level design space for further

comparison and optimization

The experiment implemented to validate this hypothesis first has to carry out a

literature search in order to establish a representative list of possible features and options

for existing architectures of UAVs. A set of morphological matrices is then created and

reduced using step 1. The conforming compatibility matrices also have to be formed. The

resulting new set of morphological matrices is then used to implement the tree structure

required by step 2. Once these requirements are ready, alternatives are generated through

the proposed methodology and the resulting coverage of the design space is evaluated with

respect to relevant criteria such as: consistency, feasibility, exhaustiveness, as well as

integration with respect to the whole methodology. Hence, validation criteria and questions

to be answered by this experiment include:

 Are all alternatives feasible?

 Is each architecture defined by a unique set of variables?

 Are there still redundant variables or options groups in the resulting alternatives?

 Is the number of alternatives reduced when compared with the classical

morphological approach?

 Are all existing concepts covered by the generated alternatives?

146

 Can the generated alternatives be easily fed to the optimization and analysis

algorithms?

The next section details the second step required to generate alternatives: the

optimization of the architectures.

2.3.2 Optimizing in a multi-architecture multi-level design space

A multi-architecture and multi-level design space present challenges for the

optimization of generated alternatives against multiple criteria:

 The architectures considered to constitute the swarm are not always defined by the

same design variables so that a single conventional optimization algorithm may not

be used as it was established earlier.

 There are highly non-linear relationships present between the design variables of

single agents and the group behavior, a multitude of design variables, and

architectures. This prevents the use of surrogate models which could have sped up

the design space exploration.

 The variables describing the alternatives maybe either discrete (number of motors)

or continuous (geometric features). This prevents the use of the very fast gradient-

based optimization algorithms.

 It is expected that many local optima exist since a multitude of robot combinations

could lead to pseudo-optimal performance.

 Multiple objectives have to be optimized so that multi-objective optimization

techniques have to be used.

147

 One slight modification at the vehicle level may completely disrupt the system

level.

These challenges call for the development of an appropriate optimization process

and the following research question:

Research question 3.2

How can swarm architectures be efficiently optimized

in a multi-architecture multi-level design space?

The next section presents a variety of methods found in the literature which could

possibly be leveraged for the optimization of swarm architectures.

2.3.2.1 Review of existing methods

Despite a few attempts such as [189] or [190] to adapt gradient-based optimization

methods to the issue of mixed variable types, such techniques remain better suited for

problems involving only continuous variables and few local optima. Metaheuristic

optimization approaches are thus preferred as they present several advantages related to

the particularity of this work on robotic swarms:

 Stochastic algorithms are used, a key asset to find a global optimum.

 No gradient or Hessian information is required. This is appropriate here since given

the lack of microscopic-macroscopic link, there is very little chance that

expressions maybe obtained for analytical gradients. Moreover, finite differences

methods would greatly handicap the execution time and lengthen the design space

148

exploration by several orders of magnitude which is not an option for conceptual

design phases.

 Metaheuristic methods are often inspired by analogies with nature, physics or

biology which reminds of the nature-inspired character of swarming systems.

In addition, it is important to notice that the problem of optimizing a swarm design

has two main characteristics: multiple objectives are used in the optimization, and multiple

levels (at least microscopic and macroscopic) are present in the optimization process. This

motivates a review of the different methods which exist in both fields and could be used as

response elements for research question 3.2.

2.3.2.1.1 Multi-objective optimization

Multi-objective optimization problems are usually formulated as shown on

Equation 2.9 with 𝑥 the vector of design variables, 𝑦 the vector of cost objectives to be

minimized with respect to 𝑥, and 𝑔 and ℎ respectively inequality and equality constraints.

Equation 2.9: Optimization problem formulation

min
x
𝑦 = 𝑓(𝑥)

𝑔(𝑥) ≤ 0

ℎ(𝑥) = 0

Approaches to solve this problem are usually split into two categories: a priori

optimization and a posteriori optimization. These two philosophies are reviewed in detail

in the next subsections to help the development of the new process.

149

2.3.2.1.1.1 A priori multi-objective optimization

As their name indicates, these techniques require a decision-maker to establish the

relative preference of the different objectives prior to the search of an optimum. The

extensive review proposed in [191] describes the following major approaches.

Lexicographic ordering: the decision-maker ranks the objectives in order of importance

and the optimum solution is then obtained by optimizing the objective functions in

sequence by starting from the most important one. This method tends to favor objectives

one by one when in reality groups of objectives are usually considered. The optimal

solution is hence performing well with respect to one objective over all the others, making

it embarrassingly similar to a single-objective optimization technique. As a consequence,

this method favors certain regions of the design space while neglecting some others.

Lexicographic ordering is generally not privileged in specialized literature. One may also

notice that this method is reminiscent of the sequential optimization gap identified in the

current swarm design approaches.

Linear aggregating functions: the objectives are gathered in a linear combination fashion

as in Equation 2.10. The weights 𝑤𝑖 represent the relative importance of objective 𝑖

estimated by the decision-maker. It is generally assumed for normalization purposes that

∑ 𝑤𝑖𝑖 = 1.

Equation 2.10: Linear aggregate function

𝑓(𝑥) =∑𝑤𝑖𝑦𝑖(𝑥)

𝑖

150

Since only one optimization round is required, this method is generally faster than the

lexicographic ordering approach.

Nonlinear aggregating functions: not commonplace in the literature, nonlinear aggregate

functions use a barycentric approach of nonlinear functions of the objectives as shown in

the example Equation 2.11.

Equation 2.11: Nonlinear aggregate function

𝑓(𝑥) = 𝑤1 ⋅ 𝑦1
2 +

𝑤2
𝑦1 + 𝑦2

+ 𝑤3√𝑦3

Such approaches may be used when the importance of an objective is not static and

may evolve based on its values. However, such methods usually require some additional

preliminary work for the decision-maker to determine a set of conditions that these

objectives functions must satisfy such as asymptotic behaviors or divergence issues.

Moreover, the consistency of the aggregated objective functions is even harder to enforce

in terms of units or physical meaning. Very often, defining a proper nonlinear aggregate

objective function proves more difficult than the definition of a linear one.

Achievement scaling functions: also known as multi-criteria target vector optimization,

this method is rarely used in the literature. The aggregate function accounts for the distance

of the considered point to a desired solution [192]. A first simplistic implementation

consists in using the Euclidean distance 𝑑𝐸(𝑡, 𝑦) = √∑ (𝑦𝑖(𝑥) − 𝑡𝑖)2𝑖 without accounting

151

for the difference in variance between the objectives. In that equation, 𝑑𝐸(𝑡, 𝑦) refers to

the Euclidean distance between a target 𝑡 and the current vector 𝑦 of objectives. A more

elaborated approach is based on a Mahalanobis-like distance 𝑑𝑀(𝑡, 𝑦) = [𝑦(𝑥) − 𝑡]
𝑇 ⋅

𝑆−1 ⋅ [𝑦(𝑥) − 𝑡] where S is a matrix of weights, equivalent to estimated variances, for the

different objectives. While this approach is generally used with a diagonal weight matrix,

it possible to account for an equivalent covariance between the different objectives by

considering a non-diagonal matrix 𝑆. This approach is another way to represent the

weighting scenarios of aggregate functions.

One of the difficulties in dealing with aggregate functions is the combination of the

different objectives which might not be expressed with the same units. As a consequence,

these quantities do not have the same orders of magnitude and this could lead to an

objective involuntarily dominating the aggregate functions. This the reason why the

weights have to be carefully established and normalized. Two methods in particular enable

to account for this issue independently of the weighting factors. The first one is a non-

linear approach introduced by [193] and formulated as shown in Equation 2.12.

Equation 2.12

𝑓(𝑥) = (∑[𝑤𝑖
(𝑦𝑖(𝑥) − 𝑦𝑖

∗)

𝑦𝑖
−(𝑥) − 𝑦𝑖

∗]

2

𝑖

)

1
2

Where 𝑦𝑖
∗ and 𝑦𝑖

− respectively represents the target and the worst known value for

objective 𝑖. The second one is especially applied to the aerospace domain and is called the

152

Overall Evaluation Criterion (OEC) [141], as seen in Equation 2.13. This method uses a

linear aggregate function.

Equation 2.13: Overall evaluation criterion

𝑂𝐸𝐶 =∑𝑤𝑖 ⋅ [
𝑦𝑖(𝑥)

𝑦𝑖
𝐵𝐿]

𝑖

In this formula, the reference used for achievement scaling is the value of the objective for

a baseline (BL) concept.

Despite the limiting fact that these methods assume a prior knowledge of objective

prioritization and might be highly subjective as such, they are easy to implement and

require very little computation overhead. This is a non-negligible asset for the exploration

of an exceedingly large design space. Moreover, they have the advantage of providing a

unique optimum solution to the decision-maker. The subjectivity induced by the choice of

the weights may be attenuated using replications of the process for different weighting

scenarios. Finally, the aggregate function obtained from this process can be used as the

objective function in classical single-objective optimization techniques which are more

mature.

2.3.2.1.1.2 A posteriori multi-objective optimization

In a posteriori optimization, the multiple attributes of the 𝑦 vector are not combined

into an aggregate objective function. Instead, a set of solutions is generated, each of which

represents a relative optimality between the competing attributes [194]. The designer then

153

has the choice of deciding of a “best” solution out of this set in a separate exercise of

decision-making. The concept of a posteriori optimization is hence based on partial

ordering and its goal is to find a set of designs which are better than all designs they can be

compared to, but are incomparable to each other.

Figure 2.24: Partial ordering and Pareto frontier sampling

This set is referred to as the Pareto frontier (Figure 2.24) and has the following rules:

 A weakly dominates B if A is better in some attributes and equal in others

 C strongly dominates B if C is better in all attributes

 A and C are incomparable if A is better than C in some attributes but worse in others

 While Pareto optimization does not provide a single optimized point, designers

have the ability to represent the Pareto frontier and directly visualize and understand

tradeoffs. This is particularly important when uncertainty is considered in the design

approach. However, sampling the points of the Pareto frontier is a complex problem hard

A B

C

𝑦1 (minimize)

𝑦
2
 (

m
in

im
iz

e)
 Feasible

design

space

Pareto

frontier

154

to implement [173], [194]. This is amplified when the number of criteria, constraints, and

variables considered is very large just as it is the case for swarming systems.

A first idea to sample the Pareto frontier is to solve a series of single-objective

optimization problems, each one of them yielding a point of the Pareto frontier. Although

it is possible to vary both the constraints and the objective function considered, common

approaches usually define a weighted p-norm of the objectives (Equation 2.14):

Equation 2.14: Weighted p-norm of the objectives

𝑓(𝑥) = (∑𝑤𝑖𝑦𝑖
𝑝(𝑥)

𝑖

)

1
𝑝

Where 𝑦𝑖 represents the objectives with their associated weights 𝑤𝑖 in the overall

objective function 𝑓. This basic principle is revisited with more elaborated methods such

as the Epsilon constraint method, the Normal Boundary Intersection (NBI) method, and

the Normalized Normal Constraint (NNC) method. While being fast and straightforward

to implement, this set of methods exhibits deficiencies in their application to non-convex,

highly non-linear and constrained design spaces [194].

An alternative approach to the sampling of the Pareto frontier is represented by

evolutionary algorithms which optimize a population of points. As the algorithm iterates,

the population of points converges to the true Pareto frontier. A few of these approaches

are presented here below from the exhaustive review offered by [191].

155

Independent sampling techniques: efficient and simple, they are based on the linear

aggregating function methods but the variation of the weights is not independent anymore

and is directly included in the evolutionary process. However, these methods fail to

produce an even sampling of the frontier.

Aggregation selection techniques (linear, nonlinear): slightly similar to the independent

sampling techniques, these do not use a static weight combination throughout one run of

the evolutionary algorithm but the weights are varied between generations and function

evaluations. Different assignment schemes are usually used such as random assignment,

gene-based assignment or fitness-based assignment.

Criterion selection techniques: well represented by the Vector Evaluated Genetic

Algorithm (VEGA) method, such methods base the selection of a succeeding population

on separate objective performance. This requires only a few changes from a classical

genetic algorithm. However, the fitness evaluation of the individuals corresponds to a

combination of the objectives meaning that VEGA is subject to the same limitations than

the aggregating approaches previously discussed. Extensions of the VEGA method

propose different schemes of weight assignment.

ε-constraint technique: a primary objective function is varied while others are bounded

within allowable ε-constraints. These constraints are then adjusted to keep generating

points on the Pareto frontier. While it remains fairly easy to implement, this method

156

requires a massive computational effort, is prone to non-uniformity of the sampled points,

and the bounds of the constraints must be known a priori.

Pareto sampling techniques: these approaches are based on the fact that evolutionary

algorithms are able to generate several points of the Pareto frontier in a single stochastic

computational run. These methods are generally quite hard to implement.

Table 2.10 summarizes the advantages and limitations of these different multi-

objective optimization techniques.

Table 2.10: Review of multi-objective optimization techniques

Technique Subjectivity Design space

coverage

Scalability

Speed
Implementation

easiness

A priori

Lexicographic ordering ●●● ●● ●

Linear aggregating

functions
●● ● ●●● ●●●

Non-linear aggregating

functions
●● ● ●●● ●●

Achievement scaling

functions
●●● ●●● ●●●

A posteriori

Independent sampling ● ●● ●● ●

Aggregation selection ● ●● ● ●

Criterion selection ● ●● ● ●●

ε-constraint ● ●● ●●

Pareto sampling ● ●●● ●

157

Although they generally provide a better coverage of the Pareto frontier in a variety

of cases not handled by a priori techniques, a posteriori techniques are limited in scalability

[191] as they tend to be complex in implementation and require the solving of many

optimization problems. Indeed, the goal of such methods is to perform a search which is as

widespread as possible so as to generate as many elements of the Pareto optimal set as

possible. Finally, progressive techniques are another possibility for multi-objective

optimization but rely on an interactive process with the decision-maker. Such an approach

may prove difficult and inefficient [191] and is not appropriate in the scope of this research

since only methods which can be fully automated are favored. In the light of this review of

multi-objective optimization techniques, a priori approaches are preferred. However, since

swarm robotics is an emerging field, no baseline or benchmark performance exists to use

achievement scaling functions. Hence, the simple linear aggregate function is chosen in

order to facilitate a fast exploration of an extremely large design space. In order to improve

the robustness of such an approach with respect to the subjective choice of the weights,

different weighting scenarios can be attempted and compared. This still requires less

function calls than a posteriori optimization techniques.

2.3.2.1.2 Multidisciplinary optimization

The techniques of multidisciplinary optimization are generally categorized based

on their number of optimization levels: single-level, bi-level, and multi-level [195]. Hence,

considering multidisciplinary optimization approaches is particularly appropriated for

optimization in a multi-level and multi-architecture design space. Mature and

commonplace methods are reviewed in this section to understand how they can be

leveraged to help reach the research objective.

158

2.3.2.1.2.1 Singe-level techniques

Single-level multidisciplinary optimization approaches use only one optimizer at

the system level. The analysis may be distributed to the different partitioned subsystems

but the optimization is kept centralized at the system-level. The most common single-level

approaches are described here below.

All-At-Once (AAO): all the variables of all disciplines are considered as optimization

variables and the equations of each discipline are used as constraints. Thus, the designs are

only consistent at convergence of the algorithm and there is no guarantee that at any

iteration, the design will be feasible for all disciplines. If the algorithm experiences

convergence issues and fails to reach a relative or absolute extremum, it will yield a design

which is not only sub-optimal, but also not valid across the disciplines. However, this

method has the advantage of not necessitating a complex analysis process.

Multi-Disciplinary Feasible (MDF): this approach includes an analyzer which, at every

optimization iteration, solves the disciplinary equations using the design variables until

additional coupling variables converge. This ensures that the solution is consistent across

all disciplines at each step of the optimization process. However, this solution might be

infeasible with respect to the constraints. A limitation of this method is that it requires a

complex system solver which coordinates all the subsystems in order to return a consistent

solution to the optimization algorithm. This is not only hard to implement but implies a

significant computation time at execution.

159

Individual Disciplinary Feasible (IDF): the IDF method focuses on the discipline

feasibility at each iteration rather than on the multidisciplinary feasibility. This latter is

only achieved at convergence thanks to constraints added for each of the coupling

variables. The IDF method has improved convergence properties when compared to MDF

but moves the complexity of the analysis to the optimization step which still requires

consequent computational resources. Moreover, if the optimizer fails to converge, the

produced solution might be inconsistent. In general, IDF performs better than MDF when

the coupling between the subsystems is significant.

2.3.2.1.2.2 Multi-level techniques

As opposed to single-level techniques, the multi-level optimization methods use

multiple optimizers at the subsystem level in addition to the traditional optimizer at the

system level. This type of approach is preferred when the scale of the problem is too large

for a single optimizer to handle [195]. In these techniques, the analysis and the design are

distributed amongst the different subsystems.

Concurrent Sub-Space Optimization (CSSO): the CSSO approach decouples the

disciplines by letting each subspace carry out a separate optimization based uniquely on

the design variables of that discipline. The coordination of all disciplines is handled by

global sensitivity equations and a sensitivity analysis determining the non-local variables.

This analysis can be carried out by equations or by response surface approximations in

order to reduce the computational burden [196]. This method is useful for the industry as

it is compatible with organizational features and the decoupling generally observed.

However, the consistency of the final solution is generally mediocre due to difficulties in

160

coordinating the subspaces optimization processes. This also makes it hard to guarantee a

robust convergence of the whole optimization process [197], [198].

Bi-Level Integrated System Synthesis (BLISS): the BLISS approach divides the

optimization problem into an upper level and a lower level. The subsystems of the lower

level optimize on their design variables while the common variables are considered as

constants. On the other hand, the upper level uses the common variables for optimization

while the local variables of the lower level are regarded as constants [199]. A gradient-

based approach is then used to reach an optimum. Hence, the computational cost of the

BLISS method is quite important and limits its scalability. One approach by [200] to tackle

this issue is to use response surface methodology. However, this is not applicable to multi-

robot systems due to the high non-linearity between microscopic variables and

macroscopic responses.

Collaborative Optimization (CO): this method is especially focused on early design

phases where all disciplines are usually considered on the same level. The optimizer at the

system level establishes targets to be met by the partitioned subsystems and tries to

minimize the system-level objective function. A set of equality constraints ensures that the

design is driven towards consistency. At the subsystem level, the goal of the optimizers is

to meet the targets and satisfy the constraints of the respective subsystems. With CO, each

subsystem benefits from having its own optimizer, allowing for greater autonomy of the

disciplines. However, the ability to handle coupling is limited since the interactions

between the disciplines are handled by the main optimizer.

161

Analytical Target Cascading (ATC): this approach uses a cascade of optimizers to

propagate the design targets from the top level to the lower levels of the hierarchy. These

lower levels are optimized to meet the targets and the resulting responses are rebalanced to

the higher levels in order to achieve consistency for the whole system. This iterative

process is repeated until consistency is achieved globally for the targets and the responses.

This approach is truly multilevel and considers analyzers and optimizers almost at the same

level. On the other hand, it requires many executions and is computationally expensive.

2.3.2.1.2.3 Summary

A recapitulation of these MDO methods is presented in Table 2.11 in order to help

decide on a suitable framework for the research objective. They are evaluated based on

their convergence performance, the easiness of implementation, their scalability with

respect to the size of the design space, and the incurred computational cost. Moreover,

given the structure of the problem with a macroscopic level and a microscopic level, it is

important to distinguish methods able to account for several levels, dynamic design spaces,

and congregate the microscopic and the macroscopic levels. These last criteria help ensure

that a method can handle several levels without necessarily separating them in the

optimization process. This is essential in order to distance the proposed approach from the

sequential optimization paradigm currently used by the research community.

162

Table 2.11: Comparison of MDO frameworks [149], [195], [199]

Method
Good

convergence

Easy to

implement
Scalability

Computational

cost

Bi-

level

Handles

dynamic

design

space

Congregates

micro/macro

levels

AAO ● ●●● ●●● ●

MDF ●● ● ● ●●●

IDF ● ●●● ● ●

CSSO [197], [198] ● ●● ●● ●● ●

BLISS [199] ● ●●● ● ●●● ●●●

CO ●● ●●● ● ●●● ●●

ATC ●● ● ● ●●● ●

163

From Table 2.11, no method is able to directly handle the dynamic nature of the

multi-architecture and multi-level design space. Moreover, no method considers a possible

congregation of the different levels without modification. From this apparent gap, an

adapted optimization method has to be designed, focus of the next subsection.

2.3.2.2 Hypothesis

As previously stated in this section, metaheuristic approaches are first preferred to

establish an optimization method. In particular, genetic algorithms enable dealing with

discrete, continuous, and categorical variables at the same time. However, they have to be

adapted since several levels are to be handled at once and the architectures might have

different design variables.

A first consideration in designing the optimization technique is that this latter has

to contain at least two layers. Indeed, a single layer would not be able to handle the dynamic

aspect of the design space provided by the macroscopic level design choices. However, it

is important to notice that the segregation of the layers need not be done between

macroscopic and microscopic levels. First of all, this would limit the congregation of the

two levels and most probably yield optimization results similar to those obtained by the

sequential optimization techniques. Secondly, the outer loop of the algorithm needs to take

care only of the dynamic aspects of the design space which are to be later instantiated at

the microscopic level. As such, only the types of architectures considered and their number

in the swarm are susceptible to affect the size of the design space and the microscopic level

implementations. Other design variables, even macroscopic, may be included in the inner

loop optimizer.

164

In order to accelerate the process, it is possible to retain the good architectures, and

possibly designs, from the inner loop so that they are used as an initial inner loop population

for the next iterations of the outer loop. Indeed, since the mission is fixed during the

iterations, it is probable that an architecture performing well on the mission in a given

swarm might show good performance in another swarm configuration. Due to

heterogeneity and highly unpredictable macroscopic level effects, it is not guaranteed that

a good architecture for a given swarm configuration would also perform well in another.

However, this assumption is susceptible to speed up the whole optimization process if the

initial swarm populations are initialized with good designs.

To summarize the optimization scheme, an outer loop optimizes the types of

architectures to include in the swarm as well as their number. This configuration is then

fed to an inner loop which optimizes the multi-robot system based on the remaining design

variables. A key particularity lies in the fact that the outer loop handles only macroscopic

variables but the inner loop deals with both microscopic and macroscopic design variables.

The advantages of this method are multifold:

 Microscopic and macroscopic levels optimizations are now combined, an

approach different than the usual sequential optimization scheme.

 It provides augmented capabilities since it enables multi-architecture and multi-

level optimization.

 The retention of optimal microscopic configurations accelerates the

convergence process and the design space exploration.

165

 There is no need to implement a new optimization algorithm for each robot

architecture, only two generic optimization algorithms are to be implemented.

Figure 2.25 illustrates both optimization loops with an implementation based on a

genetic algorithm.

166

Figure 2.25: Proposed optimization scheme

Outer loop optimizer
(Macroscopic)

Inner loop optimizer
(Macroscopic, microscopic)

Initial fitness
evaluation Mutation

Initialize

population

Selection Crossover

Fitness
evaluation Replacement Convergence?

Mutation

Initial

architectures

Architectures

selection Crossover

Replacement Convergence?

Save optimal

configurations

Optimum

167

The elaboration of this optimization scheme yields the following hypothesis:

Hypothesis 3.2

IF an optimization method based on a bi-level genetic algorithm is used

THEN a fast and efficient multi-architecture multi-level global

optimization of group configurations is enabled

The experiment designed to test this hypothesis is quite similar to experiment 1 and

aims at assessing the quality of the optimization scheme. It first requires the

implementation of both inner and outer loops, and a modular genetic algorithm. Then, the

optimization algorithm is evaluated on the number of iterations, number of objective

function calls, and precision in terms of optimal swarm performance. Again, additional

metrics used to assess optimization algorithms can be used, such as the ones reviewed in

[155]. To assess this precision, it is possible to compare the obtained optimum against a

“ground truth” optimum obtained by randomized sampling, full factorial, or by taking the

best known solution [156]. The parameters to be varied during this experiment 3.2 include

the initial swarm population constitution, the typical genetic algorithm parameters, and the

retention scheme for the optimized microscopic architectures.

 Once again, the validation criteria of hypothesis 3.2 are based on statistical

hypothesis evaluation:

• On average, the global optimization scheme is able to find a better solution than the

sequential optimized solution, with respect to the main mission performance metric.

168

• The optimization scheme is fast enough for the design space exploration of multi-

robot systems.

• The time increase between the proposed scheme and sequential optimization is less

than an order of magnitude

2.4 Summary

After identifying the main steps involved in the realization of the research objective,

this chapter concentrated on the stages requiring research advancements to fill existing

gaps. A literature search was carried out on each of the necessary steps and deficiencies

were identified between existing techniques and the goals of the research objective. Such

inadequacies led to formal research questions. Additional reviews of the existing literature

in relevant fields thenceforward facilitated putting together conceivable answers to the

research questions. With the aim of testing and validating these hypotheses, a rigorous set

of experiments was designed, hence closing the elaboration of the research process (Figure

2.26).

169

Figure 2.26: Summary of the problem definition process

The implementation details of the conceived experiments are discussed in the next chapter.

Problem Definition

Research Question 1 Research Question 2 Research Question 3

Hypothesis 1 Hypothesis 2 Hypothesis 3

Research Objective

Can multi-robot systems designs be

improved by linking microscopic

and macroscopic levels?

How to link the microscopic and

the macroscopic levels of a multi-
robot system for conceptual design

purposes?

How can current conceptual design

methods be adapted to account for
multi-architecture multi-level

design space exploration?

IF an approach leveraging the

interdependence between microscopic

and macroscopic levels is used

THEN significant improvements in

average performance can be achieved

in the design of multi-robot systems
compared to traditional sequential

optimization schemes

IF a mesoscopic approach leveraging
the speed of macroscopic models and

the accuracy of microscopic models is

used

THEN microscopic and macroscopic

levels can be efficiently linked for

conceptual design purposes

IF a tree of reduced morphological

matrices is used in conjunction with an

optimization method based on a bi-
level genetic algorithm

THEN a multi-architecture multi-level
design space exploration can be

carried out efficiently to obtain

optimal group configurations

Establish a methodology that enables the optimum design of multi-robot systems and the evaluation of

trade-offs between individual architecture development and numerality to achieve group performance

170

CHAPTER 3

PROPOSED APPROACH

Focusing on design considerations, the present work proposes to base its approach

on a classical top-down design decision support process such as the one presented on

Figure 3.1.

Figure 3.1: Generic top-down design decision support process

The first chapter presented different existing needs in the field of multi-robotics:

take advantage of a rising diversity in the robotics fleet, evaluate the real advantage of

multi-robot solutions, and elaborate a simultaneous physical design optimization of

microscopic and macroscopic swarm levels. Based on these observations, a research

problem was formulated to establish a methodology that enables the evaluation of dynamic

Make decisions

Evaluate alternatives

Generate alternatives

Establish the value

Define the problem

Establish the need

171

tradeoffs between individual architecture development and numerality to achieve group

performance in multi-robot systems. The second chapter then studied existing techniques

to address the research objective but such procedures came up either inadequate or

unsatisfactory after a thorough literature review. The chapter hence identified clear

deficiencies in current practices which need to be overcome so as to meet the research

objectives. These gaps originated the following main research questions:

1. Can multi-robot systems designs be improved by linking microscopic and

macroscopic levels?

2. How to link the microscopic and the macroscopic levels of a multi-robot system

for conceptual design purposes?

3. How can current conceptual design methods be adapted to account for multi-

architecture multi-level design space exploration?

A second literature review supported the progressive formulation of hypotheses as

possible answer elements to the research questions. These hypotheses are to be validated

through experiments following the approach suggested in this chapter through a top-down

design decision support process. Since the first two stages of this process were studied in

the first two chapters, this section consists in detailing the remaining four steps:

establishing evaluation criteria, defining the design space, evaluating design alternatives,

and finally making decisions.

3.1 Establishment of performance metrics

A first step when studying different design alternatives is to institute performance

metrics, evaluation criteria which are used to compare the different designs and optimize

172

them. Note that in this work, the sentences mentioning “good” performance or “efficient”

result are a direct reference to these performance metrics. Such measures which may

account for mission completion, swarm cost, or also parallelization effectiveness are

presented in this section.

3.1.1 Parallelism efficiency metrics

While microscopic variables influence the performance of each individual agent,

macroscopic variables impact the parallelization of the different tasks. In order to quantify

the effect of such variables on a given design, parallelism efficiency metrics are required

such as the parallelism efficiency and the Limit of Parallel Effectiveness (LOPE).

3.1.1.1 Parallelism efficiency

A common phenomenon experienced in parallel computing is parallel slowdown:

parallelizing an algorithm past a certain limit results in the program to run slower. Ideally

when running a computation on 𝑁 processors, one should hope for a linear speedup of 𝑁

times. However, the parallel implementation itself introduces various delays due in part to

communication of intermediate results, cache misses, or resource contention [201]. Indeed,

with an increasing number of processors, each parallel node of the algorithm spends more

time in communication than in processing. Such delays occasion a slowdown compared to

the ideal case and several related quantities introduced by the community are presented

here below.

An intuitive way to quantify parallel slowdown is to simply compute the ratio of

the time it takes a task to be executed in serial, to the time taken in parallel. Speedup is

hence defined as:

173

Equation 3.1: Speedup formula

𝑆 =
𝑇(1)

𝑇(𝑁)

Where 𝑇(𝑖) represents the time for the task to be carried out using 𝑖 processors. The

actual parallel computation time 𝑇(𝑁) can then be compared to the ideal linear
𝑇(1)

𝑁
 case

mentioned earlier, yielding the formula for parallelism efficiency:

Equation 3.2: Parallelism efficiency

휂 =
(
𝑇(1)
𝑁)

𝑇(𝑁)
=
𝑆

𝑁

Amdahl’s Law is another attempt to study this slowdown behavior and quantifies

how parallelization can speed up a computation. It segregates the tasks of a parallelizable

program under two categories: a part which can be parallelized and a part which cannot.

Let 𝜌 the proportion of execution time which can be improved by parallelization, the total

execution time can then be written as:

Equation 3.3: Parallelized execution time

𝑇(1) = 𝑇 = (1 − 𝜌)𝑇⏟
𝑁𝑜𝑡 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

+ 𝜌𝑇⏟
𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

With parallelization of the tasks by 𝑁 processors, and assuming a fixed workload

for the processors, the proportion of tasks benefiting from it becomes
𝜌𝑇

𝑁
 while the other

174

part remains unchanged. Rewriting the speedup formula (Equation 3.1), the common form

of Amdahl’s law is obtained:

Equation 3.4: Amdahl's law derivation

𝑆 =
𝑇(1)

𝑇(𝑁)

⇒ 𝑆 =
𝑇

(1 − 𝜌)𝑇 +
𝜌𝑇
𝑁

⇒ 𝑆 =
1

(1 − 𝜌) +
𝜌
𝑁

 𝑓𝑜𝑟 𝑇 ≠ 0

This equation can be refined further by using more detailed knowledge about the

process to be parallelized and the decomposition of 𝑇(𝑁) into different tasks. The

efficiency formula (Equation 3.2) can also be expressed by dividing the speedup by 𝑁:

Equation 3.5: Parallel efficiency with Amdahl’s law

휂 =
1

𝜌 + (1 − 𝜌)𝑁

As more and more processors are added, the computation time becomes dominated

by the non-parallelizable tasks. This places a limit on the speedup achievable by the system,

causing the efficiency to tend towards zero (Figure 3.2).

175

(a) Speedup (b) Efficiency

Figure 3.2: Amdahl’s law

For example, if 95% of the process can be parallelized, the maximum speedup

theoretically achievable by parallelization is 20 times. It can be noticed that the lower the

proportion of parallelizable tasks, the lesser processors are required to reach the speedup

limit.

 Amdahl’s law was later revised by Gustafson’s law [202] by changing the

assumption of a constant workload, equivalent to a fixed problem size, to the assumption

of a fixed run time for each task. Indeed, researchers tend to adapt the size of the problem

in order to solve it in a fixed amount of time, taking full advantage of the available

resources. Hence, speedup is computed in terms of workload instead of execution time:

Equation 3.6: Workload-based speedup formula

𝑆 =
𝑊(𝑁)

𝑊(1)

176

Using the same approach as for Amdahl’s law, the workload 𝑊 is decomposed into

parallelizable and non-parallelizable parts:

Equation 3.7: Parallelized workload

𝑊(1) = 𝑊 = (1 − 𝜌)𝑊 + 𝜌𝑊

With parallelization by 𝑁 processors, the parallelizable part can handle a workload

of 𝜌𝑁𝑊, for the same runtime. Hence the workload evolves linearly with parallelization to

yield Gustafson’s law formula:

Equation 3.8: Gustafson’s law derivation

𝑆 =
𝑊(𝑁)

𝑊(1)

⇒ 𝑆 =
(1 − 𝜌)𝑊 + 𝜌𝑁𝑊

𝑊

⇒ 𝑆 = (1 − 𝜌) + 𝜌𝑁

A comparison of Gustafson’s law with Amdahl’s law is proposed in Figure 3.3.

177

(a) Speedup (b) Efficiency

Figure 3.3: Gustafson’s law compared to Amdahl’s law

As expected, the speedup follows a linear trend with the number of processors while

Amdahl’s law reaches a limit. As for efficiency, Gustafson’s law predicts that efficiency

will be limited at 80%, corresponding to the proportion of parallelizable tasks. On the other

hand, the efficiency given by Amdahl’s law tends to zero.

When the serial process is divided into several heterogeneous parts, each with

different capabilities, the previous quantities are adapted to account for this increased level

of detail. Reasoning on execution time, each task 𝑖 is represented with a proportion 𝜌𝑖 of

the execution time and is allocated a number of processors 𝑁𝑖 from the parallelization

process. A non-parallelizable part is then modeled with 𝑁𝑖 = 1. The total execution time

can now be decomposed as 𝑇 = ∑ 𝜌𝑖𝑇
𝑁
𝑖=1 with ∑ 𝜌𝑖

𝑁
𝑖=1 = 1 and thanks to parallelization,

each task takes
𝜌𝑖𝑇

𝑁𝑖
 time. From these considerations, the speedup can then be derived:

178

Equation 3.9: Heterogeneous Amdahl’s law speedup

𝑆 =
𝑇(1)

𝑇(𝑁)
=

𝑇

∑
𝜌𝑖𝑇
𝑁𝑖
 𝑁

𝑖=1

= (∑
𝜌𝑖
𝑁𝑖

𝑁

𝑖=1

)

−1

A similar analysis leads to a reciprocal formula using Gustafson’s law for massively

parallelized processes:

Equation 3.10: Heterogeneous Gustafson’s law speedup

𝑆 =∑𝜌𝑖𝑁𝑖

𝑁

𝑖=1

A toy example can be studied to get a grasp of the behavior of speedup for

heterogeneous systems. The following problem is considered:

A serial task is fragmented into four consecutive processes with

execution time proportions being 7%, 23%, 12% and 58%. Assume that

each process can be individually accelerated up to 20 times thanks to

parallelization.

1. Use Amdahl’s law to derive the speedup of the total system when

each single process is being parallelized while the others are being

kept serial.

2. Assuming that the processes are respectively sped up 1, 5, 20 and 2

times, derive the speedup for the whole system.

179

Solution: referring directly to Equation 3.9, the speedup of the system can be written as:

Equation 3.11: Solution of the parallelization toy example

𝑆 =
1

0.07
𝑁1

+
0.23
𝑁2

+
0.12
𝑁3

+
0.58
𝑁4

Letting 𝑁𝑖 changing from 1 up to 20 and letting the others constant at 1, the effect

of the parallelization of process 𝑖 can be isolated (Figure 3.4).

Figure 3.4: Heterogeneous parallelization

Due to its important weight in the execution time of the system, the fourth process

seems to be dominant as its parallelization yields speedups which are well above the ones

of the other processes. Using 𝑁1 = 1, 𝑁2 = 5, 𝑁3 = 20, and 𝑁4 = 2, the speedup of the

180

complete task is expected to be 𝑆 = 2.43. This confirms the dominance of the fourth

process as the overall speedup is very close to the individual speedup of process 4, despite

the tremendous parallelization of processes 2 and 3. This type of insight is similar to

conclusions drawn for systems in which overall performance is dictated by the least

performant system (see introductory example of section 2.1).

While the previously described quantities are introduced for the field of parallel

processing, similar concepts are applied to various fields including manpower management

in software development: adding more persons to a late project ends up slowing it down

instead of speeding it up [203]. Likewise, parallel slowdown can be extended to multi-

robot systems: it seems right that for a very high number of agents, adding one entity will

result in a similar, if not worse for some cases, performance for the swarm. This is in

contrast with a very low number of agents, when adding two additional agents to a swarm

of two entities may potentially occasion a tremendous improvement in performance. This

notion tends to be quite the reverse of a commonplace intuition that adding more agents to

a group of robots will necessarily result in a better performance.

Continuing on the introductory example, a parallel slowdown is experienced due to

the small intermediate distances travelled by each agent (or more rigorously by agent 𝑁)

between the sub-mapping missions. Indeed, each unit has to reach its initial mapping

position and then return to it once the sub-mapping is done. A parallel can be drawn

between these mission segments and the communication delays experienced in parallel

computing: they represent the bottlenecks deteriorating the parallelization process. This

181

slowdown can be observed on the speedup and efficiency computed for the optimal design

velocity of example 1 (Figure 3.5).

(a) Speedup in mapping rate (b) Parallel efficiency

Figure 3.5: Limits of parallelization for the introductory example

The benefits of numerality are less pronounced as the number of agents increases

from one to a hundred. As expected, the speedup curve is below the linear ideal case:

having twenty agents does not make the swarm map the area twenty times faster. This fact

appears also on the parallel efficiency curve where the optimal solution in terms of cost

lies at 86.61 % parallel efficiency. Note that for the problem setup presented earlier, the

analytical solution makes sense only when the number of agents 𝑁 divides the width 𝑙𝑥 of

the map (blue circles on Figure 3.5 (b)). If we assume that the even pattern is always used

for any 𝑁, which translates into having some overlap between the allocated mapping areas,

a general trend (dashed grey line) can be obtained.

Although the curves exhibit an almost asymptotic behavior, no clear limit in

efficiency or in speedup is observed on Figure 3.5 as for the theoretical examples given on

182

Figure 3.2. Indeed, as opposed to the derivation of Amdahl’s law, the proportion of the

process which is parallelizable is not constant for this mapping example. The distance the

furthest agent has to travel is directly linked to
𝑙𝑥

𝑁
 and thus depends on the number of agents.

Furthermore, this simplistic example does not model the limits encountered in real-world

applications for the parallelization of such a process: mapping time stochasticity,

communication delays, or the traffic and clustering of agents due to saturation of the

available space.

Another important observation is that the parallelism efficiency does not depend on

microscopic variables for perfectly homogeneous swarm and missions. Indeed, if each

agent is assigned a similar task, the time to complete the mission mainly depends on the

annex tasks each one of them has to perform. Hence, parallel efficiency is a way of

assessing the quality of the parallelization process quite independently of the performance

of each agent of the swarm.

3.1.1.2 The limit of parallel effectiveness

While the preceding performance metrics quantify the variability of a given optimal

swarm design, an additional measure is required to try to measure how close a design is to

a possible limit in parallel performance. This absolute limit may correspond most of the

time to an unconstrained optimum with respect to the other metrics and may possibly

represent a physical barrier to further improvements.

Such a concept can be found in the field of controls and automation theory in which

response times are defined with respect to margins [2]. For the study of first-order, linear,

183

and time-invariant systems, the time constant 𝜏 is used to characterize the response to a

step input (Figure 3.6 (a)). This constant is rigorously defined from the differential equation

satisfied by the system:

Equation 3.12: First order system equation

𝑑𝑉

𝑑𝑡
+
1

𝜏
𝑉 = 𝑓(𝑡)

With 𝑉 the response and 𝑓 a forcing function on the system. For such a definition,

it happens that after a time 𝜏, the response to a step input has reached 63% of its final value

and 95% after a time of around 5𝜏. This relates to exponential decay for which the half-

life, time to reach 50% of the final value, is 𝜏 ln(2). For second order systems, there is no

similar analytical relation of such response times with the design parameters and such

relations are documented in abacuses. However, the time for the response to reach and stay

within the 5% band of its final value is defined as 𝑡𝑟5% (Figure 3.6 (b)). An alternative

response time is the rise time 𝑡𝑟, time to first cross the final value (Figure 3.6 (b)).

(a) First order system (b) Second order system

Figure 3.6: Controlled systems characteristic times

184

Henceforth inspired by the definition of time constants in the field of controls and

automation, the concept of LOPE is introduced here. However, as opposed to stable

automated systems used to define 𝜏, 𝑡𝑟5%, and 𝑡𝑟, there is no guaranty that the responses

of swarm systems are stable with respect to the considered design variables (see Figure 3.5

(a)). Hence, incremental relative changes are used and the following quantities are

introduced:

 𝐿𝑂𝑃𝐸5%: The value of the design variable (while all other variables are fixed) for

which the incremental response falls and stays within 5%. While based on the

insights of controls theory and the introductory example, this value of 5% is quite

arbitrary and may depend on the design variable being considered.

 𝐿𝑂𝑃𝐸2
3

: The value of the design variable (while all other variables are fixed) for

which the response is two thirds of its value at 𝐿𝑂𝑃𝐸5%. This limit of parallel

effectiveness is inspired by 𝜏63% of first order systems to give an insight to the

designer of when two thirds of the parallel effectiveness have been consumed in the

design variable.

 𝐿𝑂𝑃𝐸1
2

: The value of the design variable (while all other variables are fixed) for

which the response is half of its value at 𝐿𝑂𝑃𝐸5%.

Although these quantities make more sense when computed with respect to the

number of agents so as to remain directly linked with parallelization, they can be adjusted

to fit a particular problem. They are better visualized as shown on Figure 3.7 and Figure

3.8 which are based on the introductory example.

185

(a) 𝐿𝑂𝑃𝐸5% on mapping rate (b) Incremental mapping rate

Figure 3.7: Visualization of LOPE for the introductory example

The 𝐿𝑂𝑃𝐸5% is 13 agents for a value of the mapping rate of 76.75 𝑚2/𝑠 (Figure

3.7 (a)). It is the number of agents for which the incremental mapping rate falls and stays

within 5% (Figure 3.7 (b)). The computation of the incremental mapping rate is explained

on Figure 3.8 where the incremental mapping rate is of 5.47% at 12 but 4.92% for 13, the

𝐿𝑂𝑃𝐸5%.

Figure 3.8: Detail of LOPE at 5% for the introductory example

186

All limits of parallel effectiveness for the introductory example are then displayed

on Figure 3.9.

Figure 3.9: All LOPE quantities for the introductory example

The 𝐿𝑂𝑃𝐸1
2

= 6 and 𝐿𝑂𝑃𝐸2
3

= 8 tell the designer how far a design is from

𝐿𝑂𝑃𝐸5% = 13. It can also be seen that 𝐿𝑂𝑃𝐸1% is far more demanding to attain in

resources as its value sits at 39 agents in the group compared to 13 for 𝐿𝑂𝑃𝐸5%. This

quantity lets the designer know that after 39 agents in the system, the performance will not

improve by more than 1% per additional agent.

187

3.1.2 Introduction of marginal quantities

Building up on the introductory example of the 2D mapping swarm, a sensitivity

analysis can be carried out in the vicinity of the optimal design point. A sensitivity analysis

helps in the design process in making sure that the obtained optimal design is somehow

robust to slight variations in the design parameters. These latter may change due to

evolving requirements or as a result of the manufacturing process for instance. Figure 3.10

presents such sensitivity plots around the optimal design point derived in the introductory

example.

(a) With respect to individual performance (b) With respect to numerality

Figure 3.10: Sensitivity analysis around optimum design

The sensitivity plots confirm the general trend observed on the whole design space:

an increase in the individual performance of the agents or in the number of agents results

in an improved group performance. These prediction profilers enable the exploration of

cross sections of the response across the different design factors. They represent the

variation in the response when one variable is changed while the others are held constant

188

at the optimal values. The steepness of the curve hence enables to assess the importance of

each factor.

 In particular, it is important for the designer to try to quantify these variations

around the optimum so as to measure the robustness of the design or predict which design

variable will have the most impact on the response with the least cost variation. Such a

variation can be quantified owing to the partial derivative of the response with respect to

the considered design variable. Using the notations from the introductory example, the

variation of the mapping time 𝑇 with respect to the number of agents 𝑁 in the swarm can

be quantified around the optimum as
𝜕𝑇(𝑣,𝑁)

𝜕𝑁
|
𝑣∗,𝑁∗

: the partial derivative evaluated at the

optimum design point (𝑣∗, 𝑁∗). The use of such quantities spreads to the field of

optimization as a way to evaluate the response cost of violating the optimization

constraints. They are also utilized in economics under terms such as marginal cost or

shadow price. The first one refers to the cost incurred by producing one more unit of a good

while the latter, although equal, is rather used to talk about the maximum price a decision-

maker would be ready to pay to produce one more unit of good.

Based on this theory and the previous considerations, marginal quantities which are

adapted to the design of swarming systems are proposed here as performance metrics. In

order to quantify the commonplace statement ensuring that more agents result in enhanced

performance of the swarm, theses marginal measures are computed with respect to the

number of agents in the group in the first place. Their formulation is then extended to other

design variables, microscopic or macroscopic. The following quantities are thus introduced

189

and described hereafter: Marginal Group Performance (MGP), Marginal Group Cost

(MGC) and Marginal Group Efficiency (MGE).

Marginal Group Performance: principal performance metric introduced here, the MGP

originally aims at putting numbers on the ordinary thought that by increasing the number

of agents in the swarm, the performance will improve. Fundamentally, the MGP represents

the variation in group performance if the number of agents is increased by one. By

extension, similar quantities can be derived with respect to other design variables. The

MGP would then represent the deviation of group performance when a unit change occurs

on design variable 𝜒:

Equation 3.13: Marginal Group Performance

𝑀𝐺𝑃,𝜒 =
𝜕𝑃

𝜕𝜒

Going back to the initial motivation for the introduction of the MGP, the effect of

numerality on the performance of the optimal design is quantified by:

Equation 3.14: Numerality Marginal Group Performance

𝑀𝐺𝑃,𝑁 =
𝛥𝑃

𝛥𝑁

Marginal Group Cost: While the MGP focuses on variations in the performance of the

system by unit changes in the design variables, the MGC quantifies at what cost such

190

changes are made. Hence, the MGC is directly complementary to the MGP to the eyes of

the designer. In the same way that the MGP is defined, the MGC can be written as:

Equation 3.15: Marginal Group Cost

𝑀𝐺𝐶,𝜒 =
𝜕𝐶

𝜕𝜒

Marginal Group Efficiency: finally, in a similar fashion to which the MGP is originally

conceived, the concept is to capture the variations in parallelism efficiency resulting from

a change in the number of agents in the swarm. This idea mainly stems from the fact that

parallelism efficiency of a system is often most affected by the number of agents

composing it. However, this definition can be extended to design variables other than

numerality:

Equation 3.16: Marginal Group Efficiency

𝑀𝐺𝐸,𝜒 =
𝜕휂

𝜕𝜒

As it was previously mentioned, the parallelism efficiency does not depend on

microscopic variables for specific homogeneous swarms and missions. Hence, the

marginal group efficiency will likely be zero when computed with respect to such

variables.

191

These performance metrics are evaluated around design points to be studied. Being

derivatives of the system responses, they provide the designer with clear insight on how

the system performance is changing around the chosen optimum design, and more

generally in the design space. Going back to the first introductory example, the marginal

quantities around the optimal point are presented in Table 3.1 with performance 𝑃1 being

the mapping time and performance 𝑃2 being the mapping rate.

Table 3.1: Marginal quantities for the introductory example

Performance Metrics

Design variables

Macroscopic

𝜒𝑖 = 𝑁

Microscopic

𝜒𝑖 = 𝑣

𝑀𝐺𝑃1,𝜒𝑖 −45.97 𝑠 −3.00 𝑠/(𝑚/𝑠)

𝑀𝐺𝑃2,𝜒𝑖 5.79 𝑚2/𝑠 0.42 (𝑚2/𝑠)/(𝑚/𝑠)

𝑀𝐺𝐶,𝜒𝑖 11.90 0.50 (𝑚/𝑠)−1

𝑀𝐺𝐸,𝜒𝑖 −3% 0 (𝑚/𝑠)−1

By displaying the design variables column-wise, the designer can quickly identify

which variable is having the most impact on any response. Considering the introductory

example, adding one agent to the mapping swarm would decrease the mission time by

45.97 𝑠, however it would also increase the cost by 11.90 units and deteriorate the

parallelism efficiency by 3%. On the other hand, it can be seen that the individual

performance of the agents as a lesser effect on the mapping time but also for a smaller cost

impact. Indeed, increasing the velocity of the agents by 1 𝑚/𝑠 results in a mapping time

decrease by 3 𝑠 and a cost increased by 0.5 only. Note that as explained earlier on and as

192

expected for this particular mission, 𝑀𝐺𝐸,𝑣 = 0 (𝑚/𝑠)
−1: the individual performance of

the agents does not have an impact on the parallel efficiency.

The marginal quantities can also be plotted over the design space to understand how

the derivatives of the performance metrics vary with the design variables. Table 3.2

exhibits these variations with the rows representing the marginal quantities while each

column denotes the design variable considered for the computation of a marginal quantity.

As for the previous contour plots of the introductory example, the red line represents the

cost constraint and the red star is the previously derived optimal design point. These graphs

should be understood in such a way that, by fixing a velocity 𝑣 and reading different values

of 𝑁 on a horizontal line, the designer is contemplating the following question: “with

swarm agents having this velocity 𝑣, what increments in my performance metrics are

possible by adding one more agent?”. By looking up these marginal values for different

values of 𝑁, the designer gains insight to figure out at what size of the swarm it is not

beneficial anymore to add more agents. Same goes for the second column and adding

velocity to the individual agents.

193

Table 3.2: Marginal quantities over complete design space

 𝜒𝑖 = 𝑁 𝜒𝑖 = 𝑣

𝑀
𝐺
𝑃 1
,𝜒
𝑖

𝑀
𝐺
𝑃
2
,𝜒
𝑖

𝑀
𝐺
𝐶
,𝜒
𝑖

𝑀
𝐺
𝐸
,𝜒
𝑖

194

Firstly, the marginal group performance deteriorates with both 𝑁 and 𝑣, confirming

the limits of parallelization. In fact, with more and more agents in the swarm, the benefits

of adding one agent to the swarm (𝑀𝐺𝑃1,𝑁) or 1 𝑚/𝑠 to the velocity of each agent

(𝑀𝐺𝑃1,𝑣) are not as flagrant as for a swarm with fewer individuals. This is deduced by

looking at the horizontal axes of the MGP contour plots. The same conclusion is drawn

with the vertical axes: for swarms with very performant individuals, the benefits of adding

one agent to the swarm or 1 𝑚/𝑠 to the velocity of each agent are lesser compared to the

potential benefits obtained on a swarm with slow agents. The contour plots of 𝑀𝐺𝑃2,𝑁 and

𝑀𝐺𝑃2,𝑣 show the same trend on the mapping rate. 𝑀𝐺𝐸,𝑁 provides a good insight on the

variations of incremental parallelism efficiency: with a swarm of 5 agents, adding an agent

deteriorates the parallelism efficiency by 2.9% while this latter is affected by only 1% in a

swarm of 25 agents.

A second observation is that due to the linearity of the swarm performance metrics,

some of the marginal quantities do not depend on certain design variables. Indeed, noting

that from Equation 2.7 𝑇(𝑣, 𝑁) ∝
1

𝑣
, then 𝑅(𝑣,𝑁) ∝ 𝑣 and consequently 𝑀𝐺𝑃2,𝑣 =

𝜕𝑅

𝜕𝑣
∝ 1

is independent of variable 𝑣. Using a similar approach, it can be verified that 𝑀𝐺𝐶,𝑣 and

𝑀𝐺𝐸,𝑁 do not depend on 𝑣, and 𝑀𝐺𝐶,𝑁 does not depend on 𝑁: observations in correlation

with what is observed in Table 3.2.

Finally, for all contour plots, the amplitude is a lot less for the marginal quantities

computed with respect to 𝑣. Hence, between the two design variables 𝑁 and 𝑣, it seems

that for this case the number of agents has much more impact on the metrics than the

velocity of the agents. Moreover, 𝑀𝐺𝐸,𝑣 = 0 over the whole design space as expected since

195

in this particular mission of a homogeneous swarm, the parallel efficiency does not depend

on the individual capabilities of the agents.

This type of graph clearly shows the limits of parallelization for the introductory

example and motivates the designer to know up to what point the parallelization should be

preferred over individual performance improvements, and vice-versa. While parallelization

efficiency and marginal quantities have been established and quantified in the preceding

sections, no margin measure was defined to systematically obtain an optimum

configuration. The optimal solution for the introductory example was based on the

maximization of the performance with respect to a constraint of cost but one could wonder

if the optimization could be carried out in terms of parallelization efficiency for instance.

The next section establishes possible metrics towards a benchmark evaluation

methodology for multi-robot systems.

3.1.3 Benchmarking

The lack of an established design framework for multi-robotics stems to a great

extent from the lack of a reference benchmarking mission. Such a standard would have to

cover a vast spectrum of possible applications in multi-robotics: collective exploration,

coordinated motion, collective transport, self-assembly, chain formation, consensus

achievement, and many more [95]. A fundamental error resides in the fact that a universal

benchmarking mission or design framework, tailored to various types of applications, is an

evident oxymoron. A customizable universal design framework can however be conceived.

196

Using the generic top-down design decision support process presented on Figure

3.1, the generated alternatives have to be evaluated for further comparison. For the

framework to be customizable, it needs to be applicable to very different mission types

without privileging the canonical mission used in this work. Table 3.3 presents several

types of missions typically utilized with robotic swarms and the pertinent metrics used to

evaluate these missions.

Table 3.3: A disparity of metrics

Mission Metrics

Search and Rescue [117]

 Victim tracking effectiveness

Time to complete objective

Maintenance of communication links

Energy consumption

Oil Spills Detection [117]

Percentage of polluting vessels found

Average time to identify a polluting vessel

Communication links maintenance

Mapping

 Time to complete the map

Quality of the final map

Number of maps reconnection issues

Cost of the swarm system

Distance traveled by robots [204]

Total explored area

Loop closure capabilities

As observed in Table 3.3, there is no normalized metric enabling the evaluation of

the different types of mission which could be used in the proposed methodology. Some

missions do not even have the same number of metrics to characterize them. In order to be

able to use the methodology for various swarm missions, several utility functions are

proposed which aggregate the multiple performance attributes of the system depending on

197

their pertaining to a given category: execution, quality, and cost. This division is based on

widespread paradoxes observed in many design disciplines and in nature: “quantity versus

quality”, “fast versus strong”, “rapidity versus stability versus precision”, and

“performance versus cost” tradeoffs. By this phrasing, it is meant that in many occurrences

these objectives tend to be in conflict and are hence considered separately. For instance, in

the response of automated systems, rapidity is often achieved at the cost of stability or

precision of the response [2]. The overall evaluation criteria are defined as the following.

Execution index: indicative of the pure performance of the system, this index regroups all

mission metrics relating to the “quantity” achieved during the mission of the system. For

example, for the introductory mapping example the execution index would be a

combination of the mapping time and the mapped area (Table 3.4).

Equation 3.17: Execution index

휀 = ∑ 𝛼𝑖𝑀𝑖

𝑀𝑖∈{
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠
𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛}

Completion or quality index: sometimes ambiguously linked to the execution index, the

completion index represents the “quality” (as opposed to quantity) achieved during the

mission of the system. It regroups all metrics assessing the degree of completion of the

mission. Reminiscing the introductory example, a completion index for a mapping mission

may be a combination of the distance errors on the map landmarks, the density of the final

map, and the number of sub-maps reconnection errors (Table 3.4).

198

Equation 3.18: Completion index

𝑄 = ∑ 𝛼𝑖𝑀𝑖

𝑀𝑖∈{
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠
𝑜𝑓 𝑞𝑢𝑎𝑙𝑖𝑡𝑦}

Cost index: complementary to the two previous performance metrics, the cost index

regroups all metrics linked to the cost of the system, be it in money, energy, time, or raw

materials. Continuing on the canonical example, the cost function can simply be the cost

of the swarm (Table 3.4).

Equation 3.19: Cost index

𝐶 = ∑ 𝛼𝑖𝑀𝑖

𝑀𝑖∈{
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠
𝑜𝑓 𝑐𝑜𝑠𝑡 }

Such aggregate functions are key enablers for the modularity of the proposed design

methodology as they can potentially accommodate any swarming mission type. Note that

it is possible to use the OEC approach described in [141] in order to quantify the

performance with respect to established requirements or baseline values. Put into

perspective, these metrics enable the assessment of the absolute performance of a system,

how well this performance was achieved, and for which cost. Note that these metrics are

not always completely uncorrelated and it is the choice of the designer to segregate the

metrics according to design preferences. The versatility of this approach is demonstrated

in Table 3.4 where the metrics used for each index are separated. The 𝛼𝑖 coefficients are

left to be defined.

199

Table 3.4: A set of unified metrics

 Execution Index Completion Index Cost Index

Chain

formation

 Time to complete

chain

 Proportion of missed

links

 Cost of swarm

 Energy consumption

 Number of unused agents

Mapping

 Time to complete

map

 Density of map features

 Percentage of

reconnection errors

 Cost of the swarm

system

Search

&

Rescue

 Percentage of

victims saved

 Time to complete

objective

 Victim tracking

effectiveness

 Maintenance of

communication links

 Energy consumption

After the different metrics from Table 3.3 are combined into the aggregate

functions, the diverse missions can now be evaluated in the design methodology with the

same measures, hence facilitating the use of the framework for different missions.

This approach, also known as a priori multi-objective optimization assumes that the

designer is able to rationally decide on the value of the weighting coefficients for each

original metric. Aggregate functions also have the advantage of facilitating the

optimization process with the use of single objective optimization methods compared to a

posteriori techniques. This feature is essential since, due to the extremely high number of

alternatives to evaluate, rapidity of the code is essential. By reducing the dimensionality of

the problem, these indices also simplify the decision-making process which can get quite

delicate with multiple objectives. These characteristics further motivate the choice of a

priori multi-objective optimization as established in section 2.3.2.1.1.2.

200

In this section, performance metrics pertinent with the problematics at stake have

been introduced. Notions of parallelism efficiency are first presented to quantify the effects

of parallelization on the system. In addition, by analogy to controls theory, a few metrics

are formed to provide the designer with an absolute measure of when the effects of

parallelization are starting to vanish in the performance of the system. A second set of

metrics introduced as marginal quantities offer a systematic approach to quantify the

sensibility around a given design point in terms of performance, parallelization, and cost.

Finally, to promote modularity and reusability of the proposed method with various swarm

mission types, aggregate functions are proposed. These metrics are created based on three

complementary aspects of the mission of a swarm: its quantity, its quality, and its cost. The

conjunction of these performance metrics provides the means to compare different swarm

alternatives and take decisions.

3.2 Design space definition

The definition of the design space consists in establishing the boundary of the set of

feasible alternatives which are to be compared and optimized.

3.2.1 The design variables

The choice of design variables is a key step in the methodology as their number and

their range greatly affect the size of the design space which is already amplified due to its

multi-level and multi-architecture nature. For multi-robotics, design variables intervene in

microscopic and in macroscopic levels, hence both need to be detailed in the present

subsection.

201

3.2.1.1 Microscopic level: the agents

Given that the study of heterogeneous swarms must be incorporated in this work,

agents must have the opportunity to be quite different in architectures and capabilities. To

differentiate the different architectures to be considered, a first taxonomy of UAVs inspired

by [205] is proposed in Figure 3.11. It first segregates Heavier-Than-Air (HTA) aircraft

and Lighter-Than-Air aircraft (LTA). Note that unpowered aircraft such as gliders,

sailplanes, balloons, and aerostats, are not considered as their performance on the

benchmarking mission would prove dependent on variables such as wind or thermals which

require a detail of modeling beyond the scope of this research. Such unconsidered

architectures are greyed out in Figure 3.11. Moreover, the microlight category is not

included since UAVs, already light by nature, do not have such a category.

Heterogeneity in architectures is attained if there are at least two different

architectures to be considered in the design space. However to ensure generality, at least

four architectures will be considered in this research: fixed-wing, helicopter (and more

particularly multicopter configurations), dirigibles, and ornithopters. The considered

architectures are detailed in hereafter with their definitions [206] and their design variables.

202

Figure 3.11: A taxonomy of existing UAVs

Fixed-wing: a fixed-wing airplane is a heavier-than-air aircraft with wings which remained

in a fixed position under given conditions of flight. This category may include variable

geometry aircraft [206]. Possible design variables include: wing type, wing span, wing

aspect ratio, fuselage length, propellers diameter, type of energy storage system (battery or

fuel), and embarked sensors and electronics.

Aircraft

HTA

Fixed-wing

Conventional Wing Twin Boomer

Delta Wing

Rotary Wing

Helicopter

Multicopter

Helicopter

Gyroplane

Hybrid

Tilting Rotor

Other

Glider

Ornithopter

Other

Parachute

Paraglider

Powered Paraglider

Rocket

LTA

Unpowered

Untethered

Tethered

Powered

203

Helicopter: A helicopter is a heavier-than-air aircraft supported in flight chiefly by the

reactions of the air on one or more power driven rotors on substantially vertical axes [206].

Design variables which can be considered for helicopters include propeller diameter and

type, length of the arms, energy storage system, as well as embarked sensors and

electronics.

Dirigible: a dirigible is a power-driven lighter-than-air aircraft [206]. Possible design

variables to be included for dirigibles include engine type, propeller type and diameter, and

embarked sensors and electronics.

Ornithopter: an aircraft which flies by flapping its wings. Possible design variables

include wing area, type of stabilizers, battery capacity, and embarked electronics.

3.2.1.2 Macroscopic level: the swarm

The group of robots is mainly represented with three pieces of information: the

architectures involved, the number of agents for each architecture, and the type of control

architecture used. Note that as a first approach, it can be assumed that it is not possible to

combine the same architecture under different configurations in the same swarm. That is,

each architecture is represented by only one configuration in the swarm. For instance, if

the swarm contains quadrotors, then all the quadrotors in the group have the same

characteristics. A notional summary of the design variables at the macroscopic level is

proposed in the morphological matrix Table 3.5. The selected options are in green and

incompatible options with the selected choice are highlighted in red.

204

Table 3.5: Notional morphological matrix at the macroscopic level

Features Option 1 Option 2 Option 3 Option 4

Architecture Quadrotor Twin-boomer Dirigible Ornithopter

Architecture

numerality
6 2

Control

architecture

category

Centralized Decentralized

Control scheme Leader/Follower Hierarchical Consensus Distributed

The available options for each of the macroscopic design variables are detailed in

the modeling section 3.3.

3.2.2 Alternatives generation

The generation of alternatives is to be conducted with respect to the design-space

exploration methodology described in the second chapter and a quick overview of this

process is proposed here as a reminder (Figure 3.12). A first step consists in the reduction

of the dimensionality of the design space by applying the morphological reduction

proposed by [173] (see page 142). Then, the whole morphological analysis is represented

with the help of a tree, enabling to dynamically allocate alternatives depending on the

choices made at the macroscopic level. The architecture level is an intermediate level

containing the abstract morphological matrices of the considered architectures.

205

Figure 3.12: Review of hypothesis 3.1

3.3 Alternatives evaluation

Once an architecture to be studied has been given by the design space exploration

process, its performance needs to be measured in terms of the established metrics with

respect to the canonical mission. Based on the physics-based simulation approach

motivated by the second chapter, the whole mission has to be carried out by the agents. In

order for the performance evaluation environment to properly fit the complete

methodology, important features to consider are the following:

 Automation & Integration: due to the very high number of cases to be run, the

environment must be able to take as input designs which are automatically

generated by the design space exploration method. Performance results must also

be generated automatically.

Plane Multirotor Dirigible Ornithopter

Macroscopic level

Microscopic level

Architecture level

Swarm

Agent 4 Agent 5 Agent 6 Agent 2 Agent 3 Agent 1

206

 Conceptual design level: owing to the concentration of this work on conceptual

design phases, a corresponding level of modeling should be used. In particular,

advanced and detailed information about the agents of the swarm are not available

at this design stage. For example, Computational Flow Dynamics (CFD) techniques

requiring exhaustive shapes information are typically not utilized for this step. This

would also entail a higher number of design variables and longer execution times.

 Cost modeling: in order to be able to place conflicting constraints on the system

such as the prominent performance versus cost tradeoff presented in the

introductory example, a minimum level of cost modeling should be implemented.

 Physics-based: due to the lack of historical data available in the design of

swarming systems, a physics-based approach should be preferred. Moreover, a

direct link between the configuration, especially geometry, of an agent and its

performance must be established.

 Rapidity: owing to the very high number of cases to evaluate in the design space

exploration step, a simulation environment with very small runtime shall be

preferred.

As the research challenges underline (Figure 1.37 page 70), even a canonical problem

with a limited number of design variables quickly generates a colossal design space suitable

for this current work. Moreover, a restrained level of simulation detail would prove fast

enough and emergent behaviors can be observed without any further complexity.

Therefore, this section describes a proposed example of implementation for models which

have to be established for the agents and for the swarm as well.

207

3.3.1 Microscopic level: the agents

The modeling of the different type of agents, and especially the required level of

detail, is based on a top-down decomposition into subsystems (Figure 3.13).

Figure 3.13: Agent modeling breakdown

The models to be implemented have to be moderately detailed and fast to evaluate

in order to fit in the mesoscopic representation of the whole system. Details of modeling

for a quadcopter are given in [207], and for a fixed-wing UAV in [208]. A conceptual

design process for UAVs such as the one proposed in [209] is used: based on the physical

breakdown of the agents, the different models are detailed here below.

 Aerodynamics: this part considers simplistic models of lift and drag and no high-

speed aerodynamics effects are to be included for reasons detailed here below. The

aerodynamics coefficients are obtained from current concepts in the literature or by

extended vortex-lattice models such as AVL as recommended by [210].

 Cost: cost information for off-the-shelf components are included for the model.

Agent

Aerodynamics Controls Propulsion

Batteries

Fuel

Sensors Structure

208

 Controls: simple Proportional–Integral–Derivative (PID) controllers are to be

implemented as they are widely utilized and understood. They facilitate the

implementation as well as the tuning of the gains for each architecture.

 Propulsion: the propulsion systems are composed of motors and propellers for

most of the architectures. For the modeling part, an extensive database of

compatible motors and propellers is used with performance data.

o Batteries: generic charge and discharge models are used.

o Fuel: fuel consumption data is utilized for the rate of change of fuel mass.

 Sensors: sensors are precisely modeled in their behavior since they most probably

are the main drivers of the performance of the agents.

o Lidar: the lidar model uses a ray casting algorithm that returns the distance

of the scanned environment points. The design variables are the resolution,

the range, and the scan rate [211].

o Camera: basic ray-casting is used to obtain the projected colors for every

pixel of the image but no distance information is provided. Main design

variables are the resolution, the framerate, and the color type (RGB or

grayscale).

o RGBD-camera: mix between the lidar and the camera, ray-casting is used

in the same fashion as for the image returning both the color and the distance

of the scanned environment point.

Note that measurement noise may be added for each of the sensors if required.

 Structures: structural effects are neglected in this work given the focus on micro-

sized aerial vehicles where structures are most of the time sturdy enough for the

209

dynamics and the weights of the subsystems. Moreover, aeroelastic effects are

neglected.

 Weight estimation: the computation of the weight of an agent is based on the off-

the-shelf components database information as well as material properties and

empiric relations for geometric features.

Finally, the dynamics of the agents are analyzed through a 6DOF model based on

a flat Earth assumption. Indeed, the size of the mission area is assumed to be moderate

enough so that non-inertial frame effects can be neglected (a couple hundreds of kilometers

wide at maximum). A North-East-Down (NED) frame is used for reference.

For the given canonical mission, a good estimate of the key variables is obtained

by considering possible elements that would limit the mapping performance. Given that

the performance metrics on this mapping are mostly the time to map and the map quality,

it is probable that significant drivers of the performance are going to depend on the speed

at which the robot can travel, the update rate of the sensors, as well as their resolution.

It is expected that for agents of a moderate size (i.e. from nanodrones to micro-

drones), the sensors are going to be one of the most limiting factors in the performance of

the system. For instance, a quadrirotor with a span of fifty centimeters is easily able to

reach high speeds above fifty kilometers an hour. However, due to its limited capacity to

embark computing power and high quality sensors, its mapping rate might be relatively

low and might constrain it to fly at low speeds. This justifies the fact that there is no need

for a detailed modeling of high speed aerodynamics effects. Moreover, sensors often

210

represent quite an amount of weight and also imply an important current consumption,

incurring the need of a bigger battery. Consequently, sensors are most probably the main

drivers of the performance of an agent.

3.3.2 Macroscopic level: the swarm

Swarm modeling is a key element for this work due to its link with emergence of

behavior and has to be carefully integrated into the mesoscopic model. This latter is based

on a rather detailed modeling of the agents but a simple modeling of the rules of the swarm.

One of the main design variables for the macroscopic level is the type of control

architecture. A handful of schemes has been developed and a comparison is proposed in

Table 3.6. Such control schemes are first divided between centralized and decentralized

methods. In the first category, a central unit which may be a ground station or a swarm

agent itself, is in charge of the cohesion and the decision within the swarm. This access to

global information leads to intrinsic coordination of the group and optimal results [212].

In the latter category, no such central leader exists and the swarm control is

achieved by the artificial intelligence of each individual agent. In the consensus technique,

each agent takes into account the information communicated by the others in a voting

system. If the voting score exceeds a given threshold function, an action has to be taken by

the agent. The partitioned method is particularly adapted for mapping purposes or other

area-based missions since the space is separated in different areas. Each agent is then

assigned a particular space and the communication between the agents insures that they

remain in their area. In the distributed scheme, no communication is necessary since every

agent is only capable of detecting the other agents and acts based on their behavior.

211

Finally, there exist a hybrid category representing a mix between centralized and

decentralized approaches so that the control does not depend on one unique leader but on

several sub-leaders scattered within the group.

The decentralized control schemes divide the complex behavior and decision tasks

into individual parallel processes performed on each robot, this generally guarantees better

flexibility and scalability of the swarm. However, while they lower the use of bandwidth

by the system, they tend to be much more complicated to implement than a centralized

architecture. Moreover, they are also inclined to more instability and are less predictable

[115], making it difficult to obtain a coherent global behavior [212]. In addition,

decentralized techniques imply that a mutual detection algorithm be implemented between

individual agents. Finally, decentralized architectures present risks of losing units when

they go out of the communication range of all other neighbors. In terms of implementation,

the leader/follower, the hierarchical, and the partitioned approaches are the simplest and

could fit the assumptions of the mesoscopic scale. In sum, the centralized control

architecture seems to be the most widely used, the simplest to implement and corresponds

to the mesoscopic description. In terms of implementation, the control architecture can

follow guidelines from [213].

212

Table 3.6: Swarm control architectures

Architecture Representation Advantages Limitations

Centralized

Leader

Follower

 Reliable and

predictable

 Quick swarm response

possible

 Vulnerable to loss of leader

 Communication required

between leader and every

agent

 Leader requires high

bandwidth capability

Decentralized

Consensus

 Lower bandwidth

requirements

 Robust decision-

making

 No critical nodes

 Communication required

between all agents

 Not as predictable

 Requires voting

 Slower overall
Partitioned

Distributed

 No communication

required

 Absolute position not

required

 No critical nodes

 Difficult to reliably and

quickly control

 Requires all agents to be

detected as near

neighbors

Hybrid

Hierarchical

 Fairly reliable and

predictable

 Loss of one leader is

not catastrophic

 Quick partial swarm

response possible

 Leader-follower

communication required

 Coordination required

between sub-groups

213

An additional set of assumptions is hence established here below:

 Perfect communication between the agents, equivalent to an infinite

communication range.

 No collisions are modeled. However, saturation of the mission space may happen

if too many agents are deployed. This is represented by the area occupied by the

agents when they fly at the same altitude.

 Limits of numerality are also represented by the computation and network

bandwidth limits of the centralized entity.

This set of assumptions makes the swarm performance on a given mission

deterministic. This liberates from the use of replications for each mission execution,

consequently accelerating the model evaluation: a key requirement for mesoscopic

representations. Moreover, this has the advantage of speeding up the design space

exploration. For the same reasons, uncertainty beyond the marginal performance quantities

is not considered in the scope of this work.

3.3.3 Agent-based simulation

An agent-based model is a computational model that enables the simulation of

autonomous agents and their interactions, resulting in modifications of a system and its

environment. Such models are particularly adapted for complex systems with nonlinear

dynamics, heterogeneity, and emergence. As a matter of fact, “agent-based modeling

postulates that the global behavior of a complex system derives from the lower level

interactions of its constituent elements” [160]. This category of models hence seems

214

perfectly adequate for the scope of this research. The main modules of an agent-based

model are the environment, the agents, and their interactions (see Figure 3.14).

Figure 3.14: Proposed agent-based model architecture

Mostly based on [214], a list of state-of-the-art platforms for scientific agent-based

simulation is detailed here below and compared with custom implementations. These can

also be compared with the multi-robot simulators described in Table 2.3. Criteria of

comparison include scalability and speed, ability to model complex systems, memory

management, and the learning curve required to use such frameworks.

Swarm: implementing both a model for swarm hierarchies and a virtual laboratory, Swarm

is based on schedules of actions that the objects execute. It uses its own data structures and

memory management module. Initially implemented in Objective-C, it is a mature library

platform, stable, and well organized. It lacks however some capabilities in error-handling

and developer tools. Java Swarm is an attempt to access the Swarm Objective-C libraries

from Java interfaces after a strong demand among users. Still, as a quick suboptimal

World

Agent

Sensors Actuators Controller

World dynamics

Agent

Sensors Actuators Controller

Environment

215

implementation, it seems to fail in combining the strengths of Java with the capabilities of

the Swarm platform.

Repast: aimed at making the functionalities of Swarm available in Java, Repast is mainly

focused on social science, hence lacking tools adapted for other domains. Despite

improvements in interface and built-in examples, Repast has a steep learning curve.

MASON: designed with execution speed as a priority for complex models, it is less mature

than the other alternatives but includes good parallelization capabilities.

NetLogo: originally an educational tool, it is focused on ease of use. It includes its own

programming language but focuses mostly on one type of application: mobile agents

interacting on a grid space with short local interactions.

ROS/Gazebo: the Robot Operating System (ROS) is an abstraction layer (middleware)

used between simulated robots and real robots and it includes a simulator called Gazebo.

This latter incorporates a powerful and fast physics engine able to simulate a wide range

of sensors and apply textures to the environment. Based on a C++ implementation, this

simulator is quite fast but would struggle with large number of robots in the group due to

the high level of detail of the physics engine.

Additional tools available as resources at the Georgia Institute of Technology or at

the Aerospace Systems Design Laboratory (ASDL) are also considered.

216

GUST: the Georgia Tech UAV Simulation Tool (GUST) includes tools developed for the

aircraft of the Georgia Tech UAV Research Facility: onboard software, ground station, and

simulation environment [215]. It also includes software-in-the-loop, a ground control

station, sensor hardware, guidance computer, and primary flight computer testing

capabilities. GUST is mainly designed to focus on the development and integration process

before an aircraft leaves the laboratory. However, it remains mainly adapted to the type of

platforms used by the Georgia Tech UAV Research Facility.

Robotarium: the project includes a remotely accessible swarm of robots as well as a

simulator used to develop and test applications before trying them on the swarm. The aim

of the project is to have a remote-access robotics lab where anyone is able to test their

algorithms. The simulator is implemented in Matlab and is simple and fast enough for 2D

simulations up to 100 robots.

NASA World Wind (modified by ASDL): developed by the National Aeronautics and

Space Administration (NASA), this tool is adapted for displaying and interacting with

geographic information. In particular, it can be used to implement a flight simulator and

the ASDL has extended its capabilities in order to handle groups of robots.

As underlined by [214], these existing platforms should be improved in terms of

statistical outputs and more importantly automating simulation experiments. Hence, in

addition to these pre-existing platforms for agent-based modeling, the implementation of a

custom model tailored to the needs of this research, is considered with three programming

217

languages. The first language being considered is MATLAB as it is widely used in the

research community and includes many built-in libraries and functionalities. While

MATLAB is easy to use and provides very good debugging and data visualization

capabilities, it is significantly slow when compared to other programming languages. C++

is then considered as an alternative as its object-oriented language features would enable

an easy implementation of an agent-based model. This language is quite fast but requires

to precise the type of objects before using them. C++ also lacks built-in memory

management tools, which requires the coder to manage memory carefully, an intimidating

task to consider for agent-based modeling where many objects are involved. Java is a good

alternative to C++ as it has proven similarly fast in recent years. Its error checking and

garbage collection capabilities clearly facilitate the implementation of an agent-based

model. Based on the previous descriptions, the capabilities of these platforms are

summarized and compared in Table 3.7. The number of dots represent the degree to which

a feature is present in the considered platform.

218

Table 3.7: Agent-based simulation platforms comparison

Simulator
Scalability &

Rapidity

Complex

Modeling

Capabilities

Memory

Management

Learning

Curve

C++ based ●●● ●●● ● ●

Java-based ●●● ●●● ●●● ●

MASON ●● ●●● ●● ●●●

MATLAB (ASDL) ● ●●● ●● ●

NASA World Wind (ASDL) ●●● ●●● ●●● ●●●

GUST (GT) ● ●● ●● ●●●

Robotarium (GT) ●● ●●● ●●● ●

ROS/Gazebo ● ●●● ●●● ●

NetLogo ●● ● ●● ●●

Repast ●●● ●● ●● ●●●

Swarm (Objective-C) ●● ●●● ● ●●●

Swarm (Java) ●● ●●● ●● ●●

Based on the previous observations, the modified NASA ASDL model seems quite

suitable for the considered problematics and is available as a resource. However, this model

was added on the consequent NASA World Wind development kit and encompasses many

dozens of classes and hundreds of methods adding a steep learning curve and quite some

complexity compared to the required capabilities. Moreover, the architecture is limited in

flexibility, making it hard to add new functionalities to the platform. NetLogo is also a very

good option but the whole model code has to be written in one file, a choice which might

219

not be adapted to the complexity of this research. A Java-based implementation seems to

regroup the benefits of both these options while enabling to keep a complex code organized

Nevertheless, the development would have to start a completely new implementation,

adding a considerable lead time before starting any experiments. Hence, a reasonable

learning curve is chosen as a main decision criterion so that the ROS/Gazebo and the

Robotarium simulators can be adapted for respectively 3D microscopic and 2D mesoscopic

models.

3.3.4 Testbed mission

Owing to the lack of standards of swarm engineering, no established canonical

mission exists to test multi-robot systems. Hence, while this thesis proposes a generic

framework for the design of multi-robot systems, a specific testbed mission has to be

chosen to demonstrate its capabilities. In theory, any type of mission can be plugged in the

framework and adapted to the requirements imposed on the designers. For this specific

implementation, a large-scale topographical survey is chosen based on aerial imagery

(Figure 3.15).

Figure 3.15: Representation of the testbed mission

220

[216] predicts that the agriculture drone sector will generate 100,000 jobs in the

U.S. and $82 billion in economic activity, clearly establishing the potential growth of such

applications [217]. Leader in the field, SkyPlan advertises a coverage of 60 to 600 ha per

flight using SenseFly drones [218]. As a reference, a soccer field has an area of 0.714 ha.

Without cooperation, [219] shows that it requires 40 flights accounting for 22 total hours,

in order to survey an area of 39 km2. This requires 10 workers and 6 weeks are necessary

to deliver the data to the customer. Such performance could greatly benefit from the use of

multi-robot systems.

In addition, this type of mission proposes several advantages: as an area grid-based

mission, it can be easily extended to other similar missions (mapping, surveillance, search

and rescue, etc.). Such missions constitute a large component of the application spectrum

for multi-robot systems. As such, it is a direct extension of the imaging/mapping canonical

example given in section 2.1.

The implementation of such a mission relies mostly on a proper navigation scheme

for the fleet depending on the terrain conditions, and the analysis used to stitch the captured

data together. Strategies of exploration and mapping can be inspired from [211] and [220].

The following paragraphs detail the different steps required in the mission.

Aerial imagery: geotagged RGB images are captured from the drone (Figure 3.16) with

typical high resolution cameras (around 16-Megapixel). The altitude of the drone

determines the Ground Sampling Distance (GSD).

221

Figure 3.16: Aerial imagery [218]

A given GSD requirement hence limits the area covered in one flight. The quality

required for such images implies some limitations on the flight conditions or on the

performance of the system:

• No more than 50-degree flying angles

• Wind can affect data capture

• Low-hanging clouds can affect image quality

• Large water bodies or snow fields are unfavorable

• GPS signal can be erroneous between buildings

Orthomosaics: ortho-Mosaicking consists in the combination of two processes: ortho-

rectification and mosaicking [221] (Figure 3.17).

Figure 3.17: Orthomosaics [218]

222

The first one corrects the distortion and perspective effects due to the camera

intrinsic parameters (focal length, optic center) and its angle with the vertical so that the

map projection scale remains constant throughout the image. It may also account for relief

effects to create an image which is plane and metrically correct. A visualization of common

deformation effects is presented on Figure 3.18 and the process of ortho-rectification can

be visualized on Figure 3.19.

Translation Scaled rigid Shear Perspective Terrain relief

Figure 3.18: Common geometric transformations

(a) Original image (b) Ortho-rectified image

Figure 3.19: Ortho-rectification process

223

Finally, mosaicking is the process of stitching different images of the same scene

together in order to obtain a single image (Figure 3.20).

Figure 3.20: Mosaicking [222]

The final orthomosaic obtained from this process enables the direct superposition

of images with GPS data without any shift. The accuracy obtained on the final model is 1

to 2 times the GSD for horizontal coordinates and 2 to 3 times the GSD for vertical

coordinates. Hence, a project with a GSD of 4 cm will most likely generate data with 3 to

6 cm of horizontal accuracy and 6 to 9 cm of vertical accuracy [218].

Surface models: thanks to the geotags available with each picture taken, it is possible to

identify a very large number of matching features between the images and later generate

3D point clouds and surface models.

Figure 3.21: Surface models [218]

224

The sampling distance generally obtained for the surface models ranges from 2 to

4 times that of the captured images.

3.4 Decision-making process

Last step in the traditional top-down design procedure, the decision-making process

aims at allowing designers to prioritize objectives and visualize tradeoffs between

constraints and objectives. By using a priori optimization techniques, the optimization

algorithm proposed in section 2.3.2 provides only one optimal solution. While this tends

to suggest that there is no real decision-making step once optimization has been carried

out, it relies on the assumption that the designer is able to correctly prioritize the objectives

into the aggregate objective function. Hence, choosing the weights of the aggregate

function is an indirect decision-making exercise as it affects the way each objective is

considered to evaluate the performance of the multi-robot system. However, since the a

priori knowledge of the effects of such weights on the optimal solution is not intuitive, it

is difficult to qualify this as a true decision-making process.

A possible solution is to vary these weights in order to obtain several solutions and

then compare them and make the decision process based on this set of solutions. By first

varying the weights around the values chosen by the designer, it is possible to assess the

robustness of the solution with respect to the requirements. It helps in making sure that a

completely different solution is not obtained if the weights are slightly modified. This will

ensure that the performance is the expected one once the system is implemented in reality

with noisy sensors and manufacturing imperfections. Then, by giving completely different

values to the weights, the designer is able to consider several weighting scenarios and chose

225

the best among them. Such a decision can be done using the Technique for Order

Preference by Similarity to Ideal Solution (TOPSIS) method for instance [173].

3.5 Verification and validation

The step of verification and validation is essential to check on one hand that the

proposed methodology is able to meet the requirements of the different experiments, and

on the other hand that it correctly models multi-robot systems such as those used by the

research community. The combination of both elements will ensure the consistency of the

proposed approach. Note that third-party pieces of code which have already been verified

and validated do not need to be included in this step.

First, the verification step is designed to ensure that the modeling part is done in

line with the requirements established in the proposed approach. Its main purpose is to

make sure that models are implemented correctly without any bugs or errors. For this

matter, systematic unit tests are created and executed for the different algorithms at stake.

Since most of the implementation is deterministic as per the proposed methodology, such

unit tests are quite simple to implement and verify with synthetized data. Replications are

used for stochastic processes in order to be able to draw consistent conclusions.

Then, the validation process certifies that the methodology is able to predict the

performance of real-world systems. Given that swarm physical design optimization is a

missing topic (see second chapter page 74), the validation of this part of the work is

impossible by comparing results with existing systems. However, by enforcing the number

of robots in the swarm to one, it is possible to compare the obtained swarm design with

226

existing single systems performing a given mission. This enables the validation of the

design optimization scheme. Moreover, the modeling and simulation community is having

a hard time finding an appropriate method to validate agent-based models [140]. Indeed,

these are large complex systems which cannot easily be replicated in reality in the same

way that simpler physical experiments can. A validation technique which can possibly be

used in this particular case is to make sure that the comparison between different designs

still holds when the detail and fidelity level of the models is varied. In particular, this helps

in ensuring that a design remains optimal as the detail level is increased from conceptual

level to actual implementation.

 The implementation of the approach presented in this chapter, complemented with

the solutions proposed in the previous one, provides a way to carry out the experiments

designed earlier on to investigate the research objective. These experiments will then

provide results possibly validating the hypotheses formulated in chapter 2CHAPTER 2.

3.6 Summary

The problematic to be addressed has now been rigorously formulated and

complemented with a proposed approach (Figure 3.22), this subsection summarizes the

formal research process and the contributions anticipated from the research effort.

The design framework developed in this research is expected to bring advances in

the exploration of extremely large design spaces with group architectures. Furthermore, the

conceived methodology is also presumed to provide designers with a better understanding

of the intrications and inner workings of multi-robotics. For want of a testbed application,

227

this research will also provide the field of multi-robotics with a testbed framework virtually

extendible to any multi-robot application.

Figure 3.22: Summary of the research process

Motivation

Problem Definition

Research Question 1 Research Question 2 Research Question 3

Hypothesis 1 Hypothesis 2 Hypothesis 3

Research Objective

Can multi-robot systems designs be

improved by linking microscopic

and macroscopic levels?

How to link the microscopic and

the macroscopic levels of a multi-

robot system for conceptual design

purposes?

How can current conceptual design

methods be adapted to account for

multi-architecture multi-level

design space exploration?

IF an approach leveraging the

interdependence between microscopic

and macroscopic levels is used

THEN significant improvements in

average performance can be achieved

in the design of multi-robot systems
compared to traditional sequential

optimization schemes

IF a mesoscopic approach leveraging

the speed of macroscopic models and
the accuracy of microscopic models is

used

THEN microscopic and macroscopic
levels can be efficiently linked for

conceptual design purposes

IF a tree of reduced morphological

matrices is used in conjunction with an

optimization method based on a bi-
level genetic algorithm

THEN a multi-architecture multi-level
design space exploration can be

carried out efficiently to obtain

optimal group configurations

Establish a methodology that enables the optimum design of multi-robot systems and the evaluation of

trade-offs between individual architecture development and numerality to achieve group performance

Swarms Robots Swarm Engineering

Observations 1 Observations 2 Observations 3

Assertion 1 Assertion 2 Assertion 3

• Many drone types are now

available
• This diversity is developing
• Single robot limitations can be

overcome by collaboration

• Designing a multi-robot system

requires much more commitment
than for a single agent
• They are confined to academia or

experimental and avant-gardist

military applications

• Groups might not always perform
“better” than single agents
• Very few group designs

possibilities are considered, mostly

homogeneous and sub-optimal

There is a potential to take
advantage of the diversity

of the existing drone fleet

A standard physical design process

for multi-robot systems is needed

to foster their democratization

There is a need to evaluate and
compare the real advantage of

different optimized multi-robot
systems versus optimized single-

robot solutions on a given mission

228

Figure 3.23: Proposed design space exploration technique summary

Swarm

Macroscopic level

Agents

Microscopic level

Legend

Detail level

Mesoscopic

Design point

Architectures Comparison Architectures Optimization

C. Frank proposed approach Design space

Coverag

e

Poor

Moderate

Intricate

229

Design space exploration: the design domain for a swarm of robots often ends up

involving extremely large numbers of designs to be studied, significantly due to numerality

(Figure 1.37). Current approaches fail to properly study such design spaces in terms of both

quantity of considered alternatives, but also quality of coverage. The presented design

space exploration method (Figure 3.23) proposes a solution to explore extremely large

design spaces which are generated when having to choose several designs defined among

multiple architectures.

Insights on robotics swarm design: the present research originated from justified

questions such as:

 Does using a swarm always provide increased performance for a given mission?

 After a change in mission requirements, is it better to increase the swarm size or

increase the capabilities of each agent in order to still be able to complete the

mission?

 Should a designer spend more time on developing the group architecture or on

improving the R&D and individual performance of each agent?

 For a given mission, what is the optimal swarm architecture?

Answering this type of doubts, or rather providing designers with a framework to

answer these questions, is part of the expected contributions of this work. The ability to

elaborate and evaluate the performance of several robotic swarm architectures is expected

to provide a new level of insight on their possible benefits. Not only will the performance

be quantified with respect to standardized metrics, but it will also be compared with other

230

existing solutions on given requirements. This will provide answers to the need established

in the third assertion of the motivation section: to evaluate the real advantage of swarms

versus single-robot solutions on a given mission. For instance, the benefits of using a

robotic swarm for imaging solutions (Figure 1.5) will be evaluated in terms of cost.

Moreover, the performance losses incurred by sequential optimization of a swarm as

opposed to the proposed methodology, linking microscopic and macroscopic level, will be

measured and analyzed. This will provide indications on the type of performance

improvements which could be achieved if an approach bridging the microscopic-

macroscopic link was utilized by the community.

Finally, the introduction of performance metrics such as the marginal group

performance is expected to provide precious additional insight on the benefits of adding

entities to a group of robots. Used with different design variables, these marginal quantities

predict the profile of the response and constitute a tool for design tradeoffs. On the other

hand, the limit of parallelism effectiveness is an attempt to provide conceptual designers

with an absolute reference of when the advantages of parallelization start to vanish.

Testbed framework: as mentioned in chapter 1, the design of multi-robot systems is

particularly hard due to a lack of established simulators and standard testbed scenarios. If

it seems impossible to find a universal benchmark application encompassing all the diverse

aspects of multi-robotics such as collective exploration, chain formation, or coordinated

motion; elaborating a standardized design methodology able to handle any application, is

however achievable. Thanks to the proposed methodology and implementation, the testbed

mission is completely modular depending on the actions encoded in each of the agents and

231

in the group logic. The individual behaviors have to be modified as well as the generic

benchmarking metrics introduced in section 3.1.3. For example, the imaging testbed

mission can easily be changed to a coordinated motion one. First, the individual tasks of

mapping given areas have to be changed to tasks of forming and following the motion of

neighboring agents. Then, the overall group strategy might also have to be changed at the

swarm level. Once the mission is correctly implemented, appropriate metrics have to be

used in the process in order to compare different swarm architectures for this given mission.

For example, the mission performance metric can now be the time required to complete the

desired motion and the mission completion metric can evaluate the quality of the swarm

motion.

The next chapters detail the implementation of the experiments for each one of the

main research axes (Figure 2.1 page 74), as well as the conclusions obtained from the

results.

232

CHAPTER 4

LINKING MICROSCOPIC AND MACROSCOPIC LEVELS

Established as a main research axis in the previous sections, the lack of a link

between the microscopic and macroscopic levels of a swarming system was decomposed

into two sets of main research questions, hypotheses, and corresponding experiments. The

first set focuses on evaluating whether a possible linkage between the two levels would

incur improvements in the optimal design of multi-robot systems. Assuming that

enhancements are indeed possible, the second set expands on how specifically this existing

gap between the two levels could be bridged. This section details the experiments carried

out and the results obtained in response to the first two research questions of this thesis

work.

4.1 An improvement for the design of multi-robot systems

This first subsection details the study of the first research question and the first

hypothesis, both of which are recalled here for reference.

Research question 1

Can multi-robot systems designs be improved by linking

microscopic and macroscopic levels?

233

Hypothesis 1

IF an approach leveraging the interdependence between

microscopic and macroscopic levels is used

THEN significant improvements in average performance

can be achieved in the design of multi-robot systems

compared to traditional sequential optimization schemes.

In addition to the explanation provided in section 2.1, one may consider the

macroscopic level and the microscopic level with one variable each only. It is then possible

to easily visualize the problem posed by sequential optimization as opposed to global

optimization. Indeed, looking at Figure 4.1, performing sequential optimization consists in

optimizing based on 𝑋𝑖𝑛 first and then 𝑋𝑜𝑢𝑡 (micro-macro optimization), or vice-versa

(macro-micro optimization). This translates into constraining the optimum search along a

specific direction to reach a temporary optimum (circle), and then updating the search

direction to reach a final optimum (star) from this previous temporary one. While this may

work when the design variables are defined along the Eigen vectors of the fitness function

(Figure 4.1), it fails when there is a correlation between the design variables (Figure 4.2).

234

Figure 4.1: Sequential optimization without correlation

In this first figure, the fitness function for the swarm is modeled as:

Equation 4.1: Uncorrelated example function

𝑓(𝑋) = (𝑋𝑖𝑛 − 5)
2 + (𝑋𝑜𝑢𝑡 − 5)

2

The optimum search is started from an arbitrary value 𝑋𝑖𝑛 = 3 for the macro-micro

case and from 𝑋𝑜𝑢𝑡 = 4 for the micro-macro case. Since there is no correlation term

between 𝑋𝑖𝑛 and 𝑋𝑜𝑢𝑡, sequential optimization is able to find the true optimum of the fitness

function in both cases, independently of the starting values.

235

Figure 4.2: Sequential optimization with correlation

For the second figure, a correlation term is introduced:

Equation 4.2: Correlated example function

𝑓(𝑋) = (𝑋𝑖𝑛 − 5)
2 + (𝑋𝑜𝑢𝑡 − 5)

2 + (𝑋𝑖𝑛 − 5)(𝑋𝑜𝑢𝑡 − 5)

Note that the location of the global minimum is not affected. This time, starting

from the same initial points as before, sequential optimization is not only unable to find the

true optimum swarm configuration, but it also ends up in two different optima depending

on the type of algorithm used. These local optima also depend on the initial points.

236

The goal of this section is then to answer the research question by concluding

whether this type of observations can be made for multi-robot systems performance. The

following subsections provide the key elements necessary for carrying out experiment 1

which compares sequential and global optimization in the context of multi-robot systems

optimal design.

4.1.1 Global optimization algorithm

Key requirement of this first experiment, the role of the global optimization

algorithm is to optimize simultaneously the macroscopic level as well as the microscopic

level without separating them and having to optimize them sequentially. As explained in

the hypothesis of section 2.3.2.2, a bi-level genetic algorithm is considered for this

particular task. The reader should refer to section 5.2 for a complete analysis of this global

optimization algorithm.

4.1.2 Sequential optimization algorithm

This first experiment also requires a sequential optimization algorithm to be

compared to the global optimization one. In particular, both algorithms should reflect the

same complexity so that they are somehow comparable in their precision and convergence

time. Given that a genetic algorithm is chosen for the implementation of the global

optimization algorithm (see section 5.2 page 345), the same choice is made for the

macroscopic optimizer and the microscopic optimizer. Hence, the validated Matlab genetic

algorithm solver is chosen to be the optimizer for the sequential optimization algorithm.

As for the implementation, two cases have to be considered and are explained hereafter.

237

Micro-macro optimization: the agents are first optimized individually with respect to the

mission requirements before the optimization of the group constitution 𝑋𝑜𝑢𝑡 with respect

to the same mission requirements (see Figure 4.3).

Figure 4.3: Micro-macro optimizer

Hence, for each architecture, one vehicle is set to perform the mission alone

according to the mission requirements. This step yields individual vehicles which are each

optimized to carry out the given mission alone. Then, the macroscopic optimizer handles

the composition of the group as well as other macroscopic variables to decide how many

optimal vehicles of each architecture will constitute the cooperative swarm. Each iteration

sees the group perform the mission with the optimal vehicles obtained from the

𝐴1

𝐴1
∗

Mission

requirements

𝑋𝑜𝑢𝑡 = [1,0, … ,0]

𝑋𝑜𝑢𝑡

𝐴2

𝐴2
∗

Mission

requirements

𝑋𝑜𝑢𝑡 = [0,1, … ,0]

𝐴𝑁𝑎𝑟𝑐

𝐴𝑁𝑎𝑟𝑐ℎ
∗

Mission

requirements

𝑋𝑜𝑢𝑡 = [0,0, … ,1]

𝑋𝑜𝑢𝑡
∗

Microscopic

Macroscopic
Mission

requirements

238

microscopic optimization. This mostly corresponds to what is done in the current state of

multi-robotics research: individual platforms are independently optimized for different

missions and by different organizations, and put together to collaborate and carry out

another mission. Note that here the vehicles are already optimized with respect to the same

mission they will have to carry out in a group, which is generally not the case in reality.

Macro-micro optimization: the group composition is first optimized with respect to the

mission requirements before optimizing the parameters of each constituent of the group

with respect to the same mission requirements (see Figure 4.4).

Figure 4.4: Macro-micro optimizer

𝐴1

𝐴1
∗

Mission

requirements

𝑋𝑜𝑢𝑡

𝐴2

𝐴2
∗

𝐴𝑁𝑎𝑟𝑐

𝐴𝑁𝑎𝑟𝑐ℎ
∗

𝑋𝑜𝑢𝑡
∗

Microscopic

Macroscopic

Mission requirements

𝐴1
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 , 𝐴2

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 , … , 𝐴𝑁𝑎𝑟𝑐ℎ
𝑛𝑜𝑚𝑖𝑛𝑎𝑙

239

This type of optimization is more delicate to carry out since a pre-existent

baseline has to be available for each architecture. Considering these remarks, macro-

micro optimization is almost equivalent to having an additional microscopic optimization

after a micro-macro optimization.

It is important to note here that the notation used 𝑋𝑜𝑢𝑡 and 𝑋𝑖𝑛 is slightly different

than the one used in the remainder of this thesis. In particular, when considering the

sequential optimization scheme, 𝑋𝑜𝑢𝑡 refers more precisely to 𝑋𝑚𝑎𝑐𝑟𝑜 while 𝑋𝑖𝑛 represents

in reality 𝑋𝑚𝑖𝑐𝑟𝑜 given the separation of microscopic and macroscopic levels when using

sequential optimization.

In addition, in the case of the micro-macro optimization, the individual constituents

of the swarm are optimized with respect to the same mission requirements that the group

will face. This is generally note the case for what is currently observed in the research

community: scientists tend to gather platforms which designs were optimized for missions

which are different from what the swarm is required to carry out. For instance, research

groups might purchase DJI Phantom drones which are optimized for aerial photography,

and make several of them work collaboratively on a formation flight application with

different requirements. Subsequently, it is expected that the results obtained throughout

this experiment will be pessimistic with respect to the actual improvements that could be

obtained in the optimal design of multi-robot systems.

240

4.1.3 Verification and validation

The macroscopic optimizer and the microscopic optimizer are both based on the

Matlab genetic algorithm which is a validated piece of software. Hence, there is no need to

further validate these two loops. However, the validation of the global optimization

algorithm is required and detailed in section 5.2.2 page 364. Moreover, the fitness functions

(simulation models) used in conjunction with these algorithms are validated in their

respective chapter.

4.1.4 Experimentation

The experiment used to study research question 1 and demonstrate the interest of

simultaneous optimization for multi-robot systems is the same used for the introductory

example of section 2.1. The reader can hence refer to page 75 for a complete description

of the canonical mission and the derivation of the corresponding macroscopic model. This

simple model is sufficient and adequate to answer the first research question as it contains

all the elements required to establish a surrogate of multi-robot missions. Indeed, it contains

mobile robots with individual capabilities in terms of sensors and motion. Moreover, group

dynamics are emulated through a particular deployment scheme that involves different

traveling distances for each of the agents of the group. This canonical mission is used in

the micro-macro, macro-micro, and simultaneous optimizers in the following subsections

for conclusions to be drawn.

Note that in the case of micro-macro optimization the architectures are optimized

as if they had only one vehicle performing the mission. Once these will be integrated into

a swarming system, all the vehicles for a given architecture will hence have the same

241

configuration: this is the same as considering only a partial heterogeneity (see section 5.2.1

and Figure 5.35 for details). As a consequence, no additional experimentation is done in

this section to study the effects of full heterogeneity versus partial heterogeneity in the

group since partial heterogeneity is intrinsically enforced.

4.1.4.1 Homogeneous swarms

4.1.4.1.1 First strategy: optimizing a single vehicle

The micro-macro and global optimization on the canonical mission were already

performed a first time in section 2.1 using a full factorial design of experiments on the

considered design space: 𝑁 ∈ ⟦1,10⟧ and 𝑣 ∈ [0,10] m/s with steps of 0.1 m/s. This time,

the different optimizers presented in the previous subsection are used to draw conclusions

and the macro-micro optimizer is also introduced. For each of the cases presented hereafter,

the three optimizers are run and compared with respect to the criteria established for

experiment 1.

Experiment 1.1: First, the mission and cost parameters are fixed as follow: 𝑑0 = 100 𝑚,

map size of 𝑙𝑥 = 100 𝑚 by 𝑙𝑦 = 100 𝑚, agent fixed cost 𝑐0 = 3, swarm fixed cost 𝐶0 =

10 and unit cost of individual performance (velocity) 𝑐𝑣 = 1 (𝑚/𝑠)
−1. The cost constraint

is fixed at 𝐶𝑚𝑎𝑥 = 70. The baseline velocity used for the macro-micro optimization is fixed

at 5 m/s which corresponds to the average of the bounds of the design space. Figure 4.5,

shows the results of this first experiment. The three optimum solutions are represented with

the cost-constrained region. In addition, the second search directions used by the sequential

algorithms are represented. For instance, for the micro-macro optimized, the search

direction is along the optimal velocity found by the micro optimization.

242

Figure 4.5: Plot of experiment 1.1

Similar to the results found in the canonical example, the micro-macro optimal

swarm composition is found to be 4 vehicles at 10 m/s each for a total cost of 62 units and

a mission mapping time of 285 seconds. The whole set of results is presented in Table 4.1,

with the relative difference with respect to the solution found by the simultaneous

optimizer.

243

Table 4.1: Results of experiment 1.1

Variable/Metric Macro-micro Micro-macro Simultaneous

N 7 (+40%) 4 (-20%) 5

v (m/s) 5.57 (-38%) 10 (11%) 9

Mapping time (s) 323 (+23%) 285 (+9%) 262

Cost 70 (0%) 62 (-11%) 70

A first observation is that the solution derived by the macro-micro optimizer seems

less performant than the other two although it reaches the maximum cost constraint. This

can be explained in the following way: the macro-micro optimizer first decides on a

number of vehicles to integrate in the swarm which still fits inside the cost constraint. Since

the number of vehicles can be increased only one by one, the cost increases a lot for each

additional vehicle. Once the number N of vehicles is decided, the micro optimization takes

place and tries to maximize the velocity of the N agents so that the mapping time decreases.

However, the velocity increments are much finer than the numerality increments and the

optimizer is able to get much closer to the cost constraint. On the contrary, the micro-macro

optimization finishes with the macro optimization, taking much larger increments in cost

(by changing only the number of vehicles) and does not have such a refinement. Hence,

the cost of the micro-macro optimization is far from the budget constraint of 70 cost units

despite proving a better performance in mapping time.

Indeed, in this first micro-macro optimization, the micro optimization is

constrained by the same cost constraint as for the macro optimization. This means that a

single vehicle could cost up to 70 units. While this clearly illustrates one of the points of

micro-macro optimization where more resources can be allocated to the microscopic level,

244

it does not correspond to real-world situations. Instead, the cost of a single agent should be

decently constrained for the micro optimization, this is illustrated in the next micro-macro

optimization.

Another observation is that the macro-micro optimizer favors numerality (point on

the left of the global optimum) whereas the micro-macro focuses on the individual

performance of the agents (point at the right of the graph).

Experiment 1.2: For this second experiment, the cost constraint on a single vehicle is fixed

at 10 units of cost, a limit slightly lower than the maximum cost achievable: 13 units.

Hence, the micro-macro optimizer can no longer opt to simply assign the maximum

velocity for each agent and then assemble a group of these elite agents. This time, the

micro-macro optimum has a much lower velocity than before: the cyan search direction

has shifted to the left on Figure 4.6. With this new technique, the results are listed and

compared in Table 4.2.

245

Figure 4.6: Plot of experiment 1.2

Table 4.2: Results of experiment 1.2

Variable/Metric Macro-micro Micro-macro Simultaneous

N 7 (+40%) 5 (0%) 5

v (m/s) 5.57 (-38%) 7 (-22%) 9

Mapping time (s) 323 (+23%) 337 (+29%) 262

Cost 70 (0%) 60 (-14%) 70

246

As expected, the macro-micro optimization results are unchanged. Being more

constrained for the micro optimization, the micro-macro optimizer now exhibits a worse

performance than in the first experiment. In fact, it obtains the same number of vehicles as

the simultaneous optimization but since it is sequential, it is not able to dynamically derive

a constraint on the vehicle cost to obtain a cost closer to the constraint and hence maximize

the performance of the swarm. This time, the performance difference in mapping time is

worse by 23 to 29 % for the sequential optimizers.

Experiment 1.3: As a third experiment, the cost of individual technology is increased

thanks to a quadratic term 𝑐𝑣2 = 0.3 m/s and the total cost constraint is increased to 100

units. The goal is hence to slightly favor numerality and give more freedom to the

algorithms to compose a swarm and see in this case if the sequential algorithms are able to

match better with the performance of the simultaneous optimizer. As in the first

experiment, the micro step of the micro-macro optimizer is first constrained with the same

cost constraint as the whole group, Figure 4.7 is obtained.

247

Figure 4.7: Plot of experiment 1.3

Table 4.3: Results of experiment 1.3

Variable/Metric Macro-micro Micro-macro Simultaneous

N 5 (-29%) 2 (-71%) 7

v (m/s) 5.60 (+30%) 10 (+133%) 4.30

Mapping time (s) 422 (+1%) 530 (+27%) 418

Cost 100 (0%) 96 (-4%) 100

248

A first observation is that the micro-macro optimizer is able to get much closer to

the cost constraint than it did in the first two experiments, hence efficiently utilizing the

assigned budget. However, once again, it favors very expensive individual vehicles with

high performance and finds itself very limited for the macro step once it is time to assemble

a swarm made out of these vehicles. As a consequence, only two vehicles constitute the

optimal group derived by micro-macro optimizer. Despite being within 4% of the cost

constraint, the performance is 27% slower than the optimum swarm derived by the global

algorithm. On the other hand, the macro-micro optimum is quite close (within 1% of

performance) to that best optimum while utilizing the total budget.

Experiment 1.4: Finally, the cost of a single vehicle is then limited to 10 units as for the

second experiment in order to get closer to real-world situations and force the micro-macro

optimizer to favor numerality (see Figure 4.8 and Table 4.4).

249

Figure 4.8: Plot of experiment 1.4

Table 4.4: Results of experiment 1.4

Variable/Metric Macro-micro Micro-macro Simultaneous

N 5 (-17%) 8 (+33%) 6

v (m/s) 5.60 (15%) 3.44 (-29%) 4.87

Mapping time (s) 422 (+1%) 472 (+13%) 417

Cost 100 (0%) 90 (-10%) 100

250

Again, the micro-macro optimizer chooses a velocity as close as possible to the

individual cost constraint which is 3.44 m/s in this case. It is hence much more conservative

on the technology of the individual agents due to the additional quadratic cost term. This

forces it to focus more on numerality and the difference is flagrant with the previous cases:

the micro-macro optimizer now chooses 8 vehicles (for a maximum of 10) and is able to

obtain a performance much closer to the best optimal one.

Additionally, the macro-micro optimizer also predicts a microscopic design for the

individual agents which is very close to the one used for the macro optimization step.

Indeed, the nominal agent velocity was fixed at 5 m/s for the macro optimizations and the

algorithm ends up preferring velocities close to 5 m/s on the final design.

4.1.4.1.2 Second strategy: optimizing a notional swarm

Building on the results of the first four experiments, it seems that the micro-macro

performs poorly when used with the same cost constraints as the group since it is designed

to optimize vehicles individually. Indeed, the first step of the optimization is to make one

single agent perform the mission and optimize its performance with respect to a given cost

constraint. This is representative of the current habits of the research community: taking

vehicles which were individually optimized for specific types of missions, and putting them

to work together in a robotic-group. Nonetheless, to fully characterize the potential of

micro-macro optimization, it is essential to compare it in equal terms with macro-micro

optimization. Since this latter uses a vehicle baseline to first derive an optimal number of

vehicles for the group, it makes sense for the micro-macro optimizer to use a swarm

baseline (instead of one single vehicle) to derive an optimal individual agent velocity.

251

Hence, this part details the same experiments as the previous subsection by setting

the number of vehicles to five for the micro optimization step: average of the bounds on

the number of vehicles, similarly to what was done for the baseline velocity. However,

given that the micro optimization (first step of the micro-macro optimization) is now

performed on a reasonable size of swarm, there is no motivation to adjust the cost constraint

for this first step anymore as it was done for experiment 1.2 and 1.4. As a consequence,

experiments 1.5 and 1.6 respectively have the same inputs and requirements as experiments

1.1 and 1.3.

Experiment 1.5: Similar to experiment 1.1 with the new micro optimization requirements,

this experiment shows that the micro-macro optimizer is now able to match exactly the

performance of the simultaneous optimizer. Indeed, the optimal number of vehicles found

by this latter was 5: the exact same number used for the baseline swarm used in the first

step of the micro-macro optimizer. Hence, the second step tries to optimize the individual

velocities for a swarm of 5 agents and ends up finding the same velocity as the global

optimizer: 9 m/s. The results obtained by experiment 1.5 are then similar to experiment 1.1

with the micro-macro optimal design matching the simultaneous optimal design (see Figure

4.9 and Table 4.1 page 243).

252

Figure 4.9: Plot of experiment 1.5

Experiment 1.6: Identical to experiment 1.3 with the new micro-macro optimizer,

experiment 1.6 exhibits another particular case where the micro-macro and macro-micro

algorithms derive the same optimum (see Figure 4.10). Once again, this is due to the fact

that the number of vehicles used for the baseline group is 5, the same number derived by

the macro-micro optimization. This can be seen on the plot as well since the optimal points

are more or less centered in the design space. This result is purely aleatory here and depends

on the structure of the problem, this observation cannot be generalized.

253

Figure 4.10: Plot of experiment 1.6

Table 4.5: Results of experiment 1.6

Variable/Metric Macro-micro Micro-macro Simultaneous

N 5 (-17%) 5 (-17%) 6

v (m/s) 5.60 (15%) 5.60 (15%) 4.87

Mapping time (s) 422 (+1%) 422 (+1%) 417

Cost 100 (0%) 100 (0%) 100

254

Analogy with coordinate search: thanks to the different representations of the previous

experiments, one quickly understands that, in this particular case, the micro-macro and

macro-micro optimization algorithms correspond to search directions for a minimum along

the coordinate directions 𝑁 and 𝑣. However, these coordinate directions are not aligned

with the eigenvectors of the response, hence yielding suboptimal results due to the

conditioning of the problem [195]. This is illustrated on Figure 4.11 here below with an

experiment similar to experiment 1.4.

Figure 4.11: 3D visualization of principal component analysis

255

The principal basis of the response function is represented by the red-green-blue

(RGB) triplet at the global optimum. The principal directions are then represented by the

black dashed lines. As it can be seen, these do not align with the coordinate axes and the

cyan and magenta search directions of the sequential algorithms. A similar projected

representation is proposed on Figure 4.12. For visualization purposes, the constraint has

been plotted as a continuous contour of the 70 cost level as opposed to the previous plots

where the discrete aspect of the number of agents is emphasized. Note that the cyan micro-

macro optimum is not even able to come close to the cost constraint and is under-utilizing

the available budget.

Figure 4.12: 2D representation of principal component analysis

256

Strong from this analogy with a coordinate search optimization algorithm, it seems

that the chances of sequential algorithms leading to optimal results with multi-robot

applications are extremely unlikely except for exceptional particular cases as it was shown

in experiments 1.5 and 1.6.

4.1.4.2 Heterogeneous swarms

A relative heterogeneity can be added to the canonical example by considering

groups of robots exploring different areas of the map (Figure 4.13). For instance, faster

units can be deployed at the very end of the map while the slower agents stay at the

proximity of the deployment point, hence taking advantage in the heterogeneity of the

group to finish the mission in a reduced time. The formulation is quite similar to the

homogeneous one except that now, the performance of the whole system is dictated by the

slowest agent in all the groups. The assumption is that each robot takes the same amount

of time to map their assigned area. Hence the faster robots will be assigned larger areas to

map than the slower ones. Note that the slowest agent of a given robot group is, as before,

the agent being deployed the furthest. Using this approach, the effect of heterogeneity on

the group performance can be analyzed.

Figure 4.13: Heterogeneous canonical example

Base

𝒜1 𝒜2

257

When considering two types of agents represented by the same cost equation (𝑐0 =

3, 𝑐𝑣 = 1, and 𝑐𝑣2 = 1) and fixing a cost constraint at 100, the optimization algorithm

naturally chooses to segregate the group using heterogeneity by proposing a first group of

4 agents at 2.05 m/s and a second group with 5 agents at 2.30 m/s. This heterogeneous

group is able to complete the mapping mission in a time of 635 seconds at a cost of 99.93

units. On the other hand, when forcing the design optimization to use a single type of these

agents, the result obtained is a group of 7 units with a velocity of 2.68 m/s for a mapping

time of 672 seconds and a cost of 99.97 units. In this case, the global optimization algorithm

naturally selects heterogeneity as an optimal design compared to a homogeneous one. The

performance obtained by the heterogeneous group is better by 5%.

When the cost of technology is increased, the optimization tends to favor

numerality (macroscopic level) to individual performance (microscopic level) and has to

carefully choose the number of agents from each type: hence favoring heterogeneity. On

the other hand, when technology is cheap with respect to the cost of a single agent, the

optimization algorithm always has the possibility to compensate a lack of performance with

the continuous microscopic variables before reaching the cost constraint. Hence, the

benefits of heterogeneity in a group can be mitigated when technology is cheap to acquire

with respect to the cost of individual robots.

4.1.5 Conclusions

This set of experiments focused on a canonical mapping swarming mission to prove

the benefits of simultaneous or global optimization when applied to multi-robot systems.

In particular, optimization schemes used so far by the research community have been

compared to a simultaneous optimization algorithm. These schemes are called sequential

258

as they optimize the individual agents and the group operations separately, mostly due to a

lack of link between microscopic and macroscopic level for advanced simulation tasks. It

was shown that even though the sequential optimizers are able to get quite close to utilizing

the full assigned budget, the systems they are proposing for the same cost are worse in

performance than the one derived by the global optimizer. On this particular example, the

performance of the swarm could be improved from 1 to 29% (16% on average) by using a

simultaneous optimizer rather than sequential schemes, and for a similar cost of the system.

In fact, each optimizer allocates resources differently, focusing more or less on the

microscopic level or the macroscopic level, to utilize the assigned budget as efficiently as

possible. As expected, the micro-macro optimizer clearly puts emphasis on the individual

performance of the agents if it is subject to the same budget constraints as the group. Hence,

to help the micro-macro optimizer balance its priorities, two strategies were studied. The

first one consists in making the micro step optimize a single vehicle subject to a much more

realistic and limited constraint than the one used by the group. This first strategy also makes

the problem get closer to real-world situations when individual vehicles have their own

budget limits. The second strategy is similar to the choice made for the macro-micro

optimizer: optimizing a notional swarm during the micro optimization before re-optimizing

the number of agents in this swarm. In one case, the micro-macro optimizer was able to

obtain the same design as the global optimizer while in the other case it obtained the same

design as the macro-micro optimizer.

As stated in section 4.1.2, these results are most probably a lower bound to the

possible improvements achievable in the design of multi-robot systems. Indeed, individual

259

robots are sequentially optimized independently of the group, but with respect to the very

same mission requirements that the group is facing. In real-world situations, current

suboptimal swarms have their robots optimized for different missions which are completely

different than the ones the swarm will have to carry out. As a consequence, current real-

world swarms are even more suboptimal than the sequential swarms used in this section to

demonstrate the advantages of global optimization. Henceforth, the expected benefits from

global optimization could be even greater than the numbers exposed in this section.

Moreover, global optimization truly unlocks the capabilities of heterogeneity by

enabling vehicles of the same architecture to have different configurations. This is not

possible when using sequential optimization since each architecture is optimized

individually before being incorporated into a swarm.

4.2 Mesoscopic modeling

This section details the thought process behind the implementation of a mesoscopic

model so that the steps of the methodology can be applied to different situations and

mission types (such as the mapping-based canonical one defined in the introductory

example). In particular, complexity is built up from the simple macroscopic model to the

intricate microscopic one so that both types of models are fully understood. Building on

this understanding, the compromise mesoscopic model is developed as a proper tradeoff

between the other two models.

In order to conceptually answer the research question and demonstrate the idea of

tradeoff between microscopic and macroscopic variables, only two design variables are

varied in the models: the number of agents in the group, and their velocity. As for the

260

introductory example (see page 75), this presents the advantage of enabling an easy

representation of the design space and the response by using tri-dimensional graphs. This

is a key benefit in helping the reader and the designer comfortably visualize and understand

the compromise at stake. Note that this does not mean that these variables are the only

parameters of the different models. Each model requires additional design variables which

are kept fixed at baseline values. In particular, these variables are set so that the

performance of the models accurately represent the behavior of the same system. However,

they must not be adjusted or corrected to make the models provide the same performance

since this could possibly make each model represent a different vehicle. Instead, it is

expected that each model will provide a different level of precision with respect to a real

system and this should be accounted for.

4.2.1 Canonical mission

In order to be easily able to verify the different models against a real-world system,

the chosen swarming mission must be implementable with the facilities available at the

Georgia Institute of Technology. For this reason, the Robotarium platform (Figure 4.14)

and its GRITBots are used for this modeling section since they are an available swarming

hardware platform at the Georgia Institute of Technology. The accuracy of the different

models can then be verified against the real system.

Figure 4.14: Robotarium project logo

261

The Robotarium project is the latest state-of-the-art multi-robot test facility with

remote access capabilities. Its aim is to reduce the significant resources investments which

are required nowadays to investigate multi-robot systems. By providing a remote access to

its testbed, Robotarium facilitates the deployment of control algorithms on real robots

instead of staying confined to simulation. Students and researchers from across the globe

are able to create an account, as well as upload and test their ideas on real robotic hardware

[223]. The project also includes a simulator to enable the development of the control

algorithms before deploying them on the real system (Figure 4.15).

(a) Robotarium platform (b) Robotarium Matlab simulator

Figure 4.15: Robotarium testbed

In order to provide continuous operation, the Robotarium focuses on automated

maintenance and battery charging, as well as collision-free execution of motion paths

[224]. The system is comprised of the robots themselves, the position tracking system, the

wireless communication hardware, the arena, and its charging system. The current testbed

262

dimensions are 130×90×180 cm and can host up to 20 robots: the GRITSBots (Figure

4.16). These are inexpensive miniature robots equipped with a differential drive and which

can be wirelessly recharged and reprogrammed. The complete design specifications are

detailed in [225]. A key design element is the 400 mAh LiPo battery which provides up to

40 minutes of autonomy. The baseline linear velocity of the GRITSBots is 10 cm/s and 360

degrees/s for the rotational velocity. The corresponding maximum values are 25 cm/s and

820 degrees/s.

Figure 4.16: GRITBots robot platform

It is important to notice that the tracking system of the robots is centralized and

omniscient so that the robots do not have to be individually equipped with sensors. This

simplifies the approach and provides a layer of abstraction with respect to the localization

algorithms that would have to run on the robots otherwise.

Key requirements for the mission to be implemented is that the robots should

interact with each other and that the chosen design variables (velocity and number of

263

agents) should have an impact on the response of the system. Amongst the different

example implementations available with the Robotarium simulator, the classic problem of

the rendezvous is used as the canonical mission comparing the different modeling

techniques. The main motivation for this choice is that the rendezvous algorithm is a

problem which has been widely studied and can be easily understood and declined into

different models using varying detail levels.

The rendezvous mission has the agents converge to the same final position and is

usually accomplished through a network control algorithm. Formally, the 2D positions of

the agents are tracked through states 𝑋𝑖 ∈ ℝ
2, ∀𝑖 ∈ ⟦1, 𝑁⟧ with 𝑁 the number of agents in

the group. Each state vector contains the 2D world coordinates of a given robot. Single-

integrator dynamics are used so that each robot 𝑖 is controlled in terms of velocity �̇�𝑖 = 𝑈𝑖

with 𝑈𝑖 ∈ ℝ
2 the control input. Using this nomenclature for the rendezvous problem, the

control law has to be designed such that all robots end up at the same position (Equation

4.3).

Equation 4.3: Mathematical formulation of the rendezvous problem

lim
𝑡→+∞

(𝑋𝑖 − 𝑋𝑗) = 0, ∀(𝑖, 𝑗) ∈ ⟦1, 𝑁⟧
2

The classic solution as stated in [223] is to define the control input 𝑢𝑖 as 𝑈𝑖 =

∑ (𝑋𝑗 − 𝑋𝑖)𝑗∈𝑁𝑖
 with 𝑁𝑖 a particular set of neighbors of agent 𝑖. Usually this set of

neighbors is defined as the set of agents with which agent 𝑖 is able to have bidirectional

264

communication. Using the overhead camera tracking system, each robot has knowledge of

the positions of all other robots at any point in time, hence the set 𝑁𝑖 is the same for all

robots and equal to the whole group without agent 𝑖: 𝑁𝑖 = {𝑗}𝑗∈ℕ,𝑖≠𝑗. Using graph theory

and the consensus algorithm, it can be shown that lim
𝑡→+∞

𝑋𝑖(𝑡) =
1

𝑁
∑ 𝑋𝑗(0)
𝑁
𝑗=1 , ∀𝑖 ∈

⟦1, 𝑁⟧. Hence, the final position of all robots is the centroid of their initial positions. An

example implementation on the real Robotarium is shown on Figure 4.17.

Figure 4.17: Rendezvous trajectories on Robotarium implementation [226]

The key metrics used to characterize each model versus the real system are the time

taken to reach the consensus, and the final centroid position of the group. These metrics

depend on both the velocity of the agents and the number of robots in the group. The

consensus is considered to be reached when the average change in position for the agents

is less than 1/10th of a mm for more than 25 consecutive iterations. In order to account for

complexity, an additional metric is the runtime of each model. The next subsections detail

the three different models used for the rendezvous canonical mission.

265

4.2.2 Macroscopic model

Simplistic, fast, and easy to implement, macroscopic models are usually broken

down as closed-form mathematical formulations such as differential equations. These are

typically utilized to model the evolution of population movements but are not suitable for

exploration-based swarming missions. A first example of macroscopic model was

introduced in section 2.1 (page 75) and a more complete representation accounting for

heterogeneity has been proposed in [227]. In the same fashion, a mathematical formulation

is proposed here based on the theory of the rendezvous problem.

The solution provided by the consensus algorithm was detailed in the previous

section and already provides closed-form formulae for the rendezvous problem. These can

directly be used in the macroscopic model. In particular, the final centroid position of the

group is nothing but the final position of each agent since they all have the same final

position (see Equation 4.4).

Equation 4.4: First metric formula for the macroscopic model

𝑋𝑓 =
1

𝑁
∑𝑋𝑗(0)

𝑁

𝑗=1

The other metric (i.e. time for the group to reach consensus) can then be easily

computed as the time taken for the last robot to reach the final position. Assuming that the

robots have the same constant velocity and that they do not have to rotate to aim at the

centroid, this robot will be the furthest from the final position. This yields the closed-form

formula for the second metric (see Equation 4.5).

266

Equation 4.5: Second metric formula for the macroscopic model

𝑡𝑓 = max
𝑖
(
‖𝑋𝑖(0) − 𝑋𝑓‖2

𝑣
)

The main assumptions used in the macroscopic model are the following:

 All robots have constant velocity 𝑣

 All dynamics neglected

 Each robot is a point mass

 No collisions

 Does not account for the orientation of the robots

 Perfect communications (the system and all robots know the positions of other

robots at all times)

4.2.3 Microscopic model

Aimed at providing more accuracy, microscopic models can be as intricate as

possible and include many different analyses. For instance, a complete microscopic model

of an aircraft would encompass the design elements of the aircraft frame itself but also of

its many subsystems, each one of these being a complex system of its own. Nevertheless,

this fidelity comes at the price of computational time, development time, complexity, the

difficulty to add later changes, and the need to be supported by data [228].

For the microscopic model of the GRITBots and the Robotarium system, a 6

Degrees of Freedom (DOF) simulation using the Gazebo simulator is proposed and detailed

in this subsection. Gazebo includes several high-performance physics engines and

267

advanced 3D graphics capabilities so that the physics simulation of a robot can be

completely handled from a Unified Robot Description Format (URDF) description file.

This file describes the main hardware components of the robots along with their physical

properties (chassis, wheels, propellers, etc.) as well as the different sensors (camera,

accelerometers, microphones, etc.) as shown on Figure 4.18. This file format was created

to establish a standard and many robotics suites use it such as the Robot Operating System

(ROS), mostly used to code the intelligence of the robot. As a consequence, the

implementation of the microscopic model for the GRITBots consists in creating the

corresponding URDF file and the simulator will be able to completely simulate the physics

of the robot.

robot name is: pr2

---------- Successfully Parsed XML ---------------

root Link: base_footprint has 1 child(ren)

 child(1): base_link

 child(1): base_laser_link

 child(2): bl_caster_rotation_link

 child(1): bl_caster_l_wheel_link

 child(2): bl_caster_r_wheel_link

 child(3): br_caster_rotation_link

 child(1): br_caster_l_wheel_link

 child(2): br_caster_r_wheel_link

 child(4): fl_caster_rotation_link

 child(1): fl_caster_l_wheel_link

 child(2): fl_caster_r_wheel_link

 child(5): fr_caster_rotation_link

 child(1): fr_caster_l_wheel_link

 child(2): fr_caster_r_wheel_link

 child(6): torso_lift_link

 child(1): head_pan_link

 child(1): head_tilt_link

 child(1): head_plate_frame

 child(1): sensor_mount_link

 child(1): double_stereo_link

 child(1): narrow_stereo_link

(a) High level URDF description (b) Actual PR2 robot [229]

Figure 4.18: PR2 robot model

268

To create the URDF description file for the GRITBots, the source files for the

hardware of the robot are downloaded from [223]. These CAD files contain most of the

physical properties, including mass and inertia, which are required to fully describe the

physical components of the GRITBot robot (see Figure 4.19).

Figure 4.19: CAD model of the GRITBots

The correct dimensions, masses, and inertias are then reported in the URDF

description file of the robot (see APPENDIX C page 622). The 3D model is also exported

in the Collada file format to be able to be used in the Gazebo simulator (see Figure 4.20).

269

Figure 4.20: Simulated GRITBots model

This individual robot model enables to have a more precise 6 DOF simulation of

the GRITBots but in order to obtain a complete microscopic model, there is a need to model

the interactions of the group with the same level of detail than the one used for the

individual agents. Hence, thanks to the Gazebo physics model, collisions are now modeled

which adds a degree of complexity to the group interactions. In addition, the tracking

system can be modeled to simulate the centralized positioning algorithm of the robots and

a communication network can also be established.

The Robotarium system now being completely physically simulated, the

intelligence must be implemented into ROS. This is done by instantiating several nodes

where each represent one part of the behavior of the system:

 The overhead tracking system is implemented in the tracker node which reads

images from the overhead camera simulated in Gazebo and runs the Aruco tag

detection algorithm on them to estimate the poses of each robot in the arena (see

Figure 4.22). The extrinsic calibration of the camera with respect to the arena

enables to transform poses form the camera coordinate system to the arena

270

coordinate system. The Aruco tag tracking is done with the ar_april_tag library

[230]. The tracker node then sends the poses information on the robotarium/poses

topic for other nodes to subscribe to and use this information.

 The consensus node is the main node as it is the one reading the pose information

given by the tracker node and computing the velocity commands for each of the

different robots. This node implements the static consensus algorithm and publishes

the control commands for each robot on their respective topics.

 The logger node is a simple node which registers to the poses topic and saves the

pose information of the different robots in a log file, associated with the simulation

time. This enables to compute the mission metrics once the simulated run is over.

The implemented nodes and their communications are summarized in Figure 4.21.

271

Figure 4.21: Microscopic model architecture

(a) Robotarium tracking system simulated in

Gazebo
(b) Simulated camera frame

Figure 4.22: Pose tracking system simulation

logger

consensus

Gazebo tracker /robotarium/poses

/robotarium/gritsbotN/cmd_vel

log.cs

v

experiment.launch

Physics simulation OR real system hardware

Intelligence
Software

Hardware emulation

GRITBot intelligence

272

To run a given experiment, the microscopic model prepares a launch file which

details the simulation environment (the Robotarium arena with the tracking camera), the

number of robots to spawn with their velocity, and finally the nodes to run (the tracker,

the consensus node, and the logger).

To increase the fidelity of the microscopic model with respect to the real system, a

communication topology is established between the robots. In the macroscopic model,

perfect communication was assumed so that all robots are able to communicate with all

other robots when computing their consensus velocity. This assumption is here reviewed

to limit the number of neighbors a given agent is able to communicate with. The set 𝑁𝑖 of

neighbors of agent 𝑖 is generated by an undirected graph 𝐺(𝑉, 𝐸) constructed in a way that

𝑗 ∈ 𝑁𝑖 ⇔ (𝑖, 𝑗), (𝑗, 𝑖) ∈ 𝐸 with 𝑉 the vertices and 𝐸 edges of graph 𝐺. An example of the

Laplacian matrix of 𝐺 is given by Equation 4.6.

Equation 4.6: Laplacian matrix for N=5 agents

[

2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2]

This form of the matrix implies that any agent is able to communicate with 2 other

robots only.

273

Figure 4.23: Robotarium arena and GRITBots in the Gazebo simulator

The ROS-Gazebo implementation constitutes the microscopic model of the

Robotarium and the assumptions associated with it are the following:

 Kinematics and dynamics are simulated based on 6 degrees of motion including

mass and inertia models. Robots evolve in a 3D environment (see Figure 4.23).

 Motion is ensured through a planar differential drive plugin accounting for friction.

 The interactions between the agents are accurately detailed with:

o Collisions modeling through cubic collision meshes elements. In addition,

the control algorithm still includes safety radiuses and barrier certificates.

o The poses of the agents are now acquired through a simulated overhead

camera-based system tracking Aruco tags. This makes the centralized pose

acquisition imperfect and prone to noise as in the real system.

274

o The communication range is now limited and an agent can only

communicate with neighbors induced by a given communication topology.

In this case, the topology is static and represented by an undirected graph

and its Laplacian matrix. The graph is designed so that each agent is able to

communicate only with two other robots.

4.2.4 Mesoscopic model

Now that macroscopic and microscopic models have been developed and fully

understood, a compromise mesoscopic model has to be constructed. The resulting model

is expected to have a decent precision and remain computationally inexpensive to run. For

instance, by looking at the different fidelity of the aircraft models given in [228], they can

be categorized as shown on Figure 4.24.

Figure 4.24: Different levels of detail for aircraft models

As the level of detail decreases when going from microscopic to macroscopic

modeling, design variables are lost, giving rise to a number of simplifications and

Macroscopic

Mesoscopic

Microscopic

• First order mathematical expression

• Differential equations

• Outer loop model (trajectory)

• 3 DOF point mass models

(no moment equations)

• 4 DOF models

• 6 DOF models

• Subsystems dynamics

• Propulsion

• Flaps

• Gear

• Avionics/Instrumentation

275

assumptions in the original models. As mentioned in section 2.2.2.2, this generalization is

often achieved by reducing the level of detail on the group modeling while maintaining a

sufficient level of detail for the models of individual agents. Given that the level of detail

of microscopic models can always be adjusted, and that mesoscopic models can generally

be considered as surrogates of microscopic models, it is important to clearly define the

bounds considered. Indeed, for a given level of detail, it is always possible to go one level

lower. Hence, for establishing these models, the lowest level of detail achievable is

considered to be the theoretical and analytical derivation of the static consensus, and the

highest level of detail is considered to be the real system implemented on the Robotarium.

In the case of the GRITSBots and the Robotarium, the group dynamics are acquired

through the camera tracking system which provides the position of all robots at a given

point in time. This part of the microscopic model can be simplified by simply assuming

that all positions are known instead of constantly computing them. This step removes quite

a complex layer of the microscopic model by eliminating all the computer vision

components. The delay of 33 ms required to compute the poses of the robots is hence

removed. Indeed, [225] showed that the tracking system is limited to a framerate of 10 fps

for 5 robots and 6.5 fps for 25 robots.

Unicycle model: a second step in obtaining a mesoscopic model for the GRITBots and the

Robotarium can be to use a simplified physics model for the dynamics of the robot. Indeed,

while the microscopic model uses a complete 6 DOF model, inspiration can be taken from

Figure 4.24 to implement a simpler 3 DOF representation for the mesoscopic level of detail.

276

This has the benefit of still representing the dynamics of the robot (as opposed to the

macroscopic model) while reducing the complexity of the model. The 3D simulation of the

microscopic model now becomes a 2D simulation using the differential drive dynamics,

the model used in the Robotarium simulator. Also known as unicycle dynamics, they

represent a robot moving in a two-dimensional world with a given forward velocity but no

lateral motion. The controls of such a robot are the norm of the forward velocity vector and

its azimuth in the world (see Figure 4.25).

(a) Position (b) Velocity

Figure 4.25: Unicycle model representation

The kinematic model of a differential drive robot is given by Equation 4.7.

Equation 4.7: Kinematic model of a unicycle robot

�̇� = {

�̇�1
�̇�2
휃̇

} = {
𝑣 cos 휃
𝑣 sin 휃
𝜔

} = [
cos 휃 0
sin 휃 0
0 1

] {
𝑣
𝜔
}

Where [𝑥1, 𝑥2, 휃] is the position and orientation of the robot in the world reference

frame and [𝑣, 𝜔] the linear and angular velocities.

𝑥1

𝑥2
𝜽

𝑥1

𝑥2 𝝎

𝒗

277

Controls: the control algorithm used for the GRITBots and given in [225] uses feedback

linearization. The idea is to control a point [𝑥1
′ , 𝑥2

′] situated in front of the robot and offset

by a fixed length 𝜆 which corresponds to an equivalent gain for the controller. The control

is then done by adjusting the velocity of this point [𝑣𝑥1 , 𝑣𝑥2] in the world coordinates. This

can be given by the rendezvous command inputs for instance. Hence, these single-

integrator dynamics [𝑣𝑥1 , 𝑣𝑥2] have to be translated to the unicycle dynamics [𝑣, 𝜔] which

can be directly interpreted by the robot model (see Equation 4.7). The dynamics of the

controller are computed as follow:

Equation 4.8: Dynamics of the Gritbots controller

{
𝑥1
′

𝑥2
′ } = {

𝑥1
𝑥2
} + 𝜆 {

cos 휃
sin 휃

}

⇒ 𝑋′ = 𝑋 + 𝜆 {
cos 휃
sin 휃

}

⇒ �̇�′ = �̇� + 𝜆
𝑑

𝑑𝑡
{
cos 휃
sin 휃

}

⇒ �̇�′ = �̇� + 𝜆휃̇ {
− sin 휃
cos 휃

}

⇒ �̇�′ = {
�̇�1
�̇�2
} + 𝜆휃̇ {

− sin 휃
cos 휃

}

⇒ �̇�′ = 𝑣 {
cos 휃
sin 휃

} + 𝜆𝜔 {
− sin 휃
cos 휃

}

⇒ �̇�′ = [
cos 휃 − sin 휃
sin 휃 cos 휃

] {
𝑣
𝜆𝜔
}

⇒ �̇�′ = [
cos 휃 − sin 휃
sin 휃 cos 휃

] [
1 0
0 𝜆

] {
𝑣
𝜔
}

⇒ {
 𝑣𝑥1
𝑣𝑥2
} = 𝑅(휃)𝑆(𝜆) {

𝑣
𝜔
}

⇒ {
 𝑣𝑥1
𝑣𝑥2
} = 𝐺(휃, 𝜆) {

𝑣
𝜔
}

278

The diffeomorphism 𝐺 gives the relation between the single-integrator and the

unicycle dynamics. By computing its inverse, the control input of the robot can be

expressed as a function of the rendezvous single-integrator commands:

Equation 4.9: Inverse control commands for the Gritbots

{
𝑣
𝜔
} = 𝐺−1(휃, 𝜆) {

 𝑣𝑥1
𝑣𝑥2
}

⇒ {
𝑣
𝜔
} = 𝑆−1(𝜆)𝑅−1(휃) {

 𝑣𝑥1
𝑣𝑥2
}

⇒ {
𝑣
𝜔
} = [

1 0
0 1/𝜆

] [
cos 휃 sin 휃
− sin 휃 cos 휃

] {
 𝑣𝑥1
𝑣𝑥2
}

This command vector can then directly be used in Equation 4.7. The same control

technique is used in the microscopic model.

System identification: now that the dynamics and controls of the robot have been

established, the gap between mesoscopic simulation and real-system must be bridged to

obtain a validated model [224]. Velocity measurements �̂̇�𝑖 of the model velocities �̇�𝑖 are

made on the real system ∀𝑖 ∈ {1,2,3}. A linear relation is assumed between the model and

the observations, as shown in Equation 4.10.

Equation 4.10: System identification model

�̂̇� = [
𝛼1 0 0
0 𝛼2 0
0 0 𝛼3

] �̇�

279

Where the 𝛼’s are linear regression coefficients. With a measurement campaign of 30,000

measurements carried out in [224], measurement vectors �̇�𝑖
̂ ∈ ℝ30,000, ∀𝑖 ∈ {1,2,3} are

obtained and used in a least squares linear regression scheme to compute the regression

coefficients: 𝛼𝑖 = (�̇�𝑖
̂
𝑇

�̇�𝑖
̂)

−1

(�̇�𝑖
̂
𝑇

�̇�𝑖
̂) , ∀𝑖 ∈ {1,2,3}. The results are summarized in

Equation 4.11 with �̇� given by Equation 4.7.

Equation 4.11: Final values for system identification

�̂̇� = [
0.8645 0 0
0 0.8119 0
0 0 0.4640

] �̇�

Collisions modeling: collisions are indirectly modeled through barrier certificates which

avoid collisions between the robots by modifying the user control inputs if some robots are

too close to each other. The barrier certificate method prevents collisions and is minimally

invasive since it minimizes the deviation between the newly computed safe control

command and the original command provided by the rendezvous formulae. This

minimization is subject to safety constraints which enforce a minimum distance between

the robots. Additional constraints ensure that the output velocity is bounded within the

physical limits of the robots. The minimization is performed with quadratic programming

and a full derivation of the barrier-certificate-compliant controls is given in Appendix A.3

(see page 445). [224] showed that this collision avoidance scheme is able to run in real-

time on a decentralized system with up to 100 agents at 185 Hz.

280

Figure 4.26: Graphic interface of the mesoscopic model

This mesoscopic model corresponds to the implementation of the Robotarium

simulator and the different assumptions used in its elaboration are listed here below:

 Kinematics are simulated based on 3 degrees of motion (position and orientation)

with a unicycle motion model. Robots evolve in a 2D environment (see Figure

4.26).

 Dynamics (mass, inertia) are neglected.

 Friction is neglected.

 Collisions are indirectly modeled through safety radiuses and barrier certificates.

 Perfect communications are assumed so that the system and all robots know the

positions of other robots at all times. The tracking and pose estimation system is

abstract. Robots poses are known exactly and for each time step.

4.2.5 Verification and validation

The verification and validation of simulation models generally consists in

comparing the performance of the models with respect to the real system. Given that this

281

section focuses on modeling, the verification and validation portion is joint with the

characterization part and presented in the next section. This latter presents the different

experiments required to fully characterize each model.

4.2.6 Characterization

Based on the example canonical mission, this section has demonstrated how to

progressively construct a mesoscopic model by leveraging macroscopic and microscopic

models (Figure 4.27).

Figure 4.27: The increasing level of detail of the implemented GRITBot models

The three models are now compared with each other in terms of the different

evaluation criteria established for experiment 2. Due to the hardware limitations inherent

to the current Robotarium platform, the velocity of the robots is set to evolve from 1 to 10

cm/s by increments of 1 cm/s and the number of robots is changed from 2 to 5. This design

of experiments hence generates 40 evaluation points for each one of the models.

Real
System Microscopic

Model

𝒇(𝒙)

Mesoscopic
Model

Macroscopic
Model

282

Figure 4.28: Consensus time metric

By first looking at the consensus time response (Figure 4.28), an initial comparison

of the models can be drawn. Observing the overall evolution of the response, it appears

that the consensus time decreases as the velocity is increased and the number of robots

decreased. However, note that the initial positions of the robots are completely aleatory for

each data point, hence no conclusions can be drawn from the general shape of the response

since all experiments are unrelated to each other.

The three models seem to superimpose on each other, each time getting closer to

the real system response as the level of detail is increased from macroscopic to

microscopic. In particular, all models seem to be overconfident in the performance of the

system by underestimating the time it would take to achieve consensus: all response

283

surfaces lie underneath the response surface of the real system. As could have been

expected, the macroscopic model is being the most optimistic by predicting quite low

consensus times when compared to the real system. This is mostly due to the fact that all

dynamics and interactions between the agents are neglected and these are the most

prominent factors in the performance losses of the system. Indeed, the robots will first have

to turn and align with their trajectory to reach consensus, then they will possibly have to

interact with other robots in order to avoid collisions on the way to consensus. These two

factors contribute to lengthening the time required for the swarm to reach static consensus.

Then, as these factors are more and more accounted for in the mesoscopic and microscopic

models, the responses get closer to the performance of the real system. This is consistent

with what was expected in the validation criteria of experiment 2.

 As the level of detail is increased, the models are not as optimistic as the

macroscopic models and the different responses start to intersect with sometimes

pessimistic predictions. This can be seen more clearly on Figure 4.29.

Figure 4.29: Section view of consensus time response for v = 1cm/s

284

Focusing now on the spatial precision of the different models, a previous validation

of the Robotarium simulator showed that it is on average precise within 5 mm of actual

robot trajectories [224], hence validating the mesoscopic model. However, the performance

of the two other models is left to be evaluated and validated. An example of the different

trajectories is presented on Figure 4.30.

Figure 4.30: Robot trajectories for N=3 and v=8 cm/s

The Gritbots start either from their charging stations or from random initial

locations based on where the operator places them (red circles). The parking controller is

then activated to make the robots reach a set of initial conditions (magenta circles) which

was randomly generated for the design of experiments. For a given number of robots and

a given velocity, these initial conditions are the same for each model evaluation. Then, the

consensus algorithm is started from these initial conditions until the Gritbots reach

285

consensus (green circles). The theoretical consensus location is the barycenter of the initial

positions and is represented by the black cross.

A statistical analysis of the results over the complete set of 40 experiments is carried

out and the summary is presented on the figures here below.

The first metric to be evaluated over the full set of 40 experiments is the location

of the consensus. The macroscopic model uses the exact theoretical formula for the position

of the consensus but all models are compared with respect to the performance of the real

system. The results are presented on Figure 4.31.

Figure 4.31: Precision of the models on the consensus position metric

286

Representing the error of the real system with respect to the theoretical values, the

macroscopic model exhibits an error of 3.17 cm. The microscopic model is the closest to

the performance of the real system with an error of 1.34 cm. Finally, and as expected by

the motivations of mesoscopic modeling, the mesoscopic model lies in between with an

absolute position error of 1.49 cm.

The second metric to be evaluated is the time required by the swarm to reach a

consensus (see Figure 4.32).

Figure 4.32: Precision of the models for the consensus time metric

287

The trend remains very similar to what was observed on Figure 4.32 with the

macroscopic model exhibiting the most error with 62.5%, then the mesoscopic model with

31.0%, and finally the microscopic model with 26.0% of error on the consensus time. Once

again, these results correspond to the behavior which was expected from the mesoscopic

model: a performance between those of the macroscopic and the microscopic models.

Indeed, by neglecting all dynamics, the macroscopic model exhibits a high error on the

time metric which is directly linked to dynamics. Thanks to a more complete model and

without being as intricate and complex as the microscopic model, the mesoscopic one is

able to bring this error down to 31.0% with a simple set of assumptions.

Finally, the last metric considered for the choice of the model is the run time

required by each model. It has been established in the previous paragraphs that the

mesoscopic model seems to provide good accuracy with simple assumptions but it is

essential to know whether this type of modeling is computationally efficient enough to

justify its use for conceptual design phases. The average runtime of the different models is

represented on Figure 4.33 and also compared with the time required for an experiment on

the real system to be completed.

288

Figure 4.33: Average runtime of the different models

Once again, the numbers of the mesoscopic model seem to lie between those of the

macroscopic and the microscopic model, validating our criteria for the experiment. Relying

only on a couple mathematical formulae which are very quick to evaluate, the macroscopic

model runs on average in 0.17 milliseconds. With dynamics involved and actual simulation

of the path of the robots, the mesoscopic model runs on average in 5.88 seconds. Regarding

the microscopic model, complete collision modeling and pose tracking are now included,

which require more computational resources. This model runs on average in 30.16 seconds.

Finally, the real system takes 99.78 seconds to run one experiment on average.

These runtimes do include the overhead setup time necessary to launch the

simulators and accomplish the required preparation tasks before the consensus mission.

289

This includes parsing the configuration files, spawning the robots with appropriate

configurations, and setting up the environment. Note that for the real system, there is an

additional overhead time necessary for the parking controller in order to make the robots

reach their initial positions within a certain tolerance margin.

Going back to the validation criteria established in section 2.2 for experiment 2, it

is possible to conclude on the suitability of mesoscopic modeling for the conceptual design

of multi-robot systems. First, it was shown that mesoscopic modeling can indeed be applied

to multi-robot problems and no failure point was observed since the mesoscopic model

always appeared more precise than the macroscopic model but also always faster than the

microscopic one. In more detail, it was found on the studied particular case that the

mesoscopic model ran on average five times faster than the microscopic model while not

having more than 20% error with it. In particular, the mesoscopic model showed 31.0% of

error with respect to the real system on the consensus time metric while the much more

developed microscopic model showed 26.0% of error. This order of magnitude is typically

what is observed in the conceptual design phases, hence confirming the appropriateness of

mesoscopic modeling for the scope of the present research. Surprisingly, the performance

of the mesoscopic model in terms of precision is not exactly in between those of the

macroscopic and the microscopic one (see Figure 4.34).

290

Figure 4.34: Notional representation of the precision of mesoscopic modeling

Indeed, the mesoscopic model is found to have an accuracy much closer to the

microscopic model than the macroscopic one, while being much less computationally

expensive. These observations validate hypothesis 2 and position mesoscopic modeling as

the ideal candidate for the rapid and precise exploration of gigantic multi-architecture and

multi-level design spaces.

291

CHAPTER 5

MULTI-ARCHITECTURE MULTI-LEVEL

DESIGN SPACE EXPLORATION

Second main axis of this research, the exploration of multi-architecture and multi-

level design spaces, such as the ones encountered with swarming systems, remains a

challenge mostly due to the gigantic size of the design space. Such design spaces are multi-

architecture since several architectures of robots are considered to be integrated in the

swarm, and multi-level since design choices have to be performed at the macroscopic level

(the group), and propagated to the microscopic level (the agents). It was notably established

in section 1.4.2 and the second chapter that the design space of an individual robot is

somehow multiplied by the possibilities available at the macroscopic level, tremendously

expanding the overall design space. This section hence aims at elaborating a pertinent

design space exploration technique to facilitate the optimization of multi-robot systems by

focusing on the third research question:

Research question 3

How can current conceptual design methods be adapted to account

for multi-architecture multi-level design space exploration?

This research question was later decomposed into two complementing

perspectives: the generation of alternatives and the optimization of configurations. The

following sections detail each of these in their implementation and their results.

292

5.1 Generation of alternatives: the tree of reduced morphological

matrices

Before optimizing swarm configurations, they have to be properly generated so that

a large portion of the design space is actually covered by the exploration technique. This

concern originated a first sub research question:

Research question 3.1

How can we systematically generate all feasible alternatives in a multi-architecture

and multi-level design space for further optimization?

This subsection answers this question by studying in detail the corresponding hypothesis:

Hypothesis 3.1

IF a tree of reduced morphological matrices is used

THEN all feasible alternatives can be generated in a multi-architecture

and multi-level design space for further comparison and optimization

It starts by recalling the theory behind the proposed morphological tree (see section

2.3.1.2 page 141). This subsection then constructs notional morphological matrices of

different architectures before implementing and applying the proposed approach of the

morphological matrix tree summarized on Figure 2.23 page 144.

293

5.1.1 Step 1: morphological reduction

With a constant need of reducing the complexity of design optimization, it is

common to separate optimizers and let them handle different disciplines or levels of the

optimization for instance. The problem with this approach is that each one of the optimizers

needs to handle different design variables. Hence the main idea introduced by [173] is to

accelerate the design optimization process by tackling it from the morphological approach

side, hence reducing the number of available discrete options to be optimized: there is a

need to regroup design variables at the morphological level. For instance, instead of

considering different optimizers which would handle different types of wings, it is possible

to regroup straight wings, delta wings, and swept wings into a same optimizer by

considering design variables such as surface area, aspect ratio, sweep angle, and other

additional variables. In the same fashion, architectures such as tricopters, quadcopters,

hexacopters, and other octocopters, could be regrouped in a modular “multicopter”

architecture and optimizer which would instead consider the number of rotors as a design

variable. Discrete design choices are hence removed from the discrete morphological

analysis and directly incorporated into the optimizers. This helps reducing the number of

optimizers required for the given architectures. Based on the approach proposed by [173]

to reduce the number of optimizers, morphological reduction is composed of four steps:

1) Generate alternatives: this first step uses the morphological approach described

earlier where functions or features are listed in the rows of a morphological matrix

and corresponding possible options are enumerated in the columns. All alternatives

294

are then generated by using a full factorial approach taking every possible option

for every feature (see Equation 5.1).

Equation 5.1: Number of alternatives from morphological analysis

𝑁𝑎𝑙𝑡 = ∏ 𝑁𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑖)

𝑖∈𝑟𝑜𝑤𝑠

Where 𝑁𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑖) is the number of options available for a given row 𝑖.

2) Ensure feasibility: an alternative can be generated only if all of its options for each

feature are compatible with each other. In order to check compatibility between

options, a square matrix called compatibility matrix is used. Such a matrix indicates

for a given option whether it is compatible or not with all other possible options.

An example of such a matrix is provided in Figure 5.1.

 𝑶𝟏 𝑶𝟐 𝑶𝟑 𝑶𝟒 𝑶𝟓 𝑶𝟔 𝑶𝟕 𝑶𝟖

𝑶𝟏 1 0 1 0 0 1 0 0

𝑶𝟐
 1 0 1 0 0 0 1

𝑶𝟑
 1 1 1 1 0 0

𝑶𝟒
 1 0 1 0 0

𝑶𝟓
 1 1 1 1

𝑶𝟔
 1 0 1

𝑶𝟕
 1 0

𝑶𝟖
 1

Figure 5.1: Example of compatibility matrix

295

It can be seen that option 𝑂1 is compatible with itself and 𝑂3 for instance,

but not with 𝑂4. Each option being compatible with itself, the diagonal is always

set to ones. Since the matrix is symmetric, only one half of it needs to be

documented. Moreover, the morphological matrix is constructed so that only one

option can be chosen per feature. Table 5.1 shows an example of how this can be

achieved when several options could be concurrently chosen for a given feature.

Table 5.1: One option chosen per feature

Features Options

Sensors

Imaging Mono RGB camera

Mono

+

RGB camera

In the previous table, the imaging sensor options are a mono channel camera

and a RGB camera. However, it could be possible to consider putting both on a

vehicle for imaging purposes: the mono channel sensor could be used for rapid

optical flow processing while the color camera could be used for more advanced

image processing. Hence, to satisfy the assumption that for each feature only one

option is chosen, the alternative of having both the mono and RGB sensor is created

as an additional option. This simplification can be automatically implemented in

the methodology as long as rows which have possible combinatorial choices of

options are identified.

296

If this assumption is used, the approach is simplified and the total number

of entries of the compatibility matrix which must be filled-in by the designer is

reduced (see Equation 5.2).

Equation 5.2: Number of filled elements in compatibility matrix

𝑁𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑁𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑁𝑜𝑝𝑡𝑖𝑜𝑛𝑠 − 1)

2
− (∑

𝑁𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑖)[𝑁𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑖) − 1]

2
𝑖∈𝑟𝑜𝑤𝑠

)

This formula consists of a first term being the number of elements strictly

above the diagonal (yellow), minus all blocks of options pertaining to the same

feature (red blocks, see Figure 5.2). Options 𝑂2 and 𝑂3 describe the same feature,

as well as 𝑂4, 𝑂5, and 𝑂6. This can possibly represent memory savings in data

structures.

 𝑶𝟏 𝑶𝟐 𝑶𝟑 𝑶𝟒 𝑶𝟓 𝑶𝟔 𝑶𝟕 𝑶𝟖

𝑶𝟏 1 0 1 0 0 1 0 0

𝑶𝟐
 1 0 1 0 0 0 1

𝑶𝟑
 1 1 1 1 0 0

𝑶𝟒
 1 0 0 0 0

𝑶𝟓
 1 0 1 1

𝑶𝟔
 1 0 1

𝑶𝟕
 1 0

𝑶𝟖
 1

Figure 5.2: Number of filled elements in compatibility matrix

297

3) List variables: for each feature, the design variables which are used by at least one

option are stored and associated with their respective option(s).

4) Regroup options: the options that are described by the same design variables are

regrouped into one option. Finally, features which are described by a unique set of

variables are removed from the morphological matrix. The analyses associated with

such simplifications are transferred to the optimization algorithms. This can be

represented in Table 2.8 (page 140), Table 2.9 (page 140), and Figure 5.3 here

below.

Figure 5.3: Regrouping of options

Option 1

𝑥1, 𝑥2, 𝑥3 𝑥1, 𝑥2, 𝑥3 𝑥4, 𝑥5

𝑦1 𝑦2, 𝑦3 𝑦3, 𝑦4, 𝑦5, 𝑦6

𝑧1 𝑧1 𝑧1

Feature 1

Feature 2

Feature 3

Option 2 Option 3

Option 1

𝑥1, 𝑥2, 𝑥3 𝑥4, 𝑥5

𝑦1 𝑦2, 𝑦3 𝑦3, 𝑦4, 𝑦5, 𝑦6

Feature 1

Feature 2

Option 2 Option 3

298

5) Regroup architectures: all compatible alternatives are then generated using the

morphological and the compatibility matrices. Finally, amongst those alternatives,

the ones that are described by unique sets of design variables are declared as

architectures. In particular, alternatives having the same set of design variables will

be regrouped (Table 5.2).

Table 5.2: Grouping of alternatives into architectures

Alternatives

{

𝑥1
𝑥2
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑧1
𝑧2}

{

𝑥1
𝑥2
𝑥3
𝑦5
𝑦6
𝑦7
𝑧1}

{

𝑥1
𝑥2
𝑥3
𝑦5
𝑦6
𝑦7
𝑧1
𝑧3}

{

𝑥1
𝑥2
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑧1
𝑧2}

{

𝑥1
𝑥2
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑧1
𝑧2}

{

𝑥1
𝑥2
𝑥3
𝑦5
𝑦6
𝑦7
𝑧1}

{

𝑥1
𝑥2
𝑥3
𝑥4
𝑦5
𝑦6
𝑦7
𝑧1}

The alternatives 1,4, and 5 have the same design variables and are regrouped as one

architecture only (red columns). Same goes for alternatives 2 and 6 (blue columns).

This first step hence helps in reducing the number of architectures which will be

used for the construction of the morphological tree, second step of the proposed

methodology. An example implementation of morphological reduction is the software

ENVISAGE [173].

5.1.2 Step 2: morphological tree

In order to accommodate the evolving size of the design space based on the

configurations chosen at the macroscopic level, a tree structure is implemented to keep

299

track of the different design choices. As presented in section 2.3.1.2 page 141, the root of

the tree is the morphological matrix of the macroscopic level while the leaves represent the

morphological matrices of the individual agents. Model morphological matrices for the

different architectures considered are stored at an abstract and intermediate level. These

are used as templates for the leaves. This choice is inspired by object-oriented

programming and the concepts of interfaces, abstract classes, and instantiation. This has

been a tendency in systems engineering tools as well over the past few years with the

examples of the Systems Modeling Language (SysML) and the Architecture Analysis and

Design Language (AADL) using instance models of high-level interfaces. In the case of

hardware specifications, this enables to have several available models or components to

realize a given function. In terms of software, several algorithms can be instantiated to

implement a specified task. Another advantage of such representations is that they can be

used for analyses on a system, a classic example being a weight analysis where the analysis

simply sums up the weight attributes of all subsystems instances. A representation of a

morphological tree is given again here below (see Figure 5.4).

300

Figure 5.4: Example of morphological tree

Note that this representation can also be adapted when more than two levels are

considered. In this case, abstract morphological matrices must be implemented at each new

level so that each additional level in the design spaces translates into two additional levels

in the morphological tree (one for the abstract morphological matrices, and one for the

instantiations). In particular, the tree need not be balanced if subsystems exist for some

architectures but not for others. Moreover, some options of morphological matrices might

offer a variety of additional design choices. Given that such choices can be represented by

a fixed morphological matrix, there is no need for a template. Hence, there is a distinction

to be made between options which might be duplicated (one example is vehicle

architectures as on Figure 5.4), and options which are chosen only once. These latter

options are regrouped in what are called sublevels and are shown on Figure 5.5.

Plane Multirotor Dirigible Ornithopter

Macroscopic level

Microscopic level

Architecture level

Swarm

Agent 4 Agent 5 Agent 6 Agent 2 Agent 3 Agent 1

301

Figure 5.5: Multi-level morphological tree

To account for the feasibility of the generated alternatives, the tree structure must

be coupled with compatibility matrices for each of the options (see section 5.1.1).

5.1.3 Implementation

The proposed example implementation of the morphological tree is mostly based

on the object-oriented programming representation due to its flexibility: a key asset for

dynamic design spaces. In particular, two main objects are to be implemented: a tree data

structure, and a morphological matrix data structure.

5.1.3.1 Data structures

Firstly, the tree data structure is a widely used one and is available in many third

party libraries. For the chosen Matlab implementation for instance, it is possible to find a

number of open source files representing the tree data structure. The implementation of

Jean-Yves Tinevez is chosen as it is recognized on the MathWorks repositories, has been

downloaded and used many times by the community, and has received excellent ratings

S
u

b
le

v
el

S
u

b
le

v
el

Level 0

Level 1

Level 2

302

[231]. This data structure is implemented as a class and includes many utility functions to

perform operations on the tree. It is based on plain Matlab arrays and cell arrays and

exhibits little overhead. Moreover, this tree data structure is a “per value” class as opposed

to a “per reference” implementation, this has to be taken into account when modifying the

tree structure. Finally, this implementation is modular enough so that any data type can be

used for the roots and leaves of the tree.

To support the additional operations required on a tree of morphological matrices,

a class morphologicalTree is created to inherit from the tree class. Its main additional

functions are to perform reduction, the computation of the alternatives, and a string

representation. Then, a class is created for morphological matrices and corresponding

object instances are used in the tree structure. The morphologicalMatrix class is created as

part of this research and the data structure is presented on Figure 5.6 using UML formalism.

303

Figure 5.6: Proposed UML class diagram for the morphological tree

+ morphologicalMatrix(name: String, abstract: Boolean)
+ addRow(row: row)
+ removeRow(name: String)
+ computeAlternatives(): Integer
+ computeCompatibleAlternatives(compatibilityMatrix: Array, initialSet: Array, n: Integer): Integer
+ reduce(): Boolean, Integer, Integer
+ countOptions(): Integer
+ countVariables(): Integer
+ setUpCompatibilityIndices()
+ intializeCompatibilityMatrix(): Array
+ toString(): String
+ getName(): String
+ getRows(): Struct
+ isAbstract(): Boolean
+ setAbstract(abstract: Boolean)
+ symmetrize(C: array)

morphologicalMatrix
- name: String
- rows: Struct

tree

…

…

Tree data structure class by Jean-Yves Tinevez

http://tinevez.github.io/matlab-tree/

morphologicalTree

+ morphologicalTree(content: MorphologicalMatrix)
+ computeAlternatives(): Integer
+ reduce(): Boolean, Integer, Integer
+ toString(): String

row
name: String
options: Struct

+ addOption(option: option)
+ removeOption(name: String)
+ addOptionFromMorph(name: String, m: morphologicalMatrix)
+ reduce(): Boolean, Integer
+ countOptions(): Integer
+ countVariables(): Integer
+ setUpCompatibilityIndices(startIndex: Integer): Integer
+ toString(): String
+ getName(): String
+ getOptions(): Struct
+ computeAlternatives(): Integer

0..1

0..*

option
- index: Integer
- name: String
- variables: Struct

+ option(name: String, variables: Struct)
+ countVariables(): Integer
+ toString(): String
+ getName(): String
+ getIndex(): Integer
+ getVariables(): Struct
+ setIndex(index: Integer)

rowConventional

+ rowConventional(name: String)
+ computeAlternatives(): Integer

rowCombinatorial

+ rowCombinatorial(name: String)
+ computeAlternatives(): Integer

0..1

0..1

0..*

0..* 0..1

0..*

http://tinevez.github.io/matlab-tree/

304

The morphological matrix basically consists of rows containing options. Each

element is assigned a name which serves as a unique reference to each individual object.

The options additionally comprise of a set of associated design variables which are used to

perform the morphological reduction. The implementation contains basic operations to add

and remove rows (features) and columns (options), and also carry out morphological

reduction on rows and morphological matrices. For the rows, options containing the same

variables are reduced to one, and for the morphological matrices, each row is reduced

before removing rows containing only one option. The reduction methods return a Boolean

indicating whether the structure was reduced or not, as well as the number of variables

removed. Structures containing more than one object of a given type (matrix of rows, rows

of options, options with several variables) are implemented as cell arrays in Matlab.

Required constructors, getters, and setters are also employed.

Two types of rows are considered for the morphological matrix: conventional and

combinatorial. The conventional row is a row where only one option can be chosen whereas

several options can be chosen simultaneously in a combinatorial raw. This latter type of

row is particularly useful when combining sensors for instance (see Table 5.1 page 295).

For conventional rows, the number of possible alternatives is just the number of elements

in the options array whereas for the combinatorial row, all possible combinations have to

be summed up for all numbers of options grouped together (Equation 5.3).

305

Equation 5.3: Total number of alternatives for a combinatorial row

𝑛𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 = ∑ (
𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠

𝑖
)

𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠

𝑖=1

A row containing 3 options can be used as an example: if one option has to be

chosen then (
3
1
) = 3 alternatives are possible, a number which corresponds to the

conventional case. If two options are to be chosen, (
3
2
) = 3 alternatives can be considered.

Finally, if the choice has to be made between 3 options, only (
3
3
) = 1 alternative is feasible.

By summing all possibilities, one ends up with 3 + 3 + 1 = 7 total alternatives for a

combinatorial row of 3 options.

More in depth, this particular detail is implemented thanks to the concept of

abstraction: an abstract class row is implemented with the abstract method

computeAlternatives. This method is then detailed differently depending whether a

conventional row or a combinatorial row is instantiated. Hence, two classes

rowConventional and rowCombinatorial inherit from the abstract row class. To simplify

the compatibility analysis, it is assumed that options from a combinatorial row are

compatible within themselves. If this is not the case, one can always generate a

conventional row from a combinatorial row by considering the required compatibilities

(see Table 5.1 page 295).

Additionally, for the data structures to remain modular, a special method is

implemented in the abstract row class which enables to create a full set of options from a

306

given morphological matrix. This is a key feature as it facilitates the multi-level

morphological analysis. Considering the morphological interfaces shown in Table 5.3,

Table 5.4, Table 5.5, Table 5.6, Table 5.7, and Table 5.8, this corresponds to the red cells

which are individual options actually hiding full morphological matrices.

5.1.3.2 Morphological interfaces

Finally, before instantiating the tree of morphological matrices, the abstract

morphological matrices of the represented architectures have to be constructed. Based on

functional and physical decomposition (see Figure 3.13 page 207) of common models

found in the commercial and military worlds, design features and their corresponding

options are listed for each considered architecture. These example morphological interfaces

are listed in this section and later used in the methodology to implement instances of each

architecture.

Note: these matrices do not have the pretention to be exhaustive in any way, nor up to the

standards used in the industry today where morphological matrices often comprise of

thousands of rows. Rather, they serve as representative examples used to estimate the

benefits of the morphological tree approach.

First, the most common type of UAV architecture is presented: the fixed-wing

architecture. As it is shown on Table 5.3 and Table 5.4, multi-levels are present with the

empennage, battery types, and landing gear wheel arrangements. These are represented as

red options. Hence, by looking at this concrete example of morphological decomposition,

one understands the need for a modular structure which can handle multiple levels such as

307

the morphological tree. Additional morphological decompositions follow for the

macroscopic level as well as for the multicopter, airship, and ornithopter architectures.

Table 5.3: Example of empennage morphological matrix

Features Options

Number of tailplanes

0

 Tailless

 Canard

1 2 3

Location Low Mid High

Booms

 Tail

 Wing

Moving surfaces Independent Stabilator

Number of fins 0 1 2

Configuration Fin/Taiplane V tail
Inverted

V tail
X tail Pelikan

750 alternatives

308

Table 5.4: Fixed-wing architecture morphological interface

Fixed-Wing

Features Options

A
e
r
o

d
y

n
a

m
ic

s

Body Separate fuselage Flying wing Blended body Lifting body

Wing Straight Swept Delta Compound delta

Wing position Low Mid Shoulder High Parasol

Detachable wing Yes No

Empennage None See Table 5.3

Type of launch Horizontal Vertical Hand-launched Aircraft-launched Catapult-launched

Type of landing Horizontal landing Vertical landing Energy dissipation crash Parachute Net

P
r
o

p
u

ls
io

n

Number of motors 1 2 3 4

Energy source Bio-chemical Electric charge Solar Electrolyte Hybrid

Energy storage

Battery

 LiCoO2

 LiFePO4

 LiPo

 NiCad

 NiMH

Fuel tank External fuel tank
Electrolyte tank
Fuel cell

Fuel tank + Battery

 LiCoO2

 LiFePO4

 LiPo

 NiCad

 NiMH

External fuel tank + Battery

 LiCoO2

 LiFePO4

 LiPo

 NiCad

 NiMH

Converter to mechanical energy Piston Turbine Electric motor
Hybrid

(Piston/Electric)

Hybrid

(Turbine/Electric)
Fuel cell and electric motor

Converter to lift/thrust Rotor Fan Propeller Jet

S
e
n

so
r
s

Imaging

Mono

 Fixed-mount

 Gyro-stabilized

RGB camera

 Fixed-mount

 Gyro-stabilized

Multispectral data

 Fixed-mount

 Gyro-stabilized

Thermal camera

 Fixed-mount

 Gyro-stabilized

Mapping 2D LIDAR 3D LIDAR Sonar

Attitude IMU+GPS

Altitude GPS Barometer Sonar

Communications Radio

S
tr

u
c
tu

r
e
s Landing gear arrangement None

Wheels

 Tail wheel

 Tandem

 Tricycle

 Wing

Skids Floaters Skis

Landing gear type None Fixed Retractable

Landing gear shock absorption Rigid Leaf-type Bungee cord Shock struts

309

Table 5.5: Multirotor architecture morphological interface

Multirotor

Features Options

A
e
r
o

d
y

n
a

m
ic

s

Fairings None Electronics only Full body Full body and payload

Type of landing Vertical landing Energy dissipation crash Parachute Net

P
r
o

p
u

ls
io

n

Energy source Bio-chemical Electric charge Electrolyte Hybrid

Energy storage

Battery

 LiCoO2

 LiFePO4

 LiPo

 NiCad

 NiMH

Fuel tank External fuel tank
Electrolyte tank

Fuel cell

Fuel tank + Battery

 LiCoO2

 LiFePO4

 LiPo

 NiCad

 NiMH

External fuel tank + Battery

 LiCoO2

 LiFePO4

 LiPo

 NiCad

 NiMH

Converter to mechanical energy Piston Turbine

Electric motor

 Spinning cage

 Spinning shaft

 Brushed

 Brushless

Hybrid
(Piston/Electric)

Hybrid
(Turbine/Electric)

Fuel cell and electric motor

Rotorcraft Single rotor Coaxial Tail sitter Tilt-rotor Multirotor

Number of rotors 1 2 3 4 6 8

Converter to lift/thrust Rotor Fan Propeller

Number of blades 2 3 4 6 8 10

Rotors/Frame arrangement I X Y V

Blade type Fixed pitch Variable pitch

310

Table 5.5 (continued)

S
e
n

so
r
s

Imaging

Mono

 Fixed-mount

 Gyro-stabilized

RGB camera

 Fixed-mount

 Gyro-stabilized

Multispectral data

 Fixed-mount

 Gyro-stabilized

Thermal camera

 Fixed-mount

 Gyro-stabilized

Mapping 2D LIDAR 3D LIDAR Sonar

Attitude IMU+GPS

Altitude GPS Barometer Sonar

Communications Radio

S
tr

u
c
tu

r
e
s

Landing gear arrangement None Foam pads Skids Floaters

Landing gear type None Fixed Retractable

Landing gear shock absorption None Rigid Leaf-type Bungee cord Shock struts

Frame type
Aerial

cinematography
Sport Sport FPV Mini Mini FPV

Table 5.6: Macroscopic level morphological interface

Features Options

Mission type HALE Long-range strike MALE Close-range support MUAV MAV

Architecture Fixed/Conventional Product family Scale-based product family Reconfigurable Online reconfigurable Modular

Control type Centralized Decentralized

Control scheme Leader/Follower Hierarchical Consensus Distributed

Ground station Remote base Laptop Wearable technology

311

Table 5.7: Morphological interface for the airship architecture

Airship

Features Options

A
e
r
o

d
y

n
a

m
ic

s Lifting medium Cold gas (Helium) Hot air

Empennage configuration Y Inverted Y X Cross

Ballonet-based pitch trim Yes No

P
r
o

p
u

ls
io

n

Energy source Bio-chemical Electric charge Electrolyte Hybrid

Energy storage

Battery

 LiCoO2

 LiFePO4

 LiPo

 NiCad

 NiMH

Fuel tank External fuel tank
Electrolyte tank

Fuel cell

Fuel tank + Battery

 LiCoO2

 LiFePO4

 LiPo

 NiCad

 NiMH

External fuel tank + Battery

 LiCoO2

 LiFePO4

 LiPo

 NiCad

 NiMH

Converter to mechanical energy Piston Turbine

Electric motor

 Spinning cage

 Spinning shaft

 Brushed

 Brushless

Hybrid
(Piston/Electric)

Hybrid
(Turbine/Electric)

Fuel cell and electric motor

Number of rotors 1 2 3 4 6 8

Steerable propulsion Yes No

Converter to lift/thrust Rotor Fan Propeller

Number of blades 2 3 4 6 8 10

Blade type Fixed pitch Variable pitch

S
e
n

so
r
s

Imaging

Mono

 Fixed-mount

 Gyro-stabilized

RGB camera

 Fixed-mount

 Gyro-stabilized

Multispectral data

 Fixed-mount

 Gyro-stabilized

Thermal camera

 Fixed-mount

 Gyro-stabilized

Mapping 2D LIDAR 3D LIDAR Sonar

Attitude IMU+GPS

Altitude GPS Barometer Sonar

Communications Radio

S
tr

u
c
tu

r
e
s

Hull type Non-rigid Semi-rigid Rigid

Battens Yes No

312

Table 5.8: Morphological interface for the ornithopter architecture [232], [233]

Ornithopter

Features Options

Aerodynamics

Wing twisting

Yes

 Spar rotation

 Spar torsion

 Servo-controlled

 Auxiliary spar

No

Wing type Flying wing Tandem wing Thrust-wing
Oscillating stretched

wing
Rotating wing

Propulsion

Energy source Bio-chemical Electric charge Other

Energy storage

Battery

 LiCoO2

 LiFePO4

 LiPo

 NiCad

 NiMH

Fuel tank Rubber

Gearbox type Strut Plate

Gear type Cluster Spur with pinion wire

Flapping mechanism Staggered crank Outboard wing hinge Dual cranks Transverse shaft

Converter to mechanical energy Internal combustion engine

Electric motor

 Spinning cage

 Spinning shaft

 Brushed

 Brushless

Rubber + shaft

Sensors

Imaging Mono RGB camera Multispectral data

Attitude IMU+GPS

Altitude GPS Barometer Sonar

Communications Radio

Structures Wing reinforcement Battens Perimeter

313

5.1.3.3 Compatibility study

In conjunction with the morphological interfaces, compatibility matrices are

required to consider only alternatives which options are all compatible. First, indices are

associated with every option of the morphological matrix thanks to the method

setUpCompatibilityIndices. The numbering convention is shown in Table 5.9.

Table 5.9: Options compatibility indexing convention

Features Option 1 Option 2 Option 3 Option 4

Feature 1 1 2 3

Feature 2 4 5

Feature 3 6 7 8 9

Feature 4 10 11

Then, the function initializeCompatibilityMatrix initiates a compatibility matrix

assuming that all options are compatible and then prefills the incompatible trivial blocks

as explained in Figure 5.2. The designer is then left to identify only the incompatibilities.

For each architecture, the compatibility matrices can be visualized in Figure 5.7.

314

(a) Fixed-wing (𝟖𝟒𝟓×𝟖𝟒𝟓) (b) Multirotor (𝟗𝟕×𝟗𝟕)

(c) Airship (𝟕𝟗×𝟕𝟗) (d) Ornithopter (𝟒𝟒×𝟒𝟒)

(e) Macroscopic level (𝟐𝟑×𝟐𝟑)

Figure 5.7: Compatibility matrices

315

It can be seen that the compatibility matrices follow a general pattern as shown on

Figure 5.8.

Figure 5.8: Compatibility matrices pattern

Incompatible options are represented in black whereas compatibilities are displayed

in white. Incompatible options from the same feature are the black triangles close to the

diagonal. The large white patch in the bottom right corner of the matrix comes from the

sensors combinatorial rows which have only compatible options which can be combined

even if they are from the same feature. Finally, the diagonal is white since every option is

compatible with itself.

Propulsion

compatibilities

Trivial

incompatibilities

Combinatorial

sensors alternatives

316

Once the compatibility matrices are prepared, the compatible alternatives must be

generated. Given the extremely high number of total possible (and not necessarily

compatible) alternatives, a full factorial approach eliminating incompatible options cannot

be considered. Although the proposed morphological matrices remain small with respect

to what is observed in the industry, generating the full factorial for all possible alternatives

is impossible due to computer memory constraints. For example, generating all possible

alternatives for the airship architecture would require 100 GB of memory. This full

factorial array would then have to be run through to identify and rule out incompatible

alternatives. As a consequence, a recursive approach on the rows of the morphological

matrix is chosen as in the fashion of [173]. For a given function call, the algorithm tries to

add each option of the current row to the considered alternative. If the option is compatible

with the alternative built so far (step 𝑛), the option is added to the alternative and the

recursive function is called on the following rows (step 𝑛 + 1). The stopping condition of

the recursion is reached when no more rows remain. This method is very similar to

traveling a tree in a depth-first fashion (see Figure 5.9).

317

Figure 5.9: Recursive count of compatible alternatives

In this particular function call, three options have been chosen and locked in and

the algorithm is looping over and considering all the options of row 𝑛. The circles represent

options compatible with the current alternative (green options) and the crosses represent

the incompatible ones. For each compatible option (circle), the function will have a

recursive call over the sub-problem: the remaining rows of the morphological matrix (red

area) and repeat the same process for row 𝑛 + 1. The complete workflow for generating

compatible alternatives is the following:

1. Prepare morphological matrix

2. Initialize options indices

3. Initialize compatibility matrix

4. Fill in known incompatibilities

5. Run recursive algorithm to count compatible alternatives

Options

F
ea

tu
re

s
𝒏

𝒏 + 𝟏

318

The complete compatibility analysis is summarized in Table 5.10. Due to the size of the

morphological decomposition of the fixed-wing and multicopter architectures,

compatibility studies were to computationally expensive to run.

Table 5.10: Number of compatible alternatives

Architecture

Name

Combinatorial

alternatives

Total

incompatible

pairs

Non-trivial

Incompatible

pairs

Compatible

alternatives
Compression

Fixed-wing 3.8916×1016 284,340 2,441 - -

Multirotor 1.6789×1014 500 214 - -

Airship 3.3579×1011 441 199 111,974,400 99.97%

Ornithopter 7,408,800 113 46 158,400 97.86%

Macroscopic level 1620 56 10 540 66.67%

The recursive function takes a couple hours to run for the small matrices and lists

all possible compatible alternatives, making it a pretty long process. However, the

procedure can be sped up by properly conditioning the problem. Indeed, the algorithm will

take a long time if for many occasions the “depth first” search is able to go deep in the

alternatives tree. Since the number of compatible alternatives is given by the problem, it is

not possible to change the number of branches where the algorithm goes the deepest.

However, it is possible to change how early the incompatibilities are found. The earlier an

incompatibility is found, the longer the underlying branches are and the more possibilities

are removed at once (see Figure 5.10).

319

(a) Badly conditioned problem: incompatibility

found in the last recursive layers

(b) Good conditioning: incompatibility found

from the beginning, preventing the

proliferation of child branches

Figure 5.10: Problem conditioning

The options of the considered alternative which are incompatible together are

highlighted in red. If the option incompatible with the option chosen at the first or second

row is listed earlier (Figure 5.10 (a)), the algorithm will not pursue the search with another

multitude of branches (Figure 5.10 (b)). Hence, the idea is to condition the morphological

matrix so that most incompatibilities lie in the first rows of the matrix (since they are

considered first by the algorithm). Thanks to this pre-conditioning of the problem, most

incompatible alternatives are removed at the beginning of the recursive process and the

algorithm is able to finish in a much shorter time. However, as can be seen in Table 5.10,

the function call would take too long (respectively from around a hundred days to twenty-

two years) for the multirotor and the fixed-wing architectures. Note that the compatibility

matrix has to be formed once reduction has been performed or the reduction step has to

also properly reformat the compatibility matrices.

Options

F
ea

tu
re

s

Options

F
ea

tu
re

s

320

5.1.3.4 Morphological reduction

Final step of the implementation, the morphological reduction is easily performed

thanks to the object-oriented programming paradigm. Indeed, the reduction is first

performed at a row level for each option of the row. Options which are found to have the

same design variables as another are removed from the row. Then, the reduction continues

at the morphological matrix level: once the row has been reduced and if there is only one

option left, this latter is removed from the matrix. Finally, a reduction method can be

implemented for a tree object and that method performs reduction for each of the nodes of

the tree. Note that in the extreme case when a whole morphological node is reduced to one

option, it could potentially be removed from the tree and directly transferred to the

optimization step as it is done for rows with single options.

Going back to the example morphological matrices introduced in section 5.1.3.2

page 306 and analyzed in Table 5.10 page 318, it is possible to perform reduction and

obtain a first glance at the type of results obtainable through morphological reduction

(Table 5.11 and Figure 5.11).

Table 5.11: Number of reduced alternatives

Architecture

Name

Initial

combinatorial

alternatives

Reduced

combinatorial

alternatives

Options

removed

Non-unique

variables

removed

Compression

Fixed-wing 3.8916×1016 1.6463×1013 712 4752 99.96%

Multirotor 1.6789×1014 6.4774×1011 25 37 99.61%

Airship 3.3579×1011 3.2387×108 27 50 99.90%

Ornithopter 7,408,800 3,175,200 4 4 57.14%

Macroscopic level 1620 1620 0 0 0%

321

Figure 5.11: Effect of options removal on overall reduction

Observing these results, the macroscopic level morphological analysis is not

reduced. This is due to the fact that the options available at the macroscopic level are very

particular in the proposed case and all have very unique design variables. Note that this

might be different for other canonical examples. Then, reduction seems all the more

important when the morphological decomposition is large. One example is the fixed-wing

architecture which encompasses a secondary morphological decomposition for the

empennage, adding more than 750 new alternatives multiplying the other analysis. For this

architecture, the compression due to reduction is more than 99.95% with a very large

number of options removed (mainly from the empennage decomposition). However, with

the multirotor and airship configurations, a high reduction is achieved (more than 99%)

even though the proportion of options removed is reasonable (25% to 34%). Hence,

reduction seems to show promising results in reducing the size of the design space even

when not many options are removed. For the ornithopter architecture, removing only 4

99.96 99.61 99.90

57.14

84.26

25.51

34.18

9.09

0

10

20

30

40

50

60

70

80

90

100

Fixed-wing Multirotor Airship Ornithopter

%

Reduction Options removed

322

options results in a reduction of the design space of more than 50%. A higher reduction is

not achieved as the options for this type of peculiar architecture are very unique and not

standardized.

Propagating these results to the full morphological tree, a tremendous reduction of

the design space is achieved, demonstrating the multiplied power of morphological

reduction when applied to multi-level design spaces (Figure 5.12).

Figure 5.12: Initial morphological tree before reduction

The abstract level is represented with the gray boxes and these are not accounted

for to compute the total number of alternatives in the tree. Before reduction, the tree

comprises of 1.1242×10114 combinatorial alternatives. After reduction, this number goes

down to 2.0203×1093 by removing 3010 options (around 20,000 non-unique variables).

Macroscopic level

(1620)

Fixed-Wing
3.892 × 1016

Vehicle 1
3.892 × 1016

Vehicle 2
3.892 × 1016

Vehicle 3
3.892 × 1016

Multirotor
1.679 × 1014

Vehicle 1
1.679 × 1014

Vehicle 2
1.679 × 1014

Vehicle 3
1.679 × 1014

Airship
3.358 × 1011

Vehicle 1
3.358 × 1011

Ornithopter
7.409 × 106

Vehicle 1
7.409 × 106

323

Even though the number of alternatives to be considered is still enormous with respect to

current design exploration techniques, the reduction achieved is quite important and this

number of alternatives has been reduced by several orders of magnitude.

5.1.4 Verification and validation

The verification and validation of the morphological tree with reduction is simply

performed through a campaign of unit testing. Moreover, this section refers to the

validation criteria of experiment 3.1 defined in chapter 2 and validates hypothesis 3.1.

Are all alternatives feasible? The complementary approach of the compatibility matrix

ensures that feasibility is enforced for each matrix (leaf) of the morphological tree but also

between the different levels when alternatives are generated. Hence all alternatives

provided by the morphological tree are feasible. The unit test associated with this criterion

generates random alternatives and for each one of them, looks up the chosen technologies

in the compatibility matrix. The test passes only if no incompatibility is found.

Are there still redundant variables or options groups in the resulting alternatives?

This steps ensures that the morphological reduction step is properly carried out and

propagated through the different levels of the tree. The corresponding unit test performs

morphological reduction on a randomly generated design space. Then, it reduces the

resulting design space a second time and compares whether there was a second size change

or not. The test passes only if the size of both design spaces is the same, which indicates

that the first reduced design space is no longer compressible.

324

Is the number of alternatives reduced when compared with the classical

morphological approach? This question is easily answered by generating a random

swarm constitution and computing the resulting number of alternatives from this design

space. As a second step, morphological reduction is performed and the total number of

alternatives are compared in both cases.

Are all existing concepts covered by the generated alternatives? The morphological

approach ensures that every option of the tree is considered in the alternatives. Indeed, the

generation of alternatives is done with a full factorial decomposition of all possible options,

hence certifying that any given option is used in the alternatives. Covering all existing

concepts then depends on the precision of the literature review and the definition of the

morphological interfaces. In the example implementation, notional morphological matrices

are provided and most likely lack some options in their decomposition while still providing

a wide coverage of the design space for unmanned vehicles.

Can the generated alternatives be easily fed to the optimization and analysis

algorithms? Each alternative generated by the morphological tree comes with a set of

design variables used to define it. Using this architecture in the optimizers (such as the one

defined in the next section) then depends on implementing the behavior of the architecture

as a function of its design variables, and defining bounds for each design variable. This

step is relatively easy since:

 The number of architectures to be implemented is most likely reduced thanks to

morphological reduction.

325

 The morphological tree directly provides the design variables to be used in the

implementation.

5.1.5 Characterization

This section provides a complete characterization of the proposed design space

exploration technique. Both aspects are considered with a first part focusing on

morphological reduction and a second part detailing the morphological tree

characterization.

5.1.5.1 Morphological reduction

An efficient design space exploration technique relies on two main capabilities:

covering a maximum of concepts and simultaneously reducing the execution time required

to reach optimal solutions. Although the usage of the morphological approach guarantees

the exhaustiveness of the generated concepts with respect to the listed options, it is not

granted that the computation time will remain reasonable. Indeed, two aspects have to be

considered. On one hand, the number of discrete cases to be run in the optimizers has been

reduced thanks to morphological reduction. On the other hand, a certain number of

corresponding design variables has been transferred to the optimizer. In order to conclude

on the effectiveness of the whole methodology, it is critical to study whether the

morphological reduction is outbalanced by the number of additional design variables in the

optimization process. Introduced by [173], this concept named “morphological reduction”

in this work is applied to multi-level design spaces in this section and further characterized.

A first step in this approach is to assess the increase in computation time incurred

by the multiplication of design variables used by the optimizer. In order to be consistent

326

with the optimizer used in this research, a genetic algorithm optimizer is used on a set of

thirteen multivariable test functions in the same fashion as [234]. These optimization test

functions have the particularity to have an adjustable number 𝑛 of design variables, so as

to study the behavior of the optimization algorithm with respect to 𝑛: key requirement for

the present test. Such functions are presented in Appendix A.2 page 432.

For a given number of design variables, this analysis runs the genetic algorithm to

optimize the test function. In particular, the same stopping criteria of stability and stalling

generations is used for the convergence criteria. Such runs are replicated over a hundred

times to ensure a proper statistical analysis of the results as well as robust conclusions

(Figure 5.13).

Figure 5.13: Number of function calls versus number of design variables

327

The number of function calls required for convergence quickly shoots up between

1 and 20 design variables, before increasing more slowly. Although there is no apparent

limit to the number of function calls, the tendency of the curves reminds of an asymptotic

behavior. In order to obtain a general trend of how the number of function calls in the

optimizer is affected by the number of design variables, the average number of function

calls is computed for every number of design variables (see Table 5.12).

Table 5.12: Average number of function calls for the test functions

Number of design variables Average number of function calls

1 14,121

2 20,890

3 26,553

4 34,637

5 40,145

10 71,679

50 237,322

100 408,899

The average number of function calls required for convergence can then be approximated

by Equation 5.4. With 𝑛 the total number of design variables used by the optimizer. The

coefficient of determination for this fit is 𝑅2 = 0.9992.

Equation 5.4: Surrogate model for the number of function calls

𝑓𝑐(𝑛) = −11.776𝑛
2 + 5,127.9𝑛 + 13,236

In order to fully understand the effects of morphological reduction, the analysis is

separated between single level and multilevel effects.

328

5.1.5.1.1 Single level

This subsection draws out new conclusions (with respect to [173]) on the

performance of morphological reduction. For all following examples, a notional

morphological matrix is considered with 8 rows and 4 options per row. The initial number

of variables in the optimizer is 50. Options are then removed one by one with

morphological reduction and the influence of different parameters is studied. It is assumed

for the following figures that options are removed row by row, as opposed to column by

column. However, the effect of both strategies is studied on Figure 5.20 and Figure 5.21.

In Figure 5.14, the number of design variables removed per option (also denoted as

factor 𝑘) is 4. The nominal case without morphological reduction is represented in blue

and does not change as options are removed.

Figure 5.14: General effect of morphological reduction

329

A first observation is that the morphological reduction curve (in solid red) is always

below the nominal case (solid blue): the number of total function calls is always lower with

morphological reduction. The vertical right axis represents an equivalent duration if each

function call took one second to evaluate. It seems that the principal influence comes from

the reduction in the number of discrete cases in the morphological decomposition, and that

the resulting increase in the number of design variables for the optimizer has a minor

contribution in the number of function calls. Indeed, one possible way to check this

statement is to compute the number of function calls when design variables are not

transferred to the optimizer: options (and variables) are simply removed. This curve is

shown in dashed red and appears only slightly below the solid red curve. This confirms

that the action of transferring design variables to the optimizer as options are removed has

only a minor influence on the number of function calls. The same conclusion is drawn

when considering the complementary approach: keeping the number of discrete calls

constant and increasing only the number of design variables in the optimizer (dashed blue

curve). Again, the difference with the baseline is smaller than with the solid red line. As a

conclusion, the influence on the number of function calls is dominated by the reduction in

the number of times the optimizer has to be run and not by its number of variables.

Although the first example on the baseline problem seems to show that

morphological reduction is always advantageous, it is essential to reach the limits of this

experiment and see if it is possible to obtain a case where such a clear conclusion cannot

be drawn. By pushing the factor 𝑘 to 100 (100 variables added per option removed), Figure

5.15 is obtained.

330

Figure 5.15: Limits of morphological reduction

The red and blue solid curves now intersect and there seem to be a tradeoff between

the number of times the optimization algorithm is run, and the number of design variables

transferred to it. When 1 to 4 options are removed from the morphological matrix, this

means that 100 to 400 additional variables are transferred to the optimizer. This ends up

dominating the number of function calls. Hence, it is more computationally expensive in

this case to use morphological reduction. As for the previous example, this trend is

confirmed by looking at the dashed curves and their distance from their respective solid

counterparts. By the time 10 options have been removed, the variation between the red

solid and dashed curve is the same as the total variation of the solid line: adding variables

to the optimizer now has the same impact as the number of calls to the optimizer. To

331

conclude on this example, it seems that in some extreme cases, the proposed morphological

reduction might take longer and be more expensive than the conventional approach.

However, this was derived for the unusual case when one option of the morphological

matrix requires 100 variables to be represented, a number much larger than the initial 50

variables of the baseline problem.

The effect of this parameter 𝑘 is further studied on Figure 5.16. It is varied from 2

to 4 with the same number of initial design variables in the optimizer.

Figure 5.16: Influence of factor k on morphological reduction

332

As 𝑘 is increased (more variables transferred per option removed), morphological

reduction requires more and more function calls and gets closer to the nominal case. In the

extreme case when 𝑘 = 300 variables are transferred to the optimizer per option removed,

the number of function calls increases from 1 to 2 options removed. This is opposed to the

previous observations when the trend was always decreasing for the morphological

reduction curves. This can also be represented by a contour plot listing the zones where the

morphological reduction uses more or less function calls than the full morphological

decomposition (Figure 5.17).

Figure 5.17: Contours of morphological reduction profitability

333

This map shows that even for a small morphological matrix example, the zone

where morphological reduction is detrimental remains quite limited in terms of coverage.

Even if the k-factor varies from 1 to 300 variables added per option removed, there is no

detrimental zone after 8 options have been removed from the morphological matrix.

Finally, the repercussions of the size of the problem are considered in these last few

examples. First, the number of rows in the morphological matrix is varied in Figure 5.18.

Figure 5.18: Influence of the number of rows on morphological reduction

334

As expected, with more rows in the morphological matrix, the computational time

increases for both the baseline and the morphological reduction cases. With both problem

sizes, the morphological reduction still performs better than the classic approach. The same

observations are drawn from Figure 5.19 when the number of options per row is varied.

Figure 5.19: Influence of the number of options per row on morphological reduction

It can be observed that the number of options per row has more influence on the

response than the number of rows in the morphological matrix. This is reminiscent of the

strategy chosen for the elimination of options which was mentioned at the beginning of

this section. Two strategies were envisaged: rows first or columns first. Figure 5.20

335

demonstrates both strategies on the notional morphological matrix of this section by

removing 10 options. Removed options are represented in red.

 Options
F

ea
tu

re
s

 2048

discrete calls

 Options

F
ea

tu
re

s

 2916

discrete calls

(a) Rows first (b) Columns first

Figure 5.20: Strategies of options removal

The “rows first” strategy leaves 2048 possible alternatives (i.e. 2048 calls to the

optimizer) while the columns first leaves 2916 of them. Given this important difference, it

is essential to consider both testing strategies for the characterization of morphological

reduction (see Figure 5.21).

336

Figure 5.21: Influence of options removal strategy on morphological reduction

The “rows first” strategy seems to decrease the number of function calls the most

compared to the “columns first” strategy. Jumps can be seen in both curves: for the “rows

first” strategy, there is a different slope for every removed option, and the pattern repeats

every time a new row is removed (every 4 options). When the last option of a row is

removed, the number of function calls actually increases. Indeed, the number of discrete

calls remains the same, but more variables are transferred to the optimizer. All things

considered, the number of function calls hence increases slightly at every new row before

decreasing again. As for the “columns first” strategy, the cycle repeats after columns are

removed from the morphological matrix (every 8 options in this case).

337

 After 16 options removed (equivalent of 2 columns, or 4 rows), combinatorial

theory shows that both strategies leave the same number of alternatives. After this point,

the “columns first theory” decreases the number of alternatives much faster. However, this

breaking point happens when the number of options removed gets very close to the number

of total options in the morphological matrix (21 options removed out of 32 total options).

Finally, this graph shows that before this breaking point which happens in rare cases, both

strategies exhibit a similar high-level trend: the characterization made on the previous

examples hold for both strategies which generalizes the conclusions made.

Note that in real-world applications, the designer does not control any “rows first”

or “columns first” options removal strategy. Instead, the options which are removed are

given by the morphological reduction process and do not respect any specific pattern. The

strategies were introduced for the sake of these examples so as to enable automated large-

scale options removal. Moreover, the test and the notional morphological matrix were

designed so that 0 to 30 percent of the total options were removed.

5.1.5.1.2 Multi-level

A complete characterization of morphological reduction for single-level design

spaces was carried out in the previous subsection and it is now essential to study the

repercussions when several design levels are involved. By considering a notional problem

for both microscopic and macroscopic levels, the effect of removing options can be

visualized for both levels. The options are removed separately on the microscopic level

and the macroscopic level (Figure 5.22) and are expressed as a percentage of the size of

the respective problem. In order to understand each effect separately, only the number of

338

variables transferred to the optimizer is considered here, the number of discrete runs is

considered the same so that these graphs are equivalent to running the optimizer only once

with the increased number of variables. Hence, using the surrogate model 𝑓𝑐 defined in

Equation 5.4, the formulae used are of the form 𝑓(𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑) = 𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠
𝑛𝑅𝑜𝑤𝑠 ×𝑓𝑐(𝑛𝑣𝑎𝑟𝑠)

with 𝑓 the number of function calls, and 𝑛𝑅𝑜𝑤𝑠 and 𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 corresponding to the values

of the initial problem.

(a) Microscopic (b) Macroscopic

Figure 5.22: Notional morphological reduction on a bi-level problem

The decrease in the number of function calls is monotonous with the number of

options removed from the given level. Since both levels are considered separately and

provided that the size of the macroscopic problem is smaller than for the microscopic one,

the number of function calls is decreased the most for the microscopic level. The more

339

options are removed, the more the impact of the k-factor is perceived: the envelope shifts

away from the nominal case of 𝑘 = 5.

Figure 5.23: Relative morphological reduction

In terms of relative evolution, the curves are similar for any k-factor and follow the

quasi-linear trend displayed in Figure 5.23. Over a large portion of the range, a change in

the number of options will result in a similar change in function calls offset by 10%. This

means that if 40% of options are removed in terms of the problem size, the number of

function calls is reduced by around 30%.

340

Finally, the size of the different problems (macroscopic and microscopic) is

changed on Figure 5.24.

Figure 5.24: Influence of problem size on bi-level morphological reduction

As observed in real-world applications, the size of macroscopic problems (brown

curves) is generally smaller than for the microscopic ones (blue curves). Hence, the number

of function calls is reduced the most for microscopic problems. Some curves from the

different levels overlap when they have similar morphological matrices.

Now that the effect of removing options (more precisely only adding design

variables to the optimizer) has been independently characterized on both levels, it is

341

essential to include the effect of the reduced number of discrete calls to the optimizer to

finish a complete characterization of morphological reduction. This time, to account for

options being individually removed, the formulae used for each level are of the form

𝑓(𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑) = ∏ 𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠(𝑖)
𝑛𝑅𝑜𝑤𝑠
𝑖=1 ×𝑓𝑐(𝑛𝑣𝑎𝑟𝑠). Note that the factor 𝑘 is hidden in

𝑛𝑣𝑎𝑟𝑠 = 𝑘×𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑. First, the influence of this complete formula is assessed on

each level with Figure 5.25. As expected, trends with cycles similar to the previous single-

level section are obtained.

(a) Microscopic (b) Macroscopic

Figure 5.25: Complete morphological reduction on bi-level problem

Subsequently, the influence of both levels is merged into a unique analysis so that

the effects of morphological reduction on a bi-level problem are fully understood.

Including macroscopic and microscopic levels, the overall formula for the number of

function calls for the whole problem is given in Equation 5.5.

342

Equation 5.5: General equation for bi-level morphological reduction

𝑓(𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑) =

(

 ∏ 𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠
𝑚 (𝑖)

𝑛𝑅𝑜𝑤𝑠
𝑚

𝑖=1

×𝑓𝑐(𝑛𝑣𝑎𝑟𝑠
𝑚)

)

⏟
𝑀𝑖𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐

×

(

∏ 𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠

𝑀 (𝑖)

𝑛𝑅𝑜𝑤𝑠
𝑀

𝑖=1

×𝑓𝑐(𝑛𝑣𝑎𝑟𝑠
𝑀)

)

⏟
𝑀𝑎𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐

With subscripts 𝑚 and 𝑀 referring respectively to microscopic and macroscopic levels.

The influence of both levels is displayed on Figure 5.26.

Figure 5.26: Influence of both levels on morphological reduction

343

The expected trend is observed, the number of function calls decreases with the

number of options removed for both levels: the removal of discrete optimizer calls still

dominates over the addition of design variables in the optimizer. Given the different size

of both problems, the range of removed options is not the same for the two levels. In order

to better capture and understand the influence of each level on this general response, a

variables profiler is displayed in Figure 5.27. This profiler explores cross sections of the

response across each factor around the point where one option is removed at each level. It

corresponds to the partial derivatives
𝜕𝑓

𝜕𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑
|
𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑=1

.

(a) Microscopic (b) Macroscopic

Figure 5.27: Variables profiler for morphological reduction

Using the profiler, one can now see that the macroscopic level has around twice as

much influence on the global response than the microscopic level. This is consistent since

the choices made at the macroscopic level have a knock-on effect on the levels below.

Indeed, from Equation 5.5, the upper level multiplies the number of alternatives available

344

at the lower levels. Would the number of levels increase, each level would have more

influence on the total number of alternatives (and total number of function calls) than the

levels below it. Changing only the number of options removed from the macroscopic level,

having more levels underneath is equivalent to having a bigger microscopic level (all lower

levels are fixed). Hence when removing options from the upper level, increasing the

number of levels at the lower levels would generate graphs similar to Figure 5.18 and

Figure 5.19.

Moreover, supposing that the macroscopic level might have less design variables

per option as it is often observed in real-world problems, one could envisage having

different k-factors for the microscopic level and the macroscopic level. In this case the

same effects as observed on Figure 5.16, Figure 5.22, and possibly even Figure 5.15 would

be obtained.

5.1.5.2 Morphological tree

The morphological tree structure is trickier to quantifiably characterize than

morphological reduction as it consists in a representation paradigm. Qualitatively, an

example implementation of morphological tree has been proposed and its use has

demonstrated clear advantages in modularity. Indeed, the morphological tree has proven

easily adaptable to new architectures thanks to the morphological interfaces. Moreover, it

is quite flexible in its way to handle different levels and provides an insightful graphic

representation of multi-level and multi-architectures design spaces.

Thanks to the object-oriented implementation proposed on Figure 5.6, the complex

process of morphological reduction at multiple levels is now reduced to traversing the

345

morphological tree and calling the reduction on each morphological matrix before finally

computing the total number of alternatives. Finally, the tree can be used in different ways:

 As a fixed simple bookkeeping tool storing the possible design choices in an

organized and graphic fashion.

 As a fully functional and dynamic design space definition tool used to lock design

choices and propagate them through the tree. It can be used to incrementally

perform morphological reduction, compute the total of remaining alternatives to

study, as well as how many design variables were lost in the process. In particular,

a possible use of the tree is to reduce a huge design space to a smaller one by

generating a reduced number of architectures to study.

 As an assistant to design optimization by dynamically ensuring that the optimizers

consider only feasible designs during the design space exploration.

5.2 Design optimization: the bi-level genetic algorithm

This part details the implementation and validation of the global optimization

algorithm conceptually designed in section 2.3.2.2 page 163. In particular, it also performs

a complete characterization of the algorithm in order to answer research question 3.2 which

is recalled here with the corresponding hypothesis.

Research question 3.2

How can swarm architectures be efficiently optimized

in a multi-architecture multi-level design space?

346

Hypothesis 3.2

IF an optimization method based on a bi-level genetic algorithm is used

THEN a fast and efficient multi-architecture multi-level global

optimization of group configurations is enabled

The associated experiment aims at demonstrating that such an algorithm is able to

efficiently optimize multi-robot systems in the context of conceptual physical design.

5.2.1 Implementation

A generic representation of the bi-level optimizer is given on Figure 5.28. As

opposed to Figure 2.25, note that this schematic does not assume that the optimizer is based

on a genetic algorithm. This allows for further research to plug in different optimization

algorithms which are more adapted to other fields. However, it was established in section

2.3.2 that genetic algorithms have desirable features for the scope of this research. Hence,

an example implementation based on genetic algorithms is proposed here.

Figure 5.28: High-level architecture of the proposed bi-level optimizer

Outer loop

Inner loop Elite

347

As a reminder, the outer loop decides on the swarm constitution, hence adapting

the size of the design vectors required for the inner loop. The inner loop is then left to

optimize remaining design variables, be it microscopic or macroscopic. The optimal

microscopic architectures are kept in memory so as to be further used by future iterations.

The main feature of this bi-level optimizer is that the outer loop dynamically adjusts the

size of the design vectors used in the inner loop depending on the swarm constitution.

Indeed, if a swarm of four vehicles is considered, the design vector of the inner loop

chromosomes will have a different size than when a swarm of two is evaluated by the outer

loop. This is illustrated on Figure 5.29 and formally represented on Figure 5.30.

Figure 5.29: Dynamic size allocation for inner loop chromosomes

`

×𝟏

×𝟑 ×𝟒

Outer

loop

Inner

loop

Inner loop chromosome

Dynamically

adjust size

×𝟑 ×𝟏 ×𝟒

Outer loop

chromosome

Legend
Design space

Chromosome, design vector
Optimum

Optimizer

348

The following nomenclature is used:

𝐴𝑖 Architecture 𝑖

𝑁
Quantity of a certain object (example: 𝑁𝐴1is

the number of vehicles with architecture 𝐴1)

𝑣 Variables

𝑉 Vehicle

𝑋 Design vector (chromosome)

Figure 5.30: Dynamic size allocation formulae

Remembering Figure 5.28, key features are required for the optimizer:

 A memory of past optimal microscopic architectures must be initialized by the

outer loop.

Outer loop

Inner loop

𝑋𝑜𝑢𝑡 = [𝑁𝐴1 , 𝑁𝐴2 , … , 𝑁𝐴𝑁]

𝑋𝑖𝑛 =

[

𝑋𝑚𝑎𝑐𝑟𝑜,

𝑉𝐴1
1 , 𝑉𝐴1

2 , … , 𝑉𝐴1
𝑁𝐴1 ,

𝑉𝐴2
1 , 𝑉𝐴2

2 , … , 𝑉𝐴2
𝑁𝐴2 ,

⋮,

𝑉𝐴𝑁
1 , 𝑉𝐴𝑁

2 , … , 𝑉𝐴𝑁
𝑁𝐴𝑁

]

(𝟏, 𝑵)

(𝟏,𝑵𝒗𝒎𝒂𝒄𝒓𝒐 +∑𝑵𝑨𝒊𝑵𝒗𝑨𝒊

𝑵

𝒊=𝟏

)

൛𝑋𝑜𝑢𝑡
1 , 𝑋𝑜𝑢𝑡

2 , … , 𝑋𝑜𝑢𝑡
𝑁𝑜𝑢𝑡ൟ Population

1 Chromosome

Fix chromosome size

Population ൛𝑋𝑖𝑛
1 , 𝑋𝑖𝑛

2 , … , 𝑋𝑖𝑛
𝑁𝑖𝑛ൟ

𝑉𝐴𝑖

= [𝑣𝐴𝑖
1 , 𝑣𝐴𝑖

2 , … , 𝑣
𝐴𝑖

𝑁𝑣𝐴𝑖]

“Vehicle i”

Design vector architecture i

(𝟏,𝑵𝒗𝑨𝒊
)

𝑋𝑚𝑎𝑐𝑟𝑜 = [𝑣𝑚𝑎𝑐𝑟𝑜
1 , 𝑣𝑚𝑎𝑐𝑟𝑜

2 , … , 𝑣𝑚𝑎𝑐𝑟𝑜
𝑁𝑣𝑚𝑎𝑐𝑟𝑜]

Remainder of macroscopic variables

(𝟏,𝑵𝒗𝒎𝒂𝒄𝒓𝒐)

1 Chromosome

349

 This memory must be accessible and modifiable by both inner and outer loops.

 This memory must be filled with the best chromosomes (design vectors) for

each architecture and hence must take into account the dynamically evolving

size of the inner loop chromosomes.

 At each of its generations, the outer loop should have the possibility to alter the

properties (initial population) of the instantiated inner loop algorithm (Figure

5.29).

 For a given generation of the outer loop, the chromosomes of the outer loop (i.e.

the instantiated inner loops) should all be using the same initial population. This

means that the initial population of the inner loops changes only after each

generation of the outer loop.

Note that it is chosen that the retention of the optimal microscopic architectures is

only used at each generation of the outer loop, and not for every instantiation of the inner

loop. This design choice is particularly important as it ensures that the optimal microscopic

designs have the time to be “averaged” over several group configurations before being

ranked and used for subsequent optimizations. If this was not the case and the initial

population of the inner loop chromosomes were to be updated at every instantiation of an

inner loop, then the first chromosomes (inner loops) of the outer loop would be strongly

biased by the constitution of the groups which were first evaluated. An explanatory

example is provided on Figure 5.31.

350

Figure 5.31: Population initialization at every instantiation

As it can be seen in this first case, if the initial population of the inner loops is

updated for every instantiation of an inner loop in the outer loop population, the first

chromosomes of the outer loop will be biased. Indeed, chromosome 1 exhibits a swarm

composition {1𝐵, 3𝑃, 4𝑄} (1 blimp, 3 planes, 4 quadcopters) and saves the optimal

configurations in memory. When chromosome 2 is instantiated, its population is initialized

with the optimal microscopic configurations from the memory. However, this memory

contains only the optimal configurations for a swarm {1𝐵, 3𝑃, 4𝑄}, which might bias the

×𝟏 ×𝟐 ×𝟑
Group 1

Generation 1

×𝟏 ×𝟑 ×𝟒

×𝟐 ×𝟐 ×𝟏

×𝟏 ×𝟑 ×𝟏

×𝟏 ×𝟐 ×𝟒

×𝟑 ×𝟏 ×𝟏

Group 1

Group 2

Group 3

Group 4

Group 5

Outer loop

Memory

Generation 2

351

results of the optimization. As more and more chromosomes of the outer loop population

are evaluated, the rankings of the optimal configurations are updated in memory and a trend

emerges for the best configurations. Hence, an implementation similar to Figure 5.32 is

preferred, where the optimal configurations have the time to be averaged over one complete

generation of the outer loop before being used by the inner loops of the next generation.

Figure 5.32: Population initialization at every generation

×𝟏 ×𝟐 ×𝟑
Group 1

Generation 1

×𝟏 ×𝟑 ×𝟒

×𝟐 ×𝟐 ×𝟏

×𝟏 ×𝟑 ×𝟏

×𝟏 ×𝟐 ×𝟒

×𝟑 ×𝟏 ×𝟏

Group 1

Group 2

Group 3

Group 4

Group 5

Outer loop

Memory

Generation 2

352

An implementation in Matlab is chosen for its quasi non-existent learning curve, its

flexibility, and for the fact that powerful numerical, plotting, and debugging libraries are

included by default in the software. In particular, the global optimization toolbox comprises

a validated genetic algorithm that presents many customizable options as opposed to other

possible custom or existing C++ and Java libraries which would have to be modified and

validated. In addition, this genetic algorithm is able to deal with linear and nonlinear

constraints.

In particular, the genetic algorithm from Matlab presents the following capabilities:

 Setting the initial population matrix, this one can be partial only.

 Setting the initial scores corresponding to the initial population. This enables to

speed up the initialization of the algorithm.

 Using an output function which can be called at the end of every generation,

but also at the initialization and final step of the algorithm. This can be used to

save the best microscopic configurations at the end of every inner loop

optimization.

 Parallelization of the execution by exploiting the different cores of the

processor. This is useful to speed up the optimization process.

Based on the available options, it is possible to implement the elitism scheme using

a temporary memory buffer. This buffer will accumulate and update optimal microscopic

configurations after each optimization of an inner loop. Then, after a generation of the outer

loop is complete, the buffer will be discharged into an “elite memory”. This elite memory

remains unchanged during a generation of the outer loop. As a consequence, during one

353

generation of the outer loop, all inner loops can be instantiated from this elite memory as

they would all use the same elite as their initial population (Figure 5.33).

Figure 5.33: Elite retention with elite memory

Note that if only a memory buffer is used, then the is no guarantee that the inner

loops are initialized with the same elite during one generation of the outer loop (see Figure

5.34).

Generation
1

Generation
2

Generation
3

Elite Elite

Buffer

354

Figure 5.34: Elite retention with buffer only

Constraints: in addition to the constraints placed by the designer on the swarm optimizer

(swarm cost, time of the mission, etc.) a few constraints have to be imposed on the

optimizer. The first concern is to speed up the algorithm by detailing the domain it is

working in. Hence, the designer has to input a maximum number of vehicles which is used

for both inequality and upper bound constraints (see Equation 5.6). On top of that, one

constraint also insures that there is at least one vehicle in the swarm.

Equation 5.6: Overall numerality constraints

1 ≤ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

≤ 𝑁max

Finally, additional constraints ensure that the number of vehicles for each

architecture remains within relaxed bounds and that it is an integer number. Indeed, since

Generation
1

Generation
2

Generation
3

Buffer

355

the total number of vehicles in the swarm cannot exceed 𝑁max, each architecture must also

respect this inequality (Equation 5.7).

Equation 5.7: Individual numerality constraints

 {
0 ≤ 𝑋𝑖

𝑜𝑢𝑡 ≤ 𝑁max
𝑋𝑖
𝑜𝑢𝑡 ∈ ℕ

, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

Hence, the optimization problem of the outer loop can be formally written as:

Equation 5.8: Outer loop optimization problem

min
𝑋𝑜𝑢𝑡

𝑖𝑛(𝑋𝑜𝑢𝑡)

subject to

{

1 ≤ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

≤ 𝑁max

0 ≤ 𝑋𝑖
𝑜𝑢𝑡 ≤ 𝑁max, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

𝑋𝑖
𝑜𝑢𝑡 ∈ ℕ, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

Where 𝑖𝑛 is the inner loop, a complete other optimization algorithm of its own. This

inner loop optimization problem can be written as:

Equation 5.9: Inner loop optimization problem

min
𝑋𝑖𝑛

𝑓(𝑋𝑖𝑛)

subject to

356

{
𝑐(𝑋𝑖𝑛) ≤ 0

𝑙𝑏 ≤ 𝑋
𝑖𝑛 ≤ 𝑢𝑏

Where 𝑓 and 𝑐 are respectively a fitness and cost function for the given swarm. In

particular, one can refer to section 3.1.3 page 195 to build these functions.

Special case of full heterogeneity: this research makes a distinction between what is

referred to as “full heterogeneity” and “partial heterogeneity”. For the scope of this

research, partial heterogeneity is defined as the case where all vehicles of a given

architecture have the same configuration. Besides, with full heterogeneity, each vehicle

may have its own configuration. As an example, a swarm of quadcopters will be partially

heterogeneous if the quadcopters of the group are all the same. This swarm will be fully

heterogeneous is each quadcopter is different (see Figure 5.35).

Figure 5.35: Full vs. partial heterogeneity

𝑋𝑜𝑢𝑡 = [3,2,2]

𝑋𝑖𝑛
𝑝𝑎𝑟𝑡𝑖𝑎𝑙

=

𝑋𝑖𝑛
𝑓𝑢𝑙𝑙

=

357

 In the previous figure, the first swarm has vehicles of a given architecture with the

same configurations, whereas the second swarm has different vehicles for each

architecture.

 Observing this particularity, the optimization can be greatly sped up when the

designer wants to consider only partial heterogeneity. Indeed, the size of the inner loop

design vector can be fixed in that case, hence also removing the need for an outer loop. An

option is included in the algorithm to enforce full or partial heterogeneity and to reduce the

size of the inner loop design vector when required. One may note however that the outer

loop cannot be completely removed since special cases might require to further adapt the

size of the inner loop design vector. This is the case when an architecture does not have

any representative vehicle in the swarm.

Special case of 0: an additional situation where the optimization can be sped up is when

the outer loop optimizer proposes a swarm with zero vehicles of a given architecture. In

this case, the size of the inner loop design vector can be reduced be deleting all the design

variables of the corresponding architecture. This is already taken into account in the case

of full heterogeneity (see formulae in Figure 5.30) but has to be implemented in the case

of partial heterogeneity when the number of variables is fixed. By doing so, the genetic

algorithm of the inner loop will act only on a limited number of design variables, hence

accelerating the optimization process.

358

Note that in the case where the size of the inner loop vector is dynamically arranged

to accommodate for either true heterogeneity or architectures with no representative

vehicle, the algorithm also has to adapt the constraint vectors as well.

Outer loop speedup: the aforementioned reduction in size of the inner loop design vectors

has a direct impact on the rapidity of the inner loop, and hence indirectly helps in speeding

up the convergence of the outer loop. Nonetheless, it is possible to directly improve the

performance of the outer loop in specific cases. This approach considers the total number

of function calls required by the genetic algorithm and observes that in some cases, using

a full factorial approach for the outer loop is way more beneficial. Indeed, the population

of the genetic algorithm might comprise many more individuals (and hence function calls)

than if each possible swarm configuration was evaluated. We consider here the example of

an outer loop with a population of 50 individuals, if the outer loop converges in 50

generations for instance, the total convergence of the algorithm requires 2500 function

calls. However, if the swarm to be configured has only 3 architectures, and 10 agents at

maximum in the group, the optimization problem given in Equation 5.8 yields 113 = 1331

possible cases for the full factorial approach. Indeed, each element of 𝑋𝑜𝑢𝑡 can take values

between 0 and 10. By removing the cases with more than 10 total agents in the group, the

full factorial approach is reduced to 286 cases or evaluations of the inner loop: a number

lower than the case of the genetic algorithm by two orders of magnitude.

359

It is then possible to study this trend for an evolving number of architectures and

for the specific data mentioned hereinabove and 12 agents at maximum in the group, the

trends shown in Figure 5.36 are obtained.

Figure 5.36: Genetic algorithm vs. full factorial

In that particular case, it can be seen that a full factorial approach would perform

much faster in finding the optimum of the outer loop for swarms comprising less than 5

architectures. It can be noticed that the number of function calls for the genetic algorithm

does not vary much with the number of architectures considered. Indeed, the stopping

criteria of the genetic algorithm is based on the number of stalled generations: the number

of generation for which the best individual does not change. Hence if this criterion is fixed

360

at 50 generations, the algorithm will generally take a few generations to find the best

individual and then will stall. There is no surprise then that, in this case, the total number

of generations would be always slightly above 50 (with a corresponding number of function

calls). These remarks are leveraged in the implementation of the algorithm since the choice

is given to the designer to opt for a full factorial or a genetic algorithm optimizer for the

outer loop. In order to make this choice, the designer should compute the total number of

alternatives generated by a full factorial approach based on the maximum number of

vehicles in the swarm, and then delete the rows of the full factorial matrix which do not

respect this constraint. However, due to the important memory required to compute full

factorial design matrices for more than 10 factors (and 10 levels for instance), this

computation might not be always possible. Consequently, a crude approach can be used

where the design does not eliminate the rows for which the sum does not satisfy the

constraint imposing the maximum number of robots in the swarm. The designer does not

have to generate the matrix anymore and can simply compute the number of alternatives

using the 𝑁max
𝑁𝑎𝑟𝑐ℎ formula. Using this simplified formula (Figure 5.37), he can decide

whether the genetic algorithm or the full factorial approach will be faster by assuming or

enforcing a maximum number of generations for the outer loop.

361

Figure 5.37: Simplified expression for full factorial approach

Using this simplified approach, the design finds that it is more valuable in terms of

computation time to use the full factorial approach for swarms under 4 architectures,

compared with 5 obtained with the exact computation. Note this time the linear evolution

in logarithmic space of the full factorial approach (𝑁max
𝑁𝑎𝑟𝑐ℎ).

362

Figure 5.38: Choosing between full factorial or genetic algorithm

By varying the maximum number of agents in the swarm and using the simplified

expression discussed earlier, it is possible to obtain the map displayed in Figure 5.38. The

function calls for the genetic algorithm have been averaged over 10 replications.

Depending on the number of architectures considered (up to 10), and the maximum number

of agents in the swarm, the designer is able to see which approach from the full factorial

or the genetic algorithm is more efficient for the outer loop. In particular, several

observations can be made:

363

 If only one architecture is to be considered, the full factorial approach is always

more profitable in terms of computation time.

 Most of the variation is observed for 𝑁max values below 7. After that, it takes

considerable changes in 𝑁max to observe an evolution in the intersection with the

curve of the genetic algorithm.

Algorithm input: the inputs and main parameters of the bi-level swarm optimizer are

detailed here below:

 Number of architectures

 Number of variables for each architecture

 Maximum number of agents for the swarm

 Outer loop solver: genetic algorithm or full factorial (see previous remarks)

 Type of heterogeneity: full or partial

 Population sizes for both outer and inner loop

 Use of elite retention and associated elite fraction

 Inner loop fitness function

 Inner loop constraint function

 Additional options: mostly options embedded in the Matlab genetic algorithm

o Possible plot and output functions for each iteration of the algorithm or once

the algorithm has finished. For instance, these can be functions that save

iteration information into a file for later use.

o Stopping criteria: based on the number of stalled generations

o Use of parallelization or not

364

o Function and constraint tolerances

Example use of the algorithm and example values for these parameters are given in

the code appendix (see Appendix B.2 page 493).

5.2.2 Verification and validation

Before using the bi-level genetic algorithm, it has to be verified and validated using

test functions with a known behavior. This step will ensure that the method is implemented

as per the requirements and that it works properly when it is used for the optimization of

groups of robots.

5.2.2.1 Test function

The optimization scheme has to be tested against a function which response and

behavior is known. This will enable the verification of the algorithm to see if it is able to

predict the correct optimum. Nonetheless, no test function seems to exist for the

optimization of dynamic design spaces. Hence, an analytical test function is proposed here

to simulate the performance of a group of robots depending on its possible variables.

Before starting to build the test function, a few observations are required:

 A swarm is composed of architectures

 Each architecture in the swarm is represented by one or several vehicles

 Each vehicle is composed of design variables

 Each of these vehicles can be unique and have its own design variables

365

It is essential for the test function to provide different optima for different group

configurations so that each case can be verified independently and with certainty.

Consequently, the test function has to take into account all the different variables and

factors mentioned hereinabove. The optimum (value and location) of the test function

should then depend on:

 The number of architectures considered

 The number of vehicles in the group for each architecture

 The number of design variables per vehicle

 Optional: The number of extra macroscopic design variables

Outer loop: the outer loop has to optimize the number of vehicles for each architecture.

An easy test function for the outer loop is then to have an optimum that corresponds to the

index of each architecture. Hence, if three architectures are considered with respective

indices 1, 2, and 3; the optimum will be to have 1 vehicle of architecture 1, 2 vehicles of

architecture 2 and 3 vehicles of architecture 3. This is achievable with the following

example test function:

Equation 5.10: Outer loop test function

𝑓𝑜𝑢𝑡(𝑥) = − ∑
1

1 + (𝑥𝑖 − 𝑖)2

𝑁𝑎𝑟𝑐ℎ

𝑖=1

With 𝑁𝑎𝑟𝑐ℎ the number of architectures and 𝑥 the outer loop design vector

representing the composition of the swarm. For instance, 𝑥 = [2 1 3] represents a group

366

with 2 vehicles of architecture 𝐴1, 1 vehicle of architecture 𝐴2, and 3 vehicles of

architecture 𝐴3. Each architecture 𝑖 is given an offset of
−1

1+(𝑥𝑖−𝑖)
2 which is minimal when

𝑥𝑖 = 𝑖. Hence the function 𝑓𝑜𝑢𝑡 will be minimized when the design vector corresponds

exactly to the indices of the architectures (see Table 5.13 and Figure 5.39). This ensures

that the optimum is unique when given a certain number of architectures and this can be

used to verify the implementation of the outer loop.

Table 5.13: Outer loop test function values

𝑿𝒐𝒖𝒕

 Offset 1

−𝟏

𝟏 + (𝒙𝟏 − 𝟏)𝟐

 Offset 2

−𝟏

𝟏 + (𝒙𝟐 − 𝟐)𝟐

 Offset 3

−𝟏

𝟏 + (𝒙𝟑 − 𝟑)𝟐

Total

𝒇𝒐𝒖𝒕(𝑿𝒐𝒖𝒕)

[𝟏, 𝟏, 𝟏] -1.0 -0.5 -0.2 -1.7

[𝟏, 𝟐, 𝟏] -1.0 -1.0 -0.2 -2.2

[𝟑, 𝟏, 𝟑] -0.2 -0.5 -1.0 -1.7

[𝟏, 𝟐, 𝟑] -1.0 -1.0 -1.0 -3.0

[𝟐, 𝟏, 𝟑] -0.5 -0.5 -1.0 -2.0

[𝟑, 𝟐, 𝟏] -0.2 -1.0 -0.2 -1.4

Figure 5.39: Outer loop test function offsets

367

For a swarm composed of only two architectures, this can also be represented

graphically by plotting the value of the offset 𝑓𝑜𝑢𝑡(𝑋𝑜𝑢𝑡) for different values of 𝑁1 and 𝑁2,

respectively number of vehicles for architecture 1 and 2. The offset is minimized when

𝑁1 = 1 and 𝑁2 = 2 (see Figure 5.39) and the dashed lines represent the continuous

versions of the different offsets.

Inner loop: the inner loop has to take into account additional parameters in order to make

the value of the optimum unique. Indeed, for a given variable of the inner loop design

vector, its optimal value should depend on the architecture it belongs to, the vehicle it

belongs to, and the number of variables in the vehicle. Moreover, for the location of the

optimum to be unique for each swarm configuration, the optimum value of this design

variable should also depend on the number of agents in the swarm. This will also insure

that the microscopic and macroscopic variables are intertwined in the analysis just as they

would be in the performance of a robotic swarm. One easy implementation is to have each

one of this factors represented by one decimal of the optimal design variable (Equation

5.12) and use a parabola centered around this design variable (Equation 5.11). Using a

simple parabola around the optimum of each design variable makes it easy to have a unique

optimal value for each variable. In addition, the complexity is limited since the cost

function to be minimized is polynomial of second order.

Equation 5.11: Inner loop test function

𝑓𝑖𝑛(𝑥) = ∑ (𝑥𝑖 − 𝑥𝑖
∗)2

𝑁𝑣𝑎𝑟𝑠

𝑖=1

368

With 𝑁𝑣𝑎𝑟𝑠 the number of variables in the design vector 𝑥, 𝑥𝑖 the i-th component

of 𝑥, and 𝑥𝑖
∗ the optimal value for a given design variable 𝑥𝑖. The expression for 𝑥𝑖

∗ is:

Equation 5.12: Optimal value for design variable i

𝑥𝑖
∗ = 𝐴𝑖 +

𝑁𝐴𝑖
10
+
𝑉𝑖
100

+
𝑖

1000

With 𝐴𝑖 the index of the architecture corresponding to design variable 𝑖, 𝑉𝑖 the index

of the corresponding vehicle, and 𝑁𝐴𝑖 the total number of vehicles with architecture 𝑖

constituting the swarm. Before giving an example, the nomenclature for the design

variables has to be presented with the ordering used in the design vectors. Hence the

nomenclature for the design variables is defined as follow:

Figure 5.40: Design variables nomenclature

From Figure 5.40, that design variable is associated to the second vehicle in the

swarm with architecture 1 and it is the third design variable of this vehicle. Moreover, the

following ordering is used in the design vectors of the inner loop:

𝑥3
2

1

Architecture Vehicle

Variable

369

Figure 5.41: Variables ordering in the inner loop design vectors

It can be seen that, as established in Figure 5.29 and Figure 5.30, the size of the

inner loop design vector is fixed by the outer loop design vector. Knowing that we have 2

macroscopic variables, 3 variables for the first architecture and 2 for the second one, the

total number of variables for the inner loop chromosome can be computed. In the light of

this new nomenclature, the optimal value for a given design variable

𝑥𝑘
𝑗

𝑖 can be re-written as shown in Equation 5.13:

Equation 5.13: Optimal value for the test function variables

𝑥∗𝑘
𝑗

𝑖 = 𝑖 +

𝑁𝑡𝑜𝑡
10

+
𝑗

100
+

𝑘

1000

This function assumes, for verification purposes, that 𝑁𝑡𝑜𝑡 < 10, 𝑗 < 100, and 𝑘 < 1000.

𝑋𝑖𝑛 = [𝑥1
𝑚𝑎𝑐𝑟𝑜 , 𝑥2

𝑚𝑎𝑐𝑟𝑜 , 𝑥1
1

1 , 𝑥2

1

1 , 𝑥3

1

1 , 𝑥1

2

1 , 𝑥2

2

1 , 𝑥3

2

1 , 𝑥1

1

2 , 𝑥2

1

2]

𝑋𝑜𝑢𝑡 = [2,1]

Architecture 1

Vehicle 1

Architecture 1

Vehicle 2

Architecture 2

Vehicle 1

370

Figure 5.42: Inner loop test function visualization

Figure 5.42 shows the inner loop plot function for a given swarm composition

corresponding to 𝑋𝑜𝑢𝑡 = [3,2]. For display purposes, each architecture has only one design

variable and heterogeneity is partial so that all vehicles from a given architecture have the

same configuration. Hence, all vehicles of architecture 1 can be represented by design

variables 𝑥1 and the same goes for architecture 2 and 𝑥2. Based on these assumptions and

the formula for 𝑥∗𝑘
𝑗

𝑖 , the inner loop test function will be minimized for 𝑥1 = 1.311

(architecture 1, 3 total vehicles, vehicle 1, design variable 1) and 𝑥2 = 2.211 (architecture

2, 2 total vehicles, vehicle 1, design variable 1). The evolution of the function is parabolic

371

around this optimum as it can be observed on Figure 5.43 by taking a section of the contour

plot.

Figure 5.43: Inner loop test function sectional cut

Complete algorithm: to verify the behavior of both loops working together, it is possible

to simply combine the test functions for the outer loop and the inner loop. Indeed, by adding

the outer loop function to the inner loop one, we obtain a function where the inner loop

variables and outer loop variables are separated. The inner loop optimizer will first try to

reach the optimal value of the 𝑓𝑖𝑛 part, while the outer loop will act on 𝑓𝑜𝑢𝑡 to minimize

the overall function. Note that a small part of 𝑓𝑖𝑛 still accounts for the total number of

372

agents in the swarm, which is a macroscopic or outer loop variable. This part was included

in 𝑓𝑖𝑛 to guarantee the unicity of the optimum when verifying the inner loop and does not

interfere when put together with 𝑓𝑜𝑢𝑡.

Equation 5.14: Test function for the complete algorithm

𝑓(𝑋 = [𝑥𝑖𝑛, 𝑥𝑜𝑢𝑡]) = 𝑓𝑖𝑛(𝑥𝑖𝑛) + 𝑓𝑜𝑢𝑡(𝑥𝑜𝑢𝑡)

= (∑ (𝑥𝑖𝑛(𝑖) − 𝑥𝑖
∗)2

𝑁𝑣𝑎𝑟𝑠(𝑥𝑖𝑛)

𝑖=1

) − (∑
1

1 + (𝑥𝑜𝑢𝑡(𝑖) − 𝑖)2

𝑁𝑎𝑟𝑐ℎ

𝑖=1

)

Note that additional cross terms can possibly be added to this validation function to

reinforce the correlations between microscopic and macroscopic variables and further step

away from possible sequential optimization caveats. However, this would make it slightly

more difficult to analytically predict the optimal value and location. A complete derivation

of the global optimum of this verification function is provided in Appendix A.1 page 416.

5.2.2.2 Algorithm verification

Using the different test functions defined in the previous subsection, the

implementation of the bi-level genetic algorithm can be verified using a unit test

framework. A complete test suite is coded by calling the optimizer on given configurations

and comparing the obtained optimal values with the ones expected thanks to the analytical

approach.

Outer loop: the outer loop can be tested by using 𝑓𝑜𝑢𝑡 as the fitness function. The test

generates a random number of architectures and lets the outer loop derive an optimal swarm

373

composition. The optimum obtained from this test is then compared with the theoretical

value given by the test function. For instance, if the test chooses to use 7 architectures, then

the expected optimal configuration is 𝑋𝑜𝑢𝑡
∗ = [1,2,3,4,5,6,7]. Both solvers are tested: the

genetic algorithm approach as well as the full factorial method. In addition, two tests are

designed: one for partial heterogeneity and one for full heterogeneity. The tests were

repeated one thousand times each and all tests passed.

Inner loop: the unit test for the inner loop uses the complete function 𝑓 for the validation

of the inner loop. A random number of architectures is generated and based on that, a

random design vector 𝑋𝑜𝑢𝑡 is created as well as a random number of design variables for

each one of the architectures. This is enough information to determine the expected optimal

values for each one of the design variables and compare them to what is obtained by

running the inner loop optimizer. Both full and partial heterogeneity are tested and the inner

loop is validated after a thousand successful runs of each one of the tests.

Complete algorithm: to perform a unit test for the overall algorithm, the outer loop now

uses the inner loop as its fitness function so that both loops are now interconnected. The

fitness function of the inner loop is the same validation function 𝑓 used for the verification

of the inner loop. The setup for this unit test is quite similar to the verification of the outer

loop: a random number of architectures is generated as well as random numbers of

variables for each of these architectures. The swarm configuration is optimized to obtain

optimal vectors 𝑥𝑖𝑛
∗ and 𝑥𝑜𝑢𝑡

∗ which are compared to the theoretical values described in the

previous section. This verification also tests for the different parameters of the whole

374

optimizer: the type of outer loop solver (genetic algorithm of full factorial), the type of

heterogeneity (full or partial), and the elitism fraction. Each one of these tests passes, thus

validating the behavior of the complete bi-level optimization algorithm.

Actively constrained optimization: note that so far, the algorithm has been tested with

non-binding constraints. Indeed, at convergence, the optimal values of 𝑋𝑜𝑢𝑡 and 𝑋𝑖𝑛 are

within the ranges defined in section 5.2.1. However, it is highly probable that in real-world

applications, the optimization will be subject to contradictory cost and performance

constraints which will most likely be active at the optimum. In order to prove the versatility

of the bi-level optimizer with active constraints, an additional test can be carried out. This

test involves introducing constraints on the design variables of the verification function. In

order to continue the verification of the algorithm, these constraints should be designed so

that they are active at the optimum, and that the constrained optimum is still relatively easy

to derive analytically depending on the parameters of the problem. This will ensure that

the values obtained by theory on one hand, and by the algorithm on the other hand, will be

comparable and identical.

 A possible solution is to offset the optimal values 𝑋∗𝑖
𝑜𝑢𝑡

 and 𝑋∗𝑖
𝑖𝑛

, which are known

values, by a constant number. The new constrained optimal values are noted as 𝑋𝑐𝑖
𝑜𝑢𝑡

 and

𝑋𝑐𝑖
𝑖𝑛

. This new optimum is then compared with the output of the bi-level optimizer for the

new optimization problem presented in Equation 5.15 and Equation 5.16.

375

Equation 5.15: Constrained outer loop optimization problem

min
𝑋𝑜𝑢𝑡

𝑖𝑛(𝑋𝑜𝑢𝑡)

subject to

{

𝑋𝑖
𝑜𝑢𝑡 ≥ 𝑋∗𝑖

𝑜𝑢𝑡 + 1, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

1 ≤ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

≤ 𝑁max

0 ≤ 𝑋𝑖
𝑜𝑢𝑡 ≤ 𝑁max, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

𝑋𝑖
𝑜𝑢𝑡 ∈ ℕ, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

Equation 5.16: Constrained inner loop optimization problem

min
𝑋𝑖𝑛

𝑓(𝑋𝑖𝑛)

subject to

{
𝑋𝑖
𝑖𝑛 ≥ 𝑋∗𝑖

𝑖𝑛 + 1, ∀i ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧

𝑙𝑏 ≤ 𝑋𝑖𝑛 ≤ 𝑢𝑏

With 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛) the number of variables for the inner loop design vector. In this

particular example, a unit offset of one is chosen and the constrained optimum is simply

𝑋𝑐𝑖
𝑜𝑢𝑡 = 𝑋∗𝑖

𝑜𝑢𝑡 + 1. A complete proof if given in Appendix A.1.2 (see page 422).

In the same fashion as the previous unit tests, this one generates a random number

of architectures, a random number of variables for each of these architectures, and a random

offset from the unconstrained optimum. This unit test also passes, hence finishing the

complete verification of the optimization algorithm, including with active constraints. One

can note that this particular test could have possibly been skipped given that the genetic

algorithm from Matlab is validated for constrained optimization, and that the

376

“unconstrained” (in reality constrained with non-binding constraints) bi-level optimizer

has been validated previously.

5.2.3 Characterization

With the algorithm verified and guaranteed to work according to the requirements

of section 2.3.2, it is possible to characterize its behavior with respect to its different

parameters. In particular, it is interesting to see how the performance of the bi-level

optimizer is affected when varying the elitism properties and the type of heterogeneity.

While many other settings for the genetic algorithms can be varied, these parameters

represent the main options introduced by the proposed algorithm. The following

characterization is performed on the unconstrained test function with swarms composed of

three architectures at most. The first architecture has two design variables, the second

architecture has three, and the third architecture has only one. Given that the test function

is used, the optimal swarm composition is known as 𝑋𝑜𝑢𝑡 = [1,2,3] and the maximum

number of agents can be fixed at six to facilitate the convergence process.

Effect of elitism: specific feature of the bi-level optimizer, the elite retention scheme can

be activated to see which improvements are possible with elitism. To characterize this

effect, the algorithm is run twice on the canonical mission: once without elite retention,

and once with elitism activated for 50 percent of the inner loop populations. The recorded

data consists of the generations required to attain convergence in the inner loop

chromosomes, for each generation of the outer loop. Indeed, the elite retention scheme was

designed to accelerate the convergence of the inner loops as the overall algorithm

progresses towards convergence. For a given generation of the outer loop, the number of

377

generations at convergence of each of its inner loop chromosomes is stored in a vector.

These results are then averaged, and finally replicated. Indeed, given that the algorithm is

stochastic, one thousand replications are used to estimate its variability and obtain robust

results mitigating the effects of randomness. Figure 5.44 shows the average of both

experiments over the thousand replications and also provides a confidence interval of 95

percent computed from the percentiles of the data. The stopping criteria of the genetic

algorithms is fixed at 20 stall generations.

Figure 5.44: Effect of elitism

378

From Figure 5.44, the number of inner loop generations without elitism remains

pretty much constant at around 115 generations on average for the chromosomes of the

outer loop. Note that this number seems to slightly decrease between generations one and

six, before increasing and settling again at 115. A possible explanation is that in the first

generations of the outer loop, the genetic algorithm is still exploring the design space a lot

and is trying out swarm configurations that converge a bit more easily. This can also be

explained by the fact that variability of the results is more important in the first 10

generations of the outer loop by looking at the confidence interval.

By activating elite retention for half of the population of the inner loops, the number

of generations required for their convergence reduces drastically from the first generations

of the outer loop. Indeed, the number of required inner generations decreases by 30 percent

of its value from the second to the third generation and then goes on to settle at around 35

generations when the outer loop converges. This represents a speedup of around 70 percent

for the algorithm. After a couple generations from the outer loop, enough swarm

configurations have been considered so that the optimal microscopic configurations of the

memory buffer are actually meaningful and untied to specific outer loop configurations.

Giving efficient microscopic configurations as starting points for some of the chromosomes

of the inner loops accelerates the convergence tremendously for these latter. Then, as the

outer loop progresses and starts focusing on efficient swarm compositions, the memory

buffer is refined little by little around optimal microscopic configurations which are

particularly adapted to the already converging group composition. This helps in continuing

to reduce progressively the number of required generations for the inner loops until this

number comes very close to the convergence criterion of 20 stall generations.

379

With the stopping criterion of the algorithms fixed at 20 stall generations, it is

expected that the outer loop converges at values a bit above 20 generations. Few instances

have the outer loop converge in more than 25 or 30 generations, which explains why the

variability of the response increases after 25 generations. Indeed, there are less replications

to average the results over. Moreover, it can be seen that with elitism, the lower bound of

the confidence interval is at 22 generations for the inner loops (see the lower portion of the

95 percent confidence interval).

Although the average number of inner loop generations are clearly separated by

around 80 generations with and without elitism, the confidence intervals exhibit some

overlap. In particular, the lower portion of the 95 percent confidence interval without

elitism is under the higher portion of the interval with 50 percent of elitism. This indicates

that while elitism promises a faster convergence on average, some exceptional cases with

elitism might still take equal or superior time to converge than without elitism.

To further quantify the effects of elitism on the behavior of the swarm optimizer,

the elite rate is varied in the next experiment.

Effect of elitism fraction: the elitism fraction 𝜅 represents the proportion of the initial

population of the inner loops which is drawn from the elite memory at each generation of

the outer loop. In order to properly capture the effect of a varying elitism rate on the

behavior of the algorithm, and especially the outer loop, the convergence criterion is

changed from a stalling approach to a precision approach with respect to the expected

optimum. If the criterion was left at a given number of stall generations (for instance 20 as

for the past experiment), the minimum number of generations required for the outer loop

380

to converge would be 21 including the initialization. As a consequence, it would not be

possible to detect settings incurring a convergence in less than 20 generations. Instead, the

genetic algorithms are set to stop once the best fitness of their population is within 1 percent

of the theoretical optimum. For this purpose, the verification function described in section

5.2.2.1 is used. Again, the experiment is replicated a thousand times for each elitism rate

in order to obtain robust results, shown on Figure 5.45.

Figure 5.45: Effect of elitism rate

A first observation from Figure 5.45 is that as expected, as long as some elitism

rate is applied to the algorithm, this latter requires a lot less iterations for its inner loops to

381

converge. Indeed, using the new criteria, the number of generations required in the outer

loop chromosomes is around 35 without elitism, and 3 with elitism. This represents

approximately a 90 percent decrease in the required number of iterations, compared to 70

percent with the other convergence criteria. This is due to the fact that the inner loops do

not have to wait for at least 20 stall generations to converge, hence enabling a much lower

number of generations for convergence. When there is no elitism, as for the previous

experiment, the number of required inner loop generations first decreases during the

exploration phase before increasing again and settling around a final value. Moreover, the

maximum number of generations of the outer loop is 303 for the precision-based

convergence criteria while it was 33 for the stall-based one. Indeed, the one percent

precision required to converge is much more constraining than a number of stalling

generations.

Regarding the number of generations required for the convergence of the outer

loop, the higher the elitism rate, the lesser the number of required generations (see Table

5.14 and Figure 5.46). This corresponds to the requirements of the elite retention scheme:

accelerating the convergence of the overall algorithm. Even with low elitism rates, a

speedup of at least 50 percent is observed for the convergence of the outer loop and the

speedup even reaches 85 percent with 100 percent of elitism.

382

Table 5.14: Improved convergence with elitism

𝜿

Maximum number

of outer loop

generations observed

𝟎 303

𝟎. 𝟐𝟓 133

𝟎. 𝟓𝟎 137

𝟎. 𝟕𝟓 92

𝟏. 𝟎𝟎 43

Figure 5.46: Effects of elitism on the outer loop

For each of these measurements, the variability also increases for high numbers of

required generations. For instance considering the yellow and red curves, the algorithm

converges very often within 75 generations, hence providing a lot of data to average the

results from the replications. However, some rare cases converge in more than 75

generations up to around 135 and since these are not averaged with other measurements,

their variability is higher. This explains why the end of every colored curve experiences

more noise, especially the confidence intervals. Observing the confidence intervals, one

sees that the lower portion of the curve without elitism does overlap with the one for the

383

slowest cases with elitism: on average elitism guarantees a lower number of generations

but some rare cases can be slower than without elitism. In addition, one can notice that the

minimum number of generations required with elitism is only one: the algorithm converges

immediately and is able to give an optimum within one percent of the true optimum in only

one generation. Finally, by looking at Figure 5.45, it appears that the elitism rate does not

have an effect on the number of generations required for the convergence of the inner loops.

However by looking into more detail, Figure 5.47 is obtained.

(a) (b)

Figure 5.47: Detail on effect of elitism

It shows in particular that the main difference in the response between the elitism

rates occurs at the third generation, when there is a sudden drop in the number of

generations required for the inner loops. The different values are reported in Table 5.15

and showed on Figure 5.48.

384

Table 5.15: Main effect of elitism rate

𝜿

Number of inner

generations at 3rd outer

generation

𝟎 37

𝟎. 𝟐𝟓 16

𝟎. 𝟓𝟎 15

𝟎. 𝟕𝟓 14

𝟏. 𝟎𝟎 13

Figure 5.48: Initial effects of elitism

After the drop at the third generation, all curves remain pretty close to each other

and do not differ by more than one generation. This confirms the previous observations:

the number of iterations required for the convergence of the inner loops converges to a

unique value, no matter what the elitism rate is. The order of the curves remains consistent

with what is observed on Figure 5.47 (b).

385

As a conclusion, three main effects of the elitism rate have been established in this

paragraph:

 The higher the rate, the fewer generations are required for the convergence of

the outer loop (at least 50 percent speedup and up to 85 percent).

 The higher the rate, the fewer generations are required for the convergence of

the inner loop (at least 70 percent speedup and up to 90 percent).

 The higher the rate, the bigger the initial drop in required generations for the

inner loops (from 57 to 65 percent drop).

 At convergence of the outer loop, the elitism rate does not influence the value

of the number of generations required for the convergence of the inner loops

(90 percent speedup).

Full vs. partial heterogeneity: final main setting of the bi-level genetic optimizer, the type

of heterogeneity is now varied to study its influence on the behavior of the algorithm. The

two previous experiments are repeated to capture different effects for each type of

convergence: one based on a number of stalled generations, and the other based on the

precision of the convergence.

By first setting the convergence condition to 20 stalled generations for both inner

and outer loops, a figure comparable to Figure 5.44 is obtained (see Figure 5.49).

386

Figure 5.49: Effect of partial heterogeneity and elitism

The main observation is that, as expected and explained earlier on, the convergence

for the inner loops is faster with partial heterogeneity when compared to full heterogeneity.

This remark is valid with and without elitism. Without elitism, the average number of

generations required for the convergence of the inner loops is 111 on average. With partial

heterogeneity, this number drops to 71 generations, a reduction of 36 percent. With elitism,

the difference is slightly less: 48 against 33 generations, a reduction of 31 percent. This

confirms that in both cases (with and without elitism) the convergence of the inner loops

is more rapid when considering partial heterogeneity. With full heterogeneity, the

difference between with and without elitism is 111 minus 48 generations: a difference of

56 percent. With partial heterogeneity only, this same difference is 71 minus 33: that is 53

387

percent. Hence partial heterogeneity does not seem to have an impact on the improvements

achieved by elitism.

As for the convergence of the outer loop, the number of required generations is

fixed at slightly more than 20 generations since this experiment is stall-based. This result

is summarized in Figure 5.50 and Table 5.16. Note that the lowest number of generations

is 21 which corresponds to the stopping criteria of 20 stalled generations plus the initial

generation.

Figure 5.50: Effect of heterogeneity type on stall-based outer loop convergence

388

Likewise, the convergence criteria can be set to a swarm fitness within one percent

of the expected validation value. Figure 5.51 is then obtained in the same fashion as Figure

5.45.

Figure 5.51: Effect of heterogeneity type on stall-based inner loop convergence

This time with partial heterogeneity, activating elitism decreases by 83 percent the

number of required generations for the convergence of the inner loops. This number was

around 89 percent with full heterogeneity. This is due to the fact that the experiment is

reaching the limits of the optimization algorithm. Indeed, the optimizer already performs

really well with elitism and full heterogeneity with 4 generations required for convergence.

389

This number drops to 3 with partial heterogeneity but it would be very difficult to have the

algorithm converge in one or two generations. Hence the relative improvement is less with

partial heterogeneity since the algorithm is performing better, hence getting closer to

convergence limitations. Without elitism, choosing partial heterogeneity incurs a drop of

48 percent in the number of generations, from 35 to 18. With elitism, the drop is around 30

percent on average.

One may notice from Table 5.17 that the average number of inner loop generations

required for convergence increases slightly between the 25, 50 percent rates, and the 75,

100 percent elitism rates. Indeed, since the maximum number of outer loop generations

decreases with the elitism rate, the average is taken over less many values and tends to

privilege the left hand part of the graph when the number of generations for the inner loops

is high and still decreasing.

As for the convergence of the outer loop, the results are summarized in Figure 5.52.

390

Figure 5.52: Effect of heterogeneity type on precision-based outer loop convergence

These results seem counterintuitive at first since the outer loop seems to take longer

to converge with partial heterogeneity than with full heterogeneity which has many more

variables. However, after further analysis, one must not forget that the convergence

criterion is set at one percent of the actual validation value. With partial heterogeneity, each

variable has a much more important weight on the group fitness. The fitness function is

then more sensitive to the value of the design variables, making it slightly more unstable

than the case with full heterogeneity. In this latter case, more design variables translate into

more inertia around a particular design point and it would take a huge change in a design

variable to offset the fitness function by a significant value. This is why once the algorithm

has started settling around a possible global optimum, it is able to stay around it with more

391

precision. On the other hand, partial heterogeneity causes more instability around the

optimum and the outer loop hence takes more iterations to converge (Figure 5.53).

Figure 5.53: Increased convergence instability with partial heterogeneity

It can be seen that the fitness function oscillates a lot above the true optimal value.

This does not happen in the stall based approach because it rather considers the average

relative change in the best fitness function value instead of the absolute value of the fitness

function. It is important to note that in reality, the designer does not know what the true

optimum is and will not choose an absolute precision-based convergence criterion.

To conclude, the main influence of the type of heterogeneity on the optimization

algorithm has been captured by this experiment:

392

 With and without elitism, the convergence of the inner loops is more rapid by at

least 30 percent when considering partial heterogeneity.

 Partial heterogeneity does not seem to have an impact on the improvements

achieved by elitism. Average improvement in number of generations of the inner

loop remains around 50 percent.

 When using precision-based convergence, partial heterogeneity tends to make the

convergence of the outer loop longer due to a low number of variables and an

increased sensitivity/instability. This effect can be removed by relaxing the

precision constraint.

In this section, the effect of the principal settings of the optimization algorithm has

been studied: elitism, elitism rate, and type of heterogeneity. These effects are summarized

in Table 5.16 and Table 5.17. Percentage changes are used in green to show the difference

between full and partial heterogeneity. The bold values are the reference used for the

percentage changes.

Table 5.16: Optimizer characterization for stall-based convergence

Elitism
 Full heterogeneity Partial heterogeneity

 Inner loop Outer loop Inner loop Outer loop

No 111 22
71

(-36%)
22

Yes (50%)
48

(-56%)
22

33

(-70%)
22

393

Table 5.17: Optimizer characterization for precision-based convergence

Elitism rate 𝜿

 Full heterogeneity Partial heterogeneity

 Inner loop Outer loop Inner loop Outer loop

𝟎

35 115

18

(-48%)

109

(-5%)

𝟎. 𝟐𝟓

4

(-89%)

40

(-65%)

3

(-91%)

55

(-52%)

𝟎. 𝟓𝟎

4

(-89%)

36

(-69%)

3

(-91%)

56

(-51%)

𝟎. 𝟕𝟓

5

(-86%)

32

(-72%)

3

(-91%)

60

(-47%)

𝟏. 𝟎𝟎

6

(-83%)

25

(-78%)

4

(-89%)

25

(-78%)

394

CHAPTER 6

CONCLUSION

This final chapter provides a conclusion to this work by presenting a summary of the

research methodology, a review of key breakthroughs and contributions, as well as possible

perspectives for future research.

6.1 Research summary

The significant progression of the market of drones over the past few years has

clearly contributed to an abundant variety of architectures with a wide spectrum of possible

applications, mostly in the civil sector. Chapter 1 established a motivation for the present

research by pinpointing that although unlocking new capabilities is possible by grouping

these architectures into swarms, the design of group robotics systems remains an intricate

work in progress. Indeed, multi-robotics present a cost-effective manner to surmount the

shortcomings of individual platforms: mostly lack of endurance and limited computational

power. Nonetheless, the design of such systems of systems is highly complex: exploiting

emergent behaviors, multi-robot systems exhibit stochastic and non-linear relationships

which make it extremely difficult to predict the behavior of the overall system from the

design variables. Furthermore, a missing link between microscopic level (individual

agents) and macroscopic level (group interactions) design spaces was identified in the

literature and further complicates the design process. The first chapter hence motivated the

need for a holistic approach facilitating the optimal design of multi-robot systems, with a

focus on unmanned aerial vehicles.

395

Chapter 2 ensued with a detailed literature review of existing techniques to identify

the missing blocks in three crucial design areas: exploration of the design space (section

5.1), modeling (chapter 4), and optimization (section 5.2). These gaps originated research

questions which, after a second literature review leveraging diverse existing methods,

enabled the formation of research hypotheses (see Table 6.1).

Table 6.1: Summary of research questions and hypotheses

Area Gap

Associated

research

question/hypothesis

Proposed solution for

multi-robot systems

Modeling

Missing

micro-macro

link

RQ 1 (page 92)

RQ 2 (page 101)

Global optimization &

Mesoscopic modeling

Design

space

exploration

Extremely large

design space
RQ 3.1 (page 132)

Morphological tree with

morphological reduction

Optimization
Sequential

optimization
RQ 3.2 (page 147)

Bi-level optimization

algorithm

The third chapter “Proposed Approach” detailed the implementation choices made

to later develop the experiments that would provide response elements with respect to the

research questions. In addition, key metrics and main assumptions were established in that

chapter so as to clearly define the scope of the research. The following chapters 4 and 5,

then respectively focused on the two main parts of the research objective: finding an

adequate link between microscopic and macroscopic levels, and multi-level multi-

architecture design space exploration.

396

With chapter 4, hypothesis 1 was first validated as it was confirmed that global

optimization can yield significant performance improvements in the design of multi-robot

systems. To complete the first observations drawn from the canonical example of section

2.1 page 75, the optimization is performed through two types of sequential optimizers:

micro-macro and macro-micro. Both sequential optimizers obtained degraded results when

compared to a simultaneous or global optimizer.

In the second half of chapter 4, different types of modeling levels of detail were

studied thoroughly and implemented to validate hypothesis 2. The mission used to validate

the three models was the rendezvous mission used on the Robotarium system of the

Georgia Institute of Technology. A mesoscopic model was constructed step by step as a

compromise between a macroscopic model and a microscopic one which were also

previously elaborated. The results of a campaign of 40 experiments showed that the

mesoscopic model is on average very close to the precision of the microscopic model, and

hence representative enough of the performance of the real system. Coupled with the fact

that the mesoscopic model is on average five times faster than the microscopic model, this

establishes mesoscopic modeling as a good candidate for the design space exploration, and

optimization, of multi-level problems.

With an efficient method to link macroscopic and microscopic levels of a robotic

swarm established, chapter 5 then focused on the design space exploration portion of the

research objective: the generation of alternatives and the optimization of the design of

swarms. First, the morphological tree elaborated in chapters 2 and 3 demonstrated

promising results in the reduction of design spaces and the organization and representation

397

of multi-level problems alternatives. In particular, thanks to morphological reduction, the

number of alternatives from a real-world problem was reduced by several orders of

magnitude, making it more approachable with traditional design space exploration

techniques. As an extension to the original work on morphological reduction by [173], its

effects were also detailed on multiple-levels design spaces and tradeoff experiments were

carried out to establish when the method is beneficial or not.

As a second subsection, the advanced bi-level optimizer designed in chapter 2 and

3 was further detailed, implemented, validated, and characterized. The effects of the elite-

retaining scheme were studied for fully heterogeneous and partially heterogeneous swarm

configurations. Not only the bi-level optimizer was shown to propose a practical

decomposition of the problem without returning to sequential optimization schemes

separating the microscopic level and the macroscopic level; but it was also demonstrated

that by activating elitism, the inner loop required on average 50% less generations to

converge than without elitism.

The overall research process is again summarized on Figure 6.1.

398

Figure 6.1: Summary of the research process

Motivation

Problem Definition

Research Question 1 Research Question 2 Research Question 3

Hypothesis 1 Hypothesis 2 Hypothesis 3

Research Objective

Can multi-robot systems designs be
improved by linking microscopic

and macroscopic levels?

How to link the microscopic and
the macroscopic levels of a multi-

robot system for conceptual design

purposes?

How can current conceptual design
methods be adapted to account for

multi-architecture multi-level

design space exploration?

IF an approach leveraging the
interdependence between microscopic

and macroscopic levels is used

THEN significant improvements in
average performance can be achieved

in the design of multi-robot systems

compared to traditional sequential

optimization schemes

IF a mesoscopic approach leveraging

the speed of macroscopic models and

the accuracy of microscopic models is
used

THEN microscopic and macroscopic

levels can be efficiently linked for

conceptual design purposes

IF a tree of reduced morphological
matrices is used in conjunction with an

optimization method based on a bi-

level genetic algorithm

THEN a multi-architecture multi-level

design space exploration can be
carried out efficiently to obtain

optimal group configurations

Establish a methodology that enables the optimum design of multi-robot systems and the evaluation of

trade-offs between individual architecture development and numerality to achieve group performance

Swarms Robots Swarm Engineering

Observations 1 Observations 2 Observations 3

Assertion 1 Assertion 2 Assertion 3

• Many drone types are now
available
• This diversity is developing
• Single robot limitations can be

overcome by collaboration

• Designing a multi-robot system

requires much more commitment

than for a single agent
• They are confined to academia or

experimental and avant-gardist

military applications

• Groups might not always perform

“better” than single agents
• Very few group designs

possibilities are considered, mostly

homogeneous and sub-optimal

There is a potential to take
advantage of the diversity

of the existing drone fleet

A standard physical design process

for multi-robot systems is needed

to foster their democratization

There is a need to evaluate and
compare the real advantage of

different optimized multi-robot

systems versus optimized single-

robot solutions on a given mission

399

To conclude with this research summary, the assumptions used throughout the

proposed approach have not been found to be inconsistent or incomplete as they were

sufficient to validate the different blocks of the methodology. In particular, the reader might

notice the correlation between the first and second research questions. Indeed, the first one

questions whether a possible micro-macro link could improve the design of swarming

systems, while the second one is an attempt to study how this link can be achieved. Hence,

an effective link is required to answer the first research question but this link is not

accounted for before the second research question. As a result, the second research question

was treated first to validate a given modeling methodology which was then used in the first

research question to study the benefits of this micro-macro link. However, to ensure a

consistent order and articulation of the different parts of the reasoning, the section “Can

we improve swarms design?” (RQ1) is presented before the section “How can we improve

swarms design?” (RQ2).

6.2 Closing the loop: MASDeM

After answering the research questions and validating each research hypothesis

separately with theoretic, conceptual, and benchmarking models, this last chapter

demonstrates the use of the whole methodology by putting it all together on an example

swarm design exercise. This Multi-Agent Systems Design Methodology is named

MASDeM and encompasses all the different steps explained throughout this dissertation

and which are summarized here below (see Figure 6.2).

400

Figure 6.2: Steps of MASDeM

Step 1: reduction of the design space

The designer decides on the first initial set of architectures to be included in the study and

documents their morphological matrices as well as the associated technology compatibility

matrices. These matrices are then implemented using the object-oriented methodology

presented in section 5.1 (see page 292), and assembled into a morphological tree. By using

the morphological reduction function of the tree, the designer obtains a reduced number of

architectures to be considered while still providing an equivalent coverage of the design

space. Note that according to the conclusions of section 5.1, morphological reduction might

not prove beneficial for small design spaces with few reducible options. Along with the

reduced number of architectures, the design is provided with the list of design variables

which need to now be transferred to the modeling part.

Step 1

reduction of
design space

Step 2

mesoscopic modeling

Step 3

bi-level
optimization

401

Step 2: construction of the mesoscopic model

The second step for the design consists in having a model or simulation of the required

mission which can run in a short amount of time while still providing a good level of detail

and accuracy so that the design space can be explored efficiently. For this, a mesoscopic

model has to be built: a type of model that provides a high level of detail for the constituents

of the group but a simplified approach for the group interactions. If pre-existing models

are available to the designer, building the mesoscopic model consists mostly in simplifying

or relaxing the assumptions of those models and modifying them so that all the variables

given by the morphological reduction of step 1 are incorporated. If no pre-existing model

of the mission exists, the designer can refer to Figure 4.24 page 274 for examples of levels

of details which could constitute a mesoscopic model.

Step 3: optimizing a swarm configuration

Finally, based on the design space definition of step 1, the designer can define the bounds

of the variables for all architectures and use the bi-level optimizer to derive an optimal

swarm configuration for the required mission. The fitness function used by the optimizer

is the mesoscopic model of step 2 which outputs a fitness metric based on the performance

metrics of section 3.1 (see page 171). The only task for the designer is to provide the

number of variables per architecture, their bounds, and their type. The optimization loops

are already implemented in the tool itself.

402

Step 4 (optional): iteration

Once the optimization algorithm has finished running, or even after a few generations of

the outer loop (at least 3 from the observation of section 5.2.3 page 376), the elite buffer

contains a representative pool of the most promising architectures for cooperation on the

given mission. Hence, it is possible to further reduce the design space by limiting the

number of architectures considered by using this elite buffer from step 1 and iterating the

process. As a first iteration, the fifty most promising configurations could also be used to

decide on better bounds for the design variables and further restrict the size of the design

space to be considered. This has the advantage of refining the optimum search over a

smaller design space, hence accelerating the overall process. The designer should however

be careful not to restrict the design space too much and hence compromise the exploration

of different configurations.

In order to close the loop and put all the pieces of the approach back together, a

description of the different steps to follow for a real-world problematic was proposed in

this subsection. The whole methodology is regrouped under the acronym MASDeM

standing for Multi-Agent Systems Design Methodology. The size of the design space is

first reduced by using the morphological tree reduction before a mesoscopic model is

constructed. Finally, an optimal swarm design can be obtained by applying the bi-level

genetic algorithm optimizer on the problem. Without any validation possible with respect

to potential similar swarming systems in existence, the performance of the optimal swarm

consists in the best known solution so far, and could potentially be shown as competitive

when compared to existing single-platform solutions.

403

6.3 Key contributions

The work carried out for each of the main research axes of the present thesis has

led to several crucial observations in the field of multi-robot systems design, some

foreseeable and some counterintuitive. These key contributions are recalled, summarized,

and listed here below. Additional details can be found when referring to the original

corresponding chapters.

Design optimization of multi-robot systems

Sequential vs. simultaneous optimization:

 Currently the research community uses sequential optimization of the different

levels, in one order (microscopic then macroscopic is the most common), or the

other (macroscopic then microscopic).

 In all the studied cases, simultaneous optimization proved to yield more optimal

designs than the ones obtained with sequential optimization.

 Both methods yield similar results only in special cases when interactions

(macroscopic level) are neglected between the agents, or when requirements for the

different levels are favorable for sequential optimizers. It also depends on the

principal axes of the response.

 These improvements range from 1% to 27% on the cost function and average at

16%. However, these improvements are possibly lower bounds with respect to what

is achievable on real-world systems.

 Simultaneous optimization is a key enabler for full heterogeneity, a new capability

for the design of multi-robot systems.

404

 The benefits of heterogeneity are mitigated when technology is cheap to acquire

with respect to the cost of individual agents.

Efficient optimization of multi-robot systems

 The proposed bi-level optimizer now enables the simultaneous optimization of the

macroscopic level and the microscopic level.

 One advantage is that there is no need to implement a different optimizer for each

architecture as it was the case for simultaneous optimization. Only two optimizers

are required: an inner loop and an outer loop.

 Having an elite retention scheme for the inner loop clearly improves the

performance of the algorithm:

o The higher the elitism rate, the fewer generations are required for the

convergence of the outer loop (at least 50% speedup and up to 85%).

o The higher the elitism rate, the fewer generations are required for the

convergence of the inner loop (at least 70% speedup and up to 90%).

o The higher the elitism rate, the bigger the initial drop in required generations

for the inner loops (from 57% to 65%drop).

o At convergence of the outer loop, the elitism rate does not influence the

value of the number of generations required for the convergence of the inner

loops (90% speedup).

 The algorithm behaves differently whether heterogeneity is complete (all vehicles

of a given architecture are different), or partial (all vehicles of a given architecture

are similar):

405

o With and without elitism, the convergence of the inner loops is more rapid

by at least 30 percent when considering partial heterogeneity.

o Partial heterogeneity does not seem to have an impact on the improvements

achieved by elitism. The average improvement in number of generations of

the inner loop remains around 50 percent.

o When using precision-based convergence, partial heterogeneity tends to

make the convergence of the outer loop longer due to a low number of

variables and an increased sensitivity/instability. This effect can be removed

by relaxing the precision constraint.

Modeling

 Mesoscopic modeling is adapted for exploration and optimization purposes in

multi-architecture multi-level design spaces in the early design phases.

 This has been validated on conceptual design phases of multi-robot systems.

 The mesoscopic model always acts as a surrogate of the microscopic model and can

be considered as a microscopic model with simplified assumptions.

 On average mesoscopic modeling is more precise than macroscopic modeling while

being faster than microscopic modeling.

 A particular application to a consensus multi-robot mission showed that on average:

o The mesoscopic model ran 5 times faster than the microscopic one.

o The error of the mesoscopic model on the main performance metric was

within 31% of the performance of the real system. A number consistent with

conceptual design practices.

406

Design space exploration for multi-level multi-architecture design spaces

Multi-level morphological reduction

 Applying morphological reduction on multi-level design spaces multiplies the

improvements demonstrated in its original application [173].

 Although the higher levels in the hierarchy have most influence on the number of

alternatives, it is not clear whether their reduction should be favored to the

reduction of lower levels. Indeed, real-world applications tend to show that lower

levels are much larger in size than upper levels. Hence removing one option at a

top level might have the same effect on the total number of alternatives than

removing one at a low level.

 The more options are removed during reduction, the more the impact of the k-factor

(number of variables per option) is perceived.

 The number of options per row has more influence on the response than the number

of rows in the morphological matrix.

 Morphological reduction is not always beneficial.

 Morphological reduction can be detrimental in problems of high complexity (many

variables per option) but demonstrates clear advantages for very large problems as

more and more options are removed.

 For extremely large problems, as long as enough options are removed,

morphological reduction is always beneficial, quasi-independently of the number

of variables per option.

Morphological tree representation

407

 An object-oriented tree paradigm simplifies the analysis, dynamic manipulation,

and representation of multi-level design spaces.

 Complex multi-level operations (computing alternatives, ensuring compatibility,

reduction) are now reduced to traversing the morphological tree and calling simple

functions on each one of the nodes.

 The morphological tree demonstrated several interesting uses:

o As a fixed simple bookkeeping tool storing the possible design choices in

an organized and graphic fashion.

o As a fully functional and dynamic design space definition tool used to lock

design choices and propagate them through the tree. It can be used to

incrementally perform morphological reduction, compute the total of

remaining alternatives to study, as well as how many design variables were

lost in the process.

o As an assistant to design optimization by dynamically ensuring that the

optimizers consider only feasible designs during the design space

exploration.

6.4 Perspectives of future research

By relaxing some of the assumptions used in this research, it is possible to widen

the field of application of the proposed methodology and foresee possible extensions.

First, given that the methodology was designed to remain as generic and modular

as possible, prospective new applications can be imagined. In particular, the methodology

could be applied to the design of product families. Indeed, the dynamic tree structure and

408

bi-level optimizers can be used to track down requirements, design variables, and

performance from one product to the others. The dynamic handling of the outer loop would

first enable to derive an optimal number of products in the family without having the

designer fix a-priori the size of the group of products. Then, requirements of the

macroscopic level (i.e. the market coverage and economics of the product family) would

have to flow down to a lower level deriving optimal individual requirements for the

products of the family. Hence, a main difference would be that the requirements themselves

for the lower levels would be design variables.

Design spaces with more than two levels can also be investigated in more detail

with a complete real-world application. One possibility is to go down one more level of

detail by adding subsystems of the vehicles as a sub-microscopic level.

Finally, under the more technical aspect of implementation, it could be of interest

to study the behavior of the bi-level optimizer when used with other types of optimization

algorithms. Indeed, the use of a genetic algorithm was justified in the scope of this research

and compared with a full factorial approach, but for other types of applications, mixed-

integer programming might prove more appropriate for instance [235].

A METHODOLOGY TO ACHIEVE MICROSCOPIC/MACROSCOPIC CONFIGURATION

TRADEOFFS IN COOPERATIVE MULTI-ROBOT SYSTEMS DESIGN

Volume II

A Thesis

Presented to

The Academic Faculty

By

Jean-Guillaume Durand

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

School of Aerospace Engineering

Georgia Institute of Technology

May 2017

Copyright © 2017 by Jean-Guillaume Durand

APPENDIX

411

LIST OF APPENDICES

APPENDIX A Mathematical derivations ... 416

A.1 Test function optimum .. 416

A.1.1 Unconstrained ... 416

A.1.2 Constrained ... 422

A.2 Optimization test functions ... 432

A.2.1 Ackley ... 432

A.2.2 Dixon-Price ... 433

A.2.3 Griewank ... 434

A.2.4 Levy .. 435

A.2.5 Michalewicz .. 436

A.2.6 Powell ... 438

A.2.7 Rastrigin .. 438

A.2.8 Rosenbrock ... 439

A.2.9 Rotated hyper-ellipsoid ... 440

A.2.10 Schwefel .. 441

A.2.11 Sphere ... 442

A.2.12 Styblinski-Tang ... 443

A.2.13 Sum squares .. 444

A.3 Barrier certificates formulation ... 445

APPENDIX B Matlab code .. 449

B.1 Modeling ... 449

412

B.1.1 Macroscopic .. 449

B.1.2 Mesoscopic ... 450

B.1.3 Microscopic... 464

B.1.4 Real system ... 481

B.1.5 Scripts ... 489

B.2 Optimization ... 493

B.2.1 Sequential and simultaneous optimization .. 493

B.2.2 Bi-level optimizer ... 504

B.2.3 Unit tests ... 512

B.2.4 Plots for the test function .. 522

B.2.5 Plots optimizer .. 539

B.3 Design space exploration .. 555

B.3.1 Classes... 555

B.3.2 Unit tests ... 565

B.3.3 Example scripts ... 572

B.3.4 Interfaces ... 576

B.3.5 PACE cluster scripts ... 595

B.3.6 Plots... 604

APPENDIX C ROS/GAZEBO files ... 622

C.1 Gritbot URDF description file .. 623

C.2 Robotarium world file ... 624

C.3 Consensus mission launch file .. 626

C.4 Navigation package ... 629

413

C.4.1 Consensus ... 629

C.4.2 Tracker .. 637

C.4.3 Logger ... 639

414

LIST OF APPENDIX TABLES

Table A-1: KKT analysis for inner loop constraints ... 426

Table A-2: KKT analysis for outer loop constraints ... 430

Table A-3: Optimum of the Michalewicz test function .. 436

LIST OF APPENDIX FIGURES

Figure A-1: Constraints on the first design variable ... 427

Figure A-2: Constraints on the second design variable .. 428

Figure A-3: Constraints on two design variables .. 428

Figure A-4: Ackley function representation ... 432

Figure A-5: Dixon-Price function representation ... 433

Figure A-6: Griewank function representation over a varied range 434

Figure A-7: Levy function representation ... 435

Figure A-8: Michalewicz function representation .. 437

Figure A-9: Local representation of the Michalewicz function 437

Figure A-10: Rastrigin function representation .. 438

Figure A-11: Rosenbrock function representation .. 439

Figure A-12: Rotated Hyper-Ellipsoid function representation...................................... 440

Figure A-13: Schwefel function representation .. 441

Figure A-14: Sphere function representation .. 442

Figure A-15: Styblinski-Tang function representation ... 443

Figure A-16: Sum of squares function representation .. 444

 LIST OF APPENDIX EQUATIONS

415

Equation A-1: Unconstrained verification function for the optimizer 416

Equation A-2: Gradient of the verification function ... 418

Equation A-3: Hessian definition.. 419

Equation A-4: Hessian matrix for the verification function ... 420

Equation A-5: Hessian matrix evaluated at the stationary point..................................... 420

Equation A-6: Unconstrained global optimum ... 421

Equation A-7: Minimum value of the test function at the unconstrained optimum 421

Equation A-8: Constrained outer loop optimization problem ... 422

Equation A-9: Constrained inner loop optimization problem ... 422

Equation A-10: Constrained optimization problem .. 423

Equation A-11: Standard form for the constrained optimization problem 423

Equation A-12: Lagrangian of the verification optimization problem 424

Equation A-13: Lagrangian derivative with respect to the inner loop design vector 424

Equation A-14: Lagrangian derivative with respect to the inner loop design vector 425

Equation A-15: KKT conditions for inner loop constraints.. 425

Equation A-16: Derivation of the inner loop constrained optimum 427

Equation A-17: KKT conditions for the outer loop .. 429

Equation A-18: Matricial form of inter-robot collision constraints 446

Equation A-19: World boundaries constraints .. 447

Equation A-20: Matricial form of world boundaries constraints 447

Equation A-21: Quadratic program based controller .. 448

416

APPENDIX A

MATHEMATICAL DERIVATIONS

A.1 Test function optimum

It was stated in section 5.2.2.1 (see page 364) that the verification function 𝑓 is

designed to have known specific optimum value and locations. However, this was not

proven. This appendix hence provides the analytical proof for the minimal value of the

fitness function used for the verification of the bi-level optimization algorithm.

A.1.1 Unconstrained

The unconstrained verification function is defined as follow:

Equation A-1: Unconstrained verification function for the optimizer

𝑓(𝑋 = [𝑋𝑖𝑛, 𝑋𝑜𝑢𝑡]) = (∑ [𝑋𝑖
𝑖𝑛 − 𝑥𝑖

∗]
2

𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)

𝑖=1

)

⏟
𝑓𝑖𝑛(𝑋

𝑖𝑛)

− (∑
1

1 + [𝑋𝑖
𝑜𝑢𝑡 − 𝑖]2

𝑁𝑎𝑟𝑐ℎ

𝑖=1

)

⏟
𝑓𝑜𝑢𝑡(𝑋𝑜𝑢𝑡)

With 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛) the number of variables in the inner loop design vector, 𝑁𝑎𝑟𝑐ℎ𝑠

the number of variables in the outer loop design vector (or equivalently the number of

architectures considered). The value of 𝑥𝑖
∗ was given in Equation 5.12 page 368. The design

vector 𝑋 is partitioned between inner loop and outer loop design variables as 𝑋 =

[𝑋𝑖𝑛, 𝑋𝑜𝑢𝑡].

417

Finding the minimum of this fitness function consists in computing the stationary

points thanks to the gradient, and making sure that the Hessian matrix is positive semi-

definite around these points before comparing them to find the global optimum. The first

step is computing the gradient ∇𝑓 =
𝑑𝑓

𝑑𝑋
= [

𝜕𝑓

𝜕𝑋𝑖𝑛
,
𝜕𝑓

𝜕𝑋𝑜𝑢𝑡
]. One can first note that

𝜕𝑓

𝜕𝑋𝑖𝑛
=

𝜕(𝑓𝑖𝑛+𝑓𝑜𝑢𝑡)

𝜕𝑋𝑖𝑛
=

𝑑𝑓𝑖𝑛

𝑑𝑋𝑖𝑛
+
𝜕𝑓𝑜𝑢𝑡

𝜕𝑋𝑖𝑛⏟
0

=
𝑑𝑓𝑖𝑛

𝑑𝑋𝑖𝑛
 since 𝑓𝑜𝑢𝑡 does not depend on 𝑋𝑖𝑛. Similarly,

𝜕𝑓

𝜕𝑋𝑜𝑢𝑡
=

𝑑𝑓𝑜𝑢𝑡

𝑑𝑋𝑜𝑢𝑡
. Each of these terms is then considered separately here after.

The first term is
𝑑𝑓𝑖𝑛

𝑑𝑋𝑖𝑛
= [

𝜕𝑓𝑖𝑛

𝜕𝑋1
𝑖𝑛 ,

𝜕𝑓𝑖𝑛

𝜕𝑋2
𝑖𝑛 , … ,

𝜕𝑓𝑖𝑛

𝜕𝑋
𝑁𝑣𝑎𝑟𝑠(𝑋

𝑖𝑛)
𝑖𝑛] = (

𝜕𝑓𝑖𝑛

𝜕𝑋𝑖
𝑖𝑛)

𝑖∈⟦1,𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧

 and

each
𝜕𝑓𝑖𝑛

𝜕𝑋𝑖
𝑖𝑛 can be computed as

𝜕𝑓𝑖𝑛

𝜕𝑋𝑖
𝑖𝑛 =

𝜕

𝜕𝑋𝑖
𝑖𝑛 (∑ [𝑋𝑘

𝑖𝑛 − 𝑥𝑘
∗]
2𝑁𝑣𝑎𝑟𝑠(𝑋

𝑖𝑛)

𝑘=1) = 2(𝑋𝑖
𝑖𝑛 − 𝑥𝑖

∗).

The second term is
𝑑𝑓𝑜𝑢𝑡

𝑑𝑋𝑜𝑢𝑡
= (

𝜕𝑓𝑜𝑢𝑡

𝜕𝑋𝑖
𝑜𝑢𝑡)

𝑖∈⟦1,𝑁𝑎𝑟𝑐ℎ⟧
 and each of the

𝜕𝑓𝑜𝑢𝑡

𝜕𝑋𝑖
𝑜𝑢𝑡’s can be written

as
𝜕𝑓𝑜𝑢𝑡

𝜕𝑋𝑖
𝑜𝑢𝑡 =

𝜕

𝜕𝑋𝑖
𝑜𝑢𝑡 (∑

1

1+[𝑋𝑘
𝑜𝑢𝑡−𝑘]

2
𝑁𝑎𝑟𝑐ℎ𝑠
𝑘=1) =

2(𝑋𝑖
𝑜𝑢𝑡−𝑖)

[1+(𝑋𝑖
𝑜𝑢𝑡−𝑖)

2
]
2.

Putting it all back together, the gradient of the fitness function 𝑓 is expressed as:

418

Equation A-2: Gradient of the verification function

Setting ∇𝑓 = 0⃗ to find the stationary points, one finds that the inner loop elements

are set to zero if and only if 𝑋𝑖
𝑖𝑛 = 𝑥𝑖

∗, ∀𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧ and that the outer loop

elements are null if and only if 𝑋𝑖
𝑜𝑢𝑡 = 𝑖, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧. Hence, there is only one

stationary point. Finally, one must verify that this point actually corresponds to a minimum.

One possible way to do that is to ensure that the verification function 𝑓 is locally convex

around this stationary point, which is equivalent to having a positive semi-definite Hessian

matrix. The Hessian of 𝑓 is defined as:

𝛻𝑓(𝑋) =

{

2(𝑋1
𝑖𝑛 − 𝑥1

∗)

2(𝑋2
𝑖𝑛 − 𝑥2

∗)

⋮

2 (𝑋
𝑁𝑣𝑎𝑟𝑠(𝑋

𝑖𝑛)
𝑖𝑛 − 𝑥

𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)

∗)

𝑋
2(𝑋1

𝑜𝑢𝑡 − 1)

[1 + (𝑋1
𝑜𝑢𝑡 − 1)2]2

2(𝑋2
𝑜𝑢𝑡 − 2)

[1 + (𝑋2
𝑜𝑢𝑡 − 2)2]2

⋮
2(𝑋𝑁𝑎𝑟𝑐ℎ

𝑜𝑢𝑡 − 𝑁𝑎𝑟𝑐ℎ)

[1 + (𝑋𝑁𝑎𝑟𝑐ℎ
𝑜𝑢𝑡 − 𝑁𝑎𝑟𝑐ℎ)

2
]
2

}

𝑵𝒗𝒂𝒓𝒔(𝑿
𝒊𝒏)

𝑵𝒂𝒓𝒄𝒉

419

Equation A-3: Hessian definition

𝐻𝑓 = (
𝜕2𝑓

𝜕𝑋𝑖𝜕𝑋𝑗
)
𝑖,𝑗

= (
𝜕∇𝑓𝑗

𝜕𝑋𝑖
)
𝑖,𝑗

= (
𝜕∇𝑓

𝜕𝑋𝑖
)
𝑖,𝑗

=

[

𝜕∇𝑓

𝜕𝑋1
𝑖𝑛

𝜕∇𝑓

𝜕𝑋2
𝑖𝑛

⋮
𝜕∇𝑓

𝜕𝑋
𝑁𝑣𝑎𝑟𝑠(𝑋𝑖𝑛)
𝑖𝑛

𝜕∇𝑓

𝜕𝑋1
𝑜𝑢𝑡

𝜕∇𝑓

𝜕𝑋2
𝑜𝑢𝑡

⋮
𝜕∇𝑓

𝜕𝑋𝑁𝑎𝑟𝑐ℎ
𝑜𝑢𝑡

]

By looking at the shape of the gradient given in Equation A-2, there is only one

component of this gradient that depends on a given variable 𝑋𝑖 of the design vector 𝑋 (be

it an inner loop design variable 𝑋𝑖
𝑖𝑛 or an outer loop variable 𝑋𝑖

𝑜𝑢𝑡). For a given design

variable 𝑋𝑖, the only component for which the derivative of the gradient will not be zero is

∇𝑓𝑖. Since the form of the Hessian is 𝐻𝑓 = (
𝜕∇𝑓𝑗

𝜕𝑋𝑖
)
𝑖,𝑗

, this means that all non-diagonal terms

of the Hessian matrix are zero. As for the diagonal terms, two cases have to be considered:

the ones depending on inner loop variables, and the one depending on outer loop variables.

In the first case, the terms are
𝜕𝛻𝑖
𝑖𝑛𝑓

𝜕𝑋𝑖
𝑖𝑛 =

𝜕

𝜕𝑋𝑖
𝑖𝑛 [2(𝑋𝑖

𝑖𝑛 − 𝑥𝑖
∗)] = 2. For the outer loop terms,

𝜕𝛻𝑖
𝑜𝑢𝑡𝑓

𝜕𝑋𝑖
𝑜𝑢𝑡 =

𝜕

𝜕𝑋𝑖
𝑜𝑢𝑡 (

2(𝑋𝑖
𝑜𝑢𝑡−𝑖)

[1+(𝑋𝑖
𝑜𝑢𝑡−𝑖)

2
]
2) =

2[1−3(𝑋𝑖
𝑜𝑢𝑡−𝑖)

2
]

[1+(𝑋𝑖
𝑜𝑢𝑡−𝑖)

2
]
3 . Note that 𝛻𝑖

𝑖𝑛
𝑓 and 𝛻𝑖

𝑜𝑢𝑡𝑓 refer to terms of the gradient

depending on respectively inner variable 𝑖 with 𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧, and outer variable 𝑖 with

𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧. As a consequence, the Hessian has the following form:

420

Equation A-4: Hessian matrix for the verification function

The diagonal terms linked with the outer loop variables have the value 2 when

evaluated at the stationary point, indeed
2[1−3(𝑋∗𝑖

𝑜𝑢𝑡
−𝑖)

2
]

[1+(𝑋∗𝑖
𝑜𝑢𝑡−𝑖)

2
]
3 = 2

[1−3(𝑖−𝑖)2]

[1+(𝑖−𝑖)2]3
= 2×

1

1
= 2. Hence

the Hessian at the stationary point corresponds to:

Equation A-5: Hessian matrix evaluated at the stationary point

With 𝐼 the identity matrix having the size corresponding to the number of elements

in the complete design vector 𝑋. One can then conclude that the Hessian at the stationary

point is positive semi-definite. This proves that the verification function is locally convex

𝐻𝑓(𝑋) =

[

2 0 ⋯ 0 0 0 ⋯ 0
0 2 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋯ ⋮
0 0 ⋯ 2 0 0 ⋯ 0

0 0 ⋯ 0
2[1 − 3(𝑋1

𝑜𝑢𝑡 − 1)2]

[1 + (𝑋1
𝑜𝑢𝑡 − 1)2]3

0 ⋯ 0

0 0 ⋯ 0 0
2[1 − 3(𝑋2

𝑜𝑢𝑡 − 2)2]

[1 + (𝑋2
𝑜𝑢𝑡 − 2)2]3

⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 0 0 ⋯
2 [1 − 3(𝑋𝑁𝑎𝑟𝑐ℎ𝑠

𝑜𝑢𝑡 − 𝑁𝑎𝑟𝑐ℎ𝑠)
2
]

[1 + (𝑋𝑁𝑎𝑟𝑐ℎ𝑠
𝑜𝑢𝑡 − 𝑁𝑎𝑟𝑐ℎ𝑠)

2
]
3

]

𝑵𝒗𝒂𝒓𝒔(𝑿
𝒊𝒏)

𝑵
𝒂
𝒓
𝒄
𝒉

𝑵𝒂𝒓𝒄𝒉

𝑵
𝒗
𝒂
𝒓
𝒔
(𝑿

𝒊𝒏
)

𝐻𝑓(𝑋
∗) =

[

2 0 ⋯ 0 0 0 ⋯ 0

0 2 ⋯ 0 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋯ ⋮

0 0 ⋯ 2 0 0 ⋯ 0

0 0 ⋯ 0 2 0 ⋯ 0

0 0 ⋯ 0 0 2 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 0 0 ⋯ 2]

= 2×𝐼

421

around the stationary point and hence that the stationary point derived earlier on is indeed

a local minimum of the verification fitness function. Given that it is the only stationary

point, this also sufficiently proves that it is the global minimum:

Equation A-6: Unconstrained global optimum

𝑋∗𝑖
𝑖𝑛 = 𝑥𝑖

∗ ∀𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧

𝑋∗𝑖
𝑜𝑢𝑡 = 𝑖 ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

The value of the fitness function at the minimum is hence:

Equation A-7: Minimum value of the test function at the unconstrained optimum

𝑓(𝑋∗) = (∑ [𝑋∗𝑖
𝑖𝑛 − 𝑥𝑖

∗]
2

𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)

𝑖=1

)− (∑
1

1 + [𝑋∗𝑖
𝑜𝑢𝑡 − 𝑖]

2

𝑁𝑎𝑟𝑐ℎ

𝑖=1

)

= (∑ [𝑥𝑖
∗ − 𝑥𝑖

∗]2

𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)

𝑖=1

)

⏟
0

−(∑
1

1 + [𝑖 − 𝑖]2

𝑁𝑎𝑟𝑐ℎ

𝑖=1

)

= − ∑ 1

𝑁𝑎𝑟𝑐ℎ

𝑖=1

= −𝑁𝑎𝑟𝑐ℎ

To conclude, the minimum of the verification fitness function was analytically

derived and corresponds to what was announced in section 5.2.2.1.

422

A.1.2 Constrained

The constrained optimization problems for the inner and outer loops were described

in equations Equation 5.15 and Equation 5.16 and are recalled here:

Equation A-8: Constrained outer loop optimization problem

min
𝑋𝑜𝑢𝑡

𝑖𝑛(𝑋𝑜𝑢𝑡)

subject to

{

𝑋𝑖
𝑜𝑢𝑡 ≥ 𝑋∗𝑖

𝑜𝑢𝑡 + 1, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

1 ≤ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

≤ 𝑁max

0 ≤ 𝑋𝑖
𝑜𝑢𝑡 ≤ 𝑁max, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

𝑋𝑖
𝑜𝑢𝑡 ∈ ℕ, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

Equation A-9: Constrained inner loop optimization problem

min
𝑋𝑖𝑛

𝑓(𝑋𝑖𝑛)

subject to

{
𝑋𝑖
𝑖𝑛 ≥ 𝑋∗𝑖

𝑖𝑛 + 1, ∀i ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧

𝑙𝑏 ≤ 𝑋
𝑖𝑛 ≤ 𝑢𝑏

The mathematical formulation is able to consider both inner and outer loops at the

same time since there are no dynamic size allocation issues for the design vectors of the

inner loop. The optimization problem can hence be written as:

423

Equation A-10: Constrained optimization problem

min
𝑋
𝑓(𝑋)

subject to

{

𝑋𝑖
𝑜𝑢𝑡 ≥ 𝑋∗𝑖

𝑜𝑢𝑡 + 1, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

1 ≤ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

≤ 𝑁max

0 ≤ 𝑋𝑖
𝑜𝑢𝑡 ≤ 𝑁max, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

𝑋𝑖
𝑖𝑛 ≥ 𝑋∗𝑖

𝑖𝑛 + 1, ∀𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧

𝑙𝑏 ≤ 𝑋
𝑖𝑛 ≤ 𝑢𝑏

𝑋𝑖
𝑜𝑢𝑡 ∈ ℕ, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

Putting it in standard form, Equation A-11 is obtained:

Equation A-11: Standard form for the constrained optimization problem

min
𝑋
𝑓(𝑋)

subject to

{

 𝑋

∗
𝑖
𝑖𝑛 + 1 − 𝑋𝑖

𝑖𝑛 ≤ 0, ∀𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧

𝑙𝑏𝑖 − 𝑋𝑖
𝑖𝑛 ≤ 0, ∀𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋

𝑖𝑛)⟧

𝑋𝑖
𝑖𝑛 − 𝑢𝑏𝑖 ≤ 0, ∀𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋

𝑖𝑛)⟧

𝑋∗𝑖
𝑜𝑢𝑡 + 1 − 𝑋𝑖

𝑜𝑢𝑡 ≤ 0, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

1 − ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

≤ 0

∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

− 𝑁max ≤ 0

−𝑋𝑖
𝑜𝑢𝑡 ≤ 0, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

𝑋𝑖
𝑜𝑢𝑡 − 𝑁max ≤ 0, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

𝑋𝑖
𝑜𝑢𝑡 ∈ ℕ, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

424

The first step of this analysis is to compute the Lagrangian of the problem (see

Equation A-12).

Equation A-12: Lagrangian of the verification optimization problem

ℒ(𝑋) = 𝑓(𝑋) + ∑ 𝛼𝑖(𝑋
∗
𝑖
𝑖𝑛 + 1 − 𝑋𝑖

𝑖𝑛)

𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)

𝑖=1

+ ∑ 𝛽𝑖(𝑙𝑏𝑖 − 𝑋𝑖
𝑖𝑛)

𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)

𝑖=1

+ ∑ 𝛾𝑖(𝑋𝑖
𝑖𝑛 − 𝑢𝑏𝑖)

𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)

𝑖=1

+ ∑ 𝛿𝑖(𝑋
∗
𝑖
𝑜𝑢𝑡 + 1 − 𝑋𝑖

𝑜𝑢𝑡)

𝑁𝑎𝑟𝑐ℎ

𝑖=1

+ 𝜖 (1 − ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

) + 휁 (∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

−𝑁max)

+ ∑ 휂𝑖(−𝑋𝑖
𝑜𝑢𝑡)

𝑁𝑎𝑟𝑐ℎ

𝑖=1

+ ∑ 휃𝑖(𝑋𝑖
𝑜𝑢𝑡 − 𝑁max)

𝑁𝑎𝑟𝑐ℎ

𝑖=1

The coefficients 𝛼, 𝛽, 𝛾, 𝛿, 𝜖, 휁, 휂, and 휃 are the Lagrange multipliers associated

with the different inequality constraints. The next step is now to compute the gradient of

the Lagrangian ∇ℒ with respect to the design vector 𝑋 and with respect to the Lagrange

multipliers: ∇ℒ = [
𝜕ℒ

𝜕𝑋
,
𝜕ℒ

𝜕𝛼
,
𝜕ℒ

𝜕𝛽
,
𝜕ℒ

𝜕𝛾
,
𝜕ℒ

𝜕𝛿
,
𝜕ℒ

𝜕𝜖
,
𝜕ℒ

𝜕𝜁
,
𝜕ℒ

𝜕𝜂
,
𝜕ℒ

𝜕𝜃
]. Similarly to the previous section, the

gradient element
𝜕ℒ

𝜕𝑋
 can also be decomposed into components linked with inner variables

𝜕ℒ

𝜕𝑋𝑖
𝑖𝑛, and components related to outer loop variables

𝜕ℒ

𝜕𝑋𝑖
𝑜𝑢𝑡. Computing these terms

separately, the first one is:

Equation A-13: Lagrangian derivative with respect to the inner loop design vector

𝜕ℒ

𝜕𝑋𝑖
𝑖𝑛
= 2(𝑋𝑖

𝑖𝑛 − 𝑥𝑖
∗) − 𝛼𝑖 − 𝛽𝑖 + 𝛾𝑖

425

And the second one is:

Equation A-14: Lagrangian derivative with respect to the inner loop design vector

𝜕ℒ

𝜕𝑋𝑖
𝑜𝑢𝑡 =

2(𝑋𝑖
𝑜𝑢𝑡 − 𝑖)

[1 + (𝑋𝑖
𝑜𝑢𝑡 − 𝑖)2]2

− 𝛿𝑖 − 𝜖 + 휁 − 휂𝑖 + 휃𝑖

The following two paragraphs detail the analysis by separating inner loop

constraints from outer loop constraints.

Inner loop constraints: the first-order necessary conditions, also known as Karush–

Kuhn–Tucker (KKT) conditions to be solved for the inner loop constraints are thus for all

𝑖 in ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧:

Equation A-15: KKT conditions for inner loop constraints

{

2(𝑋𝑖

𝑖𝑛 − 𝑥𝑖
∗) − 𝛼𝑖 − 𝛽𝑖 + 𝛾𝑖 = 0

𝛼𝑖(𝑋
∗
𝑖
𝑖𝑛 + 1 − 𝑋𝑖

𝑖𝑛) = 0

𝛽𝑖(𝑙𝑏𝑖 − 𝑋𝑖
𝑖𝑛) = 0

𝛾𝑖(𝑋𝑖
𝑖𝑛 − 𝑢𝑏𝑖) = 0

To study whether the constraints are active or not, the cases where the Lagrange

multipliers are zero are first studied. The analysis is summarized in Table A-1.

426

Table A-1: KKT analysis for inner loop constraints

𝜷𝒊 ≠ 𝟎
⇒ 𝑙𝑏𝑖 − 𝑋𝑖

𝑖𝑛 = 0 ⇒ 𝑋𝑖
𝑖𝑛 = 𝑙𝑏𝑖

Impossible as the constraint 𝑋𝑖
𝑖𝑛 ≥ 𝑋∗𝑖

𝑖𝑛 + 1 > 𝑙𝑏𝑖 would be violated.

𝜷𝒊 = 𝟎

𝛾𝑖 ≠ 0

𝛼𝑖 ≠ 0
⇒ {

𝑋𝑖
𝑖𝑛 − 𝑢𝑏𝑖 = 0

𝑋∗𝑖
𝑖𝑛 + 1 − 𝑋𝑖

𝑖𝑛 = 0
⇒ {

𝑋𝑖
𝑖𝑛 = 𝑢𝑏𝑖

𝑋𝑖
𝑖𝑛 = 𝑋∗𝑖

𝑖𝑛 + 1

Impossible since 𝑢𝑏𝑖 is set so that 𝑢𝑏𝑖 ≠ 𝑋
∗
𝑖
𝑖𝑛 + 1

𝛼𝑖 = 0

⇒ {
𝑋𝑖
𝑖𝑛 − 𝑢𝑏𝑖 = 0

2(𝑋𝑖
𝑖𝑛 − 𝑥𝑖

∗) + 𝛾𝑖 = 0

⇒ {
𝑋𝑖
𝑖𝑛 = 𝑢𝑏𝑖

𝛾𝑖 = −2(𝑋𝑖
𝑖𝑛 − 𝑥𝑖

∗)

⇒ {
𝑋𝑖
𝑖𝑛 = 𝑢𝑏𝑖

𝛾𝑖 = −2(𝑢𝑏𝑖 − 𝑥𝑖
∗)

𝛾𝑖 = 0

𝛼𝑖 ≠ 0

⇒ {
𝑋∗𝑖

𝑖𝑛 + 1 − 𝑋𝑖
𝑖𝑛 = 0

2(𝑋𝑖
𝑖𝑛 − 𝑥𝑖

∗) − 𝛼𝑖 = 0

⇒ {
𝑋𝑖
𝑖𝑛 = 𝑋∗𝑖

𝑖𝑛 + 1

𝛼𝑖 = 2(𝑋𝑖
𝑖𝑛 − 𝑥𝑖

∗)

⇒ {
𝑋𝑖
𝑖𝑛 = 𝑋∗𝑖

𝑖𝑛 + 1
𝛼𝑖 = 2

𝛼𝑖 = 0

⇒ 2(𝑋𝑖
𝑖𝑛 − 𝑥𝑖

∗) = 0 ⇒ 𝑋𝑖
𝑖𝑛 = 𝑥𝑖

∗

Impossible as the constraint 𝑋𝑖
𝑖𝑛 ≥ 𝑋∗𝑖

𝑖𝑛 + 1 would be

violated. Note that 𝑋∗𝑖
𝑖𝑛 = 𝑥𝑖

∗.

Looking at Table A-1, there are two solutions: ൛𝑋𝑖
𝑖𝑛, 𝛼𝑖 , 𝛽𝑖, 𝛾𝑖ൟ =

൛𝑢𝑏𝑖 , 0, 0, −2(𝑢𝑏𝑖 − 𝑥𝑖
∗)ൟ and ൛𝑋𝑖

𝑖𝑛, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖ൟ = ൛𝑋
∗
𝑖
𝑖𝑛 + 1,2, 0, 0ൟ for all 𝑖 in

⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧. Both are compared to find out which one between 𝑓(𝑋𝑖

𝑖𝑛 = 𝑢𝑏𝑖) or

𝑓(𝑋𝑖
𝑖𝑛 = 𝑥𝑖

∗ + 1) yields the minimum value of the objective function. The design variable

𝑋𝑖
𝑖𝑛 is only going to affect the 𝑓𝑖𝑛 part of the objective function 𝑓. Hence, it can be assumed

that 𝑋𝑜𝑢𝑡 (or equivalently 𝑓𝑜𝑢𝑡) is fixed, and only the influence of 𝑓𝑖𝑛 is considered.

427

Equation A-16: Derivation of the inner loop constrained optimum

0 ≤ 𝑥𝑖
∗ ≤ 𝑥𝑖

∗ + 1 ≤ 𝑢𝑏𝑖

⇒ −𝑥𝑖
∗ ≤ 0 ≤ 1 ≤ 𝑢𝑏𝑖 − 𝑥𝑖

∗

⇒ 0 ≤ 1 ≤ (𝑢𝑏𝑖 − 𝑥𝑖
∗)
2

⇒ 𝑓𝑖𝑛(𝑥𝑖
∗) ≤ 𝑓𝑖𝑛(𝑥𝑖

∗ + 1) ≤ 𝑓𝑖𝑛(𝑢𝑏𝑖)

This proves that 𝑓𝑖𝑛(𝑥𝑖
∗ + 1) ≤ 𝑓𝑖𝑛(𝑢𝑏𝑖) and that 𝑋𝑖

𝑖𝑛 = 𝑥𝑖
∗ + 1 is the global

minimum of 𝑓𝑖𝑛 for all 𝑖 in ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧. This can be visualized on Figure A-1, Figure

A-2, and Figure A-3.

Figure A-1: Constraints on the first design variable

428

Figure A-2: Constraints on the second design variable

Figure A-3: Constraints on two design variables

429

Outer loop constraints: the KKT conditions for the outer loop constraints are for all 𝑖 in

⟦1, 𝑁𝑎𝑟𝑐ℎ⟧:

Equation A-17: KKT conditions for the outer loop

{

2(𝑋𝑖
𝑜𝑢𝑡 − 𝑖)

[1 + (𝑋𝑖
𝑜𝑢𝑡 − 𝑖)2]2

− 𝛿𝑖 − 𝜖 + 휁 − 휂𝑖 + 휃𝑖 = 0

𝛿𝑖(𝑋
∗
𝑖
𝑜𝑢𝑡 + 1 − 𝑋𝑖

𝑜𝑢𝑡) = 0

𝜖 (1 − ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

) = 0

휁 (∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

− 𝑁max) = 0

휂𝑖(−𝑋𝑖
𝑜𝑢𝑡) = 0

휃𝑖(𝑋𝑖
𝑜𝑢𝑡 − 𝑁max) = 0

Similarly to the analysis used for the inner loop constraints, cases disjunctions have to be

made and are detailed in Table A-2.

430

Table A-2: KKT analysis for outer loop constraints

𝜼𝒊 ≠ 𝟎

⇒ 𝑋𝑖
𝑜𝑢𝑡 = 0

Impossible since 𝑋𝑖
𝑜𝑢𝑡 ≥ 𝑋∗𝑖

𝑜𝑢𝑡 + 1 = 𝑖 + 1 ≥ 2

⇒ 휂𝑖 = 0

𝜽𝒊 ≠ 𝟎

⇒ 𝑋𝑖
𝑜𝑢𝑡 − 𝑁max = 0 ⇒ 𝑋𝑖

𝑜𝑢𝑡 = 𝑁max

However, from the constraints:

∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

≤ 𝑁max ⇒ ∀𝑗 ≠ 𝑖, 𝑋𝑗
𝑜𝑢𝑡 = 0

Impossible since 𝑋𝑖
𝑜𝑢𝑡 ≥ 𝑋∗𝑖

𝑜𝑢𝑡 + 1 = 𝑖 + 1 ≥ 2 ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

⇒ 휃𝑖 = 0

𝝐 ≠ 𝟎

⇒ 1− ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

= 0 ⇒ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

= 1

However, from the constraints:

{
𝑋𝑖
𝑜𝑢𝑡 ∈ ℕ, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

𝑋𝑖
𝑜𝑢𝑡 ≥ 0, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

⇒ {
∃𝑘, 𝑋𝑘

𝑜𝑢𝑡 = 1

∀𝑖 ≠ 𝑘, 𝑋𝑖
𝑜𝑢𝑡 = 0

Impossible since 𝑋𝑖
𝑜𝑢𝑡 ≥ 𝑋∗𝑖

𝑜𝑢𝑡 + 1 = 𝑖 + 1 ≥ 2 ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

⇒ 𝜖 = 0

Note that we consider the case where 𝑁𝑎𝑟𝑐ℎ ≥ 2.

𝜻 ≠ 𝟎

⇒ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

− 𝑁max = 0 ⇒ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

= 𝑁max

This constraint ensures that the total number of vehicles does not exceed

a certain limit. For the sake of this analysis and the algorithm verification,

this limit is always set high enough so that this constraint is not binding

(𝑁max → +∞). Hence, we can assume 휁 = 0.

𝜹𝒊 ≠ 𝟎

⇒ {

2(𝑋𝑖
𝑜𝑢𝑡 − 𝑖)

[1 + (𝑋𝑖
𝑜𝑢𝑡 − 𝑖)2]2

− 𝛿𝑖 = 0

𝑋∗𝑖
𝑜𝑢𝑡 + 1 − 𝑋𝑖

𝑜𝑢𝑡 = 0

⇒ {
𝛿𝑖 =

2(𝑋𝑖
𝑜𝑢𝑡 − 𝑖)

[1 + (𝑋𝑖
𝑜𝑢𝑡 − 𝑖)2]2

𝑋𝑖
𝑜𝑢𝑡 = 𝑋∗𝑖

𝑜𝑢𝑡 + 1 = 𝑖 + 1

⇒ {
𝛿𝑖 =

2(𝑖 + 1 − 𝑖)

[1 + (𝑖 + 1 − 𝑖)2]2

𝑋𝑖
𝑜𝑢𝑡 = 𝑖 + 1

⇒ {
𝛿𝑖 = 1

𝑋𝑖
𝑜𝑢𝑡 = 𝑖 + 1

𝜹𝒊 = 𝟎
⇒

2(𝑋𝑖
𝑜𝑢𝑡 − 𝑖)

[1 + (𝑋𝑖
𝑜𝑢𝑡 − 𝑖)2]2

= 0 ⇒ 𝑋𝑖
𝑜𝑢𝑡 = 𝑖

Impossible since 𝑋𝑖
𝑜𝑢𝑡 ≥ 𝑋∗𝑖

𝑜𝑢𝑡 + 1 = 𝑖 + 1.

431

This time, there is only one feasible solution which is {𝑋𝑖
𝑜𝑢𝑡, 𝛿𝑖, 𝜖, 휁, 휂𝑖, 휃𝑖} =

{𝑖 + 1,1,0,0,0,0}, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧.

To conclude the analysis for the constrained verification function, the solution to

the constrained optimization problem presented in Equation A-10 is 𝑋 = [𝑋𝑐𝑜𝑢𝑡, 𝑋𝑐𝑖𝑛]

with 𝑋𝑐𝑖
𝑜𝑢𝑡 = 𝑖 + 1, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧ and 𝑋𝑐𝑖

𝑖𝑛 = 𝑥𝑖
∗ + 1, ∀𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋

𝑖𝑛)⟧. These

values correspond to the ones announced in section 5.2.2.1.

432

A.2 Optimization test functions

This appendix details the multivariable optimization test functions used in section

5.1.5 (see page 325) to characterize morphological reduction. The formulae of the functions

and their global optimum are given from [236] along with a graphical representation for

two variables. It is assumed that the design vector 𝑥 has dimensionality 𝑑.

A.2.1 Ackley

Expression: 𝑓(𝑥) = −𝑎 exp(−𝑏√
1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1) − exp (

1

𝑑
∑ 𝑐𝑜𝑠(𝑐 𝑥𝑖)
𝑑
𝑖=1) + 𝑎 + exp(1)

Common values are {𝑎, 𝑏, 𝑐} = {20, 0.2, 2𝜋}

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0]

Figure A-4: Ackley function representation

433

A.2.2 Dixon-Price

Expression: 𝑓(𝑥) = (𝑥1 − 1)
2 + ∑ 𝑖 (2𝑥𝑖

2 − 𝑥𝑖−1)
2𝑑

𝑖=2

Optimum: 𝑓(𝑥∗) = 0 at 𝑥𝑖
∗ = 2

−
2𝑖−2

2𝑖 , ∀𝑖 ∈ ⟦1, 𝑑⟧

Figure A-5: Dixon-Price function representation

434

A.2.3 Griewank

Expression: 𝑓(𝑥) = ∑
𝑥𝑖
2

400

𝑑
𝑖=1 −∏ cos (

𝑥𝑖

√𝑖
)𝑑

𝑖=1 + 1

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0]

Figure A-6: Griewank function representation over a varied range

435

A.2.4 Levy

Expression:

𝑓(𝑥) = sin2(𝜋𝜔1) +∑(𝜔𝑖 − 1)
2[1 + 10 sin2(𝜋𝜔𝑖 + 1)]

𝑑−1

𝑖=1

+ (𝜔𝑑 − 1)
2[1 + sin2(2𝜋𝜔𝑑)]

With 𝜔𝑖 = 1 +
𝑥𝑖−1

4
, ∀𝑖 ∈ ⟦1, 𝑑⟧

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [1,1, … ,1]

Figure A-7: Levy function representation

436

A.2.5 Michalewicz

Expression: 𝑓(𝑥) = −∑ sin(𝑥𝑖) sin
2𝑚 (

𝑖𝑥𝑖
2

𝜋
)𝑑

𝑖=1 with 𝑥𝑖 ∈ [0, 𝜋], ∀𝑖 ∈ ⟦1, 𝑑⟧

Optimum: presented for the numbers of variables used in section 5.1.5.

Table A-3: Optimum of the Michalewicz test function

Dimensionality

𝒅

Global minima

value

𝒇(𝒙∗)

Global minima location

𝒙∗

1 −0.8013 2.2029

2 −1.8013 [2.2029, 1.5708]

3 −2.7604 [2.2029, 1.5708, 1.2850]

4 −3.6989 [2.2029, 1.5708, 1.2850, 1.9231]

5 −4.6877 [2.2029, 1.5708, 1.2850, 1.9231, 1.7205]

10 −9.66015 [
2.2029, 1.5708, 1.2850, 1.1138, 1.7205,
1.5708, 1.4544, 1.3606, 1.6557, 1.5708

]

50 −46.6491 …

100 −88.1784 …

437

Figure A-8: Michalewicz function representation

Figure A-9: Local representation of the Michalewicz function

438

A.2.6 Powell

Expression:

𝑓(𝑥) =∑[(𝑥4𝑖−3 + 10𝑥4𝑖−2)
2 + 5(𝑥4𝑖−1 − 𝑥4𝑖)

2 + (𝑥4𝑖−2 − 2𝑥4𝑖−1)
4 + 10(𝑥4𝑖−3 − 𝑥4𝑖)

4]

𝑑
4

𝑖=1

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0]

Given that this function needs at least 4 design variables, no representation is available.

A.2.7 Rastrigin

Expression: 𝑓(𝑥) = 10𝑑 + ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑
𝑖=1

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0]

Figure A-10: Rastrigin function representation

439

A.2.8 Rosenbrock

Expression: 𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]𝑑−1
𝑖=1

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0]

Figure A-11: Rosenbrock function representation

440

A.2.9 Rotated hyper-ellipsoid

Expression: 𝑓(𝑥) = ∑ ∑ 𝑥𝑗
2𝑖

𝑗=1
𝑑
𝑖=1

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0]

Figure A-12: Rotated Hyper-Ellipsoid function representation

441

A.2.10 Schwefel

Expression: 𝑓(𝑥) = 418.9829𝑑 − ∑ 𝑥𝑖 sin(√|𝑥𝑖|)
𝑑
𝑖=1

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [420.9687,420.9687,… ,420.9687]

Figure A-13: Schwefel function representation

442

A.2.11 Sphere

Expression: 𝑓(𝑥) = ∑ 𝑥𝑖
2𝑑

𝑖=1

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0]

Figure A-14: Sphere function representation

443

A.2.12 Styblinski-Tang

Expression: 𝑓(𝑥) =
1

2
∑ (𝑥𝑖

4 − 16𝑥𝑖
2 + 5𝑥𝑖)

𝑑
𝑖=1

Optimum: 𝑓(𝑥∗) = −39.16599 at 𝑥∗ = [−2.903534, −2.903534, … , −2.903534]

Figure A-15: Styblinski-Tang function representation

444

A.2.13 Sum squares

Expression: 𝑓(𝑥) = ∑ 𝑖𝑥𝑖
2𝑑

𝑖=1

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0]

Figure A-16: Sum of squares function representation

445

A.3 Barrier certificates formulation

The example mesoscopic model introduced in section 4.2.4 (see page 274)

indirectly models collisions by avoiding them through a barrier certificate method. Using

the calculation provided in [224], this appendix provides the detailed formulation of the

optimization problem to be solved to compute the collision-safe control commands.

Problem statement: a group of 𝑁 robots is considered with position states 𝑥𝑖 , ∀𝑖 ∈ ℳ =

{1,2, … ,𝑁}. Each robot is controlled through single-integrator dynamics �̇�𝑖 = 𝑢𝑖 and this

velocity command must be bounded by ‖𝑢𝑖‖ ≤ 𝛼, ∀𝑖 ∈ ℳ. The states and velocity

commands from all robots are aggregated under notations 𝑥 = [𝑥1
𝑇 , 𝑥2

𝑇 , … , 𝑥𝑁
𝑇]𝑇 and 𝑢 =

[𝑢1
𝑇 , 𝑢2

𝑇 , … , 𝑢𝑁
𝑇]𝑇. The boundary of the testbed is defined by a rectangle [𝐵𝑙, 𝐵𝑟 , 𝐵𝑏 , 𝐵𝑡]

respectively for left, right, bottom, and top sides. The components of vector 𝑥 are

decomposed such that 𝑥 = [𝑥[1], 𝑥[2]]
𝑇
.

Theory: the barrier certificate method is based on control barrier functions which are

similar to Lyapunov functions in controls theory. In particular, such functions are proven

to ensure forward set invariance: if the system starts in a safe set, it remains in it for all

time even when subject to small perturbations. In particular, if such a function can be found

for the considered multi-robot problem, this will provably ensure that the Robotarium

remains collision-free for all time of the experiment.

446

Inter-robot collisions: first, the distance inequality function between robots 𝑖 and 𝑗 (𝑖 ≠

𝑗) is defined as ℎ𝑖𝑗(𝑥) = ‖𝑥𝑖 − 𝑥𝑗‖2
2
− 𝐷𝑠

2 where 𝐷𝑠 is a safety distance between any given

pair of robots. Robots do not collide if ℎ𝑖𝑗(𝑥) ≥ 0, ∀𝑖 ≠ 𝑗 and [224] shows that ℎ𝑖𝑗 is a

control barrier function if
𝜕ℎ𝑖𝑗(𝑥)

𝜕𝑥
𝑢 ≥ −𝛾ℎ𝑖𝑗(𝑥) with 𝛾 ≥ 0 a margin control parameter.

Hence, for the system to remain provably safe, the control input 𝑢 has to follow the

constraints −2(𝑥𝑖 − 𝑥𝑗)𝑢𝑖 + 2(𝑥𝑖 − 𝑥𝑗)𝑢𝑗 ≤ 𝛾ℎ𝑖𝑗(𝑥), ∀𝑖 ≠ 𝑗 which can be formatted as a

linear constraint on the aggregate control vector 𝑢: 𝐴𝑖𝑗𝑢 ≤ 𝑏𝑖𝑗, ∀𝑖 ≠ 𝑗 where

Equation A-18: Matricial form of inter-robot collision constraints

𝐴𝑖𝑗 = [0,… ,−2(𝑥𝑖 − 𝑥𝑗)
𝑇

⏟
𝑟𝑜𝑏𝑜𝑡 𝑖

, … , 2(𝑥𝑖 − 𝑥𝑗)
𝑇

⏟
𝑟𝑜𝑏𝑜𝑡 𝑗

, … ,0]

𝑏𝑖𝑗 = 𝛾ℎ𝑖𝑗(𝑥)

Note that 𝐴𝑖𝑗 ∈ ℝ
1×2𝑁, 𝑢 ∈ ℝ2𝑁×1, and 𝑏𝑖𝑗 ∈ ℝ.

World boundaries collisions: a safety distance must also be maintained between the

robots and the boundaries of the Robotarium arena. The safety inequalities as given by

[224] are now ℎ𝑖1(𝑥) = (𝐵𝑟 − 𝑥𝑖[1])(𝑥𝑖[1] − 𝐵𝑡) ≥ 0 for the first dimension, and

ℎ𝑖2(𝑥) = (𝐵𝑡 − 𝑥𝑖[2])(𝑥𝑖[2] − 𝐵𝑏) ≥ 0 for the second. The safety barrier condition

ensuring the forward invariance properties is now written
𝜕ℎ𝑖1(𝑥)

𝜕𝑥
𝑢 ≥ 𝛾ℎ𝑖1(𝑥) and similarly

for ℎ𝑖2 which implies:

447

Equation A-19: World boundaries constraints

{
(2𝑥𝑖[1] − 𝐵𝑟 − 𝐵𝑙)𝑢𝑖 ≤ 𝛾ℎ𝑖1(𝑥)

(2𝑥𝑖[2] − 𝐵𝑡 − 𝐵𝑏)𝑢𝑖 ≤ 𝛾ℎ𝑖2(𝑥)
, ∀𝑖 ∈ ℳ

Note that the barrier constant 𝛾 is the same for all barriers of the problem. Again,

this formulation can be formatted as a linear constraint on the controls vector 𝑢: 𝐴𝑖𝑢𝑖 ≤

𝑏𝑖, ∀𝑖 ∈ ℳ with

Equation A-20: Matricial form of world boundaries constraints

𝐴𝑖 = [
2𝑥𝑖[1] − 𝐵𝑟 − 𝐵𝑙 0

0 2𝑥𝑖[2] − 𝐵𝑡 − 𝐵𝑏
] ∈ ℝ2×2

𝑏𝑖 = [
𝛾ℎ𝑖1(𝑥)

𝛾ℎ𝑖2(𝑥)
] ∈ ℝ2×1

Minimally invasive control: thanks to the control barrier functions defined in the previous

paragraphs, a forward invariant safe set can be constructed with the safety barrier

certificates ൛𝑢 ∈ ℝ2𝑁×1|𝐴𝑖𝑗𝑢 ≤ 𝑏𝑖𝑗 , 𝐴𝑖𝑢𝑖 ≤ 𝑏𝑖, ∀𝑖 ≠ 𝑗ൟ which defined a convex polytope

within which the control commands will guarantee a collision-free behavior of the

Robotarium for all time. The idea is then to choose a control within this set which is optimal

in some way. One possible solution is to insure that the new optimal control 𝑢∗ is not too

different from the control �̂� imposed by the user or the control scheme. Indeed, it is

essential that, while collisions are avoided, the mission is still performed as initially

planned.

448

Equation A-21: Quadratic program based controller

𝑢∗ = argmin
𝑢∈ℝ2𝑁×1

(∑‖𝑢𝑖 − �̂�𝑖‖
2

𝑖∈ℳ

)

𝑠. 𝑡. {

𝐴𝑖𝑗𝑢 ≤ 𝑏𝑖𝑗 ∀𝑖 ≠ 𝑗

𝐴𝑖𝑢𝑖 ≤ 𝑏𝑖 ∀𝑖 ∈ ℳ
‖𝑢𝑖‖∞ ≤ 𝛼 ∀𝑖 ∈ ℳ

This is the principle of the minimally invasive method which consists in finding the

certificate barrier control which differs the least (in terms of the 2-norm) from the initial

control (see Equation A-21). Given that this optimization problem is quadratic and defined

over a polytope, quadratic programming optimization can be used. If the safety barrier

certificates are not violated, the initial control �̂� is chosen and there is no modification from

the initial single-integrator dynamics. In the case when the controls of the user would cause

collisions (or robots being too close to each other with respect to the safety distance), the

“closest” safe control command is chosen.

449

APPENDIX B

MATLAB CODE

This appendix regroups the code implemented using Matlab for each domain of the

research questions: modeling, optimization, and exploration. It also includes the different

scripts which were used to automate files generation, simulation, and results analysis.

B.1 Modeling

The files used to carry out the experiments for each type of modeling technique and

then compare the results.

B.1.1 Macroscopic

rendezvousMacroscopic.m

The main model which outputs a consensus time, position, and an execution time as a

function of a swarm configuration (number of robots and initial velocity), and initial poses.

function [t,x,time] = rendezvousMacroscopic(v,N,initialPositions)
tic
% Final position
x = 1/N * sum(initialPositions(1:2,:),2);
% Time to reach consensus
t = max(sqrt(sum((initialPositions(1:2,:) - repmat(x,1,N)).^2,1)))/v;
time = toc;
end

doe_macroscopic.m

A script executing and collecting the results of the 40 experiments presented in section

4.2.6 (page 281).

% Prepare workspace
clc
close all
clear

450

%% Design space
Nvec = 2:5;
Vvec = .01:0.01:0.1;

[N,V] = meshgrid(Nvec,Vvec);

%% Analysis
T_macro = zeros(size(N));
X_macro = cell(size(N));
t_macro = zeros(size(N));
n1 = size(N,1);
n2 = size(N,2);
for i = 1:n1
 for j = 1:n2
 fprintf('%d/%d (%.2f%%)\n',(i-1)*n2 + j,n1*n2,100*((i-1)*n2 +

j)/(n1*n2))

 % Load initial positions

load(sprintf('../initialPoses/init_poses_%d_%.2f.mat',N(i,j),V(i,j)))

 % Perform model analysis
 [t,x,time] = rendezvousMacroscopic(V(i,j),N(i,j),x0);

 % Store results
 T_macro(i,j) = t;
 X_macro{i,j} = x;
 t_macro(i,j) = time;
 end
end

save('macroscopic.mat')

B.1.2 Mesoscopic

rendezvousMesoscopic.m

The main model which outputs a consensus time, position, and an execution time as a

function of a swarm configuration (number of robots and initial velocity), and initial poses.

This model uses a modified version of the Robotarium simulator available online. Indeed,

the ability to control the number of robots generated is essential here. The main Robotarium

constructor was hence modified to use as an input a given number of Gritbots (see

Robotarium files here below).

451

% Experiment
% 1 - Initializes N robots at initial_conditions
% 2 - Performs static consensus with a maximum linear speed saturated

at v
%
% Jean-Guillaume Durand
% jdurand7@gatech.edu
% 2016
function [t,x,time] = rendezvousMesoscopic(v,N,initialPositions)
% Start timer
tic

% Format initial conditions correctly
initial_conditions = initialPositions;

%% 1 - Initialize N robots at initial conditions
% Get Robotarium object used to communicate with the robots/simulator
rb = RobotariumBuilder(N);

% Get the number of available agents from the Robotarium. We don't

need a
% specific value for this algorithm
N_available = rb.get_available_agents();

% If not enough robots for experiment, stop
if N_available < N, return, end

% Set the number of agents and whether we would like to save data.

Then,
% build the Robotarium simulator object!
r =

rb.set_number_of_agents(N).set_save_data(false).build(initial_condition

s);

% Initialize x so that we don't run into problems later. This isn't

always
% necessary
x = r.get_poses();
r.step();

% Set some parameters for use with the barrier certificates. We don't

want
% our agents to collide
safety = 0.06;
lambda = 0.03;

% Create a barrier certificate for use with the above parameters
unicycle_barrier_certificate =

create_uni_barrier_certificate('SafetyRadius', safety, ...
 'ProjectionDistance', lambda);

% Create parking controller
args = {'PositionError', 0.01, 'RotationError', 0.1};
init_checker = create_is_initialized(args{:});
automatic_parker = create_automatic_parking_controller(args{:});

452

while(~init_checker(x, initial_conditions))
 % Compute velocities
 x = r.get_poses();
 dxu = automatic_parker(x, initial_conditions);
 dxu = unicycle_barrier_certificate(dxu, x);
 % Update
 r.set_velocities(1:N, dxu);
 r.step();
end

%% 2 - Perform static consensus with a maximum linear speed saturated

at v
% Experiment constants
% Generate a cyclic graph Laplacian from our handy utilities. For this
% algorithm, any connected graph will yield consensus
L = cycleGL(N);

% Grab tools we need to convert from single-integrator to unicycle

dynamics
% Gain for the diffeomorphism transformation between single-integrator

and
% unicycle dynamics
[si_to_uni_dyn, uni_to_si_states] =

create_si_to_uni_mapping('ProjectionDistance', lambda);

si_barrier_cert = create_si_barrier_certificate('SafetyRadius',

safety);

% Select the number of iterations for the experiment. This value is
% arbitrary
iterations = 5000; % Maximum time at around 3 minutes

% Initialize velocity vector for agents. Each agent expects a 2 x 1
% velocity vector containing the linear and angular velocity,

respectively.
dxi = zeros(2, N);

xOld = -100*ones(3,N);

%Iterate for the previously specified number of iterations
for it = 1:iterations
 % Retrieve the most recent poses from the Robotarium. The time

delay is
 % approximately 0.033 seconds
 x = r.get_poses();

 % Test for stopping condition
 dx = x(1,:) - xOld(1,:);
 dy = x(2,:) - xOld(2,:);
 if mean(sqrt(dx.^2 + dy.^2)) < 1e-5
 break;
 end
 xOld = x;

453

 % Convert to SI states
 xi = uni_to_si_states(x);

 % Algorithm

%%
 for i = 1:N
 % Initialize velocity to zero for each agent. This allows us

to sum
 %over agent i's neighbors
 dxi(:, i) = [0 ; 0];

 % Get the topological neighbors of agent i based on the graph
 %Laplacian L
 neighbors = topological_neighbors(L, i);

 % Iterate through agent i's neighbors
 for j = neighbors

 % For each neighbor, calculate appropriate consensus term

and
 %add it to the total velocity
 dxi(:, i) = dxi(:, i) + (xi(:, j) - xi(:, i));
 end
 end

%%

 % Utilize barrier certificates
 dxi = si_barrier_cert(dxi, xi);

 % Transform the single-integrator to unicycle dynamics using the

the
 % transformation we created earlier
 dxu = si_to_uni_dyn(dxi, x);

 % Impose velocity v on agents
 linear = dxu(1,:);
 linear(linear > v) = v;
 linear(linear < -v) = -v;
 dxu(1,:) = linear;

 % Set velocities of agents 1,...,N
 r.set_velocities(1:N, dxu);

 % Send the previously set velocities to the agents. This function

must be called!
 r.step();
end

% Though we didn't save any data, we still should call

r.call_at_scripts_end() after our
% experiment is over!
r.call_at_scripts_end();

% Compute results

454

t = it*r.time_step; % Time to reach consensus
x = mean(r.poses(1:2,:),2); % Final consensus position
time = toc; % Time for model to run
end

doe_mesoscopic.m

% Prepare workspace
clc
close all
clear

% Initialize Robotarium
cd('robotarium-matlab-simulator-master')
run('init.m')
cd('..') % Go back to initial folder

%% Design space
Nvec = 2:5;
Vvec = .01:0.01:0.1;

[N,V] = meshgrid(Nvec,Vvec);

%% Analysis
T_meso = zeros(size(N));
X_meso = cell(size(N));
t_meso = zeros(size(N));
n1 = size(N,1);
n2 = size(N,2);
for i = 1:n1
 for j = 1:n2
 fprintf('%d/%d (%.2f%%)\n',(i-1)*n2 + j,n1*n2,100*((i-1)*n2 +

j)/(n1*n2))

 % Load initial positions

load(sprintf('../initialPoses/init_poses_%d_%.2f.mat',N(i,j),V(i,j)))

 % Perform model analysis
 [t,x,time] = rendezvousMesoscopic(V(i,j),N(i,j),x0);

 % Store results
 T_meso(i,j) = t;
 X_meso{i,j} = x;
 t_meso(i,j) = time;
 end
end

save('mesoscopic.mat')

The following files are the modified Robotarium files.

455

ARobotarium.m

classdef ARobotarium < handle
 %APIAbstract This is an interface for the Robotarium class that
 %ensures the simulator and the robots match up properly. You

should
 %definitely NOT MODIFY this file. Also, don't submit this file

with
 %your algorithm.

 properties (GetAccess = protected, SetAccess = protected)
 robot_handle
 robot_body

 % Stuff for saving data
 file_path
 current_file_size
 current_saved_iterations
 % Path to mat file to keep this in memory
 mat_file_path
 end

 properties (GetAccess = public, SetAccess = protected)
 % Time step for the Robotarium
 time_step = 0.033
 maxLinearVelocity = 0.1
 maxAngularVelocity = 2*pi
 robot_diameter = 0.08
 number_of_agents
 velocities
 poses

 %Saving parameters
 save_data

 % Figure handle for simulator
 figure_handle

 % Arena parameters
 boundaries = [-0.6, 0.6, -0.35, 0.35];
 boundary_points = {[-0.6, 0.6, 0.6, -0.6], [-0.35, -0.35, 0.35,

0.35]};
 end

 methods (Abstract)

 %Try this one out...
 % We can use this to finish saving / clean up after MQTT
 call_at_scripts_end(this)

 % Getters
 % Get poses must be implemented independently
 get_poses(this)

456

 %Update functions
 step(this);
 end

 methods
 function this = ARobotarium(number_of_agents, save_data,

initial_poses)
 this.number_of_agents = number_of_agents;
 this.save_data = save_data;

 this.velocities = zeros(2, number_of_agents);
 this.poses = initial_poses;

 % If save data, set up the file saving variables
 if(save_data)
 date = datetime('now');
 this.file_path = 'robotarium_data';
 this.file_path = strcat(this.file_path, '_',

num2str(date.Month), '_', num2str(date.Day), '_', ...
 num2str(date.Year), '_', num2str(date.Hour), '_', ...
 num2str(date.Minute), '_', num2str(round(date.Second)),

'.mat');

 this.current_file_size = 100;
 this.current_saved_iterations = 1;

 robotarium_data = zeros(5*number_of_agents,

this.current_file_size);
 save(this.file_path, 'robotarium_data', '-v7.3')

 this.mat_file_path = matfile(this.file_path,

'Writable', true);
 end
 end

 function agents = get_number_of_agents(this)
 agents = this.number_of_agents;
 end

 function this = set_velocities(this, ids, vs)
 N = size(vs, 2);

 assert(N<=this.number_of_agents, 'Column size of vs (%i)

must be <= to number of agents (%i)', ...
 N, this.number_of_agents);

 % Threshold velocities
 for i = 1:N
 if(abs(vs(1, i)) > this.maxLinearVelocity)
 vs(1, i) = this.maxLinearVelocity*sign(vs(1,i));
 end

 if(abs(vs(2, i)) > this.maxAngularVelocity)
 vs(2, i) = this.maxAngularVelocity*sign(vs(2, i));
 end

457

 end

 this.velocities(:, ids) = vs;
 end

 function iters = time2iters(this, time)
 iters = time / this.time_step;
 end
 end

 methods (Access = protected)

 % Initializes visualization of GRITSbots
 function initialize_visualization(this)
 % Initialize variables
 numRobots = this.number_of_agents;
 offset = 0.05;

 % Scale factor (max. value of single Gaussian)
 scaleFactor = 0.5;
 figPhi = figure;
 this.figure_handle = figPhi;

 % Plot Robotarium boundaries
 patch('XData', this.boundary_points{1}, 'YData',

this.boundary_points{2}, ...
 'FaceColor', 'none', ...
 'LineWidth', 3, ...
 'EdgeColor', [0, 0.74, 0.95]);

 %plot(im)
 set(figPhi,'color','white','menubar','none');

 % Set axis
 robotPlaneAxes = gca;

 % Limit view to xMin/xMax/yMin/yMax
 axis(robotPlaneAxes,[this.boundaries(1) -

offset,this.boundaries(2)+offset,this.boundaries(3)-

offset,this.boundaries(4)+offset])
 caxis([0,1.5*scaleFactor])
 set(robotPlaneAxes,'PlotBoxAspectRatio',[1 1

1],'DataAspectRatio',[1 1 1])

 % Store axes
 axis(robotPlaneAxes,'off')

 set(robotPlaneAxes,'position',[0 0 1

1],'units','normalized','YDir','normal')

 hold on % "This ride's about to get bumpy!"

 % Let's jump through hoops to make the robot diameter look

to data scale

458

 curUnits = get(robotPlaneAxes, 'Units');
 set(robotPlaneAxes, 'Units', 'Points');
 set(robotPlaneAxes, 'Units', curUnits);

 xlim([-0.65, 0.65]); ylim([-0.35, 0.35]); % static limits

 % Static legend
 %set(gca,'LegendColorbarListeners',[]);
 setappdata(gca,'LegendColorbarManualSpace',1);
 setappdata(gca,'LegendColorbarReclaimSpace',1);

 assert(numRobots <= 100, 'Number of robots (%i) must be <=

100', numRobots);

 this.robot_handle = cell(1, numRobots);
 %load('patches.mat');
 patches = gritsbot_patch(100);
 num_patches = numel(patches);
 chosen_patches = randsample(1:num_patches, numRobots);
 patch_data = patches(chosen_patches);
 for ii = 1:numRobots
 data = patch_data{ii};
 this.robot_body = data.robot_body;
 x = this.poses(1, ii);
 y = this.poses(2, ii);
 th = this.poses(3, ii);
 poseTransformationMatrix = [...
 cos(th) -sin(th) x;
 sin(th) cos(th) y;
 0 0 1];
 robot_bodyTransformed =

data.robot_body*poseTransformationMatrix';
 this.robot_handle{ii} = patch(...
 'Vertices', robot_bodyTransformed, ...
 'Faces',data.robot_face, ...
 'FaceColor', 'flat', ...
 'FaceVertexCData',data.robot_color, ...
 'EdgeColor','none');
 end
 end

 function draw_robots(this)
 for ii = 1:this.number_of_agents
 x = this.poses(1, ii);
 y = this.poses(2, ii);
 th = this.poses(3, ii);
 poseTransformationMatrix = [...
 cos(th) -sin(th) x;
 sin(th) cos(th) y;
 0 0 1];
 robotBodyTransformed =

this.robot_body*poseTransformationMatrix';
 set(this.robot_handle{ii},'Vertices',

robotBodyTransformed);
 end

459

 if(this.number_of_agents <= 6)
 drawnow
 else
 drawnow limitrate
 end
 end

 function save(this)
 this.mat_file_path.robotarium_data(:,

this.current_saved_iterations) = ...
 reshape([this.poses ; this.velocities], [], 1);

% % Use array list expansion criterion to amortize file
% % expansions
% if(this.current_saved_iterations >

(this.current_file_size / 2))
% new_robotarium_data = zeros(5*this.number_of_agents,

this.current_file_size * 2);
% new_robotarium_data(:,

1:this.current_saved_iterations) = ...
% this.mat_file_path.robotarium_data(:,

1:this.current_saved_iterations);
%
% % Set file to new data
% this.mat_file_path.robotarium_data =

new_robotarium_data;
% end

 this.current_saved_iterations =

this.current_saved_iterations + 1;
 end
 end
end

ARobotariumBuilder.m

classdef ARobotariumBuilder < handle
 %ARobotariumBuilder This is an abstract class for the

RobotariumBuilder class
 %that models the manner in which a Robotarium object is created
 % This file should never be modified. Otherwise, your code will

not
 % execute properly on the Robotarium

 properties (GetAccess = public, SetAccess = protected)
 available_agents
 number_of_agents
 save_data = true
 end

 methods (Abstract)
 % Builds the Robotarium object. Definitely backend/sim

dependent.

460

 get_available_agents(this);
 build(this);
 end

 methods
 function this = set_number_of_agents(this, number_of_agents)

 assert(number_of_agents > 0, 'The provided number of agents

(%i) must be > 0', number_of_agents);

 this.number_of_agents = number_of_agents;
 end

 function this = set_save_data(this, save_data)

 assert(save_data >= 0 || save_data < 0, 'Save data must

evaluate to true or false in a boolean expression');

 this.save_data = save_data;
 end
 end
end

RobotariumBuilder.m

%% RobotariumBuilder
% This class handles the creation of the Robotarium object. In

particular,
% it controls and sets the parameters for your simulation/experiment.
%% Function Summary
% * get_available_agents(): $\emptyset \to \mathbf{Z}^{+}$ returns the

number of available agents
% (random for each instantiation)
% * set_number_of_agents(): $\mathbf{Z}^{+} \to RobotariumBuilder$ sets

the number of
% agents, returning the RobotariumBuilder object
% * set_save_data(): $\{false, true\} \to RobotariumBuilder$ sets

whether
% to save data for this experiment.
% * build(): $\emptyset \to Robotarium$ builds a Robotarium object with

the
% specified parameters
%% Example Usage
% % Example showing potential usage of the RobotariumBuilder object.
% % Note that get_available_agents() returns the number of available
% % agents, which is random. If you need a particular number of

agents,
% % this should be specified in the experiment descriptor when you
% % eventually submit your experiment to the Robotarium.
% % Or you can design your experiment to handle any number of agents.
%
% % set_save_data() controls whether the Robotarium records
% % your simulation/experimental data.

461

%
% robo_builder = RobotariumBuilder()
% N = robo_builder.get_available_agents()
% robo_obj =
% robo_builder.set_number_of_agents(N).set_save_data(true).build()

classdef RobotariumBuilder < ARobotariumBuilder
 %ROBOTARIUMBUILDER This class handles creation of the Robotarium

object
 %that communicates with the GRITSbots.
 % This class is really just a helper to assist with creating the
 % Robotarium object. In particular, this object allows you to set
 % properties for your simulation and eventual experiment. Right

now,
 % these properties are: number of agents and whether to save data.

 % THIS CLASS SHOULD NEVER BE MODIFIED

 % Gets properties from abstract class as well.
 properties
 boundaries = [-0.6, 0.6, -0.35, 0.35];
 robot_diameter = 0.08
 end

 methods

 function this = RobotariumBuilder(N)
 this.available_agents = N;%randi(14) + 1;
 this.number_of_agents = -1;
 end

 function number_of_agents = get_available_agents(this)
 number_of_agents = this.available_agents;
 end

 function robotarium_obj = build(this,initial_poses)

 assert(this.number_of_agents > 0, 'You must set the number

of agents for this experiment');

% arena_width = this.boundaries(2) - this.boundaries(1);
% arena_height = this.boundaries(4) - this.boundaries(3);
%
% numX = floor(arena_width / this.robot_diameter);
% numY = floor(arena_height / this.robot_diameter);
% values = randperm(numX * numY, this.number_of_agents);
%
% initial_poses = zeros(3, this.number_of_agents);
%
% for i = 1:this.number_of_agents
% [x, y] = ind2sub([numX numY], values(i));
% x = x*this.robot_diameter - (arena_width/2);
% y = y*this.robot_diameter - (arena_height/2);
% initial_poses(1:2, i) = [x ; y];
% end

462

%
% initial_poses(3, :) = rand(1,

this.number_of_agents)*2*pi;
 robotarium_obj = Robotarium(this.number_of_agents,

this.save_data, initial_poses);
 end
 end
end

Robotarium.m

%% Robotarium
% A class that models your communications with the GRITSbots!
% This class handles retrieving the poses of agents, setting their
% velocities, iterating the simulation, and saving data.
%% Method Description
% * get_poses(): $\emptyset \to \mathbf{R}^{3 \times N}$ retrieves the
% poses of the agents in a 3 x N vector, where each column contains the
% pose of an agent.
% * set_velocities(): $\mathbf{R}^{2 \times N} \to Robotarium$ sets the
% velocities of each agent using a 2 x N vector. Each column

represents
% the linear and angular velocity of an agent.
% * step(): $\emptyset \to \emptyset$ iterates the simulation, updating

the
% state of each agent. This function should be called for each

"iteration"
% of your experiment. Additionally, it should only be called once per

call
% of get_poses().

classdef Robotarium < ARobotarium
 %Robotarium This is the Robotarium simulator object that represents
 %your communications with the GRITSbots.
 % This class handles retrieving the poses of agents, setting

their
 % velocities, iterating the simulation, and saving data.

 % THIS CLASS SHOULD NEVER BE MODIFIED

 properties (GetAccess = private, SetAccess = private)
 previous_timestep
 checked_poses_already = false
 called_step_already = true
 x_lin_vel_coef = 0.86;
 y_lin_vel_coef = 0.81;
 ang_vel_coef = 0.46;
 end

 methods

 function this = Robotarium(number_of_agents, save_data,

initial_poses)

463

 this = this@ARobotarium(number_of_agents, save_data,

initial_poses);
 this.previous_timestep = tic;

 this.initialize_visualization()
 end

 function poses = get_poses(this)

 assert(~this.checked_poses_already, 'Can only call

get_poses() once per call of step()!');

 poses = this.poses;

 %Include delay to mimic behavior of real system
 this.previous_timestep = tic;

 %Make sure it's only called once per iteration
 this.checked_poses_already = true;
 this.called_step_already = false;
 end

 function step(this)

 assert(~this.called_step_already, 'Make sure you call

get_poses before calling step!');

 %Vectorize update to states
 i = 1:this.number_of_agents;

 total_time = this.time_step + max(0,

toc(this.previous_timestep) - this.time_step);

 %Update velocities using unicycle dynamics
 this.poses(1, i) = this.poses(1, i) +

this.x_lin_vel_coef*total_time.*this.velocities(1,

i).*cos(this.poses(3, i));
 this.poses(2, i) = this.poses(2, i) +

this.y_lin_vel_coef*total_time.*this.velocities(1,

i).*sin(this.poses(3, i));
 this.poses(3, i) = this.poses(3, i) +

this.ang_vel_coef*total_time.*this.velocities(2, i);

 %Ensure that we're in the right range
 this.poses(3, i) = atan2(sin(this.poses(3, i)),

cos(this.poses(3, i)));

 %Allow getting of poses again
 this.checked_poses_already = false;
 this.called_step_already = true;

 if(this.save_data)
 this.save();
 end

464

 this.draw_robots();
 end

 function call_at_scripts_end(this)
 if(this.save_data)
 this.mat_file_path.robotarium_data =

this.mat_file_path.robotarium_data(:, 1:(this.current_saved_iterations-

1));
 end
 end
 end
end

B.1.3 Microscopic

This microscopic modeling section is differently organized since the microscopic

simulation does not happen in Matlab itself but in the ROS/Gazebo framework. Hence, this

section mostly contains scripts used to generate proper simulation files for ROS and

Gazebo, as well as the scripts necessary to parse the generated results files. The

ROS/Gazebo files are later given in APPENDIX C page 622.

generateLaunchFile.m

Generates a launch file to be used directly by the command roslaunch to run the consensus

mission with the microscopic model.

function generateLaunchFile(v,N,initialPositions)
% Create launch file
if isunix
 filename = sprintf('launch/robotarium_%d_%3.2f.launch',N,v);
else
 filename = sprintf('launch/robotarium_%d_%3.2f.launch',N,v);
end
fileID = fopen(filename,'w');

% Add headers
fprintf(fileID,'<?xml version="1.0"?>');fprintf(fileID,'\n');
fprintf(fileID,'<launch>');fprintf(fileID,'\n');
fprintf(fileID,' <!-- Environment -->');fprintf(fileID,'\n');

465

fprintf(fileID,' <include file="$(find

gazebo_ros)/launch/empty_world.launch">');fprintf(fileID,'\n');
fprintf(fileID,' <arg name="world_name" value="$(find

gritbot_gazebo)/worlds/robotarium.world"/>');fprintf(fileID,'\n');
fprintf(fileID,' <arg name="paused"

value="false"/>');fprintf(fileID,'\n');
fprintf(fileID,' <arg name="use_sim_time"

value="true"/>');fprintf(fileID,'\n');
fprintf(fileID,' <arg name="gui"

value="true"/>');fprintf(fileID,'\n');
fprintf(fileID,' <arg name="headless"

value="false"/>');fprintf(fileID,'\n');
fprintf(fileID,' <arg name="debug"

value="false"/>');fprintf(fileID,'\n');
fprintf(fileID,' </include>');fprintf(fileID,'\n');
fprintf(fileID,'');fprintf(fileID,'\n');

% Add robots
fprintf(fileID,' <!-- Robots -->');fprintf(fileID,'\n');
for i = 1:N
 fprintf(fileID,' <node name="gritbot%d" ns="gritbot%d"

pkg="gazebo_ros" type="spawn_model" args="-file $(find

gritbot_description)/urdf/gritbot_%d.urdf -urdf -x %3.2f -y %3.2f -z 0

-Y %3.2f -model gritbot%d" />',...

i,i,i,initialPositions(1,i),initialPositions(2,i),initialPositions(3,i)

,i);fprintf(fileID,'\n');
end
fprintf(fileID,' ');fprintf(fileID,'\n');

% Add footers
fprintf(fileID,' <!-- Robotarium tracker -->');fprintf(fileID,'\n');
fprintf(fileID,' <node name="tracker" ns="robotarium"

pkg="gritbot_navigation" type="tracker" />');fprintf(fileID,'\n');
fprintf(fileID,'');fprintf(fileID,'\n');
fprintf(fileID,' <!-- Data logger -->');fprintf(fileID,'\n');
fprintf(fileID,' <node name="logger" ns="robotarium"

pkg="gritbot_navigation" type="logger"

args="/home/jdurand7/Dropbox/phd/code/modeling/microscopic/logs/log_%d_

%3.2f.csv" />',N,v);fprintf(fileID,'\n');
fprintf(fileID,' ');fprintf(fileID,'\n');
fprintf(fileID,' <!-- Static consensus algorithm --

>');fprintf(fileID,'\n');
fprintf(fileID,' <!-- NOTE: this node is required, if it stops, the

whole simulation stops -->');fprintf(fileID,'\n');
fprintf(fileID,' <node name="consensus" ns="robotarium"

pkg="gritbot_navigation" type="consensus" args="%3.2f" output="screen"

required="true"/>',v);fprintf(fileID,'\n');
fprintf(fileID,'</launch>');

% Close file
fclose(fileID);
end

466

Example of generated file: robotarium_3_0.02.launch

<?xml version="1.0"?>

<launch>

 <!-- Environment -->

 <include file="$(find gazebo_ros)/launch/empty_world.launch">

 <arg name="world_name" value="$(find

gritbot_gazebo)/worlds/robotarium.world"/>

 <arg name="paused" value="false"/>

 <arg name="use_sim_time" value="true"/>

 <arg name="gui" value="true"/>

 <arg name="headless" value="false"/>

 <arg name="debug" value="false"/>

 </include>

 <!-- Robots -->

 <node name="gritbot1" ns="gritbot1" pkg="gazebo_ros"

type="spawn_model" args="-file $(find

gritbot_description)/urdf/gritbot_1.urdf -urdf -x 0.10 -y 0.05 -z 0 -Y

1.53 -model gritbot1" />

 <node name="gritbot2" ns="gritbot2" pkg="gazebo_ros"

type="spawn_model" args="-file $(find

gritbot_description)/urdf/gritbot_2.urdf -urdf -x -0.20 -y 0.05 -z 0 -Y

2.08 -model gritbot2" />

 <node name="gritbot3" ns="gritbot3" pkg="gazebo_ros"

type="spawn_model" args="-file $(find

gritbot_description)/urdf/gritbot_3.urdf -urdf -x 0.00 -y -0.15 -z 0 -Y

5.55 -model gritbot3" />

 <!-- Robotarium tracker -->

 <node name="tracker" ns="robotarium" pkg="gritbot_navigation"

type="tracker" />

 <!-- Data logger -->

 <node name="logger" ns="robotarium" pkg="gritbot_navigation"

type="logger"

args="/home/jdurand7/Dropbox/phd/code/modeling/microscopic/logs/log_3_0

.02.csv" />

 <!-- Static consensus algorithm -->

 <!-- NOTE: this node is required, if it stops, the whole simulation

stops -->

 <node name="consensus" ns="robotarium" pkg="gritbot_navigation"

type="consensus" args="0.02" output="screen" required="true"/>

</launch>

doe_microscopic.m

% Prepare workspace
clc
close all
clear

467

%% Design space
Nvec = 2:5;
Vvec = .01:0.01:0.1;

[N,V] = meshgrid(Nvec,Vvec);

% Analysis
T_micro = zeros(size(N));
X_micro = cell(size(N));
t_micro = zeros(size(N));
n1 = size(N,1);
n2 = size(N,2);

%% 1) Generate launch files
for i = 1:n1
 for j = 1:n2
 fprintf('Generating launch file %d/%d (%.2f%%)\n',(i-1)*n2 +

j,n1*n2,100*((i-1)*n2 + j)/(n1*n2))

 % Load initial positions

load(sprintf('../initialPoses/init_poses_%d_%.2f.mat',N(i,j),V(i,j)))

 % Create corresponding ROS launch file
 generateLaunchFile(V(i,j),N(i,j),x0);
 end
end

% 2) Run batch ROS manually here
% roscore
% sh

/home/jdurand7/Dropbox/phd/code/plots/modeling/launch/process_batch.sh

% 3) Parse results

process_batch.sh

A small shell script which runs all the required launch files contained in the experiments

folder, one by one.

FILES=/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/*.lau

nch

Initialize log file

> /home/jdurand7/Dropbox/phd/code/modeling/microscopic/logs/log.txt

for f in $FILES

do

 # Iterate

 i=$((i+1))

468

 # Display info

 echo ""

 echo "###"

 echo "Running Case $i"

 echo "File $f"

 echo ""

 # Run ROS case

 echo $f >>

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/logs/log.txt

 date +%s.%N >>

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/logs/log.txt

 roslaunch $f

 date +%s.%N >>

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/logs/log.txt

done

parseLogs.m

A high-level script which parses the logs from all experiments and saves the results in a

MAT-file just like the macroscopic and mesoscopic model experiments.

% Prepare workspace
clc
close all
clear

%% Design space
Nvec = 2:5;
Vvec = .01:0.01:0.1;

[N,V] = meshgrid(Nvec,Vvec);

%% Analysis
T_micro = zeros(size(N));
X_micro = cell(size(N));
n1 = size(N,1);
n2 = size(N,2);

% Load data about runtimes
data = importlogfile('logs/log.txt');
% Compute total run time for each experiment
time = zeros(n1,n2);%data(3:3:end) - data(2:3:end);
% Reformat data
t_micro = reshape(time,n1,n2);

% Parse results files based on the DOE
for i = 1:n1
 for j = 1:n2
 fprintf('Parsing output file %d/%d (%.2f%%)\n',(i-1)*n2 +

j,n1*n2,100*((i-1)*n2 + j)/(n1*n2))

469

 % Perform model analysis
 [t,x] =

parseOutputFile(sprintf('logs/log_%d_%3.2f.csv',N(i,j),V(i,j)));
 T_micro(i,j) = t;
 X_micro{i,j} = x;
 end
end

save('microscopic.mat')

importelogfile.m

A parser which reads the log.txt file containing the starting and ending times of each

experiment.

function log1 = importlogfile(filename, startRow, endRow)
%IMPORTFILE Import numeric data from a text file as column vectors.
% LOG1 = IMPORTFILE(FILENAME) Reads data from text file FILENAME for

the
% default selection.
%
% LOG1 = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data from rows
% STARTROW through ENDROW of text file FILENAME.
%
% Example:
% log1 = importfile('log.txt',1, 120);
%
% See also TEXTSCAN.

% Auto-generated by MATLAB on 2016/11/14 18:40:35

%% Initialize variables.
delimiter = '';
if nargin<=2
 startRow = 1;
 endRow = inf;
end

%% Read columns of data as strings:
% For more information, see the TEXTSCAN documentation.
formatSpec = '%s%[^\n\r]';

%% Open the text file.
fileID = fopen(filename,'r');

%% Read columns of data according to format string.
% This call is based on the structure of the file used to generate this
% code. If an error occurs for a different file, try regenerating the

code
% from the Import Tool.

470

dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1,

'Delimiter', delimiter, 'HeaderLines', startRow(1)-1, 'ReturnOnError',

false);
for block=2:length(startRow)
 frewind(fileID);
 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-

startRow(block)+1, 'Delimiter', delimiter, 'HeaderLines',

startRow(block)-1, 'ReturnOnError', false);
 dataArray{1} = [dataArray{1};dataArrayBlock{1}];
end

%% Close the text file.
fclose(fileID);

%% Convert the contents of columns containing numeric strings to

numbers.
% Replace non-numeric strings with NaN.
raw = repmat({''},length(dataArray{1}),length(dataArray)-1);
for col=1:length(dataArray)-1
 raw(1:length(dataArray{col}),col) = dataArray{col};
end
numericData = NaN(size(dataArray{1},1),size(dataArray,2));

% Converts strings in the input cell array to numbers. Replaced non-

numeric
% strings with NaN.
rawData = dataArray{1};
for row=1:size(rawData, 1);
 % Create a regular expression to detect and remove non-numeric

prefixes and
 % suffixes.
 regexstr = '(?<prefix>.*?)(?<numbers>([-

]*(\d+[\,]*)+[\.]{0,1}\d*[eEdD]{0,1}[-+]*\d*[i]{0,1})|([-

]*(\d+[\,]*)*[\.]{1,1}\d+[eEdD]{0,1}[-+]*\d*[i]{0,1}))(?<suffix>.*)';
 try
 result = regexp(rawData{row}, regexstr, 'names');
 numbers = result.numbers;

 % Detected commas in non-thousand locations.
 invalidThousandsSeparator = false;
 if any(numbers==',');
 thousandsRegExp = '^\d+?(\,\d{3})*\.{0,1}\d*$';
 if isempty(regexp(numbers, thousandsRegExp, 'once'));
 numbers = NaN;
 invalidThousandsSeparator = true;
 end
 end
 % Convert numeric strings to numbers.
 if ~invalidThousandsSeparator;
 numbers = textscan(strrep(numbers, ',', ''), '%f');
 numericData(row, 1) = numbers{1};
 raw{row, 1} = numbers{1};
 end
 catch me
 end
end

471

%% Replace non-numeric cells with NaN
R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-

numeric cells
raw(R) = {NaN}; % Replace non-numeric cells

%% Allocate imported array to column variable names
log1 = cell2mat(raw(:, 1));

parseOutputFile.m

A function parsing log files from a given experiment, it directly outputs the consensus time

as well as the consensus location after analyzing the log.

function [t,x] = parseOutputFile(filename)
% Read file data
M = csvread(filename);

% Final position
x = [mean(M(end,2:2:end-1)); mean(M(end,3:2:end))];

% Time to reach consensus
i = 100;
count = 0;
d = 0;
d_prev = 1;
while i < size(M,1) && count < 25
 if abs(d-d_prev) < 1e-5
 count = count + 1;
 else
 count = 0;
 end

 d_prev = d;
 dx = M(i,2:2:end-1) - M(i-1,2:2:end-1);
 dy = M(i,3:2:end) - M(i-1,3:2:end);
 d = mean(sqrt(dx.^2 + dy.^2));

 % Increment
 i = i + 1;
end
t = M(i-25,1) - M(1,1);

% Last N iterations are stopping the algorithm
% i = size(M,1);
% t = M(i-25,1) - M(1,1);
end

472

Example of log file: log_3_0.02.csv

A log file generated after a ROS experiment. The first column is the simulation time and

the following columns are the x, y coordinate pairs for each robot (3 in this case).

5.128000000,-0.2,0.05,0.1,0.05,8.64825e-16,-0.15

5.160000000,-0.2,0.05,0.1,0.05,8.64825e-16,-0.15

5.193000000,-0.2,0.05,0.1,0.05,8.64825e-16,-0.15

5.227000000,-0.2,0.05,0.1,0.05,8.64825e-16,-0.15

5.260000000,-0.2,0.05,0.1,0.05,8.64825e-16,-0.15

5.293000000,-0.2,0.05,0.1,0.05,8.64825e-16,-0.15

5.327000000,-0.2,0.05,0.1,0.05,8.64825e-16,-0.15

5.360000000,-0.199992,0.0499854,0.0999993,0.0499833,8.64825e-16,-0.15

5.393000000,-0.199695,0.0493689,0.100013,0.0492991,8.64825e-16,-0.15

5.427000000,-0.199695,0.0493689,0.100013,0.0492991,8.64825e-16,-0.15

5.460000000,-0.199487,0.0487697,0.100098,0.0486705,8.64825e-16,-0.15

5.493000000,-0.19934,0.0481185,0.100261,0.0480231,-0.000266759,-0.149774

5.527000000,-0.199269,0.0474546,0.100497,0.0473988,-0.000810799,-0.149391

5.560000000,-0.199275,0.046787,0.100803,0.0468056,-0.00139606,-0.149072

5.593000000,-0.199358,0.0461246,0.101175,0.0462511,-0.00201478,-0.148821

5.627000000,-0.199358,0.0461246,0.101175,0.0462511,-0.00201478,-0.148821

5.660000000,-0.199517,0.0454761,0.101314,0.0460622,-0.00265829,-0.148643

5.693000000,-0.19975,0.0448503,0.100824,0.0465147,-0.003318,-0.14854

5.727000000,-0.200053,0.0442552,0.100286,0.0469065,-0.00398513,-0.148515

5.761000000,-0.200385,0.0437513,0.099706,0.047234,-0.00465079,-0.148566

5.793000000,-0.199993,0.0442115,0.0990911,0.047494,-0.0053061,-0.148694

5.827000000,-0.199993,0.0442115,0.0990911,0.047494,-0.0053061,-0.148694

5.860000000,-0.199506,0.044667,0.0984503,0.0476814,-0.00594233,-0.148896

5.893000000,-0.19897,0.0450623,0.0977922,0.0477938,-0.006551,-0.14917

5.927000000,-0.198392,0.0453934,0.0971255,0.0478295,-0.00675009,-0.149279

5.960000000,-0.197779,0.0456574,0.0964592,0.0477881,-0.0063142,-0.148939

5.993000000,-0.197123,0.0458527,0.095785,0.0476711,-0.00582346,-0.148462

6.027000000,-0.197123,0.0458527,0.095785,0.0476711,-0.00582346,-0.148462

6.060000000,-0.196498,0.0459634,0.095171,0.0475105,-0.0054241,-0.147972

6.093000000,-0.195832,0.0460053,0.0945358,0.047304,-0.00506465,-0.147411

6.127000000,-0.195165,0.0459701,0.0939126,0.0470658,-0.00477038,-0.146812

6.160000000,-0.194507,0.0458594,0.0933003,0.0468096,-0.00454675,-0.146183

6.193000000,-0.193862,0.0456861,0.092691,0.046549,-0.00439711,-0.145533

6.227000000,-0.193862,0.0456861,0.092691,0.046549,-0.00439711,-0.145533

6.260000000,-0.193228,0.0454763,0.0920801,0.0462921,-0.00432332,-0.144869

6.293000000,-0.192604,0.0452529,0.0914667,0.0460415,-0.00431969,-0.144201

6.327000000,-0.191984,0.0450187,0.0908506,0.0457972,-0.00438072,-0.143536

6.360000000,-0.191366,0.0447796,0.0902326,0.0455578,-0.0044933,-0.142878

6.393000000,-0.190749,0.0445395,0.0896135,0.0453212,-0.00464209,-0.142227

6.428000000,-0.190131,0.0442998,0.088994,0.0450856,-0.00481243,-0.141583

6.460000000,-0.190131,0.0442998,0.088994,0.0450856,-0.00481243,-0.141583

6.493000000,-0.189513,0.0440608,0.0883744,0.0448502,-0.00499547,-0.140946

6.527000000,-0.188894,0.0438221,0.0877546,0.0446156,-0.00518965,-0.140312

6.561000000,-0.188276,0.0435834,0.0871343,0.044382,-0.00539392,-0.139681

6.593000000,-0.187658,0.0433446,0.0865133,0.0441503,-0.00560674,-0.139054

6.627000000,-0.187024,0.0430999,0.0858759,0.0439157,-0.00583261,-0.138413

6.660000000,-0.187024,0.0430999,0.0858759,0.0439157,-0.00583261,-0.138413

6.693000000,-0.186437,0.0428727,0.0852839,0.0437012,-0.00604794,-0.137821

6.727000000,-0.185819,0.0426334,0.0846595,0.0434788,-0.00628066,-0.137201

6.760000000,-0.185201,0.042394,0.0840338,0.0432599,-0.00651937,-0.136582

6.793000000,-0.184583,0.0421544,0.0834068,0.0430448,-0.00676381,-0.135966

6.827000000,-0.183965,0.0419147,0.0827785,0.0428336,-0.00701369,-0.135353

6.860000000,-0.183965,0.0419147,0.0827785,0.0428336,-0.00701369,-0.135353

6.893000000,-0.183347,0.0416751,0.0821488,0.0426263,-0.00726878,-0.134741

473

6.927000000,-0.182729,0.0414354,0.0815179,0.042423,-0.00752894,-0.134131

6.960000000,-0.182111,0.0411957,0.0808856,0.0422237,-0.00779411,-0.133524

6.993000000,-0.181493,0.040956,0.0802521,0.0420283,-0.00806415,-0.132919

7.027000000,-0.180876,0.0407163,0.0796173,0.041837,-0.00833895,-0.132316

7.060000000,-0.180876,0.0407163,0.0796173,0.041837,-0.00833895,-0.132316

7.093000000,-0.180258,0.0404767,0.0789814,0.0416495,-0.00861838,-0.131715

7.127000000,-0.17964,0.0402371,0.0783443,0.041466,-0.00890236,-0.131117

7.160000000,-0.179022,0.0399975,0.077706,0.0412864,-0.00919084,-0.13052

7.194000000,-0.178388,0.039752,0.0770506,0.0411063,-0.00949109,-0.129911

7.227000000,-0.177801,0.0395244,0.0764422,0.0409431,-0.00977345,-0.129349

7.260000000,-0.177801,0.0395244,0.0764422,0.0409431,-0.00977345,-0.129349

7.293000000,-0.177183,0.0392849,0.0758008,0.0407749,-0.0100748,-0.128759

7.327000000,-0.176565,0.0390455,0.0751584,0.0406104,-0.0103803,-0.128171

7.360000000,-0.175947,0.0388061,0.0745151,0.0404497,-0.01069,-0.127585

7.393000000,-0.175329,0.0385668,0.0738708,0.0402927,-0.0110037,-0.127002

7.427000000,-0.174711,0.0383275,0.0732256,0.0401393,-0.0113213,-0.12642

7.460000000,-0.174711,0.0383275,0.0732256,0.0401393,-0.0113213,-0.12642

7.493000000,-0.174093,0.0380882,0.0725795,0.0399896,-0.0116429,-0.125841

7.527000000,-0.173475,0.037849,0.0719327,0.0398433,-0.0119683,-0.125264

7.560000000,-0.172857,0.0376098,0.071285,0.0397006,-0.0122975,-0.124689

7.593000000,-0.172239,0.0373706,0.0706365,0.0395614,-0.0126304,-0.124117

7.627000000,-0.171621,0.0371315,0.0699873,0.0394256,-0.0129669,-0.123546

7.693000000,-0.171621,0.0371315,0.0699873,0.0394256,-0.0129669,-0.123546

7.727000000,-0.170384,0.0366535,0.0686868,0.039164,-0.0136505,-0.122411

7.760000000,-0.169751,0.0364093,0.0680191,0.0390348,-0.0140059,-0.121833

7.793000000,-0.169162,0.0361846,0.0674,0.0389177,-0.0143373,-0.121298

7.827000000,-0.168542,0.0359511,0.0667477,0.0387966,-0.0146872,-0.120736

7.893000000,-0.168542,0.0359511,0.0667477,0.0387966,-0.0146872,-0.120736

7.927000000,-0.16792,0.035722,0.0660952,0.0386777,-0.0150374,-0.120173

7.960000000,-0.167297,0.0354976,0.0654422,0.0385605,-0.0153878,-0.119611

7.993000000,-0.166671,0.0352781,0.0647889,0.0384451,-0.015738,-0.119049

8.027000000,-0.166044,0.0350638,0.0641353,0.0383319,-0.016088,-0.118487

8.060000000,-0.165415,0.0348546,0.0634813,0.0382207,-0.0164376,-0.117924

8.093000000,-0.165415,0.0348546,0.0634813,0.0382207,-0.0164376,-0.117924

8.127000000,-0.164784,0.0346506,0.0628268,0.0381117,-0.0167868,-0.117361

8.160000000,-0.164152,0.0344521,0.0621721,0.0380051,-0.0171356,-0.116798

8.193000000,-0.163517,0.0342589,0.0615169,0.0379007,-0.0174839,-0.116235

8.227000000,-0.162881,0.0340711,0.0608613,0.0377986,-0.0178316,-0.115671

8.260000000,-0.162244,0.0338882,0.0602054,0.037699,-0.0181789,-0.115107

8.293000000,-0.162244,0.0338882,0.0602054,0.037699,-0.0181789,-0.115107

8.327000000,-0.161605,0.033709,0.0595491,0.0376018,-0.0185256,-0.114543

8.360000000,-0.160964,0.0335327,0.0588923,0.0375071,-0.0188719,-0.113978

8.393000000,-0.160322,0.0333627,0.0582353,0.037415,-0.0192176,-0.113413

8.427000000,-0.159679,0.0332011,0.0575779,0.037325,-0.0195627,-0.112848

8.460000000,-0.159034,0.0330444,0.0569202,0.0372365,-0.019907,-0.112282

8.493000000,-0.159034,0.0330444,0.0569202,0.0372365,-0.019907,-0.112282

8.527000000,-0.158389,0.0328903,0.0562626,0.037149,-0.0202501,-0.111715

8.560000000,-0.157744,0.0327378,0.0556047,0.0370613,-0.0205917,-0.111148

8.593000000,-0.157098,0.0325864,0.054947,0.0369735,-0.0209317,-0.110579

8.627000000,-0.156452,0.0324358,0.0542894,0.0368853,-0.0212701,-0.11001

8.660000000,-0.155806,0.0322858,0.0536319,0.0367965,-0.0216067,-0.109439

8.693000000,-0.155806,0.0322858,0.0536319,0.0367965,-0.0216067,-0.109439

8.727000000,-0.155144,0.0321323,0.052958,0.0367045,-0.0219499,-0.108854

8.760000000,-0.15453,0.0319902,0.0523336,0.0366184,-0.0222663,-0.10831

8.793000000,-0.153884,0.0318407,0.0516764,0.0365268,-0.0225975,-0.107736

8.827000000,-0.153238,0.0316913,0.0510194,0.0364341,-0.0229268,-0.107161

8.861000000,-0.152592,0.0315419,0.0503625,0.0363402,-0.0232543,-0.106585

8.893000000,-0.152592,0.0315419,0.0503625,0.0363402,-0.0232543,-0.106585

8.927000000,-0.151946,0.0313924,0.0497058,0.0362452,-0.02358,-0.106008

8.960000000,-0.1513,0.0312429,0.0490494,0.0361491,-0.0239039,-0.105431

8.993000000,-0.150653,0.0310934,0.0483931,0.0360519,-0.0242261,-0.104852

9.027000000,-0.150007,0.0309437,0.047737,0.0359534,-0.0245464,-0.104272

9.060000000,-0.149361,0.030794,0.0470811,0.0358537,-0.024865,-0.103691

474

9.093000000,-0.149361,0.030794,0.0470811,0.0358537,-0.024865,-0.103691

9.127000000,-0.148715,0.0306442,0.0464253,0.0357528,-0.0251818,-0.103109

9.160000000,-0.148069,0.0304943,0.0457696,0.0356507,-0.025497,-0.102527

9.193000000,-0.147423,0.0303443,0.0451143,0.0355475,-0.0258105,-0.101943

9.227000000,-0.146777,0.0301941,0.0444592,0.0354431,-0.0261223,-0.101359

9.260000000,-0.146131,0.0300439,0.0438042,0.0353376,-0.0264326,-0.100773

9.294000000,-0.146131,0.0300439,0.0438042,0.0353376,-0.0264326,-0.100773

9.327000000,-0.145485,0.0298935,0.0431495,0.0352309,-0.0267412,-0.100187

9.360000000,-0.144839,0.029743,0.0424949,0.035123,-0.0270483,-0.0996

9.394000000,-0.144177,0.0295887,0.0418242,0.0350112,-0.0273614,-0.0989976

9.427000000,-0.143564,0.0294455,0.0412027,0.0349066,-0.0276503,-0.0984385

9.460000000,-0.142918,0.0292947,0.0405487,0.0347953,-0.027953,-0.0978491

9.493000000,-0.142918,0.0292947,0.0405487,0.0347953,-0.027953,-0.0978491

9.527000000,-0.142272,0.0291438,0.0398949,0.034683,-0.0282431,-0.0972806

9.560000000,-0.141627,0.0289927,0.0392413,0.0345696,-0.0285121,-0.0967502

9.593000000,-0.140981,0.0288416,0.0385879,0.0344551,-0.028775,-0.0962288

9.627000000,-0.140335,0.0286903,0.0379347,0.0343395,-0.0290186,-0.0957426

9.660000000,-0.139689,0.0285389,0.0372817,0.0342229,-0.0292457,-0.0952866

9.693000000,-0.139689,0.0285389,0.0372817,0.0342229,-0.0292457,-0.0952866

9.727000000,-0.139044,0.0283873,0.0366289,0.0341052,-0.0294576,-0.0948586

9.760000000,-0.138398,0.0282355,0.0359763,0.0339865,-0.0296561,-0.0944552

9.793000000,-0.137753,0.0280835,0.0353238,0.0338667,-0.0298505,-0.0940579

9.827000000,-0.137107,0.0279312,0.0346716,0.0337458,-0.0300333,-0.0936822

9.860000000,-0.136462,0.0277786,0.0340409,0.033628,-0.0302056,-0.0933261

9.893000000,-0.136462,0.0277786,0.0340409,0.033628,-0.0302056,-0.0933261

9.927000000,-0.13583,0.027629,0.0334653,0.0335198,-0.0303677,-0.0929893

9.960000000,-0.135247,0.0274906,0.0329414,0.0334206,-0.0305205,-0.0926699

9.993000000,-0.13468,0.0273556,0.0324316,0.0333234,-0.0306702,-0.0923553

10.027000000,-0.134161,0.0272323,0.0319646,0.0332338,-0.0308117,-0.0920566

10.060000000,-0.133684,0.0271186,0.0315333,0.0331505,-0.0309456,-0.0917722

10.094000000,-0.133684,0.0271186,0.0315333,0.0331505,-0.0309456,-0.0917722

10.127000000,-0.133246,0.0270139,0.0311349,0.0330732,-0.0310722,-0.0915017

10.160000000,-0.13284,0.0269171,0.0307653,0.033001,-0.0311922,-0.0912443

10.193000000,-0.132443,0.026822,0.0304027,0.0329297,-0.03131,-0.0909901

10.227000000,-0.132072,0.0267332,0.0300632,0.0328625,-0.0314221,-0.0907471

10.260000000,-0.131726,0.02665,0.0297444,0.0327991,-0.0315288,-0.0905147

10.293000000,-0.131726,0.02665,0.0297444,0.0327991,-0.0315288,-0.0905147

10.327000000,-0.1314,0.0265719,0.0294441,0.0327391,-0.0316305,-0.0902919

10.360000000,-0.131086,0.0264963,0.0291527,0.0326806,-0.0317303,-0.0900725

10.393000000,-0.130799,0.0264273,0.0288868,0.0326268,-0.0318212,-0.0898715

10.427000000,-0.13051,0.0263575,0.0286176,0.0325721,-0.0319139,-0.0896658

10.460000000,-0.130237,0.0262917,0.028363,0.0325202,-0.0320022,-0.0894686

10.493000000,-0.130237,0.0262917,0.028363,0.0325202,-0.0320022,-0.0894686

10.527000000,-0.129979,0.0262295,0.0281213,0.0324707,-0.0320868,-0.0892791

10.560000000,-0.129735,0.0261706,0.0278918,0.0324235,-0.0321676,-0.089097

10.593000000,-0.129494,0.0261124,0.0276652,0.0323767,-0.0322474,-0.0889167

10.627000000,-0.129265,0.026057,0.0274489,0.0323318,-0.032324,-0.0887427

10.660000000,-0.129047,0.0260042,0.0272417,0.0322887,-0.0323977,-0.0885746

10.693000000,-0.128836,0.0259533,0.0270419,0.0322469,-0.032469,-0.0884112

10.727000000,-0.128836,0.0259533,0.0270419,0.0322469,-0.032469,-0.0884112

10.760000000,-0.128636,0.0259048,0.0268507,0.0322069,-0.0325376,-0.0882535

10.793000000,-0.128443,0.0258582,0.0266663,0.0321681,-0.0326039,-0.0881004

10.827000000,-0.128253,0.0258123,0.0264849,0.0321298,-0.0326691,-0.0879492

10.860000000,-0.128071,0.0257682,0.0263101,0.0320929,-0.032732,-0.0878026

10.893000000,-0.127896,0.0257259,0.0261418,0.0320572,-0.0327928,-0.0876605

10.927000000,-0.127896,0.0257259,0.0261418,0.0320572,-0.0327928,-0.0876605

10.960000000,-0.127728,0.0256851,0.0259792,0.0320226,-0.0328516,-0.0875223

10.993000000,-0.127565,0.0256459,0.0258222,0.0319891,-0.0329086,-0.087388

11.027000000,-0.127405,0.025607,0.0256667,0.0319558,-0.0329649,-0.0872548

11.060000000,-0.12725,0.0255695,0.0255161,0.0319235,-0.0330195,-0.0871251

11.093000000,-0.1271,0.0255333,0.0253705,0.0318922,-0.0330724,-0.086999

11.128000000,-0.1271,0.0255333,0.0253705,0.0318922,-0.0330724,-0.086999

11.160000000,-0.126952,0.0254975,0.0252259,0.0318611,-0.033125,-0.0868732

475

11.193000000,-0.126819,0.0254654,0.025096,0.0318331,-0.0331723,-0.0867595

11.227000000,-0.12668,0.0254319,0.0249603,0.0318037,-0.0332216,-0.0866407

11.260000000,-0.126545,0.0253994,0.0248287,0.0317752,-0.0332695,-0.0865248

11.293000000,-0.126415,0.025368,0.0247007,0.0317474,-0.033316,-0.0864118

11.327000000,-0.126415,0.025368,0.0247007,0.0317474,-0.033316,-0.0864118

11.360000000,-0.126289,0.0253375,0.0245763,0.0317204,-0.0333614,-0.0863014

11.393000000,-0.126166,0.025308,0.0244554,0.0316941,-0.0334054,-0.0861936

11.427000000,-0.126044,0.0252787,0.0243354,0.0316679,-0.033449,-0.0860866

11.460000000,-0.125926,0.0252503,0.0242187,0.0316424,-0.0334915,-0.085982

11.493000000,-0.125811,0.0252227,0.024105,0.0316175,-0.0335329,-0.0858798

11.527000000,-0.125811,0.0252227,0.024105,0.0316175,-0.0335329,-0.0858798

11.560000000,-0.125699,0.0251958,0.0239938,0.0315932,-0.0335733,-0.0857795

11.593000000,-0.12559,0.0251697,0.0238857,0.0315695,-0.0336126,-0.0856816

11.627000000,-0.125483,0.0251439,0.0237787,0.031546,-0.0336515,-0.0855846

11.660000000,-0.125378,0.0251188,0.0236742,0.031523,-0.0336895,-0.0854896

11.694000000,-0.125275,0.0250943,0.0235722,0.0315006,-0.0337265,-0.0853965

11.727000000,-0.125275,0.0250943,0.0235722,0.0315006,-0.0337265,-0.0853965

11.760000000,-0.125176,0.0250706,0.0234728,0.0314787,-0.0337625,-0.0853055

11.793000000,-0.125079,0.0250475,0.0233758,0.0314574,-0.0337977,-0.0852164

11.827000000,-0.124982,0.0250245,0.0232793,0.0314361,-0.0338327,-0.0851277

11.860000000,-0.124888,0.0250021,0.0231851,0.0314153,-0.0338668,-0.0850409

11.893000000,-0.124794,0.0249798,0.0230908,0.0313944,-0.0339009,-0.0849537

11.927000000,-0.124794,0.0249798,0.0230908,0.0313944,-0.0339009,-0.0849537

11.961000000,-0.124709,0.0249596,0.0230053,0.0313756,-0.0339319,-0.0848744

11.993000000,-0.124622,0.0249389,0.0229173,0.0313562,-0.0339637,-0.0847926

12.027000000,-0.124535,0.0249183,0.0228298,0.0313368,-0.0339952,-0.0847112

12.060000000,-0.12445,0.0248982,0.0227441,0.0313178,-0.0340261,-0.0846312

12.093000000,-0.124367,0.0248786,0.0226603,0.0312993,-0.0340563,-0.0845528

12.127000000,-0.124367,0.0248786,0.0226603,0.0312993,-0.0340563,-0.0845528

12.160000000,-0.124286,0.0248595,0.0225782,0.0312811,-0.0340858,-0.0844759

12.193000000,-0.124206,0.0248408,0.0224978,0.0312633,-0.0341147,-0.0844003

12.227000000,-0.124127,0.0248223,0.0224179,0.0312456,-0.0341434,-0.0843251

12.260000000,-0.12405,0.0248041,0.0223395,0.0312283,-0.0341715,-0.0842512

12.293000000,-0.123974,0.0247864,0.0222627,0.0312113,-0.034199,-0.0841787

12.327000000,-0.123974,0.0247864,0.0222627,0.0312113,-0.034199,-0.0841787

12.360000000,-0.1239,0.0247691,0.0221873,0.0311945,-0.034226,-0.0841073

12.393000000,-0.123827,0.0247521,0.0221133,0.0311782,-0.0342524,-0.0840371

12.427000000,-0.123755,0.0247352,0.0220398,0.0311619,-0.0342786,-0.0839673

12.460000000,-0.123684,0.0247188,0.0219677,0.0311459,-0.0343043,-0.0838986

12.493000000,-0.123684,0.0247188,0.0219677,0.0311459,-0.0343043,-0.0838986

12.527000000,-0.123608,0.0247011,0.02189,0.0311287,-0.034332,-0.0838245

12.560000000,-0.123537,0.0246846,0.0218173,0.0311126,-0.0343577,-0.0837552

12.593000000,-0.123473,0.0246698,0.0217519,0.0310981,-0.034381,-0.0836925

12.628000000,-0.123407,0.0246545,0.0216845,0.0310832,-0.0344049,-0.0836278

12.660000000,-0.123342,0.0246396,0.0216182,0.0310685,-0.0344284,-0.0835642

12.693000000,-0.123342,0.0246396,0.0216182,0.0310685,-0.0344284,-0.0835642

12.727000000,-0.123277,0.0246246,0.0215515,0.0310538,-0.0344518,-0.0835001

12.760000000,-0.123217,0.024611,0.0214908,0.0310404,-0.0344732,-0.0834416

12.793000000,-0.123155,0.0245968,0.0214271,0.0310263,-0.0344957,-0.0833801

12.827000000,-0.123094,0.0245829,0.0213645,0.0310125,-0.0345177,-0.0833196

12.860000000,-0.123034,0.0245692,0.021303,0.030999,-0.0345393,-0.0832601

12.893000000,-0.123034,0.0245692,0.021303,0.030999,-0.0345393,-0.0832601

12.927000000,-0.122975,0.0245558,0.0212425,0.0309856,-0.0345605,-0.0832014

12.960000000,-0.122918,0.0245427,0.0211831,0.0309725,-0.0345814,-0.0831436

12.993000000,-0.12286,0.0245296,0.0211238,0.0309595,-0.0346021,-0.0830859

13.027000000,-0.122803,0.0245167,0.0210652,0.0309466,-0.0346226,-0.083029

13.060000000,-0.122747,0.0245041,0.0210076,0.0309339,-0.0346426,-0.0829728

13.093000000,-0.122747,0.0245041,0.0210076,0.0309339,-0.0346426,-0.0829728

13.127000000,-0.122692,0.0244918,0.0209511,0.0309215,-0.0346623,-0.0829176

13.160000000,-0.122638,0.0244797,0.0208957,0.0309093,-0.0346816,-0.0828633

13.193000000,-0.122585,0.0244677,0.0208405,0.0308972,-0.0347007,-0.0828093

13.228000000,-0.122532,0.024456,0.0207862,0.0308853,-0.0347195,-0.082756

13.260000000,-0.122481,0.0244444,0.0207327,0.0308736,-0.034738,-0.0827035

476

13.293000000,-0.122481,0.0244444,0.0207327,0.0308736,-0.034738,-0.0827035

13.327000000,-0.12243,0.0244331,0.0206801,0.0308621,-0.0347562,-0.0826517

13.361000000,-0.122379,0.024422,0.0206283,0.0308508,-0.034774,-0.0826006

13.393000000,-0.12233,0.024411,0.0205767,0.0308395,-0.0347918,-0.0825497

13.427000000,-0.12228,0.0244001,0.0205258,0.0308285,-0.0348093,-0.0824995

13.460000000,-0.122232,0.0243895,0.0204757,0.0308176,-0.0348264,-0.08245

13.493000000,-0.122232,0.0243895,0.0204757,0.0308176,-0.0348264,-0.08245

13.527000000,-0.122184,0.0243791,0.0204264,0.0308068,-0.0348433,-0.0824011

13.560000000,-0.122138,0.0243688,0.0203778,0.0307963,-0.0348599,-0.0823528

13.593000000,-0.122091,0.0243586,0.0203294,0.0307858,-0.0348765,-0.0823048

13.627000000,-0.122044,0.0243483,0.0202804,0.0307752,-0.0348932,-0.082256

13.660000000,-0.122001,0.024339,0.0202357,0.0307655,-0.0349083,-0.0822116

13.693000000,-0.122001,0.024339,0.0202357,0.0307655,-0.0349083,-0.0822116

13.727000000,-0.121956,0.0243293,0.0201893,0.0307555,-0.0349241,-0.0821654

13.760000000,-0.121912,0.0243198,0.0201436,0.0307457,-0.0349395,-0.0821197

13.793000000,-0.121868,0.0243104,0.020098,0.0307358,-0.034955,-0.0820742

13.827000000,-0.121825,0.0243011,0.0200531,0.0307262,-0.0349701,-0.0820293

13.860000000,-0.121782,0.0242919,0.0200087,0.0307166,-0.034985,-0.0819849

13.893000000,-0.12174,0.0242829,0.0199648,0.0307072,-0.0349998,-0.0819409

13.927000000,-0.12174,0.0242829,0.0199648,0.0307072,-0.0349998,-0.0819409

13.960000000,-0.121698,0.0242741,0.0199215,0.030698,-0.0350143,-0.0818974

13.993000000,-0.121657,0.0242654,0.0198788,0.0306888,-0.0350286,-0.0818545

14.027000000,-0.121617,0.0242568,0.0198364,0.0306798,-0.0350428,-0.0818119

14.060000000,-0.121576,0.0242483,0.0197946,0.0306709,-0.0350567,-0.0817697

14.094000000,-0.121537,0.02424,0.0197532,0.0306621,-0.0350705,-0.081728

14.127000000,-0.121537,0.02424,0.0197532,0.0306621,-0.0350705,-0.081728

14.160000000,-0.121498,0.0242317,0.0197123,0.0306534,-0.0350841,-0.0816868

14.193000000,-0.121459,0.0242237,0.019672,0.0306449,-0.0350975,-0.081646

14.227000000,-0.121421,0.0242157,0.019632,0.0306364,-0.0351107,-0.0816055

14.260000000,-0.121383,0.0242078,0.0195924,0.0306281,-0.0351238,-0.0815655

14.293000000,-0.121345,0.0242001,0.0195533,0.0306198,-0.0351367,-0.0815258

14.327000000,-0.121345,0.0242001,0.0195533,0.0306198,-0.0351367,-0.0815258

14.361000000,-0.121308,0.0241924,0.0195147,0.0306117,-0.0351493,-0.0814867

14.393000000,-0.121272,0.0241849,0.0194765,0.0306037,-0.0351619,-0.0814478

14.427000000,-0.121235,0.0241775,0.0194385,0.0305957,-0.0351743,-0.0814092

14.460000000,-0.121199,0.0241701,0.019401,0.0305879,-0.0351866,-0.081371

14.493000000,-0.121164,0.0241629,0.0193639,0.0305802,-0.0351987,-0.0813332

14.527000000,-0.121163,0.0241627,0.019363,0.03058,-0.035199,-0.0813323

14.560000000,-0.12113,0.024156,0.0193282,0.0305727,-0.0352103,-0.0812968

14.594000000,-0.121095,0.024149,0.019292,0.0305652,-0.0352221,-0.0812598

14.627000000,-0.121061,0.024142,0.0192559,0.0305577,-0.0352338,-0.0812229

14.660000000,-0.121026,0.0241352,0.0192203,0.0305504,-0.0352453,-0.0811865

14.693000000,-0.120993,0.0241285,0.0191851,0.0305431,-0.0352566,-0.0811504

14.728000000,-0.120993,0.0241285,0.0191851,0.0305431,-0.0352566,-0.0811504

14.760000000,-0.12096,0.0241218,0.0191503,0.0305359,-0.0352679,-0.0811147

14.793000000,-0.120927,0.0241153,0.0191159,0.0305289,-0.0352789,-0.0810794

14.827000000,-0.120894,0.0241088,0.0190816,0.0305219,-0.0352899,-0.0810442

14.861000000,-0.120862,0.0241025,0.0190477,0.0305149,-0.0353007,-0.0810094

14.893000000,-0.12083,0.0240962,0.0190143,0.0305081,-0.0353114,-0.0809749

14.927000000,-0.12083,0.0240962,0.0190143,0.0305081,-0.0353114,-0.0809749

14.960000000,-0.120798,0.02409,0.0189811,0.0305013,-0.035322,-0.0809408

14.993000000,-0.120767,0.0240839,0.0189484,0.0304947,-0.0353324,-0.080907

15.027000000,-0.120736,0.0240779,0.0189158,0.0304881,-0.0353427,-0.0808734

15.060000000,-0.120705,0.0240719,0.0188835,0.0304816,-0.0353529,-0.08084

15.093000000,-0.120674,0.024066,0.0188516,0.0304751,-0.035363,-0.080807

15.127000000,-0.120674,0.024066,0.0188516,0.0304751,-0.035363,-0.080807

15.160000000,-0.120644,0.0240602,0.01882,0.0304688,-0.035373,-0.0807743

15.193000000,-0.120614,0.0240544,0.018788,0.0304624,-0.035383,-0.0807411

15.227000000,-0.120586,0.024049,0.0187585,0.0304565,-0.0353924,-0.0807104

15.260000000,-0.120556,0.0240435,0.0187277,0.0304503,-0.035402,-0.0806784

15.293000000,-0.120527,0.024038,0.0186973,0.0304443,-0.0354115,-0.0806468

15.327000000,-0.120527,0.024038,0.0186973,0.0304443,-0.0354115,-0.0806468

15.360000000,-0.120498,0.0240326,0.0186671,0.0304383,-0.035421,-0.0806155

477

15.394000000,-0.12047,0.0240273,0.0186373,0.0304324,-0.0354303,-0.0805844

15.427000000,-0.120442,0.024022,0.0186076,0.0304265,-0.0354396,-0.0805534

15.460000000,-0.120414,0.0240167,0.0185781,0.0304207,-0.0354488,-0.0805227

15.493000000,-0.120386,0.0240116,0.018549,0.030415,-0.0354578,-0.0804923

15.527000000,-0.120386,0.0240116,0.018549,0.030415,-0.0354578,-0.0804923

15.560000000,-0.120358,0.0240065,0.0185202,0.0304094,-0.0354668,-0.0804622

15.593000000,-0.120331,0.0240016,0.0184918,0.0304038,-0.0354757,-0.0804324

15.627000000,-0.120304,0.0239966,0.0184634,0.0303983,-0.0354845,-0.0804027

15.660000000,-0.120277,0.0239917,0.0184352,0.0303928,-0.0354931,-0.0803733

15.693000000,-0.120251,0.0239869,0.0184074,0.0303874,-0.0355017,-0.0803441

15.727000000,-0.120251,0.0239869,0.0184074,0.0303874,-0.0355017,-0.0803441

15.760000000,-0.120225,0.0239822,0.0183798,0.0303821,-0.0355102,-0.0803151

15.793000000,-0.120199,0.0239775,0.0183525,0.0303769,-0.0355187,-0.0802864

15.827000000,-0.120173,0.0239729,0.0183253,0.0303717,-0.035527,-0.0802578

15.860000000,-0.120147,0.0239683,0.0182984,0.0303665,-0.0355353,-0.0802295

15.893000000,-0.120122,0.0239638,0.0182717,0.0303614,-0.0355435,-0.0802014

15.927000000,-0.120122,0.0239638,0.0182717,0.0303614,-0.0355435,-0.0802014

15.960000000,-0.120096,0.0239594,0.0182453,0.0303564,-0.0355516,-0.0801736

15.993000000,-0.120072,0.023955,0.0182192,0.0303515,-0.0355596,-0.080146

16.027000000,-0.120047,0.0239507,0.0181932,0.0303466,-0.0355676,-0.0801185

16.060000000,-0.120022,0.0239464,0.0181673,0.0303417,-0.0355755,-0.0800912

16.093000000,-0.119997,0.0239421,0.0181412,0.0303368,-0.0355835,-0.0800635

16.128000000,-0.119997,0.0239421,0.0181412,0.0303368,-0.0355835,-0.0800635

16.160000000,-0.119974,0.0239382,0.0181171,0.0303323,-0.0355908,-0.080038

16.193000000,-0.11995,0.0239341,0.0180921,0.0303277,-0.0355985,-0.0800115

16.227000000,-0.119927,0.02393,0.0180671,0.030323,-0.0356061,-0.0799849

16.260000000,-0.119903,0.023926,0.0180423,0.0303184,-0.0356136,-0.0799586

16.293000000,-0.11988,0.0239221,0.0180178,0.0303139,-0.0356211,-0.0799326

16.327000000,-0.11988,0.0239221,0.0180178,0.0303139,-0.0356211,-0.0799326

16.360000000,-0.119857,0.0239182,0.0179935,0.0303095,-0.0356284,-0.0799067

16.393000000,-0.119834,0.0239144,0.0179694,0.0303051,-0.0356357,-0.0798811

16.427000000,-0.119811,0.0239106,0.0179454,0.0303007,-0.035643,-0.0798555

16.461000000,-0.119786,0.0239065,0.0179193,0.0302959,-0.035651,-0.0798275

16.493000000,-0.119786,0.0239065,0.0179193,0.0302959,-0.035651,-0.0798275

16.527000000,-0.119762,0.0239026,0.0178945,0.0302915,-0.0356583,-0.0798013

16.560000000,-0.119741,0.0238992,0.0178724,0.0302875,-0.0356651,-0.0797775

16.593000000,-0.119719,0.0238956,0.0178491,0.0302833,-0.0356721,-0.0797526

16.627000000,-0.119697,0.023892,0.0178261,0.0302792,-0.035679,-0.079728

16.660000000,-0.119675,0.0238885,0.0178033,0.0302751,-0.0356858,-0.0797036

16.693000000,-0.119675,0.0238885,0.0178033,0.0302751,-0.0356858,-0.0797036

16.727000000,-0.119654,0.0238851,0.0177807,0.0302711,-0.0356926,-0.0796793

16.760000000,-0.119633,0.0238817,0.0177582,0.0302671,-0.0356993,-0.0796553

16.793000000,-0.119611,0.0238783,0.0177359,0.0302632,-0.035706,-0.0796312

16.827000000,-0.11959,0.023875,0.0177137,0.0302593,-0.0357127,-0.0796074

16.860000000,-0.119569,0.0238717,0.0176917,0.0302554,-0.0357192,-0.0795838

16.893000000,-0.119569,0.0238717,0.0176917,0.0302554,-0.0357192,-0.0795838

16.928000000,-0.119548,0.0238685,0.0176699,0.0302517,-0.0357257,-0.0795603

16.960000000,-0.119527,0.0238652,0.0176478,0.0302478,-0.0357322,-0.0795366

16.993000000,-0.119508,0.0238622,0.0176274,0.0302443,-0.0357383,-0.0795146

17.027000000,-0.119488,0.0238591,0.017606,0.0302406,-0.0357447,-0.0794915

17.060000000,-0.119467,0.023856,0.0175848,0.030237,-0.035751,-0.0794687

17.093000000,-0.119467,0.023856,0.0175848,0.030237,-0.035751,-0.0794687

17.127000000,-0.119447,0.023853,0.0175638,0.0302334,-0.0357572,-0.079446

17.160000000,-0.119428,0.0238501,0.017543,0.0302299,-0.0357634,-0.0794235

17.193000000,-0.119408,0.0238471,0.0175223,0.0302264,-0.0357696,-0.079401

17.227000000,-0.119388,0.0238442,0.0175017,0.0302229,-0.0357757,-0.0793787

17.260000000,-0.119369,0.0238413,0.0174813,0.0302195,-0.0357818,-0.0793566

17.293000000,-0.119369,0.0238413,0.0174813,0.0302195,-0.0357818,-0.0793566

17.327000000,-0.11935,0.0238385,0.0174611,0.0302161,-0.0357878,-0.0793347

17.360000000,-0.11933,0.0238357,0.017441,0.0302128,-0.0357938,-0.0793129

17.393000000,-0.119311,0.023833,0.017421,0.0302095,-0.0357997,-0.0792912

17.427000000,-0.119292,0.0238303,0.0174012,0.0302062,-0.0358056,-0.0792696

17.460000000,-0.119274,0.0238276,0.0173815,0.030203,-0.0358115,-0.0792482

478

17.493000000,-0.119255,0.023825,0.017362,0.0301998,-0.0358173,-0.0792269

17.527000000,-0.119255,0.023825,0.017362,0.0301998,-0.0358173,-0.0792269

17.560000000,-0.119237,0.0238224,0.0173426,0.0301967,-0.035823,-0.0792058

17.593000000,-0.119218,0.0238198,0.0173234,0.0301936,-0.0358287,-0.0791848

17.627000000,-0.1192,0.0238173,0.0173042,0.0301905,-0.0358344,-0.0791639

17.660000000,-0.119182,0.0238148,0.0172852,0.0301875,-0.03584,-0.0791432

17.694000000,-0.119164,0.0238123,0.0172664,0.0301845,-0.0358456,-0.0791225

17.727000000,-0.119164,0.0238123,0.0172664,0.0301845,-0.0358456,-0.0791225

17.760000000,-0.119146,0.0238099,0.0172477,0.0301815,-0.0358511,-0.0791021

17.794000000,-0.119128,0.0238075,0.0172287,0.0301785,-0.0358563,-0.0790813

17.827000000,-0.119111,0.0238052,0.0172111,0.0301758,-0.0358609,-0.079062

17.860000000,-0.119094,0.0238029,0.0171927,0.0301729,-0.0358656,-0.0790419

17.894000000,-0.119076,0.0238006,0.0171745,0.0301701,-0.0358704,-0.079022

17.928000000,-0.119076,0.0238006,0.0171745,0.0301701,-0.0358704,-0.079022

17.960000000,-0.119059,0.0237984,0.0171564,0.0301673,-0.035875,-0.0790021

17.993000000,-0.119042,0.0237961,0.0171385,0.0301645,-0.0358796,-0.0789824

18.027000000,-0.119025,0.0237939,0.0171206,0.0301618,-0.0358842,-0.0789628

18.060000000,-0.119008,0.0237918,0.0171029,0.0301591,-0.0358888,-0.0789433

18.093000000,-0.118991,0.0237896,0.0170853,0.0301565,-0.0358933,-0.0789239

18.127000000,-0.118991,0.0237896,0.0170853,0.0301565,-0.0358933,-0.0789239

18.160000000,-0.118975,0.0237875,0.0170678,0.0301538,-0.0358977,-0.0789046

18.193000000,-0.118958,0.0237855,0.0170505,0.0301513,-0.0359021,-0.0788855

18.227000000,-0.118941,0.0237834,0.0170332,0.0301487,-0.0359065,-0.0788665

18.260000000,-0.118925,0.0237814,0.0170161,0.0301462,-0.0359108,-0.0788475

18.293000000,-0.118909,0.0237794,0.016999,0.0301437,-0.035915,-0.0788287

18.327000000,-0.118909,0.0237794,0.016999,0.0301437,-0.035915,-0.0788287

18.360000000,-0.118893,0.0237775,0.0169821,0.0301412,-0.0359192,-0.07881

18.393000000,-0.118877,0.0237755,0.0169654,0.0301388,-0.0359234,-0.0787914

18.427000000,-0.118861,0.0237736,0.0169487,0.0301364,-0.0359276,-0.0787729

18.460000000,-0.118845,0.0237718,0.0169321,0.030134,-0.0359317,-0.0787545

18.493000000,-0.118829,0.0237699,0.0169156,0.0301317,-0.0359357,-0.0787362

18.528000000,-0.118829,0.0237699,0.0169156,0.0301317,-0.0359357,-0.0787362

18.560000000,-0.118813,0.0237681,0.0168992,0.0301293,-0.0359397,-0.078718

18.593000000,-0.118798,0.0237663,0.016883,0.0301271,-0.0359437,-0.0787

18.627000000,-0.118782,0.0237645,0.0168664,0.0301247,-0.0359477,-0.0786815

18.661000000,-0.118766,0.0237627,0.0168496,0.0301224,-0.0359518,-0.0786628

18.693000000,-0.118766,0.0237627,0.0168496,0.0301224,-0.0359518,-0.0786628

18.727000000,-0.11875,0.0237609,0.0168328,0.0301201,-0.0359558,-0.0786441

18.760000000,-0.118735,0.0237593,0.0168178,0.030118,-0.0359595,-0.0786273

18.793000000,-0.11872,0.0237576,0.016802,0.0301159,-0.0359632,-0.0786097

18.827000000,-0.118705,0.023756,0.0167864,0.0301138,-0.035967,-0.0785922

18.860000000,-0.11869,0.0237544,0.0167708,0.0301117,-0.0359707,-0.0785748

18.893000000,-0.11869,0.0237544,0.0167708,0.0301117,-0.0359707,-0.0785748

18.927000000,-0.118675,0.0237528,0.0167554,0.0301096,-0.0359743,-0.0785575

18.960000000,-0.118661,0.0237513,0.01674,0.0301076,-0.035978,-0.0785404

18.993000000,-0.118646,0.0237497,0.0167247,0.0301056,-0.0359816,-0.0785232

19.027000000,-0.118631,0.0237482,0.0167096,0.0301036,-0.0359851,-0.0785062

19.060000000,-0.118617,0.0237467,0.0166945,0.0301016,-0.0359886,-0.0784893

19.093000000,-0.118617,0.0237467,0.0166945,0.0301016,-0.0359886,-0.0784893

19.127000000,-0.118603,0.0237453,0.0166795,0.0300997,-0.0359921,-0.0784724

19.160000000,-0.118588,0.0237438,0.0166647,0.0300978,-0.0359955,-0.0784557

19.193000000,-0.118574,0.0237424,0.0166498,0.0300959,-0.035999,-0.078439

19.227000000,-0.11856,0.023741,0.0166351,0.0300941,-0.0360023,-0.0784224

19.260000000,-0.118546,0.0237397,0.0166205,0.0300922,-0.0360057,-0.078406

19.293000000,-0.118546,0.0237397,0.0166205,0.0300922,-0.0360057,-0.078406

19.327000000,-0.118532,0.0237383,0.016606,0.0300904,-0.036009,-0.0783896

19.360000000,-0.118518,0.023737,0.0165916,0.0300887,-0.0360122,-0.0783733

19.393000000,-0.118504,0.0237357,0.0165772,0.0300869,-0.0360155,-0.0783571

19.427000000,-0.11849,0.0237344,0.0165626,0.0300851,-0.0360188,-0.0783405

19.460000000,-0.118477,0.0237332,0.0165491,0.0300835,-0.0360218,-0.0783252

19.493000000,-0.118477,0.0237332,0.0165491,0.0300835,-0.0360218,-0.0783252

19.527000000,-0.118464,0.023732,0.0165351,0.0300819,-0.0360249,-0.0783093

19.560000000,-0.118449,0.0237306,0.0165197,0.03008,-0.0360283,-0.0782918

479

19.593000000,-0.118435,0.0237294,0.016505,0.0300783,-0.0360315,-0.0782752

19.627000000,-0.118422,0.0237283,0.0164919,0.0300768,-0.0360344,-0.0782603

19.660000000,-0.118409,0.0237271,0.0164782,0.0300752,-0.0360374,-0.0782447

19.693000000,-0.118409,0.0237271,0.0164782,0.0300752,-0.0360374,-0.0782447

19.727000000,-0.118395,0.023726,0.0164645,0.0300737,-0.0360404,-0.0782291

19.760000000,-0.118382,0.0237249,0.0164509,0.0300721,-0.0360433,-0.0782137

19.793000000,-0.118369,0.0237238,0.0164374,0.0300706,-0.0360463,-0.0781982

19.827000000,-0.118356,0.0237227,0.016424,0.0300691,-0.0360492,-0.0781829

19.860000000,-0.118343,0.0237217,0.0164106,0.0300676,-0.036052,-0.0781676

19.893000000,-0.118343,0.0237217,0.0164106,0.0300676,-0.036052,-0.0781676

19.927000000,-0.118331,0.0237207,0.0163973,0.0300662,-0.0360548,-0.0781525

19.960000000,-0.118318,0.0237197,0.0163842,0.0300648,-0.0360576,-0.0781374

19.993000000,-0.118305,0.0237187,0.016371,0.0300634,-0.0360604,-0.0781223

20.027000000,-0.118292,0.0237177,0.016358,0.030062,-0.0360631,-0.0781074

20.060000000,-0.11828,0.0237168,0.016345,0.0300606,-0.0360659,-0.0780925

20.093000000,-0.11828,0.0237168,0.016345,0.0300606,-0.0360659,-0.0780925

20.127000000,-0.118267,0.0237158,0.0163318,0.0300592,-0.0360686,-0.0780773

20.160000000,-0.118255,0.0237149,0.0163196,0.030058,-0.0360711,-0.0780634

20.193000000,-0.118243,0.023714,0.0163069,0.0300567,-0.0360737,-0.0780487

20.227000000,-0.118231,0.0237132,0.0162942,0.0300554,-0.0360763,-0.0780341

20.260000000,-0.118218,0.0237123,0.0162816,0.0300541,-0.0360789,-0.0780196

20.293000000,-0.118218,0.0237123,0.0162816,0.0300541,-0.0360789,-0.0780196

20.327000000,-0.118206,0.0237115,0.0162691,0.0300529,-0.0360814,-0.0780052

20.360000000,-0.118194,0.0237107,0.0162567,0.0300517,-0.0360839,-0.0779908

20.393000000,-0.118182,0.0237099,0.0162442,0.0300505,-0.0360864,-0.0779765

20.427000000,-0.11817,0.0237091,0.0162319,0.0300493,-0.0360889,-0.0779622

20.460000000,-0.118158,0.0237083,0.0162196,0.0300481,-0.0360914,-0.077948

20.493000000,-0.118158,0.0237083,0.0162196,0.0300481,-0.0360914,-0.077948

20.527000000,-0.118146,0.0237076,0.0162075,0.030047,-0.0360938,-0.0779339

20.560000000,-0.118135,0.0237068,0.0161954,0.0300459,-0.0360963,-0.0779199

20.593000000,-0.118123,0.0237061,0.0161833,0.0300448,-0.0360987,-0.0779059

20.627000000,-0.118111,0.0237054,0.0161713,0.0300437,-0.0361011,-0.077892

20.660000000,-0.1181,0.0237047,0.0161594,0.0300426,-0.0361035,-0.0778781

20.693000000,-0.1181,0.0237047,0.0161594,0.0300426,-0.0361035,-0.0778781

20.727000000,-0.118088,0.0237041,0.0161476,0.0300416,-0.0361059,-0.0778644

20.761000000,-0.118077,0.0237034,0.0161358,0.0300406,-0.0361083,-0.0778507

20.793000000,-0.118065,0.0237028,0.0161241,0.0300396,-0.0361106,-0.077837

20.827000000,-0.118054,0.0237022,0.0161124,0.0300386,-0.036113,-0.0778234

20.860000000,-0.118042,0.0237016,0.0161008,0.0300376,-0.0361153,-0.0778099

20.893000000,-0.118042,0.0237016,0.0161008,0.0300376,-0.0361153,-0.0778099

20.927000000,-0.118031,0.023701,0.0160893,0.0300367,-0.0361177,-0.0777964

20.960000000,-0.11802,0.0237005,0.0160779,0.0300357,-0.03612,-0.077783

20.993000000,-0.118009,0.0236999,0.0160664,0.0300348,-0.0361223,-0.0777696

21.027000000,-0.117998,0.0236994,0.0160551,0.0300339,-0.0361246,-0.0777563

21.060000000,-0.117987,0.0236988,0.0160438,0.030033,-0.0361268,-0.0777431

21.093000000,-0.117987,0.0236988,0.0160438,0.030033,-0.0361268,-0.0777431

21.127000000,-0.117976,0.0236983,0.0160323,0.0300321,-0.0361292,-0.0777296

21.161000000,-0.117965,0.0236979,0.0160217,0.0300313,-0.0361313,-0.0777172

21.193000000,-0.117954,0.0236974,0.0160106,0.0300305,-0.0361335,-0.0777041

21.227000000,-0.117943,0.0236969,0.0159995,0.0300297,-0.0361358,-0.0776911

21.260000000,-0.117933,0.0236965,0.0159885,0.0300289,-0.036138,-0.0776782

21.293000000,-0.117933,0.0236965,0.0159885,0.0300289,-0.036138,-0.0776782

21.327000000,-0.117922,0.0236961,0.0159776,0.0300281,-0.0361402,-0.0776653

21.360000000,-0.117911,0.0236957,0.0159668,0.0300274,-0.0361424,-0.0776525

21.393000000,-0.117901,0.0236953,0.0159559,0.0300266,-0.0361446,-0.0776397

21.427000000,-0.11789,0.0236949,0.0159452,0.0300259,-0.0361467,-0.077627

21.460000000,-0.11788,0.0236945,0.0159345,0.0300252,-0.0361489,-0.0776143

21.493000000,-0.11788,0.0236945,0.0159345,0.0300252,-0.0361489,-0.0776143

21.527000000,-0.117869,0.0236942,0.0159239,0.0300245,-0.0361511,-0.0776017

21.560000000,-0.117859,0.0236938,0.0159133,0.0300238,-0.0361532,-0.0775892

21.593000000,-0.117848,0.0236935,0.0159027,0.0300231,-0.0361553,-0.0775767

21.627000000,-0.117838,0.0236932,0.0158922,0.0300225,-0.0361574,-0.0775642

21.660000000,-0.117828,0.0236929,0.0158818,0.0300218,-0.0361596,-0.0775518

480

21.693000000,-0.117828,0.0236929,0.0158818,0.0300218,-0.0361596,-0.0775518

21.727000000,-0.117818,0.0236926,0.0158714,0.0300212,-0.0361617,-0.0775395

21.760000000,-0.117807,0.0236923,0.0158611,0.0300206,-0.0361637,-0.0775272

21.793000000,-0.117797,0.0236921,0.0158508,0.03002,-0.0361658,-0.077515

21.827000000,-0.117787,0.0236918,0.0158406,0.0300194,-0.0361679,-0.0775028

21.860000000,-0.117777,0.0236916,0.0158304,0.0300189,-0.03617,-0.0774907

21.893000000,-0.117777,0.0236916,0.0158304,0.0300189,-0.03617,-0.0774907

21.927000000,-0.117767,0.0236914,0.0158203,0.0300183,-0.036172,-0.0774786

21.960000000,-0.117757,0.0236912,0.01581,0.0300178,-0.0361741,-0.0774663

21.994000000,-0.117748,0.023691,0.0158005,0.0300173,-0.036176,-0.0774549

22.028000000,-0.117738,0.0236908,0.0157906,0.0300168,-0.036178,-0.077443

22.060000000,-0.117728,0.0236906,0.0157807,0.0300163,-0.03618,-0.0774311

22.093000000,-0.117728,0.0236906,0.0157807,0.0300163,-0.03618,-0.0774311

22.127000000,-0.117718,0.0236905,0.0157708,0.0300159,-0.036182,-0.0774193

22.160000000,-0.117709,0.0236904,0.015761,0.0300154,-0.036184,-0.0774075

22.193000000,-0.117699,0.0236902,0.0157512,0.030015,-0.036186,-0.0773958

22.227000000,-0.11769,0.0236901,0.0157415,0.0300145,-0.036188,-0.0773841

22.260000000,-0.11768,0.02369,0.0157319,0.0300141,-0.0361899,-0.0773725

22.293000000,-0.11768,0.02369,0.0157319,0.0300141,-0.0361899,-0.0773725

22.327000000,-0.11767,0.0236899,0.0157223,0.0300137,-0.0361919,-0.0773609

22.360000000,-0.117661,0.0236898,0.0157127,0.0300133,-0.0361938,-0.0773494

22.393000000,-0.117652,0.0236898,0.0157032,0.030013,-0.0361958,-0.0773379

22.427000000,-0.117642,0.0236897,0.0156937,0.0300126,-0.0361977,-0.0773264

22.460000000,-0.117633,0.0236897,0.0156843,0.0300123,-0.0361996,-0.0773151

22.493000000,-0.117633,0.0236897,0.0156843,0.0300123,-0.0361996,-0.0773151

22.527000000,-0.117624,0.0236897,0.0156749,0.0300119,-0.0362015,-0.0773037

22.560000000,-0.117614,0.0236896,0.0156655,0.0300116,-0.0362034,-0.0772924

22.593000000,-0.117605,0.0236896,0.015656,0.0300113,-0.0362054,-0.0772809

22.627000000,-0.117596,0.0236896,0.0156472,0.030011,-0.0362072,-0.0772702

22.660000000,-0.117587,0.0236897,0.015638,0.0300107,-0.036209,-0.077259

22.693000000,-0.117587,0.0236897,0.015638,0.0300107,-0.036209,-0.077259

22.727000000,-0.117578,0.0236897,0.0156289,0.0300105,-0.0362109,-0.0772479

22.760000000,-0.117569,0.0236897,0.0156198,0.0300102,-0.0362127,-0.0772368

22.793000000,-0.11756,0.0236898,0.0156107,0.03001,-0.0362146,-0.0772258

22.827000000,-0.117551,0.0236899,0.0156016,0.0300097,-0.0362164,-0.0772148

22.861000000,-0.117542,0.0236899,0.0155927,0.0300095,-0.0362183,-0.0772038

22.893000000,-0.117542,0.0236899,0.0155927,0.0300095,-0.0362183,-0.0772038

22.927000000,-0.117533,0.02369,0.0155837,0.0300093,-0.0362201,-0.0771929

22.960000000,-0.117524,0.0236901,0.0155748,0.0300091,-0.0362219,-0.0771821

22.993000000,-0.117515,0.0236902,0.015566,0.030009,-0.0362237,-0.0771713

23.027000000,-0.117506,0.0236904,0.0155563,0.0300088,-0.0362257,-0.0771594

23.060000000,-0.117497,0.0236905,0.0155473,0.0300086,-0.0362275,-0.0771484

23.093000000,-0.117497,0.0236905,0.0155471,0.0300086,-0.0362276,-0.0771481

23.127000000,-0.117488,0.0236906,0.0155388,0.0300085,-0.0362293,-0.077138

23.160000000,-0.11748,0.0236908,0.0155301,0.0300084,-0.036231,-0.0771274

23.193000000,-0.117471,0.023691,0.0155215,0.0300083,-0.0362328,-0.0771168

23.227000000,-0.117462,0.0236911,0.0155129,0.0300081,-0.0362346,-0.0771062

23.260000000,-0.117454,0.0236913,0.0155043,0.0300081,-0.0362363,-0.0770956

23.293000000,-0.117454,0.0236913,0.0155043,0.0300081,-0.0362363,-0.0770956

23.327000000,-0.117445,0.0236915,0.0154956,0.030008,-0.0362381,-0.0770849

23.360000000,-0.117437,0.0236917,0.0154876,0.0300079,-0.0362397,-0.077075

23.393000000,-0.117429,0.0236919,0.0154791,0.0300079,-0.0362415,-0.0770646

23.427000000,-0.11742,0.0236922,0.0154707,0.0300078,-0.0362432,-0.0770542

23.460000000,-0.117412,0.0236924,0.0154623,0.0300078,-0.0362449,-0.0770439

23.493000000,-0.117412,0.0236924,0.0154623,0.0300078,-0.0362449,-0.0770439

23.527000000,-0.117404,0.0236927,0.015454,0.0300078,-0.0362466,-0.0770336

23.560000000,-0.117395,0.0236929,0.0154458,0.0300078,-0.0362483,-0.0770234

23.593000000,-0.117387,0.0236932,0.0154375,0.0300077,-0.03625,-0.0770132

23.627000000,-0.117379,0.0236935,0.0154293,0.0300078,-0.0362517,-0.077003

23.660000000,-0.117371,0.0236938,0.0154211,0.0300078,-0.0362534,-0.0769929

23.693000000,-0.117371,0.0236938,0.0154211,0.0300078,-0.0362534,-0.0769929

23.727000000,-0.117363,0.0236941,0.015413,0.0300078,-0.036255,-0.0769828

23.760000000,-0.117354,0.0236944,0.0154049,0.0300079,-0.0362567,-0.0769727

481

23.793000000,-0.117346,0.0236947,0.0153968,0.0300079,-0.0362583,-0.0769627

23.827000000,-0.117338,0.023695,0.0153888,0.030008,-0.03626,-0.0769527

23.860000000,-0.11733,0.0236953,0.0153808,0.0300081,-0.0362616,-0.0769428

Example of log.txt file

The file contains the starting and ending time for experiments listed by their filename.

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.01.launch

1479772657.445741513

1479772691.545704047

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.02.launch

1479772691.546762821

1479772736.973055900

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.03.launch

1479772736.975268721

1479772763.430581048

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.04.launch

1479772763.431503844

1479772786.057706638

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.05.launch

1479772786.058781728

1479772808.015162025

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.06.launch

1479772808.016130592

1479772834.555382629

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.07.launch

1479772834.556152737

1479772856.892333712

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.08.launch

1479772856.894710700

1479772878.288055537

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.09.launch

1479772878.288974535

1479772904.205606228

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.10.launch

1479772904.206371317

1479772926.293962170

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_3_0.01.launch

1479772926.294981850

1479772986.088835384

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_3_0.02.launch

1479772986.089844818

1479773012.056035298

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_3_0.03.launch

1479773012.056896150

1479773049.524392870

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_3_0.04.launch

1479773049.525498153

B.1.4 Real system

This section contains all the files necessary to setup the required 40 experiments

and submit them online to the Robotarium interface.

482

generateMainFiles.m

Generates a set of 40 main.m files which can be submitted to the Robotarium platform. The

main file is the one run on Robotarium and it calls an additional experiment.m file which

must be submitted as well (see below). Note that this script uses a configuration file of

initial poses. Such a file can be generated thanks to the script generateInitialPositions.m

(see next subsection).

% Clean and prepare workspace
clc
close all
clear

% Define experiments range and generate full factorial DOE
Nvec = 2:5;
Vvec = .01:0.01:0.1;
[N,V] = meshgrid(Nvec,Vvec);

fprintf('Creating %d experiments...',numel(N))

% Generate files
for i = 1:size(N,1)
 for j = 1:size(N,2)
 % Prepare string for initial conditions
% x0 = generate_initial_conditions(N(i,j));

load(sprintf('../initialPoses/init_poses_%d_%.2f.mat',N(i,j),V(i,j)))
 x0_str = strcat('[',...
 sprintf('%s,',x0(1,:)),...
 ';',...
 sprintf('%s,',x0(2,:)),...
 ';',...
 sprintf('%s,',x0(3,:)),...
 ']');

 % Write into file
 fid =

fopen(sprintf('experiments/main_%d_%d.m',N(i,j),round(100*V(i,j))),'w')

;
 fprintf(fid,'experiment(%d,%.2f,%s);\n',...
 N(i,j),...
 V(i,j),...
 x0_str);
 fclose(fid);
 end
end

483

fprintf('[OK]\nCheck experiments folder.\n')

Example of generated main file: main_3_2.m

experiment(3,0.02,[1.000000e-01,-2.000000e-01,1.110223e-16,;5.000000e-

02,5.000000e-02,-1.500000e-

01,;1.533965e+00,2.080974e+00,5.550957e+00,]);

experiment.m

Very similar to rendezVousMesoscopic.m for the exception of the Robotarium builders,

this file parks the robots at their supposed initial location with the appropriate heading, and

then goes on to perform a static consensus. It can be run either in the Robotarium simulator

or on the real system (through the previously mentioned main files).

function experiment(N,v,initial_conditions)
% Experiment
% 1 - Initializes N robots at initial_conditions
% 2 - Performs static consensus with a maximum linear speed saturated

at v
%
% Jean-Guillaume Durand
% jdurand7@gatech.edu
% 2016

%% 1 - Initialize N robots at initial conditions
% Get Robotarium object used to communicate with the robots/simulator
rb = RobotariumBuilder();

% Get the number of available agents from the Robotarium. We don't

need a
% specific value for this algorithm
N_available = rb.get_available_agents();

% If not enough robots for experiment, stop
if N_available < N, return, end

% Set the number of agents and whether we would like to save data.

Then,
% build the Robotarium simulator object!
r = rb.set_number_of_agents(N).set_save_data(false).build();

% Initialize x so that we don't run into problems later. This isn't

always
% necessary

484

x = r.get_poses();
r.step();

% Set some parameters for use with the barrier certificates. We don't

want
% our agents to collide
safety = 0.05;
lambda = 0.01;

% Create a barrier certificate for use with the above parameters
unicycle_barrier_certificate =

create_uni_barrier_certificate('SafetyRadius', safety, ...
 'ProjectionDistance', lambda);

% Create parking controller
args = {'PositionError', 0.01, 'RotationError', 0.25};
init_checker = create_is_initialized(args{:});
automatic_parker = create_automatic_parking_controller(args{:});

while(~init_checker(x, initial_conditions))
 % Compute velocities
 x = r.get_poses();
 dxu = automatic_parker(x, initial_conditions);
 dxu = unicycle_barrier_certificate(dxu, x);
 % Update
 r.set_velocities(1:N, dxu);
 r.step();
end

%% 2 - Perform static consensus with a maximum linear speed saturated

at v
% Experiment constants
% Generate a cyclic graph Laplacian from our handy utilities. For this
% algorithm, any connected graph will yield consensus
L = cycleGL(N);

% Grab tools we need to convert from single-integrator to unicycle

dynamics
% Gain for the diffeomorphism transformation between single-integrator

and
% unicycle dynamics
[si_to_uni_dyn, uni_to_si_states] =

create_si_to_uni_mapping('ProjectionDistance', lambda);

si_barrier_cert = create_si_barrier_certificate('SafetyRadius',

safety);

% Select the number of iterations for the experiment. This value is
% arbitrary
iterations = 5000; % Maximum time at around 3 minutes

% Initialize velocity vector for agents. Each agent expects a 2 x 1
% velocity vector containing the linear and angular velocity,

respectively.
dxi = zeros(2, N);

485

%Iterate for the previously specified number of iterations
for t = 1:iterations
 % Retrieve the most recent poses from the Robotarium. The time

delay is
 % approximately 0.033 seconds
 x = r.get_poses();

 % Convert to SI states
 xi = uni_to_si_states(x);

 % Algorithm

%%
 for i = 1:N
 % Initialize velocity to zero for each agent. This allows us

to sum
 %over agent i's neighbors
 dxi(:, i) = [0 ; 0];

 % Get the topological neighbors of agent i based on the graph
 %Laplacian L
 neighbors = topological_neighbors(L, i);

 % Iterate through agent i's neighbors
 for j = neighbors

 % For each neighbor, calculate appropriate consensus term

and
 %add it to the total velocity
 dxi(:, i) = dxi(:, i) + (xi(:, j) - xi(:, i));
 end
 end

%%

 % Utilize barrier certificates
 dxi = si_barrier_cert(dxi, xi);

 % Threshold here instead

 norms = arrayfun(@(i) norm(dxi(:, i)), 1:N);
 need_to_be_thresh = find(norms > v);
 dxi(:, need_to_be_thresh) = cell2mat(arrayfun(@(i) v*dxi(:, i) /

norms(i), need_to_be_thresh, 'UniformOutput', false));

 % Transform the single-integrator to unicycle dynamics using the

the
 % transformation we created earlier
 dxu = si_to_uni_dyn(dxi, x);

 % Impose velocity v on agents
% linear = dxu(1,:);
% linear(linear > v) = v;
% linear(linear < -v) = -v;
% dxu(1,:) = linear;

486

 % Set velocities of agents 1,...,N
 r.set_velocities(1:N, dxu);

 % Send the previously set velocities to the agents. This function

must be called!
 r.step();
end

% Though we didn't save any data, we still should call

r.call_at_scripts_end() after our
% experiment is over!
r.call_at_scripts_end();
end

The results from the Robotarium were analyzed in two different ways: one with a

script to compute the consensus location, the other by hand by looking at the experiments

videos to correctly compute the consensus time. The following scripts helped in analyzing

the results.

analyzeRobotariumData.m

Script which automatically computes the consensus time and the consensus location based

on the Robotarium output files.

% Prepare workspace
clc
close all
clear

N = 3;
v = 0.08;

%% Load files
foldername = sprintf('results/%d_%.2f/',N,v);
files = dir(fullfile(foldername, '*.mat'));
filename = files(end).name; % Take the last file
load(sprintf('%s/%s',foldername,filename))
load(sprintf('../initialPoses/init_poses_%d_%.2f.mat',N,v))

x = robotarium_data(1:5:end,:);
y = robotarium_data(2:5:end,:);
N = size(x,1);

487

% Compute time to reach consensus
timestep = 1/30;
is = 600;
i = is;
d = 0;
d_prev = 1;
count = 0;
while i < size(x,2) && count < 25
 if abs(d - d_prev) < 1e-5
 count = count + 1;
 end
 d_prev = d;
 dx = x(:,i) - x(:,i-1);
 dy = y(:,i) - y(:,i-1);
 d = mean(sqrt(dx.^2 + dy.^2));
 % Increment
 i = i + 1;
end
ic = i;
tc = (ic-is)*timestep;

% Compute consensus location
xc = mean(x(:,end));
yc = mean(y(:,end));

y0 = x0(2,:)';
x0 = x0(1,:)';

%% Plot
figure
hold on
plot(xc,yc,'xk')
plot(x(:,1)',y(:,1)','or') % Start point
plot(x(:,is)',y(:,is)','om') % Start of consensus time
plot(x(:,end)',y(:,end)','og') % End point
plot(x',y','-')
plot(x0,y0,'+k')
hold off
xlabel('x (m)','FontName','Times New Roman','FontSize',12)
ylabel('y (m)','FontName','Times New Roman','FontSize',12)

legend_struct = cell(1,N+3);
legend_struct{1} = 'Initial conditions barycenter';
legend_struct{2} = 'Random initial locations';
legend_struct{3} = 'Starting locations';
legend_struct{4} = 'Consensus locations';
for i = 1:N
 legend_struct{i+4} = sprintf('Gritbot %d',i);
end
h = legend(legend_struct);
set(h,'FontName','Times New Roman','FontSize',12)

set(gca,'FontName','Times New Roman','FontSize',12)
axis equal
axis([-.6 .6 -.35 .35])

488

% Display
fprintf('N = %d, v = %.2fcm/s\n',N,v)
fprintf('Time = %fs\n',tc)
fprintf('Position = [%f, %f]\n',xc,yc)

generateMatFile.m

Once the results have been properly reported in a real.csv file, this script reformats the data

into a proper MAT-file using the same format used for the other modeling techniques.

% Prepare workspace
clc
close all
clear

% Load data
data = csvread('real.csv');
t = data(:,1);
T = data(:,2);
x = data(:,3);
y = data(:,4);

% Format the data
t_real = reshape(t,10,4);
T_real = reshape(T,10,4);
x = reshape(x,10,4);
y = reshape(y,10,4);

X_real = cell(10,4);
for i = 1:size(X_real,1)
 for j = 1:size(X_real,2)
 X_real{i,j} = [x(i,j);y(i,j)];
 end
end

% Save formatted data
save real.mat

real.csv

Contains the results of the Robotarium experimentation, the first column is the experiment

time, the second is the consensus time while the last two columns are the x and y

489

coordinates of the consensus location. The previous file generateMatFile.m explains how

to associate each row here with a set of inputs 𝑁 and 𝑣.

102,29.233333,0.205051,-0.046544
102,20.2,-0.142806,0.091981
102,16,0.20383,-0.09421
102,10.8,-0.033532,-0.146873
102,12.733333,0.054997,-0.062684
102,13.633333,-0.100632,0.015175
102,22.433333,0.289793,0.19845
102,8.6,-0.17332,0.000062
102,15.766667,0.321387,0.261598
101,8.466667,0.352052,-0.000506
102,48.3,-0.067764,0.016682
102,10.033333,-0.049521,-0.007815
102,32.1,0.080985,0.038893
102,8.5,0.3133,0.0509
101,26.233333,0.075515,-0.010795
102,10.2,-0.039294,-0.078337
102,9.566667,0.161283,0.177629
80,35.166667,-0.338886,0.027406
102,8.166667,0.201344,-0.074088
101,10.633333,-0.00741,0.013563
102,47.5,-0.089437,-0.029958
102,39.1,0.007485,-0.001016
101,28.7,0.163564,-0.013037
102,27.4,0.0197,0.0856
102,34.766667,-0.030778,-0.121071
102,18.766667,-0.098128,0.062327
98,26.133333,-0.181069,-0.127278
101,10.23,-0.089852,-0.050806
81,17.233333,-0.027068,0.008907
91,28.366667,-0.173243,-0.058091
102,68.9,0.171482,0.038068
101,35.3,0.027043,-0.046788
102,32.066667,0.133503,0.063558
102,30.233333,-0.139308,-0.031819
102,37.733333,-0.132491,0.146308
102,24.7,-0.192258,0.094753
102,22.1,-0.10701,-0.009696
77,16.166667,-0.068914,-0.179585
102,34.833333,0.005551,-0.047264
102,29.566667,0.009603,0.01186

B.1.5 Scripts

generateInitialPositions.m

490

A script generating random initial poses for the robots based on a given design of

experiments. The same set of initial positions was used to compare each type of modeling

technique.

% Prepare workspace
clc
close all
clear

%% Design space
Nvec = 2:5;
Vvec = .01:0.01:0.1;
safetyRadius = 0.1; % m

[N,V] = meshgrid(Nvec,Vvec);

%% Analysis
n1 = size(N,1);
n2 = size(N,2);
for i = 1:n1
 for j = 1:n2
 fprintf('%d/%d (%.2f%%)\n',(i-1)*n2 + j,n1*n2,100*((i-1)*n2 +

j)/(n1*n2))
 % Generate initial positions
 x0 = zeros(3,N(i,j));
 numX = floor(1.2 / safetyRadius);
 numY = floor(0.7 / safetyRadius);
 values = randperm(numX * numY, N(i,j));
 for k = 1:N(i,j)
 [x, y] = ind2sub([numX numY], values(k));
 x = x*safetyRadius - 0.6;
 y = y*safetyRadius - 0.35;
 x0(1:2,k) = [x, y]';
 end
 x0(3,:) = rand(1, N(i,j))*2*pi;

 % Save
 save(sprintf('init_poses_%d_%.2f.mat',N(i,j),V(i,j)),'x0')
 end
end

plot_models.m

The script used to generate the different figures of the modeling section.

% Prepare workspace
clc
close all
clear

491

colors = get(groot,'DefaultAxesColorOrder');

% Load data
load('macroscopic/macroscopic.mat')
load('mesoscopic/mesoscopic.mat')
load('microscopic/microscopic.mat')
load('real/real.mat')

%% Direct responses
figure
hold on
surf(N,V,T_macro,'FaceColor',colors(1,:))
surf(N,V,T_meso,'FaceColor',colors(2,:))
surf(N,V,T_micro,'FaceColor',colors(3,:))
surf(N,V,T_real,'FaceColor',colors(4,:))
hold off
xlabel('N','FontName','Times New Roman','FontSize',12)
ylabel('v (m/s)','FontName','Times New Roman','FontSize',12)
zlabel('Consensus time (s)','FontName','Times New Roman','FontSize',12)
h = legend('Macroscopic','Mesoscopic','Microscopic','Real system');
set(h,'FontName','Times New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)

figure
hold on
surf(N,V,t_macro,'FaceColor',colors(1,:))
surf(N,V,t_meso,'FaceColor',colors(2,:))
surf(N,V,t_micro,'FaceColor',colors(3,:))
surf(N,V,t_real,'FaceColor',colors(4,:))
hold off
xlabel('N','FontName','Times New Roman','FontSize',12)
ylabel('v (m/s)','FontName','Times New Roman','FontSize',12)
zlabel('Execution time (s)','FontName','Times New Roman','FontSize',12)
h = legend('Macroscopic','Mesoscopic','Microscopic','Real system');
set(h,'FontName','Times New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)

%% Section plots
i = 1;

V(i,1)

figure
hold on
plot(N(i,:),T_macro(i,:),'Color',colors(1,:))
plot(N(i,:),T_meso(i,:),'Color',colors(2,:))
plot(N(i,:),T_micro(i,:),'Color',colors(3,:))
plot(N(i,:),T_real(i,:),'Color',colors(4,:))
hold off
xlabel('N','FontName','Times New Roman','FontSize',12)
ylabel('Consensus time (s)','FontName','Times New Roman','FontSize',12)
h = legend('Macroscopic','Mesoscopic','Microscopic','Real system');
set(h,'FontName','Times New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)

492

%% Error on consensus time
err_t_macro = reshape(abs(T_macro - T_real)./T_real,[],1);
err_t_meso = reshape(abs(T_meso - T_real)./T_real,[],1);
err_t_micro = reshape(abs(T_micro - T_real)./T_real,[],1);

mean_err_t_macro = 100*mean(err_t_macro);
mean_err_t_meso = 100*mean(err_t_meso);
mean_err_t_micro = 100*mean(err_t_micro);

figure
hold on
bar(1,mean_err_t_macro,'FaceColor',colors(1,:))
bar(2,mean_err_t_meso,'FaceColor',colors(2,:))
bar(3,mean_err_t_micro,'FaceColor',colors(3,:))
hold off
ylabel('Percentage error on consensus time (%)','FontName','Times New

Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)
set(gca,'XTick',[1 2 3])
set(gca,'XTickLabels',{'Macroscopic','Mesoscopic','Microscopic'})

%% Absolute error on consensus position
ERR_x_macro = zeros(size(X_macro));
ERR_x_meso = zeros(size(X_macro));
ERR_x_micro = zeros(size(X_macro));
for i = 1:size(X_real,1)
 for j = 1:size(X_real,2)
 ERR_x_macro(i,j) = norm(X_macro{i,j} - X_real{i,j});
 ERR_x_meso(i,j) = norm(X_meso{i,j} - X_real{i,j});
 ERR_x_micro(i,j) = norm(X_micro{i,j} - X_real{i,j});
 end
end

err_x_macro = mean(mean(ERR_x_macro));
err_x_meso = mean(mean(ERR_x_meso));
err_x_micro = mean(mean(ERR_x_micro));

figure
hold on
bar(1,err_x_macro*100,'FaceColor',colors(1,:))
bar(2,err_x_meso*100,'FaceColor',colors(2,:))
bar(3,err_x_micro*100,'FaceColor',colors(3,:))
hold off
ylabel('Absolute error on consensus position (cm)','FontName','Times

New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)
set(gca,'XTick',[1 2 3])
set(gca,'XTickLabels',{'Macroscopic','Mesoscopic','Microscopic'})

%% Execution time
mean_t_macro = mean(mean(t_macro));
mean_t_meso = mean(mean(t_meso));
data = csvread('microscopic/logs/runtimes.txt');
t_micro = data(:,2) - data(:,1);

493

mean_t_micro = mean(mean(t_micro));
mean_t_real = mean(mean(t_real));

figure
hold on
bar(1,mean_t_macro,'FaceColor',colors(1,:))
bar(2,mean_t_meso,'FaceColor',colors(2,:))
bar(3,mean_t_micro,'FaceColor',colors(3,:))
bar(4,mean_t_real,'FaceColor',colors(4,:))
hold off
ylabel('Average execution time (s)','FontName','Times New

Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)
set(gca,'XTick',[1 2 3 4])
set(gca,'XTickLabels',{'Macroscopic','Mesoscopic','Microscopic','Real

system'})
set(gca,'YScale','log');

B.2 Optimization

The code used to show the advantage of simultaneous optimization and the benefits

of the proposed optimization scheme.

B.2.1 Sequential and simultaneous optimization

The files used to analyze the canonical mapping mission with respect to different

optimization schemes.

main.m

The main file trying to optimize a swarm configuration based on the settings and properties

of the mapping problem.

% Numerality vs. Individual Performance Tradeoff
% Jean-Guillaume Durand (jean-guillaume.durand@gatech.edu)
% Aerospace Systems Design Laboratory (ASDL)
% Georgia Institute of Technology
% 2016

% Homogeneous group optimization

% Clean the workspace
clc

494

close all
clear variables

addpath('utilities')

%% Problem parameters
% Environment ---

problem.environment.d0 = 100; % Distance from base to mission
problem.environment.lx = 100; % Map horizontal size
problem.environment.ly = 100; % Map vertical size

% Cost variables
problem.cost.C0 = 10; % Swarm fixed cost (ground station...)
problem.cost.c0 = 3; % Agent fixed cost
problem.cost.cv = 1; % Cost of one unit of speed
problem.cost.cv2 = 0;

% problem.cost.C0 = 10; % Swarm fixed cost (ground station...)
% problem.cost.c0 = 3; % Agent fixed cost
% problem.cost.cv = 1; % Cost of one unit of speed
% problem.cost.cv2 = 0.3;

% Constraint
problem.cost.Cmax = 70; % Maximum cost
% problem.cost.Cmax = 100; % Maximum cost

% Number of architectures
problem.nArchis = 1;

%% Run mission
% Experiment 1
x_mM = [4,9.999999993264135];
x_Mm = [7,5.571459922656952];
x_s = [5,9.000199990881889];
f_mM = 2.850000000616806e+02;
f_Mm = 3.230717177359792e+02;
f_s = 2.622163959912607e+02;
c_mM = 61.999999991343074;
c_Mm = 70.000628369138080;
c_s = 70.000999862698440;

% Experiment 2
% x_mM = [5,7.000938611068547];
% x_Mm = [7,5.571459922656952];
% x_s = [5,9.000199990881889];
% f_mM = 3.370976566297580e+02;
% f_Mm = 3.230717177359792e+02;
% f_s = 2.622163959912607e+02;
% c_mM = 60.004693055342734;
% c_Mm = 70.000628369138080;
% c_s = 70.000999862698440;

% Experiment 3 (quadratic cost constraint at 100)
% x_mM = [2,9.999999994786457];

495

% x_Mm = [5,5.598186044422418];
% x_s = [7,4.302872355432176];
% f_mM = 5.300000002763178e+02;
% f_Mm = 4.215651250732037e+02;
% f_s = 4.183252142554459e+02;
% c_mM = 95.999999927010390;
% c_Mm = 1.000004607040610e+02;
% c_s = 1.000009985530244e+02;

% Experiment 4
% x_mM = [8,3.443486685868475];
% x_Mm = [5,5.598176762543418];
% x_s = [6,4.873848085169360];
% f_mM = 4.719054110674343e+02;
% f_Mm = 4.215658240358566e+02;
% f_s = 4.171925956249162e+02;
% c_mM = 90.006134820756090;
% c_Mm = 1.000002584097388e+02;
% c_s = 1.000009997941724e+02;

% Experiment 5
% x_mM = [5,9.000199990881889];
% x_Mm = [7,5.571459922656952];
% x_s = [5,9.000199990881889];
% f_mM = 2.622163959912607e+02;
% f_Mm = 3.230717177359792e+02;
% f_s = 2.622163959912607e+02;
% c_mM = 70.000999862698440;
% c_Mm = 70.000628369138080;
% c_s = 70.000999862698440;

% Experiment 6
% x_mM = [5,5.598190765561446];
% x_Mm = [5,5.598207437216443];
% x_s = [6,4.873848080260603];
% f_mM = 4.215647695534209e+02;
% f_Mm = 4.215635141189849e+02;
% f_s = 4.171925960450970e+02;
% c_mM = 1.000005635992334e+02;
% c_Mm = 1.000009269512405e+02;
% c_s = 1.000009996785916e+02;

% tic
% [x_mM,f_mM,c_mM] = micro_Macro_optimizer(problem);
% [x_Mm,f_Mm,c_Mm] = Macro_micro_optimizer(problem);
% [x_s,f_s,c_s] = simultaneous_optimizer(problem);
% toc

%% Plot
f = @(x)myfitnessfcn(x,problem.environment);
c = @(x)(mynonlcon(x, problem.cost) + problem.cost.Cmax);
Nmax = 10;
vmax = 11;
fontSize = 12;

[N, v] = meshgrid(1:1:Nmax, 1:.1:vmax);

496

T = zeros(size(N));
C = zeros(size(N));

for i = 1:size(N,1)
 for j = 1:size(N,2);
 T(i,j) = f([N(i,j),v(i,j)]);
 C(i,j) = c([N(i,j),v(i,j)]);
 end
end

Tc = T;
Tc(C <= problem.cost.Cmax) = 0;

%% Plot 1
figure
surf(N,v,T-1,'EdgeColor', 'none')
hold on
% Constraint
hc = surf(N,v,Tc,'EdgeColor', 'none','FaceColor','r','FaceAlpha',0.5);
% Points
h_mM =

plot3(x_mM(1),x_mM(2),f([x_mM(1),x_mM(2)]),'o','MarkerEdgeColor','k','M

arkerFaceColor','c');
h_Mm =

plot3(x_Mm(1),x_Mm(2),f([x_Mm(1),x_Mm(2)]),'o','MarkerEdgeColor','k','M

arkerFaceColor','m');
hx =

plot3(x_s(1),x_s(2),f([x_s(1),x_s(2)]),'o','MarkerEdgeColor','k','Marke

rFaceColor','r');
% Lines
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l =

zeros(size(N(1,:)));
for i = 1:size(N,2)
 Nl(i) = N(1,i); vl(i) = x_mM(2); l(i) = f([Nl(i),vl(i)]);
end
plot3(Nl,vl,l,'c--')

Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l =

zeros(size(N(1,:)));
for i = 1:size(N,1)
 Nl(i) = x_Mm(1); vl(i) = v(i,1); l(i) = f([Nl(i),vl(i)]);
end
plot3(Nl,vl,l,'m--')
hold off

xlabel('N','FontSize', fontSize, 'FontName', 'Times New Roman')
ylabel('v (m/s)','FontSize', fontSize, 'FontName', 'Times New Roman')
zlabel('Mapping time (s)','FontSize', fontSize, 'FontName', 'Times New

Roman')
h = legend([hc,h_mM,h_Mm,hx],{'Constraint','Micro-macro

optimum','Macro-micro optimum','Global

optimum'},'location','northeast');
set(h, 'FontSize', fontSize, 'FontName', 'Times New Roman')
set(gca, 'FontSize', fontSize, 'FontName', 'Times New Roman')
hc = colorbar;

497

% shading interp

set(gca, 'ZScale', 'log')
set(gca, 'ZLim', [100 10^4])
% set(gcf, 'Position', [1 1 1252 750])
view(115,16)

% Transparent background
set(gcf, 'Color', 'None')
set(gca, 'Color', 'None', 'XColor', 'w', 'YColor', 'w', 'ZColor', 'w')
set(h,'color','none','TextColor','w','EdgeColor','w')
set(hc,'color','w');

%% Plot 2
% PCA
X = [reshape(N,[],1), reshape(v,[],1), reshape(T,[],1)];
coeff = pca(X);
x0 = [x_s(1) x_s(2) f_s]';
x01 = [x0,x0 + 250*coeff(:,1)];
x02 = [x0,x0 + 1*coeff(:,2)];
x03 = [x0,x0 + 1*coeff(:,3)];

figure
hold on
surf(N,v,T-1,'EdgeColor', 'none')%,'FaceAlpha',0.5)
plot3(x01(1,:),x01(2,:),x01(3,:),'r','LineWidth',2)
plot3(x02(1,:),x02(2,:),x02(3,:),'g','LineWidth',2)
plot3(x03(1,:),x03(2,:),x03(3,:),'b','LineWidth',2)
% Constraint
hc = surf(N,v,Tc,'EdgeColor', 'none','FaceColor','r','FaceAlpha',0.5);
% Points
h_mM =

plot3(x_mM(1),x_mM(2),f([x_mM(1),x_mM(2)]),'o','MarkerEdgeColor','k','M

arkerFaceColor','c');
h_Mm =

plot3(x_Mm(1),x_Mm(2),f([x_Mm(1),x_Mm(2)]),'o','MarkerEdgeColor','k','M

arkerFaceColor','m');
hx =

plot3(x_s(1),x_s(2),f([x_s(1),x_s(2)]),'o','MarkerEdgeColor','k','Marke

rFaceColor','r');
% Lines
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l =

zeros(size(N(1,:)));
for i = 1:size(N,2)
 Nl(i) = N(1,i); vl(i) = x_mM(2); l(i) = f([Nl(i),vl(i)]);
end
plot3(Nl,vl,l,'c--')

Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l =

zeros(size(N(1,:)));
for i = 1:size(N,1)
 Nl(i) = x_Mm(1); vl(i) = v(i,1); l(i) = f([Nl(i),vl(i)]);
end
plot3(Nl,vl,l,'m--')

498

Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l =

zeros(size(N(1,:)));
for i = 1:size(N,1)
 x = x_s(1) + i*.05*coeff(1,3);
 y = x_s(2) + i*.05*coeff(2,3);
 Nl(i) = x; vl(i) = y; l(i) = f([x,y]);
end
plot3(Nl,vl,l,'k--')

Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l =

zeros(size(N(1,:)));
for i = 1:size(N,1)
 x = x_s(1) - i*.05*coeff(1,3);
 y = x_s(2) - i*.05*coeff(2,3);
 Nl(i) = x; vl(i) = y; l(i) = f([x,y]);
end
plot3(Nl,vl,l,'k--')

Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l =

zeros(size(N(1,:)));
for i = 1:size(N,1)
 x = x_s(1) + i*.05*coeff(1,2);
 y = x_s(2) + i*.05*coeff(2,2);
 Nl(i) = x; vl(i) = y; l(i) = f([x,y]);
end
plot3(Nl,vl,l,'k--')

Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l =

zeros(size(N(1,:)));
for i = 1:size(N,1)
 x = x_s(1) - i*.05*coeff(1,2);
 y = x_s(2) - i*.05*coeff(2,2);
 Nl(i) = x; vl(i) = y; l(i) = f([x,y]);
end
plot3(Nl,vl,l,'k--')
hold off

xlabel('N','FontSize', fontSize, 'FontName', 'Times New Roman')
ylabel('v (m/s)','FontSize', fontSize, 'FontName', 'Times New Roman')
zlabel('Mapping time (s)','FontSize', fontSize, 'FontName', 'Times New

Roman')
h = legend([hc,h_mM,h_Mm,hx],{'Constraint','Micro-macro

optimum','Macro-micro optimum','Global

optimum'},'location','northeast');
set(h, 'FontSize', fontSize, 'FontName', 'Times New Roman')
set(gca, 'FontSize', fontSize, 'FontName', 'Times New Roman')
colorbar

% shading interp

set(gca, 'ZScale', 'log')
set(gca, 'ZLim', [100 10^4])
% set(gcf, 'Position', [1 1 1252 750])
view(115,16)

499

%% Plot 3
figure
hold on
costContour = contour(C,[problem.cost.Cmax, problem.cost.Cmax]);
hold off

figure
hold on
contour(C,[40 70 100 110 120])
patch([costContour(1,2:end), 10],[.9+.1*costContour(2,2:end),

11],'red')
hold off

figure
hold on
contourf(N,v,T-1)
% Constraint
plot(costContour(1,2:end),.9+.1*costContour(2,2:end),'r--')
patch([costContour(1,2:end), 10],[.9+.1*costContour(2,2:end),

11],'red','FaceAlpha',0.5)
% Eigenvectors
plot(x01(1,:),x01(2,:),'r','LineWidth',2)
plot(x02(1,:),x02(2,:),'g','LineWidth',2)
plot(x03(1,:),x03(2,:),'b','LineWidth',2)
% Points
h_mM =

plot(x_mM(1),x_mM(2),'o','MarkerEdgeColor','k','MarkerFaceColor','c');
h_Mm =

plot(x_Mm(1),x_Mm(2),'o','MarkerEdgeColor','k','MarkerFaceColor','m');
hx =

plot(x_s(1),x_s(2),'o','MarkerEdgeColor','k','MarkerFaceColor','r');
% Lines
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l =

zeros(size(N(1,:)));
for i = 1:size(N,2)
 Nl(i) = N(1,i); vl(i) = x_mM(2); l(i) = f([Nl(i),vl(i)]);
end
plot(Nl,vl,'c--')

Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l =

zeros(size(N(1,:)));
for i = 1:size(N,1)
 Nl(i) = x_Mm(1); vl(i) = v(i,1); l(i) = f([Nl(i),vl(i)]);
end
plot(Nl,vl,'m--')

Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l =

zeros(size(N(1,:)));
for i = 1:size(N,1)
 x = x_s(1) + i*.05*coeff(1,3);
 y = x_s(2) + i*.05*coeff(2,3);
 Nl(i) = x; vl(i) = y; l(i) = f([x,y]);
end
plot(Nl,vl,'k--')

500

Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l =

zeros(size(N(1,:)));
for i = 1:size(N,1)
 x = x_s(1) - i*.05*coeff(1,3);
 y = x_s(2) - i*.05*coeff(2,3);
 Nl(i) = x; vl(i) = y; l(i) = f([x,y]);
end
plot(Nl,vl,'k--')

Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l =

zeros(size(N(1,:)));
for i = 1:size(N,1)
 x = x_s(1) + i*.05*coeff(1,2);
 y = x_s(2) + i*.05*coeff(2,2);
 Nl(i) = x; vl(i) = y; l(i) = f([x,y]);
end
plot(Nl,vl,'k--')

Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l =

zeros(size(N(1,:)));
for i = 1:size(N,1)
 x = x_s(1) - i*.05*coeff(1,2);
 y = x_s(2) - i*.05*coeff(2,2);
 Nl(i) = x; vl(i) = y; l(i) = f([x,y]);
end
plot(Nl,vl,'k--')
hold off

xlabel('N','FontSize', fontSize, 'FontName', 'Times New Roman')
ylabel('v (m/s)','FontSize', fontSize, 'FontName', 'Times New Roman')
% h = legend([hc,h_mM,h_Mm,hx],{'Constraint','Micro-macro

optimum','Macro-micro optimum','Global

optimum'},'location','northeast');
% set(h, 'FontSize', fontSize, 'FontName', 'Times New Roman')
set(gca, 'FontSize', fontSize, 'FontName', 'Times New Roman')
colorbar

% shading interp

%% Analysis
% Rows = {'Macro-micro';'Micro-macro';'Global'};
% fval = [f_Mm;f_mM;f_s];
% cost = [c_Mm;c_mM;c_s];
% N = [x_Mm(1);x_mM(1);x_s(1)];
% v = [x_Mm(2);x_mM(2);x_s(2)];
%
% T = table(N,v,fval,cost,...
% 'RowNames',Rows)

micro_Macro_optimizer.m

501

A sequential micro-macro optimizer for the canonical mapping mission example. Note that

some parts are commented to enable the designer to set a different constraint on the system

to reflect real-world situations (see section 4.1 page 232).

function [x,fval,cost] = micro_Macro_optimizer(problem)
% problem2 = problem;
% problem2.cost.Cmax = 10 + problem.cost.C0;
v = inner_loop(5, problem);
[N,fval,cost] = outer_loop(v, problem);
x = [N,v];
end

Macro_micro_optimizer.m

A sequential macro-micro optimizer for the canonical mapping mission example.

function [x,fval,cost] = Macro_micro_optimizer(problem)
N = outer_loop(5, problem);
[v,fval,cost] = inner_loop(N, problem);
x = [N,v];
end

simultaneous_optimizer.m

A simultaneous optimizer for the canonical mapping mission example.

function [x,fval,cost] = simultaneous_optimizer(problem)
% Gather problem data
environment = problem.environment;
cost = problem.cost;

% Prepare GA information
fitnessfcn = @(x)myfitnessfcn(x, environment);
nvars = 2;
A = [];
b = [];
Aeq = [];
beq = [];
LB = [1 1];
UB = [10 10];
nonlcon = @(x)mynonlcon(x, cost);
Intcon = 1;
options = gaoptimset('Generations',1000,...
 'PopulationSize',400,...
 'Display','none');

% Optimize group

502

[x,fval] =

ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,Intcon,options);
cost = nonlcon(x) + cost.Cmax;
end

outer_loop.m

The outer loop of the simultaneous optimizer.

function [N,fval,cost] = outer_loop(v, problem)
% Gather problem data
environment = problem.environment;
cost = problem.cost;

% Prepare GA information
fitnessfcn = @(x)myfitnessfcn([x, v], environment);
nvars = 1;
A = [];
b = [];
Aeq = [];
beq = [];
LB = 1;
UB = 10;
nonlcon = @(x)mynonlcon([x, v], cost);
Intcon = 1;
options = gaoptimset('Generations',1000,...
 'PopulationSize',400,...
 'Display','none');

% Optimize group
[N,fval] =

ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,Intcon,options);
cost = nonlcon(N) + cost.Cmax;
end

inner_loop.m

The inner loop of the simultaneous optimizer.

function [v,fval,cost] = inner_loop(N, problem)
% Gather problem data
environment = problem.environment;
cost = problem.cost;

% Prepare GA information
fitnessfcn = @(x)myfitnessfcn([N, x], environment);
nvars = 1;
A = [];
b = [];
Aeq = [];

503

beq = [];
LB = 1;
UB = 10;
nonlcon = @(x)mynonlcon([N, x], cost);
Intcon = [];
options = gaoptimset('Generations',1000,...
 'PopulationSize',400,...
 'Display','none');

% Optimize group
[v,fval] =

ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,Intcon,options);
cost = nonlcon(v) + cost.Cmax;
end

myfitnessfcn.m

The fitness function used by the optimizers to determine the performance of the system.

Here, it is the mapping time.

function output = myfitnessfcn(x, environment)
%RUNMISSION Summary of this function goes here
% Detailed explanation goes here

% INPUT

%%
% Gather input data
d0 = environment.d0; % Distance from base to mission
lx = environment.lx; % Map horizontal size
ly = environment.ly; % Map vertical size

% Parse input vector
N = length(x)/2;
n = x(1:N); % Number of agents of each type
v = x(N+1:end); % Velocity for each type of agent

% ANALYSIS

%%%
% Compute areas for each type of agent --------------------------------

% ASSUMPTION: each type of agent takes the same amount of time to map
% their given area
S = lx*ly; % Total map area
s = v*S / sum(n.*v);

% Compute mission time for each type of agent
% NOTE: the time to complete the mission is the time for the furthest

agent
% to complete its mission, hence only the furthest agents are studied

here
% Distance to start mission

504

ds = d0 + (n-1).*s / ly;

% Distance to map
dm = s;

% Distance to return to base
dr = ds;

% Total distance
d = ds + dm + dr;

% Compute mission time --

output = max(d./v);
end

mynonlcon.m

The non-linear constraint function used by the optimizers to constrain the problem. Here,

it is the cost of the swarming solution.

function [c, ceq] = mynonlcon(x, cost)
% Input
N = x(1);
v = x(2);

% Problem parameters
C0 = cost.C0; % Group fixed cost
c0 = cost.c0; % Agents fixed costs
cv = cost.cv; % Agents linear technology cost
cv2 = cost.cv2; % Agents quadratic technology cost
Cmax = cost.Cmax; % Cost constraint

% Compute total group cost
c = C0 + N*(c0 + cv*v + cv2*v^2) - Cmax;
ceq = [];
end

B.2.2 Bi-level optimizer

The proposed Matlab implementation of the bi-level genetic algorithm for the

optimization of multi-architecture multi-level systems, including the elite retention

scheme.

505

loopOuter.m

The outer loop of the algorithm.

function

[xOut,fvalOut,exitflagOut,outputOut,populationOut,scoresOut,...
 xIn,fvalIn,exitflagIn,outputIn,populationIn,scoresIn] =

loopOuter(optionsOuter, optionsInner)
global buffer elite
if optionsOuter.elitism
 % Initialize elitism retention variables
 buffer = cell(1, optionsOuter.nArchis);
 elite = cell(1, optionsOuter.nArchis);
 optionsInner.elitism = true;
 for i = 1:optionsOuter.nArchis
 buffer{i}.population = [];
 buffer{i}.scores = [];
 end
else
 optionsInner.elitism = false;
end

% Initialization
nArchis = optionsOuter.nArchis;

if strcmp(optionsOuter.solver, 'ga')
 % Define optimization genetic algorithm problem
 problem = struct;
 problem.fitnessfcn = @(x)optionsOuter.fitnessFcn(x, optionsInner);
 problem.nvars = nArchis;
 problem.Aineq = [ones(1, nArchis);-ones(1,nArchis)];
 problem.Bineq = [optionsOuter.maxAgents; -1];
 problem.Aeq = [];
 problem.beq = [];
 problem.lb = zeros(1, nArchis);
 problem.ub = optionsOuter.maxAgents*ones(1, nArchis);
 problem.nonlcon = [];
 problem.intcon = 1:nArchis;
 problem.solver = 'ga';
 problem.options = optionsOuter;

 % Optimize
 [xOut,fvalOut,exitflagOut,outputOut,populationOut,scoresOut] =

ga(problem);
elseif strcmp(optionsOuter.solver, 'ff')
 % Generate full factorial
 dFF = fullfact(optionsOuter.maxAgents*ones(1,nArchis));
 % Keep only groups below maxAgents agents
 indices = sum(dFF,2) <= optionsOuter.maxAgents;
 dFF = dFF(indices,:);

 % Evaluate fitness over full factorial
 n = size(dFF,1);
 fitness = zeros(n,1);

506

 startTime = tic; % Start timer
 if ~strcmp(optionsOuter.Display,'off')
 fprintf('Started on %s\n', datetime('now'))
 end

 for i = 1:n
 % Run inner loop
 fitness(i) = optionsOuter.fitnessFcn(dFF(i,:), optionsInner);

 % Estimate remaining time
 elapsed = toc(startTime);
 total = n*elapsed/i;
 remaining = total - elapsed;
 if strcmp(optionsOuter.Display,'iter')
 fprintf('[%03.0f%% (%d/%d)] (elapsed: %fs, remaining: %fs,

total: %fs)\n', 100*i/n, i, n, elapsed, remaining, total)
 end
 end

 % Display
 if ~strcmp(optionsOuter.Display,'off')
 fprintf('\nFinished on %s\n', datetime('now'));
 fprintf('\tIterations: %d\n', n)
 fprintf('\tFunEval: %d\n', n)
 fprintf('\tTotal time: %fs (%fs/iteration)\n', toc(startTime),

toc(startTime)/n)
 end

 % Take best architecture
 [M,I] = min(fitness);
 xOut = dFF(I,:);
 fvalOut = M;
 exitflagOut = 1;
 outputOut = [];
 populationOut = dFF;
 scoresOut = fitness;
else
 error('Solver argument to outerLoop must be either ''ga'' or

''ff''.')
end

% With known optimal composition, obtain corresponding optimal inner

loop
[fvalIn,xIn,exitflagIn,outputIn,populationIn,scoresIn] =

optionsOuter.fitnessFcn(xOut, optionsInner);
end

loopInner.m

The inner loop of the algorithm.

507

function [fval,x,exitflag,output,population,scores] = loopInner(xOuter,

optionsInner)
global elite
% Vector storing architectures in use
archis = 1:length(xOuter);

% Remove absent architectures from the group vectors
toKeep = xOuter > 0;
nVars = optionsInner.nVars;
nVars = nVars(toKeep);
optionsInner.nVars = nVars;
optionsInner.lb = optionsInner.lb(toKeep);
optionsInner.ub = optionsInner.ub(toKeep);
archis = archis(toKeep);
xOuter = xOuter(toKeep);

% Compute number of variables depending on heterogeneity level
if optionsInner.trueHeterogeneity
 nVarsTotalArchis = xOuter.*nVars; % Total variables per

architecture
else
 nVarsTotalArchis = nVars;
end
nVarsTotal = sum(nVarsTotalArchis);

% Compute start indices for each architecture
nArchis = length(xOuter);
startArchis = ones(1,nArchis);
for i = 2:nArchis
 startArchis(i) = startArchis(i-1) + nVarsTotalArchis(i-1);
end

% Compute bounds for the variables
[lb, ub] = createBounds(xOuter, optionsInner.lb, optionsInner.ub,

nVarsTotal, optionsInner.nVars, optionsInner.trueHeterogeneity);

% Compute range for the initial population
optionsInner.PopInitRange = [lb; ub];

% Convey variables to the output function
if optionsInner.elitism == true
 optionsInner.OutputFcns =

{@(options,state,flag)gaInnerLoopElitism(options,state,flag,xOuter,nVar

s,archis,optionsInner.eliteFraction,startArchis,optionsInner.trueHetero

geneity)};
end

% % TODO REMOVE HACK
% optionsInner.OutputFcns =

{@(options,state,flag)gaInnerLoopElitism(options,state,flag,xOuter,nVar

s,archis,optionsInner.eliteFraction,startArchis)};
% % TODO REMOVE HACK - Compute the expected optimum
% offsetsArchis = 1./(1 + (xOuter - archis).^2);
% optionsInner.FitnessLimit = -.99*sum(offsetsArchis);

508

% If all elite cells are filled
if optionsInner.elitism == true && sum(cellfun(@isempty,elite)) == 0
 % Initialize population to elite
 optionsInner.InitialPopulation =

generateInitialPopulation(xOuter,elite,nVars,archis,startArchis,nVarsTo

tal,optionsInner.trueHeterogeneity);
end

% Define optimization problem
problem = struct;
problem.fitnessfcn = @(x)optionsInner.fitnessFcn(x, xOuter,

optionsInner.nVars, archis, optionsInner.trueHeterogeneity);
problem.nvars = nVarsTotal;
problem.Aineq = [];
problem.Bineq = [];
problem.Aeq = [];
problem.beq = [];
problem.lb = lb;
problem.ub = ub;
problem.nonlcon = [];
problem.intcon = [];
problem.solver = 'ga';
problem.options = optionsInner;

% Optimize
[x,fval,exitflag,output,population,scores] = ga(problem);
end

function [lb, ub] = createBounds(xOuter, lbArchis, ubArchis,

nVarsTotal, nVars, trueHeterogeneity)
% Initialization
lb = zeros(1, nVarsTotal);
ub = zeros(1, nVarsTotal);

% For each architecture
idx = 1;
for i = 1:length(xOuter)
 % Number of agents for this architecture
 nAgents = xOuter(i);
 % Number of variables for this architecture
 nv = nVars(i);
 % For each variable the architecture
 for k = 1:nv
 if trueHeterogeneity
 % For each agent with this architecture
 for j = 1:nAgents
 % Get upper and lower bounds
 lb(idx) = lbArchis{i}(k);
 ub(idx) = ubArchis{i}(k);

 % Increment array index
 idx = idx + 1;
 end
 else
 % Get upper and lower bounds
 lb(idx) = lbArchis{i}(k);

509

 ub(idx) = ubArchis{i}(k);

 % Increment array index
 idx = idx + 1;
 end
 end
end
end

function population =

generateInitialPopulation(xOuter,elite,nVars,archis,startArchis,nVarsTo

tal,trueHeterogeneity)
% Initialization
population = zeros(size(elite{1}.scores,1), nVarsTotal);
nArchis = length(xOuter);

if trueHeterogeneity == true
 % For each architecture
 for i = 1:nArchis
 % For each agent with this architecture
 for j = 1:xOuter(i)
 startIndex = startArchis(i) + (j-1)*nVars(i);
 endIndex = startIndex + nVars(i) - 1;
 population(:,startIndex:endIndex) =

elite{archis(i)}.population;
 end
 end
else
 % For each architecture
 for i = 1:nArchis
 startIndex = startArchis(i);
 endIndex = startIndex + nVars(i) - 1;
 population(:,startIndex:endIndex) =

elite{archis(i)}.population;
 end
end
end

gaOuterLoopElitism.m

The function runs after each generation of the outer loop. Used for elite retention.

function [state,options,optchanged] =

gaOuterLoopElitism(options,state,flag)
% Global variables
global buffer elite
global generationsArray generationOuter
generationOuter = generationOuter + 1;
generationsArray{generationOuter,1} = [];

optchanged = false;
if strcmp(flag,'iter')
 % Update the elite array to buffer

510

 elite = buffer;
end
end

gaInnerLoopElitism.m

The function runs after each generation of the inner loop. Used for elite retention.

function [state,options,optchanged] =

gaInnerLoopElitism(options,state,flag, xOuter, nVars, archis,

eliteFraction, startArchis, trueHeterogeneity)
% Global variables
global buffer
global generationsArray generationOuter
optchanged = false;

if strcmp(flag,'done')
% xOuter
% fprintf('[INNER LOOP] Converged in %d

generations\n',state.Generation)

% nArchis = length(archis);
% nPopulation = size(state.Population,1);
% nElite = round(eliteFraction*nPopulation);
% % For each architecture
% for i = 1:nArchis
% if trueHeterogeneity
% nAgents = xOuter(i); % Number of agents for this

architecture
% else
% nAgents = 1;
% end
% % Reshape current architecture population
% temp = zeros(nAgents*nPopulation, nVars(i));
% for j = 1:nAgents
% startIndex = startArchis(i) + (j-1)*nVars(i);
% endIndex = startArchis(i) + j*nVars(i) - 1;
% temp((1+(j-1)*nPopulation):j*nPopulation,:) =

state.Population(:, startIndex:endIndex);
% end
% % Add final population to buffer
% buffer{archis(i)}.population = [buffer{archis(i)}.population;

temp];
% % Sort the buffer by corresponding scores
% scores = [buffer{archis(i)}.scores; repmat(state.Score,

nAgents, 1)];
% [scores,I] = sort(scores);
% buffer{archis(i)}.population =

buffer{archis(i)}.population(I,:);
% % Update current population elite (keep only the required

fraction)
% buffer{archis(i)}.scores = scores(1:nElite);

511

% buffer{archis(i)}.population =

buffer{archis(i)}.population(1:nElite,:);
% end

 generationsArray{generationOuter,1} =

[generationsArray{generationOuter,1}, state.Generation];
% fprintf('---\n')
end
end

gaEstimateTime.m

A function used to estimate the remaining time for the optimization to complete.

function [state,options,optchanged] =

gaEstimateTime(options,state,flag)
%GAOUTPUTFCNTEMPLATE Template to write custom OutputFcn for GA.
% [STATE, OPTIONS, OPTCHANGED] =

GAOUTPUTFCNTEMPLATE(OPTIONS,STATE,FLAG)
% where OPTIONS is an options structure used by GA.
%
% STATE: A structure containing the following information about the

state
% of the optimization:
% Population: Population in the current generation
% Score: Scores of the current population
% Generation: Current generation number
% StartTime: Time when GA started
% StopFlag: String containing the reason for stopping
% Selection: Indices of individuals selected for elite,
% crossover and mutation
% Expectation: Expectation for selection of individuals
% Best: Vector containing the best score in each

generation
% LastImprovement: Generation at which the last improvement in
% fitness value occurred
% LastImprovementTime: Time at which last improvement occurred
%
% FLAG: Current state in which OutputFcn is called. Possible values

are:
% init: initialization state
% iter: iteration state
% interrupt: intermediate state
% done: final state
%
% STATE: Structure containing information about the state of the
% optimization.
%
% OPTCHANGED: Boolean indicating if the options have changed.
%
% See also PATTERNSEARCH, GA, OPTIMOPTIONS

% Copyright 2004-2015 The MathWorks, Inc.

512

optchanged = false;

switch flag
 case 'init'
% fprintf('Started on %s\n', datestr(datetime('now')))
 case {'iter','interrupt'}
% estimated_final_generations = 30;
% elapsed = toc(state.StartTime);
% n = state.Generation;
% total = estimated_final_generations*elapsed/n;
% remaining = total - elapsed;
% fprintf('Generation %d [%03.0f%%] (elapsed: %fs, remaining:

%fs, total: %fs, end: %s)\n', n, 100*elapsed/total, elapsed, remaining,

total, datestr(datetime('now') + seconds(remaining)))
 fprintf('Generation %d\n',state.Generation)
 case 'done'
% fprintf('\nFinished on %s\n', datestr(datetime('now')))
% fprintf('\tGenerations: %d\n', state.Generation)
% fprintf('\tFunEval: %d\n', state.FunEval)
% fprintf('\tTotal time: %fs (%fs/generation)\n',

toc(state.StartTime), toc(state.StartTime)/state.Generation)
% fprintf('\tLastImprovement: %d (%fs elapsed since)\n',

state.LastImprovement, toc(state.LastImprovementTime))
end

B.2.3 Unit tests

The unit tests used to validate the optimization algorithm.

test.m

The main file running all the unit tests of the test campaign.

% Prepare workspace
clc
close all
clear global
clear

% % Run tests
% result = runtests('outerLoop/outerLoopTest.m');
% rt = table(result);
% disp(rt)
%
% result = runtests('innerLoop/innerLoopTest.m');
% rt = table(result);
% disp(rt)

513

result = runtests('completeOptimizer/completeOptimizerTest.m');
rt = table(result);
disp(rt)

testFitnessFunctionOuterLoop.m

The fitness function used by the outer loop for the unit tests. The function is described in

section 5.2.2.1 page 364.

function [fval,x,exitflag,output,population,scores] =

testFitnessFunctionOuterLoop(xOuter, ~)
nArchis = length(xOuter);
% Compute the offset by architecture
offsetsArchis = 1./(1 + (xOuter - (1:nArchis)).^2);
y = - sum(offsetsArchis);

% Assign output variables
fval = y;
x = [];
exitflag = 0;
output = [];
population = [];
scores = [];
end

testFitnessFunctionInnerLoop.m

The fitness function used by the inner loop for the unit tests. The function is described in

section 5.2.2.1 page 364.

function y = testFitnessFunctionInnerLoop(x, xOuter, nVars, archis,

trueHeretogeneity)
% Get number of architectures
nArchis = length(xOuter);

% Prepare offsets
% Each architecture function is a parabola offset by:
% 1) For design variables
% a) the index of its architecture
% b) then by a tenth of the number of agents for this architecture
% b) then by a hundredth of the index of each agent with this

architecture
% c) then by a thousandth of the index of the design variable for

this agent
% 2) For function value by 1/(1+(nAgents - i)^2) with i index of

architecture

514

%
% Example: fitness function for architecture 1, agent 2 is offset by 1

in its values
% and by 1.23 for variable 3, 1.22 for variable 2, etc.
m = sum(xOuter.*nVars);
offsetsVariables = zeros(1,m);
xBis = x;
% For each architecture
idx = 1;
idxArchi = 1;
for i = 1:nArchis
 % Number of agents for this architecture
 nAgents = xOuter(i);
 % Number of variables for this architecture
 nv = nVars(i);
 % For each agent with this architecture
 for j = 1:nAgents
 % For each variable of this agent
 for k = 1:nv
 % Prepare an equivalent design vector
 if trueHeretogeneity
 offsetsVariables(idx) = archis(i) + nAgents/10 + j/100

+ k/1000;
 else
 xBis(idx) = x(idxArchi + k - 1);
 offsetsVariables(idx) = archis(i) + nAgents/10 + 1/100

+ k/1000;
 end
 % Increment array index
 idx = idx + 1;
 end
 end

 % Increment architecture separation index
 if trueHeretogeneity
 % Each architecture has different design variables
 idxArchi = idxArchi + nAgents*nv;
 else
 % Similar architectures have the same design variables
 idxArchi = idxArchi + nv;
 end
end

% Compute the offset by architecture independently of the number of

variables
offsetsArchis = 1./(1 + (xOuter - archis).^2);

% Compute fitness function
y = sum((xBis - offsetsVariables).^2) - sum(offsetsArchis);
end

completeOptimizerTest.m

The unit test for the whole optimizer.

515

%% Main function to generate tests
function tests = completeOptimizerTest
tests = functiontests(localfunctions);
end

%% Test Functions
function testPartialHeterogeneityNoElitism(~)
% Test parameters
nArchis = randi(3);
nVars = randi(5,1,nArchis); % Number of variables per architecture
maxAgents = 6;
% TODO - change between GA and FF
solver = 'ga';

% Perform test
completeOptimizerTestFunction(nArchis, nVars, maxAgents, solver, false,

false, 0)
end

function testTrueHeterogeneityWithElitism(~)
% TODO
end

%% Optional file fixtures
function setupOnce(~) % do not change function name
% Prepare workspace
close all
clear global
clear

addpath('..')
addpath('../..')
end

function teardownOnce(~) % do not change function name
% change back to original path, for example
end

%% Optional fresh fixtures
function setup(~) % do not change function name
end

function teardown(~) % do not change function name
end

completeOptimizerTestFunction.m

function completeOptimizerTestFunction(nArchis, nVars, maxAgents,

solver, ...
 trueHeterogeneity, elitism, elitismFraction)
% Outer loop

===

516

optionsOuter = gaoptimset(...
 'Display', 'off',...
 'OutputFcns', {@gaEstimateTime},...
 'PlotFcn', {[]},...
 'PlotInterval', 1,...
 'PopulationSize', 50,...
 'TolFun', 1e-6,...
 'UseParallel', false);

optionsOuter.nArchis = nArchis; % Number of architectures
optionsOuter.maxAgents = maxAgents; % Maximum number of agents in the

group
optionsOuter.solver = solver;
optionsOuter.elitism = elitism;
optionsOuter.elitismFraction = elitismFraction;
optionsOuter.fitnessFcn = @loopInner;

% Inner loop

===
optionsInner = gaoptimset(...
 'TolCon', 1e-3,...
 'Display', 'none',...
 'OutputFcns', {[]},...
 'PlotFcn', {[]},...
 'PlotInterval', 1,...
 'PopulationSize', 200,...
 'TolFun', 1e-6,...
 'UseParallel', false);

% Custom options
optionsInner.fitnessFcn = @testFitnessFunctionInnerLoop;
optionsInner.trueHeterogeneity = trueHeterogeneity; % Regroup per

architecture or not
optionsInner.nVars = nVars; % Number of variables per architecture
optionsInner.elitism = false;

% Bounds
for i = 1:length(nVars)
 % Lower bounds
 optionsInner.lb{i} = zeros(1, nVars(i));
 % Upper bounds
 optionsInner.ub{i} = (nArchis + 3)*ones(1, nVars(i));
end

% Optimize

===
[xOut,~,~,~,~,~,xIn] = loopOuter(optionsOuter, optionsInner);

% Test outer loop

==
assert(sum(xOut - (1:nArchis)) == 0)

% Test inner loop

==
xOuter = xOut;

517

% Keep only non 0 architectures
nVars = nVars(xOuter > 0);
xOuter = xOuter(xOuter > 0);
tolerance = 1e-2;
nArchis = length(xOuter);

if trueHeterogeneity
 m = sum(xOuter.*nVars);
else
 m = sum(nVars);
end
xExpected = zeros(1,m);
% For each architecture
idx = 1;
for i = 1:nArchis
 % Number of agents for this architecture
 nAgents = xOuter(i);
 % Number of variables for this architecture
 nv = nVars(i);
 % For each agent with this architecture
 if trueHeterogeneity
 for j = 1:nAgents
 % For each variable of this agent
 for k = 1:nv
 % Prepare an analytical optimum vector
 xExpected(idx) = i + nAgents/10 + j/100 + k/1000;
 % Increment array index
 idx = idx + 1;
 end
 end
 else
 for k = 1:nv
 % Prepare an analytical optimum vector
 xExpected(idx) = i + nAgents/10 + 1/100 + k/1000;
 % Increment array index
 idx = idx + 1;
 end
 end
end

% Compare expected and actual optimum
assert(mean((xIn - xExpected).^2) < tolerance, sprintf('Norm2 error is

%f', mean((xIn - xExpected).^2)))
end

outerLoopTest.m

The unit test for the outer loop.

%% Main function to generate tests
function tests = outerLoopTest
tests = functiontests(localfunctions);

518

end

%% Test Functions
function testFFPartialHeterogeneity(~)
% Test parameters
nArchis = randi(3);
maxAgents = 6;
solver = 'ff';

% Perform test
outerLoopTestFunction(nArchis, maxAgents, solver)
end

function testGAPartialHeterogeneity(~)
% Test parameters
nArchis = randi(10);
maxAgents = sum(1:nArchis);
solver = 'ga';

% Perform test
outerLoopTestFunction(nArchis, maxAgents, solver)
end

%% Optional file fixtures
function setupOnce(~) % do not change function name
% Prepare workspace
close all
clear global
clear

addpath('..')
addpath('../..')
end

function teardownOnce(~) % do not change function name
% change back to original path, for example
end

%% Optional fresh fixtures
function setup(~) % do not change function name
end

function teardown(~) % do not change function name
end

outerLoopTestFunction.m

function outerLoopTestFunction(nArchis, maxAgents, solver)
% Outer loop

===
optionsOuter = gaoptimset(...
 'Display', 'off',...

519

 'OutputFcns', {[]},...
 'PlotFcn', {[]},...
 'PlotInterval', 1,...
 'PopulationSize', 50,...
 'TolFun', 1e-6,...
 'UseParallel', false);

optionsOuter.nArchis = nArchis; % Number of architectures
optionsOuter.maxAgents = maxAgents; % Maximum number of agents in the

group
optionsOuter.solver = solver;
optionsOuter.elitism = false;
optionsOuter.fitnessFcn = @testFitnessFunctionOuterLoop;

% Inner loop

===
optionsInner = [];

% Optimize

===
[x,~,~,~,~,~] = loopOuter(optionsOuter, optionsInner);

% Test
assert(sum(x - (1:nArchis)) == 0)
end

innerLoopTest.m

The unit test for the inner loop.

%% Main function to generate tests
function tests = innerLoopTest
tests = functiontests(localfunctions);
end

%% Test Functions
function testPartialHeterogeneity(~)
innerLoopTestFunction(false)
end

function testFullHeterogeneity(~)
innerLoopTestFunction(true)
end

%% Optional file fixtures
function setupOnce(~) % do not change function name
% Prepare workspace
close all
clear global
clear

addpath('..')

520

addpath('../..')
end

function teardownOnce(~) % do not change function name
% change back to original path, for example
end

%% Optional fresh fixtures
function setup(~) % do not change function name
end

function teardown(~) % do not change function name
end

innerLoopTestFunction.m

function innerLoopTestFunction(trueHeterogeneity)
% General scope variables

==
% Generate random group with random architectures
nArchis = randi(5);
xOuter = randi([0 5],1,nArchis); % Number of agents for each

architecture
nVars = randi(5,1,nArchis); % Number of variables per architecture

% Ensure that there is at least one agent in the group
while sum(xOuter) < 1
 nArchis = randi(5);
 xOuter = randi([0 5],1,nArchis); % Number of agents for each

architecture
 nVars = randi(5,1,nArchis); % Number of variables per architecture
end

% Inner loop options

===
optionsInner = gaoptimset(...
 'TolCon', 1e-3,...
 'Display', 'none',...
 'OutputFcns', {[]},...
 'PlotFcn', {[]},...
 'PlotInterval', 1,...
 'PopulationSize', 200,...
 'TolFun', 1e-6,...
 'UseParallel', false);

% Custom options
optionsInner.fitnessFcn = @testFitnessFunctionInnerLoop;
optionsInner.trueHeterogeneity = trueHeterogeneity; % Regroup per

architecture or not
optionsInner.nVars = nVars; % Number of variables per architecture
optionsInner.elitism = false;

% Bounds

521

for i = 1:length(nVars)
 % Lower bounds
 optionsInner.lb{i} = zeros(1, nVars(i));
 % Upper bounds
 optionsInner.ub{i} = (nArchis + 3)*ones(1, nVars(i));
end

% Optimize

===
[~,x,~,~,~,~] = loopInner(xOuter, optionsInner);

% Test

===
% Keep only non 0 architectures
nVars = nVars(xOuter > 0);
xOuter = xOuter(xOuter > 0);
tolerance = 1e-2;
nArchis = length(xOuter);

if trueHeterogeneity
 m = sum(xOuter.*nVars);
else
 m = sum(nVars);
end
xExpected = zeros(1,m);
% For each architecture
idx = 1;
for i = 1:nArchis
 % Number of agents for this architecture
 nAgents = xOuter(i);
 % Number of variables for this architecture
 nv = nVars(i);
 % For each agent with this architecture
 if trueHeterogeneity
 for j = 1:nAgents
 % For each variable of this agent
 for k = 1:nv
 % Prepare an analytical optimum vector
 xExpected(idx) = i + nAgents/10 + j/100 + k/1000;
 % Increment array index
 idx = idx + 1;
 end
 end
 else
 for k = 1:nv
 % Prepare an analytical optimum vector
 xExpected(idx) = i + nAgents/10 + 1/100 + k/1000;
 % Increment array index
 idx = idx + 1;
 end
 end
end

% Compare expected and actual optimum
assert(mean((x - xExpected).^2) < tolerance, sprintf('Norm2 error is

%f', mean((x - xExpected).^2)))

522

end

B.2.4 Plots for the test function

The scripts used to analyze the behavior of the test function described in section 5.2.2.1

page 364.

plotOuterLoopOffsets.m

A plot showing how the function is affected by changes in the outer loop design vector.

% Prepare workspace
clc
close all
clear global
clear

offset = zeros(5,3);
for i = 1:3
 for j = 1:5
 % Compute offset
 Xout = [i j];
 archis = 1:length(Xout);
 offset(j,i) = -sum(1./(1 + (Xout - archis).^2));
 end
end

N1 = 1:3;
N2 = 1:0.1:5;
offset_continuous = zeros(length(N2),length(N1));
for i = 1:length(N1)
 for j = 1:length(N2)
 % Compute offset
 Xout = [N1(i) N2(j)];
 archis = 1:length(Xout);
 offset_continuous(j,i) = -sum(1./(1 + (Xout - archis).^2));
 end
end

%% Plot
figure
c = get(gca,'colororder');

hold on

plot(N2,offset_continuous,'--')

523

b = bar(offset);
b(1).FaceColor = c(1,:);
b(2).FaceColor = c(2,:);
b(3).FaceColor = c(3,:);

hold off
xlabel('N_2','FontName','Times New Roman','FontSize',12)
ylabel('f_{out}(X_{out})','FontName','Times New Roman','FontSize',12)
h = legend(b,{'N_1 = 1','N_1 = 2','N_1 = 3'},'Location','SouthEast');
set(h,'FontName','Times New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)

plotOuterLoop.m

A plot of the outer loop part of the test function.

% Prepare workspace
clc
close all
clear global
clear

addpath('../models')
addpath('../optimizer')

% Number of architectures
nArchis = 2;
archis = [1 2];

% Out-of-loop variables

==
nVars = [1 1]; % Number of variables per architecture

% Inner loop options
optionsInner = gaoptimset(...
 'TolCon', 1e-3,...
 'Display', 'none',...
 'OutputFcns', {[]},...
 'PlotFcn', {[]},...
 'PlotInterval', 1,...
 'PopulationSize', 200,...
 'TolFun', 1e-6,...
 'UseParallel', false);

% Custom options
optionsInner.fitnessFcn = @testFitnessFunctionInnerLoop;
optionsInner.trueHeterogeneity = false; % Regroup per architecture or

not
optionsInner.nVars = nVars; % Number of variables per architecture
optionsInner.elitism = false;

% Bounds

524

for i = 1:length(nVars)
 % Lower bounds
 optionsInner.lb{i} = zeros(1, nVars(i));
 % Upper bounds
 optionsInner.ub{i} = (nArchis + 3)*ones(1, nVars(i));
end

n1Max = 5;
n2Max = 5;
[N1,N2] = meshgrid(1:n1Max, 1:n2Max);
Xopt = cell(n1Max, n2Max);
Fval = zeros(n1Max, n2Max);
for m = 1:size(N1,1)
 for n = 1:size(N1,2)
 fprintf('Case %d/%d\n', n+(m-1)*n1Max, n1Max*n2Max)

 xOuter = [N1(m,n) N2(m,n)]; % Number of agents for each

architecture

 % Compute range for the initial population --------------------

 % Remove absent architectures from the group vectors
 nVarsBis = nVars(xOuter > 0);
 xOuterBis = xOuter(xOuter > 0);

 % Compute number of variables depending on heterogeneity level
 if optionsInner.trueHeterogeneity
 nVarsTotal = sum(xOuterBis.*nVarsBis);
 else
 nVarsTotal = sum(nVarsBis);
 end

 % Compute bounds for the variables
 lb = zeros(1, nVarsTotal);
 ub = zeros(1, nVarsTotal);
 % For each architecture
 idx = 1;
 for i = 1:length(xOuter)
 % Number of agents for this architecture
 nAgents = xOuter(i);
 % Number of variables for this architecture
 nv = nVars(i);
 % For each variable the architecture
 for k = 1:nv
 if optionsInner.trueHeterogeneity
 % For each agent with this architecture
 for j = 1:nAgents
 % Get upper and lower bounds
 lb(idx) = optionsInner.lb{i}(k);
 ub(idx) = optionsInner.ub{i}(k);

 % Increment array index
 idx = idx + 1;
 end
 else
 % Get upper and lower bounds

525

 lb(idx) = optionsInner.lb{i}(k);
 ub(idx) = optionsInner.ub{i}(k);

 % Increment array index
 idx = idx + 1;
 end
 end
 end

 optionsInner.PopInitRange = [lb; ub];

 % Optimize --

 [fval,x_opt,~,~,~,~] = loopInner2(xOuter, optionsInner);

 % Store results ---

 Xopt{m,n} = x_opt;
 Fval(m,n) = fval;
 end
end

%% Plot

==
res = 0.01;

% Architecture 1 --

figure
hold on
my_legend = cell(1,n1Max+1);
my_legend{end} = 'Optima';
p = zeros(1, n1Max+1);

m = 1; % Number of architecture 2
for n = 1:n1Max
 xOpt = Xopt{m,n};
 fval = Fval(m,n);
 x1 = lb(1):res:ub(1);
 x2 = xOpt(2);
 y = zeros(size(x1));
 xOuter = [N1(m,n), N2(m,n)];
 for i = 1:length(x1)
 y(i) = optionsInner.fitnessFcn([x1(i), x2], xOuter, nVars,

archis, optionsInner.trueHeterogeneity);
 end

 p(end) = plot(xOpt(1),fval,'*r');
 plot([xOpt(1), xOpt(1)],[10, fval],'--','color',0.8*ones(3,1))
 plot([0, xOpt(1)],[fval, fval],'--','color',0.8*ones(3,1))
 p(n) = plot(x1,y);
 text(xOpt(1), 10.3, sprintf('%3.3f',

xOpt(1)),'Color',0.3*ones(3,1),'HorizontalAlignment','left','Rotation',

45)

526

 text(0, fval, sprintf('%3.1f', fval),

'Color',0.3*ones(3,1),'HorizontalAlignment','left')
 my_legend{n} = sprintf('n_1 = %d', n);
end

hold off
xlabel('x_1')
ylabel('y')
legend(p, my_legend,'Location','northeast')
axis([0.25 2.5 -10 10])

% % Architecture 2 --

figure
hold on
my_legend = cell(1,n2Max+1);
my_legend{end} = 'Optima';
p = zeros(1, n2Max+1);

n = 1; % Number of architecture 2
for m = 1:n2Max
 xOpt = Xopt{m,n};
 fval = Fval(m,n);
 x1 = xOpt(1);
 x2 = lb(1):res:ub(1);
 y = zeros(size(x2));
 xOuter = [N1(m,n), N2(m,n)];
 for i = 1:length(x2)
 y(i) = optionsInner.fitnessFcn([x1, x2(i)], xOuter, nVars,

archis, optionsInner.trueHeterogeneity);
 end

 p(end) = plot(xOpt(2),fval,'*r');
 plot([xOpt(2), xOpt(2)],[20, fval],'--','color',0.8*ones(3,1))
 plot([0, xOpt(2)],[fval, fval],'--','color',0.8*ones(3,1))
 p(m) = plot(x2,y);
 text(xOpt(2), 21, sprintf('%3.3f',

xOpt(2)),'Color',0.3*ones(3,1),'HorizontalAlignment','left','Rotation',

45)
 text(0, fval, sprintf('%3.1f', fval),

'Color',0.3*ones(3,1),'HorizontalAlignment','left')
 my_legend{m} = sprintf('n_2 = %d', m);
end

hold off
xlabel('x_2')
ylabel('y')
legend(p, my_legend,'Location','southeast')
% axis([0.5 5 -15 20])

plotInnerLoop.m

A display of how the test function values are affected by the inner loop design vector.

527

% Prepare workspace
clc
close all
clear global
clear

addpath('../../models')
addpath('../../optimizer')

% General scope variables

==
% Generate random group with random architectures
nArchis = 2;
xOuter = [3 2]; % Number of agents for each architecture
archis = [1 2]; % Architecture indices
nVars = [1 1]; % Number of variables per architecture

% Inner loop options

===
optionsInner = gaoptimset(...
 'TolCon', 1e-3,...
 'Display', 'none',...
 'OutputFcns', {[]},...
 'PlotFcn', {[]},...
 'PlotInterval', 1,...
 'PopulationSize', 200,...
 'TolFun', 1e-6,...
 'UseParallel', false);

% Custom options
optionsInner.fitnessFcn = @testFitnessFunctionInnerLoop;
optionsInner.trueHeterogeneity = false; % Regroup per architecture or

not
optionsInner.nVars = nVars; % Number of variables per architecture
optionsInner.elitism = false;

% Bounds
for i = 1:length(nVars)
 % Lower bounds
 optionsInner.lb{i} = zeros(1, nVars(i));
 % Upper bounds
 optionsInner.ub{i} = (nArchis + 3)*ones(1, nVars(i));
end

% Compute range for the initial population ----------------------------

% Remove absent architectures from the group vectors
nVarsBis = nVars(xOuter > 0);
xOuterBis = xOuter(xOuter > 0);

% Compute number of variables depending on heterogeneity level
if optionsInner.trueHeterogeneity
 nVarsTotal = sum(xOuterBis.*nVarsBis);
else
 nVarsTotal = sum(nVarsBis);

528

end

% Compute bounds for the variables
lb = zeros(1, nVarsTotal);
ub = zeros(1, nVarsTotal);
% For each architecture
idx = 1;
for i = 1:length(xOuter)
 % Number of agents for this architecture
 nAgents = xOuter(i);
 % Number of variables for this architecture
 nv = nVars(i);
 % For each variable the architecture
 for k = 1:nv
 if optionsInner.trueHeterogeneity
 % For each agent with this architecture
 for j = 1:nAgents
 % Get upper and lower bounds
 lb(idx) = optionsInner.lb{i}(k);
 ub(idx) = optionsInner.ub{i}(k);

 % Increment array index
 idx = idx + 1;
 end
 else
 % Get upper and lower bounds
 lb(idx) = optionsInner.lb{i}(k);
 ub(idx) = optionsInner.ub{i}(k);

 % Increment array index
 idx = idx + 1;
 end
 end
end

optionsInner.PopInitRange = [lb; ub];

% Optimize

===
[fval,xOpt,~,~,~,~] = loopInner2(xOuter, optionsInner);

%% Plot

==
res = 0.01;

% Architecture 1 --

x1 = lb(1):res:ub(1);
x2 = xOpt(2);
y = zeros(size(x1));
for i = 1:length(x1)
 y(i) = optionsInner.fitnessFcn([x1(i), x2], xOuter, nVars, archis,

optionsInner.trueHeterogeneity);
end

529

figure
hold on
plot(xOpt(1),fval,'*r')
plot(x1,y)
plot([xOpt(1), xOpt(1)],[-10, fval],'--r')
plot([0, xOpt(1)],[fval, fval],'--r')
text(xOpt(1), -14, sprintf('%3.3f', xOpt(1)), 'Color', 'r',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
text(-0.3, fval - 0.5, sprintf('%3.2f', fval), 'Color', 'r',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
hold off
xlabel('x_1','FontName','Times New Roman','FontSize',12)
ylabel('y','FontName','Times New Roman','FontSize',12)
h = legend('Optimum');
set(h,'FontName','Times New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)

% Architecture 2 --

x1 = xOpt(1);
x2 = lb(1):res:ub(1);
y = zeros(size(x2));
for i = 1:length(x2)
 y(i) = optionsInner.fitnessFcn([x1, x2(i)], xOuter, nVars, archis,

optionsInner.trueHeterogeneity);
end

figure
hold on
plot(xOpt(2),fval,'*r')
plot(x2,y)
plot([xOpt(2), xOpt(2)],[-10, fval],'--r')
plot([0, xOpt(2)],[fval, fval],'--r')
text(xOpt(2), -12.0, sprintf('%3.3f', xOpt(2)), 'Color', 'r',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
text(-0.3, fval, sprintf('%3.2f', fval), 'Color', 'r',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
hold off
xlabel('x_2','FontName','Times New Roman','FontSize',12)
ylabel('y','FontName','Times New Roman','FontSize',12)
h = legend('Optimum');
set(h,'FontName','Times New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)

% Fitness function --

[X1, X2] = meshgrid(lb(1):res:ub(1), lb(1):res:ub(2));
Y = zeros(size(X1));
for i = 1:size(X1,1)
 for j = 1:size(X1,2)
 Y(i,j) = optionsInner.fitnessFcn([X1(i,j), X2(i,j)], xOuter,

nVars, archis, optionsInner.trueHeterogeneity);

530

 end
end

figure
hold on
[C,h] = contourf(X1,X2,Y,10);
clabel(C,h,'FontName','Times New Roman','FontSize',12)
plot(xOpt(1), xOpt(2),'*r')
plot([xOpt(1), xOpt(1)], [0, xOpt(2)], '--r')
plot([0, xOpt(1)], [xOpt(2), xOpt(2)], '--r')
text(-0.4, xOpt(2), sprintf('%3.3f', xOpt(2)), 'Color', 'r',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
text(xOpt(1), -0.4, sprintf('%3.3f', xOpt(1)), 'Color', 'r',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
text(1.05*xOpt(1), 1.05*xOpt(2), sprintf('%3.2f', fval), 'Color', 'k',

'HorizontalAlignment', 'left','FontName','Times New

Roman','FontSize',12)
hold off
xlabel('x_1','FontName','Times New Roman','FontSize',12)
ylabel('x_2','FontName','Times New Roman','FontSize',12)
h = legend('Test function contours', 'Optimum');
set(h,'FontName','Times New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)
axis equal

print -dmeta -r600;

plotConstraintInnerLoop.m

A display of how the optimum of the test function is affected when the problem is

constrained. The plot is done only for the inner loop part of the test function.

% Prepare workspace
clc
close all
clear global
clear

addpath('../../models')
addpath('../../optimizer')

% General scope variables

==
% Generate random group with random architectures
nArchis = 2;
xOuter = [3 2]; % Number of agents for each architecture
archis = [1 2]; % Architecture indices
nVars = [1 1]; % Number of variables per architecture

531

% Inner loop options

===
optionsInner = gaoptimset(...
 'TolCon', 1e-3,...
 'Display', 'none',...
 'OutputFcns', {[]},...
 'PlotFcn', {[]},...
 'PlotInterval', 1,...
 'PopulationSize', 200,...
 'TolFun', 1e-6,...
 'UseParallel', false);

% Custom options
optionsInner.fitnessFcn = @testFitnessFunctionInnerLoop;
optionsInner.trueHeterogeneity = false; % Regroup per architecture or

not
optionsInner.nVars = nVars; % Number of variables per architecture
optionsInner.elitism = false;

% Bounds
for i = 1:length(nVars)
 % Lower bounds
 optionsInner.lb{i} = zeros(1, nVars(i));
 % Upper bounds
 optionsInner.ub{i} = (nArchis + 3)*ones(1, nVars(i));
end

% Compute range for the initial population ----------------------------

% Remove absent architectures from the group vectors
nVarsBis = nVars(xOuter > 0);
xOuterBis = xOuter(xOuter > 0);

% Compute number of variables depending on heterogeneity level
if optionsInner.trueHeterogeneity
 nVarsTotal = sum(xOuterBis.*nVarsBis);
else
 nVarsTotal = sum(nVarsBis);
end

% Compute bounds for the variables
lb = zeros(1, nVarsTotal);
ub = zeros(1, nVarsTotal);
% For each architecture
idx = 1;
for i = 1:length(xOuter)
 % Number of agents for this architecture
 nAgents = xOuter(i);
 % Number of variables for this architecture
 nv = nVars(i);
 % For each variable the architecture
 for k = 1:nv
 if optionsInner.trueHeterogeneity
 % For each agent with this architecture
 for j = 1:nAgents
 % Get upper and lower bounds

532

 lb(idx) = optionsInner.lb{i}(k);
 ub(idx) = optionsInner.ub{i}(k);

 % Increment array index
 idx = idx + 1;
 end
 else
 % Get upper and lower bounds
 lb(idx) = optionsInner.lb{i}(k);
 ub(idx) = optionsInner.ub{i}(k);

 % Increment array index
 idx = idx + 1;
 end
 end
end

optionsInner.PopInitRange = [lb; ub];

% Optimize

===
[fval,xOpt,~,~,~,~] = loopInner2(xOuter, optionsInner);

%% Plot

==
res = 0.01;

% Architecture 1 --

x1 = lb(1)-1:res:ub(1)+1;
x2 = xOpt(2)+1;
y = zeros(size(x1));
for i = 1:length(x1)
 y(i) = optionsInner.fitnessFcn([x1(i), x2], xOuter, nVars, archis,

optionsInner.trueHeterogeneity);
end

fval = optionsInner.fitnessFcn([xOpt(1), xOpt(2)+1], xOuter, nVars,

archis, optionsInner.trueHeterogeneity);
fval2 = optionsInner.fitnessFcn([xOpt(1)+1, x2], xOuter, nVars, archis,

optionsInner.trueHeterogeneity);

figure
hold on
plot(xOpt(1),fval,'*r')
plot(xOpt(1) + 1, fval2,'*m')
plot(x1,y)
plot([xOpt(1), xOpt(1)],[-10, fval],'--r')
plot([lb(1)-1, xOpt(1)],[fval, fval],'--r')
text(xOpt(1), -17, sprintf('%3.3f', xOpt(1)), 'Color', 'r',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
text(lb(1)-1-0.5, fval - 0.5, sprintf('%3.2f', fval), 'Color', 'r',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)

533

plot([xOpt(1) + 1, xOpt(1) + 1],[-10, 70],'-m')
plot([lb(1)-1, xOpt(1)+1],[fval2, fval2],'--m')
text(xOpt(1) + 1, -17, sprintf('%3.3f', xOpt(1) + 1), 'Color', 'm',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
text(lb(1)-1-0.5, fval2 - 0.5, sprintf('%3.2f', fval2), 'Color', 'm',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
hold off
xlabel('x_1','FontName','Times New Roman','FontSize',12)
ylabel('y','FontName','Times New Roman','FontSize',12)
h = legend('Unconstrained optimum','Constrained

optimum','location','northoutside');
set(h,'FontName','Times New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)

% Architecture 2 --

x1 = xOpt(1)+1;
x2 = lb(1)-1:res:ub(1)+1;
y = zeros(size(x2));
for i = 1:length(x2)
 y(i) = optionsInner.fitnessFcn([x1, x2(i)], xOuter, nVars, archis,

optionsInner.trueHeterogeneity);
end

fval = optionsInner.fitnessFcn([xOpt(1)+1, xOpt(2)], xOuter, nVars,

archis, optionsInner.trueHeterogeneity);
fval3 = optionsInner.fitnessFcn([x1, xOpt(2)+1], xOuter, nVars, archis,

optionsInner.trueHeterogeneity);

figure
hold on
plot(xOpt(2),fval,'*r')
plot(xOpt(2)+1,fval3,'*m')
plot(x2,y)
plot([xOpt(2), xOpt(2)],[-10, fval],'--r')
plot([lb(2)-1, xOpt(2)],[fval, fval],'--r')
text(xOpt(2), -15, sprintf('%3.3f', xOpt(2)), 'Color', 'r',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
text(lb(2)-1-0.5, fval, sprintf('%3.2f', fval), 'Color', 'r',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)

plot([xOpt(2) + 1, xOpt(2) + 1],[-10, 35],'-m')
plot([lb(2)-1, xOpt(2)+1],[fval3, fval3],'--m')
text(xOpt(2) + 1, -15, sprintf('%3.3f', xOpt(2) + 1), 'Color', 'm',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
text(lb(2)-1-0.5, fval3, sprintf('%3.2f', fval3), 'Color', 'm',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
hold off
xlabel('x_2','FontName','Times New Roman','FontSize',12)

534

ylabel('y','FontName','Times New Roman','FontSize',12)
h = legend('Unconstrained optimum','Constrained

optimum','location','northoutside');
set(h,'FontName','Times New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)

% Fitness function --

[X1, X2] = meshgrid(lb(1)-1:res:ub(1)+1, lb(1)-1:res:ub(2)+1);
Y = zeros(size(X1));
for i = 1:size(X1,1)
 for j = 1:size(X1,2)
 Y(i,j) = optionsInner.fitnessFcn([X1(i,j), X2(i,j)], xOuter,

nVars, archis, optionsInner.trueHeterogeneity);
 end
end

figure
hold on
[C,h] = contourf(X1,X2,Y,10);
clabel(C,h,'FontName','Times New Roman','FontSize',12)
plot(xOpt(1), xOpt(2),'*r')
plot(xOpt(1)+1, xOpt(2)+1,'*m')
plot([xOpt(1), xOpt(1)], [lb(2)-1, xOpt(2)], '--r')
plot([lb(1)-1, xOpt(1)], [xOpt(2), xOpt(2)], '--r')
text(lb(1)-1-0.4, xOpt(2), sprintf('%3.3f', xOpt(2)), 'Color', 'r',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
text(xOpt(1), lb(2)-1-.55, sprintf('%3.3f', xOpt(1)), 'Color', 'r',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
text(1.05*xOpt(1), 1.05*xOpt(2), sprintf('%3.2f', fval), 'Color', 'r',

'HorizontalAlignment', 'left','FontName','Times New

Roman','FontSize',12)

plot([xOpt(1)+1, xOpt(1)+1], [lb(2)-1, xOpt(2)+1], '-m')
plot([lb(1)-1, xOpt(1)+1], [xOpt(2)+1, xOpt(2)+1], '-m')
text(lb(1)-1-0.4, xOpt(2)+1, sprintf('%3.3f', xOpt(2)+1), 'Color', 'm',

'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
text(xOpt(1)+1, lb(2)-1-0.55, sprintf('%3.3f', xOpt(1)+1), 'Color',

'm', 'HorizontalAlignment', 'center','FontName','Times New

Roman','FontSize',12)
text(1.05*xOpt(1)+1, 1.05*xOpt(2)+1, sprintf('%3.2f', fval3), 'Color',

'm', 'HorizontalAlignment', 'left','FontName','Times New

Roman','FontSize',12)
hold off
xlabel('x_1','FontName','Times New Roman','FontSize',12)
ylabel('x_2','FontName','Times New Roman','FontSize',12)
h = legend('Test function contours', 'Unconstrained optimum',

'Constrained optimum','location','northoutside');
set(h,'FontName','Times New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)
axis equal

print -dmeta -r600;

535

loopOuter2.m

A modified version of the outer loop of the optimization algorithm to be used in the

developing phase.

function [x,fval,exitflag,output,population,scores] =

loopOuter2(optionsOuter, optionsInner)
global buffer elite
if optionsOuter.elitism
 % Initialize elitism retention variables
 buffer = cell(1, optionsOuter.nArchis);
 elite = cell(1, optionsOuter.nArchis);
 optionsInner.elitism = true;
 for i = 1:optionsOuter.nArchis
 buffer{i}.population = [];
 buffer{i}.scores = [];
 end
else
 optionsInner.elitism = false;
end

% Initialization
nArchis = optionsOuter.nArchis;

if strcmp(optionsOuter.solver, 'ga')
 % Define optimization genetic algorithm problem
 problem = struct;
 problem.fitnessfcn = @(x)optionsOuter.fitnessFcn(x, optionsInner);
 problem.nvars = nArchis;
 problem.Aineq = [ones(1, nArchis);-ones(1,nArchis)];
 problem.Bineq = [optionsOuter.maxAgents; -1];
 problem.Aeq = [];
 problem.beq = [];
 problem.lb = zeros(1, nArchis);
 problem.ub = optionsOuter.maxAgents*ones(1, nArchis);
 problem.nonlcon = [];
 problem.intcon = 1:nArchis;
 problem.solver = 'ga';
 problem.options = optionsOuter;

 % Optimize
 [x,fval,exitflag,output,population,scores] = ga(problem);
elseif strcmp(optionsOuter.solver, 'ff')
 % Generate full factorial
 dFF = fullfact(optionsOuter.maxAgents*ones(1,nArchis));
 % Keep only groups below maxAgents agents
 indices = sum(dFF,2) <= optionsOuter.maxAgents;
 dFF = dFF(indices,:);

 % Evaluate fitness over full factorial

536

 n = size(dFF,1);
 fitness = zeros(n,1);

 startTime = tic; % Start timer
 if ~strcmp(optionsOuter.Display,'off')
 fprintf('Started on %s\n', datetime('now'))
 end

 for i = 1:n
 % Run inner loop
 fitness(i) = optionsOuter.fitnessFcn(dFF(i,:), optionsInner);

 % Estimate remaining time
 elapsed = toc(startTime);
 total = n*elapsed/i;
 remaining = total - elapsed;
 if strcmp(optionsOuter.Display,'iter')
 fprintf('[%03.0f%% (%d/%d)] (elapsed: %fs, remaining: %fs,

total: %fs)\n', 100*i/n, i, n, elapsed, remaining, total)
 end
 end

 % Display
 if ~strcmp(optionsOuter.Display,'off')
 fprintf('\nFinished on %s\n', datetime('now'));
 fprintf('\tIterations: %d\n', n)
 fprintf('\tFunEval: %d\n', n)
 fprintf('\tTotal time: %fs (%fs/iteration)\n', toc(startTime),

toc(startTime)/n)
 end

 % Take best architecture
 [M,I] = min(fitness);
 x = dFF(I,:);
 fval = M;
 exitflag = 1;
 output = [];
 population = dFF;
 scores = fitness;
else
 error('Solver argument to outerLoop must be either ''ga'' or

''ff''.')
end
end

loopInner2.m

A modified version of the inner loop of the optimization algorithm to be used in the

developing phase.

537

function [fval,x,exitflag,output,population,scores] =

loopInner2(xOuter, optionsInner)
global elite
% Vector storing architectures in use
archis = 1:length(xOuter);

% Remove absent architectures from the group vectors
toKeep = xOuter > 0;
nVars = optionsInner.nVars;
nVars = nVars(toKeep);
optionsInner.nVars = nVars;
optionsInner.lb = optionsInner.lb(toKeep);
optionsInner.ub = optionsInner.ub(toKeep);
archis = archis(toKeep);
xOuter = xOuter(toKeep);

% Compute number of variables depending on heterogeneity level
if optionsInner.trueHeterogeneity
 nVarsTotalArchis = xOuter.*nVars; % Total variables per

architecture
else
 nVarsTotalArchis = nVars;
end
nVarsTotal = sum(nVarsTotalArchis);

% Compute start indices for each architecture
nArchis = length(xOuter);
startArchis = ones(1,nArchis);
for i = 2:nArchis
 startArchis(i) = startArchis(i-1) + nVarsTotalArchis(i-1);
end

% Compute bounds for the variables
[lb, ub] = createBounds(xOuter, optionsInner.lb, optionsInner.ub,

nVarsTotal, optionsInner.nVars, optionsInner.trueHeterogeneity);

% Compute range for the initial population
optionsInner.PopInitRange = [lb; ub];

% Convey variables to the output function
if optionsInner.elitism == true
 optionsInner.OutputFcns =

{@(options,state,flag)gaInnerLoopElitism(options,state,flag,xOuter,nVar

s,archis,optionsInner.eliteFraction,startArchis)};
end

% TODO REMOVE HACK
% optionsInner.OutputFcns =

{@(options,state,flag)gaInnerLoopElitism(options,state,flag,xOuter,nVar

s,archis,optionsInner.eliteFraction,startArchis)};
% TODO REMOVE HACK - Compute the expected optimum
% offsetsArchis = 1./(1 + (xOuter - archis).^2);
% optionsInner.FitnessLimit = -.99*sum(offsetsArchis);

% If all elite cells are filled

538

if optionsInner.elitism == true && sum(cellfun(@isempty,elite)) == 0
 % Initialize population to elite
 optionsInner.InitialPopulation =

generateInitialPopulation(xOuter,elite,nVars,archis,startArchis,nVarsTo

tal,optionsInner.trueHeterogeneity);
end

% Define optimization problem
problem = struct;
problem.fitnessfcn = @(x)optionsInner.fitnessFcn(x, xOuter,

optionsInner.nVars, archis, optionsInner.trueHeterogeneity);
problem.nvars = nVarsTotal;
problem.Aineq = [];
problem.Bineq = [];
problem.Aeq = [];
problem.beq = [];
problem.lb = lb;
problem.ub = ub;
problem.nonlcon = [];
problem.intcon = [];
problem.solver = 'ga';
problem.options = optionsInner;

% Optimize
[x,fval,exitflag,output,population,scores] = ga(problem);

% TODO remove this
% fprintf('Status: %d (%d generations)\n',exitflag, output.generations)
end

function [lb, ub] = createBounds(xOuter, lbArchis, ubArchis,

nVarsTotal, nVars, trueHeterogeneity)
% Initialization
lb = zeros(1, nVarsTotal);
ub = zeros(1, nVarsTotal);

% For each architecture
idx = 1;
for i = 1:length(xOuter)
 % Number of agents for this architecture
 nAgents = xOuter(i);
 % Number of variables for this architecture
 nv = nVars(i);
 % For each variable the architecture
 for k = 1:nv
 if trueHeterogeneity
 % For each agent with this architecture
 for j = 1:nAgents
 % Get upper and lower bounds
 lb(idx) = lbArchis{i}(k);
 ub(idx) = ubArchis{i}(k);

 % Increment array index
 idx = idx + 1;
 end
 else

539

 % Get upper and lower bounds
 lb(idx) = lbArchis{i}(k);
 ub(idx) = ubArchis{i}(k);

 % Increment array index
 idx = idx + 1;
 end
 end
end
end

function population =

generateInitialPopulation(xOuter,elite,nVars,archis,startArchis,nVarsTo

tal,trueHeterogeneity)
% Initialization
population = zeros(size(elite{1}.scores,1), nVarsTotal);
nArchis = length(xOuter);

if trueHeterogeneity == true
 % For each architecture
 for i = 1:nArchis
 % For each agent with this architecture
 for j = 1:xOuter(i)
 startIndex = startArchis(i) + (j-1)*nVars(i);
 endIndex = startIndex + nVars(i) - 1;
 population(:,startIndex:endIndex) =

elite{archis(i)}.population;
 end
 end
else
 % For each architecture
 for i = 1:nArchis
 startIndex = startArchis(i);
 endIndex = startIndex + nVars(i) - 1;
 population(:,startIndex:endIndex) =

elite{archis(i)}.population;
 end
end
end

B.2.5 Plots optimizer

The files used to generate the plots presented in section 5.2.3 (see page 376).

runReplication.m

A script setting up a proper optimization problem with the test function and carrying out

the optimization. The results are saved in a folder under a replication.mat file.

540

function runReplication(folderName, elitism, eliteFraction)
% Prepare workspace
clc
close all
clear global
clearvars -except folderName elitism eliteFraction

addpath('../../models')
addpath('../../optimizer')

global generationsArray generationOuter
generationsArray = {[]};
generationOuter = 1;

% Outer loop

===
nArchis = 3;
maxAgents = 6;
nVars = [2 3 1];
solver = 'ga';
trueHeterogeneity = false;

optionsOuter = gaoptimset(...
 'Display', 'none',...
 'OutputFcns', {@gaOuterLoopElitism, @gaEstimateTime},...
 'PlotFcn', {@gaplotbestf},...
 'PlotInterval', 1,...
 'PopulationSize', 50,...
 'StallGenLimit', 20,...
 'TolFun', 1e-6,...
 'UseParallel', false,...
 'Vectorized', 'off');

optionsOuter.nArchis = nArchis; % Number of architectures
optionsOuter.maxAgents = maxAgents; % Maximum number of agents in the

group
optionsOuter.solver = solver;
optionsOuter.fitnessFcn = @loopInner;
optionsOuter.elitism = elitism;

% Inner loop

===
optionsInner = gaoptimset(...
 'TolCon', 1e-3,...
 'Display', 'none',...
 'PlotFcn', {[]},...
 'PlotInterval', 1,...
 'PopulationSize', 200,...
 'StallGenLimit', 20,...
 'TolFun', 1e-6,...
 'UseParallel', false);

% Custom options
optionsInner.fitnessFcn = @testFitnessFunctionInnerLoop;

541

optionsInner.trueHeterogeneity = trueHeterogeneity; % Regroup per

architecture or not
optionsInner.nVars = nVars; % Number of variables per architecture
optionsInner.eliteFraction = eliteFraction;

% Bounds
for i = 1:length(nVars)
 % Lower bounds
 optionsInner.lb{i} = zeros(1, nVars(i));
 % Upper bounds
 optionsInner.ub{i} = (nArchis + 3)*ones(1, nVars(i));
end

% Optimize

===
[x,fval,exitflag,output,population,scores] = loopOuter(optionsOuter,

optionsInner);

% Save results

===
% Find unique file name
i = 1;
filename = sprintf(strcat(folderName,'/replication_%04d.mat'),i);
while i < 10000 && exist(filename,'file') == 2
 filename = sprintf(strcat(folderName,'/replication_%04d.mat'),i);
 i = i+1;
end
save(filename)
end

plotGAvsFullFactorial.m

Comparison between the full factorial approach and the genetic algorithm approach for the

outer loop optimizer.

% Prepare workspace
clc
close all
clear global
clear

addpath('../models')
addpath('../optimizer')

% Variables
nMax = 10; % Maximum number of agents per architecture
nArchis = 1:10; % Number of architectures

%% Assess function calls for the full factorial
fullFact = nMax.^nArchis; % Number of function calls with

a full factorial DOE

542

nMaxVec = [2:9,10:10:100];
figure(1)
% c = [winter(length(2:9)); autumn(length(10:10:100))];
my_legend = cell(1, length(nMaxVec)+1);
c = hsv(length(nMaxVec));
for i = 1:length(nMaxVec)
 fullFact = nMaxVec(i).^nArchis;
 semilogy(nArchis, fullFact,'Color',c(i,:))
 my_legend{i} = sprintf('Full factorial (N_{max} = %d)',nMaxVec(i));
 hold on
end
hold off

%% Assess function calls for the GA
% populations = 50; % Population size for the GA
% generations = 50 + 10*nArchis; % Approximation based on observations
% ga = generations.*populations; % Estimated number of

function calls for the GA

% Outer loop
optionsOuter = gaoptimset(...
 'Display', 'off',...
 'OutputFcns', {[]},...
 'PlotFcn', {[]},...
 'PlotInterval', 1,...
 'PopulationSize', 50,...
 'TolFun', 1e-6,...
 'UseParallel', false);

optionsOuter.maxAgents = nMax; % Maximum number of agents in the group
optionsOuter.solver = 'ga';
optionsOuter.fitnessFcn = @testFitnessFunctionOuterLoop;
optionsOuter.elitism = false;

% Inner loop
optionsInner = [];

ga = zeros(1,length(nArchis));
for i = 1:length(nArchis)
 n = nArchis(i);

 % Compute full factorial case
 % dFF0 = fullfact((nMax+1)*ones(1,n))-1;
 % indices = sum(dFF0,2) <= nMax;
 % dFF = dFF0(indices,:);
 % fullFact(i) = size(dFF,1);

 % Compute GA case
 optionsOuter.nArchis = n; % Number of architectures
 for rep = 1:10
 [~,~,~,output,~,~] = loopOuter(optionsOuter, optionsInner);
 ga(rep,i) = output.funccount;
 end
end

543

ga = mean(ga);

% Plot
figure(1)
hold on
semilogy(nArchis, ga, 'k', 'LineWidth', 1)
hold off

my_legend{end} = 'GA';

%% Finish plot
xlabel('Number of architectures', 'FontName','Times New Roman',

'FontSize',25)
ylabel('Function calls', 'FontName','Times New Roman', 'FontSize',25)
set(gca, 'FontName', 'Times New Roman', 'FontSize',25)
h = legend(my_legend,'location','eastoutside');
set(h,'FontName', 'Times New Roman', 'FontSize',17)

analyzeResults.m

Analyzes the optimization results given a folder name that contains the MAT-files for a

certain number of replications. All the files in the folder must stem from the same optimizer

settings for the results to make sense. In particular, it computes the average and standard

deviation of the number of inner loop generations, as well as their extreme values.

function [genAvg, genStd, lower, higher] = analyzeResults(folderName)
% Count number of files available
nFiles = length(dir(folderName)) - 2;

% Count maximum number of generations
genMax = 0;
for k = 1:nFiles
 % Load the results
 load(sprintf(strcat(folderName,'/replication_%04d.mat'),k))
 if size(generationsArray,1) > genMax
 genMax = size(generationsArray,1);
 end
end

% Initialize storing structures
generationsInner = cell(1, genMax);

% Accumulate measurements from all replications
for k = 1:nFiles
 % Load the results
 load(sprintf(strcat(folderName,'/replication_%04d.mat'),k))
 % Store results

544

 genMaxRep = size(generationsArray,1);
 for j = 1:genMaxRep
 generationsInner{j} = [generationsInner{j},

generationsArray{j}];
 end
end

% Statistical analysis for each generation of the outer loop
genAvg = zeros(1,genMax);
genStd = zeros(1,genMax);
higher = zeros(1,genMax);
lower = zeros(1,genMax);
for k = 1:genMax
 genAvg(k) = mean(generationsInner{k}); % Average
 genStd(k) = std(generationsInner{k}); % Standard deviation
 higher(k) = prctile(generationsInner{k},97.5); % Percentile
 lower(k) = prctile(generationsInner{k},2.5); % Percentile
end
end

analyzeResultsOuterLoop.m

A histogram plot of the average number of generations of the outer loop.

function [genAvg, genStd, genLower, genHigher,...
 funcAvg, funcStd, funcLower, funcHigher,...
 generationsOuter,funcCountOuter] =

analyzeResultsOuterLoop(folderName)
% Count number of files available
nFiles = length(dir(folderName)) - 2;

% Count maximum number of generations
generationsOuter = zeros(1,nFiles);
funcCountOuter = zeros(1,nFiles);
for k = 1:nFiles
 % Load the results
 load(sprintf(strcat(folderName,'/replication_%04d.mat'),k))
 generationsOuter(k) = output.generations;
 funcCountOuter(k) = output.funccount;
end

% Statistical analysis
genAvg = mean(generationsOuter); % Average
genStd = std(generationsOuter); % Standard deviation
genHigher = prctile(generationsOuter,97.5); % Percentile
genLower = prctile(generationsOuter,2.5); % Percentile

funcAvg = mean(funcCountOuter); % Average
funcStd = std(funcCountOuter); % Standard deviation
funcHigher = prctile(funcCountOuter,97.5); % Percentile
funcLower = prctile(funcCountOuter,2.5); % Percentile

% Plots

545

figure
hist(generationsOuter)
xlabel('Number of outer loop generations at convergence')
ylabel('Occurences')
title(folderName)
end

plotCompareElitismFraction.m

A comparison of the algorithm performance for different rates of elitism retention.

% Prepare workspace
clc
close all
clear global
clear

% Get statistical analysis
genAvg = cell(1,5);
lower = cell(1,5);
higher = cell(1,5);
for i = 1:5
 fprintf('Case %d/5\n', i)
 folderName = sprintf('results_Elitism%03dPureHeterogeneity',(i-

1)*25);
 [a, ~, l, h] = analyzeResults(folderName);
 genAvg{i} = a;
 lower{i} = l;
 higher{i} = h;
end

%% Plot
gray0 = 0.5*ones(3,1);
c = get(groot,'DefaultAxesColorOrder');

figure
hold on

hPlain = plot(genAvg{1},'LineWidth',2,'Color',gray0);
% hDashed = plot(lower{1},'--','Color',gray0);
% hEmpty = plot(lower{1},'w');

h = zeros(1,5);
for i = 1:5
 h(i) = plot(genAvg{i}, 'LineWidth',2,'Color',c(i,:));
% plot(lower{i},'--','Color',c(i,:));
% plot(higher{i},'--','Color',c(i,:));
end

hold off

546

xlabel('Outer loop generations','FontName','Times New

Roman','FontSize',22)
ylabel('Average inner loop generations required','FontName','Times New

Roman','FontSize',22)
ylabel({'Average inner loop';'generations required'},'FontName','Times

New Roman','FontSize',22)
% hLegend = legend([h,hEmpty,hPlain,hDashed],...
% {'\kappa = 0%',...
% '\kappa = 25%',...
% '\kappa = 50%',...
% '\kappa = 75%',...
% '\kappa = 100%',...
% '',...
% 'Average',...
% '95% confidence interval'});
hLegend = legend([h],...
 {'\kappa = 0%',...
 '\kappa = 25%',...
 '\kappa = 50%',...
 '\kappa = 75%',...
 '\kappa = 100%'});
set(hLegend,'FontName', 'Times New Roman', 'FontSize',22)
set(gca, 'FontName', 'Times New Roman', 'FontSize',22)

plotCompareElitismTrueFalse.m

A comparison of the performance of the algorithm when the elitism is activated or not.

% Prepare workspace
clc
close all
clear global
clear

% Get statistical analysis
folderName = 'results_NoElitismPureHeterogeneity';
% folderName = 'results_NoElitismPartialHeterogeneity';
% folderName = 'results_Elitism000PartialHeterogeneity'
[genAvg0, ~, lower0, higher0] = analyzeResults(folderName);

folderName = 'results_WithElitism05PureHeterogeneity';
% folderName = 'results_WithElitism05PartialHeterogeneity';
[genAvg1, ~, lower1, higher1] = analyzeResults(folderName);

%% Plot
gray0 = 0.5*ones(3,1);
figure
hold on
h0 = plot(genAvg0, 'LineWidth',2,'Color',gray0);
h2 = plot(genAvg0,'LineWidth',2,'Color',gray0);
h3 = plot(lower0,'--','Color',gray0);
plot(higher0,'--','Color',gray0)
h1 = plot(genAvg1,'b','LineWidth',2);

547

hEmpty = plot(lower1,'--w');

plot(lower1,'--b')
plot(higher1,'--b')
hold off
xlabel('Outer loop generations','FontName','Times New

Roman','FontSize',12)
ylabel('Average inner loop generations required','FontName','Times New

Roman','FontSize',12)
h = legend([h0,h1,hEmpty,h2,h3],{'Without elitism','Elitism

50%','','Average','95% confidence interval'});
set(h,'FontName', 'Times New Roman', 'FontSize',12)
set(gca, 'FontName', 'Times New Roman', 'FontSize',12)

ylim([0, 220])

% Plot 2 --

figure
hold on

hPlain = plot(genAvg0,'LineWidth',2,'Color',gray0);
hDashed = plot(lower1,'--','Color',gray0);
hEmpty = plot(lower1,'Color','none');

h0 = plot(genAvg0, 'LineWidth',2,'Color','r');
plot(lower0,'--','Color',[255, 183, 183]/255);
plot(higher0,'--','Color',[255, 183, 183]/255);

h1 = plot(genAvg1,'b','LineWidth',2);
plot(lower1,'--','Color',[206, 191, 255]/255)
plot(higher1,'--','Color',[206, 191, 255]/255)

hold off

xlabel('Outer loop generations','FontName','Times New

Roman','FontSize',12)
ylabel('Average inner loop generations required','FontName','Times New

Roman','FontSize',12)
h = legend([h0,h1,hEmpty,hPlain,hDashed],{'Without elitism','Elitism

50%','','Average','95% confidence interval'});
set(h,'FontName', 'Times New Roman', 'FontSize',12)
set(gca, 'FontName', 'Times New Roman', 'FontSize',12)

% Transparent background
set(gcf, 'Color', 'None')
set(gca, 'Color', 'None', 'XColor', 'w', 'YColor', 'w', 'ZColor', 'w')
set(h,'color','none','TextColor','w','EdgeColor','w')

ylim([0, 220])

plotCompareHeterogeneityFraction.m

548

A comparison of the different elitism rates when heterogeneity is partial only.

% Prepare workspace
clc
close all
clear global
clear

% Get statistical analysis
genAvg = cell(1,5);
lower = cell(1,5);
higher = cell(1,5);
for i = 1:5
 fprintf('Case %d/5\n', i)
 folderName = sprintf('results_Elitism%03dPartialHeterogeneity',(i-

1)*25);
 [a, ~, l, h] = analyzeResults(folderName);
 genAvg{i} = a;
 lower{i} = l;
 higher{i} = h;
end

%% Plot
gray0 = 0.5*ones(3,1);
c = get(groot,'DefaultAxesColorOrder');

figure
hold on

hPlain = plot(genAvg{1},'LineWidth',2,'Color',gray0);
hDashed = plot(lower{1},'--','Color',gray0);
hEmpty = plot(lower{1},'w');

h = zeros(1,5);
for i = 1:5
 h(i) = plot(genAvg{i}, 'LineWidth',2,'Color',c(i,:));
 plot(lower{i},'--','Color',c(i,:));
 plot(higher{i},'--','Color',c(i,:));
end

hold off

xlabel('Outer loop generations','FontName','Times New

Roman','FontSize',12)
ylabel('Average inner loop generations required','FontName','Times New

Roman','FontSize',12)
% ylabel({'Average inner loop';'generations

required'},'FontName','Times New Roman','FontSize',22)
hLegend = legend([h,hEmpty,hPlain,hDashed],...
 {'\kappa = 0%',...
 '\kappa = 25%',...
 '\kappa = 50%',...
 '\kappa = 75%',...
 '\kappa = 100%',...
 '',...

549

 'Average',...
 '95% confidence interval'});
% hLegend = legend([h],...
% {'\kappa = 0%',...
% '\kappa = 25%',...
% '\kappa = 50%',...
% '\kappa = 75%',...
% '\kappa = 100%'});
set(hLegend,'FontName', 'Times New Roman', 'FontSize',12)
set(gca, 'FontName', 'Times New Roman', 'FontSize',12)

plotCompareHeterogeneityTrueFalse.m

A plot comparing the performance of the algorithm between elitism and non-elitism, and

between partial and full heterogeneity.

% Prepare workspace
clc
close all
clear global
clear

% Get statistical analysis

% Full heterogeneity
folderName = 'results_NoElitismPureHeterogeneity';
[genAvg0, ~, lower0, higher0] = analyzeResults(folderName);

folderName = 'results_WithElitism05PureHeterogeneity';
[genAvg1, ~, lower1, higher1] = analyzeResults(folderName);

% Partial heterogeneity
folderName = 'results_NoElitismPartialHeterogeneity';
[genAvg2, ~, lower2, higher2] = analyzeResults(folderName);

folderName = 'results_WithElitism05PartialHeterogeneity';
[genAvg3, ~, lower3, higher3] = analyzeResults(folderName);

%% Plot
gray0 = 0.5*ones(3,1);

figure
hold on

hPlain = plot(genAvg0,'LineWidth',2,'Color',gray0);
hDashed = plot(lower3,'--','Color',gray0);
hEmpty = plot(lower3,'--w','LineWidth',2);

h0 = plot(genAvg0, 'LineWidth',2,'Color','r');
% plot(lower0,'--','Color',[255, 183, 183]/255)

550

% plot(higher0,'--','Color',[255, 183, 183]/255)

h1 = plot(genAvg1,'b','LineWidth',2);
% plot(lower1,'--','Color',[206, 191, 255]/255)
% plot(higher1,'--','Color',[206, 191, 255]/255)

h2 = plot(genAvg2,'m','LineWidth',2);
plot(lower2,'--','Color',[255, 130, 220]/255)
plot(higher2,'--','Color',[255, 130, 220]/255)

h3 = plot(genAvg3,'c','LineWidth',2);
plot(lower3,'--','Color',[130, 249, 255]/255)
plot(higher3,'--','Color',[130, 249, 255]/255)

hold off

xlabel('Outer loop generations','FontName','Times New

Roman','FontSize',12)
ylabel('Average inner loop generations required','FontName','Times New

Roman','FontSize',12)
h = legend([h0,h1,h2,h3,hEmpty,hPlain,hDashed],...
{'Full heterogeneity - No elitism',...
 'Full heterogeneity - Elitism 50%',...
 'Partial heterogeneity - No elitism',...
 'Partial heterogeneity - Elitism 50%',...
 '',....
 'Average',...
 '95% confidence interval'});
set(h,'FontName', 'Times New Roman', 'FontSize',10)
set(gca, 'FontName', 'Times New Roman', 'FontSize',12)

ylim([0, 220])

plotElitism.m

A simple plot of the influence of elitism on the algorithm.

% Prepare workspace
clc
% close all
clear global
clear

folderName = 'results_Elitism01PureHeterogeneity';
folderName = 'results_Elitism05PureHeterogeneity';

% Count number of files available
nFiles = length(dir(folderName)) - 2;

% Count maximum number of generations
genMax = 0;
for i = 1:nFiles

551

 % Load the results
 load(sprintf(strcat(folderName,'/replication_%04d.mat'),i))
 if size(generationsArray,1) > genMax
 genMax = size(generationsArray,1);
 end
end

% Initialize storing structures
generationsInner = cell(1, genMax);

% Accumulate measurements from all replications
for i = 1:nFiles
 % Load the results
 load(sprintf(strcat(folderName,'/replication_%04d.mat'),i))
 % Store results
 genMaxRep = size(generationsArray,1);
 for j = 1:genMaxRep
 generationsInner{j} = [generationsInner{j},

generationsArray{j}];
 end
end

% Statistical analysis for each generation of the outer loop
genAvg = zeros(1,genMax);
genStd = zeros(1,genMax);
higher = zeros(1,genMax);
lower = zeros(1,genMax);
for i = 1:genMax
 genAvg(i) = mean(generationsInner{i}); % Average
 genStd(i) = std(generationsInner{i}); % Standard deviation
 higher(i) = prctile(generationsInner{i},97.5); % Percentile
 lower(i) = prctile(generationsInner{i},2.5); % Percentile
end

% % Remove NaN
% genAvg(isnan(genAvg)) = [];
% genStd(isnan(genStd)) = [];

% Plot
% figure
hold on
plot(genAvg, 'LineWidth',2)
% plot(genAvg + 3*genStd,'--r')
% plot(genAvg - 3*genStd,'--r')
plot(higher,'--m')
plot(lower,'--m')
hold off
xlabel('Outer loop generations')
ylabel('Average inner loop generations required')
legend('Average','95%% confidence interval')
ylim([0 150])

plotElitismImprovement.m

552

A plot of the performance of the algorithm as a function of the elitism rate.

% Prepare workspace
clc
close all
clear global
clear

% Data
kappa = 0:0.25:1.0;
maxGen = [303, 133, 137, 92, 43];
gen3 = [37, 16, 15, 14, 13];

%% Plot 1
figure
plot(kappa,maxGen)
hold on
plot(kappa,maxGen,'*')
hold off
xlabel('\kappa','FontName','Times New Roman','FontSize',20)
ylabel({'Maximum number';'of';'generations observed'},'FontName','Times

New Roman','FontSize',20)
set(gca, 'FontName', 'Times New Roman', 'FontSize',20)

%% Plot 2
figure
plot(kappa,gen3)
hold on
plot(kappa,gen3,'*')
hold off
xlabel('\kappa','FontName','Times New Roman','FontSize',20)
ylabel({'Number of inner generations';'at 3rd outer

generation'},'FontName','Times New Roman','FontSize',20)
set(gca, 'FontName', 'Times New Roman', 'FontSize',20)

plotOuterCompareHeterogeneityFraction.m

A display of the performance of the outer loop depending on the elitism rate.

% Prepare workspace
clc
close all
clear global
clear

% Full heterogeneity
genAvg = zeros(1,5);
genLower = zeros(1,5);
genHigher = zeros(1,5);
genAvgPartial = zeros(1,5);
genLowerPartial = zeros(1,5);
genHigherPartial = zeros(1,5);

553

for i = 1:5
 fprintf('Case %d/5\n',i)
 folderName = sprintf('results_Elitism%03dPureHeterogeneity',(i-

1)*25);
 [genAvg0, genStd0, genLower0, genHigher0, funcAvg0, funcStd0,

funcLower0, funcHigher0, generationsOuter0,funcCountOuter0] =

analyzeResultsOuterLoop(folderName);
 genAvg(i) = genAvg0;
 genLower(i) = genLower0;
 genHigher(i) = genHigher0;

 folderName = sprintf('results_Elitism%03dPartialHeterogeneity',(i-

1)*25);
 [genAvg0, genStd0, genLower0, genHigher0, funcAvg0, funcStd0,

funcLower0, funcHigher0, generationsOuter0,funcCountOuter0] =

analyzeResultsOuterLoop(folderName);
 genAvgPartial(i) = genAvg0;
 genLowerPartial(i) = genLower0;
 genHigherPartial(i) = genHigher0;
end

%% Plot
gray0 = 0.5*ones(3,1);
c = get(groot,'DefaultAxesColorOrder');

figure
hold on
bar(.75,genAvg(1),0.4,'FaceColor',gray0)
bar(.75,genAvg(1),0.4,'FaceColor',gray0,'LineStyle','--

','FaceAlpha',0.5)
bar(.75,genAvg(1),0.4,'FaceColor',gray0,'LineStyle','none','FaceAlpha',

0)

for i = 1:5
 bar(i-0.25,genAvg(i),0.4,'FaceColor',c(i,:))
end

for i = 1:5
 bar(i + 0.25,genAvgPartial(i),0.4,'FaceColor',c(i,:),'LineStyle','-

-','FaceAlpha',0.5)
end

hLegend = legend(...
 'Full heterogeneity',...
 'Partial heterogeneity',...
 '',...
 '\kappa = 0%',...
 '\kappa = 25%',...
 '\kappa = 50%',...
 '\kappa = 75%',...
 '\kappa = 100%');
errorbar([1 2 3 4 5] - 0.25,...
 genAvg,...
 genAvg - genLower,...
 genHigher - genAvg,...
 'lineStyle','none',...

554

 'Color','k')

errorbar([1 2 3 4 5] + 0.25,...
 genAvgPartial,...
 genAvgPartial - genLowerPartial,...
 genHigherPartial - genAvgPartial,...
 'lineStyle','none',...
 'Color','k')
hold off

set(gca,'XTickLabel','')
ylabel({'Outer loop ','generations required'},'FontName','Times New

Roman','FontSize',12)

set(hLegend,'FontName', 'Times New Roman', 'FontSize',10)
set(gca, 'FontName', 'Times New Roman', 'FontSize',12)

plotOuterCompareHeterogeneityTrueFalse.m

Analysis of the outer loop for various conditions of heterogeneity and elitism.

% Prepare workspace
clc
close all
clear global
clear

% Full heterogeneity
fprintf('Case 1/4\n')
folderName = 'results_NoElitismPureHeterogeneity';
[genAvg0, genStd0, genLower0, genHigher0, funcAvg0, funcStd0,

funcLower0, funcHigher0, generationsOuter0,funcCountOuter0] =

analyzeResultsOuterLoop(folderName);

fprintf('Case 2/4\n')
folderName = 'results_WithElitism05PureHeterogeneity';
[genAvg1, genStd1, genLower1, genHigher1, funcAvg1, funcStd1,

funcLower1, funcHigher1, generationsOuter1,funcCountOuter1] =

analyzeResultsOuterLoop(folderName);

% Partial heterogeneity
fprintf('Case 3/4\n')
folderName = 'results_NoElitismPartialHeterogeneity';
[genAvg2, genStd2, genLower2, genHigher2, funcAvg2, funcStd2,

funcLower2, funcHigher2, generationsOuter2,funcCountOuter2] =

analyzeResultsOuterLoop(folderName);

fprintf('Case 4/4\n')
folderName = 'results_WithElitism05PartialHeterogeneity';
[genAvg3, genStd3, genLower3, genHigher3, funcAvg3, funcStd3,

funcLower3, funcHigher3, generationsOuter3,funcCountOuter3] =

analyzeResultsOuterLoop(folderName);

555

%% Plots
figure
hold on
bar(1,genAvg0,'r')
bar(2,genAvg1,'b')
bar(3,genAvg2,'m')
bar(4,genAvg3,'c')
hLegend = legend('Full heterogeneity - No elitism',...
 'Full heterogeneity - Elitism 50%',...
 'Partial heterogeneity - No elitism',...
 'Partial heterogeneity - Elitism 50%','location','northoutside');

genAvg = [genAvg0, genAvg1, genAvg2, genAvg3];
genLower = genAvg - [genLower0, genLower1, genLower2, genLower3];
genHigher = [genHigher0, genHigher1, genHigher2, genHigher3] - genAvg;
errorbar([1 2 3 4],...
 genAvg,...
 genLower,...
 genHigher,...
 'lineStyle','none',...
 'Color','k')
hold off

set(gca,'XTickLabel','')
ylabel({'Outer loop ','generations required'},'FontName','Times New

Roman','FontSize',12)

set(hLegend,'FontName', 'Times New Roman', 'FontSize',10)
set(gca, 'FontName', 'Times New Roman', 'FontSize',12)

B.3 Design space exploration

This section contains a Matlab implementation of the morphological tree

framework which was introduced in section 5.1 page 292.

B.3.1 Classes

The files of the object-oriented morphological tree data structure. See section 5.1.3

page 301 for a complete description of the class architecture.

option.m

classdef option
 %OPTION Represents a morphological option to be used in a row of a
 %morphological matrix
 % Detailed explanation goes here

556

 properties (Access = private)
 index = 0;
 name = '';
 variables = {};
 end

 methods
 function obj = option(name,variables)
 obj.name = name;
 obj.variables = variables;
 end

 function n = countVariables(obj)
 n = length(obj.variables);
 end

 function s = toString(obj)
 % Prepare variables string
 str = '';
 vars = obj.variables;
 for j = 1:length(vars)
 str = strcat(str,vars{j},',');
 end
 % Remove last comma
 str = str(1:end-1);

 % Add to variable name
 s = ['(',num2str(obj.index),') ',obj.name,' {',str,'}'];
 end

 % Getters
 function out = getName(obj)
 out = obj.name;
 end

 function out = getIndex(obj)
 out = obj.index;
 end

 function out = getVariables(obj)
 out = obj.variables;
 end

 % Setter
 function obj = setIndex(obj,index)
 obj.index = index;
 end
 end
end

row.m

classdef (Abstract) row

557

 %ROW Summary of this class goes here
 % Detailed explanation goes here
 properties (Access = protected)
 name = '';
 options = {};
 end

 methods
 % Methods
 function obj = addOption(obj,option)
 n = size(obj.options,1);
 obj.options{n+1,1} = option;
 end

 function [obj, bool] = removeOption(obj,name)
 % Initialization
 i = 1;
 % Find the option (it is assumed there is only one option

with
 % this name)
 while i < size(obj.options,1) &&

~strcmp(obj.options{i,1}.getName,name)
 i = i + 1;
 end

 % If option was found
 if strcmp(obj.options{i,1}.getName,name)
 % Remove option
 obj.options(i,:) = [];
 bool = true;
 else
 bool = false;
 end
 end

 function obj = addOptionFromMorph(obj,name,m)
 % NOTE: the morph matrix must be single level
 % Initialization
 rows = m.getRows;

 % Save number of options for each row
 m = size(rows,1);
 nOptions = zeros(1,m);
 for i = 1:m
 nOptions(i) = size(rows{i}.options,1);
 end

 % Assemble each possible choice
 combinations = fullfact(nOptions); % Each row is a

combination

 % For each combination
 for i = 1:size(combinations,1)
 % Initialization
 nameSubOption = strcat(name,' (');

558

 variablesSubOption = {};
 counter = 1;
 indices = combinations(i,:);
 % For each row of the morphological matrix
 for j = 1:m
 % Append names
 nameSubOption = sprintf('%s%s, ',

nameSubOption,rows{j}.getOptions{indices(j)}.getName);
 % Append variables
 variablesTemp =

rows{j}.getOptions{indices(j)}.getVariables;
 for k = 1:length(variablesTemp)
 variablesSubOption{counter} = variablesTemp{k};
 counter = counter + 1;
 end
 end
 % Remove last coma and add closing bracket
 nameSubOption = nameSubOption(1:end-2);
 nameSubOption = strcat(nameSubOption,')');

 % Add option to row
 obj =

obj.addOption(option(nameSubOption,variablesSubOption));
 end
 end

 function [obj, bool, nVars, nOptions] = reduce(obj)
 % Initialization
 bool = false;
 nVars = 0; % Number of variables removed
 nOptions = 0; % Number of options removed
 n = size(obj.options,1);

 % For each option
 i = 1;
 while i < n+1
 % Initialization
 j = 1;
 vars = cell2mat(obj.options{i,1}.getVariables);

 % For all other options
 while j < n+1
 % Check if it has the same variables
 if i~=j &&

size(cell2mat(obj.options{j,1}.getVariables),1) > 0 &&...

strcmp(cell2mat(obj.options{j,1}.getVariables),vars)
 % Increment variables counter
 nVars = nVars +

length(obj.options{j,1}.getVariables);
 nOptions = nOptions + 1;
 % Remove option
 obj =

obj.removeOption(obj.options{j,1}.getName);
 bool = true;
 % Update size

559

 n = size(obj.options,1);
 else
 % Iterate
 j = j + 1;
 end
 end

 % Iterate
 i = i + 1;
 end
 end

 function n = countOptions(obj)
 n = size(obj.options,1);
 end

 function n = countVariables(obj)
 % Initialization
 n = 0;

 % Add variables
 for i = 1:size(obj.options,1)
 n = n + obj.options{i,1}.countVariables;
 end
 end

 function [obj, index] =

setUpCompatibilityIndices(obj,startIndex)
 % Initialization
 index = startIndex;

 % Set up indices for all options
 for i = 1:size(obj.options,1)
 obj.options{i,1} = obj.options{i,1}.setIndex(index);
 index = index + 1;
 end
 end

 function s = toString(obj)
 % Initialization
 s = strcat(obj.name,'\n');

 % Create string
 for i = 1:size(obj.options,1)
 s = strcat(s, '\t', obj.options{i}.toString,'\n');
 end
 end

 % Getters
 function out = getName(obj)
 out = obj.name;
 end

 function out = getOptions(obj)
 out = obj.options;

560

 end
 end

 % Abstract methods
 methods (Abstract)
 computeAlternatives(obj)
 end
end

rowConventional.m

classdef rowConventional < row
 %ROW Summary of this class goes here
 % Detailed explanation goes here
 methods
 % Constructor
 function obj = rowConventional(name)
 obj.name = name;
 end

 % Methods
 function n = computeAlternatives(obj)
 n = size(obj.options,1);
 end
 end
end

rowCombinatorial.m

classdef rowCombinatorial < row
 %ROW Summary of this class goes here
 % Detailed explanation goes here
 methods
 function obj = rowCombinatorial(name)
 obj.name = name;
 end

 function nAlternatives = computeAlternatives(obj)
 % Initialization
 nAlternatives = 0;
 n = size(obj.options,1);

 % Possibility to choose from 1 to nOptions options in the

row
 for k = 1:n
 nAlternatives = nAlternatives + nchoosek(n,k);
 end
 end
 end
end

561

morphologicalMatrix.m

classdef morphologicalMatrix
 %MORPHOLOGICALMATRIX Summary of this class goes here
 % Detailed explanation goes here

 properties (Access = private)
 name = '';
 rows = {};
 abstract = false;
 end

 methods
 function obj = morphologicalMatrix(name, abstract)
 if nargin < 2
 abstract = false;
 end
 obj.name = name;
 obj.abstract = abstract;
 end

 function obj = addRow(obj,row)
 n = size(obj.rows,1);
 obj.rows{n+1,1} = row;
 end

 function [obj, bool] = removeRow(obj,name)
 % Initialization
 i = 1;
 % Find the row (it is assumed there is only one row with
 % this name)
 while i < size(obj.rows,1) &&

~strcmp(obj.rows{i,1}.getName,name)
 i = i + 1;
 end

 % If option was found
 if strcmp(obj.rows{i,1}.getName,name)
 % Remove option
 obj.rows(i,:) = [];
 bool = true;
 else
 bool = false;
 end
 end

 function n = computeAlternatives(obj)
 % If empty matrix
 if 0 == size(obj.rows,1)
 n = 0;
 return
 end
 % Else
 n = 1;
 % Product of rows options

562

 for i = 1:length(obj.rows)
 n = n*obj.rows{i}.computeAlternatives;
 end
 end

 function n = computeCompatibleAlternatives(obj,c,set,n)
 % If bottom of matrix is reached
 if size(obj.getRows,1) == 0
 % Increment counter of compatible alternatives
 n = n+1;
 else
 % Remove first row of the morphological matrix
 mReduced = obj.removeRow(obj.getRows{1,1}.getName);

 % Recursivity on all options of the first row
 options = obj.getRows{1,1}.getOptions;
 for i = 1:size(options,1)
 % TODO remove this debug
 if (strcmp(obj.name,'Fixed wing') ||

(strcmp(obj.name,'Multirotor'))) && size(obj.getRows,1) == 20
 fprintf('%d/%d

(%.2f%%)\n',i,size(options,1),100*i/size(options,1))
 end

 % Get option index
 idx = options{i,1}.getIndex;

 % Continue recursion only if option is compatible

with current set
 if isempty(set) || (~isempty(set) &&

prod(c(idx,set)) ~= 0)
 n =

computeCompatibleAlternatives(mReduced,c,[set, idx],n);
 end
 end
 end
 end

 function [obj,bool,nVars,nOptions] = reduce(obj)
 % Initialization
 bool = false;
 nVars = 0;
 nOptions = 0;

 % For every row
 i = 1;
 while i < size(obj.rows,1)+1
 % Reduce it
 [temp, bool, removedVars, removedOptions] =

obj.rows{i,1}.reduce;
 obj.rows{i,1} = temp;
 nVars = nVars + removedVars;
 nOptions = nOptions + removedOptions;

 % If it has only one option, remove it

563

 if size(obj.rows{i,1}.getOptions,1) == 1
 obj = obj.removeRow(obj.rows{i,1}.getName);
 else
 i = i+1;
 end
 end
 end

 function n = countOptions(obj)
 % Initialization
 n = 0;

 % Add options
 for i = 1:size(obj.rows,1)
 n = n + obj.rows{i,1}.countOptions;
 end
 end

 function n = countVariables(obj)
 % Initialization
 n = 0;

 % Add options
 for i = 1:size(obj.rows,1)
 n = n + obj.rows{i,1}.countVariables;
 end
 end

 function obj = setUpCompatibilityIndices(obj)
 % Initialization
 index = 1;
 for i = 1:size(obj.rows,1)
 [temp, index] =

obj.rows{i,1}.setUpCompatibilityIndices(index);
 obj.rows{i,1} = temp;
 end
 end

 function c = initializeCompatibilityMatrix(obj)
 % Initialization: assume all compatible
 n = obj.countOptions;
 c = ones(n);

 % One option per row
 for i = 1:size(obj.rows,1)
 if isa(obj.rows{i,1},'rowConventional')
 options = obj.rows{i,1}.getOptions;
 n1 = options{1,1}.getIndex;
 n2 = options{end,1}.getIndex;
 for j = n1:n2-1
 for k = j+1:n2
 c(j,k) = 0;
 end
 end
 end

564

 end
 end

 function s = toString(obj)
 s = strcat(obj.name,'\n');
 for i = 1:length(obj.rows)
 s = strcat(s,obj.rows{i}.toString);
 end
 end

 % Getters
 function out = getName(obj)
 out = obj.name;
 end

 function out = getRows(obj)
 out = obj.rows;
 end

 function out = isAbstract(obj)
 out = obj.abstract;
 end

 % Setters
 function obj = setAbstract(obj, abstract)
 obj.abstract = abstract;
 end

 % Utility function
 function Asym = symmetrize(~,A)
 Adiag = diag(diag(A)); % Place diagonal elements
 Atri = triu(A,1); % Strictly upper matrix
 Asym = Adiag + Atri + Atri'; % Assemble final symmetric

matrix
 end
 end
end

morphologicalTree.m

Uses the Matlab tree data structure proposed by [231].

classdef morphologicalTree < tree
 methods
 function obj = morphologicalTree(content)
 obj = obj@tree(content);
 end

 function n = computeAlternatives(obj)
 % Create a breadth first iterator
 iterator = obj.depthfirstiterator;
 n = 1;

565

 for it = iterator
 if ~obj.get(it).isAbstract()
 n = n*obj.get(it).computeAlternatives();
 end
 end
 end

 function [obj,bool,nVars,nOptions] = reduce(obj)
 % Create a breadth first iterator
 bool = false;
 nVars = 0;
 nOptions = 0;
 iterator = obj.depthfirstiterator;
 for it = iterator
 [m,bool,n,no] = obj.get(it).reduce();
 obj = obj.set(it,m);
 nVars = nVars + n;
 nOptions = nOptions + no;
 end
 end

 function str = tostring(obj)
 % Create duplicate representative tree
 tName = tree(obj,'clear');
 iterator = obj.breadthfirstiterator;
 for it = iterator
 if obj.get(it).isAbstract
 tName = tName.set(it, sprintf('[A] %s (%.4g)',

obj.get(it).getName(), obj.get(it).computeAlternatives()));
 else
 tName = tName.set(it, sprintf('%s (%.4g)',

obj.get(it).getName(), obj.get(it).computeAlternatives()));
 end
 end
 str = tName.tostring;
 end
 end
end

B.3.2 Unit tests

test.m

The main file running all the unit tests of the test campaign.

% Prepare workspace
clc
close all
clear global
clear

% Run tests

566

result = runtests('testOption.m');
rt = table(result);
disp(rt)

result = runtests('testRow.m');
rt = table(result);
disp(rt)

result = runtests('testMorph.m');
rt = table(result);
disp(rt)

result = runtests('testTree.m');
rt = table(result);
disp(rt)

randomString.m

A function generating a random string given a string length. This is a utility function used

to generate random option names in the unit tests.

function R = randomString(N)
SET = char(['a':'z' '0':'9']) ;
NSET = length(SET) ;

i = ceil(NSET*rand(1,N)) ; % with repeat
R = SET(i) ;
end

testOption.m

%% Main function to generate tests
function tests = testOption
tests = functiontests(localfunctions);
end

%% Test Functions
function testMain(~)
% Repeat random test
for i = 1:100
 % Generate random variables
 index = randi(100);
 name = randomString(randi(50));
 nVars = randi(100);
 variables = cell(1,nVars);
 for j = 1:nVars
 variables{j} = sprintf('x%d',j);
 end

567

 % Create random option
 o = option(name, variables);
 o = o.setIndex(index);

 % Test
 assert(strcmp(o.getName(),name))
 assert(o.getIndex() == index)
 assert(sum(ismember(o.getVariables,variables)) == nVars)
 assert(o.countVariables() == nVars)
end
end

%% Optional file fixtures
function setupOnce(~) % do not change function name
% Prepare workspace
close all
clear global
clear

addpath('../morphologicalTree')
addpath('utilities')
end

function teardownOnce(~) % do not change function name
% change back to original path, for example
end

%% Optional fresh fixtures
function setup(~) % do not change function name
end

function teardown(~) % do not change function name
end

testRow.m

%% Main function to generate tests
function tests = testRow
tests = functiontests(localfunctions);
end

%% Test Functions
function testConventional(~)
r = rowConventional('Feature 1');
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 2',{'x1','x2','x3'}));
r = r.addOption(option('Option 3',{'x1','x2','x3'}));
r = r.addOption(option('Option 4',{'x5'}));

assert(strcmp(r.getName(), 'Feature 1'))
assert(r.countOptions() == 4)

568

assert(r.countVariables() == 11)
assert(r.computeAlternatives() == 4)

r = r.removeOption('X');
assert(r.countOptions() == 4)

r = r.removeOption('Option 4');
assert(r.countOptions() == 3)

r = r.reduce();
assert(r.countOptions() == 2)
end

function testCombinatorial(~)
r = rowCombinatorial('Feature 1');
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 2',{'x1','x2','x3'}));
r = r.addOption(option('Option 3',{'x1','x2','x3'}));
r = r.addOption(option('Option 4',{'x5'}));

assert(strcmp(r.getName(), 'Feature 1'))
assert(r.countOptions() == 4)
assert(r.countVariables() == 11)
assert(r.computeAlternatives() == 15)

r = r.removeOption('X');
assert(r.countOptions() == 4)

r = r.removeOption('Option 4');
assert(r.countOptions() == 3)

r = r.reduce();
assert(r.countOptions() == 2)
end

%% Optional file fixtures
function setupOnce(~) % do not change function name
% Prepare workspace
close all
clear global
clear

addpath('../morphologicalTree')
addpath('utilities')
end

function teardownOnce(~) % do not change function name
% change back to original path, for example
end

%% Optional fresh fixtures
function setup(~) % do not change function name
end

569

function teardown(~) % do not change function name
end

testMorph.m

%% Main function to generate tests
function tests = testMorph
tests = functiontests(localfunctions);
end

%% Test Functions
function testMain(~)
% Initialize morphological matrix
m = morphologicalMatrix('Morphological Matrix');

% Add row ---

r = rowConventional('Feature 1');
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 2',{'x1','x2','x3'}));
r = r.addOption(option('Option 3',{'x1','x2','x3'}));
r = r.addOption(option('Option 4',{'x5'}));
m = m.addRow(r); % Add row to matrix

% Add row ---

r = rowConventional('Feature 2');
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 2',{'x1','x2','x3'}));
r = r.addOption(option('Option 3',{'x1','x2','x3'}));
m = m.addRow(r); % Add row to matrix

assert(m.computeAlternatives() == 12)

% Add row ---

r = rowCombinatorial('Feature 3 (Combinatorial)');
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 2',{'x1','x2','x3'}));
r = r.removeOption('Option 2');
r = r.removeOption('Option 3');

r = r.addOption(option('Option 2',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 3',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 4',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 5',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 6',{'x1','x2','x3'}));
r = r.addOption(option('Option 7',{'x1','x2','x3'}));
r = r.addOption(option('Option 8',{'x1','x2','x3'}));

m = m.addRow(r); % Add row to matrix

assert(m.computeAlternatives() == 12*r.computeAlternatives())

570

assert(m.countOptions() == 15)
assert(m.countVariables() == 50)

% Add row ---

r = rowConventional('Feature 4');
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 2',{'x1','x2','x3'}));
r = r.addOptionFromMorph('Option 3',m);
m = m.addRow(r); % Add row to matrix

% Add row ---

r = rowConventional('Feature 5');
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 2',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 3',{'x1','x2','x3','x4'}));
m = m.addRow(r); % Add row to matrix

assert(size(m.getRows(),1) == 5)

m = m.removeRow('Feature 5');
assert(size(m.getRows(),1) == 4)
end

function testReduction(~)
% Initialize morphological matrix
m = morphologicalMatrix('Morphological Matrix');

% Add row ---

r = rowConventional('Feature 1');
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 2',{'x1','x2','x3'}));
r = r.addOption(option('Option 3',{'x1','x2','x3'}));
r = r.addOption(option('Option 4',{'x5'}));
m = m.addRow(r); % Add row to matrix

% Add row ---

r = rowConventional('Feature 2');
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 2',{'x1','x2','x3'}));
r = r.addOption(option('Option 3',{'x1','x2','x3'}));
m = m.addRow(r); % Add row to matrix

% Add row ---

r = rowConventional('Feature 3');
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 2',{'x1','x2','x3','x4'}));
r = r.addOption(option('Option 3',{'x1','x2','x3','x4'}));
m = m.addRow(r); % Add row to matrix

571

% Morphological reduction ---

calls1 = m.computeAlternatives;
assert(calls1 == 36)
fprintf('Before: %d\n', calls1)

[m, ~, removedVars] = m.reduce;

calls2 = m.computeAlternatives;
assert(calls2 == 6)
fprintf('After: %d (%.2f%%)\n', calls2, 100*(calls1-calls2)/calls1)
fprintf('Removed %d optimizer calls\n',calls1-calls2)
fprintf('Added %d variables to the optimizer\n',removedVars)

assert(size(m.getRows(),1) == 2)
assert(calls2 < calls1)
end

function testCompatibility(~)
% Initialize morphological matrix
m = morphologicalMatrix('Morphological Matrix');

% Add row ---

r = rowConventional('Feature 1');
r = r.addOption(option('Option 1',{}));
r = r.addOption(option('Option 2',{}));
r = r.addOption(option('Option 3',{}));
m = m.addRow(r); % Add row to matrix

% Add row ---

r = rowConventional('Feature 2');
r = r.addOption(option('Option 1',{}));
r = r.addOption(option('Option 2',{}));
r = r.addOption(option('Option 3',{}));
m = m.addRow(r); % Add row to matrix

% Add row ---

r = rowConventional('Feature 3');
r = r.addOption(option('Option 1',{}));
r = r.addOption(option('Option 2',{}));
r = r.addOption(option('Option 3',{}));
m = m.addRow(r); % Add row to matrix

%% Compatibility matrix
m = m.setUpCompatibilityIndices;
c = m.initializeCompatibilityMatrix;

c(1,4) = 0;
c(1,5) = 0;

c(1,7) = 0;
c(1,8) = 0;

572

% Symmetrize matrix
c = symmetrize(c);

assert(m.computeAlternatives == 27)
assert(m.computeCompatibleAlternatives(c,[],0) == 19)
end

%% Optional file fixtures
function setupOnce(~) % do not change function name
% Prepare workspace
close all
clear global
clear

addpath('../morphologicalTree')
end

function teardownOnce(~) % do not change function name
% change back to original path, for example
end

%% Optional fresh fixtures
function setup(~) % do not change function name
end

function teardown(~) % do not change function name
end

B.3.3 Example scripts

A few examples demonstrating how to use the data structures presented here above.

exampleTree.m

% Prepare workspace
clc
close all
clear

addpath('../morphologicalTree')
addpath('../morphologicalTree/interfaces')
addpath('../morphologicalTree/tinevez-matlab-tree-3d13d15')

airship = createMM_Macro();
fw = createMM_FixedWing();
macro = createMM_Macro();
multirotor = createMM_Multirotor();
ornithopter = createMM_Ornithopter();

%% Build morphological tree

573

t = morphologicalTree(createMM_Macro('Macroscopic level',false));

[t, node1] = t.addnode(1, createMM_FixedWing('Fixed-Wing',true)); %

Abstract
[t, node11] = t.addnode(node1, createMM_FixedWing('Vehicle

1',false));
[t, node12] = t.addnode(node1, createMM_FixedWing('Vehicle

2',false));
[t, node13] = t.addnode(node1, createMM_FixedWing('Vehicle

3',false));

[t, node2] = t.addnode(1, createMM_Multirotor('Multirotor',true)); %

Abstract
[t, node21] = t.addnode(node2, createMM_Multirotor('Vehicle

1',false));
[t, node22] = t.addnode(node2, createMM_Multirotor('Vehicle

2',false));
[t, node23] = t.addnode(node2, createMM_Multirotor('Vehicle

3',false));

[t, node3] = t.addnode(1, createMM_Airship('Airship',true)); %

Abstract
[t, node31] = t.addnode(node3, createMM_Airship('Vehicle 1',false));

[t, node4] = t.addnode(1, createMM_Ornithopter('Ornithopter',true));

% Abstract
[t, node41] = t.addnode(node4, createMM_Ornithopter('Vehicle

1',false));

t.tostring

%% Operations
before = t.computeAlternatives;
[t,bool,nVars,nOptions] = t.reduce;
after = t.computeAlternatives;
fprintf('%g/%g (%f%%)\n',after,before,100*(before - after)/before)
fprintf('%d variables transferred to the optimizer\n',nVars)
fprintf('%d options removed\n',nOptions)
fprintf('\n')

exampleCompatibility.m

% Prepare workspace
clc
close all
clear

addpath('../morphologicalTree')

%% Macroscopic level
m = morphologicalMatrix('Macroscopic level');

574

r = rowConventional('Mission type');
r = r.addOption(option('HALE',{}));
r = r.addOption(option('Long-range strike',{}));
r = r.addOption(option('MALE',{}));
r = r.addOption(option('Close-range support',{}));
r = r.addOption(option('MUAV',{}));
r = r.addOption(option('MAV',{}));
m = m.addRow(r);

r = rowConventional('Architecture');
r = r.addOption(option('Fixed/Conventional',{}));
r = r.addOption(option('Product family',{}));
r = r.addOption(option('Scale-based product family',{}));
r = r.addOption(option('Reconfigurable',{}));
r = r.addOption(option('Online reconfigurable',{}));
r = r.addOption(option('Modular',{}));
m = m.addRow(r);

r = rowConventional('Control type');
r = r.addOption(option('Centralized',{}));
r = r.addOption(option('Decentralized',{}));
r = r.addOption(option('Hybrid',{}));
m = m.addRow(r);

r = rowConventional('Control scheme');
r = r.addOption(option('Leader/Follower',{}));
r = r.addOption(option('Consensus',{}));
r = r.addOption(option('Partitioned',{}));
r = r.addOption(option('Distributed',{}));
r = r.addOption(option('Hierarchical',{}));
m = m.addRow(r);

r = rowConventional('Ground station');
r = r.addOption(option('Remote base',{}));
r = r.addOption(option('Laptop',{}));
r = r.addOption(option('Wearable technology',{}));
m = m.addRow(r);

m = m.setUpCompatibilityIndices;
fprintf(m.toString)

%% Compatibility matrix
n = m.countOptions;

% Assume all compatible
c = m.initializeCompatibilityMatrix;
sum(sum(c == 0))

% Fill in incompatibilities
c(13,17) = 0; c(13,18) = 0; c(13,19) = 0; c(13,20) = 0;
c(14,16) = 0; c(14,20) = 0;
c(15,16) = 0; c(15,17) = 0; c(15,18) = 0; c(15,19) = 0;

sum(sum(c == 0))

575

%% Symmetrize matrix
c = symmetrize(c);

% Total alternatives
m.computeAlternatives

figure
pcolor(c)
colormap(gray(2))
axis ij
axis square
set(gca,'FontName','Times New Roman','FontSize',18)

% Compatible alternatives
tic
nn = m.computeCompatibleAlternatives(c,[],0)
toc

exampleReduction.m

% Prepare workspace
clc
close all
clear

addpath('../morphologicalTree')
addpath('../morphologicalTree/interfaces')

%% Analysis
fprintf('Macro ==================\n')
a = createMM_Macro('Macroscopic level',false);
before = a.computeAlternatives;
[a,~,nVars,nOptions] = a.reduce;
after = a.computeAlternatives;
fprintf('%g/%g (%f%%)\n',after,before,100*(before - after)/before)
fprintf('%d variables transferred to the optimizer\n',nVars)
fprintf('%d options removed\n',nOptions)
fprintf('\n')

fprintf('Fixed-Wing ==================\n')
a = createMM_FixedWing('Fixed-Wing',false);
before = a.computeAlternatives;
a.countOptions
a.countVariables
[a,~,nVars,nOptions] = a.reduce;
after = a.computeAlternatives;
fprintf('%g/%g (%f%%)\n',after,before,100*(before - after)/before)
fprintf('%d variables transferred to the optimizer\n',nVars)
fprintf('%d options removed\n',nOptions)
fprintf('\n')

fprintf('Multirotor ==================\n')
a = createMM_Multirotor('Multirotor',false);

576

before = a.computeAlternatives;
a.countOptions
a.countVariables
[a,~,nVars,nOptions] = a.reduce;
after = a.computeAlternatives;
fprintf('%g/%g (%f%%)\n',after,before,100*(before - after)/before)
fprintf('%d variables transferred to the optimizer\n',nVars)
fprintf('%d options removed\n',nOptions)
fprintf('\n')

fprintf('Airship ==================\n')
a = createMM_Airship('Airship',false);
before = a.computeAlternatives;
a.countOptions
a.countVariables
[a,~,nVars,nOptions] = a.reduce;
after = a.computeAlternatives;
fprintf('%g/%g (%f%%)\n',after,before,100*(before - after)/before)
fprintf('%d variables transferred to the optimizer\n',nVars)
fprintf('%d options removed\n',nOptions)
fprintf('\n')

fprintf('Ornithopter ==================\n')
a = createMM_Ornithopter('Ornithopter',false);
before = a.computeAlternatives;
a.countOptions
a.countVariables
[a,~,nVars,nOptions] = a.reduce;
after = a.computeAlternatives;
fprintf('%g/%g (%f%%)\n',after,before,100*(before - after)/before)
fprintf('%d variables transferred to the optimizer\n',nVars)
fprintf('%d options removed\n',nOptions)
fprintf('\n')

B.3.4 Interfaces

A set of functions creating notional morphological matrices and compatibility

matrices for a number of aircraft architectures and for a notional group composition.

createMM_Airship.m

function [m,c] = createMM_Airship(name,abstract)
if nargin < 2
 abstract = false;
 name = 'Airship';
end

% Morphological matrix

577

m = morphologicalMatrix(name,abstract);

r = rowConventional('Lifting medium');
r = r.addOption(option('Cold gas (Helium)',{}));
r = r.addOption(option('Hot air',{}));
m = m.addRow(r);

r = rowConventional('Empennage configuration');
r = r.addOption(option('Y',{'nTails','deltaAngle','offsetAngle'}));
r = r.addOption(option('Inverted

Y',{'nTails','deltaAngle','offsetAngle'}));
r = r.addOption(option('X',{'nTails','deltaAngle','offsetAngle'}));
r = r.addOption(option('Cross',{'nTails','deltaAngle','offsetAngle'}));
m = m.addRow(r);

r = rowConventional('Ballonet-based pitch trim');
r = r.addOption(option('Yes',{'nBallonets'}));
r = r.addOption(option('No',{'nBallonets'}));
m = m.addRow(r);

r = rowConventional('Energy source');
r = r.addOption(option('Bio-chemical',{}));
r = r.addOption(option('Electric charge',{}));
r = r.addOption(option('Electrolyte',{}));
r = r.addOption(option('Hybrid',{}));
m = m.addRow(r);

r = rowConventional('Energy storage');
% Battery variables include
% Battery conditions: 'C-rate','E-

rate','SOC','DOD','terminalV','opencircuitV','R'
% Technical specs: nominal voltage, cut-off voltage, capacity C,

energy,
% cycle life, specific energy, specific power, energy density, power
% density, maximum continuous discharge current, maximum 30s discharge
% pulse current, charge voltage, float voltage, charge current
% Source: http://web.mit.edu/evt/summary_battery_specifications.pdf
r = r.addOption(option('Battery (LiCoO2)',{'batteryVariables'}));
r = r.addOption(option('Battery (LiFePO4)',{'batteryVariables'}));
r = r.addOption(option('Battery (LiPo)',{'batteryVariables'}));
r = r.addOption(option('Battery (NiCad)',{'batteryVariables'}));
r = r.addOption(option('Battery (NiMH)',{'batteryVariables'}));
r = r.addOption(option('Fuel tank',{'volume'}));
r = r.addOption(option('External fuel tank',{'size','position'}));
r = r.addOption(option('Electrolyte tank',{'volume'}));
r = r.addOption(option('Fuel tank + Battery

(LiCoO2)',{'volume','batteryVariables'}));
r = r.addOption(option('Fuel tank + Battery

(LiFePO4)',{'volume','batteryVariables'}));
r = r.addOption(option('Fuel tank + Battery

(LiPo)',{'volume','batteryVariables'}));
r = r.addOption(option('Fuel tank + Battery

(NiCad)',{'volume','batteryVariables'}));
r = r.addOption(option('Fuel tank + Battery

(NiMH)',{'volume','batteryVariables'}));

578

r = r.addOption(option('External fuel tank + Battery

(LiCoO2)',{'size','position','batteryVariables'}));
r = r.addOption(option('External fuel tank + Battery

(LiFePO4)',{'size','position','batteryVariables'}));
r = r.addOption(option('External fuel tank + Battery

(LiPo)',{'size','position','batteryVariables'}));
r = r.addOption(option('External fuel tank + Battery

(NiCad)',{'size','position','batteryVariables'}));
r = r.addOption(option('External fuel tank + Battery

(NiMH)',{'size','position','batteryVariables'}));
m = m.addRow(r);

r = rowConventional('Converter to mechanical energy');
r = r.addOption(option('Piston',{}));
r = r.addOption(option('Turbine',{}));
r = r.addOption(option('Electric motor (Spinning cage, Brushed)',{}));
r = r.addOption(option('Electric motor (Spinning cage,

Brushless)',{}));
r = r.addOption(option('Electric motor (Spinning shaft, Brushed)',{}));
r = r.addOption(option('Electric motor (Spinning shaft,

Brushless)',{}));
r = r.addOption(option('Hybrid (Piston/Electric)',{}));
r = r.addOption(option('Hybrid (Turbine/Electric)',{}));
r = r.addOption(option('Fuel cell and electric motor',{}));
m = m.addRow(r);

r = rowConventional('Number of rotors');
r = r.addOption(option('1',{'nRotors','positionRotors'}));
r = r.addOption(option('2',{'nRotors','positionRotors'}));
r = r.addOption(option('3',{'nRotors','positionRotors'}));
r = r.addOption(option('4',{'nRotors','positionRotors'}));
r = r.addOption(option('6',{'nRotors','positionRotors'}));
r = r.addOption(option('8',{'nRotors','positionRotors'}));
m = m.addRow(r);

r = rowConventional('Steerable propulsion');
r = r.addOption(option('Yes',{}));
r = r.addOption(option('No',{}));
m = m.addRow(r);

r = rowConventional('Converter to lift/thrust');
r = r.addOption(option('Rotor',{}));
r = r.addOption(option('Fan',{}));
r = r.addOption(option('Propeller',{}));
m = m.addRow(r);

r = rowConventional('Number of blades');
r = r.addOption(option('2',{'nBlades'}));
r = r.addOption(option('3',{'nBlades'}));
r = r.addOption(option('4',{'nBlades'}));
r = r.addOption(option('6',{'nBlades'}));
r = r.addOption(option('8',{'nBlades'}));
r = r.addOption(option('10',{'nBlades'}));
m = m.addRow(r);

r = rowConventional('Blade type');

579

r = r.addOption(option('Fixed pitch',{}));
r = r.addOption(option('Variable pitch',{}));
m = m.addRow(r);

r = rowCombinatorial('Imaging');
r = r.addOption(option('Mono (Fixed-mount)',{}));
r = r.addOption(option('Mono (Gyro-stabilized)',{}));
r = r.addOption(option('RGB camera (Fixed-mount)',{}));
r = r.addOption(option('RGB camera (Gyro-stabilized)',{}));
r = r.addOption(option('Multispectral data (Fixed-mount)',{}));
r = r.addOption(option('Multispectral data (Gyro-stabilized)',{}));
r = r.addOption(option('Thermal camera (Fixed-mount)',{}));
r = r.addOption(option('Thermal camera (Gyro-stabilized)',{}));
m = m.addRow(r);

r = rowCombinatorial('Mapping');
r = r.addOption(option('2D LIDAR',{}));
r = r.addOption(option('3D LIDAR',{}));
r = r.addOption(option('Sonar',{}));
m = m.addRow(r);

r = rowCombinatorial('Attitude');
r = r.addOption(option('IMU+GPS',{}));
m = m.addRow(r);

r = rowCombinatorial('Altitude');
r = r.addOption(option('GPS',{}));
r = r.addOption(option('Barometer',{}));
r = r.addOption(option('Sonar',{}));
m = m.addRow(r);

r = rowConventional('Communications');
r = r.addOption(option('Radio',{}));
m = m.addRow(r);

r = rowConventional('Hull type');
r = r.addOption(option('Non-rigid',{}));
r = r.addOption(option('Semi-rigid',{}));
r = r.addOption(option('Rigid',{}));
m = m.addRow(r);

r = rowConventional('Battens');
r = r.addOption(option('Yes',{}));
r = r.addOption(option('No',{}));
m = m.addRow(r);

% Compatibility matrix

===

% Initialization
m = m.setUpCompatibilityIndices;
c = m.initializeCompatibilityMatrix;

% Fill in incompatibilities

580

% Energy sources --

c(9,13) = 0;
c(9,14) = 0;
c(9,15) = 0;
c(9,16) = 0;
c(9,17) = 0;
c(9,20) = 0;
c(9,21) = 0;
c(9,22) = 0;
c(9,23) = 0;
c(9,24) = 0;
c(9,25) = 0;
c(9,26) = 0;
c(9,27) = 0;
c(9,28) = 0;
c(9,29) = 0;
c(9,30) = 0;

c(9,33) = 0;
c(9,34) = 0;
c(9,35) = 0;
c(9,36) = 0;
c(9,37) = 0;
c(9,38) = 0;
c(9,39) = 0;

c(10,18) = 0;
c(10,19) = 0;
c(10,20) = 0;
c(10,21) = 0;
c(10,22) = 0;
c(10,23) = 0;
c(10,24) = 0;
c(10,25) = 0;
c(10,26) = 0;
c(10,27) = 0;
c(10,28) = 0;
c(10,29) = 0;
c(10,30) = 0;

c(10,31) = 0;
c(10,32) = 0;
c(10,37) = 0;
c(10,38) = 0;
c(10,39) = 0;

c(11,13) = 0;
c(11,14) = 0;
c(11,15) = 0;
c(11,16) = 0;
c(11,17) = 0;
c(11,18) = 0;
c(11,19) = 0;
c(11,21) = 0;
c(11,22) = 0;

581

c(11,23) = 0;
c(11,24) = 0;
c(11,25) = 0;
c(11,26) = 0;
c(11,27) = 0;
c(11,28) = 0;
c(11,29) = 0;
c(11,30) = 0;

c(11,31) = 0;
c(11,32) = 0;
c(11,33) = 0;
c(11,34) = 0;
c(11,35) = 0;
c(11,36) = 0;
c(11,37) = 0;
c(11,38) = 0;

c(12,13) = 0;
c(12,14) = 0;
c(12,15) = 0;
c(12,16) = 0;
c(12,17) = 0;
c(12,18) = 0;
c(12,19) = 0;
c(12,20) = 0;

c(12,31) = 0;
c(12,32) = 0;
c(12,33) = 0;
c(12,34) = 0;
c(12,35) = 0;
c(12,36) = 0;
c(12,39) = 0;

% Energy storage --

c(13,31) = 0; c(13,32) = 0; c(13,37) = 0; c(13,38) = 0; c(13,39) = 0;
c(14,31) = 0; c(14,32) = 0; c(14,37) = 0; c(14,38) = 0; c(14,39) = 0;
c(15,31) = 0; c(15,32) = 0; c(15,37) = 0; c(15,38) = 0; c(15,39) = 0;
c(16,31) = 0; c(16,32) = 0; c(16,37) = 0; c(16,38) = 0; c(16,39) = 0;
c(17,31) = 0; c(17,32) = 0; c(17,37) = 0; c(17,38) = 0; c(17,39) = 0;

c(18,33) = 0; c(18,34) = 0; c(18,35) = 0; c(18,36) = 0; c(18,37) = 0;

c(18,38) = 0; c(18,39) = 0;
c(19,33) = 0; c(19,34) = 0; c(19,35) = 0; c(19,36) = 0; c(19,37) = 0;

c(19,38) = 0; c(19,39) = 0;

c(20,31) = 0;
c(20,32) = 0;
c(20,33) = 0;
c(20,34) = 0;
c(20,35) = 0;
c(20,36) = 0;
c(20,37) = 0;
c(20,38) = 0;

582

for i = 21:30
 c(i,31) = 0;
 c(i,32) = 0;
 c(i,33) = 0;
 c(i,34) = 0;
 c(i,35) = 0;
 c(i,36) = 0;
 c(i,39) = 0;
end

% Hull type ---

c(75,78) = 0;

% Symmetrize matrix

==
c = m.symmetrize(c);
end

createMM_FixedWing.m

function [m,c] = createMM_FixedWing(name,abstract)
if nargin < 2
 abstract = false;
 name = 'Fixed-Wing';
end

% Empennage
mEmpennage = morphologicalMatrix('Empennage');

r = rowConventional('Number of tailplanes');
r = r.addOption(option('0 (Tailless)',{'variablesTailless'}));
r = r.addOption(option('0 (Canard)',{'VariablesCanard'}));
r = r.addOption(option('1',{'nTailPlanes'}));
r = r.addOption(option('2',{'nTailPlanes'}));
r = r.addOption(option('3',{'nTailPlanes'}));
mEmpennage = mEmpennage.addRow(r); % Add row to matrix

r = rowConventional('Location');
r = r.addOption(option('Low',{'variablesLow'}));
r = r.addOption(option('Mid',{'variablesMid'}));
r = r.addOption(option('High',{'variablesHigh'}));
r = r.addOption(option('Booms (Tail)',{'variablesBoomsTail'}));
r = r.addOption(option('Booms (Wing)',{'variablesBoomsWing'}));
mEmpennage = mEmpennage.addRow(r); % Add row to matrix

r = rowConventional('Moving surfaces');
r = r.addOption(option('Independent',{'variablesIndependent'}));
r = r.addOption(option('Stabilator',{'variablesStabilator'}));
mEmpennage = mEmpennage.addRow(r); % Add row to matrix

r = rowConventional('Number of fins');

583

r = r.addOption(option('0',{'nFins','positions'}));
r = r.addOption(option('1',{'nFins','positions'}));
r = r.addOption(option('2',{'nFins','positions'}));
mEmpennage = mEmpennage.addRow(r); % Add row to matrix

r = rowConventional('Configuration');
r = r.addOption(option('Fin/Taiplane',{'nTailPlanes','positions'}));
r = r.addOption(option('V tail',{'nTailPlanes','positions'}));
r = r.addOption(option('Inverted V tail',{'nTailPlanes','positions'}));
r = r.addOption(option('X tail',{'nTailPlanes','positions'}));
r = r.addOption(option('Pelikan',{'variablesPelikan'}));
mEmpennage = mEmpennage.addRow(r); % Add row to matrix

% Fixed wing

===
m = morphologicalMatrix(name,abstract);

r = rowConventional('Body');
r = r.addOption(option('Separate fuselage',{}));
r = r.addOption(option('Flying wing',{}));
r = r.addOption(option('Blended body',{}));
r = r.addOption(option('Lifting body',{}));
m = m.addRow(r);

r = rowConventional('Wing');
% Wing variables include
% Aspect ratio, span, sweep angle 1, 2, taper ratio, chord length
r = r.addOption(option('Straight',{'wingVariables'}));
r = r.addOption(option('Swept',{'wingVariables'}));
r = r.addOption(option('Delta',{'wingVariables'}));
r = r.addOption(option('Compound delta',{'wingVariables'}));
m = m.addRow(r);

r = rowConventional('Wing position');
r = r.addOption(option('Low',{}));
r = r.addOption(option('Mid',{}));
r = r.addOption(option('Shoulder',{}));
r = r.addOption(option('High',{}));
r = r.addOption(option('Parasol',{}));
m = m.addRow(r);

r = rowConventional('Detachable wing');
r = r.addOption(option('Yes',{'weightDetachableMechanism'}));
r = r.addOption(option('No',{'weightDetachableMechanism'}));
m = m.addRow(r);

r = rowConventional('Empennage');
r = r.addOption(option('None',{}));
r = r.addOptionFromMorph('Empennage',mEmpennage);
m = m.addRow(r);

r = rowConventional('Type of launch');
r = r.addOption(option('Horizontal',{'vInit','pitchInit','hInit'}));
r = r.addOption(option('Vertical',{'vInit','pitchInit','hInit'}));
r = r.addOption(option('Hand-launched',{'vInit','pitchInit','hInit'}));

584

r = r.addOption(option('Aircraft-

launched',{'vInit','pitchInit','hInit'}));
r = r.addOption(option('Catapult-

launched',{'vInit','pitchInit','hInit'}));
m = m.addRow(r);

r = rowConventional('Type of landing');
r = r.addOption(option('Horizontal landing',{}));
r = r.addOption(option('Vertical landing',{}));
r = r.addOption(option('Energy dissipation crash',{}));
r = r.addOption(option('Parachute',{}));
r = r.addOption(option('Net',{}));
m = m.addRow(r);

r = rowConventional('Number of motors');
r = r.addOption(option('1',{}));
r = r.addOption(option('2',{'nEnginePairs'}));
r = r.addOption(option('3',{}));
r = r.addOption(option('4',{'nEnginePairs'}));
m = m.addRow(r);

r = rowConventional('Energy source');
r = r.addOption(option('Bio-chemical',{}));
r = r.addOption(option('Electric charge',{}));
r = r.addOption(option('Solar',{}));
r = r.addOption(option('Electrolyte',{}));
r = r.addOption(option('Hybrid',{}));
m = m.addRow(r);

% Battery variables include
% Battery conditions: 'C-rate','E-

rate','SOC','DOD','terminalV','opencircuitV','R'
% Technical specs: nominal voltage, cut-off voltage, capacity C,

energy,
% cycle life, specific energy, specific power, energy density, power
% density, maximum continuous discharge current, maximum 30s discharge
% pulse current, charge voltage, float voltage, charge current
% Source: http://web.mit.edu/evt/summary_battery_specifications.pdf
r = rowConventional('Energy storage');
r = r.addOption(option('Battery (LiCoO2)',{'batteryVariables'}));
r = r.addOption(option('Battery (LiFePO4)',{'batteryVariables'}));
r = r.addOption(option('Battery (LiPo)',{'batteryVariables'}));
r = r.addOption(option('Battery (NiCad)',{'batteryVariables'}));
r = r.addOption(option('Battery (NiMH)',{'batteryVariables'}));
r = r.addOption(option('Fuel tank',{'volume'}));
r = r.addOption(option('External fuel tank',{'size','position'}));
r = r.addOption(option('Electrolyte tank',{'volume'}));
r = r.addOption(option('Fuel tank + Battery

(LiCoO2)',{'volume','batteryVariables'}));
r = r.addOption(option('Fuel tank + Battery

(LiFePO4)',{'volume','batteryVariables'}));
r = r.addOption(option('Fuel tank + Battery

(LiPo)',{'volume','batteryVariables'}));
r = r.addOption(option('Fuel tank + Battery

(NiCad)',{'volume','batteryVariables'}));

585

r = r.addOption(option('Fuel tank + Battery

(NiMH)',{'volume','batteryVariables'}));
r = r.addOption(option('External fuel tank + Battery

(LiCoO2)',{'size','position','batteryVariables'}));
r = r.addOption(option('External fuel tank + Battery

(LiFePO4)',{'size','position','batteryVariables'}));
r = r.addOption(option('External fuel tank + Battery

(LiPo)',{'size','position','batteryVariables'}));
r = r.addOption(option('External fuel tank + Battery

(NiCad)',{'size','position','batteryVariables'}));
r = r.addOption(option('External fuel tank + Battery

(NiMH)',{'size','position','batteryVariables'}));
m = m.addRow(r);

r = rowConventional('Converter to mechanical energy');
r = r.addOption(option('Piston',{}));
r = r.addOption(option('Turbine',{}));
r = r.addOption(option('Electric motor',{}));
r = r.addOption(option('Hybrid (Piston/Electric)',{}));
r = r.addOption(option('Hybrid (Turbine/Electric)',{}));
r = r.addOption(option('Fuel cell and electric motor',{}));
m = m.addRow(r);

r = rowConventional('Converter to lift/thrust');
r = r.addOption(option('Rotor',{}));
r = r.addOption(option('Fan',{}));
r = r.addOption(option('Propeller',{}));
r = r.addOption(option('Jet',{}));
m = m.addRow(r);

r = rowCombinatorial('Imaging');
r = r.addOption(option('Mono (Fixed-mount)',{}));
r = r.addOption(option('Mono (Gyro-stabilized)',{}));
r = r.addOption(option('RGB camera (Fixed-mount)',{}));
r = r.addOption(option('RGB camera (Gyro-stabilized)',{}));
r = r.addOption(option('Multispectral data (Fixed-mount)',{}));
r = r.addOption(option('Multispectral data (Gyro-stabilized)',{}));
r = r.addOption(option('Thermal camera (Fixed-mount)',{}));
r = r.addOption(option('Thermal camera (Gyro-stabilized)',{}));
m = m.addRow(r);

r = rowCombinatorial('Mapping');
r = r.addOption(option('2D LIDAR',{}));
r = r.addOption(option('3D LIDAR',{}));
r = r.addOption(option('Sonar',{}));
m = m.addRow(r);

r = rowConventional('Attitude');
r = r.addOption(option('IMU+GPS',{}));
m = m.addRow(r);

r = rowCombinatorial('Altitude');
r = r.addOption(option('GPS',{}));
r = r.addOption(option('Barometer',{}));
r = r.addOption(option('Sonar',{}));
m = m.addRow(r);

586

r = rowConventional('Communications');
r = r.addOption(option('Radio',{}));
m = m.addRow(r);

r = rowConventional('Landing gear arrangement');
r = r.addOption(option('None',{}));
r = r.addOption(option('Wheels (Tail wheel)',{}));
r = r.addOption(option('Wheels (Tandem)',{}));
r = r.addOption(option('Wheels (Tricycle)',{}));
r = r.addOption(option('Wheels (Wing)',{}));
r = r.addOption(option('Skids',{}));
r = r.addOption(option('Floaters',{}));
r = r.addOption(option('Skis',{}));
m = m.addRow(r);

r = rowConventional('Landing gear type');
r = r.addOption(option('None',{}));
r = r.addOption(option('Fixed',{}));
r = r.addOption(option('Retractable',{}));
m = m.addRow(r);

r = rowConventional('Landing gear shock absorption');
r = r.addOption(option('None',{}));
r = r.addOption(option('Rigid',{}));
r = r.addOption(option('Leaf-type',{}));
r = r.addOption(option('Bungee cord',{}));
r = r.addOption(option('Shock struts',{}));
m = m.addRow(r);

% Compatibility matrix

===

% Initialization
m = m.setUpCompatibilityIndices;
c = m.initializeCompatibilityMatrix;

% Fill in incompatibilities
c(2:4,[9,11:13]) = 0;
c(2:4, 17:766) = 0;

c(774,831:837) = 0; c(774,839:840) = 0; c(774,842:845) = 0;
c(776,831:837) = 0; c(776,842:845) = 0;

c(781,786:790) = 0; c(781,793:803) = 0;
c(781,806:809) = 0;

c(782,791:803) = 0;
c(782:783,804:805) = 0; c(782:783,807:809) = 0;

c(784,786:792) = 0; c(784,794:803) = 0;
c(784,804:808) = 0;

c(785,786:793) = 0;

587

c(785,804:806) = 0; c(785,809) = 0;

c(786:790,804:805) = 0; c(786:790,807:809) = 0;

c(791:792,806:809) = 0;

c(793,804:808) = 0;

c(794:803,804:806) = 0; c(794:803,809) = 0;

% Symmetrize matrix

==
c = m.symmetrize(c);
end

createMM_Macro.m

function [m,c] = createMM_Macro(name,abstract)
% Macroscopic level
if nargin < 2
 abstract = false;
 name = 'Macroscopic level';
end
m = morphologicalMatrix(name,abstract);

r = rowConventional('Mission type');
r = r.addOption(option('HALE',{}));
r = r.addOption(option('Long-range strike',{}));
r = r.addOption(option('MALE',{}));
r = r.addOption(option('Close-range support',{}));
r = r.addOption(option('MUAV',{}));
r = r.addOption(option('MAV',{}));
m = m.addRow(r);

r = rowConventional('Architecture');
r = r.addOption(option('Fixed/Conventional',{}));
r = r.addOption(option('Product family',{}));
r = r.addOption(option('Scale-based product family',{}));
r = r.addOption(option('Reconfigurable',{}));
r = r.addOption(option('Online reconfigurable',{}));
r = r.addOption(option('Modular',{}));
m = m.addRow(r);

r = rowConventional('Control type');
r = r.addOption(option('Centralized',{}));
r = r.addOption(option('Decentralized',{}));
r = r.addOption(option('Hybrid',{}));
m = m.addRow(r);

r = rowConventional('Control scheme');
r = r.addOption(option('Leader/Follower',{}));
r = r.addOption(option('Consensus',{}));

588

r = r.addOption(option('Partitioned',{}));
r = r.addOption(option('Distributed',{}));
r = r.addOption(option('Hierarchical',{}));
m = m.addRow(r);

r = rowConventional('Ground station');
r = r.addOption(option('Remote base',{}));
r = r.addOption(option('Laptop',{}));
r = r.addOption(option('Wearable technology',{}));
m = m.addRow(r);

% Compatibility matrix

===
% Initialization (all compatible)
m = m.setUpCompatibilityIndices;
c = m.initializeCompatibilityMatrix;

% Fill in incompatibilities
c(13,17) = 0; c(13,18) = 0; c(13,19) = 0; c(13,20) = 0;
c(14,16) = 0; c(14,20) = 0;
c(15,16) = 0; c(15,17) = 0; c(15,18) = 0; c(15,19) = 0;

% Symmetrize matrix

==
c = m.symmetrize(c);
end

createMM_Multirotor.m

function [m,c] = createMM_Multirotor(name,abstract)
% Multirotor
if nargin < 2
 abstract = false;
 name = 'Multirotor';
end

m = morphologicalMatrix(name,abstract);

r = rowConventional('Fairings');
r = r.addOption(option('None',{}));
r = r.addOption(option('Electronics only',{}));
r = r.addOption(option('Full body',{}));
r = r.addOption(option('Full body and payload',{}));
m = m.addRow(r);

r = rowConventional('Type of landing');
r = r.addOption(option('Vertical landing',{}));
r = r.addOption(option('Energy dissipation crash',{}));
r = r.addOption(option('Parachute',{}));
r = r.addOption(option('Net',{}));
m = m.addRow(r);

r = rowConventional('Energy source');

589

r = r.addOption(option('Bio-chemical',{}));
r = r.addOption(option('Electric charge',{}));
r = r.addOption(option('Electrolyte',{}));
r = r.addOption(option('Hybrid',{}));
m = m.addRow(r);

% Battery variables include
% Battery conditions: 'C-rate','E-

rate','SOC','DOD','terminalV','opencircuitV','R'
% Technical specs: nominal voltage, cut-off voltage, capacity C,

energy,
% cycle life, specific energy, specific power, energy density, power
% density, maximum continuous discharge current, maximum 30s discharge
% pulse current, charge voltage, float voltage, charge current
% Source: http://web.mit.edu/evt/summary_battery_specifications.pdf
r = rowConventional('Energy storage');
r = r.addOption(option('Battery (LiCoO2)',{'batteryVariables'}));
r = r.addOption(option('Battery (LiFePO4)',{'batteryVariables'}));
r = r.addOption(option('Battery (LiPo)',{'batteryVariables'}));
r = r.addOption(option('Battery (NiCad)',{'batteryVariables'}));
r = r.addOption(option('Battery (NiMH)',{'batteryVariables'}));
r = r.addOption(option('Fuel tank',{'volume'}));
r = r.addOption(option('External fuel tank',{'size','position'}));
r = r.addOption(option('Electrolyte tank',{'volume'}));
r = r.addOption(option('Fuel tank + Battery

(LiCoO2)',{'volume','batteryVariables'}));
r = r.addOption(option('Fuel tank + Battery

(LiFePO4)',{'volume','batteryVariables'}));
r = r.addOption(option('Fuel tank + Battery

(LiPo)',{'volume','batteryVariables'}));
r = r.addOption(option('Fuel tank + Battery

(NiCad)',{'volume','batteryVariables'}));
r = r.addOption(option('Fuel tank + Battery

(NiMH)',{'volume','batteryVariables'}));
r = r.addOption(option('External fuel tank + Battery

(LiCoO2)',{'size','position','batteryVariables'}));
r = r.addOption(option('External fuel tank + Battery

(LiFePO4)',{'size','position','batteryVariables'}));
r = r.addOption(option('External fuel tank + Battery

(LiPo)',{'size','position','batteryVariables'}));
r = r.addOption(option('External fuel tank + Battery

(NiCad)',{'size','position','batteryVariables'}));
r = r.addOption(option('External fuel tank + Battery

(NiMH)',{'size','position','batteryVariables'}));
m = m.addRow(r);

r = rowConventional('Converter to mechanical energy');
r = r.addOption(option('Piston',{}));
r = r.addOption(option('Turbine',{}));
r = r.addOption(option('Electric motor (Spinning cage, Brushed)',{}));
r = r.addOption(option('Electric motor (Spinning cage,

Brushless)',{}));
r = r.addOption(option('Electric motor (Spinning shaft, Brushed)',{}));
r = r.addOption(option('Electric motor (Spinning shaft,

Brushless)',{}));
r = r.addOption(option('Hybrid (Piston/Electric)',{}));

590

r = r.addOption(option('Hybrid (Turbine/Electric)',{}));
r = r.addOption(option('Fuel cell and electric motor',{}));
m = m.addRow(r);

r = rowConventional('Rotorcraft');
r = r.addOption(option('Single rotor',{}));
r = r.addOption(option('Coaxial',{}));
r = r.addOption(option('Tail sitter',{}));
r = r.addOption(option('Tilt-rotor',{}));
r = r.addOption(option('Multirotor',{}));
m = m.addRow(r);

r = rowConventional('Number of rotors');
r = r.addOption(option('1',{'nRotors'}));
r = r.addOption(option('2',{'nRotors'}));
r = r.addOption(option('3',{'nRotors'}));
r = r.addOption(option('4',{'nRotors'}));
r = r.addOption(option('6',{'nRotors'}));
r = r.addOption(option('8',{'nRotors'}));
m = m.addRow(r);

r = rowConventional('Converter to lift/thrust');
r = r.addOption(option('Rotor',{}));
r = r.addOption(option('Fan',{}));
r = r.addOption(option('Propeller',{}));
m = m.addRow(r);

r = rowConventional('Number of blades');
r = r.addOption(option('2',{'nBlades'}));
r = r.addOption(option('3',{'nBlades'}));
r = r.addOption(option('4',{'nBlades'}));
r = r.addOption(option('6',{'nBlades'}));
r = r.addOption(option('8',{'nBlades'}));
r = r.addOption(option('10',{'nBlades'}));
m = m.addRow(r);

r = rowConventional('Rotors/Frame arrangement');
r = r.addOption(option('I',{}));
r = r.addOption(option('X',{'armsAngles'}));
r = r.addOption(option('Y',{'armsAngles'}));
r = r.addOption(option('V',{'armsAngles'}));
m = m.addRow(r);

r = rowConventional('Blade type');
r = r.addOption(option('Fixed pitch',{}));
r = r.addOption(option('Variable pitch',{}));
m = m.addRow(r);

r = rowCombinatorial('Imaging');
r = r.addOption(option('Mono (Fixed-mount)',{}));
r = r.addOption(option('Mono (Gyro-stabilized)',{}));
r = r.addOption(option('RGB camera (Fixed-mount)',{}));
r = r.addOption(option('RGB camera (Gyro-stabilized)',{}));
r = r.addOption(option('Multispectral data (Fixed-mount)',{}));
r = r.addOption(option('Multispectral data (Gyro-stabilized)',{}));

591

r = r.addOption(option('Thermal camera (Fixed-mount)',{}));
r = r.addOption(option('Thermal camera (Gyro-stabilized)',{}));
m = m.addRow(r);

r = rowCombinatorial('Mapping');
r = r.addOption(option('2D LIDAR',{}));
r = r.addOption(option('3D LIDAR',{}));
r = r.addOption(option('Sonar',{}));
m = m.addRow(r);

r = rowConventional('Attitude');
r = r.addOption(option('IMU+GPS',{}));
m = m.addRow(r);

r = rowCombinatorial('Altitude');
r = r.addOption(option('GPS',{}));
r = r.addOption(option('Barometer',{}));
r = r.addOption(option('Sonar',{}));
m = m.addRow(r);

r = rowConventional('Communications');
r = r.addOption(option('Radio',{}));
m = m.addRow(r);

r = rowConventional('Landing gear arrangement');
r = r.addOption(option('None',{}));
r = r.addOption(option('Foam pads',{}));
r = r.addOption(option('Skids',{}));
r = r.addOption(option('Floaters',{}));
m = m.addRow(r);

r = rowConventional('Landing gear type');
r = r.addOption(option('None',{}));
r = r.addOption(option('Fixed',{}));
r = r.addOption(option('Retractable',{}));
m = m.addRow(r);

r = rowConventional('Landing gear shock absorption');
r = r.addOption(option('None',{}));
r = r.addOption(option('Rigid',{}));
r = r.addOption(option('Leaf-type',{}));
r = r.addOption(option('Bungee cord',{}));
r = r.addOption(option('Shock struts',{}));
m = m.addRow(r);

r = rowConventional('Frame type');
r = r.addOption(option('Aerial cinematography',{}));
r = r.addOption(option('Sport',{}));
r = r.addOption(option('Sport FPV',{}));
r = r.addOption(option('Mini',{}));
r = r.addOption(option('Mini FPV',{}));
m = m.addRow(r);

% Compatibility matrix

===

592

% Assume all compatible
m = m.setUpCompatibilityIndices;
c = m.initializeCompatibilityMatrix;

% Fill in incompatibilities
c(6,83) = 0; c(6,84) = 0; c(6,85) = 0; c(6,87) = 0; c(6,88) = 0;

c(6,90:93) = 0;
c(8,83) = 0; c(8,84) = 0; c(8,85) = 0; c(8,90:93) = 0;

c(9,13:17) = 0; c(9,20:30) = 0;
c(9,33:39) = 0;

c(10,18:30) = 0;
c(10,31:32) = 0; c(10,37:39) = 0;

c(11,13:19) = 0; c(11,21:30) = 0;
c(11,31:38) = 0;

c(12,13:20) = 0;
c(12,31:36) = 0; c(12,39) = 0;

c(13:17,31:32) = 0;
c(13:17,37:39) = 0;

c(18:19,33:39) = 0;

c(20,31:38) = 0;

c(21:30,31:36) = 0;
c(21:30,39) = 0;

% Symmetrize matrix

==
c = m.symmetrize(c);
end

createMM_Ornithopter.m

function [m,c] = createMM_Ornithopter(name,abstract)
if nargin < 2
 name = 'Ornithopter';
 abstract = false;
end

% Ornithopter
m = morphologicalMatrix(name,abstract);

r = rowConventional('Wing twisting');
r = r.addOption(option('Yes (Spar rotation)',{}));
r = r.addOption(option('Yes (Spar torsion)',{}));
r = r.addOption(option('Yes (Servo-controlled)',{}));

593

r = r.addOption(option('Yes (Auxiliary spar)',{}));
r = r.addOption(option('No',{}));
m = m.addRow(r);

r = rowConventional('Wing type');
r = r.addOption(option('Flying wing',{}));
r = r.addOption(option('Tandem wing',{}));
r = r.addOption(option('Thrust wing',{}));
r = r.addOption(option('Oscillating stretched wing',{}));
r = r.addOption(option('Rotating wing',{}));
m = m.addRow(r);

r = rowConventional('Energy source');
r = r.addOption(option('Bio-chemical',{}));
r = r.addOption(option('Electric charge',{}));
r = r.addOption(option('Other',{}));
m = m.addRow(r);

% Battery variables include
% Battery conditions: 'C-rate','E-

rate','SOC','DOD','terminalV','opencircuitV','R'
% Technical specs: nominal voltage, cut-off voltage, capacity C,

energy,
% cycle life, specific energy, specific power, energy density, power
% density, maximum continuous discharge current, maximum 30s discharge
% pulse current, charge voltage, float voltage, charge current
% Source: http://web.mit.edu/evt/summary_battery_specifications.pdf
r = rowConventional('Energy storage');
r = r.addOption(option('Battery (LiCoO2)',{'batteryVariables'}));
r = r.addOption(option('Battery (LiFePO4)',{'batteryVariables'}));
r = r.addOption(option('Battery (LiPo)',{'batteryVariables'}));
r = r.addOption(option('Battery (NiCad)',{'batteryVariables'}));
r = r.addOption(option('Battery (NiMH)',{'batteryVariables'}));
r = r.addOption(option('Fuel tank',{}));
r = r.addOption(option('Rubber',{}));
m = m.addRow(r);

r = rowConventional('Gearbox type');
r = r.addOption(option('Strut',{}));
r = r.addOption(option('Plate',{}));
m = m.addRow(r);

r = rowConventional('Gear type');
r = r.addOption(option('Cluster',{}));
r = r.addOption(option('Spur with pinion wire',{}));
m = m.addRow(r);

r = rowConventional('Flapping mechanism');
r = r.addOption(option('Staggered crank',{}));
r = r.addOption(option('Outboard wing hinge',{}));
r = r.addOption(option('Dual cranks',{}));
r = r.addOption(option('Transverse shaft',{}));
m = m.addRow(r);

r = rowConventional('Converter to mechanical energy');

594

r = r.addOption(option('Internal combustion engine',{}));
r = r.addOption(option('Electric motor (Spinning cage, Brushed)',{}));
r = r.addOption(option('Electric motor (Spinning cage,

Brushless)',{}));
r = r.addOption(option('Electric motor (Spinning shaft, Brushed)',{}));
r = r.addOption(option('Electric motor (Spinning shaft,

Brushless)',{}));
r = r.addOption(option('Rubber + shaft',{}));
m = m.addRow(r);

r = rowCombinatorial('Imaging');
r = r.addOption(option('Mono',{}));
r = r.addOption(option('RGB camera',{}));
r = r.addOption(option('Multispectral data',{}));
m = m.addRow(r);

r = rowCombinatorial('Attitude');
r = r.addOption(option('IMU+GPS',{}));
m = m.addRow(r);

r = rowCombinatorial('Altitude');
r = r.addOption(option('GPS',{}));
r = r.addOption(option('Barometer',{}));
r = r.addOption(option('Sonar',{}));
m = m.addRow(r);

r = rowConventional('Communications');
r = r.addOption(option('Radio',{}));
m = m.addRow(r);

r = rowCombinatorial('Wing reinforcement');
r = r.addOption(option('Battens',{}));
r = r.addOption(option('Perimeter',{}));
m = m.addRow(r);

% Compatibility matrix

===

% Assume all compatible
m = m.setUpCompatibilityIndices;
c = m.initializeCompatibilityMatrix;

% Fill in incompatibilities
c(11,14) = 0; c(11,15) = 0; c(11,16) = 0; c(11,17) = 0; c(11,18) = 0;

c(11,20) = 0;
c(11,30) = 0; c(11,31) = 0; c(11,32) = 0; c(11,33) = 0; c(11,34) = 0;

c(12,19) = 0; c(12,20) = 0;
c(12,29) = 0; c(12,34) = 0;

c(13,14) = 0; c(13,15) = 0; c(13,16) = 0; c(13,17) = 0; c(13,18) = 0;

c(13,19) = 0;
c(13,29) = 0; c(13,30) = 0; c(13,31) = 0; c(13,32) = 0; c(13,33) = 0;

c(14:18,29) = 0;

595

c(14:18,34) = 0;

c(19,30:34) = 0;
c(20,29:33) = 0;

% Symmetrize matrix

==
c = m.symmetrize(c);
end

B.3.5 PACE cluster scripts

Due to the very demanding resources of the recursive compatibility function, some

evaluations had to be performed on the Georgia Tech PACE cluster. This subsection gives

examples of scripts that were produced to run such function calls on the clusters.

airship.pbs

The script submitted to the PACE cluster with the command qsub, it runs the script

airship.m on the cluster.

#PBS -N airship4

#PBS -q enterprise

#PBS -o airship4.output.$PBS_JOBID

#PBS -j oe

#PBS -l nodes=10:ppn=24

#PBS -l mem=8gb

#PBS -l walltime=5:00:00

#PBS -m abe

#PBS -M jdurand7@gatech.edu

Load Matlab

module load matlab/r2016a

Change to working directory

cd scripts/airship

Run code

matlab -nodisplay -nosplash -nodesktop -r "run airship.m"

airship.m

596

The actual Matlab script run on the cluster. It computes the number of compatible

alternatives out of the morphological and compatibility matrices of a notional airship

model.

% Prepare workspace
clc
close all
clear

addpath('..')

%% Morphological matrix
m = morphologicalMatrix('Airship');

r = rowConventional('Lifting medium');
r = r.addOption(option('Cold gas (Helium)',{}));
r = r.addOption(option('Hot air',{}));
m = m.addRow(r);

r = rowConventional('Empennage configuration');
r = r.addOption(option('Y',{}));
r = r.addOption(option('Inverted Y',{}));
r = r.addOption(option('X',{}));
r = r.addOption(option('Cross',{}));
m = m.addRow(r);

r = rowConventional('Ballonet-based pitch trim');
r = r.addOption(option('Yes',{}));
r = r.addOption(option('No',{}));
m = m.addRow(r);

r = rowConventional('Energy source');
r = r.addOption(option('Bio-chemical',{}));
r = r.addOption(option('Electric charge',{}));
r = r.addOption(option('Electrolyte',{}));
r = r.addOption(option('Hybrid',{}));
m = m.addRow(r);

r = rowConventional('Energy storage');
r = r.addOption(option('Battery (LiCoO2)',{}));
r = r.addOption(option('Battery (LiFePO4)',{}));
r = r.addOption(option('Battery (LiPo)',{}));
r = r.addOption(option('Battery (NiCad)',{}));
r = r.addOption(option('Battery (NiMH)',{}));
r = r.addOption(option('Fuel tank',{}));
r = r.addOption(option('External fuel tank',{}));
r = r.addOption(option('Electrolyte tank',{}));
r = r.addOption(option('Fuel tank + Battery (LiCoO2)',{}));
r = r.addOption(option('Fuel tank + Battery (LiFePO4)',{}));
r = r.addOption(option('Fuel tank + Battery (LiPo)',{}));
r = r.addOption(option('Fuel tank + Battery (NiCad)',{}));
r = r.addOption(option('Fuel tank + Battery (NiMH)',{}));

597

r = r.addOption(option('External fuel tank + Battery (LiCoO2)',{}));
r = r.addOption(option('External fuel tank + Battery (LiFePO4)',{}));
r = r.addOption(option('External fuel tank + Battery (LiPo)',{}));
r = r.addOption(option('External fuel tank + Battery (NiCad)',{}));
r = r.addOption(option('External fuel tank + Battery (NiMH)',{}));
m = m.addRow(r);

r = rowConventional('Converter to mechanical energy');
r = r.addOption(option('Piston',{}));
r = r.addOption(option('Turbine',{}));
r = r.addOption(option('Electric motor (Spinning cage, Brushed)',{}));
r = r.addOption(option('Electric motor (Spinning cage,

Brushless)',{}));
r = r.addOption(option('Electric motor (Spinning shaft, Brushed)',{}));
r = r.addOption(option('Electric motor (Spinning shaft,

Brushless)',{}));
r = r.addOption(option('Hybrid (Piston/Electric)',{}));
r = r.addOption(option('Hybrid (Turbine/Electric)',{}));
r = r.addOption(option('Fuel cell and electric motor',{}));
m = m.addRow(r);

r = rowConventional('Number of rotors');
r = r.addOption(option('1',{}));
r = r.addOption(option('2',{}));
r = r.addOption(option('3',{}));
r = r.addOption(option('4',{}));
r = r.addOption(option('6',{}));
r = r.addOption(option('8',{}));
m = m.addRow(r);

r = rowConventional('Steerable propulsion');
r = r.addOption(option('Yes',{}));
r = r.addOption(option('No',{}));
m = m.addRow(r);

r = rowConventional('Converter to lift/thrust');
r = r.addOption(option('Rotor',{}));
r = r.addOption(option('Fan',{}));
r = r.addOption(option('Propeller',{}));
m = m.addRow(r);

r = rowConventional('Number of blades');
r = r.addOption(option('2',{}));
r = r.addOption(option('3',{}));
r = r.addOption(option('4',{}));
r = r.addOption(option('6',{}));
r = r.addOption(option('8',{}));
r = r.addOption(option('10',{}));
m = m.addRow(r);

r = rowConventional('Blade type');
r = r.addOption(option('Fixed pitch',{}));
r = r.addOption(option('Variable pitch',{}));
m = m.addRow(r);

598

r = rowCombinatorial('Imaging');
r = r.addOption(option('Mono (Fixed-mount)',{}));
r = r.addOption(option('Mono (Gyro-stabilized)',{}));
r = r.addOption(option('RGB camera (Fixed-mount)',{}));
r = r.addOption(option('RGB camera (Gyro-stabilized)',{}));
r = r.addOption(option('Multispectral data (Fixed-mount)',{}));
r = r.addOption(option('Multispectral data (Gyro-stabilized)',{}));
r = r.addOption(option('Thermal camera (Fixed-mount)',{}));
r = r.addOption(option('Thermal camera (Gyro-stabilized)',{}));
m = m.addRow(r);

r = rowCombinatorial('Mapping');
r = r.addOption(option('2D LIDAR',{}));
r = r.addOption(option('3D LIDAR',{}));
r = r.addOption(option('Sonar',{}));
m = m.addRow(r);

r = rowCombinatorial('Attitude');
r = r.addOption(option('IMU+GPS',{}));
m = m.addRow(r);

r = rowCombinatorial('Altitude');
r = r.addOption(option('GPS',{}));
r = r.addOption(option('Barometer',{}));
r = r.addOption(option('Sonar',{}));
m = m.addRow(r);

r = rowConventional('Communications');
r = r.addOption(option('Radio',{}));
m = m.addRow(r);

r = rowConventional('Hull type');
r = r.addOption(option('Non-rigid',{}));
r = r.addOption(option('Semi-rigid',{}));
r = r.addOption(option('Rigid',{}));
m = m.addRow(r);

r = rowConventional('Battens');
r = r.addOption(option('Yes',{}));
r = r.addOption(option('No',{}));
m = m.addRow(r);

m = m.setUpCompatibilityIndices;
fprintf(m.toString)

%% Compatibility matrix
n = m.countOptions;

% Assume all compatible
c = m.initializeCompatibilityMatrix;
sum(sum(c == 0))

% Fill in incompatibilities
% Energy sources --

599

c(9,13) = 0;
c(9,14) = 0;
c(9,15) = 0;
c(9,16) = 0;
c(9,17) = 0;
c(9,20) = 0;
c(9,21) = 0;
c(9,22) = 0;
c(9,23) = 0;
c(9,24) = 0;
c(9,25) = 0;
c(9,26) = 0;
c(9,27) = 0;
c(9,28) = 0;
c(9,29) = 0;
c(9,30) = 0;

c(9,33) = 0;
c(9,34) = 0;
c(9,35) = 0;
c(9,36) = 0;
c(9,37) = 0;
c(9,38) = 0;
c(9,39) = 0;

c(10,18) = 0;
c(10,19) = 0;
c(10,20) = 0;
c(10,21) = 0;
c(10,22) = 0;
c(10,23) = 0;
c(10,24) = 0;
c(10,25) = 0;
c(10,26) = 0;
c(10,27) = 0;
c(10,28) = 0;
c(10,29) = 0;
c(10,30) = 0;

c(10,31) = 0;
c(10,32) = 0;
c(10,37) = 0;
c(10,38) = 0;
c(10,39) = 0;

c(11,13) = 0;
c(11,14) = 0;
c(11,15) = 0;
c(11,16) = 0;
c(11,17) = 0;
c(11,18) = 0;
c(11,19) = 0;
c(11,21) = 0;
c(11,22) = 0;
c(11,23) = 0;
c(11,24) = 0;

600

c(11,25) = 0;
c(11,26) = 0;
c(11,27) = 0;
c(11,28) = 0;
c(11,29) = 0;
c(11,30) = 0;

c(11,31) = 0;
c(11,32) = 0;
c(11,33) = 0;
c(11,34) = 0;
c(11,35) = 0;
c(11,36) = 0;
c(11,37) = 0;
c(11,38) = 0;

c(12,13) = 0;
c(12,14) = 0;
c(12,15) = 0;
c(12,16) = 0;
c(12,17) = 0;
c(12,18) = 0;
c(12,19) = 0;
c(12,20) = 0;

c(12,31) = 0;
c(12,32) = 0;
c(12,33) = 0;
c(12,34) = 0;
c(12,35) = 0;
c(12,36) = 0;
c(12,39) = 0;

% Energy storage --

c(13,31) = 0; c(13,32) = 0; c(13,37) = 0; c(13,38) = 0; c(13,39) = 0;
c(14,31) = 0; c(14,32) = 0; c(14,37) = 0; c(14,38) = 0; c(14,39) = 0;
c(15,31) = 0; c(15,32) = 0; c(15,37) = 0; c(15,38) = 0; c(15,39) = 0;
c(16,31) = 0; c(16,32) = 0; c(16,37) = 0; c(16,38) = 0; c(16,39) = 0;
c(17,31) = 0; c(17,32) = 0; c(17,37) = 0; c(17,38) = 0; c(17,39) = 0;

c(18,33) = 0; c(18,34) = 0; c(18,35) = 0; c(18,36) = 0; c(18,37) = 0;

c(18,38) = 0; c(18,39) = 0;
c(19,33) = 0; c(19,34) = 0; c(19,35) = 0; c(19,36) = 0; c(19,37) = 0;

c(19,38) = 0; c(19,39) = 0;

c(20,31) = 0;
c(20,32) = 0;
c(20,33) = 0;
c(20,34) = 0;
c(20,35) = 0;
c(20,36) = 0;
c(20,37) = 0;
c(20,38) = 0;

601

for i = 21:30
 c(i,31) = 0;
 c(i,32) = 0;
 c(i,33) = 0;
 c(i,34) = 0;
 c(i,35) = 0;
 c(i,36) = 0;
 c(i,39) = 0;
end

% Hull type ---

c(75,78) = 0;

sum(sum(c == 0))

%% Symmetrize matrix
c = symmetrize(c);

% Total alternatives
m.computeAlternatives

figure
pcolor(c)
colormap(gray(2))
axis ij
axis square
shading flat
set(gca,'FontName','Times New Roman','FontSize',18)

% Compatible alternatives
tic
nn = m.computeCompatibleAlternatives(c,[],0)
toc

Example output: airship.output.1805640.dedicated-sched.pace.gatech.edu

Begin PBS Prologue Sun Nov 13 19:37:42 EST 2016
Job ID: 1805640.dedicated-sched.pace.gatech.edu
User ID: jdurand7
Job name: airship
Queue: enterprise
End PBS Prologue Sun Nov 13 19:37:42 EST 2016

 < M A T L A B (R) >
 Copyright 1984-2016 The MathWorks, Inc.
 R2016a (9.0.0.341360) 64-bit (glnxa64)
 February 11, 2016

602

To get started, type one of these: helpwin, helpdesk, or demo.
For product information, visit www.mathworks.com.

 Academic License

Airship
Lifting medium
 (1) Cold gas (Helium) {}
 (2) Hot air {}
Empennage configuration
 (3) Y {}
 (4) Inverted Y {}
 (5) X {}
 (6) Cross {}
Ballonet-based pitch trim
 (7) Yes {}
 (8) No {}
Energy source
 (9) Bio-chemical {}
 (10) Electric charge {}
 (11) Electrolyte {}
 (12) Hybrid {}
Energy storage
 (13) Battery (LiCoO2) {}
 (14) Battery (LiFePO4) {}
 (15) Battery (LiPo) {}
 (16) Battery (NiCad) {}
 (17) Battery (NiMH) {}
 (18) Fuel tank {}
 (19) External fuel tank {}
 (20) Electrolyte tank {}
 (21) Fuel tank + Battery (LiCoO2) {}
 (22) Fuel tank + Battery (LiFePO4) {}
 (23) Fuel tank + Battery (LiPo) {}
 (24) Fuel tank + Battery (NiCad) {}
 (25) Fuel tank + Battery (NiMH) {}
 (26) External fuel tank + Battery (LiCoO2) {}
 (27) External fuel tank + Battery (LiFePO4) {}
 (28) External fuel tank + Battery (LiPo) {}
 (29) External fuel tank + Battery (NiCad) {}
 (30) External fuel tank + Battery (NiMH) {}
Converter to mechanical energy
 (31) Piston {}
 (32) Turbine {}
 (33) Electric motor (Spinning cage, Brushed) {}
 (34) Electric motor (Spinning cage, Brushless) {}
 (35) Electric motor (Spinning shaft, Brushed) {}
 (36) Electric motor (Spinning shaft, Brushless) {}
 (37) Hybrid (Piston/Electric) {}
 (38) Hybrid (Turbine/Electric) {}
 (39) Fuel cell and electric motor {}
Number of rotors
 (40) 1 {}
 (41) 2 {}
 (42) 3 {}

603

 (43) 4 {}
 (44) 6 {}
 (45) 8 {}
Steerable propulsion
 (46) Yes {}
 (47) No {}
Converter to lift/thrust
 (48) Rotor {}
 (49) Fan {}
 (50) Propeller {}
Number of blades
 (51) 2 {}
 (52) 3 {}
 (53) 4 {}
 (54) 6 {}
 (55) 8 {}
 (56) 10 {}
Blade type
 (57) Fixed pitch {}
 (58) Variable pitch {}
Imaging
 (59) Mono (Fixed-mount) {}
 (60) Mono (Gyro-stabilized) {}
 (61) RGB camera (Fixed-mount) {}
 (62) RGB camera (Gyro-stabilized) {}
 (63) Multispectral data (Fixed-mount) {}
 (64) Multispectral data (Gyro-stabilized) {}
 (65) Thermal camera (Fixed-mount) {}
 (66) Thermal camera (Gyro-stabilized) {}
Mapping
 (67) 2D LIDAR {}
 (68) 3D LIDAR {}
 (69) Sonar {}
Attitude
 (70) IMU+GPS {}
Altitude
 (71) GPS {}
 (72) Barometer {}
 (73) Sonar {}
Communications
 (74) Radio {}
Hull type
 (75) Non-rigid {}
 (76) Semi-rigid {}
 (77) Rigid {}
Battens
 (78) Yes {}
 (79) No {}

ans =

 242

ans =

604

 441

ans =

 3.3579e+11

nn =

 111974400

Elapsed time is 8986.860981 seconds.
>> ---------------------------------------
Begin PBS Epilogue Sun Nov 13 22:07:40 EST 2016
Job ID: 1805640.dedicated-sched.pace.gatech.edu
User ID: jdurand7
Job name: airship
Resources:

neednodes=10:ppn=24,nodes=10:ppn=24,pmem=1024mb,walltime=05:00:00
Rsrc Used:

cput=02:29:51,energy_used=0,mem=508568kb,vmem=4772408kb,walltime=02:29:

58
Queue: enterprise
Nodes:
rich133-q7-14-l.pace.gatech.edu rich133-q7-14-r.pace.gatech.edu
rich133-q7-15-l.pace.gatech.edu rich133-q7-15-r.pace.gatech.edu
rich133-q7-16-l.pace.gatech.edu rich133-q7-16-r.pace.gatech.edu
rich133-q7-17-l.pace.gatech.edu rich133-q7-17-r.pace.gatech.edu
rich133-q7-18-l.pace.gatech.edu rich133-q7-18-r.pace.gatech.edu
End PBS Epilogue Sun Nov 13 22:07:41 EST 2016

B.3.6 Plots

A set of scripts used to generate the different figures and graphs seen in the design space

exploration section (see page 325).

contourPlot.m

A contour plot showing the beneficial regions of morphological reduction.

% A Variable-Oriented Architecture Generation Methodology to Support

Efficient Multilevel Multidisciplinary Optimization
%
% Jean-Guillaume Durand (jdurand7@gatech.edu)

605

% Aerospace Systems Design Laboratory (ASDL)
% Georgia Institute of Technology, 2016

% Clean and prepare workspace
clc
close all
clear

% Problem parameters
nRows = 8;
nOptionsPerRow = 4;
nVars = 50;

kVec = 1:10:300; % Number of variables removed per option
nVec = 0:20; % Number of options removed

% Optimizer surrogate model
% Optimizer parameters
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236;
n = [1:5,10,50,100];
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769,

61857.38462, 178638.7692, 286491.3846];
fc = @(nq)interp1(n,v,nq,'linear','extrap');

%% Analysis
nk = length(kVec);
no = length(nVec);
nCallsOptimizer = zeros(nk, no);
for i = 1:nk
 for j = 1:no
 % Create morph matrix
 morph = nOptionsPerRow*ones(nRows,1);

 % Remove options
 counter = nVec(j);
 k = 1;
 while counter > 0
 % If there are options to be removed at this row
 if morph(k) > 1
 % Remove option
 morph(k) = morph(k) - 1;
 counter = counter - 1;
 else
 % Change row
 k = k + 1;
 end
 end

 % Compute total number of discrete alternatives
 nCallsOptimizer(i,j) = prod(morph);
 end
end

% Compute number of variables added to the optimizer
[X,Y] = meshgrid(nVec,kVec);

606

nVarsAdded = X.*Y;

% Compute number of function calls
nFunctionCalls = nCallsOptimizer .* fc(nVars + nVarsAdded);

Z = nFunctionCalls(1,1) - nFunctionCalls;

%% Plot
figure
surf(X,Y,-Z)

figure
contourf(X,Y,Z,100,'LineColor','none');
ax = gca;
ax.Position = [0.1300 0.1100 0.7 0.8150];
xlabel('Options removed','FontName','Times New Roman','FontSize',12)
ylabel('k','FontName','Times New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)

% Colormap
mymap = redgreencmap(64,'Interpolation','sigmoid');
mymap = mymap(end:-1:1,:); % Reverse order (from red to green)
colormap(mymap)

% Colobar
c = colorbar;
cmin = min(min(Z));
caxis([cmin -cmin]) % Scale
v = caxis;
c.Ticks = v(1):(v(2)-v(1))/6:v(2); % Divide in 6 segments
c.TickLabels = {'Most detrimental','Very

detrimental','Detrimental','Neutral','Beneficial','Very

beneficial','Most beneficial'};

influenceOfK.m

Influence of the k-factor on morphological reduction.

% A Variable-Oriented Architecture Generation Methodology to Support

Efficient Multilevel Multidisciplinary Optimization
%
% Jean-Guillaume Durand (jdurand7@gatech.edu)
% Aerospace Systems Design Laboratory (ASDL)
% Georgia Institute of Technology, 2016

% Clean and prepare workspace
clc
close all
clear

figure(1)

607

% b=axes('Position',[.1 .1 .8 1e-12]);
% set(b,'Units','normalized');
% set(b,'Color','none');
% set(b,'xlim',[nVarsAdded(1) nVarsAdded(end)]);

a=axes('Position',[.1 .2 .8 .7]);
set(a,'Units','normalized');
yyaxis(a,'left')

%% Initial problem size
% Morphological parameters
kVec = [5 25 100 300];
c = get(groot,'DefaultAxesColorOrder');
% c = hsv(length(kVec));

hPlain = zeros(1,length(kVec));
hDashed = zeros(1,length(kVec));
for m = 1:length(kVec)
nRows = 8;
nOptionsPerRow = 4;
k = kVec(m);

nVars = nRows*nOptionsPerRow*k;
nVars = 50;

% Optimizer parameters
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236;
n = [1:5,10,50,100];
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769,

61857.38462, 178638.7692, 286491.3846];
fc = @(nq)interp1(n,v,nq,'linear','extrap');

fCalls = nOptionsPerRow^nRows * fc(nVars);

%% Analysis
nOptions = nOptionsPerRow*nRows;
nOptionsRemoved = 1:10;

% Effect on morphological decomposition
nCallsOptimizer = zeros(1, length(nOptionsRemoved));
for i = 1:length(nOptionsRemoved)
 % Create morph matrix
 morph = nOptionsPerRow*ones(nRows,1);

 % Remove options
 counter = nOptionsRemoved(i);
 j = 1;
 while counter > 0
 % If there are options to be removed at this row
 if morph(j) > 1
 % Remove option
 morph(j) = morph(j) - 1;
 counter = counter - 1;
 else
 % Change row

608

 j = j + 1;
 end
 end

 % Compute total number of discrete alternatives
 nCallsOptimizer(i) = prod(morph);
end

% Effect on optimizer
% Actual method
% Reduced number of options * more variables in optimizer
nVarsAdded = k*nOptionsRemoved;
fCallsAug = nCallsOptimizer .* fc(nVars + nVarsAdded);

% Plot
semilogy(nOptionsRemoved, fCallsAug,'-','color',c(m,:))
hold on
end

% Black baseline
semilogy(nOptionsRemoved, fCalls*ones(size(nOptionsRemoved,2),1),'k-')

hold off

xlabel(a,'Options removed','FontName','Times New Roman','FontSize',12)
h = legend(...
 'k = 5',...
 'k = 25',...
 'k = 100',...
 'k = 300',...
 'Baseline');
set(h,'FontName','Times New Roman','FontSize',12)
set(a,'FontName','Times New Roman','FontSize',12)

ax = gca;
yyaxis left
ax.YColor = 'k';
aLim = ax.YLim;
aTick = ax.YTick;
ylabel(a,'Function calls')
ax.FontName = 'Times New Roman';
ax.FontSize = 12;

yyaxis right
ax.YColor = 'k';
ax.YScale = 'log';
ax.YLim = aLim;
ax.YTick = [86400, 86400*7, 86400*30.5, 86400*365.25, 86400*365.25*10,

86400*365.25*100, 86400*365.25*1000];
ax.YTickLabel = {'1 day','1 week','1 month','1 year','10 years','100

years','1000 years'};

set(a,'Position',[0.1 0.15 .75 .8])
a.XLim = [nOptionsRemoved(1), nOptionsRemoved(end)];

609

multilevel.m

Effects of morphological reduction on multiple levels of a design space.

% Design space computation
%
% Jean-Guillaume DURAND (jean-guillaume.durand@gatech.edu)
% Aerospace Systems Design Laboratory
% Georgia Institute of Technology
% 2016

%% Clean up
close all
clear variables
clc

% Model fit
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236;
n = [1:5,10,50,100];
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769,

61857.38462, 178638.7692, 286491.3846];
fc = @(nq)interp1(n,v,nq,'linear','extrap');
%fc = @(n)-11.776*n.^2 + 5127.9*n + 13236;
% fc = @(n)12614*n.^0.7484;

% Parameters
% Macroscopic level
n_rows_M = 5;
n_options_M = 3;

% Microscopic level
n_rows_m = 10;
n_options_m = 5;

% Initialization
n_options_total_m = n_options_m*n_rows_m;
n_options_total_M = n_options_M*n_rows_M;

%% Analysis
% Remove options at the microscopic level
n_alternatives_m = zeros(1,n_options_total_m+1);
for i = 0:n_options_total_m
 % Initialize morphological matrix
 morph = n_options_m*ones(n_rows_m,1);

 % Remove options
 j = 1;
 counter = i; % Number of options to be removed
 while counter > 0
 % If there are options to be removed at this row
 if morph(j) > 0
 % Remove option
 morph(j) = morph(j) - 1;
 counter = counter - 1;

610

 else
 % Change row
 j = j + 1;
 end
 end
 disp(morph')
 % Remove rows with 0 options
 temp = morph(morph ~= 0);
 disp(temp')
 % Compute total number of discrete alternatives
 n_alternatives_m(i+1) = prod(temp);
 disp(prod(temp))
 fprintf('\n')
end

% Remove options at the macroscopic level
n_alternatives_M = zeros(1,n_options_total_M+1);
for i = 0:n_options_total_M
 % Initialize morphological matrix
 morph = n_options_M*ones(n_rows_M,1);

 % Remove options
 j = 1;
 counter = i; % Number of options to be removed
 while counter > 0
 % If there are options to be removed at this row
 if morph(j) > 0
 % Remove option
 morph(j) = morph(j) - 1;
 counter = counter - 1;
 else
 % Change row
 j = j + 1;
 end
 end
 disp(morph')
 % Remove rows with 0 options
 temp = morph(morph ~= 0);
 disp(temp')
 % Compute total number of discrete alternatives
 n_alternatives_M(i+1) = prod(temp);
 disp(prod(temp))
 fprintf('\n')
end

% Transfer corresponding variables to the optimizer
k = 3;
variables_initial_m = repmat(k*n_options_total_m, 1,

n_options_total_m+1);
variables_initial_M = repmat(k*n_options_total_M, 1,

n_options_total_M+1);

variables_added_m = k*(0:n_options_total_m);
variables_added_M = k*(0:n_options_total_M);

variables_total_m = variables_initial_m + variables_added_m;

611

variables_total_M = variables_initial_M + variables_added_M;

fcalls_m = n_alternatives_m .* fc(variables_total_m);
fcalls_M = n_alternatives_M .* fc(variables_total_M);

%% Plot 1
figure
subplot(1,2,1)
semilogy(0:n_options_total_m, fcalls_m)
xlabel('Options removed','FontName','Times New Roman','FontSize',12)
ylabel('Function calls','FontName','Times New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)
title('Microscopic')
xlim([0,n_options_total_m])

%% Plot 2
subplot(1,2,2)
semilogy(0:n_options_total_M, fcalls_M)
xlabel('Options removed','FontName','Times New Roman','FontSize',12)
ylabel('Function calls','FontName','Times New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)
title('Macroscopic')

%% Plot 3
[X,Y] = meshgrid(0:n_options_total_M,0:n_options_total_m);
[Xvar,Yvar] = meshgrid(variables_total_M,variables_total_m);
Nvar = Xvar + Yvar;
% Z = fcalls_m'*fcalls_M;
Z = n_alternatives_m'*n_alternatives_M.*fc(Nvar);
figure
surf(X,Y,log10(Z))
caxis(log10([min(min(Z)), max(max(Z))]))
xlabel({'Macroscopic', 'options removed'},'FontName','Times New

Roman','FontSize',12)
ylabel({'Microscopic', 'options removed'},'FontName','Times New

Roman','FontSize',12)
zlabel('Function calls','FontName','Times New Roman','FontSize',12)
set(gca,'FontName','Times New Roman','FontSize',12)

% Create logarithmic axis
ZTick = 0:5:50;
ZTickLabels = cellstr(num2str(round(ZTick(:)), '10^{%d}'));
set(gca,'ztick',ZTick)
set(gca,'zticklabel',ZTickLabels)

% Create logarithmic color bar
c = colorbar;
cLimits = c.Limits;
cTicks = round(cLimits(1)):1:round(cLimits(2));
c.Ticks = cTicks;
c.TickLabels = cellstr(num2str(cTicks(:), '10^{%d}'));
c.FontSize = 12;

%% Plot 4
figure

612

subplot(1,2,2)
plot([0 1 2], [Z(2,1) Z(2,2) Z(2,3)],'LineWidth',2)
YLim = get(gca,'YLim');
hold on
plot([1 1],YLim,'r--')
plot([0 2],[Z(2,2) Z(2,2)],'r--')
plot(1,Z(2,2),'r*')
hold off
xlabel('Options removed','FontName','Times New Roman','FontSize',12)
ylabel('Function calls','FontName','Times New Roman','FontSize',12)
title('Macroscopic')
set(gca,'XMinorTick','on','YMinorTick','on')
set(gca,'FontName','Times New Roman','FontSize',12)

subplot(1,2,1)
plot([0 1 2], [Z(1,2) Z(2,2) Z(3,2)],'LineWidth',2)
hold on
plot([1 1],YLim,'r--')
plot([0 2],[Z(2,2) Z(2,2)],'r--')
plot(1,Z(2,2),'r*')
hold off
xlabel('Options removed','FontName','Times New Roman','FontSize',12)
ylabel('Function calls','FontName','Times New Roman','FontSize',12)
title('Microscopic')
set(gca,'FontName','Times New Roman','FontSize',12)
set(gca,'XMinorTick','on','YMinorTick','on')
set(gca,'YLim',YLim)

strategyDifference.m

A plot showing how the choice between “rows first” and “columns first” strategies affects

the behavior of morphological reduction.

% A Variable-Oriented Architecture Generation Methodology to Support

Efficient Multilevel Multidisciplinary Optimization
%
% Jean-Guillaume Durand (jdurand7@gatech.edu)
% Aerospace Systems Design Laboratory (ASDL)
% Georgia Institute of Technology, 2016

% Clean and prepare workspace
clc
close all
clear

%% Initialize plot
figure(1)

a=axes('Position',[.1 .2 .8 .7]);
set(a,'Units','normalized');

613

yyaxis(a,'left')

%% Plot 1
% Morphological parameters
nRows = 8;
nOptionsPerRow = 4;
k = 3;

nVars = nRows*nOptionsPerRow*k;

% Optimizer parameters
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236;
n = [1:5,10,50,100];
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769,

61857.38462, 178638.7692, 286491.3846];
fc = @(nq)interp1(n,v,nq,'linear','extrap');

fCalls = nOptionsPerRow^nRows * fc(nVars);

% Analysis
nOptionsRemoved = 1:21;

% Effect on morphological decomposition
nCallsOptimizer = zeros(1, length(nOptionsRemoved));
for i = 1:length(nOptionsRemoved)
 % Create morph matrix
 morph = nOptionsPerRow*ones(nRows,1);

 % Remove options
 counter = nOptionsRemoved(i);
 j = 1;
 while counter > 0
 % If there are options to be removed at this row
 if morph(j) > 0
 % Remove option
 morph(j) = morph(j) - 1;
 counter = counter - 1;
 else
 % Change row
 j = j + 1;
 end
 end
 disp(morph')
 % Remove rows with 0 options
 temp = morph(morph ~= 0);
 disp(temp')
 % Compute total number of discrete alternatives
 nCallsOptimizer(i) = prod(temp);
 disp(prod(temp))
 fprintf('\n')
end
morph'

% Effect on optimizer
% Actual method

614

% Reduced number of options * more variables in optimizer
nVarsAdded = k*nOptionsRemoved;
fCallsAug = nCallsOptimizer .* fc(nVars + nVarsAdded);

% Plot
semilogy(nOptionsRemoved, fCalls*ones(size(nOptionsRemoved,2),1),'k-')
hold on
semilogy(nOptionsRemoved, fCallsAug,'b-')

%% Plot 2
% Morphological parameters
nRows = 8;
nOptionsPerRow = 4;
k = 3;

nVars = nRows*nOptionsPerRow*k;

% Optimizer parameters
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236;
n = [1:5,10,50,100];
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769,

61857.38462, 178638.7692, 286491.3846];
fc = @(nq)interp1(n,v,nq,'linear','extrap');

fCalls = nOptionsPerRow^nRows * fc(nVars);

% Analysis
nOptions = nOptionsPerRow*nRows;
nOptionsRemoved = 1:21;

% Effect on morphological decomposition
nCallsOptimizer = zeros(1, length(nOptionsRemoved));
for i = 1:length(nOptionsRemoved)
 % Create morph matrix
 morph = nOptionsPerRow*ones(nRows,1);

 % Remove options
 counter = nOptionsRemoved(i);
 j = 1;
 while counter > 0
 % If there are options to be removed at this row
 if morph(j) > 0
 % Remove option
 morph(j) = morph(j) - 1;
 counter = counter - 1;
% else
% j = j+1;
 end

 % Change row
 j = mod(j + 1, length(morph));
 if j == 0
 j = length(morph);
 end
 end

615

 % Remove rows with 0 options
 temp = morph(morph ~= 0);

 % Compute total number of discrete alternatives
 nCallsOptimizer(i) = prod(temp);
end
morph'

% Effect on optimizer
% Actual method
% Reduced number of options * more variables in optimizer
nVarsAdded = k*nOptionsRemoved;
fCallsAug = nCallsOptimizer .* fc(nVars + nVarsAdded);

% Plot
semilogy(nOptionsRemoved, fCallsAug,'r-')

hold off

%% Finish plot formatting
xlabel(a,'Options removed','FontName','Times New Roman','FontSize',12)
h = legend(...
 'Baseline',...
 'Rows first',...
 'Columns first');
set(h,'FontName','Times New Roman','FontSize',12)
set(a,'FontName','Times New Roman','FontSize',12)

ax = gca;
yyaxis left
ax.YColor = 'k';
aLim = ax.YLim;
aTick = ax.YTick;
ylabel(a,'Function calls')
ax.FontName = 'Times New Roman';
ax.FontSize = 12;

yyaxis right
ax.YColor = 'k';
ax.YScale = 'log';
ax.YLim = aLim;
ax.YTick = [86400, 86400*7, 86400*30.5, 86400*365.25, 86400*365.25*10,

86400*365.25*100, 86400*365.25*1000];
ax.YTickLabel = {'1 day','1 week','1 month','1 year','10 years','100

years','1000 years'};

set(a,'Position',[0.1 0.15 .75 .8])
a.XLim = [nOptionsRemoved(1), nOptionsRemoved(end)];

tradeoff.m

616

A plot displaying the tradeoff between the classical approach and morphological reduction.

% A Variable-Oriented Architecture Generation Methodology to Support

Efficient Multilevel Multidisciplinary Optimization
%
% Jean-Guillaume Durand (jdurand7@gatech.edu)
% Aerospace Systems Design Laboratory (ASDL)
% Georgia Institute of Technology, 2016

% Clean and prepare workspace
clc
close all
clear

%% Initial problem size
% Morphological parameters
nRows = 8;
nOptionsPerRow = 4;
k = 5; % 100
% TODO - need to consider a different number of variables initially

nVars = nRows*nOptionsPerRow*k;
nVars = 50;

% Optimizer parameters
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236;
n = [1:5,10,50,100];
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769,

61857.38462, 178638.7692, 286491.3846];
fc = @(nq)interp1(n,v,nq,'linear','extrap');

fCalls = nOptionsPerRow^nRows * fc(nVars);

%% Analysis
nOptionsRemoved = 1:10;

% Effect on morphological decomposition
nCallsOptimizer = zeros(1, length(nOptionsRemoved));
for i = 1:length(nOptionsRemoved)
 % Create morph matrix
 morph = nOptionsPerRow*ones(nRows,1);

 % Remove options
 counter = nOptionsRemoved(i);
 j = 1;
 while counter > 0
 % If there are options to be removed at this row
 if morph(j) > 1
 % Remove option
 morph(j) = morph(j) - 1;
 counter = counter - 1;
 else
 % Change row
 j = j + 1;

617

 end
 end

 % Compute total number of discrete alternatives
 nCallsOptimizer(i) = prod(morph);
end

% Effect on optimizer
% Actual method
% Reduced number of options * more variables in optimizer
nVarsAdded = k*nOptionsRemoved;
fCallsAug = nCallsOptimizer .* fc(nVars + nVarsAdded);

% What if optimizer took the same time?
fCallsAug1 = nCallsOptimizer .* fc(nVars);

% What if constant number of discrete calls?
fCallsAug2 = nOptionsPerRow^nRows .* fc(nVars + nVarsAdded);

%% Plot
figure(1)

b=axes('Position',[.1 .1 .8 1e-12]);
set(b,'Units','normalized');
set(b,'Color','none');
set(b,'xlim',[nVarsAdded(1) nVarsAdded(end)]);

a=axes('Position',[.1 .2 .8 .7]);
set(a,'Units','normalized');
yyaxis(a,'left')

semilogy(nOptionsRemoved, fCalls*ones(size(nOptionsRemoved,2),1), 'b')

hold on
semilogy(nOptionsRemoved, fCallsAug, 'r')
semilogy(nOptionsRemoved, fCallsAug1, 'r--')
semilogy(nOptionsRemoved, fCallsAug2, 'b--')
% hold off

xlabel(a,'Options removed','FontName','Times New Roman','FontSize',12)
xlabel(b,'Variables added','FontName','Times New Roman','FontSize',12)
h = legend(...
 'Baseline',...
 'Morphological reduction',...
 'Constant number of variables',...
 'Constant number of options');
set(h,'FontName','Times New Roman','FontSize',12)
set(a,'FontName','Times New Roman','FontSize',12)
set(b,'FontName','Times New Roman','FontSize',12)

ax = gca;
yyaxis left
ax.YColor = 'k';
aLim = ax.YLim;
aTick = ax.YTick;

618

ylabel(a,'Function calls')
ax.FontName = 'Times New Roman';
ax.FontSize = 12;

yyaxis right
ax.YColor = 'k';
ax.YScale = 'log';
ax.YLim = aLim;
ax.YTick = [86400*365.25, 86400*365.25*10, 86400*365.25*100,

86400*365.25*1000];
ax.YTickLabel = {'1 Year','10 years','100 years','1000 years'};

% Adjust scale so that we can see the axes labels properly
set(a,'Position',[0.1 0.25 .75 .65])
set(b,'Position',[0.1 0.12 .75 1e-12])
a.XLim = [nOptionsRemoved(1), nOptionsRemoved(end)];

% Durations in seconds
durations = [1, 60, 3600, 86400, 86400*7, 86400*30.5, 86400*365.25,

86400*365.25*[10 100 1000]];

tradeoff2parameters.m

Similar tradeoff study including different options removal strategies.

% A Variable-Oriented Architecture Generation Methodology to Support

Efficient Multilevel Multidisciplinary Optimization
%
% Jean-Guillaume Durand (jdurand7@gatech.edu)
% Aerospace Systems Design Laboratory (ASDL)
% Georgia Institute of Technology, 2016

% Clean and prepare workspace
clc
close all
clear

%% Initialize plot
figure(1)

% b=axes('Position',[.1 .1 .8 1e-12]);
% set(b,'Units','normalized');
% set(b,'Color','none');
% set(b,'xlim',[nVarsAdded(1) nVarsAdded(end)]);

a=axes('Position',[.1 .2 .8 .7]);
set(a,'Units','normalized');
yyaxis(a,'left')

%% Plot 1
% Morphological parameters
nRows = 8;

619

nOptionsPerRow = 3;
k = 4;

nVars = nRows*nOptionsPerRow*k;

% Optimizer parameters
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236;
n = [1:5,10,50,100];
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769,

61857.38462, 178638.7692, 286491.3846];
fc = @(nq)interp1(n,v,nq,'linear','extrap');

fCalls = nOptionsPerRow^nRows * fc(nVars);

% Analysis
nOptionsRemoved = 1:15;

% Effect on morphological decomposition
nCallsOptimizer = zeros(1, length(nOptionsRemoved));
for i = 1:length(nOptionsRemoved)
 % Create morph matrix
 morph = nOptionsPerRow*ones(nRows,1);

 % Remove options
 counter = nOptionsRemoved(i);
 j = 1;
 while counter > 0
 % If there are options to be removed at this row
 if morph(j) > 1
 % Remove option
 morph(j) = morph(j) - 1;
 counter = counter - 1;
 else
 % Change row
 j = j + 1;
 end
 end

 % Compute total number of discrete alternatives
 nCallsOptimizer(i) = prod(morph);
end

% Effect on optimizer
% Actual method
% Reduced number of options * more variables in optimizer
nVarsAdded = k*nOptionsRemoved;
fCallsAug = nCallsOptimizer .* fc(nVars + nVarsAdded);

% Plot
h0 = semilogy(nOptionsRemoved,

fCalls*ones(size(nOptionsRemoved,2),1),'w');
hold on
hBlack(1) = semilogy(nOptionsRemoved,

fCalls*ones(size(nOptionsRemoved,2),1),'k-');
hBlack(2) = semilogy(nOptionsRemoved, fCallsAug,'k--');

620

hPlot(1) = semilogy(nOptionsRemoved,

fCalls*ones(size(nOptionsRemoved,2),1),'b-');
semilogy(nOptionsRemoved, fCallsAug,'b--')

%% Plot 2
% Morphological parameters
nRows = 8;
nOptionsPerRow = 3;
k = 4;

nVars = nRows*nOptionsPerRow*k;

% Optimizer parameters
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236;
n = [1:5,10,50,100];
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769,

61857.38462, 178638.7692, 286491.3846];
fc = @(nq)interp1(n,v,nq,'linear','extrap');

fCalls = nOptionsPerRow^nRows * fc(nVars);

% Analysis
nOptions = nOptionsPerRow*nRows;
nOptionsRemoved = 1:15;

% Effect on morphological decomposition
nCallsOptimizer = zeros(1, length(nOptionsRemoved));
for i = 1:length(nOptionsRemoved)
 % Create morph matrix
 morph = nOptionsPerRow*ones(nRows,1);

 % Remove options
 counter = nOptionsRemoved(i);
 j = 1;
 while counter > 0
 % If there are options to be removed at this row
 if morph(j) > 1
 % Remove option
 morph(j) = morph(j) - 1;
 counter = counter - 1;
% else
% j = j+1;
 end

 % Change row
 j = mod(j + 1, length(morph));
 if j == 0
 j = length(morph);
 end
 end

 % Compute total number of discrete alternatives
 nCallsOptimizer(i) = prod(morph);
end

621

% Effect on optimizer
% Actual method
% Reduced number of options * more variables in optimizer
nVarsAdded = k*nOptionsRemoved;
fCallsAug = nCallsOptimizer .* fc(nVars + nVarsAdded);

% Plot
hPlot(2) = semilogy(nOptionsRemoved,

fCalls*ones(size(nOptionsRemoved,2),1),'r-');
semilogy(nOptionsRemoved, fCallsAug,'r--')

% Black line
semilogy(nOptionsRemoved, fCalls*ones(size(nOptionsRemoved,2),1),'k-')

hold off

%% Finish plot formatting
xlabel(a,'Options removed','FontName','Times New Roman','FontSize',12)
h = legend([hPlot, h0, hBlack(1), hBlack(2)],...
 'Rows first',...
 'Columns first',...
 '',...
 'Baseline',...
 'Morphological reduction');
set(h,'FontName','Times New Roman','FontSize',12)
set(a,'FontName','Times New Roman','FontSize',12)

ax = gca;
yyaxis left
ax.YColor = 'k';
aLim = ax.YLim;
aTick = ax.YTick;
ylabel(a,'Function calls')
ax.FontName = 'Times New Roman';
ax.FontSize = 12;

yyaxis right
ax.YColor = 'k';
ax.YScale = 'log';
ax.YLim = aLim;
ax.YTick = [86400, 86400*7, 86400*30.5, 86400*365.25, 86400*365.25*10,

86400*365.25*100, 86400*365.25*1000];
ax.YTickLabel = {'1 day','1 week','1 month','1 year','10 years','100

years','1000 years'};

set(a,'Position',[0.1 0.15 .75 .8])
a.XLim = [nOptionsRemoved(1), nOptionsRemoved(end)];

622

APPENDIX C

ROS/GAZEBO FILES

The ROS/Gazebo files regroup the set of files necessary to setup the simulation

using the microscopic modeling approach (see section 4.2.3 page 266). They are organized

into three ROS packages, each with a specific purpose:

 gritbot_description: pure ROS description of the Gritbot robot.

 gritbot_gazebo: wrappers for the Gazebo simulator to ensure the link with ROS.

 gritbot_navigation: intelligence of the robots.

It is highly recommended for the reader to consult the ROS tutorials in order to

understand where to include each file in the set of created packages. An easy way to re-use

the same files is to create three packages and follow the tutorials to create a robot, and then

replace the proper files with the ones included here below. A few additional libraries are

required to be linked to these packages and are described in the microscopic modeling

section.

Note that to properly setup the simulator, the Gritbots design files should be

downloaded and converted to proper meshes compatible with Gazebo. Blender and its add-

ons is a potential tool for such a task. In particular, if the computer vision trackers are used,

each robot must have a COLLADA (file extension .dae) description file which refers to a

unique texture encoding the ID tag.

623

C.1 Gritbot URDF description file

In total, 20 Gritbot description files were created, each having a different Aruco

tag, this Aruco tag is the only change in each of the files. A typical example of file is given

here below.

gritbot_1.urdf

<robot name="gritbot">

 <!-- the model -->

 <link name="base_link">

 <inertial>

 <mass value="0.05" />

 <origin xyz="0 0 0" />

 <inertia ixx="0.000075" ixy="0.0" ixz="0.0"

 iyy="0.000075" iyz="0.0"

 izz="0.000075" />

 </inertial>

 <visual>

 <geometry>

 <mesh

filename="package://gritbot_description/meshes/gritbot_without_shell.da

e" />

 <!-- <box size=".03 .03 .03" /> -->

 </geometry>

 </visual>

 <collision>

 <origin xyz="0 0 0.0036" />

 <geometry>

 <box size="0.031 0.045 0.033" />

 </geometry>

 </collision>

 </link>

 <link name="apriltag_link">

 <visual>

 <geometry>

 <mesh

filename="package://gritbot_description/meshes/aruco_tag_1.dae" />

 <box size=".03 .03 .01" />

 </geometry>

 </visual>

 <collision>

 <origin xyz="0 0 0" />

 <geometry>

 <box size=".03 .03 .01" />

 </geometry>

 </collision>

 </link>

 <joint name="base_to_apriltag" type="fixed">

 <parent link="base_link"/>

624

 <child link="apriltag_link"/>

 <origin xyz="0 0 .0216"/>

 </joint>

 <!-- root link, on the ground just below the model origin -->

 <link name="base_footprint">

 <visual>

 <origin xyz="0 0 0" rpy="0 0 0" />

 <geometry>

 <box size="0.001 0.001 0.001" />

 </geometry>

 </visual>

 </link>

 <joint name="base_link_joint" type="fixed">

 <origin xyz="0 0 0" rpy="0 0 0" />

 <parent link="base_footprint"/>

 <child link="base_link" />

 </joint>

 <gazebo>

 <plugin name="object_controller"

filename="libgazebo_ros_planar_move.so">

 <commandTopic>cmd_vel</commandTopic>

 <odometryTopic>odom</odometryTopic>

 <odometryFrame>odom</odometryFrame>

 <odometryRate>20.0</odometryRate>

 <robotBaseFrame>base_footprint</robotBaseFrame>

 </plugin>

 </gazebo>

 <!-- TODO, add 6 IR sensors, accelerometer, gyroscope, battery

voltage sensor -->

 <!-- Set frequencies and queue lengths correctly in ROSnodes -->

</robot>

C.2 Robotarium world file

This file is used by Gazebo to generate a world where the robots and the mission

will be simulated. This world consists for the most part of the Robotarium arena. The robots

and the camera tracker are spawned separately as world add-ons thanks to the launch file.

robotarium.world

<?xml version="1.0" ?>

<sdf version="1.4">

 <world name="default">

 <include>

 <uri>model://ground_plane</uri>

 </include>

625

 <include>

 <uri>model://sun</uri>

 </include>

 <gravity>0 0 -9.81</gravity>

 <model name="left">

 <pose>-.6 0 0 0 0 0</pose>

 <link name="link">

 <collision name="collision">

 <geometry>

 <box>

 <size>.01 .7 .05</size>

 </box>

 </geometry>

 </collision>

 <visual name="visual">

 <geometry>

 <box>

 <size>.01 .7 .05</size>

 </box>

 </geometry>

 <material>

 <script>Gazebo/Blue</script>

 </material>

 </visual>

 </link>

 </model>

 <model name="right">

 <pose>.6 0 0 0 0 0</pose>

 <link name="link">

 <collision name="collision">

 <geometry>

 <box>

 <size>.01 .7 .05</size>

 </box>

 </geometry>

 </collision>

 <visual name="visual">

 <geometry>

 <box>

 <size>.01 .7 .05</size>

 </box>

 </geometry>

 <material>

 <script>Gazebo/Blue</script>

 </material>

 </visual>

 </link>

 </model>

 <model name="bottom">

 <pose>0 -.35 0 0 0 0</pose>

 <link name="link">

 <collision name="collision">

 <geometry>

 <box>

 <size>1.2 .01 .05</size>

 </box>

 </geometry>

626

 </collision>

 <visual name="visual">

 <geometry>

 <box>

 <size>1.2 .01 .05</size>

 </box>

 </geometry>

 <material>

 <script>Gazebo/Blue</script>

 </material>

 </visual>

 </link>

 </model>

 <model name="top">

 <pose>0 .35 0 0 0 0</pose>

 <link name="link">

 <collision name="collision">

 <geometry>

 <box>

 <size>1.2 .01 .05</size>

 </box>

 </geometry>

 </collision>

 <visual name="visual">

 <geometry>

 <box>

 <size>1.2 .01 .05</size>

 </box>

 </geometry>

 <material>

 <script>Gazebo/Blue</script>

 </material>

 </visual>

 </link>

 </model>

 </world>

</sdf>

C.3 Consensus mission launch file

The launch file is the starting point for the microscopic simulation. Once the

roscore is running in a terminal, one can simply open a new terminal and roslaunch the

file robotarium.launch to start the simulation of the rendezvous mission. Note that the

launch file is modified based on the number of robots to be included in the mission as well

as their initial positions (see the Matlab generation files in APPENDIX B). Finally, the

627

commented part of the code refers to another possible computer vision package used to

track the ID tags of the robots.

robotarium.launch

<?xml version="1.0"?>

<launch>

 <!-- Environment

###

###

##############-->

 <include file="$(find gazebo_ros)/launch/empty_world.launch">

 <arg name="world_name" value="$(find

gritbot_gazebo)/worlds/robotarium.world"/>

 <arg name="paused" value="false"/>

 <arg name="use_sim_time" value="true"/>

 <arg name="gui" value="false"/>

 <arg name="headless" value="true"/>

 <arg name="debug" value="false"/>

 </include>

 <!-- Robots

###

###

###################-->

 <node name="gritbot1" ns="gritbot1" pkg="gazebo_ros"

type="spawn_model" args="-file $(find

gritbot_description)/urdf/gritbot_1.urdf -urdf -x -.25 -y -.25 -z 0 -

model gritbot1" />

 <node name="gritbot2" ns="gritbot2" pkg="gazebo_ros"

type="spawn_model" args="-file $(find

gritbot_description)/urdf/gritbot_2.urdf -urdf -x .25 -y -.25 -z 0 -

model gritbot2" />

 <node name="gritbot3" ns="gritbot3" pkg="gazebo_ros"

type="spawn_model" args="-file $(find

gritbot_description)/urdf/gritbot_3.urdf -urdf -x .25 -y .25 -z 0 -

model gritbot3" />

 <node name="gritbot4" ns="gritbot4" pkg="gazebo_ros"

type="spawn_model" args="-file $(find

gritbot_description)/urdf/gritbot_4.urdf -urdf -x -.25 -y .25 -z 0 -

model gritbot4" />

 <!-- Robotarium tracker

###

###

####### -->

 <!-- Camera -->

 <node name="tracker" ns="robotarium" pkg="gritbot_navigation"

type="tracker" />

 <node name="camera" ns="robotarium" pkg="gazebo_ros"

type="spawn_model" args="-file $(find

gritbot_description)/urdf/camera.urdf -urdf -model camera" />

 <node name="camera_view" pkg="image_view" type="image_view">

 <remap from="image" to="/robotarium/camera/image_raw" />

628

 <param name="approximate_sync" value="true" />

 </node>

 <!-- Undistort images -->

 <node name="image_proc" ns="/robotarium/camera" pkg="image_proc"

type="image_proc" />

 <node name="corrected_view" pkg="image_view" type="image_view">

 <remap from="image"

to="/robotarium/camera/image_rect_color" />

 <param name="approximate_sync" value="true" />

 </node>

 <!-- Track Aruco Tags -->

 <node pkg="aruco_ros" type="single" name="aruco_single">

 <remap from="/camera_info" to="/robotarium/camera/camera_info"

/>

 <remap from="/image" to="/robotarium/camera/image_rect_color"

/>

 <param name="image_is_rectified" value="True"/>

 <param name="marker_size" value="0.032"/>

 <param name="marker_id" value="1"/>

 <param name="reference_frame" value=""/> <!-- frame in

which the marker pose will be refered -->

 <param name="camera_frame" value="base_footprint"/>

 <param name="marker_frame" value="base_footprint" />

 <param name="corner_refinement" value="LINES" />

 </node>

 <node name="aruco_view" pkg="image_view" type="image_view">

 <remap from="image" to="/aruco_single/result" />

 <param name="approximate_sync" value="true" />

 </node>

 <!--<arg name="marker_size" default="4.4" />

 <arg name="max_new_marker_error" default="0.08" />

 <arg name="max_track_error" default="0.2" />

 <arg name="cam_image_topic" default="/robotarium/camera/image_raw"

/>

 <arg name="cam_info_topic" default="/robotarium/camera/camera_info"

/>

 <arg name="output_frame" default="/camera/base_link" />

 <node name="ar_track_alvar" pkg="ar_track_alvar"

type="individualMarkersNoKinect" respawn="false" output="screen"

args="$(arg marker_size) $(arg max_new_marker_error) $(arg

max_track_error) $(arg cam_image_topic) $(arg cam_info_topic) $(arg

output_frame)" />

-->

 <!-- Intelligence

###

###

####### -->

 <!-- Data logger -->

 <node name="logger" ns="robotarium" pkg="gritbot_navigation"

type="logger" args="/home/jdurand7/logs/log_4_0.1.csv" />

 <!-- Static consensus algorithm -->

629

 <!-- NOTE: this node is required, if it stops, the whole simulation

stops -->

 <!--<node name="consensus" ns="robotarium" pkg="gritbot_navigation"

type="consensus" args="0.1" output="screen" required="true"/>-->

</launch>

C.4 Navigation package

As opposed to the previous packages gritbot_description and gritbot_gazebo which

encompass the physical description and simulation of the robots, the navigation package

represents the intelligence of the robot and is the one to read the sensors inputs, run the

consensus mission, and output the results. More details about the implementation can be

found in section 4.2.3 page 266.

C.4.1 Consensus

This class is designed to be instantiated with a given number of robots and their

individual velocity, and perform a static consensus for these robots. In particular, it is in

constant communication with the Gazebo simulator to read the location of the robots

derived from the tracking system, compute appropriate velocities for the robots to meet at

consensus without any collisions, and return these velocities as orders to the controllers for

the robots in the simulator.

consensus.cpp

#include <gazebo_msgs/ModelStates.h>

#include <ros/ros.h>

#include <tf/transform_datatypes.h>

#include <geometry_msgs/Twist.h>

#include <vector>

#include <CGAL/QP_functions.h>

#include <CGAL/MP_Float.h>

typedef CGAL::MP_Float ET;

typedef CGAL::Quadratic_program<ET> Program;

typedef CGAL::Quadratic_program_solution<ET> Solution;

class RobotariumConsensus

630

{

public:

 // Constructor

 RobotariumConsensus();

 void setMaxLinearVelocity(double maxLinearVelocity);

private:

 // Attributes

 int count;

 bool init;

 double v;

 ros::NodeHandle nh_;

 ros::Subscriber poses_sub_;

 ros::Publisher poses_pub;

 std::vector<ros::Publisher> myvector;

 std::vector<double> previous_x;

 std::vector<double> previous_y;

 // Methods

 int nChooseK(int iN, int iR);

 std::vector<int> topologicalNeighbors(int i, int N);

 std::vector<geometry_msgs::Twist>

saturateVelocity(std::vector<geometry_msgs::Twist> dxi, double

maxLinear, double maxAngular);

 std::vector<geometry_msgs::Twist>

barrierCertificate(std::vector<geometry_msgs::Twist> dxi, const

gazebo_msgs::ModelStates::ConstPtr& msg, double gamma, double

safetyRadius);

 gazebo_msgs::ModelStates::ConstPtr uniToSiStates(const

gazebo_msgs::ModelStates::ConstPtr& msg, double projectionDistance);

 std::vector<geometry_msgs::Twist>

int2uni3(std::vector<geometry_msgs::Twist> dxi, const

gazebo_msgs::ModelStates::ConstPtr& msg, double lambda);

 double computeAverageDistanceChange(const

gazebo_msgs::ModelStates::ConstPtr& msg);

 geometry_msgs::Twist computeRobotVelocity(int robotID, const

geometry_msgs::Pose pose, const gazebo_msgs::ModelStates::ConstPtr&

msg, double projectionDistance);

 void poseCallback(const gazebo_msgs::ModelStates::ConstPtr& msg);

};

RobotariumConsensus::RobotariumConsensus():

 init(true),

 count(0),

 v(.1) // m/s

{

 // Declare topics

 poses_sub_ = nh_.subscribe("/robotarium/poses", 1,

&RobotariumConsensus::poseCallback, this);

 poses_pub =

nh_.advertise<gazebo_msgs::ModelStates>("/robotarium/controller/poses",

1);

}

std::vector<geometry_msgs::Twist>

RobotariumConsensus::saturateVelocity(std::vector<geometry_msgs::Twist>

dxi, double maxLinear, double maxAngular){

631

 // Initialization

 std::vector<geometry_msgs::Twist> dxi_out = dxi;

 for (int i = 0; i < dxi.size(); ++i){

 // Saturate linear velocity

 if (dxi[i].linear.x > maxLinear) dxi_out[i].linear.x =

maxLinear;

 if (dxi[i].linear.x < -maxLinear) dxi_out[i].linear.x = -

maxLinear;

 // Saturate angular velocity

 if (dxi[i].angular.z > maxAngular) dxi_out[i].angular.z =

maxAngular;

 if (dxi[i].angular.z < -maxAngular) dxi_out[i].angular.z = -

maxAngular;

 }

 return dxi_out;

}

int RobotariumConsensus::nChooseK(int iN, int iR){

 if (iR < 0 || iR > iN) {

 return 0;

 }

 // Initialization

 int iComb = 1;

 int i = 0;

 // Iterative loop

 while (i < iR) {

 ++i;

 iComb *= iN - i + 1;

 iComb /= i;

 }

 return iComb;

}

std::vector<int> RobotariumConsensus::topologicalNeighbors(int i, int

N){

 std::vector<int> neighbors;

 // Special cases

 if (N == 1) return neighbors;

 if (N == 2){

 if (0 == i){

 neighbors.push_back(1);

 } else {

 neighbors.push_back(0);

 }

 return neighbors;

 }

 // Normal cases

 if (0 == i){

 neighbors.push_back(1);

 neighbors.push_back(N-1);

632

 } else if (N-1 == i){

 neighbors.push_back(0);

 neighbors.push_back(N-2);

 } else {

 neighbors.push_back(i-1);

 neighbors.push_back(i+1);

 }

 return neighbors;

}

std::vector<geometry_msgs::Twist>

RobotariumConsensus::barrierCertificate(std::vector<geometry_msgs::Twis

t> dxi, const gazebo_msgs::ModelStates::ConstPtr& msg, double gamma,

double safetyRadius){

 // Initialization

 int N = msg->pose.size();

 std::vector<geometry_msgs::Twist> dxi_out = dxi;

 // If only one robot, return same command immediately

 if (N < 2) return dxi_out;

 // Else

 // QP (1/2*x'*D*x + c'*x) with A*x <= b, unbounded variables

 Program qp (CGAL::SMALLER, false, 0, false, 0);

 // Initialize problem arrays

 int numConstraints = nChooseK(N,2);

 int count = 0;

 double h;

 double d,dx,dy,d2;

 // Set the non-default entries

 for (int i = 0; i < N-1; ++i){

 for (int j = i+1; j < N; ++j){

 // Compute norm

 dx = msg->pose[i].position.x - msg->pose[j].position.x;

 dy = msg->pose[i].position.y - msg->pose[j].position.y;

 d2 = dx*dx + dy*dy;

 h = d2 - safetyRadius*safetyRadius;

 qp.set_a(2*i, count, -2.*dx);

 qp.set_a(2*i+1, count, -2.*dy);

 qp.set_a(2*j, count, 2.*dx);

 qp.set_a(2*j+1, count, 2.*dy);

 qp.set_b(count, gamma*h*h*h);

 // Increment

 ++count;

 }

 }

 // Quadratic function

 for (int i = 0; i < 2*N; ++i) qp.set_d(i, i, 2.);

 for (int i = 0; i < N; ++i){

 qp.set_c(2*i, -2*dxi[i].linear.x);

633

 qp.set_c(2*i+1, -2*dxi[i].linear.y);

 }

 // Solve the QP problem, using ET as the exact type

 Solution s = CGAL::solve_quadratic_program(qp, ET());

 ET denom = s.variables_common_denominator();

 unsigned int i = 0;

 for (Solution::Variable_numerator_iterator it =

s.variable_numerators_begin(); it < s.variable_numerators_end(); ++it,

++i){

 // X component

 dxi_out[i].linear.x =

CGAL::to_double(*it)/CGAL::to_double(denom);

 // Y component

 ++it;

 dxi_out[i].linear.y =

CGAL::to_double(*it)/CGAL::to_double(denom);

 }

 for (int i = 0; i < dxi_out.size(); ++i){

 std::cout << "Robot " << i << std::endl;

 std::cout << "\tIN = [" << dxi[i].linear.x << ", " <<

dxi[i].linear.y << "]" << std::endl;

 std::cout << "\tOUT = [" << dxi_out[i].linear.x << ", " <<

dxi_out[i].linear.y << "]" << std::endl;

 }

 return dxi_out;

}

gazebo_msgs::ModelStates::ConstPtr

RobotariumConsensus::uniToSiStates(const

gazebo_msgs::ModelStates::ConstPtr& msg, double projectionDistance){

 // Initialization

 int n = msg->pose.size();

 double roll, pitch, yaw;

 gazebo_msgs::ModelStates msg_si;

 for (int i = 0; i < n; ++i){

 // Compute yaw

 tf::Quaternion q(msg->pose[i].orientation.x, msg-

>pose[i].orientation.y, msg->pose[i].orientation.z, msg-

>pose[i].orientation.w);

 tf::Matrix3x3 m(q);

 m.getRPY(roll, pitch, yaw);

 // Compute and assign single-integrator state

 geometry_msgs::Point point;

 point.x = msg->pose[i].position.x +

projectionDistance*cos(yaw);

 point.y = msg->pose[i].position.y +

projectionDistance*sin(yaw);

 point.z = 0.;

 geometry_msgs::Quaternion quat;

 quat.x = 0.;

 quat.y = 0.;

634

 quat.z = 0.;

 quat.w = 1.;

 geometry_msgs::Pose pose;

 pose.position = point;

 pose.orientation = quat;

 msg_si.pose.push_back(pose);

 msg_si.twist.push_back(geometry_msgs::Twist());

 }

 // Return pointer

 gazebo_msgs::ModelStates::ConstPtr msg_si_ptr(new

gazebo_msgs::ModelStates(msg_si));

 return msg_si_ptr;

}

std::vector<geometry_msgs::Twist>

RobotariumConsensus::int2uni3(std::vector<geometry_msgs::Twist> dxi,

const gazebo_msgs::ModelStates::ConstPtr& msg, double lambda){

 // Initialization

 double roll, pitch, yaw;

 std::vector<geometry_msgs::Twist> dxu;

 // Get yaw from quaternions

 for (int i = 0; i < msg->pose.size(); ++i){

 geometry_msgs::Twist vel;

 tf::Quaternion q(msg->pose[i].orientation.x, msg-

>pose[i].orientation.y, msg->pose[i].orientation.z, msg-

>pose[i].orientation.w);

 tf::Matrix3x3 m(q);

 m.getRPY(roll, pitch, yaw);

 // From single-integrator dynamics to unicycle dynamics

 vel.linear.x = cos(yaw)*dxi[i].linear.x +

sin(yaw)*dxi[i].linear.y;

 vel.angular.z = (1.0/lambda)*(-sin(yaw)*dxi[i].linear.x +

cos(yaw)*dxi[i].linear.y);

 //if (vel_out.linear.x < 0.0) vel_out.angular.z = - 1.0 *

vel_out.angular.z;

 dxu.push_back(vel);

 }

 return dxu;

}

double RobotariumConsensus::computeAverageDistanceChange(const

gazebo_msgs::ModelStates::ConstPtr& msg){

 // Initialization

 int n = msg->pose.size();

 double d = 0;

 double dx = 0;

 double dy = 0;

 // Compute average distance change

635

 for (int i = 0; i < n; ++i){

 // Compute coordinate changes

 dx = msg->pose[i].position.x - previous_x[i];

 dy = msg->pose[i].position.y - previous_y[i];

 // Add distance change to sum

 d += sqrt(dx*dx + dy*dy);

 // Update

 previous_x[i] = msg->pose[i].position.x;

 previous_y[i] = msg->pose[i].position.y;

 }

 // Average

 return d/n;

}

geometry_msgs::Twist RobotariumConsensus::computeRobotVelocity(int

robotID, const geometry_msgs::Pose pose, const

gazebo_msgs::ModelStates::ConstPtr& msg, double projectionDistance){

 // Initialization

 geometry_msgs::Twist vel;

 int n = msg->pose.size();

 // Get neighbors of agent

 std::vector<int> neighbors = topologicalNeighbors(robotID, n);

 // Compute velocity

 for (std::vector<int>::iterator it = neighbors.begin(); it !=

neighbors.end(); ++it){

 vel.linear.x += msg->pose[*it].position.x - msg-

>pose[robotID].position.x;

 vel.linear.y += msg->pose[*it].position.y - msg-

>pose[robotID].position.y;

 }

 return vel;

}

void RobotariumConsensus::poseCallback(const

gazebo_msgs::ModelStates::ConstPtr& msg)

{

 // Initialization

 geometry_msgs::Twist vel;

 int n = msg->pose.size();

 double d = 0;

 if (this->init){

 // For each robot

 for (int i = 0; i < n; ++i){

 // Create topic name

 std::ostringstream topic_name;

 topic_name << "/" << msg->name[i] << "/cmd_vel";

 // Initialize publishing topic

636

myvector.push_back(nh_.advertise<geometry_msgs::Twist>(topic_name.str()

, 10));

 // Initialize previous_msg

 previous_x.push_back(msg->pose[i].position.x);

 previous_y.push_back(msg->pose[i].position.y);

 }

 this->init = false;

 } else {

 // If stopping condition is reached, stop simulation

 // This node should be instantiated as required so that if it

stops, all other nodes stop

 double d = computeAverageDistanceChange(msg);

 std::cout << "[t = " << ros::Time::now() << "] " << d <<

std::endl;

 if (d < 0.00001){

 std::cout << "\tCounting " << count << std::endl;

 ++count;

 } else {

 count = 0;

 }

 // After N measures below the threshold, stop

 // After 2.5 minutes stop

 // ros::Time::now().toSec() > 1.2/this->v

 if (count > 25 || ros::Time::now().toSec() > 150.0){

 // Stop node

 ros::shutdown();

 }

 }

 // Convert to single-integrator states

 double projectionDistance = 0.03;

 gazebo_msgs::ModelStates::ConstPtr msg_si = uniToSiStates(msg,

projectionDistance);

 std::vector<geometry_msgs::Twist> dxi, dxu;

 // For each robot

 for (int i = 0; i < n; ++i){

 // Compute velocity

 dxi.push_back(computeRobotVelocity(i, msg->pose[i], msg_si,

projectionDistance));

 }

 // Compute collision-free controls

 dxi = barrierCertificate(dxi, msg_si, 10000., .06);

 // Transform single-integrator dynamics to unicycle dynamics

 dxu = int2uni3(dxi, msg, projectionDistance);

 // Saturation

 dxu = saturateVelocity(dxu, this->v, 2.0*3.1416);

 // Publish to each robot input topic

 for (int i = 0; i < n; ++i){

 // Model identification

 dxu[i].linear.x *= .835;

637

 dxu[i].angular.z *= .46;

 myvector[i].publish(dxu[i]);

 }

 // Re-publish poses

 poses_pub.publish(msg);

}

void RobotariumConsensus::setMaxLinearVelocity(double

maxLinearVelocity)

{

 this->v = maxLinearVelocity;

}

int main(int argc, char** argv)

{

 // Initialization

 ros::init(argc, argv, "consensus");

 RobotariumConsensus consensus;

 if (argc == 2){

 consensus.setMaxLinearVelocity(atof(argv[1]));

 }

 // Wait for some time for Gazebo to be ready

 ros::Duration(5.0).sleep();

 // Iterate at given rate

 ros::Rate rate(30.);

 while(ros::ok())

 {

 // Activate callbacks

 ros::spinOnce();

 // Maintain publishing rate

 rate.sleep();

 }

 return 0;

}

C.4.2 Tracker

Always running as a backup system to the computer vision node calculating the

poses of the ID tags of the robots, the tracker node bypasses this latter by reading the poses

of the robots directly from the Gazebo simulator. In return, it outputs theses poses under

the correct format in the appropriate ROS topic.

tracker.cpp

638

#include <ros/ros.h>

#include <gazebo_msgs/ModelStates.h>

class RobotariumTracker

{

public:

 // Constructor

 RobotariumTracker();

private:

 // Attributes

 ros::NodeHandle nh_;

 ros::Subscriber camera_sub;

 ros::Publisher poses_pub;

 gazebo_msgs::ModelStates poses;

 // Methods

 void cameraCallback(const gazebo_msgs::ModelStates::ConstPtr& msg);

public:

 void publish();

};

RobotariumTracker::RobotariumTracker()

{

 // Subscribe to the tracking camera topic

 camera_sub = nh_.subscribe("/gazebo/model_states", 1,

&RobotariumTracker::cameraCallback, this);

 // Create topic to publish robots poses

 poses_pub =

nh_.advertise<gazebo_msgs::ModelStates>("/robotarium/poses", 1);

}

void RobotariumTracker::cameraCallback(const

gazebo_msgs::ModelStates::ConstPtr& msg)

{

 // Re-initialize poses

 poses.name.clear();

 poses.pose.clear();

 // Get robots poses ###

 // TODO: replace by the tracking the AprilTags

 for (int i = 0; i < msg->pose.size(); ++i){

 if ("gritbot" == msg->name[i].substr(0,7)){

 poses.name.push_back(msg->name[i]);

 poses.pose.push_back(msg->pose[i]);

 }

 }

 // ##

}

void RobotariumTracker::publish(){

 // Publish

 poses_pub.publish(poses);

}

int main(int argc, char** argv)

639

{

 ros::init(argc, argv, "tracker");

 RobotariumTracker tracker;

 // Iterate at given rate

 ros::Rate rate(30.);

 while(ros::ok())

 {

 // Activate callbacks

 ros::spinOnce();

 // Publish tracked poses

 tracker.publish();

 // Maintain publishing rate

 rate.sleep();

 }

 return 0;

}

C.4.3 Logger

Essential part of the navigation package of the microscopic model, the logger node

saves the simulation time as well as the successive poses of each robot in a file during the

consensus mission. This file can later be analyzed to retrieve trajectories and compute the

main mission metrics such as consensus location and consensus time.

logger.cpp

#include <gazebo_msgs/ModelStates.h>

#include <fstream>

#include <sstream> // for ostringstream

#include <ros/ros.h>

using namespace std;

class RobotariumLogger

{

public:

 // Constructor

 RobotariumLogger();

 void setFileName(const char *filename);

private:

 // Attributes

 ofstream myfile;

 ros::NodeHandle nh_;

 ros::Subscriber poses_sub_;

 // Methods

640

 void poseCallback(const gazebo_msgs::ModelStates::ConstPtr& msg);

};

RobotariumLogger::RobotariumLogger()

{

 // Declare topics

 poses_sub_ = nh_.subscribe("/robotarium/controller/poses", 1,

&RobotariumLogger::poseCallback, this);

}

void RobotariumLogger::setFileName(const char *filename){

 // Open logging file

 myfile.open(filename);

}

void RobotariumLogger::poseCallback(const

gazebo_msgs::ModelStates::ConstPtr& msg)

{

 // Initialization

 ros::Time time = ros::Time::now();

 int n = msg->pose.size();

 ostringstream line;

 line << time << ",";

 // For each robot

 for (int i = 0; i < n; ++i){

 // Concatenate poses information

 line << msg->pose[i].position.x;

 line << ",";

 line << msg->pose[i].position.y;

 if (i < n-1) line << ",";

 }

 // Add poses to file

 myfile << line.str() << "\n";

}

int main(int argc, char** argv)

{

 ros::init(argc, argv, "logger");

 RobotariumLogger logger;

 // Set filename

 if (argc == 2){

 logger.setFileName(argv[1]);

 } else {

 logger.setFileName("log.csv");

 }

 // Iterate at given rate

 ros::Rate rate(30.);

 while(ros::ok())

 {

 // Activate callbacks

 ros::spinOnce();

 // Maintain publishing rate

 rate.sleep();

641

 }

 // TODO: ideally there should be a node shutdown callback to close

the file stream

 //myfile.close();

 return 0;

}

642

REFERENCES

[1] P. Chatterjee, "The Three Faces of Drone War: Speaking Truth From the Robotic

Heavens," The UNZ Review: An Alternative Media Selection, 2014.

[2] S. Genouel, Systèmes linéaires continus et invariants, 2011.

[3] J. de Hoog, S. Cameron and A. Visser, "Role-Based Autonomous Multi-robot

Exploration," in Future Computing, Service Computation, Cognitive, Adaptive,

Content, Patterns, 2009. COMPUTATIONWORLD '09. Computation World:, 2009.

[4] S. Schröder, Optimized Movements: Ballet of the Bots, 2014.

[5] Siemens, Smoothly moving industrial robots save energy, 2014.

[6] Aeroweb, U.S. Military Aircraft Programs, http://www.bga-aeroweb.com/DoD-

Aircraft-Programs.html, 2015.

[7] O. of the Under Secretary of Defense (Comptroller) Chief Financial Officer,

"Program Acquisition Cost by Weapon System,"

http://comptroller.defense.gov/Portals/45/Documents/defbudget/fy2015/fy2015_We

apons.pdf, 2014.

[8] W. Wheeler, How Much Does an F-35 Actually Cost?, 2014.

[9] Deagel.com, C-40A Clipper, 2015.

[10] A. Navy, United States Navy Fact File: C-2A Greyhound Logistics Aircraft, 2013.

[11] Military.com, EP-3 Ares II, 2015.

[12] A. Navy, United States Navy Fact File: C-9 Skytrain Logistics Aircraft, 2009.

643

[13] G. Aircraft, AV-8B Harrier II, 2013.

[14] M. A. Network, C-20, 1998.

[15] U. A. Force, A-10 Thunderbolt II,

http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104490/a-10-

thunderbolt-ii.aspx, 2015.

[16] A. C. Command, MC-12W Liberty Project Aircraft (LPA), 2011.

[17] R. Goyer, Pilatus PC-123 Versus the World, 2013.

[18] U. A. Force, T-1A Jayhawk,

http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104542/t-1a-

jayhawk.aspx, 2005.

[19] L. S. J. E. R. Johnson, American Military Training Aircraft: Fixed and Rotary-

Wing Trainers Since 1916, McFarland, 2015.

[20] AOPA, Quick Look: Learjet 35/36, http://www.aopa.org/News-and-Video/All-

News/2013/May/1/Quick-Look-Learjet-35-36, 2013.

[21] J. Pike, Bell 206 JetRanger, 2015.

[22] E. Gent, Price wars: Counting the cost of drones, planes and satellites, 2015.

[23] DJI, Phantom 3 Professional, https://www.dji.com/product/phantom-3-pro, 2015.

[24] H.-L. G. Solutions, Sensefly Ebee RTK, http://www.hlgs.com.au/uavs/sensefly-

ebee-rtk/, 2015.

[25] T. Dustrude, Cessna at Westwind, http://sanjuanupdate.com/2013/07/34100/, 2013.

644

[26] NASA, Landsat 8 Status Update for Aug. 8, 2013,

http://landsat.gsfc.nasa.gov/?p=6099, 2013.

[27] M. Thompson, "Costly Flight Hours," Time, April 2013.

[28] A. Yates, Pricing, http://www.kerrvillephoto.com/index.php/aerial-pricing, 2015.

[29] D. W. Felty, Aerial Photography Fees & Services, 2006.

[30] J. Pinckert, Drone vs. Helicopter for Aerials: Top 5 Scenarios for Each, 2014.

[31] A. Matese, P. Toscano, S. F. Di Gennaro, L. Genesio, F. P. Vaccari, J. Primicerio,

C. Belli, A. Zaldei, R. Bianconi and B. Gioli, "Intercomparison of UAV, Aircraft

and Satellite Remote Sensing Platforms for Precision Viticulture," Remote Sensing,

vol. 7, no. 3, p. 2971, 2015.

[32] C. Mailey, "Are UAS More Cost Effective than Manned Flights?," 2013.

[33] Lucintel, "Growth Opportunity in Global UAV Market," 2011.

[34] marketsandmarkets.com, "Unmanned Aerial Vehicles Market by Class (Small,

Tactical, Strategic, Special Purpose), Subsystem (Data Link, GCS, and Software),

Application (Military, Commercial and Homeland Security), Procurement by

Purpose (Procurements, RDT&E, O&M), Payload & Geography - Global Forecast

to 2020," 2015.

[35] I. IGI Consulting, "UAV Market Research Study – 2014 Edition," 2014.

[36] M. Ballve, The Drone Report: Market Forecast For Commercial Applications,

Regulatory Process, And Leading Players, 2015.

[37] C. Snow, Diversity and Hype in Commercial Drone Market Forecasts, 2015.

645

[38] M. McFarland, Amazon details its plan for how drones can fly safely over U.S.

skies, 2015.

[39] M. Bedford, "Unmanned Aircraft System (UAS) Service Demand 2015-2035:

Literature Review & Projections of Future Usage," 2013.

[40] M. Lukovic, The Future of the Civil and Military UAV Market, 2011.

[41] Amazon.com, Amazon Prime Air, 2015.

[42] Google, Introducing Project Wing, 2014.

[43] Bionic, Aquila Facebook Drone | Internet.org, 2015.

[44] C. Anderson, "Agricultural Drones: Relatively cheap drones with advanced sensors

and imaging capabilities are giving farmers new ways to increase yields and reduce

crop damage.," 2014.

[45] J. Reagan, "How Low Will Drone Prices Go?," DroneLife.com, July 2015.

[46] P. Belton, "Game of drones: As prices plummet drones are taking off," BBC News,

January 2015.

[47] PriceSpy, Parrot AR. Drone 2.0 Elite Edition RTF Price History, 2015.

[48] S. Curtis, "Parrot launches 'camouflaged' AR Drone," The Telegraph, December

2013.

[49] DJI, Price Reduction for the Phantom 2 Series Drones, 2014.

[50] Amazon.com, Amazon.com: Online Shopping for Electronics, Apparel, Computers,

Books, DVDs and more, http://www.amazon.com/, 2015.

646

[51] W. P. Library, List of Unmanned Aerial Vehicles, 2015.

[52] D. B. German, "The Need for Numerical Optimization," 2013.

[53] K. Smith, Best Drone For Sale and Why, 2015.

[54] DJI, Flame Wheel ARF Kit, 2016.

[55] 2. C. A. A. Race, The Drone Index: IAI Super Heron, 2015.

[56] M. Deveau, Image recording from aerial vectors, 2009.

[57] D. Engineering, VTOL Vehicle Design and Development, 2013.

[58] K. Barnstorff, NASA engineers have successfully built and flown a 10-engine

electric-hybrid aerial UAV beast, 2015.

[59] D. L. Gareth Roberts and W. Crowther, "Non-Planar Hexrotor: Concept &

Missions," 2011.

[60] I. I. S. de l'Aéronautique et de l'Espace, Des innovations ISAE aux débouchés

commerciaux, 2013.

[61] Range, SEED Concept: Your Personal Automonous Floating Camera Drone, 2011.

[62] T. Digest, CES 2008: Da Vinci inspired remote control miniatures, 2008.

[63] R. Beckler, "This Awesome Drone Can Conquer Both Sea And Sky," Vocativ,

December 2015.

[64] S. H. Dmitry Bershadsky and E. N. Johnson, Underwater Quadrotor Flight Test,

2015.

[65] C. Anderson, DYIDrones.com, 2007.

647

[66] ArduPilot.com, ArduPilot Autopilot Suite, http://ardupilot.com/, 2015.

[67] D. J. Pate, M. D. Patterson and B. J. German, "Optimizing families of

reconfigurable aircraft for multiple missions," Journal of Aircraft, vol. 49, no. 6,

pp. 1988-2000, 2012.

[68] R. Hoover, "It's Alive! Ames Engineers Harvest and Print Parts for New Breed of

Aircraft," NASA, October 2015.

[69] D. L. K. D. C. D. N. M. Zachary C. Fisher, "ADAPt Design: A Methodology for

Enabling Modular Design for Mission Specific SUAS," 2016.

[70] C. L. R. E. S. K. D. C. D. N. M. David B. Locascio, "A Framework for Integrated

Analysis, Design, and Rapid Prototyping of Small Unmanned Airplanes," 2016.

[71] P. Mangum, Z. Fisher, K. D. Cooksey, D. Mavris, E. Spero and J. W. Gerdes, "An

Automated Approach to the Design of Small Aerial Systems Using Rapid

Manufacturing," in ASME 2015 International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference, 2015.

[72] L. Zyga, Panasonic's Si-alloy anode technology to offer 30% increase in battery

capacity, 2010.

[73] G. Gottsegen, "The Parrot Bebop 2 Drone Has Doubled Its Battery Life," Wired,

November 2015.

[74] Parrot, Technical Specifications of AR.Drone 1.0, http://www.ardrone-

flyers.com/wiki/Technical_Specifications_of_AR.Drone_1.0, 2010.

648

[75] M. Cooney, Drones still face major communications challenges getting onto US

airspace, 2013.

[76] K. Moskvitch, "Are drones the next target for hackers?," BBC.com, February 2014.

[77] C. Howard, "UAV command, control & communications," Military & Aerospace,

July 2013.

[78] Parrot, Wifi Use: How to respect regulations and optimize Bebop Drone range,

2014.

[79] W. Saletan, "Fukushima's Bio-Robots: In Japan's nuclear cleanup, is human life

cheaper than machines?," Slate, April 2011.

[80] N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Nagatani, Y. Okada,

S. Kiribayashi, K. Otake, K. Yoshida, K. Ohno, E. Takeuchi and S. Tadokoro,

"Collaborative mapping of an earthquake-damaged building via ground and aerial

robots," Journal of Field Robotics, vol. 29, no. 5, pp. 832-841, 2012.

[81] L. E. Parker, "Heterogeneous multi-robot cooperation," 1994.

[82] DoD, "Unmanned Systems Integrated Roadmap," 2013.

[83] R. Pater, "Drone Survival Guide: Twenty-first Century Birdwatching,"

http://dronesurvivalguide.org/, 2015.

[84] F. Icon, Free Vector Icons, 2017.

[85] R. Valdes, "How the Predator UAV Works," Science: How Stuff Works, November

2002.

649

[86] J. Hsu, "Drone War Pushes Pilots to Breaking Point," Discover: Science for the

curious, January 2015.

[87] MCruz, Person icon black, 2014.

[88] Avjobs, Air Traffic Control.

[89] A. Aerospace, Unmanned Aerial Vehicle, 3rd East Steet, Kamaraj Nagar,

Thiruvanmiyur, Chennai - 600041, 2015.

[90] S. R. Service, Commercial Roofing, 2013.

[91] E. Swanson, Drone Poll Finds Support For Strikes, With Limits, 2013.

[92] A. I. Association, "Unmanned Aircraft Systems: Perceptions and Potential," 2013.

[93] B. Schneier, Is it OK to shoot down a drone over your backyard?, 2015.

[94] F. Mondada, "Ensembles and mobile robots, where is the link?," 2011.

[95] M. Brambilla, E. Ferrante, M. Birattari and M. Dorigo, "Swarm robotics: a review

from the swarm engineering perspective," Swarm Intelligence, vol. 7, no. 1, pp. 1-

41, 2013.

[96] I. Navarro and F. Matía, "An Introduction to Swarm Robotics," ISRN Robotics, vol.

2013, no. Article ID 608164, p. 10, 2013.

[97] Favidex, A ball of mackerel fish defends against sea predators,

http://favidex.com/image/102116582886.

[98] Birds flock swarm vortex Animals,

http://wallpaperbeta.com/thumbnail/birds_flock_swarm_vortex_animals_hd-

wallpaper-393564.jpg.

650

[99] D. Story, "Swarm Intelligence: An Interview with Eric Bonabeau," Open P2P,

2003.

[100] T. Seeley, "Consensus building during nest-site selection in honey bee swarms: The

expiration of dissent," Behavioral Ecology and Sociobiology, vol. 53, no. 6, pp.

417-424, 2003.

[101] G. Dudek, M. Jenkin, E. Milios and D. Wilkes, "A taxonomy for multi-agent

robotics," Autonomous Robots, vol. 3, no. 4, pp. 375-397, 1996.

[102] L. Iocchi, D. Nardi and M. Salerno, "Reactivity and deliberation: a survey on multi-

robot systems," in Balancing reactivity and social deliberation in multi-agent

systems, Springer, 2001, pp. 9-32.

[103] E. Sahin, "Swarm robotics: From sources of inspiration to domains of application,"

in Swarm robotics, Springer, 2005, pp. 10-20.

[104] G. Beni, "From swarm intelligence to swarm robotics," in Swarm robotics,

Springer, 2005, pp. 1-9.

[105] M. Dorigo and E. Sahin, "Guest editorial," Autonomous Robots, vol. 17, no. 2, pp.

111-113, 2004.

[106] C. W. Reynolds, "Flocks, herds and schools: A distributed behavioral model," in

ACM Siggraph Computer Graphics, 1987.

[107] F. R. Noreils, "Toward a robot architecture integrating cooperation between mobile

robots: Application to indoor environment," The International Journal of Robotics

Research, vol. 12, no. 1, pp. 79-98, 1993.

651

[108] P. Caloud, W. Choi, J.-C. Latombe, C. Le Pape and M. Yim, "Indoor automation

with many mobile robots," in Intelligent Robots and Systems' 90.'Towards a New

Frontier of Applications', Proceedings. IROS'90. IEEE International Workshop on,

1990.

[109] K. O. A. M. Y. I. H. Asama and I. Endo, "Development of task assignment system

using communication for multiple autonomous robots," Journal of Robotics and

Mechatronics, vol. 4, no. 2, pp. 122-127, 1992.

[110] J. Wang, "DRS operating primitives based on distributed mutual exclusion," in

Intelligent Robots and Systems' 93, IROS'93. Proceedings of the 1993 IEEE/RSJ

International Conference on, 1993.

[111] R. C. Arkin, Behavior-based robotics, MIT press, 1998.

[112] F. Mondada, L. M. Gambardella, D. Floreano and M. Dorigo, "The cooperation of

swarm-bots: Physical interactions in collective robotics," IEEE Robot. Automat.

Mag, p. 2005.

[113] K. Sreenath, T. Lee and V. Kumar, "Geometric control and differential flatness of a

quadrotor UAV with a cable-suspended load," in Decision and Control (CDC),

2013 IEEE 52nd Annual Conference on, 2013.

[114] K. Sreenath and V. Kumar, "Dynamics, control and planning for cooperative

manipulation of payloads suspended by cables from multiple quadrotor robots," rn,

vol. 1, no. r2, p. r3, 2013.

[115] D. Aksaray, "Formulation of Control Strategies for Requirement Definition of

Multi-Agent Surveillance Systems," Georgia Institute of Technology, 2014.

652

[116] V. Harrison, Robots to build canal bridge using 3D printing, 2015.

[117] P. D. Mavris, "UV-CORE: Unmanned Vehicle Collaboration Research

Environment," 2015.

[118] J. D. Sutter, How 9/11 inspired a new era of robotics, 2011.

[119] Aerovironment, Search & Rescue, 2016.

[120] A. a. M. D. a. P. C. a. K. V. Kushleyev, "Towards a swarm of agile micro

quadrotors," Autonomous Robots, vol. 35, no. 4, pp. 287-300, 2013.

[121] D. Hambling, U.S. Navy Plans to Fly First Drone Swarm This Summer, 2016.

[122] D. Hambling, Drone swarms will change the face of modern warfare, 2016.

[123] S. S. Ltd, Future Prospects, 2016.

[124] L. A. Amaral and J. M. Ottino, "Complex networks," The European Physical

Journal B-Condensed Matter and Complex Systems, vol. 38, no. 2, pp. 147-162,

2004.

[125] M. W. Maier, "Architecting principles for systems-of-systems," in INCOSE

International Symposium, 1996.

[126] O. Holland, J. Woods, R. De Nardi and A. Clarck, "Beyond swarm intelligence: the

ultraswarm," 2005.

[127] R. De Nardi and O. Holland, "Swarmav: A swarm of miniature aerial vehicles,"

2006.

[128] W. L. Teacy, J. Nie, S. McClean, G. Parr, S. Hailes, S. Julier, N. Trigoni and S.

Cameron, "Collaborative sensing by unmanned aerial vehicles," 2009.

653

[129] D. Smalley, "LOCUST: Autonomous, swarming UAVs fly into the future," Office

of Naval Research, April 2015.

[130] A. Ollero and I. Maza, Multiple Heterogeneous Unmanned Aerial Vehicles, 1st ed.,

Springer Publishing Company, Incorporated, 2007.

[131] J. Anderson, Aircraft performance and design, WCB/McGraw-Hill, 1999.

[132] E. Saad, J. Vian, G. Clark and S. Bieniawski, "Vehicle swarm rapid prototyping

testbed," in AIAA Infotech@ Aerospace Conference and AIAA Unmanned...

Unlimited Conference, 2009.

[133] L. Parker, "An Experiment in Mobile Robotic Cooperation," in In Proceedings of

the ASCE Specialty Conference on Robotics for Challenging Environments, 1993.

[134] M. J. Mataric, "Issues and approaches in the design of collective autonomous

agents," Robotics and Autonomous Systems , vol. 16, no. 2â€“4, pp. 321-331, 1995.

[135] M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura,

M. Birattari, M. Bonani, M. Brambilla, A. Brutschy and others, "Swarmanoid: a

novel concept for the study of heterogeneous robotic swarms," Robotics &

Automation Magazine, IEEE, vol. 20, no. 4, pp. 60-71, 2013.

[136] F. Ducatelle, G. A. Di Caro and L. M. Gambardella, "Cooperative Self-organization

in a Heterogeneous Swarm Robotic System," in Proceedings of the 12th Annual

Conference on Genetic and Evolutionary Computation, New York, NY, USA,

2010.

654

[137] R. Grabowski, L. E. Navarro-Serment, C. J. Paredis and P. K. Khosla,

"Heterogeneous teams of modular robots for mapping and exploration,"

Autonomous Robots, vol. 8, no. 3, pp. 293-308, 2000.

[138] A. Howard, L. E. Parker and G. S. Sukhatme, "Experiments with a large

heterogeneous mobile robot team: Exploration, mapping, deployment and

detection," The International Journal of Robotics Research, vol. 25, no. 5-6, pp.

431-447, 2006.

[139] A. Billard, A. J. Ijspeert and A. Martinoli, "A multi-robot system for adaptive

exploration of a fast-changing environment: Probabilistic modeling and

experimental study," Connection Science, vol. 11, no. 3-4, pp. 359-379, 1999.

[140] V. Kim, "A Design Space Exploration Method for Identifying Emergent Behavior

in Complex Systems," 2014.

[141] D. N. Mavris and D. A. DeLaurentis, "An integrated approach to military aircraft

selection and concept evaluation," 1995.

[142] S. T. Kazadi, "Swarm engineering," 2000.

[143] J. Kramer and M. Scheutz, "Development environments for autonomous mobile

robots: A survey," Autonomous Robots, vol. 22, no. 2, pp. 101-132, 2007.

[144] H. Kwong and C. Jacob, "Evolutionary exploration of dynamic swarm behaviour,"

The 2003 Congress on Evolutionary Computation, CEC '03., vol. 1, December

2003.

655

[145] H. Hamann and H. Worn, "A framework of space-time continuous models

for algorithm design in swarm robotics," Swarm Intelligence, vol. 2, no. 2-4, pp.

209-239, 2008.

[146] A. Burkle and S. Leuchter, "Development of Micro UAV Swarms," in Autonome

Mobile Systeme 2009, Springer, 2009, pp. 217-224.

[147] J. L. a. P. J. a. P. P. a. C. A. a. C. P. Sanchez-Lopez, "ROBOT2013: First Iberian

Robotics Conference: Advances in Robotics, Vol.2," A. M. a. S. A. a. F. M.

Armada, Ed., Cham, Springer International Publishing, 2014, pp. 55-63.

[148] J. T. Allison, "Complex system optimization: A review of analytical target

cascading, collaborative optimization, and other formulations," 2004.

[149] N. P. Tedford and J. R. Martins, "Benchmarking multidisciplinary design

optimization algorithms," Optimization and Engineering, vol. 11, no. 1, pp. 159-

183, 2010.

[150] N. M. Alexandrov, M. Y. Hussaini and others, Multidisciplinary design

optimization: state of the art, vol. 80, SIAM, 1997.

[151] L. U. Hansen and P. Horst, "Multilevel optimization in aircraft structural design

evaluation," Computers & structures, vol. 86, no. 1, pp. 104-118, 2008.

[152] F. Burgaud, C. Frank and D. N. Mavris, "A Business-Driven Optimization

Methodology Applied to Suborbital Vehicle Programs," in AIAA SPACE 2016,

2016, p. 5248.

656

[153] P. K. David Simchi-Levi and E. Simchi-Levi, Designing & Managing the Supply

Chain, McGraw-Hill, 2003.

[154] P. Yang, H. Wee, S. Chung and P. Ho, "Sequential and global optimization for a

closed-loop deteriorating inventory supply chain," Mathematical and Computer

Modelling , vol. 52, no. 12, pp. 161-176, 2010.

[155] S. Mirjalili and A. Lewis, "Novel performance metrics for robust multi-objective

optimization algorithms," Swarm and Evolutionary Computation, vol. 21, pp. 1-23,

2015.

[156] R. L. Rardin and R. Uzsoy, "Experimental evaluation of heuristic optimization

algorithms: A tutorial," Journal of Heuristics, vol. 7, no. 3, pp. 261-304, 2001.

[157] C. Acquisition, A. Board, D. Sciences and N. Council, Pre-Milestone A and Early-

Phase Systems Engineering:: A Retrospective Review and Benefits for Future Air

Force Acquisition, National Academies Press, 2008.

[158] D. K. Griendling, "Architecture-Based SoS Engineering: Introduction and

Overview," 2013.

[159] Wiley, INCOSE Systems Engineering Handbook: A Guide for System Life Cycle

Processes and Activities, Wiley, 2015.

[160] P. D. Mavris, Architecture-Based SoS Engineering: Modeling Techniques

Overview, 2013.

657

[161] O. Soysal and others, "Probabilistic aggregation strategies in swarm robotic

systems," in Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005

IEEE, 2005.

[162] M. Brambilla, C. Pinciroli, M. Birattari and M. Dorigo, "Property-driven design for

swarm robotics," in Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems-Volume 1, 2012.

[163] L. E. Parker, "L-ALLIANCE: Task-oriented multi-robot learning in behavior-based

systems," Advanced Robotics, vol. 11, no. 4, pp. 305-322, 1996.

[164] R. Vaughan, "Massively multi-robot simulation in stage," Swarm Intelligence, vol.

2, no. 2, pp. 189-208, 2008.

[165] C. Pinciroli, V. Trianni, R. O'Grady, G. Pini, A. Brutschy, M. Brambilla, N.

Mathews, E. Ferrante, G. Di Caro, F. Ducatelle and others, "ARGoS: a modular,

parallel, multi-engine simulator for multi-robot systems," Swarm intelligence, vol.

6, no. 4, pp. 271-295, 2012.

[166] Y. Liu and K. M. Passino, "Stable social foraging swarms in a noisy environment,"

Automatic Control, IEEE Transactions on, vol. 49, no. 1, pp. 30-44, 2004.

[167] I. Orlanski, "A rational subdivision of scales for atmospheric processes," Bulletin of

the American Meteorological Society, vol. 56, pp. 527-530, 1975.

[168] W. Burghout, "Mesoscopic simulation models for short-term prediction," PREDIKT

project report CTR2005, vol. 3, 2005.

658

[169] S. B. Van Hemel, J. MacMillan, G. L. Zacharias and others, Behavioral Modeling

and Simulation:: From Individuals to Societies, National Academies Press, 2008.

[170] G. E. Cantarella, S. De Luca, M. Di Gangi, R. Di Pace and S. Memoli,

"Macroscopic vs. mesoscopic traffic flow models in signal setting design," in

Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International

Conference on, 2014.

[171] B. D. E. F. Nicolas Pujet, "Input-output modeling and control of the departure

process of congested airports," Guidance, Navigation, and Control Conference and

Exhibit. Portland, OR, U.S.A.., 1999.

[172] W. Burghout, "Hybrid microscopic-mesoscopic traffic simulation," 2004.

[173] C. P. Frank, O. J. Pinon-Fischer and D. N. Mavris, "A design space exploration

methodology to support decisions under evolving requirements uncertainty and its

application to suborbital vehicles," 53rd AIAA Aerospace Sciences Meeting, AIAA

SciTech, (AIAA 2015-1010), 2015.

[174] D. N. Mavris, D. S. Soban and M. C. Largent, "An Application of a Technology

Impact Forecasting (TIF) Method to an Uninhabited Combat Aerial Vehicle," 1999.

[175] M. R. Kirby, "A methodology for technology identification, evaluation, and

selection in conceptual and preliminary aircraft design," 2001.

[176] F. Villeneuve, "A method for concept and technology exploration of aerospace

architectures," 2007.

659

[177] M. Armstrong, "Function Based Architecture Design Space Definition and

Exploration," The 26th Congress of ICAS and 8th AIAA ATIO, Aviation

Technology, Integration, and Operations (ATIO) Conferences, 2008.

[178] K. Sayler, "A World of Proliferated Drones," Center for a New American Security,

2015.

[179] M. Michalko, Thinkertoys: A Handbook of Creative-Thinking Techniques,

Potter/TenSpeed/Harmony, 2010.

[180] K. Lewin, "Force field analysis," The 1973 Annual Handbook for Group

Facilitators, pp. 111-13, 1946.

[181] S. Savransky, Engineering of Creativity: Introduction to TRIZ Methodology of

Inventive Problem Solving, CRC Press, 2000.

[182] F. Zwicky, "New Methods of Thought and Procedure: Contributions to the

Symposium on Methodologies," F. a. W. A. G. Zwicky, Ed., Berlin, Heidelberg,

Springer Berlin Heidelberg, 1967, pp. 273-297.

[183] S. R. Safavian and D. Landgrebe, "A survey of decision tree classifier

methodology," 1990.

[184] W. Engler, P. T. Biltgen and D. N. Mavris, "Concept selection using an interactive

reconfigurable matrix of alternatives (IRMA)," in 45th AIAA Aerospace Sciences

Meeting and Exhibit, 2007.

[185] Z. T. Mian, P. Dees, L. Hall and D. Mavris, "Development and Implementation of

Micro Autonomous Systems and Technologies (MAST) Interactive Reconfigurable

660

Matrix of Alternatives (M-IRMA) for Concept Selection," Procedia Computer

Science , vol. 16, pp. 708-717, 2013.

[186] C. Frank, J.-G. Durand, A. Levy, F. Allair and D. N. Mavris, "Design of an

improved green taxiing system focused around the landing gear," 14th AIAA

Aviation Technology, Integration, and Operations Conference, AIAA Aviation,

(AIAA 2014-3010), 2014.

[187] C. P. Frank, W. A. Levy, J.-G. D. Durand, E. Garcia and D. N. Mavris, "An

Integrated and Parametric Environment for Generation, Selection and Evaluation of

New Architectures at a Conceptual Level: Application to the Environmental

Control System," 52nd Aerospace Sciences Meeting, AIAA SciTech, (AIAA 2014-

0681), 2014.

[188] C. F. Frederic Burgaud and D. N. Mavris, "An Aircraft Development Methodology

Aligning Design and Strategy to Support Key Decision Making," 57th

AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,

AIAA SciTech, January 2016.

[189] V. K. Srivastava and A. Fahim, "An optimization method for solving mixed

discrete-continuous programming problems," Computers & Mathematics with

Applications, vol. 53, no. 10, pp. 1481-1491, 2007.

[190] B. Kannan and S. N. Kramer, "An augmented Lagrange multiplier based method

for mixed integer discrete continuous optimization and its applications to

mechanical design," Journal of mechanical design, vol. 116, no. 2, pp. 405-411,

1994.

661

[191] C. A. C. Coello, Evolutionary algorithms for solving multi-objective problems, vol.

242, Springer, 2002.

[192] D. Wienke, C. Lucasius and G. Kateman, "Multicriteria target vector optimization

of analytical procedures using a genetic algorithm: Part I. theory, numerical

simulations and application to atomic emission spectroscopy," Analytica Chimica

Acta, vol. 265, no. 2, pp. 211-225, 1992.

[193] V. G. N., Multidiscipline Design Optimization, Vanderplaats Research &

Development, 2007.

[194] B. German, "Multi-Objective Optimization: Principles and Algorithms," 2013.

[195] B. German, "Multidisciplinary Design Optimization (MDO): single-level and multi-

level methods," 2013.

[196] W. Yao, X. Chen, Q. Ouyang and Y. Wei, "A Concurrent Subspace Optimization

Procedure Based on Multidisciplinary Active Regional Crossover Optimization," in

51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials

Conference 18th AIAA/ASME/AHS Adaptive Structures Conference 12th, 2010.

[197] G. Park, Analytic Methods for Design Practice, Springer London, 2007.

[198] K. shi Zhang, "Aeronautics and Astronautics," M. Mulder, Ed., InTech, 2011.

[199] S.-I. Yi, J.-K. Shin and G. Park, "Comparison of MDO methods with mathematical

examples," Structural and Multidisciplinary Optimization, vol. 35, no. 5, pp. 391-

402, 2008.

662

[200] S. Kodiyalam and J. Sobieszczanski-Sobieski, "Bilevel integrated system synthesis

with response surfaces," AIAA journal, vol. 38, no. 8, pp. 1479-1485, 2000.

[201] A. Salamon, Parallel Slowdown, 2009.

[202] J. L. Gustafson, "Reevaluating Amdahl's law," Communications of the ACM, vol.

31, no. 5, pp. 532-533, 1988.

[203] F. P. Brooks, The mythical man-month: Essays on Software Engineering, vol. 1995,

Addison-Wesley Reading, MA, 1975.

[204] A. Mosteo, L. Montano and M. Lagoudakis, "Multi-robot routing under limited

communication range," in Robotics and Automation, 2008. ICRA 2008. IEEE

International Conference on, 2008.

[205] J. Melton, "Airships 101: Rediscovering the potential of lighter-than-air (LTA),"

2012.

[206] E. C. C. for Accident and I. R. Systems, "ECCAIRS Aviation Data Definition

Standard," 2013.

[207] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf and O. von Stryk,

"Comprehensive simulation of quadrotor uavs using ros and gazebo," in Simulation,

Modeling, and Programming for Autonomous Robots, Springer, 2012, pp. 400-411.

[208] A. E. Ahmed, A. Hafez, A. Ouda, H. E. H. Ahmed and H. M. ABD-Elkader,

"Modeling of a Small Unmanned Aerial Vehicle," International Journal of

Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering,

vol. 9, no. 3, pp. 460-468, 2015.

663

[209] S. Dufresne, C. Johnson and D. N. Mavris, "Variable fidelity conceptual design

environment for revolutionary unmanned aerial vehicles," Journal of Aircraft, vol.

45, no. 4, pp. 1405-1418, 2008.

[210] C. S. Chua, "Generic UAV modeling to obtain its aerodynamic and control

derivatives," 2008.

[211] C. Stachniss, "Exploration and mapping with mobile robots.," 2006.

[212] J. A. S. Martins, MRSLAM-Multi-Robot Simultaneous Localization and Mapping,

University of Coimbra, 2013.

[213] E. Ferrante, "A control architecture for a heterogeneous swarm of robots: The

design of a modular behavior-based architecture," 2009.

[214] S. F. Railsback, S. L. Lytinen and S. K. Jackson, "Agent-based simulation

platforms: Review and development recommendations," Simulation, vol. 82, no. 9,

pp. 609-623, 2006.

[215] G. T. U. R. Facility, GUST Software, 2016.

[216] S. French, How drones will drastically transform U.S. agriculture, in one chart,

2015.

[217] A. Press, Agriculture the most promising market for drones, 2013.

[218] SkyPlan, SkyPlan Services, 2016.

[219] senseFly, Angry birds at altitude, 2014.

[220] W. Burgard, M. Moors, C. Stachniss and F. E. Schneider, "Coordinated multi-robot

exploration," Robotics, IEEE Transactions on, vol. 21, no. 3, pp. 376-386, 2005.

664

[221] S. Gumustekin, An introduction to image mosaicing, 1999.

[222] P. Illsley, GoPro Hero2 Aerial Imaging and Mapping Project.

[223] Robotarium, 2016.

[224] D. G. P. W. L. M. M. A. A. F. E. &. E. M. Pickem, "The Robotarium: A remotely

accessible swarm robotics research testbed," IEEE International Conference on

Robotics and Automation (ICRA), September 2016.

[225] D. Pickem, M. Lee and M. Egerstedt, "The GRITSBot in its natural habitat-a multi-

robot testbed," in 2015 IEEE International Conference on Robotics and Automation

(ICRA), 2015.

[226] D. Pickem, L. Wang, P. Glotfelter, Y. Diaz-Mercado, M. Mote, A. Ames, E. Feron

and M. Egerstedt, "Safe, Remote-Access Swarm Robotics Research on the

Robotarium," arXiv preprint arXiv:1604.00640, 2016.

[227] J.-G. D. Durand, F. G. Burgaud, K. Cooksey and D. N. Mavris, "A Methodology to

Evaluate Tradeoffs between Individual Architecture Development and Numerality

to Achieve Group Performance in Robotics Swarms," System (NAS), vol. 3, p. 4,

2016.

[228] A. R. Pritchett, Overview of Aircraft Models for Simulation - Modelling and

Simulation of Dynamic Systems, 2014.

[229] W. Garage, Willow Garage: PR2 Robot, 2016.

[230] ROS.org, Package summary: ar_track_alvar, 2016.

665

[231] J.-Y. Tinevez, matlab-tree: a MATLAB class to represent the tree data structure,

https://github.com/tinevez/matlab-tree, 2015.

[232] T. O. Society, How to Design & Build Ornithopters, The Ornithopter Society 118

Callodine Avenue Buffalo NY 14226 USA, 2016.

[233] H. Räbiger, Development, theory and practice of large ornithopter models, 2016.

[234] R. Chelouah and P. Siarry, "A continuous genetic algorithm designed for the global

optimization of multimodal functions," Journal of Heuristics, vol. 6, no. 2, pp. 191-

213, 2000.

[235] O. Magnussen, M. Ottestad and G. Hovland, "Multicopter Design Optimization and

Validation," Modeling, Identification and Control, vol. 36, no. 2, p. 67, 2015.

[236] S. S. &. D. Bingham, Virtual Library of Simulation Experiments: Test Functions

and Datasets, https://www.sfu.ca/~ssurjano/index.html, 2015.

666

VITA

Jean-Guillaume Dominique Sébastien Durand was born on

January 25, 1990 in Fontaine-lès-Dijon, France. After obtaining

his Baccalauréat with summa cum laude distinction in 2008, he

pursued the traditional French classes préparatoires cursus for two

years before taking competitive exams for the entrance to

engineering schools. Jean-Guillaume was then accepted at the top French aerospace school

program: the Supaero program of the Institut Supérieur de l’Aéronautique et de l’Espace

(ISAE) from which he obtained its M.Sc. in 2013. In Supaero, he had the opportunity to

make sensible contributions to the institute by being in charge of the Micro Air Vehicle

Club (MAV club) with two of his classmates. The club successfully took part in several

IMAV competitions. By also enrolling in a dual-degree program, Jean-Guillaume joined

the Georgia Institute of Technology in 2012 where he obtained a M.Sc. in Aerospace

Engineering in 2014. During these two years, he took part in the Airbus Fly Your Ideas

challenge (2nd round qualification) and the Dassault Aerospace Challenge (Dassault Prize).

Finally, after choosing to pursue his research at the Aerospace Systems Design Laboratory

(ASDL) under Dr. Mavris, Jean-Guillaume obtained his Ph.D. in early 2017.

Jean-Guillaume’s research interest lies mainly in unmanned aerial vehicles as they

represent the intersection between aerospace engineering disciplines (aerodynamics,

propulsion, structures, flight dynamics, design optimization) and robotics problematics

(computer vision, structure from motion, mapping). Outside of the lab, Jean-Guillaume

enjoys mountaineering and hiking the outdoors, learning guitar, and sports in general,

especially basketball and volleyball.

	REMERCIEMENTS
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF EQUATIONS
	LIST OF SYMBOLS AND ABBREVIATIONS
	SUMMARY
	CHAPTER 1 Motivation
	1.1 Brief overview of the research objective
	1.2 The potential of unmanned systems
	1.2.1 The advantages over human operators
	1.2.2 A growing market
	1.2.3 A fleet getting more diverse
	1.2.4 The limitations

	1.3 The growth of multi-robotics
	1.3.1 A field inspired by nature
	1.3.1.1 Swarm robotics
	1.3.1.2 Cooperative robotics

	1.3.2 An increase in capability
	1.3.3 Application to real-world problems
	1.3.4 The limitations

	1.4 Summary
	1.4.1 Research objective
	1.4.2 Research challenges

	CHAPTER 2 Problem definition
	2.1 Introductory example
	2.2 Bridging the gap from microscopic to macroscopic level
	2.2.1 Swarm engineering: a lack of maturity
	2.2.2 A diversity of design methods
	2.2.2.1 Design methods
	2.2.2.1.1 System of systems approach
	2.2.2.1.2 Behavior-based design
	2.2.2.1.3 Automatic design

	2.2.2.2 Analysis methods

	2.3 Exploring a large design space
	2.3.1 Generating alternatives in a multi-architecture multi-level design space
	2.3.1.1 Review of existing methods
	2.3.1.2 Hypothesis

	2.3.2 Optimizing in a multi-architecture multi-level design space
	2.3.2.1 Review of existing methods
	2.3.2.1.1 Multi-objective optimization
	2.3.2.1.1.1 A priori multi-objective optimization
	2.3.2.1.1.2 A posteriori multi-objective optimization

	2.3.2.1.2 Multidisciplinary optimization
	2.3.2.1.2.1 Singe-level techniques
	2.3.2.1.2.2 Multi-level techniques
	2.3.2.1.2.3 Summary

	2.3.2.2 Hypothesis

	2.4 Summary

	CHAPTER 3 Proposed approach
	3.1 Establishment of performance metrics
	3.1.1 Parallelism efficiency metrics
	3.1.1.1 Parallelism efficiency
	3.1.1.2 The limit of parallel effectiveness

	3.1.2 Introduction of marginal quantities
	3.1.3 Benchmarking

	3.2 Design space definition
	3.2.1 The design variables
	3.2.1.1 Microscopic level: the agents
	3.2.1.2 Macroscopic level: the swarm

	3.2.2 Alternatives generation

	3.3 Alternatives evaluation
	3.3.1 Microscopic level: the agents
	3.3.2 Macroscopic level: the swarm
	3.3.3 Agent-based simulation
	3.3.4 Testbed mission

	3.4 Decision-making process
	3.5 Verification and validation
	3.6 Summary

	CHAPTER 4 Linking microscopic and macroscopic levels
	4.1 An improvement for the design of multi-robot systems
	4.1.1 Global optimization algorithm
	4.1.2 Sequential optimization algorithm
	4.1.3 Verification and validation
	4.1.4 Experimentation
	4.1.4.1 Homogeneous swarms
	4.1.4.1.1 First strategy: optimizing a single vehicle
	4.1.4.1.2 Second strategy: optimizing a notional swarm

	4.1.4.2 Heterogeneous swarms

	4.1.5 Conclusions

	4.2 Mesoscopic modeling
	4.2.1 Canonical mission
	4.2.2 Macroscopic model
	4.2.3 Microscopic model
	4.2.4 Mesoscopic model
	4.2.5 Verification and validation
	4.2.6 Characterization

	CHAPTER 5 Multi-architecture multi-level design space exploration
	5.1 Generation of alternatives: the tree of reduced morphological matrices
	5.1.1 Step 1: morphological reduction
	5.1.2 Step 2: morphological tree
	5.1.3 Implementation
	5.1.3.1 Data structures
	5.1.3.2 Morphological interfaces
	5.1.3.3 Compatibility study
	5.1.3.4 Morphological reduction

	5.1.4 Verification and validation
	5.1.5 Characterization
	5.1.5.1 Morphological reduction
	5.1.5.1.1 Single level
	5.1.5.1.2 Multi-level

	5.1.5.2 Morphological tree

	5.2 Design optimization: the bi-level genetic algorithm
	5.2.1 Implementation
	5.2.2 Verification and validation
	5.2.2.1 Test function
	5.2.2.2 Algorithm verification

	5.2.3 Characterization

	CHAPTER 6 Conclusion
	6.1 Research summary
	6.2 Closing the loop: MASDeM
	6.3 Key contributions
	6.4 Perspectives of future research

	APPENDIX
	APPENDIX A Mathematical derivations
	A.1 Test function optimum
	A.1.1 Unconstrained
	A.1.2 Constrained

	A.2 Optimization test functions
	A.2.1 Ackley
	A.2.2 Dixon-Price
	A.2.3 Griewank
	A.2.4 Levy
	A.2.5 Michalewicz
	A.2.6 Powell
	A.2.7 Rastrigin
	A.2.8 Rosenbrock
	A.2.9 Rotated hyper-ellipsoid
	A.2.10 Schwefel
	A.2.11 Sphere
	A.2.12 Styblinski-Tang
	A.2.13 Sum squares

	A.3 Barrier certificates formulation

	APPENDIX B Matlab code
	B.1 Modeling
	B.1.1 Macroscopic
	B.1.2 Mesoscopic
	B.1.3 Microscopic
	B.1.4 Real system
	B.1.5 Scripts

	B.2 Optimization
	B.2.1 Sequential and simultaneous optimization
	B.2.2 Bi-level optimizer
	B.2.3 Unit tests
	B.2.4 Plots for the test function
	B.2.5 Plots optimizer

	B.3 Design space exploration
	B.3.1 Classes
	B.3.2 Unit tests
	B.3.3 Example scripts
	B.3.4 Interfaces
	B.3.5 PACE cluster scripts
	B.3.6 Plots

	APPENDIX C ROS/GAZEBO files
	C.1 Gritbot URDF description file
	C.2 Robotarium world file
	C.3 Consensus mission launch file
	C.4 Navigation package
	C.4.1 Consensus
	C.4.2 Tracker
	C.4.3 Logger

	REFERENCES
	VITA

