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SUMMARY 

 

The exponential growth experienced by the robotics sector over the past decade has 

fostered the proliferation of new architectures. Optimized for specific missions, these 

platforms are in most cases limited by their embarked computational power and a lack of 

full situational awareness. More robust, flexible, scalable, and inspired by nature, group 

robotics represent an interesting approach to overcome some limitations of these single 

agents and take advantage of the heterogeneity of the current robotics fleet. Their essence 

lies in accomplishing more complex synergistic behaviors through diversity, simple rules, 

and local interactions. However, the design of robotic groups is complex as decision-

makers have to optimize the group operation as well as the performance of each individual 

unit, for the group performance. In particular, key questions arise to know whether 

resources should be allocated to the characteristics of the group, or to the individual 

capabilities of its agents in order to meet the established requirements. 

Current methods of swarm engineering tend to perform sequential optimization of 

the microscopic level (the agents) and then the macroscopic level (the group), which results 

in suboptimal architectures. In this context, efficiently comparing two different groups or 

quantifying the superiority of a group versus a single-robot design may prove impossible. 

Same goes of the determination of an optimal architecture for a given mission. With a 

special emphasis on aerial vehicles, the present research proposes to establish a 

methodology to achieve microscopic/macroscopic configuration tradeoffs in the design of 

cooperative multi-robot systems. 
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The resulting product is the MASDeM: Multi-Agent Systems Design Methodology. 

A novel multi-level multi-architecture morphological approach is first introduced to 

facilitate design space exploration, and a mesoscopic level simulation-based design method 

is used to bridge the gap between microscopic and macroscopic levels. Using these first 

blocks, an innovative optimization technique is suggested based on two interconnected 

loops which differs from the classical sequential approach presently used by the research 

community. 

Results of this research show that simultaneous optimization can have clear benefits 

if applied to the design of multi-robot systems and on particular cases, average 

improvements of 16 percent were observed on the main performance metric. The proposed 

optimizer proves to be a key enabler for fully heterogeneous swarms, a capability which is 

not possible in the current paradigm. Moreover, the optimization algorithm was efficiently 

designed and exhibits a speedup of at least 50 percent when compared to current 

techniques. Finally, the exploration of the design space is effectively carried out with a 

combination of morphological reduction, morphological tree representation, and 

mesoscopic modeling. Indeed, applied to multi-robot systems, such models prove being 

several times faster than usual simulation approaches while remaining in the same range 

of accuracy. 

 

This work is divided into two volumes with the appendix detailed in the second volume. 

 

Keywords: Conceptual design, Multi-robotics, Swarm engineering, Mesoscopic, Design 

Optimization
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CHAPTER 1 

MOTIVATION 

 

Automation is part of the quest for comfort of human beings and enables to 

autonomously carry out processes with minimal human intervention. It has been 

experiencing a relentless growth from even before the invention of the printing press by 

Gutenberg, the Jacquard loom or the centrifugal governor of Watt, to modern autonomous 

robots. The development of the robotics field unleashes a new potential for the automation 

of jobs that were only accomplished by humans so far. In particular, mobile unmanned 

systems provide advantages over human operators in many tasks including transportation 

of goods and people, delivery, or surveillance missions. This spectrum of robot operations 

is getting wider and wider as the current fleet is getting more diverse in terms of 

architectures and capabilities. Nonetheless, individual robots experience several 

limitations, some of which can be addressed through swarming. Directly inspired by nature, 

multi-robotics solutions such as robotic swarms propose increased capabilities over 

individual agents and enable to capitalize on the heterogeneity of the current fleet of robots. 

However, designing such systems of systems is a challenging task and the advantages of 

multi-robot systems over single-robot solutions need further examination. Their 

democratization remains impeded by the lack of a standard design process, delaying the 

use of multi-robot systems in industrial applications. This first section studies in greater 

detail these elements, drawing attention to certain needs leading to the research objective 

of this work. 



2 

 

1.1 Brief overview of the research objective 

In order to ease the reader into understanding this research, the first chapter builds 

up on a series of observations in the field of multi-robot systems design: 

 A growing diversity of drone types is now available and multi-robot collaboration 

may overcome the limitations of single robot platforms. 

 Designing a multi-robot system requires much more commitment than for a single 

agent, such systems also tend to be confined to experimental applications. 

 Multi-agent systems do not always perform “better” than single agents, most of the 

community focuses on homogeneous and sub-optimal group configurations. 

 

A set of corresponding complementary assertions is then deducted from these observations: 

 There is a potential to take advantage of the diversity of the existing drone fleet. 

 A standard physical design methodology is required for multi-robot systems. 

 There is a need to compare the performance of optimized multi-robot systems 

versus optimized single-robot platforms for a given mission. 

 

Finally, these averments prompt the formulation of a unified research objective: the 

fundamental problematic engendering this research. Hence, the goal will be to establish a 

design methodology that enables the optimal design of multi-robot systems. In particular, 

key trade-offs will be examined such as the compromise between the number of agents in 

a group, and the individual capabilities of each agent of this group. The rest of this chapter 

goes on to detail, assemble, and give ground to the motivation of this work on the 

MASDeM: the Multi-Agent Systems Design Methodology. 
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1.2 The potential of unmanned systems 

Thanks to dramatic improvements in computational power, battery life, 

miniaturization, and complexity of sensors, unmanned systems are now an essential 

constituent of military instrumentation and are finding their way into commercial and civil 

applications. What were once considered as cumbersome vehicles are nowadays proving 

as necessary assets for applications that were unforeseen a few years ago. Unmanned 

systems have now become an integral part of military operations as the recent airstrikes 

campaign in Syria and Afghanistan demonstrates [1]. 

 

 

Figure 1.1: Unmanned aerial vehicles used in military operations [1] 

 

They are also being used more and more in commercial applications for mine 

mapping, building inspection, crops monitoring, etc. This section examines what the 

advantages proposed by unmanned systems are, as well as what their limitations consist in, 

despite a growing heterogeneous market. 
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1.2.1 The advantages over human operators 

The use of unmanned systems is justified as they provide advantages over human 

operators and many of these benefits stem from the origins of automation. Indeed, the first 

advantages of unmanned systems are to be able to carry out tasks that would be too 

dangerous, complex, repetitive, or strenuous for human beings [2]: 

 Dangerous operations include exploration of damaged buildings, mine clearance, 

missions in hostile sea storms, or miscellaneous jobs in radioactive environments. 

The hardware used in robots is more robust and resistant to environmental 

conditions that could be threatening for human life. In particular, they are able to 

withstand greater wear, shocks, and more extremes temperatures. For instance, the 

design of an Unmanned Air Vehicle (UAV) does not account for the accelerations 

and maneuverability constraints imposed by the human pilot on other manned 

vehicles. Sometimes, the danger lies only in reaching a remote area such as a 

collapsed building where small and aerial vehicles alone, more mobile than human 

workers, can penetrate. The fact that robots are an expendable asset also enables to 

send them on hazardous missions instead of humans [3]. 

 Complex tasks can consist of dense and accurate 3D mapping of a building or 

precise parts assembly. Owing to their elaborate sensors such as cameras, laser 

range finders, or else sonars, unmanned systems possess a much greater precision 

in sensual perception than humans. This enhanced perception is critical for tasks 

requiring accuracy. 

 A typical repetitive process often carried out by unmanned systems nowadays is 

surveillance of buildings or borders. Automation enables to encode the repetitive 
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sequences in the logic of the robot only once. To take care of other strenuous tasks, 

powerful actuators make robots stronger than their human designers, and unmanned 

systems are capable of carrying out demanding operations such as lifting heavy 

payloads. 

 

Thanks to the enhanced precision in terms of both perception and actuation, 

efficient control schemes can be implemented on the platforms, enabling a greater 

sensitivity in the required operations than with human operatives. This results in an 

unerring robustness in tasks completion or in achieving quality standards. Consequently, 

this consistency enables savings in wasted energy and materials, and the tasks are 

accomplished with improvements in quality and precision when compared with human 

workers. Additional savings in energy can be achieved by optimizing the behavior of the 

robots. For instance, a current motivation mentioned by [4] and [5] is to design movement 

patterns necessitating less acceleration energy. The controls are developed to calculate the 

best trajectories for the robots from the standpoint of energy efficiency. For mobile robots, 

this translates into an increase in operational range and endurance. 

 

Additional advantages of unmanned systems over humans are cost related. In terms 

of mobile robotics, they generally present a cheaper acquisition cost than their manned 

counterparts despite the cost of automation and communication. The example of the 

military can first be considered as it is the breeding ground for the democratization of 

unmanned systems. Figure 1.2 presents the flyaway cost for the major defense acquisition 

programs defined by the Department of Defense (DoD) of the United States of America. 
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Figure 1.2: Cost of main DoD programs [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21] 
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While UAS costs span the same spectrum as their manned counterparts, it should 

be noted that the X-47 is a demonstrator only and that most unmanned systems tend to be 

in the lower part of the graph. Also, considering the versatile missions of the diverse aircraft 

presented on Figure 1.2, unmanned systems represent a less expensive option for fixed and 

pre-established requirements. This is especially true for surveillance and reconnaissance 

missions. These previous remarks highlight that unmanned systems are generally cheaper 

alternatives than manned systems in terms of acquisition costs.  

Focusing now on civilian applications and the example of aerial imagery, the 

acquisition cost of the Landsat 8 imaging satellite is estimated at around $855 million 

(including launch and operation) [22]. A Cessna 172 used for the same purpose would cost 

around $300,000 while an automated mapping drone such as the senseFly’s eBee RTK 

costs about $25,000 and a simple imaging drone like the popular DJI’s Phantom 3 is listed 

at $1,000 (see Figure 1.3). As in the military, and although the satellite remains an 

unmanned system, the difference is clear in terms of acquisition cost for small unmanned 

air vehicles. 

 

 

 

 

 

(a) DJI Phantom 3 [23] 
(b) senseFly eBee RTK 

mapping drone [24] 
(c) Cessna 172 [25] (d) Landsat 8 [26] 

Figure 1.3: Example of aerial imagery solutions 
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While this latter is reduced by preferring an unmanned system option to a human-

based one, cost savings are also encountered in utilization. Indeed, the savings in energy 

and materials mentioned hereinabove can lower the utilization cost for a given task or 

mission. Estimating the operational cost on an hourly basis is a difficult task when it comes 

to comparing unmanned and manned operations. Their mission profiles can be quite 

different as they generally do not fly at the same altitudes due to regulations or safety 

factors. The capabilities of one or the other also affect the type of weather and time 

conditions they can operate in. Moreover, the logistics involved in the transportation of the 

systems are different since one can be easily driven to a location while manned systems 

most likely have to be flown to the region of the mission. Unmanned systems tend to 

require less maintenance since their equipment is commercial-off-the-shelf and is subject 

to less safety requirements. However, the data gathered by UAS requires post-processing 

steps while a pilot can visually process information during the flight: such phases incur 

additional costs. 

 

Emphasizing on the military applications first, many examples of cost per flight 

hour are presented in Figure 1.4. 
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Figure 1.4: USAF aircraft cost per flight hour [27] 
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ranges from $300 to $1000 per hour [28], [29] with an additional fixed cost ranging from 

$5,000 for simple shoots to $20,000 for a mounted gimbal solution [30]. Taking again 

aerial imagery as an illustration, the operating cost is evaluated in terms of covered area. 

While imaging cost quickly soars for UAVs as the area to be covered increases, this latter 

solution still proves the cheapest and most precise for areas under 11 ha as shown on Figure 

1.5. 

 

 

Figure 1.5: Imaging cost per platform [31] 

 

This point can be further supported by looking at the difference of cost for given 

civilian applications as presented in Table 1.1. 
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Table 1.1: Manned vs. unmanned mission cost comparisons [32] 

Mission  Manned System  Unmanned System 

Sandhill Crane 

Population Survey  
$4,300 (government) 

$35,000 (contractor) 
 $2,600 

Mesa County Landfill 

Inspection 
 $10,000  $300 

Mesa County Gravel Pit 

Inspection 
 $10,000  $120 

 

It can be noted that in the three missions examined, choosing unmanned systems 

results in reductions in the total cost from one to two orders of magnitude. 

 

Finally, the advantages of robots over a human workforce mentioned in this section 

often give rise to manual labor replacement, incurring in turn additional cost savings. 

Indeed, human workforce can be replaced for any of the pre-stated benefits: the assigned 

task is too dangerous, strenuous, complex for a human being, or the exploitation cost of the 

robot is simply cheaper than the one of the human operator. 

 

Summary: This section showed that robots generally offer many advantages over humans: 

they propose enhancements in rapidity, precision, and stability. This includes missions 

unsuited for human operators and they are also cheaper most of the time. These incentives 

partly explain the growth of the market of unmanned systems, studied in the next section. 

1.2.2 A growing market 

While the premises of Unmanned Aerial Vehicles (UAVs) were set at the beginning 

of the century, the market analysis proposed here concentrates on what are considered as 
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modern UAVs thanks to developments in robotics over the last twenty years. In the past 

decade, the unmanned vehicles market has experienced a tremendous growth in the military 

as well as in civilian applications (Figure 1.6). Their use has been constantly increasing in 

military operations since the terror attacks of September 11, 2001. They have now become 

an integral part of military operations, as demonstrated by the recent airstrikes campaigns 

in Syria and Afghanistan [1]. Comparably to many other cases, the expansion of unmanned 

systems for military use has also triggered an accelerated transfer and development of this 

technology into the civilian world. This democratization was fostered by the creation of 

public drone community forums such as DYI Drones in 2008 and the first large scale 

introduction of a public UAV model probably came with the release of the Parrot A.R. 

Drone model in 2010. Despite the current lack of in-place regulations for many countries 

and especially the United States, the growth of this market has been exponential for the last 

few years and is expected to continue as showed on Figure 1.6. 

 

 

Figure 1.6: UAV global market forecast [33, 34, 35, 36] 
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Many other forecasts are available and all differ in their predictions, possibly by 

several orders of magnitude for the 2025 horizon [37]. Notwithstanding the absence of a 

clear consensus for the size of the market over the next seven to ten years, most consulting 

firms predict a strong growth. This lack of agreement between the forecasting parties stems 

from the difficulties of making clear predictions about the UAV market. Some of its 

segments are indistinct as some platforms are sold as general consumer products whereas 

they are also advertised as professional vectors to be used for commercial purposes. As a 

consequence, a distinction between the consumer and commercial drones market cannot 

be drawn and both are considered as the same segment. Another source of uncertainty in 

forecasting the drone market lies in the fact that very few countries have established legal 

regulations for the operation of unmanned systems in their national airspace. For the U.S., 

the Federal Aviation Administration (FAA) has been working tightly with companies and 

startups to help define the requirements of such airspaces. An example is the proposal by 

Amazon to have low altitude airspaces allocated for automated vehicles as well as no fly 

zones and free flight zones (Figure 1.7). 

 

 

Figure 1.7: An example of drone airspace integration [38] 



14 

 

Since government policies control the use of the airspace and whether pilots can 

operate beyond visual line of sight, this makes the drone industry a regulated market for 

which forecasting is especially tough. In addition, the global drone industry did not wait 

for regulations to be set up and is betting on a technology that could take years to be legal 

and properly regulated [37]. This could possibly backfire on the market forecasts if the 

regulations turn out to be more stringent than what was initially expected. 

 

This advance of the market translates in an augmentation of the number of vehicles 

in the National Airspace System (NAS): a proliferation of unmanned systems is expected 

(Figure 1.8). 

 

 

Figure 1.8: Total U.S. UAS Systems in the National Airspace System [33, 39] 
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The transfer from military to commercial use can also be noticed since the forecast 

for civilian applications grows at a faster rate after the 2025 horizon. This can be explained 

by the fact that UAVs can be used for many more purposes in the civilian world than in the 

military: the long term market will be dominated by the civil side. The military has indeed 

been acting as an early adopter for the technology, working on the maturation phase, 

demonstrating its utility, and encouraging the idea of its use in non-military applications. 

This population of vectors will most likely be dominated by MALE vehicles as it can be 

seen on Figure 1.9 while the part of High Altitude Long Endurance (HALE) will be limited. 

The Micro Unmanned Aerial Vehicle (MUAV) market will be the other field experiencing 

a growth, as opposed to Tactical Unmanned Aerial Vehicles (TUAVs). 

 

 

Figure 1.9: Expected military UAV revenues (Europe) [40] 
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In addition, the adoption of the technology by giant commercial companies such as 

Amazon, Google, or Facebook stimulates the emergence of the field and pulls smaller 

startup companies into the market emulation (Figure 1.10). With its Prime Air service, 

Amazon first started by advertising a revolutionary drone delivery program able to 

distribute packages within thirty minutes of an order placement. Google shortly followed 

by announcing its own drone-based delivery system named Wing, using a different 

architecture. Finally Facebook proposed, through a very high endurance design, a different 

utilization of drones aimed at providing remote areas with Internet. 

 

   

(a) Amazon [41] (b) Google [42] (c) Facebook [43] 

Figure 1.10: Drone programs from the giant tech companies 

 

This growth is also facilitated by the maturation of the technology and the 

advancements in other related fields such as battery densities, electronics miniaturization, 

sensors development, as well as robotics intelligence. This facilitates the integration of 

each of these disciplines on the vehicle, resulting in an enhanced general performance. In 

addition, this drives the prices of drones to decrease, making them affordable to a wider 

public, enabling their adoption for a broader range of civil applications. To mention an 

expressive example, having easy-to-use agricultural drones equipped with cameras for less 

than $1,000 represents for farmers a cheap way to tackle the increasing need of a data-

driven agriculture: crops monitoring for better water use and pest management [44].  
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A good benchmark to look at for this price reduction is one of the first product 

released to the public market in 2010: the A.R. Parrot Drone. Over a period of two years 

up to now, its average price has decreased by 33% (Figure 1.11). Despite several factors 

affecting the manufacturing channel – such as the price of Lithium Polymer (LiPo) 

batteries, the average price decrease can be thought of as a PC pricing-decrease model [45] 

quite reminiscent of the rise of personal computing in the 1970s [46]. 

 

 

Figure 1.11: Parrot A.R. Drone 2.0 price evolution [47, 48] 

 

The DJI Phantom drone and its different configurations constitute an additional 

benchmark as they are currently amongst the most popular platforms: from 2013 to 2015, 

an average reduction of 24% was observed on its price (Figure 1.12). 
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Figure 1.12: Price reduction for Phantom 2 variants [49, 50] 

 

Furthermore, the DJI Phantom III, latest version of the drone, is expected to 

experience a price drop of 47% in the next 5 years [45]. 

 

Summary: In the face of the complications in obtaining accurate market forecasts and 

conflicting prediction models, it was established in this section that the unmanned aerial 

systems field is experiencing a tremendous growth. This applies for both the military sector 

as well as the public and commercial sectors. The recent involvement of major public 

companies further cultivates the progress in the sector. On top of that, the cost reduction in 

the manufacturing channel leads to lower prices, facilitating the adoption of the technology 

by a wider public. The fertile ground above-mentioned gives rise to a number of new 

unmanned systems configurations, focus of the next section. 
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1.2.3 A fleet getting more diverse 

Owing to the introduction and rapid development of drone technology in the civil 

world, many applications are envisaged and require new designs. Indeed, new operation 

constraints encourage the need for increased vehicle capabilities and enhanced sensing 

technology. As the spectrum of drone operations is widening, classical architectures such 

as the quadcopter or the fixed-wing design become sub-optimal for original mission 

requirements and novel solutions are considered. A quick search reveals that more than 

745 military drone models exist today [51] and this number is most certainly even higher 

for drones available to the general public. Focused mainly on unmanned aerial vehicles, 

this section will examine the reasons and the extent of such a diversity. Some of these 

observations also apply to ground robots and maritime unmanned systems. 

 

As a consequence of the substantial amount of complex electronic equipment 

onboard, a main limitation of unmanned aerial systems is endurance and their design has 

become an exercise of energy conservation through optimization. This latter is hereby 

defined as the act, process, or methodology of making a design as fully perfect, functional, 

or effective as possible [52]. Each platform is thus optimized based on a specific 

application and for exclusive mission requirements. Hence, despite a relative robustness, a 

slight modification of the design or mission requirements will result in a suboptimal 

configuration. This observation will be illustrated by taking the example of a classic one-

kilogram quadcopter designed for simple laser mapping purposes. If mission requirements 

suddenly include the ability to locate heat sources in the created map, a solution would be 

to add a thermal camera to the quadcopter. Such sensors are usually quite heavy and weigh 
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around one kilogram. However, the quadcopter was optimized for another payload and 

cannot accommodate an additional sensor like a bigger manned vehicle could have. Hence, 

in cases where a manned platform could have just been upgraded with an additional sensor, 

unmanned systems often require whole new designs to adapt to new mission requirements. 

This explains why many models and configurations of them exist.  

Even for multirotor designs which might seem very similar at first glance, 

fundamental differences exist between a tricopter and a quadcopter, or a hexacopter and an 

octocopter. Configurations with many rotors are generally used for increased lifting 

capability and redundancy purposes, but require different control schemes. Focusing only 

on the quadcopter design, many designs and capabilities are available on the market. For 

example, as it can be seen on Figure 1.13 where fifteen representative models are listed, 

this variety is represented in terms of endurance and price, despite the fact that these 

platforms all have the same basic architecture. 

 

 

Figure 1.13: Civil micro quadcopter UAV market [53] 
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Besides the two typical designs and variations of the multirotor and the twin 

boomer, exotic architectures have started to emerge to respond to original mission 

requirements. Without having the pretention of listing all possibilities, a selection of 

unusual designs is provided here below. A first and simple new architecture consists in 

merging the capabilities of the two standard architectures: a hybrid design. Indeed in many 

missions, the ability to cover long distances is desired, as well as the hovering faculty. A 

notorious limitation of multirotor designs is their lack of endurance (Figure 1.13) since the 

propulsion system has to sustain the whole weight of the platform in the air: an energy-

demanding task. Providing a multirotor with the ability to perform forward flight using an 

assisting wing alleviates the weight ratio to be carried by the propulsion system only. This 

hybrid design is already adopted by the delivery programs from Google and Amazon 

(Figure 1.10). The forward flight configuration is used to cover distance while the hovering 

capability is utilized for the precise delivery approach. Other unconventional architectures 

may include: 

 Non-planar multirotor: for full control in the air in terms of both translation and 

orientation, orthogonal directions of action are required. A non-planar multirotor 

has rotors arranged in orthogonal planes, ensuring that the vehicle can hover and 

translate in any orientation, but also change its orientation at a given position in 

space. A simply impossible task for conventional multirotors. 

 Wall roller: mostly designed for building inspection, this architecture can get very 

close to walls or ceilings and roll on them for detailed examination. 
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 Balloon: generally preferred for missions requiring extremely long endurance, 

balloons however lack speed. 

 Flapping wings: also referred to as ornithopters, these architectures are especially 

coveted by the military for stealthy missions since flapping wings enable very small 

sizes for the vehicle. 

Some of these alternatives are presented in Figure 1.14 here below. 

 

   

(a) Multirotor [54] (b) Twin boom design [55] (c) Helicopter design [56] 

   

   

(d) Hybrid design [57] (e) Tilting wing hybrid design [58] (f) Non-planar hexarotor [59] 

   

   

(g) Wall roller [60] (h) Balloon [61] (i) Ornithopter [62] 

Figure 1.14: Examples of classical and unconventional designs 

 

Very recent research also includes vehicles able to evolve both in water and in the 

air, or on the ground and in the air [63], [64]. 
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The emergence of such atypical designs is empowered by several key enablers, the 

first one of them being the existence of an active open-source community. Communities 

are essential as they facilitate the establishment of standards and norms for a given field, 

the UAV sector being one in a dire need for regulations. They also accelerate the spread of 

knowledge, critical in the case of sharing safety and privacy rules for the use of UAVs. An 

example of such a community is DIY Drones [65], indisputably the reference in terms of 

custom-made unmanned systems. Through forums and articles, communities put in relation 

novices with more experienced users who provide feedback and advice on the proposed 

designs. Such a public constitutes a fertile ground for the advent of new unconventional 

designs similar to those displayed on Figure 1.14. One of the major accomplishments of 

the DIY Drones community is to have created the first “universal autopilot” [65], virtually 

providing the ability to turn any Radio-Controlled (RC) model into a fully-autonomous 

UAV. 

 

 

Figure 1.15: Interface of ArduPilot [65, 66] 
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Figure 1.15 shows that this universal autopilot allows for different architectures of 

vehicles: multirotor, contra-rotating multirotor, helicopter, fixed-wing, and even rover. The 

hardware itself is designed as a plug-and-play interface that can be just fixed on the vehicle 

and rapidly wired with the different actuators and motors. Its code being open-source, 

members have the possibility to modify it to account for custom architectures. In particular, 

many modify existing commercial platforms in terms of design and automation to suit their 

own mission requirements. This tool is now the reference universal autopilot and is used 

by a very large public: general consumers, RC hobbyists, researchers, and even commercial 

companies. 

 

Although drastic changes in mission requirements often call for completely new 

designs, moderate changes can be addressed through few alterations of an initial baseline: 

an incentive for modularity. Indeed, it was established previously that the design of a UAV 

is quite fixed for a given mission. However, unmanned systems sometimes strike by their 

reduced size and even apparent simplicity, leading to wonder if slight design adjustments 

around central blocks could possibly address minor mission variations. Moreover, a broad 

spectrum of capabilities for a minimal cost is often a critical objective for recent projects. 

This question is addressed by the field called design for modularity: another key enabler 

for the diversity of the drone population. Using modularity, vehicles are reconfigured 

between sorties based on a library of interchangeable components that could comprise 

wings, tails, engines, and payloads [67]. For instance, a fixed-wing design is considered 

with a predetermined fuselage and empennage. The wing can then be optimized for speed, 

endurance, or transition flight in the same fashion that the payload can be customized for 
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imagery, communications, or surveillance purposes. Hence, three wings and three payload 

packages can exist and be clipped on a single vehicle core. The fuselage and the empennage 

can also possibly be declined in several configurations and all modules are quickly 

assembled to obtain the final vehicle (see Figure 1.16). Thanks to modularity, an initial 

design can be virtually duplicated in a spectrum of other configurations addressing 

different mission requirements. 

 

 

Figure 1.16: Notional family of reconfigurable aircraft [67] 

 

An additional key enabler for the diversification of unmanned systems architectures 

is rapid prototyping [68], [69], [70], [71]. Mainly performed using 3D printing or additive 

layer manufacturing, it is a key enabler for modularity itself (Figure 1.17). These advanced 

manufacturing techniques enable the production of cheap reconfigurable parts when 

expensive molds were previously needed to do the same thing. This not only reduces the 
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cost of modularity in general but also the cost of unmanned systems in a broader 

perspective. 

 

  

(a) Quadcopter with scalable 3D-printed parts (b) Detail of the arm connection 

Figure 1.17: Use of 3D printing on a quadcopter design [69] 

 

It also permits the manufacturing of complex structures that are often the result of 

design optimization algorithms. For instance, complicated structural meshes such as the 

honeycomb mesh can be used to reduce the weight of some components like the wing (see 

Figure 1.18) while maintaining its structural strength. 

 

 

Figure 1.18: Use of 3D printing on a fixed-wing design [70] 
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Building on these observations, a first conjecture can be drawn: 

 

Conjecture 1 

There is a potential to take advantage of the upward diversity 

of the existing drone fleet. 

 

Summary: This section established on one hand that unmanned systems are subject to 

stringent design constraints, notably on endurance and payload weight. This motivates the 

need for a variety of models in order to be able to carry out the myriad of missions 

anticipated by the growing market. On the other hand, it was showed that thanks to their 

reduced cost, size, and sometimes complexity, unmanned systems designs are predisposed 

to modularity and customization for evolving mission needs. Each design is then virtually 

duplicable in an infinity of novel models, partaking in the population diversity. These 

observations, coupled with the power of an open-source community as well as rapid 

prototyping, were identified as key enablers for the proliferation of architectures for civil 

applications and military purposes. In the next section, the limitations that could possibly 

hinder the promising potential of unmanned systems are examined in detail. 

1.2.4 The limitations 

As a result of their particularity, unmanned systems are exposed to limitations and 

constraints that manned systems might not encounter. The most widespread ones are their 

lack of endurance, especially for micro-sized UAVs, and their deficiency in cognitive 

behavior. Other drawbacks of unmanned systems, which motivate a progression towards 

the research objective of this work, are also considered in this section. 
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On account of their often reduced size, unmanned systems are subject to limitations 

in terms of the payload they can carry and this especially affects their batteries. As a result, 

unmanned systems often exhibit a lack of endurance for the missions they are assigned to. 

This applies particularly to micro-sized platforms and Micro Air Vehicles (MAVs) whose 

size is of the order of thirty centimeters. Observing the example of quadcopters, these are 

quite often used for mapping purposes but barely exhibit an autonomy of more than fifteen 

minutes (Figure 1.13). This endurance remains insufficient to takeoff, perform the 

calibration tasks, reach the mission area, build the map, exit the building, and finally return 

to base. By looking at the history of the state of the art lithium-ion batteries in terms of 

maximum capacity, it is possible by a simple rule of thumb to compute what would have 

been the equivalent maximum battery life of a DJI Phantom over the years (Figure 1.19). 

 

 

Figure 1.19: Equivalent DJI Phantom battery life over time [72, 73, 74] 
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Although this battery life has experienced subsequent improvements over the past 

few years due to design optimizations and advancements in battery technology, it is still 

very limited when compared to what bigger platforms are able to accomplish. Even 

microdrones with fixed-wing configurations, which are supposed to last longer in the air 

thanks to additional lift, still exhibit flight times under the hour [24]. Non-flying platforms 

are also affected in the same fashion while they do not have such high requirements in 

energy draw as their flying counterparts. This is a clear limitation for the missions that 

unmanned systems are set to carry out. 

 

The limited endurance mentioned hereinabove remains firmly coupled with the 

amount of computational power and cognitive capabilities that it is possible to embark on 

a robot. Indeed, the payload defines the power consumption required in operation not only 

by its own current draw but also sometimes by its weight for aerial vehicles: hence doubly 

affecting battery sizing. The design is thus an iterative loop since additional payload 

requires additional power to stay in the air, which calls for more batteries, inducing an 

increase in weight which in turn implies a more important need for power, and the loop 

continues. For this lack of embarked computational power and hence cognitive capacities, 

it is often said that robots are very good for things that humans consider as complex or 

hard, but demonstrate quite poor performance for tasks deemed as standard. For instance, 

it is very easy for an unmanned system to compute the exact distance to an object in its 

environment, a task for which a human agent could only give a rough approximation just 

by looking at it. In like manner, a robot can effortlessly perform thousands of mathematical 

operations in no time, or lift a thousand pounds of the ground: operations for which humans 
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would experience great difficulty. However, unmanned systems often look clumsy and 

uncertain when entering doors or windows whereas humans seamlessly walk through them, 

instantly incorporating the information from all their senses. Robots similarly require 

consequent computation time and complex algorithms to identify people or objects, a task 

easily accomplished even by young children. In addition, the transition between the 

different stages of a mission frequently turns out to be slow due to recalibration processes. 

This lack of cognitive behavior on individual agents stems from a deficit of computational 

power and full situation awareness which could be addressed by having other units 

contribute to the tasks or sharing complicated processes across several robots. 

 

The latter also impedes the autonomy of unmanned systems, making fully 

autonomous missions almost impossible without a human supervision, causing the task to 

be only semi-autonomous. Indeed, taking the example of military operations, local 

operators manage the takeoff and landing phases directly at the airfield before putting the 

asset on a holding flight pattern before remote operators based in the U.S. take over and 

carry out the mission manually: the fully automated part of the mission is very limited in 

terms of complexity. As a result, unmanned systems are inclined to stringent 

communication link requirements so as to maintain constant supervision of the 

whereabouts of the asset. This required communication link can be particularly hard to set 

up, especially due to the very nature of the settings where unmanned systems operate: 

environments with difficult or dangerous access for human beings. 

Unmanned systems currently lack a dedicated and protected radio-frequency 

spectrum required to ensure secure and continuous communications for their operations. 
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This worsens the probability that an unmanned aircraft will be vulnerable to unintentional 

or intentional interference [75]. The RQ-170 Sentinel stealth drone incident of 2011 

showed that, because of this communication link requirement, even military platforms can 

supposedly be hacked [76]: an additional limitation to the use of unmanned platforms and 

their communication protocols. Military applications have their own protocols such as the 

Joint Tactical Radio System (JTRS) and even Long-Term Evolution (LTE) networks as 

they provide a superior mobile bandwidth and low latency, ideal for datalinks transmitting 

image and video information. LTE technology also enables the military to take advantage 

of a wide network of vendors and it will most probably be the future for Unmanned Aircraft 

Systems (UAS) communications [77]. However, most commercial and publicly available 

unmanned systems presently use radio frequencies channels around 2.4 GHz, a bandwidth 

compatible with Wi-Fi and thus with most mobile electronic devices. While this facilitates 

the integration of UAS with existing technologies such as smartphones and laptops, the 

range of such a solution is limited to a couple kilometers in the best case scenario and is at 

risk for interference and hacking. 

 

  

Figure 1.20: Network settings of the Parrot Bebop drone [78] 
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As Figure 1.20 shows, a non-military UAS network might have to bet set up on 

congested frequencies, especially in crowded areas. Using unprotected radio spectrum and 

wireless technology for the use of unmanned aircraft systems constitutes a major security 

and safety vulnerability. Indeed, disconnection of the communication link amputates the 

UAS of its only means of control, as against manned systems in which a pilot is directly in 

physical control of the aircraft.  

Lost link is also a possibility when the command and control communication fails 

between the UAV and its ground station due to environmental or technological 

complications. Even though unmanned systems generally have pre-programmed 

procedures to hover and recover the signal or safely return to base, no standardization has 

been proposed by the FAA and air traffic controllers deal with the problem on a case-by-

case basis [75]. This is another hurdle in the quest for a standardized communication 

protocol across all types of UAS. 

 

On top of these previous, quite direct, limitations, unmanned systems are also 

subject to more discreet limitations due to the uniqueness of each robot. Indeed, the 

accumulation of capabilities on a single vector in order to increase its flexibility might end 

up either oversizing it for simpler missions, or making it simply too expensive to use. A 

good example of this assumption is the Fukushima nuclear incident of 2011, when many 

robots were deemed too expensive to be put to work at the power plant. For many advocates 

of automation, a perfect use case of robots is in case of a nuclear disaster for which humans 

cannot be sent on the scene to look for survivors or evaluate and repair the damage. Yet, 

after March 2011, none of the two robots designed for radiation possessed by Japan, a 
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country specialized in robotics breakthroughs, was sent on site [79]. Several plant operators 

decided that robots were too expensive. The research community, who usually sends some 

of their projects on disaster relief sites [80], also deemed that its platforms were too costly 

of an asset to lose to radiation as it had already happened at the Chernobyl incident of 1986 

[81]. 

 

Furthermore, the U.S. Department of Defense has issued a roadmap for the 

integration of unmanned systems, underlying the factors that will influence their 

development in the near future [82]. The roadmap points out the expeditious integration of 

unmanned technologies in battlefield capabilities due to urgent operational needs after the 

9/11 terror attacks. This results now in a critical need for interoperability and modularity 

amongst existing platforms. Indeed, sensors, computers, and algorithms are evolving 

rapidly, sometimes outpacing implementation capabilities. It is not rare that a new onboard 

computation chip is released while its previous version has just been integrated with 

success on existing vehicles. The Department of Defense proposes to reach this goal of 

modularity and interoperability by addressing intra-platform challenges as well as inter-

platform challenges. Intra-platform modularity refers to the ability to easily transition 

upgraded capability or hardware onto fielded systems in a plug-and-play fashion. While 

this approach calls for an assimilation of modular design methods, it is important to note 

that the modularity feature can also be achieved by putting to use the existing platforms in 

a collaborative fashion. For example, consider a system of two robots 1 and 2, both 

equipped with a computing unit A (see Figure 1.21). This chip has enough power to run 

one algorithm only, either mapping or surveillance. A new chip B is released with increased 



34 

 

computing capabilities when compared to chip A. In order to perform mapping and 

surveillance, a designer could choose to create a new platform 3 running both missions 

thanks to the upgraded chip. This new vehicle would have to interface with the new 

computing unit. However, the same capability of simultaneous mapping and surveillance 

can be achieved by making vehicles 1 and 2 collaborate properly. 

 

 

Figure 1.21: Taking advantage of fleet diversity [83, 84] 

 

This integration of existing disparate assets is cost-effective since both vehicles are 

already developed, a key benefit for the Department of Defense. 

 

Besides, UAVs with advanced purposes tend to require a lot of manpower to fulfill 

their mission. Most of them require at least a pilot and a sensor operator as direct operators, 

not to mention the necessary personnel for deployment and communications. For example, 

a single Predator UAV involves one pilot and two sensor operators, and it is estimated that 

it takes around 82 personnel in total to run a mission [85]. The aim of the Air Force is to 

have a ratio of around 10 crews for every drone combat air patrol [86], and even though 
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the actual ratio is between 8.1 and 8.5, it is still quite high compared to the requirements 

of manned missions. The total personnel for these combat air patrols is estimated to 186 

and presented on Figure 1.22. 

 

 

Figure 1.22: Total personnel for drone combat air patrols [86, 87, 88, 89, 90] 

 

This number is justified by the additional security measures required to operate 

unmanned systems as opposed to manned vehicles and seems quite startling in view of the 

automation purpose of UAS. With the contribution of enhanced cognitive capabilities as 

well as communication protocol standards, many tasks could be automated and streamlined 

in order to reduce this important inertia to perform a drone mission. In contrast, it is 

important to notice that most civil and commercial UAS require one operator most of the 

time to carry out a mission. 

 

32%

24%

44%

• Takeoffs 

• Landings 

• Maintenance 

• Pilots 

• Sensor operators 

• Imagery analysis 

• Intelligence gathering 

Airfield near combat zone (59) 

U.S. drone air base (45) 

Intelligence agencies (82) 



36 

 

Finally, the public opinion regarding drones suffers from several misconceptions 

and concerns which are slowing down the democratization of the industry for civil 

applications. Indeed, such platforms have widely been used, and advertised, for national 

defense so far which makes it harder to imagine their non-military benefits. Until a few 

years ago, there had been little acknowledgment of the use of unmanned systems for 

agriculture, mapping, search and rescue, and humanitarian or disaster response. The fact 

that it took more than a year for the FAA to establish a first set of rules, undoubtedly 

insufficient, for the regulated use of unmanned air vehicles clearly, reveals that some 

unease remains regarding their use in the civil world. 

 

 

Figure 1.23: Approval of drone use to kill high-level terrorism suspects overseas [91] 

 

General misconceptions highlighted by [92] are that UAS are dangerous to manned 

aircraft and to people on the ground as they might collide and crash in populated areas. 

They are also commonly considered as privacy threats and some residents sometimes shoot 

drones trespassing over their property [93]. In fact, even the military drone program is 

widely criticized for killing remotely and indiscriminately and does not show a clear 
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support from the American population (see Figure 1.23). These misconceptions leave the 

UAS industry with a tricky case to make to show the positive impacts of drones. 

 

Summary: This section highlighted that unmanned systems are subject to limitations 

especially in terms of endurance and computational power. The induced lack of cognitive 

behavior calls for an essential supervision. This latter is provided through complex 

communication links which can be hard to put up in the operational environments of 

unmanned systems. In addition to exposing the vehicles to hacking hazards, it sometimes 

also requires additional manpower to be operated, incurring additional costs. Finally, their 

integration in real-life operations was done quite hastily, leaving room for some 

improvement in interoperability. The observations made throughout this section also show 

that in some cases, using the capabilities of several unmanned systems could have liberated 

the overall mission from several limitations: the broad spectrum of unmanned systems 

architectures is not put to use. Finally, the public perception of unmanned systems is 

negatively connoted which hinders the expansion of the industry. The next section 

examines how some of these limitations can be tackled by making several individual robots 

collaborate in a group. 

1.3 The growth of multi-robotics 

As it was hinted in the previous section, some of the limitations of individual 

unmanned systems can be lifted by making several of them collaborate. The complexity of 

some environments or missions might require a combination of robotic capabilities which 

are too expensive to design on a single platform [81]. Cooperative teams of robots are 

studied by the field of multi-robotics where many individual agents work together in a 
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coordinated fashion to accomplish a unique goal. Such solutions enable the entire system 

to respond robustly, reliably, and flexibly to unexpected changes in the environment or in 

the robot group itself. In particular, swarm robotics is a particular approach to collective 

robotics and is inspired from the self-organized behavior exhibited in nature by social 

animals such as fishes, birds, ants or bees. The main idea of swarm robotics is to obtain a 

complex synergistic behavior through simple behavior rules and local interactions. 

 

 

Figure 1.24: Example of robotic swarm [94] 

 

Swarm robotics use simple robots compared to the complexity of the mission to 

perform. The increase in capability over single robots comes from the collaboration aspect. 

Since several robots are used, this gives robustness, flexibility, and scalability to the swarm. 

This approach of collective robotics also represents an interesting way to capitalize on the 

heterogeneity of the current fleet of robots described in the previous section. For its future 

projects, the DoD stresses in its UAV integration roadmap the importance of several factors 

such as interoperability, modularity, resilience, autonomy, and cognitive behavior [82]. 

The present distribution of operations is creating a need for robotic systems to become 
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increasingly interoperable. These characteristics match with the capabilities offered by 

multi-robotics. Robot groups can be used in real-world applications for exploration, 

surveillance, search and rescue, humanitarian demining, intrusion tracking, cleaning, 

inspection, and transportation of large objects [95]. However multi-robotics is a complex 

field and several of its limitations are exposed at the end of the present section. 

1.3.1 A field inspired by nature 

The observation of animal behavior has been used as a source of inspiration for the 

development of individual robots and can also be used to gain insight into the creation of 

cooperative groups of robots [81]. Hence, it is no surprise that the current research 

underway in multi-robot systems can be classified quite similarly to the way animal 

societies or colonies are. Indeed, a first consequent body of work concentrates on very large 

numbers of robots that have limited individual capabilities but can generate complex 

behaviors through cooperation: swarming systems. A second approach which can be 

referred to as “intentional” cooperative robotics – or more generally cooperative robotics 

[81], emphasizes higher-level intentional cooperation between robots that have a higher 

level of intelligence. The first category can prove particularly suited for very repetitive 

tasks over large areas while the second one may be more adequate for applications with 

several distinct tasks. Both these approaches can possibly overlap in their missions, or even 

assumptions, and they are described in the following paragraphs. 

1.3.1.1 Swarm robotics 

Particular subcategory of multi-robotics, swarm robotics has been gaining special 

interest in the past decade. It takes its inspiration from societies of insects in which the 

swarm can perform tasks that are beyond the capabilities of the individuals. Such collective 
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behaviors are observed in the dance of honey-bees, the nest-building of wasps, the 

construction of mounds by termites, or in ants following trails. Figure 1.25 presents other 

examples of such comportments. These latter were considered as mysterious for a long 

time in the biology field and it was showed in the past few decades that individuals do not 

require sophisticated knowledge to exhibit complex behaviors as a swarm [96]. Indeed, 

there is no leader guiding the colony to accomplish an established goal and each agent does 

not know the overall status of the swarm. The global knowledge is distributed amongst all 

individuals which cannot accomplish the task without the rest of the group. 

 

  

a) A ball of mackerel fish defends against sea 

predators [97] 
b) A bird swarm [98] 

Figure 1.25: Swarm behaviors in nature 

 

The agents are able to exchange information locally and these interactions modify 

their behavior based on the previous changes made by their mates in the environment. The 

self-organizing comportment emerges from the propagation of information throughout the 

swarm. This former has external communication between its agents and their environment, 

as well as internal communication between the agents themselves. 
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A couple detailed examples of swarm behaviors can be examined. For instance, ant 

colonies can locate food sources the nearest to their nest without any single ant having this 

precise information. Thanks to chemicals called pheromones laid down on the path to the 

food source, ants can identify the shortest path. Indeed, ants returning first to the nest most 

likely took the shortest path and other ants hence follow the same path, reinforcing the trail 

of pheromone which encourages the colony to take this track [99]. As for bees, they have 

scouts exploring areas around the nest to find decent locations for a new nest. Each scout 

returns to the cluster and share their findings thanks to a dance, encouraging others to 

explore the location. Once more individuals are convinced about the location, a favorite 

location starts to emerge and the whole swarm finally flies to it. This swarm behavior 

ensures the safety of the cluster and is quite efficient in finding the most suitable nest site 

[100]. 

 

The fields of physics and chemistry present theories explaining how complex 

collective behavior can emerge from interactions of agents behaving simply [96]. Swarm 

robotics tries to mimic these behaviors to make simple robots accomplish complex 

missions that cannot be carried out by a sole agent. In so doing, it has identified the 

desirable properties of swarms of social insects to apply to swarm robotics. The first one 

is robustness, the ability for the swarm to still function correctly if some of the agents fail 

or if the environment experiences disturbances. Since robots can sometimes be expendable 

assets as it was established in the first section, it may happen that a few agents are lost 

during a mission. However, as opposed to single unit missions where the mission would 

stop, a swarm should continue to operate with a reduced number of agents. A second 
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quality desirable for swarm robotics is flexibility: the swarm should be able to adapt to 

different tasks and reallocate the roles of its agents based on the needs of the moment. This 

is especially true if some agents of the swarm have diverse capabilities, a different layout 

of the subtasks for the individuals of the swarm can result in a different synergistic goal 

being accomplished. The last property observed in animal swarms and that is advantageous 

for swarm robotics is scalability: the capability for the group to perform a mission 

independently of the size of the swarm, from a few individuals to thousands of them [96]. 

This interesting aspect of swarm robotics enables to seamlessly add one or several robots 

to the swarm and having them immediately contribute to the overall mission without 

overwhelming reprogramming tasks. This can be done to improve the performance of the 

swarm on a given task for instance. 

 

Given these properties, a first definition of swarm robotics can be given [96]: 

 

Swarm robotics is the study of how a large number of relatively simple 

physically embodied agents can be designed such that a desired 

collective behavior emerges from the local interactions among agents 

and between the agents and the environment. 
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Based on [95], a set of conditions complements this characterization to establish 

whether a multi-robot system constitutes a swarm or not: 

i. The robots of the swarm must be autonomous robots, able to sense and actuate 

in a real environment. 

ii. The number of robots in the swarm must be large or at least the control rules 

allow it. 

iii. Robots must be homogeneous. There can exist different types of robots in the 

swarm, but these groups must not be too many. 

iv. The robots must be incapable or inefficient with respect to the main task they 

have to solve, this is, they need to collaborate in order to succeed or improve 

the performance. 

v. Robots have only local communication and sensing capabilities. It ensures the 

coordination is distributed, so scalability becomes one of the properties of the 

system. 

 

These properties can be compared to taxonomies found in the literature of multi-

robotic systems (see Table 1.2). 
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Table 1.2: Swarm robotics taxonomy axes [101] 

Axis  Description 

Collective size 
 

Number of robots in the collective. 

Communication range 
 

Maximum communication range. 

Communication topology 
 Of the robots in the communication range, those which 

can be communicated with. 

Communication bandwidth 
 How much information the robots can send to each 

other. 

Collective reconfigurability 
 The rate at which the organization of the collective can 

be modified. 

Process ability 
 

The computational model used by the robots. 

Collective composition 
 

Are the robots homogeneous or heterogeneous? 

 

The discrimination between swarm robotics and other multi-robot approaches can 

be tricky to establish [95] especially when heterogeneous swarms are considered since they 

might violate assumption (iii). This explains the divide in the literature about unique 

definitions, characteristics, and taxonomies of swarm robotics as proposed by [102], [103], 

[104], or again [105].  

 

Finally, one may notice that robotics is not the only field trying to apply such 

observations on biological swarms to science. Particle Swarm Optimization (PSO) for 

instance, tries to apply swarm behavior rules to the field of optimization. A population is 

randomly scattered in the design space and at each iteration of the algorithm, each agent 
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moves according to simple rules (see Figure 1.26) until the population converges on the 

optimum of a given cost function over the design space. 

 

   

(a) Separation (b) Alignment (c) Cohesion 

Figure 1.26: Swarm behavior rules in Particle Swarm Optimization [106] 

 

These elementary rules are the following: 

 Separation: each agent tries to maintain a minimum distance with its surrounding 

neighbors. 

 Alignment: each agent steers towards the average heading of its neighbors. 

 Cohesion: each agent tries to go towards the average position of its neighbors. 

 

The resulting complex behavior from these simple rules is a performant 

optimization method able to efficiently find global optimums where many other methods 

fail. 

1.3.1.2 Cooperative robotics 

When time or efficiency constraints are placed on the mission, or when several 

distinct tasks have to be performed, a more directed type of cooperation might be required 

between the robots [81]. These missions generally involve smaller groups of agents when 
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compared to swarm robotics, and are more inclined to encourage heterogeneity. Instead of 

using a functional decomposition of the robot as with the swarming approach, most of the 

research on cooperative “intentional” robotics uses a more physical decomposition. The 

approach is then separated into world, sensors, planning, and action modules, also known 

as the sense-model-plan-act Artificial Intelligence (AI) paradigm [81]. The main focus of 

this type of approach is to determine through analysis the proper action and coordination 

scheme among the members of the group, in order for them to complete their mission. The 

research community is mainly split into two bodies: a first one focusing specifically on 

robotic implementation, and a second one applying Distributed Artificial Intelligence 

(DAI) to more generic types of agents. 

 

In the first body of research, the sense-model-plan-act architecture is implemented 

with different layers of control. [107] hence proposes three layers: the planner level 

managing tasks coordination and allocation, the control level ensuring proper task 

execution by each robot, and the functional level for controlled reactivity. The method is 

demonstrated on a box-pushing task with a group of two robots. Another organization of 

layers is proposed by [108] using Petri Nets: a task planner, a task allocator, a motion 

planner, and an execution monitor at the lowest level. 

Other approaches utilize subscriptions and requests mechanisms to coordinate tasks 

between the different robots of heterogeneous groups. For instance, [109] implements a 

negotiation framework which robots use to recruit help when needed. A sign-board method 

is used in [110], in addition to mutual exclusion algorithms. 
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By being centralized, these approaches lack fault tolerance and it is probable that a 

failure in one of the robots or in the communication protocol would result in a failure of 

the whole system [81]. Moreover, it makes it hard for multi-robot systems to deliver real-

time performance in dynamic environments due to the difficulties and limitations of an 

implementation on physical robots. 

 

 The second body of research is not as focused on robotics implementation but 

proposes solutions to cooperation and conflict resolution for generic agents. These 

approaches qualify as DAI and generally use negotiation-based mechanisms to perform the 

task allocation between the agents. Such methods mentioned by [81] have agents 

broadcasting requests for bids to perform the different subtasks of the mission. Agents 

which are available, suitable, and willing to perform the tasks then respond to these 

requests and the initiator selects the most suitable agent from the pool. DAI solutions have 

shown successful implementations in a number of fields such as vehicle fleet monitoring 

and air traffic control [81] but they have rarely been applied to groups of robots. Indeed, 

such approaches usually rely on perfect world modeling assumptions with perfect sensing 

and action capabilities, which does not correspond to the situation in which robots and their 

noisy sensors and actuators evolve. 

 

Summary: In this section, the essence of multi-robotics was captured from example 

behaviors found in nature such as with swarms of ants or bees, bird flocking, or fish 

shoaling. It relies on the fact that an elaborated collective behavior can emerge from a 

group, surpassing the capabilities of its individual agents, using simple local interactions 



48 

 

and comportment rules. When applying these observations to the field of robotics, three 

main characteristics are desirable: robustness, flexibility, and scalability. Example 

definitions, assumptions, and characteristics of cooperative and swarm robotics were 

established, despite a lack of consensus in the literature. The current work distances itself 

from some of these assumptions in order to simplify the approach and focus on the design 

methodology, hence evolving towards a more classical multi-robot problem, facilitating 

heterogeneity. Supported by the different opposing views on its definition, a swarm is here 

referred to as a group, possibly heterogeneous, of robots interacting to solve a complex 

task for which the constituents are individually inapt. This definition will constitute the 

main focus of this research and the words group and swarm will be used indifferently based 

on this definition. The enhancements in mission competence that it is possible to obtain 

from multi-robotics are then studied in the next section with implementation examples. 

1.3.2 An increase in capability 

The main advantage of multi-robotics lies in the very definition of it: obtaining a 

complex behavior from the collaboration of simpler individual robots. In other words, it 

presents the potential to bridge a gap in mission capabilities while making a minimum 

investment on the development of an individual platform. It is then possible to unlock novel 

abilities using a fleet of robots that is already at disposition. In addition to the three major 

defining advantages mentioned in the previous section (i.e. robustness, flexibility, and 

scalability), the different enhancements in robotics capabilities proposed by multi-robotics 

can be separated in different categories [111]. 
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Task enablement: in some cases, using a group of robots unlocks new possibilities for 

missions that cannot be carried out by single robots. The most common example of this 

enhancement is obstacle clearance using group reconfiguration [112]. Figure 1.27 shows 

an example of how a group of robots can reconfigure itself in order to bridge a gap between 

rocks in the environment. 

 

 

Figure 1.27: Holes avoidance through group reconfiguration [112] 

 

The robots of the group self-assemble using physical interconnections to constitute 

a bigger entity capable of tackling the difficulties of the environment such as gaps, narrow 

passages, or obstacles. Not only the sensing done by each of the robots helps the group in 

understanding the nature and properties of the obstacle, but the robot itself is physically 

used by the group to pass the obstacle.  
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Figure 1.28: Chain formation for a narrow passage [112] 

 

In Figure 1.28, the chain of robots navigates through a narrow and deep passage 

thanks to physical interconnections. Without this group behavior, each individual agent 

would fall in the passage and break while the whole group is able to exert more traction 

force and carefully negotiate its way.  

 

 

Figure 1.29: Five robots collectively tackle a 14cm step [112] 

 

The same type of group reconfiguration is used to help the robots pass an obstacle 

as shown on Figure 1.29. The environments explored by robots can often be quite 
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unstructured or partially known. Displaying capabilities of mobility, robustness, and 

versatility in such situations can be done thanks to multi-robotics. 

Improved performance: when tasks to be performed can be parallelized, using groups to 

decompose the main mission into subtasks can result in enhanced efficiency. Considering 

the task of transporting loads using unmanned aerial vehicles such as quadcopters, using 

several robots present a certain advantage for the performance of the mission (Figure 1.30). 

 

 

 

(a) A single quadrotor with a 

cable suspended load [113] 
(b) Load being transported by three quadrotors [114] 

Figure 1.30: Cooperative transport using quadrotors 

 

For a situation in which a single robot is used to carry the load, this latter will be 

subject to erratic accelerations and momentums that might compromise the integrity of the 

load. This is especially true if the load is fragile or needs to be horizontal at all times – for 

instance dangerous chemicals. However, by using at least three robots to carry the load, 

this latter can be suspended in any desired configuration [114], hence augmenting the 

performance of the initial system in which a single platform is used. 
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Distributed sensing: with multiple robots, the sensors of the system are distributed over 

the whole environment, hence enabling information sharing and an enhanced perception of 

the situation. A typical use case of this property is area surveillance: a group of drones is 

assigned a certain area to detect suspicious activity or detect a given target. If the task were 

to be performed by a single platform, this latter would have to perform a large loitering 

flight pattern. It would most probably miss the detection of the target, especially if the size 

of the surveillance area is large with respect to the resolution of the embarked detection 

sensor. On the other hand, if a robotic group is used, the large area is covered by several 

coordinated vectors, hence enabling a continuous surveillance of the whole area (Figure 

1.31).  

 

  

(a) A limited sensing resolution (b) Partition-based surveillance strategy 

Figure 1.31: Area surveillance by UAVs [115] 

 

Each individual drone is assigned an area optimized with respect to its own sensors 

and capabilities [115]. For instance, fast aircraft can cover a large area at a reasonable 
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resolution while quadcopter are deployed at a lower altitude, covering smaller areas with 

greater precision. 

Another aspect of distributed sensing is that if the observations of several drones 

overlap, it is possible to use all of the provided information to refine the observation and 

increase the precision of the group. The example of mapping is explanatory: if a landmark 

of the environment is observed several time, each observation of the landmark is used to 

refine its position in the map (see Figure 1.32). 

 

 

Figure 1.32: Multiple observations of a map landmark 

 

As seen on the figure, each robot detects the landmark from a different angle with 

an ellipsoid of uncertainty. This latter is more important along the axis of detection due to 

the ambiguity in depth perception. The further the robot, the greater the uncertainty. The 

information provided by all observations enables to obtain a reduced uncertainty on the 

global position of the landmark. This may be roughly depicted by the superposition of the 
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ellipsoids. Each observation reduces the uncertainty along the axis of detection, resulting 

in a more evenly distributed location uncertainty around the landmark. 

 

Distributed action: in the same fashion as distributed sensing, distributed action is the fact 

that the group of robots can perform tasks in different places simultaneously. This faculty 

is linked with the possible parallelism of the tasks of the mission. An example of 

application is bridge construction thanks to teams of robots: a group of robots can start 

from one end of the bridge while a matching team starts from the opposite end of the bridge 

(see Figure 1.33). 

 

 

Figure 1.33: Bridge construction using distributed action [116] 

 

Fault tolerance: having a robot failure in the group does not necessarily translate in the 

failure of the whole mission. Owing to the redundancy of the system, the mission can still 

be carried out with a limited number of robots. Using again the example of carrying a 

payload at a given orientation with quadrotors, this mission can still be accomplished until 

there are less than three robots in the group [114]. If the number drops below three, the 
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payload cannot be orientated anymore and supposing that the robots still have the lifting 

power to sustain the payload in the air, the secondary mission of simply carrying the load 

can still be performed. Hence, using groups of robots ensures of a certain redundancy and 

resiliency in the mission. 

 

Cost reduction: the exponential growth of the UAV sector described in the previous 

section brings cheaper and cheaper individual units on the market. Consequently, this 

decreases the cost of multi-robot systems in the same fashion [33], [45], [46]. The key cost 

factor in multi-robotics comes from the definition: a complex goal is accomplished by 

simpler units. In other words, each individual platform from the group is quite incapable 

with respect to the overall goal of the mission. Given that simple robots are most probably 

cheap, this implies that for a given complex mission, a multi-robot solution can possibly 

be cheaper than a single-robot one. This cost difference can be illustrated with the example 

of aerial imagery and distributed sensing, both previously studied. If a specific area has to 

be imaged, satellite imagery can be obtained at cheap prices [22] but only at a given 

periodicity. If a group of UAVs is used for the same purpose, the original investment will 

be much cheaper than the initial investment for the satellite and the images can be updated 

very quickly depending on the mission requirements. Using plenty of cheap and low 

resolution sensors instead of a very expensive high resolution one, costs could hence be 

decreased in some cases with the concept of distributed sensing. This is the type of tradeoff 

study that motivates the present work. 
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Summary: This section showed that the possibilities unlocked thanks to multi-robotics are 

present under several aspects. By exploiting parallelism in the tasks of a mission, this latter 

can be completed more efficiently by using groups of collaborating robots. Multi-robotics 

also provides the ability to perform certain tasks that are impossible for single robots. In 

addition, using multiple robots distributes their sensors over the environment hence 

providing a better perception owing to information sharing. Teams of robots can also 

perform actions simultaneously at different locations and offer redundancy to increase the 

reliability of the whole system. On top of that, multi-robotics sometimes offer a cost 

advantage which is non-negligible at a time when projects are more and more driven under 

tight budget requirements. While this type of observations clearly depends on case-by-case 

considerations, the present research aims at providing techniques for the study of these 

types of tradeoffs. The next subsection details two particular real-world applications of 

multi-robotics to further motivate the current research. 

1.3.3 Application to real-world problems 

Amongst the numerous possible applications of multi-robotics mentioned earlier, 

two are presented with greater detail in this section. These applications of search & rescue 

and military operations have been chosen as they are being investigated by companies and 

organizations, not research laboratories. 

 

Search & Rescue: [117] identifies that the US Coast Guard spends more than $50M 

annually on search & rescue missions, a cost mainly incurred by the expensive logistics 

required in such operations. Search and rescue has already been performed by single robots 

in many occasions such as for the World Trade Center in 2001, Hurricane Katrina in 2005, 
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Haiti in 2010, and more recently Fukushima in 2011 [118]. As established in the previous 

sections, multi-robot systems and their distributed sensing capabilities offer the possibility 

to quickly cover search areas and detect victims much more rapidly than current methods. 

 

 

Figure 1.34: Representation of a UAV-based search and rescue operation [119] 

 

Using autonomous recharging schemes as described by [120], such systems are able 

to achieve extended endurance: a key asset for search and rescue missions. Moreover, the 

units of the multi-robot system are possibly expendable in dangerous conditions. This topic 

is currently being investigated for commercial applications by Saab [117]. 

 

Military operations: a study of current military systems by [121] identifies that they are 

highly vulnerable to coordinated attacks such as the ones that could be carried out by multi-

robot systems. In particular, this study shows that any current military ship can be 

neutralized by a group of only eight small UAS. 
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Figure 1.35: Representation of a multi-UAS military system [117] 

 

This clear vulnerability motivates the US Navy [122] and the British Army [123] 

to investigate the application of multi-robot systems for both offense and defense military 

operations. The solutions are first studied for uncluttered open water environments and will 

be later extended to land operations as the technologies of sense and avoid matures for 

trees, buildings, power lines, vehicles, and pedestrians. 

 

Multi-robotics addresses the significant performance enhancements achievable by 

multi-robot systems. However, despite the increase in capability and possible real-world 

applications described in the previous sections, it is quite complex to comprehend, hence 

revealing several limitations exposed in the next subsection. 

1.3.4 The limitations 

The increase in capability offered by multi-robotics mostly comes at the cost of an 

amplified complexity as a complete System of Systems (SoS) has to be designed instead 

of a single robot only. According to the definitions provided in [124], a group of robots 

classifies as a complex system due to a large number of components able to interact with 

each other and the environment. In addition, the rules of the components may change over 
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time and are not always fully understood. Finally, the properties of the whole system cannot 

be determined from the simple sum of its parts. A group of robots is hence hard to design 

as it is larger in scope and is subject to a more complex integration of its elements. The 

group (macroscopic level) has to be designed as well as the individual agents (microscopic 

level). A non-exhaustive list of difficulties encountered when designing a system of robots 

are [125]: 

 A higher degree of uncertainty and risk compared to classical systems design 

 The system is comprised of elements with different lifecycles 

 The group may be comprised of robots which are not designed to fit the whole 

system and which are integrated after their design is finished 

 The requirements might be more ambiguous than for a single robot 

 The group may have a continuous systems engineering which is never actually 

finished. This is especially true if new systems keep being integrated in the group 

in order to update it. 

In addition, ground-based robots have been the norm in the field of robotics until a 

few years ago, limiting the interest in design optimization for robots. Subject to more 

stringent weight restrictions and other realities than ground robots, aerial robots design has 

to include optimization steps. The focus in robotics has long been on intelligence and 

software architecture more than on physical design. This complexity being a limitation in 

itself also translates into several other limitations for the use of multi-robotics. 

 

 A first drawback is interference, robots in a group can interfere with each other and 

hinder the proper functioning of the group. In some worse cases, it can be 
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counterproductive. Interference may happen with collisions, which might possibly take 

down the involved agents. Occlusion is also a common interference in groups of robots 

when one robot happens to be in the field of view of the sensors of another robot. While 

this can sometimes be helpful if the robots of the group have to detect each other, this 

occludes a part of the environment which cannot be observed. The closer the robots are, 

the more important the occlusion. These types of occlusion can also result in interference 

in communications between the vectors of the group if one robot occluding two others 

intercepts a message by mistake. 

 

Another limitation given by the literature is that in some cases, uncertainty rises 

concerning the intentions of other robots. This is especially true for group of robots 

respecting exactly the assumptions of swarm robotics ensuring there is no centralized 

control entity for the swarm. In addition to imposing complex communication requirements 

on the group design, this assumption ensures that agents can only communicate with their 

immediate neighbors. In this case it can be hard to share the intents of other robots since 

there is no control overseeing the whole group. Indeed, coordination in this context requires 

to know what the surrounding robots are actually doing, otherwise the agents might end up 

competing instead of cooperating [96]. This limitation also calls for a robust decision-

making architecture in the group in order to make sure that all the orders are properly given 

according to correct situations and not caused by miscommunication or occlusion between 

the robots. 
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Additionally, the field of collaborative robotics in general is not yet established in 

commercial applications and remains mostly confined to academic work such as the 

systems developed in [126], [127], and [128]. It is still at a preliminary stage in the research 

community and shy applications start to trigger interest only for the military with no known 

successful deployment. For instance, the Office of Naval Research (ONR) has been 

working on the Low-Cost UAV Swarming Technology (LOCUST) system and performed 

successful demonstrations in launching a swarm of nine UAVs with autonomous 

coordination [129]. Their next milestone is the deployment of 30 swarming Coyote UAVs 

from a ship for endurance missions. Although these applications are outside the academic 

environment, they remain confined to pure research and are not used in operation. Reasons 

are varied and [96] mentions in particular: the need for a good laboratory infrastructure, 

the difficulty in building non-linear and stochastic models of the robot groups, and the fact 

that currently, no general method exists to go from the individual behavior to the group 

behavior. [96] mentions this latter reason as a key obstacle in the elaboration of design 

algorithms for swarming systems. As a matter of fact, most of the research community 

focuses on the behavior design of multi-robot systems, leaving aside their physical design 

[130]. These elements prompt the formulation of another key conjecture: 

 

Conjecture 2 

A standard physical design process for multi-robot systems 

is needed to foster their democratization. 
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Note that in the scope of this research, design corresponds to the intellectual 

engineering process of creating on paper a machine that either meets certain requirements 

and performance objectives, or explores new concepts, technologies, and innovations 

[131]. 

 

One additional drawback linked to multi-robotics and especially swarm robotics as 

defined per its assumptions, is that it tends to focus on robots having the same capabilities. 

As a matter of fact, one of the assumptions to exhibit “pure swarm” behavior is that the 

robots must be homogeneous, and that the number of subgroups with different capabilities 

is limited. Hence, most of the research community focuses on homogeneous groups with 

cheap and absolutely identical robots. Few instances such as [132], [133], [134], [135], 

[136], [137], or [138] consider heterogeneity in an extensive manner, and when they do, it 

is focused on behavior design and not physical design of the agents and the group. 

However, the utilization of robots with different capabilities could benefit to the mission 

in terms of performance and unlock new collaboration capabilities. Considering mapping 

and exploration missions for instance, fast robots could be used first for a preliminary pass 

on the environment while slower robots could later refine the initial map. 

 

Lastly, the cost advantage mentioned in the previous sections might not always 

apply depending on the nature of the project of multi-robot design. This limitation does not 

traditionally apply since multi-robot systems aim at using many cheap simple robots which 

total cost still remains under the cost of complex platforms carrying out the same mission 

(for instance the case of DJI Phantom quadrotors versus a satellite for Earth imagery). 
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However, it may apply mostly when comparing single-robot systems with multi-robot 

solutions, and is exacerbated for heterogeneous groups. Indeed, for a heterogeneous group, 

several different platforms are actually designed instead of a single robot. This could result 

in a higher cost for the multi-robot solution in terms of development – and sometimes 

procurement as well. This further motivates the study of cost tradeoffs between multi-agent 

systems and single platform solutions. 

 

In the presence of such limitations to the use of multi-robotics compared to its 

advantages, one may wonder if there is an actual benefit in developing a multi-robot system 

instead of a single-robot one. Indeed, most of the community tends to evaluate the 

performance of multi-robot systems independently without having any benchmark 

performance to compare it to. This is largely due to the fact that the field of swarm 

engineering is lacking established standards. As mentioned in [101], “Collectives offer the 

possibility of enhanced task performance, increased task reliability and decreased cost over 

more traditional robotic systems. Although they have this potential, many possible 

collective designs are neither more efficient, nor more reliable, nor more robust than a 

comparable single (more complex) robot”. In particular, it also provides a quite exhaustive 

analysis of situations in which multi-robot solutions would be preferable to single-robot 

ones. However, no quantification of the advantage or disadvantage is provided. Other 

studies such as [101], [133], and [134] investigate the question of whether it is more 

efficient to distribute expertise rather than designing a unique expert robot. However, these 

papers focus on very particular missions and lack generality: no methodology exists in 

multi-robot engineering to perform such comparisons. Similar observations can be drawn 
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from [139], whereas it studies the tradeoffs between having a group as opposed to a single 

robot, the comparison of different groups on a given mission seems to be a missing topic. 

This leads to a third conjecture: 

 

Conjecture 3 

There is a need to evaluate and compare the real advantage of different optimized 

multi-robot systems versus optimized single-robot solutions on a given mission. 

 

Summary: The limitations highlighted in this section showed that the design of multi-

robot systems remains a quite complex problem, delaying their use in real-world 

applications. From SoS design obstacles to stringent communication requirements, from 

difficult decision-making architectures to possible development cost excess, all these 

complications cause multi-robot systems to struggle in establishing themselves in the 

commercial and even military worlds. This section also identified a need to evaluate and 

quantify the possible improvement or deterioration resulting from choosing a multi-robot 

architecture over a single-robot solution.  

1.4 Summary 

 With an emphasis on aerial systems, this motivation section started off by 

describing the advantages offered by unmanned systems in terms of automation. Their 

growing market unleashes a multitude of unforeseen applications, hereby fostering the 

diversification of the robotic fleet in terms of designs and capabilities. However, this 

broadening spectrum of architectures is not exploited. Moreover, the advantages that 

unmanned systems offer might be shadowed by shortcomings in endurance and cognitive 
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behavior. These limitations can possibly be addressed by multi-robotics: a field inspired 

by nature with groups of robots performing complex missions beyond the capabilities of 

their simple individual components. This enables to tackle the limitations of single-system 

solutions by being able to accomplish more complex missions. In addition, heterogeneous 

groups of robots capitalize on the diversity of the current robotics fleet. Hence, it was 

shown that multi-robotics can be a solution to the shortcomings of single unmanned 

systems. Nonetheless, it was established that the advantage of multi-robot versus single-

robot solutions still has to be evaluated and quantified for equal mission requirements. For 

instance, the tradeoff between the number of agents in a group (numerality) and the 

technical capability of each individual would be interesting to study. The field of 

collaborative robotics remains mostly confined to academia and is facing obstacles in its 

democratization to commercial applications. The research is at a quite preliminary stage 

and the applications demonstrated by the military are avant-gardist and far from 

deployment in real-world situations. Moreover, multi-robotics experience several 

limitations ranging from typical SoS design obstacles, stringent communication 

requirements, difficult decision-making architectures, and possible development cost 

excess. These complications motivate the need for a designer to quantify the possible 

improvement or deterioration resulting from choosing a multi-agent architecture over a 

single-robot solution. Moreover, the literature currently lacks methods for the designer to 

intelligently make these choices. 

1.4.1 Research objective 

The first conjecture motivates a focus of this present work on the design of multi-

robot systems and especially heterogeneous groups. The second one encourages a focus on 
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a design process so as to increase the understanding of multi-robot systems and further 

democratize their use for real-world applications, beyond academic and military research. 

The third conjecture stimulates a research on the effects of numerality on the group 

performance. In terms of design, the group numerality could be compensated by 

technology enhancements on the single constituent platforms. Hence, to evaluate the real 

benefits of a group over single robots, the tradeoff between the number of robots in the 

group and the level of technological development of its agents must be studied. A 

motivation hence emerges with a necessity to answer some questions such as: 

 Does using a multi-robot system always provide increased performance for a given 

mission? 

 After a change in mission requirements, is it better to increase the group size or 

increase the capabilities of each agent in order to still be able to complete the 

mission? 

 How to efficiently optimize groups of robots? 

 Should a designer spend more time on developing the group architecture or on the 

Research and Development (R&D) of individual agents? 

 For a given mission, what is the optimal group architecture? 
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These observations lead us to consider the following research objective:  

 

Research Objective 

Establish a methodology that enables the optimum design of multi-robot 

systems and the evaluation of tradeoffs between individual architecture 

development and numerality to achieve group performance. 

 

The whole research process involved in establishing this research objective is 

outlined in Figure 1.36. 

 

  

Figure 1.36: Establishment of the research objective 

 

Swarms Robots Swarm Engineering 

Observations 1 Observations 2 Observations 3 

Assertion 1 Assertion 2 Assertion 3 

Research Objective 

• Many drone types are now 
available 
• This diversity is developing 
• Single robot limitations can be 

overcome by collaboration 

• Designing a multi-robot system 

requires much more commitment 

than for a single agent 
• They are confined to academia or 

experimental and avant-gardist 

military applications 

• Groups might not always perform 

“better” than single agents 
• Very few group designs 

possibilities are considered, mostly 

homogeneous and sub-optimal 

There is a potential to take 
advantage of the diversity 

of the existing drone fleet 

A standard physical design process 

for multi-robot systems is needed 

to foster their democratization 

There is a need to evaluate and 
compare the real advantage of 

different optimized multi-robot 

systems versus optimized single-

robot solutions on a given mission 

Establish a methodology that enables the optimum design of multi-robot systems and the evaluation of 

trade-offs between individual architecture development and numerality to achieve group performance 



68 

 

1.4.2 Research challenges 

Reaching this objective involves addressing several research challenges owing to 

the novelty and complexity of multi-robot systems. The most important challenges, some 

of which were mentioned in the previous portions, are recollected in the present section. 

 

First, the design optimization of a group of robots results in the generation of an 

extremely large design space, far beyond what is typically encountered in aerospace or 

automotive industries for single vehicle design for instance. A given group configuration 

consists of a combination of possibly different platforms, each one of them having its own 

design combinations in terms of subsystems and many other design dimensions. To some 

extent, the classical subsystems design space for single vehicles is now “multiplied” by the 

number of agents composing the group, this number of vehicles possibly being another 

design factor. This is well illustrated by considering the following toy problem: 

 

A robotic group of three agents has to be designed from existing off-

the-shelf components and architectures. Two types of robots are 

available, each with five subsystems and three possible technologies 

for each of these subsystems. Determine the size of the design space, 

i.e. the total number of different groups it is possible to generate 

from this setup. All options are compatible with each other. 
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Solution: the decomposition of the problem first starts with the determination of the total 

number of configurations for each type of robot. For five subsystems, a choice has to be 

made between three technologies which results in 35 = 243 possible configurations for 

each type of robot. Then there are two types of robots available (with exactly the same 

architecture choices), making 243×2 = 486 the number of possible design choices for 

each robot of the group. Finally, it is important to note that when listing the possible 

combinations of robots in the group, the order does not matter. Indeed, a combination 

“ABC” of robots A, B and C is the same in essence as the combination “BAC” as there is 

one robot of each type in both combinations. Moreover, repetitions need to be accounted 

for since a group can be comprised of the same robots. Hence, “AAC” or “BCB” are 

possible combinations. The final step then consists of choosing 3 robots amongst 486 

possible configurations, with repetition. From mathematics, the formula for a k-

combination from a set of size n is “n multi-choose k” given by: 

 

Equation 1.1: n multi-choose k 

((
𝑛
𝑘
)) = (

𝑛 + 𝑘 − 1

𝑘
) 

 

With (𝑛
𝑘
) =

𝑛!

𝑘!(𝑛−𝑘)!
 the usual “n choose k” binomial coefficient. The size of the design 

space is then ((
486
3
)) = (486+3−1

3
) = (

488
3
) = 19,250,136 possible group designs. As 

it can be observed, a simple toy problem already generates a design space with close to 

twenty million possible group configurations. Using real-world figures for the number of 

technologies or subsystems then quickly results in extremely large design spaces. Note that 
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if incompatibilities between the different subsystems are taken into account, these numbers 

would be lower. However, all things being equal, the number of possible configurations 

would still remain comparatively higher than for single vehicle systems. 

 

 

Figure 1.37: An extremely large design space 

 

In addition, the number of possible designs grows exponentially with the 

parameters of this toy problem and one quickly ends up generating unmanageable design 

spaces which are orders of magnitude larger than for single-robot designs (see Figure 1.37). 

To decrease this number of alternatives, partial heterogeneity can be considered: all robots 

of a given architecture will have the same configuration. For instance, for a multi-robot 

system “𝑄1𝑄2𝑄3𝑃1𝑃2” composed of three quadrotors 𝑄 and two planes 𝑃, it can be 

assumed for simplification that all quadrotors will have the same configuration and that all 
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planes will have the same configuration so that the group finally reduces to “𝑄𝑄𝑄𝑃𝑃” with 

now only two configuration choices instead of five. 

Moreover, the architectures to be considered in the design optimization process 

might also not be known a priori and have to be generated, which adds a degree of 

complexity to the problem. This plethora of architectures may also have elements which 

are not designed to be interfaced together. Hence, the compatibility of the configurations 

has to be accounted for in the generation of these architectures. 

 

An additional challenge stems from the very particularity of multi-robot systems, 

and particularly swarming systems: their emergent behavior. Resulting from the 

interactions between the agents of the group and their complex cognitive comportment, 

this behavior is highly non-linear, possibly stochastic, and thus quite unpredictable for the 

design process. Owing to this non-linearity, it is in general not possible to optimize each 

agent individually in order to obtain an optimal swarm (see Equation 1.2). 

 

Equation 1.2: Non-linearity of the design space 

∑𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑎𝑔𝑒𝑛𝑡𝑠 ≠ 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑔𝑟𝑜𝑢𝑝 

 

This distinction between additivity, non-linearity, and emergence as well as the 

irreducible character of group properties is clearly established by [140]. A holistic approach 

is required to consider the aforementioned interactions between the agents. Moreover, the 

lack of link between the microscopic and the macroscopic layers of a multi-robot system 

makes it hard to propagate design changes from the agents to the group behavior. 
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The design of multi-robot systems, systems of systems by definition, is also 

multidisciplinary. In particular, cost considerations have to be emphasized as emerging 

markets tend to neglect this aspect in early design phases (see Figure 1.38). Conceptual 

design is the first step in the design process and is an initial response to a given design goal 

[141]. The overall shape, size, weight, and performance of the vehicle are imagined based 

on basic drivers but no detailed design occurs at this stage. Essential tradeoffs are 

considered during the conceptual design phase. 

 

 

Figure 1.38: Prevalence of cost considerations in early design phases 

 

Many disciplines have to collaborate in the design process, sometimes with 

conflicting impacts on the final performance, in order to create the group of robots. This 
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combination of technical design and financial considerations increases the difficulty of 

multi-robot systems design. 

 

 In addition to the challenges presented in general by systems of systems 

engineering, no known robotic swarm is in commercial use and the design of multi-robot 

systems is an emerging field. Consequently, there is a significant lack of historical data to 

support the design process and obtain generic insights on multi-robot systems design. There 

is also a lack of standards, accentuating the difficulties in establishing a clear design 

framework. Additionally, no benchmark is currently available, which makes it hard to 

quantify the outcome of the proposed research. 

  

In order to tackle these challenges and fulfil the research objective, the assertions 

(Figure 1.36) must be studied individually to identify competences which already exist or 

need to be developed. By reviewing and comparing prevailing techniques, the next chapter 

pinpoints potential research gaps to be bridged. This will support the definition of the 

research problem and help establish the methods, tools, and processes needed to reach the 

goals of the research objective. 
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CHAPTER 2 

PROBLEM DEFINITION 

 

The path to the research objective previously established is hindered by some 

obstacles which must be addressed. The preceding chapter highlighted the principal 

challenges to overcome: exploration and optimization in a very large design space, bridging 

the gap from the microscopic level (the individual agents) to the macroscopic level (the 

group) of a multi-robot system. These form the main research focuses studied by this 

chapter in order to establish a proper problem definition.  

 

 

Figure 2.1: Decomposition of the research objective 

 

In particular, a literature review of pertinent areas is proposed to understand state-

of-the-art methods, their strengths but also their applicability, their assumptions, and their 

shortcomings. This step helps in finding the most suitable practices to address the research 

challenges and pinpointing deficits in the current literature through formal research 

Bridging the gap between microscopic 

level to macroscopic level 
Exploring a large design space 

Research Objective 

Establish a methodology that enables the optimum design of multi-robot systems and the evaluation of 

trade-offs between individual architecture development and numerality to achieve group performance 
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questions. Hypotheses are then developed as suggested solutions to the identified gaps with 

the aim of structuring the rest of the present research process. 

2.1 Introductory example 

With the intention of familiarizing the reader with the research objective and 

provide first insights on how a simulation-based approach may provide the link between 

macroscopic and microscopic levels of a swarm, a canonical example is formulated in this 

section. While this model is simplistic and corresponds to a basic 2D macroscopic model, 

it provides key insights shaping the research questions and the rest of this research and is 

to be extended with additional complexity. Consider the following problem formulation: 

 

A homogeneous robotics swarm is to map a 2D area of size lx by ly. 

The complete mission consists in reaching the interest area from base 

(distance d0), map the area collaboratively, and return to base. One single 

agent has the capability to map one unit area at a time. The areas 𝒜i to be 

mapped by each agent i are allocated as shown on Figure 2.2. The mapping 

mission starts from the top left corner of each sub-area, and follows a path 

according to Figure 2.2, there are no obstacles to the agents. For simplicity, 

it is assumed that it takes one unit of time to map a unit area so that a grid 

cell is basically mapped once it is visited. 
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Figure 2.2: Example of mapping configuration for 3 agents 

 

Let N denote the number of agents in the swarm and v, constant velocity of each agent, 

be representative of the performance of a single agent. The mission performance of the 

swarm is represented by T, the total time required to map the area. Each agent is assumed 

to have a fixed cost of c0, the swarm has an instalment fixed cost of C0 for the ground 

station for instance. The cost of technology is represented by a linear increase cv of the 

cost of an agent with the velocity. The goal is to: 

1. Link the microscopic level variable v, and the macroscopic level variable N through 

swarm performance. 

2. Assuming a maximum cost Cmax as a budget constraint, derive the optimum swarm 

configuration in terms of cost and performance. 

  

𝑑0 

𝒜1 𝒜2 𝒜3 

𝑙𝑦 

𝑙𝑥 

Base 
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Solution 

1. The mission being finished once all agents are back at the base, the total time to carry 

out the mission will be dictated by the slowest agent. Note that each agent 𝑖 is assigned to 

map an area 𝒜𝑖 = 𝑙𝑥𝑖𝑙𝑦𝑖 with 𝑙𝑥𝑖 =
𝑙𝑥

𝑁
. In this particular case, since all agents have the same 

constant velocity and the same area to map, this slowest agent is the one having to map the 

area the furthest from the base: agent 𝑁. Denoting 𝑡𝑖 the time required by agent 𝑖 to perform 

its part of the mission, this first observation is written: 

 

Equation 2.1: Total mission time 

𝑇 = 𝑚𝑎𝑥
𝑖∈⟦1,N⟧

(𝑡𝑖) = 𝑡𝑁 

 

Each time ti is then obtained by considering the distance travelled di. Note that a 

unit area is mapped in a unit of time as per the assumption stated earlier: 

 

Equation 2.2: Mapping time for each agent 

ti =
di
v
, ∀i ∈ ⟦1, N⟧ 

 

First, each agent has to travel the distance si from the base to its mapping area: 

 

Equation 2.3: Distance from base to mapping area 

si = d0 + (i − 1)lxi = d0 + (i − 1)
lx
N
, ∀i ∈ ⟦1, N⟧ 

 



78 

 

Then, travel the distance mi required to map the sub-area 𝒜i: 

 

Equation 2.4: Distance traveled during mapping phase 

mi = (lyi − 1)lxi + lxi − 1 = lxilyi − 1 =
lxly

N
− 1 , ∀i ∈ ⟦1, N⟧ 

 

Note here that the result seems non-homogeneous at first, however considering the 

mapping path described on Figure 2.2 we understand that the distance 𝑙𝑦𝑖 − 1 is travelled 

𝑙𝑥𝑖 times, and the distance 𝑙𝑥𝑖 is travelled 𝑙𝑥𝑖 − 1 times. Also note that the mapping distance 

does not depend on index 𝑖 which is consistent with the assumption that all agents map 

equal areas. Finally, the distance 𝑏𝑖 to go back to the base depends on the configuration as 

shown on Figure 2.3. 

 

   

Figure 2.3: Distance back to initial mapping point 

 

 

Start Start End 

𝑙𝑦𝑖 − 1 

𝑙𝑥𝑖 − 1 

Start 

End 

Back to initial position 

Mapping path 
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Hence, it can be written as: 

 

Equation 2.5: Distance to return to the base 

𝑏𝑖 = 𝑑0 + (𝑖 − 1)𝑙𝑥𝑖 + {

𝑙𝑥𝑖 − 1 𝑖𝑓 𝑙𝑥𝑖  even

√(𝑙𝑥𝑖 − 1)
2
+ (𝑙𝑦𝑖 − 1)

2
 otherwise

 , ∀𝑖 ∈ ⟦1, 𝑁⟧ 

= {

𝑑0 − 1 + 𝑖 𝑙𝑥𝑖  𝑖𝑓 𝑙𝑥𝑖  even

𝑑0 + (𝑖 − 1)𝑙𝑥𝑖 +√(𝑙𝑥𝑖 − 1)
2
+ (𝑙𝑦𝑖 − 1)

2
 otherwise

, ∀𝑖 ∈ ⟦1, 𝑁⟧ 

=

{
 
 

 
 𝑑0 − 1 + 𝑖

𝑙𝑥
𝑁
 𝑖𝑓
𝑙𝑥
𝑁
 even

𝑑0 + (𝑖 − 1)
𝑙𝑥
𝑁
 + √(

𝑙𝑥
𝑁
− 1)

2

+ (𝑙𝑦 − 1)
2
 otherwise

, ∀𝑖 ∈ ⟦1, 𝑁⟧ 

 

Hence, the total distance travelled by an agent i is: 

 

Equation 2.6: Total distance 

𝑑𝑖 = 𝑠𝑖 +𝑚𝑖 + 𝑏𝑖 , ∀𝑖 ∈ ⟦1, 𝑁⟧ 

=

{
 
 

 
 2(𝑑0 − 1) +

𝑙𝑥
𝑁
[2𝑖 − 1 + 𝑙𝑦] if

𝑙𝑥
𝑁
 even

2𝑑0 − 1 +
𝑙𝑥
𝑁
[2(𝑖 − 1) + 𝑙𝑦]  + √(

𝑙𝑥
𝑁
− 1)

2

+ (𝑙𝑦 − 1)
2
 otherwise

 

 

Putting the result together we obtain the total time required to complete the mission 

as a function of the microscopic variable 𝑣 and the macroscopic variable 𝑁: 
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Equation 2.7: Final expression for total mapping time 

𝑇(𝑣, 𝑁) = 𝑡𝑁 =
𝑑𝑁
𝑣

 

=

{
 
 

 
 

1

𝑣
[2(𝑑0 + 𝑙𝑥 − 1) +

𝑙𝑥
𝑁
(𝑙𝑦 − 1)]  if

𝑙𝑥
𝑁
 even

1

𝑣
[2(𝑑0 + 𝑙𝑥) − 1 +

𝑙𝑥
𝑁
(𝑙𝑦 − 2) + √(

𝑙𝑥
𝑁
− 1)

2

+ (𝑙𝑦 − 1)
2
]  otherwise

 

 

For visualization purposes, this mapping time to be minimized can be transformed 

into an objective to be maximized by considering the mapping rate: 𝑅(𝑣,𝑁) =
𝑙𝑥𝑙𝑦

𝑇(𝑣,𝑁)
. This 

rate represents the speed at which the whole area is mapped. 

 

2. This expression can then be plotted to gain insight on how the microscopic level and the 

macroscopic level variables affect the swarm performance. It may also be used to derive 

an optimal swarm architecture yielding the maximum performance while enforcing a cost 

constraint. Given the above nomenclature, the total cost for the swarm system is given as: 

 

Equation 2.8: Cost structure 

𝐶 = 𝐶0 + 𝑁(𝑐0 + 𝑐𝑣 . 𝑣 + 𝑐𝑣2 . 𝑣
2) 

 

The figures here below present such analysis results for 𝑑0 = 100 𝑚 and a map 

size of 𝑙𝑥 = 100 𝑚 by 𝑙𝑦 = 100 𝑚. The cost is represented in notional units so that an 

agent fixed cost is 𝑐0 = 3, the swarm fixed cost is 𝐶0 = 10 and a unit of individual 

performance (velocity) increases the cost by 𝑐𝑣 = 1. The quadratic technology cost factor 
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𝑐𝑣2 is first set to zero. The cost constraint, or available budget, is fixed at 𝐶𝑚𝑎𝑥 = 70 for 

the swarming solution. Finally, note that the mathematical formulation derived here above 

is valid when 𝑁 is a divisor of 𝑙𝑥 due to the mapping navigation assumptions. However, 

the plots are presented for various integer values of 𝑁 without distinction. 

 

  

Figure 2.4: Evolution of mapping time with the design variables (example 1) 
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The first proposed graph (Figure 2.4) enables to understand how the microscopic 

level and macroscopic level variables affect the performance of the system, here 

represented by the mapping time 𝑇(𝑣, 𝑁). As one can expect, increasing the number of 

agents in the swarm increases the mapping rate, or equivalently, decreases the mapping 

time hence improving the mission performance. Enhancing the capabilities of each agent 

constituting the homogeneous swarm also results in a performance improvement. 

 

  
(a) Mapping rate contours (b) Swarm cost contours 

Figure 2.5: Contours for mapping rate and system cost (example 1) 

 

The design points which are just satisfying the cost constraint are represented in red 

(Figure 2.4, Figure 2.5) and they can be seen following the 70-contour of cost with a 
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mapping rate of 20 m2/s and 40 m2/s for the numbers given in this particular case. 

Optimization of the swarm design for this particular mission yields the following 

characteristics: 

 

Table 2.1: Example 1 designs 

Design characteristic  Sequential optimization  Global optimization 

Number of agents  4  5 

Individual velocity (m/s)  10  8.90 

Mission time  4 min 47 s  4 min 27 s 

Total cost (notional cost units)  62  69.50 

 

Note that when deriving the optimal design with the usual sequential optimization 

approach (optimizing agents individually first, and then the group), a sub-optimal design 

is obtained (in red). By being stuck at such a local optimum, a 7% performance degradation 

is observed with the “global” optimization technique that optimizes both levels 

simultaneously. In this particular example, the optimization seems to favor individual 

performance over the numerality in the swarm.  

 

By adding a quadratic velocity term to the cost with 𝑐𝑣2 = 0.3 and changing the 

cost constraint to 𝐶max = 100, a different optimum comparison is obtained as shown on 

Figure 2.6 and in Table 2.2. 
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Figure 2.6: Evolution of mapping time with the design variables (example 2) 

 

As seen on Figure 2.6, the infeasible space due to the cost constraint now occupies 

a larger portion of the design space. Indeed, owing to the quadratic cost term, the cost of 

the system now increases more importantly with the velocity design variable. 
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Table 2.2: Example 2 designs 

Design characteristic  Sequential optimization  Global optimization 

Number of agents  2  7 

Individual velocity (m/s)  10  4.30 

Mission time  8 min 55 s  7 min 01 s 

Total cost (notional cost units)  96  99.93 

 

This time, the optimization tends to favor numerality over individual performance 

by having many agents with a moderate velocity. One will note that the simultaneous 

optimization technique offers an improvement of 27% in performance compared to the 

sequential optimization scheme. 

 

This example helps illustrate and understand the idea of tradeoffs between 

numerality and individual performance, main component of this research. The agents are 

modeled with one variable and the group behavior is fixed (although depending on the 

number of agents and the size of the map) and is not overcomplicated with respect to the 

complexity of the microscopic level. This is the type of tradeoff that is used in mesoscopic 

models, detailed in the next subsection. The purpose of this present work is then to build 

from this simplistic case, notably by adding additional levels of complexity: heterogeneity, 

agent behavior, swarm intelligence, and possibly stochasticity and uncertainty. 

2.2 Bridging the gap from microscopic to macroscopic level 

The first principal research axis identified in this problem formulation is the lack 

of a link between the behavior of the agents and the comportment of the group (Equation 

1.2). This existing gap must be bridged in order to be able to obtain optimal group designs. 
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The emergent field of swarm engineering tries to address this design difficulty of multi-

robot systems and to standardize their design. Introduced by [142], the term of swarm 

engineering refers to the emergent discipline aimed at forming systematic processes to 

model, design, realize, verify, validate, operate, and maintain swarm robotics systems [95] 

and to a larger extent, multi-robot systems. The formal method of swarm engineering as 

defined by [142] consists of two steps: the generation of an appropriate group-based swarm 

condition, and the generation of a behavior for each swarm agent that satisfies this 

condition. Considering swarm engineering in a broader sense, the formalism of systems of 

systems engineering provides a first approach to understand what tools and methods are 

required in order to design a group of robots. Swarm engineering being a relatively new 

field, it exhibits a certain lack of maturity which adds many limitations to its current 

possibilities. In this section, a review of these restraints is proposed and by focusing on a 

few of them, research questions are introduced. A multitude of specific swarm design 

methodologies are then reviewed to gain depth in understanding swarm engineering and 

possibly give first elements of response to the research questions. 

2.2.1 Swarm engineering: a lack of maturity 

It is not before the year 2000 that a first design procedure focused on multi-robot 

systems and more particularly swarming systems was formalized by [142]. This makes the 

field of swarm engineering quite recent and at a very early stage of its development. 

Subsequently, this emergent discipline experiences several shortcomings which hampers 

its understanding and delays its usage in civil applications. 
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To begin with, the development of swarm engineering is not homogeneous. The 

areas of requirements analysis, performance measurement and maintenance are clearly 

lagging behind more popular topics such as design and analysis which concentrate most of 

the progress of the field [95]. Even in design and analysis, much emphasis is put on the 

behavior of the individual agents and the behavior of the swarm, giving little attention to 

the physical design of the robots [130]. Most of the time, a generic swarm of robots is built 

focusing on the simplicity of the agents and their means of local interactions (cameras and 

markers, infrared sensors, Wi-Fi…).  

 

Once the swarm is built, the research focuses mainly on the implementation of new 

behaviors for the swarm. It is likely that once swarming systems are introduced into real-

world applications, maintenance and performance areas will start being a concern for the 

industry and this interest will transfer to the research community. 

 

The development of design approaches is also held back by a lack of established 

standard metrics to evaluate the performance of robot swarms. Few metrics are defined and 

most of them are tightly related to specific applications and cannot be reused. For instance, 

when considering a mapping and exploration application, relevant metrics can be the area 

covered, the quality of the map, and the time to cover this area. However for construction 

or pattern formation applications, such metrics would not make a lot of sense. This 

particularity makes the design of swarming systems very application-specific, preventing 

the establishment of a generic design method. 
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Additionally, the field is missing testbed applications and publicly available 

datasets for the research community. These are essentials in order to test and benchmark 

new design methods and algorithms. While foraging is commonly used as a test 

application, it is limited and lacks an established standard scenario [95] that could be used 

by researchers. Construction, also commonly used as a testbed, exhibits similar limitations. 

This lack of standards hinders the comparison of different swarm robotics systems. 

 

Swarm engineering is also impeded by the absence of an established simulator 

which could be an enabler for the research community. An ideal simulator for multi-robot 

purposes should first encompass features from typical robotics simulators: enable 3D 

simulations and be modular to accommodate any type of robots. It should also be scalable 

with respect to the number of robots. This is the main constraint for multi-robot simulators 

as swarm robotics in particular might require an extremely high number of agents. In 

addition, modularity is essential to be able to accommodate different scenarios. Finally, the 

ideal swarm engineering simulator should be open-source to foster development by the 

research community. Many mobile robotic simulators already exist and may be used for 

experiments with multi-robot systems. Their differences lie mainly in their technical 

characteristics but also the cost of their license [96]. These principal suites of simulators as 

reviewed by [96] and [143] are summarized in Table 2.3 with their capabilities. 
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Table 2.3: Overview of multi-robot simulators 

Simulator  3D  Scalability  Modularity  Open-source 

ARIA    ●●  ●  YES 

CARMEN      ●●●  YES 

Gazebo  ●●●  ●  ●●●  YES 

Microsoft Robotics Studio  ●●●  ●  ●●●  NO 

MissionLab  ●●●  ●    YES 

Pyro  ●●●    ●●  YES 

Stage    ●●●    YES 

SwarmBot3D  ●●●  ●●●    YES 

TeamBots    ●    YES 

Webots  ●●●  ●  ●●  NO 

 

The legend used for this table is the following: 

 

 

The development environments which are the most used include Stage which 

provides 2D simulation capabilities with a runtime scaling mostly linearly with the number 

of robots up to 100,000. Gazebo is a 3D open-source simulator which notably includes 

rigid-body physics and comprises a large library of robots and sensors. Webots is a 

commercial mobile robotics simulator providing the same features and enabling multi-

robot simulations for up to 100 robots. Microsoft Robotics Studio is another simulator 

developed by Microsoft Corporation. It enables multi-robot simulation but suffers from 

discontinued official support since 2012. Finally, SwarmBot3D is a simulator designed 

● Feature may be obtained by extension 

●● Feature partially/decently supported 

●●● Feature completely supported 
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specifically for the S-Bot platform of the SwarmBot project. It can be seen that none of 

these simulator offers all the characteristics required for swarm engineering simulations. 

As Table 2.3 also suggests, no existing solution proposes to address all the enabling 

capabilities of the ideal multi-robot simulator. 

 

Furthermore, highly non-linear relations from agent parameters to group behavior 

[144] result in a lack of top-down design methods [95] and establish a gap in the design 

flow. Indeed, as stated in [145], “one challenge in understanding self-organizing systems 

is the micro–macro link, i.e., determining the relationship between global and local 

behavior patterns and vice versa”. [96] also states that “no general method exists to go from 

the individuals to the group behavior”. Due to the multitude of concurrent interactions 

among multiple agents, the non-linear relationship between the variation in a design 

parameter and its resultant repercussion on the group behavior is non-intuitive and hard to 

control [144]. 

 

 

Figure 2.7: Missing link between macroscopic and microscopic level 

Macroscopic 
(Swarm)

?

Microscopic 
(Agent)



91 

 

This lack of a link between macroscopic and microscopic levels of a swarm is the 

main obstacle faced by swarm engineering and the intuition of the human designer still 

remains the main ingredient in the development of swarming systems [95]. 

Optimization of the different attributes of the group and its individual agents is part 

of the traditional design process and the manifestation of this gap is a sequential 

optimization with suboptimal results. This deficiency results in current methods of swarm 

engineering tackling the design of swarming systems by performing a serialized 

optimization: the microscopic level first (the agents), and then the macroscopic level (the 

swarm). As a matter of fact, some of the research community also use in their swarms 

existing platforms which are already optimized for their respective and completely 

different missions. Amongst many other examples, [133] has the system designer creating 

multi-robot systems by picking from a pool of available robots. [146] alters pre-existing 

platforms to obtain a multi-robot system suited to the considered mission. [147] prepares a 

swarming system for a competition using the most common quadcopter for the general 

public: the A.R. Parrot Drone. These missions generally greatly differ in scope with the 

type of mission that the swarm has to accomplish. Using these platforms, researchers then 

attempt to obtain an optimal swarm by completing a second round of optimization. This 

sequential process results in suboptimal designs since on one hand, it is unlikely that the 

swarm takes advantage of the full capacities of its constituent agents, and on the other hand 

the agents were never designed fully as the integral part of a swarm. In his study for 

architecting systems, [125] is one of the first to highlight this incoherence in the design 

process back in the early days of systems of systems engineering. Focusing on 

communication aspects, it is stated that the resulting multi-robot system might be 



92 

 

comprised of agents which were not designed to fit the whole system. They are integrated 

after their own design is finished.  

While the lack of this micro-macro link is identified by many in the research 

community [95], [96], [144], [145], there is no record of an attempt to quantify the possible 

improvements which could be achieved in design performance if such a link was to be 

established. This observation leads to the first research question: 

 

Research question 1 

Can multi-robot systems designs be improved by linking 

microscopic and macroscopic levels? 

 

Managing to link microscopic and macroscopic levels of a swarm in terms of design 

optimization would consist in replacing the sequential optimization method with what is 

generally referred to as a more “global” or “simultaneous” optimization approach. Hence, 

to articulate a hypothesis regarding research question 1, the differences between sequential 

optimization and global optimization are reviewed in detail. 

 

This segregation between sequential and global optimization typically appears in 

Multidisciplinary Design Optimization (MDO), a field used in the design of complex 

systems. Swarms constitute a good example of such systems as they are “an assembly of 

interacting members that is difficult to understand as a whole” [148]. Moreover, they are 

characterized by an emergent behavior, a large number of design variables, and the 

nonlinearity of the individual interactions. With the intention of coherently exploiting the 
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synergism of these mutually interacting components, MDO partitions the problem into 

subsystems based on physical boundaries, functionality, disciplines, or even organizational 

structure of a company. For the scope of this work on group robotics, the system is 

decomposed based on physical boundaries: the different robots composing the swarm. 

MDO problems are different from classical optimization problems as the design variables 

feed into multiple analyses, the objective function depends on several analysis outputs, and 

interdependencies might exist between the different analysis functions. 

Sequential optimization involves optimizing the different constituents of a system 

independently and sequentially, with their own set of constraints and cost function. For a 

robotic swarm for instance, it means that the agents of the swarm are first optimized with 

respect to individual mission requirements, the whole swarm is then optimized using this 

set of pre-optimized agents, or vice-versa (Figure 2.8). On the other hand, global 

optimization or simultaneous optimization tends to consider all constituents at once with 

all their interactions, in order to derive an optimal complete system (Figure 2.9). 
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Figure 2.8: Example of sequential swarm design optimization 

 

 

Figure 2.9: Example of global swarm design optimization 
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A growing number of methods of MDO are available to perform global 

optimization and they can be divided into two classes: monolithic or single-level 

formulations, and multilevel formulations [149]. Single-level techniques use a single 

optimizer at the system level and distribute the analysis to the partitioned subsystems. Such 

methods tend to be easy to implement but they might not scale well for industrial settings 

and for very large problems with many disciplines. On the other hand, multilevel methods 

use an optimizer at the system level in addition to multiple other optimizers at the 

subsystem level. By benchmarking different MDO algorithms, [149] clearly states that 

strategies such as sequential optimization are often not able to find the true optimum of a 

system and it is underlined that interactions between the components of the system must 

be properly accounted for. This last statement is presumed to be true for multi-robot 

systems, and the previous introductory example offers evidence of this suboptimal 

behavior. One goal of this thesis is to examine this widely held assumption when applied 

to multi-robot systems. 

This statement is corroborated by [150] on an example of aerospace design: this 

partial (sequential) optimization approach does not lead to the optimal design of the 

complete system, except in special cases. On Figure 2.10, a wing is to be designed in order 

to achieve a minimum value of an aggregate function of weight and drag. The system 

optimizer acts on the span which is given to the aerodynamics group in charge of 

minimizing the drag by determining an optimal twist distribution. The aerodynamics loads 

acting on the wing are then forwarded to the structures group, in charge of minimizing the 

weight of the wing with respect to the skin thickness. 
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Figure 2.10: Wing design by sequential disciplinary optimization 

 

This process is iterated for different values of the wing span until an “optimum” 

design is reached. It is shown that this type of sequential procedure yields 11% more drag 

than an optimal solution derived with a global optimization technique [150]. Similar 

conclusions are drawn from aeroelastic and dynamics considerations. This type of 

optimization procedure is notably used in [151] where a bi-level algorithm is used: one 

level dedicated to the design characteristics and high-level variables (material, curvature, 

global thickness, struts…), and a second level reserved for design proportions (skin 

thickness, cross-sections…). 

 

Reference [152] also constated the possible improvements achievable through 

simultaneous optimization by applying it to suborbital vehicles design programs. It was 

shown that programs that do not properly account for the interactions between their 

different business divisions (hence using sequential optimization schemes) proposed very 

different programs than the optimal ones found by simultaneous optimization. An 

System 
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improvement of up to 14.1% was announced as a result of using a global optimization 

scheme as opposed to a sequential one. 

 

The difference between sequential and global optimization is also well illustrated 

in the field of industrial engineering, and particularly for supply chain management 

problematics. In such problems, a system of suppliers, manufacturers, transportation, 

distributors, and vendors operate to transform raw materials to final products and supply 

those products to customers. Optimization is applied so that each component of the chain 

orders its necessary input in the right quantities, in order to be able to deliver the expected 

output at the right time. The goal of supply chain management is then to minimize the cost 

of the complete system despite conflicting objectives from the different facilities at stake 

[153]. The most evident of these tradeoffs is that the customer desires a short time to 

delivery at low prices while the warehouses focus on having low inventory to reduce their 

operating costs. In this context, [154] compares sequential optimization to global 

optimization on a simplified supply chain. In the first case, the agents of the chain derive 

their respective optimal solution independently of the others whereas a complete integrated 

supply chain system is considered for the second case (Figure 2.11). 
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(a) Sequential optimization 

 

 

(b) Global optimization 

 

Figure 2.11: Optimization in supply chain management 

 

Hence in sequential management, each party optimizes its own profit with almost 

no regard to how its decisions affect the other members of the supply chain. On the other 

hand, a global optimization scheme tries to find what is best for the entire supply chain. 

Although the global optimization scheme is harder to put in place for supply chain 

management since all parties have to agree to share their inventory information, it results 

in better performance of the overall system than in the sequential optimization case. A total 

joint profit increase of 2.31% is demonstrated in the example of [154] and the results show 

that the global optimization scheme is better than the sequential one. 

 

In the light of this review of MDO, it appears that if a link can be formulated 

between microscopic level and macroscopic level, global optimization schemes can be 

used to optimize the design of a swarm, resulting in an improved performance when 
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compared to the sequential optimization case. This can be formulated as the following 

hypothesis: 

Hypothesis 1 

IF an approach leveraging the interdependence between 

microscopic and macroscopic levels is used 

THEN significant improvements in average performance can be 

achieved in the design of multi-robot systems compared to 

traditional sequential optimization schemes. 

 

 

To validate this hypothesis, experiment 1 is implemented to compare the 

performance of different multi-robot system designs on the same testbed mission. In 

particular, typical questions to be answered by this experiment are: 

 Can the micro-macro link provide clear benefits in multi-robot systems design? 

 How much improvement can be obtained? To a greater extent, how do the two 

methods compare? 

 In which cases are both methods yielding similar results? 

 

The first swarm design is obtained with a sequential optimization while the second 

design is derived through global optimization. This experiment is to be repeated for several 

swarm architecture choices in order to obtain clear conclusions. The necessary 

requirements for such an experiment are detailed here below: 

 Testbed mission: in this case a mapping/imaging mission (see section 3.3.4) 
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 Method to link microscopic and macroscopic level 

 Sequential optimization algorithms 

 Corresponding global optimization algorithm: for instance if a genetic algorithm is 

used for the sequential optimization, then the same type of algorithm must be used 

in the global optimization scheme. 

 

Metrics to compare the two methods are also required in terms of number of 

iterations, number of objective function evaluations, rapidity, stability, precision, and other 

relevant optimization metrics (see [155]). Based on the questions to be answered, the 

evaluation criteria for this experiment are: the percentage difference in the optimization 

function values between sequential and global optimization cases, the proportion of test 

cases where the difference is below a given limit as well as other insightful statistical 

measures of the experiment. The optimal group performance will be assessed with respect 

to the best known solution since no analytical derivation of the true optimum is feasible 

[156]. 

 

The test cases involve first optimizing a set of architectures independently for a 

testbed mission, and then optimizing a swarm composition based on these architectures for 

the testbed mission. The second step is to perform the simultaneous optimization of both 

the architectures and the swarm composition before comparing the two methods. This 

comparison is to be repeated for different architectures and mission characteristics. In 

particular, additional parameters which could be varied during the experiment may include 

the problem size, the stopping criteria of the optimization procedures, their search 
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neighborhoods, and the move selection. A failure point for this experiment consists in the 

case where both methods perform equally well or even when the global optimization 

method performs statistically worse than the sequential approach. The first validation 

criterion for hypothesis 1 is that based on statistical testing, global optimization yields a 

superior main design performance on the testbed mission at a 95% confidence level. The 

second criterion is that the computational time required is comparable to sequential 

optimization. In particular, for the proposed methodology to be used and adopted by 

designers, it is necessary to ensure that the global optimization procedure is not several 

orders of magnitude slower than the sequential optimization procedure currently used in 

the field. 

 

This experiment is designed to provide quantifiable response elements to the 

widespread claim that the absence of micro-macro link results in sub-optimal swarm 

designs. However, to be able to carry out these experiments, at least one method to link the 

microscopic level and the macroscopic level of the swarm has to be elaborated with an 

emphasis on physical design. Focusing on conceptual design, central effort for this 

research, another research question directly derives from the first research question: 

 

Research question 2 

How to link the microscopic and the macroscopic levels of a 

multi-robot system for conceptual design purposes? 
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In order to bring elements of response and formulate a hypothesis, the next section 

examines a multitude of possible design methods which could be utilized to link the 

microscopic and the macroscopic levels of a swarm. 

2.2.2 A diversity of design methods 

Swarms include some additional particularities (see 1.3.1) which require dedicated 

techniques for their design. Such design and analysis techniques fall under the definition 

of swarm engineering as per [142] and are presented in this section based on the taxonomies 

proposed by [95] (see Figure 2.12). 

 

 

Figure 2.12: Swarm engineering methods taxonomy [95] 
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The next two subsections examine both the design and analysis methods as they 

represent possibilities in solving the micro-macro link problem. In particular, it is shown 

that none of these methods currently answers exactly the research question envisaged in 

the scope of this work. Design methods focus mainly on the design of behaviors as opposed 

to physical design, and the analysis methods are completely uncoupled or unfeasible, hence 

lacking of a link between microscopic level and macroscopic level of a swarm. 

2.2.2.1 Design methods 

The goal of the design steps is to create a swarm in terms of architecture, its 

vehicles, as well as its functioning so that the group meets certain criteria or accomplishes 

a given mission based on initial requirements. The aim of this section is to show that despite 

an apparently high number of design methods, swarm engineering actually focuses mostly 

on the behavioral design of the swarm, leaving aside the physical design of the agents, 

main focus of this present work. 

2.2.2.1.1 System of systems approach 

The unique engineering challenges presented by robotic swarms seem to 

correspond to the ones addressed by systems of systems engineering. Indeed, the goal in 

designing a robotics swarm is to optimize the design of the swarm itself but also of its 

agents individually so that they fit perfectly into the group. This section will present a 

typical SoS approach to show how this field can be used to design multi-robot systems and 

possibly swarm systems. A tentative definition of systems of systems given by [157] is: 
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Groups of systems, each of which individually provides its own mission 

capability, that can be operated collectively to achieve an independent, 

and usually larger, common mission capability. 

 

This designation is to some extent reminiscent of the characterization given for 

swarm robotics, hence consolidating a link between SoS engineering and swarm 

engineering. The field of SoS engineering is an arising interdisciplinary methodology 

focused on transforming individual capabilities into system of systems solutions [158]. In 

particular, SoS engineering ensures that individual systems function as autonomous 

constituents of one or more SoS, providing appropriate functional capabilities. The 

management and operations part of SoS makes sure that political, financial, legal, 

technical, social, operational, and organizational factors are considered. This includes the 

perspectives and relationships of the stakeholders. 

 

 The main challenges presented by [159] which are of main concern for system of 

systems engineering are: 

 Complexity is a major issue 

 Management can overshadow engineering 

 Initial requirements are likely to be ambiguous 

 System elements operate independently 

 Fuzzy boundaries cause confusion 

 System elements have different life cycles 

 SoS engineering is never finished 
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The individual systems are not necessarily designed with the goals of the whole 

SoS in mind and the field also has to focus on the flow of data and resources between 

systems that were most probably not designed to be interfaced. Moreover, testing and 

evaluation of the overall system can prove difficult owing to the vague performance 

criteria. Finally, system of systems engineering also emphasizes the importance of political 

aspects of the design process. Indeed, system of systems are generally funded by a broad 

range of sources due to the scope of such projects, making it difficult to align the goals of 

each individual funding party with the overall SoS purpose. 

 

In terms of design methods, SoS engineering first concentrates a large effort on 

“architecting” [158], [160]: describing the fundamental organization of the system and its 

components as well as their relationships to each other and the environment. The 

architecture is usually established using a framework which defines specifications for each 

“view”. Each view offers a unique perspective about the system and can be focused on 

management or integration for instance. The main advantage of this step is to provide a 

mean to organize, communicate, and document details about the systems, establish a 

planning, and detect possible pitfalls in early designs. Key products of this phase are the 

identification of requirements for the modeling and simulation step, a means of 

communication between stakeholders and engineers and an evaluation of risks and costs. 

 Modeling and simulation is then used as a second principal step to estimate 

performance metrics and evaluate the goodness of a design alternative. The views 

previously created help provide details needed for modeling the chosen architecture. The 
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link between the products of an architecture and a dynamic modeling and simulation 

software is often established through an “executable architecture” [158]. To enable 

executable architecting, the products from the architecture must be standardized, computer-

readable, consistent, and contain the information required by the modeling tools. Figure 

2.13 summarizes the design process used in architecture-based SoS engineering. 

 

 

Figure 2.13: Architecture-based SoS engineering process 

 

Modeling for SoS can exhibit some challenges due to the complexity and emergent 

behavior required for the mission to accomplish, the stochastic and dynamic nature of the 

requirements, and non-linearity. 

 Surrogate modeling may be used in the process and presents its own challenges 

since as it was stated previously, the relation and propagation from individual agent 

parameter (microscopic level input) to the overall swarm behavior (macroscopic level 

output) is highly non-linear. Moreover, designers are very often interested in having a time-

dependent description of the behavior of the swarm rather than a non-dynamic model. 

Hence, particular advanced surrogate modeling techniques and their associated Design of 

Experiments (DoE) procedures are used for SoS engineering. Such SoS modeling 
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techniques include mathematical graphs, Markov chains, discrete event simulations, 

system dynamics, and agent-based modeling [158]. 

Finally, dealing with SoS engineering as opposed to classical systems engineering 

can result in the generation of a very high number of data points and gigabytes of 

information. Making sense of this data can reveal challenging and visual analytics tools 

may be used as one of the last steps of the SoS engineering process to handle this type of 

datasets. The purpose of such a step is to facilitate analytical reasoning for the decision-

makers and provide deep insights by using a broad spectrum of visual representations. 

Analysts can then observe the data in multiple ways and also interact with it. 

 

 This section has drawn a parallel between the design of swarming systems and the 

field of systems of systems engineering.  They share the same technical requirements of 

optimizing individual systems in order for them to fit in a bigger system. The challenges 

faced in the design of swarm robotics systems are similar to the ones encountered in SoS 

engineering. Hence the techniques of SoS engineering can possibly apply to swarming 

systems. An architecture-based design process was presented and justifies how some of its 

tools are relevant for swarm engineering, in particular modeling and simulation. However, 

such methods are not easily automated and tend to put more emphasis on managerial and 

operational factors than swarm engineering does. Keeping the methodology of SoS 

engineering in mind, swarm engineering also proposes a variety of swarm design methods 

which are presented in the next section. 
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2.2.2.1.2 Behavior-based design 

As the most common design method, behavior-based design consists in an iterative 

process between the microscopic level and the macroscopic level of the swarm. The 

individual behavior of each robot is implemented and improved until the desired collective 

behavior is obtained. This type of approach enables to base the design on the behaviors 

observed in animal swarms which can ease the design process since mathematical models 

may already be available. This design method is based on trial and error and is typically a 

bottom-up process. Several techniques of behavior-based design are introduced in this 

subsection. 

 

Probabilistic finite state machine design: during its mission, a robot uses the history of 

its sensors inputs to support its decision process and change its state. Such behavior can be 

modeled with Probabilistic Finite State Machines (PFSMs) where the transition between 

each state (see Figure 2.14 (a)) occurs based on a probability which can be fixed or change 

over time. 

 

 

(a) Example of PFSM (b) Response threshold function 

Figure 2.14: Probabilistic finite state machine design 
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For instance, [161] uses a fixed probability to implement an aggregation behavior 

in which robots decide to move towards or away from other robots based on a fixed 

probability. For time-varying or more generally non-constant probability, a mathematical 

function depending on the parameters of the system is used such as the common response 

threshold function (Figure 2.14 (b)) which is widely used for decision-making and task 

allocation [95]. 

 

Virtual physics-based design: in this design method inspired by physics, each robot is 

considered as a virtual particle exerting virtual forces on its counterparts. Individuals of the 

swarm are also subjected to virtual forces emanating from the environment. The goals of 

the mission are associated with attractive forces while obstacles may be modeled with 

repulsive forces. For instance in the physicomimetics framework, a robot computes a 

virtual force vector as 𝑓 = ∑ 𝑓𝑖(𝑑𝑖)𝑒
𝑗𝜃𝑖𝑛

𝑖=1  where 휃𝑖 and 𝑑𝑖 are the azimuth and distance of 

the 𝑖-th perceived obstacle or robot. The function 𝑓𝑖 derives from an artificial potential 

function such as the Lennard-Jones potential (Figure 2.15) where the potential increases 

close to the obstacle or robot. 

  

(a) Virtual physics based swarm 

representation 
(b) Lennard-Jones potential function 

Figure 2.15: Virtual physics-based design 
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The stability and robustness of such methods can be proved theoretically and vector 

quantities are easily added to obtain global behaviors. Moreover, a single mathematical 

expression is required to account for the sensors inputs and translate these into actions. 

 

Other design methods: other behavior-based methods are also presented by [95] such as 

the Protoswarm scripting language enabling the automatic generation of individual 

behavior scripts from a collective behavior. Another method focusing on the design of the 

swarm as a whole – and not only on the behavior design, is the top-down method from 

[162]. In this method swarm properties are first defined before the implementation of a 

macroscopic model. A model checker then verifies the properties in the model before a 

simulation implementation. Finally, the whole system is tested on real robots. This 

methodology helps verifying formally that the final system satisfies the established 

requirements, but remains a tedious iterative method based on trial and error. 

2.2.2.1.3 Automatic design 

Automatic design methods were created in the hope of reducing the effort of 

developers when trying to create collective behaviors. They are further classified into 

multi-robot reinforcement learning and evolutionary robotics. 

 

Multi-robot reinforcement learning: robots can use reinforcement learning methods to 

learn a behavior through trial and error based on interactions with the environment. Positive 

or negative feedback is received by the robot based on its actions, encouraging a certain 

type of them and finally converging into an overall optimal policy. Optimality is considered 

here with respect to the policy that provides maximum reward from the interactions with 
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the environment. Reinforcement learning hence enables the generation of behaviors 

without an explicit implementation from the developer.  

Using this principle with multi-robot systems, the difficulty lies mainly into 

dividing the global reward for the swarm into individual rewards for its agents: this is 

known as the spatial credit assignment. In addition, other factors limit the feasibility of 

multi-robot reinforcement learning. First, the considered state space is enormous since at a 

given step of the learning process, the possible actions are virtually infinite. Indeed, all 

possible decisions at the macroscopic level should be considered as well as all possible 

actions from each of its robots, making the number of possibilities very high. Moreover, 

the perception of the environment is imperfect and this latter is non-stationary as it evolves 

due to the actions of the robots. 

 

Evolutionary robotics: as another concept inspired by nature, evolutionary robotics uses 

the Darwinian principle of natural selection and evolution in order to determine an optimal 

individual behavior to implement. This method refers to the steps of a classical genetic 

algorithm with individual behaviors as the individuals of the population. A random 

population is first generated and evolves through cross-over and mutation until the fitness 

of the population converges. The best individual of this population can be considered as 

the best individual behavior. To evaluate the fitness of an individual of the population, the 

mission of the swarm is executed with the given individual behavior (population 

individual). Note that this particular design method is particularly suited for homogeneous 

swarms since an individual of the population is only one individual behavior. In this design 
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methodology, an individual behavior can for instance be represented as a finite state 

machine as presented earlier. 

 

 Several other design methods that do not fit in any of the two previous categories 

are presented by [95]. These methods present the same characteristic as multi-robot 

reinforcement learning and evolutionary robotics as they focus on the behavior of the 

swarm and not its physical design. For example, [163] proposed a multi-robot architecture 

named L-ALLIANCE focused on task allocation in teams of robots. 

2.2.2.2 Analysis methods 

For the analysis phase, a swarm engineer focuses on  checking in detail whether a 

given design produces the expected behavior or not. As it was mentioned in the previous 

sections, a swarm is modeled based on two different levels: the microscopic level which 

represents the single individuals of the swarm, and the macroscopic level modeling the 

characteristics of the entire group. Models which analyze swarming systems using both 

levels of interaction are still under research, especially the link between the microscopic 

level and the macroscopic level. Subsequently, the largest part of modeling techniques 

focuses on one level at a time [95]. An additional analysis technique consists in checking 

the implementation on real robots directly. 

 

Microscopic models: they model each robot individually, accounting for its interactions 

with the environment, but also with other robots. Microscopic models can have a lot of 

detail in their implementation and vary from simple point masses, 2D representations, to 

complete 3D models with physics and intricate simulations of sensors and actuators. A 
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microscopic model explicitly embodies the behavior of each individual robot and is mostly 

analyzed through simulation. A benchmark to study scalability of such models was 

proposed by [164] using the Stage simulator. It showed that for this particular case, real 

time cannot be achieved once the population size exceeds a hundred entities in the most 

constraining cases. While some noise models are available as plugins, Stage ignores sensor 

noise. The simulator ARGoS presented in [165] is a modular and efficient simulator based 

on the segregation of space into subspaces, each running on different physics engines. The 

simulators studied in Table 2.3 can also be included in the microscopic models category 

depending on the detail level used in their implementation. 

 

Macroscopic models: they focus on the swarm as a whole at a high level and do not 

consider each agent individually. A first approach to do so is to use rate and differential 

equations to model proportions of robots in the swarm and their state at a given point in 

time. However, modeling space and time dependency is difficult with such a method and 

modeling the communication between the robots can also be problematical. 

Another method of modeling the macroscopic level of a swarm is by using the 

control and stability theory. Such techniques are used mainly in order to demonstrate 

properties of the swarm such as its stability or the existence of a global behavior. For 

instance, tools used to reveal such attributes are the Lyapunov stability theory, linear 

discrete-time dynamical systems, or delay differential equations. These methods are based 

on formal mathematical formulations but require many assumptions, not always satisfied 

in robotic swarms. 
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Additional methods are described by [95] but once again focus on the high-level 

behaviors of the swarm and not on its physical properties. For instance, [166] proved the 

convergence of a social foraging behavior in the presence of noise thanks to Lyapunov 

stability theory. 

 

Mesoscopic models: closely linked to simulation, extensive microscopic models and 

especially the 3D models, might contain too much detail for the purpose of conceptual 

design as they model every sensor and actuator. Coupled with the large design space 

exploration required for design optimization, this makes the use of detailed simulations 

quite long. However, an advantage of microscopic models is that the level of detail 

included can be varied and hence, adapted to conceptual design purposes. In particular, a 

fine balance between microscopic and macroscopic level has to be used: a sort of 

mesoscopic level modeling used to fill the gap between the aggregate level approach of 

macroscopic models and the intricate detailing of microscopic techniques. 

Etymologically, the prevocalic “mes” means middle or intermediate and 

mesoscopic is usually defined as a scale between microscopic and macroscopic. The term 

mesoscopic is also found in applications other than modeling, as with the field of 

condensed matter physics for materials which length is between a quantity of atoms and 

materials measuring a few micrometers. Mesoscopic is also used in meteorology where 

mesoscale refers to weather systems smaller than cyclonic systems but larger than storm-

scale ones [167]. Indeed, the synoptic (macro) scale size is around 1,000 km, the cumulus 

(micro) scale is below 5 km of horizontal dimensions and hence, the mesoscopic scale is 

left in between for systems ranging from five to several hundred kilometers. The mesoscale 
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is even divided into smaller subclasses. In the field of fixed-wing design, the microscopic 

scale would correspond to a complete dynamic model of the aircraft possibly including 

subsystems, the macroscopic scale would correspond to first-principles energy equations 

or even an agent-based model studying the interactions between aircraft, and the 

mesoscopic scale could correspond to response surface equations as used in [160]. As a 

limited microscopic model, mesoscopic models can be thought of as surrogates of 

microscopic models. 

Such mesoscopic simulation techniques are notably used in transportation traffic 

management [168] and in Individual, Organizational, and Societal (IOS) research [169] 

focused on modeling human behavior as social units. Mesoscopic methods balance the 

required level of detail in different ways, for instance they may consider individual agents 

modeling, but not their interactions. Additional techniques used in traffic management 

include communicating cells of cars, queue-server approaches, or congregation of cars into 

packets travelling the network thanks to a speed-density function [168], [170]. Mesoscopic 

models are mainly applied when a sufficient detail of microscopic simulation is desirable 

but infeasible due to the size of the network or when the available resources in coding and 

debugging are limited. An example application to the aerospace field was proposed by 

[171] to propose a convenient modeling technique for congested airports. 

 

Real-robot analysis: due to the difficulty of simulating a system of systems and all the 

details involved, an implementation on actual robots in order to validate behaviors is 

critical. Real experiments with swarms of robots help assessing the robustness of the design 

methods with respect to the noise present in sensors and actuators – amplified and spread 
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by the number of robots. It also tests the sensibility of the design to the simplifying and 

sometimes very reducing assumptions used in the models described earlier. Some real-

robot implementations are just proofs of concept while other are extensive experiments. In 

both cases, managing such a fleet of robots presumes some important laboratory facilities 

and capabilities in buying or building a large number of platforms. Such experiments 

consume a lot of resources which explains why more than half of the research in swarm 

robotics presents simulation results without real-robot implementation. Moreover, these 

experiments are carried out in controlled environments, far from the possible mission 

conditions envisaged for real-world applications. 

 

Collective robotics systems such as swarms are hard to design and the emergent 

field of swarm engineering tries to tackle this challenging task. In addition to the SoS 

engineering procedure, specific design methods of the swarm engineering field were 

shortly presented in this section. Most of these methods created for that field actually tend 

to focus on the implementation of behaviors with little or no focus on the physical design 

and constitution of the swarm. Moreover, these methods mostly concentrate on going from 

the macroscopic level to the microscopic level in order to derive the individual behavior of 

the agents based on high-level requirements for the swarm. Finally, the analysis methods 

try to include specificities from different levels but are still largely separated by level and 

seem to fail in clearly solving for the micro-macro link, with a possible exception for 

mesoscopic methods. However, these have never been used for swarm engineering. A 

summary of the most promising techniques studied in this section is proposed in Table 2.4  
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and Table 2.5 to help choose an approach answering the second research question. This 

comparison is based on the following criteria: 

 Individual agent: quantifies whether the model is able to account for single agents 

individually. 

 Advanced individual capabilities: assesses whether the model may include a high 

level of detailed modeling for the individual agents. 

 Swarm behavior: measures if the method properly accounts for interactions 

resulting in swarm behavior. 

 Scalability: quantifies the ability of the model to maintain its performance when 

the number of agents in the swarm is increased. 

 Noise modeling: determines how easy it is to incorporate noise modeling in the 

method. 

 Can prove stability: evaluates whether the proposed method can be used to derive 

the analytical stability of the swarm behavior. 

 Modularity: rates how the model can be adapted to different types of swarming 

missions. 

 Implementation easiness: quantify how easy it is to use or implement the proposed 

method. For instance, having to learn a new coding language results in a low score.
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Table 2.4: Design methods review 

Method 

 
Advanced 

individual 

capabilities 

 
Swarm 

behavior 

 

Scalable 

 
Noise 

modeling 

 
Can 

prove 

stability 

 

Modularity 

 
Implementation 

easiness 

 
Physical 

design 

Behavior-based design methods 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Probabilistic finite state machine design 
 

●● 
 

●● 
 

●●● 
 

● 
 

 
 

● 
 

●● 
 

● 

Virtual physics-based design 
 

● 
 

●●● 
 

●●● 
 

●● 
 

●●● 
 

● 
 

●●● 
 

● 

Protoswarm 
 

●●● 
 

●● 
 

●●● 
 

●● 
 

 
 

●● 
 

● 
 

● 

Brambilla et al. (2012) 
 

●● 
 

●●● 
 

● 
 

●●● 
 

●● 
 

●● 
 

● 
 

● 

Automatic design methods 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Reinforcement learning 
 

●● 
 

●●● 
 

● 
 

●● 
 

● 
 

● 
 

● 
 

● 

Evolutionary robotics 
 

 
 

●● 
 

●●● 
 

●● 
 

 
 

●● 
 

●● 
 

● 

ALLIANCE (Parker 1996) 
 

●● 
 

●● 
 

●●● 
 

● 
 

 
 

●●● 
 

● 
 

● 
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Table 2.5: Analysis methods review 

Method 
Individual 

agent 

Advanced 

individual 

capabilities 

Swarm 

behavior 
Scalability Noise modeling 

Can prove 

stability 
Modularity 

Implementation 

easiness 

Microscopic level         

Point masses model ●●●  ●● ●●●   ● ●●● 

2D models ●●● ● ●● ●● ●●●   ●●● 

3D models ●●● ●●● ●●● ● ●●●   ●● 

Vaughan (2008) ●●● ●● ●●● ● ●●●   ●● 

Pinciroli et al. (2012) ●● ●● ●● ●●●   ●● ● 

SwarmBot3D ●●● ●●● ●●● ●●● ●    

Mesoscopic level ●●● ●● ●● ●● ●●  ●● ●● 

Macroscopic level         

Rate and differential 

equations ● ● ●●● ●●● ●● ●●●  ● 

Classical control and 

stability ● ● ●●● ●●● ● ●●●  ● 

Liu and Passino 

(2004) ● ● ●●● ●●● ●●● ●●●  ● 

Real-robot analysis ●●● ●●● ●●● ● ●●    
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From Table 2.4, design methods seem to provide good capabilities in terms of 

modeling a swarm behavior and most of them are quite scalable with the number of agents 

in the swarm. However, they do not account very well for the physical design of the agents 

since, as the previous paragraphs explained, they tend to primarily focus on behavior design 

[130]. On the other hand, analysis methods (Table 2.5) do consider the physical properties 

of the agents with a sufficient level of detail, especially microscopic models and real-robot 

analyses. 

First, macroscopic models account very well for swarm behavior requirements as 

they try to follow a top-down approach. Often formulated as pure mathematical models, 

they are very scalable and may be used to derive certain analytical properties of the swarm 

such as its stability. However, such models are not the easiest to implement and they exhibit 

a lack of detail for the modeling of the individual agents. 

Real-robot analysis is a very precise modeling technique since it performs 

experiments and missions with real robots to refine the design of the swarm. Although this 

method accounts pretty well for sensors noise and other experiment uncertainties, it 

remains impractical due to the time and cost commitment, especially in a conceptual design 

phase. 

Besides, microscopic models represent the agents with great detail but due to the 

associated computational cost, they fail to scale efficiently with the number of agents. 

Moreover, the few microscopic methods able to scale up properly are designed for very 

specific types of missions and hence fail in the modularity category. 

On the other hand, mesoscopic techniques are a tradeoff between modeling 

simplicity and adequate detail considerations. Such techniques usually describe the agents 



121 

 

at a relatively high level of detail, putting less emphasis on their behavior and their 

interactions which may be represented by macroscopic models. This type of detail balance 

is matching quite well with one of the intentions established earlier on: putting emphasis 

on the physical design of multi-robot systems at a conceptual design stage. 

 

The previous observations based on a literature review of existing design 

techniques for group robotics indicate that moderate microscopic models, also known as 

mesoscopic models, seem the most adapted solution to solve the micro-macro link issue 

for conceptual design. Indeed, while macroscopic models have the ability to simulate very 

large groups of agents, they lack the level of detail required to account for the physical 

design of robots. On the other hand, microscopic models are able to precisely model the 

responses of individual agents but depend on many parameters, require extensive coding 

and calibration [172], and are limited in scalability owing to their computational cost. 

Originally used for transportation models and societal research, mesoscopic models fill the 

gap by providing modeling for individual agents while constraining the interactional 

behavior. They tend to have very strong capabilities for the modeling of both the agents 

and the swarm, and some of them also scale properly with the number of agents: key 

requirements to establish a micro-macro link in early design phases. This leads to the 

formulation of the following hypothesis: 
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Hypothesis 2 

IF a mesoscopic approach leveraging the speed of macroscopic 

models and the accuracy of microscopic models is used 

THEN microscopic and macroscopic levels can be efficiently 

linked for conceptual design purposes 

 

The experiment formulated with the purpose of validating this hypothesis is 

described here below. Questions to be answered by this experiment include: 

 How well does this apply to the conceptual design of multi-robot systems? 

 In particular, is the approach fast enough for the exploration of a multi-architecture 

multi-level design space? 

 How does this compare to other design techniques? (microscopic and macroscopic 

approaches) 

 

Failure points for this experiment include cases when the simulation-based 

mesoscopic approach performs worse than microscopic or macroscopic methods from the 

literature. This is considered with respect to metrics relevant to conceptual design such as 

rapidity and precision. When compared with the mesoscopic approach, it is specifically 

expected that microscopic models perform much slower and with greater accuracy, and 

that macroscopic models perform much faster but with quite poorer accuracy. The accuracy 

metric is estimated based on whether or not the solution found by the approach is close 

enough to the performance of the real system. Note that random iteration cases can be 

tested on all methods to conclude on the rapidity of each one of them. However, for 
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complete insights on conceptual design, the whole optimization scheme has to be 

eventually considered. A set of validation criteria for experiment 2 is the following: 

 The mesoscopic approach is not slower than current multi-robotics systems design 

space exploration methods 

 The mesoscopic model of the tested mission is not slower than the microscopic 

model 

 The achieved fidelity is sufficient for conceptual design purposes (20 to 25% 

validation error) 

 The mesoscopic model of the tested mission is not less precise than the 

macroscopic model 

 Ideally, the mesoscopic model speed and accuracy are the “average” of those of 

the microscopic and the macroscopic level 

 

Required implementations for this experiment are: 

 The testbed mission (see section 3.3.4) 

 Mesoscopic model for a canonical mission: this model includes a detailed mission 

analysis for the microscopic level but simple group dynamics for the macroscopic 

level 

 Microscopic and macroscopic models for the testbed mission for comparison 

purposes 

 A swarm design space exploration technique, detailed in the following section 
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2.3 Exploring a large design space 

As identified with the research challenges mentioned in the formulation of the 

research objective, the design of a group of robots quickly generates an extremely large 

design space (Figure 1.37 page 70). This design space is multi-architecture as several types 

of vehicles are considered, and also multi-level since not only there is a design space for 

swarm design variables at the macroscopic level (number of agents and control scheme for 

instance), but also for individual agents at the microscopic level (number of rotors and type 

of battery for example). A pertinent design space exploration technique must then be 

considered to account for this particularity and lead to an optimum swarm design. Before 

proceeding further on design space exploration techniques, the principal terms relevant 

with such a literature review must be clearly defined [173]: 

 Features: functions or physical elements constituting a concept (for instance the 

wing) 

 Option: a technical possibility in implementing a feature (for example a delta wing) 

 Alternative: a given set of design variables which are sufficient to fully define a 

concept 

 Architecture: a group of alternatives that can be described by the same design 

variables (multirotors for instance) 

 Configuration: a given set of design variables that freezes the design of a given 

architecture (for example, a multirotor with 4 rotors, a battery of type LiPo and 

700mAh capacity, arms of 10 cm long…) 
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As identified by [173], the literature distinguishes three main approaches to design 

space exploration: typical design process, architecture selection, and architecture 

configuration optimization. 

 

The typical design process as mentioned by [173] is based on the infusion of 

technologies on existing baselines used as a reference for enhanced designs. These methods 

notably include top-down approaches such as Technology Impact Forecasting (TIF) [174], 

and bottom-up techniques similar to Technology Identification Evaluation Selection 

(TIES) [175]. These procedures try to reduce the overall risk and uncertainty by using very 

detailed baseline models selected by experts. However, this practice restrains the 

exploration of the design space to a limited local window around this baseline (Figure 

2.16). The multitude of existing designs in the robotics field calls for broader design space 

explorations in terms of architectures selection without the limitations brought by a single 

baseline. Some exploration methods such as the one proposed by [176] require the 

designers to manually input the different architectures before optimization steps. Other 

architecture exploration methods such as [177], give advantage to a systematic generation 

and comparison of architectures without enabling architecture optimization. Inspired by 

the representations of [173], Figure 2.16 summarizes the capabilities of the three 

approaches to realize that no existing techniques enable for a dense enough exploration of 

the design space. Each patch represents an architecture and its size translates into the 

coverage of the design space proposed by the exploration technique and its different 

configurations. 
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Figure 2.16: Capabilities of current design space exploration techniques 

 

The typical design process offers a very detailed design space exploration but very 

limited in terms of coverage due to limited risk-taking. Architecture comparison methods 

study many architectures but at a poor level of detail, often dictated by qualitative 

assessments [173], and rarely considering more than one configuration. Finally, 

architectures optimization techniques offer a better coverage around a few baseline 

architectures at an intermediate detail level and with many configurations. Note that these 

observations hold true for the different levels of the considered design space. 

 

This literature review shows that there is currently no adequate method for properly 

covering a multi-architecture multi-level design space for multi-robotics. This deficiency 

identified in existing approaches leads to a third research question: 
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Research question 3 

How can current conceptual design methods be adapted to account for 

multi-architecture multi-level design space exploration? 

 

As suggested by [173], a combination of architecture comparison and architecture 

optimization methods would potentially provide the ability to fully explore the whole 

design space with a proper coverage. Such a technique would be able to compare as many 

architectures as with the comparison approach while providing a decent coverage for each 

of these architecture thanks to the optimization step. Moreover, detailed physics-based 

models would enable for an accurate level of detail (Figure 2.17).  

 

 

Figure 2.17: [173] proposed approach 
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In particular, this method proposes solutions to some of the challenges mentioned 

here above and to the limitations of each of the existing approaches. First, the set of design 

variables describing the different alternatives of the “architectures comparison” method 

might not be the same for the different architectures. Moreover, each architecture might 

require its own optimization technique. Indeed, several baselines exist due to the possible 

heterogeneity of the multi-robot system and the design space is quite scattered, from well-

known quadrotors to flapping wing designs. This prevents the use of a single optimization 

algorithm which would have to both optimize architectures and compare them at the 

macroscopic level. The architectures comparison method uses weak optimization processes 

which use a set of generic variables common to all considered architectures. These 

techniques are usually not able to precisely capture the different performance trends of 

each architecture. On the other hand, architecture optimization techniques focus on a subset 

of architectures which are described by the same design variables. Comparing these two 

philosophies, a tradeoff appears between the number of architectures considered and the 

achievable level of detail. The methodology proposed by [173] is able to systematically 

generate alternatives for a single-level design space, and also optimize alternatives 

described by different design variables. However, this method has to be adapted to the 

design space of swarming systems, characterized by multiple levels in addition to multiple 

architectures. Moreover, due to the extreme proportions of the design space, the accurate 

modeling and simulation environments recommended by [173] cannot be implemented for 

this work and mesoscopic models have to be considered instead. This proposed modified 

approach is illustrated on Figure 2.18. 
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Figure 2.18: Proposed approach 

 

After this brief explanation of the proposed approach philosophy, the third research 

question may be broken down into two sub research questions focusing first on the 

generation of alternatives and then on the optimization of the architectures, detailed in the 

next subsections. 

2.3.1 Generating alternatives in a multi-architecture multi-level design space 

This first step has to provide the ability to generate alternatives which might not 

have been studied yet and cannot consist in the sole enumeration of existing architectures. 

In addition, one has to keep in mind that the alternatives are generated in order to be later 

optimized. This optimization process might possibly be computationally expensive and as 

a consequence, the number of generated alternatives should ideally be minimized. As a 

consequence, full factorial or other large designs of experiments (DoEs) can be excluded. 

Moreover, during the generation of alternatives, the number of possibilities may be reduced 
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by considering compatibility between the different choices involved. For instance, a laser 

range finder sensor, usually quite heavy, might not be compatible with ornithopter designs 

which are typically tiny robots. This is well illustrated by the taxonomy of [178] shown on 

Figure 2.19. 

 

 

Figure 2.19: A capability-based taxonomy of UAVs [178] 
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From one category to another, the capabilities vary greatly and it is important to 

account for this type of classification. Indeed, for a homogeneous swarm imaging mission, 

one could imagine large vehicles covering a wide area at a limited resolution from a high 

altitude while smaller agents could cover pinpointed areas with an increased resolution at 

lower altitudes. A quantification of the performance of such categories is provided in Table 

2.6. 

 

Table 2.6: UAV capabilities by category 
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All the previously mentioned challenges give rise to the following sub research 

question: 

 



132 

 

Research question 3.1 

How can we systematically generate all feasible alternatives in a multi-architecture 

and multi-level design space for further optimization? 

 

To find response elements, existing methodologies of alternatives generation are 

reviewed and compared in the next section. 

2.3.1.1 Review of existing methods 

Alternative generation methods range from creative thinking and brainstorming 

techniques to more exhaustive and systematic approaches, from linear methods to intuitive 

methods. Being able to automate the generation of alternatives is a key requirement to 

satisfy the research objective and this section will then focus on linear creative thinking 

techniques which use existing information to generate new ideas. [179] segregates such 

methods into three groups. A group A where methods reorganize known information in 

different ways by listing, dividing, combining, or manipulating it to yield new entry points 

for solving problems. Example of such methods include false faces reversal, slice and dice 

attribute listing, cherry split fractionation, or again think bubbles mind mapping. Group B 

encompasses methods which are focused on categorization and are hence more systematic 

and may possibly be automated. Methods from group B notably include force-field 

analysis, morphological analysis, idea grids, diagramming, the phoenix method, and the 

future fruit method. Finally, group C favors breaking out of old and established patterns of 

thought in order to reach uncharted creative territory. It contains random stimulation, brute 

thinking, forced connection, pattern language, and the talk to a stranger method. Once 

again, the importance of automated alternatives generation motivates a focus on some of 
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the methods of group B. Common techniques are described here below and later leveraged 

to provide possible answers to research question 3.1. 

 

Force-field analysis: also dubbed tug-of-war, this method was introduced in 1946 by [180] 

with main contributions to group dynamics and action research. It relies on the idea that a 

status quo, in design configuration for example, is held in balance by a set of forces. Some 

forces are driving and tend to promote change, while some other restraining forces attempt 

to maintain the status quo. Force-field diagrams (Figure 2.20) help the designer understand 

the “tug-of-war” between the forces at stake by representing the different forces and their 

importance. 

 

 

Figure 2.20: Force-field analysis 

 

Force 3 

Force 1 

Force 2 

Force 4 

Status Quo 

Desired change 

Driving forces Restraining forces 

Weak 

Moderate 

Strong 

Intensity 



134 

 

The designer then moves away from the status quo by acting on each of the forces 

enforcing the equilibrium. While this method is quite graphic, useful and easy to 

understand, it remains rather subjective. Moreover, modifying one force in the diagram 

might affect some of the other forces and this dependence is not accounted for in the 

original method. 

 

Theory of Inventive Problem Solving (TRIZ): translated from Russian to “Theory of 

Inventive Problem Solving”, the TRIZ method is based on an extensive review of invention 

patents and the identification of patterns in that study. The approach relies on 40 principles 

and 76 standard solutions identified from the patterns and which may be applied to a status 

quo in order to obtain non-compromise solutions. In particular, a contradiction matrix is 

created to categorize conflictual elements and solve the issues thanks to successful past 

implementations. Many variations of the TRIZ techniques exist and focus on different 

stages of the process. Nevertheless, the TRIZ technique requires an important amount of 

knowledge and data to be able to perform the patterns identification. Moreover [181] 

underlines that this method is mainly human-oriented and challenging to implement on a 

computer. 

 

Morphological matrix: based on functional and physical decompositions of a system, the 

morphological analysis lists all possible alternatives for a given function or feature [182]. 

In its matrix form, the rows represent the features while the columns represent the options 

for that feature. This approach is very easy to automate on a computer given that a database 

of features and options is available. However, as a full factorial approach, it tends to 
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generate a very high number of alternatives with a portion of incompatible ones. For 

instance when designing a multirotor, an autopilot motherboard might not accommodate a 

given number of rotors. To tackle this issue, the morphological matrix is often coupled 

with compatibility matrices for each pair of features indicating whether an option is 

compatible with another. If option 𝑖 of one feature is compatible with option 𝑗 for the other 

feature, then element (𝑖, 𝑗) of the compatibility matrix is 1 and 0 otherwise. Considering a 

system of 𝑛 functions, a total of 2𝑛 compatibility matrices is required. While this requires 

additional work, the compatibility approach greatly reduces the number of total alternatives 

and it has been implemented in many software suites. 

 

Decision tree: this approach uses tree graphs to map all possible paths to reach an 

alternative. Each node of the tree is a decision step between several options and 

compatibility issues are already addressed at this level [183]. Decision trees are simple to 

interpret and very flexible when adding new design options. Still, they require the designers 

to consider all branching possibilities manually. Moreover, their implementation in terms 

of data structures and memory management remains slightly harder than for a 

morphological matrix. 

 

Exploration for emergence: at the frontier between architectures generation and 

optimization, [140] proposes a method to explore the design space by focusing on the 

emergent behavior of swarming systems. Divergence measures are used with adaptive 

sampling methods in order to yield the greatest amount of knowledge about emergence. 

However, this approach is limited to pure swarming systems as defined by [95] and may 
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not be suitable for the more generic intentional cooperative robotics problems introduced 

earlier. 

 

Interactive Reconfigurable Matrix of Alternatives (IRMA): proposed as a collaborative 

design tool, IRMA enables to incorporate tacit information into the concept selection 

process [184]. Compatibility matrices and filtering options are used to downselect subsets 

of architectures. The main advantage of the IRMA approach is to provide a traceable 

reduction of an astronomically large design space to a manageable set of alternatives. 

However, this method requires a thorough understanding of the technologies at stake in 

order to populate the different filters. Moreover, IRMA is not very suitable for multi-level 

design spaces without additional modifications. M-IRMA tries to tackle this issue by 

handling different mapping levels based on a functional decomposition [185]. A qualitative 

or quantitative measure of performance is performed on the alternatives based on low-

fidelity models, high-fidelity models, or physical experiments. While this enables a drastic 

down-selection of the configurations not meeting requirements, it also critically slows 

down the process. This is a problem for extremely large design spaces such as the one 

considered in the scope of this research. Moreover, the filtering step is based on an 

estimated performance of the system, which might not be accurate so early in the design 

process. This might possibly eliminate designs which could actually be promising. 

 

A summary of the different methods studied in this section is proposed in Table 2.7 

with their different advantages and limitations.
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Table 2.7: Review of alternatives generation methods 

Method  
Number of 

alternatives 
 

Can be 

easily 

automated 

 Objectivity  
Accounts for 

compatibility 
 Dynamic  

Suitable for 

mesoscopic 

Force-field analysis [180]  ●●  ●  ●       

TRIZ [181]  ●●  ●  ●●  ●●     

Morphological matrix [182]  ●  ●●●  ●●●  ●●●     

Decision tree [183]  ●  ●  ●  ●●●  ●   

IRMA [184]  ●●●  ●●●  ●●  ●●●     

M-IRMA [185]  ●●●  ●●  ●●  ●●●  ●●   
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After reviewing the existing methods for generating design alternatives, the 

decision tree seems quite interesting as it enables to easily add new alternatives and could 

hence be a good candidate to implement a dynamic generation of alternatives which would 

depend on the composition of the swarm. In addition, the morphological approach seems 

appropriate and rigorous to consider a sufficient number of alternatives by decomposing 

the system into features. As a matter of fact, one of its most common form is the 

morphological matrix, used in numerous aerospace design methodologies [186], [187]. 

Moreover, [188] introduced the notion that the morphological analysis approach can be 

used beyond the physical representation of individual systems and would hence be able to 

represent the whole system even if this method has to be adapted to account for a dynamic 

design space. This concept is introduced as the Augmented Morphological Matrix (AMM) 

[188]. The morphological approach is extensive and may generate an extremely high 

number of alternatives, a factor amplified by the need for iterations for the further 

optimization algorithms. Hence, this number of alternatives needs to be reduced. Moreover, 

the morphological approach does not account for the fact that the architectures should be 

described by the same sets of design variables in order to be later optimized. Indeed, after 

the alternatives generation process, several architectures with different design variables 

might be given to the optimization algorithm but the set of variables to optimize for a 

quadrotor is different than from an ornithopter design. Disabling some design variables 

based on the architecture is not a viable option: these design variables might be considered 

as good values by the optimization scheme and hence bias the optimum result for other 

architectures where these silent design variables would not be needed. The morphological 

approach has to be modified to account for this couple of challenges. 
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The method proposed by [173] is a first part of a solution to this research question 

as it considers a multi-architecture morphological approach to design space exploration. It 

first highlights that although a sequential use of conventional morphological and 

compatibility matrices would enable a systematic generation of alternatives, it is 

incompatible with further comparison and optimization of architectures [173]. A two-step 

process is then proposed to address this issue. The first step consists in grouping options 

which can be described by the same set of design variables. The main effect is to reduce 

the number of options available for each of the features, thus reducing the total number of 

architectures. The design variables which are used to describe the options of a given group 

are then directly included in the optimization process. As a consequence, the number of 

architectures is artificially reduced while the number of possible alternatives is increased 

[173]. The second step of the process removes the features that are described by only one 

group of options. As a result, the feature can be accounted for directly in the optimization 

algorithm via the related design variables. A last step consists in computing the 

conventional compatibility matrix out of this enhanced morphological matrix. An example 

of this methodology is applied to a notional fixed-wing UAV morphological matrix in 

Table 2.8 in order to obtain Table 2.9. 
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Table 2.8: Notional UAV morphological matrix 

Features Options 

Launch Self-propelled Catapulted Hand-launched  

Landing Conventional Gliding Parachute  

Wing Delta Swept wing Straight wing None 

Vertical surface Vertical stabilizer Wing tip None  

Jet engine Typical turbofan 
Augmented 

turbofan 
Typical turbojet 

Augmented 

turbojet 

432 alternatives 

 

Looking at Table 2.8, all considered wings may be described by the same design 

variables such as a sweep angle, a surface area and an aspect ratio. Hence, the three types 

of wing are grouped and these corresponding design variables are integrated in the 

optimization algorithm. As for the jet engine options, they can also all be described by a 

unique set of design variables, triggering the removal of this feature from the 

morphological matrix. The design variables will be directly considered in the optimization 

process. These modifications being applied, Table 2.9 is obtained. 

 

Table 2.9: Enhanced morphological matrix 

Features Options 

Launch Self-propelled Catapulted Hand-launched 

Landing Conventional Gliding Parachute 

Wing Yes No  

Vertical surface Vertical stabilizer Wing tip None 

54 alternatives 
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Note that on this particular example, the number of discrete architectures is divided 

by 8 and this number grows exponentially with the size of the morphological matrix. This 

approach helps in capturing all alternatives while decreasing the number of executions of 

the optimization algorithm when compared to the approach of the sequential morphological 

matrix. However, while this particular approach enables to accommodate multiple 

architectures for design space exploration, it cannot directly be used for dynamic multi-

level design spaces where architectures combinations depend on the alternative chosen for 

the upper level (swarm level). The next section constructs a hypothesis by leveraging these 

design space exploration techniques into a novel approach. 

2.3.1.2 Hypothesis 

The proposed approach takes into account the fact that the design space is dynamic 

and its size depends on the macroscopic level alternatives. Indeed, if at the macroscopic 

level a set of four drones of architecture quadrirotor is chosen, the design space has to 

expand to accommodate the possible design choices for the four agents. If a set of three 

ornithopters and two trirotors is then chosen at the macroscopic level, the size of the design 

space will be different. The steps of the proposed approach are described here below. 

 

Step 1: perform the morphological matrix reduction 

Using the steps introduced by [173] and described earlier, the total number of 

alternatives for each architecture is reduced to prepare for the later optimization procedure. 

This step is based on the set of morphological matrices available for each type of 

architecture. For example, due to the different control schemes involved in their conception 

and other particular features of each of these types, trirotors, quadrirotors, hexarotors, and 
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other octorotors might be better represented with different morphological matrices. 

However, at a conceptual design point of view and with design space exploration purposes 

in mind, these architectures can all be regrouped under one multirotor architecture in the 

same fashion as the example of Table 2.8 and Table 2.9. As per the arguments of [173], 

they can be regrouped under the same design variables such as the number of rotors, the 

length of the arms, or the size of the central plate (Figure 2.21). Note that in addition, 

groups of options represented by the same design variables are also regrouped. 

 

 

Figure 2.21: Morphological matrix reduction 

 

While this concept is applied here to the simple and predictable case of multirotors, 

it is essential for the design space reduction step and the exploration of architectures in 

general. 

  

Quadrotor Hexarotor Octorotor 

Multirotor 

Trirotor 
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Step 2: build the tree of morphological matrices 

In order to be able to account for the evolving size of the design space based on the 

design choices made at the macroscopic level, a tree structure is implemented to keep track 

of the different architecture composition configurations of the swarm. The root of the tree 

is the macroscopic level morphological matrix while the leaves are the morphological 

matrices for each of the constituting agents of the swarm. At the intermediary level are 

conceptual or abstract morphological matrices used as templates for the leaves (Figure 

2.22). Inspired by the decision tree approach described in the previous subsection, this 

proposed method enables to have a dynamic morphological analysis of a swarming system 

for generating alternatives. 

 

 

Figure 2.22: Example of morphological matrix tree 

 

For instance by considering Figure 2.22, the swarm level dictates how many 

instances of plane or multirotor architectures are to be included in the design space. The 

Plane Multirotor Dirigible Ornithopter 

Macroscopic level 

Microscopic level 

Architecture level 

Swarm 

Agent 4 Agent 5 Agent 6 Agent 2 Agent 3 Agent 1 
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associated morphological matrices are generated as leaves under the corresponding 

architecture. The tree also handles the case when there is only one instance as in the case 

of the dirigible, and when there is no instance as for the ornithopter. 

 

The whole proposed approach may be summarized by Figure 2.23 where both the 

morphological reduction and tree representation steps are represented. 

 

 

Figure 2.23: Proposed alternatives generation method 

 

The elaboration of this technique then enables the formulation of the following 

hypothesis: 

 

Plane Multirotor Dirigible Ornithopter 

Macroscopic level 

Microscopic level 

Architecture level 

Swarm 

Agent 4 Agent 5 Agent 6 Agent 2 Agent 3 Agent 1 
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Hypothesis 3.1 

IF a tree of reduced morphological matrices is used 

THEN all feasible alternatives can be generated in a 

multi-architecture and multi-level design space for further 

comparison and optimization 

 

The experiment implemented to validate this hypothesis first has to carry out a 

literature search in order to establish a representative list of possible features and options 

for existing architectures of UAVs. A set of morphological matrices is then created and 

reduced using step 1. The conforming compatibility matrices also have to be formed. The 

resulting new set of morphological matrices is then used to implement the tree structure 

required by step 2. Once these requirements are ready, alternatives are generated through 

the proposed methodology and the resulting coverage of the design space is evaluated with 

respect to relevant criteria such as: consistency, feasibility, exhaustiveness, as well as 

integration with respect to the whole methodology. Hence, validation criteria and questions 

to be answered by this experiment include: 

 Are all alternatives feasible? 

 Is each architecture defined by a unique set of variables? 

 Are there still redundant variables or options groups in the resulting alternatives? 

 Is the number of alternatives reduced when compared with the classical 

morphological approach? 

 Are all existing concepts covered by the generated alternatives? 
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 Can the generated alternatives be easily fed to the optimization and analysis 

algorithms? 

 

The next section details the second step required to generate alternatives: the 

optimization of the architectures. 

2.3.2 Optimizing in a multi-architecture multi-level design space 

A multi-architecture and multi-level design space present challenges for the 

optimization of generated alternatives against multiple criteria: 

 The architectures considered to constitute the swarm are not always defined by the 

same design variables so that a single conventional optimization algorithm may not 

be used as it was established earlier. 

 There are highly non-linear relationships present between the design variables of 

single agents and the group behavior, a multitude of design variables, and 

architectures. This prevents the use of surrogate models which could have sped up 

the design space exploration. 

 The variables describing the alternatives maybe either discrete (number of motors) 

or continuous (geometric features). This prevents the use of the very fast gradient-

based optimization algorithms. 

 It is expected that many local optima exist since a multitude of robot combinations 

could lead to pseudo-optimal performance. 

 Multiple objectives have to be optimized so that multi-objective optimization 

techniques have to be used. 
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 One slight modification at the vehicle level may completely disrupt the system 

level. 

 

These challenges call for the development of an appropriate optimization process 

and the following research question: 

 

Research question 3.2 

How can swarm architectures be efficiently optimized 

in a multi-architecture multi-level design space? 

 

The next section presents a variety of methods found in the literature which could 

possibly be leveraged for the optimization of swarm architectures. 

2.3.2.1 Review of existing methods 

Despite a few attempts such as [189] or [190] to adapt gradient-based optimization 

methods to the issue of mixed variable types, such techniques remain better suited for 

problems involving only continuous variables and few local optima. Metaheuristic 

optimization approaches are thus preferred as they present several advantages related to 

the particularity of this work on robotic swarms: 

 Stochastic algorithms are used, a key asset to find a global optimum. 

 No gradient or Hessian information is required. This is appropriate here since given 

the lack of microscopic-macroscopic link, there is very little chance that 

expressions maybe obtained for analytical gradients. Moreover, finite differences 

methods would greatly handicap the execution time and lengthen the design space 
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exploration by several orders of magnitude which is not an option for conceptual 

design phases. 

 Metaheuristic methods are often inspired by analogies with nature, physics or 

biology which reminds of the nature-inspired character of swarming systems. 

 

In addition, it is important to notice that the problem of optimizing a swarm design 

has two main characteristics: multiple objectives are used in the optimization, and multiple 

levels (at least microscopic and macroscopic) are present in the optimization process. This 

motivates a review of the different methods which exist in both fields and could be used as 

response elements for research question 3.2. 

2.3.2.1.1 Multi-objective optimization 

Multi-objective optimization problems are usually formulated as shown on 

Equation 2.9 with 𝑥 the vector of design variables, 𝑦 the vector of cost objectives to be 

minimized with respect to 𝑥, and 𝑔 and ℎ respectively inequality and equality constraints. 

 

Equation 2.9: Optimization problem formulation 

min
x
𝑦 = 𝑓(𝑥) 

𝑔(𝑥) ≤ 0 

ℎ(𝑥) = 0 

 

Approaches to solve this problem are usually split into two categories: a priori 

optimization and a posteriori optimization. These two philosophies are reviewed in detail 

in the next subsections to help the development of the new process. 
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2.3.2.1.1.1 A priori multi-objective optimization 

As their name indicates, these techniques require a decision-maker to establish the 

relative preference of the different objectives prior to the search of an optimum. The 

extensive review proposed in [191] describes the following major approaches. 

 

Lexicographic ordering: the decision-maker ranks the objectives in order of importance 

and the optimum solution is then obtained by optimizing the objective functions in 

sequence by starting from the most important one. This method tends to favor objectives 

one by one when in reality groups of objectives are usually considered. The optimal 

solution is hence performing well with respect to one objective over all the others, making 

it embarrassingly similar to a single-objective optimization technique. As a consequence, 

this method favors certain regions of the design space while neglecting some others. 

Lexicographic ordering is generally not privileged in specialized literature. One may also 

notice that this method is reminiscent of the sequential optimization gap identified in the 

current swarm design approaches. 

 

Linear aggregating functions: the objectives are gathered in a linear combination fashion 

as in Equation 2.10. The weights 𝑤𝑖 represent the relative importance of objective 𝑖 

estimated by the decision-maker. It is generally assumed for normalization purposes that 

∑ 𝑤𝑖𝑖 = 1. 

 

Equation 2.10: Linear aggregate function 

𝑓(𝑥) =∑𝑤𝑖𝑦𝑖(𝑥)

𝑖
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Since only one optimization round is required, this method is generally faster than the 

lexicographic ordering approach. 

 

Nonlinear aggregating functions: not commonplace in the literature, nonlinear aggregate 

functions use a barycentric approach of nonlinear functions of the objectives as shown in 

the example Equation 2.11. 

 

Equation 2.11: Nonlinear aggregate function 

𝑓(𝑥) = 𝑤1 ⋅ 𝑦1
2 +

𝑤2
𝑦1 + 𝑦2

+ 𝑤3√𝑦3 

 

Such approaches may be used when the importance of an objective is not static and 

may evolve based on its values. However, such methods usually require some additional 

preliminary work for the decision-maker to determine a set of conditions that these 

objectives functions must satisfy such as asymptotic behaviors or divergence issues. 

Moreover, the consistency of the aggregated objective functions is even harder to enforce 

in terms of units or physical meaning. Very often, defining a proper nonlinear aggregate 

objective function proves more difficult than the definition of a linear one. 

 

Achievement scaling functions: also known as multi-criteria target vector optimization, 

this method is rarely used in the literature. The aggregate function accounts for the distance 

of the considered point to a desired solution [192]. A first simplistic implementation 

consists in using the Euclidean distance 𝑑𝐸(𝑡, 𝑦) = √∑ (𝑦𝑖(𝑥) − 𝑡𝑖)2𝑖  without accounting 



151 

 

for the difference in variance between the objectives. In that equation, 𝑑𝐸(𝑡, 𝑦) refers to 

the Euclidean distance between a target 𝑡 and the current vector 𝑦 of objectives. A more 

elaborated approach is based on a Mahalanobis-like distance 𝑑𝑀(𝑡, 𝑦) = [𝑦(𝑥) − 𝑡]
𝑇 ⋅

𝑆−1 ⋅ [𝑦(𝑥) − 𝑡] where S is a matrix of weights, equivalent to estimated variances, for the 

different objectives. While this approach is generally used with a diagonal weight matrix, 

it possible to account for an equivalent covariance between the different objectives by 

considering a non-diagonal matrix 𝑆. This approach is another way to represent the 

weighting scenarios of aggregate functions. 

  

One of the difficulties in dealing with aggregate functions is the combination of the 

different objectives which might not be expressed with the same units. As a consequence, 

these quantities do not have the same orders of magnitude and this could lead to an 

objective involuntarily dominating the aggregate functions. This the reason why the 

weights have to be carefully established and normalized. Two methods in particular enable 

to account for this issue independently of the weighting factors. The first one is a non-

linear approach introduced by [193] and formulated as shown in Equation 2.12. 

 

Equation 2.12 

𝑓(𝑥) = (∑[𝑤𝑖
(𝑦𝑖(𝑥) − 𝑦𝑖

∗)

𝑦𝑖
−(𝑥) − 𝑦𝑖

∗ ]

2

𝑖

)

1
2

 

 

Where 𝑦𝑖
∗ and 𝑦𝑖

− respectively represents the target and the worst known value for 

objective 𝑖. The second one is especially applied to the aerospace domain and is called the 
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Overall Evaluation Criterion (OEC) [141], as seen in Equation 2.13. This method uses a 

linear aggregate function. 

 

Equation 2.13: Overall evaluation criterion 

𝑂𝐸𝐶 =∑𝑤𝑖 ⋅ [
𝑦𝑖(𝑥)

𝑦𝑖
𝐵𝐿 ]

𝑖

 

 

In this formula, the reference used for achievement scaling is the value of the objective for 

a baseline (BL) concept. 

 

Despite the limiting fact that these methods assume a prior knowledge of objective 

prioritization and might be highly subjective as such, they are easy to implement and 

require very little computation overhead. This is a non-negligible asset for the exploration 

of an exceedingly large design space. Moreover, they have the advantage of providing a 

unique optimum solution to the decision-maker. The subjectivity induced by the choice of 

the weights may be attenuated using replications of the process for different weighting 

scenarios. Finally, the aggregate function obtained from this process can be used as the 

objective function in classical single-objective optimization techniques which are more 

mature. 

2.3.2.1.1.2 A posteriori multi-objective optimization 

In a posteriori optimization, the multiple attributes of the 𝑦 vector are not combined 

into an aggregate objective function. Instead, a set of solutions is generated, each of which 

represents a relative optimality between the competing attributes [194]. The designer then 
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has the choice of deciding of a “best” solution out of this set in a separate exercise of 

decision-making. The concept of a posteriori optimization is hence based on partial 

ordering and its goal is to find a set of designs which are better than all designs they can be 

compared to, but are incomparable to each other. 

 

 

Figure 2.24: Partial ordering and Pareto frontier sampling 

 

This set is referred to as the Pareto frontier (Figure 2.24) and has the following rules: 

 A weakly dominates B if A is better in some attributes and equal in others 

 C strongly dominates B if C is better in all attributes 

 A and C are incomparable if A is better than C in some attributes but worse in others 

 

 While Pareto optimization does not provide a single optimized point, designers 

have the ability to represent the Pareto frontier and directly visualize and understand 

tradeoffs. This is particularly important when uncertainty is considered in the design 

approach. However, sampling the points of the Pareto frontier is a complex problem hard 
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to implement [173], [194]. This is amplified when the number of criteria, constraints, and 

variables considered is very large just as it is the case for swarming systems. 

 

A first idea to sample the Pareto frontier is to solve a series of single-objective 

optimization problems, each one of them yielding a point of the Pareto frontier. Although 

it is possible to vary both the constraints and the objective function considered, common 

approaches usually define a weighted p-norm of the objectives (Equation 2.14): 

 

Equation 2.14: Weighted p-norm of the objectives 

𝑓(𝑥) = (∑𝑤𝑖𝑦𝑖
𝑝(𝑥)

𝑖

)

1
𝑝

 

 

Where 𝑦𝑖 represents the objectives with their associated weights 𝑤𝑖 in the overall 

objective function 𝑓. This basic principle is revisited with more elaborated methods such 

as the Epsilon constraint method, the Normal Boundary Intersection (NBI) method, and 

the Normalized Normal Constraint (NNC) method. While being fast and straightforward 

to implement, this set of methods exhibits deficiencies in their application to non-convex, 

highly non-linear and constrained design spaces [194]. 

 

An alternative approach to the sampling of the Pareto frontier is represented by 

evolutionary algorithms which optimize a population of points. As the algorithm iterates, 

the population of points converges to the true Pareto frontier. A few of these approaches 

are presented here below from the exhaustive review offered by [191]. 
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Independent sampling techniques: efficient and simple, they are based on the linear 

aggregating function methods but the variation of the weights is not independent anymore 

and is directly included in the evolutionary process. However, these methods fail to 

produce an even sampling of the frontier. 

 

Aggregation selection techniques (linear, nonlinear): slightly similar to the independent 

sampling techniques, these do not use a static weight combination throughout one run of 

the evolutionary algorithm but the weights are varied between generations and function 

evaluations. Different assignment schemes are usually used such as random assignment, 

gene-based assignment or fitness-based assignment.  

 

Criterion selection techniques: well represented by the Vector Evaluated Genetic 

Algorithm (VEGA) method, such methods base the selection of a succeeding population 

on separate objective performance. This requires only a few changes from a classical 

genetic algorithm. However, the fitness evaluation of the individuals corresponds to a 

combination of the objectives meaning that VEGA is subject to the same limitations than 

the aggregating approaches previously discussed. Extensions of the VEGA method 

propose different schemes of weight assignment. 

 

ε-constraint technique: a primary objective function is varied while others are bounded 

within allowable ε-constraints. These constraints are then adjusted to keep generating 

points on the Pareto frontier. While it remains fairly easy to implement, this method 
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requires a massive computational effort, is prone to non-uniformity of the sampled points, 

and the bounds of the constraints must be known a priori. 

 

Pareto sampling techniques: these approaches are based on the fact that evolutionary 

algorithms are able to generate several points of the Pareto frontier in a single stochastic 

computational run. These methods are generally quite hard to implement. 

 

Table 2.10 summarizes the advantages and limitations of these different multi-

objective optimization techniques. 

 

Table 2.10: Review of multi-objective optimization techniques 

Technique Subjectivity Design space 

coverage 

Scalability 

Speed 
Implementation 

easiness 

A priori     

Lexicographic ordering ●●●  ●● ● 

Linear aggregating 

functions 
●● ● ●●● ●●● 

Non-linear aggregating 

functions 
●● ● ●●● ●● 

Achievement scaling 

functions 
●●●  ●●● ●●● 

A posteriori     

Independent sampling ● ●● ●● ● 

Aggregation selection ● ●● ● ● 

Criterion selection ● ●● ● ●● 

ε-constraint ● ●●  ●● 

Pareto sampling ● ●●● ●  
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Although they generally provide a better coverage of the Pareto frontier in a variety 

of cases not handled by a priori techniques, a posteriori techniques are limited in scalability 

[191] as they tend to be complex in implementation and require the solving of many 

optimization problems. Indeed, the goal of such methods is to perform a search which is as 

widespread as possible so as to generate as many elements of the Pareto optimal set as 

possible. Finally, progressive techniques are another possibility for multi-objective 

optimization but rely on an interactive process with the decision-maker. Such an approach 

may prove difficult and inefficient [191] and is not appropriate in the scope of this research 

since only methods which can be fully automated are favored. In the light of this review of 

multi-objective optimization techniques, a priori approaches are preferred. However, since 

swarm robotics is an emerging field, no baseline or benchmark performance exists to use 

achievement scaling functions. Hence, the simple linear aggregate function is chosen in 

order to facilitate a fast exploration of an extremely large design space. In order to improve 

the robustness of such an approach with respect to the subjective choice of the weights, 

different weighting scenarios can be attempted and compared. This still requires less 

function calls than a posteriori optimization techniques. 

2.3.2.1.2 Multidisciplinary optimization 

The techniques of multidisciplinary optimization are generally categorized based 

on their number of optimization levels: single-level, bi-level, and multi-level [195]. Hence, 

considering multidisciplinary optimization approaches is particularly appropriated for 

optimization in a multi-level and multi-architecture design space. Mature and 

commonplace methods are reviewed in this section to understand how they can be 

leveraged to help reach the research objective. 
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2.3.2.1.2.1 Singe-level techniques 

Single-level multidisciplinary optimization approaches use only one optimizer at 

the system level. The analysis may be distributed to the different partitioned subsystems 

but the optimization is kept centralized at the system-level. The most common single-level 

approaches are described here below. 

 

All-At-Once (AAO): all the variables of all disciplines are considered as optimization 

variables and the equations of each discipline are used as constraints. Thus, the designs are 

only consistent at convergence of the algorithm and there is no guarantee that at any 

iteration, the design will be feasible for all disciplines. If the algorithm experiences 

convergence issues and fails to reach a relative or absolute extremum, it will yield a design 

which is not only sub-optimal, but also not valid across the disciplines. However, this 

method has the advantage of not necessitating a complex analysis process. 

 

Multi-Disciplinary Feasible (MDF): this approach includes an analyzer which, at every 

optimization iteration, solves the disciplinary equations using the design variables until 

additional coupling variables converge. This ensures that the solution is consistent across 

all disciplines at each step of the optimization process. However, this solution might be 

infeasible with respect to the constraints. A limitation of this method is that it requires a 

complex system solver which coordinates all the subsystems in order to return a consistent 

solution to the optimization algorithm. This is not only hard to implement but implies a 

significant computation time at execution. 
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Individual Disciplinary Feasible (IDF): the IDF method focuses on the discipline 

feasibility at each iteration rather than on the multidisciplinary feasibility. This latter is 

only achieved at convergence thanks to constraints added for each of the coupling 

variables. The IDF method has improved convergence properties when compared to MDF 

but moves the complexity of the analysis to the optimization step which still requires 

consequent computational resources. Moreover, if the optimizer fails to converge, the 

produced solution might be inconsistent. In general, IDF performs better than MDF when 

the coupling between the subsystems is significant. 

2.3.2.1.2.2 Multi-level techniques 

As opposed to single-level techniques, the multi-level optimization methods use 

multiple optimizers at the subsystem level in addition to the traditional optimizer at the 

system level. This type of approach is preferred when the scale of the problem is too large 

for a single optimizer to handle [195]. In these techniques, the analysis and the design are 

distributed amongst the different subsystems. 

 

Concurrent Sub-Space Optimization (CSSO): the CSSO approach decouples the 

disciplines by letting each subspace carry out a separate optimization based uniquely on 

the design variables of that discipline. The coordination of all disciplines is handled by 

global sensitivity equations and a sensitivity analysis determining the non-local variables. 

This analysis can be carried out by equations or by response surface approximations in 

order to reduce the computational burden [196]. This method is useful for the industry as 

it is compatible with organizational features and the decoupling generally observed. 

However, the consistency of the final solution is generally mediocre due to difficulties in 
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coordinating the subspaces optimization processes. This also makes it hard to guarantee a 

robust convergence of the whole optimization process [197], [198]. 

 

Bi-Level Integrated System Synthesis (BLISS): the BLISS approach divides the 

optimization problem into an upper level and a lower level. The subsystems of the lower 

level optimize on their design variables while the common variables are considered as 

constants. On the other hand, the upper level uses the common variables for optimization 

while the local variables of the lower level are regarded as constants [199]. A gradient-

based approach is then used to reach an optimum. Hence, the computational cost of the 

BLISS method is quite important and limits its scalability. One approach by [200] to tackle 

this issue is to use response surface methodology. However, this is not applicable to multi-

robot systems due to the high non-linearity between microscopic variables and 

macroscopic responses. 

 

Collaborative Optimization (CO): this method is especially focused on early design 

phases where all disciplines are usually considered on the same level. The optimizer at the 

system level establishes targets to be met by the partitioned subsystems and tries to 

minimize the system-level objective function. A set of equality constraints ensures that the 

design is driven towards consistency. At the subsystem level, the goal of the optimizers is 

to meet the targets and satisfy the constraints of the respective subsystems. With CO, each 

subsystem benefits from having its own optimizer, allowing for greater autonomy of the 

disciplines. However, the ability to handle coupling is limited since the interactions 

between the disciplines are handled by the main optimizer. 
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Analytical Target Cascading (ATC): this approach uses a cascade of optimizers to 

propagate the design targets from the top level to the lower levels of the hierarchy. These 

lower levels are optimized to meet the targets and the resulting responses are rebalanced to 

the higher levels in order to achieve consistency for the whole system. This iterative 

process is repeated until consistency is achieved globally for the targets and the responses. 

This approach is truly multilevel and considers analyzers and optimizers almost at the same 

level. On the other hand, it requires many executions and is computationally expensive. 

2.3.2.1.2.3 Summary 

A recapitulation of these MDO methods is presented in Table 2.11 in order to help 

decide on a suitable framework for the research objective.  They are evaluated based on 

their convergence performance, the easiness of implementation, their scalability with 

respect to the size of the design space, and the incurred computational cost. Moreover, 

given the structure of the problem with a macroscopic level and a microscopic level, it is 

important to distinguish methods able to account for several levels, dynamic design spaces, 

and congregate the microscopic and the macroscopic levels. These last criteria help ensure 

that a method can handle several levels without necessarily separating them in the 

optimization process. This is essential in order to distance the proposed approach from the 

sequential optimization paradigm currently used by the research community. 
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Table 2.11: Comparison of MDO frameworks [149], [195], [199] 

Method 
Good 

convergence 

Easy to 

implement 
Scalability 

Computational 

cost 

Bi-

level 

Handles 

dynamic 

design 

space 

Congregates 

micro/macro 

levels 

AAO ● ●●● ●●● ●    

MDF ●● ● ● ●●●    

IDF ● ●●● ● ●    

CSSO [197], [198] ● ●● ●● ●● ●   

BLISS [199] ● ●●● ● ●●● ●●●   

CO ●● ●●● ● ●●● ●●   

ATC ●● ● ● ●●● ●   
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From Table 2.11, no method is able to directly handle the dynamic nature of the 

multi-architecture and multi-level design space. Moreover, no method considers a possible 

congregation of the different levels without modification. From this apparent gap, an 

adapted optimization method has to be designed, focus of the next subsection. 

2.3.2.2 Hypothesis 

As previously stated in this section, metaheuristic approaches are first preferred to 

establish an optimization method. In particular, genetic algorithms enable dealing with 

discrete, continuous, and categorical variables at the same time. However, they have to be 

adapted since several levels are to be handled at once and the architectures might have 

different design variables. 

 

A first consideration in designing the optimization technique is that this latter has 

to contain at least two layers. Indeed, a single layer would not be able to handle the dynamic 

aspect of the design space provided by the macroscopic level design choices. However, it 

is important to notice that the segregation of the layers need not be done between 

macroscopic and microscopic levels. First of all, this would limit the congregation of the 

two levels and most probably yield optimization results similar to those obtained by the 

sequential optimization techniques. Secondly, the outer loop of the algorithm needs to take 

care only of the dynamic aspects of the design space which are to be later instantiated at 

the microscopic level. As such, only the types of architectures considered and their number 

in the swarm are susceptible to affect the size of the design space and the microscopic level 

implementations. Other design variables, even macroscopic, may be included in the inner 

loop optimizer. 
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In order to accelerate the process, it is possible to retain the good architectures, and 

possibly designs, from the inner loop so that they are used as an initial inner loop population 

for the next iterations of the outer loop. Indeed, since the mission is fixed during the 

iterations, it is probable that an architecture performing well on the mission in a given 

swarm might show good performance in another swarm configuration. Due to 

heterogeneity and highly unpredictable macroscopic level effects, it is not guaranteed that 

a good architecture for a given swarm configuration would also perform well in another. 

However, this assumption is susceptible to speed up the whole optimization process if the 

initial swarm populations are initialized with good designs. 

 

To summarize the optimization scheme, an outer loop optimizes the types of 

architectures to include in the swarm as well as their number. This configuration is then 

fed to an inner loop which optimizes the multi-robot system based on the remaining design 

variables. A key particularity lies in the fact that the outer loop handles only macroscopic 

variables but the inner loop deals with both microscopic and macroscopic design variables. 

The advantages of this method are multifold: 

 Microscopic and macroscopic levels optimizations are now combined, an 

approach different than the usual sequential optimization scheme. 

 It provides augmented capabilities since it enables multi-architecture and multi-

level optimization. 

 The retention of optimal microscopic configurations accelerates the 

convergence process and the design space exploration. 
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 There is no need to implement a new optimization algorithm for each robot 

architecture, only two generic optimization algorithms are to be implemented. 

 

Figure 2.25 illustrates both optimization loops with an implementation based on a 

genetic algorithm.
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Figure 2.25: Proposed optimization scheme 
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The elaboration of this optimization scheme yields the following hypothesis: 

 

Hypothesis 3.2 

IF an optimization method based on a bi-level genetic algorithm is used 

THEN a fast and efficient multi-architecture multi-level global 

optimization of group configurations is enabled 

 

The experiment designed to test this hypothesis is quite similar to experiment 1 and 

aims at assessing the quality of the optimization scheme. It first requires the 

implementation of both inner and outer loops, and a modular genetic algorithm. Then, the 

optimization algorithm is evaluated on the number of iterations, number of objective 

function calls, and precision in terms of optimal swarm performance. Again, additional 

metrics used to assess optimization algorithms can be used, such as the ones reviewed in 

[155]. To assess this precision, it is possible to compare the obtained optimum against a 

“ground truth” optimum obtained by randomized sampling, full factorial, or by taking the 

best known solution [156]. The parameters to be varied during this experiment 3.2 include 

the initial swarm population constitution, the typical genetic algorithm parameters, and the 

retention scheme for the optimized microscopic architectures. 

 Once again, the validation criteria of hypothesis 3.2 are based on statistical 

hypothesis evaluation: 

• On average, the global optimization scheme is able to find a better solution than the 

sequential optimized solution, with respect to the main mission performance metric. 
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• The optimization scheme is fast enough for the design space exploration of multi-

robot systems. 

• The time increase between the proposed scheme and sequential optimization is less 

than an order of magnitude 

2.4 Summary 

After identifying the main steps involved in the realization of the research objective, 

this chapter concentrated on the stages requiring research advancements to fill existing 

gaps. A literature search was carried out on each of the necessary steps and deficiencies 

were identified between existing techniques and the goals of the research objective. Such 

inadequacies led to formal research questions. Additional reviews of the existing literature 

in relevant fields thenceforward facilitated putting together conceivable answers to the 

research questions. With the aim of testing and validating these hypotheses, a rigorous set 

of experiments was designed, hence closing the elaboration of the research process (Figure 

2.26). 
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Figure 2.26: Summary of the problem definition process 

 

The implementation details of the conceived experiments are discussed in the next chapter. 

  

Problem Definition 

Research Question 1 Research Question 2 Research Question 3 

Hypothesis 1 Hypothesis 2 Hypothesis 3 

Research Objective 

Can multi-robot systems designs be 

improved by linking microscopic 

and macroscopic levels? 

How to link the microscopic and 

the macroscopic levels of a multi-
robot system for conceptual design 

purposes? 

How can current conceptual design 

methods be adapted to account for 
multi-architecture multi-level 

design space exploration? 

IF an approach leveraging the 

interdependence between microscopic 

and macroscopic levels is used 

 
THEN significant improvements in 

average performance can be achieved 

in the design of multi-robot systems 
compared to traditional sequential 

optimization schemes 

IF a mesoscopic approach leveraging 
the speed of macroscopic models and 

the accuracy of microscopic models is 

used 

 
THEN microscopic and macroscopic 

levels can be efficiently linked for 

conceptual design purposes 

IF a tree of reduced morphological 

matrices is used in conjunction with an 

optimization method based on a bi-
level genetic algorithm 

 

THEN a multi-architecture multi-level 
design space exploration can be 

carried out efficiently to obtain 

optimal group configurations 

Establish a methodology that enables the optimum design of multi-robot systems and the evaluation of 

trade-offs between individual architecture development and numerality to achieve group performance 
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CHAPTER 3 

PROPOSED APPROACH 

 

Focusing on design considerations, the present work proposes to base its approach 

on a classical top-down design decision support process such as the one presented on 

Figure 3.1. 

 

 

Figure 3.1: Generic top-down design decision support process 

 

The first chapter presented different existing needs in the field of multi-robotics: 

take advantage of a rising diversity in the robotics fleet, evaluate the real advantage of 

multi-robot solutions, and elaborate a simultaneous physical design optimization of 

microscopic and macroscopic swarm levels. Based on these observations, a research 

problem was formulated to establish a methodology that enables the evaluation of dynamic 

Make decisions

Evaluate alternatives

Generate alternatives

Establish the value

Define the problem

Establish the need
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tradeoffs between individual architecture development and numerality to achieve group 

performance in multi-robot systems. The second chapter then studied existing techniques 

to address the research objective but such procedures came up either inadequate or 

unsatisfactory after a thorough literature review. The chapter hence identified clear 

deficiencies in current practices which need to be overcome so as to meet the research 

objectives. These gaps originated the following main research questions: 

1. Can multi-robot systems designs be improved by linking microscopic and 

macroscopic levels? 

2. How to link the microscopic and the macroscopic levels of a multi-robot system 

for conceptual design purposes? 

3. How can current conceptual design methods be adapted to account for multi-

architecture multi-level design space exploration? 

 

A second literature review supported the progressive formulation of hypotheses as 

possible answer elements to the research questions. These hypotheses are to be validated 

through experiments following the approach suggested in this chapter through a top-down 

design decision support process. Since the first two stages of this process were studied in 

the first two chapters, this section consists in detailing the remaining four steps: 

establishing evaluation criteria, defining the design space, evaluating design alternatives, 

and finally making decisions. 

3.1 Establishment of performance metrics 

A first step when studying different design alternatives is to institute performance 

metrics, evaluation criteria which are used to compare the different designs and optimize 
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them. Note that in this work, the sentences mentioning “good” performance or “efficient” 

result are a direct reference to these performance metrics. Such measures which may 

account for mission completion, swarm cost, or also parallelization effectiveness are 

presented in this section. 

3.1.1 Parallelism efficiency metrics 

While microscopic variables influence the performance of each individual agent, 

macroscopic variables impact the parallelization of the different tasks. In order to quantify 

the effect of such variables on a given design, parallelism efficiency metrics are required 

such as the parallelism efficiency and the Limit of Parallel Effectiveness (LOPE). 

3.1.1.1 Parallelism efficiency 

A common phenomenon experienced in parallel computing is parallel slowdown: 

parallelizing an algorithm past a certain limit results in the program to run slower. Ideally 

when running a computation on 𝑁 processors, one should hope for a linear speedup of 𝑁 

times. However, the parallel implementation itself introduces various delays due in part to 

communication of intermediate results, cache misses, or resource contention [201]. Indeed, 

with an increasing number of processors, each parallel node of the algorithm spends more 

time in communication than in processing. Such delays occasion a slowdown compared to 

the ideal case and several related quantities introduced by the community are presented 

here below. 

 

An intuitive way to quantify parallel slowdown is to simply compute the ratio of 

the time it takes a task to be executed in serial, to the time taken in parallel. Speedup is 

hence defined as: 
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Equation 3.1: Speedup formula 

𝑆 =
𝑇(1)

𝑇(𝑁)
 

 

Where 𝑇(𝑖) represents the time for the task to be carried out using 𝑖 processors. The 

actual parallel computation time 𝑇(𝑁) can then be compared to the ideal linear 
𝑇(1)

𝑁
 case 

mentioned earlier, yielding the formula for parallelism efficiency: 

 

Equation 3.2: Parallelism efficiency 

휂 =
(
𝑇(1)
𝑁 )

𝑇(𝑁)
=
𝑆

𝑁
 

 

Amdahl’s Law is another attempt to study this slowdown behavior and quantifies 

how parallelization can speed up a computation. It segregates the tasks of a parallelizable 

program under two categories: a part which can be parallelized and a part which cannot. 

Let 𝜌 the proportion of execution time which can be improved by parallelization, the total 

execution time can then be written as: 

 

Equation 3.3: Parallelized execution time 

𝑇(1) = 𝑇 = (1 − 𝜌)𝑇⏟      
𝑁𝑜𝑡 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

+ 𝜌𝑇⏟
𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

 

 

With parallelization of the tasks by 𝑁 processors, and assuming a fixed workload 

for the processors, the proportion of tasks benefiting from it becomes 
𝜌𝑇

𝑁
 while the other 
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part remains unchanged. Rewriting the speedup formula (Equation 3.1), the common form 

of Amdahl’s law is obtained: 

 

Equation 3.4: Amdahl's law derivation 

𝑆 =
𝑇(1)

𝑇(𝑁)
 

⇒ 𝑆 =
𝑇

(1 − 𝜌)𝑇 +
𝜌𝑇
𝑁

 

⇒ 𝑆 =
1

(1 − 𝜌) +
𝜌
𝑁

 𝑓𝑜𝑟 𝑇 ≠ 0 

 

This equation can be refined further by using more detailed knowledge about the 

process to be parallelized and the decomposition of 𝑇(𝑁) into different tasks. The 

efficiency formula (Equation 3.2) can also be expressed by dividing the speedup by 𝑁: 

 

Equation 3.5: Parallel efficiency with Amdahl’s law 

휂 =
1

𝜌 + (1 − 𝜌)𝑁
 

 

As more and more processors are added, the computation time becomes dominated 

by the non-parallelizable tasks. This places a limit on the speedup achievable by the system, 

causing the efficiency to tend towards zero (Figure 3.2). 
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(a) Speedup (b) Efficiency 

Figure 3.2: Amdahl’s law 

 

For example, if 95% of the process can be parallelized, the maximum speedup 

theoretically achievable by parallelization is 20 times. It can be noticed that the lower the 

proportion of parallelizable tasks, the lesser processors are required to reach the speedup 

limit. 

 Amdahl’s law was later revised by Gustafson’s law [202] by changing the 

assumption of a constant workload, equivalent to a fixed problem size, to the assumption 

of a fixed run time for each task. Indeed, researchers tend to adapt the size of the problem 

in order to solve it in a fixed amount of time, taking full advantage of the available 

resources. Hence, speedup is computed in terms of workload instead of execution time: 

 

Equation 3.6: Workload-based speedup formula 

𝑆 =
𝑊(𝑁)

𝑊(1)
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Using the same approach as for Amdahl’s law, the workload 𝑊 is decomposed into 

parallelizable and non-parallelizable parts: 

 

Equation 3.7: Parallelized workload 

𝑊(1) = 𝑊 = (1 − 𝜌)𝑊 + 𝜌𝑊 

 

With parallelization by 𝑁 processors, the parallelizable part can handle a workload 

of 𝜌𝑁𝑊, for the same runtime. Hence the workload evolves linearly with parallelization to 

yield Gustafson’s law formula: 

 

Equation 3.8: Gustafson’s law derivation 

𝑆 =
𝑊(𝑁)

𝑊(1)
 

⇒ 𝑆 =
(1 − 𝜌)𝑊 + 𝜌𝑁𝑊

𝑊
 

⇒ 𝑆 = (1 − 𝜌) + 𝜌𝑁 

 

A comparison of Gustafson’s law with Amdahl’s law is proposed in Figure 3.3. 
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(a) Speedup (b) Efficiency 

Figure 3.3: Gustafson’s law compared to Amdahl’s law 

 

As expected, the speedup follows a linear trend with the number of processors while 

Amdahl’s law reaches a limit. As for efficiency, Gustafson’s law predicts that efficiency 

will be limited at 80%, corresponding to the proportion of parallelizable tasks. On the other 

hand, the efficiency given by Amdahl’s law tends to zero. 

 

When the serial process is divided into several heterogeneous parts, each with 

different capabilities, the previous quantities are adapted to account for this increased level 

of detail. Reasoning on execution time, each task 𝑖 is represented with a proportion 𝜌𝑖 of 

the execution time and is allocated a number of processors 𝑁𝑖 from the parallelization 

process. A non-parallelizable part is then modeled with 𝑁𝑖 = 1. The total execution time 

can now be decomposed as 𝑇 = ∑ 𝜌𝑖𝑇
𝑁
𝑖=1  with ∑ 𝜌𝑖

𝑁
𝑖=1 = 1 and thanks to parallelization, 

each task takes 
𝜌𝑖𝑇

𝑁𝑖
 time. From these considerations, the speedup can then be derived: 
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Equation 3.9: Heterogeneous Amdahl’s law speedup 

𝑆 =
𝑇(1)

𝑇(𝑁)
=

𝑇

∑
𝜌𝑖𝑇
𝑁𝑖
 𝑁

𝑖=1

= (∑
𝜌𝑖
𝑁𝑖
 

𝑁

𝑖=1

)

−1

 

 

A similar analysis leads to a reciprocal formula using Gustafson’s law for massively 

parallelized processes: 

 

Equation 3.10: Heterogeneous Gustafson’s law speedup 

𝑆 =∑𝜌𝑖𝑁𝑖

𝑁

𝑖=1

 

 

A toy example can be studied to get a grasp of the behavior of speedup for 

heterogeneous systems. The following problem is considered: 

A serial task is fragmented into four consecutive processes with 

execution time proportions being 7%, 23%, 12% and 58%. Assume that 

each process can be individually accelerated up to 20 times thanks to 

parallelization. 

1. Use Amdahl’s law to derive the speedup of the total system when 

each single process is being parallelized while the others are being 

kept serial. 

2. Assuming that the processes are respectively sped up 1, 5, 20 and 2 

times, derive the speedup for the whole system. 
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Solution: referring directly to Equation 3.9, the speedup of the system can be written as: 

 

Equation 3.11: Solution of the parallelization toy example 

𝑆 =
1

0.07
𝑁1

+
0.23
𝑁2

+
0.12
𝑁3

+
0.58
𝑁4

 

 

Letting 𝑁𝑖 changing from 1 up to 20 and letting the others constant at 1, the effect 

of the parallelization of process 𝑖 can be isolated (Figure 3.4). 

 

 

Figure 3.4: Heterogeneous parallelization 

 

Due to its important weight in the execution time of the system, the fourth process 

seems to be dominant as its parallelization yields speedups which are well above the ones 

of the other processes. Using 𝑁1 = 1, 𝑁2 = 5, 𝑁3 = 20, and 𝑁4 = 2, the speedup of the 
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complete task is expected to be 𝑆 = 2.43. This confirms the dominance of the fourth 

process as the overall speedup is very close to the individual speedup of process 4, despite 

the tremendous parallelization of processes 2 and 3. This type of insight is similar to 

conclusions drawn for systems in which overall performance is dictated by the least 

performant system (see introductory example of section 2.1). 

 

While the previously described quantities are introduced for the field of parallel 

processing, similar concepts are applied to various fields including manpower management 

in software development: adding more persons to a late project ends up slowing it down 

instead of speeding it up [203]. Likewise, parallel slowdown can be extended to multi-

robot systems: it seems right that for a very high number of agents, adding one entity will 

result in a similar, if not worse for some cases, performance for the swarm. This is in 

contrast with a very low number of agents, when adding two additional agents to a swarm 

of two entities may potentially occasion a tremendous improvement in performance. This 

notion tends to be quite the reverse of a commonplace intuition that adding more agents to 

a group of robots will necessarily result in a better performance. 

Continuing on the introductory example, a parallel slowdown is experienced due to 

the small intermediate distances travelled by each agent (or more rigorously by agent 𝑁) 

between the sub-mapping missions. Indeed, each unit has to reach its initial mapping 

position and then return to it once the sub-mapping is done. A parallel can be drawn 

between these mission segments and the communication delays experienced in parallel 

computing: they represent the bottlenecks deteriorating the parallelization process. This 
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slowdown can be observed on the speedup and efficiency computed for the optimal design 

velocity of example 1 (Figure 3.5). 

 

  

(a) Speedup in mapping rate (b) Parallel efficiency 

Figure 3.5: Limits of parallelization for the introductory example 

 

The benefits of numerality are less pronounced as the number of agents increases 

from one to a hundred. As expected, the speedup curve is below the linear ideal case: 

having twenty agents does not make the swarm map the area twenty times faster. This fact 

appears also on the parallel efficiency curve where the optimal solution in terms of cost 

lies at 86.61 % parallel efficiency. Note that for the problem setup presented earlier, the 

analytical solution makes sense only when the number of agents 𝑁 divides the width 𝑙𝑥 of 

the map (blue circles on Figure 3.5 (b)). If we assume that the even pattern is always used 

for any 𝑁, which translates into having some overlap between the allocated mapping areas, 

a general trend (dashed grey line) can be obtained. 

Although the curves exhibit an almost asymptotic behavior, no clear limit in 

efficiency or in speedup is observed on Figure 3.5 as for the theoretical examples given on 
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Figure 3.2. Indeed, as opposed to the derivation of Amdahl’s law, the proportion of the 

process which is parallelizable is not constant for this mapping example. The distance the 

furthest agent has to travel is directly linked to 
𝑙𝑥

𝑁
 and thus depends on the number of agents. 

Furthermore, this simplistic example does not model the limits encountered in real-world 

applications for the parallelization of such a process: mapping time stochasticity, 

communication delays, or the traffic and clustering of agents due to saturation of the 

available space. 

 

Another important observation is that the parallelism efficiency does not depend on 

microscopic variables for perfectly homogeneous swarm and missions. Indeed, if each 

agent is assigned a similar task, the time to complete the mission mainly depends on the 

annex tasks each one of them has to perform. Hence, parallel efficiency is a way of 

assessing the quality of the parallelization process quite independently of the performance 

of each agent of the swarm. 

3.1.1.2 The limit of parallel effectiveness 

While the preceding performance metrics quantify the variability of a given optimal 

swarm design, an additional measure is required to try to measure how close a design is to 

a possible limit in parallel performance. This absolute limit may correspond most of the 

time to an unconstrained optimum with respect to the other metrics and may possibly 

represent a physical barrier to further improvements. 

 

Such a concept can be found in the field of controls and automation theory in which 

response times are defined with respect to margins [2]. For the study of first-order, linear, 
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and time-invariant systems, the time constant 𝜏 is used to characterize the response to a 

step input (Figure 3.6 (a)). This constant is rigorously defined from the differential equation 

satisfied by the system: 

Equation 3.12: First order system equation 

𝑑𝑉

𝑑𝑡
+
1

𝜏
𝑉 = 𝑓(𝑡) 

 

With 𝑉 the response and 𝑓 a forcing function on the system. For such a definition, 

it happens that after a time 𝜏, the response to a step input has reached 63% of its final value 

and 95% after a time of around 5𝜏. This relates to exponential decay for which the half-

life, time to reach 50% of the final value, is 𝜏 ln(2). For second order systems, there is no 

similar analytical relation of such response times with the design parameters and such 

relations are documented in abacuses. However, the time for the response to reach and stay 

within the 5% band of its final value is defined as 𝑡𝑟5% (Figure 3.6 (b)). An alternative 

response time is the rise time 𝑡𝑟, time to first cross the final value (Figure 3.6 (b)). 

  

(a) First order system (b) Second order system 

Figure 3.6: Controlled systems characteristic times 
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Henceforth inspired by the definition of time constants in the field of controls and 

automation, the concept of LOPE is introduced here. However, as opposed to stable 

automated systems used to define 𝜏, 𝑡𝑟5%, and 𝑡𝑟, there is no guaranty that the responses 

of swarm systems are stable with respect to the considered design variables (see Figure 3.5 

(a)). Hence, incremental relative changes are used and the following quantities are 

introduced: 

 𝐿𝑂𝑃𝐸5%: The value of the design variable (while all other variables are fixed) for 

which the incremental response falls and stays within 5%. While based on the 

insights of controls theory and the introductory example, this value of 5% is quite 

arbitrary and may depend on the design variable being considered. 

 𝐿𝑂𝑃𝐸2
3

: The value of the design variable (while all other variables are fixed) for 

which the response is two thirds of its value at 𝐿𝑂𝑃𝐸5%. This limit of parallel 

effectiveness is inspired by 𝜏63% of first order systems to give an insight to the 

designer of when two thirds of the parallel effectiveness have been consumed in the 

design variable. 

 𝐿𝑂𝑃𝐸1
2

: The value of the design variable (while all other variables are fixed) for 

which the response is half of its value at 𝐿𝑂𝑃𝐸5%. 

 

Although these quantities make more sense when computed with respect to the 

number of agents so as to remain directly linked with parallelization, they can be adjusted 

to fit a particular problem. They are better visualized as shown on Figure 3.7 and Figure 

3.8 which are based on the introductory example. 
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(a) 𝐿𝑂𝑃𝐸5% on mapping rate (b) Incremental mapping rate 

Figure 3.7: Visualization of LOPE for the introductory example 

 

The 𝐿𝑂𝑃𝐸5% is 13 agents for a value of the mapping rate of 76.75 𝑚2/𝑠 (Figure 

3.7 (a)). It is the number of agents for which the incremental mapping rate falls and stays 

within 5% (Figure 3.7 (b)). The computation of the incremental mapping rate is explained 

on Figure 3.8 where the incremental mapping rate is of 5.47% at 12 but 4.92% for 13, the 

𝐿𝑂𝑃𝐸5%. 

 

Figure 3.8: Detail of LOPE at 5% for the introductory example 
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All limits of parallel effectiveness for the introductory example are then displayed 

on Figure 3.9. 

 

 

Figure 3.9: All LOPE quantities for the introductory example 

 

The 𝐿𝑂𝑃𝐸1
2

= 6 and 𝐿𝑂𝑃𝐸2
3

= 8 tell the designer how far a design is from 

𝐿𝑂𝑃𝐸5% = 13. It can also be seen that 𝐿𝑂𝑃𝐸1% is far more demanding to attain in 

resources as its value sits at 39 agents in the group compared to 13 for 𝐿𝑂𝑃𝐸5%. This 

quantity lets the designer know that after 39 agents in the system, the performance will not 

improve by more than 1% per additional agent. 
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3.1.2 Introduction of marginal quantities 

Building up on the introductory example of the 2D mapping swarm, a sensitivity 

analysis can be carried out in the vicinity of the optimal design point. A sensitivity analysis 

helps in the design process in making sure that the obtained optimal design is somehow 

robust to slight variations in the design parameters. These latter may change due to 

evolving requirements or as a result of the manufacturing process for instance. Figure 3.10 

presents such sensitivity plots around the optimal design point derived in the introductory 

example. 

 

  

(a) With respect to individual performance (b) With respect to numerality 

Figure 3.10: Sensitivity analysis around optimum design 

 

The sensitivity plots confirm the general trend observed on the whole design space: 

an increase in the individual performance of the agents or in the number of agents results 

in an improved group performance. These prediction profilers enable the exploration of 

cross sections of the response across the different design factors. They represent the 

variation in the response when one variable is changed while the others are held constant 
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at the optimal values. The steepness of the curve hence enables to assess the importance of 

each factor. 

 

 In particular, it is important for the designer to try to quantify these variations 

around the optimum so as to measure the robustness of the design or predict which design 

variable will have the most impact on the response with the least cost variation. Such a 

variation can be quantified owing to the partial derivative of the response with respect to 

the considered design variable. Using the notations from the introductory example, the 

variation of the mapping time 𝑇 with respect to the number of agents 𝑁 in the swarm can 

be quantified around the optimum as 
𝜕𝑇(𝑣,𝑁)

𝜕𝑁
|
𝑣∗,𝑁∗

: the partial derivative evaluated at the 

optimum design point (𝑣∗, 𝑁∗). The use of such quantities spreads to the field of 

optimization as a way to evaluate the response cost of violating the optimization 

constraints. They are also utilized in economics under terms such as marginal cost or 

shadow price. The first one refers to the cost incurred by producing one more unit of a good 

while the latter, although equal, is rather used to talk about the maximum price a decision-

maker would be ready to pay to produce one more unit of good. 

 

Based on this theory and the previous considerations, marginal quantities which are 

adapted to the design of swarming systems are proposed here as performance metrics. In 

order to quantify the commonplace statement ensuring that more agents result in enhanced 

performance of the swarm, theses marginal measures are computed with respect to the 

number of agents in the group in the first place. Their formulation is then extended to other 

design variables, microscopic or macroscopic. The following quantities are thus introduced 
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and described hereafter: Marginal Group Performance (MGP), Marginal Group Cost 

(MGC) and Marginal Group Efficiency (MGE). 

 

Marginal Group Performance: principal performance metric introduced here, the MGP 

originally aims at putting numbers on the ordinary thought that by increasing the number 

of agents in the swarm, the performance will improve. Fundamentally, the MGP represents 

the variation in group performance if the number of agents is increased by one. By 

extension, similar quantities can be derived with respect to other design variables. The 

MGP would then represent the deviation of group performance when a unit change occurs 

on design variable 𝜒: 

 

Equation 3.13: Marginal Group Performance 

𝑀𝐺𝑃,𝜒 =
𝜕𝑃

𝜕𝜒
 

 

Going back to the initial motivation for the introduction of the MGP, the effect of 

numerality on the performance of the optimal design is quantified by: 

 

Equation 3.14: Numerality Marginal Group Performance 

𝑀𝐺𝑃,𝑁 =
𝛥𝑃

𝛥𝑁
 

 

Marginal Group Cost: While the MGP focuses on variations in the performance of the 

system by unit changes in the design variables, the MGC quantifies at what cost such 
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changes are made. Hence, the MGC is directly complementary to the MGP to the eyes of 

the designer. In the same way that the MGP is defined, the MGC can be written as: 

 

Equation 3.15: Marginal Group Cost 

𝑀𝐺𝐶,𝜒 =
𝜕𝐶

𝜕𝜒
 

 

Marginal Group Efficiency: finally, in a similar fashion to which the MGP is originally 

conceived, the concept is to capture the variations in parallelism efficiency resulting from 

a change in the number of agents in the swarm. This idea mainly stems from the fact that 

parallelism efficiency of a system is often most affected by the number of agents 

composing it. However, this definition can be extended to design variables other than 

numerality: 

 

Equation 3.16: Marginal Group Efficiency 

𝑀𝐺𝐸,𝜒 =
𝜕휂

𝜕𝜒
 

 

As it was previously mentioned, the parallelism efficiency does not depend on 

microscopic variables for specific homogeneous swarms and missions. Hence, the 

marginal group efficiency will likely be zero when computed with respect to such 

variables. 
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These performance metrics are evaluated around design points to be studied. Being 

derivatives of the system responses, they provide the designer with clear insight on how 

the system performance is changing around the chosen optimum design, and more 

generally in the design space. Going back to the first introductory example, the marginal 

quantities around the optimal point are presented in Table 3.1 with performance 𝑃1 being 

the mapping time and performance 𝑃2 being the mapping rate. 

 

Table 3.1: Marginal quantities for the introductory example 

Performance Metrics 

Design variables 

Macroscopic 

𝜒𝑖 = 𝑁 

Microscopic 

𝜒𝑖 = 𝑣 

𝑀𝐺𝑃1,𝜒𝑖 −45.97 𝑠 −3.00 𝑠/(𝑚/𝑠) 

𝑀𝐺𝑃2,𝜒𝑖 5.79 𝑚2/𝑠 0.42 (𝑚2/𝑠)/(𝑚/𝑠) 

𝑀𝐺𝐶,𝜒𝑖 11.90 0.50 (𝑚/𝑠)−1 

𝑀𝐺𝐸,𝜒𝑖 −3% 0 (𝑚/𝑠)−1 

 

By displaying the design variables column-wise, the designer can quickly identify 

which variable is having the most impact on any response. Considering the introductory 

example, adding one agent to the mapping swarm would decrease the mission time by 

45.97 𝑠, however it would also increase the cost by 11.90 units and deteriorate the 

parallelism efficiency by 3%. On the other hand, it can be seen that the individual 

performance of the agents as a lesser effect on the mapping time but also for a smaller cost 

impact. Indeed, increasing the velocity of the agents by 1 𝑚/𝑠 results in a mapping time 

decrease by 3 𝑠 and a cost increased by 0.5 only. Note that as explained earlier on and as 
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expected for this particular mission, 𝑀𝐺𝐸,𝑣 = 0 (𝑚/𝑠)
−1: the individual performance of 

the agents does not have an impact on the parallel efficiency. 

 

The marginal quantities can also be plotted over the design space to understand how 

the derivatives of the performance metrics vary with the design variables. Table 3.2 

exhibits these variations with the rows representing the marginal quantities while each 

column denotes the design variable considered for the computation of a marginal quantity. 

As for the previous contour plots of the introductory example, the red line represents the 

cost constraint and the red star is the previously derived optimal design point. These graphs 

should be understood in such a way that, by fixing a velocity 𝑣 and reading different values 

of 𝑁 on a horizontal line, the designer is contemplating the following question: “with 

swarm agents having this velocity 𝑣, what increments in my performance metrics are 

possible by adding one more agent?”. By looking up these marginal values for different 

values of 𝑁, the designer gains insight to figure out at what size of the swarm it is not 

beneficial anymore to add more agents. Same goes for the second column and adding 

velocity to the individual agents. 
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Table 3.2: Marginal quantities over complete design space 

 𝜒𝑖 = 𝑁 𝜒𝑖 = 𝑣 

𝑀
𝐺
𝑃 1
,𝜒
𝑖 

  

𝑀
𝐺
𝑃
2
,𝜒
𝑖 

  

𝑀
𝐺
𝐶
,𝜒
𝑖 

  

𝑀
𝐺
𝐸
,𝜒
𝑖
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Firstly, the marginal group performance deteriorates with both 𝑁 and 𝑣, confirming 

the limits of parallelization. In fact, with more and more agents in the swarm, the benefits 

of adding one agent to the swarm (𝑀𝐺𝑃1,𝑁) or 1 𝑚/𝑠 to the velocity of each agent 

(𝑀𝐺𝑃1,𝑣) are not as flagrant as for a swarm with fewer individuals. This is deduced by 

looking at the horizontal axes of the MGP contour plots. The same conclusion is drawn 

with the vertical axes: for swarms with very performant individuals, the benefits of adding 

one agent to the swarm or 1 𝑚/𝑠 to the velocity of each agent are lesser compared to the 

potential benefits obtained on a swarm with slow agents. The contour plots of 𝑀𝐺𝑃2,𝑁 and 

𝑀𝐺𝑃2,𝑣 show the same trend on the mapping rate. 𝑀𝐺𝐸,𝑁 provides a good insight on the 

variations of incremental parallelism efficiency: with a swarm of 5 agents, adding an agent 

deteriorates the parallelism efficiency by 2.9% while this latter is affected by only 1% in a 

swarm of 25 agents. 

A second observation is that due to the linearity of the swarm performance metrics, 

some of the marginal quantities do not depend on certain design variables. Indeed, noting 

that from Equation 2.7 𝑇(𝑣, 𝑁) ∝
1

𝑣
, then 𝑅(𝑣,𝑁) ∝ 𝑣 and consequently 𝑀𝐺𝑃2,𝑣 =

𝜕𝑅

𝜕𝑣
∝ 1 

is independent of variable 𝑣. Using a similar approach, it can be verified that 𝑀𝐺𝐶,𝑣 and 

𝑀𝐺𝐸,𝑁 do not depend on 𝑣, and 𝑀𝐺𝐶,𝑁 does not depend on 𝑁: observations in correlation 

with what is observed in Table 3.2. 

Finally, for all contour plots, the amplitude is a lot less for the marginal quantities 

computed with respect to 𝑣. Hence, between the two design variables 𝑁 and 𝑣, it seems 

that for this case the number of agents has much more impact on the metrics than the 

velocity of the agents. Moreover, 𝑀𝐺𝐸,𝑣 = 0 over the whole design space as expected since 
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in this particular mission of a homogeneous swarm, the parallel efficiency does not depend 

on the individual capabilities of the agents. 

 

This type of graph clearly shows the limits of parallelization for the introductory 

example and motivates the designer to know up to what point the parallelization should be 

preferred over individual performance improvements, and vice-versa. While parallelization 

efficiency and marginal quantities have been established and quantified in the preceding 

sections, no margin measure was defined to systematically obtain an optimum 

configuration. The optimal solution for the introductory example was based on the 

maximization of the performance with respect to a constraint of cost but one could wonder 

if the optimization could be carried out in terms of parallelization efficiency for instance. 

The next section establishes possible metrics towards a benchmark evaluation 

methodology for multi-robot systems. 

3.1.3 Benchmarking 

The lack of an established design framework for multi-robotics stems to a great 

extent from the lack of a reference benchmarking mission. Such a standard would have to 

cover a vast spectrum of possible applications in multi-robotics: collective exploration, 

coordinated motion, collective transport, self-assembly, chain formation, consensus 

achievement, and many more [95]. A fundamental error resides in the fact that a universal 

benchmarking mission or design framework, tailored to various types of applications, is an 

evident oxymoron. A customizable universal design framework can however be conceived. 
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Using the generic top-down design decision support process presented on Figure 

3.1, the generated alternatives have to be evaluated for further comparison. For the 

framework to be customizable, it needs to be applicable to very different mission types 

without privileging the canonical mission used in this work. Table 3.3 presents several 

types of missions typically utilized with robotic swarms and the pertinent metrics used to 

evaluate these missions. 

 

Table 3.3: A disparity of metrics 

Mission  Metrics 

Search and Rescue [117] 

 Victim tracking effectiveness 

Time to complete objective 

Maintenance of communication links 

Energy consumption 

Oil Spills Detection [117] 

 

Percentage of polluting vessels found 

Average time to identify a polluting vessel 

Communication links maintenance 

Mapping 

 Time to complete the map 

Quality of the final map 

Number of maps reconnection issues 

Cost of the swarm system 

Distance traveled by robots [204] 

Total explored area 

Loop closure capabilities 

 

As observed in Table 3.3, there is no normalized metric enabling the evaluation of 

the different types of mission which could be used in the proposed methodology. Some 

missions do not even have the same number of metrics to characterize them. In order to be 

able to use the methodology for various swarm missions, several utility functions are 

proposed which aggregate the multiple performance attributes of the system depending on 
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their pertaining to a given category: execution, quality, and cost. This division is based on 

widespread paradoxes observed in many design disciplines and in nature: “quantity versus 

quality”, “fast versus strong”, “rapidity versus stability versus precision”, and 

“performance versus cost” tradeoffs. By this phrasing, it is meant that in many occurrences 

these objectives tend to be in conflict and are hence considered separately. For instance, in 

the response of automated systems, rapidity is often achieved at the cost of stability or 

precision of the response [2]. The overall evaluation criteria are defined as the following. 

 

Execution index: indicative of the pure performance of the system, this index regroups all 

mission metrics relating to the “quantity” achieved during the mission of the system. For 

example, for the introductory mapping example the execution index would be a 

combination of the mapping time and the mapped area (Table 3.4). 

 

Equation 3.17: Execution index 

휀 = ∑ 𝛼𝑖𝑀𝑖

𝑀𝑖∈{
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 
𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛}

 

 

Completion or quality index: sometimes ambiguously linked to the execution index, the 

completion index represents the “quality” (as opposed to quantity) achieved during the 

mission of the system. It regroups all metrics assessing the degree of completion of the 

mission. Reminiscing the introductory example, a completion index for a mapping mission 

may be a combination of the distance errors on the map landmarks, the density of the final 

map, and the number of sub-maps reconnection errors (Table 3.4). 
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Equation 3.18: Completion index 

𝑄 = ∑ 𝛼𝑖𝑀𝑖

𝑀𝑖∈{
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 
𝑜𝑓 𝑞𝑢𝑎𝑙𝑖𝑡𝑦}

 

 

Cost index: complementary to the two previous performance metrics, the cost index 

regroups all metrics linked to the cost of the system, be it in money, energy, time, or raw 

materials. Continuing on the canonical example, the cost function can simply be the cost 

of the swarm (Table 3.4). 

 

Equation 3.19: Cost index 

𝐶 = ∑ 𝛼𝑖𝑀𝑖

𝑀𝑖∈{
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 
𝑜𝑓 𝑐𝑜𝑠𝑡 }

 

 

Such aggregate functions are key enablers for the modularity of the proposed design 

methodology as they can potentially accommodate any swarming mission type. Note that 

it is possible to use the OEC approach described in [141] in order to quantify the 

performance with respect to established requirements or baseline values. Put into 

perspective, these metrics enable the assessment of the absolute performance of a system, 

how well this performance was achieved, and for which cost. Note that these metrics are 

not always completely uncorrelated and it is the choice of the designer to segregate the 

metrics according to design preferences. The versatility of this approach is demonstrated 

in Table 3.4 where the metrics used for each index are separated. The 𝛼𝑖 coefficients are 

left to be defined. 
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Table 3.4: A set of unified metrics 

  Execution Index   Completion Index  Cost Index 

Chain 

formation 

 

 Time to complete 

chain 

  

 Proportion of missed 

links 

 

 Cost of swarm 

 Energy consumption 

 Number of unused agents 

Mapping 

 

 Time to complete 

map 

  
 Density of map features 

 Percentage of 

reconnection errors 

 

 Cost of the swarm 

system 

Search 

& 

Rescue 

 
 Percentage of 

victims saved 

 Time to complete 

objective 

  
 Victim tracking 

effectiveness 

 Maintenance of 

communication links 

 

 Energy consumption 

 

After the different metrics from Table 3.3 are combined into the aggregate 

functions, the diverse missions can now be evaluated in the design methodology with the 

same measures, hence facilitating the use of the framework for different missions. 

 

This approach, also known as a priori multi-objective optimization assumes that the 

designer is able to rationally decide on the value of the weighting coefficients for each 

original metric. Aggregate functions also have the advantage of facilitating the 

optimization process with the use of single objective optimization methods compared to a 

posteriori techniques. This feature is essential since, due to the extremely high number of 

alternatives to evaluate, rapidity of the code is essential. By reducing the dimensionality of 

the problem, these indices also simplify the decision-making process which can get quite 

delicate with multiple objectives. These characteristics further motivate the choice of a 

priori multi-objective optimization as established in section 2.3.2.1.1.2. 
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In this section, performance metrics pertinent with the problematics at stake have 

been introduced. Notions of parallelism efficiency are first presented to quantify the effects 

of parallelization on the system. In addition, by analogy to controls theory, a few metrics 

are formed to provide the designer with an absolute measure of when the effects of 

parallelization are starting to vanish in the performance of the system. A second set of 

metrics introduced as marginal quantities offer a systematic approach to quantify the 

sensibility around a given design point in terms of performance, parallelization, and cost. 

Finally, to promote modularity and reusability of the proposed method with various swarm 

mission types, aggregate functions are proposed. These metrics are created based on three 

complementary aspects of the mission of a swarm: its quantity, its quality, and its cost. The 

conjunction of these performance metrics provides the means to compare different swarm 

alternatives and take decisions. 

3.2 Design space definition 

The definition of the design space consists in establishing the boundary of the set of 

feasible alternatives which are to be compared and optimized. 

3.2.1 The design variables 

The choice of design variables is a key step in the methodology as their number and 

their range greatly affect the size of the design space which is already amplified due to its 

multi-level and multi-architecture nature. For multi-robotics, design variables intervene in 

microscopic and in macroscopic levels, hence both need to be detailed in the present 

subsection. 
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3.2.1.1 Microscopic level: the agents 

Given that the study of heterogeneous swarms must be incorporated in this work, 

agents must have the opportunity to be quite different in architectures and capabilities. To 

differentiate the different architectures to be considered, a first taxonomy of UAVs inspired 

by [205] is proposed in Figure 3.11. It first segregates Heavier-Than-Air (HTA) aircraft 

and Lighter-Than-Air aircraft (LTA). Note that unpowered aircraft such as gliders, 

sailplanes, balloons, and aerostats, are not considered as their performance on the 

benchmarking mission would prove dependent on variables such as wind or thermals which 

require a detail of modeling beyond the scope of this research. Such unconsidered 

architectures are greyed out in Figure 3.11. Moreover, the microlight category is not 

included since UAVs, already light by nature, do not have such a category. 

 

Heterogeneity in architectures is attained if there are at least two different 

architectures to be considered in the design space. However to ensure generality, at least 

four architectures will be considered in this research: fixed-wing, helicopter (and more 

particularly multicopter configurations), dirigibles, and ornithopters. The considered 

architectures are detailed in hereafter with their definitions [206] and their design variables. 
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Figure 3.11: A taxonomy of existing UAVs 

 

Fixed-wing: a fixed-wing airplane is a heavier-than-air aircraft with wings which remained 

in a fixed position under given conditions of flight. This category may include variable 

geometry aircraft [206]. Possible design variables include: wing type, wing span, wing 

aspect ratio, fuselage length, propellers diameter, type of energy storage system (battery or 

fuel), and embarked sensors and electronics. 
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Helicopter: A helicopter is a heavier-than-air aircraft supported in flight chiefly by the 

reactions of the air on one or more power driven rotors on substantially vertical axes [206]. 

Design variables which can be considered for helicopters include propeller diameter and 

type, length of the arms, energy storage system, as well as embarked sensors and 

electronics. 

 

Dirigible: a dirigible is a power-driven lighter-than-air aircraft [206]. Possible design 

variables to be included for dirigibles include engine type, propeller type and diameter, and 

embarked sensors and electronics. 

 

Ornithopter: an aircraft which flies by flapping its wings. Possible design variables 

include wing area, type of stabilizers, battery capacity, and embarked electronics. 

3.2.1.2 Macroscopic level: the swarm 

The group of robots is mainly represented with three pieces of information: the 

architectures involved, the number of agents for each architecture, and the type of control 

architecture used. Note that as a first approach, it can be assumed that it is not possible to 

combine the same architecture under different configurations in the same swarm. That is, 

each architecture is represented by only one configuration in the swarm. For instance, if 

the swarm contains quadrotors, then all the quadrotors in the group have the same 

characteristics. A notional summary of the design variables at the macroscopic level is 

proposed in the morphological matrix Table 3.5. The selected options are in green and 

incompatible options with the selected choice are highlighted in red. 
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Table 3.5: Notional morphological matrix at the macroscopic level 

Features Option 1 Option 2 Option 3 Option 4 

Architecture Quadrotor Twin-boomer Dirigible Ornithopter 

Architecture 

numerality 
6 2   

Control 

architecture 

category 

Centralized Decentralized   

Control scheme Leader/Follower Hierarchical Consensus Distributed 

 

The available options for each of the macroscopic design variables are detailed in 

the modeling section 3.3. 

3.2.2 Alternatives generation 

The generation of alternatives is to be conducted with respect to the design-space 

exploration methodology described in the second chapter and a quick overview of this 

process is proposed here as a reminder (Figure 3.12). A first step consists in the reduction 

of the dimensionality of the design space by applying the morphological reduction 

proposed by [173] (see page 142). Then, the whole morphological analysis is represented 

with the help of a tree, enabling to dynamically allocate alternatives depending on the 

choices made at the macroscopic level. The architecture level is an intermediate level 

containing the abstract morphological matrices of the considered architectures. 
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Figure 3.12: Review of hypothesis 3.1 

 

3.3 Alternatives evaluation 

Once an architecture to be studied has been given by the design space exploration 

process, its performance needs to be measured in terms of the established metrics with 

respect to the canonical mission. Based on the physics-based simulation approach 

motivated by the second chapter, the whole mission has to be carried out by the agents. In 

order for the performance evaluation environment to properly fit the complete 

methodology, important features to consider are the following: 

 Automation & Integration: due to the very high number of cases to be run, the 

environment must be able to take as input designs which are automatically 

generated by the design space exploration method. Performance results must also 

be generated automatically. 
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 Conceptual design level: owing to the concentration of this work on conceptual 

design phases, a corresponding level of modeling should be used. In particular, 

advanced and detailed information about the agents of the swarm are not available 

at this design stage. For example, Computational Flow Dynamics (CFD) techniques 

requiring exhaustive shapes information are typically not utilized for this step. This 

would also entail a higher number of design variables and longer execution times. 

 Cost modeling: in order to be able to place conflicting constraints on the system 

such as the prominent performance versus cost tradeoff presented in the 

introductory example, a minimum level of cost modeling should be implemented. 

 Physics-based: due to the lack of historical data available in the design of 

swarming systems, a physics-based approach should be preferred. Moreover, a 

direct link between the configuration, especially geometry, of an agent and its 

performance must be established. 

 Rapidity: owing to the very high number of cases to evaluate in the design space 

exploration step, a simulation environment with very small runtime shall be 

preferred. 

 

As the research challenges underline (Figure 1.37 page 70), even a canonical problem 

with a limited number of design variables quickly generates a colossal design space suitable 

for this current work. Moreover, a restrained level of simulation detail would prove fast 

enough and emergent behaviors can be observed without any further complexity. 

Therefore, this section describes a proposed example of implementation for models which 

have to be established for the agents and for the swarm as well. 
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3.3.1 Microscopic level: the agents 

The modeling of the different type of agents, and especially the required level of 

detail, is based on a top-down decomposition into subsystems (Figure 3.13). 

 

 

Figure 3.13: Agent modeling breakdown 

 

The models to be implemented have to be moderately detailed and fast to evaluate 

in order to fit in the mesoscopic representation of the whole system. Details of modeling 

for a quadcopter are given in [207], and for a fixed-wing UAV in [208]. A conceptual 

design process for UAVs such as the one proposed in [209] is used: based on the physical 

breakdown of the agents, the different models are detailed here below. 

 Aerodynamics: this part considers simplistic models of lift and drag and no high-

speed aerodynamics effects are to be included for reasons detailed here below. The 

aerodynamics coefficients are obtained from current concepts in the literature or by 

extended vortex-lattice models such as AVL as recommended by [210]. 

 Cost: cost information for off-the-shelf components are included for the model. 

Agent
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Batteries
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 Controls: simple Proportional–Integral–Derivative (PID) controllers are to be 

implemented as they are widely utilized and understood. They facilitate the 

implementation as well as the tuning of the gains for each architecture. 

 Propulsion: the propulsion systems are composed of motors and propellers for 

most of the architectures. For the modeling part, an extensive database of 

compatible motors and propellers is used with performance data. 

o Batteries: generic charge and discharge models are used. 

o Fuel: fuel consumption data is utilized for the rate of change of fuel mass. 

 Sensors: sensors are precisely modeled in their behavior since they most probably 

are the main drivers of the performance of the agents. 

o Lidar: the lidar model uses a ray casting algorithm that returns the distance 

of the scanned environment points. The design variables are the resolution, 

the range, and the scan rate [211]. 

o Camera: basic ray-casting is used to obtain the projected colors for every 

pixel of the image but no distance information is provided. Main design 

variables are the resolution, the framerate, and the color type (RGB or 

grayscale). 

o RGBD-camera: mix between the lidar and the camera, ray-casting is used 

in the same fashion as for the image returning both the color and the distance 

of the scanned environment point. 

Note that measurement noise may be added for each of the sensors if required. 

 Structures: structural effects are neglected in this work given the focus on micro-

sized aerial vehicles where structures are most of the time sturdy enough for the 
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dynamics and the weights of the subsystems. Moreover, aeroelastic effects are 

neglected. 

 Weight estimation: the computation of the weight of an agent is based on the off-

the-shelf components database information as well as material properties and 

empiric relations for geometric features. 

 

Finally, the dynamics of the agents are analyzed through a 6DOF model based on 

a flat Earth assumption. Indeed, the size of the mission area is assumed to be moderate 

enough so that non-inertial frame effects can be neglected (a couple hundreds of kilometers 

wide at maximum). A North-East-Down (NED) frame is used for reference. 

 

For the given canonical mission, a good estimate of the key variables is obtained 

by considering possible elements that would limit the mapping performance. Given that 

the performance metrics on this mapping are mostly the time to map and the map quality, 

it is probable that significant drivers of the performance are going to depend on the speed 

at which the robot can travel, the update rate of the sensors, as well as their resolution. 

It is expected that for agents of a moderate size (i.e. from nanodrones to micro-

drones), the sensors are going to be one of the most limiting factors in the performance of 

the system. For instance, a quadrirotor with a span of fifty centimeters is easily able to 

reach high speeds above fifty kilometers an hour. However, due to its limited capacity to 

embark computing power and high quality sensors, its mapping rate might be relatively 

low and might constrain it to fly at low speeds. This justifies the fact that there is no need 

for a detailed modeling of high speed aerodynamics effects. Moreover, sensors often 
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represent quite an amount of weight and also imply an important current consumption, 

incurring the need of a bigger battery. Consequently, sensors are most probably the main 

drivers of the performance of an agent. 

3.3.2 Macroscopic level: the swarm 

Swarm modeling is a key element for this work due to its link with emergence of 

behavior and has to be carefully integrated into the mesoscopic model. This latter is based 

on a rather detailed modeling of the agents but a simple modeling of the rules of the swarm. 

 

One of the main design variables for the macroscopic level is the type of control 

architecture. A handful of schemes has been developed and a comparison is proposed in 

Table 3.6. Such control schemes are first divided between centralized and decentralized 

methods. In the first category, a central unit which may be a ground station or a swarm 

agent itself, is in charge of the cohesion and the decision within the swarm. This access to 

global information leads to intrinsic coordination of the group and optimal results [212]. 

In the latter category, no such central leader exists and the swarm control is 

achieved by the artificial intelligence of each individual agent. In the consensus technique, 

each agent takes into account the information communicated by the others in a voting 

system. If the voting score exceeds a given threshold function, an action has to be taken by 

the agent. The partitioned method is particularly adapted for mapping purposes or other 

area-based missions since the space is separated in different areas. Each agent is then 

assigned a particular space and the communication between the agents insures that they 

remain in their area. In the distributed scheme, no communication is necessary since every 

agent is only capable of detecting the other agents and acts based on their behavior. 
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Finally, there exist a hybrid category representing a mix between centralized and 

decentralized approaches so that the control does not depend on one unique leader but on 

several sub-leaders scattered within the group. 

 

The decentralized control schemes divide the complex behavior and decision tasks 

into individual parallel processes performed on each robot, this generally guarantees better 

flexibility and scalability of the swarm. However, while they lower the use of bandwidth 

by the system, they tend to be much more complicated to implement than a centralized 

architecture. Moreover, they are also inclined to more instability and are less predictable 

[115], making it difficult to obtain a coherent global behavior [212]. In addition, 

decentralized techniques imply that a mutual detection algorithm be implemented between 

individual agents. Finally, decentralized architectures present risks of losing units when 

they go out of the communication range of all other neighbors. In terms of implementation, 

the leader/follower, the hierarchical, and the partitioned approaches are the simplest and 

could fit the assumptions of the mesoscopic scale. In sum, the centralized control 

architecture seems to be the most widely used, the simplest to implement and corresponds 

to the mesoscopic description. In terms of implementation, the control architecture can 

follow guidelines from [213]. 
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Table 3.6: Swarm control architectures 

Architecture Representation Advantages Limitations 

Centralized    

Leader 

Follower 

 

 Reliable and 

predictable 

 Quick swarm response 

possible 

 Vulnerable to loss of leader 

 Communication required 

between leader and every 

agent 

 Leader requires high 

bandwidth capability 

Decentralized    

Consensus 

 

 Lower bandwidth 

requirements 

 Robust decision-

making 

 No critical nodes 

 Communication required 

between all agents 

 Not as predictable 

 Requires voting 

 Slower overall 
Partitioned 

 

Distributed 

 

 No communication 

required 

 Absolute position not 

required 

 No critical nodes 

 Difficult to reliably and 

quickly control 

 Requires all agents to be 

detected as near 

neighbors 

Hybrid    

Hierarchical 

 

 Fairly reliable and 

predictable 

 Loss of one leader is 

not catastrophic 

 Quick partial swarm 

response possible 

 Leader-follower 

communication required 

 Coordination required 

between sub-groups 
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An additional set of assumptions is hence established here below: 

 Perfect communication between the agents, equivalent to an infinite 

communication range. 

 No collisions are modeled. However, saturation of the mission space may happen 

if too many agents are deployed. This is represented by the area occupied by the 

agents when they fly at the same altitude. 

 Limits of numerality are also represented by the computation and network 

bandwidth limits of the centralized entity. 

 

This set of assumptions makes the swarm performance on a given mission 

deterministic. This liberates from the use of replications for each mission execution, 

consequently accelerating the model evaluation: a key requirement for mesoscopic 

representations. Moreover, this has the advantage of speeding up the design space 

exploration. For the same reasons, uncertainty beyond the marginal performance quantities 

is not considered in the scope of this work. 

3.3.3 Agent-based simulation 

An agent-based model is a computational model that enables the simulation of 

autonomous agents and their interactions, resulting in modifications of a system and its 

environment. Such models are particularly adapted for complex systems with nonlinear 

dynamics, heterogeneity, and emergence. As a matter of fact, “agent-based modeling 

postulates that the global behavior of a complex system derives from the lower level 

interactions of its constituent elements” [160]. This category of models hence seems 
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perfectly adequate for the scope of this research. The main modules of an agent-based 

model are the environment, the agents, and their interactions (see Figure 3.14). 

 

 

Figure 3.14: Proposed agent-based model architecture 

 

Mostly based on [214], a list of state-of-the-art platforms for scientific agent-based 

simulation is detailed here below and compared with custom implementations. These can 

also be compared with the multi-robot simulators described in Table 2.3. Criteria of 

comparison include scalability and speed, ability to model complex systems, memory 

management, and the learning curve required to use such frameworks. 

 

Swarm: implementing both a model for swarm hierarchies and a virtual laboratory, Swarm 

is based on schedules of actions that the objects execute. It uses its own data structures and 

memory management module. Initially implemented in Objective-C, it is a mature library 

platform, stable, and well organized. It lacks however some capabilities in error-handling 

and developer tools. Java Swarm is an attempt to access the Swarm Objective-C libraries 

from Java interfaces after a strong demand among users. Still, as a quick suboptimal 

World 

Agent 
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World dynamics 
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implementation, it seems to fail in combining the strengths of Java with the capabilities of 

the Swarm platform. 

 

Repast: aimed at making the functionalities of Swarm available in Java, Repast is mainly 

focused on social science, hence lacking tools adapted for other domains. Despite 

improvements in interface and built-in examples, Repast has a steep learning curve. 

 

MASON: designed with execution speed as a priority for complex models, it is less mature 

than the other alternatives but includes good parallelization capabilities. 

 

NetLogo: originally an educational tool, it is focused on ease of use. It includes its own 

programming language but focuses mostly on one type of application: mobile agents 

interacting on a grid space with short local interactions. 

 

ROS/Gazebo: the Robot Operating System (ROS) is an abstraction layer (middleware) 

used between simulated robots and real robots and it includes a simulator called Gazebo. 

This latter incorporates a powerful and fast physics engine able to simulate a wide range 

of sensors and apply textures to the environment. Based on a C++ implementation, this 

simulator is quite fast but would struggle with large number of robots in the group due to 

the high level of detail of the physics engine. 

 

Additional tools available as resources at the Georgia Institute of Technology or at 

the Aerospace Systems Design Laboratory (ASDL) are also considered. 
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GUST: the Georgia Tech UAV Simulation Tool (GUST) includes tools developed for the 

aircraft of the Georgia Tech UAV Research Facility: onboard software, ground station, and 

simulation environment [215]. It also includes software-in-the-loop, a ground control 

station, sensor hardware, guidance computer, and primary flight computer testing 

capabilities. GUST is mainly designed to focus on the development and integration process 

before an aircraft leaves the laboratory. However, it remains mainly adapted to the type of 

platforms used by the Georgia Tech UAV Research Facility. 

 

Robotarium: the project includes a remotely accessible swarm of robots as well as a 

simulator used to develop and test applications before trying them on the swarm. The aim 

of the project is to have a remote-access robotics lab where anyone is able to test their 

algorithms. The simulator is implemented in Matlab and is simple and fast enough for 2D 

simulations up to 100 robots. 

 

NASA World Wind (modified by ASDL): developed by the National Aeronautics and 

Space Administration (NASA), this tool is adapted for displaying and interacting with 

geographic information. In particular, it can be used to implement a flight simulator and 

the ASDL has extended its capabilities in order to handle groups of robots. 

 

As underlined by [214], these existing platforms should be improved in terms of 

statistical outputs and more importantly automating simulation experiments. Hence, in 

addition to these pre-existing platforms for agent-based modeling, the implementation of a 

custom model tailored to the needs of this research, is considered with three programming 
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languages. The first language being considered is MATLAB as it is widely used in the 

research community and includes many built-in libraries and functionalities. While 

MATLAB is easy to use and provides very good debugging and data visualization 

capabilities, it is significantly slow when compared to other programming languages. C++ 

is then considered as an alternative as its object-oriented language features would enable 

an easy implementation of an agent-based model. This language is quite fast but requires 

to precise the type of objects before using them. C++ also lacks built-in memory 

management tools, which requires the coder to manage memory carefully, an intimidating 

task to consider for agent-based modeling where many objects are involved. Java is a good 

alternative to C++ as it has proven similarly fast in recent years. Its error checking and 

garbage collection capabilities clearly facilitate the implementation of an agent-based 

model. Based on the previous descriptions, the capabilities of these platforms are 

summarized and compared in Table 3.7. The number of dots represent the degree to which 

a feature is present in the considered platform. 
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Table 3.7: Agent-based simulation platforms comparison 

Simulator 
Scalability & 

Rapidity 

Complex 

Modeling 

Capabilities 

Memory 

Management 

Learning 

Curve 

C++ based ●●● ●●● ● ● 

Java-based ●●● ●●● ●●● ● 

MASON ●● ●●● ●● ●●● 

MATLAB (ASDL) ● ●●● ●● ● 

NASA World Wind (ASDL) ●●● ●●● ●●● ●●● 

GUST (GT) ● ●● ●● ●●● 

Robotarium (GT) ●● ●●● ●●● ● 

ROS/Gazebo ● ●●● ●●● ● 

NetLogo ●● ● ●● ●● 

Repast ●●● ●● ●● ●●● 

Swarm (Objective-C) ●● ●●● ● ●●● 

Swarm (Java) ●● ●●● ●● ●● 

 

Based on the previous observations, the modified NASA ASDL model seems quite 

suitable for the considered problematics and is available as a resource. However, this model 

was added on the consequent NASA World Wind development kit and encompasses many 

dozens of classes and hundreds of methods adding a steep learning curve and quite some 

complexity compared to the required capabilities. Moreover, the architecture is limited in 

flexibility, making it hard to add new functionalities to the platform. NetLogo is also a very 

good option but the whole model code has to be written in one file, a choice which might 
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not be adapted to the complexity of this research. A Java-based implementation seems to 

regroup the benefits of both these options while enabling to keep a complex code organized 

Nevertheless, the development would have to start a completely new implementation, 

adding a considerable lead time before starting any experiments. Hence, a reasonable 

learning curve is chosen as a main decision criterion so that the ROS/Gazebo and the 

Robotarium simulators can be adapted for respectively 3D microscopic and 2D mesoscopic 

models.  

3.3.4 Testbed mission 

Owing to the lack of standards of swarm engineering, no established canonical 

mission exists to test multi-robot systems. Hence, while this thesis proposes a generic 

framework for the design of multi-robot systems, a specific testbed mission has to be 

chosen to demonstrate its capabilities. In theory, any type of mission can be plugged in the 

framework and adapted to the requirements imposed on the designers. For this specific 

implementation, a large-scale topographical survey is chosen based on aerial imagery 

(Figure 3.15). 

 

 

Figure 3.15: Representation of the testbed mission 
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[216] predicts that the agriculture drone sector will generate 100,000 jobs in the 

U.S. and $82 billion in economic activity, clearly establishing the potential growth of such 

applications [217]. Leader in the field, SkyPlan advertises a coverage of 60 to 600 ha per 

flight using SenseFly drones [218]. As a reference, a soccer field has an area of 0.714 ha. 

Without cooperation, [219] shows that it requires 40 flights accounting for 22 total hours, 

in order to survey an area of 39 km2. This requires 10 workers and 6 weeks are necessary 

to deliver the data to the customer. Such performance could greatly benefit from the use of 

multi-robot systems. 

In addition, this type of mission proposes several advantages: as an area grid-based 

mission, it can be easily extended to other similar missions (mapping, surveillance, search 

and rescue, etc.). Such missions constitute a large component of the application spectrum 

for multi-robot systems. As such, it is a direct extension of the imaging/mapping canonical 

example given in section 2.1. 

The implementation of such a mission relies mostly on a proper navigation scheme 

for the fleet depending on the terrain conditions, and the analysis used to stitch the captured 

data together. Strategies of exploration and mapping can be inspired from [211] and [220]. 

The following paragraphs detail the different steps required in the mission. 

 

Aerial imagery: geotagged RGB images are captured from the drone (Figure 3.16) with 

typical high resolution cameras (around 16-Megapixel). The altitude of the drone 

determines the Ground Sampling Distance (GSD). 
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Figure 3.16: Aerial imagery [218] 

 

A given GSD requirement hence limits the area covered in one flight. The quality 

required for such images implies some limitations on the flight conditions or on the 

performance of the system:  

• No more than 50-degree flying angles 

• Wind can affect data capture 

• Low-hanging clouds can affect image quality 

• Large water bodies or snow fields are unfavorable 

• GPS signal can be erroneous between buildings 

 

Orthomosaics: ortho-Mosaicking consists in the combination of two processes: ortho-

rectification and mosaicking [221] (Figure 3.17). 

 

Figure 3.17: Orthomosaics [218] 
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The first one corrects the distortion and perspective effects due to the camera 

intrinsic parameters (focal length, optic center) and its angle with the vertical so that the 

map projection scale remains constant throughout the image. It may also account for relief 

effects to create an image which is plane and metrically correct. A visualization of common 

deformation effects is presented on Figure 3.18 and the process of ortho-rectification can 

be visualized on Figure 3.19. 

 

 

Translation Scaled rigid Shear Perspective Terrain relief 

Figure 3.18: Common geometric transformations 

 

  

(a) Original image (b) Ortho-rectified image 

Figure 3.19: Ortho-rectification process 
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Finally, mosaicking is the process of stitching different images of the same scene 

together in order to obtain a single image (Figure 3.20). 

 

 

Figure 3.20: Mosaicking [222] 

 

The final orthomosaic obtained from this process enables the direct superposition 

of images with GPS data without any shift. The accuracy obtained on the final model is 1 

to 2 times the GSD for horizontal coordinates and 2 to 3 times the GSD for vertical 

coordinates. Hence, a project with a GSD of 4 cm will most likely generate data with 3 to 

6 cm of horizontal accuracy and 6 to 9 cm of vertical accuracy [218]. 

 

Surface models: thanks to the geotags available with each picture taken, it is possible to 

identify a very large number of matching features between the images and later generate 

3D point clouds and surface models. 

 

Figure 3.21: Surface models [218] 
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The sampling distance generally obtained for the surface models ranges from 2 to 

4 times that of the captured images. 

3.4 Decision-making process 

Last step in the traditional top-down design procedure, the decision-making process 

aims at allowing designers to prioritize objectives and visualize tradeoffs between 

constraints and objectives. By using a priori optimization techniques, the optimization 

algorithm proposed in section 2.3.2 provides only one optimal solution. While this tends 

to suggest that there is no real decision-making step once optimization has been carried 

out, it relies on the assumption that the designer is able to correctly prioritize the objectives 

into the aggregate objective function. Hence, choosing the weights of the aggregate 

function is an indirect decision-making exercise as it affects the way each objective is 

considered to evaluate the performance of the multi-robot system. However, since the a 

priori knowledge of the effects of such weights on the optimal solution is not intuitive, it 

is difficult to qualify this as a true decision-making process. 

A possible solution is to vary these weights in order to obtain several solutions and 

then compare them and make the decision process based on this set of solutions. By first 

varying the weights around the values chosen by the designer, it is possible to assess the 

robustness of the solution with respect to the requirements. It helps in making sure that a 

completely different solution is not obtained if the weights are slightly modified. This will 

ensure that the performance is the expected one once the system is implemented in reality 

with noisy sensors and manufacturing imperfections. Then, by giving completely different 

values to the weights, the designer is able to consider several weighting scenarios and chose 
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the best among them. Such a decision can be done using the Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) method for instance [173]. 

3.5 Verification and validation 

The step of verification and validation is essential to check on one hand that the 

proposed methodology is able to meet the requirements of the different experiments, and 

on the other hand that it correctly models multi-robot systems such as those used by the 

research community. The combination of both elements will ensure the consistency of the 

proposed approach. Note that third-party pieces of code which have already been verified 

and validated do not need to be included in this step. 

 

First, the verification step is designed to ensure that the modeling part is done in 

line with the requirements established in the proposed approach. Its main purpose is to 

make sure that models are implemented correctly without any bugs or errors. For this 

matter, systematic unit tests are created and executed for the different algorithms at stake. 

Since most of the implementation is deterministic as per the proposed methodology, such 

unit tests are quite simple to implement and verify with synthetized data. Replications are 

used for stochastic processes in order to be able to draw consistent conclusions. 

 

Then, the validation process certifies that the methodology is able to predict the 

performance of real-world systems. Given that swarm physical design optimization is a 

missing topic (see second chapter page 74), the validation of this part of the work is 

impossible by comparing results with existing systems. However, by enforcing the number 

of robots in the swarm to one, it is possible to compare the obtained swarm design with 
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existing single systems performing a given mission. This enables the validation of the 

design optimization scheme. Moreover, the modeling and simulation community is having 

a hard time finding an appropriate method to validate agent-based models [140]. Indeed, 

these are large complex systems which cannot easily be replicated in reality in the same 

way that simpler physical experiments can. A validation technique which can possibly be 

used in this particular case is to make sure that the comparison between different designs 

still holds when the detail and fidelity level of the models is varied. In particular, this helps 

in ensuring that a design remains optimal as the detail level is increased from conceptual 

level to actual implementation. 

 

 The implementation of the approach presented in this chapter, complemented with 

the solutions proposed in the previous one, provides a way to carry out the experiments 

designed earlier on to investigate the research objective. These experiments will then 

provide results possibly validating the hypotheses formulated in chapter 2CHAPTER 2. 

3.6 Summary 

The problematic to be addressed has now been rigorously formulated and 

complemented with a proposed approach (Figure 3.22), this subsection summarizes the 

formal research process and the contributions anticipated from the research effort. 

The design framework developed in this research is expected to bring advances in 

the exploration of extremely large design spaces with group architectures. Furthermore, the 

conceived methodology is also presumed to provide designers with a better understanding 

of the intrications and inner workings of multi-robotics. For want of a testbed application, 
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this research will also provide the field of multi-robotics with a testbed framework virtually 

extendible to any multi-robot application. 

 

Figure 3.22: Summary of the research process 

Motivation 

Problem Definition 

Research Question 1 Research Question 2 Research Question 3 

Hypothesis 1 Hypothesis 2 Hypothesis 3 

Research Objective 

Can multi-robot systems designs be 

improved by linking microscopic 

and macroscopic levels? 

How to link the microscopic and 

the macroscopic levels of a multi-

robot system for conceptual design 

purposes? 

How can current conceptual design 

methods be adapted to account for 

multi-architecture multi-level 

design space exploration? 

IF an approach leveraging the 

interdependence between microscopic 

and macroscopic levels is used 
  

THEN significant improvements in 

average performance can be achieved 

in the design of multi-robot systems 
compared to traditional sequential 

optimization schemes 

IF a mesoscopic approach leveraging 

the speed of macroscopic models and 
the accuracy of microscopic models is 

used 
  

THEN microscopic and macroscopic 
levels can be efficiently linked for 

conceptual design purposes 

IF a tree of reduced morphological 

matrices is used in conjunction with an 

optimization method based on a bi-
level genetic algorithm 

 

THEN a multi-architecture multi-level 
design space exploration can be 

carried out efficiently to obtain 

optimal group configurations 

Establish a methodology that enables the optimum design of multi-robot systems and the evaluation of 

trade-offs between individual architecture development and numerality to achieve group performance 

Swarms Robots Swarm Engineering 

Observations 1 Observations 2 Observations 3 

Assertion 1 Assertion 2 Assertion 3 

• Many drone types are now 

available 
• This diversity is developing 
• Single robot limitations can be 

overcome by collaboration 

• Designing a multi-robot system 

requires much more commitment 
than for a single agent 
• They are confined to academia or 

experimental and avant-gardist 

military applications 

• Groups might not always perform 
“better” than single agents 
• Very few group designs 

possibilities are considered, mostly 

homogeneous and sub-optimal 

There is a potential to take 
advantage of the diversity 

of the existing drone fleet 

A standard physical design process 

for multi-robot systems is needed 

to foster their democratization 

There is a need to evaluate and 
compare the real advantage of 

different optimized multi-robot 
systems versus optimized single-

robot solutions on a given mission 
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Figure 3.23: Proposed design space exploration technique summary 
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Design space exploration: the design domain for a swarm of robots often ends up 

involving extremely large numbers of designs to be studied, significantly due to numerality 

(Figure 1.37). Current approaches fail to properly study such design spaces in terms of both 

quantity of considered alternatives, but also quality of coverage. The presented design 

space exploration method (Figure 3.23) proposes a solution to explore extremely large 

design spaces which are generated when having to choose several designs defined among 

multiple architectures. 

 

Insights on robotics swarm design: the present research originated from justified 

questions such as: 

 Does using a swarm always provide increased performance for a given mission? 

 After a change in mission requirements, is it better to increase the swarm size or 

increase the capabilities of each agent in order to still be able to complete the 

mission? 

 Should a designer spend more time on developing the group architecture or on 

improving the R&D and individual performance of each agent? 

 For a given mission, what is the optimal swarm architecture? 

 

Answering this type of doubts, or rather providing designers with a framework to 

answer these questions, is part of the expected contributions of this work. The ability to 

elaborate and evaluate the performance of several robotic swarm architectures is expected 

to provide a new level of insight on their possible benefits. Not only will the performance 

be quantified with respect to standardized metrics, but it will also be compared with other 
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existing solutions on given requirements. This will provide answers to the need established 

in the third assertion of the motivation section: to evaluate the real advantage of swarms 

versus single-robot solutions on a given mission. For instance, the benefits of using a 

robotic swarm for imaging solutions (Figure 1.5) will be evaluated in terms of cost. 

Moreover, the performance losses incurred by sequential optimization of a swarm as 

opposed to the proposed methodology, linking microscopic and macroscopic level, will be 

measured and analyzed. This will provide indications on the type of performance 

improvements which could be achieved if an approach bridging the microscopic-

macroscopic link was utilized by the community. 

Finally, the introduction of performance metrics such as the marginal group 

performance is expected to provide precious additional insight on the benefits of adding 

entities to a group of robots. Used with different design variables, these marginal quantities 

predict the profile of the response and constitute a tool for design tradeoffs. On the other 

hand, the limit of parallelism effectiveness is an attempt to provide conceptual designers 

with an absolute reference of when the advantages of parallelization start to vanish. 

 

Testbed framework: as mentioned in chapter 1, the design of multi-robot systems is 

particularly hard due to a lack of established simulators and standard testbed scenarios. If 

it seems impossible to find a universal benchmark application encompassing all the diverse 

aspects of multi-robotics such as collective exploration, chain formation, or coordinated 

motion; elaborating a standardized design methodology able to handle any application, is 

however achievable. Thanks to the proposed methodology and implementation, the testbed 

mission is completely modular depending on the actions encoded in each of the agents and 
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in the group logic. The individual behaviors have to be modified as well as the generic 

benchmarking metrics introduced in section 3.1.3. For example, the imaging testbed 

mission can easily be changed to a coordinated motion one. First, the individual tasks of 

mapping given areas have to be changed to tasks of forming and following the motion of 

neighboring agents. Then, the overall group strategy might also have to be changed at the 

swarm level. Once the mission is correctly implemented, appropriate metrics have to be 

used in the process in order to compare different swarm architectures for this given mission. 

For example, the mission performance metric can now be the time required to complete the 

desired motion and the mission completion metric can evaluate the quality of the swarm 

motion. 

 

The next chapters detail the implementation of the experiments for each one of the 

main research axes (Figure 2.1 page 74), as well as the conclusions obtained from the 

results. 
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CHAPTER 4 

LINKING MICROSCOPIC AND MACROSCOPIC LEVELS 

 

Established as a main research axis in the previous sections, the lack of a link 

between the microscopic and macroscopic levels of a swarming system was decomposed 

into two sets of main research questions, hypotheses, and corresponding experiments. The 

first set focuses on evaluating whether a possible linkage between the two levels would 

incur improvements in the optimal design of multi-robot systems. Assuming that 

enhancements are indeed possible, the second set expands on how specifically this existing 

gap between the two levels could be bridged. This section details the experiments carried 

out and the results obtained in response to the first two research questions of this thesis 

work. 

4.1 An improvement for the design of multi-robot systems 

This first subsection details the study of the first research question and the first 

hypothesis, both of which are recalled here for reference. 

 

Research question 1 

Can multi-robot systems designs be improved by linking 

microscopic and macroscopic levels? 
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Hypothesis 1 

IF an approach leveraging the interdependence between 

microscopic and macroscopic levels is used 

THEN significant improvements in average performance 

can be achieved in the design of multi-robot systems 

compared to traditional sequential optimization schemes. 

 

 

In addition to the explanation provided in section 2.1, one may consider the 

macroscopic level and the microscopic level with one variable each only. It is then possible 

to easily visualize the problem posed by sequential optimization as opposed to global 

optimization. Indeed, looking at Figure 4.1, performing sequential optimization consists in 

optimizing based on 𝑋𝑖𝑛 first and then 𝑋𝑜𝑢𝑡 (micro-macro optimization), or vice-versa 

(macro-micro optimization). This translates into constraining the optimum search along a 

specific direction to reach a temporary optimum (circle), and then updating the search 

direction to reach a final optimum (star) from this previous temporary one. While this may 

work when the design variables are defined along the Eigen vectors of the fitness function 

(Figure 4.1), it fails when there is a correlation between the design variables (Figure 4.2). 
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Figure 4.1: Sequential optimization without correlation 

 

In this first figure, the fitness function for the swarm is modeled as: 

 

Equation 4.1: Uncorrelated example function 

𝑓(𝑋) = (𝑋𝑖𝑛 − 5)
2 + (𝑋𝑜𝑢𝑡 − 5)

2 

 

The optimum search is started from an arbitrary value 𝑋𝑖𝑛 = 3 for the macro-micro 

case and from 𝑋𝑜𝑢𝑡 = 4 for the micro-macro case. Since there is no correlation term 

between 𝑋𝑖𝑛 and 𝑋𝑜𝑢𝑡, sequential optimization is able to find the true optimum of the fitness 

function in both cases, independently of the starting values. 
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Figure 4.2: Sequential optimization with correlation 

 

For the second figure, a correlation term is introduced: 

 

Equation 4.2: Correlated example function 

𝑓(𝑋) = (𝑋𝑖𝑛 − 5)
2 + (𝑋𝑜𝑢𝑡 − 5)

2 + (𝑋𝑖𝑛 − 5)(𝑋𝑜𝑢𝑡 − 5) 

 

Note that the location of the global minimum is not affected. This time, starting 

from the same initial points as before, sequential optimization is not only unable to find the 

true optimum swarm configuration, but it also ends up in two different optima depending 

on the type of algorithm used. These local optima also depend on the initial points. 
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The goal of this section is then to answer the research question by concluding 

whether this type of observations can be made for multi-robot systems performance. The 

following subsections provide the key elements necessary for carrying out experiment 1 

which compares sequential and global optimization in the context of multi-robot systems 

optimal design. 

4.1.1 Global optimization algorithm 

Key requirement of this first experiment, the role of the global optimization 

algorithm is to optimize simultaneously the macroscopic level as well as the microscopic 

level without separating them and having to optimize them sequentially. As explained in 

the hypothesis of section 2.3.2.2, a bi-level genetic algorithm is considered for this 

particular task. The reader should refer to section 5.2 for a complete analysis of this global 

optimization algorithm. 

4.1.2 Sequential optimization algorithm 

This first experiment also requires a sequential optimization algorithm to be 

compared to the global optimization one. In particular, both algorithms should reflect the 

same complexity so that they are somehow comparable in their precision and convergence 

time. Given that a genetic algorithm is chosen for the implementation of the global 

optimization algorithm (see section 5.2 page 345), the same choice is made for the 

macroscopic optimizer and the microscopic optimizer. Hence, the validated Matlab genetic 

algorithm solver is chosen to be the optimizer for the sequential optimization algorithm. 

As for the implementation, two cases have to be considered and are explained hereafter. 
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Micro-macro optimization: the agents are first optimized individually with respect to the 

mission requirements before the optimization of the group constitution 𝑋𝑜𝑢𝑡 with respect 

to the same mission requirements (see Figure 4.3). 

 

Figure 4.3: Micro-macro optimizer 

 

Hence, for each architecture, one vehicle is set to perform the mission alone 

according to the mission requirements. This step yields individual vehicles which are each 

optimized to carry out the given mission alone. Then, the macroscopic optimizer handles 

the composition of the group as well as other macroscopic variables to decide how many 

optimal vehicles of each architecture will constitute the cooperative swarm. Each iteration 

sees the group perform the mission with the optimal vehicles obtained from the 
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microscopic optimization. This mostly corresponds to what is done in the current state of 

multi-robotics research: individual platforms are independently optimized for different 

missions and by different organizations, and put together to collaborate and carry out 

another mission. Note that here the vehicles are already optimized with respect to the same 

mission they will have to carry out in a group, which is generally not the case in reality. 

 

Macro-micro optimization: the group composition is first optimized with respect to the 

mission requirements before optimizing the parameters of each constituent of the group 

with respect to the same mission requirements (see Figure 4.4). 

 

Figure 4.4: Macro-micro optimizer 

𝐴1 

𝐴1
∗  

Mission 

requirements 

𝑋𝑜𝑢𝑡 

𝐴2 

𝐴2
∗  

𝐴𝑁𝑎𝑟𝑐

𝐴𝑁𝑎𝑟𝑐ℎ
∗  

𝑋𝑜𝑢𝑡
∗  

Microscopic 

Macroscopic 

Mission requirements 

𝐴1
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 , 𝐴2

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 , … , 𝐴𝑁𝑎𝑟𝑐ℎ
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 



239 

 

This type of optimization is more delicate to carry out since a pre-existent 

baseline has to be available for each architecture. Considering these remarks, macro-

micro optimization is almost equivalent to having an additional microscopic optimization 

after a micro-macro optimization. 

 

It is important to note here that the notation used 𝑋𝑜𝑢𝑡 and 𝑋𝑖𝑛 is slightly different 

than the one used in the remainder of this thesis. In particular, when considering the 

sequential optimization scheme, 𝑋𝑜𝑢𝑡 refers more precisely to 𝑋𝑚𝑎𝑐𝑟𝑜 while 𝑋𝑖𝑛 represents 

in reality 𝑋𝑚𝑖𝑐𝑟𝑜 given the separation of microscopic and macroscopic levels when using 

sequential optimization. 

 

In addition, in the case of the micro-macro optimization, the individual constituents 

of the swarm are optimized with respect to the same mission requirements that the group 

will face. This is generally note the case for what is currently observed in the research 

community: scientists tend to gather platforms which designs were optimized for missions 

which are different from what the swarm is required to carry out. For instance, research 

groups might purchase DJI Phantom drones which are optimized for aerial photography, 

and make several of them work collaboratively on a formation flight application with 

different requirements. Subsequently, it is expected that the results obtained throughout 

this experiment will be pessimistic with respect to the actual improvements that could be 

obtained in the optimal design of multi-robot systems. 
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4.1.3 Verification and validation 

The macroscopic optimizer and the microscopic optimizer are both based on the 

Matlab genetic algorithm which is a validated piece of software. Hence, there is no need to 

further validate these two loops. However, the validation of the global optimization 

algorithm is required and detailed in section 5.2.2 page 364. Moreover, the fitness functions 

(simulation models) used in conjunction with these algorithms are validated in their 

respective chapter. 

4.1.4 Experimentation 

The experiment used to study research question 1 and demonstrate the interest of 

simultaneous optimization for multi-robot systems is the same used for the introductory 

example of section 2.1. The reader can hence refer to page 75 for a complete description 

of the canonical mission and the derivation of the corresponding macroscopic model. This 

simple model is sufficient and adequate to answer the first research question as it contains 

all the elements required to establish a surrogate of multi-robot missions. Indeed, it contains 

mobile robots with individual capabilities in terms of sensors and motion. Moreover, group 

dynamics are emulated through a particular deployment scheme that involves different 

traveling distances for each of the agents of the group. This canonical mission is used in 

the micro-macro, macro-micro, and simultaneous optimizers in the following subsections 

for conclusions to be drawn. 

 

Note that in the case of micro-macro optimization the architectures are optimized 

as if they had only one vehicle performing the mission. Once these will be integrated into 

a swarming system, all the vehicles for a given architecture will hence have the same 
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configuration: this is the same as considering only a partial heterogeneity (see section 5.2.1 

and Figure 5.35 for details). As a consequence, no additional experimentation is done in 

this section to study the effects of full heterogeneity versus partial heterogeneity in the 

group since partial heterogeneity is intrinsically enforced. 

4.1.4.1 Homogeneous swarms 

4.1.4.1.1 First strategy: optimizing a single vehicle 

The micro-macro and global optimization on the canonical mission were already 

performed a first time in section 2.1 using a full factorial design of experiments on the 

considered design space: 𝑁 ∈ ⟦1,10⟧ and 𝑣 ∈ [0,10] m/s with steps of 0.1 m/s. This time, 

the different optimizers presented in the previous subsection are used to draw conclusions 

and the macro-micro optimizer is also introduced. For each of the cases presented hereafter, 

the three optimizers are run and compared with respect to the criteria established for 

experiment 1. 

 

Experiment 1.1: First, the mission and cost parameters are fixed as follow: 𝑑0 = 100 𝑚, 

map size of 𝑙𝑥 = 100 𝑚 by 𝑙𝑦 = 100 𝑚, agent fixed cost 𝑐0 = 3, swarm fixed cost 𝐶0 =

10 and unit cost of individual performance (velocity) 𝑐𝑣 = 1 (𝑚/𝑠)
−1. The cost constraint 

is fixed at 𝐶𝑚𝑎𝑥 = 70. The baseline velocity used for the macro-micro optimization is fixed 

at 5 m/s which corresponds to the average of the bounds of the design space. Figure 4.5, 

shows the results of this first experiment. The three optimum solutions are represented with 

the cost-constrained region. In addition, the second search directions used by the sequential 

algorithms are represented. For instance, for the micro-macro optimized, the search 

direction is along the optimal velocity found by the micro optimization. 



242 

 

 

Figure 4.5: Plot of experiment 1.1 

 

Similar to the results found in the canonical example, the micro-macro optimal 

swarm composition is found to be 4 vehicles at 10 m/s each for a total cost of 62 units and 

a mission mapping time of 285 seconds. The whole set of results is presented in Table 4.1, 

with the relative difference with respect to the solution found by the simultaneous 

optimizer. 
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Table 4.1: Results of experiment 1.1 

Variable/Metric  Macro-micro  Micro-macro  Simultaneous 

N  7 (+40%)  4 (-20%)  5 

v (m/s)  5.57 (-38%)  10 (11%)  9 

Mapping time (s)  323 (+23%)  285 (+9%)  262 

Cost  70 (0%)  62 (-11%)  70 

 

A first observation is that the solution derived by the macro-micro optimizer seems 

less performant than the other two although it reaches the maximum cost constraint. This 

can be explained in the following way: the macro-micro optimizer first decides on a 

number of vehicles to integrate in the swarm which still fits inside the cost constraint. Since 

the number of vehicles can be increased only one by one, the cost increases a lot for each 

additional vehicle. Once the number N of vehicles is decided, the micro optimization takes 

place and tries to maximize the velocity of the N agents so that the mapping time decreases. 

However, the velocity increments are much finer than the numerality increments and the 

optimizer is able to get much closer to the cost constraint. On the contrary, the micro-macro 

optimization finishes with the macro optimization, taking much larger increments in cost 

(by changing only the number of vehicles) and does not have such a refinement. Hence, 

the cost of the micro-macro optimization is far from the budget constraint of 70 cost units 

despite proving a better performance in mapping time. 

Indeed, in this first micro-macro optimization, the micro optimization is 

constrained by the same cost constraint as for the macro optimization. This means that a 

single vehicle could cost up to 70 units. While this clearly illustrates one of the points of 

micro-macro optimization where more resources can be allocated to the microscopic level, 
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it does not correspond to real-world situations. Instead, the cost of a single agent should be 

decently constrained for the micro optimization, this is illustrated in the next micro-macro 

optimization. 

Another observation is that the macro-micro optimizer favors numerality (point on 

the left of the global optimum) whereas the micro-macro focuses on the individual 

performance of the agents (point at the right of the graph). 

 

Experiment 1.2: For this second experiment, the cost constraint on a single vehicle is fixed 

at 10 units of cost, a limit slightly lower than the maximum cost achievable: 13 units. 

Hence, the micro-macro optimizer can no longer opt to simply assign the maximum 

velocity for each agent and then assemble a group of these elite agents. This time, the 

micro-macro optimum has a much lower velocity than before: the cyan search direction 

has shifted to the left on Figure 4.6. With this new technique, the results are listed and 

compared in Table 4.2. 
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Figure 4.6: Plot of experiment 1.2 

 

Table 4.2: Results of experiment 1.2 

Variable/Metric  Macro-micro  Micro-macro  Simultaneous 

N  7 (+40%)  5 (0%)  5 

v (m/s)  5.57 (-38%)  7 (-22%)  9 

Mapping time (s)  323 (+23%)  337 (+29%)  262 

Cost  70 (0%)  60 (-14%)  70 
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As expected, the macro-micro optimization results are unchanged. Being more 

constrained for the micro optimization, the micro-macro optimizer now exhibits a worse 

performance than in the first experiment. In fact, it obtains the same number of vehicles as 

the simultaneous optimization but since it is sequential, it is not able to dynamically derive 

a constraint on the vehicle cost to obtain a cost closer to the constraint and hence maximize 

the performance of the swarm. This time, the performance difference in mapping time is 

worse by 23 to 29 % for the sequential optimizers. 

 

Experiment 1.3: As a third experiment, the cost of individual technology is increased 

thanks to a quadratic term 𝑐𝑣2 = 0.3 m/s and the total cost constraint is increased to 100 

units. The goal is hence to slightly favor numerality and give more freedom to the 

algorithms to compose a swarm and see in this case if the sequential algorithms are able to 

match better with the performance of the simultaneous optimizer. As in the first 

experiment, the micro step of the micro-macro optimizer is first constrained with the same 

cost constraint as the whole group, Figure 4.7 is obtained. 
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Figure 4.7: Plot of experiment 1.3 

 

Table 4.3: Results of experiment 1.3 

Variable/Metric  Macro-micro  Micro-macro  Simultaneous 

N  5 (-29%)  2 (-71%)  7 

v (m/s)  5.60 (+30%)  10 (+133%)  4.30 

Mapping time (s)  422 (+1%)  530 (+27%)  418 

Cost  100 (0%)  96 (-4%)  100 
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A first observation is that the micro-macro optimizer is able to get much closer to 

the cost constraint than it did in the first two experiments, hence efficiently utilizing the 

assigned budget. However, once again, it favors very expensive individual vehicles with 

high performance and finds itself very limited for the macro step once it is time to assemble 

a swarm made out of these vehicles. As a consequence, only two vehicles constitute the 

optimal group derived by micro-macro optimizer. Despite being within 4% of the cost 

constraint, the performance is 27% slower than the optimum swarm derived by the global 

algorithm. On the other hand, the macro-micro optimum is quite close (within 1% of 

performance) to that best optimum while utilizing the total budget. 

 

Experiment 1.4: Finally, the cost of a single vehicle is then limited to 10 units as for the 

second experiment in order to get closer to real-world situations and force the micro-macro 

optimizer to favor numerality (see Figure 4.8 and Table 4.4). 



249 

 

 

Figure 4.8: Plot of experiment 1.4 

 

Table 4.4: Results of experiment 1.4 

Variable/Metric  Macro-micro  Micro-macro  Simultaneous 

N  5 (-17%)  8 (+33%)  6 

v (m/s)  5.60 (15%)  3.44 (-29%)  4.87 

Mapping time (s)  422 (+1%)  472 (+13%)  417 

Cost  100 (0%)  90 (-10%)  100 
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Again, the micro-macro optimizer chooses a velocity as close as possible to the 

individual cost constraint which is 3.44 m/s in this case. It is hence much more conservative 

on the technology of the individual agents due to the additional quadratic cost term. This 

forces it to focus more on numerality and the difference is flagrant with the previous cases: 

the micro-macro optimizer now chooses 8 vehicles (for a maximum of 10) and is able to 

obtain a performance much closer to the best optimal one. 

Additionally, the macro-micro optimizer also predicts a microscopic design for the 

individual agents which is very close to the one used for the macro optimization step. 

Indeed, the nominal agent velocity was fixed at 5 m/s for the macro optimizations and the 

algorithm ends up preferring velocities close to 5 m/s on the final design. 

4.1.4.1.2 Second strategy: optimizing a notional swarm 

Building on the results of the first four experiments, it seems that the micro-macro 

performs poorly when used with the same cost constraints as the group since it is designed 

to optimize vehicles individually. Indeed, the first step of the optimization is to make one 

single agent perform the mission and optimize its performance with respect to a given cost 

constraint. This is representative of the current habits of the research community: taking 

vehicles which were individually optimized for specific types of missions, and putting them 

to work together in a robotic-group. Nonetheless, to fully characterize the potential of 

micro-macro optimization, it is essential to compare it in equal terms with macro-micro 

optimization. Since this latter uses a vehicle baseline to first derive an optimal number of 

vehicles for the group, it makes sense for the micro-macro optimizer to use a swarm 

baseline (instead of one single vehicle) to derive an optimal individual agent velocity. 
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Hence, this part details the same experiments as the previous subsection by setting 

the number of vehicles to five for the micro optimization step: average of the bounds on 

the number of vehicles, similarly to what was done for the baseline velocity. However, 

given that the micro optimization (first step of the micro-macro optimization) is now 

performed on a reasonable size of swarm, there is no motivation to adjust the cost constraint 

for this first step anymore as it was done for experiment 1.2 and 1.4. As a consequence, 

experiments 1.5 and 1.6 respectively have the same inputs and requirements as experiments 

1.1 and 1.3. 

 

Experiment 1.5: Similar to experiment 1.1 with the new micro optimization requirements, 

this experiment shows that the micro-macro optimizer is now able to match exactly the 

performance of the simultaneous optimizer. Indeed, the optimal number of vehicles found 

by this latter was 5: the exact same number used for the baseline swarm used in the first 

step of the micro-macro optimizer. Hence, the second step tries to optimize the individual 

velocities for a swarm of 5 agents and ends up finding the same velocity as the global 

optimizer: 9 m/s. The results obtained by experiment 1.5 are then similar to experiment 1.1 

with the micro-macro optimal design matching the simultaneous optimal design (see Figure 

4.9 and Table 4.1 page 243). 
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Figure 4.9: Plot of experiment 1.5 

 

Experiment 1.6: Identical to experiment 1.3 with the new micro-macro optimizer, 

experiment 1.6 exhibits another particular case where the micro-macro and macro-micro 

algorithms derive the same optimum (see Figure 4.10). Once again, this is due to the fact 

that the number of vehicles used for the baseline group is 5, the same number derived by 

the macro-micro optimization. This can be seen on the plot as well since the optimal points 

are more or less centered in the design space. This result is purely aleatory here and depends 

on the structure of the problem, this observation cannot be generalized. 
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Figure 4.10: Plot of experiment 1.6 

 

Table 4.5: Results of experiment 1.6 

Variable/Metric  Macro-micro  Micro-macro  Simultaneous 

N  5 (-17%)  5 (-17%)  6 

v (m/s)  5.60 (15%)  5.60 (15%)  4.87 

Mapping time (s)  422 (+1%)  422 (+1%)  417 

Cost  100 (0%)  100 (0%)  100 
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Analogy with coordinate search: thanks to the different representations of the previous 

experiments, one quickly understands that, in this particular case, the micro-macro and 

macro-micro optimization algorithms correspond to search directions for a minimum along 

the coordinate directions 𝑁 and 𝑣. However, these coordinate directions are not aligned 

with the eigenvectors of the response, hence yielding suboptimal results due to the 

conditioning of the problem [195]. This is illustrated on Figure 4.11 here below with an 

experiment similar to experiment 1.4. 

 

Figure 4.11: 3D visualization of principal component analysis 
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The principal basis of the response function is represented by the red-green-blue 

(RGB) triplet at the global optimum. The principal directions are then represented by the 

black dashed lines. As it can be seen, these do not align with the coordinate axes and the 

cyan and magenta search directions of the sequential algorithms. A similar projected 

representation is proposed on Figure 4.12. For visualization purposes, the constraint has 

been plotted as a continuous contour of the 70 cost level as opposed to the previous plots 

where the discrete aspect of the number of agents is emphasized. Note that the cyan micro-

macro optimum is not even able to come close to the cost constraint and is under-utilizing 

the available budget. 

 

 

Figure 4.12: 2D representation of principal component analysis 
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Strong from this analogy with a coordinate search optimization algorithm, it seems 

that the chances of sequential algorithms leading to optimal results with multi-robot 

applications are extremely unlikely except for exceptional particular cases as it was shown 

in experiments 1.5 and 1.6. 

4.1.4.2 Heterogeneous swarms 

A relative heterogeneity can be added to the canonical example by considering 

groups of robots exploring different areas of the map (Figure 4.13). For instance, faster 

units can be deployed at the very end of the map while the slower agents stay at the 

proximity of the deployment point, hence taking advantage in the heterogeneity of the 

group to finish the mission in a reduced time. The formulation is quite similar to the 

homogeneous one except that now, the performance of the whole system is dictated by the 

slowest agent in all the groups. The assumption is that each robot takes the same amount 

of time to map their assigned area. Hence the faster robots will be assigned larger areas to 

map than the slower ones. Note that the slowest agent of a given robot group is, as before, 

the agent being deployed the furthest. Using this approach, the effect of heterogeneity on 

the group performance can be analyzed. 

 

Figure 4.13: Heterogeneous canonical example 
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When considering two types of agents represented by the same cost equation (𝑐0 =

3, 𝑐𝑣 = 1, and 𝑐𝑣2 = 1) and fixing a cost constraint at 100, the optimization algorithm 

naturally chooses to segregate the group using heterogeneity by proposing a first group of 

4 agents at 2.05 m/s and a second group with 5 agents at 2.30 m/s. This heterogeneous 

group is able to complete the mapping mission in a time of 635 seconds at a cost of 99.93 

units. On the other hand, when forcing the design optimization to use a single type of these 

agents, the result obtained is a group of 7 units with a velocity of 2.68 m/s for a mapping 

time of 672 seconds and a cost of 99.97 units. In this case, the global optimization algorithm 

naturally selects heterogeneity as an optimal design compared to a homogeneous one. The 

performance obtained by the heterogeneous group is better by 5%. 

 

When the cost of technology is increased, the optimization tends to favor 

numerality (macroscopic level) to individual performance (microscopic level) and has to 

carefully choose the number of agents from each type: hence favoring heterogeneity. On 

the other hand, when technology is cheap with respect to the cost of a single agent, the 

optimization algorithm always has the possibility to compensate a lack of performance with 

the continuous microscopic variables before reaching the cost constraint. Hence, the 

benefits of heterogeneity in a group can be mitigated when technology is cheap to acquire 

with respect to the cost of individual robots. 

4.1.5 Conclusions 

This set of experiments focused on a canonical mapping swarming mission to prove 

the benefits of simultaneous or global optimization when applied to multi-robot systems. 

In particular, optimization schemes used so far by the research community have been 

compared to a simultaneous optimization algorithm. These schemes are called sequential 
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as they optimize the individual agents and the group operations separately, mostly due to a 

lack of link between microscopic and macroscopic level for advanced simulation tasks. It 

was shown that even though the sequential optimizers are able to get quite close to utilizing 

the full assigned budget, the systems they are proposing for the same cost are worse in 

performance than the one derived by the global optimizer. On this particular example, the 

performance of the swarm could be improved from 1 to 29% (16% on average) by using a 

simultaneous optimizer rather than sequential schemes, and for a similar cost of the system. 

In fact, each optimizer allocates resources differently, focusing more or less on the 

microscopic level or the macroscopic level, to utilize the assigned budget as efficiently as 

possible. As expected, the micro-macro optimizer clearly puts emphasis on the individual 

performance of the agents if it is subject to the same budget constraints as the group. Hence, 

to help the micro-macro optimizer balance its priorities, two strategies were studied. The 

first one consists in making the micro step optimize a single vehicle subject to a much more 

realistic and limited constraint than the one used by the group. This first strategy also makes 

the problem get closer to real-world situations when individual vehicles have their own 

budget limits. The second strategy is similar to the choice made for the macro-micro 

optimizer: optimizing a notional swarm during the micro optimization before re-optimizing 

the number of agents in this swarm. In one case, the micro-macro optimizer was able to 

obtain the same design as the global optimizer while in the other case it obtained the same 

design as the macro-micro optimizer. 

 

As stated in section 4.1.2, these results are most probably a lower bound to the 

possible improvements achievable in the design of multi-robot systems. Indeed, individual 
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robots are sequentially optimized independently of the group, but with respect to the very 

same mission requirements that the group is facing. In real-world situations, current 

suboptimal swarms have their robots optimized for different missions which are completely 

different than the ones the swarm will have to carry out. As a consequence, current real-

world swarms are even more suboptimal than the sequential swarms used in this section to 

demonstrate the advantages of global optimization. Henceforth, the expected benefits from 

global optimization could be even greater than the numbers exposed in this section. 

 

Moreover, global optimization truly unlocks the capabilities of heterogeneity by 

enabling vehicles of the same architecture to have different configurations. This is not 

possible when using sequential optimization since each architecture is optimized 

individually before being incorporated into a swarm. 

4.2 Mesoscopic modeling 

This section details the thought process behind the implementation of a mesoscopic 

model so that the steps of the methodology can be applied to different situations and 

mission types (such as the mapping-based canonical one defined in the introductory 

example). In particular, complexity is built up from the simple macroscopic model to the 

intricate microscopic one so that both types of models are fully understood. Building on 

this understanding, the compromise mesoscopic model is developed as a proper tradeoff 

between the other two models. 

In order to conceptually answer the research question and demonstrate the idea of 

tradeoff between microscopic and macroscopic variables, only two design variables are 

varied in the models: the number of agents in the group, and their velocity. As for the 
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introductory example (see page 75), this presents the advantage of enabling an easy 

representation of the design space and the response by using tri-dimensional graphs. This 

is a key benefit in helping the reader and the designer comfortably visualize and understand 

the compromise at stake. Note that this does not mean that these variables are the only 

parameters of the different models. Each model requires additional design variables which 

are kept fixed at baseline values. In particular, these variables are set so that the 

performance of the models accurately represent the behavior of the same system. However, 

they must not be adjusted or corrected to make the models provide the same performance 

since this could possibly make each model represent a different vehicle. Instead, it is 

expected that each model will provide a different level of precision with respect to a real 

system and this should be accounted for. 

4.2.1 Canonical mission 

In order to be easily able to verify the different models against a real-world system, 

the chosen swarming mission must be implementable with the facilities available at the 

Georgia Institute of Technology. For this reason, the Robotarium platform (Figure 4.14) 

and its GRITBots are used for this modeling section since they are an available swarming 

hardware platform at the Georgia Institute of Technology. The accuracy of the different 

models can then be verified against the real system. 

 

Figure 4.14: Robotarium project logo 
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The Robotarium project is the latest state-of-the-art multi-robot test facility with 

remote access capabilities. Its aim is to reduce the significant resources investments which 

are required nowadays to investigate multi-robot systems. By providing a remote access to 

its testbed, Robotarium facilitates the deployment of control algorithms on real robots 

instead of staying confined to simulation. Students and researchers from across the globe 

are able to create an account, as well as upload and test their ideas on real robotic hardware 

[223]. The project also includes a simulator to enable the development of the control 

algorithms before deploying them on the real system (Figure 4.15). 

 

 

 

(a) Robotarium platform (b) Robotarium Matlab simulator 

Figure 4.15: Robotarium testbed 

 

In order to provide continuous operation, the Robotarium focuses on automated 

maintenance and battery charging, as well as collision-free execution of motion paths 

[224]. The system is comprised of the robots themselves, the position tracking system, the 

wireless communication hardware, the arena, and its charging system. The current testbed 
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dimensions are 130×90×180 cm and can host up to 20 robots: the GRITSBots (Figure 

4.16). These are inexpensive miniature robots equipped with a differential drive and which 

can be wirelessly recharged and reprogrammed. The complete design specifications are 

detailed in [225]. A key design element is the 400 mAh LiPo battery which provides up to 

40 minutes of autonomy. The baseline linear velocity of the GRITSBots is 10 cm/s and 360 

degrees/s for the rotational velocity. The corresponding maximum values are 25 cm/s and 

820 degrees/s. 

 

 

Figure 4.16: GRITBots robot platform 

 

It is important to notice that the tracking system of the robots is centralized and 

omniscient so that the robots do not have to be individually equipped with sensors. This 

simplifies the approach and provides a layer of abstraction with respect to the localization 

algorithms that would have to run on the robots otherwise. 

 

Key requirements for the mission to be implemented is that the robots should 

interact with each other and that the chosen design variables (velocity and number of 
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agents) should have an impact on the response of the system. Amongst the different 

example implementations available with the Robotarium simulator, the classic problem of 

the rendezvous is used as the canonical mission comparing the different modeling 

techniques. The main motivation for this choice is that the rendezvous algorithm is a 

problem which has been widely studied and can be easily understood and declined into 

different models using varying detail levels. 

 

The rendezvous mission has the agents converge to the same final position and is 

usually accomplished through a network control algorithm. Formally, the 2D positions of 

the agents are tracked through states 𝑋𝑖 ∈ ℝ
2, ∀𝑖 ∈ ⟦1, 𝑁⟧ with 𝑁 the number of agents in 

the group. Each state vector contains the 2D world coordinates of a given robot. Single-

integrator dynamics are used so that each robot 𝑖 is controlled in terms of velocity �̇�𝑖 = 𝑈𝑖 

with 𝑈𝑖 ∈ ℝ
2 the control input. Using this nomenclature for the rendezvous problem, the 

control law has to be designed such that all robots end up at the same position (Equation 

4.3). 

 

Equation 4.3: Mathematical formulation of the rendezvous problem 

lim
𝑡→+∞

(𝑋𝑖 − 𝑋𝑗) = 0, ∀(𝑖, 𝑗) ∈ ⟦1, 𝑁⟧
2 

 

The classic solution as stated in [223] is to define the control input 𝑢𝑖 as 𝑈𝑖 =

∑ (𝑋𝑗 − 𝑋𝑖)𝑗∈𝑁𝑖
 with 𝑁𝑖 a particular set of neighbors of agent 𝑖. Usually this set of 

neighbors is defined as the set of agents with which agent 𝑖 is able to have bidirectional 
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communication. Using the overhead camera tracking system, each robot has knowledge of 

the positions of all other robots at any point in time, hence the set 𝑁𝑖 is the same for all 

robots and equal to the whole group without agent 𝑖: 𝑁𝑖 = {𝑗}𝑗∈ℕ,𝑖≠𝑗. Using graph theory 

and the consensus algorithm, it can be shown that lim
𝑡→+∞

𝑋𝑖(𝑡) =
1

𝑁
∑ 𝑋𝑗(0)
𝑁
𝑗=1 , ∀𝑖 ∈

⟦1, 𝑁⟧. Hence, the final position of all robots is the centroid of their initial positions. An 

example implementation on the real Robotarium is shown on Figure 4.17. 

 

 

Figure 4.17: Rendezvous trajectories on Robotarium implementation [226] 

 

The key metrics used to characterize each model versus the real system are the time 

taken to reach the consensus, and the final centroid position of the group. These metrics 

depend on both the velocity of the agents and the number of robots in the group. The 

consensus is considered to be reached when the average change in position for the agents 

is less than 1/10th of a mm for more than 25 consecutive iterations. In order to account for 

complexity, an additional metric is the runtime of each model. The next subsections detail 

the three different models used for the rendezvous canonical mission. 
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4.2.2 Macroscopic model 

Simplistic, fast, and easy to implement, macroscopic models are usually broken 

down as closed-form mathematical formulations such as differential equations. These are 

typically utilized to model the evolution of population movements but are not suitable for 

exploration-based swarming missions. A first example of macroscopic model was 

introduced in section 2.1 (page 75) and a more complete representation accounting for 

heterogeneity has been proposed in [227]. In the same fashion, a mathematical formulation 

is proposed here based on the theory of the rendezvous problem. 

The solution provided by the consensus algorithm was detailed in the previous 

section and already provides closed-form formulae for the rendezvous problem. These can 

directly be used in the macroscopic model. In particular, the final centroid position of the 

group is nothing but the final position of each agent since they all have the same final 

position (see Equation 4.4). 

 

Equation 4.4: First metric formula for the macroscopic model 

𝑋𝑓 =
1

𝑁
∑𝑋𝑗(0)

𝑁

𝑗=1

 

 

The other metric (i.e. time for the group to reach consensus) can then be easily 

computed as the time taken for the last robot to reach the final position. Assuming that the 

robots have the same constant velocity and that they do not have to rotate to aim at the 

centroid, this robot will be the furthest from the final position. This yields the closed-form 

formula for the second metric (see Equation 4.5). 
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Equation 4.5: Second metric formula for the macroscopic model 

𝑡𝑓 = max
𝑖
(
‖𝑋𝑖(0) − 𝑋𝑓‖2

𝑣
) 

 

The main assumptions used in the macroscopic model are the following: 

 All robots have constant velocity 𝑣 

 All dynamics neglected 

 Each robot is a point mass 

 No collisions 

 Does not account for the orientation of the robots 

 Perfect communications (the system and all robots know the positions of other 

robots at all times) 

4.2.3 Microscopic model 

Aimed at providing more accuracy, microscopic models can be as intricate as 

possible and include many different analyses. For instance, a complete microscopic model 

of an aircraft would encompass the design elements of the aircraft frame itself but also of 

its many subsystems, each one of these being a complex system of its own. Nevertheless, 

this fidelity comes at the price of computational time, development time, complexity, the 

difficulty to add later changes, and the need to be supported by data [228]. 

 

For the microscopic model of the GRITBots and the Robotarium system, a 6 

Degrees of Freedom (DOF) simulation using the Gazebo simulator is proposed and detailed 

in this subsection. Gazebo includes several high-performance physics engines and 
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advanced 3D graphics capabilities so that the physics simulation of a robot can be 

completely handled from a Unified Robot Description Format (URDF) description file. 

This file describes the main hardware components of the robots along with their physical 

properties (chassis, wheels, propellers, etc.) as well as the different sensors (camera, 

accelerometers, microphones, etc.) as shown on Figure 4.18. This file format was created 

to establish a standard and many robotics suites use it such as the Robot Operating System 

(ROS), mostly used to code the intelligence of the robot. As a consequence, the 

implementation of the microscopic model for the GRITBots consists in creating the 

corresponding URDF file and the simulator will be able to completely simulate the physics 

of the robot. 

robot name is: pr2 

---------- Successfully Parsed XML --------------- 

root Link: base_footprint has 1 child(ren) 

    child(1):  base_link 

        child(1):  base_laser_link 

        child(2):  bl_caster_rotation_link 

            child(1):  bl_caster_l_wheel_link 

            child(2):  bl_caster_r_wheel_link 

        child(3):  br_caster_rotation_link 

            child(1):  br_caster_l_wheel_link 

            child(2):  br_caster_r_wheel_link 

        child(4):  fl_caster_rotation_link 

            child(1):  fl_caster_l_wheel_link 

            child(2):  fl_caster_r_wheel_link 

        child(5):  fr_caster_rotation_link 

            child(1):  fr_caster_l_wheel_link 

            child(2):  fr_caster_r_wheel_link 

        child(6):  torso_lift_link 

            child(1):  head_pan_link 

                child(1):  head_tilt_link 

                    child(1):  head_plate_frame 

                        child(1):  sensor_mount_link 

                            child(1):  double_stereo_link 

                                child(1):  narrow_stereo_link  

(a) High level URDF description (b) Actual PR2 robot [229] 

Figure 4.18: PR2 robot model 
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To create the URDF description file for the GRITBots, the source files for the 

hardware of the robot are downloaded from [223]. These CAD files contain most of the 

physical properties, including mass and inertia, which are required to fully describe the 

physical components of the GRITBot robot (see Figure 4.19). 

 

 

Figure 4.19: CAD model of the GRITBots 

 

The correct dimensions, masses, and inertias are then reported in the URDF 

description file of the robot (see APPENDIX C page 622). The 3D model is also exported 

in the Collada file format to be able to be used in the Gazebo simulator (see Figure 4.20). 
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Figure 4.20: Simulated GRITBots model 

 

This individual robot model enables to have a more precise 6 DOF simulation of 

the GRITBots but in order to obtain a complete microscopic model, there is a need to model 

the interactions of the group with the same level of detail than the one used for the 

individual agents. Hence, thanks to the Gazebo physics model, collisions are now modeled 

which adds a degree of complexity to the group interactions. In addition, the tracking 

system can be modeled to simulate the centralized positioning algorithm of the robots and 

a communication network can also be established. 

 

The Robotarium system now being completely physically simulated, the 

intelligence must be implemented into ROS. This is done by instantiating several nodes 

where each represent one part of the behavior of the system: 

 The overhead tracking system is implemented in the tracker node which reads 

images from the overhead camera simulated in Gazebo and runs the Aruco tag 

detection algorithm on them to estimate the poses of each robot in the arena (see 

Figure 4.22). The extrinsic calibration of the camera with respect to the arena 

enables to transform poses form the camera coordinate system to the arena 
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coordinate system. The Aruco tag tracking is done with the ar_april_tag library 

[230]. The tracker node then sends the poses information on the robotarium/poses 

topic for other nodes to subscribe to and use this information. 

 The consensus node is the main node as it is the one reading the pose information 

given by the tracker node and computing the velocity commands for each of the 

different robots. This node implements the static consensus algorithm and publishes 

the control commands for each robot on their respective topics. 

 The logger node is a simple node which registers to the poses topic and saves the 

pose information of the different robots in a log file, associated with the simulation 

time. This enables to compute the mission metrics once the simulated run is over. 

 

The implemented nodes and their communications are summarized in Figure 4.21. 
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Figure 4.21: Microscopic model architecture 

 

 

 

(a) Robotarium tracking system simulated in 

Gazebo 
(b) Simulated camera frame 

Figure 4.22: Pose tracking system simulation 

logger 

consensus 

Gazebo tracker /robotarium/poses 

/robotarium/gritsbotN/cmd_vel 

log.cs

v 

experiment.launch 

Physics simulation OR real system hardware 

Intelligence 
Software 

Hardware emulation 

GRITBot intelligence 
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To run a given experiment, the microscopic model prepares a launch file which 

details the simulation environment (the Robotarium arena with the tracking camera), the 

number of robots to spawn with their velocity, and finally the nodes to run (the tracker, 

the consensus node, and the logger). 

 

To increase the fidelity of the microscopic model with respect to the real system, a 

communication topology is established between the robots. In the macroscopic model, 

perfect communication was assumed so that all robots are able to communicate with all 

other robots when computing their consensus velocity. This assumption is here reviewed 

to limit the number of neighbors a given agent is able to communicate with. The set 𝑁𝑖 of 

neighbors of agent 𝑖 is generated by an undirected graph 𝐺(𝑉, 𝐸) constructed in a way that 

𝑗 ∈ 𝑁𝑖 ⇔ (𝑖, 𝑗), (𝑗, 𝑖) ∈ 𝐸 with 𝑉 the vertices and 𝐸 edges of graph 𝐺. An example of the 

Laplacian matrix of 𝐺 is given by Equation 4.6. 

 

Equation 4.6: Laplacian matrix for N=5 agents 

[
 
 
 
 
2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2 ]

 
 
 
 

 

 

This form of the matrix implies that any agent is able to communicate with 2 other 

robots only. 
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Figure 4.23: Robotarium arena and GRITBots in the Gazebo simulator 

 

The ROS-Gazebo implementation constitutes the microscopic model of the 

Robotarium and the assumptions associated with it are the following: 

 Kinematics and dynamics are simulated based on 6 degrees of motion including 

mass and inertia models. Robots evolve in a 3D environment (see Figure 4.23). 

 Motion is ensured through a planar differential drive plugin accounting for friction. 

 The interactions between the agents are accurately detailed with: 

o Collisions modeling through cubic collision meshes elements. In addition, 

the control algorithm still includes safety radiuses and barrier certificates. 

o The poses of the agents are now acquired through a simulated overhead 

camera-based system tracking Aruco tags. This makes the centralized pose 

acquisition imperfect and prone to noise as in the real system. 
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o The communication range is now limited and an agent can only 

communicate with neighbors induced by a given communication topology. 

In this case, the topology is static and represented by an undirected graph 

and its Laplacian matrix. The graph is designed so that each agent is able to 

communicate only with two other robots. 

4.2.4 Mesoscopic model 

Now that macroscopic and microscopic models have been developed and fully 

understood, a compromise mesoscopic model has to be constructed. The resulting model 

is expected to have a decent precision and remain computationally inexpensive to run. For 

instance, by looking at the different fidelity of the aircraft models given in [228], they can 

be categorized as shown on Figure 4.24. 

 

 

Figure 4.24: Different levels of detail for aircraft models 

 

As the level of detail decreases when going from microscopic to macroscopic 

modeling, design variables are lost, giving rise to a number of simplifications and 

Macroscopic 

Mesoscopic 

Microscopic 

• First order mathematical expression 

• Differential equations 

 

• Outer loop model (trajectory) 

• 3 DOF point mass models 

(no moment equations) 

• 4 DOF models 

 

• 6 DOF models 

• Subsystems dynamics 

• Propulsion 

• Flaps 

• Gear 

• Avionics/Instrumentation 
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assumptions in the original models. As mentioned in section 2.2.2.2, this generalization is 

often achieved by reducing the level of detail on the group modeling while maintaining a 

sufficient level of detail for the models of individual agents. Given that the level of detail 

of microscopic models can always be adjusted, and that mesoscopic models can generally 

be considered as surrogates of microscopic models, it is important to clearly define the 

bounds considered. Indeed, for a given level of detail, it is always possible to go one level 

lower. Hence, for establishing these models, the lowest level of detail achievable is 

considered to be the theoretical and analytical derivation of the static consensus, and the 

highest level of detail is considered to be the real system implemented on the Robotarium. 

 

In the case of the GRITSBots and the Robotarium, the group dynamics are acquired 

through the camera tracking system which provides the position of all robots at a given 

point in time. This part of the microscopic model can be simplified by simply assuming 

that all positions are known instead of constantly computing them. This step removes quite 

a complex layer of the microscopic model by eliminating all the computer vision 

components. The delay of 33 ms required to compute the poses of the robots is hence 

removed. Indeed, [225] showed that the tracking system is limited to a framerate of 10 fps 

for 5 robots and 6.5 fps for 25 robots. 

 

Unicycle model: a second step in obtaining a mesoscopic model for the GRITBots and the 

Robotarium can be to use a simplified physics model for the dynamics of the robot. Indeed, 

while the microscopic model uses a complete 6 DOF model, inspiration can be taken from 

Figure 4.24 to implement a simpler 3 DOF representation for the mesoscopic level of detail. 
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This has the benefit of still representing the dynamics of the robot (as opposed to the 

macroscopic model) while reducing the complexity of the model. The 3D simulation of the 

microscopic model now becomes a 2D simulation using the differential drive dynamics, 

the model used in the Robotarium simulator. Also known as unicycle dynamics, they 

represent a robot moving in a two-dimensional world with a given forward velocity but no 

lateral motion. The controls of such a robot are the norm of the forward velocity vector and 

its azimuth in the world (see Figure 4.25). 

 

  
(a) Position (b) Velocity 

Figure 4.25: Unicycle model representation 

 

The kinematic model of a differential drive robot is given by Equation 4.7. 

 

Equation 4.7: Kinematic model of a unicycle robot 

�̇� = {

�̇�1
�̇�2
휃̇

} = {
𝑣 cos 휃
𝑣 sin 휃
𝜔

} = [
cos 휃 0
sin 휃 0
0 1

] {
𝑣
𝜔
} 

Where [𝑥1, 𝑥2, 휃] is the position and orientation of the robot in the world reference 

frame and [𝑣, 𝜔] the linear and angular velocities. 

𝑥1 

𝑥2 
𝜽 

𝑥1 

𝑥2 𝝎 

𝒗 
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Controls: the control algorithm used for the GRITBots and given in [225] uses feedback 

linearization. The idea is to control a point [𝑥1
′ , 𝑥2

′ ] situated in front of the robot and offset 

by a fixed length 𝜆 which corresponds to an equivalent gain for the controller. The control 

is then done by adjusting the velocity of this point [𝑣𝑥1 , 𝑣𝑥2] in the world coordinates. This 

can be given by the rendezvous command inputs for instance. Hence, these single-

integrator dynamics [𝑣𝑥1 , 𝑣𝑥2] have to be translated to the unicycle dynamics [𝑣, 𝜔] which 

can be directly interpreted by the robot model (see Equation 4.7). The dynamics of the 

controller are computed as follow: 

Equation 4.8: Dynamics of the Gritbots controller 

{
𝑥1
′

𝑥2
′ } = {

𝑥1
𝑥2
} + 𝜆 {

cos 휃
sin 휃

} 

⇒ 𝑋′ = 𝑋 + 𝜆 {
cos 휃
sin 휃

} 

⇒ �̇�′ = �̇� + 𝜆
𝑑

𝑑𝑡
{
cos 휃
sin 휃

} 

⇒ �̇�′ = �̇� + 𝜆휃̇ {
− sin 휃
cos 휃

} 

⇒ �̇�′ = {
�̇�1
�̇�2
} + 𝜆휃̇ {

− sin 휃
cos 휃

} 

⇒ �̇�′ = 𝑣 {
cos 휃
sin 휃

} + 𝜆𝜔 {
− sin 휃
cos 휃

} 

⇒ �̇�′ = [
cos 휃 − sin 휃
sin 휃 cos 휃

] {
𝑣
𝜆𝜔
} 

⇒ �̇�′ = [
cos 휃 − sin 휃
sin 휃 cos 휃

] [
1 0
0 𝜆

] {
𝑣
𝜔
} 

⇒ {
 𝑣𝑥1
𝑣𝑥2
} = 𝑅(휃)𝑆(𝜆) {

𝑣
𝜔
} 

⇒ {
 𝑣𝑥1
𝑣𝑥2
} = 𝐺(휃, 𝜆) {

𝑣
𝜔
} 
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The diffeomorphism 𝐺 gives the relation between the single-integrator and the 

unicycle dynamics. By computing its inverse, the control input of the robot can be 

expressed as a function of the rendezvous single-integrator commands: 

 

Equation 4.9: Inverse control commands for the Gritbots 

{
𝑣
𝜔
} = 𝐺−1(휃, 𝜆) {

 𝑣𝑥1
𝑣𝑥2
} 

⇒ {
𝑣
𝜔
} = 𝑆−1(𝜆)𝑅−1(휃) {

 𝑣𝑥1
𝑣𝑥2
} 

⇒ {
𝑣
𝜔
} = [

1 0
0 1/𝜆

] [
cos 휃 sin 휃
− sin 휃 cos 휃

] {
 𝑣𝑥1
𝑣𝑥2
} 

 

This command vector can then directly be used in Equation 4.7. The same control 

technique is used in the microscopic model. 

 

System identification: now that the dynamics and controls of the robot have been 

established, the gap between mesoscopic simulation and real-system must be bridged to 

obtain a validated model [224]. Velocity measurements  �̂̇�𝑖 of the model velocities �̇�𝑖 are 

made on the real system ∀𝑖 ∈ {1,2,3}. A linear relation is assumed between the model and 

the observations, as shown in Equation 4.10. 

 

Equation 4.10: System identification model 

�̂̇� = [
𝛼1 0 0
0 𝛼2 0
0 0 𝛼3

] �̇� 
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Where the 𝛼’s are linear regression coefficients. With a measurement campaign of 30,000 

measurements carried out in [224], measurement vectors �̇�𝑖
̂ ∈ ℝ30,000, ∀𝑖 ∈ {1,2,3} are 

obtained and used in a least squares linear regression scheme to compute the regression 

coefficients: 𝛼𝑖 = (�̇�𝑖
̂
𝑇

�̇�𝑖
̂ )

−1

(�̇�𝑖
̂
𝑇

�̇�𝑖
̂ ) , ∀𝑖 ∈ {1,2,3}. The results are summarized in 

Equation 4.11 with �̇� given by Equation 4.7. 

 

Equation 4.11: Final values for system identification 

�̂̇� = [
0.8645 0 0
0 0.8119 0
0 0 0.4640

] �̇� 

 

Collisions modeling: collisions are indirectly modeled through barrier certificates which 

avoid collisions between the robots by modifying the user control inputs if some robots are 

too close to each other. The barrier certificate method prevents collisions and is minimally 

invasive since it minimizes the deviation between the newly computed safe control 

command and the original command provided by the rendezvous formulae. This 

minimization is subject to safety constraints which enforce a minimum distance between 

the robots. Additional constraints ensure that the output velocity is bounded within the 

physical limits of the robots. The minimization is performed with quadratic programming 

and a full derivation of the barrier-certificate-compliant controls is given in Appendix A.3 

(see page 445). [224] showed that this collision avoidance scheme is able to run in real-

time on a decentralized system with up to 100 agents at 185 Hz. 

 



280 

 

 

Figure 4.26: Graphic interface of the mesoscopic model 

 

This mesoscopic model corresponds to the implementation of the Robotarium 

simulator and the different assumptions used in its elaboration are listed here below: 

 Kinematics are simulated based on 3 degrees of motion (position and orientation) 

with a unicycle motion model. Robots evolve in a 2D environment (see Figure 

4.26). 

 Dynamics (mass, inertia) are neglected. 

 Friction is neglected. 

 Collisions are indirectly modeled through safety radiuses and barrier certificates. 

 Perfect communications are assumed so that the system and all robots know the 

positions of other robots at all times. The tracking and pose estimation system is 

abstract. Robots poses are known exactly and for each time step. 

4.2.5 Verification and validation 

The verification and validation of simulation models generally consists in 

comparing the performance of the models with respect to the real system. Given that this 
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section focuses on modeling, the verification and validation portion is joint with the 

characterization part and presented in the next section. This latter presents the different 

experiments required to fully characterize each model. 

4.2.6 Characterization 

Based on the example canonical mission, this section has demonstrated how to 

progressively construct a mesoscopic model by leveraging macroscopic and microscopic 

models (Figure 4.27). 

 

 

Figure 4.27: The increasing level of detail of the implemented GRITBot models 

 

The three models are now compared with each other in terms of the different 

evaluation criteria established for experiment 2. Due to the hardware limitations inherent 

to the current Robotarium platform, the velocity of the robots is set to evolve from 1 to 10 

cm/s by increments of 1 cm/s and the number of robots is changed from 2 to 5. This design 

of experiments hence generates 40 evaluation points for each one of the models. 
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Figure 4.28: Consensus time metric 

 

By first looking at the consensus time response (Figure 4.28), an initial comparison 

of the models can be drawn. Observing the overall evolution of the response, it appears 

that the consensus time decreases as the velocity is increased and the number of robots 

decreased. However, note that the initial positions of the robots are completely aleatory for 

each data point, hence no conclusions can be drawn from the general shape of the response 

since all experiments are unrelated to each other. 

The three models seem to superimpose on each other, each time getting closer to 

the real system response as the level of detail is increased from macroscopic to 

microscopic. In particular, all models seem to be overconfident in the performance of the 

system by underestimating the time it would take to achieve consensus: all response 
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surfaces lie underneath the response surface of the real system. As could have been 

expected, the macroscopic model is being the most optimistic by predicting quite low 

consensus times when compared to the real system. This is mostly due to the fact that all 

dynamics and interactions between the agents are neglected and these are the most 

prominent factors in the performance losses of the system. Indeed, the robots will first have 

to turn and align with their trajectory to reach consensus, then they will possibly have to 

interact with other robots in order to avoid collisions on the way to consensus. These two 

factors contribute to lengthening the time required for the swarm to reach static consensus. 

Then, as these factors are more and more accounted for in the mesoscopic and microscopic 

models, the responses get closer to the performance of the real system. This is consistent 

with what was expected in the validation criteria of experiment 2. 

 As the level of detail is increased, the models are not as optimistic as the 

macroscopic models and the different responses start to intersect with sometimes 

pessimistic predictions. This can be seen more clearly on Figure 4.29. 

 

Figure 4.29: Section view of consensus time response for v = 1cm/s 
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Focusing now on the spatial precision of the different models, a previous validation 

of the Robotarium simulator showed that it is on average precise within 5 mm of actual 

robot trajectories [224], hence validating the mesoscopic model. However, the performance 

of the two other models is left to be evaluated and validated. An example of the different 

trajectories is presented on Figure 4.30. 

 

Figure 4.30: Robot trajectories for N=3 and v=8 cm/s 

 

The Gritbots start either from their charging stations or from random initial 

locations based on where the operator places them (red circles). The parking controller is 

then activated to make the robots reach a set of initial conditions (magenta circles) which 

was randomly generated for the design of experiments. For a given number of robots and 

a given velocity, these initial conditions are the same for each model evaluation. Then, the 

consensus algorithm is started from these initial conditions until the Gritbots reach 
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consensus (green circles). The theoretical consensus location is the barycenter of the initial 

positions and is represented by the black cross. 

 

A statistical analysis of the results over the complete set of 40 experiments is carried 

out and the summary is presented on the figures here below. 

 

The first metric to be evaluated over the full set of 40 experiments is the location 

of the consensus. The macroscopic model uses the exact theoretical formula for the position 

of the consensus but all models are compared with respect to the performance of the real 

system. The results are presented on Figure 4.31. 

 

 

Figure 4.31: Precision of the models on the consensus position metric 
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Representing the error of the real system with respect to the theoretical values, the 

macroscopic model exhibits an error of 3.17 cm. The microscopic model is the closest to 

the performance of the real system with an error of 1.34 cm. Finally, and as expected by 

the motivations of mesoscopic modeling, the mesoscopic model lies in between with an 

absolute position error of 1.49 cm. 

 

The second metric to be evaluated is the time required by the swarm to reach a 

consensus (see Figure 4.32). 

 

 

Figure 4.32: Precision of the models for the consensus time metric 
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The trend remains very similar to what was observed on Figure 4.32 with the 

macroscopic model exhibiting the most error with 62.5%, then the mesoscopic model with 

31.0%, and finally the microscopic model with 26.0% of error on the consensus time. Once 

again, these results correspond to the behavior which was expected from the mesoscopic 

model: a performance between those of the macroscopic and the microscopic models. 

Indeed, by neglecting all dynamics, the macroscopic model exhibits a high error on the 

time metric which is directly linked to dynamics. Thanks to a more complete model and 

without being as intricate and complex as the microscopic model, the mesoscopic one is 

able to bring this error down to 31.0% with a simple set of assumptions. 

 

Finally, the last metric considered for the choice of the model is the run time 

required by each model. It has been established in the previous paragraphs that the 

mesoscopic model seems to provide good accuracy with simple assumptions but it is 

essential to know whether this type of modeling is computationally efficient enough to 

justify its use for conceptual design phases. The average runtime of the different models is 

represented on Figure 4.33 and also compared with the time required for an experiment on 

the real system to be completed. 
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Figure 4.33: Average runtime of the different models 

 

Once again, the numbers of the mesoscopic model seem to lie between those of the 

macroscopic and the microscopic model, validating our criteria for the experiment. Relying 

only on a couple mathematical formulae which are very quick to evaluate, the macroscopic 

model runs on average in 0.17 milliseconds. With dynamics involved and actual simulation 

of the path of the robots, the mesoscopic model runs on average in 5.88 seconds. Regarding 

the microscopic model, complete collision modeling and pose tracking are now included, 

which require more computational resources. This model runs on average in 30.16 seconds. 

Finally, the real system takes 99.78 seconds to run one experiment on average. 

These runtimes do include the overhead setup time necessary to launch the 

simulators and accomplish the required preparation tasks before the consensus mission. 
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This includes parsing the configuration files, spawning the robots with appropriate 

configurations, and setting up the environment. Note that for the real system, there is an 

additional overhead time necessary for the parking controller in order to make the robots 

reach their initial positions within a certain tolerance margin. 

 

Going back to the validation criteria established in section 2.2 for experiment 2, it 

is possible to conclude on the suitability of mesoscopic modeling for the conceptual design 

of multi-robot systems. First, it was shown that mesoscopic modeling can indeed be applied 

to multi-robot problems and no failure point was observed since the mesoscopic model 

always appeared more precise than the macroscopic model but also always faster than the 

microscopic one. In more detail, it was found on the studied particular case that the 

mesoscopic model ran on average five times faster than the microscopic model while not 

having more than 20% error with it. In particular, the mesoscopic model showed 31.0% of 

error with respect to the real system on the consensus time metric while the much more 

developed microscopic model showed 26.0% of error. This order of magnitude is typically 

what is observed in the conceptual design phases, hence confirming the appropriateness of 

mesoscopic modeling for the scope of the present research. Surprisingly, the performance 

of the mesoscopic model in terms of precision is not exactly in between those of the 

macroscopic and the microscopic one (see Figure 4.34). 
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Figure 4.34: Notional representation of the precision of mesoscopic modeling 

 

Indeed, the mesoscopic model is found to have an accuracy much closer to the 

microscopic model than the macroscopic one, while being much less computationally 

expensive. These observations validate hypothesis 2 and position mesoscopic modeling as 

the ideal candidate for the rapid and precise exploration of gigantic multi-architecture and 

multi-level design spaces.  
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CHAPTER 5 

MULTI-ARCHITECTURE MULTI-LEVEL  

DESIGN SPACE EXPLORATION 

 

Second main axis of this research, the exploration of multi-architecture and multi-

level design spaces, such as the ones encountered with swarming systems, remains a 

challenge mostly due to the gigantic size of the design space. Such design spaces are multi-

architecture since several architectures of robots are considered to be integrated in the 

swarm, and multi-level since design choices have to be performed at the macroscopic level 

(the group), and propagated to the microscopic level (the agents). It was notably established 

in section 1.4.2 and the second chapter that the design space of an individual robot is 

somehow multiplied by the possibilities available at the macroscopic level, tremendously 

expanding the overall design space. This section hence aims at elaborating a pertinent 

design space exploration technique to facilitate the optimization of multi-robot systems by 

focusing on the third research question: 

 

Research question 3 

How can current conceptual design methods be adapted to account 

for multi-architecture multi-level design space exploration? 

 

This research question was later decomposed into two complementing 

perspectives: the generation of alternatives and the optimization of configurations. The 

following sections detail each of these in their implementation and their results. 
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5.1 Generation of alternatives: the tree of reduced morphological 

matrices 

Before optimizing swarm configurations, they have to be properly generated so that 

a large portion of the design space is actually covered by the exploration technique. This 

concern originated a first sub research question: 

 

Research question 3.1 

How can we systematically generate all feasible alternatives in a multi-architecture 

and multi-level design space for further optimization? 

 

This subsection answers this question by studying in detail the corresponding hypothesis: 

 

Hypothesis 3.1 

IF a tree of reduced morphological matrices is used 

THEN all feasible alternatives can be generated in a multi-architecture 

and multi-level design space for further comparison and optimization 

 

It starts by recalling the theory behind the proposed morphological tree (see section 

2.3.1.2 page 141). This subsection then constructs notional morphological matrices of 

different architectures before implementing and applying the proposed approach of the 

morphological matrix tree summarized on Figure 2.23 page 144. 
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5.1.1 Step 1: morphological reduction 

With a constant need of reducing the complexity of design optimization, it is 

common to separate optimizers and let them handle different disciplines or levels of the 

optimization for instance. The problem with this approach is that each one of the optimizers 

needs to handle different design variables. Hence the main idea introduced by [173] is to 

accelerate the design optimization process by tackling it from the morphological approach 

side, hence reducing the number of available discrete options to be optimized: there is a 

need to regroup design variables at the morphological level. For instance, instead of 

considering different optimizers which would handle different types of wings, it is possible 

to regroup straight wings, delta wings, and swept wings into a same optimizer by 

considering design variables such as surface area, aspect ratio, sweep angle, and other 

additional variables. In the same fashion, architectures such as tricopters, quadcopters, 

hexacopters, and other octocopters, could be regrouped in a modular “multicopter” 

architecture and optimizer which would instead consider the number of rotors as a design 

variable. Discrete design choices are hence removed from the discrete morphological 

analysis and directly incorporated into the optimizers. This helps reducing the number of 

optimizers required for the given architectures. Based on the approach proposed by [173] 

to reduce the number of optimizers, morphological reduction is composed of four steps: 

 

1) Generate alternatives: this first step uses the morphological approach described 

earlier where functions or features are listed in the rows of a morphological matrix 

and corresponding possible options are enumerated in the columns. All alternatives 
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are then generated by using a full factorial approach taking every possible option 

for every feature (see Equation 5.1). 

 

Equation 5.1: Number of alternatives from morphological analysis 

𝑁𝑎𝑙𝑡 = ∏ 𝑁𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑖)

𝑖∈𝑟𝑜𝑤𝑠

 

 

Where 𝑁𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑖) is the number of options available for a given row 𝑖. 

 

2) Ensure feasibility: an alternative can be generated only if all of its options for each 

feature are compatible with each other. In order to check compatibility between 

options, a square matrix called compatibility matrix is used. Such a matrix indicates 

for a given option whether it is compatible or not with all other possible options. 

An example of such a matrix is provided in Figure 5.1. 

 

 𝑶𝟏 𝑶𝟐 𝑶𝟑 𝑶𝟒 𝑶𝟓 𝑶𝟔 𝑶𝟕 𝑶𝟖 

𝑶𝟏 1 0 1 0 0 1 0 0 

𝑶𝟐 
 1 0 1 0 0 0 1 

𝑶𝟑 
  1 1 1 1 0 0 

𝑶𝟒 
   1 0 1 0 0 

𝑶𝟓 
    1 1 1 1 

𝑶𝟔 
     1 0 1 

𝑶𝟕 
      1 0 

𝑶𝟖 
       1 

Figure 5.1: Example of compatibility matrix 
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It can be seen that option 𝑂1 is compatible with itself and 𝑂3 for instance, 

but not with 𝑂4. Each option being compatible with itself, the diagonal is always 

set to ones. Since the matrix is symmetric, only one half of it needs to be 

documented. Moreover, the morphological matrix is constructed so that only one 

option can be chosen per feature. Table 5.1 shows an example of how this can be 

achieved when several options could be concurrently chosen for a given feature. 

 

Table 5.1: One option chosen per feature 

Features  Options  

Sensors    

Imaging Mono RGB camera 

Mono 

+ 

RGB camera 

 

In the previous table, the imaging sensor options are a mono channel camera 

and a RGB camera. However, it could be possible to consider putting both on a 

vehicle for imaging purposes: the mono channel sensor could be used for rapid 

optical flow processing while the color camera could be used for more advanced 

image processing. Hence, to satisfy the assumption that for each feature only one 

option is chosen, the alternative of having both the mono and RGB sensor is created 

as an additional option. This simplification can be automatically implemented in 

the methodology as long as rows which have possible combinatorial choices of 

options are identified.  
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If this assumption is used, the approach is simplified and the total number 

of entries of the compatibility matrix which must be filled-in by the designer is 

reduced (see Equation 5.2). 

Equation 5.2: Number of filled elements in compatibility matrix 

𝑁𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑁𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑁𝑜𝑝𝑡𝑖𝑜𝑛𝑠 − 1)

2
− ( ∑

𝑁𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑖)[𝑁𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑖) − 1]

2
𝑖∈𝑟𝑜𝑤𝑠

) 

 

This formula consists of a first term being the number of elements strictly 

above the diagonal (yellow), minus all blocks of options pertaining to the same 

feature (red blocks, see Figure 5.2). Options 𝑂2 and 𝑂3 describe the same feature, 

as well as 𝑂4, 𝑂5, and 𝑂6.  This can possibly represent memory savings in data 

structures. 

 𝑶𝟏 𝑶𝟐 𝑶𝟑 𝑶𝟒 𝑶𝟓 𝑶𝟔 𝑶𝟕 𝑶𝟖 

𝑶𝟏 1 0 1 0 0 1 0 0 

𝑶𝟐 
 1 0 1 0 0 0 1 

𝑶𝟑 
  1 1 1 1 0 0 

𝑶𝟒 
   1 0 0 0 0 

𝑶𝟓 
    1 0 1 1 

𝑶𝟔 
     1 0 1 

𝑶𝟕 
      1 0 

𝑶𝟖 
       1 

Figure 5.2: Number of filled elements in compatibility matrix 
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3) List variables: for each feature, the design variables which are used by at least one 

option are stored and associated with their respective option(s). 

 

4) Regroup options: the options that are described by the same design variables are 

regrouped into one option. Finally, features which are described by a unique set of 

variables are removed from the morphological matrix. The analyses associated with 

such simplifications are transferred to the optimization algorithms. This can be 

represented in Table 2.8 (page 140), Table 2.9 (page 140), and Figure 5.3 here 

below. 

 

 

Figure 5.3: Regrouping of options 

 

Option 1 

𝑥1,  𝑥2,  𝑥3 𝑥1,  𝑥2, 𝑥3 𝑥4,  𝑥5 

𝑦1 𝑦2, 𝑦3 𝑦3, 𝑦4, 𝑦5, 𝑦6 

𝑧1 𝑧1 𝑧1 

Feature 1 

Feature 2 

Feature 3 

Option 2 Option 3 

Option 1 

𝑥1,  𝑥2,  𝑥3 𝑥4,  𝑥5 

𝑦1 𝑦2, 𝑦3 𝑦3, 𝑦4, 𝑦5, 𝑦6 

Feature 1 

Feature 2 

Option 2 Option 3 
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5) Regroup architectures: all compatible alternatives are then generated using the 

morphological and the compatibility matrices. Finally, amongst those alternatives, 

the ones that are described by unique sets of design variables are declared as 

architectures. In particular, alternatives having the same set of design variables will 

be regrouped (Table 5.2). 

 

Table 5.2: Grouping of alternatives into architectures 

Alternatives 

{
 
 
 
 

 
 
 
 
𝑥1
𝑥2
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑧1
𝑧2}
 
 
 
 

 
 
 
 

 

{
  
 

  
 
𝑥1
𝑥2
𝑥3
𝑦5
𝑦6
𝑦7
𝑧1}
  
 

  
 

 

{
 
 
 

 
 
 
𝑥1
𝑥2
𝑥3
𝑦5
𝑦6
𝑦7
𝑧1
𝑧3}
 
 
 

 
 
 

 

{
 
 
 
 

 
 
 
 
𝑥1
𝑥2
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑧1
𝑧2}
 
 
 
 

 
 
 
 

 

{
 
 
 
 

 
 
 
 
𝑥1
𝑥2
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑧1
𝑧2}
 
 
 
 

 
 
 
 

 

{
  
 

  
 
𝑥1
𝑥2
𝑥3
𝑦5
𝑦6
𝑦7
𝑧1}
  
 

  
 

 

{
 
 
 

 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑦5
𝑦6
𝑦7
𝑧1}
 
 
 

 
 
 

 

 

The alternatives 1,4, and 5 have the same design variables and are regrouped as one 

architecture only (red columns). Same goes for alternatives 2 and 6 (blue columns). 

 

This first step hence helps in reducing the number of architectures which will be 

used for the construction of the morphological tree, second step of the proposed 

methodology. An example implementation of morphological reduction is the software 

ENVISAGE [173]. 

5.1.2 Step 2: morphological tree 

In order to accommodate the evolving size of the design space based on the 

configurations chosen at the macroscopic level, a tree structure is implemented to keep 
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track of the different design choices. As presented in section 2.3.1.2 page 141, the root of 

the tree is the morphological matrix of the macroscopic level while the leaves represent the 

morphological matrices of the individual agents. Model morphological matrices for the 

different architectures considered are stored at an abstract and intermediate level. These 

are used as templates for the leaves. This choice is inspired by object-oriented 

programming and the concepts of interfaces, abstract classes, and instantiation. This has 

been a tendency in systems engineering tools as well over the past few years with the 

examples of the Systems Modeling Language (SysML) and the Architecture Analysis and 

Design Language (AADL) using instance models of high-level interfaces. In the case of 

hardware specifications, this enables to have several available models or components to 

realize a given function. In terms of software, several algorithms can be instantiated to 

implement a specified task. Another advantage of such representations is that they can be 

used for analyses on a system, a classic example being a weight analysis where the analysis 

simply sums up the weight attributes of all subsystems instances. A representation of a 

morphological tree is given again here below (see Figure 5.4). 
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Figure 5.4: Example of morphological tree 

 

Note that this representation can also be adapted when more than two levels are 

considered. In this case, abstract morphological matrices must be implemented at each new 

level so that each additional level in the design spaces translates into two additional levels 

in the morphological tree (one for the abstract morphological matrices, and one for the 

instantiations). In particular, the tree need not be balanced if subsystems exist for some 

architectures but not for others. Moreover, some options of morphological matrices might 

offer a variety of additional design choices. Given that such choices can be represented by 

a fixed morphological matrix, there is no need for a template. Hence, there is a distinction 

to be made between options which might be duplicated (one example is vehicle 

architectures as on Figure 5.4), and options which are chosen only once. These latter 

options are regrouped in what are called sublevels and are shown on Figure 5.5. 

 

Plane Multirotor Dirigible Ornithopter 

Macroscopic level 

Microscopic level 

Architecture level 

Swarm 

Agent 4 Agent 5 Agent 6 Agent 2 Agent 3 Agent 1 
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Figure 5.5: Multi-level morphological tree 

 

To account for the feasibility of the generated alternatives, the tree structure must 

be coupled with compatibility matrices for each of the options (see section 5.1.1).  

5.1.3 Implementation 

The proposed example implementation of the morphological tree is mostly based 

on the object-oriented programming representation due to its flexibility: a key asset for 

dynamic design spaces. In particular, two main objects are to be implemented: a tree data 

structure, and a morphological matrix data structure. 

5.1.3.1 Data structures 

Firstly, the tree data structure is a widely used one and is available in many third 

party libraries. For the chosen Matlab implementation for instance, it is possible to find a 

number of open source files representing the tree data structure. The implementation of 

Jean-Yves Tinevez is chosen as it is recognized on the MathWorks repositories, has been 

downloaded and used many times by the community, and has received excellent ratings 
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[231]. This data structure is implemented as a class and includes many utility functions to 

perform operations on the tree. It is based on plain Matlab arrays and cell arrays and 

exhibits little overhead. Moreover, this tree data structure is a “per value” class as opposed 

to a “per reference” implementation, this has to be taken into account when modifying the 

tree structure. Finally, this implementation is modular enough so that any data type can be 

used for the roots and leaves of the tree. 

 

To support the additional operations required on a tree of morphological matrices, 

a class morphologicalTree is created to inherit from the tree class. Its main additional 

functions are to perform reduction, the computation of the alternatives, and a string 

representation. Then, a class is created for morphological matrices and corresponding 

object instances are used in the tree structure. The morphologicalMatrix class is created as 

part of this research and the data structure is presented on Figure 5.6 using UML formalism.
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Figure 5.6: Proposed UML class diagram for the morphological tree

+ morphologicalMatrix(name: String, abstract: Boolean) 
+ addRow(row: row) 
+ removeRow(name: String) 
+ computeAlternatives(): Integer 
+ computeCompatibleAlternatives(compatibilityMatrix: Array, initialSet: Array, n: Integer): Integer 
+ reduce(): Boolean, Integer, Integer 
+ countOptions(): Integer 
+ countVariables(): Integer 
+ setUpCompatibilityIndices() 
+ intializeCompatibilityMatrix(): Array 
+ toString(): String 
+ getName(): String 
+ getRows(): Struct 
+ isAbstract(): Boolean 
+ setAbstract(abstract: Boolean) 
+ symmetrize(C: array) 

morphologicalMatrix 
- name: String 
- rows: Struct 

tree 

… 

… 

Tree data structure class by Jean-Yves Tinevez 

http://tinevez.github.io/matlab-tree/  

morphologicalTree 

+ morphologicalTree(content: MorphologicalMatrix) 
+ computeAlternatives(): Integer 
+ reduce(): Boolean, Integer, Integer 
+ toString(): String 

row 
# name: String 
# options: Struct 

+ addOption(option: option) 
+ removeOption(name: String) 
+ addOptionFromMorph(name: String, m: morphologicalMatrix) 
+ reduce(): Boolean, Integer 
+ countOptions(): Integer 
+ countVariables(): Integer 
+ setUpCompatibilityIndices(startIndex: Integer): Integer 
+ toString(): String 
+ getName(): String 
+ getOptions(): Struct 
+ computeAlternatives(): Integer 

0..1 

0..* 

option 
- index: Integer 
- name: String 
- variables: Struct 

+ option(name: String, variables: Struct) 
+ countVariables(): Integer 
+ toString(): String 
+ getName(): String 
+ getIndex(): Integer 
+ getVariables(): Struct 
+ setIndex(index: Integer) 

rowConventional 

+ rowConventional(name: String) 
+ computeAlternatives(): Integer 

rowCombinatorial 

+ rowCombinatorial(name: String) 
+ computeAlternatives(): Integer 

0..1 

0..1 

0..* 

0..* 0..1 

0..* 

http://tinevez.github.io/matlab-tree/
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The morphological matrix basically consists of rows containing options. Each 

element is assigned a name which serves as a unique reference to each individual object. 

The options additionally comprise of a set of associated design variables which are used to 

perform the morphological reduction. The implementation contains basic operations to add 

and remove rows (features) and columns (options), and also carry out morphological 

reduction on rows and morphological matrices. For the rows, options containing the same 

variables are reduced to one, and for the morphological matrices, each row is reduced 

before removing rows containing only one option. The reduction methods return a Boolean 

indicating whether the structure was reduced or not, as well as the number of variables 

removed. Structures containing more than one object of a given type (matrix of rows, rows 

of options, options with several variables) are implemented as cell arrays in Matlab. 

Required constructors, getters, and setters are also employed. 

 

Two types of rows are considered for the morphological matrix: conventional and 

combinatorial. The conventional row is a row where only one option can be chosen whereas 

several options can be chosen simultaneously in a combinatorial raw. This latter type of 

row is particularly useful when combining sensors for instance (see Table 5.1 page 295). 

For conventional rows, the number of possible alternatives is just the number of elements 

in the options array whereas for the combinatorial row, all possible combinations have to 

be summed up for all numbers of options grouped together (Equation 5.3). 
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Equation 5.3: Total number of alternatives for a combinatorial row 

𝑛𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 = ∑ (
𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠

𝑖
)

𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠

𝑖=1

  

 

A row containing 3 options can be used as an example: if one option has to be 

chosen then (
3
1
) = 3 alternatives are possible, a number which corresponds to the 

conventional case. If two options are to be chosen, (
3
2
) = 3 alternatives can be considered.  

Finally, if the choice has to be made between 3 options, only (
3
3
) = 1 alternative is feasible. 

By summing all possibilities, one ends up with 3 + 3 + 1 = 7 total alternatives for a 

combinatorial row of 3 options. 

More in depth, this particular detail is implemented thanks to the concept of 

abstraction: an abstract class row is implemented with the abstract method 

computeAlternatives. This method is then detailed differently depending whether a 

conventional row or a combinatorial row is instantiated. Hence, two classes 

rowConventional and rowCombinatorial inherit from the abstract row class. To simplify 

the compatibility analysis, it is assumed that options from a combinatorial row are 

compatible within themselves. If this is not the case, one can always generate a 

conventional row from a combinatorial row by considering the required compatibilities 

(see Table 5.1 page 295). 

 

Additionally, for the data structures to remain modular, a special method is 

implemented in the abstract row class which enables to create a full set of options from a 
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given morphological matrix. This is a key feature as it facilitates the multi-level 

morphological analysis. Considering the morphological interfaces shown in Table 5.3, 

Table 5.4, Table 5.5, Table 5.6, Table 5.7, and Table 5.8, this corresponds to the red cells 

which are individual options actually hiding full morphological matrices. 

5.1.3.2 Morphological interfaces 

Finally, before instantiating the tree of morphological matrices, the abstract 

morphological matrices of the represented architectures have to be constructed. Based on 

functional and physical decomposition (see Figure 3.13 page 207) of common models 

found in the commercial and military worlds, design features and their corresponding 

options are listed for each considered architecture. These example morphological interfaces 

are listed in this section and later used in the methodology to implement instances of each 

architecture. 

 

Note: these matrices do not have the pretention to be exhaustive in any way, nor up to the 

standards used in the industry today where morphological matrices often comprise of 

thousands of rows. Rather, they serve as representative examples used to estimate the 

benefits of the morphological tree approach. 

 

First, the most common type of UAV architecture is presented: the fixed-wing 

architecture. As it is shown on Table 5.3 and Table 5.4, multi-levels are present with the 

empennage, battery types, and landing gear wheel arrangements. These are represented as 

red options. Hence, by looking at this concrete example of morphological decomposition, 

one understands the need for a modular structure which can handle multiple levels such as 
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the morphological tree. Additional morphological decompositions follow for the 

macroscopic level as well as for the multicopter, airship, and ornithopter architectures. 

 

Table 5.3: Example of empennage morphological matrix 

Features Options 

Number of tailplanes 

0 

 Tailless 

 Canard 

1 2 3  

Location Low Mid High 

Booms 

 Tail 

 Wing 

 

Moving surfaces Independent Stabilator    

Number of fins 0 1 2   

Configuration Fin/Taiplane V tail 
Inverted 

V tail 
X tail Pelikan 

750 alternatives 
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Table 5.4: Fixed-wing architecture morphological interface 

 
Fixed-Wing 

Features Options 

A
e
r
o

d
y

n
a

m
ic

s 

Body Separate fuselage Flying wing Blended body Lifting body   

Wing Straight Swept Delta Compound delta   

Wing position Low Mid Shoulder High Parasol  

Detachable wing Yes No     

Empennage None See Table 5.3     

Type of launch Horizontal Vertical Hand-launched Aircraft-launched Catapult-launched  

Type of landing Horizontal landing Vertical landing Energy dissipation crash Parachute Net  

P
r
o

p
u

ls
io

n
 

Number of motors 1 2 3 4   

Energy source Bio-chemical Electric charge Solar Electrolyte Hybrid  

Energy storage 

Battery 

 LiCoO2 

 LiFePO4 

 LiPo 

 NiCad 

 NiMH 

Fuel tank External fuel tank 
Electrolyte tank 
Fuel cell 

Fuel tank + Battery 

 LiCoO2 

 LiFePO4 

 LiPo 

 NiCad 

 NiMH 

External fuel tank + Battery 

 LiCoO2 

 LiFePO4 

 LiPo 

 NiCad 

 NiMH 

Converter to mechanical energy Piston Turbine Electric motor 
Hybrid 

(Piston/Electric) 

Hybrid 

(Turbine/Electric) 
Fuel cell and electric motor 

Converter to lift/thrust Rotor Fan Propeller Jet   

S
e
n

so
r
s 

Imaging 

Mono 

 Fixed-mount 

 Gyro-stabilized 

RGB camera  

 Fixed-mount 

 Gyro-stabilized 

Multispectral data  

 Fixed-mount 

 Gyro-stabilized 

Thermal camera  

 Fixed-mount 

 Gyro-stabilized 

  

Mapping 2D LIDAR 3D LIDAR Sonar    

Attitude IMU+GPS      

Altitude GPS Barometer Sonar    

Communications Radio      

S
tr

u
c
tu

r
e
s Landing gear arrangement None 

Wheels 

 Tail wheel 

 Tandem 

 Tricycle 

 Wing 

Skids Floaters Skis  

Landing gear type None Fixed Retractable    

Landing gear shock absorption Rigid Leaf-type Bungee cord Shock struts   
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Table 5.5: Multirotor architecture morphological interface 

 
Multirotor 

Features Options 

A
e
r
o

d
y

n
a

m
ic

s 

Fairings None Electronics only Full body Full body and payload   

Type of landing Vertical landing Energy dissipation crash Parachute Net   

P
r
o

p
u

ls
io

n
 

Energy source Bio-chemical Electric charge Electrolyte Hybrid   

Energy storage 

Battery 

 LiCoO2 

 LiFePO4 

 LiPo 

 NiCad 

 NiMH 

Fuel tank External fuel tank 
Electrolyte tank 

Fuel cell 

Fuel tank + Battery 

 LiCoO2 

 LiFePO4 

 LiPo 

 NiCad 

 NiMH 

External fuel tank + Battery 

 LiCoO2 

 LiFePO4 

 LiPo 

 NiCad 

 NiMH 

Converter to mechanical energy Piston Turbine 

Electric motor 

 Spinning cage 

 Spinning shaft 
 

 Brushed 

 Brushless 

Hybrid 
(Piston/Electric) 

Hybrid 
(Turbine/Electric) 

Fuel cell and electric motor 

Rotorcraft Single rotor Coaxial Tail sitter Tilt-rotor Multirotor  

Number of rotors 1 2 3 4 6 8 

Converter to lift/thrust Rotor Fan Propeller    

Number of blades 2 3 4 6 8 10 

Rotors/Frame arrangement I X Y V   

Blade type Fixed pitch Variable pitch     
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Table 5.5 (continued) 

S
e
n

so
r
s 

Imaging 

Mono 

 Fixed-mount 

 Gyro-stabilized 

RGB camera  

 Fixed-mount 

 Gyro-stabilized 

Multispectral data  

 Fixed-mount 

 Gyro-stabilized 

Thermal camera  

 Fixed-mount 

 Gyro-stabilized 

  

Mapping 2D LIDAR 3D LIDAR Sonar    

Attitude IMU+GPS      

Altitude GPS Barometer Sonar    

Communications Radio      

S
tr

u
c
tu

r
e
s 

Landing gear arrangement None Foam pads Skids Floaters   

Landing gear type None Fixed Retractable    

Landing gear shock absorption None Rigid Leaf-type Bungee cord Shock struts  

Frame type 
Aerial 

cinematography 
Sport Sport FPV Mini Mini FPV  

 

 

Table 5.6: Macroscopic level morphological interface 

Features Options 

Mission type HALE Long-range strike MALE Close-range support MUAV MAV 

Architecture Fixed/Conventional Product family Scale-based product family Reconfigurable Online reconfigurable Modular 

Control type Centralized Decentralized     

Control scheme Leader/Follower Hierarchical Consensus Distributed   

Ground station Remote base Laptop Wearable technology    
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Table 5.7: Morphological interface for the airship architecture 

 
Airship 

Features Options 

A
e
r
o

d
y

n
a

m
ic

s Lifting medium Cold gas (Helium) Hot air     

Empennage configuration Y Inverted Y X Cross   

Ballonet-based pitch trim Yes No     

P
r
o

p
u

ls
io

n
 

Energy source Bio-chemical Electric charge Electrolyte Hybrid   

Energy storage 

Battery 

 LiCoO2 

 LiFePO4 

 LiPo 

 NiCad 

 NiMH 

Fuel tank External fuel tank 
Electrolyte tank 

Fuel cell 

Fuel tank + Battery 

 LiCoO2 

 LiFePO4 

 LiPo 

 NiCad 

 NiMH 

External fuel tank + Battery 

 LiCoO2 

 LiFePO4 

 LiPo 

 NiCad 

 NiMH 

Converter to mechanical energy Piston Turbine 

Electric motor 

 Spinning cage 

 Spinning shaft 
 

 Brushed 

 Brushless 

Hybrid 
(Piston/Electric) 

Hybrid 
(Turbine/Electric) 

Fuel cell and electric motor 

Number of rotors 1 2 3 4 6 8 

Steerable propulsion Yes No     

Converter to lift/thrust Rotor Fan Propeller    

Number of blades 2 3 4 6 8 10 

Blade type Fixed pitch Variable pitch     

S
e
n

so
r
s 

Imaging 

Mono 

 Fixed-mount 

 Gyro-stabilized 

RGB camera  

 Fixed-mount 

 Gyro-stabilized 

Multispectral data  

 Fixed-mount 

 Gyro-stabilized 

Thermal camera  

 Fixed-mount 

 Gyro-stabilized 

  

Mapping 2D LIDAR 3D LIDAR Sonar    

Attitude IMU+GPS      

Altitude GPS Barometer Sonar    

Communications Radio      

S
tr

u
c
tu

r
e
s 

Hull type Non-rigid Semi-rigid Rigid    

Battens Yes No     
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Table 5.8: Morphological interface for the ornithopter architecture [232], [233] 

 
Ornithopter 

Features Options 

Aerodynamics 

Wing twisting 

Yes 

 Spar rotation 

 Spar torsion 

 Servo-controlled 

 Auxiliary spar 

No    

Wing type Flying wing Tandem wing Thrust-wing 
Oscillating stretched 

wing 
Rotating wing 

Propulsion 

Energy source Bio-chemical Electric charge Other   

Energy storage 

Battery 

 LiCoO2 

 LiFePO4 

 LiPo 

 NiCad 

 NiMH 

Fuel tank Rubber   

Gearbox type Strut Plate    

Gear type Cluster Spur with pinion wire    

Flapping mechanism Staggered crank Outboard wing hinge Dual cranks Transverse shaft  

Converter to mechanical energy Internal combustion engine 

Electric motor 

 Spinning cage 

 Spinning shaft 

 

 Brushed 

 Brushless 

Rubber + shaft   

Sensors 

Imaging Mono RGB camera Multispectral data   

Attitude IMU+GPS     

Altitude GPS Barometer Sonar   

Communications Radio     

Structures Wing reinforcement Battens Perimeter    
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5.1.3.3 Compatibility study 

In conjunction with the morphological interfaces, compatibility matrices are 

required to consider only alternatives which options are all compatible. First, indices are 

associated with every option of the morphological matrix thanks to the method 

setUpCompatibilityIndices. The numbering convention is shown in Table 5.9. 

 

Table 5.9: Options compatibility indexing convention 

Features Option 1 Option 2 Option 3 Option 4 

Feature 1 1 2 3  

Feature 2 4 5   

Feature 3 6 7 8 9 

Feature 4 10 11   

 

Then, the function initializeCompatibilityMatrix initiates a compatibility matrix 

assuming that all options are compatible and then prefills the incompatible trivial blocks 

as explained in Figure 5.2. The designer is then left to identify only the incompatibilities. 

For each architecture, the compatibility matrices can be visualized in Figure 5.7. 
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(a) Fixed-wing (𝟖𝟒𝟓×𝟖𝟒𝟓) (b) Multirotor (𝟗𝟕×𝟗𝟕) 

  

(c) Airship (𝟕𝟗×𝟕𝟗) (d) Ornithopter (𝟒𝟒×𝟒𝟒) 

 

(e) Macroscopic level (𝟐𝟑×𝟐𝟑) 

Figure 5.7: Compatibility matrices 
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It can be seen that the compatibility matrices follow a general pattern as shown on 

Figure 5.8. 

 

 

Figure 5.8: Compatibility matrices pattern 

 

Incompatible options are represented in black whereas compatibilities are displayed 

in white. Incompatible options from the same feature are the black triangles close to the 

diagonal. The large white patch in the bottom right corner of the matrix comes from the 

sensors combinatorial rows which have only compatible options which can be combined 

even if they are from the same feature. Finally, the diagonal is white since every option is 

compatible with itself. 

 

Propulsion 

compatibilities 

Trivial 

incompatibilities 

Combinatorial 

sensors alternatives 
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Once the compatibility matrices are prepared, the compatible alternatives must be 

generated. Given the extremely high number of total possible (and not necessarily 

compatible) alternatives, a full factorial approach eliminating incompatible options cannot 

be considered. Although the proposed morphological matrices remain small with respect 

to what is observed in the industry, generating the full factorial for all possible alternatives 

is impossible due to computer memory constraints. For example, generating all possible 

alternatives for the airship architecture would require 100 GB of memory. This full 

factorial array would then have to be run through to identify and rule out incompatible 

alternatives. As a consequence, a recursive approach on the rows of the morphological 

matrix is chosen as in the fashion of [173]. For a given function call, the algorithm tries to 

add each option of the current row to the considered alternative. If the option is compatible 

with the alternative built so far (step 𝑛), the option is added to the alternative and the 

recursive function is called on the following rows (step 𝑛 + 1). The stopping condition of 

the recursion is reached when no more rows remain. This method is very similar to 

traveling a tree in a depth-first fashion (see Figure 5.9). 
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Figure 5.9: Recursive count of compatible alternatives 

 

In this particular function call, three options have been chosen and locked in and 

the algorithm is looping over and considering all the options of row 𝑛. The circles represent 

options compatible with the current alternative (green options) and the crosses represent 

the incompatible ones. For each compatible option (circle), the function will have a 

recursive call over the sub-problem: the remaining rows of the morphological matrix (red 

area) and repeat the same process for row 𝑛 + 1. The complete workflow for generating 

compatible alternatives is the following: 

1. Prepare morphological matrix 

2. Initialize options indices 

3. Initialize compatibility matrix 

4. Fill in known incompatibilities 

5. Run recursive algorithm to count compatible alternatives 

Options 

F
ea

tu
re

s 
𝒏 

𝒏 + 𝟏 
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The complete compatibility analysis is summarized in Table 5.10. Due to the size of the 

morphological decomposition of the fixed-wing and multicopter architectures, 

compatibility studies were to computationally expensive to run. 

 

Table 5.10: Number of compatible alternatives 

Architecture 

Name 

Combinatorial 

alternatives 

Total 

incompatible 

pairs 

Non-trivial  

Incompatible 

pairs 

Compatible 

alternatives 
Compression 

Fixed-wing 3.8916×1016 284,340 2,441 - - 

Multirotor 1.6789×1014 500 214 - - 

Airship 3.3579×1011 441 199 111,974,400 99.97% 

Ornithopter 7,408,800 113 46 158,400 97.86% 

Macroscopic level 1620 56 10 540 66.67% 

 

The recursive function takes a couple hours to run for the small matrices and lists 

all possible compatible alternatives, making it a pretty long process. However, the 

procedure can be sped up by properly conditioning the problem. Indeed, the algorithm will 

take a long time if for many occasions the “depth first” search is able to go deep in the 

alternatives tree. Since the number of compatible alternatives is given by the problem, it is 

not possible to change the number of branches where the algorithm goes the deepest. 

However, it is possible to change how early the incompatibilities are found. The earlier an 

incompatibility is found, the longer the underlying branches are and the more possibilities 

are removed at once (see Figure 5.10). 
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(a) Badly conditioned problem: incompatibility 

found in the last recursive layers 

(b) Good conditioning: incompatibility found 

from the beginning, preventing the 

proliferation of child branches 

Figure 5.10: Problem conditioning 

 

The options of the considered alternative which are incompatible together are 

highlighted in red. If the option incompatible with the option chosen at the first or second 

row is listed earlier (Figure 5.10 (a)), the algorithm will not pursue the search with another 

multitude of branches (Figure 5.10 (b)). Hence, the idea is to condition the morphological 

matrix so that most incompatibilities lie in the first rows of the matrix (since they are 

considered first by the algorithm). Thanks to this pre-conditioning of the problem, most 

incompatible alternatives are removed at the beginning of the recursive process and the 

algorithm is able to finish in a much shorter time. However, as can be seen in Table 5.10, 

the function call would take too long (respectively from around a hundred days to twenty-

two years) for the multirotor and the fixed-wing architectures. Note that the compatibility 

matrix has to be formed once reduction has been performed or the reduction step has to 

also properly reformat the compatibility matrices. 

Options 
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Options 
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5.1.3.4 Morphological reduction 

Final step of the implementation, the morphological reduction is easily performed 

thanks to the object-oriented programming paradigm. Indeed, the reduction is first 

performed at a row level for each option of the row. Options which are found to have the 

same design variables as another are removed from the row. Then, the reduction continues 

at the morphological matrix level: once the row has been reduced and if there is only one 

option left, this latter is removed from the matrix. Finally, a reduction method can be 

implemented for a tree object and that method performs reduction for each of the nodes of 

the tree. Note that in the extreme case when a whole morphological node is reduced to one 

option, it could potentially be removed from the tree and directly transferred to the 

optimization step as it is done for rows with single options. 

 

Going back to the example morphological matrices introduced in section 5.1.3.2 

page 306 and analyzed in Table 5.10 page 318, it is possible to perform reduction and 

obtain a first glance at the type of results obtainable through morphological reduction 

(Table 5.11 and Figure 5.11). 

Table 5.11: Number of reduced alternatives 

Architecture 

Name 

Initial 

combinatorial 

alternatives 

Reduced 

combinatorial 

alternatives 

Options 

removed 

Non-unique 

variables 

removed 

Compression 

Fixed-wing 3.8916×1016 1.6463×1013 712 4752 99.96% 

Multirotor 1.6789×1014 6.4774×1011 25 37 99.61% 

Airship 3.3579×1011 3.2387×108 27 50 99.90% 

Ornithopter 7,408,800 3,175,200 4 4 57.14% 

Macroscopic level 1620 1620 0 0 0% 
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Figure 5.11: Effect of options removal on overall reduction 

 

Observing these results, the macroscopic level morphological analysis is not 

reduced. This is due to the fact that the options available at the macroscopic level are very 

particular in the proposed case and all have very unique design variables. Note that this 

might be different for other canonical examples. Then, reduction seems all the more 

important when the morphological decomposition is large. One example is the fixed-wing 

architecture which encompasses a secondary morphological decomposition for the 

empennage, adding more than 750 new alternatives multiplying the other analysis. For this 

architecture, the compression due to reduction is more than 99.95% with a very large 

number of options removed (mainly from the empennage decomposition). However, with 

the multirotor and airship configurations, a high reduction is achieved (more than 99%) 

even though the proportion of options removed is reasonable (25% to 34%). Hence, 

reduction seems to show promising results in reducing the size of the design space even 

when not many options are removed. For the ornithopter architecture, removing only 4 
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options results in a reduction of the design space of more than 50%. A higher reduction is 

not achieved as the options for this type of peculiar architecture are very unique and not 

standardized. 

 

Propagating these results to the full morphological tree, a tremendous reduction of 

the design space is achieved, demonstrating the multiplied power of morphological 

reduction when applied to multi-level design spaces (Figure 5.12). 

 

 

Figure 5.12: Initial morphological tree before reduction 

 

The abstract level is represented with the gray boxes and these are not accounted 

for to compute the total number of alternatives in the tree. Before reduction, the tree 

comprises of 1.1242×10114 combinatorial alternatives. After reduction, this number goes 

down to 2.0203×1093 by removing 3010 options (around 20,000 non-unique variables). 

Macroscopic level

(1620)

Fixed-Wing
3.892 × 1016

Vehicle 1
3.892 × 1016

Vehicle 2
3.892 × 1016

Vehicle 3
3.892 × 1016

Multirotor
1.679 × 1014

Vehicle 1
1.679 × 1014

Vehicle 2
1.679 × 1014

Vehicle 3
1.679 × 1014

Airship
3.358 × 1011

Vehicle 1
3.358 × 1011

Ornithopter
7.409 × 106

Vehicle 1
7.409 × 106
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Even though the number of alternatives to be considered is still enormous with respect to 

current design exploration techniques, the reduction achieved is quite important and this 

number of alternatives has been reduced by several orders of magnitude. 

 

5.1.4 Verification and validation 

The verification and validation of the morphological tree with reduction is simply 

performed through a campaign of unit testing. Moreover, this section refers to the 

validation criteria of experiment 3.1 defined in chapter 2 and validates hypothesis 3.1. 

 

Are all alternatives feasible? The complementary approach of the compatibility matrix 

ensures that feasibility is enforced for each matrix (leaf) of the morphological tree but also 

between the different levels when alternatives are generated. Hence all alternatives 

provided by the morphological tree are feasible. The unit test associated with this criterion 

generates random alternatives and for each one of them, looks up the chosen technologies 

in the compatibility matrix. The test passes only if no incompatibility is found. 

 

Are there still redundant variables or options groups in the resulting alternatives? 

This steps ensures that the morphological reduction step is properly carried out and 

propagated through the different levels of the tree. The corresponding unit test performs 

morphological reduction on a randomly generated design space. Then, it reduces the 

resulting design space a second time and compares whether there was a second size change 

or not. The test passes only if the size of both design spaces is the same, which indicates 

that the first reduced design space is no longer compressible. 
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Is the number of alternatives reduced when compared with the classical 

morphological approach? This question is easily answered by generating a random 

swarm constitution and computing the resulting number of alternatives from this design 

space. As a second step, morphological reduction is performed and the total number of 

alternatives are compared in both cases. 

 

Are all existing concepts covered by the generated alternatives? The morphological 

approach ensures that every option of the tree is considered in the alternatives. Indeed, the 

generation of alternatives is done with a full factorial decomposition of all possible options, 

hence certifying that any given option is used in the alternatives. Covering all existing 

concepts then depends on the precision of the literature review and the definition of the 

morphological interfaces. In the example implementation, notional morphological matrices 

are provided and most likely lack some options in their decomposition while still providing 

a wide coverage of the design space for unmanned vehicles. 

 

Can the generated alternatives be easily fed to the optimization and analysis 

algorithms? Each alternative generated by the morphological tree comes with a set of 

design variables used to define it. Using this architecture in the optimizers (such as the one 

defined in the next section) then depends on implementing the behavior of the architecture 

as a function of its design variables, and defining bounds for each design variable. This 

step is relatively easy since: 

 The number of architectures to be implemented is most likely reduced thanks to 

morphological reduction. 
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 The morphological tree directly provides the design variables to be used in the 

implementation. 

5.1.5 Characterization 

This section provides a complete characterization of the proposed design space 

exploration technique. Both aspects are considered with a first part focusing on 

morphological reduction and a second part detailing the morphological tree 

characterization. 

5.1.5.1 Morphological reduction 

An efficient design space exploration technique relies on two main capabilities: 

covering a maximum of concepts and simultaneously reducing the execution time required 

to reach optimal solutions. Although the usage of the morphological approach guarantees 

the exhaustiveness of the generated concepts with respect to the listed options, it is not 

granted that the computation time will remain reasonable. Indeed, two aspects have to be 

considered. On one hand, the number of discrete cases to be run in the optimizers has been 

reduced thanks to morphological reduction. On the other hand, a certain number of 

corresponding design variables has been transferred to the optimizer. In order to conclude 

on the effectiveness of the whole methodology, it is critical to study whether the 

morphological reduction is outbalanced by the number of additional design variables in the 

optimization process. Introduced by [173], this concept named “morphological reduction” 

in this work is applied to multi-level design spaces in this section and further characterized. 

 

A first step in this approach is to assess the increase in computation time incurred 

by the multiplication of design variables used by the optimizer. In order to be consistent 
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with the optimizer used in this research, a genetic algorithm optimizer is used on a set of 

thirteen multivariable test functions in the same fashion as [234]. These optimization test 

functions have the particularity to have an adjustable number 𝑛 of design variables, so as 

to study the behavior of the optimization algorithm with respect to 𝑛: key requirement for 

the present test. Such functions are presented in Appendix A.2 page 432. 

For a given number of design variables, this analysis runs the genetic algorithm to 

optimize the test function. In particular, the same stopping criteria of stability and stalling 

generations is used for the convergence criteria. Such runs are replicated over a hundred 

times to ensure a proper statistical analysis of the results as well as robust conclusions 

(Figure 5.13). 

 

 

Figure 5.13: Number of function calls versus number of design variables 
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The number of function calls required for convergence quickly shoots up between 

1 and 20 design variables, before increasing more slowly. Although there is no apparent 

limit to the number of function calls, the tendency of the curves reminds of an asymptotic 

behavior. In order to obtain a general trend of how the number of function calls in the 

optimizer is affected by the number of design variables, the average number of function 

calls is computed for every number of design variables (see Table 5.12). 

Table 5.12: Average number of function calls for the test functions 

Number of design variables  Average number of function calls 

1  14,121 

2  20,890 

3  26,553 

4  34,637 

5  40,145 

10  71,679 

50  237,322 

100  408,899 

 

The average number of function calls required for convergence can then be approximated 

by Equation 5.4. With 𝑛 the total number of design variables used by the optimizer. The 

coefficient of determination for this fit is 𝑅2 = 0.9992. 

 

Equation 5.4: Surrogate model for the number of function calls 

𝑓𝑐(𝑛) = −11.776𝑛
2 + 5,127.9𝑛 + 13,236 

 

In order to fully understand the effects of morphological reduction, the analysis is 

separated between single level and multilevel effects. 
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5.1.5.1.1 Single level 

This subsection draws out new conclusions (with respect to [173]) on the 

performance of morphological reduction. For all following examples, a notional 

morphological matrix is considered with 8 rows and 4 options per row. The initial number 

of variables in the optimizer is 50. Options are then removed one by one with 

morphological reduction and the influence of different parameters is studied. It is assumed 

for the following figures that options are removed row by row, as opposed to column by 

column. However, the effect of both strategies is studied on Figure 5.20 and Figure 5.21. 

 

In Figure 5.14, the number of design variables removed per option (also denoted as 

factor 𝑘) is 4. The nominal case without morphological reduction is represented in blue 

and does not change as options are removed. 

 

Figure 5.14: General effect of morphological reduction 
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A first observation is that the morphological reduction curve (in solid red) is always 

below the nominal case (solid blue): the number of total function calls is always lower with 

morphological reduction. The vertical right axis represents an equivalent duration if each 

function call took one second to evaluate. It seems that the principal influence comes from 

the reduction in the number of discrete cases in the morphological decomposition, and that 

the resulting increase in the number of design variables for the optimizer has a minor 

contribution in the number of function calls. Indeed, one possible way to check this 

statement is to compute the number of function calls when design variables are not 

transferred to the optimizer: options (and variables) are simply removed. This curve is 

shown in dashed red and appears only slightly below the solid red curve. This confirms 

that the action of transferring design variables to the optimizer as options are removed has 

only a minor influence on the number of function calls. The same conclusion is drawn 

when considering the complementary approach: keeping the number of discrete calls 

constant and increasing only the number of design variables in the optimizer (dashed blue 

curve). Again, the difference with the baseline is smaller than with the solid red line. As a 

conclusion, the influence on the number of function calls is dominated by the reduction in 

the number of times the optimizer has to be run and not by its number of variables. 

 

Although the first example on the baseline problem seems to show that 

morphological reduction is always advantageous, it is essential to reach the limits of this 

experiment and see if it is possible to obtain a case where such a clear conclusion cannot 

be drawn. By pushing the factor 𝑘 to 100 (100 variables added per option removed), Figure 

5.15 is obtained. 
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Figure 5.15: Limits of morphological reduction 

 

The red and blue solid curves now intersect and there seem to be a tradeoff between 

the number of times the optimization algorithm is run, and the number of design variables 

transferred to it. When 1 to 4 options are removed from the morphological matrix, this 

means that 100 to 400 additional variables are transferred to the optimizer. This ends up 

dominating the number of function calls. Hence, it is more computationally expensive in 

this case to use morphological reduction. As for the previous example, this trend is 

confirmed by looking at the dashed curves and their distance from their respective solid 

counterparts. By the time 10 options have been removed, the variation between the red 

solid and dashed curve is the same as the total variation of the solid line: adding variables 

to the optimizer now has the same impact as the number of calls to the optimizer. To 
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conclude on this example, it seems that in some extreme cases, the proposed morphological 

reduction might take longer and be more expensive than the conventional approach. 

However, this was derived for the unusual case when one option of the morphological 

matrix requires 100 variables to be represented, a number much larger than the initial 50 

variables of the baseline problem. 

 

The effect of this parameter 𝑘 is further studied on Figure 5.16. It is varied from 2 

to 4 with the same number of initial design variables in the optimizer. 

 

 

Figure 5.16: Influence of factor k on morphological reduction 
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As 𝑘 is increased (more variables transferred per option removed), morphological 

reduction requires more and more function calls and gets closer to the nominal case. In the 

extreme case when 𝑘 = 300 variables are transferred to the optimizer per option removed, 

the number of function calls increases from 1 to 2 options removed. This is opposed to the 

previous observations when the trend was always decreasing for the morphological 

reduction curves. This can also be represented by a contour plot listing the zones where the 

morphological reduction uses more or less function calls than the full morphological 

decomposition (Figure 5.17). 

 

 

Figure 5.17: Contours of morphological reduction profitability 
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This map shows that even for a small morphological matrix example, the zone 

where morphological reduction is detrimental remains quite limited in terms of coverage. 

Even if the k-factor varies from 1 to 300 variables added per option removed, there is no 

detrimental zone after 8 options have been removed from the morphological matrix. 

 

Finally, the repercussions of the size of the problem are considered in these last few 

examples. First, the number of rows in the morphological matrix is varied in Figure 5.18. 

 

 

Figure 5.18: Influence of the number of rows on morphological reduction 
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As expected, with more rows in the morphological matrix, the computational time 

increases for both the baseline and the morphological reduction cases. With both problem 

sizes, the morphological reduction still performs better than the classic approach. The same 

observations are drawn from Figure 5.19 when the number of options per row is varied. 

 

 

Figure 5.19: Influence of the number of options per row on morphological reduction 

 

It can be observed that the number of options per row has more influence on the 

response than the number of rows in the morphological matrix. This is reminiscent of the 

strategy chosen for the elimination of options which was mentioned at the beginning of 

this section. Two strategies were envisaged: rows first or columns first. Figure 5.20 
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demonstrates both strategies on the notional morphological matrix of this section by 

removing 10 options. Removed options are represented in red. 
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(a) Rows first (b) Columns first 

Figure 5.20: Strategies of options removal 

 

The “rows first” strategy leaves 2048 possible alternatives (i.e. 2048 calls to the 

optimizer) while the columns first leaves 2916 of them. Given this important difference, it 

is essential to consider both testing strategies for the characterization of morphological 

reduction (see Figure 5.21). 
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Figure 5.21: Influence of options removal strategy on morphological reduction 

 

The “rows first” strategy seems to decrease the number of function calls the most 

compared to the “columns first” strategy. Jumps can be seen in both curves: for the “rows 

first” strategy, there is a different slope for every removed option, and the pattern repeats 

every time a new row is removed (every 4 options). When the last option of a row is 

removed, the number of function calls actually increases. Indeed, the number of discrete 

calls remains the same, but more variables are transferred to the optimizer. All things 

considered, the number of function calls hence increases slightly at every new row before 

decreasing again. As for the “columns first” strategy, the cycle repeats after columns are 

removed from the morphological matrix (every 8 options in this case). 
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 After 16 options removed (equivalent of 2 columns, or 4 rows), combinatorial 

theory shows that both strategies leave the same number of alternatives. After this point, 

the “columns first theory” decreases the number of alternatives much faster. However, this 

breaking point happens when the number of options removed gets very close to the number 

of total options in the morphological matrix (21 options removed out of 32 total options). 

Finally, this graph shows that before this breaking point which happens in rare cases, both 

strategies exhibit a similar high-level trend: the characterization made on the previous 

examples hold for both strategies which generalizes the conclusions made. 

 

Note that in real-world applications, the designer does not control any “rows first” 

or “columns first” options removal strategy. Instead, the options which are removed are 

given by the morphological reduction process and do not respect any specific pattern. The 

strategies were introduced for the sake of these examples so as to enable automated large-

scale options removal. Moreover, the test and the notional morphological matrix were 

designed so that 0 to 30 percent of the total options were removed. 

5.1.5.1.2 Multi-level 

A complete characterization of morphological reduction for single-level design 

spaces was carried out in the previous subsection and it is now essential to study the 

repercussions when several design levels are involved. By considering a notional problem 

for both microscopic and macroscopic levels, the effect of removing options can be 

visualized for both levels. The options are removed separately on the microscopic level 

and the macroscopic level (Figure 5.22) and are expressed as a percentage of the size of 

the respective problem. In order to understand each effect separately, only the number of 
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variables transferred to the optimizer is considered here, the number of discrete runs is 

considered the same so that these graphs are equivalent to running the optimizer only once 

with the increased number of variables. Hence, using the surrogate model 𝑓𝑐 defined in 

Equation 5.4, the formulae used are of the form 𝑓(𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑) = 𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠
𝑛𝑅𝑜𝑤𝑠 ×𝑓𝑐(𝑛𝑣𝑎𝑟𝑠) 

with 𝑓 the number of function calls, and 𝑛𝑅𝑜𝑤𝑠 and 𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 corresponding to the values 

of the initial problem. 

 

  

(a) Microscopic (b) Macroscopic 

Figure 5.22: Notional morphological reduction on a bi-level problem 

 

The decrease in the number of function calls is monotonous with the number of 

options removed from the given level. Since both levels are considered separately and 

provided that the size of the macroscopic problem is smaller than for the microscopic one, 

the number of function calls is decreased the most for the microscopic level. The more 
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options are removed, the more the impact of the k-factor is perceived: the envelope shifts 

away from the nominal case of 𝑘 = 5. 

 

 

Figure 5.23: Relative morphological reduction 

 

In terms of relative evolution, the curves are similar for any k-factor and follow the 

quasi-linear trend displayed in Figure 5.23.  Over a large portion of the range, a change in 

the number of options will result in a similar change in function calls offset by 10%. This 

means that if 40% of options are removed in terms of the problem size, the number of 

function calls is reduced by around 30%. 
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Finally, the size of the different problems (macroscopic and microscopic) is 

changed on Figure 5.24. 

 

 

Figure 5.24: Influence of problem size on bi-level morphological reduction 

 

As observed in real-world applications, the size of macroscopic problems (brown 

curves) is generally smaller than for the microscopic ones (blue curves). Hence, the number 

of function calls is reduced the most for microscopic problems. Some curves from the 

different levels overlap when they have similar morphological matrices. 

 

Now that the effect of removing options (more precisely only adding design 

variables to the optimizer) has been independently characterized on both levels, it is 
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essential to include the effect of the reduced number of discrete calls to the optimizer to 

finish a complete characterization of morphological reduction. This time, to account for 

options being individually removed, the formulae used for each level are of the form 

𝑓(𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑) = ∏ 𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠(𝑖)
𝑛𝑅𝑜𝑤𝑠
𝑖=1 ×𝑓𝑐(𝑛𝑣𝑎𝑟𝑠). Note that the factor 𝑘 is hidden in 

𝑛𝑣𝑎𝑟𝑠 = 𝑘×𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑. First, the influence of this complete formula is assessed on 

each level with Figure 5.25. As expected, trends with cycles similar to the previous single-

level section are obtained. 

 

  

(a) Microscopic (b) Macroscopic 

Figure 5.25: Complete morphological reduction on bi-level problem 

 

Subsequently, the influence of both levels is merged into a unique analysis so that 

the effects of morphological reduction on a bi-level problem are fully understood. 

Including macroscopic and microscopic levels, the overall formula for the number of 

function calls for the whole problem is given in Equation 5.5. 
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Equation 5.5: General equation for bi-level morphological reduction 

𝑓(𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑) =

(

 ∏ 𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠
𝑚 (𝑖)

𝑛𝑅𝑜𝑤𝑠
𝑚

𝑖=1

×𝑓𝑐(𝑛𝑣𝑎𝑟𝑠
𝑚 )

)

 

⏟                    
𝑀𝑖𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐

×

(

 
 
∏ 𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠

𝑀 (𝑖)

𝑛𝑅𝑜𝑤𝑠
𝑀

𝑖=1

×𝑓𝑐(𝑛𝑣𝑎𝑟𝑠
𝑀 )

)

 
 

⏟                    
𝑀𝑎𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐

 

 

With subscripts 𝑚 and 𝑀 referring respectively to microscopic and macroscopic levels. 

The influence of both levels is displayed on Figure 5.26. 

 

 

Figure 5.26: Influence of both levels on morphological reduction 
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The expected trend is observed, the number of function calls decreases with the 

number of options removed for both levels: the removal of discrete optimizer calls still 

dominates over the addition of design variables in the optimizer. Given the different size 

of both problems, the range of removed options is not the same for the two levels. In order 

to better capture and understand the influence of each level on this general response, a 

variables profiler is displayed in Figure 5.27. This profiler explores cross sections of the 

response across each factor around the point where one option is removed at each level. It 

corresponds to the partial derivatives 
𝜕𝑓

𝜕𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑
|
𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑=1

. 

 

  

(a) Microscopic (b) Macroscopic 

Figure 5.27: Variables profiler for morphological reduction 

 

Using the profiler, one can now see that the macroscopic level has around twice as 

much influence on the global response than the microscopic level. This is consistent since 

the choices made at the macroscopic level have a knock-on effect on the levels below. 

Indeed, from Equation 5.5, the upper level multiplies the number of alternatives available 
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at the lower levels. Would the number of levels increase, each level would have more 

influence on the total number of alternatives (and total number of function calls) than the 

levels below it. Changing only the number of options removed from the macroscopic level, 

having more levels underneath is equivalent to having a bigger microscopic level (all lower 

levels are fixed). Hence when removing options from the upper level, increasing the 

number of levels at the lower levels would generate graphs similar to Figure 5.18 and 

Figure 5.19. 

Moreover, supposing that the macroscopic level might have less design variables 

per option as it is often observed in real-world problems, one could envisage having 

different k-factors for the microscopic level and the macroscopic level. In this case the 

same effects as observed on Figure 5.16, Figure 5.22, and possibly even Figure 5.15 would 

be obtained. 

5.1.5.2 Morphological tree 

The morphological tree structure is trickier to quantifiably characterize than 

morphological reduction as it consists in a representation paradigm. Qualitatively, an 

example implementation of morphological tree has been proposed and its use has 

demonstrated clear advantages in modularity. Indeed, the morphological tree has proven 

easily adaptable to new architectures thanks to the morphological interfaces. Moreover, it 

is quite flexible in its way to handle different levels and provides an insightful graphic 

representation of multi-level and multi-architectures design spaces.  

Thanks to the object-oriented implementation proposed on Figure 5.6, the complex 

process of morphological reduction at multiple levels is now reduced to traversing the 
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morphological tree and calling the reduction on each morphological matrix before finally 

computing the total number of alternatives. Finally, the tree can be used in different ways: 

 As a fixed simple bookkeeping tool storing the possible design choices in an 

organized and graphic fashion. 

 As a fully functional and dynamic design space definition tool used to lock design 

choices and propagate them through the tree. It can be used to incrementally 

perform morphological reduction, compute the total of remaining alternatives to 

study, as well as how many design variables were lost in the process. In particular, 

a possible use of the tree is to reduce a huge design space to a smaller one by 

generating a reduced number of architectures to study. 

 As an assistant to design optimization by dynamically ensuring that the optimizers 

consider only feasible designs during the design space exploration. 

5.2 Design optimization: the bi-level genetic algorithm 

This part details the implementation and validation of the global optimization 

algorithm conceptually designed in section 2.3.2.2 page 163. In particular, it also performs 

a complete characterization of the algorithm in order to answer research question 3.2 which 

is recalled here with the corresponding hypothesis. 

 

Research question 3.2 

How can swarm architectures be efficiently optimized 

in a multi-architecture multi-level design space? 
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Hypothesis 3.2 

IF an optimization method based on a bi-level genetic algorithm is used 

THEN a fast and efficient multi-architecture multi-level global 

optimization of group configurations is enabled 

 

The associated experiment aims at demonstrating that such an algorithm is able to 

efficiently optimize multi-robot systems in the context of conceptual physical design. 

5.2.1 Implementation 

A generic representation of the bi-level optimizer is given on Figure 5.28. As 

opposed to Figure 2.25, note that this schematic does not assume that the optimizer is based 

on a genetic algorithm. This allows for further research to plug in different optimization 

algorithms which are more adapted to other fields. However, it was established in section 

2.3.2 that genetic algorithms have desirable features for the scope of this research. Hence, 

an example implementation based on genetic algorithms is proposed here. 

 

 

Figure 5.28: High-level architecture of the proposed bi-level optimizer 

 

Outer loop 

Inner loop Elite 
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As a reminder, the outer loop decides on the swarm constitution, hence adapting 

the size of the design vectors required for the inner loop. The inner loop is then left to 

optimize remaining design variables, be it microscopic or macroscopic. The optimal 

microscopic architectures are kept in memory so as to be further used by future iterations. 

The main feature of this bi-level optimizer is that the outer loop dynamically adjusts the 

size of the design vectors used in the inner loop depending on the swarm constitution. 

Indeed, if a swarm of four vehicles is considered, the design vector of the inner loop 

chromosomes will have a different size than when a swarm of two is evaluated by the outer 

loop. This is illustrated on Figure 5.29 and formally represented on Figure 5.30. 

 

 

Figure 5.29: Dynamic size allocation for inner loop chromosomes 
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The following nomenclature is used: 

𝐴𝑖 Architecture 𝑖 

𝑁 
Quantity of a certain object (example: 𝑁𝐴1is 

the number of vehicles with architecture 𝐴1) 

𝑣 Variables 

𝑉 Vehicle 

𝑋 Design vector (chromosome) 

 

 

Figure 5.30: Dynamic size allocation formulae 

 

Remembering Figure 5.28, key features are required for the optimizer: 

 A memory of past optimal microscopic architectures must be initialized by the 

outer loop. 

Outer loop 

Inner loop 

𝑋𝑜𝑢𝑡 = [𝑁𝐴1 ,  𝑁𝐴2 , … ,  𝑁𝐴𝑁] 

𝑋𝑖𝑛 =

[
 
 
 
 
 
 

𝑋𝑚𝑎𝑐𝑟𝑜,

𝑉𝐴1
1 , 𝑉𝐴1

2 , … ,  𝑉𝐴1
𝑁𝐴1 ,

𝑉𝐴2
1 , 𝑉𝐴2

2 , … ,  𝑉𝐴2
𝑁𝐴2 ,

⋮,

𝑉𝐴𝑁
1 , 𝑉𝐴𝑁

2 , … ,  𝑉𝐴𝑁
𝑁𝐴𝑁

]
 
 
 
 
 
 

 

(𝟏, 𝑵) 

(𝟏,𝑵𝒗𝒎𝒂𝒄𝒓𝒐 +∑𝑵𝑨𝒊𝑵𝒗𝑨𝒊

𝑵

𝒊=𝟏

) 

൛𝑋𝑜𝑢𝑡
1 ,  𝑋𝑜𝑢𝑡

2 , … ,  𝑋𝑜𝑢𝑡
𝑁𝑜𝑢𝑡ൟ Population 

1 Chromosome 

Fix chromosome size 

Population ൛𝑋𝑖𝑛
1 ,  𝑋𝑖𝑛

2 , … ,  𝑋𝑖𝑛
𝑁𝑖𝑛ൟ 

𝑉𝐴𝑖

= [𝑣𝐴𝑖
1 , 𝑣𝐴𝑖

2 , … , 𝑣
𝐴𝑖

𝑁𝑣𝐴𝑖 ] 

“Vehicle i” 

Design vector architecture i 

(𝟏,𝑵𝒗𝑨𝒊
) 

𝑋𝑚𝑎𝑐𝑟𝑜 = [𝑣𝑚𝑎𝑐𝑟𝑜
1 , 𝑣𝑚𝑎𝑐𝑟𝑜

2 , … , 𝑣𝑚𝑎𝑐𝑟𝑜
𝑁𝑣𝑚𝑎𝑐𝑟𝑜] 

Remainder of macroscopic variables 

(𝟏,𝑵𝒗𝒎𝒂𝒄𝒓𝒐) 

1 Chromosome 



349 

 

 This memory must be accessible and modifiable by both inner and outer loops. 

 This memory must be filled with the best chromosomes (design vectors) for 

each architecture and hence must take into account the dynamically evolving 

size of the inner loop chromosomes. 

 At each of its generations, the outer loop should have the possibility to alter the 

properties (initial population) of the instantiated inner loop algorithm (Figure 

5.29). 

 For a given generation of the outer loop, the chromosomes of the outer loop (i.e. 

the instantiated inner loops) should all be using the same initial population. This 

means that the initial population of the inner loops changes only after each 

generation of the outer loop.  

 

Note that it is chosen that the retention of the optimal microscopic architectures is 

only used at each generation of the outer loop, and not for every instantiation of the inner 

loop. This design choice is particularly important as it ensures that the optimal microscopic 

designs have the time to be “averaged” over several group configurations before being 

ranked and used for subsequent optimizations. If this was not the case and the initial 

population of the inner loop chromosomes were to be updated at every instantiation of an 

inner loop, then the first chromosomes (inner loops) of the outer loop would be strongly 

biased by the constitution of the groups which were first evaluated. An explanatory 

example is provided on Figure 5.31. 
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Figure 5.31: Population initialization at every instantiation 

 

As it can be seen in this first case, if the initial population of the inner loops is 

updated for every instantiation of an inner loop in the outer loop population, the first 

chromosomes of the outer loop will be biased. Indeed, chromosome 1 exhibits a swarm 

composition {1𝐵, 3𝑃, 4𝑄} (1 blimp, 3 planes, 4 quadcopters) and saves the optimal 

configurations in memory. When chromosome 2 is instantiated, its population is initialized 

with the optimal microscopic configurations from the memory. However, this memory 

contains only the optimal configurations for a swarm {1𝐵, 3𝑃, 4𝑄}, which might bias the 
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results of the optimization. As more and more chromosomes of the outer loop population 

are evaluated, the rankings of the optimal configurations are updated in memory and a trend 

emerges for the best configurations. Hence, an implementation similar to Figure 5.32 is 

preferred, where the optimal configurations have the time to be averaged over one complete 

generation of the outer loop before being used by the inner loops of the next generation. 

 

 

Figure 5.32: Population initialization at every generation 
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An implementation in Matlab is chosen for its quasi non-existent learning curve, its 

flexibility, and for the fact that powerful numerical, plotting, and debugging libraries are 

included by default in the software. In particular, the global optimization toolbox comprises 

a validated genetic algorithm that presents many customizable options as opposed to other 

possible custom or existing C++ and Java libraries which would have to be modified and 

validated. In addition, this genetic algorithm is able to deal with linear and nonlinear 

constraints. 

In particular, the genetic algorithm from Matlab presents the following capabilities: 

 Setting the initial population matrix, this one can be partial only. 

 Setting the initial scores corresponding to the initial population. This enables to 

speed up the initialization of the algorithm. 

 Using an output function which can be called at the end of every generation, 

but also at the initialization and final step of the algorithm. This can be used to 

save the best microscopic configurations at the end of every inner loop 

optimization. 

 Parallelization of the execution by exploiting the different cores of the 

processor. This is useful to speed up the optimization process. 

 

Based on the available options, it is possible to implement the elitism scheme using 

a temporary memory buffer. This buffer will accumulate and update optimal microscopic 

configurations after each optimization of an inner loop. Then, after a generation of the outer 

loop is complete, the buffer will be discharged into an “elite memory”. This elite memory 

remains unchanged during a generation of the outer loop. As a consequence, during one 
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generation of the outer loop, all inner loops can be instantiated from this elite memory as 

they would all use the same elite as their initial population (Figure 5.33). 

 

 

Figure 5.33: Elite retention with elite memory 

 

Note that if only a memory buffer is used, then the is no guarantee that the inner 

loops are initialized with the same elite during one generation of the outer loop (see Figure 

5.34). 
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Figure 5.34: Elite retention with buffer only 

 

Constraints: in addition to the constraints placed by the designer on the swarm optimizer 

(swarm cost, time of the mission, etc.) a few constraints have to be imposed on the 

optimizer. The first concern is to speed up the algorithm by detailing the domain it is 

working in. Hence, the designer has to input a maximum number of vehicles which is used 

for both inequality and upper bound constraints (see Equation 5.6). On top of that, one 

constraint also insures that there is at least one vehicle in the swarm. 

 

Equation 5.6: Overall numerality constraints 

1 ≤ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

≤ 𝑁max 

 

Finally, additional constraints ensure that the number of vehicles for each 

architecture remains within relaxed bounds and that it is an integer number. Indeed, since 
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the total number of vehicles in the swarm cannot exceed 𝑁max, each architecture must also 

respect this inequality (Equation 5.7). 

 

Equation 5.7: Individual numerality constraints 

 {
0 ≤ 𝑋𝑖

𝑜𝑢𝑡 ≤ 𝑁max
𝑋𝑖
𝑜𝑢𝑡 ∈ ℕ

, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧ 

 

Hence, the optimization problem of the outer loop can be formally written as: 

 

Equation 5.8: Outer loop optimization problem 

min
𝑋𝑜𝑢𝑡

𝑖𝑛(𝑋𝑜𝑢𝑡) 

subject to 

{
 
 

 
 

1 ≤ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

≤ 𝑁max

0 ≤ 𝑋𝑖
𝑜𝑢𝑡 ≤ 𝑁max, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

𝑋𝑖
𝑜𝑢𝑡 ∈ ℕ, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

 

 

Where 𝑖𝑛 is the inner loop, a complete other optimization algorithm of its own. This 

inner loop optimization problem can be written as: 

 

Equation 5.9: Inner loop optimization problem 

min
𝑋𝑖𝑛

𝑓(𝑋𝑖𝑛) 

subject to 



356 

 

{
𝑐(𝑋𝑖𝑛) ≤ 0

𝑙𝑏 ≤ 𝑋
𝑖𝑛 ≤ 𝑢𝑏

 

 

Where 𝑓 and 𝑐 are respectively a fitness and cost function for the given swarm. In 

particular, one can refer to section 3.1.3 page 195 to build these functions. 

 

Special case of full heterogeneity: this research makes a distinction between what is 

referred to as “full heterogeneity” and “partial heterogeneity”. For the scope of this 

research, partial heterogeneity is defined as the case where all vehicles of a given 

architecture have the same configuration. Besides, with full heterogeneity, each vehicle 

may have its own configuration. As an example, a swarm of quadcopters will be partially 

heterogeneous if the quadcopters of the group are all the same. This swarm will be fully 

heterogeneous is each quadcopter is different (see Figure 5.35). 

 

 

Figure 5.35: Full vs. partial heterogeneity 
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 In the previous figure, the first swarm has vehicles of a given architecture with the 

same configurations, whereas the second swarm has different vehicles for each 

architecture. 

 Observing this particularity, the optimization can be greatly sped up when the 

designer wants to consider only partial heterogeneity. Indeed, the size of the inner loop 

design vector can be fixed in that case, hence also removing the need for an outer loop. An 

option is included in the algorithm to enforce full or partial heterogeneity and to reduce the 

size of the inner loop design vector when required. One may note however that the outer 

loop cannot be completely removed since special cases might require to further adapt the 

size of the inner loop design vector. This is the case when an architecture does not have 

any representative vehicle in the swarm. 

 

Special case of 0: an additional situation where the optimization can be sped up is when 

the outer loop optimizer proposes a swarm with zero vehicles of a given architecture. In 

this case, the size of the inner loop design vector can be reduced be deleting all the design 

variables of the corresponding architecture. This is already taken into account in the case 

of full heterogeneity (see formulae in Figure 5.30) but has to be implemented in the case 

of partial heterogeneity when the number of variables is fixed. By doing so, the genetic 

algorithm of the inner loop will act only on a limited number of design variables, hence 

accelerating the optimization process. 
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Note that in the case where the size of the inner loop vector is dynamically arranged 

to accommodate for either true heterogeneity or architectures with no representative 

vehicle, the algorithm also has to adapt the constraint vectors as well. 

 

Outer loop speedup: the aforementioned reduction in size of the inner loop design vectors 

has a direct impact on the rapidity of the inner loop, and hence indirectly helps in speeding 

up the convergence of the outer loop. Nonetheless, it is possible to directly improve the 

performance of the outer loop in specific cases. This approach considers the total number 

of function calls required by the genetic algorithm and observes that in some cases, using 

a full factorial approach for the outer loop is way more beneficial. Indeed, the population 

of the genetic algorithm might comprise many more individuals (and hence function calls) 

than if each possible swarm configuration was evaluated. We consider here the example of 

an outer loop with a population of 50 individuals, if the outer loop converges in 50 

generations for instance, the total convergence of the algorithm requires 2500 function 

calls. However, if the swarm to be configured has only 3 architectures, and 10 agents at 

maximum in the group, the optimization problem given in Equation 5.8 yields 113 = 1331 

possible cases for the full factorial approach. Indeed, each element of 𝑋𝑜𝑢𝑡 can take values 

between 0 and 10. By removing the cases with more than 10 total agents in the group, the 

full factorial approach is reduced to 286 cases or evaluations of the inner loop: a number 

lower than the case of the genetic algorithm by two orders of magnitude. 
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It is then possible to study this trend for an evolving number of architectures and 

for the specific data mentioned hereinabove and 12 agents at maximum in the group, the 

trends shown in Figure 5.36 are obtained. 

 

 

Figure 5.36: Genetic algorithm vs. full factorial 

 

In that particular case, it can be seen that a full factorial approach would perform 

much faster in finding the optimum of the outer loop for swarms comprising less than 5 

architectures. It can be noticed that the number of function calls for the genetic algorithm 

does not vary much with the number of architectures considered. Indeed, the stopping 

criteria of the genetic algorithm is based on the number of stalled generations: the number 

of generation for which the best individual does not change. Hence if this criterion is fixed 
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at 50 generations, the algorithm will generally take a few generations to find the best 

individual and then will stall. There is no surprise then that, in this case, the total number 

of generations would be always slightly above 50 (with a corresponding number of function 

calls). These remarks are leveraged in the implementation of the algorithm since the choice 

is given to the designer to opt for a full factorial or a genetic algorithm optimizer for the 

outer loop. In order to make this choice, the designer should compute the total number of 

alternatives generated by a full factorial approach based on the maximum number of 

vehicles in the swarm, and then delete the rows of the full factorial matrix which do not 

respect this constraint. However, due to the important memory required to compute full 

factorial design matrices for more than 10 factors (and 10 levels for instance), this 

computation might not be always possible. Consequently, a crude approach can be used 

where the design does not eliminate the rows for which the sum does not satisfy the 

constraint imposing the maximum number of robots in the swarm. The designer does not 

have to generate the matrix anymore and can simply compute the number of alternatives 

using the 𝑁max
𝑁𝑎𝑟𝑐ℎ formula. Using this simplified formula (Figure 5.37), he can decide 

whether the genetic algorithm or the full factorial approach will be faster by assuming or 

enforcing a maximum number of generations for the outer loop. 
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Figure 5.37: Simplified expression for full factorial approach 

 

Using this simplified approach, the design finds that it is more valuable in terms of 

computation time to use the full factorial approach for swarms under 4 architectures, 

compared with 5 obtained with the exact computation. Note this time the linear evolution 

in logarithmic space of the full factorial approach (𝑁max
𝑁𝑎𝑟𝑐ℎ). 
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Figure 5.38: Choosing between full factorial or genetic algorithm 

 

By varying the maximum number of agents in the swarm and using the simplified 

expression discussed earlier, it is possible to obtain the map displayed in Figure 5.38. The 

function calls for the genetic algorithm have been averaged over 10 replications. 

Depending on the number of architectures considered (up to 10), and the maximum number 

of agents in the swarm, the designer is able to see which approach from the full factorial 

or the genetic algorithm is more efficient for the outer loop. In particular, several 

observations can be made: 
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 If only one architecture is to be considered, the full factorial approach is always 

more profitable in terms of computation time. 

 Most of the variation is observed for 𝑁max values below 7. After that, it takes 

considerable changes in 𝑁max to observe an evolution in the intersection with the 

curve of the genetic algorithm. 

 

Algorithm input: the inputs and main parameters of the bi-level swarm optimizer are 

detailed here below: 

 Number of architectures 

 Number of variables for each architecture 

 Maximum number of agents for the swarm 

 Outer loop solver: genetic algorithm or full factorial (see previous remarks) 

 Type of heterogeneity: full or partial 

 Population sizes for both outer and inner loop 

 Use of elite retention and associated elite fraction 

 Inner loop fitness function 

 Inner loop constraint function 

 Additional options: mostly options embedded in the Matlab genetic algorithm 

o Possible plot and output functions for each iteration of the algorithm or once 

the algorithm has finished. For instance, these can be functions that save 

iteration information into a file for later use. 

o Stopping criteria: based on the number of stalled generations 

o Use of parallelization or not 
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o Function and constraint tolerances 

 

Example use of the algorithm and example values for these parameters are given in 

the code appendix (see Appendix B.2 page 493). 

5.2.2 Verification and validation 

Before using the bi-level genetic algorithm, it has to be verified and validated using 

test functions with a known behavior. This step will ensure that the method is implemented 

as per the requirements and that it works properly when it is used for the optimization of 

groups of robots. 

5.2.2.1 Test function 

The optimization scheme has to be tested against a function which response and 

behavior is known. This will enable the verification of the algorithm to see if it is able to 

predict the correct optimum. Nonetheless, no test function seems to exist for the 

optimization of dynamic design spaces. Hence, an analytical test function is proposed here 

to simulate the performance of a group of robots depending on its possible variables. 

 

Before starting to build the test function, a few observations are required: 

 A swarm is composed of architectures 

 Each architecture in the swarm is represented by one or several vehicles 

 Each vehicle is composed of design variables 

 Each of these vehicles can be unique and have its own design variables 
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It is essential for the test function to provide different optima for different group 

configurations so that each case can be verified independently and with certainty. 

Consequently, the test function has to take into account all the different variables and 

factors mentioned hereinabove. The optimum (value and location) of the test function 

should then depend on: 

 The number of architectures considered 

 The number of vehicles in the group for each architecture 

 The number of design variables per vehicle 

 Optional: The number of extra macroscopic design variables 

 

Outer loop: the outer loop has to optimize the number of vehicles for each architecture. 

An easy test function for the outer loop is then to have an optimum that corresponds to the 

index of each architecture. Hence, if three architectures are considered with respective 

indices 1, 2, and 3; the optimum will be to have 1 vehicle of architecture 1, 2 vehicles of 

architecture 2 and 3 vehicles of architecture 3. This is achievable with the following 

example test function: 

 

Equation 5.10: Outer loop test function 

𝑓𝑜𝑢𝑡(𝑥) = − ∑
1

1 + (𝑥𝑖 − 𝑖)2

𝑁𝑎𝑟𝑐ℎ

𝑖=1

 

 

With 𝑁𝑎𝑟𝑐ℎ the number of architectures and 𝑥 the outer loop design vector 

representing the composition of the swarm. For instance, 𝑥 = [2 1 3] represents a group 
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with 2 vehicles of architecture 𝐴1, 1 vehicle of architecture 𝐴2, and 3 vehicles of  

architecture 𝐴3. Each architecture 𝑖 is given an offset of 
−1

1+(𝑥𝑖−𝑖)
2 which is minimal when 

𝑥𝑖 = 𝑖. Hence the function 𝑓𝑜𝑢𝑡 will be minimized when the design vector corresponds 

exactly to the indices of the architectures (see Table 5.13 and Figure 5.39). This ensures 

that the optimum is unique when given a certain number of architectures and this can be 

used to verify the implementation of the outer loop. 

 

Table 5.13: Outer loop test function values 

𝑿𝒐𝒖𝒕 

 Offset 1 

−𝟏

𝟏 + (𝒙𝟏 − 𝟏)𝟐
 

 Offset 2 

−𝟏

𝟏 + (𝒙𝟐 − 𝟐)𝟐
 

 Offset 3 

−𝟏

𝟏 + (𝒙𝟑 − 𝟑)𝟐
 

 

Total 

𝒇𝒐𝒖𝒕(𝑿𝒐𝒖𝒕) 

[𝟏, 𝟏, 𝟏]  -1.0  -0.5  -0.2  -1.7 

[𝟏, 𝟐, 𝟏]  -1.0  -1.0  -0.2  -2.2 

[𝟑, 𝟏, 𝟑]  -0.2  -0.5  -1.0  -1.7 

[𝟏, 𝟐, 𝟑]  -1.0  -1.0  -1.0  -3.0 

[𝟐, 𝟏, 𝟑]  -0.5  -0.5  -1.0  -2.0 

[𝟑, 𝟐, 𝟏]  -0.2  -1.0  -0.2  -1.4 

 

 

Figure 5.39: Outer loop test function offsets 
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For a swarm composed of only two architectures, this can also be represented 

graphically by plotting the value of the offset 𝑓𝑜𝑢𝑡(𝑋𝑜𝑢𝑡) for different values of 𝑁1 and 𝑁2, 

respectively number of vehicles for architecture 1 and 2. The offset is minimized when 

𝑁1 = 1 and 𝑁2 = 2 (see Figure 5.39) and the dashed lines represent the continuous 

versions of the different offsets. 

 

Inner loop: the inner loop has to take into account additional parameters in order to make 

the value of the optimum unique. Indeed, for a given variable of the inner loop design 

vector, its optimal value should depend on the architecture it belongs to, the vehicle it 

belongs to, and the number of variables in the vehicle. Moreover, for the location of the 

optimum to be unique for each swarm configuration, the optimum value of this design 

variable should also depend on the number of agents in the swarm. This will also insure 

that the microscopic and macroscopic variables are intertwined in the analysis just as they 

would be in the performance of a robotic swarm. One easy implementation is to have each 

one of this factors represented by one decimal of the optimal design variable (Equation 

5.12) and use a parabola centered around this design variable (Equation 5.11). Using a 

simple parabola around the optimum of each design variable makes it easy to have a unique 

optimal value for each variable. In addition, the complexity is limited since the cost 

function to be minimized is polynomial of second order. 

 

Equation 5.11: Inner loop test function 

𝑓𝑖𝑛(𝑥) = ∑ (𝑥𝑖 − 𝑥𝑖
∗)2

𝑁𝑣𝑎𝑟𝑠

𝑖=1
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With 𝑁𝑣𝑎𝑟𝑠 the number of variables in the design vector 𝑥, 𝑥𝑖 the i-th component 

of 𝑥, and 𝑥𝑖
∗ the optimal value for a given design variable 𝑥𝑖. The expression for 𝑥𝑖

∗ is: 

 

Equation 5.12: Optimal value for design variable i 

𝑥𝑖
∗ = 𝐴𝑖 +

𝑁𝐴𝑖
10
+
𝑉𝑖
100

+
𝑖

1000
 

 

With 𝐴𝑖 the index of the architecture corresponding to design variable 𝑖, 𝑉𝑖 the index 

of the corresponding vehicle, and 𝑁𝐴𝑖 the total number of vehicles with architecture 𝑖 

constituting the swarm. Before giving an example, the nomenclature for the design 

variables has to be presented with the ordering used in the design vectors. Hence the 

nomenclature for the design variables is defined as follow: 

 

 

Figure 5.40: Design variables nomenclature 

 

From Figure 5.40, that design variable is associated to the second vehicle in the 

swarm with architecture 1 and it is the third design variable of this vehicle. Moreover, the 

following ordering is used in the design vectors of the inner loop: 

𝑥3
2

    
1

 

Architecture Vehicle 

Variable 
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Figure 5.41: Variables ordering in the inner loop design vectors 

 

It can be seen that, as established in Figure 5.29 and Figure 5.30, the size of the 

inner loop design vector is fixed by the outer loop design vector. Knowing that we have 2 

macroscopic variables, 3 variables for the first architecture and 2 for the second one, the 

total number of variables for the inner loop chromosome can be computed. In the light of 

this new nomenclature, the optimal value for a given design variable  

𝑥𝑘
𝑗

 
𝑖  can be re-written as shown in Equation 5.13: 

 

Equation 5.13: Optimal value for the test function variables 

𝑥∗𝑘
𝑗

 
𝑖 = 𝑖 +

𝑁𝑡𝑜𝑡
10

+
𝑗

100
+

𝑘

1000
 

 

This function assumes, for verification purposes, that 𝑁𝑡𝑜𝑡 < 10, 𝑗 < 100, and 𝑘 < 1000. 

 

𝑋𝑖𝑛 = [𝑥1
𝑚𝑎𝑐𝑟𝑜 , 𝑥2

𝑚𝑎𝑐𝑟𝑜 , 𝑥1
1

 
1 , 𝑥2

1
 
1 , 𝑥3

1
 
1 , 𝑥1

2
 
1 , 𝑥2

2
 
1 , 𝑥3

2
 
1 , 𝑥1

1
 
2 , 𝑥2

1
 
2 ] 

𝑋𝑜𝑢𝑡 = [2,1] 

Architecture 1 

Vehicle 1 

Architecture 1 

Vehicle 2 

Architecture 2 

Vehicle 1 
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Figure 5.42: Inner loop test function visualization 

 

Figure 5.42 shows the inner loop plot function for a given swarm composition 

corresponding to 𝑋𝑜𝑢𝑡 = [3,2]. For display purposes, each architecture has only one design 

variable and heterogeneity is partial so that all vehicles from a given architecture have the 

same configuration. Hence, all vehicles of architecture 1 can be represented by design 

variables 𝑥1 and the same goes for architecture 2 and 𝑥2. Based on these assumptions and 

the formula for 𝑥∗𝑘
𝑗

 
𝑖 , the inner loop test function will be minimized for 𝑥1 = 1.311 

(architecture 1, 3 total vehicles, vehicle 1, design variable 1) and 𝑥2 = 2.211 (architecture 

2, 2 total vehicles, vehicle 1, design variable 1). The evolution of the function is parabolic 
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around this optimum as it can be observed on Figure 5.43 by taking a section of the contour 

plot. 

 

 

Figure 5.43: Inner loop test function sectional cut 

 

Complete algorithm: to verify the behavior of both loops working together, it is possible 

to simply combine the test functions for the outer loop and the inner loop. Indeed, by adding 

the outer loop function to the inner loop one, we obtain a function where the inner loop 

variables and outer loop variables are separated. The inner loop optimizer will first try to 

reach the optimal value of the 𝑓𝑖𝑛 part, while the outer loop will act on 𝑓𝑜𝑢𝑡 to minimize 

the overall function. Note that a small part of 𝑓𝑖𝑛 still accounts for the total number of 
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agents in the swarm, which is a macroscopic or outer loop variable. This part was included 

in 𝑓𝑖𝑛 to guarantee the unicity of the optimum when verifying the inner loop and does not 

interfere when put together with 𝑓𝑜𝑢𝑡. 

 

Equation 5.14: Test function for the complete algorithm 

𝑓(𝑋 = [𝑥𝑖𝑛, 𝑥𝑜𝑢𝑡]) = 𝑓𝑖𝑛(𝑥𝑖𝑛) + 𝑓𝑜𝑢𝑡(𝑥𝑜𝑢𝑡) 

= ( ∑ (𝑥𝑖𝑛(𝑖) − 𝑥𝑖
∗)2

𝑁𝑣𝑎𝑟𝑠(𝑥𝑖𝑛)

𝑖=1

) − ( ∑
1

1 + (𝑥𝑜𝑢𝑡(𝑖) − 𝑖)2

𝑁𝑎𝑟𝑐ℎ

𝑖=1

) 

 

Note that additional cross terms can possibly be added to this validation function to 

reinforce the correlations between microscopic and macroscopic variables and further step 

away from possible sequential optimization caveats. However, this would make it slightly 

more difficult to analytically predict the optimal value and location. A complete derivation 

of the global optimum of this verification function is provided in Appendix A.1 page 416. 

5.2.2.2 Algorithm verification 

Using the different test functions defined in the previous subsection, the 

implementation of the bi-level genetic algorithm can be verified using a unit test 

framework. A complete test suite is coded by calling the optimizer on given configurations 

and comparing the obtained optimal values with the ones expected thanks to the analytical 

approach. 

 

Outer loop: the outer loop can be tested by using 𝑓𝑜𝑢𝑡 as the fitness function. The test 

generates a random number of architectures and lets the outer loop derive an optimal swarm 
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composition. The optimum obtained from this test is then compared with the theoretical 

value given by the test function. For instance, if the test chooses to use 7 architectures, then 

the expected optimal configuration is 𝑋𝑜𝑢𝑡
∗ = [1,2,3,4,5,6,7]. Both solvers are tested: the 

genetic algorithm approach as well as the full factorial method. In addition, two tests are 

designed: one for partial heterogeneity and one for full heterogeneity. The tests were 

repeated one thousand times each and all tests passed. 

 

Inner loop: the unit test for the inner loop uses the complete function 𝑓 for the validation 

of the inner loop. A random number of architectures is generated and based on that, a 

random design vector 𝑋𝑜𝑢𝑡 is created as well as a random number of design variables for 

each one of the architectures. This is enough information to determine the expected optimal 

values for each one of the design variables and compare them to what is obtained by 

running the inner loop optimizer. Both full and partial heterogeneity are tested and the inner 

loop is validated after a thousand successful runs of each one of the tests. 

 

Complete algorithm: to perform a unit test for the overall algorithm, the outer loop now 

uses the inner loop as its fitness function so that both loops are now interconnected. The 

fitness function of the inner loop is the same validation function 𝑓 used for the verification 

of the inner loop. The setup for this unit test is quite similar to the verification of the outer 

loop: a random number of architectures is generated as well as random numbers of 

variables for each of these architectures. The swarm configuration is optimized to obtain 

optimal vectors 𝑥𝑖𝑛
∗  and 𝑥𝑜𝑢𝑡

∗  which are compared to the theoretical values described in the 

previous section. This verification also tests for the different parameters of the whole 
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optimizer: the type of outer loop solver (genetic algorithm of full factorial), the type of 

heterogeneity (full or partial), and the elitism fraction. Each one of these tests passes, thus 

validating the behavior of the complete bi-level optimization algorithm. 

 

Actively constrained optimization: note that so far, the algorithm has been tested with 

non-binding constraints. Indeed, at convergence, the optimal values of 𝑋𝑜𝑢𝑡 and 𝑋𝑖𝑛 are 

within the ranges defined in section 5.2.1. However, it is highly probable that in real-world 

applications, the optimization will be subject to contradictory cost and performance 

constraints which will most likely be active at the optimum. In order to prove the versatility 

of the bi-level optimizer with active constraints, an additional test can be carried out. This 

test involves introducing constraints on the design variables of the verification function. In 

order to continue the verification of the algorithm, these constraints should be designed so 

that they are active at the optimum, and that the constrained optimum is still relatively easy 

to derive analytically depending on the parameters of the problem. This will ensure that 

the values obtained by theory on one hand, and by the algorithm on the other hand, will be 

comparable and identical. 

 A possible solution is to offset the optimal values 𝑋∗𝑖
𝑜𝑢𝑡

 and 𝑋∗𝑖
𝑖𝑛

, which are known 

values, by a constant number. The new constrained optimal values are noted as 𝑋𝑐𝑖
𝑜𝑢𝑡

 and 

𝑋𝑐𝑖
𝑖𝑛

. This new optimum is then compared with the output of the bi-level optimizer for the 

new optimization problem presented in Equation 5.15 and Equation 5.16. 
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Equation 5.15: Constrained outer loop optimization problem 

min
𝑋𝑜𝑢𝑡

𝑖𝑛(𝑋𝑜𝑢𝑡) 

subject to 

{
  
 

  
 
𝑋𝑖
𝑜𝑢𝑡 ≥ 𝑋∗𝑖

𝑜𝑢𝑡 + 1, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

1 ≤ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

≤ 𝑁max

0 ≤ 𝑋𝑖
𝑜𝑢𝑡 ≤ 𝑁max, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

𝑋𝑖
𝑜𝑢𝑡 ∈ ℕ, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

 

 

Equation 5.16: Constrained inner loop optimization problem 

min
𝑋𝑖𝑛

𝑓(𝑋𝑖𝑛) 

subject to 

{
𝑋𝑖
𝑖𝑛 ≥ 𝑋∗𝑖

𝑖𝑛 + 1, ∀i ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧

𝑙𝑏 ≤ 𝑋𝑖𝑛 ≤ 𝑢𝑏
 

 

With 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛) the number of variables for the inner loop design vector. In this 

particular example, a unit offset of one is chosen and the constrained optimum is simply 

𝑋𝑐𝑖
𝑜𝑢𝑡 = 𝑋∗𝑖

𝑜𝑢𝑡 + 1. A complete proof if given in Appendix A.1.2 (see page 422). 

In the same fashion as the previous unit tests, this one generates a random number 

of architectures, a random number of variables for each of these architectures, and a random 

offset from the unconstrained optimum. This unit test also passes, hence finishing the 

complete verification of the optimization algorithm, including with active constraints. One 

can note that this particular test could have possibly been skipped given that the genetic 

algorithm from Matlab is validated for constrained optimization, and that the 
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“unconstrained” (in reality constrained with non-binding constraints) bi-level optimizer 

has been validated previously. 

5.2.3 Characterization 

With the algorithm verified and guaranteed to work according to the requirements 

of section 2.3.2, it is possible to characterize its behavior with respect to its different 

parameters. In particular, it is interesting to see how the performance of the bi-level 

optimizer is affected when varying the elitism properties and the type of heterogeneity. 

While many other settings for the genetic algorithms can be varied, these parameters 

represent the main options introduced by the proposed algorithm. The following 

characterization is performed on the unconstrained test function with swarms composed of 

three architectures at most. The first architecture has two design variables, the second 

architecture has three, and the third architecture has only one. Given that the test function 

is used, the optimal swarm composition is known as 𝑋𝑜𝑢𝑡 = [1,2,3] and the maximum 

number of agents can be fixed at six to facilitate the convergence process. 

 

Effect of elitism: specific feature of the bi-level optimizer, the elite retention scheme can 

be activated to see which improvements are possible with elitism. To characterize this 

effect, the algorithm is run twice on the canonical mission: once without elite retention, 

and once with elitism activated for 50 percent of the inner loop populations. The recorded 

data consists of the generations required to attain convergence in the inner loop 

chromosomes, for each generation of the outer loop. Indeed, the elite retention scheme was 

designed to accelerate the convergence of the inner loops as the overall algorithm 

progresses towards convergence. For a given generation of the outer loop, the number of 
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generations at convergence of each of its inner loop chromosomes is stored in a vector. 

These results are then averaged, and finally replicated. Indeed, given that the algorithm is 

stochastic, one thousand replications are used to estimate its variability and obtain robust 

results mitigating the effects of randomness. Figure 5.44 shows the average of both 

experiments over the thousand replications and also provides a confidence interval of 95 

percent computed from the percentiles of the data. The stopping criteria of the genetic 

algorithms is fixed at 20 stall generations. 

 

 

Figure 5.44: Effect of elitism 
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From Figure 5.44, the number of inner loop generations without elitism remains 

pretty much constant at around 115 generations on average for the chromosomes of the 

outer loop. Note that this number seems to slightly decrease between generations one and 

six, before increasing and settling again at 115. A possible explanation is that in the first 

generations of the outer loop, the genetic algorithm is still exploring the design space a lot 

and is trying out swarm configurations that converge a bit more easily. This can also be 

explained by the fact that variability of the results is more important in the first 10 

generations of the outer loop by looking at the confidence interval. 

By activating elite retention for half of the population of the inner loops, the number 

of generations required for their convergence reduces drastically from the first generations 

of the outer loop. Indeed, the number of required inner generations decreases by 30 percent 

of its value from the second to the third generation and then goes on to settle at around 35 

generations when the outer loop converges. This represents a speedup of around 70 percent 

for the algorithm. After a couple generations from the outer loop, enough swarm 

configurations have been considered so that the optimal microscopic configurations of the 

memory buffer are actually meaningful and untied to specific outer loop configurations. 

Giving efficient microscopic configurations as starting points for some of the chromosomes 

of the inner loops accelerates the convergence tremendously for these latter. Then, as the 

outer loop progresses and starts focusing on efficient swarm compositions, the memory 

buffer is refined little by little around optimal microscopic configurations which are 

particularly adapted to the already converging group composition. This helps in continuing 

to reduce progressively the number of required generations for the inner loops until this 

number comes very close to the convergence criterion of 20 stall generations. 
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With the stopping criterion of the algorithms fixed at 20 stall generations, it is 

expected that the outer loop converges at values a bit above 20 generations. Few instances 

have the outer loop converge in more than 25 or 30 generations, which explains why the 

variability of the response increases after 25 generations. Indeed, there are less replications 

to average the results over. Moreover, it can be seen that with elitism, the lower bound of 

the confidence interval is at 22 generations for the inner loops (see the lower portion of the 

95 percent confidence interval). 

Although the average number of inner loop generations are clearly separated by 

around 80 generations with and without elitism, the confidence intervals exhibit some 

overlap. In particular, the lower portion of the 95 percent confidence interval without 

elitism is under the higher portion of the interval with 50 percent of elitism. This indicates 

that while elitism promises a faster convergence on average, some exceptional cases with 

elitism might still take equal or superior time to converge than without elitism. 

To further quantify the effects of elitism on the behavior of the swarm optimizer, 

the elite rate is varied in the next experiment. 

 

Effect of elitism fraction: the elitism fraction 𝜅 represents the proportion of the initial 

population of the inner loops which is drawn from the elite memory at each generation of 

the outer loop. In order to properly capture the effect of a varying elitism rate on the 

behavior of the algorithm, and especially the outer loop, the convergence criterion is 

changed from a stalling approach to a precision approach with respect to the expected 

optimum. If the criterion was left at a given number of stall generations (for instance 20 as 

for the past experiment), the minimum number of generations required for the outer loop 
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to converge would be 21 including the initialization. As a consequence, it would not be 

possible to detect settings incurring a convergence in less than 20 generations. Instead, the 

genetic algorithms are set to stop once the best fitness of their population is within 1 percent 

of the theoretical optimum. For this purpose, the verification function described in section 

5.2.2.1 is used. Again, the experiment is replicated a thousand times for each elitism rate 

in order to obtain robust results, shown on Figure 5.45. 

 

 

Figure 5.45: Effect of elitism rate 

 

A first observation from Figure 5.45 is that as expected, as long as some elitism 

rate is applied to the algorithm, this latter requires a lot less iterations for its inner loops to 
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converge. Indeed, using the new criteria, the number of generations required in the outer 

loop chromosomes is around 35 without elitism, and 3 with elitism. This represents 

approximately a 90 percent decrease in the required number of iterations, compared to 70 

percent with the other convergence criteria. This is due to the fact that the inner loops do 

not have to wait for at least 20 stall generations to converge, hence enabling a much lower 

number of generations for convergence. When there is no elitism, as for the previous 

experiment, the number of required inner loop generations first decreases during the 

exploration phase before increasing again and settling around a final value. Moreover, the 

maximum number of generations of the outer loop is 303 for the precision-based 

convergence criteria while it was 33 for the stall-based one. Indeed, the one percent 

precision required to converge is much more constraining than a number of stalling 

generations. 

Regarding the number of generations required for the convergence of the outer 

loop, the higher the elitism rate, the lesser the number of required generations (see Table 

5.14 and Figure 5.46). This corresponds to the requirements of the elite retention scheme: 

accelerating the convergence of the overall algorithm. Even with low elitism rates, a 

speedup of at least 50 percent is observed for the convergence of the outer loop and the 

speedup even reaches 85 percent with 100 percent of elitism. 
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Table 5.14: Improved convergence with elitism 

𝜿 

Maximum number 

of outer loop 

generations observed 

𝟎 303 

𝟎. 𝟐𝟓 133 

𝟎. 𝟓𝟎 137 

𝟎. 𝟕𝟓 92 

𝟏. 𝟎𝟎 43 

 

 

Figure 5.46: Effects of elitism on the outer loop 

 

For each of these measurements, the variability also increases for high numbers of 

required generations. For instance considering the yellow and red curves, the algorithm 

converges very often within 75 generations, hence providing a lot of data to average the 

results from the replications. However, some rare cases converge in more than 75 

generations up to around 135 and since these are not averaged with other measurements, 

their variability is higher. This explains why the end of every colored curve experiences 

more noise, especially the confidence intervals. Observing the confidence intervals, one 

sees that the lower portion of the curve without elitism does overlap with the one for the 
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slowest cases with elitism: on average elitism guarantees a lower number of generations 

but some rare cases can be slower than without elitism. In addition, one can notice that the 

minimum number of generations required with elitism is only one: the algorithm converges 

immediately and is able to give an optimum within one percent of the true optimum in only 

one generation. Finally, by looking at Figure 5.45, it appears that the elitism rate does not 

have an effect on the number of generations required for the convergence of the inner loops. 

However by looking into more detail, Figure 5.47 is obtained. 

 

  

(a) (b) 

Figure 5.47: Detail on effect of elitism 

 

It shows in particular that the main difference in the response between the elitism 

rates occurs at the third generation, when there is a sudden drop in the number of 

generations required for the inner loops. The different values are reported in Table 5.15 

and showed on Figure 5.48. 
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Table 5.15: Main effect of elitism rate 

𝜿 

Number of inner 

generations at 3rd outer 

generation 

𝟎 37 

𝟎. 𝟐𝟓 16 

𝟎. 𝟓𝟎 15 

𝟎. 𝟕𝟓 14 

𝟏. 𝟎𝟎 13 

 

 

Figure 5.48: Initial effects of elitism 

 

After the drop at the third generation, all curves remain pretty close to each other 

and do not differ by more than one generation. This confirms the previous observations: 

the number of iterations required for the convergence of the inner loops converges to a 

unique value, no matter what the elitism rate is. The order of the curves remains consistent 

with what is observed on Figure 5.47 (b). 
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As a conclusion, three main effects of the elitism rate have been established in this 

paragraph: 

 The higher the rate, the fewer generations are required for the convergence of 

the outer loop (at least 50 percent speedup and up to 85 percent). 

 The higher the rate, the fewer generations are required for the convergence of 

the inner loop (at least 70 percent speedup and up to 90 percent). 

 The higher the rate, the bigger the initial drop in required generations for the 

inner loops (from 57 to 65 percent drop). 

 At convergence of the outer loop, the elitism rate does not influence the value 

of the number of generations required for the convergence of the inner loops 

(90 percent speedup). 

 

Full vs. partial heterogeneity: final main setting of the bi-level genetic optimizer, the type 

of heterogeneity is now varied to study its influence on the behavior of the algorithm. The 

two previous experiments are repeated to capture different effects for each type of 

convergence: one based on a number of stalled generations, and the other based on the 

precision of the convergence. 

By first setting the convergence condition to 20 stalled generations for both inner 

and outer loops, a figure comparable to Figure 5.44 is obtained (see Figure 5.49). 
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Figure 5.49: Effect of partial heterogeneity and elitism 

 

The main observation is that, as expected and explained earlier on, the convergence 

for the inner loops is faster with partial heterogeneity when compared to full heterogeneity. 

This remark is valid with and without elitism. Without elitism, the average number of 

generations required for the convergence of the inner loops is 111 on average. With partial 

heterogeneity, this number drops to 71 generations, a reduction of 36 percent. With elitism, 

the difference is slightly less: 48 against 33 generations, a reduction of 31 percent. This 

confirms that in both cases (with and without elitism) the convergence of the inner loops 

is more rapid when considering partial heterogeneity. With full heterogeneity, the 

difference between with and without elitism is 111 minus 48 generations: a difference of 

56 percent. With partial heterogeneity only, this same difference is 71 minus 33: that is 53 
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percent. Hence partial heterogeneity does not seem to have an impact on the improvements 

achieved by elitism. 

As for the convergence of the outer loop, the number of required generations is 

fixed at slightly more than 20 generations since this experiment is stall-based. This result 

is summarized in Figure 5.50 and Table 5.16. Note that the lowest number of generations 

is 21 which corresponds to the stopping criteria of 20 stalled generations plus the initial 

generation. 

 

 

Figure 5.50: Effect of heterogeneity type on stall-based outer loop convergence 
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Likewise, the convergence criteria can be set to a swarm fitness within one percent 

of the expected validation value. Figure 5.51 is then obtained in the same fashion as Figure 

5.45. 

 

 

Figure 5.51: Effect of heterogeneity type on stall-based inner loop convergence 

 

This time with partial heterogeneity, activating elitism decreases by 83 percent the 

number of required generations for the convergence of the inner loops. This number was 

around 89 percent with full heterogeneity. This is due to the fact that the experiment is 

reaching the limits of the optimization algorithm. Indeed, the optimizer already performs 

really well with elitism and full heterogeneity with 4 generations required for convergence. 
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This number drops to 3 with partial heterogeneity but it would be very difficult to have the 

algorithm converge in one or two generations. Hence the relative improvement is less with 

partial heterogeneity since the algorithm is performing better, hence getting closer to 

convergence limitations. Without elitism, choosing partial heterogeneity incurs a drop of 

48 percent in the number of generations, from 35 to 18. With elitism, the drop is around 30 

percent on average. 

One may notice from Table 5.17 that the average number of inner loop generations 

required for convergence increases slightly between the 25, 50 percent rates, and the 75, 

100 percent elitism rates. Indeed, since the maximum number of outer loop generations 

decreases with the elitism rate, the average is taken over less many values and tends to 

privilege the left hand part of the graph when the number of generations for the inner loops 

is high and still decreasing. 

 

As for the convergence of the outer loop, the results are summarized in Figure 5.52. 
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Figure 5.52: Effect of heterogeneity type on precision-based outer loop convergence 

 

These results seem counterintuitive at first since the outer loop seems to take longer 

to converge with partial heterogeneity than with full heterogeneity which has many more 

variables. However, after further analysis, one must not forget that the convergence 

criterion is set at one percent of the actual validation value. With partial heterogeneity, each 

variable has a much more important weight on the group fitness. The fitness function is 

then more sensitive to the value of the design variables, making it slightly more unstable 

than the case with full heterogeneity. In this latter case, more design variables translate into 

more inertia around a particular design point and it would take a huge change in a design 

variable to offset the fitness function by a significant value. This is why once the algorithm 

has started settling around a possible global optimum, it is able to stay around it with more 
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precision. On the other hand, partial heterogeneity causes more instability around the 

optimum and the outer loop hence takes more iterations to converge (Figure 5.53). 

 

 

Figure 5.53: Increased convergence instability with partial heterogeneity 

 

It can be seen that the fitness function oscillates a lot above the true optimal value. 

This does not happen in the stall based approach because it rather considers the average 

relative change in the best fitness function value instead of the absolute value of the fitness 

function. It is important to note that in reality, the designer does not know what the true 

optimum is and will not choose an absolute precision-based convergence criterion. 

 

To conclude, the main influence of the type of heterogeneity on the optimization 

algorithm has been captured by this experiment: 
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 With and without elitism, the convergence of the inner loops is more rapid by at 

least 30 percent when considering partial heterogeneity. 

 Partial heterogeneity does not seem to have an impact on the improvements 

achieved by elitism. Average improvement in number of generations of the inner 

loop remains around 50 percent. 

 When using precision-based convergence, partial heterogeneity tends to make the 

convergence of the outer loop longer due to a low number of variables and an 

increased sensitivity/instability. This effect can be removed by relaxing the 

precision constraint. 

 

In this section, the effect of the principal settings of the optimization algorithm has 

been studied: elitism, elitism rate, and type of heterogeneity. These effects are summarized 

in Table 5.16 and Table 5.17. Percentage changes are used in green to show the difference 

between full and partial heterogeneity. The bold values are the reference used for the 

percentage changes. 

 

Table 5.16: Optimizer characterization for stall-based convergence 

Elitism 
 Full heterogeneity  Partial heterogeneity 

 Inner loop Outer loop  Inner loop Outer loop 

No  111 22  
71 

(-36%) 
22 

Yes (50%)  
48 

(-56%) 
22  

33 

(-70%) 
22 
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Table 5.17: Optimizer characterization for precision-based convergence 

Elitism rate 𝜿 

 Full heterogeneity  Partial heterogeneity 

 Inner loop Outer loop  Inner loop Outer loop 

𝟎 

 

35 115 

 
18 

(-48%) 

109 

(-5%) 

𝟎. 𝟐𝟓 

 
4 

(-89%) 

40 

(-65%) 

 
3 

(-91%) 

55 

(-52%) 

𝟎. 𝟓𝟎 

 
4 

(-89%) 

36 

(-69%) 

 
3 

(-91%) 

56 

(-51%) 

𝟎. 𝟕𝟓 

 
5 

(-86%) 

32 

(-72%) 

 
3 

(-91%) 

60 

(-47%) 

𝟏. 𝟎𝟎 

 
6 

(-83%) 

25 

(-78%) 

 
4 

(-89%) 

25 

(-78%) 
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CHAPTER 6 

CONCLUSION 

 

This final chapter provides a conclusion to this work by presenting a summary of the 

research methodology, a review of key breakthroughs and contributions, as well as possible 

perspectives for future research. 

6.1 Research summary 

The significant progression of the market of drones over the past few years has 

clearly contributed to an abundant variety of architectures with a wide spectrum of possible 

applications, mostly in the civil sector. Chapter 1 established a motivation for the present 

research by pinpointing that although unlocking new capabilities is possible by grouping 

these architectures into swarms, the design of group robotics systems remains an intricate 

work in progress. Indeed, multi-robotics present a cost-effective manner to surmount the 

shortcomings of individual platforms: mostly lack of endurance and limited computational 

power. Nonetheless, the design of such systems of systems is highly complex: exploiting 

emergent behaviors, multi-robot systems exhibit stochastic and non-linear relationships 

which make it extremely difficult to predict the behavior of the overall system from the 

design variables. Furthermore, a missing link between microscopic level (individual 

agents) and macroscopic level (group interactions) design spaces was identified in the 

literature and further complicates the design process. The first chapter hence motivated the 

need for a holistic approach facilitating the optimal design of multi-robot systems, with a 

focus on unmanned aerial vehicles. 
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Chapter 2 ensued with a detailed literature review of existing techniques to identify 

the missing blocks in three crucial design areas: exploration of the design space (section 

5.1), modeling (chapter 4), and optimization (section 5.2). These gaps originated research 

questions which, after a second literature review leveraging diverse existing methods, 

enabled the formation of research hypotheses (see Table 6.1). 

 

Table 6.1: Summary of research questions and hypotheses 

Area Gap 

Associated 

research 

question/hypothesis 

Proposed solution for 

multi-robot systems 

Modeling 

Missing 

micro-macro 

link 

RQ 1 (page 92) 

RQ 2 (page 101) 

Global optimization & 

Mesoscopic modeling 

Design 

space 

exploration 

Extremely large 

design space 
RQ 3.1 (page 132) 

Morphological tree with 

morphological reduction 

Optimization 
Sequential 

optimization 
RQ 3.2 (page 147) 

Bi-level optimization 

algorithm 

 

The third chapter “Proposed Approach” detailed the implementation choices made 

to later develop the experiments that would provide response elements with respect to the 

research questions. In addition, key metrics and main assumptions were established in that 

chapter so as to clearly define the scope of the research. The following chapters 4 and 5, 

then respectively focused on the two main parts of the research objective: finding an 

adequate link between microscopic and macroscopic levels, and multi-level multi-

architecture design space exploration. 
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With chapter 4, hypothesis 1 was first validated as it was confirmed that global 

optimization can yield significant performance improvements in the design of multi-robot 

systems. To complete the first observations drawn from the canonical example of section 

2.1 page 75, the optimization is performed through two types of sequential optimizers: 

micro-macro and macro-micro. Both sequential optimizers obtained degraded results when 

compared to a simultaneous or global optimizer. 

In the second half of chapter 4, different types of modeling levels of detail were 

studied thoroughly and implemented to validate hypothesis 2. The mission used to validate 

the three models was the rendezvous mission used on the Robotarium system of the 

Georgia Institute of Technology. A mesoscopic model was constructed step by step as a 

compromise between a macroscopic model and a microscopic one which were also 

previously elaborated. The results of a campaign of 40 experiments showed that the 

mesoscopic model is on average very close to the precision of the microscopic model, and 

hence representative enough of the performance of the real system. Coupled with the fact 

that the mesoscopic model is on average five times faster than the microscopic model, this 

establishes mesoscopic modeling as a good candidate for the design space exploration, and 

optimization, of multi-level problems. 

 

With an efficient method to link macroscopic and microscopic levels of a robotic 

swarm established, chapter 5 then focused on the design space exploration portion of the 

research objective: the generation of alternatives and the optimization of the design of 

swarms. First, the morphological tree elaborated in chapters 2 and 3 demonstrated 

promising results in the reduction of design spaces and the organization and representation 
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of multi-level problems alternatives. In particular, thanks to morphological reduction, the 

number of alternatives from a real-world problem was reduced by several orders of 

magnitude, making it more approachable with traditional design space exploration 

techniques. As an extension to the original work on morphological reduction by [173], its 

effects were also detailed on multiple-levels design spaces and tradeoff experiments were 

carried out to establish when the method is beneficial or not. 

As a second subsection, the advanced bi-level optimizer designed in chapter 2 and 

3 was further detailed, implemented, validated, and characterized. The effects of the elite-

retaining scheme were studied for fully heterogeneous and partially heterogeneous swarm 

configurations. Not only the bi-level optimizer was shown to propose a practical 

decomposition of the problem without returning to sequential optimization schemes 

separating the microscopic level and the macroscopic level; but it was also demonstrated 

that by activating elitism, the inner loop required on average 50% less generations to 

converge than without elitism. 

 

The overall research process is again summarized on Figure 6.1. 
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Figure 6.1: Summary of the research process 

 

 

Motivation 

Problem Definition 

Research Question 1 Research Question 2 Research Question 3 

Hypothesis 1 Hypothesis 2 Hypothesis 3 

Research Objective 

Can multi-robot systems designs be 
improved by linking microscopic 

and macroscopic levels? 

How to link the microscopic and 
the macroscopic levels of a multi-

robot system for conceptual design 

purposes? 

How can current conceptual design 
methods be adapted to account for 

multi-architecture multi-level 

design space exploration? 

IF an approach leveraging the 
interdependence between microscopic 

and macroscopic levels is used 
  

THEN significant improvements in 
average performance can be achieved 

in the design of multi-robot systems 

compared to traditional sequential 

optimization schemes 

IF a mesoscopic approach leveraging 

the speed of macroscopic models and 

the accuracy of microscopic models is 
used 
  

THEN microscopic and macroscopic 

levels can be efficiently linked for 

conceptual design purposes 

IF a tree of reduced morphological 
matrices is used in conjunction with an 

optimization method based on a bi-

level genetic algorithm 
 

THEN a multi-architecture multi-level 

design space exploration can be 
carried out efficiently to obtain 

optimal group configurations 

Establish a methodology that enables the optimum design of multi-robot systems and the evaluation of 

trade-offs between individual architecture development and numerality to achieve group performance 

Swarms Robots Swarm Engineering 

Observations 1 Observations 2 Observations 3 

Assertion 1 Assertion 2 Assertion 3 

• Many drone types are now 
available 
• This diversity is developing 
• Single robot limitations can be 

overcome by collaboration 

• Designing a multi-robot system 

requires much more commitment 

than for a single agent 
• They are confined to academia or 

experimental and avant-gardist 

military applications 

• Groups might not always perform 

“better” than single agents 
• Very few group designs 

possibilities are considered, mostly 

homogeneous and sub-optimal 

There is a potential to take 
advantage of the diversity 

of the existing drone fleet 

A standard physical design process 

for multi-robot systems is needed 

to foster their democratization 

There is a need to evaluate and 
compare the real advantage of 

different optimized multi-robot 

systems versus optimized single-

robot solutions on a given mission 
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To conclude with this research summary, the assumptions used throughout the 

proposed approach have not been found to be inconsistent or incomplete as they were 

sufficient to validate the different blocks of the methodology. In particular, the reader might 

notice the correlation between the first and second research questions. Indeed, the first one 

questions whether a possible micro-macro link could improve the design of swarming 

systems, while the second one is an attempt to study how this link can be achieved. Hence, 

an effective link is required to answer the first research question but this link is not 

accounted for before the second research question. As a result, the second research question 

was treated first to validate a given modeling methodology which was then used in the first 

research question to study the benefits of this micro-macro link. However, to ensure a 

consistent order and articulation of the different parts of the reasoning, the section “Can 

we improve swarms design?” (RQ1) is presented before the section “How can we improve 

swarms design?” (RQ2). 

6.2 Closing the loop: MASDeM 

After answering the research questions and validating each research hypothesis 

separately with theoretic, conceptual, and benchmarking models, this last chapter 

demonstrates the use of the whole methodology by putting it all together on an example 

swarm design exercise. This Multi-Agent Systems Design Methodology is named 

MASDeM and encompasses all the different steps explained throughout this dissertation 

and which are summarized here below (see Figure 6.2). 
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Figure 6.2: Steps of MASDeM 

 

Step 1: reduction of the design space 

The designer decides on the first initial set of architectures to be included in the study and 

documents their morphological matrices as well as the associated technology compatibility 

matrices. These matrices are then implemented using the object-oriented methodology 

presented in section 5.1 (see page 292), and assembled into a morphological tree. By using 

the morphological reduction function of the tree, the designer obtains a reduced number of 

architectures to be considered while still providing an equivalent coverage of the design 

space. Note that according to the conclusions of section 5.1, morphological reduction might 

not prove beneficial for small design spaces with few reducible options. Along with the 

reduced number of architectures, the design is provided with the list of design variables 

which need to now be transferred to the modeling part. 

 

 

Step 1 
 

reduction of 
design space 

Step 2 
 

mesoscopic modeling 

Step 3 
 

bi-level 
optimization 
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Step 2: construction of the mesoscopic model 

The second step for the design consists in having a model or simulation of the required 

mission which can run in a short amount of time while still providing a good level of detail 

and accuracy so that the design space can be explored efficiently. For this, a mesoscopic 

model has to be built: a type of model that provides a high level of detail for the constituents 

of the group but a simplified approach for the group interactions. If pre-existing models 

are available to the designer, building the mesoscopic model consists mostly in simplifying 

or relaxing the assumptions of those models and modifying them so that all the variables 

given by the morphological reduction of step 1 are incorporated. If no pre-existing model 

of the mission exists, the designer can refer to Figure 4.24 page 274 for examples of levels 

of details which could constitute a mesoscopic model. 

 

Step 3: optimizing a swarm configuration 

Finally, based on the design space definition of step 1, the designer can define the bounds 

of the variables for all architectures and use the bi-level optimizer to derive an optimal 

swarm configuration for the required mission. The fitness function used by the optimizer 

is the mesoscopic model of step 2 which outputs a fitness metric based on the performance 

metrics of section 3.1 (see page 171). The only task for the designer is to provide the 

number of variables per architecture, their bounds, and their type. The optimization loops 

are already implemented in the tool itself. 
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Step 4 (optional): iteration 

Once the optimization algorithm has finished running, or even after a few generations of 

the outer loop (at least 3 from the observation of section 5.2.3 page 376), the elite buffer 

contains a representative pool of the most promising architectures for cooperation on the 

given mission. Hence, it is possible to further reduce the design space by limiting the 

number of architectures considered by using this elite buffer from step 1 and iterating the 

process. As a first iteration, the fifty most promising configurations could also be used to 

decide on better bounds for the design variables and further restrict the size of the design 

space to be considered. This has the advantage of refining the optimum search over a 

smaller design space, hence accelerating the overall process. The designer should however 

be careful not to restrict the design space too much and hence compromise the exploration 

of different configurations. 

 

In order to close the loop and put all the pieces of the approach back together, a 

description of the different steps to follow for a real-world problematic was proposed in 

this subsection. The whole methodology is regrouped under the acronym MASDeM 

standing for Multi-Agent Systems Design Methodology. The size of the design space is 

first reduced by using the morphological tree reduction before a mesoscopic model is 

constructed. Finally, an optimal swarm design can be obtained by applying the bi-level 

genetic algorithm optimizer on the problem. Without any validation possible with respect 

to potential similar swarming systems in existence, the performance of the optimal swarm 

consists in the best known solution so far, and could potentially be shown as competitive 

when compared to existing single-platform solutions. 



403 

 

6.3 Key contributions 

The work carried out for each of the main research axes of the present thesis has 

led to several crucial observations in the field of multi-robot systems design, some 

foreseeable and some counterintuitive. These key contributions are recalled, summarized, 

and listed here below. Additional details can be found when referring to the original 

corresponding chapters. 

 

Design optimization of multi-robot systems 

Sequential vs. simultaneous optimization: 

 Currently the research community uses sequential optimization of the different 

levels, in one order (microscopic then macroscopic is the most common), or the 

other (macroscopic then microscopic). 

 In all the studied cases, simultaneous optimization proved to yield more optimal 

designs than the ones obtained with sequential optimization. 

 Both methods yield similar results only in special cases when interactions 

(macroscopic level) are neglected between the agents, or when requirements for the 

different levels are favorable for sequential optimizers. It also depends on the 

principal axes of the response. 

 These improvements range from 1% to 27% on the cost function and average at 

16%. However, these improvements are possibly lower bounds with respect to what 

is achievable on real-world systems.  

 Simultaneous optimization is a key enabler for full heterogeneity, a new capability 

for the design of multi-robot systems. 
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 The benefits of heterogeneity are mitigated when technology is cheap to acquire 

with respect to the cost of individual agents. 

Efficient optimization of multi-robot systems 

 The proposed bi-level optimizer now enables the simultaneous optimization of the 

macroscopic level and the microscopic level. 

 One advantage is that there is no need to implement a different optimizer for each 

architecture as it was the case for simultaneous optimization. Only two optimizers 

are required: an inner loop and an outer loop. 

 Having an elite retention scheme for the inner loop clearly improves the 

performance of the algorithm: 

o The higher the elitism rate, the fewer generations are required for the 

convergence of the outer loop (at least 50% speedup and up to 85%). 

o The higher the elitism rate, the fewer generations are required for the 

convergence of the inner loop (at least 70% speedup and up to 90%). 

o The higher the elitism rate, the bigger the initial drop in required generations 

for the inner loops (from 57% to 65%drop). 

o At convergence of the outer loop, the elitism rate does not influence the 

value of the number of generations required for the convergence of the inner 

loops (90% speedup). 

 The algorithm behaves differently whether heterogeneity is complete (all vehicles 

of a given architecture are different), or partial (all vehicles of a given architecture 

are similar): 
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o With and without elitism, the convergence of the inner loops is more rapid 

by at least 30 percent when considering partial heterogeneity. 

o Partial heterogeneity does not seem to have an impact on the improvements 

achieved by elitism. The average improvement in number of generations of 

the inner loop remains around 50 percent. 

o When using precision-based convergence, partial heterogeneity tends to 

make the convergence of the outer loop longer due to a low number of 

variables and an increased sensitivity/instability. This effect can be removed 

by relaxing the precision constraint. 

 

Modeling 

 Mesoscopic modeling is adapted for exploration and optimization purposes in 

multi-architecture multi-level design spaces in the early design phases. 

 This has been validated on conceptual design phases of multi-robot systems. 

 The mesoscopic model always acts as a surrogate of the microscopic model and can 

be considered as a microscopic model with simplified assumptions. 

 On average mesoscopic modeling is more precise than macroscopic modeling while 

being faster than microscopic modeling. 

 A particular application to a consensus multi-robot mission showed that on average: 

o The mesoscopic model ran 5 times faster than the microscopic one. 

o The error of the mesoscopic model on the main performance metric was 

within 31% of the performance of the real system. A number consistent with 

conceptual design practices. 
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Design space exploration for multi-level multi-architecture design spaces 

Multi-level morphological reduction 

 Applying morphological reduction on multi-level design spaces multiplies the 

improvements demonstrated in its original application [173]. 

 Although the higher levels in the hierarchy have most influence on the number of 

alternatives, it is not clear whether their reduction should be favored to the 

reduction of lower levels. Indeed, real-world applications tend to show that lower 

levels are much larger in size than upper levels. Hence removing one option at a 

top level might have the same effect on the total number of alternatives than 

removing one at a low level. 

 The more options are removed during reduction, the more the impact of the k-factor 

(number of variables per option) is perceived. 

 The number of options per row has more influence on the response than the number 

of rows in the morphological matrix. 

 Morphological reduction is not always beneficial. 

 Morphological reduction can be detrimental in problems of high complexity (many 

variables per option) but demonstrates clear advantages for very large problems as 

more and more options are removed. 

 For extremely large problems, as long as enough options are removed, 

morphological reduction is always beneficial, quasi-independently of the number 

of variables per option. 

Morphological tree representation 
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 An object-oriented tree paradigm simplifies the analysis, dynamic manipulation, 

and representation of multi-level design spaces. 

 Complex multi-level operations (computing alternatives, ensuring compatibility, 

reduction) are now reduced to traversing the morphological tree and calling simple 

functions on each one of the nodes. 

 The morphological tree demonstrated several interesting uses: 

o As a fixed simple bookkeeping tool storing the possible design choices in 

an organized and graphic fashion. 

o As a fully functional and dynamic design space definition tool used to lock 

design choices and propagate them through the tree. It can be used to 

incrementally perform morphological reduction, compute the total of 

remaining alternatives to study, as well as how many design variables were 

lost in the process. 

o As an assistant to design optimization by dynamically ensuring that the 

optimizers consider only feasible designs during the design space 

exploration. 

6.4 Perspectives of future research 

By relaxing some of the assumptions used in this research, it is possible to widen 

the field of application of the proposed methodology and foresee possible extensions. 

 

First, given that the methodology was designed to remain as generic and modular 

as possible, prospective new applications can be imagined. In particular, the methodology 

could be applied to the design of product families. Indeed, the dynamic tree structure and 
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bi-level optimizers can be used to track down requirements, design variables, and 

performance from one product to the others. The dynamic handling of the outer loop would 

first enable to derive an optimal number of products in the family without having the 

designer fix a-priori the size of the group of products. Then, requirements of the 

macroscopic level (i.e. the market coverage and economics of the product family) would 

have to flow down to a lower level deriving optimal individual requirements for the 

products of the family. Hence, a main difference would be that the requirements themselves 

for the lower levels would be design variables. 

Design spaces with more than two levels can also be investigated in more detail 

with a complete real-world application. One possibility is to go down one more level of 

detail by adding subsystems of the vehicles as a sub-microscopic level. 

 

Finally, under the more technical aspect of implementation, it could be of interest 

to study the behavior of the bi-level optimizer when used with other types of optimization 

algorithms. Indeed, the use of a genetic algorithm was justified in the scope of this research 

and compared with a full factorial approach, but for other types of applications, mixed-

integer programming might prove more appropriate for instance [235]. 
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APPENDIX A 

MATHEMATICAL DERIVATIONS 

A.1 Test function optimum 

It was stated in section 5.2.2.1 (see page 364) that the verification function 𝑓 is 

designed to have known specific optimum value and locations. However, this was not 

proven. This appendix hence provides the analytical proof for the minimal value of the 

fitness function used for the verification of the bi-level optimization algorithm. 

A.1.1 Unconstrained 

The unconstrained verification function is defined as follow: 

 

Equation A-1: Unconstrained verification function for the optimizer 

𝑓(𝑋 = [𝑋𝑖𝑛, 𝑋𝑜𝑢𝑡]) = ( ∑ [𝑋𝑖
𝑖𝑛 − 𝑥𝑖

∗]
2

𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)

𝑖=1

)

⏟              
𝑓𝑖𝑛(𝑋

𝑖𝑛)

− ( ∑
1

1 + [𝑋𝑖
𝑜𝑢𝑡 − 𝑖]2

𝑁𝑎𝑟𝑐ℎ

𝑖=1

)

⏟              
𝑓𝑜𝑢𝑡(𝑋𝑜𝑢𝑡)

 

 

With 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛) the number of variables in the inner loop design vector, 𝑁𝑎𝑟𝑐ℎ𝑠 

the number of variables in the outer loop design vector (or equivalently the number of 

architectures considered). The value of 𝑥𝑖
∗ was given in Equation 5.12 page 368. The design 

vector 𝑋 is partitioned between inner loop and outer loop design variables as 𝑋 =

[𝑋𝑖𝑛, 𝑋𝑜𝑢𝑡]. 
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Finding the minimum of this fitness function consists in computing the stationary 

points thanks to the gradient, and making sure that the Hessian matrix is positive semi-

definite around these points before comparing them to find the global optimum. The first 

step is computing the gradient ∇𝑓 =
𝑑𝑓

𝑑𝑋
= [

𝜕𝑓

𝜕𝑋𝑖𝑛
,
𝜕𝑓

𝜕𝑋𝑜𝑢𝑡
]. One can first note that 

𝜕𝑓

𝜕𝑋𝑖𝑛
=

𝜕(𝑓𝑖𝑛+𝑓𝑜𝑢𝑡)

𝜕𝑋𝑖𝑛
=

𝑑𝑓𝑖𝑛

𝑑𝑋𝑖𝑛
+
𝜕𝑓𝑜𝑢𝑡

𝜕𝑋𝑖𝑛⏟
0

=
𝑑𝑓𝑖𝑛

𝑑𝑋𝑖𝑛
 since 𝑓𝑜𝑢𝑡 does not depend on 𝑋𝑖𝑛. Similarly, 

𝜕𝑓

𝜕𝑋𝑜𝑢𝑡
=

𝑑𝑓𝑜𝑢𝑡

𝑑𝑋𝑜𝑢𝑡
. Each of these terms is then considered separately here after. 

 

The first term is 
𝑑𝑓𝑖𝑛

𝑑𝑋𝑖𝑛
= [

𝜕𝑓𝑖𝑛

𝜕𝑋1
𝑖𝑛 ,

𝜕𝑓𝑖𝑛

𝜕𝑋2
𝑖𝑛 , … ,

𝜕𝑓𝑖𝑛

𝜕𝑋
𝑁𝑣𝑎𝑟𝑠(𝑋

𝑖𝑛)
𝑖𝑛 ] = (

𝜕𝑓𝑖𝑛

𝜕𝑋𝑖
𝑖𝑛)

𝑖∈⟦1,𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧

 and 

each 
𝜕𝑓𝑖𝑛

𝜕𝑋𝑖
𝑖𝑛 can be computed as 

𝜕𝑓𝑖𝑛

𝜕𝑋𝑖
𝑖𝑛 =

𝜕

𝜕𝑋𝑖
𝑖𝑛 (∑ [𝑋𝑘

𝑖𝑛 − 𝑥𝑘
∗]
2𝑁𝑣𝑎𝑟𝑠(𝑋

𝑖𝑛)

𝑘=1 ) = 2(𝑋𝑖
𝑖𝑛 − 𝑥𝑖

∗). 

 

The second term is 
𝑑𝑓𝑜𝑢𝑡

𝑑𝑋𝑜𝑢𝑡
= (

𝜕𝑓𝑜𝑢𝑡

𝜕𝑋𝑖
𝑜𝑢𝑡)

𝑖∈⟦1,𝑁𝑎𝑟𝑐ℎ⟧
 and each of the 

𝜕𝑓𝑜𝑢𝑡

𝜕𝑋𝑖
𝑜𝑢𝑡’s can be written 

as 
𝜕𝑓𝑜𝑢𝑡

𝜕𝑋𝑖
𝑜𝑢𝑡 =

𝜕

𝜕𝑋𝑖
𝑜𝑢𝑡 (∑

1

1+[𝑋𝑘
𝑜𝑢𝑡−𝑘]

2
𝑁𝑎𝑟𝑐ℎ𝑠
𝑘=1 ) =

2(𝑋𝑖
𝑜𝑢𝑡−𝑖)

[1+(𝑋𝑖
𝑜𝑢𝑡−𝑖)

2
]
2. 

 

Putting it all back together, the gradient of the fitness function 𝑓 is expressed as: 
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Equation A-2: Gradient of the verification function 

 

 

Setting ∇𝑓 = 0⃗  to find the stationary points, one finds that the inner loop elements 

are set to zero if and only if 𝑋𝑖
𝑖𝑛 = 𝑥𝑖

∗, ∀𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧ and that the outer loop 

elements are null if and only if 𝑋𝑖
𝑜𝑢𝑡 = 𝑖, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧. Hence, there is only one 

stationary point. Finally, one must verify that this point actually corresponds to a minimum. 

One possible way to do that is to ensure that the verification function 𝑓 is locally convex 

around this stationary point, which is equivalent to having a positive semi-definite Hessian 

matrix. The Hessian of 𝑓 is defined as: 

 

𝛻𝑓(𝑋) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

2(𝑋1
𝑖𝑛 − 𝑥1

∗)

2(𝑋2
𝑖𝑛 − 𝑥2

∗)

⋮

2 (𝑋
𝑁𝑣𝑎𝑟𝑠(𝑋

𝑖𝑛)
𝑖𝑛 − 𝑥

𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)

∗ )

𝑋
2(𝑋1

𝑜𝑢𝑡 − 1)

[1 + (𝑋1
𝑜𝑢𝑡 − 1)2]2

2(𝑋2
𝑜𝑢𝑡 − 2)

[1 + (𝑋2
𝑜𝑢𝑡 − 2)2]2

⋮
2(𝑋𝑁𝑎𝑟𝑐ℎ

𝑜𝑢𝑡 − 𝑁𝑎𝑟𝑐ℎ)

[1 + (𝑋𝑁𝑎𝑟𝑐ℎ
𝑜𝑢𝑡 − 𝑁𝑎𝑟𝑐ℎ)

2
]
2

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

𝑵𝒗𝒂𝒓𝒔(𝑿
𝒊𝒏) 

𝑵𝒂𝒓𝒄𝒉 
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Equation A-3: Hessian definition 

𝐻𝑓 = (
𝜕2𝑓

𝜕𝑋𝑖𝜕𝑋𝑗
)
𝑖,𝑗

= (
𝜕∇𝑓𝑗

𝜕𝑋𝑖
)
𝑖,𝑗

= (
𝜕∇𝑓

𝜕𝑋𝑖
)
𝑖,𝑗

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕∇𝑓

𝜕𝑋1
𝑖𝑛

𝜕∇𝑓

𝜕𝑋2
𝑖𝑛

⋮
𝜕∇𝑓

𝜕𝑋
𝑁𝑣𝑎𝑟𝑠(𝑋𝑖𝑛)
𝑖𝑛

𝜕∇𝑓

𝜕𝑋1
𝑜𝑢𝑡

𝜕∇𝑓

𝜕𝑋2
𝑜𝑢𝑡

⋮
𝜕∇𝑓

𝜕𝑋𝑁𝑎𝑟𝑐ℎ
𝑜𝑢𝑡

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

By looking at the shape of the gradient given in Equation A-2, there is only one 

component of this gradient that depends on a given variable 𝑋𝑖 of the design vector 𝑋 (be 

it an inner loop design variable 𝑋𝑖
𝑖𝑛 or an outer loop variable 𝑋𝑖

𝑜𝑢𝑡). For a given design 

variable 𝑋𝑖, the only component for which the derivative of the gradient will not be zero is 

∇𝑓𝑖. Since the form of the Hessian is 𝐻𝑓 = (
𝜕∇𝑓𝑗

𝜕𝑋𝑖
)
𝑖,𝑗

, this means that all non-diagonal terms 

of the Hessian matrix are zero. As for the diagonal terms, two cases have to be considered: 

the ones depending on inner loop variables, and the one depending on outer loop variables. 

In the first case, the terms are 
𝜕𝛻𝑖
𝑖𝑛𝑓

𝜕𝑋𝑖
𝑖𝑛 =

𝜕

𝜕𝑋𝑖
𝑖𝑛 [2(𝑋𝑖

𝑖𝑛 − 𝑥𝑖
∗)] = 2. For the outer loop terms, 

𝜕𝛻𝑖
𝑜𝑢𝑡𝑓

𝜕𝑋𝑖
𝑜𝑢𝑡 =

𝜕

𝜕𝑋𝑖
𝑜𝑢𝑡 (

2(𝑋𝑖
𝑜𝑢𝑡−𝑖)

[1+(𝑋𝑖
𝑜𝑢𝑡−𝑖)

2
]
2) =

2[1−3(𝑋𝑖
𝑜𝑢𝑡−𝑖)

2
]

[1+(𝑋𝑖
𝑜𝑢𝑡−𝑖)

2
]
3 . Note that 𝛻𝑖

𝑖𝑛
𝑓 and 𝛻𝑖

𝑜𝑢𝑡𝑓 refer to terms of the gradient 

depending on respectively inner variable 𝑖 with 𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧, and outer variable 𝑖 with 

𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧. As a consequence, the Hessian has the following form: 
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Equation A-4: Hessian matrix for the verification function 

 

 

The diagonal terms linked with the outer loop variables have the value 2 when 

evaluated at the stationary point, indeed 
2[1−3(𝑋∗𝑖

𝑜𝑢𝑡
−𝑖)

2
]

[1+(𝑋∗𝑖
𝑜𝑢𝑡−𝑖)

2
]
3 = 2

[1−3(𝑖−𝑖)2]

[1+(𝑖−𝑖)2]3
= 2×

1

1
= 2. Hence 

the Hessian at the stationary point corresponds to: 

 

Equation A-5: Hessian matrix evaluated at the stationary point 

 

 

With 𝐼 the identity matrix having the size corresponding to the number of elements 

in the complete design vector 𝑋. One can then conclude that the Hessian at the stationary 

point is positive semi-definite. This proves that the verification function is locally convex 

𝐻𝑓(𝑋) =

[
 
 
 
 
 
 
 
 
 
 
 
 
2 0 ⋯ 0 0 0 ⋯ 0
0 2 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋯ ⋮
0 0 ⋯ 2 0 0 ⋯ 0

0 0 ⋯ 0
2[1 − 3(𝑋1

𝑜𝑢𝑡 − 1)2]

[1 + (𝑋1
𝑜𝑢𝑡 − 1)2]3

0 ⋯ 0

0 0 ⋯ 0 0
2[1 − 3(𝑋2

𝑜𝑢𝑡 − 2)2]

[1 + (𝑋2
𝑜𝑢𝑡 − 2)2]3

⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 0 0 ⋯
2 [1 − 3(𝑋𝑁𝑎𝑟𝑐ℎ𝑠

𝑜𝑢𝑡 − 𝑁𝑎𝑟𝑐ℎ𝑠)
2
]

[1 + (𝑋𝑁𝑎𝑟𝑐ℎ𝑠
𝑜𝑢𝑡 − 𝑁𝑎𝑟𝑐ℎ𝑠)

2
]
3

]
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑵𝒗𝒂𝒓𝒔(𝑿
𝒊𝒏) 

𝑵
𝒂
𝒓
𝒄
𝒉
 

𝑵𝒂𝒓𝒄𝒉 

𝑵
𝒗
𝒂
𝒓
𝒔
( 𝑿

𝒊𝒏
)  

𝐻𝑓(𝑋
∗) =

[
 
 
 
 
 
 
 
2 0 ⋯ 0 0 0 ⋯ 0

0 2 ⋯ 0 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋯ ⋮

0 0 ⋯ 2 0 0 ⋯ 0

0 0 ⋯ 0 2 0 ⋯ 0

0 0 ⋯ 0 0 2 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 0 0 ⋯ 2]
 
 
 
 
 
 
 

= 2×𝐼 
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around the stationary point and hence that the stationary point derived earlier on is indeed 

a local minimum of the verification fitness function. Given that it is the only stationary 

point, this also sufficiently proves that it is the global minimum: 

 

Equation A-6: Unconstrained global optimum 

𝑋∗𝑖
𝑖𝑛 = 𝑥𝑖

∗ ∀𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧ 

𝑋∗𝑖
𝑜𝑢𝑡 = 𝑖 ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧ 

 

The value of the fitness function at the minimum is hence: 

 

 

Equation A-7: Minimum value of the test function at the unconstrained optimum 

𝑓(𝑋∗) = ( ∑ [𝑋∗𝑖
𝑖𝑛 − 𝑥𝑖

∗]
2

𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)

𝑖=1

)− ( ∑
1

1 + [𝑋∗𝑖
𝑜𝑢𝑡 − 𝑖]

2

𝑁𝑎𝑟𝑐ℎ

𝑖=1

) 

= ( ∑ [𝑥𝑖
∗ − 𝑥𝑖

∗]2

𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)

𝑖=1

)

⏟              
0

−( ∑
1

1 + [𝑖 − 𝑖]2

𝑁𝑎𝑟𝑐ℎ

𝑖=1

) 

= − ∑ 1

𝑁𝑎𝑟𝑐ℎ

𝑖=1

 

= −𝑁𝑎𝑟𝑐ℎ 

 

To conclude, the minimum of the verification fitness function was analytically 

derived and corresponds to what was announced in section 5.2.2.1. 
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A.1.2 Constrained 

The constrained optimization problems for the inner and outer loops were described 

in equations Equation 5.15 and Equation 5.16 and are recalled here: 

 

Equation A-8: Constrained outer loop optimization problem 

min
𝑋𝑜𝑢𝑡

𝑖𝑛(𝑋𝑜𝑢𝑡) 

subject to 

{
  
 

  
 
𝑋𝑖
𝑜𝑢𝑡 ≥ 𝑋∗𝑖

𝑜𝑢𝑡 + 1, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

1 ≤ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

≤ 𝑁max

0 ≤ 𝑋𝑖
𝑜𝑢𝑡 ≤ 𝑁max, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

𝑋𝑖
𝑜𝑢𝑡 ∈ ℕ, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

 

 

Equation A-9: Constrained inner loop optimization problem 

min
𝑋𝑖𝑛

𝑓(𝑋𝑖𝑛) 

subject to 

{
𝑋𝑖
𝑖𝑛 ≥ 𝑋∗𝑖

𝑖𝑛 + 1, ∀i ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧

𝑙𝑏 ≤ 𝑋
𝑖𝑛 ≤ 𝑢𝑏

 

 

The mathematical formulation is able to consider both inner and outer loops at the 

same time since there are no dynamic size allocation issues for the design vectors of the 

inner loop. The optimization problem can hence be written as: 
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Equation A-10: Constrained optimization problem 

min
𝑋
𝑓(𝑋) 

subject to 

{
 
 
 
 

 
 
 
 
𝑋𝑖
𝑜𝑢𝑡 ≥ 𝑋∗𝑖

𝑜𝑢𝑡 + 1, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

1 ≤ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

≤ 𝑁max

0 ≤ 𝑋𝑖
𝑜𝑢𝑡 ≤ 𝑁max, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

𝑋𝑖
𝑖𝑛 ≥ 𝑋∗𝑖

𝑖𝑛 + 1, ∀𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧

𝑙𝑏 ≤ 𝑋
𝑖𝑛 ≤ 𝑢𝑏

𝑋𝑖
𝑜𝑢𝑡 ∈ ℕ, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

 

 

Putting it in standard form, Equation A-11 is obtained: 

 

Equation A-11: Standard form for the constrained optimization problem 

min
𝑋
𝑓(𝑋) 

subject to 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝑋

∗
𝑖
𝑖𝑛 + 1 − 𝑋𝑖

𝑖𝑛 ≤ 0, ∀𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧

𝑙𝑏𝑖 − 𝑋𝑖
𝑖𝑛 ≤ 0, ∀𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋

𝑖𝑛)⟧

𝑋𝑖
𝑖𝑛 − 𝑢𝑏𝑖 ≤ 0, ∀𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋

𝑖𝑛)⟧
 
 

𝑋∗𝑖
𝑜𝑢𝑡 + 1 − 𝑋𝑖

𝑜𝑢𝑡 ≤ 0, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

1 − ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

≤ 0

∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

− 𝑁max ≤ 0

−𝑋𝑖
𝑜𝑢𝑡 ≤ 0, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

𝑋𝑖
𝑜𝑢𝑡 − 𝑁max ≤ 0, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

𝑋𝑖
𝑜𝑢𝑡 ∈ ℕ, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧
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The first step of this analysis is to compute the Lagrangian of the problem (see 

Equation A-12). 

 

Equation A-12: Lagrangian of the verification optimization problem 

ℒ(𝑋) = 𝑓(𝑋) + ∑ 𝛼𝑖(𝑋
∗
𝑖
𝑖𝑛 + 1 − 𝑋𝑖

𝑖𝑛)

𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)

𝑖=1

+ ∑ 𝛽𝑖(𝑙𝑏𝑖 − 𝑋𝑖
𝑖𝑛)

𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)

𝑖=1

+ ∑ 𝛾𝑖(𝑋𝑖
𝑖𝑛 − 𝑢𝑏𝑖)

𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)

𝑖=1

+ ∑ 𝛿𝑖(𝑋
∗
𝑖
𝑜𝑢𝑡 + 1 − 𝑋𝑖

𝑜𝑢𝑡)

𝑁𝑎𝑟𝑐ℎ

𝑖=1

+ 𝜖 (1 − ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

) + 휁 ( ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

−𝑁max)

+ ∑ 휂𝑖(−𝑋𝑖
𝑜𝑢𝑡)

𝑁𝑎𝑟𝑐ℎ

𝑖=1

+ ∑ 휃𝑖(𝑋𝑖
𝑜𝑢𝑡 − 𝑁max)

𝑁𝑎𝑟𝑐ℎ

𝑖=1

 

 

The coefficients 𝛼, 𝛽, 𝛾, 𝛿, 𝜖, 휁, 휂, and 휃 are the Lagrange multipliers associated 

with the different inequality constraints. The next step is now to compute the gradient of 

the Lagrangian ∇ℒ with respect to the design vector 𝑋 and with respect to the Lagrange 

multipliers: ∇ℒ = [
𝜕ℒ

𝜕𝑋
,
𝜕ℒ

𝜕𝛼
,
𝜕ℒ

𝜕𝛽
,
𝜕ℒ

𝜕𝛾
,
𝜕ℒ

𝜕𝛿
,
𝜕ℒ

𝜕𝜖
,
𝜕ℒ

𝜕𝜁
,
𝜕ℒ

𝜕𝜂
,
𝜕ℒ

𝜕𝜃
]. Similarly to the previous section, the 

gradient element 
𝜕ℒ

𝜕𝑋
 can also be decomposed into components linked with inner variables 

𝜕ℒ

𝜕𝑋𝑖
𝑖𝑛, and components related to outer loop variables 

𝜕ℒ

𝜕𝑋𝑖
𝑜𝑢𝑡. Computing these terms 

separately, the first one is: 

 

Equation A-13: Lagrangian derivative with respect to the inner loop design vector 

𝜕ℒ

𝜕𝑋𝑖
𝑖𝑛
= 2(𝑋𝑖

𝑖𝑛 − 𝑥𝑖
∗) − 𝛼𝑖 − 𝛽𝑖 + 𝛾𝑖 
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And the second one is: 

 

Equation A-14: Lagrangian derivative with respect to the inner loop design vector 

𝜕ℒ

𝜕𝑋𝑖
𝑜𝑢𝑡 =

2(𝑋𝑖
𝑜𝑢𝑡 − 𝑖)

[1 + (𝑋𝑖
𝑜𝑢𝑡 − 𝑖)2]2

− 𝛿𝑖 − 𝜖 + 휁 − 휂𝑖 + 휃𝑖 

 

The following two paragraphs detail the analysis by separating inner loop 

constraints from outer loop constraints. 

 

Inner loop constraints: the first-order necessary conditions, also known as Karush–

Kuhn–Tucker (KKT) conditions to be solved for the inner loop constraints are thus for all 

𝑖 in ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧: 

 

Equation A-15: KKT conditions for inner loop constraints 

{
 
 

 
 
2(𝑋𝑖

𝑖𝑛 − 𝑥𝑖
∗) − 𝛼𝑖 − 𝛽𝑖 + 𝛾𝑖 = 0

𝛼𝑖(𝑋
∗
𝑖
𝑖𝑛 + 1 − 𝑋𝑖

𝑖𝑛) = 0

𝛽𝑖(𝑙𝑏𝑖 − 𝑋𝑖
𝑖𝑛) = 0

𝛾𝑖(𝑋𝑖
𝑖𝑛 − 𝑢𝑏𝑖) = 0

 

 

To study whether the constraints are active or not, the cases where the Lagrange 

multipliers are zero are first studied. The analysis is summarized in Table A-1. 
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Table A-1: KKT analysis for inner loop constraints 

𝜷𝒊 ≠ 𝟎 
⇒ 𝑙𝑏𝑖 − 𝑋𝑖

𝑖𝑛 = 0 ⇒ 𝑋𝑖
𝑖𝑛 = 𝑙𝑏𝑖 

Impossible as the constraint 𝑋𝑖
𝑖𝑛 ≥ 𝑋∗𝑖

𝑖𝑛 + 1 > 𝑙𝑏𝑖 would be violated. 

𝜷𝒊 = 𝟎 

𝛾𝑖 ≠ 0 

𝛼𝑖 ≠ 0 
⇒ {

𝑋𝑖
𝑖𝑛 − 𝑢𝑏𝑖 = 0

𝑋∗𝑖
𝑖𝑛 + 1 − 𝑋𝑖

𝑖𝑛 = 0
⇒ {

𝑋𝑖
𝑖𝑛 = 𝑢𝑏𝑖

𝑋𝑖
𝑖𝑛 = 𝑋∗𝑖

𝑖𝑛 + 1
 

Impossible since 𝑢𝑏𝑖 is set so that 𝑢𝑏𝑖 ≠ 𝑋
∗
𝑖
𝑖𝑛 + 1 

𝛼𝑖 = 0 

⇒ {
𝑋𝑖
𝑖𝑛 − 𝑢𝑏𝑖 = 0

2(𝑋𝑖
𝑖𝑛 − 𝑥𝑖

∗) + 𝛾𝑖 = 0
 

⇒ {
𝑋𝑖
𝑖𝑛 = 𝑢𝑏𝑖

𝛾𝑖 = −2(𝑋𝑖
𝑖𝑛 − 𝑥𝑖

∗)
 

⇒ {
𝑋𝑖
𝑖𝑛 = 𝑢𝑏𝑖

𝛾𝑖 = −2(𝑢𝑏𝑖 − 𝑥𝑖
∗)

 

𝛾𝑖 = 0 

𝛼𝑖 ≠ 0 

⇒ {
𝑋∗𝑖

𝑖𝑛 + 1 − 𝑋𝑖
𝑖𝑛 = 0

2(𝑋𝑖
𝑖𝑛 − 𝑥𝑖

∗) − 𝛼𝑖 = 0
 

⇒ {
𝑋𝑖
𝑖𝑛 = 𝑋∗𝑖

𝑖𝑛 + 1

𝛼𝑖 = 2(𝑋𝑖
𝑖𝑛 − 𝑥𝑖

∗)
 

⇒ {
𝑋𝑖
𝑖𝑛 = 𝑋∗𝑖

𝑖𝑛 + 1
𝛼𝑖 = 2

 

𝛼𝑖 = 0 

⇒ 2(𝑋𝑖
𝑖𝑛 − 𝑥𝑖

∗) = 0 ⇒ 𝑋𝑖
𝑖𝑛 = 𝑥𝑖

∗ 

Impossible as the constraint 𝑋𝑖
𝑖𝑛 ≥ 𝑋∗𝑖

𝑖𝑛 + 1 would be 

violated. Note that 𝑋∗𝑖
𝑖𝑛 = 𝑥𝑖

∗. 

 

Looking at Table A-1, there are two solutions: ൛𝑋𝑖
𝑖𝑛, 𝛼𝑖 , 𝛽𝑖, 𝛾𝑖ൟ =

൛𝑢𝑏𝑖 , 0, 0, −2(𝑢𝑏𝑖 − 𝑥𝑖
∗)ൟ and ൛𝑋𝑖

𝑖𝑛, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖ൟ = ൛𝑋
∗
𝑖
𝑖𝑛 + 1,2, 0, 0ൟ for all 𝑖 in 

⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧. Both are compared to find out which one between 𝑓(𝑋𝑖

𝑖𝑛 = 𝑢𝑏𝑖) or 

𝑓(𝑋𝑖
𝑖𝑛 = 𝑥𝑖

∗ + 1) yields the minimum value of the objective function. The design variable 

𝑋𝑖
𝑖𝑛 is only going to affect the 𝑓𝑖𝑛 part of the objective function 𝑓. Hence, it can be assumed 

that 𝑋𝑜𝑢𝑡 (or equivalently 𝑓𝑜𝑢𝑡) is fixed, and only the influence of 𝑓𝑖𝑛 is considered. 
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Equation A-16: Derivation of the inner loop constrained optimum 

0 ≤ 𝑥𝑖
∗ ≤ 𝑥𝑖

∗ + 1 ≤ 𝑢𝑏𝑖 

⇒ −𝑥𝑖
∗ ≤ 0 ≤ 1 ≤ 𝑢𝑏𝑖 − 𝑥𝑖

∗ 

⇒ 0 ≤ 1 ≤ (𝑢𝑏𝑖 − 𝑥𝑖
∗)
2

 

⇒ 𝑓𝑖𝑛(𝑥𝑖
∗) ≤ 𝑓𝑖𝑛(𝑥𝑖

∗ + 1) ≤ 𝑓𝑖𝑛(𝑢𝑏𝑖) 

 

This proves that 𝑓𝑖𝑛(𝑥𝑖
∗ + 1) ≤ 𝑓𝑖𝑛(𝑢𝑏𝑖) and that 𝑋𝑖

𝑖𝑛 = 𝑥𝑖
∗ + 1 is the global 

minimum of 𝑓𝑖𝑛 for all 𝑖 in ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋
𝑖𝑛)⟧. This can be visualized on Figure A-1, Figure 

A-2, and Figure A-3. 

 

 

Figure A-1: Constraints on the first design variable 
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Figure A-2: Constraints on the second design variable 

 

Figure A-3: Constraints on two design variables 
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Outer loop constraints: the KKT conditions for the outer loop constraints are for all 𝑖 in 

⟦1, 𝑁𝑎𝑟𝑐ℎ⟧: 

 

Equation A-17: KKT conditions for the outer loop 

{
 
 
 
 
 
 

 
 
 
 
 
 

2(𝑋𝑖
𝑜𝑢𝑡 − 𝑖)

[1 + (𝑋𝑖
𝑜𝑢𝑡 − 𝑖)2]2

− 𝛿𝑖 − 𝜖 + 휁 − 휂𝑖 + 휃𝑖 = 0

𝛿𝑖(𝑋
∗
𝑖
𝑜𝑢𝑡 + 1 − 𝑋𝑖

𝑜𝑢𝑡) = 0

𝜖 (1 − ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

) = 0

휁 ( ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

− 𝑁max) = 0

휂𝑖(−𝑋𝑖
𝑜𝑢𝑡) = 0

휃𝑖(𝑋𝑖
𝑜𝑢𝑡 − 𝑁max) = 0

 

 

Similarly to the analysis used for the inner loop constraints, cases disjunctions have to be 

made and are detailed in Table A-2. 
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Table A-2: KKT analysis for outer loop constraints 

𝜼𝒊 ≠ 𝟎 

⇒ 𝑋𝑖
𝑜𝑢𝑡 = 0 

Impossible since 𝑋𝑖
𝑜𝑢𝑡 ≥ 𝑋∗𝑖

𝑜𝑢𝑡 + 1 = 𝑖 + 1 ≥ 2 

⇒ 휂𝑖 = 0 

𝜽𝒊 ≠ 𝟎 

⇒ 𝑋𝑖
𝑜𝑢𝑡 − 𝑁max = 0 ⇒ 𝑋𝑖

𝑜𝑢𝑡 = 𝑁max 

However, from the constraints: 

∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

≤ 𝑁max ⇒ ∀𝑗 ≠ 𝑖, 𝑋𝑗
𝑜𝑢𝑡 = 0 

Impossible since 𝑋𝑖
𝑜𝑢𝑡 ≥ 𝑋∗𝑖

𝑜𝑢𝑡 + 1 = 𝑖 + 1 ≥ 2 ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧ 

⇒ 휃𝑖 = 0 

𝝐 ≠ 𝟎 

⇒ 1− ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

= 0 ⇒ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

= 1 

However, from the constraints: 

{
𝑋𝑖
𝑜𝑢𝑡 ∈ ℕ, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

𝑋𝑖
𝑜𝑢𝑡 ≥ 0, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧

⇒ {
∃𝑘, 𝑋𝑘

𝑜𝑢𝑡 = 1

∀𝑖 ≠ 𝑘, 𝑋𝑖
𝑜𝑢𝑡 = 0

 

Impossible since 𝑋𝑖
𝑜𝑢𝑡 ≥ 𝑋∗𝑖

𝑜𝑢𝑡 + 1 = 𝑖 + 1 ≥ 2 ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧ 

⇒ 𝜖 = 0 

Note that we consider the case where 𝑁𝑎𝑟𝑐ℎ ≥ 2. 

𝜻 ≠ 𝟎 

⇒ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

− 𝑁max = 0 ⇒ ∑ 𝑋𝑖
𝑜𝑢𝑡

𝑁𝑎𝑟𝑐ℎ

𝑖=1

= 𝑁max 

This constraint ensures that the total number of vehicles does not exceed 

a certain limit. For the sake of this analysis and the algorithm verification, 

this limit is always set high enough so that this constraint is not binding 

(𝑁max → +∞). Hence, we can assume 휁 = 0. 

𝜹𝒊 ≠ 𝟎 

⇒ {

2(𝑋𝑖
𝑜𝑢𝑡 − 𝑖)

[1 + (𝑋𝑖
𝑜𝑢𝑡 − 𝑖)2]2

− 𝛿𝑖 = 0

𝑋∗𝑖
𝑜𝑢𝑡 + 1 − 𝑋𝑖

𝑜𝑢𝑡 = 0

⇒ {
𝛿𝑖 =

2(𝑋𝑖
𝑜𝑢𝑡 − 𝑖)

[1 + (𝑋𝑖
𝑜𝑢𝑡 − 𝑖)2]2

𝑋𝑖
𝑜𝑢𝑡 = 𝑋∗𝑖

𝑜𝑢𝑡 + 1 = 𝑖 + 1

 

⇒ {
𝛿𝑖 =

2(𝑖 + 1 − 𝑖)

[1 + (𝑖 + 1 − 𝑖)2]2

𝑋𝑖
𝑜𝑢𝑡 = 𝑖 + 1

⇒ {
𝛿𝑖 = 1

𝑋𝑖
𝑜𝑢𝑡 = 𝑖 + 1

 

𝜹𝒊 = 𝟎 
⇒

2(𝑋𝑖
𝑜𝑢𝑡 − 𝑖)

[1 + (𝑋𝑖
𝑜𝑢𝑡 − 𝑖)2]2

= 0 ⇒ 𝑋𝑖
𝑜𝑢𝑡 = 𝑖 

Impossible since 𝑋𝑖
𝑜𝑢𝑡 ≥ 𝑋∗𝑖

𝑜𝑢𝑡 + 1 = 𝑖 + 1. 
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This time, there is only one feasible solution which is {𝑋𝑖
𝑜𝑢𝑡, 𝛿𝑖, 𝜖, 휁, 휂𝑖, 휃𝑖} =

{𝑖 + 1,1,0,0,0,0}, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧. 

 

To conclude the analysis for the constrained verification function, the solution to 

the constrained optimization problem presented in Equation A-10 is 𝑋 = [𝑋𝑐𝑜𝑢𝑡, 𝑋𝑐𝑖𝑛] 

with 𝑋𝑐𝑖
𝑜𝑢𝑡 = 𝑖 + 1, ∀𝑖 ∈ ⟦1, 𝑁𝑎𝑟𝑐ℎ⟧ and 𝑋𝑐𝑖

𝑖𝑛 = 𝑥𝑖
∗ + 1, ∀𝑖 ∈ ⟦1, 𝑁𝑣𝑎𝑟𝑠(𝑋

𝑖𝑛)⟧. These 

values correspond to the ones announced in section 5.2.2.1. 
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A.2 Optimization test functions 

This appendix details the multivariable optimization test functions used in section 

5.1.5 (see page 325) to characterize morphological reduction. The formulae of the functions 

and their global optimum are given from [236] along with a graphical representation for 

two variables. It is assumed that the design vector 𝑥 has dimensionality 𝑑. 

A.2.1 Ackley 

Expression: 𝑓(𝑥) = −𝑎 exp(−𝑏√
1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 ) − exp (

1

𝑑
∑ 𝑐𝑜𝑠(𝑐 𝑥𝑖)
𝑑
𝑖=1 ) + 𝑎 + exp(1) 

Common values are {𝑎, 𝑏, 𝑐} = {20, 0.2, 2𝜋} 

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0] 

 

 

Figure A-4: Ackley function representation 



433 

 

A.2.2 Dixon-Price 

Expression: 𝑓(𝑥) = (𝑥1 − 1)
2 + ∑ 𝑖 (2𝑥𝑖

2 − 𝑥𝑖−1)
2𝑑

𝑖=2  

Optimum: 𝑓(𝑥∗) = 0 at 𝑥𝑖
∗ = 2

− 
2𝑖−2

2𝑖 , ∀𝑖 ∈ ⟦1, 𝑑⟧ 

 

 

Figure A-5: Dixon-Price function representation 
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A.2.3 Griewank 

Expression: 𝑓(𝑥) = ∑
𝑥𝑖
2

400

𝑑
𝑖=1 −∏ cos (

𝑥𝑖

√𝑖
)𝑑

𝑖=1 + 1 

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0] 

 

  

  
 

Figure A-6: Griewank function representation over a varied range 
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A.2.4 Levy 

Expression:  

𝑓(𝑥) = sin2(𝜋𝜔1) +∑(𝜔𝑖 − 1)
2[1 + 10 sin2(𝜋𝜔𝑖 + 1)]

𝑑−1

𝑖=1

+ (𝜔𝑑 − 1)
2[1 + sin2(2𝜋𝜔𝑑)] 

With 𝜔𝑖 = 1 +
𝑥𝑖−1

4
, ∀𝑖 ∈ ⟦1, 𝑑⟧ 

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [1,1, … ,1] 

 

 

Figure A-7: Levy function representation 
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A.2.5 Michalewicz 

Expression: 𝑓(𝑥) = −∑ sin(𝑥𝑖) sin
2𝑚 (

𝑖𝑥𝑖
2

𝜋
)𝑑

𝑖=1  with 𝑥𝑖 ∈ [0, 𝜋], ∀𝑖 ∈ ⟦1, 𝑑⟧ 

Optimum: presented for the numbers of variables used in section 5.1.5. 

 

Table A-3: Optimum of the Michalewicz test function 

Dimensionality 

𝒅 

Global minima 

value 

𝒇(𝒙∗) 

Global minima location 

𝒙∗ 

1 −0.8013 2.2029 

2 −1.8013 [2.2029, 1.5708] 

3 −2.7604 [2.2029, 1.5708, 1.2850] 

4 −3.6989 [2.2029, 1.5708, 1.2850, 1.9231] 

5 −4.6877 [2.2029, 1.5708, 1.2850, 1.9231, 1.7205] 

10 −9.66015 [
2.2029, 1.5708, 1.2850, 1.1138, 1.7205,
1.5708, 1.4544, 1.3606, 1.6557, 1.5708

] 

50 −46.6491 … 

100 −88.1784 … 
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Figure A-8: Michalewicz function representation 

 

Figure A-9: Local representation of the Michalewicz function 
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A.2.6 Powell 

Expression:  

𝑓(𝑥) =∑[(𝑥4𝑖−3 + 10𝑥4𝑖−2)
2 + 5(𝑥4𝑖−1 − 𝑥4𝑖)

2 + (𝑥4𝑖−2 − 2𝑥4𝑖−1)
4 + 10(𝑥4𝑖−3 − 𝑥4𝑖)

4]

𝑑
4

𝑖=1

 

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0] 

Given that this function needs at least 4 design variables, no representation is available. 

 

A.2.7 Rastrigin 

Expression: 𝑓(𝑥) = 10𝑑 + ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑
𝑖=1  

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0] 

 

 

Figure A-10: Rastrigin function representation 
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A.2.8 Rosenbrock 

Expression: 𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]𝑑−1
𝑖=1  

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0] 

 

 

Figure A-11: Rosenbrock function representation 

  



440 

 

A.2.9 Rotated hyper-ellipsoid 

Expression: 𝑓(𝑥) = ∑ ∑ 𝑥𝑗
2𝑖

𝑗=1
𝑑
𝑖=1  

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0] 

 

 

Figure A-12: Rotated Hyper-Ellipsoid function representation 
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A.2.10 Schwefel 

Expression: 𝑓(𝑥) = 418.9829𝑑 − ∑ 𝑥𝑖 sin(√|𝑥𝑖|)
𝑑
𝑖=1  

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [420.9687,420.9687,… ,420.9687] 

 

 

Figure A-13: Schwefel function representation 
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A.2.11  Sphere 

Expression: 𝑓(𝑥) = ∑ 𝑥𝑖
2𝑑

𝑖=1  

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0] 

 

 

Figure A-14: Sphere function representation 
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A.2.12 Styblinski-Tang 

Expression: 𝑓(𝑥) =
1

2
∑ (𝑥𝑖

4 − 16𝑥𝑖
2 + 5𝑥𝑖)

𝑑
𝑖=1  

Optimum: 𝑓(𝑥∗) = −39.16599 at 𝑥∗ = [−2.903534, −2.903534, … , −2.903534] 

 

 

Figure A-15: Styblinski-Tang function representation 
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A.2.13 Sum squares 

Expression: 𝑓(𝑥) = ∑ 𝑖𝑥𝑖
2𝑑

𝑖=1  

Optimum: 𝑓(𝑥∗) = 0 at 𝑥∗ = [0,0, … ,0] 

 

 

Figure A-16: Sum of squares function representation 
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A.3 Barrier certificates formulation 

The example mesoscopic model introduced in section 4.2.4 (see page 274) 

indirectly models collisions by avoiding them through a barrier certificate method. Using 

the calculation provided in [224], this appendix provides the detailed formulation of the 

optimization problem to be solved to compute the collision-safe control commands. 

 

Problem statement: a group of 𝑁 robots is considered with position states 𝑥𝑖 , ∀𝑖 ∈ ℳ =

{1,2, … ,𝑁}. Each robot is controlled through single-integrator dynamics �̇�𝑖 = 𝑢𝑖 and this 

velocity command must be bounded by ‖𝑢𝑖‖ ≤ 𝛼, ∀𝑖 ∈ ℳ. The states and velocity 

commands from all robots are aggregated under notations 𝑥 = [𝑥1
𝑇 , 𝑥2

𝑇 , … , 𝑥𝑁
𝑇]𝑇 and 𝑢 =

[𝑢1
𝑇 , 𝑢2

𝑇 , … , 𝑢𝑁
𝑇 ]𝑇. The boundary of the testbed is defined by a rectangle [𝐵𝑙, 𝐵𝑟 , 𝐵𝑏 , 𝐵𝑡] 

respectively for left, right, bottom, and top sides. The components of vector 𝑥 are 

decomposed such that 𝑥 = [𝑥[1], 𝑥[2]]
𝑇
. 

 

Theory: the barrier certificate method is based on control barrier functions which are 

similar to Lyapunov functions in controls theory. In particular, such functions are proven 

to ensure forward set invariance: if the system starts in a safe set, it remains in it for all 

time even when subject to small perturbations. In particular, if such a function can be found 

for the considered multi-robot problem, this will provably ensure that the Robotarium 

remains collision-free for all time of the experiment. 
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Inter-robot collisions: first, the distance inequality function between robots 𝑖 and 𝑗 (𝑖 ≠

𝑗) is defined as ℎ𝑖𝑗(𝑥) = ‖𝑥𝑖 − 𝑥𝑗‖2
2
− 𝐷𝑠

2 where 𝐷𝑠 is a safety distance between any given 

pair of robots. Robots do not collide if ℎ𝑖𝑗(𝑥) ≥ 0, ∀𝑖 ≠ 𝑗 and [224] shows that ℎ𝑖𝑗 is a 

control barrier function if 
𝜕ℎ𝑖𝑗(𝑥)

𝜕𝑥
𝑢 ≥ −𝛾ℎ𝑖𝑗(𝑥) with 𝛾 ≥ 0 a margin control parameter. 

Hence, for the system to remain provably safe, the control input 𝑢 has to follow the 

constraints −2(𝑥𝑖 − 𝑥𝑗)𝑢𝑖 + 2(𝑥𝑖 − 𝑥𝑗)𝑢𝑗 ≤ 𝛾ℎ𝑖𝑗(𝑥), ∀𝑖 ≠ 𝑗 which can be formatted as a 

linear constraint on the aggregate control vector 𝑢: 𝐴𝑖𝑗𝑢 ≤ 𝑏𝑖𝑗, ∀𝑖 ≠ 𝑗 where 

 

Equation A-18: Matricial form of inter-robot collision constraints 

𝐴𝑖𝑗 = [0,… ,−2(𝑥𝑖 − 𝑥𝑗)
𝑇

⏟        
𝑟𝑜𝑏𝑜𝑡 𝑖

, … , 2(𝑥𝑖 − 𝑥𝑗)
𝑇

⏟      
𝑟𝑜𝑏𝑜𝑡 𝑗

, … ,0] 

𝑏𝑖𝑗 = 𝛾ℎ𝑖𝑗(𝑥) 

 

Note that 𝐴𝑖𝑗 ∈ ℝ
1×2𝑁, 𝑢 ∈ ℝ2𝑁×1, and 𝑏𝑖𝑗 ∈ ℝ. 

 

World boundaries collisions: a safety distance must also be maintained between the 

robots and the boundaries of the Robotarium arena. The safety inequalities as given by 

[224] are now ℎ𝑖1(𝑥) = (𝐵𝑟 − 𝑥𝑖[1])(𝑥𝑖[1] − 𝐵𝑡) ≥ 0 for the first dimension, and 

ℎ𝑖2(𝑥) = (𝐵𝑡 − 𝑥𝑖[2])(𝑥𝑖[2] − 𝐵𝑏) ≥ 0 for the second. The safety barrier condition 

ensuring the forward invariance properties is now written 
𝜕ℎ𝑖1(𝑥)

𝜕𝑥
𝑢 ≥ 𝛾ℎ𝑖1(𝑥) and similarly 

for ℎ𝑖2 which implies: 
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Equation A-19: World boundaries constraints 

{
(2𝑥𝑖[1] − 𝐵𝑟 − 𝐵𝑙)𝑢𝑖 ≤ 𝛾ℎ𝑖1(𝑥)

(2𝑥𝑖[2] − 𝐵𝑡 − 𝐵𝑏)𝑢𝑖 ≤ 𝛾ℎ𝑖2(𝑥)
, ∀𝑖 ∈ ℳ 

 

Note that the barrier constant 𝛾 is the same for all barriers of the problem. Again, 

this formulation can be formatted as a linear constraint on the controls vector 𝑢: 𝐴𝑖𝑢𝑖 ≤

𝑏𝑖, ∀𝑖 ∈ ℳ with 

 

Equation A-20: Matricial form of world boundaries constraints 

𝐴𝑖 = [
2𝑥𝑖[1] − 𝐵𝑟 − 𝐵𝑙 0

0 2𝑥𝑖[2] − 𝐵𝑡 − 𝐵𝑏
] ∈ ℝ2×2 

𝑏𝑖 = [
𝛾ℎ𝑖1(𝑥)

𝛾ℎ𝑖2(𝑥)
] ∈ ℝ2×1 

 

Minimally invasive control: thanks to the control barrier functions defined in the previous 

paragraphs, a forward invariant safe set can be constructed with the safety barrier 

certificates ൛𝑢 ∈ ℝ2𝑁×1|𝐴𝑖𝑗𝑢 ≤ 𝑏𝑖𝑗 , 𝐴𝑖𝑢𝑖 ≤ 𝑏𝑖, ∀𝑖 ≠ 𝑗ൟ which defined a convex polytope 

within which the control commands will guarantee a collision-free behavior of the 

Robotarium for all time. The idea is then to choose a control within this set which is optimal 

in some way. One possible solution is to insure that the new optimal control 𝑢∗ is not too 

different from the control  �̂� imposed by the user or the control scheme. Indeed, it is 

essential that, while collisions are avoided, the mission is still performed as initially 

planned. 
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Equation A-21: Quadratic program based controller 

𝑢∗ = argmin
𝑢∈ℝ2𝑁×1

(∑‖𝑢𝑖 − �̂�𝑖‖
2

𝑖∈ℳ

) 

𝑠. 𝑡. {

𝐴𝑖𝑗𝑢 ≤ 𝑏𝑖𝑗 ∀𝑖 ≠ 𝑗

𝐴𝑖𝑢𝑖 ≤ 𝑏𝑖 ∀𝑖 ∈ ℳ
‖𝑢𝑖‖∞ ≤ 𝛼 ∀𝑖 ∈ ℳ

 

 

This is the principle of the minimally invasive method which consists in finding the 

certificate barrier control which differs the least (in terms of the 2-norm) from the initial 

control (see Equation A-21). Given that this optimization problem is quadratic and defined 

over a polytope, quadratic programming optimization can be used. If the safety barrier 

certificates are not violated, the initial control �̂� is chosen and there is no modification from 

the initial single-integrator dynamics. In the case when the controls of the user would cause 

collisions (or robots being too close to each other with respect to the safety distance), the 

“closest” safe control command is chosen.  
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APPENDIX B 

MATLAB CODE 

 

This appendix regroups the code implemented using Matlab for each domain of the 

research questions: modeling, optimization, and exploration. It also includes the different 

scripts which were used to automate files generation, simulation, and results analysis. 

B.1 Modeling 

The files used to carry out the experiments for each type of modeling technique and 

then compare the results. 

B.1.1 Macroscopic 

rendezvousMacroscopic.m 

The main model which outputs a consensus time, position, and an execution time as a 

function of a swarm configuration (number of robots and initial velocity), and initial poses. 

function [t,x,time] = rendezvousMacroscopic(v,N,initialPositions) 
tic 
% Final position 
x = 1/N * sum(initialPositions(1:2,:),2); 
% Time to reach consensus 
t = max(sqrt(sum((initialPositions(1:2,:) - repmat(x,1,N)).^2,1)))/v; 
time = toc; 
end 

 

doe_macroscopic.m 

A script executing and collecting the results of the 40 experiments presented in section 

4.2.6 (page 281). 

% Prepare workspace 
clc 
close all 
clear 
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%% Design space 
Nvec = 2:5; 
Vvec = .01:0.01:0.1; 

  
[N,V] = meshgrid(Nvec,Vvec); 

  
%% Analysis 
T_macro = zeros(size(N)); 
X_macro = cell(size(N)); 
t_macro = zeros(size(N)); 
n1 = size(N,1); 
n2 = size(N,2); 
for i = 1:n1 
    for j = 1:n2 
        fprintf('%d/%d (%.2f%%)\n',(i-1)*n2 + j,n1*n2,100*((i-1)*n2 + 

j)/(n1*n2)) 

  
        % Load initial positions 
        

load(sprintf('../initialPoses/init_poses_%d_%.2f.mat',N(i,j),V(i,j))) 

         
        % Perform model analysis 
        [t,x,time] = rendezvousMacroscopic(V(i,j),N(i,j),x0); 

         
        % Store results 
        T_macro(i,j) = t; 
        X_macro{i,j} = x; 
        t_macro(i,j) = time; 
    end 
end 

  
save('macroscopic.mat') 

 

B.1.2 Mesoscopic 

rendezvousMesoscopic.m 

The main model which outputs a consensus time, position, and an execution time as a 

function of a swarm configuration (number of robots and initial velocity), and initial poses. 

This model uses a modified version of the Robotarium simulator available online. Indeed, 

the ability to control the number of robots generated is essential here. The main Robotarium 

constructor was hence modified to use as an input a given number of Gritbots (see 

Robotarium files here below). 
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% Experiment 
% 1 - Initializes N robots at initial_conditions 
% 2 - Performs static consensus with a maximum linear speed saturated 

at v 
% 
% Jean-Guillaume Durand 
% jdurand7@gatech.edu 
% 2016 
function [t,x,time] = rendezvousMesoscopic(v,N,initialPositions) 
% Start timer 
tic 

  
% Format initial conditions correctly 
initial_conditions = initialPositions; 

  
%% 1 - Initialize N robots at initial conditions 
% Get Robotarium object used to communicate with the robots/simulator 
rb = RobotariumBuilder(N); 

  
% Get the number of available agents from the Robotarium.  We don't 

need a 
% specific value for this algorithm 
N_available = rb.get_available_agents(); 

  
% If not enough robots for experiment, stop 
if N_available < N, return, end 

  
% Set the number of agents and whether we would like to save data.  

Then, 
% build the Robotarium simulator object! 
r = 

rb.set_number_of_agents(N).set_save_data(false).build(initial_condition

s); 

  
% Initialize x so that we don't run into problems later.  This isn't 

always 
% necessary 
x = r.get_poses(); 
r.step(); 

  
% Set some parameters for use with the barrier certificates.  We don't 

want 
% our agents to collide 
safety = 0.06; 
lambda = 0.03; 

  
% Create a barrier certificate for use with the above parameters 
unicycle_barrier_certificate = 

create_uni_barrier_certificate('SafetyRadius', safety, ... 
    'ProjectionDistance', lambda); 

  
% Create parking controller 
args = {'PositionError', 0.01, 'RotationError', 0.1}; 
init_checker = create_is_initialized(args{:}); 
automatic_parker = create_automatic_parking_controller(args{:}); 
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while(~init_checker(x, initial_conditions)) 
    % Compute velocities 
    x = r.get_poses(); 
    dxu = automatic_parker(x, initial_conditions); 
    dxu = unicycle_barrier_certificate(dxu, x); 
    % Update 
    r.set_velocities(1:N, dxu); 
    r.step(); 
end 

  
%% 2 - Perform static consensus with a maximum linear speed saturated 

at v 
% Experiment constants 
% Generate a cyclic graph Laplacian from our handy utilities.  For this 
% algorithm, any connected graph will yield consensus 
L = cycleGL(N); 

  
% Grab tools we need to convert from single-integrator to unicycle 

dynamics 
% Gain for the diffeomorphism transformation between single-integrator 

and 
% unicycle dynamics 
[si_to_uni_dyn, uni_to_si_states] = 

create_si_to_uni_mapping('ProjectionDistance', lambda); 

  
si_barrier_cert = create_si_barrier_certificate('SafetyRadius', 

safety); 

  
% Select the number of iterations for the experiment.  This value is 
% arbitrary 
iterations = 5000; % Maximum time at around 3 minutes 

  
% Initialize velocity vector for agents.  Each agent expects a 2 x 1 
% velocity vector containing the linear and angular velocity, 

respectively. 
dxi = zeros(2, N); 

  
xOld = -100*ones(3,N); 

  
%Iterate for the previously specified number of iterations 
for it = 1:iterations 
    % Retrieve the most recent poses from the Robotarium.  The time 

delay is 
    % approximately 0.033 seconds 
    x = r.get_poses(); 

     
    % Test for stopping condition 
    dx = x(1,:) - xOld(1,:); 
    dy = x(2,:) - xOld(2,:); 
    if mean(sqrt(dx.^2 + dy.^2)) < 1e-5 
        break; 
    end 
    xOld = x; 
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    % Convert to SI states 
    xi = uni_to_si_states(x); 

     
    % Algorithm 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    for i = 1:N 
        % Initialize velocity to zero for each agent.  This allows us 

to sum 
        %over agent i's neighbors 
        dxi(:, i) = [0 ; 0]; 

         
        % Get the topological neighbors of agent i based on the graph 
        %Laplacian L 
        neighbors = topological_neighbors(L, i); 

         
        % Iterate through agent i's neighbors 
        for j = neighbors 

             
            % For each neighbor, calculate appropriate consensus term 

and 
            %add it to the total velocity 
            dxi(:, i) = dxi(:, i) + (xi(:, j) - xi(:, i)); 
        end 
    end 
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
    % Utilize barrier certificates 
    dxi = si_barrier_cert(dxi, xi); 

     
    % Transform the single-integrator to unicycle dynamics using the 

the 
    % transformation we created earlier 
    dxu = si_to_uni_dyn(dxi, x); 

     
    % Impose velocity v on agents 
    linear = dxu(1,:); 
    linear(linear > v) = v; 
    linear(linear < -v) = -v; 
    dxu(1,:) = linear; 

     
    % Set velocities of agents 1,...,N 
    r.set_velocities(1:N, dxu); 

     
    % Send the previously set velocities to the agents.  This function 

must be called! 
    r.step(); 
end 

  
% Though we didn't save any data, we still should call 

r.call_at_scripts_end() after our 
% experiment is over! 
r.call_at_scripts_end(); 

  
% Compute results 
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t = it*r.time_step; % Time to reach consensus 
x = mean(r.poses(1:2,:),2); % Final consensus position 
time = toc; % Time for model to run 
end 

 

doe_mesoscopic.m 

% Prepare workspace 
clc 
close all 
clear 

  
% Initialize Robotarium 
cd('robotarium-matlab-simulator-master') 
run('init.m') 
cd('..') % Go back to initial folder 

  
%% Design space 
Nvec = 2:5; 
Vvec = .01:0.01:0.1; 

  
[N,V] = meshgrid(Nvec,Vvec); 

  
%% Analysis 
T_meso = zeros(size(N)); 
X_meso = cell(size(N)); 
t_meso = zeros(size(N)); 
n1 = size(N,1); 
n2 = size(N,2); 
for i = 1:n1 
    for j = 1:n2 
        fprintf('%d/%d (%.2f%%)\n',(i-1)*n2 + j,n1*n2,100*((i-1)*n2 + 

j)/(n1*n2)) 

  
        % Load initial positions 
        

load(sprintf('../initialPoses/init_poses_%d_%.2f.mat',N(i,j),V(i,j))) 

         
        % Perform model analysis 
        [t,x,time] = rendezvousMesoscopic(V(i,j),N(i,j),x0); 

         
        % Store results 
        T_meso(i,j) = t; 
        X_meso{i,j} = x; 
        t_meso(i,j) = time; 
    end 
end 

  
save('mesoscopic.mat') 

 

The following files are the modified Robotarium files. 
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ARobotarium.m 

classdef ARobotarium < handle 
    %APIAbstract This is an interface for the Robotarium class that 
    %ensures the simulator and the robots match up properly.  You 

should 
    %definitely NOT MODIFY this file.  Also, don't submit this file 

with 
    %your algorithm.  

     
    properties (GetAccess = protected, SetAccess = protected) 
        robot_handle 
        robot_body 

         
        % Stuff for saving data  
        file_path  
        current_file_size  
        current_saved_iterations  
        % Path to mat file to keep this in memory 
        mat_file_path 
    end 

     
    properties (GetAccess = public, SetAccess = protected) 
        % Time step for the Robotarium 
        time_step = 0.033 
        maxLinearVelocity = 0.1 
        maxAngularVelocity = 2*pi 
        robot_diameter = 0.08 
        number_of_agents  
        velocities 
        poses 

                 
        %Saving parameters  
        save_data 

         
        % Figure handle for simulator 
        figure_handle 

         
        % Arena parameters 
        boundaries = [-0.6, 0.6, -0.35, 0.35];     
        boundary_points = {[-0.6, 0.6, 0.6, -0.6], [-0.35, -0.35, 0.35, 

0.35]}; 
    end 

     
    methods (Abstract)                   

         
        %Try this one out...  
        % We can use this to finish saving / clean up after MQTT 
        call_at_scripts_end(this) 

         
        % Getters  
        % Get poses must be implemented independently 
        get_poses(this) 
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        %Update functions 
        step(this); 
    end  

     
    methods          
        function this = ARobotarium(number_of_agents, save_data, 

initial_poses) 
            this.number_of_agents = number_of_agents; 
            this.save_data = save_data; 

             
            this.velocities = zeros(2, number_of_agents); 
            this.poses = initial_poses; 

             
            % If save data, set up the file saving variables 
            if(save_data) 
                date = datetime('now'); 
                this.file_path = 'robotarium_data'; 
                this.file_path = strcat(this.file_path, '_', 

num2str(date.Month), '_', num2str(date.Day), '_', ... 
                num2str(date.Year), '_', num2str(date.Hour), '_', ... 
                num2str(date.Minute), '_', num2str(round(date.Second)), 

'.mat'); 

             
                this.current_file_size = 100; 
                this.current_saved_iterations = 1; 

                 
                robotarium_data = zeros(5*number_of_agents, 

this.current_file_size);             
                save(this.file_path, 'robotarium_data', '-v7.3') 

             
                this.mat_file_path = matfile(this.file_path, 

'Writable', true);             
            end 
        end 

         
        function agents = get_number_of_agents(this) 
           agents = this.number_of_agents;  
        end 

         
        function this = set_velocities(this, ids, vs) 
            N = size(vs, 2); 

             
            assert(N<=this.number_of_agents, 'Column size of vs (%i) 

must be <= to number of agents (%i)', ...  
                N, this.number_of_agents); 

                      
            % Threshold velocities 
            for i = 1:N 
                if(abs(vs(1, i)) > this.maxLinearVelocity)  
                   vs(1, i) = this.maxLinearVelocity*sign(vs(1,i));  
                end 

                 
                if(abs(vs(2, i)) > this.maxAngularVelocity) 
                   vs(2, i) = this.maxAngularVelocity*sign(vs(2, i));  
                end 
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            end 

             
            this.velocities(:, ids) = vs; 
        end 

         
        function iters = time2iters(this, time) 
           iters = time / this.time_step;  
        end 
    end 

     
    methods (Access = protected) 

         
        % Initializes visualization of GRITSbots 
        function initialize_visualization(this) 
            % Initialize variables 
            numRobots = this.number_of_agents; 
            offset = 0.05; 

                     
            % Scale factor (max. value of single Gaussian) 
            scaleFactor = 0.5;   
            figPhi = figure; 
            this.figure_handle = figPhi; 

             
            % Plot Robotarium boundaries 
            patch('XData', this.boundary_points{1}, 'YData', 

this.boundary_points{2}, ... 
            'FaceColor', 'none', ... 
            'LineWidth', 3, ...  
            'EdgeColor', [0, 0.74, 0.95]); 

             
            %plot(im) 
            set(figPhi,'color','white','menubar','none'); 

             
            % Set axis 
            robotPlaneAxes = gca; 

             
            % Limit view to xMin/xMax/yMin/yMax 
            axis(robotPlaneAxes,[this.boundaries(1) - 

offset,this.boundaries(2)+offset,this.boundaries(3)-

offset,this.boundaries(4)+offset]) 
            caxis([0,1.5*scaleFactor]) 
            set(robotPlaneAxes,'PlotBoxAspectRatio',[1 1 

1],'DataAspectRatio',[1 1 1]) 

             
            % Store axes 
            axis(robotPlaneAxes,'off') 

             
            set(robotPlaneAxes,'position',[0 0 1 

1],'units','normalized','YDir','normal') 

  
            hold on % "This ride's about to get bumpy!" 

  
            % Let's jump through hoops to make the robot diameter look 

to data scale 
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            curUnits = get(robotPlaneAxes, 'Units'); 
            set(robotPlaneAxes, 'Units', 'Points'); 
            set(robotPlaneAxes, 'Units', curUnits); 

             
            xlim([-0.65, 0.65]); ylim([-0.35, 0.35]);  % static limits 

  
            % Static legend 
            %set(gca,'LegendColorbarListeners',[]);  
            setappdata(gca,'LegendColorbarManualSpace',1); 
            setappdata(gca,'LegendColorbarReclaimSpace',1); 

             
            assert(numRobots <= 100, 'Number of robots (%i) must be <= 

100', numRobots); 

  
            this.robot_handle = cell(1, numRobots); 
            %load('patches.mat'); 
            patches = gritsbot_patch(100); 
            num_patches = numel(patches); 
            chosen_patches = randsample(1:num_patches, numRobots); 
            patch_data = patches(chosen_patches); 
            for ii = 1:numRobots 
                data = patch_data{ii}; 
                this.robot_body = data.robot_body; 
                x  = this.poses(1, ii); 
                y  = this.poses(2, ii); 
                th = this.poses(3, ii); 
                poseTransformationMatrix = [... 
                    cos(th) -sin(th) x; 
                    sin(th)  cos(th) y; 
                    0 0 1]; 
                robot_bodyTransformed = 

data.robot_body*poseTransformationMatrix'; 
                this.robot_handle{ii} = patch(... 
                          'Vertices', robot_bodyTransformed, ... 
                          'Faces',data.robot_face, ... 
                          'FaceColor', 'flat', ... 
                          'FaceVertexCData',data.robot_color, ... 
                          'EdgeColor','none'); 
            end 
        end  

         
        function draw_robots(this) 
            for ii = 1:this.number_of_agents 
                x  = this.poses(1, ii); 
                y  = this.poses(2, ii); 
                th = this.poses(3, ii); 
                poseTransformationMatrix = [... 
                    cos(th) -sin(th) x; 
                    sin(th)  cos(th) y; 
                    0                    0                   1   ]; 
                robotBodyTransformed = 

this.robot_body*poseTransformationMatrix'; 
                set(this.robot_handle{ii},'Vertices', 

robotBodyTransformed); 
            end 
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            if(this.number_of_agents <= 6) 
                drawnow 
            else 
                drawnow limitrate 
            end 
        end 

         
        function save(this)                               
            this.mat_file_path.robotarium_data(:, 

this.current_saved_iterations) = ... 
                reshape([this.poses ; this.velocities], [], 1); 

             
%             % Use array list expansion criterion to amortize file 
%             % expansions 
%             if(this.current_saved_iterations > 

(this.current_file_size / 2)) 
%                 new_robotarium_data = zeros(5*this.number_of_agents, 

this.current_file_size * 2); 
%                 new_robotarium_data(:, 

1:this.current_saved_iterations) = ... 
%                     this.mat_file_path.robotarium_data(:, 

1:this.current_saved_iterations); 
%                  
%                 % Set file to new data 
%                 this.mat_file_path.robotarium_data = 

new_robotarium_data;  
%             end 

                         
            this.current_saved_iterations = 

this.current_saved_iterations + 1; 
        end 
    end 
end 

  

 

ARobotariumBuilder.m 

classdef ARobotariumBuilder < handle 
    %ARobotariumBuilder This is an abstract class for the 

RobotariumBuilder class 
    %that models the manner in which a Robotarium object is created 
    % This file should never be modified.  Otherwise, your code will 

not 
    % execute properly on the Robotarium 

     
    properties (GetAccess = public, SetAccess = protected) 
        available_agents 
        number_of_agents 
        save_data = true 
    end 

     
    methods (Abstract) 
        % Builds the Robotarium object.  Definitely backend/sim 

dependent. 
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        get_available_agents(this); 
        build(this); 
    end 

     
    methods                          
        function this = set_number_of_agents(this, number_of_agents) 

             
            assert(number_of_agents > 0, 'The provided number of agents 

(%i) must be > 0', number_of_agents); 

             
            this.number_of_agents = number_of_agents; 
        end 

         
        function this = set_save_data(this, save_data) 

             
            assert(save_data >= 0 || save_data < 0, 'Save data must 

evaluate to true or false in a boolean expression'); 

             
            this.save_data = save_data; 
        end 
    end    
end 

  

 

RobotariumBuilder.m 

%% RobotariumBuilder 
% This class handles the creation of the Robotarium object.  In 

particular, 
% it controls and sets the parameters for your simulation/experiment. 
%% Function Summary  
% * get_available_agents(): $\emptyset \to \mathbf{Z}^{+}$ returns the 

number of available agents 
% (random for each instantiation) 
% * set_number_of_agents(): $\mathbf{Z}^{+} \to RobotariumBuilder$ sets 

the number of 
% agents, returning the RobotariumBuilder object 
% * set_save_data(): $\{false, true\} \to RobotariumBuilder$ sets 

whether 
% to save data for this experiment.   
% * build(): $\emptyset \to Robotarium$ builds a Robotarium object with 

the 
% specified parameters 
%% Example Usage  
%   % Example showing potential usage of the RobotariumBuilder object. 
%   % Note that get_available_agents() returns the number of available 
%   % agents, which is random.  If you need a particular number of 

agents, 
%   % this should be specified in the experiment descriptor when you 
%   % eventually submit your experiment to the Robotarium.   
%   % Or you can design your experiment to handle any number of agents. 
% 
%   % set_save_data() controls whether the Robotarium records 
%   % your simulation/experimental data. 
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% 
%   robo_builder = RobotariumBuilder()  
%   N = robo_builder.get_available_agents() 
%   robo_obj = 
%   robo_builder.set_number_of_agents(N).set_save_data(true).build() 

  
classdef RobotariumBuilder < ARobotariumBuilder 
    %ROBOTARIUMBUILDER This class handles creation of the Robotarium 

object 
    %that communicates with the GRITSbots. 
    %  This class is really just a helper to assist with creating the 
    %  Robotarium object.  In particular, this object allows you to set 
    %  properties for your simulation and eventual experiment.  Right 

now, 
    %  these properties are: number of agents and whether to save data. 

     
    % THIS CLASS SHOULD NEVER BE MODIFIED 

     
    % Gets properties from abstract class as well. 
    properties 
        boundaries = [-0.6, 0.6, -0.35, 0.35];  
        robot_diameter = 0.08 
    end 

     
    methods 

         
        function this = RobotariumBuilder(N) 
          this.available_agents = N;%randi(14) + 1;  
          this.number_of_agents = -1; 
        end 

         
        function number_of_agents = get_available_agents(this) 
           number_of_agents = this.available_agents; 
        end 

         
        function robotarium_obj = build(this,initial_poses) 

             
            assert(this.number_of_agents > 0, 'You must set the number 

of agents for this experiment'); 

             
%             arena_width = this.boundaries(2) - this.boundaries(1); 
%             arena_height = this.boundaries(4) - this.boundaries(3); 
%              
%             numX = floor(arena_width / this.robot_diameter); 
%             numY = floor(arena_height / this.robot_diameter); 
%             values = randperm(numX * numY, this.number_of_agents); 
%              
%             initial_poses = zeros(3, this.number_of_agents); 
%              
%             for i = 1:this.number_of_agents 
%                [x, y] = ind2sub([numX numY], values(i)); 
%                x = x*this.robot_diameter - (arena_width/2);  
%                y = y*this.robot_diameter - (arena_height/2); 
%                initial_poses(1:2, i) = [x ; y]; 
%             end 
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%                                                          
%             initial_poses(3, :) = rand(1, 

this.number_of_agents)*2*pi; 
            robotarium_obj = Robotarium(this.number_of_agents, 

this.save_data, initial_poses);             
        end 
    end   
end 

  

 

Robotarium.m 

%% Robotarium 
% A class that models your communications with the GRITSbots! 
%   This class handles retrieving the poses of agents, setting their 
%   velocities, iterating the simulation, and saving data. 
%% Method Description 
% * get_poses(): $\emptyset \to \mathbf{R}^{3 \times N}$ retrieves the 
% poses of the agents in a 3 x N vector, where each column contains the 
% pose of an agent. 
% * set_velocities(): $\mathbf{R}^{2 \times N} \to Robotarium$ sets the 
% velocities of each agent using a 2 x N vector.  Each column 

represents 
% the linear and angular velocity of an agent. 
% * step(): $\emptyset \to \emptyset$ iterates the simulation, updating 

the 
% state of each agent.  This function should be called for each 

"iteration" 
% of your experiment.  Additionally, it should only be called once per 

call 
% of get_poses(). 

  
classdef Robotarium < ARobotarium 
    %Robotarium This is the Robotarium simulator object that represents 
    %your communications with the GRITSbots. 
    %   This class handles retrieving the poses of agents, setting 

their 
    %   velocities, iterating the simulation, and saving data. 

  
    % THIS CLASS SHOULD NEVER BE MODIFIED 

  
    properties (GetAccess = private, SetAccess = private) 
        previous_timestep 
        checked_poses_already = false 
        called_step_already = true 
        x_lin_vel_coef = 0.86; 
        y_lin_vel_coef = 0.81; 
        ang_vel_coef = 0.46; 
    end 

  
    methods 

  
        function this = Robotarium(number_of_agents, save_data, 

initial_poses) 
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            this = this@ARobotarium(number_of_agents, save_data, 

initial_poses); 
            this.previous_timestep = tic; 

  
            this.initialize_visualization() 
        end 

  
        function poses = get_poses(this) 

  
            assert(~this.checked_poses_already, 'Can only call 

get_poses() once per call of step()!'); 

  
            poses = this.poses; 

  
            %Include delay to mimic behavior of real system 
            this.previous_timestep = tic; 

  
            %Make sure it's only called once per iteration 
            this.checked_poses_already = true; 
            this.called_step_already = false; 
        end 

  
        function step(this) 

  
            assert(~this.called_step_already, 'Make sure you call 

get_poses before calling step!'); 

  
            %Vectorize update to states 
            i = 1:this.number_of_agents; 

  
            total_time = this.time_step + max(0, 

toc(this.previous_timestep) - this.time_step); 

  
            %Update velocities using unicycle dynamics 
            this.poses(1, i) = this.poses(1, i) + 

this.x_lin_vel_coef*total_time.*this.velocities(1, 

i).*cos(this.poses(3, i)); 
            this.poses(2, i) = this.poses(2, i) + 

this.y_lin_vel_coef*total_time.*this.velocities(1, 

i).*sin(this.poses(3, i)); 
            this.poses(3, i) = this.poses(3, i) + 

this.ang_vel_coef*total_time.*this.velocities(2, i); 

  
            %Ensure that we're in the right range 
            this.poses(3, i) = atan2(sin(this.poses(3, i)), 

cos(this.poses(3, i))); 

  
            %Allow getting of poses again 
            this.checked_poses_already = false; 
            this.called_step_already = true; 

  
            if(this.save_data) 
                this.save(); 
            end 
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            this.draw_robots(); 
        end 

  
        function call_at_scripts_end(this) 
            if(this.save_data) 
                this.mat_file_path.robotarium_data = 

this.mat_file_path.robotarium_data(:, 1:(this.current_saved_iterations-

1)); 
            end 
        end 
    end 
end 

 

 

B.1.3 Microscopic 

This microscopic modeling section is differently organized since the microscopic 

simulation does not happen in Matlab itself but in the ROS/Gazebo framework. Hence, this 

section mostly contains scripts used to generate proper simulation files for ROS and 

Gazebo, as well as the scripts necessary to parse the generated results files. The 

ROS/Gazebo files are later given in APPENDIX C page 622. 

 

generateLaunchFile.m 

Generates a launch file to be used directly by the command roslaunch to run the consensus 

mission with the microscopic model. 

function generateLaunchFile(v,N,initialPositions) 
% Create launch file 
if isunix 
    filename = sprintf('launch/robotarium_%d_%3.2f.launch',N,v); 
else 
    filename = sprintf('launch/robotarium_%d_%3.2f.launch',N,v); 
end 
fileID = fopen(filename,'w'); 

  
% Add headers 
fprintf(fileID,'<?xml version="1.0"?>');fprintf(fileID,'\n'); 
fprintf(fileID,'<launch>');fprintf(fileID,'\n'); 
fprintf(fileID,'    <!-- Environment -->');fprintf(fileID,'\n'); 
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fprintf(fileID,'    <include file="$(find 

gazebo_ros)/launch/empty_world.launch">');fprintf(fileID,'\n'); 
fprintf(fileID,'        <arg name="world_name" value="$(find 

gritbot_gazebo)/worlds/robotarium.world"/>');fprintf(fileID,'\n'); 
fprintf(fileID,'        <arg name="paused" 

value="false"/>');fprintf(fileID,'\n'); 
fprintf(fileID,'        <arg name="use_sim_time" 

value="true"/>');fprintf(fileID,'\n'); 
fprintf(fileID,'        <arg name="gui" 

value="true"/>');fprintf(fileID,'\n'); 
fprintf(fileID,'        <arg name="headless" 

value="false"/>');fprintf(fileID,'\n'); 
fprintf(fileID,'        <arg name="debug" 

value="false"/>');fprintf(fileID,'\n'); 
fprintf(fileID,'    </include>');fprintf(fileID,'\n'); 
fprintf(fileID,'');fprintf(fileID,'\n'); 

  
% Add robots 
fprintf(fileID,'    <!-- Robots -->');fprintf(fileID,'\n'); 
for i = 1:N 
    fprintf(fileID,'    <node name="gritbot%d" ns="gritbot%d" 

pkg="gazebo_ros" type="spawn_model" args="-file $(find 

gritbot_description)/urdf/gritbot_%d.urdf -urdf -x %3.2f -y %3.2f -z 0 

-Y %3.2f -model gritbot%d" />',... 
        

i,i,i,initialPositions(1,i),initialPositions(2,i),initialPositions(3,i)

,i);fprintf(fileID,'\n'); 
end 
fprintf(fileID,'    ');fprintf(fileID,'\n'); 

  
% Add footers 
fprintf(fileID,'    <!-- Robotarium tracker -->');fprintf(fileID,'\n'); 
fprintf(fileID,'    <node name="tracker" ns="robotarium" 

pkg="gritbot_navigation" type="tracker" />');fprintf(fileID,'\n'); 
fprintf(fileID,'');fprintf(fileID,'\n'); 
fprintf(fileID,'    <!-- Data logger -->');fprintf(fileID,'\n'); 
fprintf(fileID,'    <node name="logger" ns="robotarium" 

pkg="gritbot_navigation" type="logger" 

args="/home/jdurand7/Dropbox/phd/code/modeling/microscopic/logs/log_%d_

%3.2f.csv" />',N,v);fprintf(fileID,'\n'); 
fprintf(fileID,'    ');fprintf(fileID,'\n'); 
fprintf(fileID,'    <!-- Static consensus algorithm --

>');fprintf(fileID,'\n'); 
fprintf(fileID,'    <!-- NOTE: this node is required, if it stops, the 

whole simulation stops -->');fprintf(fileID,'\n'); 
fprintf(fileID,'    <node name="consensus" ns="robotarium" 

pkg="gritbot_navigation" type="consensus" args="%3.2f" output="screen" 

required="true"/>',v);fprintf(fileID,'\n'); 
fprintf(fileID,'</launch>'); 

  
% Close file 
fclose(fileID); 
end 
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Example of generated file: robotarium_3_0.02.launch 

<?xml version="1.0"?> 

<launch> 

    <!-- Environment --> 

    <include file="$(find gazebo_ros)/launch/empty_world.launch"> 

        <arg name="world_name" value="$(find 

gritbot_gazebo)/worlds/robotarium.world"/> 

        <arg name="paused" value="false"/> 

        <arg name="use_sim_time" value="true"/> 

        <arg name="gui" value="true"/> 

        <arg name="headless" value="false"/> 

        <arg name="debug" value="false"/> 

    </include> 

 

    <!-- Robots --> 

    <node name="gritbot1" ns="gritbot1" pkg="gazebo_ros" 

type="spawn_model" args="-file $(find 

gritbot_description)/urdf/gritbot_1.urdf -urdf -x 0.10 -y 0.05 -z 0 -Y 

1.53 -model gritbot1" /> 

    <node name="gritbot2" ns="gritbot2" pkg="gazebo_ros" 

type="spawn_model" args="-file $(find 

gritbot_description)/urdf/gritbot_2.urdf -urdf -x -0.20 -y 0.05 -z 0 -Y 

2.08 -model gritbot2" /> 

    <node name="gritbot3" ns="gritbot3" pkg="gazebo_ros" 

type="spawn_model" args="-file $(find 

gritbot_description)/urdf/gritbot_3.urdf -urdf -x 0.00 -y -0.15 -z 0 -Y 

5.55 -model gritbot3" /> 

     

    <!-- Robotarium tracker --> 

    <node name="tracker" ns="robotarium" pkg="gritbot_navigation" 

type="tracker" /> 

 

    <!-- Data logger --> 

    <node name="logger" ns="robotarium" pkg="gritbot_navigation" 

type="logger" 

args="/home/jdurand7/Dropbox/phd/code/modeling/microscopic/logs/log_3_0

.02.csv" /> 

     

    <!-- Static consensus algorithm --> 

    <!-- NOTE: this node is required, if it stops, the whole simulation 

stops --> 

    <node name="consensus" ns="robotarium" pkg="gritbot_navigation" 

type="consensus" args="0.02" output="screen" required="true"/> 

</launch> 

 

doe_microscopic.m 

% Prepare workspace 
clc 
close all 
clear 
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%% Design space 
Nvec = 2:5; 
Vvec = .01:0.01:0.1; 

  
[N,V] = meshgrid(Nvec,Vvec); 

  
% Analysis 
T_micro = zeros(size(N)); 
X_micro = cell(size(N)); 
t_micro = zeros(size(N)); 
n1 = size(N,1); 
n2 = size(N,2); 

  
%% 1) Generate launch files 
for i = 1:n1 
    for j = 1:n2 
        fprintf('Generating launch file %d/%d (%.2f%%)\n',(i-1)*n2 + 

j,n1*n2,100*((i-1)*n2 + j)/(n1*n2)) 

  
        % Load initial positions 
        

load(sprintf('../initialPoses/init_poses_%d_%.2f.mat',N(i,j),V(i,j))) 

         
        % Create corresponding ROS launch file 
        generateLaunchFile(V(i,j),N(i,j),x0); 
    end 
end 

  
% 2) Run batch ROS manually here 
% roscore 
% sh 

/home/jdurand7/Dropbox/phd/code/plots/modeling/launch/process_batch.sh 

  
% 3) Parse results 

 

process_batch.sh 

A small shell script which runs all the required launch files contained in the experiments 

folder, one by one. 

FILES=/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/*.lau

nch 

 

# Initialize log file 

> /home/jdurand7/Dropbox/phd/code/modeling/microscopic/logs/log.txt 

 

for f in $FILES 

do 

    # Iterate 

    i=$((i+1)) 
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    # Display info 

    echo "" 

    echo "#########################################################" 

    echo "Running Case $i" 

    echo "File $f" 

    echo "" 

 

    # Run ROS case 

    echo $f >> 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/logs/log.txt 

    date +%s.%N >> 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/logs/log.txt 

    roslaunch $f 

    date +%s.%N >> 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/logs/log.txt 

done 

 

parseLogs.m 

A high-level script which parses the logs from all experiments and saves the results in a 

MAT-file just like the macroscopic and mesoscopic model experiments. 

% Prepare workspace 
clc 
close all 
clear 

  
%% Design space 
Nvec = 2:5; 
Vvec = .01:0.01:0.1; 

  
[N,V] = meshgrid(Nvec,Vvec); 

  
%% Analysis 
T_micro = zeros(size(N)); 
X_micro = cell(size(N)); 
n1 = size(N,1); 
n2 = size(N,2); 

  
% Load data about runtimes 
data = importlogfile('logs/log.txt'); 
% Compute total run time for each experiment 
time = zeros(n1,n2);%data(3:3:end) - data(2:3:end); 
% Reformat data 
t_micro = reshape(time,n1,n2); 

  
% Parse results files based on the DOE 
for i = 1:n1 
    for j = 1:n2 
        fprintf('Parsing output file %d/%d (%.2f%%)\n',(i-1)*n2 + 

j,n1*n2,100*((i-1)*n2 + j)/(n1*n2)) 
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        % Perform model analysis 
        [t,x] = 

parseOutputFile(sprintf('logs/log_%d_%3.2f.csv',N(i,j),V(i,j))); 
        T_micro(i,j) = t; 
        X_micro{i,j} = x; 
    end 
end 

  
save('microscopic.mat') 

 

importelogfile.m 

A parser which reads the log.txt file containing the starting and ending times of each 

experiment. 

function log1 = importlogfile(filename, startRow, endRow) 
%IMPORTFILE Import numeric data from a text file as column vectors. 
%   LOG1 = IMPORTFILE(FILENAME) Reads data from text file FILENAME for 

the 
%   default selection. 
% 
%   LOG1 = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data from rows 
%   STARTROW through ENDROW of text file FILENAME. 
% 
% Example: 
%   log1 = importfile('log.txt',1, 120); 
% 
%    See also TEXTSCAN. 

  
% Auto-generated by MATLAB on 2016/11/14 18:40:35 

  
%% Initialize variables. 
delimiter = ''; 
if nargin<=2 
    startRow = 1; 
    endRow = inf; 
end 

  
%% Read columns of data as strings: 
% For more information, see the TEXTSCAN documentation. 
formatSpec = '%s%[^\n\r]'; 

  
%% Open the text file. 
fileID = fopen(filename,'r'); 

  
%% Read columns of data according to format string. 
% This call is based on the structure of the file used to generate this 
% code. If an error occurs for a different file, try regenerating the 

code 
% from the Import Tool. 
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dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 

'Delimiter', delimiter, 'HeaderLines', startRow(1)-1, 'ReturnOnError', 

false); 
for block=2:length(startRow) 
    frewind(fileID); 
    dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-

startRow(block)+1, 'Delimiter', delimiter, 'HeaderLines', 

startRow(block)-1, 'ReturnOnError', false); 
    dataArray{1} = [dataArray{1};dataArrayBlock{1}]; 
end 

  
%% Close the text file. 
fclose(fileID); 

  
%% Convert the contents of columns containing numeric strings to 

numbers. 
% Replace non-numeric strings with NaN. 
raw = repmat({''},length(dataArray{1}),length(dataArray)-1); 
for col=1:length(dataArray)-1 
    raw(1:length(dataArray{col}),col) = dataArray{col}; 
end 
numericData = NaN(size(dataArray{1},1),size(dataArray,2)); 

  
% Converts strings in the input cell array to numbers. Replaced non-

numeric 
% strings with NaN. 
rawData = dataArray{1}; 
for row=1:size(rawData, 1); 
    % Create a regular expression to detect and remove non-numeric 

prefixes and 
    % suffixes. 
    regexstr = '(?<prefix>.*?)(?<numbers>([-

]*(\d+[\,]*)+[\.]{0,1}\d*[eEdD]{0,1}[-+]*\d*[i]{0,1})|([-

]*(\d+[\,]*)*[\.]{1,1}\d+[eEdD]{0,1}[-+]*\d*[i]{0,1}))(?<suffix>.*)'; 
    try 
        result = regexp(rawData{row}, regexstr, 'names'); 
        numbers = result.numbers; 

         
        % Detected commas in non-thousand locations. 
        invalidThousandsSeparator = false; 
        if any(numbers==','); 
            thousandsRegExp = '^\d+?(\,\d{3})*\.{0,1}\d*$'; 
            if isempty(regexp(numbers, thousandsRegExp, 'once')); 
                numbers = NaN; 
                invalidThousandsSeparator = true; 
            end 
        end 
        % Convert numeric strings to numbers. 
        if ~invalidThousandsSeparator; 
            numbers = textscan(strrep(numbers, ',', ''), '%f'); 
            numericData(row, 1) = numbers{1}; 
            raw{row, 1} = numbers{1}; 
        end 
    catch me 
    end 
end 
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%% Replace non-numeric cells with NaN 
R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-

numeric cells 
raw(R) = {NaN}; % Replace non-numeric cells 

  
%% Allocate imported array to column variable names 
log1 = cell2mat(raw(:, 1)); 

 

parseOutputFile.m 

A function parsing log files from a given experiment, it directly outputs the consensus time 

as well as the consensus location after analyzing the log. 

function [t,x] = parseOutputFile(filename) 
% Read file data 
M = csvread(filename); 

  
% Final position 
x = [mean(M(end,2:2:end-1)); mean(M(end,3:2:end))]; 

  
% Time to reach consensus 
i = 100; 
count = 0; 
d = 0; 
d_prev = 1; 
while i < size(M,1) && count < 25 
    if abs(d-d_prev) < 1e-5 
        count = count + 1; 
    else 
        count = 0; 
    end 

     
    d_prev = d; 
    dx = M(i,2:2:end-1) - M(i-1,2:2:end-1); 
    dy = M(i,3:2:end) - M(i-1,3:2:end); 
    d = mean(sqrt(dx.^2 + dy.^2)); 

     
    % Increment 
    i = i + 1; 
end     
t = M(i-25,1) - M(1,1); 

  
% Last N iterations are stopping the algorithm 
% i = size(M,1); 
% t = M(i-25,1) - M(1,1); 
end 
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Example of log file: log_3_0.02.csv 

A log file generated after a ROS experiment. The first column is the simulation time and 

the following columns are the x, y coordinate pairs for each robot (3 in this case). 

5.128000000,-0.2,0.05,0.1,0.05,8.64825e-16,-0.15 

5.160000000,-0.2,0.05,0.1,0.05,8.64825e-16,-0.15 

5.193000000,-0.2,0.05,0.1,0.05,8.64825e-16,-0.15 

5.227000000,-0.2,0.05,0.1,0.05,8.64825e-16,-0.15 

5.260000000,-0.2,0.05,0.1,0.05,8.64825e-16,-0.15 

5.293000000,-0.2,0.05,0.1,0.05,8.64825e-16,-0.15 

5.327000000,-0.2,0.05,0.1,0.05,8.64825e-16,-0.15 

5.360000000,-0.199992,0.0499854,0.0999993,0.0499833,8.64825e-16,-0.15 

5.393000000,-0.199695,0.0493689,0.100013,0.0492991,8.64825e-16,-0.15 

5.427000000,-0.199695,0.0493689,0.100013,0.0492991,8.64825e-16,-0.15 

5.460000000,-0.199487,0.0487697,0.100098,0.0486705,8.64825e-16,-0.15 

5.493000000,-0.19934,0.0481185,0.100261,0.0480231,-0.000266759,-0.149774 

5.527000000,-0.199269,0.0474546,0.100497,0.0473988,-0.000810799,-0.149391 

5.560000000,-0.199275,0.046787,0.100803,0.0468056,-0.00139606,-0.149072 

5.593000000,-0.199358,0.0461246,0.101175,0.0462511,-0.00201478,-0.148821 

5.627000000,-0.199358,0.0461246,0.101175,0.0462511,-0.00201478,-0.148821 

5.660000000,-0.199517,0.0454761,0.101314,0.0460622,-0.00265829,-0.148643 

5.693000000,-0.19975,0.0448503,0.100824,0.0465147,-0.003318,-0.14854 

5.727000000,-0.200053,0.0442552,0.100286,0.0469065,-0.00398513,-0.148515 

5.761000000,-0.200385,0.0437513,0.099706,0.047234,-0.00465079,-0.148566 

5.793000000,-0.199993,0.0442115,0.0990911,0.047494,-0.0053061,-0.148694 

5.827000000,-0.199993,0.0442115,0.0990911,0.047494,-0.0053061,-0.148694 

5.860000000,-0.199506,0.044667,0.0984503,0.0476814,-0.00594233,-0.148896 

5.893000000,-0.19897,0.0450623,0.0977922,0.0477938,-0.006551,-0.14917 

5.927000000,-0.198392,0.0453934,0.0971255,0.0478295,-0.00675009,-0.149279 

5.960000000,-0.197779,0.0456574,0.0964592,0.0477881,-0.0063142,-0.148939 

5.993000000,-0.197123,0.0458527,0.095785,0.0476711,-0.00582346,-0.148462 

6.027000000,-0.197123,0.0458527,0.095785,0.0476711,-0.00582346,-0.148462 

6.060000000,-0.196498,0.0459634,0.095171,0.0475105,-0.0054241,-0.147972 

6.093000000,-0.195832,0.0460053,0.0945358,0.047304,-0.00506465,-0.147411 

6.127000000,-0.195165,0.0459701,0.0939126,0.0470658,-0.00477038,-0.146812 

6.160000000,-0.194507,0.0458594,0.0933003,0.0468096,-0.00454675,-0.146183 

6.193000000,-0.193862,0.0456861,0.092691,0.046549,-0.00439711,-0.145533 

6.227000000,-0.193862,0.0456861,0.092691,0.046549,-0.00439711,-0.145533 

6.260000000,-0.193228,0.0454763,0.0920801,0.0462921,-0.00432332,-0.144869 

6.293000000,-0.192604,0.0452529,0.0914667,0.0460415,-0.00431969,-0.144201 

6.327000000,-0.191984,0.0450187,0.0908506,0.0457972,-0.00438072,-0.143536 

6.360000000,-0.191366,0.0447796,0.0902326,0.0455578,-0.0044933,-0.142878 

6.393000000,-0.190749,0.0445395,0.0896135,0.0453212,-0.00464209,-0.142227 

6.428000000,-0.190131,0.0442998,0.088994,0.0450856,-0.00481243,-0.141583 

6.460000000,-0.190131,0.0442998,0.088994,0.0450856,-0.00481243,-0.141583 

6.493000000,-0.189513,0.0440608,0.0883744,0.0448502,-0.00499547,-0.140946 

6.527000000,-0.188894,0.0438221,0.0877546,0.0446156,-0.00518965,-0.140312 

6.561000000,-0.188276,0.0435834,0.0871343,0.044382,-0.00539392,-0.139681 

6.593000000,-0.187658,0.0433446,0.0865133,0.0441503,-0.00560674,-0.139054 

6.627000000,-0.187024,0.0430999,0.0858759,0.0439157,-0.00583261,-0.138413 

6.660000000,-0.187024,0.0430999,0.0858759,0.0439157,-0.00583261,-0.138413 

6.693000000,-0.186437,0.0428727,0.0852839,0.0437012,-0.00604794,-0.137821 

6.727000000,-0.185819,0.0426334,0.0846595,0.0434788,-0.00628066,-0.137201 

6.760000000,-0.185201,0.042394,0.0840338,0.0432599,-0.00651937,-0.136582 

6.793000000,-0.184583,0.0421544,0.0834068,0.0430448,-0.00676381,-0.135966 

6.827000000,-0.183965,0.0419147,0.0827785,0.0428336,-0.00701369,-0.135353 

6.860000000,-0.183965,0.0419147,0.0827785,0.0428336,-0.00701369,-0.135353 

6.893000000,-0.183347,0.0416751,0.0821488,0.0426263,-0.00726878,-0.134741 



473 

 

6.927000000,-0.182729,0.0414354,0.0815179,0.042423,-0.00752894,-0.134131 

6.960000000,-0.182111,0.0411957,0.0808856,0.0422237,-0.00779411,-0.133524 

6.993000000,-0.181493,0.040956,0.0802521,0.0420283,-0.00806415,-0.132919 

7.027000000,-0.180876,0.0407163,0.0796173,0.041837,-0.00833895,-0.132316 

7.060000000,-0.180876,0.0407163,0.0796173,0.041837,-0.00833895,-0.132316 

7.093000000,-0.180258,0.0404767,0.0789814,0.0416495,-0.00861838,-0.131715 

7.127000000,-0.17964,0.0402371,0.0783443,0.041466,-0.00890236,-0.131117 

7.160000000,-0.179022,0.0399975,0.077706,0.0412864,-0.00919084,-0.13052 

7.194000000,-0.178388,0.039752,0.0770506,0.0411063,-0.00949109,-0.129911 

7.227000000,-0.177801,0.0395244,0.0764422,0.0409431,-0.00977345,-0.129349 

7.260000000,-0.177801,0.0395244,0.0764422,0.0409431,-0.00977345,-0.129349 

7.293000000,-0.177183,0.0392849,0.0758008,0.0407749,-0.0100748,-0.128759 

7.327000000,-0.176565,0.0390455,0.0751584,0.0406104,-0.0103803,-0.128171 

7.360000000,-0.175947,0.0388061,0.0745151,0.0404497,-0.01069,-0.127585 

7.393000000,-0.175329,0.0385668,0.0738708,0.0402927,-0.0110037,-0.127002 

7.427000000,-0.174711,0.0383275,0.0732256,0.0401393,-0.0113213,-0.12642 

7.460000000,-0.174711,0.0383275,0.0732256,0.0401393,-0.0113213,-0.12642 

7.493000000,-0.174093,0.0380882,0.0725795,0.0399896,-0.0116429,-0.125841 

7.527000000,-0.173475,0.037849,0.0719327,0.0398433,-0.0119683,-0.125264 

7.560000000,-0.172857,0.0376098,0.071285,0.0397006,-0.0122975,-0.124689 

7.593000000,-0.172239,0.0373706,0.0706365,0.0395614,-0.0126304,-0.124117 

7.627000000,-0.171621,0.0371315,0.0699873,0.0394256,-0.0129669,-0.123546 

7.693000000,-0.171621,0.0371315,0.0699873,0.0394256,-0.0129669,-0.123546 

7.727000000,-0.170384,0.0366535,0.0686868,0.039164,-0.0136505,-0.122411 

7.760000000,-0.169751,0.0364093,0.0680191,0.0390348,-0.0140059,-0.121833 

7.793000000,-0.169162,0.0361846,0.0674,0.0389177,-0.0143373,-0.121298 

7.827000000,-0.168542,0.0359511,0.0667477,0.0387966,-0.0146872,-0.120736 

7.893000000,-0.168542,0.0359511,0.0667477,0.0387966,-0.0146872,-0.120736 

7.927000000,-0.16792,0.035722,0.0660952,0.0386777,-0.0150374,-0.120173 

7.960000000,-0.167297,0.0354976,0.0654422,0.0385605,-0.0153878,-0.119611 

7.993000000,-0.166671,0.0352781,0.0647889,0.0384451,-0.015738,-0.119049 

8.027000000,-0.166044,0.0350638,0.0641353,0.0383319,-0.016088,-0.118487 

8.060000000,-0.165415,0.0348546,0.0634813,0.0382207,-0.0164376,-0.117924 

8.093000000,-0.165415,0.0348546,0.0634813,0.0382207,-0.0164376,-0.117924 

8.127000000,-0.164784,0.0346506,0.0628268,0.0381117,-0.0167868,-0.117361 

8.160000000,-0.164152,0.0344521,0.0621721,0.0380051,-0.0171356,-0.116798 

8.193000000,-0.163517,0.0342589,0.0615169,0.0379007,-0.0174839,-0.116235 

8.227000000,-0.162881,0.0340711,0.0608613,0.0377986,-0.0178316,-0.115671 

8.260000000,-0.162244,0.0338882,0.0602054,0.037699,-0.0181789,-0.115107 

8.293000000,-0.162244,0.0338882,0.0602054,0.037699,-0.0181789,-0.115107 

8.327000000,-0.161605,0.033709,0.0595491,0.0376018,-0.0185256,-0.114543 

8.360000000,-0.160964,0.0335327,0.0588923,0.0375071,-0.0188719,-0.113978 

8.393000000,-0.160322,0.0333627,0.0582353,0.037415,-0.0192176,-0.113413 

8.427000000,-0.159679,0.0332011,0.0575779,0.037325,-0.0195627,-0.112848 

8.460000000,-0.159034,0.0330444,0.0569202,0.0372365,-0.019907,-0.112282 

8.493000000,-0.159034,0.0330444,0.0569202,0.0372365,-0.019907,-0.112282 

8.527000000,-0.158389,0.0328903,0.0562626,0.037149,-0.0202501,-0.111715 

8.560000000,-0.157744,0.0327378,0.0556047,0.0370613,-0.0205917,-0.111148 

8.593000000,-0.157098,0.0325864,0.054947,0.0369735,-0.0209317,-0.110579 

8.627000000,-0.156452,0.0324358,0.0542894,0.0368853,-0.0212701,-0.11001 

8.660000000,-0.155806,0.0322858,0.0536319,0.0367965,-0.0216067,-0.109439 

8.693000000,-0.155806,0.0322858,0.0536319,0.0367965,-0.0216067,-0.109439 

8.727000000,-0.155144,0.0321323,0.052958,0.0367045,-0.0219499,-0.108854 

8.760000000,-0.15453,0.0319902,0.0523336,0.0366184,-0.0222663,-0.10831 

8.793000000,-0.153884,0.0318407,0.0516764,0.0365268,-0.0225975,-0.107736 

8.827000000,-0.153238,0.0316913,0.0510194,0.0364341,-0.0229268,-0.107161 

8.861000000,-0.152592,0.0315419,0.0503625,0.0363402,-0.0232543,-0.106585 

8.893000000,-0.152592,0.0315419,0.0503625,0.0363402,-0.0232543,-0.106585 

8.927000000,-0.151946,0.0313924,0.0497058,0.0362452,-0.02358,-0.106008 

8.960000000,-0.1513,0.0312429,0.0490494,0.0361491,-0.0239039,-0.105431 

8.993000000,-0.150653,0.0310934,0.0483931,0.0360519,-0.0242261,-0.104852 

9.027000000,-0.150007,0.0309437,0.047737,0.0359534,-0.0245464,-0.104272 

9.060000000,-0.149361,0.030794,0.0470811,0.0358537,-0.024865,-0.103691 
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9.093000000,-0.149361,0.030794,0.0470811,0.0358537,-0.024865,-0.103691 

9.127000000,-0.148715,0.0306442,0.0464253,0.0357528,-0.0251818,-0.103109 

9.160000000,-0.148069,0.0304943,0.0457696,0.0356507,-0.025497,-0.102527 

9.193000000,-0.147423,0.0303443,0.0451143,0.0355475,-0.0258105,-0.101943 

9.227000000,-0.146777,0.0301941,0.0444592,0.0354431,-0.0261223,-0.101359 

9.260000000,-0.146131,0.0300439,0.0438042,0.0353376,-0.0264326,-0.100773 

9.294000000,-0.146131,0.0300439,0.0438042,0.0353376,-0.0264326,-0.100773 

9.327000000,-0.145485,0.0298935,0.0431495,0.0352309,-0.0267412,-0.100187 

9.360000000,-0.144839,0.029743,0.0424949,0.035123,-0.0270483,-0.0996 

9.394000000,-0.144177,0.0295887,0.0418242,0.0350112,-0.0273614,-0.0989976 

9.427000000,-0.143564,0.0294455,0.0412027,0.0349066,-0.0276503,-0.0984385 

9.460000000,-0.142918,0.0292947,0.0405487,0.0347953,-0.027953,-0.0978491 

9.493000000,-0.142918,0.0292947,0.0405487,0.0347953,-0.027953,-0.0978491 

9.527000000,-0.142272,0.0291438,0.0398949,0.034683,-0.0282431,-0.0972806 

9.560000000,-0.141627,0.0289927,0.0392413,0.0345696,-0.0285121,-0.0967502 

9.593000000,-0.140981,0.0288416,0.0385879,0.0344551,-0.028775,-0.0962288 

9.627000000,-0.140335,0.0286903,0.0379347,0.0343395,-0.0290186,-0.0957426 

9.660000000,-0.139689,0.0285389,0.0372817,0.0342229,-0.0292457,-0.0952866 

9.693000000,-0.139689,0.0285389,0.0372817,0.0342229,-0.0292457,-0.0952866 

9.727000000,-0.139044,0.0283873,0.0366289,0.0341052,-0.0294576,-0.0948586 

9.760000000,-0.138398,0.0282355,0.0359763,0.0339865,-0.0296561,-0.0944552 

9.793000000,-0.137753,0.0280835,0.0353238,0.0338667,-0.0298505,-0.0940579 

9.827000000,-0.137107,0.0279312,0.0346716,0.0337458,-0.0300333,-0.0936822 

9.860000000,-0.136462,0.0277786,0.0340409,0.033628,-0.0302056,-0.0933261 

9.893000000,-0.136462,0.0277786,0.0340409,0.033628,-0.0302056,-0.0933261 

9.927000000,-0.13583,0.027629,0.0334653,0.0335198,-0.0303677,-0.0929893 

9.960000000,-0.135247,0.0274906,0.0329414,0.0334206,-0.0305205,-0.0926699 

9.993000000,-0.13468,0.0273556,0.0324316,0.0333234,-0.0306702,-0.0923553 

10.027000000,-0.134161,0.0272323,0.0319646,0.0332338,-0.0308117,-0.0920566 

10.060000000,-0.133684,0.0271186,0.0315333,0.0331505,-0.0309456,-0.0917722 

10.094000000,-0.133684,0.0271186,0.0315333,0.0331505,-0.0309456,-0.0917722 

10.127000000,-0.133246,0.0270139,0.0311349,0.0330732,-0.0310722,-0.0915017 

10.160000000,-0.13284,0.0269171,0.0307653,0.033001,-0.0311922,-0.0912443 

10.193000000,-0.132443,0.026822,0.0304027,0.0329297,-0.03131,-0.0909901 

10.227000000,-0.132072,0.0267332,0.0300632,0.0328625,-0.0314221,-0.0907471 

10.260000000,-0.131726,0.02665,0.0297444,0.0327991,-0.0315288,-0.0905147 

10.293000000,-0.131726,0.02665,0.0297444,0.0327991,-0.0315288,-0.0905147 

10.327000000,-0.1314,0.0265719,0.0294441,0.0327391,-0.0316305,-0.0902919 

10.360000000,-0.131086,0.0264963,0.0291527,0.0326806,-0.0317303,-0.0900725 

10.393000000,-0.130799,0.0264273,0.0288868,0.0326268,-0.0318212,-0.0898715 

10.427000000,-0.13051,0.0263575,0.0286176,0.0325721,-0.0319139,-0.0896658 

10.460000000,-0.130237,0.0262917,0.028363,0.0325202,-0.0320022,-0.0894686 

10.493000000,-0.130237,0.0262917,0.028363,0.0325202,-0.0320022,-0.0894686 

10.527000000,-0.129979,0.0262295,0.0281213,0.0324707,-0.0320868,-0.0892791 

10.560000000,-0.129735,0.0261706,0.0278918,0.0324235,-0.0321676,-0.089097 

10.593000000,-0.129494,0.0261124,0.0276652,0.0323767,-0.0322474,-0.0889167 

10.627000000,-0.129265,0.026057,0.0274489,0.0323318,-0.032324,-0.0887427 

10.660000000,-0.129047,0.0260042,0.0272417,0.0322887,-0.0323977,-0.0885746 

10.693000000,-0.128836,0.0259533,0.0270419,0.0322469,-0.032469,-0.0884112 

10.727000000,-0.128836,0.0259533,0.0270419,0.0322469,-0.032469,-0.0884112 

10.760000000,-0.128636,0.0259048,0.0268507,0.0322069,-0.0325376,-0.0882535 

10.793000000,-0.128443,0.0258582,0.0266663,0.0321681,-0.0326039,-0.0881004 

10.827000000,-0.128253,0.0258123,0.0264849,0.0321298,-0.0326691,-0.0879492 

10.860000000,-0.128071,0.0257682,0.0263101,0.0320929,-0.032732,-0.0878026 

10.893000000,-0.127896,0.0257259,0.0261418,0.0320572,-0.0327928,-0.0876605 

10.927000000,-0.127896,0.0257259,0.0261418,0.0320572,-0.0327928,-0.0876605 

10.960000000,-0.127728,0.0256851,0.0259792,0.0320226,-0.0328516,-0.0875223 

10.993000000,-0.127565,0.0256459,0.0258222,0.0319891,-0.0329086,-0.087388 

11.027000000,-0.127405,0.025607,0.0256667,0.0319558,-0.0329649,-0.0872548 

11.060000000,-0.12725,0.0255695,0.0255161,0.0319235,-0.0330195,-0.0871251 

11.093000000,-0.1271,0.0255333,0.0253705,0.0318922,-0.0330724,-0.086999 

11.128000000,-0.1271,0.0255333,0.0253705,0.0318922,-0.0330724,-0.086999 

11.160000000,-0.126952,0.0254975,0.0252259,0.0318611,-0.033125,-0.0868732 
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11.193000000,-0.126819,0.0254654,0.025096,0.0318331,-0.0331723,-0.0867595 

11.227000000,-0.12668,0.0254319,0.0249603,0.0318037,-0.0332216,-0.0866407 

11.260000000,-0.126545,0.0253994,0.0248287,0.0317752,-0.0332695,-0.0865248 

11.293000000,-0.126415,0.025368,0.0247007,0.0317474,-0.033316,-0.0864118 

11.327000000,-0.126415,0.025368,0.0247007,0.0317474,-0.033316,-0.0864118 

11.360000000,-0.126289,0.0253375,0.0245763,0.0317204,-0.0333614,-0.0863014 

11.393000000,-0.126166,0.025308,0.0244554,0.0316941,-0.0334054,-0.0861936 

11.427000000,-0.126044,0.0252787,0.0243354,0.0316679,-0.033449,-0.0860866 

11.460000000,-0.125926,0.0252503,0.0242187,0.0316424,-0.0334915,-0.085982 

11.493000000,-0.125811,0.0252227,0.024105,0.0316175,-0.0335329,-0.0858798 

11.527000000,-0.125811,0.0252227,0.024105,0.0316175,-0.0335329,-0.0858798 

11.560000000,-0.125699,0.0251958,0.0239938,0.0315932,-0.0335733,-0.0857795 

11.593000000,-0.12559,0.0251697,0.0238857,0.0315695,-0.0336126,-0.0856816 

11.627000000,-0.125483,0.0251439,0.0237787,0.031546,-0.0336515,-0.0855846 

11.660000000,-0.125378,0.0251188,0.0236742,0.031523,-0.0336895,-0.0854896 

11.694000000,-0.125275,0.0250943,0.0235722,0.0315006,-0.0337265,-0.0853965 

11.727000000,-0.125275,0.0250943,0.0235722,0.0315006,-0.0337265,-0.0853965 

11.760000000,-0.125176,0.0250706,0.0234728,0.0314787,-0.0337625,-0.0853055 

11.793000000,-0.125079,0.0250475,0.0233758,0.0314574,-0.0337977,-0.0852164 

11.827000000,-0.124982,0.0250245,0.0232793,0.0314361,-0.0338327,-0.0851277 

11.860000000,-0.124888,0.0250021,0.0231851,0.0314153,-0.0338668,-0.0850409 

11.893000000,-0.124794,0.0249798,0.0230908,0.0313944,-0.0339009,-0.0849537 

11.927000000,-0.124794,0.0249798,0.0230908,0.0313944,-0.0339009,-0.0849537 

11.961000000,-0.124709,0.0249596,0.0230053,0.0313756,-0.0339319,-0.0848744 

11.993000000,-0.124622,0.0249389,0.0229173,0.0313562,-0.0339637,-0.0847926 

12.027000000,-0.124535,0.0249183,0.0228298,0.0313368,-0.0339952,-0.0847112 

12.060000000,-0.12445,0.0248982,0.0227441,0.0313178,-0.0340261,-0.0846312 

12.093000000,-0.124367,0.0248786,0.0226603,0.0312993,-0.0340563,-0.0845528 

12.127000000,-0.124367,0.0248786,0.0226603,0.0312993,-0.0340563,-0.0845528 

12.160000000,-0.124286,0.0248595,0.0225782,0.0312811,-0.0340858,-0.0844759 

12.193000000,-0.124206,0.0248408,0.0224978,0.0312633,-0.0341147,-0.0844003 

12.227000000,-0.124127,0.0248223,0.0224179,0.0312456,-0.0341434,-0.0843251 

12.260000000,-0.12405,0.0248041,0.0223395,0.0312283,-0.0341715,-0.0842512 

12.293000000,-0.123974,0.0247864,0.0222627,0.0312113,-0.034199,-0.0841787 

12.327000000,-0.123974,0.0247864,0.0222627,0.0312113,-0.034199,-0.0841787 

12.360000000,-0.1239,0.0247691,0.0221873,0.0311945,-0.034226,-0.0841073 

12.393000000,-0.123827,0.0247521,0.0221133,0.0311782,-0.0342524,-0.0840371 

12.427000000,-0.123755,0.0247352,0.0220398,0.0311619,-0.0342786,-0.0839673 

12.460000000,-0.123684,0.0247188,0.0219677,0.0311459,-0.0343043,-0.0838986 

12.493000000,-0.123684,0.0247188,0.0219677,0.0311459,-0.0343043,-0.0838986 

12.527000000,-0.123608,0.0247011,0.02189,0.0311287,-0.034332,-0.0838245 

12.560000000,-0.123537,0.0246846,0.0218173,0.0311126,-0.0343577,-0.0837552 

12.593000000,-0.123473,0.0246698,0.0217519,0.0310981,-0.034381,-0.0836925 

12.628000000,-0.123407,0.0246545,0.0216845,0.0310832,-0.0344049,-0.0836278 

12.660000000,-0.123342,0.0246396,0.0216182,0.0310685,-0.0344284,-0.0835642 

12.693000000,-0.123342,0.0246396,0.0216182,0.0310685,-0.0344284,-0.0835642 

12.727000000,-0.123277,0.0246246,0.0215515,0.0310538,-0.0344518,-0.0835001 

12.760000000,-0.123217,0.024611,0.0214908,0.0310404,-0.0344732,-0.0834416 

12.793000000,-0.123155,0.0245968,0.0214271,0.0310263,-0.0344957,-0.0833801 

12.827000000,-0.123094,0.0245829,0.0213645,0.0310125,-0.0345177,-0.0833196 

12.860000000,-0.123034,0.0245692,0.021303,0.030999,-0.0345393,-0.0832601 

12.893000000,-0.123034,0.0245692,0.021303,0.030999,-0.0345393,-0.0832601 

12.927000000,-0.122975,0.0245558,0.0212425,0.0309856,-0.0345605,-0.0832014 

12.960000000,-0.122918,0.0245427,0.0211831,0.0309725,-0.0345814,-0.0831436 

12.993000000,-0.12286,0.0245296,0.0211238,0.0309595,-0.0346021,-0.0830859 

13.027000000,-0.122803,0.0245167,0.0210652,0.0309466,-0.0346226,-0.083029 

13.060000000,-0.122747,0.0245041,0.0210076,0.0309339,-0.0346426,-0.0829728 

13.093000000,-0.122747,0.0245041,0.0210076,0.0309339,-0.0346426,-0.0829728 

13.127000000,-0.122692,0.0244918,0.0209511,0.0309215,-0.0346623,-0.0829176 

13.160000000,-0.122638,0.0244797,0.0208957,0.0309093,-0.0346816,-0.0828633 

13.193000000,-0.122585,0.0244677,0.0208405,0.0308972,-0.0347007,-0.0828093 

13.228000000,-0.122532,0.024456,0.0207862,0.0308853,-0.0347195,-0.082756 

13.260000000,-0.122481,0.0244444,0.0207327,0.0308736,-0.034738,-0.0827035 
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13.293000000,-0.122481,0.0244444,0.0207327,0.0308736,-0.034738,-0.0827035 

13.327000000,-0.12243,0.0244331,0.0206801,0.0308621,-0.0347562,-0.0826517 

13.361000000,-0.122379,0.024422,0.0206283,0.0308508,-0.034774,-0.0826006 

13.393000000,-0.12233,0.024411,0.0205767,0.0308395,-0.0347918,-0.0825497 

13.427000000,-0.12228,0.0244001,0.0205258,0.0308285,-0.0348093,-0.0824995 

13.460000000,-0.122232,0.0243895,0.0204757,0.0308176,-0.0348264,-0.08245 

13.493000000,-0.122232,0.0243895,0.0204757,0.0308176,-0.0348264,-0.08245 

13.527000000,-0.122184,0.0243791,0.0204264,0.0308068,-0.0348433,-0.0824011 

13.560000000,-0.122138,0.0243688,0.0203778,0.0307963,-0.0348599,-0.0823528 

13.593000000,-0.122091,0.0243586,0.0203294,0.0307858,-0.0348765,-0.0823048 

13.627000000,-0.122044,0.0243483,0.0202804,0.0307752,-0.0348932,-0.082256 

13.660000000,-0.122001,0.024339,0.0202357,0.0307655,-0.0349083,-0.0822116 

13.693000000,-0.122001,0.024339,0.0202357,0.0307655,-0.0349083,-0.0822116 

13.727000000,-0.121956,0.0243293,0.0201893,0.0307555,-0.0349241,-0.0821654 

13.760000000,-0.121912,0.0243198,0.0201436,0.0307457,-0.0349395,-0.0821197 

13.793000000,-0.121868,0.0243104,0.020098,0.0307358,-0.034955,-0.0820742 

13.827000000,-0.121825,0.0243011,0.0200531,0.0307262,-0.0349701,-0.0820293 

13.860000000,-0.121782,0.0242919,0.0200087,0.0307166,-0.034985,-0.0819849 

13.893000000,-0.12174,0.0242829,0.0199648,0.0307072,-0.0349998,-0.0819409 

13.927000000,-0.12174,0.0242829,0.0199648,0.0307072,-0.0349998,-0.0819409 

13.960000000,-0.121698,0.0242741,0.0199215,0.030698,-0.0350143,-0.0818974 

13.993000000,-0.121657,0.0242654,0.0198788,0.0306888,-0.0350286,-0.0818545 

14.027000000,-0.121617,0.0242568,0.0198364,0.0306798,-0.0350428,-0.0818119 

14.060000000,-0.121576,0.0242483,0.0197946,0.0306709,-0.0350567,-0.0817697 

14.094000000,-0.121537,0.02424,0.0197532,0.0306621,-0.0350705,-0.081728 

14.127000000,-0.121537,0.02424,0.0197532,0.0306621,-0.0350705,-0.081728 

14.160000000,-0.121498,0.0242317,0.0197123,0.0306534,-0.0350841,-0.0816868 

14.193000000,-0.121459,0.0242237,0.019672,0.0306449,-0.0350975,-0.081646 

14.227000000,-0.121421,0.0242157,0.019632,0.0306364,-0.0351107,-0.0816055 

14.260000000,-0.121383,0.0242078,0.0195924,0.0306281,-0.0351238,-0.0815655 

14.293000000,-0.121345,0.0242001,0.0195533,0.0306198,-0.0351367,-0.0815258 

14.327000000,-0.121345,0.0242001,0.0195533,0.0306198,-0.0351367,-0.0815258 

14.361000000,-0.121308,0.0241924,0.0195147,0.0306117,-0.0351493,-0.0814867 

14.393000000,-0.121272,0.0241849,0.0194765,0.0306037,-0.0351619,-0.0814478 

14.427000000,-0.121235,0.0241775,0.0194385,0.0305957,-0.0351743,-0.0814092 

14.460000000,-0.121199,0.0241701,0.019401,0.0305879,-0.0351866,-0.081371 

14.493000000,-0.121164,0.0241629,0.0193639,0.0305802,-0.0351987,-0.0813332 

14.527000000,-0.121163,0.0241627,0.019363,0.03058,-0.035199,-0.0813323 

14.560000000,-0.12113,0.024156,0.0193282,0.0305727,-0.0352103,-0.0812968 

14.594000000,-0.121095,0.024149,0.019292,0.0305652,-0.0352221,-0.0812598 

14.627000000,-0.121061,0.024142,0.0192559,0.0305577,-0.0352338,-0.0812229 

14.660000000,-0.121026,0.0241352,0.0192203,0.0305504,-0.0352453,-0.0811865 

14.693000000,-0.120993,0.0241285,0.0191851,0.0305431,-0.0352566,-0.0811504 

14.728000000,-0.120993,0.0241285,0.0191851,0.0305431,-0.0352566,-0.0811504 

14.760000000,-0.12096,0.0241218,0.0191503,0.0305359,-0.0352679,-0.0811147 

14.793000000,-0.120927,0.0241153,0.0191159,0.0305289,-0.0352789,-0.0810794 

14.827000000,-0.120894,0.0241088,0.0190816,0.0305219,-0.0352899,-0.0810442 

14.861000000,-0.120862,0.0241025,0.0190477,0.0305149,-0.0353007,-0.0810094 

14.893000000,-0.12083,0.0240962,0.0190143,0.0305081,-0.0353114,-0.0809749 

14.927000000,-0.12083,0.0240962,0.0190143,0.0305081,-0.0353114,-0.0809749 

14.960000000,-0.120798,0.02409,0.0189811,0.0305013,-0.035322,-0.0809408 

14.993000000,-0.120767,0.0240839,0.0189484,0.0304947,-0.0353324,-0.080907 

15.027000000,-0.120736,0.0240779,0.0189158,0.0304881,-0.0353427,-0.0808734 

15.060000000,-0.120705,0.0240719,0.0188835,0.0304816,-0.0353529,-0.08084 

15.093000000,-0.120674,0.024066,0.0188516,0.0304751,-0.035363,-0.080807 

15.127000000,-0.120674,0.024066,0.0188516,0.0304751,-0.035363,-0.080807 

15.160000000,-0.120644,0.0240602,0.01882,0.0304688,-0.035373,-0.0807743 

15.193000000,-0.120614,0.0240544,0.018788,0.0304624,-0.035383,-0.0807411 

15.227000000,-0.120586,0.024049,0.0187585,0.0304565,-0.0353924,-0.0807104 

15.260000000,-0.120556,0.0240435,0.0187277,0.0304503,-0.035402,-0.0806784 

15.293000000,-0.120527,0.024038,0.0186973,0.0304443,-0.0354115,-0.0806468 

15.327000000,-0.120527,0.024038,0.0186973,0.0304443,-0.0354115,-0.0806468 

15.360000000,-0.120498,0.0240326,0.0186671,0.0304383,-0.035421,-0.0806155 
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15.394000000,-0.12047,0.0240273,0.0186373,0.0304324,-0.0354303,-0.0805844 

15.427000000,-0.120442,0.024022,0.0186076,0.0304265,-0.0354396,-0.0805534 

15.460000000,-0.120414,0.0240167,0.0185781,0.0304207,-0.0354488,-0.0805227 

15.493000000,-0.120386,0.0240116,0.018549,0.030415,-0.0354578,-0.0804923 

15.527000000,-0.120386,0.0240116,0.018549,0.030415,-0.0354578,-0.0804923 

15.560000000,-0.120358,0.0240065,0.0185202,0.0304094,-0.0354668,-0.0804622 

15.593000000,-0.120331,0.0240016,0.0184918,0.0304038,-0.0354757,-0.0804324 

15.627000000,-0.120304,0.0239966,0.0184634,0.0303983,-0.0354845,-0.0804027 

15.660000000,-0.120277,0.0239917,0.0184352,0.0303928,-0.0354931,-0.0803733 

15.693000000,-0.120251,0.0239869,0.0184074,0.0303874,-0.0355017,-0.0803441 

15.727000000,-0.120251,0.0239869,0.0184074,0.0303874,-0.0355017,-0.0803441 

15.760000000,-0.120225,0.0239822,0.0183798,0.0303821,-0.0355102,-0.0803151 

15.793000000,-0.120199,0.0239775,0.0183525,0.0303769,-0.0355187,-0.0802864 

15.827000000,-0.120173,0.0239729,0.0183253,0.0303717,-0.035527,-0.0802578 

15.860000000,-0.120147,0.0239683,0.0182984,0.0303665,-0.0355353,-0.0802295 

15.893000000,-0.120122,0.0239638,0.0182717,0.0303614,-0.0355435,-0.0802014 

15.927000000,-0.120122,0.0239638,0.0182717,0.0303614,-0.0355435,-0.0802014 

15.960000000,-0.120096,0.0239594,0.0182453,0.0303564,-0.0355516,-0.0801736 

15.993000000,-0.120072,0.023955,0.0182192,0.0303515,-0.0355596,-0.080146 

16.027000000,-0.120047,0.0239507,0.0181932,0.0303466,-0.0355676,-0.0801185 

16.060000000,-0.120022,0.0239464,0.0181673,0.0303417,-0.0355755,-0.0800912 

16.093000000,-0.119997,0.0239421,0.0181412,0.0303368,-0.0355835,-0.0800635 

16.128000000,-0.119997,0.0239421,0.0181412,0.0303368,-0.0355835,-0.0800635 

16.160000000,-0.119974,0.0239382,0.0181171,0.0303323,-0.0355908,-0.080038 

16.193000000,-0.11995,0.0239341,0.0180921,0.0303277,-0.0355985,-0.0800115 

16.227000000,-0.119927,0.02393,0.0180671,0.030323,-0.0356061,-0.0799849 

16.260000000,-0.119903,0.023926,0.0180423,0.0303184,-0.0356136,-0.0799586 

16.293000000,-0.11988,0.0239221,0.0180178,0.0303139,-0.0356211,-0.0799326 

16.327000000,-0.11988,0.0239221,0.0180178,0.0303139,-0.0356211,-0.0799326 

16.360000000,-0.119857,0.0239182,0.0179935,0.0303095,-0.0356284,-0.0799067 

16.393000000,-0.119834,0.0239144,0.0179694,0.0303051,-0.0356357,-0.0798811 

16.427000000,-0.119811,0.0239106,0.0179454,0.0303007,-0.035643,-0.0798555 

16.461000000,-0.119786,0.0239065,0.0179193,0.0302959,-0.035651,-0.0798275 

16.493000000,-0.119786,0.0239065,0.0179193,0.0302959,-0.035651,-0.0798275 

16.527000000,-0.119762,0.0239026,0.0178945,0.0302915,-0.0356583,-0.0798013 

16.560000000,-0.119741,0.0238992,0.0178724,0.0302875,-0.0356651,-0.0797775 

16.593000000,-0.119719,0.0238956,0.0178491,0.0302833,-0.0356721,-0.0797526 

16.627000000,-0.119697,0.023892,0.0178261,0.0302792,-0.035679,-0.079728 

16.660000000,-0.119675,0.0238885,0.0178033,0.0302751,-0.0356858,-0.0797036 

16.693000000,-0.119675,0.0238885,0.0178033,0.0302751,-0.0356858,-0.0797036 

16.727000000,-0.119654,0.0238851,0.0177807,0.0302711,-0.0356926,-0.0796793 

16.760000000,-0.119633,0.0238817,0.0177582,0.0302671,-0.0356993,-0.0796553 

16.793000000,-0.119611,0.0238783,0.0177359,0.0302632,-0.035706,-0.0796312 

16.827000000,-0.11959,0.023875,0.0177137,0.0302593,-0.0357127,-0.0796074 

16.860000000,-0.119569,0.0238717,0.0176917,0.0302554,-0.0357192,-0.0795838 

16.893000000,-0.119569,0.0238717,0.0176917,0.0302554,-0.0357192,-0.0795838 

16.928000000,-0.119548,0.0238685,0.0176699,0.0302517,-0.0357257,-0.0795603 

16.960000000,-0.119527,0.0238652,0.0176478,0.0302478,-0.0357322,-0.0795366 

16.993000000,-0.119508,0.0238622,0.0176274,0.0302443,-0.0357383,-0.0795146 

17.027000000,-0.119488,0.0238591,0.017606,0.0302406,-0.0357447,-0.0794915 

17.060000000,-0.119467,0.023856,0.0175848,0.030237,-0.035751,-0.0794687 

17.093000000,-0.119467,0.023856,0.0175848,0.030237,-0.035751,-0.0794687 

17.127000000,-0.119447,0.023853,0.0175638,0.0302334,-0.0357572,-0.079446 

17.160000000,-0.119428,0.0238501,0.017543,0.0302299,-0.0357634,-0.0794235 

17.193000000,-0.119408,0.0238471,0.0175223,0.0302264,-0.0357696,-0.079401 

17.227000000,-0.119388,0.0238442,0.0175017,0.0302229,-0.0357757,-0.0793787 

17.260000000,-0.119369,0.0238413,0.0174813,0.0302195,-0.0357818,-0.0793566 

17.293000000,-0.119369,0.0238413,0.0174813,0.0302195,-0.0357818,-0.0793566 

17.327000000,-0.11935,0.0238385,0.0174611,0.0302161,-0.0357878,-0.0793347 

17.360000000,-0.11933,0.0238357,0.017441,0.0302128,-0.0357938,-0.0793129 

17.393000000,-0.119311,0.023833,0.017421,0.0302095,-0.0357997,-0.0792912 

17.427000000,-0.119292,0.0238303,0.0174012,0.0302062,-0.0358056,-0.0792696 

17.460000000,-0.119274,0.0238276,0.0173815,0.030203,-0.0358115,-0.0792482 
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17.493000000,-0.119255,0.023825,0.017362,0.0301998,-0.0358173,-0.0792269 

17.527000000,-0.119255,0.023825,0.017362,0.0301998,-0.0358173,-0.0792269 

17.560000000,-0.119237,0.0238224,0.0173426,0.0301967,-0.035823,-0.0792058 

17.593000000,-0.119218,0.0238198,0.0173234,0.0301936,-0.0358287,-0.0791848 

17.627000000,-0.1192,0.0238173,0.0173042,0.0301905,-0.0358344,-0.0791639 

17.660000000,-0.119182,0.0238148,0.0172852,0.0301875,-0.03584,-0.0791432 

17.694000000,-0.119164,0.0238123,0.0172664,0.0301845,-0.0358456,-0.0791225 

17.727000000,-0.119164,0.0238123,0.0172664,0.0301845,-0.0358456,-0.0791225 

17.760000000,-0.119146,0.0238099,0.0172477,0.0301815,-0.0358511,-0.0791021 

17.794000000,-0.119128,0.0238075,0.0172287,0.0301785,-0.0358563,-0.0790813 

17.827000000,-0.119111,0.0238052,0.0172111,0.0301758,-0.0358609,-0.079062 

17.860000000,-0.119094,0.0238029,0.0171927,0.0301729,-0.0358656,-0.0790419 

17.894000000,-0.119076,0.0238006,0.0171745,0.0301701,-0.0358704,-0.079022 

17.928000000,-0.119076,0.0238006,0.0171745,0.0301701,-0.0358704,-0.079022 

17.960000000,-0.119059,0.0237984,0.0171564,0.0301673,-0.035875,-0.0790021 

17.993000000,-0.119042,0.0237961,0.0171385,0.0301645,-0.0358796,-0.0789824 

18.027000000,-0.119025,0.0237939,0.0171206,0.0301618,-0.0358842,-0.0789628 

18.060000000,-0.119008,0.0237918,0.0171029,0.0301591,-0.0358888,-0.0789433 

18.093000000,-0.118991,0.0237896,0.0170853,0.0301565,-0.0358933,-0.0789239 

18.127000000,-0.118991,0.0237896,0.0170853,0.0301565,-0.0358933,-0.0789239 

18.160000000,-0.118975,0.0237875,0.0170678,0.0301538,-0.0358977,-0.0789046 

18.193000000,-0.118958,0.0237855,0.0170505,0.0301513,-0.0359021,-0.0788855 

18.227000000,-0.118941,0.0237834,0.0170332,0.0301487,-0.0359065,-0.0788665 

18.260000000,-0.118925,0.0237814,0.0170161,0.0301462,-0.0359108,-0.0788475 

18.293000000,-0.118909,0.0237794,0.016999,0.0301437,-0.035915,-0.0788287 

18.327000000,-0.118909,0.0237794,0.016999,0.0301437,-0.035915,-0.0788287 

18.360000000,-0.118893,0.0237775,0.0169821,0.0301412,-0.0359192,-0.07881 

18.393000000,-0.118877,0.0237755,0.0169654,0.0301388,-0.0359234,-0.0787914 

18.427000000,-0.118861,0.0237736,0.0169487,0.0301364,-0.0359276,-0.0787729 

18.460000000,-0.118845,0.0237718,0.0169321,0.030134,-0.0359317,-0.0787545 

18.493000000,-0.118829,0.0237699,0.0169156,0.0301317,-0.0359357,-0.0787362 

18.528000000,-0.118829,0.0237699,0.0169156,0.0301317,-0.0359357,-0.0787362 

18.560000000,-0.118813,0.0237681,0.0168992,0.0301293,-0.0359397,-0.078718 

18.593000000,-0.118798,0.0237663,0.016883,0.0301271,-0.0359437,-0.0787 

18.627000000,-0.118782,0.0237645,0.0168664,0.0301247,-0.0359477,-0.0786815 

18.661000000,-0.118766,0.0237627,0.0168496,0.0301224,-0.0359518,-0.0786628 

18.693000000,-0.118766,0.0237627,0.0168496,0.0301224,-0.0359518,-0.0786628 

18.727000000,-0.11875,0.0237609,0.0168328,0.0301201,-0.0359558,-0.0786441 

18.760000000,-0.118735,0.0237593,0.0168178,0.030118,-0.0359595,-0.0786273 

18.793000000,-0.11872,0.0237576,0.016802,0.0301159,-0.0359632,-0.0786097 

18.827000000,-0.118705,0.023756,0.0167864,0.0301138,-0.035967,-0.0785922 

18.860000000,-0.11869,0.0237544,0.0167708,0.0301117,-0.0359707,-0.0785748 

18.893000000,-0.11869,0.0237544,0.0167708,0.0301117,-0.0359707,-0.0785748 

18.927000000,-0.118675,0.0237528,0.0167554,0.0301096,-0.0359743,-0.0785575 

18.960000000,-0.118661,0.0237513,0.01674,0.0301076,-0.035978,-0.0785404 

18.993000000,-0.118646,0.0237497,0.0167247,0.0301056,-0.0359816,-0.0785232 

19.027000000,-0.118631,0.0237482,0.0167096,0.0301036,-0.0359851,-0.0785062 

19.060000000,-0.118617,0.0237467,0.0166945,0.0301016,-0.0359886,-0.0784893 

19.093000000,-0.118617,0.0237467,0.0166945,0.0301016,-0.0359886,-0.0784893 

19.127000000,-0.118603,0.0237453,0.0166795,0.0300997,-0.0359921,-0.0784724 

19.160000000,-0.118588,0.0237438,0.0166647,0.0300978,-0.0359955,-0.0784557 

19.193000000,-0.118574,0.0237424,0.0166498,0.0300959,-0.035999,-0.078439 

19.227000000,-0.11856,0.023741,0.0166351,0.0300941,-0.0360023,-0.0784224 

19.260000000,-0.118546,0.0237397,0.0166205,0.0300922,-0.0360057,-0.078406 

19.293000000,-0.118546,0.0237397,0.0166205,0.0300922,-0.0360057,-0.078406 

19.327000000,-0.118532,0.0237383,0.016606,0.0300904,-0.036009,-0.0783896 

19.360000000,-0.118518,0.023737,0.0165916,0.0300887,-0.0360122,-0.0783733 

19.393000000,-0.118504,0.0237357,0.0165772,0.0300869,-0.0360155,-0.0783571 

19.427000000,-0.11849,0.0237344,0.0165626,0.0300851,-0.0360188,-0.0783405 

19.460000000,-0.118477,0.0237332,0.0165491,0.0300835,-0.0360218,-0.0783252 

19.493000000,-0.118477,0.0237332,0.0165491,0.0300835,-0.0360218,-0.0783252 

19.527000000,-0.118464,0.023732,0.0165351,0.0300819,-0.0360249,-0.0783093 

19.560000000,-0.118449,0.0237306,0.0165197,0.03008,-0.0360283,-0.0782918 
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19.593000000,-0.118435,0.0237294,0.016505,0.0300783,-0.0360315,-0.0782752 

19.627000000,-0.118422,0.0237283,0.0164919,0.0300768,-0.0360344,-0.0782603 

19.660000000,-0.118409,0.0237271,0.0164782,0.0300752,-0.0360374,-0.0782447 

19.693000000,-0.118409,0.0237271,0.0164782,0.0300752,-0.0360374,-0.0782447 

19.727000000,-0.118395,0.023726,0.0164645,0.0300737,-0.0360404,-0.0782291 

19.760000000,-0.118382,0.0237249,0.0164509,0.0300721,-0.0360433,-0.0782137 

19.793000000,-0.118369,0.0237238,0.0164374,0.0300706,-0.0360463,-0.0781982 

19.827000000,-0.118356,0.0237227,0.016424,0.0300691,-0.0360492,-0.0781829 

19.860000000,-0.118343,0.0237217,0.0164106,0.0300676,-0.036052,-0.0781676 

19.893000000,-0.118343,0.0237217,0.0164106,0.0300676,-0.036052,-0.0781676 

19.927000000,-0.118331,0.0237207,0.0163973,0.0300662,-0.0360548,-0.0781525 

19.960000000,-0.118318,0.0237197,0.0163842,0.0300648,-0.0360576,-0.0781374 

19.993000000,-0.118305,0.0237187,0.016371,0.0300634,-0.0360604,-0.0781223 

20.027000000,-0.118292,0.0237177,0.016358,0.030062,-0.0360631,-0.0781074 

20.060000000,-0.11828,0.0237168,0.016345,0.0300606,-0.0360659,-0.0780925 

20.093000000,-0.11828,0.0237168,0.016345,0.0300606,-0.0360659,-0.0780925 

20.127000000,-0.118267,0.0237158,0.0163318,0.0300592,-0.0360686,-0.0780773 

20.160000000,-0.118255,0.0237149,0.0163196,0.030058,-0.0360711,-0.0780634 

20.193000000,-0.118243,0.023714,0.0163069,0.0300567,-0.0360737,-0.0780487 

20.227000000,-0.118231,0.0237132,0.0162942,0.0300554,-0.0360763,-0.0780341 

20.260000000,-0.118218,0.0237123,0.0162816,0.0300541,-0.0360789,-0.0780196 

20.293000000,-0.118218,0.0237123,0.0162816,0.0300541,-0.0360789,-0.0780196 

20.327000000,-0.118206,0.0237115,0.0162691,0.0300529,-0.0360814,-0.0780052 

20.360000000,-0.118194,0.0237107,0.0162567,0.0300517,-0.0360839,-0.0779908 

20.393000000,-0.118182,0.0237099,0.0162442,0.0300505,-0.0360864,-0.0779765 

20.427000000,-0.11817,0.0237091,0.0162319,0.0300493,-0.0360889,-0.0779622 

20.460000000,-0.118158,0.0237083,0.0162196,0.0300481,-0.0360914,-0.077948 

20.493000000,-0.118158,0.0237083,0.0162196,0.0300481,-0.0360914,-0.077948 

20.527000000,-0.118146,0.0237076,0.0162075,0.030047,-0.0360938,-0.0779339 

20.560000000,-0.118135,0.0237068,0.0161954,0.0300459,-0.0360963,-0.0779199 

20.593000000,-0.118123,0.0237061,0.0161833,0.0300448,-0.0360987,-0.0779059 

20.627000000,-0.118111,0.0237054,0.0161713,0.0300437,-0.0361011,-0.077892 

20.660000000,-0.1181,0.0237047,0.0161594,0.0300426,-0.0361035,-0.0778781 

20.693000000,-0.1181,0.0237047,0.0161594,0.0300426,-0.0361035,-0.0778781 

20.727000000,-0.118088,0.0237041,0.0161476,0.0300416,-0.0361059,-0.0778644 

20.761000000,-0.118077,0.0237034,0.0161358,0.0300406,-0.0361083,-0.0778507 

20.793000000,-0.118065,0.0237028,0.0161241,0.0300396,-0.0361106,-0.077837 

20.827000000,-0.118054,0.0237022,0.0161124,0.0300386,-0.036113,-0.0778234 

20.860000000,-0.118042,0.0237016,0.0161008,0.0300376,-0.0361153,-0.0778099 

20.893000000,-0.118042,0.0237016,0.0161008,0.0300376,-0.0361153,-0.0778099 

20.927000000,-0.118031,0.023701,0.0160893,0.0300367,-0.0361177,-0.0777964 

20.960000000,-0.11802,0.0237005,0.0160779,0.0300357,-0.03612,-0.077783 

20.993000000,-0.118009,0.0236999,0.0160664,0.0300348,-0.0361223,-0.0777696 

21.027000000,-0.117998,0.0236994,0.0160551,0.0300339,-0.0361246,-0.0777563 

21.060000000,-0.117987,0.0236988,0.0160438,0.030033,-0.0361268,-0.0777431 

21.093000000,-0.117987,0.0236988,0.0160438,0.030033,-0.0361268,-0.0777431 

21.127000000,-0.117976,0.0236983,0.0160323,0.0300321,-0.0361292,-0.0777296 

21.161000000,-0.117965,0.0236979,0.0160217,0.0300313,-0.0361313,-0.0777172 

21.193000000,-0.117954,0.0236974,0.0160106,0.0300305,-0.0361335,-0.0777041 

21.227000000,-0.117943,0.0236969,0.0159995,0.0300297,-0.0361358,-0.0776911 

21.260000000,-0.117933,0.0236965,0.0159885,0.0300289,-0.036138,-0.0776782 

21.293000000,-0.117933,0.0236965,0.0159885,0.0300289,-0.036138,-0.0776782 

21.327000000,-0.117922,0.0236961,0.0159776,0.0300281,-0.0361402,-0.0776653 

21.360000000,-0.117911,0.0236957,0.0159668,0.0300274,-0.0361424,-0.0776525 

21.393000000,-0.117901,0.0236953,0.0159559,0.0300266,-0.0361446,-0.0776397 

21.427000000,-0.11789,0.0236949,0.0159452,0.0300259,-0.0361467,-0.077627 

21.460000000,-0.11788,0.0236945,0.0159345,0.0300252,-0.0361489,-0.0776143 

21.493000000,-0.11788,0.0236945,0.0159345,0.0300252,-0.0361489,-0.0776143 

21.527000000,-0.117869,0.0236942,0.0159239,0.0300245,-0.0361511,-0.0776017 

21.560000000,-0.117859,0.0236938,0.0159133,0.0300238,-0.0361532,-0.0775892 

21.593000000,-0.117848,0.0236935,0.0159027,0.0300231,-0.0361553,-0.0775767 

21.627000000,-0.117838,0.0236932,0.0158922,0.0300225,-0.0361574,-0.0775642 

21.660000000,-0.117828,0.0236929,0.0158818,0.0300218,-0.0361596,-0.0775518 
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21.693000000,-0.117828,0.0236929,0.0158818,0.0300218,-0.0361596,-0.0775518 

21.727000000,-0.117818,0.0236926,0.0158714,0.0300212,-0.0361617,-0.0775395 

21.760000000,-0.117807,0.0236923,0.0158611,0.0300206,-0.0361637,-0.0775272 

21.793000000,-0.117797,0.0236921,0.0158508,0.03002,-0.0361658,-0.077515 

21.827000000,-0.117787,0.0236918,0.0158406,0.0300194,-0.0361679,-0.0775028 

21.860000000,-0.117777,0.0236916,0.0158304,0.0300189,-0.03617,-0.0774907 

21.893000000,-0.117777,0.0236916,0.0158304,0.0300189,-0.03617,-0.0774907 

21.927000000,-0.117767,0.0236914,0.0158203,0.0300183,-0.036172,-0.0774786 

21.960000000,-0.117757,0.0236912,0.01581,0.0300178,-0.0361741,-0.0774663 

21.994000000,-0.117748,0.023691,0.0158005,0.0300173,-0.036176,-0.0774549 

22.028000000,-0.117738,0.0236908,0.0157906,0.0300168,-0.036178,-0.077443 

22.060000000,-0.117728,0.0236906,0.0157807,0.0300163,-0.03618,-0.0774311 

22.093000000,-0.117728,0.0236906,0.0157807,0.0300163,-0.03618,-0.0774311 

22.127000000,-0.117718,0.0236905,0.0157708,0.0300159,-0.036182,-0.0774193 

22.160000000,-0.117709,0.0236904,0.015761,0.0300154,-0.036184,-0.0774075 

22.193000000,-0.117699,0.0236902,0.0157512,0.030015,-0.036186,-0.0773958 

22.227000000,-0.11769,0.0236901,0.0157415,0.0300145,-0.036188,-0.0773841 

22.260000000,-0.11768,0.02369,0.0157319,0.0300141,-0.0361899,-0.0773725 

22.293000000,-0.11768,0.02369,0.0157319,0.0300141,-0.0361899,-0.0773725 

22.327000000,-0.11767,0.0236899,0.0157223,0.0300137,-0.0361919,-0.0773609 

22.360000000,-0.117661,0.0236898,0.0157127,0.0300133,-0.0361938,-0.0773494 

22.393000000,-0.117652,0.0236898,0.0157032,0.030013,-0.0361958,-0.0773379 

22.427000000,-0.117642,0.0236897,0.0156937,0.0300126,-0.0361977,-0.0773264 

22.460000000,-0.117633,0.0236897,0.0156843,0.0300123,-0.0361996,-0.0773151 

22.493000000,-0.117633,0.0236897,0.0156843,0.0300123,-0.0361996,-0.0773151 

22.527000000,-0.117624,0.0236897,0.0156749,0.0300119,-0.0362015,-0.0773037 

22.560000000,-0.117614,0.0236896,0.0156655,0.0300116,-0.0362034,-0.0772924 

22.593000000,-0.117605,0.0236896,0.015656,0.0300113,-0.0362054,-0.0772809 

22.627000000,-0.117596,0.0236896,0.0156472,0.030011,-0.0362072,-0.0772702 

22.660000000,-0.117587,0.0236897,0.015638,0.0300107,-0.036209,-0.077259 

22.693000000,-0.117587,0.0236897,0.015638,0.0300107,-0.036209,-0.077259 

22.727000000,-0.117578,0.0236897,0.0156289,0.0300105,-0.0362109,-0.0772479 

22.760000000,-0.117569,0.0236897,0.0156198,0.0300102,-0.0362127,-0.0772368 

22.793000000,-0.11756,0.0236898,0.0156107,0.03001,-0.0362146,-0.0772258 

22.827000000,-0.117551,0.0236899,0.0156016,0.0300097,-0.0362164,-0.0772148 

22.861000000,-0.117542,0.0236899,0.0155927,0.0300095,-0.0362183,-0.0772038 

22.893000000,-0.117542,0.0236899,0.0155927,0.0300095,-0.0362183,-0.0772038 

22.927000000,-0.117533,0.02369,0.0155837,0.0300093,-0.0362201,-0.0771929 

22.960000000,-0.117524,0.0236901,0.0155748,0.0300091,-0.0362219,-0.0771821 

22.993000000,-0.117515,0.0236902,0.015566,0.030009,-0.0362237,-0.0771713 

23.027000000,-0.117506,0.0236904,0.0155563,0.0300088,-0.0362257,-0.0771594 

23.060000000,-0.117497,0.0236905,0.0155473,0.0300086,-0.0362275,-0.0771484 

23.093000000,-0.117497,0.0236905,0.0155471,0.0300086,-0.0362276,-0.0771481 

23.127000000,-0.117488,0.0236906,0.0155388,0.0300085,-0.0362293,-0.077138 

23.160000000,-0.11748,0.0236908,0.0155301,0.0300084,-0.036231,-0.0771274 

23.193000000,-0.117471,0.023691,0.0155215,0.0300083,-0.0362328,-0.0771168 

23.227000000,-0.117462,0.0236911,0.0155129,0.0300081,-0.0362346,-0.0771062 

23.260000000,-0.117454,0.0236913,0.0155043,0.0300081,-0.0362363,-0.0770956 

23.293000000,-0.117454,0.0236913,0.0155043,0.0300081,-0.0362363,-0.0770956 

23.327000000,-0.117445,0.0236915,0.0154956,0.030008,-0.0362381,-0.0770849 

23.360000000,-0.117437,0.0236917,0.0154876,0.0300079,-0.0362397,-0.077075 

23.393000000,-0.117429,0.0236919,0.0154791,0.0300079,-0.0362415,-0.0770646 

23.427000000,-0.11742,0.0236922,0.0154707,0.0300078,-0.0362432,-0.0770542 

23.460000000,-0.117412,0.0236924,0.0154623,0.0300078,-0.0362449,-0.0770439 

23.493000000,-0.117412,0.0236924,0.0154623,0.0300078,-0.0362449,-0.0770439 

23.527000000,-0.117404,0.0236927,0.015454,0.0300078,-0.0362466,-0.0770336 

23.560000000,-0.117395,0.0236929,0.0154458,0.0300078,-0.0362483,-0.0770234 

23.593000000,-0.117387,0.0236932,0.0154375,0.0300077,-0.03625,-0.0770132 

23.627000000,-0.117379,0.0236935,0.0154293,0.0300078,-0.0362517,-0.077003 

23.660000000,-0.117371,0.0236938,0.0154211,0.0300078,-0.0362534,-0.0769929 

23.693000000,-0.117371,0.0236938,0.0154211,0.0300078,-0.0362534,-0.0769929 

23.727000000,-0.117363,0.0236941,0.015413,0.0300078,-0.036255,-0.0769828 

23.760000000,-0.117354,0.0236944,0.0154049,0.0300079,-0.0362567,-0.0769727 
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23.793000000,-0.117346,0.0236947,0.0153968,0.0300079,-0.0362583,-0.0769627 

23.827000000,-0.117338,0.023695,0.0153888,0.030008,-0.03626,-0.0769527 

23.860000000,-0.11733,0.0236953,0.0153808,0.0300081,-0.0362616,-0.0769428 

 

 

Example of log.txt file 

The file contains the starting and ending time for experiments listed by their filename. 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.01.launch 

1479772657.445741513 

1479772691.545704047 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.02.launch 

1479772691.546762821 

1479772736.973055900 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.03.launch 

1479772736.975268721 

1479772763.430581048 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.04.launch 

1479772763.431503844 

1479772786.057706638 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.05.launch 

1479772786.058781728 

1479772808.015162025 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.06.launch 

1479772808.016130592 

1479772834.555382629 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.07.launch 

1479772834.556152737 

1479772856.892333712 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.08.launch 

1479772856.894710700 

1479772878.288055537 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.09.launch 

1479772878.288974535 

1479772904.205606228 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_2_0.10.launch 

1479772904.206371317 

1479772926.293962170 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_3_0.01.launch 

1479772926.294981850 

1479772986.088835384 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_3_0.02.launch 

1479772986.089844818 

1479773012.056035298 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_3_0.03.launch 

1479773012.056896150 

1479773049.524392870 

/home/jdurand7/Dropbox/phd/code/modeling/microscopic/launch/robotarium_3_0.04.launch 

1479773049.525498153 

 

 

B.1.4 Real system 

This section contains all the files necessary to setup the required 40 experiments 

and submit them online to the Robotarium interface. 
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generateMainFiles.m 

Generates a set of 40 main.m files which can be submitted to the Robotarium platform. The 

main file is the one run on Robotarium and it calls an additional experiment.m file which 

must be submitted as well (see below). Note that this script uses a configuration file of 

initial poses. Such a file can be generated thanks to the script generateInitialPositions.m 

(see next subsection). 

% Clean and prepare workspace 
clc 
close all 
clear 

  
% Define experiments range and generate full factorial DOE 
Nvec = 2:5; 
Vvec = .01:0.01:0.1; 
[N,V] = meshgrid(Nvec,Vvec); 

  
fprintf('Creating %d experiments...',numel(N)) 

  
% Generate files 
for i = 1:size(N,1) 
    for j = 1:size(N,2) 
        % Prepare string for initial conditions 
%         x0 = generate_initial_conditions(N(i,j)); 
        

load(sprintf('../initialPoses/init_poses_%d_%.2f.mat',N(i,j),V(i,j))) 
        x0_str = strcat('[',... 
            sprintf('%s,',x0(1,:)),... 
            ';',... 
            sprintf('%s,',x0(2,:)),... 
            ';',... 
            sprintf('%s,',x0(3,:)),... 
            ']'); 

         
        % Write into file 
        fid = 

fopen(sprintf('experiments/main_%d_%d.m',N(i,j),round(100*V(i,j))),'w')

; 
        fprintf(fid,'experiment(%d,%.2f,%s);\n',... 
            N(i,j),... 
            V(i,j),... 
            x0_str); 
        fclose(fid); 
    end 
end 
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fprintf('[OK]\nCheck experiments folder.\n') 

 

Example of generated main file: main_3_2.m 

experiment(3,0.02,[1.000000e-01,-2.000000e-01,1.110223e-16,;5.000000e-

02,5.000000e-02,-1.500000e-

01,;1.533965e+00,2.080974e+00,5.550957e+00,]); 

 

 

experiment.m 

Very similar to rendezVousMesoscopic.m for the exception of the Robotarium builders, 

this file parks the robots at their supposed initial location with the appropriate heading, and 

then goes on to perform a static consensus. It can be run either in the Robotarium simulator 

or on the real system (through the previously mentioned main files). 

function experiment(N,v,initial_conditions) 
% Experiment 
% 1 - Initializes N robots at initial_conditions 
% 2 - Performs static consensus with a maximum linear speed saturated 

at v 
% 
% Jean-Guillaume Durand 
% jdurand7@gatech.edu 
% 2016 

  
%% 1 - Initialize N robots at initial conditions 
% Get Robotarium object used to communicate with the robots/simulator 
rb = RobotariumBuilder(); 

  
% Get the number of available agents from the Robotarium.  We don't 

need a 
% specific value for this algorithm 
N_available = rb.get_available_agents(); 

  
% If not enough robots for experiment, stop 
if N_available < N, return, end 

  
% Set the number of agents and whether we would like to save data.  

Then, 
% build the Robotarium simulator object! 
r = rb.set_number_of_agents(N).set_save_data(false).build(); 

  
% Initialize x so that we don't run into problems later.  This isn't 

always 
% necessary 
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x = r.get_poses(); 
r.step(); 

  
% Set some parameters for use with the barrier certificates.  We don't 

want 
% our agents to collide 
safety = 0.05; 
lambda = 0.01; 

  
% Create a barrier certificate for use with the above parameters 
unicycle_barrier_certificate = 

create_uni_barrier_certificate('SafetyRadius', safety, ... 
    'ProjectionDistance', lambda); 

  
% Create parking controller 
args = {'PositionError', 0.01, 'RotationError', 0.25}; 
init_checker = create_is_initialized(args{:}); 
automatic_parker = create_automatic_parking_controller(args{:}); 

  
while(~init_checker(x, initial_conditions)) 
    % Compute velocities 
    x = r.get_poses(); 
    dxu = automatic_parker(x, initial_conditions); 
    dxu = unicycle_barrier_certificate(dxu, x); 
    % Update 
    r.set_velocities(1:N, dxu); 
    r.step(); 
end 

  
%% 2 - Perform static consensus with a maximum linear speed saturated 

at v 
% Experiment constants 
% Generate a cyclic graph Laplacian from our handy utilities.  For this 
% algorithm, any connected graph will yield consensus 
L = cycleGL(N); 

  
% Grab tools we need to convert from single-integrator to unicycle 

dynamics 
% Gain for the diffeomorphism transformation between single-integrator 

and 
% unicycle dynamics 
[si_to_uni_dyn, uni_to_si_states] = 

create_si_to_uni_mapping('ProjectionDistance', lambda); 

  
si_barrier_cert = create_si_barrier_certificate('SafetyRadius', 

safety); 

  
% Select the number of iterations for the experiment.  This value is 
% arbitrary 
iterations = 5000; % Maximum time at around 3 minutes 

  
% Initialize velocity vector for agents.  Each agent expects a 2 x 1 
% velocity vector containing the linear and angular velocity, 

respectively. 
dxi = zeros(2, N); 
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%Iterate for the previously specified number of iterations 
for t = 1:iterations 
    % Retrieve the most recent poses from the Robotarium.  The time 

delay is 
    % approximately 0.033 seconds 
    x = r.get_poses(); 

     
    % Convert to SI states 
    xi = uni_to_si_states(x); 

     
    % Algorithm 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    for i = 1:N 
        % Initialize velocity to zero for each agent.  This allows us 

to sum 
        %over agent i's neighbors 
        dxi(:, i) = [0 ; 0]; 

         
        % Get the topological neighbors of agent i based on the graph 
        %Laplacian L 
        neighbors = topological_neighbors(L, i); 

         
        % Iterate through agent i's neighbors 
        for j = neighbors 

             
            % For each neighbor, calculate appropriate consensus term 

and 
            %add it to the total velocity 
            dxi(:, i) = dxi(:, i) + (xi(:, j) - xi(:, i)); 
        end 
    end 
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
    % Utilize barrier certificates 
    dxi = si_barrier_cert(dxi, xi); 

     
    % Threshold here instead  

     
    norms = arrayfun(@(i) norm(dxi(:, i)), 1:N); 
    need_to_be_thresh = find(norms > v);     
    dxi(:, need_to_be_thresh) = cell2mat(arrayfun(@(i) v*dxi(:, i) / 

norms(i), need_to_be_thresh, 'UniformOutput', false));  

     
    % Transform the single-integrator to unicycle dynamics using the 

the 
    % transformation we created earlier 
    dxu = si_to_uni_dyn(dxi, x); 

       
    % Impose velocity v on agents 
%     linear = dxu(1,:); 
%     linear(linear > v) = v; 
%     linear(linear < -v) = -v; 
%     dxu(1,:) = linear; 
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    % Set velocities of agents 1,...,N 
    r.set_velocities(1:N, dxu); 

     
    % Send the previously set velocities to the agents.  This function 

must be called! 
    r.step(); 
end 

  
% Though we didn't save any data, we still should call 

r.call_at_scripts_end() after our 
% experiment is over! 
r.call_at_scripts_end(); 
end 

 

The results from the Robotarium were analyzed in two different ways: one with a 

script to compute the consensus location, the other by hand by looking at the experiments 

videos to correctly compute the consensus time. The following scripts helped in analyzing 

the results. 

 

analyzeRobotariumData.m 

Script which automatically computes the consensus time and the consensus location based 

on the Robotarium output files. 

% Prepare workspace 
clc 
close all 
clear 

  
N = 3; 
v = 0.08; 

  
%% Load files 
foldername = sprintf('results/%d_%.2f/',N,v); 
files = dir(fullfile(foldername, '*.mat')); 
filename = files(end).name; % Take the last file 
load(sprintf('%s/%s',foldername,filename)) 
load(sprintf('../initialPoses/init_poses_%d_%.2f.mat',N,v)) 

  
x = robotarium_data(1:5:end,:); 
y = robotarium_data(2:5:end,:); 
N = size(x,1); 
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% Compute time to reach consensus 
timestep = 1/30; 
is = 600; 
i = is; 
d = 0; 
d_prev = 1; 
count = 0; 
while i < size(x,2) && count < 25 
    if abs(d - d_prev) < 1e-5 
        count = count + 1; 
    end 
    d_prev = d; 
    dx = x(:,i) - x(:,i-1); 
    dy = y(:,i) - y(:,i-1); 
    d = mean(sqrt(dx.^2 + dy.^2)); 
    % Increment 
    i = i + 1; 
end 
ic = i; 
tc = (ic-is)*timestep; 

  
% Compute consensus location 
xc = mean(x(:,end)); 
yc = mean(y(:,end)); 

  
y0 = x0(2,:)'; 
x0 = x0(1,:)'; 

  
%% Plot 
figure 
hold on 
plot(xc,yc,'xk') 
plot(x(:,1)',y(:,1)','or') % Start point 
plot(x(:,is)',y(:,is)','om') % Start of consensus time 
plot(x(:,end)',y(:,end)','og') % End point 
plot(x',y','-') 
plot(x0,y0,'+k') 
hold off 
xlabel('x (m)','FontName','Times New Roman','FontSize',12) 
ylabel('y (m)','FontName','Times New Roman','FontSize',12) 

  
legend_struct = cell(1,N+3); 
legend_struct{1} = 'Initial conditions barycenter'; 
legend_struct{2} = 'Random initial locations'; 
legend_struct{3} = 'Starting locations'; 
legend_struct{4} = 'Consensus locations'; 
for i = 1:N 
    legend_struct{i+4} = sprintf('Gritbot %d',i); 
end 
h = legend(legend_struct); 
set(h,'FontName','Times New Roman','FontSize',12) 

  
set(gca,'FontName','Times New Roman','FontSize',12) 
axis equal 
axis([-.6 .6 -.35 .35]) 
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% Display 
fprintf('N = %d, v = %.2fcm/s\n',N,v) 
fprintf('Time = %fs\n',tc) 
fprintf('Position = [%f, %f]\n',xc,yc) 

 

generateMatFile.m 

Once the results have been properly reported in a real.csv file, this script reformats the data 

into a proper MAT-file using the same format used for the other modeling techniques. 

% Prepare workspace 
clc 
close all 
clear 

  
% Load data 
data = csvread('real.csv'); 
t = data(:,1); 
T = data(:,2); 
x = data(:,3); 
y = data(:,4); 

  
% Format the data 
t_real = reshape(t,10,4); 
T_real = reshape(T,10,4); 
x = reshape(x,10,4); 
y = reshape(y,10,4); 

  
X_real = cell(10,4); 
for i = 1:size(X_real,1) 
    for j = 1:size(X_real,2) 
        X_real{i,j} = [x(i,j);y(i,j)]; 
    end 
end 

  
% Save formatted data 
save real.mat 

 

real.csv 

Contains the results of the Robotarium experimentation, the first column is the experiment 

time, the second is the consensus time while the last two columns are the x and y 
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coordinates of the consensus location. The previous file generateMatFile.m explains how 

to associate each row here with a set of inputs 𝑁 and 𝑣. 

102,29.233333,0.205051,-0.046544 
102,20.2,-0.142806,0.091981 
102,16,0.20383,-0.09421 
102,10.8,-0.033532,-0.146873 
102,12.733333,0.054997,-0.062684 
102,13.633333,-0.100632,0.015175 
102,22.433333,0.289793,0.19845 
102,8.6,-0.17332,0.000062 
102,15.766667,0.321387,0.261598 
101,8.466667,0.352052,-0.000506 
102,48.3,-0.067764,0.016682 
102,10.033333,-0.049521,-0.007815 
102,32.1,0.080985,0.038893 
102,8.5,0.3133,0.0509 
101,26.233333,0.075515,-0.010795 
102,10.2,-0.039294,-0.078337 
102,9.566667,0.161283,0.177629 
80,35.166667,-0.338886,0.027406 
102,8.166667,0.201344,-0.074088 
101,10.633333,-0.00741,0.013563 
102,47.5,-0.089437,-0.029958 
102,39.1,0.007485,-0.001016 
101,28.7,0.163564,-0.013037 
102,27.4,0.0197,0.0856 
102,34.766667,-0.030778,-0.121071 
102,18.766667,-0.098128,0.062327 
98,26.133333,-0.181069,-0.127278 
101,10.23,-0.089852,-0.050806 
81,17.233333,-0.027068,0.008907 
91,28.366667,-0.173243,-0.058091 
102,68.9,0.171482,0.038068 
101,35.3,0.027043,-0.046788 
102,32.066667,0.133503,0.063558 
102,30.233333,-0.139308,-0.031819 
102,37.733333,-0.132491,0.146308 
102,24.7,-0.192258,0.094753 
102,22.1,-0.10701,-0.009696 
77,16.166667,-0.068914,-0.179585 
102,34.833333,0.005551,-0.047264 
102,29.566667,0.009603,0.01186 

 

 

B.1.5 Scripts 

generateInitialPositions.m 
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A script generating random initial poses for the robots based on a given design of 

experiments. The same set of initial positions was used to compare each type of modeling 

technique. 

% Prepare workspace 
clc 
close all 
clear 

  
%% Design space 
Nvec = 2:5; 
Vvec = .01:0.01:0.1; 
safetyRadius = 0.1; % m 

  
[N,V] = meshgrid(Nvec,Vvec); 

  
%% Analysis 
n1 = size(N,1); 
n2 = size(N,2); 
for i = 1:n1 
    for j = 1:n2 
        fprintf('%d/%d (%.2f%%)\n',(i-1)*n2 + j,n1*n2,100*((i-1)*n2 + 

j)/(n1*n2)) 
        % Generate initial positions 
        x0 = zeros(3,N(i,j)); 
        numX = floor(1.2 / safetyRadius); 
        numY = floor(0.7 / safetyRadius); 
        values = randperm(numX * numY, N(i,j)); 
        for k = 1:N(i,j) 
            [x, y] = ind2sub([numX numY], values(k)); 
            x = x*safetyRadius - 0.6; 
            y = y*safetyRadius - 0.35; 
            x0(1:2,k) = [x, y]'; 
        end 
        x0(3,:) = rand(1, N(i,j))*2*pi; 

         
        % Save 
        save(sprintf('init_poses_%d_%.2f.mat',N(i,j),V(i,j)),'x0') 
    end 
end 

 

plot_models.m 

The script used to generate the different figures of the modeling section. 

% Prepare workspace 
clc 
close all 
clear 
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colors = get(groot,'DefaultAxesColorOrder'); 

  
% Load data 
load('macroscopic/macroscopic.mat') 
load('mesoscopic/mesoscopic.mat') 
load('microscopic/microscopic.mat') 
load('real/real.mat') 

  
%% Direct responses 
figure 
hold on 
surf(N,V,T_macro,'FaceColor',colors(1,:)) 
surf(N,V,T_meso,'FaceColor',colors(2,:)) 
surf(N,V,T_micro,'FaceColor',colors(3,:)) 
surf(N,V,T_real,'FaceColor',colors(4,:)) 
hold off 
xlabel('N','FontName','Times New Roman','FontSize',12) 
ylabel('v (m/s)','FontName','Times New Roman','FontSize',12) 
zlabel('Consensus time (s)','FontName','Times New Roman','FontSize',12) 
h = legend('Macroscopic','Mesoscopic','Microscopic','Real system'); 
set(h,'FontName','Times New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 

  
figure 
hold on 
surf(N,V,t_macro,'FaceColor',colors(1,:)) 
surf(N,V,t_meso,'FaceColor',colors(2,:)) 
surf(N,V,t_micro,'FaceColor',colors(3,:)) 
surf(N,V,t_real,'FaceColor',colors(4,:)) 
hold off 
xlabel('N','FontName','Times New Roman','FontSize',12) 
ylabel('v (m/s)','FontName','Times New Roman','FontSize',12) 
zlabel('Execution time (s)','FontName','Times New Roman','FontSize',12) 
h = legend('Macroscopic','Mesoscopic','Microscopic','Real system'); 
set(h,'FontName','Times New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 

  
%% Section plots 
i = 1; 

  
V(i,1) 

  
figure 
hold on 
plot(N(i,:),T_macro(i,:),'Color',colors(1,:)) 
plot(N(i,:),T_meso(i,:),'Color',colors(2,:)) 
plot(N(i,:),T_micro(i,:),'Color',colors(3,:)) 
plot(N(i,:),T_real(i,:),'Color',colors(4,:)) 
hold off 
xlabel('N','FontName','Times New Roman','FontSize',12) 
ylabel('Consensus time (s)','FontName','Times New Roman','FontSize',12) 
h = legend('Macroscopic','Mesoscopic','Microscopic','Real system'); 
set(h,'FontName','Times New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 
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%% Error on consensus time 
err_t_macro = reshape(abs(T_macro - T_real)./T_real,[],1); 
err_t_meso = reshape(abs(T_meso - T_real)./T_real,[],1); 
err_t_micro = reshape(abs(T_micro - T_real)./T_real,[],1); 

  
mean_err_t_macro = 100*mean(err_t_macro); 
mean_err_t_meso = 100*mean(err_t_meso); 
mean_err_t_micro = 100*mean(err_t_micro); 

  
figure 
hold on 
bar(1,mean_err_t_macro,'FaceColor',colors(1,:)) 
bar(2,mean_err_t_meso,'FaceColor',colors(2,:)) 
bar(3,mean_err_t_micro,'FaceColor',colors(3,:)) 
hold off 
ylabel('Percentage error on consensus time (%)','FontName','Times New 

Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 
set(gca,'XTick',[1 2 3]) 
set(gca,'XTickLabels',{'Macroscopic','Mesoscopic','Microscopic'}) 

  
%% Absolute error on consensus position 
ERR_x_macro = zeros(size(X_macro)); 
ERR_x_meso = zeros(size(X_macro)); 
ERR_x_micro = zeros(size(X_macro)); 
for i = 1:size(X_real,1) 
    for j = 1:size(X_real,2) 
        ERR_x_macro(i,j) = norm(X_macro{i,j} - X_real{i,j}); 
        ERR_x_meso(i,j) = norm(X_meso{i,j} - X_real{i,j}); 
        ERR_x_micro(i,j) = norm(X_micro{i,j} - X_real{i,j}); 
    end 
end 

  
err_x_macro = mean(mean(ERR_x_macro)); 
err_x_meso = mean(mean(ERR_x_meso)); 
err_x_micro = mean(mean(ERR_x_micro)); 

  
figure 
hold on 
bar(1,err_x_macro*100,'FaceColor',colors(1,:)) 
bar(2,err_x_meso*100,'FaceColor',colors(2,:)) 
bar(3,err_x_micro*100,'FaceColor',colors(3,:)) 
hold off 
ylabel('Absolute error on consensus position (cm)','FontName','Times 

New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 
set(gca,'XTick',[1 2 3]) 
set(gca,'XTickLabels',{'Macroscopic','Mesoscopic','Microscopic'}) 

  
%% Execution time 
mean_t_macro = mean(mean(t_macro)); 
mean_t_meso = mean(mean(t_meso)); 
data = csvread('microscopic/logs/runtimes.txt'); 
t_micro = data(:,2) - data(:,1); 
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mean_t_micro = mean(mean(t_micro)); 
mean_t_real = mean(mean(t_real)); 

  
figure 
hold on 
bar(1,mean_t_macro,'FaceColor',colors(1,:)) 
bar(2,mean_t_meso,'FaceColor',colors(2,:)) 
bar(3,mean_t_micro,'FaceColor',colors(3,:)) 
bar(4,mean_t_real,'FaceColor',colors(4,:)) 
hold off 
ylabel('Average execution time (s)','FontName','Times New 

Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 
set(gca,'XTick',[1 2 3 4]) 
set(gca,'XTickLabels',{'Macroscopic','Mesoscopic','Microscopic','Real 

system'}) 
set(gca,'YScale','log'); 

 

B.2 Optimization 

The code used to show the advantage of simultaneous optimization and the benefits 

of the proposed optimization scheme. 

B.2.1 Sequential and simultaneous optimization 

The files used to analyze the canonical mapping mission with respect to different 

optimization schemes. 

 

main.m 

The main file trying to optimize a swarm configuration based on the settings and properties 

of the mapping problem. 

% Numerality vs. Individual Performance Tradeoff 
% Jean-Guillaume Durand (jean-guillaume.durand@gatech.edu) 
% Aerospace Systems Design Laboratory (ASDL) 
% Georgia Institute of Technology 
% 2016 

  
% Homogeneous group optimization 

  
% Clean the workspace 
clc 
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close all 
clear variables 

  
addpath('utilities') 

  
%% Problem parameters 
% Environment ---------------------------------------------------------

--- 
problem.environment.d0 = 100;   % Distance from base to mission 
problem.environment.lx = 100;   % Map horizontal size 
problem.environment.ly = 100;   % Map vertical size 

  
% Cost variables 
problem.cost.C0 = 10; % Swarm fixed cost (ground station...) 
problem.cost.c0 = 3; % Agent fixed cost 
problem.cost.cv = 1; % Cost of one unit of speed 
problem.cost.cv2 = 0; 

  
% problem.cost.C0 = 10; % Swarm fixed cost (ground station...) 
% problem.cost.c0 = 3; % Agent fixed cost 
% problem.cost.cv = 1; % Cost of one unit of speed 
% problem.cost.cv2 = 0.3; 

  
% Constraint 
problem.cost.Cmax = 70; % Maximum cost 
% problem.cost.Cmax = 100; % Maximum cost 

  
% Number of architectures 
problem.nArchis = 1; 

  
%% Run mission 
% Experiment 1 
x_mM = [4,9.999999993264135]; 
x_Mm = [7,5.571459922656952]; 
x_s = [5,9.000199990881889]; 
f_mM = 2.850000000616806e+02; 
f_Mm = 3.230717177359792e+02; 
f_s = 2.622163959912607e+02; 
c_mM = 61.999999991343074; 
c_Mm = 70.000628369138080; 
c_s = 70.000999862698440; 

  
% Experiment 2 
% x_mM = [5,7.000938611068547]; 
% x_Mm = [7,5.571459922656952]; 
% x_s = [5,9.000199990881889]; 
% f_mM = 3.370976566297580e+02; 
% f_Mm = 3.230717177359792e+02; 
% f_s = 2.622163959912607e+02; 
% c_mM = 60.004693055342734; 
% c_Mm = 70.000628369138080; 
% c_s = 70.000999862698440; 

  
% Experiment 3 (quadratic cost constraint at 100) 
% x_mM = [2,9.999999994786457]; 
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% x_Mm = [5,5.598186044422418]; 
% x_s = [7,4.302872355432176]; 
% f_mM = 5.300000002763178e+02; 
% f_Mm = 4.215651250732037e+02; 
% f_s = 4.183252142554459e+02; 
% c_mM = 95.999999927010390; 
% c_Mm = 1.000004607040610e+02; 
% c_s = 1.000009985530244e+02; 

  
% Experiment 4 
% x_mM = [8,3.443486685868475]; 
% x_Mm = [5,5.598176762543418]; 
% x_s = [6,4.873848085169360]; 
% f_mM = 4.719054110674343e+02; 
% f_Mm = 4.215658240358566e+02; 
% f_s = 4.171925956249162e+02; 
% c_mM = 90.006134820756090; 
% c_Mm = 1.000002584097388e+02; 
% c_s = 1.000009997941724e+02; 

  
% Experiment 5 
% x_mM = [5,9.000199990881889]; 
% x_Mm = [7,5.571459922656952]; 
% x_s = [5,9.000199990881889]; 
% f_mM = 2.622163959912607e+02; 
% f_Mm = 3.230717177359792e+02; 
% f_s = 2.622163959912607e+02; 
% c_mM = 70.000999862698440; 
% c_Mm = 70.000628369138080; 
% c_s = 70.000999862698440; 

  
% Experiment 6 
% x_mM = [5,5.598190765561446]; 
% x_Mm = [5,5.598207437216443]; 
% x_s = [6,4.873848080260603]; 
% f_mM = 4.215647695534209e+02; 
% f_Mm = 4.215635141189849e+02; 
% f_s = 4.171925960450970e+02; 
% c_mM = 1.000005635992334e+02; 
% c_Mm = 1.000009269512405e+02; 
% c_s = 1.000009996785916e+02; 

  
% tic 
% [x_mM,f_mM,c_mM] = micro_Macro_optimizer(problem); 
% [x_Mm,f_Mm,c_Mm] = Macro_micro_optimizer(problem); 
% [x_s,f_s,c_s] = simultaneous_optimizer(problem); 
% toc 

  
%% Plot 
f = @(x)myfitnessfcn(x,problem.environment); 
c = @(x)(mynonlcon(x, problem.cost) + problem.cost.Cmax); 
Nmax = 10; 
vmax = 11; 
fontSize = 12; 

  
[N, v] = meshgrid(1:1:Nmax, 1:.1:vmax); 
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T = zeros(size(N)); 
C = zeros(size(N)); 

  
for i = 1:size(N,1) 
    for j = 1:size(N,2); 
        T(i,j) = f([N(i,j),v(i,j)]); 
        C(i,j) = c([N(i,j),v(i,j)]); 
    end 
end 

  
Tc = T; 
Tc(C <= problem.cost.Cmax) = 0; 

  
%% Plot 1 
figure 
surf(N,v,T-1,'EdgeColor', 'none') 
hold on 
% Constraint 
hc = surf(N,v,Tc,'EdgeColor', 'none','FaceColor','r','FaceAlpha',0.5); 
% Points 
h_mM = 

plot3(x_mM(1),x_mM(2),f([x_mM(1),x_mM(2)]),'o','MarkerEdgeColor','k','M

arkerFaceColor','c'); 
h_Mm = 

plot3(x_Mm(1),x_Mm(2),f([x_Mm(1),x_Mm(2)]),'o','MarkerEdgeColor','k','M

arkerFaceColor','m'); 
hx = 

plot3(x_s(1),x_s(2),f([x_s(1),x_s(2)]),'o','MarkerEdgeColor','k','Marke

rFaceColor','r'); 
% Lines 
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l = 

zeros(size(N(1,:))); 
for i = 1:size(N,2) 
    Nl(i) = N(1,i); vl(i) = x_mM(2); l(i) = f([Nl(i),vl(i)]); 
end 
plot3(Nl,vl,l,'c--') 

  
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l = 

zeros(size(N(1,:))); 
for i = 1:size(N,1) 
    Nl(i) = x_Mm(1); vl(i) = v(i,1); l(i) = f([Nl(i),vl(i)]); 
end 
plot3(Nl,vl,l,'m--') 
hold off 

  

  
xlabel('N','FontSize', fontSize, 'FontName', 'Times New Roman') 
ylabel('v (m/s)','FontSize', fontSize, 'FontName', 'Times New Roman') 
zlabel('Mapping time (s)','FontSize', fontSize, 'FontName', 'Times New 

Roman') 
h = legend([hc,h_mM,h_Mm,hx],{'Constraint','Micro-macro 

optimum','Macro-micro optimum','Global 

optimum'},'location','northeast'); 
set(h, 'FontSize', fontSize, 'FontName', 'Times New Roman') 
set(gca, 'FontSize', fontSize, 'FontName', 'Times New Roman') 
hc = colorbar; 
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% shading interp 

  
set(gca, 'ZScale', 'log') 
set(gca, 'ZLim', [100 10^4]) 
% set(gcf, 'Position', [1 1 1252 750]) 
view(115,16) 

  
% Transparent background 
set(gcf, 'Color', 'None') 
set(gca, 'Color', 'None', 'XColor', 'w', 'YColor', 'w', 'ZColor', 'w') 
set(h,'color','none','TextColor','w','EdgeColor','w') 
set(hc,'color','w'); 

  
%% Plot 2 
% PCA 
X = [reshape(N,[],1), reshape(v,[],1), reshape(T,[],1)]; 
coeff = pca(X); 
x0 = [x_s(1) x_s(2) f_s]'; 
x01 = [x0,x0 + 250*coeff(:,1)]; 
x02 = [x0,x0 + 1*coeff(:,2)]; 
x03 = [x0,x0 + 1*coeff(:,3)]; 

  
figure 
hold on 
surf(N,v,T-1,'EdgeColor', 'none')%,'FaceAlpha',0.5) 
plot3(x01(1,:),x01(2,:),x01(3,:),'r','LineWidth',2) 
plot3(x02(1,:),x02(2,:),x02(3,:),'g','LineWidth',2) 
plot3(x03(1,:),x03(2,:),x03(3,:),'b','LineWidth',2) 
% Constraint 
hc = surf(N,v,Tc,'EdgeColor', 'none','FaceColor','r','FaceAlpha',0.5); 
% Points 
h_mM = 

plot3(x_mM(1),x_mM(2),f([x_mM(1),x_mM(2)]),'o','MarkerEdgeColor','k','M

arkerFaceColor','c'); 
h_Mm = 

plot3(x_Mm(1),x_Mm(2),f([x_Mm(1),x_Mm(2)]),'o','MarkerEdgeColor','k','M

arkerFaceColor','m'); 
hx = 

plot3(x_s(1),x_s(2),f([x_s(1),x_s(2)]),'o','MarkerEdgeColor','k','Marke

rFaceColor','r'); 
% Lines 
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l = 

zeros(size(N(1,:))); 
for i = 1:size(N,2) 
    Nl(i) = N(1,i); vl(i) = x_mM(2); l(i) = f([Nl(i),vl(i)]); 
end 
plot3(Nl,vl,l,'c--') 

  
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l = 

zeros(size(N(1,:))); 
for i = 1:size(N,1) 
    Nl(i) = x_Mm(1); vl(i) = v(i,1); l(i) = f([Nl(i),vl(i)]); 
end 
plot3(Nl,vl,l,'m--') 
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Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l = 

zeros(size(N(1,:))); 
for i = 1:size(N,1) 
    x = x_s(1) + i*.05*coeff(1,3); 
    y = x_s(2) + i*.05*coeff(2,3); 
    Nl(i) = x; vl(i) = y; l(i) = f([x,y]); 
end 
plot3(Nl,vl,l,'k--') 

  
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l = 

zeros(size(N(1,:))); 
for i = 1:size(N,1) 
    x = x_s(1) - i*.05*coeff(1,3); 
    y = x_s(2) - i*.05*coeff(2,3); 
    Nl(i) = x; vl(i) = y; l(i) = f([x,y]); 
end 
plot3(Nl,vl,l,'k--') 

  
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l = 

zeros(size(N(1,:))); 
for i = 1:size(N,1) 
    x = x_s(1) + i*.05*coeff(1,2); 
    y = x_s(2) + i*.05*coeff(2,2); 
    Nl(i) = x; vl(i) = y; l(i) = f([x,y]); 
end 
plot3(Nl,vl,l,'k--') 

  
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l = 

zeros(size(N(1,:))); 
for i = 1:size(N,1) 
    x = x_s(1) - i*.05*coeff(1,2); 
    y = x_s(2) - i*.05*coeff(2,2); 
    Nl(i) = x; vl(i) = y; l(i) = f([x,y]); 
end 
plot3(Nl,vl,l,'k--') 
hold off 

  
xlabel('N','FontSize', fontSize, 'FontName', 'Times New Roman') 
ylabel('v (m/s)','FontSize', fontSize, 'FontName', 'Times New Roman') 
zlabel('Mapping time (s)','FontSize', fontSize, 'FontName', 'Times New 

Roman') 
h = legend([hc,h_mM,h_Mm,hx],{'Constraint','Micro-macro 

optimum','Macro-micro optimum','Global 

optimum'},'location','northeast'); 
set(h, 'FontSize', fontSize, 'FontName', 'Times New Roman') 
set(gca, 'FontSize', fontSize, 'FontName', 'Times New Roman') 
colorbar 

  
% shading interp 

  
set(gca, 'ZScale', 'log') 
set(gca, 'ZLim', [100 10^4]) 
% set(gcf, 'Position', [1 1 1252 750]) 
view(115,16) 
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%% Plot 3 
figure 
hold on 
costContour = contour(C,[problem.cost.Cmax, problem.cost.Cmax]); 
hold off 

  
figure 
hold on 
contour(C,[40 70 100 110 120]) 
patch([costContour(1,2:end), 10],[.9+.1*costContour(2,2:end), 

11],'red') 
hold off 

  
figure 
hold on 
contourf(N,v,T-1) 
% Constraint 
plot(costContour(1,2:end),.9+.1*costContour(2,2:end),'r--') 
patch([costContour(1,2:end), 10],[.9+.1*costContour(2,2:end), 

11],'red','FaceAlpha',0.5) 
% Eigenvectors 
plot(x01(1,:),x01(2,:),'r','LineWidth',2) 
plot(x02(1,:),x02(2,:),'g','LineWidth',2) 
plot(x03(1,:),x03(2,:),'b','LineWidth',2) 
% Points 
h_mM = 

plot(x_mM(1),x_mM(2),'o','MarkerEdgeColor','k','MarkerFaceColor','c'); 
h_Mm = 

plot(x_Mm(1),x_Mm(2),'o','MarkerEdgeColor','k','MarkerFaceColor','m'); 
hx = 

plot(x_s(1),x_s(2),'o','MarkerEdgeColor','k','MarkerFaceColor','r'); 
% Lines 
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l = 

zeros(size(N(1,:))); 
for i = 1:size(N,2) 
    Nl(i) = N(1,i); vl(i) = x_mM(2); l(i) = f([Nl(i),vl(i)]); 
end 
plot(Nl,vl,'c--') 

  
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l = 

zeros(size(N(1,:))); 
for i = 1:size(N,1) 
    Nl(i) = x_Mm(1); vl(i) = v(i,1); l(i) = f([Nl(i),vl(i)]); 
end 
plot(Nl,vl,'m--') 

  
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l = 

zeros(size(N(1,:))); 
for i = 1:size(N,1) 
    x = x_s(1) + i*.05*coeff(1,3); 
    y = x_s(2) + i*.05*coeff(2,3); 
    Nl(i) = x; vl(i) = y; l(i) = f([x,y]); 
end 
plot(Nl,vl,'k--') 
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Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l = 

zeros(size(N(1,:))); 
for i = 1:size(N,1) 
    x = x_s(1) - i*.05*coeff(1,3); 
    y = x_s(2) - i*.05*coeff(2,3); 
    Nl(i) = x; vl(i) = y; l(i) = f([x,y]); 
end 
plot(Nl,vl,'k--') 

  
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l = 

zeros(size(N(1,:))); 
for i = 1:size(N,1) 
    x = x_s(1) + i*.05*coeff(1,2); 
    y = x_s(2) + i*.05*coeff(2,2); 
    Nl(i) = x; vl(i) = y; l(i) = f([x,y]); 
end 
plot(Nl,vl,'k--') 

  
Nl = zeros(size(N(1,:))); vl = zeros(size(N(1,:))); l = 

zeros(size(N(1,:))); 
for i = 1:size(N,1) 
    x = x_s(1) - i*.05*coeff(1,2); 
    y = x_s(2) - i*.05*coeff(2,2); 
    Nl(i) = x; vl(i) = y; l(i) = f([x,y]); 
end 
plot(Nl,vl,'k--') 
hold off 

  
xlabel('N','FontSize', fontSize, 'FontName', 'Times New Roman') 
ylabel('v (m/s)','FontSize', fontSize, 'FontName', 'Times New Roman') 
% h = legend([hc,h_mM,h_Mm,hx],{'Constraint','Micro-macro 

optimum','Macro-micro optimum','Global 

optimum'},'location','northeast'); 
% set(h, 'FontSize', fontSize, 'FontName', 'Times New Roman') 
set(gca, 'FontSize', fontSize, 'FontName', 'Times New Roman') 
colorbar 

  
% shading interp 

  
%% Analysis 
% Rows = {'Macro-micro';'Micro-macro';'Global'}; 
% fval = [f_Mm;f_mM;f_s]; 
% cost = [c_Mm;c_mM;c_s]; 
% N = [x_Mm(1);x_mM(1);x_s(1)]; 
% v = [x_Mm(2);x_mM(2);x_s(2)]; 
%  
% T = table(N,v,fval,cost,... 
%     'RowNames',Rows) 

 

micro_Macro_optimizer.m 
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A sequential micro-macro optimizer for the canonical mapping mission example. Note that 

some parts are commented to enable the designer to set a different constraint on the system 

to reflect real-world situations (see section 4.1 page 232). 

function [x,fval,cost] = micro_Macro_optimizer(problem) 
% problem2 = problem; 
% problem2.cost.Cmax = 10 + problem.cost.C0; 
v = inner_loop(5, problem); 
[N,fval,cost] = outer_loop(v, problem); 
x = [N,v]; 
end 

 

Macro_micro_optimizer.m 

A sequential macro-micro optimizer for the canonical mapping mission example. 

function [x,fval,cost] = Macro_micro_optimizer(problem) 
N = outer_loop(5, problem); 
[v,fval,cost] = inner_loop(N, problem); 
x = [N,v]; 
end 

 

simultaneous_optimizer.m 

A simultaneous optimizer for the canonical mapping mission example. 

function [x,fval,cost] = simultaneous_optimizer(problem) 
% Gather problem data 
environment = problem.environment; 
cost = problem.cost; 

  
% Prepare GA information 
fitnessfcn = @(x)myfitnessfcn(x, environment); 
nvars = 2; 
A = []; 
b = []; 
Aeq = []; 
beq = []; 
LB = [1 1]; 
UB = [10 10]; 
nonlcon = @(x)mynonlcon(x, cost); 
Intcon = 1; 
options = gaoptimset('Generations',1000,... 
    'PopulationSize',400,... 
    'Display','none'); 

  
% Optimize group 
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[x,fval] = 

ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,Intcon,options); 
cost = nonlcon(x) + cost.Cmax; 
end 

 

outer_loop.m 

The outer loop of the simultaneous optimizer. 

function [N,fval,cost] = outer_loop(v, problem) 
% Gather problem data 
environment = problem.environment; 
cost = problem.cost; 

  
% Prepare GA information 
fitnessfcn = @(x)myfitnessfcn([x, v], environment); 
nvars = 1; 
A = []; 
b = []; 
Aeq = []; 
beq = []; 
LB = 1; 
UB = 10; 
nonlcon = @(x)mynonlcon([x, v], cost); 
Intcon = 1; 
options = gaoptimset('Generations',1000,... 
    'PopulationSize',400,... 
    'Display','none'); 

  
% Optimize group 
[N,fval] = 

ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,Intcon,options); 
cost = nonlcon(N) + cost.Cmax; 
end 

 

inner_loop.m 

The inner loop of the simultaneous optimizer. 

function [v,fval,cost] = inner_loop(N, problem) 
% Gather problem data 
environment = problem.environment; 
cost = problem.cost; 

  
% Prepare GA information 
fitnessfcn = @(x)myfitnessfcn([N, x], environment); 
nvars = 1; 
A = []; 
b = []; 
Aeq = []; 
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beq = []; 
LB = 1; 
UB = 10; 
nonlcon = @(x)mynonlcon([N, x], cost); 
Intcon = []; 
options = gaoptimset('Generations',1000,... 
    'PopulationSize',400,... 
    'Display','none'); 

  
% Optimize group 
[v,fval] = 

ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,Intcon,options); 
cost = nonlcon(v) + cost.Cmax; 
end 

 

myfitnessfcn.m 

The fitness function used by the optimizers to determine the performance of the system. 

Here, it is the mapping time. 

function output = myfitnessfcn(x, environment) 
%RUNMISSION Summary of this function goes here 
%   Detailed explanation goes here 

  
% INPUT 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Gather input data 
d0 = environment.d0;    % Distance from base to mission 
lx = environment.lx;    % Map horizontal size 
ly = environment.ly;    % Map vertical size 

  
% Parse input vector 
N = length(x)/2; 
n = x(1:N);             % Number of agents of each type 
v = x(N+1:end);         % Velocity for each type of agent 

  
% ANALYSIS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Compute areas for each type of agent --------------------------------

--- 
% ASSUMPTION: each type of agent takes the same amount of time to map 
% their given area 
S = lx*ly; % Total map area 
s = v*S / sum(n.*v); 

  
% Compute mission time for each type of agent 
% NOTE: the time to complete the mission is the time for the furthest 

agent 
% to complete its mission, hence only the furthest agents are studied 

here 
% Distance to start mission 



504 

 

ds = d0 + (n-1).*s / ly; 

  
% Distance to map 
dm = s; 

  
% Distance to return to base 
dr = ds; 

  
% Total distance 
d = ds + dm + dr; 

  
% Compute mission time ------------------------------------------------

--- 
output = max(d./v); 
end 

 

mynonlcon.m 

The non-linear constraint function used by the optimizers to constrain the problem. Here, 

it is the cost of the swarming solution. 

function [c, ceq] = mynonlcon(x, cost) 
% Input 
N = x(1); 
v = x(2); 

  
% Problem parameters 
C0 = cost.C0;       % Group fixed cost 
c0 = cost.c0;       % Agents fixed costs 
cv = cost.cv;       % Agents linear technology cost 
cv2 = cost.cv2;     % Agents quadratic technology cost 
Cmax = cost.Cmax;   % Cost constraint 

  
% Compute total group cost 
c = C0 + N*(c0 + cv*v + cv2*v^2) - Cmax; 
ceq = []; 
end 

 

B.2.2 Bi-level optimizer 

The proposed Matlab implementation of the bi-level genetic algorithm for the 

optimization of multi-architecture multi-level systems, including the elite retention 

scheme. 
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loopOuter.m 

The outer loop of the algorithm. 

function 

[xOut,fvalOut,exitflagOut,outputOut,populationOut,scoresOut,... 
    xIn,fvalIn,exitflagIn,outputIn,populationIn,scoresIn] = 

loopOuter(optionsOuter, optionsInner) 
global buffer elite 
if optionsOuter.elitism 
    % Initialize elitism retention variables 
    buffer = cell(1, optionsOuter.nArchis); 
    elite = cell(1, optionsOuter.nArchis); 
    optionsInner.elitism = true; 
    for i = 1:optionsOuter.nArchis 
        buffer{i}.population = []; 
        buffer{i}.scores = []; 
    end 
else 
    optionsInner.elitism = false; 
end 

  
% Initialization 
nArchis = optionsOuter.nArchis; 

  
if strcmp(optionsOuter.solver, 'ga') 
    % Define optimization genetic algorithm problem 
    problem             = struct; 
    problem.fitnessfcn  = @(x)optionsOuter.fitnessFcn(x, optionsInner); 
    problem.nvars       = nArchis; 
    problem.Aineq       = [ones(1, nArchis);-ones(1,nArchis)]; 
    problem.Bineq       = [optionsOuter.maxAgents; -1]; 
    problem.Aeq         = []; 
    problem.beq         = []; 
    problem.lb          = zeros(1, nArchis); 
    problem.ub          = optionsOuter.maxAgents*ones(1, nArchis); 
    problem.nonlcon     = []; 
    problem.intcon      = 1:nArchis; 
    problem.solver      = 'ga'; 
    problem.options     = optionsOuter; 

     
    % Optimize 
    [xOut,fvalOut,exitflagOut,outputOut,populationOut,scoresOut] = 

ga(problem); 
elseif strcmp(optionsOuter.solver, 'ff') 
    % Generate full factorial 
    dFF = fullfact(optionsOuter.maxAgents*ones(1,nArchis)); 
    % Keep only groups below maxAgents agents 
    indices = sum(dFF,2) <= optionsOuter.maxAgents; 
    dFF = dFF(indices,:); 

     
    % Evaluate fitness over full factorial 
    n = size(dFF,1); 
    fitness = zeros(n,1); 
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    startTime = tic; % Start timer 
    if ~strcmp(optionsOuter.Display,'off') 
        fprintf('Started on %s\n', datetime('now')) 
    end 

     
    for i = 1:n 
        % Run inner loop 
        fitness(i) = optionsOuter.fitnessFcn(dFF(i,:), optionsInner); 

         
        % Estimate remaining time 
        elapsed = toc(startTime); 
        total = n*elapsed/i; 
        remaining = total - elapsed; 
        if strcmp(optionsOuter.Display,'iter') 
            fprintf('[%03.0f%% (%d/%d)] (elapsed: %fs, remaining: %fs, 

total: %fs)\n', 100*i/n, i, n, elapsed, remaining, total) 
        end 
    end 

     
    % Display 
    if ~strcmp(optionsOuter.Display,'off') 
        fprintf('\nFinished on %s\n', datetime('now')); 
        fprintf('\tIterations: %d\n', n) 
        fprintf('\tFunEval:    %d\n', n) 
        fprintf('\tTotal time: %fs (%fs/iteration)\n', toc(startTime), 

toc(startTime)/n) 
    end 

     
    % Take best architecture 
    [M,I] = min(fitness); 
    xOut = dFF(I,:); 
    fvalOut = M; 
    exitflagOut = 1; 
    outputOut = []; 
    populationOut = dFF; 
    scoresOut = fitness; 
else 
    error('Solver argument to outerLoop must be either ''ga'' or 

''ff''.') 
end 

  
% With known optimal composition, obtain corresponding optimal inner 

loop 
[fvalIn,xIn,exitflagIn,outputIn,populationIn,scoresIn] = 

optionsOuter.fitnessFcn(xOut, optionsInner); 
end 

 

loopInner.m 

The inner loop of the algorithm. 
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function [fval,x,exitflag,output,population,scores] = loopInner(xOuter, 

optionsInner) 
global elite 
% Vector storing architectures in use 
archis = 1:length(xOuter); 

  
% Remove absent architectures from the group vectors 
toKeep = xOuter > 0; 
nVars = optionsInner.nVars; 
nVars = nVars(toKeep); 
optionsInner.nVars = nVars; 
optionsInner.lb = optionsInner.lb(toKeep); 
optionsInner.ub = optionsInner.ub(toKeep); 
archis = archis(toKeep); 
xOuter = xOuter(toKeep); 

  
% Compute number of variables depending on heterogeneity level 
if optionsInner.trueHeterogeneity 
    nVarsTotalArchis = xOuter.*nVars; % Total variables per 

architecture 
else 
    nVarsTotalArchis = nVars; 
end 
nVarsTotal = sum(nVarsTotalArchis); 

  
% Compute start indices for each architecture 
nArchis = length(xOuter); 
startArchis = ones(1,nArchis); 
for i = 2:nArchis 
    startArchis(i) = startArchis(i-1) + nVarsTotalArchis(i-1); 
end 

  
% Compute bounds for the variables 
[lb, ub] = createBounds(xOuter, optionsInner.lb, optionsInner.ub, 

nVarsTotal, optionsInner.nVars, optionsInner.trueHeterogeneity); 

  
% Compute range for the initial population 
optionsInner.PopInitRange = [lb; ub]; 

  
% Convey variables to the output function 
if optionsInner.elitism == true 
    optionsInner.OutputFcns = 

{@(options,state,flag)gaInnerLoopElitism(options,state,flag,xOuter,nVar

s,archis,optionsInner.eliteFraction,startArchis,optionsInner.trueHetero

geneity)}; 
end 

  
% % TODO REMOVE HACK 
% optionsInner.OutputFcns = 

{@(options,state,flag)gaInnerLoopElitism(options,state,flag,xOuter,nVar

s,archis,optionsInner.eliteFraction,startArchis)}; 
% % TODO REMOVE HACK - Compute the expected optimum 
% offsetsArchis = 1./(1 + (xOuter - archis).^2); 
% optionsInner.FitnessLimit = -.99*sum(offsetsArchis); 
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% If all elite cells are filled 
if optionsInner.elitism == true && sum(cellfun(@isempty,elite)) == 0 
    % Initialize population to elite 
    optionsInner.InitialPopulation = 

generateInitialPopulation(xOuter,elite,nVars,archis,startArchis,nVarsTo

tal,optionsInner.trueHeterogeneity); 
end 

  
% Define optimization problem 
problem = struct; 
problem.fitnessfcn  = @(x)optionsInner.fitnessFcn(x, xOuter, 

optionsInner.nVars, archis, optionsInner.trueHeterogeneity); 
problem.nvars       = nVarsTotal; 
problem.Aineq       = []; 
problem.Bineq       = []; 
problem.Aeq         = []; 
problem.beq         = []; 
problem.lb          = lb; 
problem.ub          = ub; 
problem.nonlcon     = []; 
problem.intcon      = []; 
problem.solver      = 'ga'; 
problem.options     = optionsInner; 

  
% Optimize 
[x,fval,exitflag,output,population,scores] = ga(problem); 
end 

  
function [lb, ub] = createBounds(xOuter, lbArchis, ubArchis, 

nVarsTotal, nVars, trueHeterogeneity) 
% Initialization 
lb = zeros(1, nVarsTotal); 
ub = zeros(1, nVarsTotal); 

  
% For each architecture 
idx = 1; 
for i = 1:length(xOuter) 
    % Number of agents for this architecture 
    nAgents = xOuter(i); 
    % Number of variables for this architecture 
    nv = nVars(i); 
    % For each variable the architecture 
    for k = 1:nv 
        if trueHeterogeneity 
            % For each agent with this architecture 
            for j = 1:nAgents 
                % Get upper and lower bounds 
                lb(idx) = lbArchis{i}(k); 
                ub(idx) = ubArchis{i}(k); 

                 
                % Increment array index 
                idx = idx + 1; 
            end 
        else 
            % Get upper and lower bounds 
            lb(idx) = lbArchis{i}(k); 
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            ub(idx) = ubArchis{i}(k); 

             
            % Increment array index 
            idx = idx + 1; 
        end 
    end 
end 
end 

  
function population = 

generateInitialPopulation(xOuter,elite,nVars,archis,startArchis,nVarsTo

tal,trueHeterogeneity) 
% Initialization 
population = zeros(size(elite{1}.scores,1), nVarsTotal); 
nArchis = length(xOuter); 

  
if trueHeterogeneity == true 
    % For each architecture 
    for i = 1:nArchis 
        % For each agent with this architecture 
        for j = 1:xOuter(i) 
            startIndex = startArchis(i) + (j-1)*nVars(i); 
            endIndex = startIndex + nVars(i) - 1; 
            population(:,startIndex:endIndex) = 

elite{archis(i)}.population; 
        end 
    end 
else 
    % For each architecture 
    for i = 1:nArchis 
        startIndex = startArchis(i); 
        endIndex = startIndex + nVars(i) - 1; 
        population(:,startIndex:endIndex) = 

elite{archis(i)}.population; 
    end 
end 
end 

 

gaOuterLoopElitism.m 

The function runs after each generation of the outer loop. Used for elite retention. 

function [state,options,optchanged] = 

gaOuterLoopElitism(options,state,flag) 
% Global variables 
global buffer elite 
global generationsArray generationOuter 
generationOuter = generationOuter + 1; 
generationsArray{generationOuter,1} = []; 

  
optchanged = false; 
if strcmp(flag,'iter') 
    % Update the elite array to buffer 
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    elite = buffer; 
end 
end 

 

gaInnerLoopElitism.m 

The function runs after each generation of the inner loop. Used for elite retention. 

function [state,options,optchanged] = 

gaInnerLoopElitism(options,state,flag, xOuter, nVars, archis, 

eliteFraction, startArchis, trueHeterogeneity) 
% Global variables 
global buffer 
global generationsArray generationOuter 
optchanged = false; 

  
if strcmp(flag,'done') 
%     xOuter 
%     fprintf('[INNER LOOP] Converged in %d 

generations\n',state.Generation) 

   
%     nArchis = length(archis); 
%     nPopulation = size(state.Population,1); 
%     nElite = round(eliteFraction*nPopulation); 
%     % For each architecture 
%     for i = 1:nArchis 
%         if trueHeterogeneity 
%             nAgents = xOuter(i); % Number of agents for this 

architecture 
%         else 
%             nAgents = 1; 
%         end 
%         % Reshape current architecture population 
%         temp = zeros(nAgents*nPopulation, nVars(i)); 
%         for j = 1:nAgents 
%             startIndex = startArchis(i) + (j-1)*nVars(i); 
%             endIndex = startArchis(i) + j*nVars(i) - 1; 
%             temp((1+(j-1)*nPopulation):j*nPopulation,:) = 

state.Population(:, startIndex:endIndex); 
%         end 
%         % Add final population to buffer 
%         buffer{archis(i)}.population = [buffer{archis(i)}.population; 

temp]; 
%         % Sort the buffer by corresponding scores 
%         scores = [buffer{archis(i)}.scores; repmat(state.Score, 

nAgents, 1)]; 
%         [scores,I] = sort(scores); 
%         buffer{archis(i)}.population = 

buffer{archis(i)}.population(I,:); 
%         % Update current population elite (keep only the required 

fraction) 
%         buffer{archis(i)}.scores = scores(1:nElite); 
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%         buffer{archis(i)}.population = 

buffer{archis(i)}.population(1:nElite,:); 
%     end 

     
    generationsArray{generationOuter,1} = 

[generationsArray{generationOuter,1}, state.Generation]; 
%     fprintf('-----------------------------------------------\n') 
end 
end 

 

gaEstimateTime.m 

A function used to estimate the remaining time for the optimization to complete. 

function [state,options,optchanged] = 

gaEstimateTime(options,state,flag) 
%GAOUTPUTFCNTEMPLATE Template to write custom OutputFcn for GA. 
%   [STATE, OPTIONS, OPTCHANGED] = 

GAOUTPUTFCNTEMPLATE(OPTIONS,STATE,FLAG) 
%   where OPTIONS is an options structure used by GA. 
% 
%   STATE: A structure containing the following information about the 

state 
%   of the optimization: 
%             Population: Population in the current generation 
%                  Score: Scores of the current population 
%             Generation: Current generation number 
%              StartTime: Time when GA started 
%               StopFlag: String containing the reason for stopping 
%              Selection: Indices of individuals selected for elite, 
%                         crossover and mutation 
%            Expectation: Expectation for selection of individuals 
%                   Best: Vector containing the best score in each 

generation 
%        LastImprovement: Generation at which the last improvement in 
%                         fitness value occurred 
%    LastImprovementTime: Time at which last improvement occurred 
% 
%   FLAG: Current state in which OutputFcn is called. Possible values 

are: 
%         init: initialization state 
%         iter: iteration state 
%    interrupt: intermediate state 
%         done: final state 
% 
%   STATE: Structure containing information about the state of the 
%          optimization. 
% 
%   OPTCHANGED: Boolean indicating if the options have changed. 
% 
%   See also PATTERNSEARCH, GA, OPTIMOPTIONS 

  
%   Copyright 2004-2015 The MathWorks, Inc. 
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optchanged = false; 

  
switch flag 
    case 'init' 
%         fprintf('Started on %s\n', datestr(datetime('now'))) 
    case {'iter','interrupt'} 
%         estimated_final_generations = 30; 
%         elapsed = toc(state.StartTime); 
%         n = state.Generation; 
%         total = estimated_final_generations*elapsed/n; 
%         remaining = total - elapsed; 
%         fprintf('Generation %d [%03.0f%%] (elapsed: %fs, remaining: 

%fs, total: %fs, end: %s)\n', n, 100*elapsed/total, elapsed, remaining, 

total, datestr(datetime('now') + seconds(remaining))) 
        fprintf('Generation %d\n',state.Generation) 
    case 'done' 
%         fprintf('\nFinished on %s\n', datestr(datetime('now'))) 
%         fprintf('\tGenerations:     %d\n', state.Generation) 
%         fprintf('\tFunEval:         %d\n', state.FunEval) 
%         fprintf('\tTotal time:      %fs (%fs/generation)\n', 

toc(state.StartTime), toc(state.StartTime)/state.Generation) 
%         fprintf('\tLastImprovement: %d (%fs elapsed since)\n', 

state.LastImprovement, toc(state.LastImprovementTime)) 
end 

 

B.2.3 Unit tests 

The unit tests used to validate the optimization algorithm. 

 

test.m 

The main file running all the unit tests of the test campaign. 

% Prepare workspace 
clc 
close all 
clear global 
clear 

  
% % Run tests 
% result = runtests('outerLoop/outerLoopTest.m'); 
% rt = table(result); 
% disp(rt) 
%  
% result = runtests('innerLoop/innerLoopTest.m'); 
% rt = table(result); 
% disp(rt) 
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result = runtests('completeOptimizer/completeOptimizerTest.m'); 
rt = table(result); 
disp(rt) 

 

testFitnessFunctionOuterLoop.m 

The fitness function used by the outer loop for the unit tests. The function is described in 

section 5.2.2.1 page 364. 

function [fval,x,exitflag,output,population,scores] = 

testFitnessFunctionOuterLoop(xOuter, ~) 
nArchis = length(xOuter); 
% Compute the offset by architecture 
offsetsArchis = 1./(1 + (xOuter - (1:nArchis)).^2); 
y = - sum(offsetsArchis); 

  
% Assign output variables 
fval = y; 
x = []; 
exitflag = 0; 
output = []; 
population = []; 
scores = []; 
end 

 

testFitnessFunctionInnerLoop.m 

The fitness function used by the inner loop for the unit tests. The function is described in 

section 5.2.2.1 page 364. 

function y = testFitnessFunctionInnerLoop(x, xOuter, nVars, archis, 

trueHeretogeneity) 
% Get number of architectures 
nArchis = length(xOuter); 

  
% Prepare offsets 
% Each architecture function is a parabola offset by: 
% 1) For design variables 
%   a) the index of its architecture 
%   b) then by a tenth of the number of agents for this architecture 
%   b) then by a hundredth of the index of each agent with this 

architecture 
%   c) then by a thousandth of the index of the design variable for 

this agent 
% 2) For function value by 1/(1+(nAgents - i)^2) with i index of 

architecture 
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% 
% Example: fitness function for architecture 1, agent 2 is offset by 1 

in its values 
% and by 1.23 for variable 3, 1.22 for variable 2, etc. 
m = sum(xOuter.*nVars); 
offsetsVariables = zeros(1,m); 
xBis = x; 
% For each architecture 
idx = 1; 
idxArchi = 1; 
for i = 1:nArchis 
    % Number of agents for this architecture 
    nAgents = xOuter(i); 
    % Number of variables for this architecture 
    nv = nVars(i); 
    % For each agent with this architecture 
    for j = 1:nAgents 
        % For each variable of this agent 
        for k = 1:nv             
            % Prepare an equivalent design vector 
            if trueHeretogeneity 
                offsetsVariables(idx) = archis(i) + nAgents/10 + j/100 

+ k/1000; 
            else 
                xBis(idx) = x(idxArchi + k - 1); 
                offsetsVariables(idx) = archis(i) + nAgents/10 + 1/100 

+ k/1000; 
            end 
            % Increment array index 
            idx = idx + 1; 
        end 
    end 

     
    % Increment architecture separation index 
    if trueHeretogeneity 
        % Each architecture has different design variables 
        idxArchi = idxArchi + nAgents*nv; 
    else 
        % Similar architectures have the same design variables 
        idxArchi = idxArchi + nv; 
    end 
end 

  
% Compute the offset by architecture independently of the number of 

variables 
offsetsArchis = 1./(1 + (xOuter - archis).^2); 

  
% Compute fitness function 
y = sum((xBis - offsetsVariables).^2) - sum(offsetsArchis); 
end 

 

completeOptimizerTest.m 

The unit test for the whole optimizer. 
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%% Main function to generate tests 
function tests = completeOptimizerTest 
tests = functiontests(localfunctions); 
end 

  
%% Test Functions 
function testPartialHeterogeneityNoElitism(~) 
% Test parameters 
nArchis = randi(3); 
nVars  = randi(5,1,nArchis); % Number of variables per architecture 
maxAgents = 6; 
% TODO - change between GA and FF 
solver = 'ga'; 

  
% Perform test 
completeOptimizerTestFunction(nArchis, nVars, maxAgents, solver, false, 

false, 0) 
end 

  
function testTrueHeterogeneityWithElitism(~) 
% TODO 
end 

  
%% Optional file fixtures 
function setupOnce(~)  % do not change function name 
% Prepare workspace 
close all 
clear global 
clear 

  
addpath('..') 
addpath('../..') 
end 

  
function teardownOnce(~)  % do not change function name 
% change back to original path, for example 
end 

  
%% Optional fresh fixtures 
function setup(~)  % do not change function name 
end 

  
function teardown(~)  % do not change function name 
end 

 

completeOptimizerTestFunction.m 

function completeOptimizerTestFunction(nArchis, nVars, maxAgents, 

solver, ... 
    trueHeterogeneity, elitism, elitismFraction) 
% Outer loop 

============================================================= 
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optionsOuter = gaoptimset(... 
    'Display',              'off',... 
    'OutputFcns',           {@gaEstimateTime},... 
    'PlotFcn',              {[]},... 
    'PlotInterval',         1,... 
    'PopulationSize',       50,... 
    'TolFun',               1e-6,... 
    'UseParallel',          false); 

  
optionsOuter.nArchis = nArchis; % Number of architectures 
optionsOuter.maxAgents = maxAgents;  % Maximum number of agents in the 

group 
optionsOuter.solver = solver; 
optionsOuter.elitism = elitism; 
optionsOuter.elitismFraction = elitismFraction; 
optionsOuter.fitnessFcn = @loopInner; 

  
% Inner loop 

============================================================= 
optionsInner = gaoptimset(... 
    'TolCon',               1e-3,... 
    'Display',              'none',... 
    'OutputFcns',           {[]},... 
    'PlotFcn',              {[]},... 
    'PlotInterval',         1,... 
    'PopulationSize',       200,... 
    'TolFun',               1e-6,... 
    'UseParallel',          false); 

  
% Custom options 
optionsInner.fitnessFcn = @testFitnessFunctionInnerLoop; 
optionsInner.trueHeterogeneity = trueHeterogeneity; % Regroup per 

architecture or not 
optionsInner.nVars = nVars;   % Number of variables per architecture 
optionsInner.elitism = false; 

  
% Bounds 
for i = 1:length(nVars) 
    % Lower bounds 
    optionsInner.lb{i} = zeros(1, nVars(i)); 
    % Upper bounds 
    optionsInner.ub{i} = (nArchis + 3)*ones(1, nVars(i)); 
end 

  
% Optimize 

=============================================================== 
[xOut,~,~,~,~,~,xIn] = loopOuter(optionsOuter, optionsInner); 

  
% Test outer loop 

======================================================== 
assert(sum(xOut - (1:nArchis)) == 0) 

  
% Test inner loop 

======================================================== 
xOuter = xOut; 
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% Keep only non 0 architectures 
nVars = nVars(xOuter > 0); 
xOuter = xOuter(xOuter > 0); 
tolerance = 1e-2; 
nArchis = length(xOuter); 

  
if trueHeterogeneity 
    m = sum(xOuter.*nVars); 
else 
    m = sum(nVars); 
end 
xExpected = zeros(1,m); 
% For each architecture 
idx = 1; 
for i = 1:nArchis 
    % Number of agents for this architecture 
    nAgents = xOuter(i); 
    % Number of variables for this architecture 
    nv = nVars(i); 
    % For each agent with this architecture 
    if trueHeterogeneity 
        for j = 1:nAgents 
            % For each variable of this agent 
            for k = 1:nv 
                % Prepare an analytical optimum vector 
                xExpected(idx) = i + nAgents/10 + j/100 + k/1000; 
                % Increment array index 
                idx = idx + 1; 
            end 
        end 
    else 
        for k = 1:nv 
            % Prepare an analytical optimum vector 
            xExpected(idx) = i + nAgents/10 + 1/100 + k/1000; 
            % Increment array index 
            idx = idx + 1; 
        end 
    end 
end 

  
% Compare expected and actual optimum 
assert(mean((xIn - xExpected).^2) < tolerance, sprintf('Norm2 error is 

%f', mean((xIn - xExpected).^2))) 
end 

 

outerLoopTest.m 

The unit test for the outer loop. 

%% Main function to generate tests 
function tests = outerLoopTest 
tests = functiontests(localfunctions); 
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end 

  
%% Test Functions 
function testFFPartialHeterogeneity(~) 
% Test parameters 
nArchis = randi(3); 
maxAgents = 6; 
solver = 'ff'; 

  
% Perform test 
outerLoopTestFunction(nArchis, maxAgents, solver) 
end 

  
function testGAPartialHeterogeneity(~) 
% Test parameters 
nArchis = randi(10); 
maxAgents = sum(1:nArchis); 
solver = 'ga'; 

  
% Perform test 
outerLoopTestFunction(nArchis, maxAgents, solver) 
end 

  
%% Optional file fixtures 
function setupOnce(~)  % do not change function name 
% Prepare workspace 
close all 
clear global 
clear 

  
addpath('..') 
addpath('../..') 
end 

  
function teardownOnce(~)  % do not change function name 
% change back to original path, for example 
end 

  
%% Optional fresh fixtures 
function setup(~)  % do not change function name 
end 

  
function teardown(~)  % do not change function name 
end 

 

outerLoopTestFunction.m 

function outerLoopTestFunction(nArchis, maxAgents, solver) 
% Outer loop 

============================================================= 
optionsOuter = gaoptimset(... 
    'Display',              'off',... 
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    'OutputFcns',           {[]},... 
    'PlotFcn',              {[]},... 
    'PlotInterval',         1,... 
    'PopulationSize',       50,... 
    'TolFun',               1e-6,... 
    'UseParallel',          false); 

  
optionsOuter.nArchis = nArchis; % Number of architectures 
optionsOuter.maxAgents = maxAgents;  % Maximum number of agents in the 

group 
optionsOuter.solver = solver; 
optionsOuter.elitism = false; 
optionsOuter.fitnessFcn = @testFitnessFunctionOuterLoop; 

  
% Inner loop 

============================================================= 
optionsInner = []; 

  
% Optimize 

=============================================================== 
[x,~,~,~,~,~] = loopOuter(optionsOuter, optionsInner); 

  
% Test 
assert(sum(x - (1:nArchis)) == 0) 
end 

 

innerLoopTest.m 

The unit test for the inner loop. 

%% Main function to generate tests 
function tests = innerLoopTest 
tests = functiontests(localfunctions); 
end 

  
%% Test Functions 
function testPartialHeterogeneity(~) 
innerLoopTestFunction(false) 
end 

  
function testFullHeterogeneity(~) 
innerLoopTestFunction(true) 
end 

  
%% Optional file fixtures 
function setupOnce(~)  % do not change function name 
% Prepare workspace 
close all 
clear global 
clear 

  
addpath('..') 
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addpath('../..') 
end 

  
function teardownOnce(~)  % do not change function name 
% change back to original path, for example 
end 

  
%% Optional fresh fixtures 
function setup(~)  % do not change function name 
end 

  
function teardown(~)  % do not change function name 
end 

 

innerLoopTestFunction.m 

function innerLoopTestFunction(trueHeterogeneity) 
% General scope variables 

================================================ 
% Generate random group with random architectures 
nArchis = randi(5); 
xOuter = randi([0 5],1,nArchis); % Number of agents for each 

architecture 
nVars  = randi(5,1,nArchis); % Number of variables per architecture 

  
% Ensure that there is at least one agent in the group 
while sum(xOuter) < 1 
    nArchis = randi(5); 
    xOuter = randi([0 5],1,nArchis); % Number of agents for each 

architecture 
    nVars = randi(5,1,nArchis); % Number of variables per architecture 
end 

  
% Inner loop options 

===================================================== 
optionsInner = gaoptimset(... 
    'TolCon',               1e-3,... 
    'Display',              'none',... 
    'OutputFcns',           {[]},... 
    'PlotFcn',              {[]},... 
    'PlotInterval',         1,... 
    'PopulationSize',       200,... 
    'TolFun',               1e-6,... 
    'UseParallel',          false); 

  
% Custom options 
optionsInner.fitnessFcn = @testFitnessFunctionInnerLoop; 
optionsInner.trueHeterogeneity = trueHeterogeneity; % Regroup per 

architecture or not 
optionsInner.nVars = nVars;   % Number of variables per architecture 
optionsInner.elitism = false; 

  
% Bounds 
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for i = 1:length(nVars) 
    % Lower bounds 
    optionsInner.lb{i} = zeros(1, nVars(i)); 
    % Upper bounds 
    optionsInner.ub{i} = (nArchis + 3)*ones(1, nVars(i)); 
end 

  
% Optimize 

=============================================================== 
[~,x,~,~,~,~] = loopInner(xOuter, optionsInner); 

  
% Test 

=================================================================== 
% Keep only non 0 architectures 
nVars = nVars(xOuter > 0); 
xOuter = xOuter(xOuter > 0); 
tolerance = 1e-2; 
nArchis = length(xOuter); 

  
if trueHeterogeneity 
    m = sum(xOuter.*nVars); 
else 
    m = sum(nVars); 
end 
xExpected = zeros(1,m); 
% For each architecture 
idx = 1; 
for i = 1:nArchis 
    % Number of agents for this architecture 
    nAgents = xOuter(i); 
    % Number of variables for this architecture 
    nv = nVars(i); 
    % For each agent with this architecture 
    if trueHeterogeneity 
        for j = 1:nAgents 
            % For each variable of this agent 
            for k = 1:nv 
                % Prepare an analytical optimum vector 
                xExpected(idx) = i + nAgents/10 + j/100 + k/1000; 
                % Increment array index 
                idx = idx + 1; 
            end 
        end 
    else 
        for k = 1:nv 
            % Prepare an analytical optimum vector 
            xExpected(idx) = i + nAgents/10 + 1/100 + k/1000; 
            % Increment array index 
            idx = idx + 1; 
        end 
    end 
end 

  
% Compare expected and actual optimum 
assert(mean((x - xExpected).^2) < tolerance, sprintf('Norm2 error is 

%f', mean((x - xExpected).^2))) 
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end 

 

B.2.4 Plots for the test function 

The scripts used to analyze the behavior of the test function described in section 5.2.2.1 

page 364. 

 

plotOuterLoopOffsets.m 

A plot showing how the function is affected by changes in the outer loop design vector. 

% Prepare workspace 
clc 
close all 
clear global 
clear 

  
offset = zeros(5,3); 
for i = 1:3 
    for j = 1:5 
        % Compute offset 
        Xout = [i j]; 
        archis = 1:length(Xout); 
        offset(j,i) = -sum(1./(1 + (Xout - archis).^2)); 
    end 
end 

  
N1 = 1:3; 
N2 = 1:0.1:5; 
offset_continuous = zeros(length(N2),length(N1)); 
for i = 1:length(N1) 
    for j = 1:length(N2) 
        % Compute offset 
        Xout = [N1(i) N2(j)]; 
        archis = 1:length(Xout); 
        offset_continuous(j,i) = -sum(1./(1 + (Xout - archis).^2)); 
    end 
end 

  
%% Plot 
figure 
c = get(gca,'colororder'); 

  
hold on 

  
plot(N2,offset_continuous,'--') 
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b = bar(offset); 
b(1).FaceColor = c(1,:); 
b(2).FaceColor = c(2,:); 
b(3).FaceColor = c(3,:); 

  
hold off 
xlabel('N_2','FontName','Times New Roman','FontSize',12) 
ylabel('f_{out}(X_{out})','FontName','Times New Roman','FontSize',12) 
h = legend(b,{'N_1 = 1','N_1 = 2','N_1 = 3'},'Location','SouthEast'); 
set(h,'FontName','Times New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 

 

plotOuterLoop.m 

A plot of the outer loop part of the test function. 

% Prepare workspace 
clc 
close all 
clear global 
clear 

  
addpath('../models') 
addpath('../optimizer') 

  
% Number of architectures 
nArchis = 2; 
archis = [1 2]; 

  
% Out-of-loop variables 

================================================== 
nVars  = [1 1]; % Number of variables per architecture 

  
% Inner loop options 
optionsInner = gaoptimset(... 
    'TolCon',               1e-3,... 
    'Display',              'none',... 
    'OutputFcns',           {[]},... 
    'PlotFcn',              {[]},... 
    'PlotInterval',         1,... 
    'PopulationSize',       200,... 
    'TolFun',               1e-6,... 
    'UseParallel',          false); 

  
% Custom options 
optionsInner.fitnessFcn = @testFitnessFunctionInnerLoop; 
optionsInner.trueHeterogeneity = false; % Regroup per architecture or 

not 
optionsInner.nVars = nVars;   % Number of variables per architecture 
optionsInner.elitism = false; 

  
% Bounds 
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for i = 1:length(nVars) 
    % Lower bounds 
    optionsInner.lb{i} = zeros(1, nVars(i)); 
    % Upper bounds 
    optionsInner.ub{i} = (nArchis + 3)*ones(1, nVars(i)); 
end 

  
n1Max = 5; 
n2Max = 5; 
[N1,N2] = meshgrid(1:n1Max, 1:n2Max); 
Xopt = cell(n1Max, n2Max); 
Fval = zeros(n1Max, n2Max); 
for m = 1:size(N1,1) 
    for n = 1:size(N1,2) 
        fprintf('Case %d/%d\n', n+(m-1)*n1Max, n1Max*n2Max) 

         
        xOuter = [N1(m,n) N2(m,n)]; % Number of agents for each 

architecture 

         
        % Compute range for the initial population --------------------

--- 
        % Remove absent architectures from the group vectors 
        nVarsBis = nVars(xOuter > 0); 
        xOuterBis = xOuter(xOuter > 0); 

         
        % Compute number of variables depending on heterogeneity level 
        if optionsInner.trueHeterogeneity 
            nVarsTotal = sum(xOuterBis.*nVarsBis); 
        else 
            nVarsTotal = sum(nVarsBis); 
        end 

         
        % Compute bounds for the variables 
        lb = zeros(1, nVarsTotal); 
        ub = zeros(1, nVarsTotal); 
        % For each architecture 
        idx = 1; 
        for i = 1:length(xOuter) 
            % Number of agents for this architecture 
            nAgents = xOuter(i); 
            % Number of variables for this architecture 
            nv = nVars(i); 
            % For each variable the architecture 
            for k = 1:nv 
                if optionsInner.trueHeterogeneity 
                    % For each agent with this architecture 
                    for j = 1:nAgents 
                        % Get upper and lower bounds 
                        lb(idx) = optionsInner.lb{i}(k); 
                        ub(idx) = optionsInner.ub{i}(k); 

                         
                        % Increment array index 
                        idx = idx + 1; 
                    end 
                else 
                    % Get upper and lower bounds 
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                    lb(idx) = optionsInner.lb{i}(k); 
                    ub(idx) = optionsInner.ub{i}(k); 

                     
                    % Increment array index 
                    idx = idx + 1; 
                end 
            end 
        end 

         
        optionsInner.PopInitRange = [lb; ub]; 

         
        % Optimize ----------------------------------------------------

--- 
        [fval,x_opt,~,~,~,~] = loopInner2(xOuter, optionsInner); 

         
        % Store results -----------------------------------------------

--- 
        Xopt{m,n} = x_opt; 
        Fval(m,n) = fval; 
    end 
end 

  
%% Plot 

================================================================== 
res = 0.01; 

  
% Architecture 1 ------------------------------------------------------

--- 
figure 
hold on 
my_legend = cell(1,n1Max+1); 
my_legend{end} = 'Optima'; 
p = zeros(1, n1Max+1); 

  
m = 1; % Number of architecture 2 
for n = 1:n1Max 
    xOpt = Xopt{m,n}; 
    fval = Fval(m,n); 
    x1 = lb(1):res:ub(1); 
    x2 = xOpt(2); 
    y = zeros(size(x1)); 
    xOuter = [N1(m,n), N2(m,n)]; 
    for i = 1:length(x1) 
        y(i) = optionsInner.fitnessFcn([x1(i), x2], xOuter, nVars, 

archis, optionsInner.trueHeterogeneity); 
    end 

     
    p(end) = plot(xOpt(1),fval,'*r'); 
    plot([xOpt(1), xOpt(1)],[10, fval],'--','color',0.8*ones(3,1)) 
    plot([0, xOpt(1)],[fval, fval],'--','color',0.8*ones(3,1)) 
    p(n) = plot(x1,y); 
    text(xOpt(1), 10.3, sprintf('%3.3f', 

xOpt(1)),'Color',0.3*ones(3,1),'HorizontalAlignment','left','Rotation',

45) 
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    text(0, fval, sprintf('%3.1f', fval), 

'Color',0.3*ones(3,1),'HorizontalAlignment','left') 
    my_legend{n} = sprintf('n_1 = %d', n); 
end 

  
hold off 
xlabel('x_1') 
ylabel('y') 
legend(p, my_legend,'Location','northeast') 
axis([0.25 2.5 -10 10]) 

  
% % Architecture 2 ----------------------------------------------------

----- 
figure 
hold on 
my_legend = cell(1,n2Max+1); 
my_legend{end} = 'Optima'; 
p = zeros(1, n2Max+1); 

  
n = 1; % Number of architecture 2 
for m = 1:n2Max 
    xOpt = Xopt{m,n}; 
    fval = Fval(m,n); 
    x1 = xOpt(1); 
    x2 = lb(1):res:ub(1); 
    y = zeros(size(x2)); 
    xOuter = [N1(m,n), N2(m,n)]; 
    for i = 1:length(x2) 
        y(i) = optionsInner.fitnessFcn([x1, x2(i)], xOuter, nVars, 

archis, optionsInner.trueHeterogeneity); 
    end 

     
    p(end) = plot(xOpt(2),fval,'*r'); 
    plot([xOpt(2), xOpt(2)],[20, fval],'--','color',0.8*ones(3,1)) 
    plot([0, xOpt(2)],[fval, fval],'--','color',0.8*ones(3,1)) 
    p(m) = plot(x2,y); 
    text(xOpt(2), 21, sprintf('%3.3f', 

xOpt(2)),'Color',0.3*ones(3,1),'HorizontalAlignment','left','Rotation',

45) 
    text(0, fval, sprintf('%3.1f', fval), 

'Color',0.3*ones(3,1),'HorizontalAlignment','left') 
    my_legend{m} = sprintf('n_2 = %d', m); 
end 

  
hold off 
xlabel('x_2') 
ylabel('y') 
legend(p, my_legend,'Location','southeast') 
% axis([0.5 5 -15 20]) 

 

plotInnerLoop.m 

A display of how the test function values are affected by the inner loop design vector. 
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% Prepare workspace 
clc 
close all 
clear global 
clear 

  
addpath('../../models') 
addpath('../../optimizer') 

  
% General scope variables 

================================================ 
% Generate random group with random architectures 
nArchis = 2; 
xOuter = [3 2]; % Number of agents for each architecture 
archis = [1 2]; % Architecture indices 
nVars  = [1 1]; % Number of variables per architecture 

  
% Inner loop options 

===================================================== 
optionsInner = gaoptimset(... 
    'TolCon',               1e-3,... 
    'Display',              'none',... 
    'OutputFcns',           {[]},... 
    'PlotFcn',              {[]},... 
    'PlotInterval',         1,... 
    'PopulationSize',       200,... 
    'TolFun',               1e-6,... 
    'UseParallel',          false); 

  
% Custom options 
optionsInner.fitnessFcn = @testFitnessFunctionInnerLoop; 
optionsInner.trueHeterogeneity = false; % Regroup per architecture or 

not 
optionsInner.nVars = nVars;   % Number of variables per architecture 
optionsInner.elitism = false; 

  
% Bounds 
for i = 1:length(nVars) 
    % Lower bounds 
    optionsInner.lb{i} = zeros(1, nVars(i)); 
    % Upper bounds 
    optionsInner.ub{i} = (nArchis + 3)*ones(1, nVars(i)); 
end 

  
% Compute range for the initial population ----------------------------

--- 
% Remove absent architectures from the group vectors 
nVarsBis = nVars(xOuter > 0); 
xOuterBis = xOuter(xOuter > 0); 

  
% Compute number of variables depending on heterogeneity level 
if optionsInner.trueHeterogeneity 
    nVarsTotal = sum(xOuterBis.*nVarsBis); 
else 
    nVarsTotal = sum(nVarsBis); 
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end 

  
% Compute bounds for the variables 
lb = zeros(1, nVarsTotal); 
ub = zeros(1, nVarsTotal); 
% For each architecture 
idx = 1; 
for i = 1:length(xOuter) 
    % Number of agents for this architecture 
    nAgents = xOuter(i); 
    % Number of variables for this architecture 
    nv = nVars(i); 
    % For each variable the architecture 
    for k = 1:nv 
        if optionsInner.trueHeterogeneity 
            % For each agent with this architecture 
            for j = 1:nAgents 
                % Get upper and lower bounds 
                lb(idx) = optionsInner.lb{i}(k); 
                ub(idx) = optionsInner.ub{i}(k); 

                 
                % Increment array index 
                idx = idx + 1; 
            end 
        else 
            % Get upper and lower bounds 
            lb(idx) = optionsInner.lb{i}(k); 
            ub(idx) = optionsInner.ub{i}(k); 

             
            % Increment array index 
            idx = idx + 1; 
        end 
    end 
end 

  
optionsInner.PopInitRange = [lb; ub]; 

  
% Optimize 

=============================================================== 
[fval,xOpt,~,~,~,~] = loopInner2(xOuter, optionsInner); 

  
%% Plot 

================================================================== 
res = 0.01; 

  
% Architecture 1 ------------------------------------------------------

--- 
x1 = lb(1):res:ub(1); 
x2 = xOpt(2); 
y = zeros(size(x1)); 
for i = 1:length(x1) 
    y(i) = optionsInner.fitnessFcn([x1(i), x2], xOuter, nVars, archis, 

optionsInner.trueHeterogeneity); 
end 
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figure 
hold on 
plot(xOpt(1),fval,'*r') 
plot(x1,y) 
plot([xOpt(1), xOpt(1)],[-10, fval],'--r') 
plot([0, xOpt(1)],[fval, fval],'--r') 
text(xOpt(1), -14, sprintf('%3.3f', xOpt(1)), 'Color', 'r', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
text(-0.3, fval - 0.5, sprintf('%3.2f', fval), 'Color', 'r', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
hold off 
xlabel('x_1','FontName','Times New Roman','FontSize',12) 
ylabel('y','FontName','Times New Roman','FontSize',12) 
h = legend('Optimum'); 
set(h,'FontName','Times New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 

  
% Architecture 2 ------------------------------------------------------

--- 
x1 = xOpt(1); 
x2 = lb(1):res:ub(1); 
y = zeros(size(x2)); 
for i = 1:length(x2) 
    y(i) = optionsInner.fitnessFcn([x1, x2(i)], xOuter, nVars, archis, 

optionsInner.trueHeterogeneity); 
end 

  
figure 
hold on 
plot(xOpt(2),fval,'*r') 
plot(x2,y) 
plot([xOpt(2), xOpt(2)],[-10, fval],'--r') 
plot([0, xOpt(2)],[fval, fval],'--r') 
text(xOpt(2), -12.0, sprintf('%3.3f', xOpt(2)), 'Color', 'r', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
text(-0.3, fval, sprintf('%3.2f', fval), 'Color', 'r', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
hold off 
xlabel('x_2','FontName','Times New Roman','FontSize',12) 
ylabel('y','FontName','Times New Roman','FontSize',12) 
h = legend('Optimum'); 
set(h,'FontName','Times New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 

  
% Fitness function ----------------------------------------------------

--- 
[X1, X2] = meshgrid(lb(1):res:ub(1), lb(1):res:ub(2)); 
Y = zeros(size(X1)); 
for i = 1:size(X1,1) 
    for j = 1:size(X1,2) 
        Y(i,j) = optionsInner.fitnessFcn([X1(i,j), X2(i,j)], xOuter, 

nVars, archis, optionsInner.trueHeterogeneity); 
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    end 
end 

  
figure 
hold on 
[C,h] = contourf(X1,X2,Y,10); 
clabel(C,h,'FontName','Times New Roman','FontSize',12) 
plot(xOpt(1), xOpt(2),'*r') 
plot([xOpt(1), xOpt(1)], [0, xOpt(2)], '--r') 
plot([0, xOpt(1)], [xOpt(2), xOpt(2)], '--r') 
text(-0.4, xOpt(2), sprintf('%3.3f', xOpt(2)), 'Color', 'r', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
text(xOpt(1), -0.4, sprintf('%3.3f', xOpt(1)), 'Color', 'r', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
text(1.05*xOpt(1), 1.05*xOpt(2), sprintf('%3.2f', fval), 'Color', 'k', 

'HorizontalAlignment', 'left','FontName','Times New 

Roman','FontSize',12) 
hold off 
xlabel('x_1','FontName','Times New Roman','FontSize',12) 
ylabel('x_2','FontName','Times New Roman','FontSize',12) 
h = legend('Test function contours', 'Optimum'); 
set(h,'FontName','Times New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 
axis equal 

  
print -dmeta -r600; 

 

plotConstraintInnerLoop.m 

A display of how the optimum of the test function is affected when the problem is 

constrained. The plot is done only for the inner loop part of the test function. 

% Prepare workspace 
clc 
close all 
clear global 
clear 

  
addpath('../../models') 
addpath('../../optimizer') 

  
% General scope variables 

================================================ 
% Generate random group with random architectures 
nArchis = 2; 
xOuter = [3 2]; % Number of agents for each architecture 
archis = [1 2]; % Architecture indices 
nVars  = [1 1]; % Number of variables per architecture 
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% Inner loop options 

===================================================== 
optionsInner = gaoptimset(... 
    'TolCon',               1e-3,... 
    'Display',              'none',... 
    'OutputFcns',           {[]},... 
    'PlotFcn',              {[]},... 
    'PlotInterval',         1,... 
    'PopulationSize',       200,... 
    'TolFun',               1e-6,... 
    'UseParallel',          false); 

  
% Custom options 
optionsInner.fitnessFcn = @testFitnessFunctionInnerLoop; 
optionsInner.trueHeterogeneity = false; % Regroup per architecture or 

not 
optionsInner.nVars = nVars;   % Number of variables per architecture 
optionsInner.elitism = false; 

  
% Bounds 
for i = 1:length(nVars) 
    % Lower bounds 
    optionsInner.lb{i} = zeros(1, nVars(i)); 
    % Upper bounds 
    optionsInner.ub{i} = (nArchis + 3)*ones(1, nVars(i)); 
end 

  
% Compute range for the initial population ----------------------------

--- 
% Remove absent architectures from the group vectors 
nVarsBis = nVars(xOuter > 0); 
xOuterBis = xOuter(xOuter > 0); 

  
% Compute number of variables depending on heterogeneity level 
if optionsInner.trueHeterogeneity 
    nVarsTotal = sum(xOuterBis.*nVarsBis); 
else 
    nVarsTotal = sum(nVarsBis); 
end 

  
% Compute bounds for the variables 
lb = zeros(1, nVarsTotal); 
ub = zeros(1, nVarsTotal); 
% For each architecture 
idx = 1; 
for i = 1:length(xOuter) 
    % Number of agents for this architecture 
    nAgents = xOuter(i); 
    % Number of variables for this architecture 
    nv = nVars(i); 
    % For each variable the architecture 
    for k = 1:nv 
        if optionsInner.trueHeterogeneity 
            % For each agent with this architecture 
            for j = 1:nAgents 
                % Get upper and lower bounds 
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                lb(idx) = optionsInner.lb{i}(k); 
                ub(idx) = optionsInner.ub{i}(k); 

                 
                % Increment array index 
                idx = idx + 1; 
            end 
        else 
            % Get upper and lower bounds 
            lb(idx) = optionsInner.lb{i}(k); 
            ub(idx) = optionsInner.ub{i}(k); 

             
            % Increment array index 
            idx = idx + 1; 
        end 
    end 
end 

  
optionsInner.PopInitRange = [lb; ub]; 

  
% Optimize 

=============================================================== 
[fval,xOpt,~,~,~,~] = loopInner2(xOuter, optionsInner); 

  
%% Plot 

================================================================== 
res = 0.01; 

  
% Architecture 1 ------------------------------------------------------

--- 
x1 = lb(1)-1:res:ub(1)+1; 
x2 = xOpt(2)+1; 
y = zeros(size(x1)); 
for i = 1:length(x1) 
    y(i) = optionsInner.fitnessFcn([x1(i), x2], xOuter, nVars, archis, 

optionsInner.trueHeterogeneity); 
end 

  
fval = optionsInner.fitnessFcn([xOpt(1), xOpt(2)+1], xOuter, nVars, 

archis, optionsInner.trueHeterogeneity); 
fval2 = optionsInner.fitnessFcn([xOpt(1)+1, x2], xOuter, nVars, archis, 

optionsInner.trueHeterogeneity); 

  
figure 
hold on 
plot(xOpt(1),fval,'*r') 
plot(xOpt(1) + 1, fval2,'*m') 
plot(x1,y) 
plot([xOpt(1), xOpt(1)],[-10, fval],'--r') 
plot([lb(1)-1, xOpt(1)],[fval, fval],'--r') 
text(xOpt(1), -17, sprintf('%3.3f', xOpt(1)), 'Color', 'r', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
text(lb(1)-1-0.5, fval - 0.5, sprintf('%3.2f', fval), 'Color', 'r', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
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plot([xOpt(1) + 1, xOpt(1) + 1],[-10, 70],'-m') 
plot([lb(1)-1, xOpt(1)+1],[fval2, fval2],'--m') 
text(xOpt(1) + 1, -17, sprintf('%3.3f', xOpt(1) + 1), 'Color', 'm', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
text(lb(1)-1-0.5, fval2 - 0.5, sprintf('%3.2f', fval2), 'Color', 'm', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
hold off 
xlabel('x_1','FontName','Times New Roman','FontSize',12) 
ylabel('y','FontName','Times New Roman','FontSize',12) 
h = legend('Unconstrained optimum','Constrained 

optimum','location','northoutside'); 
set(h,'FontName','Times New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 

  
% Architecture 2 ------------------------------------------------------

--- 
x1 = xOpt(1)+1; 
x2 = lb(1)-1:res:ub(1)+1; 
y = zeros(size(x2)); 
for i = 1:length(x2) 
    y(i) = optionsInner.fitnessFcn([x1, x2(i)], xOuter, nVars, archis, 

optionsInner.trueHeterogeneity); 
end 

  
fval = optionsInner.fitnessFcn([xOpt(1)+1, xOpt(2)], xOuter, nVars, 

archis, optionsInner.trueHeterogeneity); 
fval3 = optionsInner.fitnessFcn([x1, xOpt(2)+1], xOuter, nVars, archis, 

optionsInner.trueHeterogeneity); 

  
figure 
hold on 
plot(xOpt(2),fval,'*r') 
plot(xOpt(2)+1,fval3,'*m') 
plot(x2,y) 
plot([xOpt(2), xOpt(2)],[-10, fval],'--r') 
plot([lb(2)-1, xOpt(2)],[fval, fval],'--r') 
text(xOpt(2), -15, sprintf('%3.3f', xOpt(2)), 'Color', 'r', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
text(lb(2)-1-0.5, fval, sprintf('%3.2f', fval), 'Color', 'r', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 

  
plot([xOpt(2) + 1, xOpt(2) + 1],[-10, 35],'-m') 
plot([lb(2)-1, xOpt(2)+1],[fval3, fval3],'--m') 
text(xOpt(2) + 1, -15, sprintf('%3.3f', xOpt(2) + 1), 'Color', 'm', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
text(lb(2)-1-0.5, fval3, sprintf('%3.2f', fval3), 'Color', 'm', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
hold off 
xlabel('x_2','FontName','Times New Roman','FontSize',12) 
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ylabel('y','FontName','Times New Roman','FontSize',12) 
h = legend('Unconstrained optimum','Constrained 

optimum','location','northoutside'); 
set(h,'FontName','Times New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 

  
% Fitness function ----------------------------------------------------

--- 
[X1, X2] = meshgrid(lb(1)-1:res:ub(1)+1, lb(1)-1:res:ub(2)+1); 
Y = zeros(size(X1)); 
for i = 1:size(X1,1) 
    for j = 1:size(X1,2) 
        Y(i,j) = optionsInner.fitnessFcn([X1(i,j), X2(i,j)], xOuter, 

nVars, archis, optionsInner.trueHeterogeneity); 
    end 
end 

  
figure 
hold on 
[C,h] = contourf(X1,X2,Y,10); 
clabel(C,h,'FontName','Times New Roman','FontSize',12) 
plot(xOpt(1), xOpt(2),'*r') 
plot(xOpt(1)+1, xOpt(2)+1,'*m') 
plot([xOpt(1), xOpt(1)], [lb(2)-1, xOpt(2)], '--r') 
plot([lb(1)-1, xOpt(1)], [xOpt(2), xOpt(2)], '--r') 
text(lb(1)-1-0.4, xOpt(2), sprintf('%3.3f', xOpt(2)), 'Color', 'r', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
text(xOpt(1), lb(2)-1-.55, sprintf('%3.3f', xOpt(1)), 'Color', 'r', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
text(1.05*xOpt(1), 1.05*xOpt(2), sprintf('%3.2f', fval), 'Color', 'r', 

'HorizontalAlignment', 'left','FontName','Times New 

Roman','FontSize',12) 

  
plot([xOpt(1)+1, xOpt(1)+1], [lb(2)-1, xOpt(2)+1], '-m') 
plot([lb(1)-1, xOpt(1)+1], [xOpt(2)+1, xOpt(2)+1], '-m') 
text(lb(1)-1-0.4, xOpt(2)+1, sprintf('%3.3f', xOpt(2)+1), 'Color', 'm', 

'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
text(xOpt(1)+1, lb(2)-1-0.55, sprintf('%3.3f', xOpt(1)+1), 'Color', 

'm', 'HorizontalAlignment', 'center','FontName','Times New 

Roman','FontSize',12) 
text(1.05*xOpt(1)+1, 1.05*xOpt(2)+1, sprintf('%3.2f', fval3), 'Color', 

'm', 'HorizontalAlignment', 'left','FontName','Times New 

Roman','FontSize',12) 
hold off 
xlabel('x_1','FontName','Times New Roman','FontSize',12) 
ylabel('x_2','FontName','Times New Roman','FontSize',12) 
h = legend('Test function contours', 'Unconstrained optimum', 

'Constrained optimum','location','northoutside'); 
set(h,'FontName','Times New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 
axis equal 

  
print -dmeta -r600; 
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loopOuter2.m 

A modified version of the outer loop of the optimization algorithm to be used in the 

developing phase. 

function [x,fval,exitflag,output,population,scores] = 

loopOuter2(optionsOuter, optionsInner) 
global buffer elite 
if optionsOuter.elitism 
    % Initialize elitism retention variables 
    buffer = cell(1, optionsOuter.nArchis); 
    elite = cell(1, optionsOuter.nArchis); 
    optionsInner.elitism = true; 
    for i = 1:optionsOuter.nArchis 
        buffer{i}.population = []; 
        buffer{i}.scores = []; 
    end 
else 
    optionsInner.elitism = false; 
end 

  
% Initialization 
nArchis = optionsOuter.nArchis; 

  
if strcmp(optionsOuter.solver, 'ga') 
    % Define optimization genetic algorithm problem 
    problem             = struct; 
    problem.fitnessfcn  = @(x)optionsOuter.fitnessFcn(x, optionsInner); 
    problem.nvars       = nArchis; 
    problem.Aineq       = [ones(1, nArchis);-ones(1,nArchis)]; 
    problem.Bineq       = [optionsOuter.maxAgents; -1]; 
    problem.Aeq         = []; 
    problem.beq         = []; 
    problem.lb          = zeros(1, nArchis); 
    problem.ub          = optionsOuter.maxAgents*ones(1, nArchis); 
    problem.nonlcon     = []; 
    problem.intcon      = 1:nArchis; 
    problem.solver      = 'ga'; 
    problem.options     = optionsOuter; 

     
    % Optimize 
    [x,fval,exitflag,output,population,scores] = ga(problem); 
elseif strcmp(optionsOuter.solver, 'ff') 
    % Generate full factorial 
    dFF = fullfact(optionsOuter.maxAgents*ones(1,nArchis)); 
    % Keep only groups below maxAgents agents 
    indices = sum(dFF,2) <= optionsOuter.maxAgents; 
    dFF = dFF(indices,:); 

     
    % Evaluate fitness over full factorial 
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    n = size(dFF,1); 
    fitness = zeros(n,1); 

     
    startTime = tic; % Start timer 
    if ~strcmp(optionsOuter.Display,'off') 
        fprintf('Started on %s\n', datetime('now')) 
    end 

     
    for i = 1:n 
        % Run inner loop 
        fitness(i) = optionsOuter.fitnessFcn(dFF(i,:), optionsInner); 

         
        % Estimate remaining time 
        elapsed = toc(startTime); 
        total = n*elapsed/i; 
        remaining = total - elapsed; 
        if strcmp(optionsOuter.Display,'iter') 
            fprintf('[%03.0f%% (%d/%d)] (elapsed: %fs, remaining: %fs, 

total: %fs)\n', 100*i/n, i, n, elapsed, remaining, total) 
        end 
    end 

     
    % Display 
    if ~strcmp(optionsOuter.Display,'off') 
        fprintf('\nFinished on %s\n', datetime('now')); 
        fprintf('\tIterations: %d\n', n) 
        fprintf('\tFunEval:    %d\n', n) 
        fprintf('\tTotal time: %fs (%fs/iteration)\n', toc(startTime), 

toc(startTime)/n) 
    end 

     
    % Take best architecture 
    [M,I] = min(fitness); 
    x = dFF(I,:); 
    fval = M; 
    exitflag = 1; 
    output = []; 
    population = dFF; 
    scores = fitness; 
else 
    error('Solver argument to outerLoop must be either ''ga'' or 

''ff''.') 
end 
end 

 

loopInner2.m 

A modified version of the inner loop of the optimization algorithm to be used in the 

developing phase. 
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function [fval,x,exitflag,output,population,scores] = 

loopInner2(xOuter, optionsInner) 
global elite 
% Vector storing architectures in use 
archis = 1:length(xOuter); 

  
% Remove absent architectures from the group vectors 
toKeep = xOuter > 0; 
nVars = optionsInner.nVars; 
nVars = nVars(toKeep); 
optionsInner.nVars = nVars; 
optionsInner.lb = optionsInner.lb(toKeep); 
optionsInner.ub = optionsInner.ub(toKeep); 
archis = archis(toKeep); 
xOuter = xOuter(toKeep); 

  
% Compute number of variables depending on heterogeneity level 
if optionsInner.trueHeterogeneity 
    nVarsTotalArchis = xOuter.*nVars; % Total variables per 

architecture 
else 
    nVarsTotalArchis = nVars; 
end 
nVarsTotal = sum(nVarsTotalArchis); 

  
% Compute start indices for each architecture 
nArchis = length(xOuter); 
startArchis = ones(1,nArchis); 
for i = 2:nArchis 
    startArchis(i) = startArchis(i-1) + nVarsTotalArchis(i-1); 
end 

  
% Compute bounds for the variables 
[lb, ub] = createBounds(xOuter, optionsInner.lb, optionsInner.ub, 

nVarsTotal, optionsInner.nVars, optionsInner.trueHeterogeneity); 

  
% Compute range for the initial population 
optionsInner.PopInitRange = [lb; ub]; 

  
% Convey variables to the output function 
if optionsInner.elitism == true 
    optionsInner.OutputFcns = 

{@(options,state,flag)gaInnerLoopElitism(options,state,flag,xOuter,nVar

s,archis,optionsInner.eliteFraction,startArchis)}; 
end 

  
% TODO REMOVE HACK 
% optionsInner.OutputFcns = 

{@(options,state,flag)gaInnerLoopElitism(options,state,flag,xOuter,nVar

s,archis,optionsInner.eliteFraction,startArchis)}; 
% TODO REMOVE HACK - Compute the expected optimum 
% offsetsArchis = 1./(1 + (xOuter - archis).^2); 
% optionsInner.FitnessLimit = -.99*sum(offsetsArchis); 

  
% If all elite cells are filled 
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if optionsInner.elitism == true && sum(cellfun(@isempty,elite)) == 0 
    % Initialize population to elite 
    optionsInner.InitialPopulation = 

generateInitialPopulation(xOuter,elite,nVars,archis,startArchis,nVarsTo

tal,optionsInner.trueHeterogeneity); 
end 

  
% Define optimization problem 
problem = struct; 
problem.fitnessfcn  = @(x)optionsInner.fitnessFcn(x, xOuter, 

optionsInner.nVars, archis, optionsInner.trueHeterogeneity); 
problem.nvars       = nVarsTotal; 
problem.Aineq       = []; 
problem.Bineq       = []; 
problem.Aeq         = []; 
problem.beq         = []; 
problem.lb          = lb; 
problem.ub          = ub; 
problem.nonlcon     = []; 
problem.intcon      = []; 
problem.solver      = 'ga'; 
problem.options     = optionsInner; 

  
% Optimize 
[x,fval,exitflag,output,population,scores] = ga(problem); 

  
% TODO remove this 
% fprintf('Status: %d (%d generations)\n',exitflag, output.generations) 
end 

  
function [lb, ub] = createBounds(xOuter, lbArchis, ubArchis, 

nVarsTotal, nVars, trueHeterogeneity) 
% Initialization 
lb = zeros(1, nVarsTotal); 
ub = zeros(1, nVarsTotal); 

  
% For each architecture 
idx = 1; 
for i = 1:length(xOuter) 
    % Number of agents for this architecture 
    nAgents = xOuter(i); 
    % Number of variables for this architecture 
    nv = nVars(i); 
    % For each variable the architecture 
    for k = 1:nv 
        if trueHeterogeneity 
            % For each agent with this architecture 
            for j = 1:nAgents 
                % Get upper and lower bounds 
                lb(idx) = lbArchis{i}(k); 
                ub(idx) = ubArchis{i}(k); 

                 
                % Increment array index 
                idx = idx + 1; 
            end 
        else 
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            % Get upper and lower bounds 
            lb(idx) = lbArchis{i}(k); 
            ub(idx) = ubArchis{i}(k); 

             
            % Increment array index 
            idx = idx + 1; 
        end 
    end 
end 
end 

  
function population = 

generateInitialPopulation(xOuter,elite,nVars,archis,startArchis,nVarsTo

tal,trueHeterogeneity) 
% Initialization 
population = zeros(size(elite{1}.scores,1), nVarsTotal); 
nArchis = length(xOuter); 

  
if trueHeterogeneity == true 
    % For each architecture 
    for i = 1:nArchis 
        % For each agent with this architecture 
        for j = 1:xOuter(i) 
            startIndex = startArchis(i) + (j-1)*nVars(i); 
            endIndex = startIndex + nVars(i) - 1; 
            population(:,startIndex:endIndex) = 

elite{archis(i)}.population; 
        end 
    end 
else 
    % For each architecture 
    for i = 1:nArchis 
        startIndex = startArchis(i); 
        endIndex = startIndex + nVars(i) - 1; 
        population(:,startIndex:endIndex) = 

elite{archis(i)}.population; 
    end 
end 
end 

 

B.2.5 Plots optimizer 

The files used to generate the plots presented in section 5.2.3 (see page 376). 

 

runReplication.m 

A script setting up a proper optimization problem with the test function and carrying out 

the optimization. The results are saved in a folder under a replication.mat file. 
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function runReplication(folderName, elitism, eliteFraction) 
% Prepare workspace 
clc 
close all 
clear global 
clearvars -except folderName elitism eliteFraction 

  
addpath('../../models') 
addpath('../../optimizer') 

  
global generationsArray generationOuter 
generationsArray = {[]}; 
generationOuter = 1; 

  
% Outer loop 

============================================================= 
nArchis = 3; 
maxAgents = 6; 
nVars = [2 3 1]; 
solver = 'ga'; 
trueHeterogeneity = false; 

  
optionsOuter = gaoptimset(... 
    'Display',              'none',... 
    'OutputFcns',           {@gaOuterLoopElitism, @gaEstimateTime},... 
    'PlotFcn',              {@gaplotbestf},... 
    'PlotInterval',         1,... 
    'PopulationSize',       50,... 
    'StallGenLimit',        20,... 
    'TolFun',               1e-6,... 
    'UseParallel',          false,... 
    'Vectorized',           'off'); 

  
optionsOuter.nArchis = nArchis; % Number of architectures 
optionsOuter.maxAgents = maxAgents;  % Maximum number of agents in the 

group 
optionsOuter.solver = solver; 
optionsOuter.fitnessFcn = @loopInner; 
optionsOuter.elitism = elitism; 

  
% Inner loop 

============================================================= 
optionsInner = gaoptimset(... 
    'TolCon',               1e-3,... 
    'Display',              'none',... 
    'PlotFcn',              {[]},... 
    'PlotInterval',         1,... 
    'PopulationSize',       200,... 
    'StallGenLimit',        20,... 
    'TolFun',               1e-6,... 
    'UseParallel',          false); 

  
% Custom options 
optionsInner.fitnessFcn = @testFitnessFunctionInnerLoop; 
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optionsInner.trueHeterogeneity = trueHeterogeneity; % Regroup per 

architecture or not 
optionsInner.nVars = nVars;   % Number of variables per architecture 
optionsInner.eliteFraction = eliteFraction; 

  
% Bounds 
for i = 1:length(nVars) 
    % Lower bounds 
    optionsInner.lb{i} = zeros(1, nVars(i)); 
    % Upper bounds 
    optionsInner.ub{i} = (nArchis + 3)*ones(1, nVars(i)); 
end 

  
% Optimize 

=============================================================== 
[x,fval,exitflag,output,population,scores] = loopOuter(optionsOuter, 

optionsInner); 

  
% Save results 

=========================================================== 
% Find unique file name 
i = 1; 
filename = sprintf(strcat(folderName,'/replication_%04d.mat'),i); 
while i < 10000 && exist(filename,'file') == 2 
    filename = sprintf(strcat(folderName,'/replication_%04d.mat'),i); 
    i = i+1; 
end 
save(filename) 
end 

 

plotGAvsFullFactorial.m 

Comparison between the full factorial approach and the genetic algorithm approach for the 

outer loop optimizer. 

% Prepare workspace 
clc 
close all 
clear global 
clear 

  
addpath('../models') 
addpath('../optimizer') 

  
% Variables 
nMax    = 10;   % Maximum number of agents per architecture 
nArchis = 1:10; % Number of architectures 

  
%% Assess function calls for the full factorial 
fullFact    = nMax.^nArchis;            % Number of function calls with 

a full factorial DOE 
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nMaxVec = [2:9,10:10:100]; 
figure(1) 
% c = [winter(length(2:9)); autumn(length(10:10:100))]; 
my_legend = cell(1, length(nMaxVec)+1); 
c = hsv(length(nMaxVec)); 
for i = 1:length(nMaxVec) 
    fullFact = nMaxVec(i).^nArchis; 
    semilogy(nArchis, fullFact,'Color',c(i,:)) 
    my_legend{i} = sprintf('Full factorial (N_{max} = %d)',nMaxVec(i)); 
    hold on 
end 
hold off 

  
%% Assess function calls for the GA 
% populations = 50;               % Population size for the GA 
% generations = 50 + 10*nArchis; % Approximation based on observations 
% ga          = generations.*populations; % Estimated number of 

function calls for the GA 

  
% Outer loop 
optionsOuter = gaoptimset(... 
    'Display',              'off',... 
    'OutputFcns',           {[]},... 
    'PlotFcn',              {[]},... 
    'PlotInterval',         1,... 
    'PopulationSize',       50,... 
    'TolFun',               1e-6,... 
    'UseParallel',          false); 

  
optionsOuter.maxAgents = nMax;  % Maximum number of agents in the group 
optionsOuter.solver = 'ga'; 
optionsOuter.fitnessFcn = @testFitnessFunctionOuterLoop; 
optionsOuter.elitism = false; 

  
% Inner loop 
optionsInner = []; 

  
ga = zeros(1,length(nArchis)); 
for i = 1:length(nArchis) 
    n = nArchis(i); 

     
    % Compute full factorial case 
    %     dFF0 = fullfact((nMax+1)*ones(1,n))-1; 
    %     indices = sum(dFF0,2) <= nMax; 
    %     dFF = dFF0(indices,:); 
    %     fullFact(i) = size(dFF,1); 

     
    % Compute GA case 
    optionsOuter.nArchis = n; % Number of architectures 
    for rep = 1:10 
        [~,~,~,output,~,~] = loopOuter(optionsOuter, optionsInner); 
        ga(rep,i) = output.funccount; 
    end 
end 
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ga = mean(ga); 

  
% Plot 
figure(1) 
hold on 
semilogy(nArchis, ga, 'k', 'LineWidth', 1) 
hold off 

  
my_legend{end} = 'GA'; 

  
%% Finish plot 
xlabel('Number of architectures', 'FontName','Times New Roman', 

'FontSize',25) 
ylabel('Function calls', 'FontName','Times New Roman', 'FontSize',25) 
set(gca, 'FontName', 'Times New Roman', 'FontSize',25) 
h = legend(my_legend,'location','eastoutside'); 
set(h,'FontName', 'Times New Roman', 'FontSize',17) 

 

analyzeResults.m 

Analyzes the optimization results given a folder name that contains the MAT-files for a 

certain number of replications. All the files in the folder must stem from the same optimizer 

settings for the results to make sense. In particular, it computes the average and standard 

deviation of the number of inner loop generations, as well as their extreme values. 

function [genAvg, genStd, lower, higher] = analyzeResults(folderName) 
% Count number of files available 
nFiles = length(dir(folderName)) - 2; 

  
% Count maximum number of generations 
genMax = 0; 
for k = 1:nFiles 
    % Load the results 
    load(sprintf(strcat(folderName,'/replication_%04d.mat'),k)) 
    if size(generationsArray,1) > genMax 
        genMax = size(generationsArray,1); 
    end 
end 

  
% Initialize storing structures 
generationsInner = cell(1, genMax); 

  
% Accumulate measurements from all replications 
for k = 1:nFiles 
    % Load the results 
    load(sprintf(strcat(folderName,'/replication_%04d.mat'),k)) 
    % Store results 
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    genMaxRep = size(generationsArray,1); 
    for j = 1:genMaxRep 
        generationsInner{j} = [generationsInner{j}, 

generationsArray{j}]; 
    end 
end 

  
% Statistical analysis for each generation of the outer loop 
genAvg = zeros(1,genMax); 
genStd = zeros(1,genMax); 
higher = zeros(1,genMax); 
lower = zeros(1,genMax); 
for k = 1:genMax 
    genAvg(k) = mean(generationsInner{k}); % Average 
    genStd(k) = std(generationsInner{k}); % Standard deviation 
    higher(k) = prctile(generationsInner{k},97.5); % Percentile 
    lower(k) = prctile(generationsInner{k},2.5); % Percentile 
end 
end 

 

analyzeResultsOuterLoop.m 

A histogram plot of the average number of generations of the outer loop. 

function [genAvg, genStd, genLower, genHigher,... 
    funcAvg, funcStd, funcLower, funcHigher,... 
    generationsOuter,funcCountOuter] = 

analyzeResultsOuterLoop(folderName) 
% Count number of files available 
nFiles = length(dir(folderName)) - 2; 

  
% Count maximum number of generations 
generationsOuter = zeros(1,nFiles); 
funcCountOuter = zeros(1,nFiles); 
for k = 1:nFiles 
    % Load the results 
    load(sprintf(strcat(folderName,'/replication_%04d.mat'),k)) 
    generationsOuter(k) = output.generations; 
    funcCountOuter(k) = output.funccount; 
end 

  
% Statistical analysis 
genAvg = mean(generationsOuter); % Average 
genStd = std(generationsOuter); % Standard deviation 
genHigher = prctile(generationsOuter,97.5); % Percentile 
genLower = prctile(generationsOuter,2.5); % Percentile 

  
funcAvg = mean(funcCountOuter); % Average 
funcStd = std(funcCountOuter); % Standard deviation 
funcHigher = prctile(funcCountOuter,97.5); % Percentile 
funcLower = prctile(funcCountOuter,2.5); % Percentile 

  
% Plots 
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figure 
hist(generationsOuter) 
xlabel('Number of outer loop generations at convergence') 
ylabel('Occurences') 
title(folderName) 
end 

 

plotCompareElitismFraction.m 

A comparison of the algorithm performance for different rates of elitism retention. 

% Prepare workspace 
clc 
close all 
clear global 
clear 

  
% Get statistical analysis 
genAvg = cell(1,5); 
lower = cell(1,5); 
higher = cell(1,5); 
for i = 1:5 
    fprintf('Case %d/5\n', i) 
    folderName = sprintf('results_Elitism%03dPureHeterogeneity',(i-

1)*25); 
    [a, ~, l, h] = analyzeResults(folderName); 
    genAvg{i} = a; 
    lower{i} = l; 
    higher{i} = h; 
end 

  
%% Plot 
gray0 = 0.5*ones(3,1); 
c = get(groot,'DefaultAxesColorOrder'); 

  
figure 
hold on 

  
hPlain = plot(genAvg{1},'LineWidth',2,'Color',gray0); 
% hDashed = plot(lower{1},'--','Color',gray0); 
% hEmpty = plot(lower{1},'w'); 

  
h = zeros(1,5); 
for i = 1:5 
    h(i) = plot(genAvg{i}, 'LineWidth',2,'Color',c(i,:)); 
%     plot(lower{i},'--','Color',c(i,:)); 
%     plot(higher{i},'--','Color',c(i,:)); 
end 

  
hold off 
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xlabel('Outer loop generations','FontName','Times New 

Roman','FontSize',22) 
ylabel('Average inner loop generations required','FontName','Times New 

Roman','FontSize',22) 
ylabel({'Average inner loop';'generations required'},'FontName','Times 

New Roman','FontSize',22) 
% hLegend = legend([h,hEmpty,hPlain,hDashed],... 
%     {'\kappa = 0%',... 
%     '\kappa = 25%',... 
%     '\kappa = 50%',... 
%     '\kappa = 75%',... 
%     '\kappa = 100%',... 
%     '',... 
%     'Average',... 
%     '95% confidence interval'}); 
hLegend = legend([h],... 
    {'\kappa = 0%',... 
    '\kappa = 25%',... 
    '\kappa = 50%',... 
    '\kappa = 75%',... 
    '\kappa = 100%'}); 
set(hLegend,'FontName', 'Times New Roman', 'FontSize',22) 
set(gca, 'FontName', 'Times New Roman', 'FontSize',22) 

 

plotCompareElitismTrueFalse.m 

A comparison of the performance of the algorithm when the elitism is activated or not. 

% Prepare workspace 
clc 
close all 
clear global 
clear 

  
% Get statistical analysis 
folderName = 'results_NoElitismPureHeterogeneity'; 
% folderName = 'results_NoElitismPartialHeterogeneity'; 
% folderName = 'results_Elitism000PartialHeterogeneity' 
[genAvg0, ~, lower0, higher0] = analyzeResults(folderName); 

  
folderName = 'results_WithElitism05PureHeterogeneity'; 
% folderName = 'results_WithElitism05PartialHeterogeneity'; 
[genAvg1, ~, lower1, higher1] = analyzeResults(folderName); 

  
%% Plot 
gray0 = 0.5*ones(3,1); 
figure 
hold on 
h0 = plot(genAvg0, 'LineWidth',2,'Color',gray0); 
h2 = plot(genAvg0,'LineWidth',2,'Color',gray0); 
h3 = plot(lower0,'--','Color',gray0); 
plot(higher0,'--','Color',gray0) 
h1 = plot(genAvg1,'b','LineWidth',2); 



547 

 

hEmpty = plot(lower1,'--w'); 

  
plot(lower1,'--b') 
plot(higher1,'--b') 
hold off 
xlabel('Outer loop generations','FontName','Times New 

Roman','FontSize',12) 
ylabel('Average inner loop generations required','FontName','Times New 

Roman','FontSize',12) 
h = legend([h0,h1,hEmpty,h2,h3],{'Without elitism','Elitism 

50%','','Average','95% confidence interval'}); 
set(h,'FontName', 'Times New Roman', 'FontSize',12) 
set(gca, 'FontName', 'Times New Roman', 'FontSize',12) 

  
ylim([0, 220]) 

  
% Plot 2 --------------------------------------------------------------

--- 
figure 
hold on 

  
hPlain = plot(genAvg0,'LineWidth',2,'Color',gray0); 
hDashed = plot(lower1,'--','Color',gray0); 
hEmpty = plot(lower1,'Color','none'); 

  
h0 = plot(genAvg0, 'LineWidth',2,'Color','r'); 
plot(lower0,'--','Color',[255, 183, 183]/255); 
plot(higher0,'--','Color',[255, 183, 183]/255); 

  
h1 = plot(genAvg1,'b','LineWidth',2); 
plot(lower1,'--','Color',[206, 191, 255]/255) 
plot(higher1,'--','Color',[206, 191, 255]/255) 

  
hold off 

  
xlabel('Outer loop generations','FontName','Times New 

Roman','FontSize',12) 
ylabel('Average inner loop generations required','FontName','Times New 

Roman','FontSize',12) 
h = legend([h0,h1,hEmpty,hPlain,hDashed],{'Without elitism','Elitism 

50%','','Average','95% confidence interval'}); 
set(h,'FontName', 'Times New Roman', 'FontSize',12) 
set(gca, 'FontName', 'Times New Roman', 'FontSize',12) 

  
% Transparent background 
set(gcf, 'Color', 'None') 
set(gca, 'Color', 'None', 'XColor', 'w', 'YColor', 'w', 'ZColor', 'w') 
set(h,'color','none','TextColor','w','EdgeColor','w') 

  
ylim([0, 220]) 

 

plotCompareHeterogeneityFraction.m 
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A comparison of the different elitism rates when heterogeneity is partial only. 

% Prepare workspace 
clc 
close all 
clear global 
clear 

  
% Get statistical analysis 
genAvg = cell(1,5); 
lower = cell(1,5); 
higher = cell(1,5); 
for i = 1:5 
    fprintf('Case %d/5\n', i) 
    folderName = sprintf('results_Elitism%03dPartialHeterogeneity',(i-

1)*25); 
    [a, ~, l, h] = analyzeResults(folderName); 
    genAvg{i} = a; 
    lower{i} = l; 
    higher{i} = h; 
end 

  
%% Plot 
gray0 = 0.5*ones(3,1); 
c = get(groot,'DefaultAxesColorOrder'); 

  
figure 
hold on 

  
hPlain = plot(genAvg{1},'LineWidth',2,'Color',gray0); 
hDashed = plot(lower{1},'--','Color',gray0); 
hEmpty = plot(lower{1},'w'); 

  
h = zeros(1,5); 
for i = 1:5 
    h(i) = plot(genAvg{i}, 'LineWidth',2,'Color',c(i,:)); 
    plot(lower{i},'--','Color',c(i,:)); 
    plot(higher{i},'--','Color',c(i,:)); 
end 

  
hold off 

  
xlabel('Outer loop generations','FontName','Times New 

Roman','FontSize',12) 
ylabel('Average inner loop generations required','FontName','Times New 

Roman','FontSize',12) 
% ylabel({'Average inner loop';'generations 

required'},'FontName','Times New Roman','FontSize',22) 
hLegend = legend([h,hEmpty,hPlain,hDashed],... 
    {'\kappa = 0%',... 
    '\kappa = 25%',... 
    '\kappa = 50%',... 
    '\kappa = 75%',... 
    '\kappa = 100%',... 
    '',... 
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    'Average',... 
    '95% confidence interval'}); 
% hLegend = legend([h],... 
%     {'\kappa = 0%',... 
%     '\kappa = 25%',... 
%     '\kappa = 50%',... 
%     '\kappa = 75%',... 
%     '\kappa = 100%'}); 
set(hLegend,'FontName', 'Times New Roman', 'FontSize',12) 
set(gca, 'FontName', 'Times New Roman', 'FontSize',12) 

 

plotCompareHeterogeneityTrueFalse.m 

A plot comparing the performance of the algorithm between elitism and non-elitism, and 

between partial and full heterogeneity. 

% Prepare workspace 
clc 
close all 
clear global 
clear 

  
% Get statistical analysis 

  
% Full heterogeneity 
folderName = 'results_NoElitismPureHeterogeneity'; 
[genAvg0, ~, lower0, higher0] = analyzeResults(folderName); 

  
folderName = 'results_WithElitism05PureHeterogeneity'; 
[genAvg1, ~, lower1, higher1] = analyzeResults(folderName); 

  
% Partial heterogeneity 
folderName = 'results_NoElitismPartialHeterogeneity'; 
[genAvg2, ~, lower2, higher2] = analyzeResults(folderName); 

  
folderName = 'results_WithElitism05PartialHeterogeneity'; 
[genAvg3, ~, lower3, higher3] = analyzeResults(folderName); 

  
%% Plot 
gray0 = 0.5*ones(3,1); 

  
figure 
hold on 

  
hPlain = plot(genAvg0,'LineWidth',2,'Color',gray0); 
hDashed = plot(lower3,'--','Color',gray0); 
hEmpty = plot(lower3,'--w','LineWidth',2); 

  
h0 = plot(genAvg0, 'LineWidth',2,'Color','r'); 
% plot(lower0,'--','Color',[255, 183, 183]/255) 
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% plot(higher0,'--','Color',[255, 183, 183]/255) 

  
h1 = plot(genAvg1,'b','LineWidth',2); 
% plot(lower1,'--','Color',[206, 191, 255]/255) 
% plot(higher1,'--','Color',[206, 191, 255]/255) 

  
h2 = plot(genAvg2,'m','LineWidth',2); 
plot(lower2,'--','Color',[255, 130, 220]/255) 
plot(higher2,'--','Color',[255, 130, 220]/255) 

  
h3 = plot(genAvg3,'c','LineWidth',2); 
plot(lower3,'--','Color',[130, 249, 255]/255) 
plot(higher3,'--','Color',[130, 249, 255]/255) 

  
hold off 

  
xlabel('Outer loop generations','FontName','Times New 

Roman','FontSize',12) 
ylabel('Average inner loop generations required','FontName','Times New 

Roman','FontSize',12) 
h = legend([h0,h1,h2,h3,hEmpty,hPlain,hDashed],... 
{'Full heterogeneity - No elitism',... 
    'Full heterogeneity - Elitism 50%',... 
    'Partial heterogeneity - No elitism',... 
    'Partial heterogeneity - Elitism 50%',... 
    '',.... 
    'Average',... 
    '95% confidence interval'}); 
set(h,'FontName', 'Times New Roman', 'FontSize',10) 
set(gca, 'FontName', 'Times New Roman', 'FontSize',12) 

  
ylim([0, 220]) 

 

plotElitism.m 

A simple plot of the influence of elitism on the algorithm. 

% Prepare workspace 
clc 
% close all 
clear global 
clear 

  
folderName = 'results_Elitism01PureHeterogeneity'; 
folderName = 'results_Elitism05PureHeterogeneity'; 

  
% Count number of files available 
nFiles = length(dir(folderName)) - 2; 

  
% Count maximum number of generations 
genMax = 0; 
for i = 1:nFiles 
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    % Load the results 
    load(sprintf(strcat(folderName,'/replication_%04d.mat'),i)) 
    if size(generationsArray,1) > genMax 
        genMax = size(generationsArray,1); 
    end 
end 

  
% Initialize storing structures 
generationsInner = cell(1, genMax); 

  
% Accumulate measurements from all replications 
for i = 1:nFiles 
    % Load the results 
    load(sprintf(strcat(folderName,'/replication_%04d.mat'),i)) 
    % Store results 
    genMaxRep = size(generationsArray,1); 
    for j = 1:genMaxRep 
        generationsInner{j} = [generationsInner{j}, 

generationsArray{j}]; 
    end 
end 

  
% Statistical analysis for each generation of the outer loop 
genAvg = zeros(1,genMax); 
genStd = zeros(1,genMax); 
higher = zeros(1,genMax); 
lower = zeros(1,genMax); 
for i = 1:genMax 
    genAvg(i) = mean(generationsInner{i}); % Average 
    genStd(i) = std(generationsInner{i}); % Standard deviation 
    higher(i) = prctile(generationsInner{i},97.5); % Percentile 
    lower(i) = prctile(generationsInner{i},2.5); % Percentile 
end 

  
% % Remove NaN 
% genAvg(isnan(genAvg)) = []; 
% genStd(isnan(genStd)) = []; 

  
% Plot 
% figure 
hold on 
plot(genAvg, 'LineWidth',2) 
% plot(genAvg + 3*genStd,'--r') 
% plot(genAvg - 3*genStd,'--r') 
plot(higher,'--m') 
plot(lower,'--m') 
hold off 
xlabel('Outer loop generations') 
ylabel('Average inner loop generations required') 
legend('Average','95%% confidence interval') 
ylim([0 150]) 

 

plotElitismImprovement.m 
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A plot of the performance of the algorithm as a function of the elitism rate. 

% Prepare workspace 
clc 
close all 
clear global 
clear 

  
% Data 
kappa = 0:0.25:1.0; 
maxGen = [303, 133, 137, 92, 43]; 
gen3 = [37, 16, 15, 14, 13]; 

  
%% Plot 1 
figure 
plot(kappa,maxGen) 
hold on 
plot(kappa,maxGen,'*') 
hold off 
xlabel('\kappa','FontName','Times New Roman','FontSize',20) 
ylabel({'Maximum number';'of';'generations observed'},'FontName','Times 

New Roman','FontSize',20) 
set(gca, 'FontName', 'Times New Roman', 'FontSize',20) 

  
%% Plot 2 
figure 
plot(kappa,gen3) 
hold on 
plot(kappa,gen3,'*') 
hold off 
xlabel('\kappa','FontName','Times New Roman','FontSize',20) 
ylabel({'Number of inner generations';'at 3rd outer 

generation'},'FontName','Times New Roman','FontSize',20) 
set(gca, 'FontName', 'Times New Roman', 'FontSize',20) 

 

plotOuterCompareHeterogeneityFraction.m 

A display of the performance of the outer loop depending on the elitism rate. 

% Prepare workspace 
clc 
close all 
clear global 
clear 

  
% Full heterogeneity 
genAvg = zeros(1,5); 
genLower = zeros(1,5); 
genHigher = zeros(1,5); 
genAvgPartial = zeros(1,5); 
genLowerPartial = zeros(1,5); 
genHigherPartial = zeros(1,5); 
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for i = 1:5 
    fprintf('Case %d/5\n',i) 
    folderName = sprintf('results_Elitism%03dPureHeterogeneity',(i-

1)*25); 
    [genAvg0, genStd0, genLower0, genHigher0, funcAvg0, funcStd0, 

funcLower0, funcHigher0, generationsOuter0,funcCountOuter0] = 

analyzeResultsOuterLoop(folderName); 
    genAvg(i) = genAvg0; 
    genLower(i) = genLower0; 
    genHigher(i) = genHigher0; 

     
    folderName = sprintf('results_Elitism%03dPartialHeterogeneity',(i-

1)*25); 
    [genAvg0, genStd0, genLower0, genHigher0, funcAvg0, funcStd0, 

funcLower0, funcHigher0, generationsOuter0,funcCountOuter0] = 

analyzeResultsOuterLoop(folderName); 
    genAvgPartial(i) = genAvg0; 
    genLowerPartial(i) = genLower0; 
    genHigherPartial(i) = genHigher0; 
end 

  
%% Plot 
gray0 = 0.5*ones(3,1); 
c = get(groot,'DefaultAxesColorOrder'); 

  
figure 
hold on 
bar(.75,genAvg(1),0.4,'FaceColor',gray0) 
bar(.75,genAvg(1),0.4,'FaceColor',gray0,'LineStyle','--

','FaceAlpha',0.5) 
bar(.75,genAvg(1),0.4,'FaceColor',gray0,'LineStyle','none','FaceAlpha',

0) 

  
for i = 1:5 
    bar(i-0.25,genAvg(i),0.4,'FaceColor',c(i,:)) 
end 

  
for i = 1:5 
    bar(i + 0.25,genAvgPartial(i),0.4,'FaceColor',c(i,:),'LineStyle','-

-','FaceAlpha',0.5) 
end 

  
hLegend = legend(... 
    'Full heterogeneity',... 
    'Partial heterogeneity',... 
    '',... 
    '\kappa = 0%',... 
    '\kappa = 25%',... 
    '\kappa = 50%',... 
    '\kappa = 75%',... 
    '\kappa = 100%'); 
errorbar([1 2 3 4 5] - 0.25,... 
    genAvg,... 
    genAvg - genLower,... 
    genHigher - genAvg,... 
    'lineStyle','none',... 
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    'Color','k') 

  
errorbar([1 2 3 4 5] + 0.25,... 
    genAvgPartial,... 
    genAvgPartial - genLowerPartial,... 
    genHigherPartial - genAvgPartial,... 
    'lineStyle','none',... 
    'Color','k') 
hold off 

  
set(gca,'XTickLabel','') 
ylabel({'Outer loop ','generations required'},'FontName','Times New 

Roman','FontSize',12) 

  
set(hLegend,'FontName', 'Times New Roman', 'FontSize',10) 
set(gca, 'FontName', 'Times New Roman', 'FontSize',12) 

 

plotOuterCompareHeterogeneityTrueFalse.m 

Analysis of the outer loop for various conditions of heterogeneity and elitism. 

% Prepare workspace 
clc 
close all 
clear global 
clear 

  
% Full heterogeneity 
fprintf('Case 1/4\n') 
folderName = 'results_NoElitismPureHeterogeneity'; 
[genAvg0, genStd0, genLower0, genHigher0, funcAvg0, funcStd0, 

funcLower0, funcHigher0, generationsOuter0,funcCountOuter0] = 

analyzeResultsOuterLoop(folderName); 

  
fprintf('Case 2/4\n') 
folderName = 'results_WithElitism05PureHeterogeneity'; 
[genAvg1, genStd1, genLower1, genHigher1, funcAvg1, funcStd1, 

funcLower1, funcHigher1, generationsOuter1,funcCountOuter1] = 

analyzeResultsOuterLoop(folderName); 

  
% Partial heterogeneity 
fprintf('Case 3/4\n') 
folderName = 'results_NoElitismPartialHeterogeneity'; 
[genAvg2, genStd2, genLower2, genHigher2, funcAvg2, funcStd2, 

funcLower2, funcHigher2, generationsOuter2,funcCountOuter2] = 

analyzeResultsOuterLoop(folderName); 

  
fprintf('Case 4/4\n') 
folderName = 'results_WithElitism05PartialHeterogeneity'; 
[genAvg3, genStd3, genLower3, genHigher3, funcAvg3, funcStd3, 

funcLower3, funcHigher3, generationsOuter3,funcCountOuter3] = 

analyzeResultsOuterLoop(folderName); 
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%% Plots 
figure 
hold on 
bar(1,genAvg0,'r') 
bar(2,genAvg1,'b') 
bar(3,genAvg2,'m') 
bar(4,genAvg3,'c') 
hLegend = legend('Full heterogeneity - No elitism',... 
    'Full heterogeneity - Elitism 50%',... 
    'Partial heterogeneity - No elitism',... 
    'Partial heterogeneity - Elitism 50%','location','northoutside'); 

  
genAvg = [genAvg0, genAvg1, genAvg2, genAvg3]; 
genLower = genAvg - [genLower0, genLower1, genLower2, genLower3]; 
genHigher = [genHigher0, genHigher1, genHigher2, genHigher3] - genAvg; 
errorbar([1 2 3 4],... 
    genAvg,... 
    genLower,... 
    genHigher,... 
    'lineStyle','none',... 
    'Color','k') 
hold off 

  
set(gca,'XTickLabel','') 
ylabel({'Outer loop ','generations required'},'FontName','Times New 

Roman','FontSize',12) 

  
set(hLegend,'FontName', 'Times New Roman', 'FontSize',10) 
set(gca, 'FontName', 'Times New Roman', 'FontSize',12) 

 

B.3 Design space exploration 

This section contains a Matlab implementation of the morphological tree 

framework which was introduced in section 5.1 page 292. 

B.3.1 Classes 

The files of the object-oriented morphological tree data structure. See section 5.1.3 

page 301 for a complete description of the class architecture. 

option.m 

classdef option 
    %OPTION Represents a morphological option to be used in a row of a 
    %morphological matrix 
    %   Detailed explanation goes here 
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    properties (Access = private) 
        index = 0; 
        name = ''; 
        variables = {}; 
    end 

     
    methods 
        function obj = option(name,variables) 
            obj.name = name; 
            obj.variables = variables; 
        end 

         
        function n = countVariables(obj) 
            n = length(obj.variables); 
        end 

         
        function s = toString(obj)            
            % Prepare variables string 
            str = ''; 
            vars = obj.variables; 
            for j = 1:length(vars) 
                str = strcat(str,vars{j},','); 
            end 
            % Remove last comma 
            str = str(1:end-1); 

             
            % Add to variable name 
            s = ['(',num2str(obj.index),') ',obj.name,' {',str,'}']; 
        end 

         
        % Getters 
        function out = getName(obj) 
            out = obj.name; 
        end 

         
        function out = getIndex(obj) 
            out = obj.index; 
        end 

         
        function out = getVariables(obj) 
            out = obj.variables; 
        end 

         
        % Setter 
        function obj = setIndex(obj,index) 
            obj.index = index; 
        end 
    end 
end 

 

 

row.m 

classdef (Abstract) row 
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    %ROW Summary of this class goes here 
    %   Detailed explanation goes here 
    properties (Access = protected) 
        name = ''; 
        options = {}; 
    end 

     
    methods 
        % Methods 
        function obj = addOption(obj,option) 
            n = size(obj.options,1); 
            obj.options{n+1,1} = option; 
        end 

         
        function [obj, bool] = removeOption(obj,name) 
            % Initialization 
            i = 1; 
            % Find the option (it is assumed there is only one option 

with 
            % this name) 
            while i < size(obj.options,1) && 

~strcmp(obj.options{i,1}.getName,name) 
                i = i + 1; 
            end 

             
            % If option was found 
            if strcmp(obj.options{i,1}.getName,name) 
                % Remove option 
                obj.options(i,:) = []; 
                bool = true; 
            else 
                bool = false; 
            end 
        end 

         
        function obj = addOptionFromMorph(obj,name,m) 
            % NOTE: the morph matrix must be single level 
            % Initialization 
            rows = m.getRows; 

             
            % Save number of options for each row 
            m = size(rows,1); 
            nOptions = zeros(1,m); 
            for i = 1:m 
                nOptions(i) = size(rows{i}.options,1); 
            end 

             
            % Assemble each possible choice 
            combinations = fullfact(nOptions); % Each row is a 

combination 

             
            % For each combination 
            for i = 1:size(combinations,1) 
                % Initialization 
                nameSubOption = strcat(name,' ('); 
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                variablesSubOption = {}; 
                counter = 1; 
                indices = combinations(i,:); 
                % For each row of the morphological matrix 
                for j = 1:m 
                    % Append names 
                    nameSubOption = sprintf('%s%s, ', 

nameSubOption,rows{j}.getOptions{indices(j)}.getName); 
                    % Append variables 
                    variablesTemp = 

rows{j}.getOptions{indices(j)}.getVariables; 
                    for k = 1:length(variablesTemp) 
                        variablesSubOption{counter} = variablesTemp{k}; 
                        counter = counter + 1; 
                    end 
                end 
                % Remove last coma and add closing bracket 
                nameSubOption = nameSubOption(1:end-2); 
                nameSubOption = strcat(nameSubOption,')'); 

                 
                % Add option to row 
                obj = 

obj.addOption(option(nameSubOption,variablesSubOption)); 
            end 
        end 

         
        function [obj, bool, nVars, nOptions] = reduce(obj) 
            % Initialization 
            bool = false; 
            nVars = 0; % Number of variables removed 
            nOptions = 0; % Number of options removed 
            n = size(obj.options,1); 

             
            % For each option 
            i = 1; 
            while i < n+1 
                % Initialization 
                j = 1; 
                vars = cell2mat(obj.options{i,1}.getVariables); 

                 
                % For all other options 
                while j < n+1 
                    % Check if it has the same variables 
                    if i~=j && 

size(cell2mat(obj.options{j,1}.getVariables),1) > 0 &&... 
                            

strcmp(cell2mat(obj.options{j,1}.getVariables),vars) 
                        % Increment variables counter 
                        nVars = nVars + 

length(obj.options{j,1}.getVariables); 
                        nOptions = nOptions + 1; 
                        % Remove option 
                        obj = 

obj.removeOption(obj.options{j,1}.getName); 
                        bool = true; 
                        % Update size 
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                        n = size(obj.options,1); 
                    else 
                        % Iterate 
                        j = j + 1; 
                    end 
                end 

                 
                % Iterate 
                i = i + 1; 
            end 
        end 

         
        function n = countOptions(obj) 
            n = size(obj.options,1); 
        end 

         
        function n = countVariables(obj) 
           % Initialization 
           n = 0; 

            
           % Add variables 
           for i = 1:size(obj.options,1) 
              n = n + obj.options{i,1}.countVariables;  
           end 
        end 

         
        function [obj, index] = 

setUpCompatibilityIndices(obj,startIndex) 
            % Initialization 
            index = startIndex; 

             
            % Set up indices for all options 
            for i = 1:size(obj.options,1) 
               obj.options{i,1} = obj.options{i,1}.setIndex(index); 
               index = index + 1; 
           end 
        end 

         
        function s = toString(obj) 
            % Initialization 
            s = strcat(obj.name,'\n'); 

             
            % Create string 
            for i = 1:size(obj.options,1)                
                s = strcat(s, '\t', obj.options{i}.toString,'\n'); 
            end 
        end 

         
        % Getters 
        function out = getName(obj) 
            out = obj.name; 
        end 

         
        function out = getOptions(obj) 
            out = obj.options; 
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        end 
    end 

     
    % Abstract methods 
    methods (Abstract) 
        computeAlternatives(obj) 
    end 
end 

 

rowConventional.m 

classdef rowConventional < row 
    %ROW Summary of this class goes here 
    %   Detailed explanation goes here    
    methods 
        % Constructor 
        function obj = rowConventional(name) 
            obj.name = name; 
        end 

         
        % Methods 
        function n = computeAlternatives(obj) 
            n = size(obj.options,1); 
        end 
    end 
end 

 

rowCombinatorial.m 

classdef rowCombinatorial < row 
    %ROW Summary of this class goes here 
    %   Detailed explanation goes here    
    methods 
        function obj = rowCombinatorial(name) 
            obj.name = name; 
        end 

         
        function nAlternatives = computeAlternatives(obj) 
            % Initialization 
            nAlternatives = 0; 
            n = size(obj.options,1); 

             
            % Possibility to choose from 1 to nOptions options in the 

row 
            for k = 1:n 
                nAlternatives = nAlternatives + nchoosek(n,k); 
            end 
        end 
    end 
end 

 



561 

 

morphologicalMatrix.m 

classdef morphologicalMatrix 
    %MORPHOLOGICALMATRIX Summary of this class goes here 
    %   Detailed explanation goes here 

     
    properties (Access = private) 
        name = ''; 
        rows = {}; 
        abstract = false; 
    end 

     
    methods 
        function obj = morphologicalMatrix(name, abstract) 
            if nargin < 2 
                abstract = false; 
            end 
            obj.name = name; 
            obj.abstract = abstract; 
        end 

         
        function obj = addRow(obj,row) 
            n = size(obj.rows,1); 
            obj.rows{n+1,1} = row; 
        end 

         
        function [obj, bool] = removeRow(obj,name) 
            % Initialization 
            i = 1; 
            % Find the row (it is assumed there is only one row with 
            % this name) 
            while i < size(obj.rows,1) && 

~strcmp(obj.rows{i,1}.getName,name) 
                i = i + 1; 
            end 

             
            % If option was found 
            if strcmp(obj.rows{i,1}.getName,name) 
                % Remove option 
                obj.rows(i,:) = []; 
                bool = true; 
            else 
                bool = false; 
            end 
        end 

         
        function n = computeAlternatives(obj) 
            % If empty matrix 
            if 0 == size(obj.rows,1) 
                n = 0; 
                return 
            end 
            % Else 
            n = 1; 
            % Product of rows options 
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            for i = 1:length(obj.rows) 
                n = n*obj.rows{i}.computeAlternatives; 
            end 
        end 

         
        function n = computeCompatibleAlternatives(obj,c,set,n) 
            % If bottom of matrix is reached 
            if size(obj.getRows,1) == 0 
                % Increment counter of compatible alternatives 
                n = n+1; 
            else 
                % Remove first row of the morphological matrix 
                mReduced = obj.removeRow(obj.getRows{1,1}.getName); 

                 
                % Recursivity on all options of the first row 
                options = obj.getRows{1,1}.getOptions; 
                for i = 1:size(options,1) 
                    % TODO remove this debug 
                    if (strcmp(obj.name,'Fixed wing') || 

(strcmp(obj.name,'Multirotor'))) && size(obj.getRows,1) == 20 
                        fprintf('%d/%d 

(%.2f%%)\n',i,size(options,1),100*i/size(options,1)) 
                    end 

                     
                    % Get option index 
                    idx = options{i,1}.getIndex; 

                     
                    % Continue recursion only if option is compatible 

with current set 
                    if isempty(set) || (~isempty(set) && 

prod(c(idx,set)) ~= 0) 
                        n = 

computeCompatibleAlternatives(mReduced,c,[set, idx],n); 
                    end 
                end 
            end 
        end 

         
        function [obj,bool,nVars,nOptions] = reduce(obj) 
            % Initialization 
            bool = false; 
            nVars = 0; 
            nOptions = 0; 

             
            % For every row 
            i = 1; 
            while i < size(obj.rows,1)+1 
                % Reduce it 
                [temp, bool, removedVars, removedOptions] = 

obj.rows{i,1}.reduce; 
                obj.rows{i,1} = temp; 
                nVars = nVars + removedVars; 
                nOptions = nOptions + removedOptions; 

                 
                % If it has only one option, remove it 
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                if size(obj.rows{i,1}.getOptions,1) == 1 
                    obj = obj.removeRow(obj.rows{i,1}.getName); 
                else 
                    i = i+1; 
                end 
            end 
        end 

         
        function n = countOptions(obj) 
            % Initialization 
            n = 0; 

             
            % Add options 
            for i = 1:size(obj.rows,1) 
                n = n + obj.rows{i,1}.countOptions; 
            end 
        end 

         
        function n = countVariables(obj) 
            % Initialization 
            n = 0; 

             
            % Add options 
            for i = 1:size(obj.rows,1) 
                n = n + obj.rows{i,1}.countVariables; 
            end 
        end 

         
        function obj = setUpCompatibilityIndices(obj) 
            % Initialization 
            index = 1; 
            for i = 1:size(obj.rows,1) 
                [temp, index] = 

obj.rows{i,1}.setUpCompatibilityIndices(index); 
                obj.rows{i,1} = temp; 
            end 
        end 

         
        function c = initializeCompatibilityMatrix(obj) 
            % Initialization: assume all compatible 
            n = obj.countOptions; 
            c = ones(n); 

             
            % One option per row 
            for i = 1:size(obj.rows,1) 
                if isa(obj.rows{i,1},'rowConventional') 
                    options = obj.rows{i,1}.getOptions; 
                    n1 = options{1,1}.getIndex; 
                    n2 = options{end,1}.getIndex; 
                    for j = n1:n2-1 
                        for k = j+1:n2 
                            c(j,k) = 0; 
                        end 
                    end 
                end 
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            end 
        end 

         
        function s = toString(obj) 
            s = strcat(obj.name,'\n'); 
            for i = 1:length(obj.rows) 
                s = strcat(s,obj.rows{i}.toString); 
            end 
        end 

         
        % Getters 
        function out = getName(obj) 
            out = obj.name; 
        end 

         
        function out = getRows(obj) 
            out = obj.rows; 
        end 

         
        function out = isAbstract(obj) 
            out = obj.abstract; 
        end 

         
        % Setters 
        function obj = setAbstract(obj, abstract) 
            obj.abstract = abstract; 
        end 

         
        % Utility function 
        function Asym = symmetrize(~,A) 
            Adiag = diag(diag(A)); % Place diagonal elements 
            Atri = triu(A,1); % Strictly upper matrix 
            Asym = Adiag + Atri + Atri'; % Assemble final symmetric 

matrix 
        end 
    end 
end 

 

morphologicalTree.m 

Uses the Matlab tree data structure proposed by [231]. 

classdef morphologicalTree < tree 
    methods 
        function obj = morphologicalTree(content) 
            obj = obj@tree(content); 
        end 

         
        function n = computeAlternatives(obj) 
            % Create a breadth first iterator 
            iterator = obj.depthfirstiterator; 
            n = 1; 



565 

 

            for it = iterator 
                if ~obj.get(it).isAbstract() 
                    n = n*obj.get(it).computeAlternatives(); 
                end 
            end 
        end 

         
        function [obj,bool,nVars,nOptions] = reduce(obj) 
            % Create a breadth first iterator 
            bool = false; 
            nVars = 0; 
            nOptions = 0; 
            iterator = obj.depthfirstiterator; 
            for it = iterator 
                [m,bool,n,no] = obj.get(it).reduce(); 
                obj = obj.set(it,m); 
                nVars = nVars + n; 
                nOptions = nOptions + no; 
            end 
        end 

         
        function str = tostring(obj) 
            % Create duplicate representative tree 
            tName = tree(obj,'clear'); 
            iterator = obj.breadthfirstiterator; 
            for it = iterator 
                if obj.get(it).isAbstract 
                    tName = tName.set(it, sprintf('[A] %s (%.4g)', 

obj.get(it).getName(), obj.get(it).computeAlternatives())); 
                else 
                    tName = tName.set(it, sprintf('%s (%.4g)', 

obj.get(it).getName(), obj.get(it).computeAlternatives())); 
                end 
            end 
            str = tName.tostring; 
        end 
    end 
end 

 

B.3.2 Unit tests 

test.m 

The main file running all the unit tests of the test campaign. 

% Prepare workspace 
clc 
close all 
clear global 
clear 

  
% Run tests 
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result = runtests('testOption.m'); 
rt = table(result); 
disp(rt) 

  
result = runtests('testRow.m'); 
rt = table(result); 
disp(rt) 

  
result = runtests('testMorph.m'); 
rt = table(result); 
disp(rt) 

  
result = runtests('testTree.m'); 
rt = table(result); 
disp(rt) 

 

randomString.m 

A function generating a random string given a string length. This is a utility function used 

to generate random option names in the unit tests. 

function R = randomString(N) 
SET = char(['a':'z' '0':'9']) ; 
NSET = length(SET) ; 

  
i = ceil(NSET*rand(1,N)) ; % with repeat 
R = SET(i) ; 
end 

 

testOption.m 

%% Main function to generate tests 
function tests = testOption 
tests = functiontests(localfunctions); 
end 

  
%% Test Functions 
function testMain(~) 
% Repeat random test 
for i = 1:100 
    % Generate random variables 
    index = randi(100); 
    name = randomString(randi(50)); 
    nVars = randi(100); 
    variables = cell(1,nVars); 
    for j = 1:nVars 
        variables{j} = sprintf('x%d',j); 
    end 
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    % Create random option 
    o = option(name, variables); 
    o = o.setIndex(index); 

     
    % Test 
    assert(strcmp(o.getName(),name)) 
    assert(o.getIndex() == index) 
    assert(sum(ismember(o.getVariables,variables)) == nVars) 
    assert(o.countVariables() == nVars) 
end 
end 

  
%% Optional file fixtures 
function setupOnce(~)  % do not change function name 
% Prepare workspace 
close all 
clear global 
clear 

  
addpath('../morphologicalTree') 
addpath('utilities') 
end 

  
function teardownOnce(~)  % do not change function name 
% change back to original path, for example 
end 

  
%% Optional fresh fixtures 
function setup(~)  % do not change function name 
end 

  
function teardown(~)  % do not change function name 
end 

 

testRow.m 

%% Main function to generate tests 
function tests = testRow 
tests = functiontests(localfunctions); 
end 

  
%% Test Functions 
function testConventional(~) 
r = rowConventional('Feature 1'); 
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 2',{'x1','x2','x3'})); 
r = r.addOption(option('Option 3',{'x1','x2','x3'})); 
r = r.addOption(option('Option 4',{'x5'})); 

  
assert(strcmp(r.getName(), 'Feature 1')) 
assert(r.countOptions() == 4) 
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assert(r.countVariables() == 11) 
assert(r.computeAlternatives() == 4) 

  
r = r.removeOption('X'); 
assert(r.countOptions() == 4) 

  
r = r.removeOption('Option 4'); 
assert(r.countOptions() == 3) 

  
r = r.reduce(); 
assert(r.countOptions() == 2) 
end 

  
function testCombinatorial(~) 
r = rowCombinatorial('Feature 1'); 
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 2',{'x1','x2','x3'})); 
r = r.addOption(option('Option 3',{'x1','x2','x3'})); 
r = r.addOption(option('Option 4',{'x5'})); 

  
assert(strcmp(r.getName(), 'Feature 1')) 
assert(r.countOptions() == 4) 
assert(r.countVariables() == 11) 
assert(r.computeAlternatives() == 15) 

  
r = r.removeOption('X'); 
assert(r.countOptions() == 4) 

  
r = r.removeOption('Option 4'); 
assert(r.countOptions() == 3) 

  
r = r.reduce(); 
assert(r.countOptions() == 2) 
end 

  
%% Optional file fixtures 
function setupOnce(~)  % do not change function name 
% Prepare workspace 
close all 
clear global 
clear 

  
addpath('../morphologicalTree') 
addpath('utilities') 
end 

  
function teardownOnce(~)  % do not change function name 
% change back to original path, for example 
end 

  
%% Optional fresh fixtures 
function setup(~)  % do not change function name 
end 
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function teardown(~)  % do not change function name 
end 

 

testMorph.m 

%% Main function to generate tests 
function tests = testMorph 
tests = functiontests(localfunctions); 
end 

  
%% Test Functions 
function testMain(~) 
% Initialize morphological matrix 
m = morphologicalMatrix('Morphological Matrix'); 

  
% Add row -------------------------------------------------------------

--- 
r = rowConventional('Feature 1'); 
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 2',{'x1','x2','x3'})); 
r = r.addOption(option('Option 3',{'x1','x2','x3'})); 
r = r.addOption(option('Option 4',{'x5'})); 
m = m.addRow(r); % Add row to matrix 

  
% Add row -------------------------------------------------------------

--- 
r = rowConventional('Feature 2'); 
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 2',{'x1','x2','x3'})); 
r = r.addOption(option('Option 3',{'x1','x2','x3'})); 
m = m.addRow(r); % Add row to matrix 

  
assert(m.computeAlternatives() == 12) 

  
% Add row -------------------------------------------------------------

--- 
r = rowCombinatorial('Feature 3 (Combinatorial)'); 
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 2',{'x1','x2','x3'})); 
r = r.removeOption('Option 2'); 
r = r.removeOption('Option 3'); 

  
r = r.addOption(option('Option 2',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 3',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 4',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 5',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 6',{'x1','x2','x3'})); 
r = r.addOption(option('Option 7',{'x1','x2','x3'})); 
r = r.addOption(option('Option 8',{'x1','x2','x3'})); 

  
m = m.addRow(r); % Add row to matrix 

  
assert(m.computeAlternatives() == 12*r.computeAlternatives()) 
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assert(m.countOptions() == 15) 
assert(m.countVariables() == 50) 

  
% Add row -------------------------------------------------------------

--- 
r = rowConventional('Feature 4'); 
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 2',{'x1','x2','x3'})); 
r = r.addOptionFromMorph('Option 3',m); 
m = m.addRow(r); % Add row to matrix 

  
% Add row -------------------------------------------------------------

--- 
r = rowConventional('Feature 5'); 
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 2',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 3',{'x1','x2','x3','x4'})); 
m = m.addRow(r); % Add row to matrix 

  
assert(size(m.getRows(),1) == 5) 

  
m = m.removeRow('Feature 5'); 
assert(size(m.getRows(),1) == 4) 
end 

  
function testReduction(~) 
% Initialize morphological matrix 
m = morphologicalMatrix('Morphological Matrix'); 

  
% Add row -------------------------------------------------------------

--- 
r = rowConventional('Feature 1'); 
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 2',{'x1','x2','x3'})); 
r = r.addOption(option('Option 3',{'x1','x2','x3'})); 
r = r.addOption(option('Option 4',{'x5'})); 
m = m.addRow(r); % Add row to matrix 

  
% Add row -------------------------------------------------------------

--- 
r = rowConventional('Feature 2'); 
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 2',{'x1','x2','x3'})); 
r = r.addOption(option('Option 3',{'x1','x2','x3'})); 
m = m.addRow(r); % Add row to matrix 

  
% Add row -------------------------------------------------------------

--- 
r = rowConventional('Feature 3'); 
r = r.addOption(option('Option 1',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 2',{'x1','x2','x3','x4'})); 
r = r.addOption(option('Option 3',{'x1','x2','x3','x4'})); 
m = m.addRow(r); % Add row to matrix 
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% Morphological reduction ---------------------------------------------

--- 
calls1 = m.computeAlternatives; 
assert(calls1 == 36) 
fprintf('Before: %d\n', calls1) 

  
[m, ~, removedVars] = m.reduce; 

  
calls2 = m.computeAlternatives; 
assert(calls2 == 6) 
fprintf('After:  %d (%.2f%%)\n', calls2, 100*(calls1-calls2)/calls1) 
fprintf('Removed %d optimizer calls\n',calls1-calls2) 
fprintf('Added %d variables to the optimizer\n',removedVars) 

  
assert(size(m.getRows(),1) == 2) 
assert(calls2 < calls1) 
end 

  
function testCompatibility(~) 
% Initialize morphological matrix 
m = morphologicalMatrix('Morphological Matrix'); 

  
% Add row -------------------------------------------------------------

--- 
r = rowConventional('Feature 1'); 
r = r.addOption(option('Option 1',{})); 
r = r.addOption(option('Option 2',{})); 
r = r.addOption(option('Option 3',{})); 
m = m.addRow(r); % Add row to matrix 

  
% Add row -------------------------------------------------------------

--- 
r = rowConventional('Feature 2'); 
r = r.addOption(option('Option 1',{})); 
r = r.addOption(option('Option 2',{})); 
r = r.addOption(option('Option 3',{})); 
m = m.addRow(r); % Add row to matrix 

  
% Add row -------------------------------------------------------------

--- 
r = rowConventional('Feature 3'); 
r = r.addOption(option('Option 1',{})); 
r = r.addOption(option('Option 2',{})); 
r = r.addOption(option('Option 3',{})); 
m = m.addRow(r); % Add row to matrix 

  
%% Compatibility matrix 
m = m.setUpCompatibilityIndices; 
c = m.initializeCompatibilityMatrix; 

  
c(1,4) = 0; 
c(1,5) = 0; 

  
c(1,7) = 0; 
c(1,8) = 0; 
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% Symmetrize matrix 
c = symmetrize(c); 

  
assert(m.computeAlternatives == 27) 
assert(m.computeCompatibleAlternatives(c,[],0) == 19) 
end 

  
%% Optional file fixtures 
function setupOnce(~)  % do not change function name 
% Prepare workspace 
close all 
clear global 
clear 

  
addpath('../morphologicalTree') 
end 

  
function teardownOnce(~)  % do not change function name 
% change back to original path, for example 
end 

  
%% Optional fresh fixtures 
function setup(~)  % do not change function name 
end 

  
function teardown(~)  % do not change function name 
end 

 

B.3.3 Example scripts 

A few examples demonstrating how to use the data structures presented here above. 

exampleTree.m 

% Prepare workspace 
clc 
close all 
clear 

  
addpath('../morphologicalTree') 
addpath('../morphologicalTree/interfaces') 
addpath('../morphologicalTree/tinevez-matlab-tree-3d13d15') 

  
airship = createMM_Macro(); 
fw = createMM_FixedWing(); 
macro = createMM_Macro(); 
multirotor = createMM_Multirotor(); 
ornithopter = createMM_Ornithopter(); 

  
%% Build morphological tree 
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t = morphologicalTree(createMM_Macro('Macroscopic level',false)); 

  
[ t, node1 ] = t.addnode(1, createMM_FixedWing('Fixed-Wing',true)); % 

Abstract 
[ t, node11 ] = t.addnode(node1, createMM_FixedWing('Vehicle 

1',false)); 
[ t, node12 ] = t.addnode(node1, createMM_FixedWing('Vehicle 

2',false)); 
[ t, node13 ] = t.addnode(node1, createMM_FixedWing('Vehicle 

3',false)); 

  
[ t, node2 ] = t.addnode(1, createMM_Multirotor('Multirotor',true)); % 

Abstract 
[ t, node21 ] = t.addnode(node2, createMM_Multirotor('Vehicle 

1',false)); 
[ t, node22 ] = t.addnode(node2, createMM_Multirotor('Vehicle 

2',false)); 
[ t, node23 ] = t.addnode(node2, createMM_Multirotor('Vehicle 

3',false)); 

  
[ t, node3 ] = t.addnode(1, createMM_Airship('Airship',true)); % 

Abstract 
[ t, node31 ] = t.addnode(node3, createMM_Airship('Vehicle 1',false)); 

  
[ t, node4 ] = t.addnode(1, createMM_Ornithopter('Ornithopter',true)); 

% Abstract 
[ t, node41 ] = t.addnode(node4, createMM_Ornithopter('Vehicle 

1',false)); 

  
t.tostring 

  
%% Operations 
before = t.computeAlternatives; 
[t,bool,nVars,nOptions] = t.reduce; 
after = t.computeAlternatives; 
fprintf('%g/%g (%f%%)\n',after,before,100*(before - after)/before) 
fprintf('%d variables transferred to the optimizer\n',nVars) 
fprintf('%d options removed\n',nOptions) 
fprintf('\n') 

 

exampleCompatibility.m 

% Prepare workspace 
clc 
close all 
clear 

  
addpath('../morphologicalTree') 

  
%% Macroscopic level 
m = morphologicalMatrix('Macroscopic level'); 
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r = rowConventional('Mission type'); 
r = r.addOption(option('HALE',{})); 
r = r.addOption(option('Long-range strike',{})); 
r = r.addOption(option('MALE',{})); 
r = r.addOption(option('Close-range support',{})); 
r = r.addOption(option('MUAV',{})); 
r = r.addOption(option('MAV',{})); 
m = m.addRow(r); 

  
r = rowConventional('Architecture'); 
r = r.addOption(option('Fixed/Conventional',{})); 
r = r.addOption(option('Product family',{})); 
r = r.addOption(option('Scale-based product family',{})); 
r = r.addOption(option('Reconfigurable',{})); 
r = r.addOption(option('Online reconfigurable',{})); 
r = r.addOption(option('Modular',{})); 
m = m.addRow(r); 

  
r = rowConventional('Control type'); 
r = r.addOption(option('Centralized',{})); 
r = r.addOption(option('Decentralized',{})); 
r = r.addOption(option('Hybrid',{})); 
m = m.addRow(r); 

  
r = rowConventional('Control scheme'); 
r = r.addOption(option('Leader/Follower',{})); 
r = r.addOption(option('Consensus',{})); 
r = r.addOption(option('Partitioned',{})); 
r = r.addOption(option('Distributed',{})); 
r = r.addOption(option('Hierarchical',{})); 
m = m.addRow(r); 

  
r = rowConventional('Ground station'); 
r = r.addOption(option('Remote base',{})); 
r = r.addOption(option('Laptop',{})); 
r = r.addOption(option('Wearable technology',{})); 
m = m.addRow(r); 

  
m = m.setUpCompatibilityIndices; 
fprintf(m.toString) 

  
%% Compatibility matrix 
n = m.countOptions; 

  
% Assume all compatible 
c = m.initializeCompatibilityMatrix; 
sum(sum(c == 0)) 

  
% Fill in incompatibilities 
c(13,17) = 0; c(13,18) = 0; c(13,19) = 0; c(13,20) = 0; 
c(14,16) = 0; c(14,20) = 0; 
c(15,16) = 0; c(15,17) = 0; c(15,18) = 0; c(15,19) = 0; 

  
sum(sum(c == 0)) 
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%% Symmetrize matrix 
c = symmetrize(c); 

  
% Total alternatives 
m.computeAlternatives 

  
figure 
pcolor(c) 
colormap(gray(2)) 
axis ij 
axis square 
set(gca,'FontName','Times New Roman','FontSize',18) 

  
% Compatible alternatives 
tic 
nn = m.computeCompatibleAlternatives(c,[],0) 
toc 

 

exampleReduction.m 

% Prepare workspace 
clc 
close all 
clear 

  
addpath('../morphologicalTree') 
addpath('../morphologicalTree/interfaces') 

  
%% Analysis 
fprintf('Macro ==================\n') 
a = createMM_Macro('Macroscopic level',false); 
before = a.computeAlternatives; 
[a,~,nVars,nOptions] = a.reduce; 
after = a.computeAlternatives; 
fprintf('%g/%g (%f%%)\n',after,before,100*(before - after)/before) 
fprintf('%d variables transferred to the optimizer\n',nVars) 
fprintf('%d options removed\n',nOptions) 
fprintf('\n') 

  
fprintf('Fixed-Wing ==================\n') 
a = createMM_FixedWing('Fixed-Wing',false); 
before = a.computeAlternatives; 
a.countOptions 
a.countVariables 
[a,~,nVars,nOptions] = a.reduce; 
after = a.computeAlternatives; 
fprintf('%g/%g (%f%%)\n',after,before,100*(before - after)/before) 
fprintf('%d variables transferred to the optimizer\n',nVars) 
fprintf('%d options removed\n',nOptions) 
fprintf('\n') 

  
fprintf('Multirotor ==================\n') 
a = createMM_Multirotor('Multirotor',false); 



576 

 

before = a.computeAlternatives; 
a.countOptions 
a.countVariables 
[a,~,nVars,nOptions] = a.reduce; 
after = a.computeAlternatives; 
fprintf('%g/%g (%f%%)\n',after,before,100*(before - after)/before) 
fprintf('%d variables transferred to the optimizer\n',nVars) 
fprintf('%d options removed\n',nOptions) 
fprintf('\n') 

  
fprintf('Airship ==================\n') 
a = createMM_Airship('Airship',false); 
before = a.computeAlternatives; 
a.countOptions 
a.countVariables 
[a,~,nVars,nOptions] = a.reduce; 
after = a.computeAlternatives; 
fprintf('%g/%g (%f%%)\n',after,before,100*(before - after)/before) 
fprintf('%d variables transferred to the optimizer\n',nVars) 
fprintf('%d options removed\n',nOptions) 
fprintf('\n') 

  
fprintf('Ornithopter ==================\n') 
a = createMM_Ornithopter('Ornithopter',false); 
before = a.computeAlternatives; 
a.countOptions 
a.countVariables 
[a,~,nVars,nOptions] = a.reduce; 
after = a.computeAlternatives; 
fprintf('%g/%g (%f%%)\n',after,before,100*(before - after)/before) 
fprintf('%d variables transferred to the optimizer\n',nVars) 
fprintf('%d options removed\n',nOptions) 
fprintf('\n') 

 

B.3.4 Interfaces 

A set of functions creating notional morphological matrices and compatibility 

matrices for a number of aircraft architectures and for a notional group composition. 

 

createMM_Airship.m 

function [m,c] = createMM_Airship(name,abstract) 
if nargin < 2 
    abstract = false; 
    name = 'Airship'; 
end 

  
% Morphological matrix 
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m = morphologicalMatrix(name,abstract); 

  
r = rowConventional('Lifting medium'); 
r = r.addOption(option('Cold gas (Helium)',{})); 
r = r.addOption(option('Hot air',{})); 
m = m.addRow(r); 

  
r = rowConventional('Empennage configuration'); 
r = r.addOption(option('Y',{'nTails','deltaAngle','offsetAngle'})); 
r = r.addOption(option('Inverted 

Y',{'nTails','deltaAngle','offsetAngle'})); 
r = r.addOption(option('X',{'nTails','deltaAngle','offsetAngle'})); 
r = r.addOption(option('Cross',{'nTails','deltaAngle','offsetAngle'})); 
m = m.addRow(r); 

  
r = rowConventional('Ballonet-based pitch trim'); 
r = r.addOption(option('Yes',{'nBallonets'})); 
r = r.addOption(option('No',{'nBallonets'})); 
m = m.addRow(r); 

  
r = rowConventional('Energy source'); 
r = r.addOption(option('Bio-chemical',{})); 
r = r.addOption(option('Electric charge',{})); 
r = r.addOption(option('Electrolyte',{})); 
r = r.addOption(option('Hybrid',{})); 
m = m.addRow(r); 

  
r = rowConventional('Energy storage'); 
% Battery variables include 
% Battery conditions: 'C-rate','E-

rate','SOC','DOD','terminalV','opencircuitV','R' 
% Technical specs: nominal voltage, cut-off voltage, capacity C, 

energy, 
% cycle life, specific energy, specific power, energy density, power 
% density, maximum continuous discharge current, maximum 30s discharge 
% pulse current, charge voltage, float voltage, charge current 
% Source: http://web.mit.edu/evt/summary_battery_specifications.pdf 
r = r.addOption(option('Battery (LiCoO2)',{'batteryVariables'})); 
r = r.addOption(option('Battery (LiFePO4)',{'batteryVariables'})); 
r = r.addOption(option('Battery (LiPo)',{'batteryVariables'})); 
r = r.addOption(option('Battery (NiCad)',{'batteryVariables'})); 
r = r.addOption(option('Battery (NiMH)',{'batteryVariables'})); 
r = r.addOption(option('Fuel tank',{'volume'})); 
r = r.addOption(option('External fuel tank',{'size','position'})); 
r = r.addOption(option('Electrolyte tank',{'volume'})); 
r = r.addOption(option('Fuel tank + Battery 

(LiCoO2)',{'volume','batteryVariables'})); 
r = r.addOption(option('Fuel tank + Battery 

(LiFePO4)',{'volume','batteryVariables'})); 
r = r.addOption(option('Fuel tank + Battery 

(LiPo)',{'volume','batteryVariables'})); 
r = r.addOption(option('Fuel tank + Battery 

(NiCad)',{'volume','batteryVariables'})); 
r = r.addOption(option('Fuel tank + Battery 

(NiMH)',{'volume','batteryVariables'})); 
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r = r.addOption(option('External fuel tank + Battery 

(LiCoO2)',{'size','position','batteryVariables'})); 
r = r.addOption(option('External fuel tank + Battery 

(LiFePO4)',{'size','position','batteryVariables'})); 
r = r.addOption(option('External fuel tank + Battery 

(LiPo)',{'size','position','batteryVariables'})); 
r = r.addOption(option('External fuel tank + Battery 

(NiCad)',{'size','position','batteryVariables'})); 
r = r.addOption(option('External fuel tank + Battery 

(NiMH)',{'size','position','batteryVariables'})); 
m = m.addRow(r); 

  
r = rowConventional('Converter to mechanical energy'); 
r = r.addOption(option('Piston',{})); 
r = r.addOption(option('Turbine',{})); 
r = r.addOption(option('Electric motor (Spinning cage, Brushed)',{})); 
r = r.addOption(option('Electric motor (Spinning cage, 

Brushless)',{})); 
r = r.addOption(option('Electric motor (Spinning shaft, Brushed)',{})); 
r = r.addOption(option('Electric motor (Spinning shaft, 

Brushless)',{})); 
r = r.addOption(option('Hybrid (Piston/Electric)',{})); 
r = r.addOption(option('Hybrid (Turbine/Electric)',{})); 
r = r.addOption(option('Fuel cell and electric motor',{})); 
m = m.addRow(r); 

  
r = rowConventional('Number of rotors'); 
r = r.addOption(option('1',{'nRotors','positionRotors'})); 
r = r.addOption(option('2',{'nRotors','positionRotors'})); 
r = r.addOption(option('3',{'nRotors','positionRotors'})); 
r = r.addOption(option('4',{'nRotors','positionRotors'})); 
r = r.addOption(option('6',{'nRotors','positionRotors'})); 
r = r.addOption(option('8',{'nRotors','positionRotors'})); 
m = m.addRow(r); 

  
r = rowConventional('Steerable propulsion'); 
r = r.addOption(option('Yes',{})); 
r = r.addOption(option('No',{})); 
m = m.addRow(r); 

  
r = rowConventional('Converter to lift/thrust'); 
r = r.addOption(option('Rotor',{})); 
r = r.addOption(option('Fan',{})); 
r = r.addOption(option('Propeller',{})); 
m = m.addRow(r); 

  
r = rowConventional('Number of blades'); 
r = r.addOption(option('2',{'nBlades'})); 
r = r.addOption(option('3',{'nBlades'})); 
r = r.addOption(option('4',{'nBlades'})); 
r = r.addOption(option('6',{'nBlades'})); 
r = r.addOption(option('8',{'nBlades'})); 
r = r.addOption(option('10',{'nBlades'})); 
m = m.addRow(r); 

  
r = rowConventional('Blade type'); 
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r = r.addOption(option('Fixed pitch',{})); 
r = r.addOption(option('Variable pitch',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Imaging'); 
r = r.addOption(option('Mono (Fixed-mount)',{})); 
r = r.addOption(option('Mono (Gyro-stabilized)',{})); 
r = r.addOption(option('RGB camera (Fixed-mount)',{})); 
r = r.addOption(option('RGB camera (Gyro-stabilized)',{})); 
r = r.addOption(option('Multispectral data (Fixed-mount)',{})); 
r = r.addOption(option('Multispectral data (Gyro-stabilized)',{})); 
r = r.addOption(option('Thermal camera (Fixed-mount)',{})); 
r = r.addOption(option('Thermal camera (Gyro-stabilized)',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Mapping'); 
r = r.addOption(option('2D LIDAR',{})); 
r = r.addOption(option('3D LIDAR',{})); 
r = r.addOption(option('Sonar',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Attitude'); 
r = r.addOption(option('IMU+GPS',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Altitude'); 
r = r.addOption(option('GPS',{})); 
r = r.addOption(option('Barometer',{})); 
r = r.addOption(option('Sonar',{})); 
m = m.addRow(r); 

  
r = rowConventional('Communications'); 
r = r.addOption(option('Radio',{})); 
m = m.addRow(r); 

  
r = rowConventional('Hull type'); 
r = r.addOption(option('Non-rigid',{})); 
r = r.addOption(option('Semi-rigid',{})); 
r = r.addOption(option('Rigid',{})); 
m = m.addRow(r); 

  
r = rowConventional('Battens'); 
r = r.addOption(option('Yes',{})); 
r = r.addOption(option('No',{})); 
m = m.addRow(r); 

  
% Compatibility matrix 

=================================================== 

  
% Initialization 
m = m.setUpCompatibilityIndices; 
c = m.initializeCompatibilityMatrix; 

  
% Fill in incompatibilities 
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% Energy sources ------------------------------------------------------

--- 
c(9,13) = 0; 
c(9,14) = 0; 
c(9,15) = 0; 
c(9,16) = 0; 
c(9,17) = 0; 
c(9,20) = 0; 
c(9,21) = 0; 
c(9,22) = 0; 
c(9,23) = 0; 
c(9,24) = 0; 
c(9,25) = 0; 
c(9,26) = 0; 
c(9,27) = 0; 
c(9,28) = 0; 
c(9,29) = 0; 
c(9,30) = 0; 

  
c(9,33) = 0; 
c(9,34) = 0; 
c(9,35) = 0; 
c(9,36) = 0; 
c(9,37) = 0; 
c(9,38) = 0; 
c(9,39) = 0; 

  
c(10,18) = 0; 
c(10,19) = 0; 
c(10,20) = 0; 
c(10,21) = 0; 
c(10,22) = 0; 
c(10,23) = 0; 
c(10,24) = 0; 
c(10,25) = 0; 
c(10,26) = 0; 
c(10,27) = 0; 
c(10,28) = 0; 
c(10,29) = 0; 
c(10,30) = 0; 

  
c(10,31) = 0; 
c(10,32) = 0; 
c(10,37) = 0; 
c(10,38) = 0; 
c(10,39) = 0; 

  
c(11,13) = 0; 
c(11,14) = 0; 
c(11,15) = 0; 
c(11,16) = 0; 
c(11,17) = 0; 
c(11,18) = 0; 
c(11,19) = 0; 
c(11,21) = 0; 
c(11,22) = 0; 
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c(11,23) = 0; 
c(11,24) = 0; 
c(11,25) = 0; 
c(11,26) = 0; 
c(11,27) = 0; 
c(11,28) = 0; 
c(11,29) = 0; 
c(11,30) = 0; 

  
c(11,31) = 0; 
c(11,32) = 0; 
c(11,33) = 0; 
c(11,34) = 0; 
c(11,35) = 0; 
c(11,36) = 0; 
c(11,37) = 0; 
c(11,38) = 0; 

  
c(12,13) = 0; 
c(12,14) = 0; 
c(12,15) = 0; 
c(12,16) = 0; 
c(12,17) = 0; 
c(12,18) = 0; 
c(12,19) = 0; 
c(12,20) = 0; 

  
c(12,31) = 0; 
c(12,32) = 0; 
c(12,33) = 0; 
c(12,34) = 0; 
c(12,35) = 0; 
c(12,36) = 0; 
c(12,39) = 0; 

  
% Energy storage ------------------------------------------------------

--- 
c(13,31) = 0; c(13,32) = 0; c(13,37) = 0; c(13,38) = 0; c(13,39) = 0; 
c(14,31) = 0; c(14,32) = 0; c(14,37) = 0; c(14,38) = 0; c(14,39) = 0; 
c(15,31) = 0; c(15,32) = 0; c(15,37) = 0; c(15,38) = 0; c(15,39) = 0; 
c(16,31) = 0; c(16,32) = 0; c(16,37) = 0; c(16,38) = 0; c(16,39) = 0; 
c(17,31) = 0; c(17,32) = 0; c(17,37) = 0; c(17,38) = 0; c(17,39) = 0; 

  
c(18,33) = 0; c(18,34) = 0; c(18,35) = 0; c(18,36) = 0; c(18,37) = 0; 

c(18,38) = 0; c(18,39) = 0; 
c(19,33) = 0; c(19,34) = 0; c(19,35) = 0; c(19,36) = 0; c(19,37) = 0; 

c(19,38) = 0; c(19,39) = 0; 

  
c(20,31) = 0; 
c(20,32) = 0; 
c(20,33) = 0; 
c(20,34) = 0; 
c(20,35) = 0; 
c(20,36) = 0; 
c(20,37) = 0; 
c(20,38) = 0; 
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for i = 21:30 
   c(i,31) = 0; 
   c(i,32) = 0; 
   c(i,33) = 0; 
   c(i,34) = 0; 
   c(i,35) = 0; 
   c(i,36) = 0; 
   c(i,39) = 0; 
end 

  
% Hull type -----------------------------------------------------------

--- 
c(75,78) = 0; 

  
% Symmetrize matrix 

====================================================== 
c = m.symmetrize(c); 
end 

 

createMM_FixedWing.m 

function [m,c] = createMM_FixedWing(name,abstract) 
if nargin < 2 
    abstract = false; 
    name = 'Fixed-Wing'; 
end 

  
% Empennage 
mEmpennage = morphologicalMatrix('Empennage'); 

  
r = rowConventional('Number of tailplanes'); 
r = r.addOption(option('0 (Tailless)',{'variablesTailless'})); 
r = r.addOption(option('0 (Canard)',{'VariablesCanard'})); 
r = r.addOption(option('1',{'nTailPlanes'})); 
r = r.addOption(option('2',{'nTailPlanes'})); 
r = r.addOption(option('3',{'nTailPlanes'})); 
mEmpennage = mEmpennage.addRow(r); % Add row to matrix 

  
r = rowConventional('Location'); 
r = r.addOption(option('Low',{'variablesLow'})); 
r = r.addOption(option('Mid',{'variablesMid'})); 
r = r.addOption(option('High',{'variablesHigh'})); 
r = r.addOption(option('Booms (Tail)',{'variablesBoomsTail'})); 
r = r.addOption(option('Booms (Wing)',{'variablesBoomsWing'})); 
mEmpennage = mEmpennage.addRow(r); % Add row to matrix 

  
r = rowConventional('Moving surfaces'); 
r = r.addOption(option('Independent',{'variablesIndependent'})); 
r = r.addOption(option('Stabilator',{'variablesStabilator'})); 
mEmpennage = mEmpennage.addRow(r); % Add row to matrix 

  
r = rowConventional('Number of fins'); 
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r = r.addOption(option('0',{'nFins','positions'})); 
r = r.addOption(option('1',{'nFins','positions'})); 
r = r.addOption(option('2',{'nFins','positions'})); 
mEmpennage = mEmpennage.addRow(r); % Add row to matrix 

  
r = rowConventional('Configuration'); 
r = r.addOption(option('Fin/Taiplane',{'nTailPlanes','positions'})); 
r = r.addOption(option('V tail',{'nTailPlanes','positions'})); 
r = r.addOption(option('Inverted V tail',{'nTailPlanes','positions'})); 
r = r.addOption(option('X tail',{'nTailPlanes','positions'})); 
r = r.addOption(option('Pelikan',{'variablesPelikan'})); 
mEmpennage = mEmpennage.addRow(r); % Add row to matrix 

  
% Fixed wing 

============================================================= 
m = morphologicalMatrix(name,abstract); 

  
r = rowConventional('Body'); 
r = r.addOption(option('Separate fuselage',{})); 
r = r.addOption(option('Flying wing',{})); 
r = r.addOption(option('Blended body',{})); 
r = r.addOption(option('Lifting body',{})); 
m = m.addRow(r); 

  
r = rowConventional('Wing'); 
% Wing variables include 
% Aspect ratio, span, sweep angle 1, 2, taper ratio, chord length 
r = r.addOption(option('Straight',{'wingVariables'})); 
r = r.addOption(option('Swept',{'wingVariables'})); 
r = r.addOption(option('Delta',{'wingVariables'})); 
r = r.addOption(option('Compound delta',{'wingVariables'})); 
m = m.addRow(r); 

  
r = rowConventional('Wing position'); 
r = r.addOption(option('Low',{})); 
r = r.addOption(option('Mid',{})); 
r = r.addOption(option('Shoulder',{})); 
r = r.addOption(option('High',{})); 
r = r.addOption(option('Parasol',{})); 
m = m.addRow(r); 

  
r = rowConventional('Detachable wing'); 
r = r.addOption(option('Yes',{'weightDetachableMechanism'})); 
r = r.addOption(option('No',{'weightDetachableMechanism'})); 
m = m.addRow(r); 

  
r = rowConventional('Empennage'); 
r = r.addOption(option('None',{})); 
r = r.addOptionFromMorph('Empennage',mEmpennage); 
m = m.addRow(r); 

  
r = rowConventional('Type of launch'); 
r = r.addOption(option('Horizontal',{'vInit','pitchInit','hInit'})); 
r = r.addOption(option('Vertical',{'vInit','pitchInit','hInit'})); 
r = r.addOption(option('Hand-launched',{'vInit','pitchInit','hInit'})); 
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r = r.addOption(option('Aircraft-

launched',{'vInit','pitchInit','hInit'})); 
r = r.addOption(option('Catapult-

launched',{'vInit','pitchInit','hInit'})); 
m = m.addRow(r); 

  
r = rowConventional('Type of landing'); 
r = r.addOption(option('Horizontal landing',{})); 
r = r.addOption(option('Vertical landing',{})); 
r = r.addOption(option('Energy dissipation crash',{})); 
r = r.addOption(option('Parachute',{})); 
r = r.addOption(option('Net',{})); 
m = m.addRow(r); 

  
r = rowConventional('Number of motors'); 
r = r.addOption(option('1',{})); 
r = r.addOption(option('2',{'nEnginePairs'})); 
r = r.addOption(option('3',{})); 
r = r.addOption(option('4',{'nEnginePairs'})); 
m = m.addRow(r); 

  
r = rowConventional('Energy source'); 
r = r.addOption(option('Bio-chemical',{})); 
r = r.addOption(option('Electric charge',{})); 
r = r.addOption(option('Solar',{})); 
r = r.addOption(option('Electrolyte',{})); 
r = r.addOption(option('Hybrid',{})); 
m = m.addRow(r); 

  
% Battery variables include 
% Battery conditions: 'C-rate','E-

rate','SOC','DOD','terminalV','opencircuitV','R' 
% Technical specs: nominal voltage, cut-off voltage, capacity C, 

energy, 
% cycle life, specific energy, specific power, energy density, power 
% density, maximum continuous discharge current, maximum 30s discharge 
% pulse current, charge voltage, float voltage, charge current 
% Source: http://web.mit.edu/evt/summary_battery_specifications.pdf 
r = rowConventional('Energy storage'); 
r = r.addOption(option('Battery (LiCoO2)',{'batteryVariables'})); 
r = r.addOption(option('Battery (LiFePO4)',{'batteryVariables'})); 
r = r.addOption(option('Battery (LiPo)',{'batteryVariables'})); 
r = r.addOption(option('Battery (NiCad)',{'batteryVariables'})); 
r = r.addOption(option('Battery (NiMH)',{'batteryVariables'})); 
r = r.addOption(option('Fuel tank',{'volume'})); 
r = r.addOption(option('External fuel tank',{'size','position'})); 
r = r.addOption(option('Electrolyte tank',{'volume'})); 
r = r.addOption(option('Fuel tank + Battery 

(LiCoO2)',{'volume','batteryVariables'})); 
r = r.addOption(option('Fuel tank + Battery 

(LiFePO4)',{'volume','batteryVariables'})); 
r = r.addOption(option('Fuel tank + Battery 

(LiPo)',{'volume','batteryVariables'})); 
r = r.addOption(option('Fuel tank + Battery 

(NiCad)',{'volume','batteryVariables'})); 
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r = r.addOption(option('Fuel tank + Battery 

(NiMH)',{'volume','batteryVariables'})); 
r = r.addOption(option('External fuel tank + Battery 

(LiCoO2)',{'size','position','batteryVariables'})); 
r = r.addOption(option('External fuel tank + Battery 

(LiFePO4)',{'size','position','batteryVariables'})); 
r = r.addOption(option('External fuel tank + Battery 

(LiPo)',{'size','position','batteryVariables'})); 
r = r.addOption(option('External fuel tank + Battery 

(NiCad)',{'size','position','batteryVariables'})); 
r = r.addOption(option('External fuel tank + Battery 

(NiMH)',{'size','position','batteryVariables'})); 
m = m.addRow(r); 

  
r = rowConventional('Converter to mechanical energy'); 
r = r.addOption(option('Piston',{})); 
r = r.addOption(option('Turbine',{})); 
r = r.addOption(option('Electric motor',{})); 
r = r.addOption(option('Hybrid (Piston/Electric)',{})); 
r = r.addOption(option('Hybrid (Turbine/Electric)',{})); 
r = r.addOption(option('Fuel cell and electric motor',{})); 
m = m.addRow(r); 

  
r = rowConventional('Converter to lift/thrust'); 
r = r.addOption(option('Rotor',{})); 
r = r.addOption(option('Fan',{})); 
r = r.addOption(option('Propeller',{})); 
r = r.addOption(option('Jet',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Imaging'); 
r = r.addOption(option('Mono (Fixed-mount)',{})); 
r = r.addOption(option('Mono (Gyro-stabilized)',{})); 
r = r.addOption(option('RGB camera (Fixed-mount)',{})); 
r = r.addOption(option('RGB camera (Gyro-stabilized)',{})); 
r = r.addOption(option('Multispectral data (Fixed-mount)',{})); 
r = r.addOption(option('Multispectral data (Gyro-stabilized)',{})); 
r = r.addOption(option('Thermal camera (Fixed-mount)',{})); 
r = r.addOption(option('Thermal camera (Gyro-stabilized)',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Mapping'); 
r = r.addOption(option('2D LIDAR',{})); 
r = r.addOption(option('3D LIDAR',{})); 
r = r.addOption(option('Sonar',{})); 
m = m.addRow(r); 

  
r = rowConventional('Attitude'); 
r = r.addOption(option('IMU+GPS',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Altitude'); 
r = r.addOption(option('GPS',{})); 
r = r.addOption(option('Barometer',{})); 
r = r.addOption(option('Sonar',{})); 
m = m.addRow(r); 
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r = rowConventional('Communications'); 
r = r.addOption(option('Radio',{})); 
m = m.addRow(r); 

  
r = rowConventional('Landing gear arrangement'); 
r = r.addOption(option('None',{})); 
r = r.addOption(option('Wheels (Tail wheel)',{})); 
r = r.addOption(option('Wheels (Tandem)',{})); 
r = r.addOption(option('Wheels (Tricycle)',{})); 
r = r.addOption(option('Wheels (Wing)',{})); 
r = r.addOption(option('Skids',{})); 
r = r.addOption(option('Floaters',{})); 
r = r.addOption(option('Skis',{})); 
m = m.addRow(r); 

  
r = rowConventional('Landing gear type'); 
r = r.addOption(option('None',{})); 
r = r.addOption(option('Fixed',{})); 
r = r.addOption(option('Retractable',{})); 
m = m.addRow(r); 

  
r = rowConventional('Landing gear shock absorption'); 
r = r.addOption(option('None',{})); 
r = r.addOption(option('Rigid',{})); 
r = r.addOption(option('Leaf-type',{})); 
r = r.addOption(option('Bungee cord',{})); 
r = r.addOption(option('Shock struts',{})); 
m = m.addRow(r); 

  
% Compatibility matrix 

=================================================== 

  
% Initialization 
m = m.setUpCompatibilityIndices; 
c = m.initializeCompatibilityMatrix; 

  
% Fill in incompatibilities 
c(2:4,[9,11:13]) = 0; 
c(2:4, 17:766) = 0; 

  
c(774,831:837) = 0; c(774,839:840) = 0; c(774,842:845) = 0; 
c(776,831:837) = 0; c(776,842:845) = 0; 

  
c(781,786:790) = 0; c(781,793:803) = 0; 
c(781,806:809) = 0; 

  
c(782,791:803) = 0; 
c(782:783,804:805) = 0; c(782:783,807:809) = 0; 

  
c(784,786:792) = 0; c(784,794:803) = 0; 
c(784,804:808) = 0; 

  
c(785,786:793) = 0; 
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c(785,804:806) = 0; c(785,809) = 0; 

  
c(786:790,804:805) = 0; c(786:790,807:809) = 0; 

  
c(791:792,806:809) = 0; 

  
c(793,804:808) = 0; 

  
c(794:803,804:806) = 0; c(794:803,809) = 0; 

  
% Symmetrize matrix 

====================================================== 
c = m.symmetrize(c); 
end 

 

createMM_Macro.m 

function [m,c] = createMM_Macro(name,abstract) 
% Macroscopic level 
if nargin < 2 
    abstract = false; 
    name = 'Macroscopic level'; 
end 
m = morphologicalMatrix(name,abstract); 

  
r = rowConventional('Mission type'); 
r = r.addOption(option('HALE',{})); 
r = r.addOption(option('Long-range strike',{})); 
r = r.addOption(option('MALE',{})); 
r = r.addOption(option('Close-range support',{})); 
r = r.addOption(option('MUAV',{})); 
r = r.addOption(option('MAV',{})); 
m = m.addRow(r); 

  
r = rowConventional('Architecture'); 
r = r.addOption(option('Fixed/Conventional',{})); 
r = r.addOption(option('Product family',{})); 
r = r.addOption(option('Scale-based product family',{})); 
r = r.addOption(option('Reconfigurable',{})); 
r = r.addOption(option('Online reconfigurable',{})); 
r = r.addOption(option('Modular',{})); 
m = m.addRow(r); 

  
r = rowConventional('Control type'); 
r = r.addOption(option('Centralized',{})); 
r = r.addOption(option('Decentralized',{})); 
r = r.addOption(option('Hybrid',{})); 
m = m.addRow(r); 

  
r = rowConventional('Control scheme'); 
r = r.addOption(option('Leader/Follower',{})); 
r = r.addOption(option('Consensus',{})); 
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r = r.addOption(option('Partitioned',{})); 
r = r.addOption(option('Distributed',{})); 
r = r.addOption(option('Hierarchical',{})); 
m = m.addRow(r); 

  
r = rowConventional('Ground station'); 
r = r.addOption(option('Remote base',{})); 
r = r.addOption(option('Laptop',{})); 
r = r.addOption(option('Wearable technology',{})); 
m = m.addRow(r); 

  
% Compatibility matrix 

=================================================== 
% Initialization (all compatible) 
m = m.setUpCompatibilityIndices; 
c = m.initializeCompatibilityMatrix; 

  
% Fill in incompatibilities 
c(13,17) = 0; c(13,18) = 0; c(13,19) = 0; c(13,20) = 0; 
c(14,16) = 0; c(14,20) = 0; 
c(15,16) = 0; c(15,17) = 0; c(15,18) = 0; c(15,19) = 0; 

  
% Symmetrize matrix 

====================================================== 
c = m.symmetrize(c); 
end 

 

createMM_Multirotor.m 

function [m,c] = createMM_Multirotor(name,abstract) 
% Multirotor 
if nargin < 2 
    abstract = false; 
    name = 'Multirotor'; 
end 

  
m = morphologicalMatrix(name,abstract); 

  
r = rowConventional('Fairings'); 
r = r.addOption(option('None',{})); 
r = r.addOption(option('Electronics only',{})); 
r = r.addOption(option('Full body',{})); 
r = r.addOption(option('Full body and payload',{})); 
m = m.addRow(r); 

  
r = rowConventional('Type of landing'); 
r = r.addOption(option('Vertical landing',{})); 
r = r.addOption(option('Energy dissipation crash',{})); 
r = r.addOption(option('Parachute',{})); 
r = r.addOption(option('Net',{})); 
m = m.addRow(r); 

  
r = rowConventional('Energy source'); 
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r = r.addOption(option('Bio-chemical',{})); 
r = r.addOption(option('Electric charge',{})); 
r = r.addOption(option('Electrolyte',{})); 
r = r.addOption(option('Hybrid',{})); 
m = m.addRow(r); 

  
% Battery variables include 
% Battery conditions: 'C-rate','E-

rate','SOC','DOD','terminalV','opencircuitV','R' 
% Technical specs: nominal voltage, cut-off voltage, capacity C, 

energy, 
% cycle life, specific energy, specific power, energy density, power 
% density, maximum continuous discharge current, maximum 30s discharge 
% pulse current, charge voltage, float voltage, charge current 
% Source: http://web.mit.edu/evt/summary_battery_specifications.pdf 
r = rowConventional('Energy storage'); 
r = r.addOption(option('Battery (LiCoO2)',{'batteryVariables'})); 
r = r.addOption(option('Battery (LiFePO4)',{'batteryVariables'})); 
r = r.addOption(option('Battery (LiPo)',{'batteryVariables'})); 
r = r.addOption(option('Battery (NiCad)',{'batteryVariables'})); 
r = r.addOption(option('Battery (NiMH)',{'batteryVariables'})); 
r = r.addOption(option('Fuel tank',{'volume'})); 
r = r.addOption(option('External fuel tank',{'size','position'})); 
r = r.addOption(option('Electrolyte tank',{'volume'})); 
r = r.addOption(option('Fuel tank + Battery 

(LiCoO2)',{'volume','batteryVariables'})); 
r = r.addOption(option('Fuel tank + Battery 

(LiFePO4)',{'volume','batteryVariables'})); 
r = r.addOption(option('Fuel tank + Battery 

(LiPo)',{'volume','batteryVariables'})); 
r = r.addOption(option('Fuel tank + Battery 

(NiCad)',{'volume','batteryVariables'})); 
r = r.addOption(option('Fuel tank + Battery 

(NiMH)',{'volume','batteryVariables'})); 
r = r.addOption(option('External fuel tank + Battery 

(LiCoO2)',{'size','position','batteryVariables'})); 
r = r.addOption(option('External fuel tank + Battery 

(LiFePO4)',{'size','position','batteryVariables'})); 
r = r.addOption(option('External fuel tank + Battery 

(LiPo)',{'size','position','batteryVariables'})); 
r = r.addOption(option('External fuel tank + Battery 

(NiCad)',{'size','position','batteryVariables'})); 
r = r.addOption(option('External fuel tank + Battery 

(NiMH)',{'size','position','batteryVariables'})); 
m = m.addRow(r); 

  
r = rowConventional('Converter to mechanical energy'); 
r = r.addOption(option('Piston',{})); 
r = r.addOption(option('Turbine',{})); 
r = r.addOption(option('Electric motor (Spinning cage, Brushed)',{})); 
r = r.addOption(option('Electric motor (Spinning cage, 

Brushless)',{})); 
r = r.addOption(option('Electric motor (Spinning shaft, Brushed)',{})); 
r = r.addOption(option('Electric motor (Spinning shaft, 

Brushless)',{})); 
r = r.addOption(option('Hybrid (Piston/Electric)',{})); 
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r = r.addOption(option('Hybrid (Turbine/Electric)',{})); 
r = r.addOption(option('Fuel cell and electric motor',{})); 
m = m.addRow(r); 

  
r = rowConventional('Rotorcraft'); 
r = r.addOption(option('Single rotor',{})); 
r = r.addOption(option('Coaxial',{})); 
r = r.addOption(option('Tail sitter',{})); 
r = r.addOption(option('Tilt-rotor',{})); 
r = r.addOption(option('Multirotor',{})); 
m = m.addRow(r); 

  
r = rowConventional('Number of rotors'); 
r = r.addOption(option('1',{'nRotors'})); 
r = r.addOption(option('2',{'nRotors'})); 
r = r.addOption(option('3',{'nRotors'})); 
r = r.addOption(option('4',{'nRotors'})); 
r = r.addOption(option('6',{'nRotors'})); 
r = r.addOption(option('8',{'nRotors'})); 
m = m.addRow(r); 

  
r = rowConventional('Converter to lift/thrust'); 
r = r.addOption(option('Rotor',{})); 
r = r.addOption(option('Fan',{})); 
r = r.addOption(option('Propeller',{})); 
m = m.addRow(r); 

  
r = rowConventional('Number of blades'); 
r = r.addOption(option('2',{'nBlades'})); 
r = r.addOption(option('3',{'nBlades'})); 
r = r.addOption(option('4',{'nBlades'})); 
r = r.addOption(option('6',{'nBlades'})); 
r = r.addOption(option('8',{'nBlades'})); 
r = r.addOption(option('10',{'nBlades'})); 
m = m.addRow(r); 

  
r = rowConventional('Rotors/Frame arrangement'); 
r = r.addOption(option('I',{})); 
r = r.addOption(option('X',{'armsAngles'})); 
r = r.addOption(option('Y',{'armsAngles'})); 
r = r.addOption(option('V',{'armsAngles'})); 
m = m.addRow(r); 

  
r = rowConventional('Blade type'); 
r = r.addOption(option('Fixed pitch',{})); 
r = r.addOption(option('Variable pitch',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Imaging'); 
r = r.addOption(option('Mono (Fixed-mount)',{})); 
r = r.addOption(option('Mono (Gyro-stabilized)',{})); 
r = r.addOption(option('RGB camera (Fixed-mount)',{})); 
r = r.addOption(option('RGB camera (Gyro-stabilized)',{})); 
r = r.addOption(option('Multispectral data (Fixed-mount)',{})); 
r = r.addOption(option('Multispectral data (Gyro-stabilized)',{})); 
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r = r.addOption(option('Thermal camera (Fixed-mount)',{})); 
r = r.addOption(option('Thermal camera (Gyro-stabilized)',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Mapping'); 
r = r.addOption(option('2D LIDAR',{})); 
r = r.addOption(option('3D LIDAR',{})); 
r = r.addOption(option('Sonar',{})); 
m = m.addRow(r); 

  
r = rowConventional('Attitude'); 
r = r.addOption(option('IMU+GPS',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Altitude'); 
r = r.addOption(option('GPS',{})); 
r = r.addOption(option('Barometer',{})); 
r = r.addOption(option('Sonar',{})); 
m = m.addRow(r); 

  
r = rowConventional('Communications'); 
r = r.addOption(option('Radio',{})); 
m = m.addRow(r); 

  
r = rowConventional('Landing gear arrangement'); 
r = r.addOption(option('None',{})); 
r = r.addOption(option('Foam pads',{})); 
r = r.addOption(option('Skids',{})); 
r = r.addOption(option('Floaters',{})); 
m = m.addRow(r); 

  
r = rowConventional('Landing gear type'); 
r = r.addOption(option('None',{})); 
r = r.addOption(option('Fixed',{})); 
r = r.addOption(option('Retractable',{})); 
m = m.addRow(r); 

  
r = rowConventional('Landing gear shock absorption'); 
r = r.addOption(option('None',{})); 
r = r.addOption(option('Rigid',{})); 
r = r.addOption(option('Leaf-type',{})); 
r = r.addOption(option('Bungee cord',{})); 
r = r.addOption(option('Shock struts',{})); 
m = m.addRow(r); 

  
r = rowConventional('Frame type'); 
r = r.addOption(option('Aerial cinematography',{})); 
r = r.addOption(option('Sport',{})); 
r = r.addOption(option('Sport FPV',{})); 
r = r.addOption(option('Mini',{})); 
r = r.addOption(option('Mini FPV',{})); 
m = m.addRow(r); 

  
% Compatibility matrix 

=================================================== 
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% Assume all compatible 
m = m.setUpCompatibilityIndices; 
c = m.initializeCompatibilityMatrix; 

  
% Fill in incompatibilities 
c(6,83) = 0; c(6,84) = 0; c(6,85) = 0; c(6,87) = 0; c(6,88) = 0; 

c(6,90:93) = 0; 
c(8,83) = 0; c(8,84) = 0; c(8,85) = 0; c(8,90:93) = 0; 

  
c(9,13:17) = 0; c(9,20:30) = 0; 
c(9,33:39) = 0; 

  
c(10,18:30) = 0; 
c(10,31:32) = 0; c(10,37:39) = 0; 

  
c(11,13:19) = 0; c(11,21:30) = 0; 
c(11,31:38) = 0; 

  
c(12,13:20) = 0; 
c(12,31:36) = 0; c(12,39) = 0; 

  
c(13:17,31:32) = 0; 
c(13:17,37:39) = 0; 

  
c(18:19,33:39) = 0; 

  
c(20,31:38) = 0; 

  
c(21:30,31:36) = 0; 
c(21:30,39) = 0; 

  
% Symmetrize matrix 

====================================================== 
c = m.symmetrize(c); 
end 

 

createMM_Ornithopter.m 

function [m,c] = createMM_Ornithopter(name,abstract) 
if nargin < 2 
    name = 'Ornithopter'; 
    abstract = false; 
end 

  
% Ornithopter 
m = morphologicalMatrix(name,abstract); 

  
r = rowConventional('Wing twisting'); 
r = r.addOption(option('Yes (Spar rotation)',{})); 
r = r.addOption(option('Yes (Spar torsion)',{})); 
r = r.addOption(option('Yes (Servo-controlled)',{})); 
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r = r.addOption(option('Yes (Auxiliary spar)',{})); 
r = r.addOption(option('No',{})); 
m = m.addRow(r); 

  
r = rowConventional('Wing type'); 
r = r.addOption(option('Flying wing',{})); 
r = r.addOption(option('Tandem wing',{})); 
r = r.addOption(option('Thrust wing',{})); 
r = r.addOption(option('Oscillating stretched wing',{})); 
r = r.addOption(option('Rotating wing',{})); 
m = m.addRow(r); 

  
r = rowConventional('Energy source'); 
r = r.addOption(option('Bio-chemical',{})); 
r = r.addOption(option('Electric charge',{})); 
r = r.addOption(option('Other',{})); 
m = m.addRow(r); 

  
% Battery variables include 
% Battery conditions: 'C-rate','E-

rate','SOC','DOD','terminalV','opencircuitV','R' 
% Technical specs: nominal voltage, cut-off voltage, capacity C, 

energy, 
% cycle life, specific energy, specific power, energy density, power 
% density, maximum continuous discharge current, maximum 30s discharge 
% pulse current, charge voltage, float voltage, charge current 
% Source: http://web.mit.edu/evt/summary_battery_specifications.pdf 
r = rowConventional('Energy storage'); 
r = r.addOption(option('Battery (LiCoO2)',{'batteryVariables'})); 
r = r.addOption(option('Battery (LiFePO4)',{'batteryVariables'})); 
r = r.addOption(option('Battery (LiPo)',{'batteryVariables'})); 
r = r.addOption(option('Battery (NiCad)',{'batteryVariables'})); 
r = r.addOption(option('Battery (NiMH)',{'batteryVariables'})); 
r = r.addOption(option('Fuel tank',{})); 
r = r.addOption(option('Rubber',{})); 
m = m.addRow(r); 

  
r = rowConventional('Gearbox type'); 
r = r.addOption(option('Strut',{})); 
r = r.addOption(option('Plate',{})); 
m = m.addRow(r); 

  
r = rowConventional('Gear type'); 
r = r.addOption(option('Cluster',{})); 
r = r.addOption(option('Spur with pinion wire',{})); 
m = m.addRow(r); 

  
r = rowConventional('Flapping mechanism'); 
r = r.addOption(option('Staggered crank',{})); 
r = r.addOption(option('Outboard wing hinge',{})); 
r = r.addOption(option('Dual cranks',{})); 
r = r.addOption(option('Transverse shaft',{})); 
m = m.addRow(r); 

  
r = rowConventional('Converter to mechanical energy'); 
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r = r.addOption(option('Internal combustion engine',{})); 
r = r.addOption(option('Electric motor (Spinning cage, Brushed)',{})); 
r = r.addOption(option('Electric motor (Spinning cage, 

Brushless)',{})); 
r = r.addOption(option('Electric motor (Spinning shaft, Brushed)',{})); 
r = r.addOption(option('Electric motor (Spinning shaft, 

Brushless)',{})); 
r = r.addOption(option('Rubber + shaft',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Imaging'); 
r = r.addOption(option('Mono',{})); 
r = r.addOption(option('RGB camera',{})); 
r = r.addOption(option('Multispectral data',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Attitude'); 
r = r.addOption(option('IMU+GPS',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Altitude'); 
r = r.addOption(option('GPS',{})); 
r = r.addOption(option('Barometer',{})); 
r = r.addOption(option('Sonar',{})); 
m = m.addRow(r); 

  
r = rowConventional('Communications'); 
r = r.addOption(option('Radio',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Wing reinforcement'); 
r = r.addOption(option('Battens',{})); 
r = r.addOption(option('Perimeter',{})); 
m = m.addRow(r); 

  
% Compatibility matrix 

=================================================== 

  
% Assume all compatible 
m = m.setUpCompatibilityIndices; 
c = m.initializeCompatibilityMatrix; 

  
% Fill in incompatibilities 
c(11,14) = 0; c(11,15) = 0; c(11,16) = 0; c(11,17) = 0; c(11,18) = 0; 

c(11,20) = 0; 
c(11,30) = 0; c(11,31) = 0; c(11,32) = 0; c(11,33) = 0; c(11,34) = 0; 

  
c(12,19) = 0; c(12,20) = 0; 
c(12,29) = 0; c(12,34) = 0; 

  
c(13,14) = 0; c(13,15) = 0; c(13,16) = 0; c(13,17) = 0; c(13,18) = 0; 

c(13,19) = 0; 
c(13,29) = 0; c(13,30) = 0; c(13,31) = 0; c(13,32) = 0; c(13,33) = 0; 

  
c(14:18,29) = 0; 
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c(14:18,34) = 0; 

  
c(19,30:34) = 0; 
c(20,29:33) = 0; 

  
% Symmetrize matrix 

====================================================== 
c = m.symmetrize(c); 
end 

 

B.3.5 PACE cluster scripts 

Due to the very demanding resources of the recursive compatibility function, some 

evaluations had to be performed on the Georgia Tech PACE cluster. This subsection gives 

examples of scripts that were produced to run such function calls on the clusters. 

airship.pbs 

The script submitted to the PACE cluster with the command qsub, it runs the script 

airship.m on the cluster. 

#PBS -N airship4 

#PBS -q enterprise 

#PBS -o airship4.output.$PBS_JOBID  

#PBS -j oe 

#PBS -l nodes=10:ppn=24 

#PBS -l mem=8gb 

#PBS -l walltime=5:00:00 

#PBS -m abe 

#PBS -M jdurand7@gatech.edu 

  

  

# Load Matlab 

module load matlab/r2016a 

  

# Change to working directory 

cd scripts/airship 

  

# Run code 

matlab -nodisplay -nosplash -nodesktop -r "run airship.m" 

 

airship.m 
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The actual Matlab script run on the cluster. It computes the number of compatible 

alternatives out of the morphological and compatibility matrices of a notional airship 

model. 

% Prepare workspace 
clc 
close all 
clear 

  
addpath('..') 

  
%% Morphological matrix 
m = morphologicalMatrix('Airship'); 

  
r = rowConventional('Lifting medium'); 
r = r.addOption(option('Cold gas (Helium)',{})); 
r = r.addOption(option('Hot air',{})); 
m = m.addRow(r); 

  
r = rowConventional('Empennage configuration'); 
r = r.addOption(option('Y',{})); 
r = r.addOption(option('Inverted Y',{})); 
r = r.addOption(option('X',{})); 
r = r.addOption(option('Cross',{})); 
m = m.addRow(r); 

  
r = rowConventional('Ballonet-based pitch trim'); 
r = r.addOption(option('Yes',{})); 
r = r.addOption(option('No',{})); 
m = m.addRow(r); 

  
r = rowConventional('Energy source'); 
r = r.addOption(option('Bio-chemical',{})); 
r = r.addOption(option('Electric charge',{})); 
r = r.addOption(option('Electrolyte',{})); 
r = r.addOption(option('Hybrid',{})); 
m = m.addRow(r); 

  
r = rowConventional('Energy storage'); 
r = r.addOption(option('Battery (LiCoO2)',{})); 
r = r.addOption(option('Battery (LiFePO4)',{})); 
r = r.addOption(option('Battery (LiPo)',{})); 
r = r.addOption(option('Battery (NiCad)',{})); 
r = r.addOption(option('Battery (NiMH)',{})); 
r = r.addOption(option('Fuel tank',{})); 
r = r.addOption(option('External fuel tank',{})); 
r = r.addOption(option('Electrolyte tank',{})); 
r = r.addOption(option('Fuel tank + Battery (LiCoO2)',{})); 
r = r.addOption(option('Fuel tank + Battery (LiFePO4)',{})); 
r = r.addOption(option('Fuel tank + Battery (LiPo)',{})); 
r = r.addOption(option('Fuel tank + Battery (NiCad)',{})); 
r = r.addOption(option('Fuel tank + Battery (NiMH)',{})); 



597 

 

r = r.addOption(option('External fuel tank + Battery (LiCoO2)',{})); 
r = r.addOption(option('External fuel tank + Battery (LiFePO4)',{})); 
r = r.addOption(option('External fuel tank + Battery (LiPo)',{})); 
r = r.addOption(option('External fuel tank + Battery (NiCad)',{})); 
r = r.addOption(option('External fuel tank + Battery (NiMH)',{})); 
m = m.addRow(r); 

  
r = rowConventional('Converter to mechanical energy'); 
r = r.addOption(option('Piston',{})); 
r = r.addOption(option('Turbine',{})); 
r = r.addOption(option('Electric motor (Spinning cage, Brushed)',{})); 
r = r.addOption(option('Electric motor (Spinning cage, 

Brushless)',{})); 
r = r.addOption(option('Electric motor (Spinning shaft, Brushed)',{})); 
r = r.addOption(option('Electric motor (Spinning shaft, 

Brushless)',{})); 
r = r.addOption(option('Hybrid (Piston/Electric)',{})); 
r = r.addOption(option('Hybrid (Turbine/Electric)',{})); 
r = r.addOption(option('Fuel cell and electric motor',{})); 
m = m.addRow(r); 

  
r = rowConventional('Number of rotors'); 
r = r.addOption(option('1',{})); 
r = r.addOption(option('2',{})); 
r = r.addOption(option('3',{})); 
r = r.addOption(option('4',{})); 
r = r.addOption(option('6',{})); 
r = r.addOption(option('8',{})); 
m = m.addRow(r); 

  
r = rowConventional('Steerable propulsion'); 
r = r.addOption(option('Yes',{})); 
r = r.addOption(option('No',{})); 
m = m.addRow(r); 

  
r = rowConventional('Converter to lift/thrust'); 
r = r.addOption(option('Rotor',{})); 
r = r.addOption(option('Fan',{})); 
r = r.addOption(option('Propeller',{})); 
m = m.addRow(r); 

  
r = rowConventional('Number of blades'); 
r = r.addOption(option('2',{})); 
r = r.addOption(option('3',{})); 
r = r.addOption(option('4',{})); 
r = r.addOption(option('6',{})); 
r = r.addOption(option('8',{})); 
r = r.addOption(option('10',{})); 
m = m.addRow(r); 

  
r = rowConventional('Blade type'); 
r = r.addOption(option('Fixed pitch',{})); 
r = r.addOption(option('Variable pitch',{})); 
m = m.addRow(r); 
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r = rowCombinatorial('Imaging'); 
r = r.addOption(option('Mono (Fixed-mount)',{})); 
r = r.addOption(option('Mono (Gyro-stabilized)',{})); 
r = r.addOption(option('RGB camera (Fixed-mount)',{})); 
r = r.addOption(option('RGB camera (Gyro-stabilized)',{})); 
r = r.addOption(option('Multispectral data (Fixed-mount)',{})); 
r = r.addOption(option('Multispectral data (Gyro-stabilized)',{})); 
r = r.addOption(option('Thermal camera (Fixed-mount)',{})); 
r = r.addOption(option('Thermal camera (Gyro-stabilized)',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Mapping'); 
r = r.addOption(option('2D LIDAR',{})); 
r = r.addOption(option('3D LIDAR',{})); 
r = r.addOption(option('Sonar',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Attitude'); 
r = r.addOption(option('IMU+GPS',{})); 
m = m.addRow(r); 

  
r = rowCombinatorial('Altitude'); 
r = r.addOption(option('GPS',{})); 
r = r.addOption(option('Barometer',{})); 
r = r.addOption(option('Sonar',{})); 
m = m.addRow(r); 

  
r = rowConventional('Communications'); 
r = r.addOption(option('Radio',{})); 
m = m.addRow(r); 

  
r = rowConventional('Hull type'); 
r = r.addOption(option('Non-rigid',{})); 
r = r.addOption(option('Semi-rigid',{})); 
r = r.addOption(option('Rigid',{})); 
m = m.addRow(r); 

  
r = rowConventional('Battens'); 
r = r.addOption(option('Yes',{})); 
r = r.addOption(option('No',{})); 
m = m.addRow(r); 

  
m = m.setUpCompatibilityIndices; 
fprintf(m.toString) 

  
%% Compatibility matrix 
n = m.countOptions; 

  
% Assume all compatible 
c = m.initializeCompatibilityMatrix; 
sum(sum(c == 0)) 

  
% Fill in incompatibilities 
% Energy sources ------------------------------------------------------

--- 
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c(9,13) = 0; 
c(9,14) = 0; 
c(9,15) = 0; 
c(9,16) = 0; 
c(9,17) = 0; 
c(9,20) = 0; 
c(9,21) = 0; 
c(9,22) = 0; 
c(9,23) = 0; 
c(9,24) = 0; 
c(9,25) = 0; 
c(9,26) = 0; 
c(9,27) = 0; 
c(9,28) = 0; 
c(9,29) = 0; 
c(9,30) = 0; 

  
c(9,33) = 0; 
c(9,34) = 0; 
c(9,35) = 0; 
c(9,36) = 0; 
c(9,37) = 0; 
c(9,38) = 0; 
c(9,39) = 0; 

  
c(10,18) = 0; 
c(10,19) = 0; 
c(10,20) = 0; 
c(10,21) = 0; 
c(10,22) = 0; 
c(10,23) = 0; 
c(10,24) = 0; 
c(10,25) = 0; 
c(10,26) = 0; 
c(10,27) = 0; 
c(10,28) = 0; 
c(10,29) = 0; 
c(10,30) = 0; 

  
c(10,31) = 0; 
c(10,32) = 0; 
c(10,37) = 0; 
c(10,38) = 0; 
c(10,39) = 0; 

  
c(11,13) = 0; 
c(11,14) = 0; 
c(11,15) = 0; 
c(11,16) = 0; 
c(11,17) = 0; 
c(11,18) = 0; 
c(11,19) = 0; 
c(11,21) = 0; 
c(11,22) = 0; 
c(11,23) = 0; 
c(11,24) = 0; 
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c(11,25) = 0; 
c(11,26) = 0; 
c(11,27) = 0; 
c(11,28) = 0; 
c(11,29) = 0; 
c(11,30) = 0; 

  
c(11,31) = 0; 
c(11,32) = 0; 
c(11,33) = 0; 
c(11,34) = 0; 
c(11,35) = 0; 
c(11,36) = 0; 
c(11,37) = 0; 
c(11,38) = 0; 

  
c(12,13) = 0; 
c(12,14) = 0; 
c(12,15) = 0; 
c(12,16) = 0; 
c(12,17) = 0; 
c(12,18) = 0; 
c(12,19) = 0; 
c(12,20) = 0; 

  
c(12,31) = 0; 
c(12,32) = 0; 
c(12,33) = 0; 
c(12,34) = 0; 
c(12,35) = 0; 
c(12,36) = 0; 
c(12,39) = 0; 

  
% Energy storage ------------------------------------------------------

--- 
c(13,31) = 0; c(13,32) = 0; c(13,37) = 0; c(13,38) = 0; c(13,39) = 0; 
c(14,31) = 0; c(14,32) = 0; c(14,37) = 0; c(14,38) = 0; c(14,39) = 0; 
c(15,31) = 0; c(15,32) = 0; c(15,37) = 0; c(15,38) = 0; c(15,39) = 0; 
c(16,31) = 0; c(16,32) = 0; c(16,37) = 0; c(16,38) = 0; c(16,39) = 0; 
c(17,31) = 0; c(17,32) = 0; c(17,37) = 0; c(17,38) = 0; c(17,39) = 0; 

  
c(18,33) = 0; c(18,34) = 0; c(18,35) = 0; c(18,36) = 0; c(18,37) = 0; 

c(18,38) = 0; c(18,39) = 0; 
c(19,33) = 0; c(19,34) = 0; c(19,35) = 0; c(19,36) = 0; c(19,37) = 0; 

c(19,38) = 0; c(19,39) = 0; 

  
c(20,31) = 0; 
c(20,32) = 0; 
c(20,33) = 0; 
c(20,34) = 0; 
c(20,35) = 0; 
c(20,36) = 0; 
c(20,37) = 0; 
c(20,38) = 0; 
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for i = 21:30 
   c(i,31) = 0; 
   c(i,32) = 0; 
   c(i,33) = 0; 
   c(i,34) = 0; 
   c(i,35) = 0; 
   c(i,36) = 0; 
   c(i,39) = 0; 
end 

  
% Hull type -----------------------------------------------------------

--- 
c(75,78) = 0; 

  
sum(sum(c == 0)) 

  
%% Symmetrize matrix 
c = symmetrize(c); 

  
% Total alternatives 
m.computeAlternatives 

  
figure 
pcolor(c) 
colormap(gray(2)) 
axis ij 
axis square 
shading flat 
set(gca,'FontName','Times New Roman','FontSize',18) 

  
% Compatible alternatives 
tic 
nn = m.computeCompatibleAlternatives(c,[],0) 
toc 

 

Example output: airship.output.1805640.dedicated-sched.pace.gatech.edu 

--------------------------------------- 
Begin PBS Prologue Sun Nov 13 19:37:42 EST 2016 
Job ID:     1805640.dedicated-sched.pace.gatech.edu 
User ID:    jdurand7 
Job name:   airship 
Queue:      enterprise 
End PBS Prologue Sun Nov 13 19:37:42 EST 2016 
--------------------------------------- 

  
                            < M A T L A B (R) > 
                  Copyright 1984-2016 The MathWorks, Inc. 
                   R2016a (9.0.0.341360) 64-bit (glnxa64) 
                             February 11, 2016 
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To get started, type one of these: helpwin, helpdesk, or demo. 
For product information, visit www.mathworks.com. 

  

  
    Academic License 

  
Airship 
Lifting medium 
    (1) Cold gas (Helium) {} 
    (2) Hot air {} 
Empennage configuration 
    (3) Y {} 
    (4) Inverted Y {} 
    (5) X {} 
    (6) Cross {} 
Ballonet-based pitch trim 
    (7) Yes {} 
    (8) No {} 
Energy source 
    (9) Bio-chemical {} 
    (10) Electric charge {} 
    (11) Electrolyte {} 
    (12) Hybrid {} 
Energy storage 
    (13) Battery (LiCoO2) {} 
    (14) Battery (LiFePO4) {} 
    (15) Battery (LiPo) {} 
    (16) Battery (NiCad) {} 
    (17) Battery (NiMH) {} 
    (18) Fuel tank {} 
    (19) External fuel tank {} 
    (20) Electrolyte tank {} 
    (21) Fuel tank + Battery (LiCoO2) {} 
    (22) Fuel tank + Battery (LiFePO4) {} 
    (23) Fuel tank + Battery (LiPo) {} 
    (24) Fuel tank + Battery (NiCad) {} 
    (25) Fuel tank + Battery (NiMH) {} 
    (26) External fuel tank + Battery (LiCoO2) {} 
    (27) External fuel tank + Battery (LiFePO4) {} 
    (28) External fuel tank + Battery (LiPo) {} 
    (29) External fuel tank + Battery (NiCad) {} 
    (30) External fuel tank + Battery (NiMH) {} 
Converter to mechanical energy 
    (31) Piston {} 
    (32) Turbine {} 
    (33) Electric motor (Spinning cage, Brushed) {} 
    (34) Electric motor (Spinning cage, Brushless) {} 
    (35) Electric motor (Spinning shaft, Brushed) {} 
    (36) Electric motor (Spinning shaft, Brushless) {} 
    (37) Hybrid (Piston/Electric) {} 
    (38) Hybrid (Turbine/Electric) {} 
    (39) Fuel cell and electric motor {} 
Number of rotors 
    (40) 1 {} 
    (41) 2 {} 
    (42) 3 {} 
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    (43) 4 {} 
    (44) 6 {} 
    (45) 8 {} 
Steerable propulsion 
    (46) Yes {} 
    (47) No {} 
Converter to lift/thrust 
    (48) Rotor {} 
    (49) Fan {} 
    (50) Propeller {} 
Number of blades 
    (51) 2 {} 
    (52) 3 {} 
    (53) 4 {} 
    (54) 6 {} 
    (55) 8 {} 
    (56) 10 {} 
Blade type 
    (57) Fixed pitch {} 
    (58) Variable pitch {} 
Imaging 
    (59) Mono (Fixed-mount) {} 
    (60) Mono (Gyro-stabilized) {} 
    (61) RGB camera (Fixed-mount) {} 
    (62) RGB camera (Gyro-stabilized) {} 
    (63) Multispectral data (Fixed-mount) {} 
    (64) Multispectral data (Gyro-stabilized) {} 
    (65) Thermal camera (Fixed-mount) {} 
    (66) Thermal camera (Gyro-stabilized) {} 
Mapping 
    (67) 2D LIDAR {} 
    (68) 3D LIDAR {} 
    (69) Sonar {} 
Attitude 
    (70) IMU+GPS {} 
Altitude 
    (71) GPS {} 
    (72) Barometer {} 
    (73) Sonar {} 
Communications 
    (74) Radio {} 
Hull type 
    (75) Non-rigid {} 
    (76) Semi-rigid {} 
    (77) Rigid {} 
Battens 
    (78) Yes {} 
    (79) No {} 

  
ans = 

  
   242 

  

  
ans = 
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   441 

  

  
ans = 

  
   3.3579e+11 

  

  
nn = 

  
   111974400 

  
Elapsed time is 8986.860981 seconds. 
>> --------------------------------------- 
Begin PBS Epilogue Sun Nov 13 22:07:40 EST 2016 
Job ID:     1805640.dedicated-sched.pace.gatech.edu 
User ID:    jdurand7 
Job name:   airship 
Resources:  

neednodes=10:ppn=24,nodes=10:ppn=24,pmem=1024mb,walltime=05:00:00 
Rsrc Used:  

cput=02:29:51,energy_used=0,mem=508568kb,vmem=4772408kb,walltime=02:29:

58 
Queue:      enterprise 
Nodes:      
rich133-q7-14-l.pace.gatech.edu rich133-q7-14-r.pace.gatech.edu  
rich133-q7-15-l.pace.gatech.edu rich133-q7-15-r.pace.gatech.edu  
rich133-q7-16-l.pace.gatech.edu rich133-q7-16-r.pace.gatech.edu  
rich133-q7-17-l.pace.gatech.edu rich133-q7-17-r.pace.gatech.edu  
rich133-q7-18-l.pace.gatech.edu rich133-q7-18-r.pace.gatech.edu 
End PBS Epilogue Sun Nov 13 22:07:41 EST 2016 
--------------------------------------- 

 

 

B.3.6 Plots 

A set of scripts used to generate the different figures and graphs seen in the design space 

exploration section (see page 325). 

 

contourPlot.m 

A contour plot showing the beneficial regions of morphological reduction. 

% A Variable-Oriented Architecture Generation Methodology to Support 

Efficient Multilevel Multidisciplinary Optimization 
% 
% Jean-Guillaume Durand (jdurand7@gatech.edu) 
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% Aerospace Systems Design Laboratory (ASDL) 
% Georgia Institute of Technology, 2016 

  
% Clean and prepare workspace 
clc 
close all 
clear 

  
% Problem parameters 
nRows = 8; 
nOptionsPerRow = 4; 
nVars = 50; 

  
kVec = 1:10:300; % Number of variables removed per option 
nVec = 0:20; % Number of options removed 

  
% Optimizer surrogate model 
% Optimizer parameters 
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236; 
n = [1:5,10,50,100]; 
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769, 

61857.38462, 178638.7692, 286491.3846]; 
fc = @(nq)interp1(n,v,nq,'linear','extrap'); 

  
%% Analysis 
nk = length(kVec); 
no = length(nVec); 
nCallsOptimizer = zeros(nk, no); 
for i = 1:nk 
    for j = 1:no 
        % Create morph matrix 
        morph = nOptionsPerRow*ones(nRows,1); 

         
        % Remove options 
        counter = nVec(j); 
        k = 1; 
        while counter > 0 
            % If there are options to be removed at this row 
            if morph(k) > 1 
                % Remove option 
                morph(k) = morph(k) - 1; 
                counter = counter - 1; 
            else 
                % Change row 
                k = k + 1; 
            end 
        end 

         
        % Compute total number of discrete alternatives 
        nCallsOptimizer(i,j) = prod(morph); 
    end 
end 

  
% Compute number of variables added to the optimizer 
[X,Y] = meshgrid(nVec,kVec); 
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nVarsAdded = X.*Y; 

  
% Compute number of function calls 
nFunctionCalls = nCallsOptimizer .* fc(nVars + nVarsAdded); 

  
Z = nFunctionCalls(1,1) - nFunctionCalls; 

  
%% Plot 
figure 
surf(X,Y,-Z) 

  
figure 
contourf(X,Y,Z,100,'LineColor','none'); 
ax = gca; 
ax.Position = [0.1300    0.1100    0.7    0.8150]; 
xlabel('Options removed','FontName','Times New Roman','FontSize',12) 
ylabel('k','FontName','Times New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 

  
% Colormap 
mymap = redgreencmap(64,'Interpolation','sigmoid'); 
mymap = mymap(end:-1:1,:); % Reverse order (from red to green) 
colormap(mymap) 

  
% Colobar 
c = colorbar; 
cmin = min(min(Z)); 
caxis([cmin -cmin]) % Scale 
v = caxis; 
c.Ticks = v(1):(v(2)-v(1))/6:v(2); % Divide in 6 segments 
c.TickLabels = {'Most detrimental','Very 

detrimental','Detrimental','Neutral','Beneficial','Very 

beneficial','Most beneficial'}; 

 

influenceOfK.m 

Influence of the k-factor on morphological reduction. 

% A Variable-Oriented Architecture Generation Methodology to Support 

Efficient Multilevel Multidisciplinary Optimization 
% 
% Jean-Guillaume Durand (jdurand7@gatech.edu) 
% Aerospace Systems Design Laboratory (ASDL) 
% Georgia Institute of Technology, 2016 

  
% Clean and prepare workspace 
clc 
close all 
clear 

  
figure(1) 
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% b=axes('Position',[.1 .1 .8 1e-12]); 
% set(b,'Units','normalized'); 
% set(b,'Color','none'); 
% set(b,'xlim',[nVarsAdded(1) nVarsAdded(end)]); 

  
a=axes('Position',[.1 .2 .8 .7]); 
set(a,'Units','normalized'); 
yyaxis(a,'left') 

  
%% Initial problem size 
% Morphological parameters 
kVec = [5 25 100 300]; 
c = get(groot,'DefaultAxesColorOrder'); 
% c = hsv(length(kVec)); 

  
hPlain = zeros(1,length(kVec)); 
hDashed = zeros(1,length(kVec)); 
for m = 1:length(kVec) 
nRows = 8; 
nOptionsPerRow = 4; 
k = kVec(m); 

  
nVars = nRows*nOptionsPerRow*k; 
nVars = 50; 

  
% Optimizer parameters 
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236; 
n = [1:5,10,50,100]; 
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769, 

61857.38462, 178638.7692, 286491.3846]; 
fc = @(nq)interp1(n,v,nq,'linear','extrap'); 

  
fCalls = nOptionsPerRow^nRows * fc(nVars); 

  
%% Analysis 
nOptions = nOptionsPerRow*nRows; 
nOptionsRemoved = 1:10; 

  
% Effect on morphological decomposition 
nCallsOptimizer = zeros(1, length(nOptionsRemoved)); 
for i = 1:length(nOptionsRemoved) 
    % Create morph matrix 
    morph = nOptionsPerRow*ones(nRows,1); 

     
    % Remove options 
    counter = nOptionsRemoved(i); 
    j = 1; 
    while counter > 0 
        % If there are options to be removed at this row 
        if morph(j) > 1 
            % Remove option 
            morph(j) = morph(j) - 1; 
            counter = counter - 1; 
        else 
            % Change row 
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            j = j + 1; 
        end 
    end 

     
    % Compute total number of discrete alternatives 
    nCallsOptimizer(i) = prod(morph); 
end 

  
% Effect on optimizer 
% Actual method 
% Reduced number of options * more variables in optimizer 
nVarsAdded = k*nOptionsRemoved; 
fCallsAug = nCallsOptimizer .* fc(nVars + nVarsAdded); 

  
% Plot 
semilogy(nOptionsRemoved, fCallsAug,'-','color',c(m,:)) 
hold on 
end 

  
% Black baseline 
semilogy(nOptionsRemoved, fCalls*ones(size(nOptionsRemoved,2),1),'k-') 

  
hold off 

  
xlabel(a,'Options removed','FontName','Times New Roman','FontSize',12) 
h = legend(... 
    'k = 5',... 
    'k = 25',... 
    'k = 100',... 
    'k = 300',... 
    'Baseline'); 
set(h,'FontName','Times New Roman','FontSize',12) 
set(a,'FontName','Times New Roman','FontSize',12) 

  
ax = gca; 
yyaxis left 
ax.YColor = 'k'; 
aLim = ax.YLim; 
aTick = ax.YTick; 
ylabel(a,'Function calls') 
ax.FontName = 'Times New Roman'; 
ax.FontSize = 12; 

  
yyaxis right 
ax.YColor = 'k'; 
ax.YScale = 'log'; 
ax.YLim = aLim; 
ax.YTick = [86400, 86400*7, 86400*30.5, 86400*365.25, 86400*365.25*10, 

86400*365.25*100, 86400*365.25*1000]; 
ax.YTickLabel = {'1 day','1 week','1 month','1 year','10 years','100 

years','1000 years'}; 

  
set(a,'Position',[0.1 0.15 .75 .8]) 
a.XLim = [nOptionsRemoved(1), nOptionsRemoved(end)]; 
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multilevel.m 

Effects of morphological reduction on multiple levels of a design space. 

% Design space computation 
% 
% Jean-Guillaume DURAND (jean-guillaume.durand@gatech.edu) 
% Aerospace Systems Design Laboratory 
% Georgia Institute of Technology 
% 2016 

  
%% Clean up 
close all 
clear variables 
clc 

  
% Model fit 
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236; 
n = [1:5,10,50,100]; 
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769, 

61857.38462, 178638.7692, 286491.3846]; 
fc = @(nq)interp1(n,v,nq,'linear','extrap'); 
%fc = @(n)-11.776*n.^2 + 5127.9*n + 13236; 
% fc = @(n)12614*n.^0.7484; 

  
% Parameters 
% Macroscopic level 
n_rows_M = 5; 
n_options_M = 3; 

  
% Microscopic level 
n_rows_m = 10; 
n_options_m = 5; 

  
% Initialization 
n_options_total_m = n_options_m*n_rows_m; 
n_options_total_M = n_options_M*n_rows_M; 

  
%% Analysis 
% Remove options at the microscopic level 
n_alternatives_m = zeros(1,n_options_total_m+1); 
for i = 0:n_options_total_m 
    % Initialize morphological matrix 
    morph = n_options_m*ones(n_rows_m,1); 

     
    % Remove options 
    j = 1; 
    counter = i; % Number of options to be removed 
    while counter > 0 
        % If there are options to be removed at this row 
        if morph(j) > 0 
            % Remove option 
            morph(j) = morph(j) - 1; 
            counter = counter - 1; 
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        else 
            % Change row 
            j = j + 1; 
        end 
    end 
    disp(morph') 
    % Remove rows with 0 options 
    temp = morph(morph ~= 0); 
    disp(temp') 
    % Compute total number of discrete alternatives 
    n_alternatives_m(i+1) = prod(temp); 
    disp(prod(temp)) 
    fprintf('\n') 
end 

  
% Remove options at the macroscopic level 
n_alternatives_M = zeros(1,n_options_total_M+1); 
for i = 0:n_options_total_M 
    % Initialize morphological matrix 
    morph = n_options_M*ones(n_rows_M,1); 

     
    % Remove options 
    j = 1; 
    counter = i; % Number of options to be removed 
    while counter > 0 
        % If there are options to be removed at this row 
        if morph(j) > 0 
            % Remove option 
            morph(j) = morph(j) - 1; 
            counter = counter - 1; 
        else 
            % Change row 
            j = j + 1; 
        end 
    end 
    disp(morph') 
    % Remove rows with 0 options 
    temp = morph(morph ~= 0); 
    disp(temp') 
    % Compute total number of discrete alternatives 
    n_alternatives_M(i+1) = prod(temp); 
    disp(prod(temp)) 
    fprintf('\n') 
end 

  
% Transfer corresponding variables to the optimizer 
k = 3; 
variables_initial_m = repmat(k*n_options_total_m, 1, 

n_options_total_m+1); 
variables_initial_M = repmat(k*n_options_total_M, 1, 

n_options_total_M+1); 

  
variables_added_m = k*(0:n_options_total_m); 
variables_added_M = k*(0:n_options_total_M); 

  
variables_total_m = variables_initial_m + variables_added_m; 
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variables_total_M = variables_initial_M + variables_added_M; 

  
fcalls_m = n_alternatives_m .* fc(variables_total_m); 
fcalls_M = n_alternatives_M .* fc(variables_total_M); 

  
%% Plot 1 
figure 
subplot(1,2,1) 
semilogy(0:n_options_total_m, fcalls_m) 
xlabel('Options removed','FontName','Times New Roman','FontSize',12) 
ylabel('Function calls','FontName','Times New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 
title('Microscopic') 
xlim([0,n_options_total_m]) 

  
%% Plot 2 
subplot(1,2,2) 
semilogy(0:n_options_total_M, fcalls_M) 
xlabel('Options removed','FontName','Times New Roman','FontSize',12) 
ylabel('Function calls','FontName','Times New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 
title('Macroscopic') 

  
%% Plot 3 
[X,Y] = meshgrid(0:n_options_total_M,0:n_options_total_m); 
[Xvar,Yvar] = meshgrid(variables_total_M,variables_total_m); 
Nvar = Xvar + Yvar; 
% Z = fcalls_m'*fcalls_M; 
Z = n_alternatives_m'*n_alternatives_M.*fc(Nvar); 
figure 
surf(X,Y,log10(Z)) 
caxis(log10([min(min(Z)), max(max(Z))])) 
xlabel({'Macroscopic', 'options removed'},'FontName','Times New 

Roman','FontSize',12) 
ylabel({'Microscopic', 'options removed'},'FontName','Times New 

Roman','FontSize',12) 
zlabel('Function calls','FontName','Times New Roman','FontSize',12) 
set(gca,'FontName','Times New Roman','FontSize',12) 

  
% Create logarithmic axis 
ZTick = 0:5:50; 
ZTickLabels = cellstr(num2str(round(ZTick(:)), '10^{%d}')); 
set(gca,'ztick',ZTick) 
set(gca,'zticklabel',ZTickLabels) 

  
% Create logarithmic color bar 
c = colorbar; 
cLimits = c.Limits; 
cTicks = round(cLimits(1)):1:round(cLimits(2)); 
c.Ticks = cTicks; 
c.TickLabels = cellstr(num2str(cTicks(:), '10^{%d}')); 
c.FontSize = 12; 

  
%% Plot 4 
figure 
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subplot(1,2,2) 
plot([0 1 2], [Z(2,1) Z(2,2) Z(2,3)],'LineWidth',2) 
YLim = get(gca,'YLim'); 
hold on 
plot([1 1],YLim,'r--') 
plot([0 2],[Z(2,2) Z(2,2)],'r--') 
plot(1,Z(2,2),'r*') 
hold off 
xlabel('Options removed','FontName','Times New Roman','FontSize',12) 
ylabel('Function calls','FontName','Times New Roman','FontSize',12) 
title('Macroscopic') 
set(gca,'XMinorTick','on','YMinorTick','on') 
set(gca,'FontName','Times New Roman','FontSize',12) 

  

  
subplot(1,2,1) 
plot([0 1 2], [Z(1,2) Z(2,2) Z(3,2)],'LineWidth',2) 
hold on 
plot([1 1],YLim,'r--') 
plot([0 2],[Z(2,2) Z(2,2)],'r--') 
plot(1,Z(2,2),'r*') 
hold off 
xlabel('Options removed','FontName','Times New Roman','FontSize',12) 
ylabel('Function calls','FontName','Times New Roman','FontSize',12) 
title('Microscopic') 
set(gca,'FontName','Times New Roman','FontSize',12) 
set(gca,'XMinorTick','on','YMinorTick','on') 
set(gca,'YLim',YLim) 

 

strategyDifference.m 

A plot showing how the choice between “rows first” and “columns first” strategies affects 

the behavior of morphological reduction. 

% A Variable-Oriented Architecture Generation Methodology to Support 

Efficient Multilevel Multidisciplinary Optimization 
% 
% Jean-Guillaume Durand (jdurand7@gatech.edu) 
% Aerospace Systems Design Laboratory (ASDL) 
% Georgia Institute of Technology, 2016 

  
% Clean and prepare workspace 
clc 
close all 
clear 

  
%% Initialize plot 
figure(1) 

  
a=axes('Position',[.1 .2 .8 .7]); 
set(a,'Units','normalized'); 
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yyaxis(a,'left') 

  
%% Plot 1 
% Morphological parameters 
nRows = 8; 
nOptionsPerRow = 4; 
k = 3; 

  
nVars = nRows*nOptionsPerRow*k; 

  
% Optimizer parameters 
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236; 
n = [1:5,10,50,100]; 
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769, 

61857.38462, 178638.7692, 286491.3846]; 
fc = @(nq)interp1(n,v,nq,'linear','extrap'); 

  
fCalls = nOptionsPerRow^nRows * fc(nVars); 

  
% Analysis 
nOptionsRemoved = 1:21; 

  
% Effect on morphological decomposition 
nCallsOptimizer = zeros(1, length(nOptionsRemoved)); 
for i = 1:length(nOptionsRemoved) 
    % Create morph matrix 
    morph = nOptionsPerRow*ones(nRows,1); 

     
    % Remove options 
    counter = nOptionsRemoved(i); 
    j = 1; 
    while counter > 0 
        % If there are options to be removed at this row 
        if morph(j) > 0 
            % Remove option 
            morph(j) = morph(j) - 1; 
            counter = counter - 1; 
        else 
            % Change row 
            j = j + 1; 
        end 
    end 
    disp(morph') 
    % Remove rows with 0 options 
    temp = morph(morph ~= 0); 
    disp(temp') 
    % Compute total number of discrete alternatives 
    nCallsOptimizer(i) = prod(temp); 
    disp(prod(temp)) 
    fprintf('\n') 
end 
morph' 

  
% Effect on optimizer 
% Actual method 
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% Reduced number of options * more variables in optimizer 
nVarsAdded = k*nOptionsRemoved; 
fCallsAug = nCallsOptimizer .* fc(nVars + nVarsAdded); 

  
% Plot 
semilogy(nOptionsRemoved, fCalls*ones(size(nOptionsRemoved,2),1),'k-') 
hold on 
semilogy(nOptionsRemoved, fCallsAug,'b-') 

  
%% Plot 2 
% Morphological parameters 
nRows = 8; 
nOptionsPerRow = 4; 
k = 3; 

  
nVars = nRows*nOptionsPerRow*k; 

  
% Optimizer parameters 
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236; 
n = [1:5,10,50,100]; 
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769, 

61857.38462, 178638.7692, 286491.3846]; 
fc = @(nq)interp1(n,v,nq,'linear','extrap'); 

  
fCalls = nOptionsPerRow^nRows * fc(nVars); 

  
% Analysis 
nOptions = nOptionsPerRow*nRows; 
nOptionsRemoved = 1:21; 

  
% Effect on morphological decomposition 
nCallsOptimizer = zeros(1, length(nOptionsRemoved)); 
for i = 1:length(nOptionsRemoved) 
    % Create morph matrix 
    morph = nOptionsPerRow*ones(nRows,1); 

     
    % Remove options 
    counter = nOptionsRemoved(i); 
    j = 1; 
    while counter > 0 
        % If there are options to be removed at this row 
        if morph(j) > 0 
            % Remove option 
            morph(j) = morph(j) - 1; 
            counter = counter - 1; 
%         else 
%             j = j+1; 
        end 

         
        % Change row 
        j = mod(j + 1, length(morph)); 
        if j == 0 
            j = length(morph); 
        end 
    end 
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    % Remove rows with 0 options 
    temp = morph(morph ~= 0); 

  
    % Compute total number of discrete alternatives 
    nCallsOptimizer(i) = prod(temp); 
end 
morph' 

  
% Effect on optimizer 
% Actual method 
% Reduced number of options * more variables in optimizer 
nVarsAdded = k*nOptionsRemoved; 
fCallsAug = nCallsOptimizer .* fc(nVars + nVarsAdded); 

  
% Plot 
semilogy(nOptionsRemoved, fCallsAug,'r-') 

  
hold off 

  
%% Finish plot formatting 
xlabel(a,'Options removed','FontName','Times New Roman','FontSize',12) 
h = legend(... 
    'Baseline',... 
    'Rows first',... 
    'Columns first'); 
set(h,'FontName','Times New Roman','FontSize',12) 
set(a,'FontName','Times New Roman','FontSize',12) 

  
ax = gca; 
yyaxis left 
ax.YColor = 'k'; 
aLim = ax.YLim; 
aTick = ax.YTick; 
ylabel(a,'Function calls') 
ax.FontName = 'Times New Roman'; 
ax.FontSize = 12; 

  
yyaxis right 
ax.YColor = 'k'; 
ax.YScale = 'log'; 
ax.YLim = aLim; 
ax.YTick = [86400, 86400*7, 86400*30.5, 86400*365.25, 86400*365.25*10, 

86400*365.25*100, 86400*365.25*1000]; 
ax.YTickLabel = {'1 day','1 week','1 month','1 year','10 years','100 

years','1000 years'}; 

  
set(a,'Position',[0.1 0.15 .75 .8]) 
a.XLim = [nOptionsRemoved(1), nOptionsRemoved(end)]; 

 

tradeoff.m 
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A plot displaying the tradeoff between the classical approach and morphological reduction. 

% A Variable-Oriented Architecture Generation Methodology to Support 

Efficient Multilevel Multidisciplinary Optimization 
% 
% Jean-Guillaume Durand (jdurand7@gatech.edu) 
% Aerospace Systems Design Laboratory (ASDL) 
% Georgia Institute of Technology, 2016 

  
% Clean and prepare workspace 
clc 
close all 
clear 

  
%% Initial problem size 
% Morphological parameters 
nRows = 8; 
nOptionsPerRow = 4; 
k = 5; % 100 
% TODO - need to consider a different number of variables initially 

  
nVars = nRows*nOptionsPerRow*k; 
nVars = 50; 

  
% Optimizer parameters 
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236; 
n = [1:5,10,50,100]; 
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769, 

61857.38462, 178638.7692, 286491.3846]; 
fc = @(nq)interp1(n,v,nq,'linear','extrap'); 

  
fCalls = nOptionsPerRow^nRows * fc(nVars); 

  
%% Analysis 
nOptionsRemoved = 1:10; 

  
% Effect on morphological decomposition 
nCallsOptimizer = zeros(1, length(nOptionsRemoved)); 
for i = 1:length(nOptionsRemoved) 
    % Create morph matrix 
    morph = nOptionsPerRow*ones(nRows,1); 

     
    % Remove options 
    counter = nOptionsRemoved(i); 
    j = 1; 
    while counter > 0 
        % If there are options to be removed at this row 
        if morph(j) > 1 
            % Remove option 
            morph(j) = morph(j) - 1; 
            counter = counter - 1; 
        else 
            % Change row 
            j = j + 1; 
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        end 
    end 

     
    % Compute total number of discrete alternatives 
    nCallsOptimizer(i) = prod(morph); 
end 

  
% Effect on optimizer 
% Actual method 
% Reduced number of options * more variables in optimizer 
nVarsAdded = k*nOptionsRemoved; 
fCallsAug = nCallsOptimizer .* fc(nVars + nVarsAdded); 

  
% What if optimizer took the same time? 
fCallsAug1 = nCallsOptimizer .* fc(nVars); 

  
% What if constant number of discrete calls? 
fCallsAug2 = nOptionsPerRow^nRows .* fc(nVars + nVarsAdded); 

  
%% Plot 
figure(1) 

  
b=axes('Position',[.1 .1 .8 1e-12]); 
set(b,'Units','normalized'); 
set(b,'Color','none'); 
set(b,'xlim',[nVarsAdded(1) nVarsAdded(end)]); 

  
a=axes('Position',[.1 .2 .8 .7]); 
set(a,'Units','normalized'); 
yyaxis(a,'left') 

  
semilogy(nOptionsRemoved, fCalls*ones(size(nOptionsRemoved,2),1), 'b') 

  
hold on 
semilogy(nOptionsRemoved, fCallsAug, 'r') 
semilogy(nOptionsRemoved, fCallsAug1, 'r--') 
semilogy(nOptionsRemoved, fCallsAug2, 'b--') 
% hold off 

  
xlabel(a,'Options removed','FontName','Times New Roman','FontSize',12) 
xlabel(b,'Variables added','FontName','Times New Roman','FontSize',12) 
h = legend(... 
    'Baseline',... 
    'Morphological reduction',... 
    'Constant number of variables',... 
    'Constant number of options'); 
set(h,'FontName','Times New Roman','FontSize',12) 
set(a,'FontName','Times New Roman','FontSize',12) 
set(b,'FontName','Times New Roman','FontSize',12) 

  
ax = gca; 
yyaxis left 
ax.YColor = 'k'; 
aLim = ax.YLim; 
aTick = ax.YTick; 
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ylabel(a,'Function calls') 
ax.FontName = 'Times New Roman'; 
ax.FontSize = 12; 

  
yyaxis right 
ax.YColor = 'k'; 
ax.YScale = 'log'; 
ax.YLim = aLim; 
ax.YTick = [86400*365.25, 86400*365.25*10, 86400*365.25*100, 

86400*365.25*1000]; 
ax.YTickLabel = {'1 Year','10 years','100 years','1000 years'}; 

  
% Adjust scale so that we can see the axes labels properly 
set(a,'Position',[0.1 0.25 .75 .65]) 
set(b,'Position',[0.1 0.12 .75 1e-12]) 
a.XLim = [nOptionsRemoved(1), nOptionsRemoved(end)]; 

  
% Durations in seconds 
durations = [1, 60, 3600, 86400, 86400*7, 86400*30.5, 86400*365.25, 

86400*365.25*[10 100 1000]]; 

 

tradeoff2parameters.m 

Similar tradeoff study including different options removal strategies. 

% A Variable-Oriented Architecture Generation Methodology to Support 

Efficient Multilevel Multidisciplinary Optimization 
% 
% Jean-Guillaume Durand (jdurand7@gatech.edu) 
% Aerospace Systems Design Laboratory (ASDL) 
% Georgia Institute of Technology, 2016 

  
% Clean and prepare workspace 
clc 
close all 
clear 

  
%% Initialize plot 
figure(1) 

  
% b=axes('Position',[.1 .1 .8 1e-12]); 
% set(b,'Units','normalized'); 
% set(b,'Color','none'); 
% set(b,'xlim',[nVarsAdded(1) nVarsAdded(end)]); 

  
a=axes('Position',[.1 .2 .8 .7]); 
set(a,'Units','normalized'); 
yyaxis(a,'left') 

  
%% Plot 1 
% Morphological parameters 
nRows = 8; 
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nOptionsPerRow = 3; 
k = 4; 

  
nVars = nRows*nOptionsPerRow*k; 

  
% Optimizer parameters 
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236; 
n = [1:5,10,50,100]; 
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769, 

61857.38462, 178638.7692, 286491.3846]; 
fc = @(nq)interp1(n,v,nq,'linear','extrap'); 

  
fCalls = nOptionsPerRow^nRows * fc(nVars); 

  
% Analysis 
nOptionsRemoved = 1:15; 

  
% Effect on morphological decomposition 
nCallsOptimizer = zeros(1, length(nOptionsRemoved)); 
for i = 1:length(nOptionsRemoved) 
    % Create morph matrix 
    morph = nOptionsPerRow*ones(nRows,1); 

     
    % Remove options 
    counter = nOptionsRemoved(i); 
    j = 1; 
    while counter > 0 
        % If there are options to be removed at this row 
        if morph(j) > 1 
            % Remove option 
            morph(j) = morph(j) - 1; 
            counter = counter - 1; 
        else 
            % Change row 
            j = j + 1; 
        end 
    end 

     
    % Compute total number of discrete alternatives 
    nCallsOptimizer(i) = prod(morph); 
end 

  
% Effect on optimizer 
% Actual method 
% Reduced number of options * more variables in optimizer 
nVarsAdded = k*nOptionsRemoved; 
fCallsAug = nCallsOptimizer .* fc(nVars + nVarsAdded); 

  
% Plot 
h0 = semilogy(nOptionsRemoved, 

fCalls*ones(size(nOptionsRemoved,2),1),'w'); 
hold on 
hBlack(1) = semilogy(nOptionsRemoved, 

fCalls*ones(size(nOptionsRemoved,2),1),'k-'); 
hBlack(2) = semilogy(nOptionsRemoved, fCallsAug,'k--'); 
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hPlot(1) = semilogy(nOptionsRemoved, 

fCalls*ones(size(nOptionsRemoved,2),1),'b-'); 
semilogy(nOptionsRemoved, fCallsAug,'b--') 

  
%% Plot 2 
% Morphological parameters 
nRows = 8; 
nOptionsPerRow = 3; 
k = 4; 

  
nVars = nRows*nOptionsPerRow*k; 

  
% Optimizer parameters 
% Interpolate or use fc = @(n)-11.776*n.^2 + 5127.9*n + 13236; 
n = [1:5,10,50,100]; 
v = [14099.23077, 20625.53846, 25975.23077, 33926.46154, 38770.30769, 

61857.38462, 178638.7692, 286491.3846]; 
fc = @(nq)interp1(n,v,nq,'linear','extrap'); 

  
fCalls = nOptionsPerRow^nRows * fc(nVars); 

  
% Analysis 
nOptions = nOptionsPerRow*nRows; 
nOptionsRemoved = 1:15; 

  
% Effect on morphological decomposition 
nCallsOptimizer = zeros(1, length(nOptionsRemoved)); 
for i = 1:length(nOptionsRemoved) 
    % Create morph matrix 
    morph = nOptionsPerRow*ones(nRows,1); 

     
    % Remove options 
    counter = nOptionsRemoved(i); 
    j = 1; 
    while counter > 0 
        % If there are options to be removed at this row 
        if morph(j) > 1 
            % Remove option 
            morph(j) = morph(j) - 1; 
            counter = counter - 1; 
%         else 
%             j = j+1; 
        end 

         
        % Change row 
        j = mod(j + 1, length(morph)); 
        if j == 0 
            j = length(morph); 
        end 
    end 

     
    % Compute total number of discrete alternatives 
    nCallsOptimizer(i) = prod(morph); 
end 
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% Effect on optimizer 
% Actual method 
% Reduced number of options * more variables in optimizer 
nVarsAdded = k*nOptionsRemoved; 
fCallsAug = nCallsOptimizer .* fc(nVars + nVarsAdded); 

  
% Plot 
hPlot(2) = semilogy(nOptionsRemoved, 

fCalls*ones(size(nOptionsRemoved,2),1),'r-'); 
semilogy(nOptionsRemoved, fCallsAug,'r--') 

  
% Black line 
semilogy(nOptionsRemoved, fCalls*ones(size(nOptionsRemoved,2),1),'k-') 

  
hold off 

  
%% Finish plot formatting 
xlabel(a,'Options removed','FontName','Times New Roman','FontSize',12) 
h = legend([hPlot, h0, hBlack(1), hBlack(2)],... 
    'Rows first',... 
    'Columns first',... 
    '',... 
    'Baseline',... 
    'Morphological reduction'); 
set(h,'FontName','Times New Roman','FontSize',12) 
set(a,'FontName','Times New Roman','FontSize',12) 

  
ax = gca; 
yyaxis left 
ax.YColor = 'k'; 
aLim = ax.YLim; 
aTick = ax.YTick; 
ylabel(a,'Function calls') 
ax.FontName = 'Times New Roman'; 
ax.FontSize = 12; 

  
yyaxis right 
ax.YColor = 'k'; 
ax.YScale = 'log'; 
ax.YLim = aLim; 
ax.YTick = [86400, 86400*7, 86400*30.5, 86400*365.25, 86400*365.25*10, 

86400*365.25*100, 86400*365.25*1000]; 
ax.YTickLabel = {'1 day','1 week','1 month','1 year','10 years','100 

years','1000 years'}; 

  
set(a,'Position',[0.1 0.15 .75 .8]) 
a.XLim = [nOptionsRemoved(1), nOptionsRemoved(end)]; 
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APPENDIX C 

ROS/GAZEBO FILES 

 

The ROS/Gazebo files regroup the set of files necessary to setup the simulation 

using the microscopic modeling approach (see section 4.2.3 page 266). They are organized 

into three ROS packages, each with a specific purpose: 

 gritbot_description: pure ROS description of the Gritbot robot. 

 gritbot_gazebo: wrappers for the Gazebo simulator to ensure the link with ROS. 

 gritbot_navigation: intelligence of the robots. 

 

It is highly recommended for the reader to consult the ROS tutorials in order to 

understand where to include each file in the set of created packages. An easy way to re-use 

the same files is to create three packages and follow the tutorials to create a robot, and then 

replace the proper files with the ones included here below. A few additional libraries are 

required to be linked to these packages and are described in the microscopic modeling 

section. 

 

Note that to properly setup the simulator, the Gritbots design files should be 

downloaded and converted to proper meshes compatible with Gazebo. Blender and its add-

ons is a potential tool for such a task. In particular, if the computer vision trackers are used, 

each robot must have a COLLADA (file extension .dae) description file which refers to a 

unique texture encoding the ID tag. 
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C.1 Gritbot URDF description file 

In total, 20 Gritbot description files were created, each having a different Aruco 

tag, this Aruco tag is the only change in each of the files. A typical example of file is given 

here below. 

gritbot_1.urdf 

<robot name="gritbot"> 

  <!-- the model --> 

  <link name="base_link"> 

    <inertial> 

      <mass value="0.05" /> 

      <origin xyz="0 0 0" /> 

      <inertia ixx="0.000075" ixy="0.0" ixz="0.0" 

        iyy="0.000075" iyz="0.0" 

        izz="0.000075" /> 

    </inertial> 

    <visual> 

      <geometry> 

        <mesh 

filename="package://gritbot_description/meshes/gritbot_without_shell.da

e" /> 

        <!-- <box size=".03 .03 .03" /> --> 

      </geometry> 

    </visual> 

    <collision> 

      <origin xyz="0 0 0.0036" /> 

      <geometry> 

        <box size="0.031 0.045 0.033" /> 

      </geometry> 

    </collision> 

  </link> 

 

  <link name="apriltag_link"> 

    <visual> 

      <geometry> 

        <mesh 

filename="package://gritbot_description/meshes/aruco_tag_1.dae" /> 

        <box size=".03 .03 .01" /> 

      </geometry> 

    </visual> 

    <collision> 

      <origin xyz="0 0 0" /> 

      <geometry> 

        <box size=".03 .03 .01" /> 

      </geometry> 

    </collision> 

  </link> 

 

  <joint name="base_to_apriltag" type="fixed"> 

    <parent link="base_link"/> 
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    <child link="apriltag_link"/> 

    <origin xyz="0 0 .0216"/> 

  </joint> 

 

  <!-- root link, on the ground just below the model origin --> 

  <link name="base_footprint"> 

   <visual> 

      <origin xyz="0 0 0" rpy="0 0 0" /> 

      <geometry> 

        <box size="0.001 0.001 0.001" /> 

      </geometry> 

    </visual> 

  </link> 

 

  <joint name="base_link_joint" type="fixed"> 

    <origin xyz="0 0 0" rpy="0 0 0" /> 

    <parent link="base_footprint"/> 

    <child link="base_link" /> 

  </joint> 

 

  <gazebo> 

    <plugin name="object_controller" 

filename="libgazebo_ros_planar_move.so"> 

      <commandTopic>cmd_vel</commandTopic> 

      <odometryTopic>odom</odometryTopic> 

      <odometryFrame>odom</odometryFrame> 

      <odometryRate>20.0</odometryRate> 

      <robotBaseFrame>base_footprint</robotBaseFrame> 

    </plugin> 

  </gazebo> 

 

  <!-- TODO, add 6 IR sensors, accelerometer, gyroscope, battery 

voltage sensor --> 

  <!-- Set frequencies and queue lengths correctly in ROSnodes --> 

</robot> 

 

C.2 Robotarium world file 

This file is used by Gazebo to generate a world where the robots and the mission 

will be simulated. This world consists for the most part of the Robotarium arena. The robots 

and the camera tracker are spawned separately as world add-ons thanks to the launch file. 

robotarium.world 

<?xml version="1.0" ?> 

<sdf version="1.4"> 

    <world name="default"> 

        <include> 

            <uri>model://ground_plane</uri> 

        </include> 
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        <include> 

            <uri>model://sun</uri> 

        </include> 

        <gravity>0 0 -9.81</gravity> 

        <model name="left"> 

            <pose>-.6 0 0 0 0 0</pose> 

            <link name="link"> 

                <collision name="collision"> 

                    <geometry> 

                        <box> 

                            <size>.01 .7 .05</size> 

                        </box> 

                    </geometry> 

                </collision> 

                <visual name="visual"> 

                    <geometry> 

                        <box> 

                            <size>.01 .7 .05</size> 

                        </box> 

                    </geometry> 

                    <material> 

                        <script>Gazebo/Blue</script> 

                    </material> 

                </visual> 

            </link> 

        </model> 

        <model name="right"> 

            <pose>.6 0 0 0 0 0</pose> 

            <link name="link"> 

                <collision name="collision"> 

                    <geometry> 

                        <box> 

                            <size>.01 .7 .05</size> 

                        </box> 

                    </geometry> 

                </collision> 

                <visual name="visual"> 

                    <geometry> 

                        <box> 

                            <size>.01 .7 .05</size> 

                        </box> 

                    </geometry> 

                    <material> 

                        <script>Gazebo/Blue</script> 

                    </material> 

                </visual> 

            </link> 

        </model> 

        <model name="bottom"> 

            <pose>0 -.35 0 0 0 0</pose> 

            <link name="link"> 

                <collision name="collision"> 

                    <geometry> 

                        <box> 

                            <size>1.2 .01 .05</size> 

                        </box> 

                    </geometry> 
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                </collision> 

                <visual name="visual"> 

                    <geometry> 

                        <box> 

                            <size>1.2 .01 .05</size> 

                        </box> 

                    </geometry> 

                    <material> 

                        <script>Gazebo/Blue</script> 

                    </material> 

                </visual> 

            </link> 

        </model> 

        <model name="top"> 

            <pose>0 .35 0 0 0 0</pose> 

            <link name="link"> 

                <collision name="collision"> 

                    <geometry> 

                        <box> 

                            <size>1.2 .01 .05</size> 

                        </box> 

                    </geometry> 

                </collision> 

                <visual name="visual"> 

                    <geometry> 

                        <box> 

                            <size>1.2 .01 .05</size> 

                        </box> 

                    </geometry> 

                    <material> 

                        <script>Gazebo/Blue</script> 

                    </material> 

                </visual> 

            </link> 

        </model> 

    </world> 

</sdf> 

 

C.3 Consensus mission launch file 

The launch file is the starting point for the microscopic simulation. Once the 

roscore is running in a terminal, one can simply open a new terminal and roslaunch the 

file robotarium.launch to start the simulation of the rendezvous mission. Note that the 

launch file is modified based on the number of robots to be included in the mission as well 

as their initial positions (see the Matlab generation files in APPENDIX B). Finally, the 
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commented part of the code refers to another possible computer vision package used to 

track the ID tags of the robots. 

robotarium.launch 

<?xml version="1.0"?> 

<launch> 

    <!-- Environment 

#######################################################################

#######################################################################

##############--> 

    <include file="$(find gazebo_ros)/launch/empty_world.launch"> 

        <arg name="world_name" value="$(find 

gritbot_gazebo)/worlds/robotarium.world"/> 

        <arg name="paused" value="false"/> 

        <arg name="use_sim_time" value="true"/> 

        <arg name="gui" value="false"/> 

        <arg name="headless" value="true"/> 

        <arg name="debug" value="false"/> 

    </include> 

 

    <!-- Robots 

#######################################################################

#######################################################################

###################--> 

    <node name="gritbot1" ns="gritbot1" pkg="gazebo_ros" 

type="spawn_model" args="-file $(find 

gritbot_description)/urdf/gritbot_1.urdf -urdf -x -.25 -y -.25 -z 0 -

model gritbot1" /> 

    <node name="gritbot2" ns="gritbot2" pkg="gazebo_ros" 

type="spawn_model" args="-file $(find 

gritbot_description)/urdf/gritbot_2.urdf -urdf -x .25 -y -.25 -z 0 -

model gritbot2" /> 

    <node name="gritbot3" ns="gritbot3" pkg="gazebo_ros" 

type="spawn_model" args="-file $(find 

gritbot_description)/urdf/gritbot_3.urdf -urdf -x .25 -y .25 -z 0 -

model gritbot3" /> 

    <node name="gritbot4" ns="gritbot4" pkg="gazebo_ros" 

type="spawn_model" args="-file $(find 

gritbot_description)/urdf/gritbot_4.urdf -urdf -x -.25 -y .25 -z 0 -

model gritbot4" /> 

     

    <!-- Robotarium tracker 

#######################################################################

#######################################################################

####### --> 

    <!-- Camera --> 

    <node name="tracker" ns="robotarium" pkg="gritbot_navigation" 

type="tracker" /> 

    <node name="camera" ns="robotarium" pkg="gazebo_ros" 

type="spawn_model" args="-file $(find 

gritbot_description)/urdf/camera.urdf -urdf -model camera" /> 

    <node name="camera_view" pkg="image_view" type="image_view"> 

            <remap from="image" to="/robotarium/camera/image_raw" /> 
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            <param name="approximate_sync" value="true" /> 

    </node> 

 

    <!-- Undistort images --> 

    <node name="image_proc" ns="/robotarium/camera" pkg="image_proc" 

type="image_proc" /> 

    <node name="corrected_view" pkg="image_view" type="image_view"> 

            <remap from="image" 

to="/robotarium/camera/image_rect_color" /> 

            <param name="approximate_sync" value="true" /> 

    </node> 

     

    <!-- Track Aruco Tags --> 

    <node pkg="aruco_ros" type="single" name="aruco_single"> 

        <remap from="/camera_info" to="/robotarium/camera/camera_info" 

/> 

        <remap from="/image" to="/robotarium/camera/image_rect_color" 

/> 

        <param name="image_is_rectified" value="True"/> 

        <param name="marker_size"        value="0.032"/> 

        <param name="marker_id"          value="1"/> 

        <param name="reference_frame"    value=""/>   <!-- frame in 

which the marker pose will be refered --> 

        <param name="camera_frame"       value="base_footprint"/> 

        <param name="marker_frame"       value="base_footprint" /> 

        <param name="corner_refinement"  value="LINES" /> 

    </node> 

    <node name="aruco_view" pkg="image_view" type="image_view"> 

            <remap from="image" to="/aruco_single/result" /> 

            <param name="approximate_sync" value="true" /> 

    </node> 

 

    <!--<arg name="marker_size" default="4.4" /> 

    <arg name="max_new_marker_error" default="0.08" /> 

    <arg name="max_track_error" default="0.2" /> 

    <arg name="cam_image_topic" default="/robotarium/camera/image_raw" 

/> 

    <arg name="cam_info_topic" default="/robotarium/camera/camera_info" 

/>   

    <arg name="output_frame" default="/camera/base_link" /> 

 

    <node name="ar_track_alvar" pkg="ar_track_alvar" 

type="individualMarkersNoKinect" respawn="false" output="screen" 

args="$(arg marker_size) $(arg max_new_marker_error) $(arg 

max_track_error) $(arg cam_image_topic) $(arg cam_info_topic) $(arg 

output_frame)" />     

--> 

    <!-- Intelligence 

#######################################################################

#######################################################################

####### --> 

    <!-- Data logger --> 

    <node name="logger" ns="robotarium" pkg="gritbot_navigation" 

type="logger" args="/home/jdurand7/logs/log_4_0.1.csv" /> 

     

    <!-- Static consensus algorithm --> 
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    <!-- NOTE: this node is required, if it stops, the whole simulation 

stops --> 

    <!--<node name="consensus" ns="robotarium" pkg="gritbot_navigation" 

type="consensus" args="0.1" output="screen" required="true"/>--> 

</launch> 

 

C.4 Navigation package 

As opposed to the previous packages gritbot_description and gritbot_gazebo which 

encompass the physical description and simulation of the robots, the navigation package 

represents the intelligence of the robot and is the one to read the sensors inputs, run the 

consensus mission, and output the results. More details about the implementation can be 

found in section 4.2.3 page 266. 

C.4.1 Consensus 

This class is designed to be instantiated with a given number of robots and their 

individual velocity, and perform a static consensus for these robots. In particular, it is in 

constant communication with the Gazebo simulator to read the location of the robots 

derived from the tracking system, compute appropriate velocities for the robots to meet at 

consensus without any collisions, and return these velocities as orders to the controllers for 

the robots in the simulator. 

consensus.cpp 

#include <gazebo_msgs/ModelStates.h> 

#include <ros/ros.h> 

#include <tf/transform_datatypes.h> 

#include <geometry_msgs/Twist.h> 

#include <vector> 

 

#include <CGAL/QP_functions.h> 

#include <CGAL/MP_Float.h> 

 

typedef CGAL::MP_Float ET; 

typedef CGAL::Quadratic_program<ET> Program; 

typedef CGAL::Quadratic_program_solution<ET> Solution; 

 

class RobotariumConsensus 
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{ 

public: 

  // Constructor 

  RobotariumConsensus(); 

  void setMaxLinearVelocity(double maxLinearVelocity); 

   

private: 

  // Attributes 

  int count; 

  bool init; 

  double v; 

  ros::NodeHandle nh_; 

  ros::Subscriber poses_sub_; 

  ros::Publisher poses_pub; 

  std::vector<ros::Publisher> myvector; 

  std::vector<double> previous_x; 

  std::vector<double> previous_y; 

 

  // Methods 

  int nChooseK(int iN, int iR); 

  std::vector<int> topologicalNeighbors(int i, int N); 

  std::vector<geometry_msgs::Twist> 

saturateVelocity(std::vector<geometry_msgs::Twist> dxi, double 

maxLinear, double maxAngular); 

  std::vector<geometry_msgs::Twist> 

barrierCertificate(std::vector<geometry_msgs::Twist> dxi, const 

gazebo_msgs::ModelStates::ConstPtr& msg, double gamma, double 

safetyRadius); 

  gazebo_msgs::ModelStates::ConstPtr uniToSiStates(const 

gazebo_msgs::ModelStates::ConstPtr& msg, double projectionDistance); 

  std::vector<geometry_msgs::Twist> 

int2uni3(std::vector<geometry_msgs::Twist> dxi, const 

gazebo_msgs::ModelStates::ConstPtr& msg, double lambda); 

  double computeAverageDistanceChange(const 

gazebo_msgs::ModelStates::ConstPtr& msg); 

  geometry_msgs::Twist computeRobotVelocity(int robotID, const 

geometry_msgs::Pose pose, const gazebo_msgs::ModelStates::ConstPtr& 

msg, double projectionDistance); 

  void poseCallback(const gazebo_msgs::ModelStates::ConstPtr& msg); 

}; 

 

RobotariumConsensus::RobotariumConsensus(): 

    init(true), 

    count(0), 

    v(.1) // m/s 

{  

  // Declare topics 

  poses_sub_ = nh_.subscribe("/robotarium/poses", 1, 

&RobotariumConsensus::poseCallback, this); 

  poses_pub = 

nh_.advertise<gazebo_msgs::ModelStates>("/robotarium/controller/poses", 

1); 

} 

 

std::vector<geometry_msgs::Twist> 

RobotariumConsensus::saturateVelocity(std::vector<geometry_msgs::Twist> 

dxi, double maxLinear, double maxAngular){ 
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    // Initialization 

    std::vector<geometry_msgs::Twist> dxi_out = dxi; 

 

    for (int i = 0; i < dxi.size(); ++i){ 

        // Saturate linear velocity 

        if (dxi[i].linear.x > maxLinear) dxi_out[i].linear.x = 

maxLinear; 

        if (dxi[i].linear.x < -maxLinear) dxi_out[i].linear.x = -

maxLinear; 

 

        // Saturate angular velocity 

        if (dxi[i].angular.z > maxAngular) dxi_out[i].angular.z = 

maxAngular; 

        if (dxi[i].angular.z < -maxAngular) dxi_out[i].angular.z = -

maxAngular; 

    } 

 

    return dxi_out; 

} 

 

int RobotariumConsensus::nChooseK(int iN, int iR){ 

    if (iR < 0 || iR > iN) { 

        return 0; 

    } 

 

    // Initialization 

    int iComb = 1; 

    int i = 0; 

 

    // Iterative loop 

    while (i < iR) { 

        ++i; 

        iComb *= iN - i + 1; 

        iComb /= i; 

    } 

 

    return iComb; 

} 

 

std::vector<int> RobotariumConsensus::topologicalNeighbors(int i, int 

N){ 

    std::vector<int> neighbors; 

    // Special cases 

    if (N == 1) return neighbors; 

    if (N == 2){ 

        if (0 == i){ 

            neighbors.push_back(1); 

        } else { 

            neighbors.push_back(0); 

        } 

        return neighbors; 

    } 

 

    // Normal cases 

    if (0 == i){ 

        neighbors.push_back(1); 

        neighbors.push_back(N-1); 
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    } else if (N-1 == i){ 

        neighbors.push_back(0); 

        neighbors.push_back(N-2); 

    } else { 

        neighbors.push_back(i-1); 

        neighbors.push_back(i+1); 

    } 

    return neighbors; 

} 

 

std::vector<geometry_msgs::Twist> 

RobotariumConsensus::barrierCertificate(std::vector<geometry_msgs::Twis

t> dxi, const gazebo_msgs::ModelStates::ConstPtr& msg, double gamma, 

double safetyRadius){ 

    // Initialization 

    int N = msg->pose.size(); 

    std::vector<geometry_msgs::Twist> dxi_out = dxi; 

     

    // If only one robot, return same command immediately 

    if (N < 2) return dxi_out; 

    // Else 

 

    // QP (1/2*x'*D*x + c'*x) with A*x <= b, unbounded variables 

    Program qp (CGAL::SMALLER, false, 0, false, 0); 

 

    // Initialize problem arrays 

    int numConstraints = nChooseK(N,2); 

    int count = 0; 

    double h; 

    double d,dx,dy,d2; 

     

    // Set the non-default entries 

    for (int i = 0; i < N-1; ++i){ 

        for (int j = i+1; j < N; ++j){ 

            // Compute norm 

            dx = msg->pose[i].position.x - msg->pose[j].position.x; 

            dy = msg->pose[i].position.y - msg->pose[j].position.y; 

            d2 = dx*dx + dy*dy; 

            h = d2 - safetyRadius*safetyRadius; 

 

            qp.set_a(2*i,   count, -2.*dx); 

            qp.set_a(2*i+1, count, -2.*dy); 

            qp.set_a(2*j,   count, 2.*dx); 

            qp.set_a(2*j+1, count, 2.*dy); 

             

            qp.set_b(count, gamma*h*h*h); 

 

            // Increment 

            ++count; 

        } 

    } 

 

    // Quadratic function 

    for (int i = 0; i < 2*N; ++i) qp.set_d(i, i, 2.); 

 

    for (int i = 0; i < N; ++i){ 

        qp.set_c(2*i, -2*dxi[i].linear.x); 
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        qp.set_c(2*i+1, -2*dxi[i].linear.y); 

    } 

 

    // Solve the QP problem, using ET as the exact type 

    Solution s = CGAL::solve_quadratic_program(qp, ET()); 

  

    ET denom = s.variables_common_denominator(); 

    unsigned int i = 0; 

    for (Solution::Variable_numerator_iterator it = 

s.variable_numerators_begin(); it < s.variable_numerators_end(); ++it, 

++i){ 

        // X component 

        dxi_out[i].linear.x = 

CGAL::to_double(*it)/CGAL::to_double(denom); 

        // Y component 

        ++it; 

        dxi_out[i].linear.y = 

CGAL::to_double(*it)/CGAL::to_double(denom); 

    } 

 

    for (int i = 0; i < dxi_out.size(); ++i){ 

        std::cout << "Robot " << i << std::endl; 

        std::cout << "\tIN  = [" << dxi[i].linear.x << ", " << 

dxi[i].linear.y << "]" << std::endl; 

        std::cout << "\tOUT = [" << dxi_out[i].linear.x << ", " << 

dxi_out[i].linear.y << "]" << std::endl; 

    } 

 

    return dxi_out; 

} 

 

gazebo_msgs::ModelStates::ConstPtr 

RobotariumConsensus::uniToSiStates(const 

gazebo_msgs::ModelStates::ConstPtr& msg, double projectionDistance){ 

    // Initialization 

    int n = msg->pose.size(); 

    double roll, pitch, yaw; 

    gazebo_msgs::ModelStates msg_si; 

     

    for (int i = 0; i < n; ++i){ 

        // Compute yaw 

        tf::Quaternion q(msg->pose[i].orientation.x, msg-

>pose[i].orientation.y, msg->pose[i].orientation.z, msg-

>pose[i].orientation.w); 

        tf::Matrix3x3 m(q); 

        m.getRPY(roll, pitch, yaw); 

 

        // Compute and assign single-integrator state 

        geometry_msgs::Point point; 

        point.x = msg->pose[i].position.x + 

projectionDistance*cos(yaw); 

        point.y = msg->pose[i].position.y + 

projectionDistance*sin(yaw); 

        point.z = 0.; 

        geometry_msgs::Quaternion quat; 

        quat.x = 0.; 

        quat.y = 0.; 
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        quat.z = 0.; 

        quat.w = 1.; 

        geometry_msgs::Pose pose; 

        pose.position = point; 

        pose.orientation = quat; 

 

        msg_si.pose.push_back(pose); 

        msg_si.twist.push_back(geometry_msgs::Twist()); 

    } 

     

    // Return pointer 

    gazebo_msgs::ModelStates::ConstPtr msg_si_ptr( new 

gazebo_msgs::ModelStates( msg_si ) ); 

 

    return msg_si_ptr; 

} 

 

std::vector<geometry_msgs::Twist> 

RobotariumConsensus::int2uni3(std::vector<geometry_msgs::Twist> dxi, 

const gazebo_msgs::ModelStates::ConstPtr& msg, double lambda){ 

    // Initialization 

    double roll, pitch, yaw; 

    std::vector<geometry_msgs::Twist> dxu; 

 

    // Get yaw from quaternions 

    for (int i = 0; i < msg->pose.size(); ++i){ 

        geometry_msgs::Twist vel; 

        tf::Quaternion q(msg->pose[i].orientation.x, msg-

>pose[i].orientation.y, msg->pose[i].orientation.z, msg-

>pose[i].orientation.w); 

            tf::Matrix3x3 m(q); 

        m.getRPY(roll, pitch, yaw); 

 

        // From single-integrator dynamics to unicycle dynamics 

        vel.linear.x = cos(yaw)*dxi[i].linear.x + 

sin(yaw)*dxi[i].linear.y; 

        vel.angular.z = (1.0/lambda)*(-sin(yaw)*dxi[i].linear.x + 

cos(yaw)*dxi[i].linear.y); 

 

        //if (vel_out.linear.x < 0.0) vel_out.angular.z = - 1.0 * 

vel_out.angular.z; 

 

        dxu.push_back(vel); 

    } 

 

    return dxu; 

} 

 

double RobotariumConsensus::computeAverageDistanceChange(const 

gazebo_msgs::ModelStates::ConstPtr& msg){ 

    // Initialization 

    int n = msg->pose.size(); 

    double d = 0; 

    double dx = 0; 

    double dy = 0; 

     

    // Compute average distance change 
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    for (int i = 0; i < n; ++i){ 

        // Compute coordinate changes 

        dx = msg->pose[i].position.x - previous_x[i]; 

        dy = msg->pose[i].position.y - previous_y[i]; 

         

        // Add distance change to sum 

        d += sqrt(dx*dx + dy*dy); 

         

        // Update 

        previous_x[i] = msg->pose[i].position.x; 

        previous_y[i] = msg->pose[i].position.y; 

    } 

     

    // Average 

    return d/n; 

} 

 

geometry_msgs::Twist RobotariumConsensus::computeRobotVelocity(int 

robotID, const geometry_msgs::Pose pose, const 

gazebo_msgs::ModelStates::ConstPtr& msg, double projectionDistance){ 

    // Initialization 

    geometry_msgs::Twist vel; 

    int n = msg->pose.size(); 

 

    // Get neighbors of agent 

    std::vector<int> neighbors = topologicalNeighbors(robotID, n); 

 

    // Compute velocity 

    for (std::vector<int>::iterator it = neighbors.begin(); it != 

neighbors.end(); ++it){ 

        vel.linear.x += msg->pose[*it].position.x - msg-

>pose[robotID].position.x; 

        vel.linear.y += msg->pose[*it].position.y - msg-

>pose[robotID].position.y; 

    } 

 

    return vel; 

} 

 

void RobotariumConsensus::poseCallback(const 

gazebo_msgs::ModelStates::ConstPtr& msg) 

{ 

    // Initialization 

    geometry_msgs::Twist vel; 

    int n = msg->pose.size(); 

    double d = 0; 

     

    if (this->init){     

        // For each robot 

        for (int i = 0; i < n; ++i){ 

            // Create topic name 

            std::ostringstream topic_name; 

            topic_name << "/" << msg->name[i] << "/cmd_vel"; 

 

            // Initialize publishing topic 
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myvector.push_back(nh_.advertise<geometry_msgs::Twist>(topic_name.str()

, 10)); 

             

            // Initialize previous_msg 

            previous_x.push_back(msg->pose[i].position.x); 

            previous_y.push_back(msg->pose[i].position.y); 

        } 

        this->init = false; 

    } else { 

        // If stopping condition is reached, stop simulation 

        // This node should be instantiated as required so that if it 

stops, all other nodes stop 

        double d = computeAverageDistanceChange(msg); 

        std::cout << "[t = " << ros::Time::now() << "] " << d << 

std::endl; 

        if (d < 0.00001){ 

            std::cout << "\tCounting " << count << std::endl; 

            ++count; 

        } else { 

            count = 0; 

        } 

        // After N measures below the threshold, stop 

        // After 2.5 minutes stop 

        // ros::Time::now().toSec() > 1.2/this->v 

        if (count > 25 || ros::Time::now().toSec() > 150.0){ 

            // Stop node 

            ros::shutdown(); 

        } 

    } 

     

    // Convert to single-integrator states 

    double projectionDistance = 0.03; 

    gazebo_msgs::ModelStates::ConstPtr msg_si = uniToSiStates(msg, 

projectionDistance); 

    std::vector<geometry_msgs::Twist> dxi, dxu; 

 

    // For each robot 

    for (int i = 0; i < n; ++i){ 

        // Compute velocity 

        dxi.push_back(computeRobotVelocity(i, msg->pose[i], msg_si, 

projectionDistance)); 

    } 

     

    // Compute collision-free controls 

    dxi = barrierCertificate(dxi, msg_si, 10000., .06); 

 

    // Transform single-integrator dynamics to unicycle dynamics 

    dxu = int2uni3(dxi, msg, projectionDistance); 

 

    // Saturation 

    dxu = saturateVelocity(dxu, this->v, 2.0*3.1416); 

 

    // Publish to each robot input topic 

    for (int i = 0; i < n; ++i){ 

        // Model identification 

        dxu[i].linear.x *= .835; 
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        dxu[i].angular.z *= .46; 

 

        myvector[i].publish(dxu[i]); 

    } 

 

    // Re-publish poses 

    poses_pub.publish(msg); 

} 

 

void RobotariumConsensus::setMaxLinearVelocity(double 

maxLinearVelocity) 

{ 

    this->v = maxLinearVelocity; 

} 

 

int main(int argc, char** argv) 

{ 

    // Initialization 

    ros::init(argc, argv, "consensus"); 

    RobotariumConsensus consensus; 

 

    if (argc == 2){ 

        consensus.setMaxLinearVelocity(atof(argv[1])); 

    } 

   

    // Wait for some time for Gazebo to be ready 

    ros::Duration(5.0).sleep();   

   

    // Iterate at given rate 

    ros::Rate rate(30.); 

    while(ros::ok()) 

    {    

        // Activate callbacks 

        ros::spinOnce(); 

        // Maintain publishing rate 

        rate.sleep(); 

    } 

   

    return 0; 

} 

 

C.4.2 Tracker 

Always running as a backup system to the computer vision node calculating the 

poses of the ID tags of the robots, the tracker node bypasses this latter by reading the poses 

of the robots directly from the Gazebo simulator. In return, it outputs theses poses under 

the correct format in the appropriate ROS topic. 

tracker.cpp 
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#include <ros/ros.h> 

#include <gazebo_msgs/ModelStates.h> 

 

class RobotariumTracker 

{ 

public: 

  // Constructor 

  RobotariumTracker(); 

 

private: 

  // Attributes 

  ros::NodeHandle nh_; 

  ros::Subscriber camera_sub; 

  ros::Publisher poses_pub; 

  gazebo_msgs::ModelStates poses; 

   

  // Methods 

  void cameraCallback(const gazebo_msgs::ModelStates::ConstPtr& msg); 

 

public: 

  void publish(); 

}; 

 

RobotariumTracker::RobotariumTracker() 

{ 

    // Subscribe to the tracking camera topic 

    camera_sub = nh_.subscribe("/gazebo/model_states", 1, 

&RobotariumTracker::cameraCallback, this); 

    // Create topic to publish robots poses 

    poses_pub = 

nh_.advertise<gazebo_msgs::ModelStates>("/robotarium/poses", 1); 

} 

 

void RobotariumTracker::cameraCallback(const 

gazebo_msgs::ModelStates::ConstPtr& msg) 

{  

    // Re-initialize poses 

    poses.name.clear(); 

    poses.pose.clear(); 

     

    // Get robots poses ############################################### 

    // TODO: replace by the tracking the AprilTags 

    for (int i = 0; i < msg->pose.size(); ++i){ 

        if ("gritbot" == msg->name[i].substr(0,7)){ 

            poses.name.push_back(msg->name[i]); 

            poses.pose.push_back(msg->pose[i]); 

        } 

    } 

    // ################################################################ 

} 

 

void RobotariumTracker::publish(){ 

    // Publish 

    poses_pub.publish(poses); 

} 

 

int main(int argc, char** argv) 
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{ 

    ros::init(argc, argv, "tracker"); 

    RobotariumTracker tracker; 

 

    // Iterate at given rate 

    ros::Rate rate(30.); 

    while(ros::ok()) 

    {    

        // Activate callbacks 

        ros::spinOnce(); 

        // Publish tracked poses 

        tracker.publish(); 

        // Maintain publishing rate 

        rate.sleep(); 

    } 

   

    return 0; 

} 

 

C.4.3 Logger 

Essential part of the navigation package of the microscopic model, the logger node 

saves the simulation time as well as the successive poses of each robot in a file during the 

consensus mission. This file can later be analyzed to retrieve trajectories and compute the 

main mission metrics such as consensus location and consensus time. 

logger.cpp 

#include <gazebo_msgs/ModelStates.h> 

#include <fstream> 

#include <sstream> // for ostringstream 

#include <ros/ros.h> 

 

using namespace std; 

 

class RobotariumLogger 

{ 

public: 

  // Constructor 

  RobotariumLogger(); 

  void setFileName(const char *filename); 

   

private: 

  // Attributes 

  ofstream myfile; 

  ros::NodeHandle nh_; 

  ros::Subscriber poses_sub_; 

 

  // Methods 
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  void poseCallback(const gazebo_msgs::ModelStates::ConstPtr& msg); 

}; 

 

RobotariumLogger::RobotariumLogger() 

{ 

  // Declare topics 

  poses_sub_ = nh_.subscribe("/robotarium/controller/poses", 1, 

&RobotariumLogger::poseCallback, this); 

} 

 

void RobotariumLogger::setFileName(const char *filename){ 

  // Open logging file 

  myfile.open(filename); 

} 

 

void RobotariumLogger::poseCallback(const 

gazebo_msgs::ModelStates::ConstPtr& msg) 

{ 

    // Initialization 

    ros::Time time = ros::Time::now(); 

    int n = msg->pose.size(); 

    ostringstream line; 

    line << time << ","; 

     

    // For each robot 

    for (int i = 0; i < n; ++i){ 

        // Concatenate poses information 

        line << msg->pose[i].position.x; 

        line << ","; 

        line << msg->pose[i].position.y; 

        if (i < n-1) line << ","; 

    } 

     

    // Add poses to file 

    myfile << line.str() << "\n"; 

} 

 

int main(int argc, char** argv) 

{ 

    ros::init(argc, argv, "logger"); 

    RobotariumLogger logger; 

 

    // Set filename 

    if (argc == 2){ 

      logger.setFileName(argv[1]); 

    } else { 

      logger.setFileName("log.csv"); 

    } 

 

    // Iterate at given rate 

    ros::Rate rate(30.); 

    while(ros::ok()) 

    {    

        // Activate callbacks 

        ros::spinOnce(); 

        // Maintain publishing rate 

        rate.sleep(); 
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    } 

   

    // TODO: ideally there should be a node shutdown callback to close 

the file stream 

    //myfile.close();   

 

    return 0; 

} 
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