
DEVELOPMENT OF A MULTI-PLATFORM
SIMULATION FOR A PNEUMATICALLY-ACTUATED

QUADRUPED ROBOT

A Thesis
Presented to

The Academic Faculty

by

Hannes G. Daepp

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
Department of Mechanical Engineering

Georgia Institute of Technology
December 2011

DEVELOPMENT OF A MULTI-PLATFORM
SIMULATION FOR A PNEUMATICALLY-ACTUATED

QUADRUPED ROBOT

Approved by:

Dr. Wayne J. Book, Advisor
Department of Mechanical Engineering
Georgia Institute of Technology

Dr. Jun Ueda
Department of Mechanical Engineering
Georgia Institute of Technology

Dr. Christiaan Paredis
Department of Mechanical Engineering
Georgia Institute of Technology

Date Approved: 4 November 2011

To my Grandfather,

David M. Gorkin

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Wayne Book, and my committee members,

Dr. Chris Paredis and Dr. Jun Ueda. This project also would not have been possible

without the aid of Michael Valente, who constructed and redesigned the mechanical

components of the test platforms used for validation of the simulation model. Ad-

ditionally, I would like to express my gratitude to friends, staff, and fellow students

for their help, suggestions, and encouragement, especially JD Huggins, Ryder Winck,

Brian Post, Mark Elton, Heather Humphreys, Josh Schultz, Alek Kerzhner, Longke

Wang, and Aaron Enes. Finally, I would like to thank the Center for Compact and

Efficient Fluid Power and the National Defense Science and Engineering Graduate

Fellowship Team/Office of Naval Research for providing the financial support that

made the thesis possible.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF SYMBOLS . xiii

SUMMARY . xvi

I INTRODUCTION . 1

1.1 Motivation . 2

1.2 Research Objectives . 2

II BACKGROUND AND LITERATURE REVIEW 4

2.1 Legged Locomotion . 4

2.1.1 Pneumatic Actuation . 5

2.1.2 Pneumatic Modeling . 6

2.2 Simulation . 8

III SYSTEM OVERVIEW . 10

3.1 Rescue Robot Testbed . 11

3.1.1 Quadruped Robot . 12

3.1.2 Two-Legged Testbed . 13

3.2 Dynamic Simulation . 15

3.3 Operator Interface . 15

IV ACTUATOR SIMULATION DESIGN 18

4.1 Simulink Actuator Model . 18

4.1.1 Mass Flow Through an Orifice 19

4.1.2 Energy Balance . 20

4.1.3 Force Balance . 20

v

4.2 Modeling Adjustments . 21

4.2.1 Data Collection from an Actuator Test Rig 21

4.2.2 Friction . 23

4.2.3 Valve Model Fitting . 34

4.3 Experiments & Results . 45

4.4 Limitations . 50

4.4.1 Robustness & Variability . 53

4.4.2 Friction Effects . 53

4.4.3 System Bandwidth . 54

V DYNAMIC SIMULATION . 56

5.1 SrLib Structure . 56

5.2 Actuator Model Integration . 59

5.3 Simulink Model . 63

5.3.1 Analysis and Debugging Tools 63

5.3.2 Network Setup . 64

5.4 Validation Platform Configuration 66

5.5 Experiments & Results . 67

5.5.1 Open Loop Experiments . 67

5.5.2 Closed Loop Experiments . 67

5.5.3 Computational Demands of Individual Simulation Components 78

5.5.4 Summary of Performance and Limitations 85

5.6 Improvements . 89

5.6.1 Robot Simulation Parameters and Target Configuration . . . 89

5.6.2 Dynamics Library Design and Configuration 91

VI CONCLUSIONS AND FUTURE WORK 93

6.1 Impact of Advanced Valve Model . 93

6.2 Impact of Advanced Friction Model 94

6.3 Network and Configuration Requirements 95

vi

6.4 SrLib Approximations . 95

6.5 Overall Actuator Model Accuracy 96

6.6 Future Improvements . 97

6.6.1 Expansion to 12 Joints . 97

6.6.2 Robot Modeling . 97

6.6.3 Solver Review . 98

6.6.4 Improved Simulation Framework 98

APPENDIX A — VALIDATION PLATFORM SOFTWARE AND

ANALYSIS FILES . 100

APPENDIX B — SIMPLE ACTUATOR MODEL COMPONENTS109

APPENDIX C — DYNAMIC SIMULATION COMPONENTS . . 122

APPENDIX D — OPERATOR MANUAL 140

REFERENCES . 144

vii

LIST OF TABLES

1 D-H Table for each leg. Asterisks mark a variable 12

2 Tabulated Coulomb and Viscous Results 32

3 Impact of removing components on the TET of the Gamma joint ac-
tuator model . 80

viii

LIST OF FIGURES

1 Friction models . 7

2 System Components with robot . 10

3 Robot diagram . 11

4 Quadruped robot resting atop an obstacle block 13

5 Two-legged robot . 14

6 Operator Interface . 16

7 Actuator block diagram . 18

8 Test setup used to validate cylinder model. Note that the force sensor
and mass attachment are not pictured here 22

9 General form of friction . 24

10 Overview of friction models . 25

11 Contribution of coefficients to Stribeck-Tanh friction model 28

12 Determination of friction components from pressure curves 29

13 Stiction distribution. Red lines show the median value, the edges of the
blue box mark the 25th and 75th percentiles, the dashed lines extend to
the most extreme data points not considered outliers, and the outliers
are plotted as red ’+’ symbols. 30

14 Friction distribution assuming that only Coulomb friction occurs when
the cylinder is in motion. Red lines show the median value, the edges
of the blue box mark the 25th and 75th percentiles, the dashed lines
extend to the most extreme data points not considered outliers, and
the outliers are plotted as red ’+’ symbols. 31

15 Fitting of Stribeck-Tanh curve to measured friction data 33

16 Performance of friction model for a range of step types. Regions high-
lighted in green are during cylinder motion, while those faded out are
when the piston is at the limits of motion, at which point reaction
forces come into play . 33

17 Matching of pressure curves to demonstrate existence of offset voltage
at 5.25 V . 35

18 Linear area model with offset area . 36

19 Overlapped valve model . 37

ix

20 Underlapped valve model . 37

21 Valve orifice area for use with mass flow as a net sum of different mass
flows . 39

22 Valve orifice area for use with mass flow as a net sum of different mass
flows . 40

23 Input pressure trends . 42

24 Equivalent area curves for 50 psig actuator model 44

25 Selection of slower step tests used to validate the actuator model through
its open loop response . 46

26 Selection of faster step tests used to validate the actuator model through
its open loop response . 46

27 Selection of sine tracking tests used to validate the actuator model
through its closed loop response . 47

28 Selection of sine tracking tests used to validate the actuator model
through its closed loop response . 50

29 Effects of variations in actuator configuration and supply pressure on
model accuracy . 51

30 Effects of variations in actuator configuration and supply pressure on
model accuracy . 52

31 Left: Simulated closed loop pressure appears to have higher bandwidth
than sensor pressure. Right: Unfiltered pressure data shows that this
effect may be caused by sensor measurements and data processing. . . 54

32 Diagram of SrLib process structure 57

33 Robot leg structure, shown in SrLib (left) and on an a Solidworks model
of the actual robot. Corresponding colors show how real components
contribute to modeled SrLib links . 58

34 Geometry of an Alpha joint. The cylinder and associated sensors have
been removed to provide a clearer picture of the relevant joint geometry,
though the piston is still shown . 60

35 Geometry of a Beta joint . 61

36 Geometry of a Gamma joint . 62

37 Pauses in plots can be tracked in Wireshark 65

38 Closed loop tracking of a series of steps for the Gamma joint 69

x

39 Closed loop tracking of a series of trapezoidal profiles for the Gamma
joint . 72

40 Closed loop tracking of a sine wave for the Gamma joint 73

41 Closed loop tracking of a series of steps for the Beta joint 74

42 Closed loop tracking of a fast sine wave for the Beta joint 75

43 Closed loop tracking of a series of steps for the Alpha joint 76

44 Joint tracking of a characteristic leg walking motion 77

45 Joint tracking of a characteristic leg walking motion using an Alpha
joint controller with a reduced gain 78

46 Closed loop tracking of a series of steps for the Gamma joint using
a linear equivalent orifice area and fixed model supply and exhaust
pressures . 81

47 Closed loop tracking of a series of steps for the Gamma joint using
a linear equivalent orifice area and fixed model supply and exhaust
pressures . 82

48 Closed loop tracking of a series of steps for a vertical actuator modeled
in Simulink only (Chapter 4 model) using a simple viscous friction model 83

49 Closed loop tracking of a series of steps for the Gamma joint using a
simple viscous friction model . 84

50 Closed loop tracking of Phantom commands to the alpha joint for three
different inertia models . 87

51 Errors in simulated response cause by pauses in SrLib operation . . . 91

52 Simulink file for use with the single degree-of-freedom test rig 101

53 Subsystem of the Simulink file for use with the single degree-of-freedom
test rig corresponding to the yellow “Hardware and Controllers” block
in Figure 52 . 102

54 Simulink file for use with the two-legged CRR prototype 103

55 Subsystem of the Simulink file for use with the two-legged CRR proto-
type corresponding to the yellow Hardware Interfacing block in Figure
54 . 104

56 Filters used for data analysis. Clockwise from top left: Position, Ve-
locity, Force, and Pressure . 108

57 Simulink actuator model, controller, and system dynamics 113

xi

58 Valve and cylinder modeling inside the “Cylinder Model” block of the
Simulink model shown in Figure 57 114

59 Friction model within the Simulink actuator model 118

60 First half of the Simulink file used together with SrLib to simulate an
entire CRR leg . 127

61 Second half of the Simulink file used together with SrLib to simulate
an entire CRR leg . 128

62 Diagram of SrLib process structure 129

63 Dynamic simulation network configuration - general case. GW =
“Gateway”. 141

64 Dynamic simulation network configuration - arrangement used for val-
idation in this thesis. GW = “Gateway”. 141

65 Two-legged prototype network configuration - general case. GW =
“Gateway”. 142

xii

LIST OF SYMBOLS

Symbol Meaning

B00 Transformation Matrix from local robot origin to shoulder

∆ Distance from local robot origin to leg pair

xoffset Offset of leg shoulder from robot thorax

d1 Orthogonal distance from shoulder to coxa

a1 Length of coxa

a2 Length of femur

a3 Length of tibia

xoffset Offset of leg shoulder from robot thorax

φ Rotation of 0 or 90◦ about the local robot origin

θ0 Angle of rotation of robot shoulder

θ1 Rotation of Alpha joint

θ2 Rotation of Beta Joint

θ3 Rotation of Gamma Joint

m Mass

ṁ Mass flow

u Input Voltage

A(u) Orifice Area as a function of input voltage

cd Discharge coefficient

P Pressure

Pu Upstream Pressure

Pd Downstream Pressure

PSupply Supply pressure

PChamber Cylinder chamber pressure

PCr Critical pressure ratio

xiii

Symbol Meaning

T Temperature

Tu Upstream temperature

Td Downstream temperature

Phi(Pd, Pu) Function within mass flow equation

x Piston position

xabs Absolute piston position, which includes the dead space in the

cap side

ẋ Velocity of cylinder piston

C1 Constant for mass flow that is a function of R and k

C2 Constant for mass flow that is a function of R and k

R Universal Gas Constant

k Ratio of Specific Heats

cp Specific Heat

K0 Constant

A0 Constant

τ Time constant

FFriction Friction force

FC Coulomb friction

FS Static friction, Stiction

CV Coefficient of viscous friction

µ Coefficient of friction for dry friction model

N Normal force

ktanh Tanh coefficient

v Piston velocity

vS Sliding speed coefficient

xiv

Symbol Meaning

Pinput Modeled varying supply and exhaust pressures for valve model

CScale Function of pressure cutoffs and input pressures

KPress Function of pressure cutoffs

xoffset Pressure model x-axis offset

yoffset Pressure model y-axis offset

PS Actual supply pressure

PE Actual exhaust pressure

CHP High pressure cutoff voltage

CLP Low pressure cutoff voltage

l1 - l5 Constant distances used to find relationship of rotation angle

to piston position in Chapter 5

φ1 Angle constant

φ2 Angle constant

λ1 Varying angle used to find moment arm for force-torque con-

versions

θα, θβ, θγ Measured rotation of Alpha, Beta, and Gamma joints

γα, γβ, γγ Angle of Alpha, Beta, Gamma joints needed for Law of

Cosines

F Actuator force output

Tα, Tβ, Tγ Simulated actuator torque output

xv

SUMMARY

Successful development of mechatronic systems requires a combination of tar-

geted hardware and software design. The compact rescue robot (CRR), a quadruped

pneumatically-actuated walking robot that seeks to use the benefits garnered from

pneumatic power, is a prime example of such a system. A simulation has therefore

been developed that models the dynamics of the robot and its interaction with the

environment. However, development of an entirely new dynamic simulation specific to

the system is not practical. Instead, the simulation combines a MATLAB/Simulink

actuator simulation with a readily available C++ dynamics engine. This multi-

platform approach results in additional incurred challenges due to the transfer of

data between the platforms. As a result, the system developed here is designed in

the fashion that provides the best balance of realistic behavior, model integrity, and

practicality.

This thesis discusses development and testing of a simulation that uses an ana-

lytically derived valve model to enable a user to examine the impacts of pneumatic

actuation on a walking robot. An actuator model is developed using classical fluid

circuit modeling together with nonlinear area and pressure curves to model the valve

and a Stribeck-Tanh model to characterize the effects of friction on the cylinder. The

valve model is designed in Simulink and validated on a single Degree-of-Freedom test

rig.

This actuator model is then interfaced with SrLib, a dynamics library that com-

putes dynamics of the robot and interactions with the environment, and validated

through comparisons with a CRR prototype. Conclusions are focused on the final

xvi

composition of the simulation, its performance and limitations, and the benefits it

offers to the system as a whole.

xvii

CHAPTER I

INTRODUCTION

In the wake of catastrophic disasters, rescue teams are forced to deal with harsh

terrain, limited resources, and minimal time for action. This is the type of scenario

in which rescue robots are used. Though many researchers are working to enhance

the role of robots in disaster recovery [19, 39, 40, 45], the focus is often placed on

endurance and search [37] rather than actual rescue [45]. Additionally, most current

rescue robots are electrically actuated and only capable of exerting significant force

at the cost of high weight [37].

In 2006, in an attempt to create a more capable rescue robot, the Center for Com-

pact and Efficient Fluid Power (CCEFP) created a testbed called the Compact Rescue

Robot (CRR). The CRR combines the high force and power density of pneumatic ac-

tuation [9, 10, 44, 47, 52, 55] with compact, lightweight power sources [22, 43, 44] to

produce a lightweight, quadruped robot capable of high force output during several

hours of untethered operation. The robot, which uses legged motion because of its

known effectiveness on difficult terrain [19], is tele-operated via a user interface with

audio-visual and haptic feedback. Two prototypes have been constructed, one with

two legs and another with four. However, while the two-legged version can only walk

with the aid of training wheels, the four-legged robot is plagued by reliability issues.

Both robots are also subject to typical hardware design constraints that limit radical

design changes because of potentially catastrophic setbacks resulting from possible

failure.

In 2008, in response to these challenges, a simulation was developed to provide

an additional design tool to model the robot’s behavior given position commands

1

[29]. However, the simulation represented joints as proportionally controlled servo

motors capable of infinite torque, essentially limiting it to a kinematic simulation

useful only for development of high level control strategies [13]. This thesis focuses

on the development and implementation of an improved simulation that combines the

simulated robot dynamics with a model of the pneumatic actuator dynamics, thereby

providing a valuable new design tool to further CRR development.

1.1 Motivation

The simulation presents a basis for evaluation of fluid power in legged robotics by cou-

pling modeling of pneumatic actuation and a dynamic environment simulation. Since

the simulation of the robot and environmental interactions is solved in real-time, it is

possible to examine altered dynamics and effectiveness of control schemes following

system modification. Similarly, compact power sources can be tested by modeling

their weights and observing the amount of time it takes for the robot’s actuators to

have consumed the total amount of provided fuel. In simulation, design changes can

be made safely and easily, and the impacts can be seen almost immediately.

The simulation also provides flexibility in design of the operator interface: The

ease of modification and testing on the simulation make it possible to safely alter

the system design and operator interface hardware and software in parallel, quickly

viewing the change in overall performance, and determining the right combination of

parameters to encourage the best operator performance. Additionally, the benefits of

haptic feedback are preserved by providing the operator with a sense of the impact

of pneumatic actuation through force feedback.

1.2 Research Objectives

The simulation is constructed to be a balance of usability and performance. The goal

is to produce a simulation that is easily modifiable using actual, physical parameters

2

specific to the actuator or robot, applicable across a range of situations, and imple-

mentable on existing, commonly available hardware and software. The simulation

integrates an analytically derived model of a pneumatic actuator with the robot’s

overall dynamics, using the two-legged CRR prototype to verify the results.

The simulation performance must reflect the behavior of the system to ensure that

it can be used as a substitute for the physical robot during the design process. How-

ever, perfect correspondence between simulation and reality is impossible. Instead,

emphasis is placed on accuracy of the overall behavior of the pneumatic system, rather

than on the accuracy of the individual actuators. The model is derived analytically

rather than through system identification because of the ability to obtain a model

that depends on known, measurable actuator and robot parameters, which can be

edited to fit the simulation to different tasks and hardware modifications.

For convenience of construction, the simulation is composed of interfaced existing

software packages. The actuator model is written in Simulink and implemented on a

realtime computer running xPC target and connected, via a local network, to SrLib,

a free and readily available dynamics library running in C++/openGL.

The overall objective is to produce a simulation that closely captures the effects

of pneumatic actuation on behavior of the robot using a system that can be easily

modified and conveniently constructed. Results will focus not only on the accuracy of

the system, but also on the modeling and implementation decisions, the simulation’s

limitations, and suggested improvements.

3

CHAPTER II

BACKGROUND AND LITERATURE REVIEW

The design choices for the CRR are discussed in detail in [23] and [55], but much

of the reasoning can be summarized by the review of the value of legged locomotion

and pneumatic actuation discussed in this chapter. Additionally, an overview of

pneumatic modeling approaches and simulation platforms provides a background and

justification for the combination of tools used within this thesis.

2.1 Legged Locomotion

The success of legged motion in nature and on a range of terrains [19] has made it a

popular research topic within robotics. Numerous efforts have been made to analyze

legged motion and replicate it in engineering, with testbeds ranging from quadrupeds

[16, 17, 50], to hexapods [11, 25, 57], to vehicles with eight legs [54] or more. A

wide span of research applications has served to demonstrate the versatility of legged

locomotion, using platforms like climbers for mudslides and earthquakes [12, 39],

packhorses for military aid [42], and manipulators for maintenance of nuclear systems

[33].

Most early research on legged systems focused on the construction of walking

machines [25, 26, 49, 57] and the development of basic gaits [34, 35]. Later efforts

studied the challenges that arise from gait implementation: avoidance of kinematic

singularities [38], transitions between gait types [28], and ways to circumvent deadlock

(the case where no further forward motion is possible) [18], among others.

The CRR has walked successfully in the past, using pre-programmed gaits [55]

and a controller that makes use of gain scheduling to vary actuator control effort as

the leg passes through different kinematic configurations. To represent this kind of

4

robot behavior, the actuator accuracy should be preserved throughout the switching

process, a condition best achieved by an analytically derived actuator model that

functions across an array of situations.

2.1.1 Pneumatic Actuation

Pneumatic actuation has been widely employed in industry [46] because of its many

benefits, including power and force density, clean, safe actuation and low cost [9, 30,

52], especially compared to electric motors [8, 30]. These benefits can be enhanced

through the use of high pressures, as exemplified by multiple CCEFP projects in-

tended for future implementation on the CRR that are aimed at creating compact,

lightweight power sources [22, 43, 44]. Pneumatic actuation has also been used in

past legged robots [31, 32, 41], where its light weight and natural compliance aids in

the overall design and behavior of walking machines.

However, the compressible and highly nonlinear nature of pneumatic systems has

proven to be a limiting factor in the wider adaptation of pneumatics as an actuation

choice. Researchers have struggled to find a simple control strategy such as PID

or PVA control that produces high quality position tracking results without also

requiring considerable mechanical modification of the actuator [30, 56]. Instead, a

variety of advanced control techniques that are more computationally costly and

sensor heavy have been tested, such as fuzzy state feedback [46], impedance control

[58], neural networks [10], and adaptive control [8], though the best results have

generally been achieved using sliding mode controllers [9]. Bone and Shu [9] offer a

comprehensive review of the approaches and results of some of the most prominent

efforts at pneumatic control. While many of these controllers demonstrate promising

accuracy in tracking, most of them limit their validations to simple, single degree-of-

freedom linear actuators. The CRR requires a controller that can maintain robustness

despite the varying dynamics that result from a legged robot that can be in either

5

stance or swing, or the various applied forces that must be handled. This was dealt

with previously by Guerriero through the use of pressure feedback and gain scheduling

[23].

These limitations affect the overall performance of the robot and need to be appro-

priately understood in order to produce a robot capable of the accuracy and reliability

necessary for search and rescue. The development of an actuator model makes it pos-

sible to not only observe the final position and pressure response, but also to examine

how controllers and dynamics are affected by individual parameters in the actuator.

Furthermore, the integration of robot dynamics will help help to guide control and

interface design along a path specific to the desired application.

2.1.2 Pneumatic Modeling

A typical pneumatic actuator consists of a valve and cylinder. Several standard

models have been developed, including ones by the Instrument Society of America

(ISA) [51], National Fluid Power Association (NFPA) [27], and a similar standard

model used in academia [6, 47, 52]. Each of these models follows the same basic

principles, but varies primarily in its definition of modeling constants and associated

assumptions. Researchers have also developed several non-traditional models, such as

a high integrity mass-based model [52] or lower-order linearized models [56]. However,

these approaches are primarily used for targeted usage in controls or to illustrate a

particular point, and are not as well suited for general, open loop dynamic modeling.

While several papers have discussed the derivations and usage of models for pneu-

matic actuation [10, 27, 47, 51, 52], one of the most explicit and useful papers is

a 2005 publication by Bone and Shu [47], in which they discuss the derivation of a

model for a specific physical test setup in detail. The authors focus in particular on

the matching of model data, though they replace the standard mass flow equations

with a curve fit version of their own that matches the measured data more closely.

6

They also use a simple friction model, and discuss the derivation of stiction forces

from the pressure measurements for use in a simple velocity Coulomb-viscous friction

model.

Figure 1: Friction models

Friction is a major area of concern in pneumatic modeling, caused by interactions

between the piston seals and cylinder housing. Several approaches have been devel-

oped, ranging in complexity and accuracy [7, 47, 58]. The approach used by Bone and

Shu is simple, but is difficult to use in practice because of the discontinuity that oc-

curs at zero velocity. Andersson [7] provided an overview of challenges and potential

solutions to the discontinuity and other problems, noting the trade-offs of realism and

ease of modeling among different friction characterizations. Figure 1 shows several

variations on velocity-dependent friction models, a topic that will be addressed in

greater detail in section 4.2.2.

7

2.2 Simulation

Simulation is a popular tool in robotics development because it enables fast and effec-

tive parameter adjustment and design testing, low cost, increased safety and overall

improvement of the decision process [14, 20, 21, 59]. Several established packages

exist that allow modeling of different actuator types in large systems, such as Dy-

mola, MSC-Adams, SimulationX, and Simscape/Simulink. Products like Dymola and

SimulationX use the Modelica language to broadly define systems, providing consid-

erable breadth of application [21]. Though many such simulation packages are lim-

ited to offline solutions, several commercially available tools exist that convert these

non-realtime models to realtime using dedicated hardware [20, 21]. Modelica-based

models can be run on a target using a special Dymola compiler [2], while Simulink

programs can use Simulink Coder to run on xPC Target, MATLAB’s realtime target

operating system [4]. This thesis uses a Simulink based model running on a dedicated

target PC. The model’s structure is based on a set of generalized equations, together

with customized variations to more accurately capture details like equivalent valve

orifice area and cylinder friction. Simulink is also the program used to interface with

and control the actual robot, and was thereby chosen over other options to maintain

consistency and convenience of use.

Modeling of the robot dynamics and environmental interactions could also be

done in programs like Dymola or Simulink, but these software packages have been

shown to be ill-equipped for the dynamic challenges of walking and surface contacts

[53]. Instead, several open source simulation platforms have been developed that are

specifically aimed at creating robots from rigid body and joint libraries and modeling

their behaviors [1, 24, 48].

One such platform is Seoul National University’s Robotics Lab Library (SrLib)

[24], which provides a solution in the form of a real-time multi-body rigid dynamics

simulation with collision detection and contact behavior. Systems are created in

8

SrLib using links and joints from the library, then run in an environment composed

of multiple systems. The simulation uses Lie Groups and recursive dynamics, coupled

with a Projected Gauss Seidel (PGS) solver for Linear Complementarity Problems

(LCP) for contact and friction modeling, to produce a solution [24].

SrLib was chosen because of its realtime operability, its modular structure, and

the support network of SrLib developers located on the Georgia Tech campus when

a version of the simulation without actuator dynamics was originally implemented

in 2009. Additionally, SrLib is configured for TCP/IP communication, enabling it

to interface easily with other platforms. A UDP connection across a local network

was used to establish communication between the Simulink actuator model and SrLib

robotics simulation, forming the complete dynamic simulation developed in this thesis.

9

CHAPTER III

SYSTEM OVERVIEW

Figure 2: System Components with robot

On the physical testbed, depicted in Figures 2b and c, there are four primary com-

ponents:

1. Operator Interface

2. Target PC and Simulink Software

3. Host PC for Target

4. Robot

Each of these components serves a specific function towards operation of the robot.

The operator interface allows a user to manipulate and move the robot in free space.

10

The target PC contains the primary Simulink code that is used to translate commands

from the operator to robot actuator commands and provided feedback to the operator.

The host PC is used to run the target to collect data processed during experiments

or other operations. The final component, the robot, receives commands from the

operator and returns actual information such as position, joint angles, and orientation.

From a high level perspective, replacement of the physical robot with the actua-

tor model and dynamic simulation is simple, since the commands sent to and from

the robot are the same as those exchanged by the simulation. An overview of the

components and their interaction is shown in Figure 2a and discussed in detail in the

following sections.

3.1 Rescue Robot Testbed

Figure 3: Robot diagram

Several versions of the robot have been developed for use in this system, including

a four-legged prototype for mobility and manipulation testing, a simulated quadruped

for design development, and a two-legged prototype for use with manipulation, simula-

tion validation, and operator interface development. While the dimensions, actuation

strategies, and purposes of these robots vary, they are related by the fact that they

11

are fundamentally of the same kinematic structure. That is, they each possess the

form illustrated in Figure 3, such that each shoulder can be mapped from the local

robot origin using the transformation

B00 = Rotz(φ)Transx(xoffset)Transy(∆)Roty(θ0) (3.1.1)

where φ is a rotation of 0 or 90◦ about the local robot origin. From the respective

shoulders, then, each of the robot’s legs can be described by the Denavit-Hartenberg

parameters in Table 3.1.

Table 1: D-H Table for each leg. Asterisks mark a variable
Joint θ d α a
Shoulder – – 0 0
1 θ1* d1 -90 a1
2 θ2* 0 0 a2
3 θ3* 0 0 a3
4 0 0 – –

The motivation for these kinematics is primarily based on past manipulator design

and the overall goals of this particular testbed, as discussed extensively in theses by

Guerriero and Wait [23, 55].

3.1.1 Quadruped Robot

Of the available hardware, the four-legged robot (Figure 4) is most relevant to even-

tual practical implementation. This robot uses 12 actuators controlled by indepen-

dent microcontrollers that receive signals from a Target PC containing the primary

Simulink software. The microcontrollers are found on Joint Control Units, or JCU’s,

located at each joint. Each JCU receives setpoints from the target and implements

PVA controllers using position feedback from a rotary potentiometer – also processed

by the JCU – to actuate the joint. The 12 JCU’s are connected by a CANbus wire

that is routed back to the target PC. This communication design results in a compact

system that localizes low-level control tasks and is intended for eventual field use.

12

Figure 4: Quadruped robot resting atop an obstacle block

The actuation strategy is relatively simple: each joint features a cylinder-damper

combination connected to a custom-built rotary valve. Whereas most pneumatic

actuation strategies have required one or more pressure sensors in addition to position

feedback, this approach minimizes the amount of required sensors, and functions by

using the added effect of damping to help linearize the system and to raise the gain

margin so that more control effort can be implemented [56]. While this strategy has

been shown to improve control where only position feedback is used, its success pales

when compared to more complicated techniques that utilize pressure and force loops.

Accordingly, the other hardware available for use with the testbed makes use of a

setup that is easily adaptable to more advanced control strategies.

3.1.2 Two-Legged Testbed

The two-legged testbed (Figure 5) was originally designed by Guerriero as an interim

platform to test the feasibility of the operator interface. It has since developed into

13

Figure 5: Two-legged robot

a system with which to study pneumatic control strategies for manipulation and

tele-operation and to aid interface design. Unlike the quadruped prototype, the two-

legged robot uses actuators without dampers, instead making use of position and

pressure feedback. Valve input commands are issued from a target PC containing

Simulink software that governs both high level and low level (joint control) tasks.

This setup ensures a more modular approach than that of the quadruped, though

it makes the system less inclined for practical implementation and more targeted

towards laboratory testing of research goals.

14

3.2 Dynamic Simulation

The robot simulation consists of two parts: an actuator model that accepts a voltage

input and outputs a command torque, and a C++/OpenGL model that accepts

command torques from actuator models for each joint and provides robot dynamics

(Figure 2a). The platforms interact via UDP connections sent between computers on

a local network, as shown in Appendix D.

The simulated robot has the same dimensions and kinematics as the two-legged

robot, but extended to a four-legged configuration. The simulated actuators were

also modeled based on the physical ones found on the two-legged platform, which was

available for use and more reliable for an extended time period than the quadruped

prototype. Additionally, the two-legged robot uses valves and cylinders commonly

found in industry and among pneumatic research testbeds [9, 47, 52], making its usage

as simulation validation more relevant to a general audience.

Future application of the simulation to the quadruped robot is likely possible,

though complicated due to the difference in actuator design. While the linear damper

and reduced cylinder sizes would be relatively simple to model, the custom rotary

valves, which possess different dynamics than the Festo MPYE-5 valves that were

used, would require considerable extra effort to model. This type of redesign, while

potentially valuable in examining the breadth of utility of the simulation, was not

pursued because of the extensive data collection, reconsideration of key components

required for its implementation, and inability to maintain the reliable behavior that

would be required of the quadruped prototype.

3.3 Operator Interface

The robots described above all possess two or more legs, with the intent of achieving

mobility and manipulation. To do so, they are coupled with an operator interface

15

Figure 6: Operator Interface

(Figure 6) that inputs user commands from two Phantom haptic joysticks and re-

turns audio-visual and haptic feedback. Each of the Phantom joysticks is capable of

operating in six degrees of freedom, though only three are used. The motion of the

end effectors of these joysticks is mapped to the end effectors of the robot via an offset

and a scaling, and then converted to joint angle motions using inverse kinematics,

as seen in the codes found in Appendix A. Additional user inputs from keyboard

commands or other sources can be coded as numeric flags and transmitted for use as

indicators or in state machines.

To map the robot’s four legs to the operator, a high-level control strategy that

combines haptic feedback with a constrained model-predictive controller was imple-

mented. The controller used haptic feedback to guide placement of the front legs and

provided automated rear leg motions, resulting in a gait the produced general forward

motion without ever risking loss of static stability. The controller was tested on a

16

non-dynamic version of the simulation, in which the simulation simply accepted joint

angles and used a proportional controller to actuate joints capable of exerting effec-

tively infinite torque in a very short time period, resulting in nearly perfect dynamics.

The results from these efforts where promising [13], but were limited in their value

by a lack of realistic dynamics, another motivating factor for increased simulation

realism.

17

CHAPTER IV

ACTUATOR SIMULATION DESIGN

A model for the actuator was developed using the “standard” academic model for

a pneumatic actuator [6, 47, 52], based on a physical setup consisting of a valve

and cylinder with position and pressure feedback. The model was designed and val-

idated in MATLAB Simulink, then packaged as a single block that accepts voltage

and returns output force. This block was in turn integrated with the complete dy-

namic simulation, leading to a full approximation of the system behavior that will be

discussed in Chapter 5.

4.1 Simulink Actuator Model

The fundamental equations that define the actuator model consist of four primary

components: a conversion of voltage input to orifice area, an equation for mass flow

through an orifice, an energy balance to relate mass flow to change in pressure, and a

force balance to derive output force from the pressure and friction components. The

resulting model is a nonlinear, third order system as shown in Figure 7.

Figure 7: Actuator block diagram

18

4.1.1 Mass Flow Through an Orifice

Mass flow, ṁ, is typically calculated as a function of upstream and downstream

pressure, orifice area, and a discharge coefficient, cd, and several predefined constants,

and is of the form

ṁ = A(u)cdΨ(Pd, Pu) (4.1.1)

The choice of upstream and downstream pressure is dependent on the direction of

flow, as defined by the valve command. For each chamber then, the mass flow can be

defined as

Charging (flow into the chamber): Pd = PSupply, Pu = PChamber (4.1.2)

Discharging (flow out of the chamber): Pd = PChamber, Pu = PAtmosphere (4.1.3)

The function Ψ(Pd, Pu) is a nonlinear piecewise-defined function that varies depending

on the pressure ratio, which determines whether the system is experiencing choked

or unchoked flow:

Critical Pressure Ratio for air Pcr = Pd/Pu = 0.528 (4.1.4)

For Pd/Pu > Pcr (un-choked flow):

Ψ(Pd, Pu) = C1
Pu√
Tu

(

Pd

Pu

)1/k
√

1−
(

Pd

Pu

)(k−1)/k

(4.1.5)

and for Pd/Pu <= Pcr (choked flow):

Ψ(Pd, Pu) = C2
Pu√
Tu

(4.1.6)

where Tu and Td refer to upstream and downstream temperature. These quantities

are calculated using the ideal gas law and the instantaneous total mass and pressure

in the cylinder

T =
PAxabs

mR
(4.1.7)

19

where A is the cross-sectional area of the chamber and xabs is the absolute position

of the rod, which includes the dead space inherent to each chamber of the cylinder.

The constant terms C1 and C2 are functions of the universal gas constants R and the

ratio of specific heats k, as shown in equation (4.1.8):

C1 =

√

2k

R (k − 1)
(4.1.8)

C2 =

√

k

R
(

k+1
2

)(k+1)/(k−1)
(4.1.9)

For air, k = 1.4 and R = 287 J/Kg K.

4.1.2 Energy Balance

The previous equations govern the dynamics of the valve. The next step, an energy

balance, defines the link that connects mass flow through the valve to changes in

pressure within the chambers of the cylinder. Under an adiabatic assumption, which

is generally acceptable for fast acting systems such as a pneumatic walking machines,

the change in pressure in each chamber of the cylinder can be found using the ideal

gas law:

Ṗ =
kRTṁ

xabsA
− Pẋ

xabs

(

kR

cp
+ 1

)

(4.1.10)

where cp = 1012 J/Kg K is the specific heat of room temperature air. Equation

(4.1.10) is applied to both sides of the cylinder and integrated to get rod-side and

cap-side pressures .

4.1.3 Force Balance

Given the pressures in each side of the chamber, a force balance is used to determine

the amount of force exerted by the actuator. Naturally, there are some losses that

may affect the actual force experienced by the system. The most critical of these is

friction, which is heavily dependent on the internal construction and lubrication of

the cylinder, as well as the rates at which the system is excited, and will be discussed

further in section 4.2.2.

20

The net force can then be summarized by equation (4.1.11):

Fnet = PcapAcap − ProdArod − PatmApiston − Ffriction (4.1.11)

where Acap and Arod refer to the cap-side and rod-side cylinder cross-sectional

areas, Apiston refers to the area of the rod, and the pressures used are absolute.

4.2 Modeling Adjustments

Though seemingly straightforward, the equations introduced in sections 4.1.1 - 4.1.3

are complicated by key parameters that are difficult to model accurately and con-

sistently. Notably, in the mass flow equation (eq. (4.1.1)), the discharge coefficient,

cd, and orifice area, A(u), have been shown to be nonlinear functions of command

voltage, and act as a scaling factor on the mass flow. In the force balance, the net

output force is altered by friction, a nonlinear force that is best modeled as a velocity

dependent function. These components were independently analyzed such that ac-

curate models could be derived and integrated with the otherwise standard actuator

model.

4.2.1 Data Collection from an Actuator Test Rig

In order to fit and validate the model, a test setup was required. The setup, shown in

Figure 8, consists of a Festo MPYE-5 proportional directional control valve coupled

with a 1.75” stroke Bimba PFC cylinder. The PFC model contains an internal linear

potentiometer that uses a wiper in the rod to output the rod position. Three SSI

Technologies pressure sensors located at the supply input to the valve and at the

head of each chamber provided measurements for the supply, rod-side, and cap-side

pressures. A force transducer, an ATI-ia Gamma model, was screwed to the end of

the rod and modified to be able to carry additional mass using a threaded bar. For

tests where the piston position needed to remain fixed, a spacer was placed between

the mass attachment and the end of the cylinder, forcing the piston to remain at

21

Figure 8: Test setup used to validate cylinder model. Note that the force sensor and
mass attachment are not pictured here

its maximum extension throughout the test. Signal and operating power were pro-

vided by a separate power source, but the actuating commands and measured signals

were sent and collected by a PC104 acting as the target PC for appropriate MAT-

LAB/Simulink files. The PC104 uses two Diamond Systems cards to send and read

signals – a DMM-32X-AT A/D card, and an RMM-1612-XT D/A card. Additionally,

because the cylinder and valve were simply mounted to an aluminum board that was

clamped to the table, the orientation could easily be changed by rotating the board

adjusting the clamp configuration.

It is important here to specify some general terminology for use with the valve.

The MPYE-5 series has a 0 to 10 V input range, referred to as the valve “input

voltage”, or “voltage command”. Additionally, for some voltage-dependent signals in

22

this model, it was desirable to use a voltage range centered about zero, which spans

-5 to 5 V and is referred to as the “centered voltage input”. However, the valve flow

is not actually centered midway through the range – instead, there is an offset voltage

at which point flow through both ports of the valve is equal. This point in the voltage

input command is called the valve offset. The specific voltage is called the “centered

voltage offset” within the centered voltage command, or “voltage offset” within the

regular valve voltage command range, and has the value of 0.25 V and 5.25 V for

centered and un-centered versions, respectively. A detailed derivation will follow in

section 4.2.3.

The Simulink program (Appendix A) provided the appropriate scaling and offset

constants to convert the raw voltage signals to pressures, positions, and forces. How-

ever, even after these conversions, much of the data needed to be filtered to ensure

that it could be worked with. Originally, low-pass filters were used to get rid of the

higher frequency noise content, but this resulted in considerable time delay that be-

came even more aggravated in the friction analysis, where it was necessary to also

obtain and filter the velocity. Instead, the final analyses use the filtfilt command

in MATLAB, which performs zero-phase digital filtering by processing the data of-

fline in both the forward and reverse directions [3]. The filters used by filtfilt were

Chebyshev type II Lowpass filters, designed using the MATLAB filterbuilder tool.

The filters were chosen for each dataset by examining the frequency response using a

signal analysis script documented in Appendix A.

4.2.2 Friction

Friction is a recurring topic in modeling and control of pneumatic cylinders. The

primary challenge is its inherently nonlinear behavior, which is perhaps best described

by breaking it down into several components that define the general form seen in

Figure 9. Static friction, or stiction, represents the forces experienced when the

23

Figure 9: General form of friction

cylinder first begins to move, and is denoted by FS in the figure. This typically

results from the particular seal or lubrication used and the contact between the piston

and the cylinder. Additionally, stiction may vary if taken at the end stops or from

some midpoint, though it is typically regarded as one fixed magnitude. Once the rod

begins to move, it experiences Coulomb (FC) and Viscous (CV ẋ) friction, resulting

not only from the interaction of cylinder components, but also possibly from the

compressibility of the gas.

Efforts by past researchers to model these effects vary in complexity. While many

researchers have simply approximated friction with a viscous damping term [6, 7],

several advanced models have been developed that looked at the behavior of two

contacting surfaces on a more sophisticated level, examining the behavior of the con-

tacts on a microscopic scale. Many of these models, such as LuGre and Stribeck,

though popular, are of limited use due to the presence of a discontinuity at zero

velocity. Alternative methods such as Dankowicz have been developed to provide ac-

curate, continuous friction models for very small velocities [7]. Such precise models,

24

however, are used at the cost of complex development, consisting of detailed measure-

ments, analysis and computation on a material level. This kind of precision is largely

unnecessary for human-scale systems such as this testbed. Instead, more practical

techniques developed by past researchers have been applied, using variations on es-

tablished viscous and Coulomb friction models [7, 47] and with empirically derived

components [6, 47].

4.2.2.1 Coulomb and Coulomb-Viscous Friction Models

Figure 10: Overview of friction models

One of the simplest friction models is a basic Coulomb friction model, character-

ized by the equation

FFriction =











FCsign(ẋ) if |ẋ| > 0

FCyl if ẋ = 0 and FCyl < FC

(4.2.1)

25

where FCyl is the net force the cylinder piston experiences due to chamber pressures

and FC is the Coulomb sliding friction force. For the system described in section

4.2.1,

FC = FCyl +mg (4.2.2)

and the Coulomb sliding friction force is defined by the coefficient of friction µ and

the normal force N to be

FC = µN (4.2.3)

However, this model, often referred to as dry friction, does not account for the

viscous component of friction. Instead, a different approach that combines Coulomb

and viscous forces can be applied [47], resulting in a model similar in form to a

simplified Stribeck Curve, as seen in Figure 10b. Assuming a constant normal force,

N , this friction model can be defined as

FFriction =























FCyl if ẋ = 0 and |FCyl| < FS

FS − FCyl if ẋ = 0 and |FCyl| > FS

FCsign(ẋ)− CV ẋ if |ẋ| > 0

(4.2.4)

where the maximum stiction force, FS, the Coulomb force, FC , and the coefficient of

viscous friction, CV are determined experimentally as done in Shu and Bone [47] and

discussed in section 4.2.2.4.

4.2.2.2 Viscous Friction Model

A simple and frequently employed alternative to the afore-mentioned models is the

approximate friction with a single velocity dependent term (Figure 10c):

FFriction = CV ẋ (4.2.5)

where CV is the coefficient of viscous friction, found empirically. This friction model

is certainly adequate for cases of low stiction and in some control applications, where

model error in favor of simple design is both justified and expected, but is likely

inappropriate for cases where stiction plays a significant role.

26

4.2.2.3 Stribeck-Tanh Model

To avoid the discontinuity incurred by more realistic friction models while still obtain-

ing more accurate behavior than a sole viscous friction model can provide, a friction

model that approximates the stiction region with a continuous segment was applied.

Literature demonstrates several techniques for approximating this region [7], such as

through the use of a scaled hyperbolic tangent function, or by substituting a steep,

linear, velocity dependent friction curve that is saturated once the velocity becomes

greater than some minimum value. The latter of these two was applied to an earlier

cylinder [15], where it showed promising results. However, the model was limited by

its piecewise continuity – edges occurring at the start of each defined region made

data harder to fit.

Instead, the analysis was performed with a smoother continuously differentiable

form that is based around a hyperbolic tangent curve, shown in Figure 10d and defined

by equation (4.2.6):

FFriction =
[

FC + (FS − FC) e
−(|v|/vS)

i
]

tanh(ktanhv) + Cvv (4.2.6)

where FC and FS represent Coulomb and static friction, respectively, v is the velocity,

vS is the sliding speed coefficient, i is the exponent, ktanh is the tanh coefficient,

and Cv is the coefficient of viscous frictions. While FC , FS, and Cv can be found

experimentally, the other parameters are matched to the data based on the overall fit.

Though the components interact to form a general friction curve, the contributions of

each constant are generally focused on one individual aspect of the curve, as illustrated

in Figure 11.

The Stiction and Coulomb friction components define the magnitudes of the curve

at its respective friction maximum and post-stiction minimum. The sliding speed

coefficient determines the velocity threshold at which stiction transitions to other

forms of friction, and the exponent, i, alters the change in slope of this region as it

27

Figure 11: Contribution of coefficients to Stribeck-Tanh friction model

varies from post-stiction drop to steady state viscous and Coulomb friction. A higher

ktanh results in a steeper slope around zero velocity, between the friction peaks, and

higher Cv raises the slope of friction in the steady state.

4.2.2.4 Friction Component Measurement

Certain friction parameters, such as the stiction, Coulomb friction, and viscous com-

ponents can be measured by observing pressure and position curves. Looking at a

typical open loop step, shown in Figure 12, it can be seen that initially, the pressures

are in their steady state equilibrium for a particular voltage. Once the step command

is received, the valve orifice opens and the pressures begin to change, eventually reach-

ing a peak that corresponds to the time at which the rod first begins to move. This

point is referred to in this thesis as a “stiction peak”, and represents the pressures

needed to first cause the rod to move. The associated stiction values can be found by

taking the net force from the differential pressures and subtracting any offsets due to

mass of the rod and its load. Similarly, the region after the peak represents the fric-

tion region governed by Coulomb and viscous friction. Since a step corresponds to a

28

Figure 12: Determination of friction components from pressure curves

constant orifice opening, the pressure change should be relatively constant, resulting

in an accordingly constant velocity. Thus, assuming a relatively simple friction model

such as the Coulomb-Viscous model, the resulting equation describes the net force as

a sum of forces with two unknowns, Cv, and FC . By taking multiple measurements at

different points with the same velocity, these equations can be solved simultaneously

to find values for the Coulomb and Viscous friction components.

To determine parameters that fit the friction models introduced in section 4.2.2,

open loop step tests were run at 20, 30, and 40 psig, in several orientations, and with

different loads placed on the end. While an ideal test would begin at rest midway

through the range of piston travel and end within the range as well, such tests are

difficult to conduct repeatably because of the challenges of guaranteeing absolutely

zero velocity with only an open loop valve command. Instead, most tests were run

from endstop to endstop. In cases where the contact of the piston and seals with the

29

Figure 13: Stiction distribution. Red lines show the median value, the edges of the
blue box mark the 25th and 75th percentiles, the dashed lines extend to the most
extreme data points not considered outliers, and the outliers are plotted as red ’+’
symbols.

endstop is fundamentally different from elsewhere in the cylinder, these kind of tests

would be of questionable value. However, the cylinders used are cushioned by dead

space at either end, and motion of the rod is stopped by a small contact locally about

the rod, not the entire piston surface area, meaning that these tests still produced

credible results for an overall cylinder friction model. Stiction was measured for each

of the cases using the methods derived earlier, and the results, shown in Figure 13,

clearly illustrate that stiction falls between 3.5 and 5.0 lbf.

Measurements of Cv and FC proved less consistent, in part due to the lack of useful

data that could be collected with the given methods. Achievement of an accurate

solution to the system of equations relied heavily on the assumption of a constant

velocity step. In reality, however, the step test was marked by small oscillations

before settling, albeit briefly, on a final constant velocity, producing varying results.

30

Figure 14: Friction distribution assuming that only Coulomb friction occurs when
the cylinder is in motion. Red lines show the median value, the edges of the blue
box mark the 25th and 75th percentiles, the dashed lines extend to the most extreme
data points not considered outliers, and the outliers are plotted as red ’+’ symbols.

An overview of these values and their apparent variation can be seen in Table 4.2.2.4.

However, by assuming that the Coulomb-viscous portion was dominated by FC and

setting CV to zero, it was possible to obtain an estimate of the total friction using the

same net force approach that had been used to obtain FS. These results are displayed

in Figure 14.

Despite the lack of trends among values determined by solving equations simulta-

neously, the friction estimates obtained looking at the sum of forces proved consistent

and were instead used as a starting point by which to tune curves to match the ob-

served behavior. It is worth noting that among the few values in the table that did

provide plausible (non-negative), consistent results (represented by standard devia-

tions considerably less than the average value), those that were calculated using a

large mass attachment also showed values near this estimate.

To better understand the friction model that would be most appropriate for this

cylinder, a force sensor was used to examine the exact forces experienced by a load on

31

Table 2: Tabulated Coulomb and Viscous Results
Load of 10 Kg

Case Avg CV Std Dev Avg FC Std Dev
Up Reg 20 psig 2.26 7.37 0.42 2.53
Down Reg 20 psig 11.83 16.53 4.3 0.46
Up Reg 40 psig -1.14 2.78 1.21 0.72
Down Reg 40 psig -0.17 0.61 5.09 0.32

Minimum Load (0.25 Kg)
Up Reg 20 psig -1.1 6.4 14.7 2.95
Down Reg 20 psig 0.22 0.44 -6 1
Up Reg 40 psig 0.74 0.58 11.8 0.35
Down Reg 40 psig 1.05 11.1 -9.3 6.3

the rod. These forces were subtracted from the net force due to chamber pressures,

providing the difference between these two quantities, which were then assumed to

be friction forces. By taking these friction force datasets and plotting them against

velocity, a general trend was established and the correlation to established friction

models became clearer, aiding in the choice of an appropriate model. Similar results

could be viewed on the time scale by plotting net force, friction force, and position.

Based on the results of these curves and conclusions from previous literature that

friction in cylinders typically follows the form of a Stribeck curve, the Stribeck-Tanh

curve was chosen for use with this cylinder and adjusted using the constants described

in equation (4.2.6), as seen in Figure 15. The choice of constants was further driven

through the use of coefficients that provided the best general accuracy across a range

of step types, as seen in Figure 16. Focus in the Figure should be placed on the

highlighted green regions, which show simulated and measured friction during several

open loop step responses. The remaining regions (shaded in gray) occur when the

piston is at an end stop, introducing deviations in the form of reaction forces. Since

the reaction forces were not accounted for in the portion of the simulated force model,

the grayed regions can be ignored. The final configuration used in this model was

with FS = 4.5 lbf, FC = 3 lbf, CV = 0.5, i = 5, VS = 0.1, and ktanh = 40.

32

Figure 15: Fitting of Stribeck-Tanh curve to measured friction data

Figure 16: Performance of friction model for a range of step types. Regions high-
lighted in green are during cylinder motion, while those faded out are when the piston
is at the limits of motion, at which point reaction forces come into play

33

4.2.2.5 Limitations

The friction model used in this thesis proved to be relatively accurate in its char-

acterization of the effects of friction within a cylinder model, but it does possess

limitations. First, since the model is based on an overall characterization of friction

rather than an exact model of the actual component interaction that causes friction,

a more general model is created that leaves some cases unmodeled. For example,

the friction occurring at different points, particularly at the limits of piston motion,

as opposed to the middle of the cylinder, may differ, but this is not reflected in the

model. Additionally, as noted in [15], the use of a velocity dependent model that has

zero friction at zero velocity can lead to poor stiction representation in the closed

loop. This effect and its allowability are discussed in greater detail in the overall

cylinder performance analysis in section 4.4.2.

4.2.3 Valve Model Fitting

As shown in equation (4.1.1) above, the valve is modeled as a flow through an orifice

that scales with input command. This orifice area is additionally scaled by a discharge

coefficient, cd, a constant term used to approximate how the shape of the orifice

affects mass flow throughput. An optimal approach would be to determine the exact

geometry of the area as a function of input voltage and then use this known function

together with a mass flow measurement to find the unknown discharge coefficient.

However, an examination of the valve dynamics shows that finding this relationship

would be rather difficult. While the valve spool moves linearly with input command

(this has been verified by using an LVDT to measure the response), the internal

orifices are comprised of five evenly spaced circular holes that can be covered or

uncovered by the spool, making the relationship of area to voltage difficult to derive

exactly without the use of high precision measuring tools or detailed valve drawings

(these types of design specifications are not covered in the documentation that Festo

34

Figure 17: Matching of pressure curves to demonstrate existence of offset voltage at
5.25 V

provides). Instead, the discharge coefficient and orifice area were modeled as a single

equivalent area that is a function of input voltage. This equivalent area can be

approached in the same ways that most past researchers have approached their area

models.

One of the first critical quantities is the offset voltage. Although the valve operates

over a range of 0 to 10 V, because of its geometry, it is actually based around a voltage

slightly above the center. This voltage is referred to as the valve offset and can be

measured in several ways.

From a functional perspective, the valve offset is the input voltage at which flow

is equalized in both ports of the valve. This number was determined by using a flow

meter to check when the flow is equal from both ports of the valve, resulting in an

offset voltage of 5.25 V, or centered voltage offset of 0.25 V. The value was verified by

measuring the pressure change in a cylinder with a fixed length rod in one chamber,

then switching the ports and measuring the pressure change again. Since the offset

voltage is the center of the orifice area curve, flow around it should be symmetrical

35

near zero – that is, if the ports are switched and an equivalent negative voltage is

sent to the valve, given the same chamber size, the same pressure change should be

observed. By shifting the two pressure curves so that they lay atop one another and

examining the base voltage needed to achieve this kind of symmetrical relationship,

it was verified that the offset voltage was 5.25, as shown in Figure 17.

Figure 18: Linear area model with offset area

Once the offset voltage is known, an area model can be formed on a voltage scale.

Many researchers simply model the area as a linear curve with an offset area and

curves that meet at the valve offset [10], as illustrated in Figure 18. The offset area

ensures that even when voltage is at its equilibrium position, flow through the valve

can still occur. While such models fail to provide accurate behavioral effects at the

inner and outer extremes, they do capture the general behavior and may suffice for

certain tasks where either this operating range isn’t as heavily used, or model error

is acceptable and even assumed.

The valve model’s accuracy is further compromised by the fact that it assumes an

exclusive connection to either the supply or exhaust pressure; however, this is not the

case. The valve model used here (and commonly used in literature) technically models

36

Figure 19: Overlapped valve model

Figure 20: Underlapped valve model

37

an overlapped valve, meaning that the relationship of the spool to valve orifices has

only two possible cases, as depicted in Figure 19. However, in reality, as discussed

in [47], the valve is underlapped, meaning that the spool may not always cover both

ports, leading to some loss of mass flow for input commands near the valve offset

(Figure 20). The end result is that pressures in this region reach asymptotes that are

neither supply nor exhaust, but rather are somewhere in between, as the cylinder is

neither fully charging nor discharging.

This phenomenon has been discussed in other works, and is typically dealt with

in one of several ways. Many researchers simply ignore it, especially those who are

only using the model within a controller. However, the region spans approximately

+/- 0.75 V about the valve offset, a region that has been shown to be very active in

closed loop commands on this testbed, so its dynamics cannot be ignored.

To model this region, it is necessary to examine the factors that could cause

pressure to stop changing before exhaust or supply pressures are reached. From

equation (4.1.10), it can be seen that the case where Ṗ prematurely reaches zero can

only be achieved in a few circumstances. For a nonzero velocity, the two terms could

cancel, though this solution is unlikely to occur for any extended period of time since

a nonzero velocity means a changing position, thus varying the terms. Instead, in the

zero velocity case, Ṗ can only prematurely reach zero if ṁ equivalently reaches zero.

This approach is further confirmed by experiments showing that the pressure losses

observed in cylinder actuation persist in step tests where piston position was fixed

(ẋ = 0) during cylinder actuation.

Based on this analysis, several methods were found to model the loss of mass flow

in the valve:

1. Assume a constant mass flow loss and offset the overall ṁ function by this

amount

2. Assume zero mass flow loss except in cases where cylinder does not fully charge

38

or discharge

3. Model the net mass flow as a sum of positive and negative flows through a more

accurate valve orifice model

4. Ignore the transients and focus only on the steady state values by changing the

magnitude of the input port pressures perceived by the valve

Figure 21: Valve orifice area for use with mass flow as a net sum of different mass
flows

Each of these fitting strategies was attempted, tuning the values to get the best

pressure and position correlation. Methods (1) and (2) both modeled the regions close

to zero with reasonable accuracy, though they appeared to fail in some circumstances.

The difference between the two caused differing values of equivalent orifice area,

though these still followed the general form observed in the Figure 21. The primary

concern was that, since mass flow depends on upstream and downstream pressure, it

would vary for different supply pressures, and the losses would have to follow some

sort of trend. In practice, however, trends were difficult to match, and the method

appeared to be little more than a “fudge factor”.

39

Figure 22: Valve orifice area for use with mass flow as a net sum of different mass
flows

Instead, method (3) offers an approach that models mass flow losses. This method

has been tried by previous researchers [47], who pointed out that the loss in mass

flow can be written as a sum of positive and negative mass flows. The approach

is based on the valve dynamics shown in Figure 20. It uses an equivalent orifice

area model that extends the orifice area of each port beyond the valve offset (Figure

22), thereby eliminating the need for the assumption that each port is exclusively

attached to the exhaust or supply pressure. Instead, the valve output port is open to

some combination of both the supply and exhaust pressure, so that in the commands

about the valve offset, mass flow loss is included in the modeling process. While this

approach seems accurate in principle, past researchers who applied it have had only

limited success in the affected regions [47]. In efforts to do the same on this model,

the areas were modeled by using pressure curves from fixed-rod models to determine

where the orifice area first began to open for each valve, then fitting an equivalent

orifice area to that curve. The process was complicated, however, by the fact that even

with a fixed piston position, the pressure dynamics were now coupled in the affected

40

regions, making it more difficult to accurately determine an appropriate equivalent

area. Even after extensive efforts to find well-fitting matches, the approach only

worked well for isolated cases and virtually no trends were observed in the affected

regions. This approach might be more valuable if the actual area curves were known,

rather than being fitted based on the system dynamics.

Method (4) takes a different approach, affecting mass flow by examining the steady

state behavior. One way for the mass flow to be reduced to zero early is if the

upstream and downstream pressures, Pu and Pd, are not equal to the actual supply

and exhaust pressures. In a sense, this is the case when the spool is undersized or

leakage is occurring. Accordingly, in this model, the valve orifice area was modeled

as a nonlinear area starting at a given offset area occurring at the valve offset area,

and the pressures were adjusted in the affected regions. Since the ports are always

attached to only one input pressure and the upstream and downstream pressures

always refer to the chamber pressure and one of the two input pressures, modification

of an input pressure only affects one chamber pressure at any given time. Accordingly,

the input pressures could be modified to be some pressure between the exhaust and

supply – essentially a combination of the two – by matching adjusted input pressures

to the steady state pressures. To ensure that these steady state pressures could be

collected independently of the equivalent voltage area, the pressures were matched

using tests with fixed piston position, such that the second term of equation (4.1.10)

did not play a role in the derivation. If the equivalent orifice area was wrong, it would

only scale the transient components of the pressure, and the steady state pressure

curves would be unaffected, instead depending on the choice of input pressures. The

pressures were then tabulated across a range of voltage inputs.

Based on the observed curves (Figure 23), while the pressures could be modeled

as a piecewise continuous function that is linear in the affected regions and constant

41

Figure 23: Input pressure trends

otherwise (such that the pressure is always a linear combination of the input pres-

sures), a more accurate model can be formed by fitting the data to a scaled tanh

curve with an offset. The resulting curve has the form

Pinput = yoffset + Cscaletanh (KPress (u− xoffset)) (4.2.7)

where the constant coefficients can be defined as functions of key parameters for each

curve: the supply pressure, PS, the exhaust Pressure, Pe, the low Pressure cutoff,

CLP (the voltage/x-axis value at which curve transitions from the constant minimum

pressure to a changing one), and the high pressure cutoff, CHP (the voltage/x-axis

value at which curve transitions from the constant maximum pressure to a changing

one). The constants used in equation (4.2.7) can then be defined as

yoffset =
PS + PE

2
(4.2.8)

xoffset =
CHP + CLP

2
(4.2.9)

Cscale = sign(CHP − CLP)
PS − PE

2
(4.2.10)

KPress = (2π)/(|CLP − CHP |) (4.2.11)

42

Using these functions for input pressure, equivalent orifice areas were determined by

matching simulation and experimental data. Though these curves were originally

measured with the piston position fixed to avoid friction considerations, it was found

that this data, while reasonably accurate, did not translate fully to non-fixed motion.

Instead, step tests were run on the (unconstrained) cylinder test rig, with each

step consisting of a 10 second interval. The valve would first be given the maximum

command in the direction opposing the step, where the magnitude of the step is

added to 5 V to get the actual input signal (e.g., for a 0.75 V step, a centered valve

command of -5, or actual centered voltage signal of 0, would be sent for the first 5

seconds). At the 5 second mark, the voltage command was given, at which point

position and pressure trends were measured for the remaining 5 seconds.

These tests were executed for 30 and 50 psig supply pressures in the standard

valve-chamber configuration using a series of command voltages. For each step, the

simulation was executed with an equivalent area. This approximate equivalent area

curve was implemented by setting a discharge coefficient in the setup file (see Ap-

pendix B) and assuming a linear scaling of area in the model. The product of the

discharge coefficient and the area function corresponded to the equivalent orifice area

for that voltage command. Tuning of the discharge coefficient as a function of voltage

was done by hand, observing the measured and actual pressure and position dynamics

and matching them as best as possible.

From a pressure perspective, the curves demonstrate several key features. They

begin to move when the step command is first given, ascend at a certain rate to

reach the stiction peak, then drop to a lower value and continue until the end stop is

reached, at which point they expand again until the steady state values are reached,

as shown earlier in Figure 12. Simulated pressures were matched with emphasis on

the time and magnitude of the stiction peak, duration of the motion, and slope of

the curves. Because pressures are difficult to match exactly, position was used as a

43

Figure 24: Equivalent area curves for 50 psig actuator model

final-check, ensuring that the motion began at the right time and had the right slope

and duration. Since the user of this simulation will most likely experience the effects

of fluid power in the form of effects on position and velocity, the usage of position

as an error check is justified. The equivalent orifice areas from each step were then

plotted against input voltage. Curves were fit to the data points, with the results

shown in Figure 24.

4.2.3.1 Curve Fitting Methods

The process of fitting curves to the pressure and equivalent orifice area data points

was done with the intent of minimizing error while keeping true to the expected forms

described in literature and by the manufacturer. For the pressure curves, this was

achieved using the hyperbolic tangent curve discussed above described in eq. (4.2.7).

The equivalent area curves, by contrast, were fitted using fourth order polynomials

to model each side of the area function centered near the valve offset. In addition to

requiring a model that minimized error overall, it was critical that the model include

the minimum area offset and exhibit good correlation in voltage commands about the

44

valve offset, where smaller differences in equivalent area have a more significant impact

on overall pressure and position accuracy. Curves were found using the MATLAB

functions polyfit, which allows a user to fit curves to specific function types. An

m-file corresponding to these fitting actions can be found in Appendix B.

4.3 Experiments & Results

To validate the model, tests were run that encompassed both the general, open-loop

behavior of the model, as well as the closed-loop tracking for tasks similar to those

needed on this testbed. The first such set of tests was a series of open-loop step re-

sponses (Figures 25 and 26). These are easy to perform and provide valuable insight

into the system characteristics. The accuracy of the friction model and pressure con-

stants can be viewed by looking at the time it takes for the position to begin changing

(or its resistance to change if the pressures are not high enough), the pressures needed

to do so, and the duration of the step thereafter. Additionally, the steady state pres-

sure helped to validate the models used earlier. Step tests were performed not only

at the points used for curve fitting, but also at several other locations, demonstrating

pressure and position dynamics that closely matched the actual observed behavior.

As is evident from the figures, the only place where position correspondence deviates

significantly is when the voltage command is 5.25 V, or exactly at the offset voltage.

Even when fitting curves exactly, this region is difficult to model exactly using an

overlapped model, and can be viewed as an outlier, particularly since the curves near

it actuated at very small voltage inputs demonstrate good correlation of measured

and simulated values.

While the behavioral similarities observed in the open-loop response are promising,

it is desirable to use a more quantifiable approach to demonstrate correspondence

between the simulated and actual responses. To do so, first order responses were

fitted to the pressure curves, using Matlab’s fit function to achieve the closest fit

45

90 100 110 120 130 140 150 160
3.5

4

4.5

5

5.5

6

6.5

Time (s)

V
ol

ta
ge

 (
V

)

Valve Voltage Command for Slower Steps among Series of OL Step Tests

90 100 110 120 130 140 150 160

0

0.5

1

1.5

Time (s)

P
os

iti
on

 (
in

)

Position Response for Slower Steps among Series of OL Step Tests

Simulated
Measured

90 100 110 120 130 140 150 160
0

20

40

60

80

Time (s)

P
re

ss
ur

e
(p

si
a)

Pressure Response for Slower Steps among Series of OL Step Tests

Sim. Cap
Sim. Rod
Meas. Cap
Meas. Rod
Sim. Supply
Meas. Supply

Figure 25: Selection of slower step tests used to validate the actuator model through
its open loop response

205 210 215 220 225
0

2

4

6

8

10

Time (s)

V
ol

ta
ge

 (
V

)

Valve Voltage Command for Faster Steps among Series of OL Step Tests

205 210 215 220 225

0

0.5

1

1.5

Time (s)

P
os

iti
on

 (
in

)

Position Response for Faster Steps among Series of OL Step Tests

Simulated
Measured

205 210 215 220 225
0

20

40

60

80

Time (s)

P
re

ss
ur

e
(p

si
a)

Pressure Response for Faster Steps among Series of OL Step Tests

Sim. Cap
Sim. Rod
Meas. Cap
Meas. Rod
Sim. Supply
Meas. Supply

Figure 26: Selection of faster step tests used to validate the actuator model through
its open loop response

46

10 12 14 16 18 20
0

0.5

1

1.5

2

Time (s)

P
os

iti
on

 (
in

)

Position Response for a 1 rad/s
CL Sine Wave

Simulated
Measured

10 12 14 16 18 20
30

35

40

45

50

55

60

65

70

Time (s)

P
re

ss
ur

e
(p

si
a)

Pressure Response for a 1 rad/s
CL Sine Wave

Sim. Cap
Sim. Rod
Meas. Cap
Meas. Rod
Sim. Supply
Meas. Supply

10 12 14 16 18 20
0

0.5

1

1.5

2

Time (s)

P
os

iti
on

 (
in

)

Position Response for a 3 rad/s
CL Sine Wave

Simulated
Measured

10 12 14 16 18 20
30

35

40

45

50

55

60

65

70

Time (s)

P
re

ss
ur

e
(p

si
a)

Pressure Response for a 3 rad/s
CL Sine Wave

Sim. Cap
Sim. Rod
Meas. Cap
Meas. Rod
Sim. Supply
Meas. Supply

10 12 14 16 18 20
0

0.5

1

1.5

2

Time (s)

P
os

iti
on

 (
in

)

Position Response for a 5 rad/s
CL Sine Wave

Simulated
Measured

10 12 14 16 18 20
30

35

40

45

50

55

60

65

70

Time (s)

P
re

ss
ur

e
(p

si
a)

Pressure Response for a 5 rad/s
CL Sine Wave

Sim. Cap
Sim. Rod
Meas. Cap
Meas. Rod
Sim. Supply
Meas. Supply

Figure 27: Selection of sine tracking tests used to validate the actuator model through
its closed loop response

in the least squares sense. By matching individual cap side pressure steps to a first

order response of the form

y(t) = K0 − A0e
(t/τ) (4.3.1)

where K0 and A0 are constants and τ is the time constant, it was possible to numeri-

cally related multiple actual and simulated pressure responses through comparison of

their respective time constants. Responses were fitted for several steps spanning the

majority of the voltage range, producing fits with Coefficients of Determination (R2

value) ranging from 0.8 - 0.95. Over seven steps, the time constant of the simulated

systems consistently fell within 5 - 40 % of the time constants for the correspond-

ing actual response. Better matches were exhibited for faster steps, where the time

constants of the simulated responses differed by at most 15% from their respective

47

counterparts for the actual response.

Given accurate open-loop behavior, it would be expected that closed-loop results

would return similarly good correlation. To ensure that the closed-loop curves pro-

vided a good representation of the type of behavior that might actually be required

on this testbed, a series of sine waves of increasing frequency was used. On the actual

robot, commands will be given by the user, generally resulting in a continuous but

also progressively changing curve. Accordingly, several closed loop sine waves were

provided that show close correlation except for very low velocities, (Figures 27 and

28), where the pressure curves had the right form, but not magnitude, an effect that

will be discussed in section 4.4. The value of the simulated response can be further

upheld through an examination of the lag with respect to the reference input showed

differences of 0.02, 0.01, and 0.005 seconds between the simulated and actual lags,

for tracking of 1, 3, and 5 rad/s sine waves, respectively. These values correspond to

no more than 25% deviation from the lag of the actual system with respect to the

reference input.

Additionally, testing of a closed loop step response (Figure 28) showed that the

model possessed a similar rise time and settling time to the actual system, as well

as oscillations characteristic to a third order system, as can be seen in the zoomed-

in step response. In order to again demonstrate these similarities quantitatively, a

superposition of a first order and a second order response was matched to several

closed loop position responses, again using the fit function to determine the best fit

in the least squares sense. Results showed that the first order response was generally

the dominant component, achieving fits withR2 values of 0.92 - 0.99 before any higher-

order components were added to the fit. Additionally, the higher-order dynamics that

were able to be matched by the function were generally of minimal significance and

in some cases provided unrealistic values (e.g., negative damping), rendering them

largely useless for comparative purposes. Instead, the time constants of the best

48

fit curve for position response was used to numerically demonstrate similarities in

simulated and actual responses. Using the five steps seen in the figure, it was shown

that the measured and simulated time constants differed by no more than 40%. These

results can be improved by excluding the first step (at 6 seconds), which appears to

be an outlier. The remaining time constants exhibit variation between the measured

and actual systems of 5 - 25%. Furthermore, the average τ for the simulated response

is 0.082, with a standard deviation of 0.003, while the average τ for actual responses

was 0.085 with a standard deviation of 0.01. These average time constants, which are

shown by their low standard deviations to be relatively consistent, differ by just 2%,

further validating the accuracy of the simulation.

Since one of the main intended applications of this simulation is for use with an

operator interface, the most critical measurements are those that will be directly per-

ceived by the user: force, and more importantly, position. The Root Mean Squared

Error (RMSE) of the simulated position with respect to the actual position provides

a quantitative measure of the value of the simulation. RMSE was calculated over the

full time span of the response and is intended to provide a versatile comparison among

many response types, including steps, sines, and walking motions. It is complemented

by the afore-mentioned analyses of specific responses that focus on similarities in char-

acteristics of the response and on quantifiable numerical similarities of representative

LTI systems for the simulated and actual models.

For the closed loop step response, RMSE was found to be 0.052 inches, less than

3% of the 1.75 inch stroke length, and likely within the desired tolerance of a user

seeking primarily behavioral similarities in the response. This tolerance should be

acceptable based on past human-machine interface studies, in which operators have

been found to be capable of recognizing the transmission of approximately 3 bits of

a given a signal, such as angular position [36]. Furthermore, a review of advanced

controllers for positioning pneumatic cylinders [9] shows that while the best controllers

49

have an accuracy of 0.5mm, most fall within an accuracy range of 4 - 8 mm, mostly

falling within 5 - 10% of the total operating range. The accuracy achieved by this

simulation, which is equivalent to about 1mm of tolerance, is therefore likely already

within the tolerance that most controllers will be able to provide.

Figure 28: Selection of sine tracking tests used to validate the actuator model through
its closed loop response

4.4 Limitations

Though the results of physical experiments largely validate the construction of the

simulation, there are some discrepancies between the physical and simulated data

resulting that must be addressed individually.

50

Figure 29: Effects of variations in actuator configuration and supply pressure on
model accuracy

51

Figure 30: Effects of variations in actuator configuration and supply pressure on
model accuracy

52

4.4.1 Robustness & Variability

To check the model’s breadth of operation, tests were performed using several differ-

ent supply pressures (Figure 29). While the overall performance remained consistent,

tests that used air supplied at 30 psig exhibited some variation in equivalent area

curves. The change in equivalent area largely makes sense, since mass flow is de-

pendent on pressure, so a change in pressure proportions will affect the scaling, or

equivalent orifice area, needed to get the same result. However, this restriction is

likely not as important for the robot simulation because the robot is intended for

higher pressures. It can be seen in the figure that as pressures rise, the changes in

area trends become less pronounced. Additionally, the generality of the valve model

was demonstrated by switching the connection to cylinder chamber from one valve

port to the other and collecting equivalent area data. The results, illustrated in Figure

30, showed very similar equivalent areas.

4.4.2 Friction Effects

In a previous section, the friction model was derived and analyzed in terms of the

forces at work. Throughout the validation process, friction was analyzed in terms

of the affected components in the pressure response and the resistance to motion.

While this works quite well in the open loop, in cases of very slow velocity, notedly

in closed loop cases, the behavior is not as accurate. Whereas with an open loop

step response, stiction will appear primarily as a prevention of motion until a specific

pressure is reached, the closed loop behavior is not as simple. Instead, in areas of

high friction, such as the point at which a closed loop sine wave changes direction,

the position will appear to oscillate about some nearly still value. This occurrence

results from the approximation of friction behavior near zero velocity – instead of a

significant jump that would result in a discontinuity, a sloped line that is zero at zero

velocity has been used, a fact noted in Book & Daepp [15], where similar friction and

53

valve models were used. Despite the fact that this position behavior is not accurate,

it is acceptable because the velocity deviation is minimal and the position is accurate

within a switching region.

4.4.3 System Bandwidth

10.2 10.4 10.6 10.8 11 11.2
0

0.5

1

1.5

2

Time (s)

P
os

iti
on

 (
in

)

Position Response for 5 rad/s CL Sine Wave

Simulated
Measured

10.2 10.4 10.6 10.8 11 11.2
35

40

45

50

55

Time (s)

P
re

ss
ur

e
(p

si
a)

Position Response for 5 rad/s CL Sine Wave

Sim. Cap
Sim. Rod
Meas. Cap
Meas. Rod

10.2 10.4 10.6 10.8 11 11.2
0

0.5

1

1.5

2

Time (s)
P

os
iti

on
 (

in
)

Position Response for 5 rad/s CL Sine Wave

Simulated
Measured

10.2 10.4 10.6 10.8 11 11.2
35

40

45

50

55

Time (s)

P
re

ss
ur

e
(p

si
a)

Position Response for 5 rad/s CL Sine Wave

Sim. Cap
Sim. Rod
Meas. Cap
Meas. Rod

Figure 31: Left: Simulated closed loop pressure appears to have higher bandwidth

than sensor pressure. Right: Unfiltered pressure data shows that this effect may be

caused by sensor measurements and data processing.

The pressure trends observed in the closed loop responses largely match the actual

pressure waves, but a closer look (bottom left plot of Figure 31) reveals that the model

appears to have a higher bandwidth than the actual model, based the occurrence of

small, high frequency variances in the simulated pressures that are not evident in

54

the original sensor pressures. However, this discrepancy is likely due to the methods

by which the sensor dynamics were obtained. First, the sensor may not be able to

update at the rate of change observed in the simulated model. Furthermore, the

sensor data was filtered in order to get the smooth curves, likely eliminating some of

these faster pressure dynamics. The bottom right plot in the figure shows what the

unfiltered pressure data looks like, demonstrating that such small spikes may simply

be unobservable with this set of pressure sensors and associated filtering.

55

CHAPTER V

DYNAMIC SIMULATION

In this chapter, the actuator model developed and validated in Chapter 4 will be

implemented in a simulation of the robots dynamics and shown to realistically capture

full dynamics of the robot behavior in an appropriately and conveniently configured

system layout.

To do so, the completed Simulink actuator model is coupled with SrLib, a C++

and OpenGL simulation of the robot’s dynamics and corresponding display of a model

of the robot interacting with the environment, to provide a complete equivalent to the

actual physical robot. SrLib allows users to build systems using a library of joints,

components, and environments. The original robot configuration in SrLib was set

up and defined without the inclusion of actuator dynamics by Ta Kim, as noted in

her special project report [29] and with the help of Dr. Frank Park and Jaeyoung

Haan, who first created SrLib [24]. The codes were later modified to more accurately

represent the physical robot and include consideration of the actuator dynamics, as

modeled in this thesis.

5.1 SrLib Structure

SrLib uses a hierarchical structure to define components and link together with the

elements available in the library. Figure 32 outlines the general structure of the

program. At the highest level, the processes in SrLib fall into one of two stages: they

either contribute to the initialization of the configuration, environment, and interface,

or they loop continuously following initialization, stopping only once the program is

terminated. To fully understand this diagram, it is necessary to provide descriptions

of several key files, functions, and processes involved. Further information and code

56

excerpts from these files can be found in Appendix C.

Figure 32: Diagram of SrLib process structure

Leg.cpp and Leg.h are the most basic complete files of the SrLib robot struc-

ture. The legs consist of separate rigid elements, the coxa, tibia, and femur, known

as “links”, and modeled as cylindrical capsules with a fixed diameter, and color, as

illustrated in Figure 33. Mass and inertia properties are either specified explicitly

or calculated internally by providing SrLib with a density for the link. Each link

has specified end points and is connected to a joint at some local Cartesian rela-

tion to these specified points. Several kinds of joints exist, though here only weld

joints, which fix two links together, and rotary joints, are used. Rotary joints accept

torque commands and provide single-axis rotation – essentially like an actuated pin

connection. Leg.cpp also contains the code that directs torque commands to the

appropriate joint. In the original, non-dynamic version of SrLib, position commands

were provided instead and a simple proportional controller determined the actual

57

torque needed to maintain these positions, with torque limits set by the user in an

optional command.

The next files in the robot structure are robot.cpp and robot.h. These files

take multiple Leg.cpp instances and connected them to a thorax, again using single-

axis rotary joints for the moving shoulder connections, and using rigid weld joints

everywhere else. A point on the thorax is set as the robot origin, to be used for

placement and orientation elsewhere in the code.

Figure 33: Robot leg structure, shown in SrLib (left) and on an a Solidworks model
of the actual robot. Corresponding colors show how real components contribute to
modeled SrLib links

The robot is placed in an environment in main.cpp, using Cartesian coordinates

to specify the location of the robot origin and Euler angles to provide a starting

orientation. From the main() function within main.cpp, the most high-level function

in the code, the simulation, robot, obstacles, and other objects are initialized, and

the simulation is run.

Two other functions of significant interest are the send and receive functions,

also located in main.cpp and the associated header files. The send function specifies

outgoing UDP message content and converts it to the appropriate formats. Though

message content can be modified depending on the situation, the intended format

for typical (non-debugging) application uses 12 messages to provide the angles of

58

the joints, 3 messages for the robot’s displacement from the global origin, and 3

messages to provide Euler Angles describing the robot’s orientation. Similarly, the

receive function accepts UDP messages in a standard form and extracts the desired

information.

Following initialization of the robot and viewer, the bulk of the simulation consists

of sending and receiving data, computing the dynamics, and updating the viewer.

However, the dynamics simulation is not entirely independent of the openGL codes

needed for the viewer. Instead, features such as center of mass tracking and object

interaction modeled within openGL are used by the dynamics engine. Though these

functions are used continuously, the viewing window is updated only as often as

specified by the user. In other words, the two processes are not entirely separate, but

the actual rendering is not necessary for the success of the simulation.

The serial arrangement of functions (Receive-Compute Dynamics-Send) in this

thread enforces a pseudo-realtime environment as far as processing power allows;

that is, the simulation will only compute dynamics and send data back if it has

received a joint command, which can only occur if it has received a UDP message

packet (from the actuator model). As long as the total time needed for SrLib to

run these functions is less than the time step used by the Simulink actuator model

and there are no inconsistencies (varying lags, pauses) in the rate at which data is

passed between the host and target, this arrangement will allow SrLib to perform like

a realtime system, with a clock that matches that of the target.

5.2 Actuator Model Integration

SrLib is connected to the actuator model using UDP communication to transmit

data. Validations are performed on a single leg by executing open and closed loop

commands to each joint and recording the system response.

While angles are measured directly in simulation, the physical two-legged robot

59

actually uses linear potentiometers built into the cylinders to measure leg motions.

Since knowledge of the joint angles is necessary for inverse kinematics and for in-

tegration with SrLib, it was necessary to determine the relationship between piston

displacement and angular position of the corresponding joint. The actuator models

also require velocity in addition to position feedback, leading to equations for linear

velocity based on the angular position and velocity provided by from SrLib. Equa-

tions for this conversion were derived using the parameters defined in Figures 34, 35,

and 36. On each joint, θ is the measured angular displacement used in simulation

and for inverse kinematics (the arrows define the positive direction), while x is the

cylinder piston displacement.

Figure 34: Geometry of an Alpha joint. The cylinder and associated sensors have

been removed to provide a clearer picture of the relevant joint geometry, though the

piston is still shown

For the alpha joint, the relationship of x to γα can be obtained by applying the

60

Law of Cosines:

x = −l2 +

√

l1
2 + l3

2 − 2l1l3cos(γα)

ẋ =
2l1l3sin(γα)γ̇α

2(l1
2 + l3

2 − 2l1l3cos(γα))1/2

(5.2.1)

where γα and γ̇α are defined as

γα = 180 ◦ − φ2 − φ1 + θα

γ̇α = θ̇α

φ1 = cos−1(l4/l3)

φ2 = 180 ◦ − sin−1(l5/l1)

(5.2.2)

where θα has a range of -47 to 90 ◦. Similar derivations follow for the other two joints.

In the case of the beta joint:

Figure 35: Geometry of a Beta joint

x = −l2 +
√

l1
2 + l3

2 − 2l1l3cos(γβ)

ẋ =
2l1l3sin(γβ)γ̇β

2(l1
2 + l3

2 − 2l1l3cos(γβ))1/2

(5.2.3)

61

γβ = 180 ◦ − φ2 − φ1 − (−θβ)

γ̇β = θ̇β

φ1 = cos−1(l4/l3)

φ2 = sin−1(l5/l1)

(5.2.4)

where θβ has a range of -1 to -67 ◦. For the gamma joint:

x = −l2 +
√

l1
2 + l3

2 − 2l1l3cos(γγ)

ẋ =
2l1l3sin(γγ)γ̇γ

2(l1
2 + l3

2 − 2l1l3cos(γγ))1/2

(5.2.5)

γγ = 180 ◦ − φ2 − θγ

γ̇γ = −θ̇γ

φ2 = sin−1(l4/l1)

(5.2.6)

where θγ has a range of 17 to 95 ◦.

Figure 36: Geometry of a Gamma joint

To ensure realism of the angle to piston extension equations, the derived relation-

ships were compared to simple linear versions found by measuring the extents with a

protractor and interpolating between the extents.

62

Another necessary conversion is introduced as the cylinder model, which produces

a net output force, is combined with SrLib, where each joint accepts torque commands

about the pivoting joint. Using the instantaneous joint geometry displayed in Figures

34, 35, and 36, and variables introduced in equations (5.2.2), (5.2.4), and (5.2.6), the

required torques are defined in equations (5.2.7) (Alpha joint), (5.2.8) (Beta joint),

and (5.2.9) (Gamma joint):

Tα = l3Fsin(λ1) = l3Fsin(sin−1(
l1sin(γα)

l2 + x
)) =

l3Fl1sin(γα)

l2 + x
(5.2.7)

Tβ = l3Fsin(λ1) = l3Fsin(sin−1(
l1sin(γβ)

l2 + x
)) =

l3Fl1sin(βα)

l2 + x
(5.2.8)

Tγ = l3Fsin(λ1) = l3Fsin(sin−1(
l1sin(γγ)

l2 + x
)) =

l3Fl1sin(γγ)

l2 + x
(5.2.9)

5.3 Simulink Model

The Simulink model expands upon the actuator model developed in Chapter 4, re-

sulting in a file that, together with SrLib, can simulate one 3-DoF leg (see Appendix

C for file and associated scripts). The core components consist of actuator models

customized to each joint and blocks for angle and torque conversions discussed in sec-

tion 5.2. Additionally, inputs are provided to each actuator in the form of predefined

or recorded signals, and can be fed through a controller that corresponds exactly

to the one used on the actual robot for closed-loop tests. All important signals are

recorded and saved on the target object. Other key components include a network

communication strategy appropriate for realtime operation, and several analysis and

debugging tools.

5.3.1 Analysis and Debugging Tools

One of the largest areas of concern in the integration of non-realtime SrLib and the

realtime actuator model was the potential mismatch of simulation clocks. In order to

analyze this potential limitation, the actuator simulation on the target was outfitted

63

with a block that timestamped packets and sent them to SrLib, where they were

received and returned to the target by the next send thread. These packets were then

recorded at the time they were received again by the target, documenting the overall

travel time as well as any notable pauses in communication. Additionally, the time of

the SrLib clock was passed back to the target so that the coordination of the realtime

xPC target clock and the non-realtime SrLib clock could be studied more closely.

The packet passing analysis was combined with a program known as Wireshark

[5] to analyze incoming and outgoing signal data. Wireshark allows users to monitor

network ports and track all incoming and outgoing packets, including their type, ori-

gin, destination, and content, among other features. Together, these tools provide the

operator with a thorough understanding of simulation synchronization. The packet

passing tools can be used to see if a problem exists and how it affects the simulation,

while Wireshark allows the user to see what component is causing problems. How-

ever, Wireshark should not be run continuously since it uses up system memory and

could adversely affect simulation performance.

5.3.2 Network Setup

In typical xPC Target configurations, the target communicates, first and foremost,

with the host PC, as discussed in Chapter 3. On systems running xPC Target, other

UDP connections such as communication with the Phantoms or SrLib could until

recently (2011) only occur over the same network card on the target side. This type of

configuration was initially implemented within the Simulink model used for validation,

but was found to result in models clouded with high frequency oscillations. Using the

debugging tools noted in the previous system, it was shown that these problems were

due to pauses up to 100 ms in communication between SrLib and xPC Target, caused

by the fact that xPC Target does not give UDP realtime priority, instead running it

as a background process with a buffer. These observations are shown in Figure 37: by

64

filtering the data so that only UDP packets were displayed, it could be clearly shown

that the simulation started running when the first UDP packet was received from

the target, or at 9.231 seconds. Looking at the results of the timestamped packet

transfer, an initial large pause was found at about 0.2 seconds – in Wireshark, this

instant can be clearly seen at 9.452 seconds, when SrLib returns a message to the

target (Figure 37). This packet, no. 957, is the last packet to be sent for about 90

ms (SrLib cannot respond unless given a packet due to the serial structure discussed

in section 5.1). Similar pauses can be matched to Wireshark data at 1.85 s, 11.05

s, and so forth. Since SrLib is incapable of sending a message unless it first receives

one, these occurrences would imply that the target is failing to send messages.

Figure 37: Pauses in plots can be tracked in Wireshark

Fortunately, the newest release of MATLAB contains realtime UDP blocks that

use a separate, dedicated network card to ensure the non-host/target communication

is given realtime priority. Following an upgrade to the most recent release, these

blocks were installed, using a separate local network running across a switch. Tests

run using the packet passing tools showed that delays have been eliminated and

that the new configuration resulted in a total travel time of 3 - 4 ms. Host/Target

65

communication was maintained with a crossover cable.

5.4 Validation Platform Configuration

Several configurations of machines were tested to achieve better performance from

the target and, in particular, from the non-realtime SrLib Simulation. Using packet

passing tools and Wireshark, it was found that SrLib was capable of running within

the desired time step on all machines, and the operating requirements for the target

PC were relatively minimal. Instead, the primary differentiating factor among the

choice of configuration was the effect of viewing window rendering on the system’s

overall performance. As shown in Figure 32, the viewing window updates every n

steps, where n is set by the user. Every time and update occurs, the frame is redrawn,

temporarily pausing all other SrLib activity. The duration of these pauses varies by

choice of SrLib machine. The best results were seen when the same computer was

used for both SrLib and as a host, appearing to depend more on the overall amount of

physical memory than the processing power or memory priority allocated to it. Based

on these tests, the two machine configuration (target, host/SrLib) was employed in

further validation tests. Appendix D provides configuration and operation guides for

both this case and a more general one.

During tests, processes on the SrLib/Host computer were kept to a minimum,

since spikes in activity due to Windows’ non-realtime nature could pause SrLib in the

same way that rendering updates can affect the program.

The final configuration featured a target hosting the three-actuator Simulink

model, UDP to the host and SrLib over independent networks/network cards, and an

SrLib model of a quadruped robot with three actuated joints (the others were simu-

lated but uncommanded) with a base that was fixed in space so that the front right

leg could be effectively simulated and compared with an equivalent implementation

on the actual two-legged robot.

66

5.5 Experiments & Results

Tests were performed on each joint individually and on all three simultaneously using

prerecorded data from a gait-like motion. The tests varied somewhat from those

performed in section 4.3. Whereas the open loop tests noted in section 4.3 had been

aimed primarily at validating actuator performance in for small equivalent orifice

areas and to show open-loop friction accuracy, the focus of tests in this section was

primarily on validation of the actuator dynamics in context of their arrangement

within the leg and together with leg dynamics. A variety of closed-loop tests were

performed using the same controllers found on the physical model and focused on

showing clear similarity between simulated and actual responses, using parameters

such as rise time, overshoot, settling time, and correspondence in the effects of higher-

order dynamics. The simulation’s utility was further examined by performing tests

to analyze the computational demands of individual simulation components.

5.5.1 Open Loop Experiments

Despite the fact that open loop tests were not formally documented, they were used

to ensure that the cylinder behaved appropriately, e.g., to ensure that a given voltage

corresponded to the appropriate cylinder direction at realistic extension velocity and

cylinder pressures. Each actuator model was checked to ensure that it was properly

configured.

5.5.2 Closed Loop Experiments

Closed loop tests were performed on each individual joint while the others were held

steady, as well as on all three simultaneously. In the individual tests, the joints

not tested were first extended fully using a fixed open loop valve command. This

motion served not only to standardize the tests, but also to ensure that the simulation

had essentially the same initial conditions as the physical testbed. Because of this

initialization phase, comparison data was selected beginning at the 10 second mark.

67

For each test, the RMSE of the simulated position with respect to the actual

position response provided an instant measure of simulation success. Further under-

standing was achieved by examining similarities in simulated and actual responses to

different types of closed loop commands.

Step responses were used as the primary tool for analyzing the accuracy of individ-

ual joints. With visually apparent parameters like rise time, overshoot, and settling

time, step responses provide a strong sense of whether or not two sets of dynamics

(physical and simulated) are alike. However, a challenge with step responses is that

their introduction of discontinuities may be too severe and not representative of any

motion that the robot would realistically receive from a user. Therefore, trapezoidal

profiles were additionally used in cases where the step command appeared too severe.

Trapezoidal commands provide a way of keeping the parameters used to compare the

physical and simulated systems, but with more gradual commands. Additionally, slow

and fast sines were used to provide a different type of comparison, focusing on effects

of friction at the curve peak and response of the system to a constantly changing

command likely representative of the actual Phantom command.

Following examination of each individual joint, tests were run that showed the

system’s response to a user generated walking motion. Using the Phantom joysticks,

an operator manipulated the leg in a cyclic walking motion several times, beginning

with several slow steps, followed by several of medium duration, and concluding with

a series of fast walking motions. Closed loop angle paths for each joint were recorded

and played back in simulation, thereby providing a comparative data representative of

the actual desired simulation behavior. The measured position data from the actual

robot shown here is unfiltered, while the pressure data was filtered for signal clarity,

using the filters introduced in section 4.2.1 and documented in Appendix A.

The tests that follow are introduced in increasing complexity, beginning with

the joint closest to the end effector, and concluding with all three joints actuated

68

simultaneously.

5.5.2.1 Gamma Joint

10 15 20 25 30 35 40 45
0

50

100

Time (s)

P
os

iti
on

 (
de

g)
Gamma Joint Closed Loop Position Tracking of a Series of Step Commands

Simulated with SrLib
Measured Response
Reference

10 15 20 25 30 35 40 45
20

40

60

80

Time (s)

P
re

ss
ur

e
(p

si
a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

29 29.5 30 30.5 31 31.5 32 32.5 33 33.5 34
0

50

100

Time (s)

P
os

iti
on

 (
de

g)

Gamma Joint Closed Loop Position Tracking Close−Up

Figure 38: Closed loop tracking of a series of steps for the Gamma joint

Figure 38 shows simulated and actual responses to a series of step commands

spanning most of the range of the Gamma joint (17 to 95◦). The Root Mean Squared

Error (RMSE) of the simulated to actual position response was found to be 2.6◦, less

than 3.5% of the total range of the joint. The level of accuracy is evident from the

top plot, which clearly shows that the simulated response closely matches that of the

actual system. A close-up of one of the steps in this response, shown in the bottom

plot, displays the key similarities: the responses begin at the same time following the

initial command and with the same slope, have the same overshoot, and converge

69

together to the same steady state value. Some of these parameters can be easily

quantified, such as rise time, overshoot, and settling time. Rise time shows that while

the general response is good, there is still some apparent variation – over a course of

step responses, rise time ranged from practically zero error to almost 50%, indicated

by an average error of 0.13s with a 0.19s standard deviation over the course of steps

ranging from 0.11s to 1.3s rise times. However, other behavioral measurements were

much more constant: over the course of three step responses, overshoot differed by

0.4 - 5◦, or about 6% of the total operating range, while error in settling time of the

simulated responses remained within 15, 15, and 50% of the settling time of the actual

responses. In the last case, the response was marked by a very slow final, practically

linear slope, such that the simulated response took an additional 0.66 seconds to

go from under 10% to within 5% of the final value, resulting in a markedly higher

error in settling time. Further verification of model accuracy is demonstrated by the

presence of oscillations resulting from the third-order dynamics of the actuator model

that occur in the simulated response. These also occur in the actual response at the

same times, though amplitude and phase varies slightly. Furthermore, the simulated

behavior of the cap side and rod side pressures (relative to each other) matches those

of the actual system, showing correspondence at multiple integration levels of the

third order system and reinforcing the claim that the both the simulated actuator

and modeled robot dynamics are behaving realistically.

While overall performance of the simulated Gamma joint is good, it is worth

noting from the pressure plot that the measured rod-side pressure at first spikes to

approximately 75 psia, a value unachievable in simulation since the supply is set at

50 psig, or approximately 65 psia. On the physical system, this was enforced by a

regulator, as with the simple model from Chapter 4. However, the regulator does

not function in an ideal manner, likely due to the distance between the regulator

and the actuators, the multitude of actuators using the same air supply, and the

70

inherent inaccuracies of the manual regulator. Such effects were left unmodeled for

this simulation and seemed to do little to adversely affect the results, but can be seen

periodically in simulation results, as in Figure 38.

The variation in oscillation amplitude is likely due to some unmodeled effects such

as joint friction. A less steep command, such as a trapezoidal profile, limits the effects

of these approximations on the response and also provides a command trajectory

closer to one that could actually be provided by the user (Phantom commands will

not cause such a rapid change in command unless there is significant delay between

sampled points). This is shown in Figure 39. The response from the trapezoidal profile

also demonstrates an effect likely due to friction – at the start of each command, the

response takes a moment to actually respond, waiting until the pressures build up to

provide enough force for initial motion.

While the step and trapezoidal profiles show a strong correlation between simu-

lated and actual dynamics of the actuator integrated into the robot, they don’t fully

represent the type of behavior that is representative of the bulk of what the robot

will be asked to do: walk. This type of motion is frequently changing at different

rates. A sinusoidal command, depicted in Figure 40, is more representative of this

situation.

Simulated position response has an RMSE value of 1.5◦ with respect to the actual

response, confirming the accuracy shown in the figure. Lag of the response signal

with respect to the reference varies, but is generally greater than 0.15s for the simu-

lated response and approximately 0.2 seconds for the actual response, confirming an

accuracy within a 25% tolerance. Relative relationships of cap and rod side pressure

are again similar to the actual behaviors, and third order dynamics are still evident in

the position response. However, the effect of friction at the peaks of the sine wave is

not truly captured. Instead, slow piston motions never completely stop and therefore

never fall within the velocity range in which stiction would be applied long enough

71

10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

80

Time (s)

P
os

iti
on

 (
de

g)

Gamma Joint Closed Loop Position Tracking of a 0.5s Trapezoidal Command

Simulated with SrLib
Measured Response
Reference

10 15 20 25 30 35 40 45 50 55 60
35

40

45

50

55

Time (s)

P
re

ss
ur

e
(p

si
a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

42 43 44 45 46 47 48 49 50 51 52

20

40

60

80

Time (s)

P
os

iti
on

 (
de

g)

Gamma Joint Closed Loop Position Tracking Close−Up

Figure 39: Closed loop tracking of a series of trapezoidal profiles for the Gamma
joint

for the effects to be apparent, as discussed with regard to the simple actuator model

in section 4.4.2.

5.5.2.2 Beta Joint

Like the Gamma joint, the Beta joint was initially subjected to a sequence of step

commands across its range of operation (Figure 41). As seen in the figure and verified

by a position RMSE of approximately 4◦, or about 6% of this joint’s operating range,

the simulated response did not match the actual trajectory as closely as was seen with

the Gamma joint, shown by the clear deviations of the simulated settling and rise time

from those of the actual response (they both differed by a factor of 2 on average). Even

72

10 11 12 13 14 15 16 17 18 19 20
50

60

70

80

90

Time (s)

P
os

iti
on

 (
de

g)

Gamma Joint Closed Loop Position Tracking of a Fast Sine Wave

Simulated with SrLib
Measured Response
Reference

10 11 12 13 14 15 16 17 18 19 20
30

35

40

45

50

Time (s)

P
re

ss
ur

e
(p

si
a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

12.5 12.6 12.7 12.8 12.9 13 13.1

87

88

89

90

Time (s)

P
os

iti
on

 (
de

g)

Gamma Joint Closed Loop Position Tracking Close−Up

Figure 40: Closed loop tracking of a sine wave for the Gamma joint

in these cases, the response was still reasonable for a pneumatic actuator (it looked

a lot like a slower version of the Gamma response) and matched many of the core

parameters. It can be seen from the close-up that while rise time was not captured

correctly, overshoot, slope, and the elements of third-order actuator dynamics were

evident in both reality and simulation. Relative cap-to-rod side pressure relationships

also behaved realistically.

A fast sine wave (Figure 42) was again used to provide a command similar to one

that a user might generate, showing considerably better overall accuracy in simulated

position response than was seen with step commands, indicated by its RMSE of 2◦

and lag of the simulated and actual responses with respect to the reference of 0.16

and 0.2 seconds, respectively. The observed behavior was similar to that seen for a

73

10 20 30 40 50 60 70 80

−60

−40

−20

0

Time (s)

P
os

iti
on

 (
de

g)

Beta Joint Closed Loop Position Tracking of a Series of Step Commands

Simulated with SrLib
Measured Response
Reference

10 20 30 40 50 60 70 80
0

20

40

60

Time (s)

P
re

ss
ur

e
(p

si
a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

20 22 24 26 28 30 32 34 36

−60

−40

−20

0

Time (s)

P
os

iti
on

 (
de

g)

Beta Joint Closed Loop Position Tracking Close−Up

Figure 41: Closed loop tracking of a series of steps for the Beta joint

Gamma joint: while the simulated response closely matched that of the actual robot

in form and dynamics, it failed to accurately capture the effects of friction at the sine

peaks, again casting doubt on the utility of the advanced friction model within this

type of simulation.

74

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
−60

−50

−40

−30

−20

−10

Time (s)

P
os

iti
on

 (
de

g)

Beta Joint Closed Loop Position Tracking of a Fast Sine Wave

Simulated with SrLib
Measured Response
Reference

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
30

35

40

45

50

55

Time (s)

P
re

ss
ur

e
(p

si
a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

Figure 42: Closed loop tracking of a fast sine wave for the Beta joint

5.5.2.3 Alpha Joint

Figure 43 shows the response of the Alpha joint to a series of step tests. In addition

to adding robot dynamics, this joint actually uses a cylinder with 3.5 inches of stroke

length, making it approximately 2 inches longer than the other cylinders, a parameter

that was adjusted in the setup file. The simulation and tests both show a tendency

to lightly damped oscillations or limit cycling with the gains that were initially used.

Instead, in later full leg tests, the gain used on the controller in simulation was reduced

to provide a smoother alpha joint response, as will be seen in the next section.

75

10 20 30 40 50 60 70 80
−50

0

50

100

Time (s)

P
os

iti
on

 (
de

g)

Alpha Joint Closed Loop Position Tracking of a Series of Step Commands

Simulated with SrLib
Measured Response
Reference

10 20 30 40 50 60 70 80
20

30

40

50

60

70

80

Time (s)

P
re

ss
ur

e
(p

si
a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

Figure 43: Closed loop tracking of a series of steps for the Alpha joint

5.5.2.4 Leg Commands

Figure 44 shows the actuator position tracking and pressure responses to a walking

motion. This motion can be described as moving the end effector in a cyclic fashion

starting from the rear bottom of its workspace, arcing upwards and then back down

at the front bottom, and then dragging it back again, as is done in walking motions.

The figure shows strong correlation between simulated and measured results for the

Gamma and Beta joints, which both have simulated position RMSE values under

2.5◦, but the oscillations in the Alpha response observed in section 5.5.2.3 continue

to be problematic, contributing towards a high RMSE in simulated position of 10.2◦.

Since the purpose of the simulation is to provide actuator behaviors that are

realistic and accurate but should at least be reasonable, adjustments were made to

the alpha actuator controller to obtain motions closer to those observed on the actual

76

0 10 20 30 40 50
−60

−40

−20

0

20

40

60

Time (s)

P
os

iti
on

 (
de

g)

Alpha Joint Closed Loop Position Tracking of a Phantom Walking Motion

Simulated with SrLib
Measured Response
Reference

0 10 20 30 40 50
0

20

40

60

80

Time (s)

P
re

ss
ur

e
(p

si
a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

0 10 20 30 40 50
−80

−60

−40

−20

0

Time (s)

P
os

iti
on

 (
de

g)

Beta Joint Closed Loop Position Tracking of a Phantom Walking Motion

Simulated with SrLib
Measured Response
Reference

0 10 20 30 40 50
20

30

40

50

60

70

80

Time (s)

P
re

ss
ur

e
(p

si
a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

0 10 20 30 40 50
0

20

40

60

80

100

Time (s)

P
os

iti
on

 (
de

g)

Gamma Joint Closed Loop Position Tracking of a Phantom Walking Motion

Simulated with SrLib
Measured Response
Reference

0 10 20 30 40 50
0

20

40

60

80

Time (s)
P

re
ss

ur
e

(p
si

a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

Figure 44: Joint tracking of a characteristic leg walking motion

testbed. As noted in the previous section, the response of the alpha joint is not

unrealistic; rather, it appears to simply overshoot too heavily, resulting in continued

oscillations. Accordingly, the overall gain on the PID controller was reduced by 25%,

resulting in the response seen in Figure 45.

The new alpha joint position response has an RMSE of 7.3◦, reduced from its

previous value. However, this value is likely made larger by phase delay in the response

and does not provide a complete picture. The figure shows the full impact of reduced

gains on alpha joint performance. It can be seen that the alpha joint still possesses

some of the initial oscillations observed in the actual result, but is much smoother

than with the original controller. Beta and Gamma joints match both position and

pressure closely, having RMSE’s of 2◦ and 2.5◦, respectively, showing also that the

simulation is robust to disturbances, as Beta and Gamma act along the same axis.

This result demonstrates that this simulation is capable of providing realistic behavior

77

0 10 20 30 40 50
−60

−40

−20

0

20

40

60

Time (s)

P
os

iti
on

 (
de

g)

Alpha Joint Closed Loop Position Tracking of a Phantom Walking Motion

Simulated with SrLib
Measured Response
Reference

0 10 20 30 40 50
0

20

40

60

80

Time (s)

P
re

ss
ur

e
(p

si
a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

0 10 20 30 40 50
−80

−60

−40

−20

0

Time (s)

P
os

iti
on

 (
de

g)

Beta Joint Closed Loop Position Tracking of a Phantom Walking Motion

Simulated with SrLib
Measured Response
Reference

0 10 20 30 40 50
20

30

40

50

60

70

80

Time (s)

P
re

ss
ur

e
(p

si
a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

0 10 20 30 40 50
0

20

40

60

80

100

Time (s)

P
os

iti
on

 (
de

g)

Gamma Joint Closed Loop Position Tracking of a Phantom Walking Motion

Simulated with SrLib
Measured Response
Reference

0 10 20 30 40 50
0

20

40

60

80

Time (s)
P

re
ss

ur
e

(p
si

a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

Figure 45: Joint tracking of a characteristic leg walking motion using an Alpha joint
controller with a reduced gain

representative of a multi-DoF pneumatically actuated leg across a correctly configured

network of simulation platforms.

5.5.3 Computational Demands of Individual Simulation Components

One of the goals of this thesis is to examine not only the plausibility of a dynamic

simulation that includes the effects of pneumatic actuation, but also its utility. The

actuator model used in Chapters 4 and 5 emphasizes detail, making use of fitted

equivalent orifice areas, supply and exhaust pressure curves, and a complex friction

model. However, the necessity of this level of accuracy is questionable, especially

considering behaviors such as those seen in Figures 40 and 42, where it was shown

that friction did not accurately model the situation. The following analysis examines

the computational cost of several key simulation components, using a Simulink model

78

containing just enough components to model the Gamma Joint in simulation, provide

a variety of inputs, control the signal with a PID controller, collect data, and debug

network connections.

The metric used to analyze computational cost is known as task execution time,

or TET. MATLAB allows the user to record a vector of TETs for each execution

cycle when the target is run. TETs can be reduced by using a target with a faster

processing power, but relative to an individual computer, individual model TETs

provide a good measurement of how large or computationally demanding each model

is. By eliminating individual components of the simulation and comparing the average

TET of the reduced model with that of the original, it was possible to show, to some

extent, the contribution of individual computations to the overall simulation execution

time.

Table 5.5.3 shows the TETs for different models. Since the TET can vary depend-

ing on choice of input, one input type was used for all open loop tests and another for

all closed loop tests. Standard deviations of the TET are shown in the third column,

and are generally about 5%, meaning that the most significant reductions are those

considerably greater than 5%.

First, an open loop test was used to be able to remove the controller without

severely affecting performance. The controller was then reinstated and used for closed

loop tests.

In the fourth and fifth entries, the removal of advanced degree and torque con-

versions replace the geometric relations derived in section 5.2 with simple linear re-

lationships to map stroke length to joint angle.

In the sixth entry in the table, the Stribeck-Tanh friction model is removed and

replaced with a simple, velocity-depended friction term, using a coefficient that had

been derived in past cylinder models [15].

The next removal examines the impact of the underlapped valve model, which

79

uses fitted equivalent area and exhaust/supply pressure curves. This block was first

replaced with a simpler block that used a linear equivalent area and maximum exhaust

and supply pressures, and then modified so that the equivalent area and pressure

curves could be independently removed. It can be seen here that removing individual

components is not exactly equal to replacing to whole block, thereby showing that

the actual structure of the block diagram has an impact on its performance as well.

Finally, the contributions of extra tools are examined, first as a block, then indi-

vidually.

Table 3: Impact of removing components on the TET of the Gamma joint actuator
model

Case

Average
TET (x

10−5 s)

TET Standard Deviation
(x 10−5 s)

Change from Complete

Model (x 10−5 s)

Percentage
Reduction

Open Loop Tests
Complete Model 3.7260 0.1830 – –
No Controller 3.6819 0.1793 -0.0441 1.2

Closed Loop Tests
Complete Model 3.7498 0.2225 – –
No Advanced Degree Conversion 3.7606 0.1914 0.0108 -0.3
No Advanced Torque Conversion 3.7117 0.1902 -0.0381 1.0
Simple Viscous Friction instead of
Stribeck-Tanh

3.3255 0.0205 -0.0424 11.3

Simple Valve Model 2.8471 0.1875 -0.9027 24.1
Simple Valve Model: Simple Equiv-
alent Area

3.2728 0.2032 -0.4770 12.7

Simple Valve Model: Simple Pres-
sure Estimates

3.4525 0.2237 -0.2973 7.9

No Extra Tools 3.4584 0.2243 -0.2914 7.8
No Extra Tools: Packet Transfer
Analysis

3.7272 0.2285 -0.0226 0.6

No Extra Tools: Multiple Input
Choices

3.6211 0.2322 -0.1287 3.4

No Extra Tools: Scopes 3.7238 0.2266 -0.0261 0.7
No Extra Tools: Recorded Output
Signals

3.6325 0.1767 -0.1173 3.13

Based on these results, it can be shown that the most significant adjustable TET

costs result from the advanced friction model (11%), detailed valve model (24%),

and extra analysis tools (8%). Provided with a simulation that has been effectively

validated, the extra analysis tools can be largely reduced by limiting recorded data

to a few critical signals, eliminating scopes and extra input options, and using packet

transfer analysis only when something changes with the network configuration.

However, the friction and valve model present a potential a compromise. The pri-

mary goal of this valve model is to accurately simulate behavior where the equivalent

orifice area is very small, or equivalently, when the valve command is operating in the

80

0 2 4 6 8 10 12 14 16 18 20

20

40

60

Time (s)

P
re

ss
ur

e
(p

si
a)

Pressure Response for a Closed Loop Step Sequence

Sim. Cap
Sim. Rod
Meas. Cap
Meas. Rod
Sim. Supply
Meas. Supply

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Time (s)

P
os

iti
on

 (
in

)

Position Response for a Closed Loop Step Sequence

Simulated Position
Measured Position
Reference Position

14.8 14.9 15 15.1 15.2 15.3 15.4 15.5 15.6
0

0.5

1

1.5

Time (s)

P
os

iti
on

 (
in

)

Close−Up View of CL Step Position Response

Simulated Position
Measured Position
Reference Position

Figure 46: Closed loop tracking of a series of steps for the Gamma joint using a
linear equivalent orifice area and fixed model supply and exhaust pressures

middle of the range, a region that is frequently accessed in this particular simulation.

Indeed, running the simple Simulink actuator model from Chapter 4 using a fixed

discharge coefficient and linear orifice area with the parameters from [15] instead of

fitted orifice area curves, the differences are quite clear (Figure 46). While overall per-

formance is similar to that of the advanced valve model, noted by the similar RMSE

value of 0.049 inches, behavior at small orifice areas is noticeably poorly represented,

as evidenced by the inability of the model to ever reach a fixed position during a step

response. Extension of this simplified model to a Gamma joint in the full dynamic

simulation (Figure 47) aggravates the problem, resulting in further loss of simulation

accuracy due to increased oscillations at certain steps and less correlation between

81

0 10 20 30 40 50 60
0

20

40

60

80

100

Time (s)

P
os

iti
on

 (
de

g)

Gamma Joint Closed Loop Position Tracking with a Simple Underlapped Valve Model

Simulated with SrLib
Measured Response
Reference

0 10 20 30 40 50 60
10

20

30

40

50

60

70

80

Time (s)

P
re

ss
ur

e
(p

si
a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

Figure 47: Closed loop tracking of a series of steps for the Gamma joint using a
linear equivalent orifice area and fixed model supply and exhaust pressures

simulated and actual pressure behavior.

Friction provides a similar design choice. Figure 48 shows a test using the simple,

viscous friction term applied on the simple actuator model from Chapter 4, demon-

strating performance that is not quite as accurate as with the Stribeck-Tanh model,

but certainly acceptable for general application, having a similar RMSE of 0.046

inches. The primary difference from the previous results using an advanced friction

model is the lack of high frequency oscillations at steady-state, as observed with a

Stribeck-Tanh model in place, and immediate motion of the simulated step response,

which begins to move 0.01 seconds before the measured response, due to the lack

of a stiction model. Overall, the results have similar rise and settling times to the

actual performance, and even demonstrate some of the same oscillations resulting

82

0 2 4 6 8 10 12 14 16 18 20

20

40

60

Time (s)

P
re

ss
ur

e
(p

si
a)

Pressure Response for a Closed Loop Step Sequence

Sim. Cap
Sim. Rod
Meas. Cap
Meas. Rod
Sim. Supply
Meas. Supply

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Time (s)

P
os

iti
on

 (
in

)
Position Response for a Closed Loop Step Sequence

Simulated Position
Measured Position
Reference Position

14.8 14.9 15 15.1 15.2 15.3 15.4 15.5 15.6
0

0.5

1

1.5

Time (s)

P
os

iti
on

 (
in

)

Close−Up View of CL Step Position Response

Simulated Position
Measured Position
Reference Position

Figure 48: Closed loop tracking of a series of steps for a vertical actuator modeled
in Simulink only (Chapter 4 model) using a simple viscous friction model

from third-order dynamics, albeit with slightly varying amplitudes and time of oc-

currence. However, when the same model is applied to a Gamma joint in the full

dynamic simulation, performance suffers, providing heavily oscillatory and therefore

unacceptable results, as seen in Figure 49. This variation in performance is likely due,

in part, to the increasingly fragile nature of the simulation as it becomes dependent

on more system components and their interactions. However, these effects alone are

unlikely to cause the poor performance seen in the figure, given the acceptable results

seen with the simple model. Instead, complications may arise with SrLib’s solver as

a viscous damping term replaces the advanced friction model.

Different solvers are known to have different operating regions; systems whose

dynamics fall outside of these regions cannot be numerically solved with the given

integrator. It is possible that the change in friction model results in a system that

83

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

Time (s)

P
os

iti
on

 (
de

g)

Gamma Joint Closed Loop Position Tracking with a Simple Viscous Friction Model

Simulated with SrLib
Measured Response
Reference

0 5 10 15 20 25 30 35 40 45
20

30

40

50

60

70

80

Time (s)

P
re

ss
ur

e
(p

si
a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

Figure 49: Closed loop tracking of a series of steps for the Gamma joint using a
simple viscous friction model

is numerically unstable with given integration configuration. This problem might

be avoided by moving damping to SrLib, where it might be modeled in a different

fashion. However, while SrLib technically supports a damping term, tests have shown

that modifying its value fails to affect simulation results. Even if such a term is

successfully added to SrLib, it may still be insufficient to produce a stable solution,

and may require further modifications to SrLib or a similar dynamics engine.

Using a viscous term as a friction model, performance will be less accurate than

with the Stribeck-Tanh model, but the results from the simple actuator model nonethe-

less show that the simpler friction model, implemented correctly, could be used to re-

duce computational needs and complexity while maintaining acceptable performance

that follows general behavioral trends.

84

5.5.4 Summary of Performance and Limitations

Overall, the simulation performed admirably, closely matching the actual Beta and

Gamma joint behaviors both in step and sine tests and in the actual leg test subject

to disturbances from other joints, and showing similarities in the alpha joint perfor-

mance when using a reduced controller gain. An overview of component contribution

to computation cost showed that the friction and equivalent area models could be

reduced in complexity in exchange for faster processing, though simulation accuracy

would likely suffer. However, the simulation’s current accuracy is not perfect and

subject to improvement, due to a variety of approximations and unmodeled effects.

First, minor effects such as joint/bearing friction, or resistance caused by electri-

cal and air supply lines are assumed to be negligible. Additionally, friction within

the cylinder has been extensively modeled, though it approximates the stiction re-

gion using a steep slope. Furthermore, if a cylinder piston is subjected to high side

forces leading to reaction forces not along the piston axis within the cylinder, as

could occur with the Beta joint, the resulting friction and resistance would be unac-

counted for. These effects, however, generally contribute little to the overall simula-

tion performance and should probably be left unmodeled or lumped into more general

parameters.

One primary area of concern is the diminishing accuracy of the step response

progressing along the arm from Gamma to Alpha joint. Since the actuator model

was verified independently of SrLib, assuming that the associated algebraic equations

and joint parameters have been correctly defined, the problem must be due either to

integration with SrLib, sensitivity to the accuracy of the model, or robot modeling

within the dynamics library. Some error is likely due to the method used to calculate

the inertia of simulated robot’s components. For the gamma joint, inertia of the femur

was computed within SrLib as a thin rod with a density of 2.7 g/cm3 (the density

of aluminum), essentially an exact model of the actual system. The gamma joint is

85

also the most accurate of the joints in simulation. The inertia model used for the

link actuated by the Beta joint, the tibia, was computed by using an oversize capsule

and a low density approximation of 0.7 g/cm3, thereby estimating several centered

but spaced out components with one solid item. Results for this joint showed clear

similarities, but deviated in the overshoot. Finally, the Alpha joint, which directly

actuates the coxa link, demonstrated a response plagued with oscillations. The coxa

is modeled as two cylindrical capsules with a density lower than aluminum, when in

fact, it is one reasonably asymmetric component. Similarly, the joint actuation is

modeled as a torque, when it is actually a force acting on a joint. Though the torque

has been modeled with high accuracy, SrLib is capable of modeling prismatic joints

that could more accurately capture forces and would also allow the user to include

the cylinder in inertia calculations.

However, Phantom tracking tests using three different inertia models showed min-

imal performance changes. Figure 50 shows alpha joint response for (top to bottom)

the model used in earlier tests in this thesis, an imported inertia found in SolidWorks,

and a slightly more realistic SrLib model. Though none of these models are perfect

(they all assume a fixed inertia despite the moving piston and are lacking in detail) the

minimal performance changes cast doubt on inertia as the primary source of model

error. Though the inertia will definitely contribute to overall accuracy when all else

is correctly defined, as was seen with derivation of Beta joint inertias, another factor

may be causing the error currently visible in simulated alpha joint response.

A further possible reason for the Alpha joint’s lack of accurate response may be

that the alpha joint dynamics lie outside the region that can be accurately calculated

by the solver, either in Simulink or SrLib, as was discussed with regard to viscous

friction in section 5.5.3. Both Simulink and SrLib used Runge-Kutta based solvers:

Simulink was configured to use ode5, a 5th order Dormand-Prince integrator, while

SrLib used an integrator that combined Euler and 4th order Runge-Kutta to achieve

86

0 5 10 15 20 25 30 35 40 45 50

−50

0

50

Time (s)

P
os

iti
on

 (
de

g)

Alpha Joint Closed Loop Position Tracking of a Regular Configuration, ρ = 1200 g/mm 3

Simulated with SrLib
Measured Response
Reference

0 5 10 15 20 25 30 35 40 45 50

−50

0

50

Time (s)

P
os

iti
on

 (
de

g)

Alpha Joint Closed Loop Position Tracking of a Regular Configuration, Imported Inertia Model

Simulated with SrLib
Measured Response
Reference

0 5 10 15 20 25 30 35 40 45 50

−50

0

50

Time (s)

P
os

iti
on

 (
de

g)

Alpha Joint Closed Loop Position Tracking of an Adjusted Configuration, ρ = 1200 g/mm 3

Simulated with SrLib
Measured Response
Reference

Figure 50: Closed loop tracking of Phantom commands to the alpha joint for three
different inertia models

speed and accuracy. Simulink provides an array of available explicit solvers of in-

creasing order, but contains just one implicit solver, which is intended for use with

systems that possess stiff dynamics. Based on tests with the simple single DoF model,

Ode5 was found to produce accurate results, and was therefore used throughout the

remainder of simulation iterations. Simulink’s lone implicit solver, ode14x, which

uses an extrapolation-based method, was also tested in its default configuration, but

exceeded the computational ability of the target, resulting in a CPU overload. Other

configurations may be possible that allow the implicit solver to work within the com-

putational limits of this system. Since results from simulation show that solver choice

may in fact play a key role in the overall good performance and versatile application of

the completed dynamic simulation, a more thorough review of the used and available

solvers, their capabilities, and their applicability to this system may be required.

Even if the solver is generally appropriate for the system dynamics, the sensitivity

to accuracy of the model could be the cause of poor responses like that seen with

87

the alpha joint. It is evident from the measured responses that even the physical

alpha joint, with its current controller, is critically stable – a region that is notedly

difficult to model. In fact, the model’s ability to predict a region of instability is

already a credit to its accuracy. The observed oscillatory behavior might simply be

due to numerical instabilities resulting from the model’s in ability to accurately model

a system already plagued by physical instabilities.

Another known unmodeled effect, first mentioned in section 5.5.2.1 is the assump-

tion that each actuator’s air flow is independent of the others. On the testbed, a

regulator initializes the supply pressure to 50 psig, but the air then travels through

several feet of tubing and is distributed among the valves and cylinders. Since air

is compressible and subject to dynamic effects, some pressure behaviors observed on

the actual robot are unobtainable in this simulation. However, this approximation

did not appear to be a significant contributing factor and is likely not worth the

computational effort to include in the model.

Finally, valve and friction approximations were shown to have a large impact on

total task execution time, a metric that will become more critical as other elements

are introduced into the simulation and it is expanded from having three to twelve

actuator models (one for each leg). In its current form, the simulation runs at 1000

Hz, but actuator models have been shown to be able to run as slowly as 640 Hz while

maintaining accuracy, corresponding to a step size of 0.0015625 s. The task execution

times discussed in section 5.5.3 were for a simulation consisting solely of a Gamma

joint; those models with all three joints typically have an average TET closer to 13 x

10−5 s. As more and more components are added to the Simulink model, the choice

between accuracy and computational efficiency may become more dire, and based

on results above, friction and valve modeling are clear components whose impact

could be reduced. Additionally, while both components provide a desirable degree

of accuracy across a range of inputs, their derivation was considerably detailed and

88

lengthy.

5.6 Improvements

Based on the performance summarized in the previous section, the simulation is

subject to several areas of improvement. While there are a variety of items that

could be changed, there are several within the actuator model and SrLib, as well as

within the configuration itself, that would likely have the most significant effect on

simulation quality.

5.6.1 Robot Simulation Parameters and Target Configuration

First, links and their respective inertias should be updated with more accurate mod-

els. While capsules are appropriate for the Beta and Gamma joint, the Alpha joint

actually rotates about a point that is not the end of the component, and is consider-

ably more asymmetric than a capsule implies. Inertias can be changed in two ways:

in SrLib, or using external software to find a moment of inertia that can then be

assigned to a specific link via an SrLib command. Internally, the links would need

to be modeled as combinations of primitive shapes – capsules, boxes, spheres, etc. –

with appropriate densities and connected by weld joints. Alternatively, the link shape

could simply be approximated, much like the tibia in the current version, and then

assigned inertias based on measurements from Solidworks or a similar modeling pro-

gram. The inertial accuracy of the links could be further improved by replacing the

torque approximation with a physical model of the actuator working as a prismatic

joint along a single axis.

Second, unmodeled frictions and resistances could be lumped into a general damp-

ing term applied to the joint. This would need to occur in SrLib following receipt of

torque commands.

Finally, the simulation needs to be expanded to include all twelve joints required

89

to accurately simulated a quadruped robot. Functionally, this requirement is straight-

forward; the current actuator models and their respective controllers and input files

need to be replicated within a single Simulink file. Additionally, inputs should be

replaced with angles derived from inputs of the Phantom joysticks using the inverse

kinematics blocks used on the two-legged prototype, and the simulation should be

outfitted with a higher order control scheme to allow the operator to guide each of

the four legs.

The addition of these programs, however, will result in a complete model that

is considerably more computationally demanding. An easy way to deal with this

challenge is to use a target high in memory and processing power – the one used here

had 2.1 GHz and 256mb RAM, and sufficed for at least three joints. Additionally, the

friction and valve models could be reduced in complexity and accuracy, as discussed

earlier, in exchange for a reduced overall TET.

90

5.6.2 Dynamics Library Design and Configuration

10 12 14 16 18 20 22 24 26 28 30
40

60

80

100

Time (s)

P
os

iti
on

 (
de

g)

Gamma Joint Closed Loop Position Tracking of a Slow Sine Wave with Background Activity

Simulated with SrLib
Measured Response
Reference

10 12 14 16 18 20 22 24 26 28 30
20

30

40

50

60

Time (s)

P
re

ss
ur

e
(p

si
a)

Actuator Pressures

Meas. Cap
Meas. Rod
Sim. Cap
Sim. Rod

22.68 22.7 22.72 22.74 22.76 22.78 22.8 22.82
22.6

22.7

22.8

Time Packet Received

T
im

e
P

ac
ke

t S
en

t

Close−Up of Time Packet Passing from xPC to SrLib

Packets received
Perfect (0 lag) Case

Figure 51: Errors in simulated response cause by pauses in SrLib operation

While SrLib’s non-realtime nature has been largely irrelevant in the tests performed

here, its good performance is not guaranteed. Figure 51 shows a case of a closed loop

sine wave test for a gamma joint where the computer recorded a burst of activity

mid-test, causing a packet delay and providing erroneous results. Such occurrences

are rare – in the 50 most recent tests it happened once, but they cannot be easily

predicted. One way to minimize the likelihood of such activity would be to change

the Simulation configuration to use a fast computer with plenty of memory to run

SrLib, and ensure that SrLib is the only major task running on that computer. Better

still, the system could be ported to Linux or another real-time system and run, either

91

with SrLib or with a different dynamics engine, in real-time.

Another non-realtime effect is the occasional pauses caused by rendering a frame.

With the computer configuration rendering frequency used for this thesis, this effect

was not a significant concern, though the additional pauses of up to 1 ms were still

present. Using separate threads for rendering and dynamics, the two processes could

run in sync with each other, rather than alternating. In practice, this change would

be somewhat complicated, since the dynamics engine actively uses many openGL fea-

tures, and would likely require and additionally, entirely separate rendering process.

However, it could improve the utility of the simulation by providing a more versatile

system capable of running on a wider array of hardware configurations.

Finally, though lag was not a significant issue in recent tests, the 3-4 ms round

trip time could become problematic in some circumstances, and may have contributed

to friction inaccuracies due to velocity sampling. Such delays could be avoided by

simply moving the entire simulation to one target PC, using MATLAB’s mex features

to interface SrLib’s C++ code with the actuator model. Instead of sending a torque

and feeding back position and velocity, position data would be sent to a viewer in

a one-way connection. This type of setup would be ideal, as it would remove any

dependence of the simulation on network communication while still maintaining a

modular dynamics simulation with a viewing option.

92

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This thesis has discussed the development and testing of a simulation for a pneumat-

ically powered quadruped robot. The simulation combines an analytically derived

actuator model with a dynamics library to provide a system that realistically por-

trays the effects of pneumatic actuation on user control of the robot. Results have

demonstrated the simulation’s performance and the impact of its design and config-

uration requirements on its overall convenience and applicability.

A two-legged prototype of the robot and a simple actuator test platform were

used to validate the simulated actuation results at several stages of its development,

using response characteristics such as overshoot, settling time, rise time, and corre-

spondence to higher-order dynamics as indicators of similarity. Additionally, walking

and manipulation-like tests run on a single leg of the robot were closely matched in

simulation, again using similarities in position tracking and relative pressure behavior

to validate the simulation’s realism.

Simulation accuracy was achieved by combing classical fluid circuit modeling with

advanced valve and friction models.

6.1 Impact of Advanced Valve Model

The advanced valve design was based on an overlapped valve model that utilized

an equivalent orifice area curve and equivalent supply and exhaust pressure curve

as functions of input voltage. While this valve model contributed to very accurate

behavior, it was found to come at a high computational price. Tests of contributions

of individual model components to total task execution time (TET) in section 5.5.3

demonstrated that the advanced valve model consumed as much as 24% of the total

93

TET. Tests using a simple valve model assuming linear orifice area scaling and a

constant discharge coefficient proved to exhibit only a slight loss of accuracy for fast-

moving dynamics, but fared poorly when attempting to model slow-moving behaviors,

which are representative of valve performance near the offset voltage. While this loss

in accuracy appeared to be of minimal importance in the simple actuator model,

expansion to the complete dynamic simulation aggravated the result. Thus, despite

its high computational needs, the advanced valve model is a necessary component for

simulation accuracy.

6.2 Impact of Advanced Friction Model

Friction was shown to present a similar challenge. A Stribeck-Tanh model was used

because it employs several empirically derivable parameters to provide a continuous

function that includes consideration of static, Coulomb, and viscous friction, thereby

ensuring a friction model that is both relatively accurate and easy to implement.

However, like the advanced valve model, it was shown in section 5.5.3 that the friction

model resulted in a high computational cost, contributing up to 11% of the overall

TET. Tests using a simple viscous friction model showed that the impacts on accuracy

of the simple actuator model were minimal, but the complete dynamic simulation

performed poorly. This result, however, was likely due to a misplacement of the

damping term; it would be preferable to comput the viscous friction in SrLib rather

than in Simulink. While SrLib technically supports a damping term, tests using the

parameter showed no noticeable damping effect on the associated actuators.

Additionally, the close correspondence to reality demonstrated on the simple ac-

tuator model using only a viscous friction term suggests that even if viscous friction

alone is too basic for the complete dynamic simulation, a friction model likely exists

that requires less overall computation than the Stribeck-Tanh model but could still

provide the desired degree of accuracy in the full dynamic simulation.

94

6.3 Network and Configuration Requirements

Strict enforcement of the realtime environment was found to be one of the key factors

in success of the simulation. The xPC target operating system was coupled with real-

time UDP over a separate dedicated network card to enforce realtime communication

between the target, host, and SrLib computer. Additionally, SrLib’s serial structure,

discussed in section 5.1, ensured that as long as it was run on a computer able to com-

pute a cycle within the computing speed of the corresponding target PC (1000 Hz),

SrLib would compute a cycle within an equivalent time period, effectively enforcing

a realtime environment. Despite this structure, SrLib’s non-realtime nature can still

harm simulation performance. As pointed out in section 5.6.2, other activities on the

SrLib computer could cause delays as large as 80 ms, creating significant oscillations

that could potentially render the entire simulation unstable. Overall, however, the

simulation was found to be successful on a network with approximately 3-4 ms of

total travel time.

6.4 SrLib Approximations

The robot was represented in SrLib as a set of cylindrical capsules of assigned density

actuated by rotary joints, using the instantaneous robot geometry to convert actuator

forces to simulated joint torques. Results showed that the behavior of the dynamics-

equipped simulation very closely matched that of the prototype for the Gamma joint,

but began to deviate as more links were introduced. The Beta joint exhibited reason-

able behavior as a step test and excellent behavior within the single leg swing, and

the Alpha joint tended towards limit cycles in either case.

Since the goal of the overall simulation is to achieve behavior that is realistic in

the sense that it is reasonable for a pneumatic system, the oscillations were eliminated

by reducing the gain margin on the simulated Alpha joint controller by 25%, thus

stabilizing the closed loop dynamics and providing a complete simulated leg swing

95

motion that closely matched both the tracking and relative pressure measurements

of each of the corresponding joints on the robot prototype.

Several errors and approximations could have accumulated to contribute to the

observed deviation in performance of the Alpha and Beta joints, but the primary

suspect is the estimated inertia. The inertia of the tibia, the sole link actuated by the

Gamma joint, was calculated as an aluminum cylinder – a near-perfect representation

of the actual link, contributing to the strong similarities between simulated and actual

Gamma joint behavior. The inertias of the links actuated by the Alpha and Beta

joints, however, are actually based on much more asymmetric geometry than the

cylindrical capsules used to estimate their inertia would imply. This assumption

is acceptable for the Beta joint, but it warrants improvement for the Alpha joint,

requiring either a better model in SrLib, or an assigned inertia based on an externally

calculated model.

6.5 Overall Actuator Model Accuracy

Disregarding the computational costs incurred by the advanced valve and friction

models, the completed actuator model proved to be very successful, useful for simula-

tion, robot design, and potential future controller design. Tests on the simple actuator

model and Gamma joint showed results that very closely matched position tracking

and relative pressure behaviors, even for valve input voltages near the voltage offset,

a range that has traditionally been challenging for researchers to match.

Similarly, though friction could not be accurately modeled in regions where the

actuator moves very slowly but never actually stops (e.g., sine waves), its effects on

step responses (in the form of the stiction peak) are well modeled.

Furthermore, joint accuracy has been maintained when subjected to disturbances

and coupled dynamics, as shown by the continued accuracy of the Gamma and Beta

joints as they are run simultaneously.

96

6.6 Future Improvements

The dynamic simulation developed in this thesis succeeds in closely portraying the

impact of pneumatic power on a robot that walks and manipulates. However, to fully

simulate a walking, pneumatically actuated robot in a fashion that can be conve-

niently implemented, several improvements still need to be made.

6.6.1 Expansion to 12 Joints

First, the associated Simulink file needs to be expanded from three joints to twelve.

Since this will result in a higher overall TET, it may be necessary to use simplified

valve and friction models, though faster hardware or distribution of the Simulink

model among multiple computers on a local network might also suffice. To control

the robot, higher level controllers such as those mentioned in [29] or [13] must be

added to the file.

6.6.2 Robot Modeling

As noted in section 6.4, the robot’s links, and particularly their inertias, are not char-

acterized as accurately as they could be. An improved SrLib robot model that more

accurately captures the masses and dimensions of the robot arm with respect to each

joint should substantially improve the overall simulation’s performance. This could

be achieved either by designing a more detailed robot within SrLib, or by calculating

the inertias of each link in Solidworks or a similar programming and then assigning

the resulting inertia values to the corresponding links in SrLib. The overall model

complexity could be further reduced by replacing the current rotary joints with pris-

matic joints representative of the pneumatic cylinders. This change would eliminate

the need for torque conversions (angle conversions would still be necessary for the

inverse kinematics) and thus also reduce the number of approximations used in the

model. Additionally, modeling the actuators directly could help improve inertia mod-

els by including the effects of varying piston position on the inertia of each individual

97

link, currently modeled as a non-deformable rigid body.

6.6.3 Solver Review

In this thesis, the Simulink portions of the simulation used ode5, a 5th order Dormand-

Prince (Runge-Kutta based) solver that is one of the available options found in

Simulink, while SrLib used an algorithm that combines Euler and 4th order Runge-

Kutta approaches. The choice of solver was not heavily debated in simulation im-

plementation, but proved to be a possibly critical factor in the success of certain

elements, such as viscous friction or alpha joint dynamics, where it may contribute

strongly to the accuracy of the solution. An analysis of the available solvers – both

those that are available and those that were used – and their applicability to the

system dynamics of the model, especially these noted error-prone regions, would sig-

nificantly improve the simulation’s overall value and potentially solve some of the

errors that are not yet fully explainable.

6.6.4 Improved Simulation Framework

It has been shown in this thesis that the configuration of SrLib, linked via a local net-

work with minimal delay to SrLib, is a sufficient configuration to achieve the desired

realistic performance of a robot with simulated pneumatic actuators. However, the

reliability of the simulation could be improved through several configuration changes.

First, SrLib could be replaced by an equivalent realtime simulation, or placed on a ma-

chine running only SrLib, to minimize opportunity for potential disruptions. Second,

the friction models could be implemented in SrLib rather than in Simulink to ensure

that force summations take into account as much of the overall system dynamics as

possible.

Even without these changes, this simulation nonetheless provides a practically

implementable framework for a model that closely characterizes how the choice of

pneumatic actuation affects performance of a walking robot, thereby providing a

98

valuable design tool to the continued development of the compact rescue robot.

99

APPENDIX A

VALIDATION PLATFORM SOFTWARE AND ANALYSIS

FILES

This section provides an overview of the files needed to run analyses on the simple test

rig (Section 4.2.1) and two-legged robot prototype (Section 3.1.2). Each test platform

requires a Simulink file, a script used to collect and process signals for analysis, and a

set of filters used in data processing. Since the analysis scripts are practically identical

for the two test platforms, only one script is shown. The filters are the same for both

test platforms and are defined in A.3.

A.1 Simulink Model Files

For each of the following Simulink files, the first image shows the overall structure of

the model, while the second image shows the composition of the Hardware Interface

block, depicted in yellow in the overall structure.

100

A.1.1 Single Degree of Freedom Test Platform

Figure 52: Simulink file for use with the single degree-of-freedom test rig

101

Figure 53: Subsystem of the Simulink file for use with the single degree-of-freedom

test rig corresponding to the yellow “Hardware and Controllers” block in Figure 52

A.1.2 Two-Legged Prototype

This Simulink file has two main sections: (1) The forward and inverse kinematics used

to convert Phantom commands to actuator angles (discussed in detail in [29] and to

some extent [23]) and (2) the controllers and hardware interfacing tools. Figure 54

102

shows the framework of the entire file, while Figure 55 displays how the controllers

and commanded inputs were interfaced with the hardware through Simulink.

Figure 54: Simulink file for use with the two-legged CRR prototype

103

Figure 55: Subsystem of the Simulink file for use with the two-legged CRR prototype

corresponding to the yellow Hardware Interfacing block in Figure 54

104

A.2 Analysis Files for Data Collected using the Validation

Platforms

Variations of the following script were run to collect and process data from tests on

the validation platforms:

1 %% M−file to collect data and analyze results

2 %Last updated October 2011 for use with Simulink 2011

3

4 %% Part 1: Collect data

5 % data = tg.OutputLog;

6 % close all;

7

8 positions = data(:,1:6); %Positions

9 pressures = data(:,7:12)+14.7; %Pressures

10 Rsignals = data(:,13:15); %Reference Signals

11

12 tvecB = data(:,40); %Time

13 psi2Pa = 6894.76; %Conversion Factor

14

15 %% Define Filters

16 load BimbaTools v2; %load saved filter data

17

18 [fp num, fp den] = tf(f press); %Pressure Filter

19 [fpos num, fpos den] = tf(f pos); %Position Filter (often unused)

20 [fv num, fv den] = tf(f v); %Velocity Filter

21 [ff num, ff den] = tf(f F); %Force Filter (used for simple ...

validation platform)

22

23 %% Define working variables and filter appropriately

24 posB raw = positions; %Positions

25 posB filt = filtfilt(fpos num, fpos den, posB raw);

105

26

27 velB raw = gradient(posB filt,.001); %Velocities

28 velB filt = filtfilt(fv num, fv den,velB raw);

29

30 pressB raw = pressures; %Pressures

31 pressB filt = filtfilt(fp num, fp den,pressB raw);

A.3 Filter Design

The filters referenced in section A.2 were defined using the filterbuilder tool in

MATLAB. Values were chosen by running a signal analysis script on samples of

the corresponding signal type (pressure, position, etc.) and observing the results.

The signal analysis script is shown below and followed by screenshots of the filter

definitions (Figure 56).

1 %% M−file to collect data and analyze results

2 %Last updated October 2011 for use with Simulink 2011

3

4 %% Part 1: Collect data

5 % data = tg.OutputLog;

6 % close all;

7

8 positions = data(:,1:6); %Positions

9 pressures = data(:,7:12)+14.7; %Pressures

10 Rsignals = data(:,13:15); %Reference Signals

11

12 tvecB = data(:,40); %Time

13 psi2Pa = 6894.76; %Conversion Factor

14

15 %% Define Filters

16 load BimbaTools v2; %load saved filter data

106

17

18 [fp num, fp den] = tf(f press); %Pressure Filter

19 [fpos num, fpos den] = tf(f pos); %Position Filter (often unused)

20 [fv num, fv den] = tf(f v); %Velocity Filter

21 [ff num, ff den] = tf(f F); %Force Filter (used for simple ...

validation platform)

22

23 %% Define working variables and filter appropriately

24 posB raw = positions; %Positions

25 posB filt = filtfilt(fpos num, fpos den, posB raw);

26

27 velB raw = gradient(posB filt,.001); %Velocities

28 velB filt = filtfilt(fv num, fv den,velB raw);

29

30 pressB raw = pressures; %Pressures

31 pressB filt = filtfilt(fp num, fp den,pressB raw);

107

Figure 56: Filters used for data analysis. Clockwise from top left: Position, Velocity,
Force, and Pressure

108

APPENDIX B

SIMPLE ACTUATOR MODEL COMPONENTS

B.1 Simple Actuator Model Simulink File

The simple actuator model was used in Chapter 4 to model an individual valve and

cylinder moving a piston and attached mass. Two files are needed to run the model.

First, a setup file is run that initializes the constants used throughout the simulation.

Second, a Simulink file is run that is composed of the actuator model itself, a PID

controller, a system model of the single degree-of-freedom test rig, and inputs and

outputs as necessary, shown in Figure 57. Details on the framework for the actuator

model are shown in figures 58, corresponding to the equations discussed in sections

4.1 and 4.2.3. An example code from one of the valve ports is used to show how

the details from section 4.2.3 were integrated into the overlying code structure, and

Figure 59 illustrates the composition of the friction model, which allows users to

choose between a Stribeck-Tanh and a viscous model, using equations introduced in

section 4.2.2. In each of the Simulink files, blocks are color-coded by contribution to

the simulation, as described by the corresponding legends found in the figures below.

B.1.1 Setup File

The following script provides an example setup file used to validate the simple actu-

ator model in its vertical, downward facing orientation, with an attached mass of 0.2

kg and air supplied at 50 psig.

1 %% Bimba Setup Version 2.0

2 %Created April 24, 2011

109

3 %Last updated October 2011

4

5 %% Prep workspace if desired

6 % clear all;

7 % close all;

8

9 %% General Constants

10

11 k=1.4; %for air

12

13 cp=1.012 * 10ˆ3; %J/(kg * K) room temp air 1% humidity

14

15 g=9.81; %m/sˆ2

16

17 %R=8.314; %universal gas constant J/(K * mol)

18 % when divided my air molar mass (29g/mol)

19 R=287; %J/(kg * K)

20

21 Ts=298; %Kelvin (25 deg C)

22

23 %To be converted:

24 Ps=50.3; %supply air, psig

25 Pe=15.7; %exhaust air (room), psi

26

27 Ps=Ps+14.7; %psi

28

29 %% Conversion factors

30 in2m = .0254;

31 psi2Pa = 6894.76;

32

33 %% Valve Dynamics

34 choke ratio=.528; %pressure ratio, if passed will generate choking

110

35 C1=sqrt(2 * k/(R * (k −1))); %Unchoked Flow

36 C2=sqrt(k/(R * ((k+1)/2)ˆ((k+1)/(k −1)))); %Choked Flow

37

38 %Discharge coefficient models for linear cd tests

39 % cdC = [0 0.09]; %[slope offset]

40 % cdR = [0 0.12]; %[slope offset]

41 % cd = 0.2; %slope

42

43 %% Cylinder Dynamics

44 rod=0.375 * in2m; %rod diameter, m

45 bore=1.0625 * in2m; %bore diameter, m

46 stroke=1.75 * in2m; %stroke length, m

47 m = 0.2; %mass of attachment, kg

48 rds = 0.018; %rod side dead space, m (measured: 0.018)

49 cds = 0.012; %cap side dead space, m

50

51 Aslider = 0.0045 * .0025; %Slider area, mˆ2

52 Ap = pi * boreˆ2/4 − Aslider; %Piston side area, mˆ2

53 Arod = pi * rodˆ2/4; %Area of Rod, mˆ2

54 Ar = Ap−Arod; %Rod side area, mˆ2

55

56 %% Friction Models

57 b=70; %Damping constant for viscous model

58 alpha=1;

59

60 %Stribeck −Tanh friction model (all in lbf)

61 Fsf = 4.5; %Static friction

62 FcfU = 3; %Coulomb friction (upward movements)

63 FcfD = 3; %Coulomb friction (downward movements)

64 Cv = 0.5; %Coefficient of viscous friction

65 Ktanh = 40; %Tanh coefficient

66 ii = 5; %exponent

111

67 Vs = 0.1; %Sliding speed coefficient

68

69 zVel = Vs; %Actually used in friction model as Vs, so not strictly ...

zero velocity threshold

70 % zPos = 0.04;

71

72 %% Flags within test rig dynamic model

73 velset=1; %To reset velocity integrator

74 accset=5; %To reset acceleration integrator

75

76 %% Simulation Constants

77 dt=.001; %Time step, secs

78 Ps=Ps* psi2Pa; %Supply pressure, Pa

79 Pe=Pe* psi2Pa; %Exhaust pressure, Pa

80

81 %% Initial Conditions

82 startPos = stroke;

83 rodP0 = Ps;

84 capP0 = 14 * psi2Pa;

112

B.1.2 Simulink File

Figure 57: Simulink actuator model, controller, and system dynamics

113

Figure 58: Valve and cylinder modeling inside the “Cylinder Model” block of the
Simulink model shown in Figure 57

114

A sample script from the valve port 2 block shows how the equivalent pressure and

area curves from section 4.2.3 were interfaced with the mass flow equations used in

valve modeling:

1 function [mass flow, T gas, P0, Aeq]= Port 2(Vc, Pc, env const, Tc, ...

dyn const)

2

3 %Vc = adjusted valve input voltage

4 %A = Valve orifice Area, mˆ2

5 %Pc = Cylinder piston side air pressure

6 %Tc = Cylinder piston side Air temperature

7

8 % Dynamics constants C1 C2 choke ratio k Cd

9 C1=dyn const(1); %Unchoked flow

10 C2=dyn const(2); %Choked flow

11 choke ratio=dyn const(3); %Choke ratio

12 k=dyn const(4); %k constant for air

13

14 % global Ps Pe Ts

15 Ps=env const(1); %Supply pressure

16 Pe=env const(2); %Exhaust Pressure

17 Ts=env const(3); %Supply Temperature

18

19 %Define remaining pressure curve parameters

20 %tanh model

21 Hpc = 1.25; %High Pressure x (adjusted) cutoff

22 Lpc = −.75; %Low Pressure x (adjusted) cutoff

23

24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

25 %% Use equivalent Pressure based on curve derivation (in eng lish units)

26 psi2Pa = 6894.76;

115

27

28 Ps eng = Ps/psi2Pa;

29 Pe eng = Pe/psi2Pa;

30 x offset = (Hpc + Lpc)/2;

31 y offset = (Ps eng + Pe eng)/2;

32 scaling = sign(Hpc − Lpc) * (Ps eng − Pe eng)/2;

33 m = 2* pi/abs(Lpc − Hpc);

34

35 P0 eng = y offset + scaling * tanh(m * (Vc −x offset));

36 P0 = P0 eng * psi2Pa;

37

38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

39 %% Use equivalent area that combines Discharge Coefficient and Area

40

41 %Port 2 equivalent area curves from Area Relations.xls

42 if (Vc >0)

43 % polyf = [1.33e −8 −1.321e −7 3.687e −7 −5.24e −8 1.80e −8]; ...

%weighted fit

44 polyf = [1.32e −8 −1.302e −7 3.608e −7 −4.33e −8 1.42e −8]; %reg. ...

polyfit

45 Aeq = polyf(1) * Vcˆ4 + polyf(2) * Vcˆ3 +polyf(3) * Vcˆ2 + polyf(4) * Vc ...

+ polyf(5);

46 else %positive area signifies supply air connected

47 % polyf = [9.3e −9 9.17e −8 2.261e −7 −2.281e −7 1.80e −8]; ...

%weighted fit

48 polyf = [9.4e −9 9.35e −8 2.326e −7 −2.225e −7 1.87e −8]; %reg. polyfit

49 Aeq = polyf(1) * Vcˆ4 + polyf(2) * Vcˆ3 +polyf(3) * Vcˆ2 + polyf(4) * Vc ...

+ polyf(5);

50 end

51

52 if (P0>Pc) %flow into cylinder

53 Pu=P0;

116

54 Pd=Pc;

55 T=Ts;

56 direction=1;

57 else %flow out of cylinder

58 Pu=Pc;

59 Pd=P0;

60 T=Tc;

61 direction= −1;

62 end

63

64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

65 %% Calculate f based on choked or unchoked flow

66

67 if (Pd/Pu >choke ratio) %NOT choked

68 f=C1 * Pu/sqrt(T) * (Pd/Pu)ˆ(1/k) * sqrt(1 −(Pd/Pu)ˆ((k −1)/k));

69 else %CHOKED

70 f=C2 * Pu/sqrt(T);

71 end

72

73 %% Calculate mass flow

74 mass flow=Aeq * f;

75

76 %Assign direction

77 mass flow = mass flow * direction;

78 T gas=T;

117

Figure 59: Friction model within the Simulink actuator model

118

B.2 Equivalent Area Curve Fitting Tools

The following script was used to generate the equivalent area and pressure curves

discussed in section 4.2.3.

1 %% Find polynomial curve fits for areas

2 % close all;

3

4 %adjusted voltage input

5 x = zeros(19,1);

6 x(1:9,1) = flipud(−[0.15 0.35 0.55 0.75 1.25 1.75 2.75 3.75 4.75]');

7 x(10:19,1) = [0 0.15 0.35 0.55 0.75 1.25 1.75 2.75 3.75 4.75]' ;

8

9 %50 psig supply, standard config

10 cd2 = [0.115 .14 .18 .2 .2 .19 .18 .17 .19 .09 .06 .05 .06 .09 .125 ...

.135 .12 .09 .075]';

11 cd1 = [.08 .1 .13 .15 .15 .15 .15 .12 .13 .11 .07 .06 .1 .12 .165 ...

.175 .16 .14 .11]';

12 AL = zeros(19,1); AL(10,1) = 2e −7;

13 estA = abs(0.002 * 0.005/5 * x);

14

15 Aeq1 = cd1. * (estA + AL);

16 Aeq2 = cd2. * (estA + AL);

17

18 xnegfit = x(1:10,1);

19 xposfit = x(10:19,1);

20 Aeq1negfit = Aeq1(1:10,1);

21 Aeq1posfit = Aeq1(10:19,1);

22 Aeq2negfit = Aeq2(1:10,1);

23 Aeq2posfit = Aeq2(10:19,1);

24

25 %% Use polyfit to get fourth order polynomials

119

26 P1neg = polyfit(xnegfit,Aeq1negfit,4);

27 P1pos = polyfit(xposfit,Aeq1posfit,4);

28

29 P2neg = polyfit(xnegfit,Aeq2negfit,4);

30 P2pos = polyfit(xposfit,Aeq2posfit,4);

31

32 % Plot results

33 AL = Aeq1(10,1);

34

35 %trendline curves

36 xIneg = −5:0.01:0;

37 xIpos = 0:0.01:5;

38 Aeq1neg = P1neg(1) * xIneg.ˆ4 + P1neg(2) * xIneg.ˆ3 + P1neg(3) * xIneg.ˆ2 ...

+ P1neg(4) * xIneg + P1neg(5);

39 Aeq1pos = P1pos(1) * xIpos.ˆ4 + P1pos(2) * xIpos.ˆ3 + P1pos(3) * xIpos.ˆ2 ...

+ P1pos(4) * xIpos + P1pos(5);

40

41 Aeq2neg = P2neg(1) * xIneg.ˆ4 + P2neg(2) * xIneg.ˆ3 + P2neg(3) * xIneg.ˆ2 ...

+ P2neg(4) * xIneg + P2neg(5);

42 Aeq2pos = P2pos(1) * xIpos.ˆ4 + P2pos(2) * xIpos.ˆ3 + P2pos(3) * xIpos.ˆ2 ...

+ P2pos(4) * xIpos + P2pos(5);

43

44

45 %% Use weighted fourth order polynomials with other options

46 % %Set options

47 % %Exclude outlier for s1

48 % s1 = fitoptions('Weights',[2 2 2 2 2 1 1 1 1 1]',...

49 % 'Method','LinearLeastSquares',...

50 % 'Robust','LAR');

51 % s2 = fitoptions('Exclude',[0 0 0 0 0 0 0 1 0 0]',...

52 % 'Weights',[2 2 2 2 2 1 1 1 1 1]',...

53 % 'Method','LinearLeastSquares',...

120

54 % 'Robust','LAR');

55 % s3 = s1;

56 % s4 = s1;

57 %

58 % cf1 = fit(xnegfit,Aeq1negfit,'poly4',s1);

59 % cf2 = fit(xposfit,Aeq1posfit,'poly4',s2);

60 % cf3 = fit(xnegfit,Aeq2negfit,'poly4',s3);

61 % cf4 = fit(xposfit,Aeq2posfit,'poly4',s4);

62 %

63 % %Set up trendline coefficients

64 % xIneg = −5:0.01:0;

65 % xIpos = 0:0.01:5;

66 % P1neg(1) = cf1.p1; P1neg(2) = cf1.p2; P1neg(3) = cf1.p3; P1 neg(4) ...

= cf1.p4; P1neg(5) = cf1.p5;

67 % P1pos(1) = cf2.p1; P1pos(2) = cf2.p2; P1pos(3) = cf2.p3; P1 pos(4) ...

= cf2.p4; P1pos(5) = cf2.p5;

68 % P2neg(1) = cf3.p1; P2neg(2) = cf3.p2; P2neg(3) = cf3.p3; P2 neg(4) ...

= cf3.p4; P2neg(5) = cf3.p5;

69 % P2pos(1) = cf4.p1; P2pos(2) = cf4.p2; P2pos(3) = cf4.p3; P2 pos(4) ...

= cf4.p4; P2pos(5) = cf4.p5;

70 %

71 % %Define trendline curves

72 % Aeq1neg = P1neg(1) * xIneg.ˆ4 + P1neg(2) * xIneg.ˆ3 + ...

P1neg(3) * xIneg.ˆ2 + P1neg(4) * xIneg + P1neg(5);

73 % Aeq1pos = P1pos(1) * xIpos.ˆ4 + P1pos(2) * xIpos.ˆ3 + ...

P1pos(3) * xIpos.ˆ2 + P1pos(4) * xIpos + P1pos(5);

74 %

75 % Aeq2neg = P2neg(1) * xIneg.ˆ4 + P2neg(2) * xIneg.ˆ3 + ...

P2neg(3) * xIneg.ˆ2 + P2neg(4) * xIneg + P2neg(5);

76 % Aeq2pos = P2pos(1) * xIpos.ˆ4 + P2pos(2) * xIpos.ˆ3 + ...

P2pos(3) * xIpos.ˆ2 + P2pos(4) * xIpos + P2pos(5);

121

APPENDIX C

DYNAMIC SIMULATION COMPONENTS

The dynamic simulation is constructed by interfacing a Simulink file containing the

actuator model and associated inputs, outputs, analysis and control tools with SrLib,

a dynamics library that builds a robot and its environment and models the dynamics

of their interactions. This section provides an overview of the framework and key files

required for each of these components.

C.1 MATLAB/Simulink Actuator Models

The Simulink file that was interfaced with SrLib contains three individual actuators

that represent the Alpha, Beta, and Gamma joint of a leg. This file, displayed in

figures 60 and 61, uses the individual actuator model referenced in Appendix B.1

with some minor modifications: (1) Many outputs used primarily for debugging and

analysis have been removed, and (2) cylinder and joint parameters have been redefined

to become joint-specific constants, as visible in the associated setup file provided in

section C.1.1.

In addition to the actuator models, the Simulink file contains blocks to configure

the local network settings and establish UDP communication with SrLib, as well as

several blocks for data processing, inputs, outputs, conversion tools, debugging, and

analysis. These are labeled and color coded, as specified by the legends within the

corresponding figures.

C.1.1 Setup File

A setup script must be run before compiling the Simulink file. The following example

is for a system with 50 psig supply air.

122

1 %% Bimba Setup for 50 psi SrLib Tests

2 %Created April 24, 2011

3 %Last updated October 2011

4

5 %% Prep workspace if desired

6 % clear all;

7 % close all;

8

9 %% Run time constants

10 dt = .001;

11 udprate = dt;

12

13 %% Load required pre −recorded signals

14 %Load the recorded signals from Phantom tests

15 LoadRecordedSignals;

16

17 %% General Constants

18 k=1.4; %for air

19

20 cp=1.012 * 10ˆ3; %J/(kg * K) room temp air 1% humidity

21

22 g=9.81; %m/sˆ2

23

24 %R=8.314; %universal gas constant J/(K * mol)

25 % when divided my air molar mass (29g/mol)

26 R=287; %J/(kg * K)

27

28 Ts=298; %Kelvin (25 deg C)

29

30 %To be converted:

31 Ps=50.3; %supply air, psig

32 Pe=24.7; %exhaust air (room − measured), psi

123

33

34 Ps=Ps+14.7; %psig

35

36 %% Conversion factors

37 in2m = .0254;

38 psi2Pa = 6894.76;

39

40 %% Valve Dynamics

41 choke ratio=.528; %pressure ratio, if passed will generate choking

42 C1=sqrt(2 * k/(R * (k −1))); %Unchoked

43 C2=sqrt(k/(R * ((k+1)/2)ˆ((k+1)/(k −1)))); %Choked

44

45 cdC = [0 0.09]; %Unused linear cd model

46 cdR = [0 0.12]; %Unused linear cd model

47

48 alpha=1;

49

50 %% Cylinder Dimensions

51

52 %alpha joint

53 a rod=0.375 * in2m; %rod diameter, m

54 a bore=1.0625 * in2m; %bore diameter, m

55 a stroke=3.75 * in2m; %stroke length, m

56 a rds = 0.018; %rod side dead space, m

57 a cds = 0.012; %cap side dead space, m

58

59 a Aslider = 0.0045 * .0025; %Slider area, mˆ2

60 a Ap = pi * a boreˆ2/4 − a Aslider; %Piston side area, mˆ2

61 a Arod = pi * a rodˆ2/4; %Area of Rod, mˆ2

62 a Ar = a Ap−a Arod; %Rod side area, mˆ2

63

64 %beta joint

124

65 b rod=0.375 * in2m; %rod diameter, m

66 b bore=1.0625 * in2m; %bore diameter, m

67 b stroke=1.75 * in2m; %stroke length, m

68 b rds = 0.018; %rod side dead space, m

69 b cds = 0.012; %cap side dead space, m

70

71 b Aslider = 0.0045 * .0025; %Slider area, mˆ2

72 b Ap = pi * b boreˆ2/4 − b Aslider; %Piston side area, mˆ2

73 b Arod = pi * b rodˆ2/4; %Area of Rod, mˆ2

74 b Ar = b Ap−b Arod; %Rod side area, mˆ2

75

76

77 %gamma joint

78 g rod=0.375 * in2m; %rod diameter, m

79 g bore=1.0625 * in2m; %bore diameter, m

80 g stroke=1.75 * in2m; %stroke length, m

81 g rds = 0.018; %rod side dead space, m

82 g cds = 0.012; %cap side dead space, m

83

84 g Aslider = 0.0045 * .0025; %Slider area, mˆ2

85 g Ap = pi * g boreˆ2/4 − g Aslider; %Piston side area, mˆ2

86 g Arod = pi * g rodˆ2/4; %Area of Rod, mˆ2

87 g Ar = g Ap−g Arod; %Rod side area, mˆ2

88

89 %mass attachments for simple tests (not used with SrLib)

90 a m = 0.2; %mass of attachment, kg

91 b m = 0.2; %mass of attachment, kg

92 g m = 0.2; %mass of attachment, kg

93

94 %% Cylinder Friction

95 %Viscous Friction model

96 a b=70; %Damping constant

125

97 b b=70; %Damping constant

98 g b=70; %Damping constant

99

100 %Stribeck −Tanh model (all in lbf)

101 Fsf = 4.5; %Static Friction

102 FcfU = 3; %Coulomb Friction (Inwards)

103 FcfD = 3; %Coulomb Friction (Outwards)

104 Cv = 0.5; %Coefficient of Viscous Friction

105 Ktanh = 40; %Tanh Coefficient

106 ii = 5; %Exponent

107 Vs = 0.1; %Sliding Speed Coefficoent

108

109 zVel = Vs; %Actually used in friction model as Vs, so not strictly ...

zero velocity threshold

110 zPos = 0.04; %Unused, formerly similar to Vs

111

112 %% Flags if needed

113 velset=1; %To reset velocity integrator

114 accset=5; %To reset acceleration integrator

115

116 %% Simulation Const

117 Ps=Ps* psi2Pa; %Supply pressure, Pa

118 Pe=Pe* psi2Pa; %Exhaust pressure, Pa

119

120 %% Initial Conditions

121 a startPos = a stroke;

122 b startPos = b stroke;

123 g startPos = g stroke;

124 rodP0 = Ps;

125 capP0 = 14 * psi2Pa;

126

C.1.2 Simulink File

Figure 60: First half of the Simulink file used together with SrLib to simulate an

entire CRR leg

127

Figure 61: Second half of the Simulink file used together with SrLib to simulate an

entire CRR leg

128

C.2 SrLib Components

Though SrLib consists of many components, its basic structure is illustrated in Figure

62 and discussed in greater detail in section 5.1. Example code from the files men-

tioned in section 5.1, which are largely specific to the CRR, is provided here. SrLib

is also available for free download online at http://sourceforge.net/projects/srlib/ or

by contacting Jaeyoung Haan [24].

Figure 62: Diagram of SrLib process structure

C.2.1 Leg Model

The following excerpt from Leg.cpp shows how joint actuation, link geometry and

properties are assigned, and a leg is constructed as a result.

1 void Leg::constructPart() {

2 m Coxa1.GetGeomInfo().SetShape(srGeometryInfo::CAPSUL E);

129

3 m Coxa1.GetGeomInfo().SetDimension(0.05, 0.0961);

4 m Coxa1.GetGeomInfo().SetColor(0.8, 0.2, 1);

5

6

7 //inertia for Coxa(1)

8 m Coxa1.UpdateInertia(1200);

9

10 m Coxa1Collision.GetGeomInfo().SetShape(srGeometryInf o::CAPSULE);

11 m Coxa1Collision.GetGeomInfo().SetDimension(0.05, 0.09 61);

12 m Coxa1Collision.SetLocalFrame(SE3());

13 m Coxa1.AddCollision(&m Coxa1Collision);

14

15 m Coxa2.GetGeomInfo().SetShape(srGeometryInfo::CAPSUL E);

16 m Coxa2.GetGeomInfo().SetDimension(0.05, 0.0);

17 m Coxa2.GetGeomInfo().SetColor(0.8, 0.2, 1);

18 m Coxa2.UpdateInertia(300); //Inertia for Coxa(2)

19

20 m Coxa2Collision.GetGeomInfo().SetShape(srGeometryInf o::CAPSULE);

21 m Coxa2Collision.GetGeomInfo().SetDimension(0.05, 0.0) ;

22 m Coxa2Collision.SetLocalFrame(SE3());

23 m Coxa2.AddCollision(&m Coxa2Collision);

24

25 m Femur.GetGeomInfo().SetShape(srGeometryInfo::CAPSUL E);

26 m Femur.GetGeomInfo().SetDimension(0.05, 0.123); // ...

Diameter, depth.

27 m Femur.GetGeomInfo().SetColor(0, 0.6, 1);

28

29 //inertia for Femur

30 m Femur.UpdateInertia(700);

31

32 m FemurCollision.GetGeomInfo().SetShape(srGeometryInf o::CAPSULE);

130

33 m FemurCollision.GetGeomInfo().SetDimension(0.05, 0.12 3); // ...

Diameter

34 m FemurCollision.SetLocalFrame(SE3());

35 m Femur.AddCollision(&m FemurCollision);

36

37 m Tibia.GetGeomInfo().SetShape(srGeometryInfo::CAPSUL E);

38 m Tibia.GetGeomInfo().SetDimension(0.015, 0.255); // Dia meter, ...

depth.

39 m Tibia.GetGeomInfo().SetColor(0, 0.8, 0);

40

41 //Tibia calculates its own inertia

42 m Tibia.UpdateInertia(2700); //density in g/mmˆ3

43 m Tibia.SetFriction(3.0);

44 m TibiaCollision.GetGeomInfo().SetShape(srGeometryInf o::CAPSULE);

45 m TibiaCollision.GetGeomInfo().SetDimension(0.015, 0.2 55); // ...

Diameter

46 m TibiaCollision.SetLocalFrame(SE3());

47 m Tibia.AddCollision(&m TibiaCollision);

48

49

50 //Alpha Joint

51 m J[0].SetActType(srJoint::TORQUE);

52 m J[0].SetPositionLimit(−47.0, 90.0); // in degree

53 m J[0].SetChildLink(&m Coxa1);

54 m J[0].SetChildLinkFrame(EulerZYX(Vec3(0.0, SR PI/2, ...

0.0),Vec3(0.0, 0.0, 0.0731)));

55

56 m Coxa.SetParentLink(&m Coxa1);

57 m Coxa.SetChildLink(&m Coxa2);

58 m Coxa.SetParentLinkFrame(EulerZYX(Vec3(0.0, 0.0, 0.0), Vec3(0.0, ...

0.0, −0.0481)));

131

59 m Coxa.SetChildLinkFrame(EulerZYX(Vec3(0.0, −SR PI/2, ...

0.0),Vec3(0.0, 0.0, −0.025)));

60

61 //Beta Joint

62 m J[1].SetActType(srJoint::TORQUE);

63 m J[1].SetPositionLimit(−67.0, −1); // in degree

64 m J[1].SetParentLink(&m Coxa2);

65 m J[1].SetChildLink(&m Femur);

66 m J[1].SetParentLinkFrame(EulerZYX(Vec3(0.0, 0.0, ...

−SR PI/2),Vec3(0.025, 0.0, 0.0)));

67 m J[1].SetChildLinkFrame(EulerZYX(Vec3(0.0, SR PI/2, ...

0.0),Vec3(0.0, 0.0, 0.087)));

68

69 //Gamma Joint

70 m J[2].SetActType(srJoint::TORQUE);

71 m J[2].SetPositionLimit(17.0, 95.0); // in degree

72 m J[2].SetParentLink(&m Femur);

73 m J[2].SetChildLink(&m Tibia);

74 m J[2].SetParentLinkFrame(EulerZYX(Vec3(0.0, SR PI/2, ...

0.0),Vec3(0.0, 0.0, −0.087)));

75 m J[2].SetChildLinkFrame(EulerZYX(Vec3(0, SR PI/2, 0),Vec3(0, ...

0.0, 0.152)));

76 }

C.2.2 Robot Model

The primary portion of the code from Robot.cpp pieces together the robot using the

legs from Leg.cpp and the newly defined thorax link, as shown in the sample code

below.

1 srSystem * RescueRobot::BuildRobot(SE3 T) {

2 //Build left front leg

132

3 L1.constructPart();

4 L1.m J[0].SetParentLink(&m Thorax); //Attach to thorax

5 L1.m J[0].SetParentLinkFrame(EulerZYX(Vec3(−4* SR PI/6, 0.0, ...

−SR PI/2),Vec3(−0.0086, −0.046, 0.375)));

6

7 //Right front leg

8 R1.constructPart();

9 R1.m J[0].SetParentLink(&m Thorax); //Attach to thorax

10 R1.m J[0].SetParentLinkFrame(EulerZYX(Vec3(4 * SR PI/6, 0.0, ...

SR PI/2),Vec3(−0.0086, 0.046, 0.375)));

11

12 //Left rear leg

13 L2.constructPart();

14 L2.m J[0].SetParentLink(&m Thorax); //Attach to thorax

15 L2.m J[0].SetParentLinkFrame(EulerZYX(Vec3(−4* SR PI/6, 0.0, ...

−SR PI/2),Vec3(−0.0086, −0.046, −0.375)));

16

17 //Right rear leg

18 R2.constructPart();

19 R2.m J[0].SetParentLink(&m Thorax); //Attach to thorax

20 R2.m J[0].SetParentLinkFrame(EulerZYX(Vec3(4 * SR PI/6, 0.0, ...

SR PI/2),Vec3(−0.0086, 0.046, −0.375)));

21

22 //Thorax properties

23 m Thorax.GetGeomInfo().SetShape(srGeometryInfo::CAPSU LE);

24 m Thorax.GetGeomInfo().SetDimension(0.094, 0.75);

25 m Thorax.GetGeomInfo().SetColor(0.5, 0.4, 0.9);

26 m Thorax.UpdateInertia(10000);

27 m ThoraxCollision.GetGeomInfo().SetShape(srGeometryIn fo::CAPSULE);

28 m ThoraxCollision.GetGeomInfo().SetDimension(0.094, 0. 74);

29 m ThoraxCollision.SetLocalFrame(SE3());

30 m Thorax.AddCollision(&m ThoraxCollision);

133

31

32 //Set thorax as base and fix in space

33 m Thorax.SetFrame(T);

34 this −>SetBaseLink(&m Thorax);

35 this −>SetBaseLinkType(srSystem::FIXED);

36 this −>SetSelfCollision(false);

37

38 return this;

39 }

C.2.3 Environment Objects

Obstacle.cpp is used to define the types of objects that the robot interacts with.

While many types of environment objects are defined in the complete file, the following

example script for a ramp provides an idea of how the environment is constructed.

1 srSystem * rampRoll::BuildObstacle(SE3 T) {

2 //Build a ramp

3 ramp.GetGeomInfo().SetShape(srGeometryInfo::BOX);

4 ramp.GetGeomInfo().SetDimension(1.2, 1.2, 0.019);

5 ramp.UpdateInertia();

6 ramp.SetFriction(3.0);

7 rampCollision.GetGeomInfo().SetShape(srGeometryInfo ::BOX);

8 rampCollision.GetGeomInfo().SetDimension(1.2, 1.2, 0. 019);

9 rampCollision.SetLocalFrame(SE3());

10 ramp.AddCollision(&rampCollision);

11

12 //Set base link

13 ramp.SetFrame(T);

14 this −>SetBaseLink(&ramp);

15 this −>SetBaseLinkType(FIXED);

16

134

17 return this;

18 }

C.2.4 Execution

Main.cpp shows the broader construction of SrLib. Several portions of the script are

shown here, illustrating the functions most relevant to the topics discussed in this

thesis. First, the main() function is used to run the program:

1 int main(int argc, char ** argv)

2 {

3 // setup up incoming UDP channel from simulation

4 //Content removed due to network privacy concerns,

5 //but this is where IP and ports to use are defined

6

7 // STEP 1: Viewer initialization

8 // srSimpleViewer render scene using OpenGL GLUT.

9 // ...OpenGL GLUT need argc and argv for initializing.

10 gViewer.Init(&argc, argv, "Compact Rescue Robot");

11

12 // STEP 2: Robot Modeling

13 User Modeling();

14

15 // STEP 3: Simulation setting

16 User SimulationSetting();

17

18 // STEP 4: Run window view.

19 gViewer.Run();

20

21 return 0;

22 }

135

Within main(), two sections of interest are the User Modeling section, which

defines the robot and environment discussed earlier in this appendix, and the User

Control Loop, which specifies the serial structure that runs continuously once the

basic framework has been initialized:

1 void User Modeling()

2 {

3 SE3 T;

4

5 // System 1: Create Ground

6 gSpace.AddSystem(gGround.BuildGround());

7 gGround.m Ground −>SetFriction(5.0);

8

9 // System 2, 3: Create Robot and Obstacles

10 gSpace.AddSystem(robot.BuildRobot(EulerZYX(Vec3(SR PI, −SR PI/2, ...

0.0), Vec3(0.0, 0.0, 0.8))));

11 gSpace.AddSystem(map1.BuildObstacle(EulerZYX(Vec3(0 .0, 0.0, ...

0.0),Vec3(1.0, 3.4 −0.05, 0.0)),"HALF RANDOM"));

12

13 //// − Space

14 // Set simulation time step.

15 gSpace.SetTimestep(0.001);

16 // Set gravity

17 gSpace.SetGravity(0.0, 0.0, −9.8); // −9.8 in lst set

18 // Set number of sub −step for rendering

19 gSpace.SetNumberofSubstepForRendering(100);

20 }

1 // Every simulation step, this function will work.

2 void User CBFunc ControlLoop()

136

3 {

4 ReceiveNewData();

5

6 robot.L1.SetHapCommand(thetaL11, thetaL12, thetaL13);

7 robot.L2.SetHapCommand(thetaL21, thetaL22, thetaL23);

8 robot.R2.SetHapCommand(thetaR21, thetaR22, thetaR23);

9

10 //R1 receives explicit torque commands

11 robot.R1.m J[0].m State.m rCommand = thetaL11;

12 robot.R1.m J[1].m State.m rCommand = thetaL12;

13 robot.R1.m J[2].m State.m rCommand = thetaL13;

14

15 //For position rather than torque commands

16 //robot.PositionControl(0.001);

17 SendNewData();

18 }

Finally, the Send() and Receive() functions show how data is shared with MAT-

LAB/Simulink.

1 void SendNewData()

2 {

3 udp send num++;

4

5 //Joint position, velocity

6 msgtemp.L11 = robot.R1.m J[2].m State.m rValue[0]; //Gamma position

7 msgtemp.L12 = robot.R1.m J[2].m State.m rValue[1]; //Gamma velocity

8 msgtemp.L13 = robot.R1.m J[1].m State.m rValue[0]; //Beta position

9 msgtemp.R11 = robot.R1.m J[1].m State.m rValue[1]; //Beta velocity

10 msgtemp.R12 = robot.R1.m J[0].m State.m rValue[0]; //Alpha position

11 msgtemp.R13 = robot.R1.m J[0].m State.m rValue[1]; //Alpha velocity

12 msgtemp.L21 = 0;

137

13 msgtemp.L22 = 0;

14 msgtemp.L23 = 0;

15 msgtemp.R21 = 0;

16 msgtemp.R22 = 0;

17 msgtemp.R23 = 0;

18

19 //Robot orientation

20 SO3 temp = robot.m Thorax.GetOrientation();

21 msgtemp.ori11 = temp[0];

22 msgtemp.ori12 = temp[1];

23 msgtemp.ori13 = temp[2];

24 msgtemp.ori21 = temp[3];

25 msgtemp.ori22 = temp[4];

26 msgtemp.ori23 = temp[5];

27

28 //Debugging data

29 msgtemp.ori31 = time packet;

30 msgtemp.ori32 = udp send num;

31 msgtemp.ori33 = gSpace.m Simulation Time;

32

33 sockH2C−>send((char *) &msgtemp, sizeof(msgtemp));

34

35 }

1 void ReceiveNewData()

2 {

3 sockS2D−>recv((char *) &msg, sizeof(msg));

4

5 thetaL11 = msg.L11; //Alpha Torque

6 thetaL12 = msg.L12; //Beta Torque

7 thetaL13 = msg.L13; //Gamma Torque

138

8

9 //Joint Angles

10 thetaR11 = msg.R11;

11 thetaR12 = msg.R12;

12 thetaR13 = msg.R13;

13 thetaL21 = msg.L21;

14 thetaL22 = msg.L22;

15 thetaL23 = msg.L23;

16

17 thetaR21 = 0;

18

19 //Debugging:

20 time packet = msg.R21;

21 thetaR22 = 0;

22 thetaR23 = 0;

23 udp recv num++;

24 }

139

APPENDIX D

OPERATOR MANUAL

The following sections describe the basic technical configuration and procedure re-

quired to run the simulation and associate two-legged prototype.

D.1 Dynamic Simulation

The choice of hardware for use with the dynamic simulation is quite flexible. The

computers are constrained primarily by the performance demands, as noted in Chap-

ter 5. Additionally, the host and SrLib computer must each contain an Ethernet card,

and the target PC must contain two. While the type of card does not matter for the

SrLib PC, the host and target must use xPC Target compatible Ethernet cards.

Once hardware has been chosen, the network settings on each machine must be

properly configured. Figure 63 shows a general case that also includes inputs from the

Phantoms, while Figure 64 shows the case used for validation in this thesis, excluding

Phantoms and using a single computer as both a host and to run SrLib.

The configurations shown in Figures 63 and 64 use a local switch operating on

the 192.168.3.xxx network and host/target communication across the 30.30.30.xxx

network. xxx is referred to with placeholders X0 - X3 and Y0-Y1, respectively, having

value from 0 to 255.

The following steps must then be run to operate the simulation:

1. Set up the network and boot disk configuration as shown in Figure 63/64.

2. On the Host PC, open an appropriate Simulink file.

3. On the Phantom PC, open an appropriate Phantom control file.

140

Figure 63: Dynamic simulation network configuration - general case. GW = “Gate-
way”.

Figure 64: Dynamic simulation network configuration - arrangement used for vali-
dation in this thesis. GW = “Gateway”.

4. On the PC running SrLib, open the appropriate SrLib file.

5. On the Host PC, click “incremental build” to compile and download the Simulink

file to the target. Once it has completed downloading (this can be observed from

the target monitor or the MATLAB screen), wait a few seconds to ensure that

it has fully loaded (otherwise, MATLAB may return an error and force a target

reboot).

6. Once it has downloaded, click “Connect to Target” and wait for the play button

to light up. Click play to run.

7. Turn on the Phantoms. Do this by clicking “Go” or hitting F5 on the keyboard

while in PosMode.dsw on the Phantom PC.

8. Run the simulation by hitting “play” on the Host PC. Once it is open, the

141

mouse can be used to rotate the view or adjust the zoom. To begin simulation,

hit“p” on the PC running SrLib.

The order of steps 2-5 and 6 - 8 can be varied, though the phantoms tend to move

about if turned on before the simulation is begun. For systems where the phantom

is not used, ignore steps 3 and 7.

D.2 Two-Legged Prototype

The configuration shown in Figure 65 uses a local switch operating on the 192.168.3.xxx

network, where xxx is referred to with placeholders X0 - X3, having value from 0 to

255.

Figure 65: Two-legged prototype network configuration - general case. GW = “Gate-
way”.

1. Set up the network and boot disk configuration as shown above.

2. Open an appropriate Simulink file on the Host PC for use with the target.

3. On the Phantom PC, open an appropriate Phantom control file.

4. On the Host PC, click “incremental build” to compile and download the Simulink

file to the target. Once it has completed downloading (this can be observed from

the target monitor or the MATLAB screen), wait a few seconds to ensure that

142

it has fully loaded (otherwise, MATLAB may return an error and force a target

reboot).

5. Once it has downloaded, click “Connect to Target” and wait for the play button

to light up.

6. Click “Play”. The program is now running, but further configuration is still

necessary.

7. Turn on the Phantoms. Do this by clicking “Go” or hitting F5 on the keyboard

while in PosMode.dsw on the Phantom PC. The program can now be operated.

143

REFERENCES

[1] “Gazebo,” 2005. http://playerstage.sourceforge.net/gazebo/gazebo.html. Last
accessed: October 8, 2011.

[2] “Dymola: Code and model export,” 2011.
http://www.3ds.com/products/catia/portfolio/dymola/dymola-product-
line/code-and-model-export/. Last accessed: October 8, 2011.

[3] “filtfilt: Zero-phase digital filtering,” 2011.
http://www.mathworks.com/help/toolbox/signal/ref/filtfilt.html. Last ac-
cessed: October 4, 2011.

[4] “Simulink coder,” 2011. http://www.mathworks.com/products/simulink-
coder/index.html. Last accessed: October 22, 2011.

[5] “Wireshark,” 2011. http://www.wireshark.org/. Last accessed: October 18,
2011.

[6] Al-Dakkan, K. A., Barth, E. J., andGoldfarb, M., “Dynamic constraint-
based energy-saving control of pneumatic servo systems,” Transactions of the
ASME. Journal of Dynamic Systems, Measurement and Control, vol. 128,
pp. 655–62, 2006.

[7] Andersson, S., Soderberg, A., and Bjorklund, S., “Friction models for
sliding dry, boundary and mixed lubricated contacts,” Tribology International,
vol. 40, no. 4, pp. 580–587, 2007.

[8] Bobrow, J. E. and Jabbari, F., “Adaptive pneumatic force actuation and
position control,” Transactions of the ASME. Journal of Dynamic Systems, Mea-
surement and Control, vol. 113, pp. 267–72, 1991.

[9] Bone, G. M. and Shu, N., “Experimental comparison of position tracking
control algorithms for pneumatic cylinder actuators,” IEEE/ASME Transactions
on Mechatronics, vol. 12, pp. 557–61, 2007.

[10] Carneiro, J. F. and de Almeida, F. G., “Modeling pneumatic servo-
valves using neural networks,” in Computer Aided Control System Design, 2006
IEEE International Conference on Control Applications, 2006 IEEE Interna-
tional Symposium on Intelligent Control, 2006 IEEE, pp. 790–795, 2006.

[11] Celaya, E. and Porta, J. M., “A control structure for the locomotion of
a legged robot on difficult terrain,” IEEE Robotics and Automation Magazine,
vol. 5, pp. 43–51, 1998.

144

[12] Cepolina, F., Moronti, M., Sanguinet, M., Zoppi, M., and Molfino,

R. M., “Roboclimber versus landslides: design and realization of a heavy-duty
robot for teleoperated consolidation of rocky walls,” IEEE Robotics & Au-
tomation Magazine, vol. 13, pp. 23–31, 2006.

[13] Chipalkatty, R.,Daepp, H. G., Egerstedt, M., andBook, W., “Human-
in-the-loop: Mpc for shared control of a quadruped rescue robot,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, September 25 - 30,
2011 2011.

[14] Corominas Murtra, A., Mirats Tur, J. M., Sandoval, O., and Sanfe-

liu, A., “Real-time software for mobile robot simulation and experimentation in
cooperative environments,” in 1st International Conference on Simulation, Mod-
eling, and Programming for Autonomous Robots, SIMPAR 2008, November 3,
2008 - November 6, 2008, vol. 5325 LNAI of Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), pp. 135–146, Springer Verlag, 2008.

[15] Daepp, H. G. and Book, W., “Modeling and simulation of a pneumatically-
actuated rescue robot,” in 52nd National Conference on Fluid Power, 2011.

[16] de Santos, P. G., Estremera, J., Garcia, E., and Armada, M., “In-
cluding joint torques and power consumption in the stability margin of walking
robots,” Autonomous Robots, vol. 18, pp. 43–57, 2005.

[17] De Santos, P. G., Galvez, J. A., Estremera, J., and Garcia, E., “Sil04:
a true walking robot for the comparative study of walking machine techniques,”
IEEE Robotics and Automation Magazine, vol. 10, pp. 23–32, 2003.

[18] Ding, Y. and Scharf, E., “Deadlock avoidance for a quadruped with free gait,”
in Proceedings of the 1994 IEEE International Conference on Robotics and Au-
tomation, 8-13 May 1994, vol. 1 of Proceedings 1994 IEEE International Con-
ference on Robotics and Automation (Cat. No.94CH3375-3), pp. 143–8, IEEE
Comput. Soc. Press, 1994.

[19] Driewer, F., Baier, H., and Schilling, K., “Robot-human rescue teams: a
user requirements analysis,” Advanced Robotics, vol. 19, pp. 819–38, 2005.

[20] Ferretti, G., Gritti, M., Magnani, G., Rizzi, G., and Rocco, P., “Real-
time simulation of modelica models under linux / rtai,” in 4th International
Modelica Conference, pp. 359–365, 2005.

[21] Ferretti, G., Magnani, G., Porrati, P., Rizzi, G., Rocco, P., and Rus-

coni, A., “Real-time simulation of a space robotic arm,” in Workshop on robot
simulators at the IEEE/RSJ International Conference on Intelligent RObots and
Systems, 2008.

145

[22] Goldfarb, M., Barth, E. J., Gogola, M. A., and Wehrmeyer, J. A.,
“Design and energetic characterization of a liquid-propellant-powered actuator
for self-powered robots,” Mechatronics, IEEE/ASME Transactions on, vol. 8,
no. 2, pp. 254–262, 2003.

[23] Guerriero, B., Haptic Control and Operator-Guided Gait Coordination of a
Pneumatic Hexapedal Rescue Robot. PhD thesis, Georgia Institute of Technology,
2008.

[24] Haan, J., “Srlib user manual,” tech. rep., Seoul National University, 2009.

[25] Halme, A., Kartikainen, K., and Karkkainen, K., “Terrain adaptive mo-
tion and free gait of a six-legged walking machine,” Control Engineering Practice,
vol. 2, pp. 273–9, 1994.

[26] Hirose, S., “A study of design and control of a quadruped walking vehicle,”
International Journal of Robotics Research, vol. 3, pp. 113–33, 1984.

[27] Hong, I. and Tessmann, R., “The dynamic analysis of pneumatic systems
using hypneu,” in Proceedings of the National Conference on Fluid Power, vol. 47,
pp. 61–70, National Fluid Power Association, 1996.

[28] Jian-Nan, L. and Shin-Min, S., “Modeling gait transitions of quadrupeds and
their generalization with cmac neural networks,” IEEE Transactions on Systems,
Man and Cybernetics, Part C (Applications and Reviews), vol. 32, pp. 177–89,
2002.

[29] Kim, T. Y., “Simulation and control of a four-legged rescue robot,” tech. rep.,
Georgia Institute of Technology, December 2009.

[30] Kriegsmann, M., “Servocontrol with pneumatic actuators,” Machine Design,
vol. 79, pp. 78–80, 2007.

[31] Luk, B. L., Collie, A. A., and Billingsley, J., “Robug ii: An intelli-
gent wall climbing robot,” in Robotics and Automation, 1991. Proceedings., 1991
IEEE International Conference on, pp. 2342–2347 vol.3, 1991.

[32] Luk, B. L., Collie, A. A., Piefort, V., and Virk, G. S., “Robug iii: a
tele-operated climbing and walking robot,” in Control ’96, UKACC International
Conference on (Conf. Publ. No. 427), vol. 1, pp. 347–352 vol.1, 1996.

[33] Luk, B. L., Liu, K. P., Collie, A. A., Cooke, D. S., and Chen, S.,
“Tele-operated climbing and mobile service robots for remote inspection and
maintenance in nuclear industry,” Industrial Robot, vol. 33, pp. 194–204, 2006.

[34] McGhee, R. B. and Frank, A. A., “On the stability properties of quadruped
creeping gaits,” Mathematical Biosciences, vol. 3, pp. 331–52, 1968.

146

[35] McGhee, R. B. and Iswandhi, G. I., “Adaptive locomotion of a multilegged
robot over rough terrain,” IEEE Transactions on Systems, Man and Cybernetics,
vol. SMC-9, pp. 176–82, 1979.

[36] McRae, A., “Channel capacity in absolute judgment tasks: An artifact of
information bias?,” Psychological Bulletin, vol. 73, pp. 112–121, 1970.

[37] Messina, E., Jacoff, A., Scholtz, J., Schlenoff, C., Huang, H.-M.,
Lytle, A., and Blitch, J., “Statement of requirements for urban search
and rescue robot performance standards,” technical report, National Institute
of Standards and Technology Department of Homeland Security, 2005.

[38] Mistry, M., Nakanishi, J., and Schaal, S., “Task space control with prior-
itization for balance and locomotion,” in 2007 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 29 Oct.-2 Nov. 2007, 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 331–8, IEEE,
2007.

[39] Moosavian, S. A. A., Kalantari, A., Semsarilar, H., Aboosaeedan,

E., and Mihankhah, E., “Resquake: a tele-operative rescue robot,” Journal of
Mechanical Design, vol. 131, p. 081005 (11 pp.), 2009.

[40] Murray, C. J., “Robotic lifesaver [battlefield extraction assist robot],” Design
News, vol. 61, pp. 46–50, 2006.

[41] Nelson, G. M. and Quinn, R. D., “Posture control of a cockroach-like robot,”
in Robotics and Automation, 1998. Proceedings. 1998 IEEE International Con-
ference on, vol. 1, pp. 157–162 vol.1, 1998.

[42] Raibert, M., “Bigdog, the rough-terrain quadruped robot,” in 17th World
Congress, International Federation of Automatic Control, IFAC, July 6, 2008
- July 11, 2008, vol. 17 of IFAC Proceedings Volumes (IFAC-PapersOnline),
Elsevier, 2008.

[43] Riofrio, J. A., Al-Dakkan, K., Hofacker, M. E., and Barth, E. J.,
“Control-based design of free-piston stirling engines,” in American Control Con-
ference, 2008, pp. 1533–1538, 2008.

[44] Riofrio, J. A. and Barth, E. J., “Design of a free piston pneumatic compres-
sor as a mobile robot power supply,” in Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference on, pp. 235–240,
2005.

[45] Schneider, D., “Robin murphy roboticist to the rescue,” Spectrum, IEEE,
vol. 46, no. 2, pp. 36–37, 2009.

[46] Schulte, H. and Hahn, H., “Fuzzy state feedback gain scheduling control of
servo-pneumatic actuators,” Control Engineering Practice, vol. 12, pp. 639–50,
2004.

147

[47] Shu, N. and Bone, G. M., “Development of a nonlinear dynamic model for
a servo pneumatic positioning system,” in Mechatronics and Automation, 2005
IEEE International Conference, vol. 1, pp. 43–48 Vol. 1, 2005.

[48] Smith, R., “Ode: Open dynamics engine,” 2006. http://www.ode.org. Last
accessed: October 8, 2011.

[49] Song, S.-M. and Waldron, K. J., Machines that walk : the adaptive suspen-
sion vehicle. MIT Press series in artificial intelligence, Cambridge, Mass.: MIT
Press, 1989.

[50] Sukhatme, G. S., “The design and control of a prototype quadruped micro-
rover,” Autonomous Robots, vol. 4, pp. 211–20, 1997.

[51] Thomas, J. H., “Proper valve size helps determine flow,” in Control Engineering
Online, Control Engineering Online, 2000.

[52] Thomas, M. B. and Maul, G. P., “Considerations on a mass-based system
representation of a pneumatic cylinder,” Journal of Fluids Engineering, Trans-
actions of the ASME, vol. 131, pp. 0411011–04110110, 2009.

[53] Thompson, S. C.,Young, N., Thiets, R.,Groshans, T. M., andParedis,

C. J. J., “Modeling and simulation in the design of a lunar rover suspension with
extensibility to martian applications,” in 2007 AIAA Modeling and Simulation
Technologies Conference, August 20, 2007 - August 23, 2007, vol. 2 of Collection
of Technical Papers - 2007 AIAA Modeling and Simulation Technologies Con-
ference, pp. 682–695, American Institute of Aeronautics and Astronautics Inc.,
2007.

[54] Urwin-Wright, S., Sanders, D., and Chen, S., “Terrain prediction for an
eight-legged robot,” Journal of Robotic Systems, vol. 19, no. Copyright 2002,
IEE, pp. 91–8, 2002.

[55] Wait, K. W., The Use of Pneumatic Actuation to Address Shortcomings Con-
cerning Normalized Output Power in State of the Art Mobile Robotics. PhD
thesis, Vanderbilt University, 2010.

[56] Wait, K. W. and Goldfarb, M., “Enhanced performance and stability in
pneumatic servosystems with supplemental mechanical damping,” Journal of
Dynamic Systems, Measurement and Control, vol. 132, p. 041012 (8 pp.), 2010.

[57] Waldron, K. J. and McGhee, R. B., “The adaptive suspension vehicle,”
IEEE Control Systems Magazine, vol. 6, pp. 7–12, 1986.

[58] Zhu, Y. andBarth, E. J., “Impedance control of a pneumatic actuator for con-
tact tasks,” in 2005 IEEE International Conference on Robotics and Automation,
April 18, 2005 - April 22, 2005, vol. 2005 of Proceedings - IEEE International
Conference on Robotics and Automation, pp. 987–992, Institute of Electrical and
Electronics Engineers Inc., 2005.

148

[59] Zlajpah, L., “Simulation in robotics,” Mathematics and Computers in Simula-
tion, vol. 79, pp. 879–897, 2008.

149

