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SUMMARY 

 

 Polymer networks are an important class of materials that are ubiquitously found 

in natural, biological, and man-made systems. The complex mesoscale structure of these 

soft materials has made it difficult for researchers to fully explore their properties. In this 

dissertation, we introduce a coarse-grained computational model for permanently cross-

linked polymer networks than can properly capture common properties of these materials. 

We use this model to study several practical problems involving dry and solvated 

networks. Specifically, we analyze the permeability and diffusivity of polymer networks 

under mechanical deformations, we examine the release of encapsulated solutes from 

microgel capsules during volume transitions, and we explore the complex tribological 

behavior of elastomers. Our simulations reveal that the network transport properties are 

defined by the network porosity and by the degree of network anisotropy due to 

mechanical deformations. In particular, the permeability of mechanically deformed 

networks can be predicted based on the alignment of network filaments that is 

characterized by a second order orientation tensor. Moreover, our numerical calculations 

demonstrate that responsive microcapsules can be effectively utilized for steady and 

pulsatile release of encapsulated solutes. We show that swollen gel capsules allow steady, 

diffusive release of nanoparticles and polymer chains, whereas gel deswelling causes 

burst-like discharge of solutes driven by an outward flow of the solvent initially enclosed 

within a shrinking capsule. We further demonstrate that this hydrodynamic release can be 

regulated by introducing rigid microscopic rods in the capsule interior. We also probe the 

effects of velocity, temperature, and normal load on the sliding of elastomers on smooth 



 xxii

and corrugated substrates. Our friction simulations predict a bell-shaped curve for the 

dependence of the friction coefficient on the sliding velocity. Our simulations also 

illustrate that at low sliding velocities, the friction decreases with an increase in the 

temperature. Overall, our findings improve the current understanding of the behavior of 

polymer networks in equilibrium and non-equilibrium conditions, which has important 

implications for synthesizing new drug delivery agents, designing tissue engineering 

systems, and developing novel methods for controlling the friction of elastomers. 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Background and Context 

 Polymer networks are natural, synthetic, or hybrid natural-synthetic materials in 

which constituting polymer chains are all connected to each other either directly or via 

other connecting chains to form a three-dimensional solid-like structure (see Figure 1.1) 

[1-3]. These highly permeable, extremely flexible, and yet mechanically sturdy polymeric 

materials have found an increasingly large number of applications in today’s state-of-the-

art technologies. For instance, water-swellable polymer networks (hydrogels) that are 

sensitive to external stimuli are extensively used in technologically advanced areas such 

as optoelectronics, MEMS, and nanomedicine [4-8]. Triggered by an external stimulus 

such as variations in temperature, pH, solvent chemistry, light intensity, magnetic or 

electrical fields, hydrogels can absorb (swell) or expel solvent (deswell) and, as a result, 

change their volume by many times [9-14]. In most cases, the application of an external 

stimulus alters the relative strength of polymer-polymer and polymer-solvent interactions 

and, thereby, gives rise to internal stresses which cause the network to expand or shrink 

[15]. From a thermodynamic point of view, the network swelling is driven by the osmotic 

pressure resulting from the difference in the solvent chemical potential inside and outside 

of the network [16]. 

 The high sensitivity of hydrogels to the environmental changes makes them 

especially attractive for drug delivery applications, in which delivery agents can 

effectively shield and protect encapsulated drugs until they reach the treatment site, and 
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Figure 1.1 (a) A matrix of synthetic nanofibers and (b) an actin network. Reproduced
from Refs. 2 and 3, respectively. 
 
 
 

(a) (b)

then discharge a predefined amount of the drug, thereby playing an active role in the 

disease therapy [17]. Indeed, researchers have successfully exploited polymer gels to 

create responsive micro- and nano-delivery agents that can release encapsulated drugs or 

other solutes on demand (see Figure 1.2) [17-27]. 

 As another example, elastomers (physically or chemically cross-linked polymer 

networks [4]) are widely exploited in engineering applications including the construction 

of tires, wiper blades, flexible rotary seals, artificial organs, impact absorbers, dental 

implants, diaphragms, and solid lubricants for reciprocating machinery [28-31]. This is in 

part due to their ability to slide on rough, rigid surfaces with or without a lubricant. 

Distinct tribological properties of elastomers make them particularly useful in automotive 

and other industrial applications. These properties strongly depend on the characteristics 

of the substrate roughness [32]. Recent studies have shown that, indeed, micron scale 

geometrical patterning can be harnessed to regulate the elastomeric friction (see Figure 

1.3) [33-36]. 

 In addition to above applications, polymer networks are successfully employed as 

matrices for drug delivery [37], scaffolds for tissue engineering [38], and materials for 

soft contact lenses [39] and breast implants [40]. Furthermore, stimuli-responsive 



 3

Figure 1.2 Schematic illustrating microcapsule loading and release triggered by
chemical, physical, or biological stimuli. Reproduced from Ref. 27. 
 
 
 
polymer gels are used to create micro-actuators [41], micro-robots [42-43], and different 

kinds of smart materials [44-45]. 

1.2 Previous Studies on Properties of Polymer Networks 

 The ever increasing importance of polymer networks requires an in-depth 

understanding of their properties. Indeed, using theory, computer simulations, and 

experiments, researchers have studied the mechanical, transport (i.e. permeability and 

diffusivity), swelling, and tribological properties of polymer networks [16, 46-84]. Here, 

we describe a few of the latest investigations. We begin with reviewing the studies 

focusing on mechanical properties followed by the discussion of studies considering 

transport, swelling, and frictional properties. 

 Head et al. [85] employed a model system of cross-linked, stiff filaments to 

examine the macroscopic response of cytoskeletal networks. They found that depending 

on the density of cross-linking and filament rigidity, mechanically loaded networks 
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Figure 1.3 Schematic illustrating an elastomer sliding on an engineered rough surface. 
 
 
 

undergo either affine or nonaffine deformations. They then characterized the conditions 

under which the transition occurs. Liu et al. [86] used a novel experimental technique to 

determine the local strain field in semiflexible polymer networks. By tracking embedded 

probe microparticles, they measured the uniformity of strain in networks under shear. 

Consistent with previous theoretical studies, their measurements showed that strain 

affinity strongly depends on the polymer length and cross-link density. Buxton and 

Clarke [87] performed a 3D computer simulation and identified a ‘‘bending-to-

stretching’’ transition in the response of disordered elastic networks under stress. They 

found that the strain at which the transition occurs is a function of the average network 

connectivity. 

 Sander et al. [88] developed an image-based multiscale model to capture the 

anisotropy and heterogeneity of a cell-compacted collagen gel subjected to mechanical 

loads. Using their model, the authors investigated the relation between applied loads and 

cellular response, and predicted a heterogeneous network restructuring in which tensile 

and compressive fiber forces are produced to accommodate macroscopic displacements. 
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Figure 1.4 Fibrin gel at (a) unstressed and (b) stretched states. Reproduced from Ref. 62.
 
 
 

(b)(a) 

Koenderink et al. [89] synthesized an active polymer network in which processive 

molecular motors control the network rigidity. The system consists of actin filaments 

cross-linked by filamin A (FLNa) and contracted by bipolar filaments of muscle myosin 

II. They showed that the myosin motors stiffen the network by more than two orders of 

magnitude. They also demonstrated that the stiffening response closely mimics the effects 

of external stress applied by mechanical shear. Ulrich et al. [90] examined the elasticity 

of a highly cross-linked simple network consisting of randomly cross-linked harmonic 

springs. Their theoretical analysis showed that the network shear modulus is independent 

of the spring constant and the average length between cross-linking points, and is solely 

function of the cross-linking density. A comprehensive review of the recent works on the 

structure and dynamics of cross-linked actin and double networks are provided, 

respectively, by Lieleg et al. [91] and Gong [92]. 

 Similar to mechanical properties, transport properties of networks have long been 

of interest to scientists and engineers. Tahir and Tafreshi [93] studied the influence of in-

plane and through-plane fiber orientations on a fibrous network transverse permeability. 

They numerically solved the 3D Stokes equations and demonstrated that the transverse 
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permeability of a fibrous structure is independent of in-plane fiber orientation but 

increases with increasing deviation of the fiber through-plane angle from zero. Nabovati 

et al. [94] exploited the lattice Boltzmann method to examine the fluid flow in 3D 

random fibrous media and developed a semi-empirical constitutive model for the 

permeability of fibrous media. The authors also examined the influence of curvature and 

aspect ratio of fibers on the permeability. They found that curvature has a negligible 

effect, and that aspect ratio is only important for fibers with aspect ratio smaller than 6:1, 

in which case the permeability increases with increasing aspect ratio. A comprehensive 

review of experimental and theoretical data on Newtonian fluid flows through different 

types of porous media is available elsewhere [95]. 

 Flow of non-Newtonian fluids through porous media and polymer networks have 

been studied by several researchers. Morais et al. [96] investigated non-Newtonian fluid 

flows through a disordered porous medium by direct numerical simulations. They found 

that their results for power-law fluids can be described by a single universal curve over a 

broad range of Reynolds numbers and power-law exponents. The authors also considered 

the flow of Bingham fluids described in terms of the Herschel-Bulkley model. In this 

case, their simulations revealed that the interplay of the disordered geometry of the pore 

space, the fluid rheological properties, and the inertial effects leads to a substantial 

enhancement of macroscopic hydraulic permeability at intermediate Reynolds numbers. 

Sochi [97] presented a review of the single-phase flow of non-Newtonian fluids in porous 

media. 

 Diffusion of various solutes, such as rigid particles and linear macromolecules, 

has been extensively investigated to understand the fundamentals of transport through 
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cross-linked biological and synthetic networks. Liu et al. [98] experimentally observed 

that sufficiently small molecules adopt an approximately spherical conformation when 

diffusing through a gel matrix, whereas larger molecules are forced to migrate in a snake-

like fashion. They also found that molecules of intermediate size can temporarily get 

trapped in the largest matrix pores, where the molecule can extend and, thereby, 

maximizes its conformational entropy. The authors suggested that this “entropic 

trapping” leads to an increased dependence of diffusion rate on molecular size. Seiffert 

and Oppermann [99] carried out a series of experiments and measured the diffusion of 

linear macromolecules and spherical particles in semi-dilute polymer solutions and 

polymer networks. They found, in contrast to the prediction of the hydrodynamic scaling 

model [49-50], that the diffusion of flexible polymers and rigid particles having 

comparable sizes is not identical. Nevertheless, they indicated that the scaling model 

provides a reasonable fit to individual sets of experimental data. Cu and Saltzman [57] 

provided an extensive review of different mathematical models and experimental 

methods employed to measure the diffusion through polymer networks and specifically 

through the mucus gel for drug delivery purposes. 

 Swelling kinetics of polymer networks has been the subject of many recent 

theoretical and experimental studies [16, 70-84]. Zhang et al. [79] developed a finite 

element model to simulate the large deformation and fluid transport during 

swelling/deswelling of polymer gels. The authors successfully used their model to study 

several time-dependent processes in swelling gels, such as draining of fully swollen gels 

due to weight, free swelling-induced surface instability, and buckling pattern formation 

due to partial confinement. Keener et al. [81] presented a model for the swelling kinetics 
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of gels that incorporates the free energy including the polymer standard free energy. The 

authors employed their model to study the effect of free energy parameters on the 

swelling kinetics and stable states and sizes of the swollen gel and demonstrated that the 

theories ignoring the polymer standard free energy cannot properly describe the swelling 

kinetics or equilibrium states. 

 Jha et al. [75] employed a theoretically informed Monte Carlo simulation to 

examine volume phase transitions of polymeric nanogels. The authors modeled nanogels 

as regular networks of Gaussian strands discretized with coarse-grained polymer beads, 

and analyzed the effects of degree of crosslinking, solvent quality, and charge fraction of 

polymer backbone on the volume phase transition behavior of nanogels. The results of 

their simulations indicated that their coarse-grained model can capture the universal 

features of volume phase transition phenomenon as observed in swelling experiments. 

These features include higher gel swelling with an increase in hydrophilicity and degree 

of ionization of polymer backbone, and a decrease in crosslink density of the nanogel. 

Moreover, their model predicted a discontinuous volume phase transition in the case of 

ionic nanogels. Yashin and Balazs [80] developed a mesoscale model to study reactive 

gels that undergoe periodic volume changes due to the self-oscillatory Belousov–

Zhabotinsky reaction. Traveling waves and different dynamical patterns were discovered 

that may be useful for mechano-sensing applications and self-propulsion. 

 Caldorera-Moore et al. [76] used atomic force microscopy (AFM) and 

environmental scanning electron microscopy (ESEM), to characterize the swelling 

behavior of nano-imprinted hydrogel particles of different sizes and aspect ratios. Their 

studies showed that the swelling behavior of imprinted gel particles with characteristic 
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length of 100nm or less is a function of particle size and deviates from the bulk behavior. 

The authors also developed a model based on FEM and field theory to further support 

their observations. Wahrmund et al. [82] examined the swelling kinetics of micron-sized 

monodisperse poly-N-isopropylacrylamide (PNIPAM) hydrogel capsules. The authors 

varied the temperate and measured the inner and outer radii of the microgel capsules as a 

function of time to characterize their swelling behavior. The results of their experiment 

indicated that the characteristic swelling time of a gel shell is proportional to the square 

of the outer radius and is not a function of the capsule thickness. The authors supported 

their experiment by developing a simple model describing the swelling kinetics of 

microgel shells. 

 Not only the mechanical and transport properties of polymer networks, but also 

their frictional properties have received considerable attention over the past few decades. 

Researchers have developed theories and performed experiments to scrutinize the 

tribological behavior of dry and solvated polymer networks [28, 32, 100-124]. For 

instance, Gong and Osada [120] proposed a model based on the repulsion and adsorption 

theory at a solid surface to describe the frictional force produced when a polymer gel 

slides on a solid surface. The authors combined their model with scaling arguments to 

derive general relationships for the frictional force as a function of the normal load, 

sliding velocity, polymer volume fraction, and elastic modulus of the gel. The results of 

this model show that when the interactions are repulsive, friction is due to the viscous 

flow of solvent at the interface and, therefore, is proportional to the sliding velocity and 

the normal pressure provided that the pressure is smaller than the elastic modulus of the 

gel. For the attractive interactions, the model predicts that in addition to the 
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hydrodynamic friction, the force required to detach the adsorbed chains from the 

substrate contributes to the friction, too. The authors applied their model to several test 

cases and found good agreement between their theoretical results and certain 

experimental observations. In their later experimental work, Gong et al. [121] 

investigated the friction of several kinds of hydrogels sliding on glass and Teflon plates 

both in air and water. Their experimental measurements revealed that the friction force 

and its relation with the normal load vary depending on the chemical structure of gels, 

surface properties of the opposing substrates, and the measurement conditions. They 

explained the difference in tribological behavior of gels in terms of the surface interaction 

between the polymer network and solid surfaces. To support their explanation, they 

measured the adhesion between glass particles and gels, and showed that it correlates 

very well with the friction. 

 Du et al. [114] examined the friction of a polyvinyl alcohol (PVA) gel sliding 

against a glass surface in dilute polyethylene oxide (PEO) aqueous solutions with various 

molecular weights and concentrations. They observed that frictional stress in PEO 2E4 

solutions is lower than in pure water. They also saw that the friction decreases with an 

increase in the PEO concentration and reaches a minimum at the crossover concentration. 

However, they noticed that in higher molecular weight solutions this friction reduction is 

only observed for very dilute concentrations, and the frictional stress in higher 

concentration is higher than that in pure water. The authors showed that at fast sliding 

velocities, all the friction curves in dilute PEO solution collapse into the pure water 

curve, independent of the molecular weight and concentration of PEO. Their results 

revealed that in the low sliding velocity region, where adsorption of PVA gel on glass 
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plays the dominant role in friction, PEO chains screen the adsorption of PVA chains to 

the glass surface. In the fast sliding velocity region, on the other hand, liquid lubrication 

prevails due to either the extensive stretching of PEO chains or formation of a deplete 

layer near the glass surface. 

 Finally, Chang et al. [115] explored the effect of swelling/deswelling phase 

transition on the tribological properties of pNIPAAm hydrogels. Using experimental 

measurements, they showed that, at small shear rates, gels in the collapsed state exhibit 

significantly higher friction than swollen gels. The authors attributed the difference in 

friction to changes in the surface roughness, adhesive interactions, and chain 

entanglements at the gel-gel interface. Regardless of the origin, they demonstrated that 

the changes in friction, triggered by an external stimulus, are reversible. 

1.3 Scope and Objectives 

 Our literature survey in the previous section reveals that the majority of studies 

examined the properties of polymer networks under ideal conditions. For example, there 

are relatively few studies that considered the transport properties of polymer networks 

under a mechanical load or explored mass transfer through the networks during the 

volume transition. Investigations concerning the mechanical response of polymer 

networks in non-equilibrium conditions are also scarce. However, in many real-world 

applications, polymer networks are subject to external/internal stresses (see for example 

Figure 1.4) and/or function in a non-equilibrium state. 

 The study of practical problems involving polymer networks usually requires 

accommodating several time and length scales. Moreover, there often exist complex 

geometrical domains where mechanical and fluid phenomena are coupled. The multi-
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scale, multi-physics nature of systems in which polymer networks play a primary role 

makes it extremely difficult to develop comprehensive analytical models. Also, 

experimental approaches are typically very costly, time consuming and require 

significant effort. Therefore, there is a critical need to develop rigorous computational 

approaches capable of describing coupled phenomena associated with the applications of 

polymer networks. Recent advances in the high-performance computing provide new 

opportunities for developing such models that can be employed not only for investigating 

the static and dynamic properties of polymer networks, but also for exploring the entire 

operation of systems whose performance depend on the function of polymer networks. 

The synergistic combination of these models with ever-improving experimental methods 

can answer fundamental questions about the properties of polymer networks and facilitate 

their applications in emerging technologies. 

 The central objective of this Ph.D. dissertation is to develop a fully-coupled three 

dimensional model for permanently cross-linked, semiflexible polymer networks and use 

it to study (1) the permeability and diffusivity of mechanically loaded polymer networks; 

(2) to explore transport of encapsulated solutes across the membrane of microgel capsules 

during swelling and deswelling volume transitions; and (3) to probe the tribological 

behavior of elastomers sliding on smooth and grooved surfaces. 

 The results of our studies reveal important and highly-needed information about 

the relation between the mechanical deformation of polymer networks and the change in 

diffusive and convective transport of solutes. This information not only gives us a 

fundamental insight into the transport processes in anisotropic random networks taking 

place at the micro/nano scale, but also yields engineering guidelines for designing a 
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whole host of new systems and devices in which polymer networks are harnessed for 

solute transport, separation, sensing, and micromechanical actuation. Our calculations of 

release from responsive microgel capsules disclose how the gel transport properties 

change due to the network swelling/deswelling and provide a new approach for 

regulating the release of drugs from drug delivery micro-carriers by controlling the 

membrane pore size. Furthermore, our simulations of elastomeric friction on engineered 

rough substrates give insights into the complex tribological properties of cross-linked 

polymer networks and unveil the possibility of harnessing directional surfaces to alter the 

friction and reduce wear in a controllable and predictable manner. Finally, our three 

dimensional fully-coupled model of cross-linked polymer networks provides a foundation 

for future studies on a broad range of problems in engineering, medicine, and biology that 

involve active and responsive polymer networks. 

 The remaining chapters of this dissertation are organized as follows. In the next 

chapter, we introduce our model and characterize its properties. In chapter 3, we present 

the results of our simulations for convective and diffusive transport through networks 

under axial and shear loadings. In chapter 4, we describe the controlled release of 

particles and linear macromolecules from responsive microgel capsules. In chapter 5, we 

report our findings regarding the friction of elastomers on smooth and grooved surfaces. 

We conclude with chapter 6 where we summarize our results and discuss future research 

directions. 
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CHAPTER 2 

METHODOLOGY 

 

2.1 Introduction 

 Computationally, one could model polymer networks in three different ways; i.e. 

using molecular dynamics (MD), continuum methods, or mesoscale models (Figure 2.1). 

Each of these simulation techniques has their own benefits and drawbacks. While 

continuum-based methods such as finite-difference, finite-element, and finite-volume 

accurately capture phenomena at the macroscale, they fail to correctly model the 

micromechanics and the complex structure of polymer networks [87, 125-127]. On the 

other hand, molecular dynamics simulations can very accurately model phenomena 

taking place at a few nanometers in length and a few nanoseconds in time. However, they 

become computationally prohibitively expensive when they are employed to simulate 

larger complex systems [126]. A way to tackle this issue in MD is to use “pseudo-atoms” 

to represent groups of atoms instead of explicitly representing every atom of the system 

(see Figure 2.2). The coarse-graining or reduced representation allows simulation of 

microscale phenomena at larger time and length scales comparing to what can be 

modeled by conventional all-atom MD. 

 Over the past few decades, several mesoscale coarse-grained simulation methods 

have been developed to bridge the gap between the continuum methods and all-atom 

molecular dynamics simulations [126]. Among those are the Brownian dynamics (BD), 
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Figure 2.1 Schematic illustrating applicability ranges of various simulation techniques.
Reproduced from Prof. C. Heath Turner lecture notes (see
http://unix.eng.ua.edu/~checlass/Simulation/l07.ppt). 
 
 
 
dissipative particle dynamics (DPD), lattice Boltzmann (LB), and the density functional 

theory (DFT). 

 Unlike conventional continuum approaches that solve a set of partial differential 

equations, the majority of these mesoscopic methods follow the evolution of a many-

body system to simulate the governing equations. This makes them particularly effective 

for massive parallel high-performance computing (HPC) and, therefore, suitable for the 

computationally demanding task of modeling the complex behavior of soft materials such 

as polymer networks. 

 The choice of a particular simulation technique for a given problem depends on 

the nature of the interactions between the elements of the system and the appropriate 

level of coarse-graining. Here, we employ the dissipative particle dynamics (DPD), a 

particle-based computational method that can effectively capture the salient features of 

the polymer network architecture and, at the same time, can properly model the relevant 
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Coarse-grained 
representation

Atomistic chain 

Figure 2.2 Coarse-grained representation of a polymer chain. 
 
 
 

hydrodynamic effects and thermal fluctuations. In the following sections, we first 

introduce DPD and then we describe our methodology and validation studies. 

2.2 Dissipative Particle Dynamics 

 Dissipative particle dynamics [15, 128] is a coarse-grained simulation technique 

that employs a momentum-conserving thermostat and soft repulsive interactions among 

beads representing clusters of molecules (Figure 2.2). This allows for simulations of 

physical phenomena occurring at relatively large time and spatial scales, while capturing 

the relevant hydrodynamic effects. Indeed, DPD has been successfully employed for 

simulating the dynamics of soft matter systems including those that involve polymers and 

nanoparticles dispersed in Newtonian incompressible fluids [126, 129-144]. 

 For instance, Filipovic et al. [130] used DPD to examine the motion of circular 

and elliptical particles in a 2D shear laminar flow. Chen et al. [132] exploited DPD to 

investigate the steady-state and transient dynamics of polymer drops under shear in a 

microchannel. Alexeev et al. [133] employed DPD to probe interactions between lipid 

bilayer membranes and Janus nanoparticles. Using DPD, Fedosov et al. [134] studied the 



 17

flow of dilute polymer solutions in micro and nanochannels. Lastly, Fan et al. [137] 

simulated the flow of DNA suspensions in microchannels by DPD. 

 In DPD, the time evolution of the many-body system obeys the Newton’s second 

law iii dtdm fv  , where iv  and if  are, respectively, the velocity and force on a bead i  

with mass im , and t  is time. The equations of motion are integrated using the velocity-

Verlet algorithm [15]. The force on a bead is   
j

R
ij

D
ij

C
iji FFFf , where the sum runs 

over all beads j  within a cutoff radius cr  around the bead i . The conservative force is 

given by   ijijij
C
ij ra rF ˆˆ1 , where ija  is the repulsion between beads i  and j , cijij rrr ˆ  

and ijijij rrr ˆ  with jiijr rr  . Here, ir  is the position vector of bead i . The dissipative 

force is   ijijij
DDD

ij ij
rvrF ˆˆ    and the random force is dtijij

R
ij

R
ij rF ˆ , where 

jiij vvv   and ij  is a zero-mean Gaussian random variable of unit variance with 

jiij   . The coefficients D

ij
  and D

Bij ij
Tk  22   determine the strength of dissipative and 

random forces, where Bk  is the Boltzmann constant and T  is the temperature of the 

system. Moreover, the weight functions D  and R  are related via  2RD   . The 

relations between the weight functions and the strength of dissipative and random forces 

are set to ensure the thermodynamic equilibrium [145]. The generalized form of the 

weight function R  is given by p
ij

R r )ˆ1(   with 1p  for the standard DPD model 

[137]. 

 Unbounded systems in DPD are modeled using periodic boundary conditions. 

However, there is more than one way to simulate systems involving physical boundaries. 

Solid surfaces can be modeled indirectly by modifying the periodic boundary conditions 
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[146-147]. Alternatively, they can be accounted for by locally “freezing” a cluster of 

DPD beads that represent the surface geometry [146-147]. The former approach is 

limited to simple geometries whereas the latter can be applied to more complex systems. 

For example, it was shown that, when combined with a particle reflection rule at the 

fluid-solid interface, the freezing method can effectively be used to satisfy the no-slip 

condition [135, 146-149]. Here, we use periodic boundary conditions to simulate 

phenomena taking place in the bulk and freeze DPD beads to model stationary solid 

walls. 

2.3 Model for Linear Macromolecules and Rigid Objects 

 We model polymer macromolecules as flexible chains of DPD beads connected 

sequentially by finitely extensible nonlinear elastic (FENE) springs. The FENE potential 

is given by ])||(1ln[ 2
max

2
maxFENEFENE rrkU ji rr  , where FENEk  is the stretching 

constant and maxr  is the maximum spring extension. This model does not explicitly 

account for chain uncrossability. However, as reported earlier [134, 150], this is not a 

critical issue especially when we consider dilute solutions where *
chainchain cc  . Here, 

chainc  is the number density of polymer chains and   13
0

* 34


 gchain Rc   is the overlapping 

concentration with 0gR  being the bulk gyration radius of chains [151]. 

 We model rigid objects by clustering DPD beads to form the desired shape and 

then considering the cluster as an independent object. Since the distance between the 

beads comprising a single object are kept constant, the object obeys the dynamics of rigid 

bodies. Specifically, we construct rigid particles from beads arranged in hexagonal close-
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Figure 2.3 Schematic illustrating system components within a periodic simulation box.
Insets (a) and (b) show 16-bead and 10-bead polymer chains, respectively. Insets (c) and
(d) show, respectively, 13-bead and 5-bead hexagonal closed-packed aggregates
representing nanoparticles. Reproduced from Ref. 136. 
 
 
 
packed spherical aggregates, and we build immobile solid walls by freezing beads 

organized in layers of square lattice. 

2.4 Polymer Network Model 

 We use a random lattice of interconnecting elastic filaments to capture the 

mechanics of disordered polymer networks [87]. The flexible filaments are formed from 

DPD particles connected by Frankel springs with a potential 

2)|(| 2
FrankelFrankel eqji rkU  rr . Here, Frankelk  and eqr  are the spring constant and 

equilibrium length, respectively. Additionally, we include a bending potential 

 cos1 bb kU , where bk  is the bending stiffness and   is the angle between two 
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consecutive pairs of beads. Bending and stretching spring constants can be chosen to 

match the ratio between bending/stretching and thermal energy of filaments. We note that 

the number of beads fn  in a filament with the length of fl  is given by eqf rl1  where 

eqr  can be tuned to ensure the correct solvent-filament and solute-filament interactions. 

 We build the cubic network in two steps (Figure 2.3). We first randomly 

distribute N  cross-linking nodes inside the computational domain. Then, we connect 

each node with aveC  closest nodes that are located within a cutoff radius which is set to 

prevent the formation of excessively long filaments. The resulting average network 

connectivity deviates from the value of aveC  by less than one percent. Thus, we construct 

polymer networks that are characterized by the number of cross-linking nodes N  and the 

average connectivity aveC . To create non-cubic networks, we first generate a bigger cubic 

network and then remove the beads and connections that are outside the geometry of 

interest. Given the importance of porosity in analyzing mechanical and transport 

properties of porous media, we further characterize our network by defining its porosity 

as boxfilaments VV1 , where boxV  is the total volume of the simulation domain and 

334 SEtotalfilament RnV   is the volume occupied by the filaments in which 209.0SER  is 

the Stokes-Einstein radius of DPD beads [152] and totaln  is the total number of DPD 

beads used to build the network ( totaln  is different from the number of lattice seed nodes 

N ). When we calculate the porosity, some of the filaments may overlap and, thus, the 

resulting value exceeds the real network porosity by a few percent. Since the total 

number of filaments in the network is equal to 2aveCN  and the average filaments length 

varies proportional to    0
31 CCVN avebox  , where 0C  is a constant related to the 
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Figure 2.4 Networks with porosity 8.0  and different internal structures: (a)
2000N  and 3aveC ; (b) 250N  and 12aveC . Reproduced from Ref. 136. 

 
 
 
average distance between lattice nodes   0

31 CVN box
 , we can estimate the network 

porosity using the following equation    BCACVNR aveaveboxSE  3221  . We find that 

for networks considered in our studies 3106.8 A  and 171.0B . Figures 2.4a and 

2.4b show two networks constructed with different values of N  and aveC . Here, we 

choose the network parameters such that the porosity   is roughly 8.0  for both networks. 

As we show in the following, despite the notable difference in their internal structures, 

these networks exhibit similar transport properties. 

 Below, we characterize the transport, mechanical, and swelling properties of our 

model network. We first examine its permeability and diffusivity in unstressed state and 

then probe its elastic and viscoelastic response. Finally, we introduce an approach to 

simulate the volume transition and use it to evaluate the swelling kinetics of our network. 

2.4.1 Transport Properties 

 We measure the transport properties by calculating the permeability, self-

diffusivity, and particle/chain diffusivity in networks with different N  and aveC  (Figures 

2.5 and 2.6). We carry out simulations in a periodic box that encompasses a viscous 
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solvent, an elastic polymer network, and diffusive objects such as polymer chains and 

rigid particles (Figure 2.3). The domain dimensions are 101010   in the x , y , and z  

directions, respectively. This is to ensure that the domain is greater than the minimum 

box size of k14 , as suggested by Clague and Phillips [51] based on the Brinkman 

screening length criterion. Here, k  is the network permeability. We also set the time step 

01.0t , 1p , 1m , 1cr , 5.4D , 25a , 200Frankel k , 5.2bk , 10FENE k , 

418.0eqr , 2max r , 1TkB  and the solvent number density 3  yielding the solvent 

kinematic viscosity   equal to 283.0 . Unless specified otherwise, all dimensional values 

are given in DPD units. 

 We further use polymer chains of 10 and 16 DPD beads (Figures 2.3a and 2.3b) 

with gyration radius of, respectively, 97.00 gR  and 33.10 gR , as calculated from the 

equilibrium simulations. We also construct rigid particles from 5 and 13 DPD beads with 

the Stokes-Einstein radius of 45.0pR  and 7.0pR  [152], respectively (Figures 2.3c 

and 2.3d). 

 Here, we first equilibrate the network without solvent, and then we fix the 

network geometry and introduce solvent. In the permeability calculations shown in 

Figure 2.5, we apply an external body force  zyxexternal eeeF ˆˆˆ01.0   to drive the fluid 

flow through the network. Here, xê , yê , and zê  are unit vectors in the x , y , and z  

directions, respectively. We run the simulations for 5102.3   time steps and evaluate the 

components of volume-averaged flow velocity, u , in the x , y , and z  directions. Next, 

we use Darcy’s law externaluk F3  to find the permeability in each direction [48]. 
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Figure 2.5 Permeability as a function of porosity in 3D isotropic random polymer
networks. The network parameters are 1000,500,250N  and 14,12,10,8,6,4aveC .

Reproduced from Ref. 136. 
 
 
 
Finally, we average the permeability results over symmetric directions within the network 

and non-dimensionalize the average by dividing it with the square of filament radius, 

which is equal to the Stokes-Einstein radius of a DPD particle.  

 We find good agreement between our permeability-porosity results for networks 

with different N  and aveC  and the results of Spielman and Goren [153] for isotropic 

porous media (Figure 2.5). Slightly higher permeability predicted by our model can be 

attributed to a somewhat lower drag on filaments constructed from spheres as compared 

to cylindrical filaments [154]. Figure 2.5 also demonstrates that the permeability of a 

random filament network depends solely on the network volume fraction and is not a 

function of the network internal structure. This is in agreement with previously reported 

results [59]. 
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Figure 2.6 Diffusivity of (a) solvent particles (self-diffusivity), rigid particles with radius
45.0SER  and 7.0SER  and (b) 10 and 16-bead polymer chains in 3D isotropic random

polymer networks as a function of network porosity. The network parameters are
1000,500,250N  and 14,12,10,8,6,4aveC . Reproduced from Ref. 136. 

 
 
 
 To evaluate network diffusivity (Figure 2.6), we introduce 30 diffusive objects 

(chains or particles) that are initially randomly distributed in the solvent. We continue the 

simulations for 5108  time steps to collect sufficient statistics regarding the entities’ 

diffusion. We then calculate the diffusion coefficients using the long-time, mean-square 



 25

displacement (MSD) relation of Einstein trtrCD
2

)0()(  , where ...  represents 

the ensemble average, C  is a constant, and )0()( rtr   is the object position at time t  

relative to its original position. Calculated diffusivities are normalized by the 

corresponding diffusivities in the absence of the network. 

 Figures 2.6a presents the results of DPD simulation for retarded diffusion of 

solvent particles (self-diffusion) and rigid particle of radius 45.0pR  and 7.0pR . The 

diffusion of 10 and 16-bead polymer chains with a radius of gyration equal to 97.00 gR  

and 33.10 gR , respectively, is shown in Figure 2.6b. Figure 2.6 show excellent 

agreement between our simulations and the experiments of Seiffert and Oppermann [99]. 

We also find that our simulation results are in close agreement with the hydrodynamic 

scaling model [49-50] for the diffusion of rigid particles and linear macromolecules in 

stationary random polymer networks. The smaller value of the scaling exponent for 

chains indicates weaker dependence of the diffusion on the polymer radius of gyration 

(see Figure 2.6a and Figure 2.6b). Moreover, in agreement with previous studies [57, 99], 

our results show that the diffusion coefficient of solid particles is smaller than that of 

flexible polymers with a similar coil size. This is related to different mechanisms 

controlling diffusion of solid objects and flexible polymers. Unlike solid particles that 

have a constant outer radius, the radius of gyration of polymeric chains changes when a 

chain diffuses through a network. Figure 2.7 illustrates that the radius of gyration 

decreases with decreasing the network porosity for greater   and approaches to a 

constant value as the network becomes denser. The reduction in radius of gyration of 
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Figure 2.7 Radius of gyration as a function of network porosity for 10- and 16-bead
polymer chains in 3D isotropic random polymer networks. The network parameters are

1000,500,250N  and 14,12,10,8,6,4aveC . Reproduced from Ref. 136. 

 
 
 
chain enhances their hindered diffusion in polymer networks and, therefore, yields 

greater diffusivity comparing to rigid particles. 

2.4.2 Mechanical Properties 

 We evaluate the mechanical properties of our network by measuring its elastic 

and viscoelastic response to, respectively, constant and oscillatory deformations. The 

elastic moduli are calculated using linear elasticity relations. To this end, we impose a 

uniform strain and compute the corresponding stress tensor using the Irvin-Kirkwood 

method [155]. Specifically, we apply a shear strain of 2.0  to gauge the shear modulus 

G  and reduce the size of our simulation box to 75.975.975.9   to determine the bulk 

modulus K  of the network. Having G  and K , we calculate the Poisson’s ratio as 

   GKGK  3223 . The results of our simulations are presented in Figure 2.8. 
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Here, we normalize the elastic moduli by crkFrankel  and plot them along with the 

Poisson’s ratio versus the network porosity. 

 Figure 2.8a shows that the shear modulus increases linearly with the network 

volume fraction  1 . This finding is in agreement with the results of Buxton and 

Clarke [87] in the stretching dominated regime, and further implies that the shear 

modulus scales with the number of cross-linking nodes as 32N  and with the average 

connectivity as  BCAC aveave  . Unlike the shear modulus, the bulk modulus does not 

change linearly with   and, instead, scales with 2/3  (see Figure 2.8b). The departure 

from the linear dependency could be attributed to the background fluid. While the 

presence of the DPD solvent has little or no effect on the shear strength of the network, it 

does influence the compressibility of the system and, therefore, the network bulk 

modulus. The effect of host solvent on the bulk modulus is not the same for all networks 

and becomes more pronounced for networks with lower porosity. Figure 2.8c shows that, 

indeed, the network Poisson’s ratio approaches 0.5 (becomes almost incompressible) as 

the network volume fraction falls below 0.05. Although, the variations of network 

Poisson’s ratio is very small, it is enough to cause the deviation from the linear behavior 

in the G  curve. 

 We also characterize the nonlinear response of our network. To this end, we apply 

shear strains of different magnitude to a sample network with 500N  and 8aveC , and 

measure the corresponding stress. Figure 2.9 shows the dimensionless shear stress   as a 

function of applied strain  . The dashed line in Figure 2.9 represents the linear response. 

In accordance with previous studies [64, 156-157], we see that the shear stress 

significantly deviates from the linear behavior and shows a strong strain stiffening. 
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Figure 2.8 (a) Shear modulus, (b) bulk modulus, and (c) Poisson’s ratio versus network
porosity. The network parameters are 1000,500,250N  and 14,12,10,8,6,4aveC . 

 
 
 
Furthermore, we see that shear stress initially scales with 3.1  and later on becomes 
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Figure 2.9 Shear stress versus applied strain for a network with 500N  and 8aveC . 

 
 
 
proportional to 8.1 . This is in qualitative agreement with the observations of Stein et al. 

for collagen gels [156]. 

 To evaluate viscoelastic properties of our polymer network, we apply a uniform 

oscillatory shear strain of the form   tt  sin0  to the network and calculate the shear 

stress developed as a result of the applied strain. We impose an affine sinusoidal shear by 

exerting an additional force in the x  direction to all DPD beads in our periodic 

simulation box. The force is given by   xzi dttdmr eF ˆ22
,

A
i   where zir ,  is the z  

coordinate of the i th bead. We also apply time dependent Lees-Edwards boundary 

conditions [158] in the z  direction. In our simulations, we set 2.00   to stay in the liner 

rheology regime. 

 In the linear regime where the amplitude of strain oscillations is sufficiently 

small, the stress response takes the form      ttxz sin0  indicating that the stress 

oscillates with the same frequency as the strain, but leads the strain by a phase angle  . 
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Figure 2.10 Storage and loss moduli versus oscillation frequency for a network with
500N  and 8aveC . 

 
 
 
In general,   lies between 0  and 2  and is a function of oscillation frequency. The 

limiting cases of 0  and 2   correspond to a purely elastic material and a 

Newtonian liquid, respectively. At a given frequency, storage and loss moduli are given, 

respectively, by  cos00G  and  sin00G . 

 Figure 2.10 shows the frequency dependence of dimensionless storage and loss 

moduli for a sample network with 500N  and 8aveC . Here, the frequency   is made 

dimensionless by the characteristic time scale of DPD Tkmr Bc . Our calculations 

indicate that G   increases almost linearly with the oscillation frequency. This is very 

similar to the behavior of loss modulus in biopolymer networks [159-160] in which the 

main source of energy dissipation is the fluid viscosity. Our simulation further illustrate 

that when the frequency is small ( 1.0 ), the storage modulus G  is nearly constant 

taking the value of shear modulus G . As the frequency increases above 0.1, the storage 

modulus starts increasing and scales with 4.0 . However, we expect that the scaling 
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breaks down at sufficiently high frequencies at which the network behaves as a glassy-

like material. We will show in chapter 5 that for dry networks G  reaches a plateau in 

this situation. A similar trend has been observed for some biopolymer networks [160]. 

2.4.3 Swelling Properties 

 We access the swelling kinetics of our model network by calculating the evolution 

of solid and hollow spherical capsules with outer radius R  during a swelling process. To 

model the change in the network swellability, we dynamically modify the length of 

network filaments by changing the effective equilibrium distance between DPD beads 

within each filament. This allows us to effectively simulate the internal stresses that cause 

the network to shrink or expand, and in this fashion, we can accurately capture the 

volume transition in polymer networks. In experiments, the appearance of internal 

network stresses driving gel swelling and deswelling volume transitions can result from 

changes in the environmental conditions such as pH, salt concentration, temperature, light 

intensity, etc. [4, 6-7, 9, 13-14, 161-165]. Specifically, to model network swelling we 

increase the equilibrium length of Frankel springs eqr  whereas we model deswelling by 

simultaneously reducing eqr  and decreasing the strength of DPD potentials between the 

filament beads. 

 To create hollow and complete spheres, we first generate a cubic network with a 

side greater/equal to the outer capsule diameter and then remove the beads that are 

outside the capsule shell. Specifically, a 303030   cubic network, with 12000N , 

8aveC , and porosity 85.0  [136] is used to construct capsules of different radius and 

thickness. 
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Figure 2.11 Outer radius of swelling (a) solid and (b) hollow microgel capsules versus
time. The empty symbols represent the result of simulations with the initial shell porosity

85.0 . The filled symbols in panel (b) show the experimental results of Wahrmund et
al. [82] for neutral microgel shells with m30iR , m60fR , and

scm102 27cD . The solid lines indicate the prediction of theory. For hollow

capsules, only an asymptotic (long time) solution is shown. 
 
 
 
 We set the 01.0t , 1p , 1m , 1cr , 5.4D , 25a , 600Frankel k , 

5.7bk , 4.0eqr , 1TkB , 3  and carry out the simulations in a 505050   

periodic box. We change the equilibrium length of Frankel springs from 4.0eqr  to 
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6.0eqr  at time 0t  and measure the change in the outer capsule radius as a function of 

time (Figure 2.11). We normalize the radius by the total radius change if RRR   and 

normalize the time by the characteristic volume transition times s  and c  equal to 

cf DR2 , where   is a constant equal to 21   and 91  for, respectively, solid and 

hollow capsules [82], fR  is the radius at the fully swollen state, iR  is the radius at 0t , 

and fGKDc )34(   is the network collective diffusion coefficient [166]. Here, f  is 

the friction coefficient representing a drag force on the network, and K  and G  are bulk 

and shear modules of the gel, respectively [82, 166]. 

 Figure 2.11 shows that our model properly predicts the change in the outer radius 

of solid and hollow capsules during the network swelling. In Figure 2.11a, we compare 

our simulations with the Tanaka’s model [166] for swelling kinetics of spherical gels and, 

in Figure 2.11b, with the theoretical and experimental study of Wahrmund et al. [82] for 

microgel shells. The theoretical models are based on the solution to the gel network 

equation of motion in the limit of low Reynolds number, which represents a force balance 

between the mechanical stresses within the gel network and the Stokes drag applied by 

the fluid subject to the stress-free boundary condition. The theory predicts that the 

characteristic time of swelling is proportional to cDR2 . 

 Figure 2.11a shows that our results for swelling kinetics of solid capsules agree 

very well with the Tanaka’s model [166]. Furthermore, Figure 2.11b shows that our 

simulations of swelling kinetic of hollow capsules agree with both the theoretical 

prediction and the experimental results for neutral microgel shells [82]. Hence, our model 

correctly captures the swelling dynamics of both solid and hollow capsules, which are 
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best fitted by the collective diffusion coefficients 14.0cD  and 065.0cD , 

respectively. Since both networks have identical porosity, we relate the difference in cD  

for solid and hollow capsules to different effective elastic modules. When we create 

hollow capsules from cubic gels and remove the bead and connections that are inside and 

outside the shell, we effectively reduce the gel average connectivity at capsule surfaces, 

thereby reducing shell stiffness relative to the bulk material. 

2.5 Summary and Future Directions 

 We used dissipative particle dynamics (DPD) to introduce a coarse-grained 

computational model for permanently cross-linked, semi-flexible polymer networks. We 

simulated networks as random lattice of interconnected filaments. We characterized the 

transport and mechanical properties of this mesoscale model. Our simulations indicated 

that the method we developed is able to capture key features of polymer networks 

micromechanics under both static and dynamic loadings. Moreover, the results of our 

characterization revealed that our model based on DPD can effectively simulate the 

permeation and diffusion in unstressed random networks. We also proposed an approach 

to model network swelling and demonstrated that it can properly capture the kinetics of 

network volume transition. Overall, our calculations indicated that our fully-coupled 

three-dimensional model can be effectively used to analyze transport properties of 

polymer networks under deformation, to examine release of encapsulated solutes from 

capsules during volume transition, and to explore complex tribological behavior of 

elastomers. 

 In future, our model can be extended by introducing electrostatic interactions. In 

this way, one would be able to simulate transport of ions and other charged entities which 
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might be of critical importance in specific problems. This will also allow one to study 

volume transitions due to a change in the salt concentration. Additionally, our model can 

be modified to simulate networks with active cross-links. Such model can be utilized to 

study unexplored properties of actively cross-linked polymer networks. 
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CHAPTER 3 

TRANSPORT THROUGH MECHANICALLY DEFORMED 

POLYMER NETWORKS 

 

3.1 Introduction 

 In practical applications, polymer networks are often under mechanical 

deformation, which gives rise to changes in the filament orientation and also may alter 

the volume occupied by network. The change in the orientation of filaments affects 

network transport properties [56, 93, 167]. It is, therefore, important to assess the effect 

of applied mechanical deformation on permeability and diffusivity of initially isotropic 

random polymer networks. Recently, the effects of axial compression on the permeability 

of articular cartilages [168], agarose gels [53] and deformable foams [54] were examined. 

It was found that, under confined compression/tension, permeability is a nonlinear 

function of applied strain and relatively insensitive to the changes in solvent volume 

fraction. There have been a number of studies on the effect of dynamic loading on the 

diffusion in gels with applications in articular cartilage biosynthesis, tissue engineering, 

and understanding the cell dynamics. Mauck et al. [169] examined the effect of dynamic 

loadings using a theoretical model, and investigated the circumstances under which 

convective transport induced by dynamic loading might supplement diffusive transport. 

They employed the theory of incompressible mixtures to model the tissue (gel) as a 

mixture of a gel solid matrix and two fluid phases. Their results revealed that the dynamic 

loading can be used to significantly enhance solute transport into the gel and even can 

affect certain physiological processes. Brangwynne et al. [170] also discussed the 
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importance of active processes used by living cells to boost and direct random, undirected 

thermal diffusion of small particles. Moreover, they discussed the recent progress in 

quantifying these transport mechanisms and identifying their origin and consequences. 

Finally, Li et al. [171-172] performed an experiment in which they measured diffusivity 

of a polymer electrolyte membrane (PEM) under uniaxial tension and showed that there 

is a linear coupling between the diffusivity and the alignment of membrane filaments. 

They found that the alignment of hydrophilic channels in the PEM increases markedly 

with the stretching. Furthermore, they observed substantial enhancement in water 

transport in the direction of stretching and suppression in the transverse directions. Their 

multi-axis NMR diffusometry also indicated that the total diffusion remains unchanged 

under axial deformation. 

 To facilitate the development of emerging applications of polymer networks, it is 

critically important to gain a fundamental understanding of the relation between the 

network structure and its transport properties, and establish how these properties change 

due to network mechanical deformation induced by external or internal forces. To date, 

however, our knowledge of the deformation dependent transport properties of cross-

linked networks is still very limited. To bridge this gap, in this chapter, we examine 

convective and diffusive transport through mechanically deformed polymer networks. 

3.2 Computational Setup 

 We carry out simulations in a 101010   periodic box that encompasses a 

viscous solvent and an elastic polymer network (Figure 2.3). We also set 01.0t , 

1p , 1m , 1cr , 5.4D , 25a , 200Frankel k , 5.2bk , 10FENE k , 418.0eqr , 

2max r , 1TkB  and the solvent number density 3  yielding the solvent kinematic 
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Figure 3.1 Networks under (a) normal and (b) shear deformations, respectively. The
arrows indicate the directions of applied forces. Reproduced from Ref. 136. 
 
 
 
viscosity   equal to 283.0 . Unless specified otherwise, all dimensional values are given 

in DPD units. 

 We follow the same procedure described in the previous chapter to calculate the 

permeability in different directions. We evaluate diffusivities in the x , y  and z  

directions by replacing the total displacement )0()( rr t  in the Einstein relation with the 

displacement in the corresponding coordinate directions. Unless specified otherwise, we 

use engineering strains to plot the results and we keep the network Poisson ratio 5.0 , i.e. 

the porosity in deformed networks remains unchanged. 

3.3 Results and Discussion 

 First, we present the results for networks under normal stress (Figure 3.1a) and 

then we probe the effect of shear on the network permeability and self-diffusivity (Figure 

3.1b). We normalize the transport coefficients by their corresponding values for 

unstressed networks and average the relative quantities over 18 realizations. The results 

are plotted in Figures 3.2 and 3.4 with error bars representing the standard deviation from 

the mean value at each point. 
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Figure 3.2 Relative (a) permeability and (b) self-diffusivity in the direction of coordinate
axes xyz  (see Figure 3.1) as a function of applied normal strain. The dashed horizontal
lines indicate the unity values for unstressed networks. The error bars represent standard
deviation from the average over 18 networks with 1000,500,250N  and

14,12,10,8,6,4aveC . Reproduced from Ref. 136. 

 
 
 
 Figures 3.2a and 3.2b show, respectively, the variation of permeability and self-

diffusivity as a function of the normal strain xe . The transport coefficients are calculated 

in the direction of applied stress and in the transverse directions (Figure 3.1). In all cases, 

stretching enhances transport in the elongated direction and hinders it in the transverse 
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Figure 3.3 Stokes drag coefficient for a high aspect ratio filament as a function of its
orientation relative to the flow direction. 
 
 
 
 
direction in which the network is contracted. This phenomenon is a consequence of the 

change in average orientation of the filaments, which tend to become aligned in the 

direction of network tension [173]. The anisotropy in filament orientation results in an 

enhanced transport along aligned filaments. This transport enhancement takes place due 

to a lower drag experienced by filaments [56] and due to the fact that diffusive objects 

less likely collide with network filaments in their random walk in the direction of 

alignment [52]. We find that the total self-diffusivity remains constant indicating that the 

net diffusivity only depends on the network porosity which remains unchanged under 

load. 

 To further illustrate how filaments alignment influence transport through the 

network, in Figure 3.3 we plot the Stokes drag experienced by a high aspect ratio 

filament as a function of its relative orientation with respect to the flow direction [174]. 

We see that, indeed, the drag force on an inclined filament decreases as it becomes more 
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Figure 3.4 Relative (a) permeability and (b) self-diffusivity in the direction of coordinate
axes xyz  (see Figure 3.1) as a function of applied shear strain. The dashed horizontal
lines indicate the unity values for unstressed networks. The error bars represent standard
deviation from the average over 18 networks with 1000,500,250N  and

14,12,10,8,6,4aveC . Reproduced from Ref. 136. 

 
 
 
aligned with the direction of the fluid flow. This is in very good agreement with the 

change in the relative permeability of axially deformed networks (Figure 3.2a). 

Furthermore, Figure 3.3 shows that the drag experienced by a filament parallel to the 
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direction of the flow is half of the one oriented perpendicular to the flow which agrees 

nicely with the results of Figure 3.2a. 

 Under shear, filament orientation changes primarily due to rotation of filaments 

without a significant change in their overall length. Figure 3.4 illustrates the changes in 

relative permeability and self-diffusivity caused by the applied shear strain zx . While 

both permeability and self-diffusion increase in the x  direction with increasing zx , they 

are roughly constant in the y  direction. Furthermore, unlike self-diffusion that slightly 

decreases in the z  direction, permeability in this direction increases under shear. Also, 

similar to the axial deformation case, the total self-diffusion remains roughly constant. 

The application of shear strain only affects the orientation of filaments in the xz  plane. 

Therefore, the permeability in the y  direction does not change because the in-plane 

rotation of filaments does not affect the permeability in the direction normal to this plane 

[93]. 

 To get a better insight into the deformation-dependent transport properties in 

random polymer networks, we quantify the mechanical deformation of networks. In our 

study, the network porosity is invariable under external loads; hence deformations 

imposed on the network can be translated to changes in the network alignment. To 

characterize the degree of network alignment, we employ a symmetric second-order 

orientation tensor [56, 173] 
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Figure 3.5 Components of the network orientation tensor versus applied (a) normal strain
and (b) shear strain. Results are averaged over 18 networks with 1000,500,250N  and

14,12,10,8,6,4aveC . The inset in part (a) shows the results for large normal strains

1xe . Reproduced from Ref. 136. 

 
 
 
where il  is the length of i th spring, totall  is the total spring length, and the sum runs over 

all springs constituting the filaments. Moreover,   and   are angles between the vector 

representing the direction of a spring and the z  and x  axis, respectively. The trace of Ω  

is equal to 1 and for isotropic networks 31ΩΩΩ  zzyyxx  [56]. When off-diagonal 
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tensor elements are equal to zero, diagonal elements of the orientation tensor characterize 

the network alignment along the coordinate axes. On the other hand, non-zero off-

diagonal components indicate that the network alignment does not coincide with the 

directions of the coordinate system. 

 Figure 3.5 shows how the magnitude of orientation tensor components changes 

when the network undergoes mechanical deformation. When a normal force is applied in 

the x  direction, xxΩ  increases, and yyΩ  and zzΩ  decrease with increasing xe  (Figure 

3.5a). This behavior continues until the network becomes fully aligned. For our networks, 

complete alignment happens at a strain of about 5 (see the inset in Figure 3.5a). In this 

situation, we can expect that the transport properties no longer change with an additional 

increase in the strain provided that the porosity remains unchanged. The results of Figure 

3.5a also indicate that, under axial strain, the off-diagonal components remain zero, 

which means that the coordinate axes coincide with the principal directions of the 

deformed network. When the network deformation is due to a shearing force (Figure 

3.5b), xxΩ  increases, while yyΩ  and zzΩ  slightly decrease with increasing zx . More 

importantly, xzzx ΩΩ   are not zero and increase with increasing zx , indicating that the 

principal directions of this orientation tensor differ from the directions of the coordinate 

system xyz  (Figure 3.1). By rotating the xyz  system along the y -axis, the tensor can be 

readily expressed in terms of a new coordinate systems XYZ  in which the axes coincide 

with the principal directions and all off-diagonal elements vanish. 

 To establish the dependence between the change in transport coefficients and the 

alignment of the network represented by Ω , we transform the xyz  coordinate system to 

the XYZ  system and plot the relative permeability along the new coordinate directions as 
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Figure 3.6 Relative permeability versus degree of orientation in principal directions for
networks under normal and shear deformations. The error bars represent standard
deviation from the average over 18 networks with 1000,500,250N  and

14,12,10,8,6,4aveC . Reproduced from Ref. 136. 

 
 
 
a function of the corresponding diagonal components of the transformed orientation 

tensor (Figure 3.6). Here, we normalize tensor components by 31Ωiso  . We find that all 

data for permeability collapses into a single master curve, which exhibits nearly linear 

dependence on the magnitude of the orientation tensor eigenvalues (diagonal components 

in the XYZ ). We note that the effect of porosity is factored out by averaging the results 

over 18 different realizations. 

 Thus, the alignment of network fibers due to an external mechanical load 

uniquely defines the change of permeability in a given direction relative to the un-

deformed network. This information can be used to estimate the permeability of polymer 

networks based on the values of a deformation tensor that can be measured 

experimentally using 3D imaging techniques [140-141]. 
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3.4 Summary and Future Directions 

 We employed a mesoscopic simulation technique to study the permeation and 

hindered diffusion through anisotropic (mechanically loaded) random polymer networks. 

We found that the network transport properties are defined by network porosity and 

filament alignment within the network. We characterized the network alignment due to 

mechanical stretching/compressing or shearing by a second order orientation tensor, and 

demonstrated that permeability along the principal directions of a deformed network is 

directly related to the magnitudes of the corresponding tensor components. We expect 

that our approach can be applied to also assess the diffusivity in polymer networks under 

mechanical load. Experimental study of Li et al. [171-172] explained earlier in this 

chapter corroborates with our expectation. Since the orientation tensor can be measured 

experimentally, our approach opens a way for estimating the permeability of deformable 

random networks under load. 

 To extend the current study, one could explore the effect of mechanical 

deformation on the transport properties of compressible networks including those with 

negative Poisson’s ratios. When the Poisson’s ratio is not 0.5, not only network 

orientation but also its porosity changes as a result of the applied strain. To evaluate the 

permeability and diffusivity in this situation, one needs to take both contributions into 

account. We anticipate, however, that these two effects are not tightly coupled. 

Therefore, one could deal with each factor separately and then superimpose in which case 

our universal permeability-orientation curve can be ready exploited after factoring out the 

effect of change in the porosity. Another direction to expand our work in this chapter is to 

examine the influence of gradient in the cross-linking density on the transport properties 
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of polymer networks. With the growing application of networks with non-uniform cross-

linking density, there is a huge demand for characterizing their permeability and 

diffusivity. 
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CHAPTER 4 

RELEASE OF NANOPARTICLES AND MACROMOLECULES 

FROM RESPONSIVE MICROGEL CAPSULES 

 

4.1 Introduction 

 Functional materials have found an increasingly large number of applications in 

technologically advanced areas such as surface coatings, photonics, corrosion protection, 

biomedicine, and drug delivery. Among these materials, polymer gels of aqueous 

solutions (hydrogels) are of particular interest. These materials are typically responsive to 

external stimuli [4-8, 175], which makes them especially attractive for the use as drug 

delivery microcapsules. In this case, the delivery agent becomes an active participant, 

rather than a passive carrier, in the course of disease therapy [17]. A comprehensive 

review of various fabrication techniques used to prepare the capsules and different release 

mechanisms can be found elsewhere [17, 176-184]. 

 Despite notable recent progress in synthesis and characterization of micro/nano 

gels, the development of functional delivery carriers remains to be a challenge. The 

release from microscopic gel carriers usually involves multiple time and length scales, 

geometrical complexities, and tight coupling between mechanical and fluid processes 

within gel polymer network [37, 185-186], which makes it difficult not only to rationally 

design experiments, but also to develop theoretical models able to predict the dynamic 

behavior of these multi-component, responsive systems. 

 To date, the majority of theoretical studies have been focused on simplified 

mathematical modeling of drug release [187-198] or volume transition during a delivery 
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process [82, 166, 186, 199-206]. These studies usually consider simple geometries and 

neglect the coupling among solute transport, volume changes, and possible fluid flows. 

Only a few recent works dealt with the challenging problem of the concurrent mass 

transfer and volume transition at the microscale, while even fewer works considered the 

release from responsive gels. 

 Experiments also have been focused mostly on the synthesis and fabrication of 

delivery agents and less attention has been paid to the fundamental understanding of the 

release [207-209]. This is in part due to the difficulty in tracking the motion of 

encapsulated solutes or visualizing the fluid flow and structure the polymer network at 

small scales. Below, we describe several investigations concerning the physics of the 

release. We begin with the theoretical analyses followed by the experimental studies. 

 Wang et al. [210] proposed a model based on diffusion and particle dissolution 

mass transport equations to probe the release of soluble drugs from an injectable 

hydrogel. Results of their simulations suggested that hydrogel matrices can act as 

polymeric excipients that accelerate the delivery of poorly soluble drugs and yield highly 

tunable release rates. Durbin and Buxton [211] employed a two-dimensional coarse-

grained model based on Flory–Huggins and Cahn–Hilliard equations to simultaneously 

capture the swelling dynamics of polymer nanogels and the diffusion of encapsulated 

drugs. They modeled the entropic elasticity of the polymer chain through central force 

interactions between connected cross-link sites. The authors applied the model to 

investigate drug release from pH-responsive nanogels and found that the release increases 

with an increase in the shell hydrophobicity. 
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 Soares and Zunino [212] introduced a model using mixture theory and Fick’s law 

to capture the release due to hydrolytic gel degradation. Their modeling revealed that 

drug release from biodegradable matrices is an erosion-controlled process. Guo et al. 

[213] used dissipative particle dynamics to study the encapsulation of doxorubicin 

molecules in the core of micelles self-assembled from cholesterol conjugated 

His10Arg10, and found that DOX molecules can be efficiently encapsulated in the core 

of micelles. They demonstrated that the change in pH facilitates the release of DOX, 

which agrees with the experiments. Using a combination of semi-empirical and ab initio 

computations in vacuum stage, Srinophakun and Boonmee [214] analyzed the release 

mechanisms of the doxorubicin from a doxorubicin-conjugated glycol chitosan polymer. 

They found that the stability is increased when the length of the polyethylene glycol 

(PEG) chains in the glycol chitosan biopolymer is increased. Finally, Zarzycki et al. 

[215] developed a model for drug release from hydrogels by taking into account 

desorption processes on the solid phase surface and diffusion in pores. The authors 

verified the model by comparing their results with the experimental data concerning the 

release of bovine albumin from thermosensitive chitosan gels. 

 Bae et al. [216] experimentally investigated the release of indomethacin 

incorporated into temperature sensitive Poly-N-isopropylacrylamide (NIPAAm)/poly-

tetramethylene ether glycol (PTMEG) interpenetrating polymer networks. They used 

temperature induced on-off mechanism to create pulsatile pattern in the network and 

showed that the release of indomethacin can be regulated by rapid deswelling of the 

surface of the network in response to temperature. Kono et al. [217] examined the release 

of NaCl from a pH-responsive polyamide capsule coated with a lipid membrane. The 
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authors demonstrated that encapsulated NaCl cab be released by changing the pH of the 

system. They further illustrated that diffusion driven release in this situation is linearly 

related to time. 

 Gutowska et al. [218] proposed a new drug release mechanism based on the 

mechanical squeezing of the host hydrogels. They performed experiments on several 

temperature and pH sensitive hydrogels and showed that the release profile is highly 

dependent on the degree and type of gel volume transitions which are controlled by the 

gel composition and the strength of the applied stimuli. Xing et al. [219] used sequential 

colloidal template polymerization to synthesize poly-acrylic acid (PAA) and poly-N-

isopropylacrylamide (PNIPAM) nanogel capsules loaded with an antitubercular drug 

(INH). Their in vitro drug release study indicated that the release rate is prominently 

controlled by pH than temperature. More importantly, they demonstrated the possibility 

of drug release by deswelling the hollow capsules. Lastly, Pavlov et al. [220] introduced 

a novel approach based on low power ultrasound irradiation to release encapsulated 

proteins from polyelectrolyte multilayer microcapsules. Interestingly enough, the authors 

demonstrated that the release takes place not only as a result of complete ultrasonic 

disruption of the microcapsules but also as a consequence of increased permeability 

induced through small defects in the polyelectrolyte multilayers which can be self-healed 

when the irradiation is stopped. 

 Our literature review indicates that there is no previous theoretical or 

experimental study that fully describes the transport of solutes in dynamic polymer 

networks with complex geometries and associated fluid flows (Figure 4.1). However, the 

understanding of the coupling among these effects is vital for the development of novel 
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Figure 4.1 Cross-sectional views of initially equilibrated hollow spherical capsules
loaded with (a) polymer chains (cyan) and (b) nanoparticles (green) inside the capsules
cavity. The shell porosity is 85.0  and the thickness is 3iRb  , where iR  is the

initial outer radius of the capsule. For clarity, solvent is not shown. Reproduced from Ref.
131. 
 
 
 
mechanisms for controlled release of drugs and other solutes from responsive micro-

carriers. In this chapter, we exploit our fully-coupled computational model to directly 

probe the release dynamics of nanoparticles and linear polymer chains from the interior 

of hollow gel microcapsules during swelling and deswelling volume transitions (Figure 

4.1). 

4.2 Computational Setup 

 We use a 303030   cubic network, with 12000N , 8aveC , and porosity 

85.0  [136], to construct spherical capsules with an outer radius 15R  and a 

membrane thickness 5b . With this network arrangement, the average filament length 

is about unity, which we found to be small enough to provide microgel network integrity 

and capsule stability in the simulated conditions. In experimental settings, the capsule 

integrity can be further enhanced by choosing polymers with different molecular weights 

[177, 221]. To model network swelling, we increase eqr  by 50% that results in a 50% 
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increase in the capsule diameter (see Figures 4.2a and 4.2b). For modeling network 

deswelling, we simultaneously reduce the equilibrium length eqr  by 50% and the strength 

of DPD potentials between filament beads by 80%. This results in a 20% reduction in the 

outer diameter of the capsule (see Figures 4.2c and 4.2d). 

 To study the release of linear macromolecules, we load the microcapsule interior 

with 100 polymer chains (Figure 4.1a). Each chain is formed from 10  DPD beads 

connected sequentially by finitely extensible nonlinear elastic (FENE) springs with 

10FENE k  and 5.1max r . The gyration radius of these chains representing their 

hydrodynamic radius is 1gR  as calculated using equilibrium simulations in pure 

solvent. Unlike the polymer network, the encapsulated linear macromolecules are 

insensitive to external stimuli. 

 To examine and quantify the particle release, we introduce 100 nanoparticles that 

are initially randomly distributed inside the capsule cavity. The rigid nanoparticles are 

constructed from 13 DPD beads arranged in hexagonal close-packed spherical aggregates 

that obey the rigid body dynamics and interact with the solvent and network via the DPD 

potentials. The Stokes-Einstein radius corresponding to the effective hydrodynamic 

radius of these aggregates is 7.0pR  [152], which is slightly larger than the mean 

membrane pore size in the un-swollen initial capsule (Figure 4.1b). 

 We carry out the release simulations in a 505050   periodic box that contains a 

viscous DPD solvent, a polymeric microcapsule, and encapsulated nanoparticles/polymer 

chains (Figure 4.1). We also set 01.0t , 1p , 1m , 1cr , 5.4D , 25a , 

600Frankel k , 5.7bk , 4.0eqr , 1TkB , and 3  yielding the solvent kinematic 
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Figure 4.2 Panels (a) and (b) are snapshots from our simulations illustrating the release
from swollen gel capsules of encapsulated polymer chains (cyan) and nanoparticles
(green), respectively. The swollen capsules have an outer radius iR5.1  and porosity

95.0 . Panels (c) and (d) are snapshots illustrating the release of, respectively,
polymer chains and nanoparticles during capsule deswelling. The deswollen capsules
have an outer radius iR8.0  and porosity 75.0 . Panel (c) shows the release from a

hollow capsule without rods, whereas panel (d) shows the release from a capsule with
two enclosed microrods (red). The rods are not connected to each other and can move
freely inside the cavity of an initially equilibrated capsule. For clarity, cross sections of
the capsules are shown, whereas solvent is not shown. The inset in panel (c) shows
polymer reptation across the deswelling capsule membrane. The inset in panel (d) shows
a stream of nanoparticles discharging through a membrane pore during deswelling.
Reproduced from Ref. 131. 
 
 
 
viscosity   equal to 283.0 . After an initial system equilibration, we change the filament 
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equilibrium length to mimic the gel swelling/deswelling and then continue the 

simulations for 5103  time steps. 

4.3 Results and Discussion 

 When the gel swells and its polymer network expands, the capsule increases in 

size and the external solvent penetrates into the growing capsule interior, whereas gel 

deswelling leads to capsule shrinking and, consequently, a part of the encapsulated 

solvent is expelled through the porous gel membrane. This cross-membrane flow defines 

the dynamics of the capsule volume change, which can be described in terms of a force 

balance between mechanical stresses in the elastic gel network that undergoes volume 

transition and viscous stresses due to the cross-membrane fluid flow [82, 166]. 

 We first probe the release of nanoparticles and macromolecules from capsules in 

the initial equilibrium state which is characterized by membrane porosity 85.0  

(Figure 4.1). Figure 4.3 shows the cumulative fraction of released solutes as a function of 

release time. Here, time is normalized by the characteristic time of capsule volume 

transition cic DR 92 , where iR  is the capsule outer radius in the initial state and cD  is 

the coefficient of collective diffusion of the gel [82]. For capsules considered in our 

study, 065.0cD  leading to 400c  (see section 2.4.3). In Figure 4.3, each point 

represents an average over five independent realizations. We find that only a few 

particles and chains can diffuse out of the shell during the simulation time. This slow 

release is due to the small network mesh size in the initial capsule shell that practically 

prohibits diffusion of solutes. 

 In Figure 4.4, we show the cumulative size distributions of membrane pores of the 

capsule in its initial equilibrium and in the swollen and de-swollen states. Here, pore size 
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Figure 4.3 Cumulative fraction of (a) released nanoparticles and (b) released polymer
chains versus time. The insets show the dimensionless release rate as a function of time.
The squares, circles, triangles, crosses, and diamonds are for, respectively, initially
equilibrated capsules, swelling capsules, deswelling capsules, and deswelling capsules
with one rod and two rods. Each point is an average of five independent realizations.
Reproduced from Ref. 131. 
 
 
 
is estimated as the radius of the largest circle contained in a triangle formed by three 

adjacent network filaments and non-dimensionalized by the particle radius pR . Indeed, 

we find that the average pore size in the initial equilibrium is smaller than the particle 

radius pR  and the chain radius of gyration pg RR 4.1 . In this conditions, the solute 

diffusion rate in the network is orders of magnitude slower than in the pure solvent [136]. 
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Figure 4.4 Panel (a) shows cumulative pore size distribution of the capsule shell formed
from a random network of interconnected filaments. The pore size is non-
dimensionalized by nanoparticles radius pR . The symbols represent simulation data and

the solid lines represent fits of normal distributions with the average and standard
deviations identical to those of the simulation data. Panels (b), (c), (d), and (e) show
representative changes in the pore size of the capsule membrane in the initial equilibrium,
swollen, deswollen, and deswollen with two enclosed microrods states, respectively.
Reproduced from Ref. 131. 
 
 
 
We also find that the network pore distributions fo initial, swollen and de-swollen gels 

are close to the Gaussian distribution, which is in agreement with the experimental data 

of Mickel et al. [222]. 

 When the gel swells, the network expands and both the capsule diameter and 

thickness increase by about 50% (Figure 4.2a and 4.2b) leading to porosity 95.0  and 
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larger membrane pores (Figures 4.4a and 4.4c). While the porosity increases by only 10% 

from the initial capsule state, the solute diffusivity in the membrane, which is an 

exponential function of   [49-50], increases by an order of magnitude [136]. This 

significant change of the shell diffusivity enables a steady release of encapsulated 

nanoparticles and macromolecules (Figure 4.3). We find an approximately tenfold 

increase in the release rate compared to the release from the initial capsule, indicating 

that the release is controlled by the membrane diffusivity. 

 The diffusion driven release for both nanoparticles and macromolecules proceeds 

with a nearly constant rate as indicated by a linear change in the cumulative number of 

released solutes in time (Figure 4.3). This constant release rate has been previously 

observed in experiments that probed the diffusion of solutes encapsulated in hollow 

microcapsules [217, 223-225]. The diffusive release has been also studied theoretically 

by considering particle diffusion through a porous capsule shell [187]. The long time 

solution predicts a release with a constant rate that is defined by the capsule geometry 

and the particle diffusion through the capsule shell. Thus, our simulation of release from 

swollen capsules agrees well with both experiment and theory. 

 Figure 4.3 also show that the rate of chain release is roughly twice slower than 

that of particles that have a smaller characteristic size and, therefore, can more easily 

percolate through an expanded gel network. The percolation through membranes can be 

characterized by an effective diffusion coefficient that is generally lower than the 

diffusion coefficient in unbounded networks due to an entropic barrier that prevents 

solute entrance into the network. This latter effect is more pronounced for flexible chains 

[226]. 
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 We note that during swelling, capsules temporarily lose their initially spherical 

shapes, which indicates a possible instability (buckling) caused by the rapid gel 

expansion. However, elastic forces in the membrane shell are sufficient to restore the 

nearly spherical shape after the equilibration of swollen capsules. The instability can be 

further mitigated by increasing the volume transition time. 

 When the capsule deswells, its diameter and membrane thickness decreases by 

20% compared to the initial capsule size (Figure 4.2c and 4.2d) resulting in a smaller 

membrane pore size (Figures 4.4a and 4.4d). In this situation, one might expect that 

solute release will be further suppressed. Surprisingly, we found that it is not the case for 

hollow microgel capsules, where a rapid and massive release takes place during the 

capsule deswelling (Figure 4.3). This release is characterized by a rate which is much 

faster than that from swollen capsules with larger pores (see Figures 4.4c and 4.4d). 

Furthermore, we found that during deswelling polymer chains are released nearly twice 

faster than nanoparticles and the total amount of released chains is about four times 

greater (remember that the chains have a nearly 50% larger characteristic size than the 

nanoparticles and the release rate of chains from swollen capsules is about twice slower 

than that of nanoparticles). This fast solute release, however, only occurs for a short 

period during which the capsule undergoes the volume change. 

 Contrary to the swollen gel capsules where the release is controlled by diffusion, 

the release from deswelling capsules is facilitated by convective fluid flows induced by 

capsule shrinking. When capsule volume decreases, the encapsulated fluid is squeezed 

out from the capsule interior, carrying suspended solutes and enabling their rapid release. 

Since larger pores in the capsule shell have lower hydrodynamic resistance, the 



 60

encapsulated solvent flows through these larger pores, which allows the release even 

when the pore size decreases due to gel deswelling. The insets in Figure 4.2c and 4.2d 

illustrate the release of nanoparticles and polymer chains discharged through pores in a 

deswelling membrane. 

 We can estimate the efficacy of the hydrodynamic release by introducing a 

dimensionless Peclet number nDbuPe  that compares the characteristic rate of solute 

discharge due to the fluid flow during capsule deswelling with the diffusion rate from an 

un-swollen capsule. Here, nD  is the effective diffusion coefficient of solutes in the 

capsule membrane network in the initial state, b  is the membrane thickness, and 

  24 bRVu ic    is the characteristic volume flow rate of encapsulated fluid per 

unit membrane area, where    33 1
3

4
 bRV i  is the change in the capsule internal 

volume during deswelling and 
if RR  is the deswelling ratio with fR  being the final 

outer radius. 

 Using the above expressions, we find that the Peclet number is 
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 . Here, the first term indicates that convective transport is 

enhanced when the deswelling ratio decreases and more internal fluid is released. The 

second term represents the ratio between the capsule collective diffusion and the solute 

diffusion, and shows that the effect of hydrodynamic release can be enhanced by faster 

volume transition (larger cD ) and/or slower solute diffusion rate (smaller nD ). The last 

term represents the effect of capsule geometry and indicates that the hydrodynamic 

release is increased when the shell thickness is iRb 5.0~ . 
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 For our simulation parameters, Pe  is equal to about 120 and 450 for nanoparticles 

and polymer chains, respectively. Here, we estimate the effective diffusion coefficient 

nD  based on the release data shown in Figure 4.3. We find that our scaling model agrees 

well with the simulation results for polymer chains in which case 420Pe  . However, 

when it comes to nanoparticles, our simulations yield 03Pe  . Thus, the model predicts a 

number of hydrodynamically released particles about four times greater than what we 

obtain in the simulations. 

 This discrepancy between the scaling model and our simulations of nanoparticle 

release can be attributed to the rapid decrease of membrane pore size in shrinking 

capsules. When pores become too small for rigid particles to pass, the release terminates 

even when the encapsulated solvent is still leaking from inside the capsule. Indeed, we 

find that the nanoparticle release stops after 5.0ct  , whereas the release of compliant 

polymer chains that can easily reptate through the porous membrane continues 

approximately twice longer driven by an outward fluid flow. 

 To prevent membrane sealing due to pore shrinking in deswelling capsules and 

enhance the release of nanoparticles, we introduce rigid microrods in the capsule interior 

(Figure 4.2d). The rods are comparable in length with the internal capsule diameter and 

can freely move inside an initially un-swollen capsule. However, when the capsule 

shrinks and decreases in size, the rods resist capsule shrinkage and stretch the membrane. 

The mechanical stretching induces stresses in the membrane that oppose the network 

contraction due to gel deswelling, thereby keeping the membrane pores open (Figure 

4.4e). Specifically, we introduce rods with length 10L  and radius 2rodR  that are 
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constructed by clustering DPD beads. The rods behave as rigid bodies and interact with 

the solvent network and nanoparticles via the DPD potentials. 

 The cumulative release and the release rates for deswelling microcapsules with 

one and two internal rods are shown in Figure 4.3. Indeed, we find that rigid rods 

enhance discharge rate of rigid nanoparticles compared to both the deswelling capsules 

without internal rods and the diffusion-controlled release from the swollen capsules 

(Figure 4.3a). Furthermore, we find that the net release of particles from a capsule with 

two separate rods is almost twice greater than from a capsule with one internal rod, and 

results in 90Pe  , which is close to the theoretical limit. We relate this additional release 

enhancement to a stronger membrane stretching by two internal rods compared to one 

rod. Thus, by changing the number of encapsulated micro-rods one can engineer 

nanoparticle-loaded capsules that yield different release rates. 

 Whereas the release of nanoparticles is very sensitive to the presence of 

encapsulated micro-rods, the release of polymer chains from deswelling capsules remains 

practically unaffected after the inclusion of the rods (Figure 4.3b). The difference in the 

amount of released chains for simulations without rods and for simulations with one and 

two rods does not exceed 10%. This confirms that the release of linear macromolecules is 

not limited by the pore sealing in deswelling gel, but rather by the amount of released 

solvent during the capsule volume change. 

 Gels can typically swell and deswell reversibly [227-229] which makes 

responsive gels especially attractive for applications where periods of rapid discharge of 

encapsulated solutes should be followed by intervals of no release [230-231]. Such 

pulsatile drug delivery systems, for example, can be utilized in biomedical settings in 
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Figure 4.5 Pulsatile release from hollow responsive microcapsules that undergo
reversible deswelling/restoring cycles. Filled symbols show dimensionless release rate of
polymer chains from a capsule without rods (see Figure 4.2c). Empty symbols show
dimensionless release rate of nanoparticles from a capsule with two encapsulated
microrods (see Figure 4.2d). Each deswelling and restoring interval equals to 6.1ct  .

Reproduced from Ref. 131. 
 
 
 
which a precise amount of the drug should be administrated with specific time intervals 

[232]. 

 To probe the utility of responsive microcapsules in multi-pulse release 

applications, we carry out simulations of periodic release of macromolecules from 

capsules without rods and nanoparticles from capsules that enclose two independent rigid 

rods. In these simulations, capsules cyclically deswell (Figures 4.2c and 4.2d) and restore 

their initial state (Figures 4.1a and 4.1b) with constant time intervals equal to c6.1 . 

Figure 4.5 shows the release profiles during three successive capsule deswelling/restoring 

cycles. The simulations reveal that immediately after the beginning of a deswelling 

interval, a significant amount of solutes is released. This burst release is then followed by 

a period of no release, which continues until the beginning of the next capsule deswelling 

cycle. Thus, the released amount is defined by the dynamics of capsule deswelling and is 
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insensitive to a particular extend of de-swollen and swollen periods, if they are greater 

than c . The total amount of solutes that are released in consecutive cycles decreases due 

to their decreasing concentration within the periodically deswelling capsules. 

4.4 Experimental Realization 

 The phenomena predicted in our simulations can be experimentally realized using 

microgel capsules with the outer radius of the order of μm1  and the collective diffusion 

coefficient scm1010~ 287  cD . Responsive capsules with such properties can be 

prepared using a verity of experimental techniques [17, 25, 27, 82, 181, 233-235]. For 

instance, Zha et al. [233] and Xing et al. [235] synthesized temperature responsive 

nanogel capsules by colloidal template polymerization followed by core removal. Zhang 

et al. [234] prepared responsive hollow nanogel shells by synthesizing core–shell 

nanogels. A hollow capsule was obtained after the degraded core was released through 

the shell. Wahrmund et al. [82] employed a capillary-based microfluidic device to form 

monodisperse poly-N-isopropylacrylamide (PNIPAM) hydrogel microcapsules. Another 

microfluidic approach was developed by Seiffert et al. [25] to synthesize multilayered 

microgel capsules. A variety of stimuli responsive micro and nano-capsules can also be 

formed using layer-by-layer (LbL) techniques [27, 177]. 

 To induce a controlled release, these responsive capsules need to be loaded with 

nanoparticles and polymer chains with characteristic sizes comparable to the average 

pore size of the gel network which is typically in the range from tens to hundreds of 

nanometers. For example, Zahr et al. [236] used LbL assembly to encapsulate drug 

nanoparticles inside a macromolecular nanoshell. Wang et al. [237] introduced a facile 

approach for encapsulating water-insoluble compounds in polymer capsules using 
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mesoporous silica particle-mediated drug loading followed by the generation of a 

polymer multilayer shell using the LbL technique. Kozlovskaya et al. [238] fabricated 

hydrogel capsules by hydrogen-bonded self-assembly and then used them to encapsulate 

FITC-dextran by locking the capsule wall with electrostatically associating polycations at 

high pH. 

 Microencapsulation techniques are not limited to nanometer-sized solutes. 

Experiments have shown that micrometer-sized large structures can also be encapsulated 

inside the capsules. Kim et al. [239] and Shum et al. [240] demonstrated that 

microfluidics can be effectively employed to encapsulate objects comparable to the 

container in size. Dahne et al. [241] and Vriezema et al. [242] showed that large object 

can be self-assembled or polymerized inside microcapsules. Such approaches can be 

potentially employed to encapsulate microrods inside responsive gel capsules. 

 The amount of solute release from experimental microgel capsules can be 

adjusted by changing gel porosity and the degree of gel swelling/deswelling. 

Furthermore, the release time from deswelling capsules can be directly regulated by 

changing the capsule response time to volume transition c . Since this timescale is 

proportional to 2R , the use of smaller capsules enables faster release. For example, for a 

capsule with typical network diffusivity scm10~ 27
cD , the release time of the order of 

seconds can be obtained if the radius is about a few micrometers. 

4.5 Summary and Future Directions 

 We employed a coarse-grained computational method to study the release of 

nanoparticles and macromolecules from responsive microgel capsules. Our simulations 

revealed that not only swelling, but also deswelling of hollow microcapsules can be 
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harnessed for controlled release. We showed that the release mechanisms for swollen and 

deswelling gel capsules are different. The release from swollen capsules is relatively 

slow, controlled by the solute diffusion through the capsule shell. The rate of this release 

depends on the degree of capsule swelling that sets the membrane porosity and, therefore, 

can be tuned in a wide range by modifying the gel chemistry. The release from 

deswelling capsules, on the other hand, is burst-like and is driven by the flow of the 

encapsulated solvent triggered by capsule shrinking. This rapid and massive 

hydrodynamic release occurs on the time scale of the deswelling volume transition. The 

amount of released solutes is controlled by the capsule volume decrease, whereas the 

release rate is defined by the deswelling kinetics. We found that deformable polymer 

chains that can easily penetrate through membrane pores are released in larger amounts 

from deswelling capsules, than nanoparticles that are filtered out by shrinking membrane 

pores. Our simulations further demonstrated that the inclusion of rigid microrods inside 

deswelling capsules mitigates the membrane pore closing, and in this fashion provides an 

effective method for regulating the rate of hydrodynamic release of nanoparticles. 

Finally, we showed that periodic deswelling of responsive capsules can be utilized in 

multi-pulse release applications. Thus, responsive microcapsules offer a uniquely 

adaptive and tunable delivery means that provides effective mechanisms for both basal 

and pulsatile release of encapsulated drugs and other solutes. 

 Our work in this chapter could be extended by considering release from cubic and 

tetrahedral capsules [243] and studying how capsule geometry affects the rate and 

duration of release. Furthermore, one could explore the possibility of using Janus 

capsules to facilitate the swelling-induced release. These capsules consist of two halves 
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with dissimilar swellablity, and, therefore, undergo anisotropic deformations in response 

to external stimuli that trigger the volume transition. These non-uniform deformations 

might give rise to a hydrodynamic flow from the capsule interior to the outside and, 

thereby, lead to release of encapsulated solutes. 
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CHAPTER 5 

FRICTION OF POLYMER NETWORKS ON SMOOTH AND 

GROOVED SURFACES 

 

5.1 Introduction 

 A large number of engineering and high tech applications involve sliding of a soft 

polymeric network over a solid wall and, often, the friction experienced during this 

sliding plays an important role in the overall performance of the system. Polymer 

networks have typically very low elastic moduli and high internal dissipation which 

makes their tribological properties quite different from that of conventional solids. For 

instance, elastomers are able to slide on a rough, rigid surface with and without a 

lubricant. Unlike solid friction in which the coefficient of friction is constant, friction 

coefficient of elastomers is not constant and changes with changing the normal force, 

temperature, and sliding velocity [28, 101-104, 110, 112, 124]. In addition, the 

tribological behavior of elastomeric materials in relative motion against a solid wall 

highly depends on the size, geometry, and distribution of surface asperities [32, 105-106, 

110, 112-113]. Researchers have attempted to establish the dependence of elastomeric 

friction on these factors [28, 32, 100-113, 124]. Below, we describe several of the latest 

investigations. 

 Persson [106] used the theory of contact mechanics to investigate the adhesive 

and hysteric friction of elastomers sliding on solid rough substrates. He showed that the 

main part of the elastomeric friction comes from the energy dissipation in the bulk of the 

material which is caused by the oscillatory stresses acting on the polymer network from 
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the surface asperities. He further demonstrated that the adhesive interaction between the 

elastomer and substrate deforms the polymer network such that it follows the short-

wavelength surface roughness profile of the surface. The results of Persson’s calculations 

indicated that these viscoelastic deformations give rise to additional contribution to the 

sliding friction. Later, Persson [244] developed a more detailed theory for rubber contact 

mechanics and used it to probe how hysteretic rubber friction depends on the nature of 

the substrate surface roughness and the sliding velocity. This theory was further extended 

by Carbone et al. [113] for the case of surfaces with anisotropic roughness. The authors 

showed that the friction coefficient depends rather strongly on the sliding direction, 

whereas the area of contact is a weak function of the sliding direction. They also 

performed experiments on rubber blocks sliding on unidirectionally polished steel 

surfaces and found good qualitative agreement between the results of the experiment and 

the prediction of the theory. 

 In a separate study, Persson and Volokitin [245] developed a model for the sliding 

motion of viscoelastic solids on adhesive flat surfaces. Their model revealed that the 

thermal motion of molecules at the nanoscale could give rise to very strong fluctuating 

shear stresses comparable in magnitude with the depinning stresses at solid-elastomer 

interfaces. Their model also predicted a bell-shaped curve for the shear stress versus the 

sliding velocity. The authors found that the low-velocity side of the curve exhibits similar 

temperature dependence as the bulk viscoelastic modulus. Finally, they showed that the 

small-amplitude roughness has a negligible effect on the sliding friction of elastomers on 

adhesive flat surfaces. 
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 Vorvolakos and Chaudhury [246] studied the kinetic friction of 

polydimethylsiloxane elastomers against a supported monolayer of hexadecylsiloxane 

and a thin film of polystyrene. They varied the molecular weight of the elastomer and 

measured the friction as a function of sliding velocity and temperature. The authors found 

that, on both surfaces, friction decreases with molecular weight. They also found that the 

friction initially increases with the velocity, reaches a maximum, and then decreases or 

approaches a plateau. In agreement with the previous theoretical studies, the authors 

observed that while the velocity of maximum friction is almost independent of the 

molecular weight of the polymer, it changes for different substrates. 

 Rand and Crosby [247] probed the tribological behavior of elastomeric wavy 

surfaces. To this end, the authors measured the sliding friction of a rigid spherical lens 

over a surface-wrinkled, elastomeric substrate. They carried out experiments both along 

and perpendicular to the surface wrinkles, and compared the sliding force to that required 

for sliding on non-wavy surfaces. They evaluated the effects of wrinkle dimensions and 

the applied normal force on the sliding resistance and showed that their result can be 

explained by a simple Bowden–Tabor friction model. Furthermore, they demonstrated 

that the wrinkle aspect ratio has a secondary effect on the sliding friction. 

 Recent advances in the microfabrication technology [34, 248] have enabled 

researchers to harness engineered roughness to regulate elastomeric friction [33, 35-36, 

113, 249-250]. He et al. [250] employed a nanoindentation-scratching system to examine 

the effect of surface texture on the friction of micropatterned PDMS elastomers at the 

macro and micro scales. The authors found that while surface textures can significantly 

reduce the coefficient of friction at the macroscale, they play a less important role in 
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friction at the microscale. The lower coefficient of friction was believed to be the result 

of reduction in the real area of contact for patterned surfaces. Using a custom-made 

tribometer, Wu-Bavouzet et al. [33] investigated the friction of a flat PDMS lens on a 

pillared PDMS substrate for a range of normal loads, sliding velocities, and pillar sizes. 

The results of their experiments revealed that the frictional response of the system does 

not follow the classical Coulomb law and, instead, obeys an adhesive friction law of 

elastomers. Furthermore, the authors found that the contact on small pillars is intimate 

whereas the contact is laid on high pillars. Intimate and laid contacts, respectively, refer 

to situations where the rubbing surface touches the counter surface and where the rubbing 

surface is suspended above the counter surface asperities. Moreover, they demonstrated 

that, for some pillar heights, a transition from an intimate to a laid contact takes place as 

the sliding velocity increases. 

 Our review of relevant studies indicates that the tribological response of 

elastomers is very rich and complex and is still not completely understood [109, 251]. 

Moreover, to the best of our knowledge, the frictional behavior of elastomers sliding on 

ratchet surfaces (i.e. surfaces with ordered directional roughness) has not been considered 

and is yet to be explored. To get a better insight into the microtribology of polymer 

networks, there is an essential need for comprehensive computational models capable of 

simultaneously capturing the micromechanics of the polymer network, describing 

interfacial interactions, and resolving the thermal fluctuations. These models not only can 

improve our understanding of general tribological features of elastomers, but also can be 

used to predict the frictional behavior of future designs. 
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Figure 5.1 A snapshot illustrating a polymer network pressed against a fixed rigid wall
while sliding at a constant velocity. The white arrow displays the direction of sliding
whereas black arrows on top of the network display the direction of normal load. The
cyan strips indicate parts of the network that are initially normal to the substrate and are
deformed due to the shearing friction force exerted by the wall. Only two layers of wall
beads are visible (see Figure 5.2). 
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 In this chapter, we use our model for polymer networks to study the friction of 

elastomers in relative motion against flat and directionally grooved substrates. Our 

simulations shed light on the intricate relation between the coefficient of friction and 
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system parameters such as normal load, temperature, and sliding velocity. It also provides 

useful information for developing new methods of regulating friction and reducing wear 

using directional surfaces. 

5.2 Computational Setup 

 Our model includes a semiflexible cross-linked network and a stationary solid 

wall (see Figure 5.1). The size of our computational domain is 251015   in the x , y , 

and z  directions, respectively. The network has dimensions 171015   in the x , y , and 

z  directions. It has 2550N  cross-linking nodes with the average connectivity of 

8aveC . Moreover, the top layer of the network with thickness 2h  is modeled as a 

rigid body (see Figure 5.1). This rigid part represents a solid plate attached to the top 

boundary of the network. Unlike the systems we considered in previous chapters, our 

system here does not include a solvent. Hence, our simulations represent the behavior of 

a dry elastomer. Unless specified otherwise, all dimensional values are given in DPD 

units. 

 In the simulations described in this chapter, we set the DPD parameters for our 

network to 01.0t , 25.0p , 1m , 10D , 100a , 600Frankel k , 5.7bk , and 

27.0eqr . We assign the cutoff radius for repulsive and dissipative interactions to 

125.0rep
cr  and 1diss

cr , respectively. Furthermore, we turn off DPD interactions among 

the beads that belong to the same filament. The use of two separate cutoff radii allows us 

to independently tune the range of repulsive and dissipative interactions between the 

filaments. In the absence of a solvent, repulsive interactions account for the excluded 

volume effect and prevent filament overlapping. Moreover, dissipative interactions 
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determine the strength of network internal friction. The combination of random and 

dissipative interactions also acts as a thermostat keeping the system temperature constant. 

 To evaluate the sliding friction of our network under a normal load, we apply a 

body force in the negative z  direction to the rigid segment of the network and, at the 

same time, force the rigid part to move at a constant velocity in the positive x  direction 

(see Figure 5.1). Then, we measure the opposing force exerted by the wall on the network 

in the direction of motion. The body force is distributed such that the total torque on the 

network’s rigid part is zero. This is to ensure that the rigid segment remains parallel to 

the xy  plane. 

 We examine the frictional behavior of our network on a smooth substrate and on 

surfaces with triangular, forward, and backward sawooth asperities (see Figure 5.2). We 

build the substrates from three layers of freezed beads arranged in a square lattice with 

the spacing 25.0 yx . The layers are extended to the boundaries of the simulation 

box in the x  and y  directions. We fix the distance between the layers to 234.0z  and 

shift the middle layer with respect to the top and bottom ones by a half of the lattice 

spacing. To model rough walls, we set the height and wavelength of asperities to 2H  

and 75.3 , respectively (see Figure 5.2). In all cases, we place the rigid walls just 

above the bottom of our simulation box. 

 We consider walls with both adhesive and non-adhesive surfaces. To model non-

sticky surfaces, we let the beads in the top layer interact with the network beads via 

repulsive DPD interactions. In this case, we set the cutoff radius to 25.0rep
cr  and fix the 

strength of interactions to 100topa . We simulate adhesive walls by using a force 
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Figure 5.2 Smooth and grooved substrates modeled using three layers of freezed beads.
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 where ij  is the 

attraction coefficient and 25.0adh
cr  is the cutoff distance beyond which there are no 

interactions. To properly impose no penetration condition, we set the interactions 

between the network and beads in the middle and bottom layers to be the same as DPD 

repulsive interactions with 200mida , 400botta , and 25.0rep
cr . 

 In our simulations, we use periodic boundary conditions in all directions. We note 

that, even without applying the boundary conditions, our choice of parameters and box 

size does not allow the polymer network to cross boundaries in the z  direction. In our 

friction simulations, the run-time is always a few times larger than the initial transient 

period in which the friction increases rather linearly from zero and reaches a steady 

periodical state. We average the measured friction force over a time interval that is long 
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Figure 5.3 Network shear modulus as a function of temperature. The network parameters
are 2550N  and 8aveC . 

 
 
 
enough to reduce noise in the data. As an example, for the sliding velocity of 01.0 , we 

run the simulations for 5104  time steps and average the results over the last 5102  

time steps. In the subsequent sections, we first evaluate the elastic and viscoelastic 

response of our network, and then present the result of our friction simulations. 

5.3 Elastic and Viscoelastic Properties of Dry Network 

 We follow the procedures introduced in section 2.4.2 to characterize the 

mechanical properties. In particular, we set 2.0  and 1.00  , and measure the shear, 

loss, and storage moduli of our network. We perform the simulations using a 101010   

cube created from the original 171015   network. Figure 5.3 shows the temperature 

dependence of the shear modulus G  normalized by diss
crkFrankel . For the range of 

temperature considered, we see that G  increases linearly with the temperature. This 

highlights the importance of entropic contribution in the elastic response of our network, 

which is also a characteristic of elastomers [252]. 
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 We plot the storage and loss moduli as a function of frequency for three different 

temperatures in Figure 5.4. The moduli and frequency are made dimensionless by 

diss
crkFrankel  and Tkmr B

diss
c , respectively. Our calculations show that the loss modulus 

G   is nearly independent of the temperature and increases linearly with the oscillation 

frequency. This behavior is reminiscent of the response of Newtonian fluids with a 

viscosity equal to the slop of G  curve. An analogous linear relation has been 

reported for the loss modulus of elastomers at intermediate frequencies [253]. We note 

that, without a host solvent, the main source of energy dissipation in the network is the 

internal friction between filaments. We also note that, in reality, the loss modulus of 

elastomers might be a stronger function of temperature. 

 When the period of strain oscillations is very larger, the network has enough time 

to respond to the applied deformations, and, therefore, the stress is in phase with the 

strain (see section 2.4.2). Hence, the viscoelastic network behaves like a purely elastic 

solid with a constant G  equal to G  (see, for example, Figure 2.9). With an increase in 

the frequency, the period of oscillations becomes comparable with the network elastic 

response time causing the strain to lag behind the stress with a phase difference of  . In 

this situation, the network does not have adequate time to react to the deformations, and, 

therefore, it appears to be stiffer. This behavior continues till the network reaches its 

glassy state where the stiffness is no longer a function of frequency. Indeed, the results of 

our simulations indicate that, for the three temperatures considered, the storage modulus 

G  initially increases with the frequency and then becomes nearly constant when the 

oscillation frequency is larger than 2 . A similar trend has been observed for rubbers and 

elastomers [254]. Our calculations also demonstrate that the storage modulus has a 
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Figure 5.4 (a) Loss and (b) storage moduli versus oscillation frequency at different
temperatures. The network parameters are 2550N  and 8aveC . 

 
 
 
stronger dependency on the temperature than the loss modulus and increases as the 

temperature rises. This is consistent with the variations of the shear modulus as a function 

of temperature (Figure 5.3). Overall, the results of mechanical characterization reveal that 

our dry network can reproduce typical elastic and viscoelastic response of elastomers. 

5.4 Results and Discussion 

 The power required to rub an elastomer against a rigid wall at a constant speed is 

equal to the friction force experienced by the elastomer times the sliding velocity. This 
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power compensates for the rate of energy dissipation inside the elastomer. In the absence 

of adhesive surface interactions, the energy is dissipated due to cyclic deformations in the 

bulk of the elastomer network caused by oscillatory forces exerted by the periodic 

asperities of the counter surface. The frequency of these periodic deformations is 

proportional to the sliding velocity and is inversely proportional to the wavelength of 

asperities (see Figure 5.2). The resulting friction force in this situation is commonly 

referred to as the hysteretic friction and is directly related to the viscoelastic properties of 

the elastomer [104-105]. 

 When there is an attractive interaction between an elastomer and a solid substrate, 

energy dissipation occurs not only in the bulk, but also at the network-wall interface. The 

resulting friction in this situation is commonly described as the adhesive friction [106]. 

However, there is no consensus among the researchers about the exact origin of 

dissipation at the interface [255]. For instance, Schallamach [103] and others [255] 

suggested that the energy dissipation occurs during a cyclic extension, detachment, and 

re-attachment of elastomer chains at the interface whereas Persson and Volikitin [245] 

attributed the energy dissipation to the stick-slip motion of segments of the elastomer 

close to the surface which they envisioned as stress patches. According to Schallamach’s 

theory, the sliding friction does not necessarily correlate with the elastomer viscoelatic 

properties. On the contrary, Persson and Volikitin’s theory predicts a close relationship 

between the friction and viscoelastic moduli of the elastomer. Here, we first present our 

results for the sliding on non-adhesive surfaces (hysteretic friction) and then discuss the 

sliding on adhesive substrates (adhesive friction). 
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 To facilitate the comparison of our simulations with previous experimental and 

theoretical investigations, we use dimensionless parameters to present our results. We 

normalize the friction force by the normal load and present the results in terms of the 

friction coefficient  . The sliding velocity V  is normalized by the characteristic velocity 

of thermal fluctuations mTkB . We make the normal load P  dimensionless by the 

shear modulus multiplied by the apparent contact area. The shear stress xz  is made 

dimensionless by the shear modulus and, finally, the attraction coefficient   is 

normalized by adh
crkFrankel . We note that the only parameter left dimensional is the 

temperature which is represented by TkB . 

5.4.1 Sliding on Non-adhesive Surfaces 

 We begin by examining the effect of sliding velocity on the hysteretic friction of 

our network. Figure 5.5 shows the variation of friction coefficient   as a function of 

velocity V  for sliding on smooth and grooved surfaces (see Figure 5.2). Here, the 

temperature and dimensionless normal load are kept constant. Consistent with the 

previous studies [104-105], we see that, regardless of the surface geometry   initially 

increases logarithmically with the sliding velocity, reaches a maximum, and then 

decreases with further increase in the velocity. 

 At a fixed asperity wavelength, the frequency of oscillatory forces applied by the 

rough wall to the network increases with increasing the sliding velocity. We previously 

showed that the network loss modulus increases with the frequency. Therefore, an 

increase in the velocity results in a greater dissipation and subsequently higher friction. 

However, this trend changes as the period of imposed deformations approaches the 
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Figure 5.5 Friction coefficient as a function of velocity for the network sliding on non-
adhesive smooth and grooved substrates (see Figure 5.2). The temperature and
dimensionless normal load are 5.0TkB  and 25.0P , respectively. The network

parameters are 2550N  and 8aveC . 

 
 
 
minimum time required to fully dissipate the energy. At this point, the friction reaches its 

maximum value. When the sliding velocity further increases, the friction coefficient 

declines since the time available to dissipate the energy during one cycle of oscillations 

decreases. At very high velocities, the friction becomes practically nil as almost no 

energy is dissipated. 

 The minimum time for complete dissipation depends on how fast the disturbances 

can propagate and how far they need to travel to fully dissipate the energy. We estimate 

the former as the velocity of thermal fluctuations mTkB  and the latter as the 

wavelength of asperities  . To confirm that   is a good approximation for how far the 

information travels, in Figure 5.6, we show the depth-averaged shear stress xz  

distribution in the network for the sliding velocity corresponding to the maximum friction 

coefficient. Note that at this velocity, the network does not make a perfect contact with 



 82

Figure 5.6 Shear stress xz  distribution in the network sliding on non-adhesive smooth

and grooved surfaces. The stress is averaged over the depth of the network in the y
direction and normalized by the shear modulus G . The temperature and dimensionless
normal load are 5.0TkB  and 25.0P , respectively. The sliding velocity in parts (a),

(b), (c), and (d) is 1mTkV B . The network parameters are 2550N  and 8aveC .

Only two layers of wall beads are visible (see Figure 5.2). 
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the rough substrates. Figure 5.7 shows a series of simulation snapshots illustrating how 

the real area of contact changes as the network slides at different velocities on a rough 

rigid wall. The results of Figure 5.6 illustrate that in fact the area in which the majority of 
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Figure 5.7 Snapshots illustrating the change in the real area of contact between the
network and solid wall as the sliding velocity increases. The reduction in the real area of
contact is a result of network stiffening due to the increased frequency of periodic
deformations (see Figure 5.4b). The temperature and dimensionless normal load are

5.0TkB  and 25.0P , respectively. The sliding velocity mTkV B  in parts (a), (b),

(c), and (d) equals to 01.0 , 1.0 , 1, and 10 , respectively. White arrows display the
direction of sliding. The cyan strips indicate the network deformation in response to the
friction force exerted by the substrate. The network parameters are 2550N  and

8aveC . Only two layers of wall beads are visible (see Figure 5.2). 

 
 
 

energy dissipation takes place is of the order of 2  for both smooth and rough surfaces. 

We note that for the smooth surface x . Therefore,   should reach a maximum 
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Figure 5.8 (a) Friction coefficient as a function of network velocity at different
temperatures for sliding on the non-adhesive grooved surface with triangular asperities
(see Figure 5.2). (b) Friction coefficient as a function of temperature for sliding on non-
adhesive smooth and grooved substrates (see Figure 5.2). The sliding velocity is

1.0mTkV B . The dimensionless normal load is 25.0P . The network parameters

are 2550N  and 8aveC . 

 
 
 

when the period of oscillations becomes comparable with mTkB  or, in other words, 

when 1~V . Indeed, Figure 5.5 shows that the velocity corresponding to the maximum 

friction is 4.1~maxV  for flat and ratcheted substrates. 
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 Furthermore, our simulations reveal that, at a given asperity height and 

wavelength, the friction coefficient is the lowest for a surface with forward sawtooth 

grooves, while the surface with backward grooves leads to the highest friction. This 

behavior agrees very well with the observations of Carbone et al. [113] and further 

proves that the hysteretic friction strongly depends on the direction of sliding for surfaces 

with anisotropic roughness. Figure 5.6 also demonstrates that the stress concentration at 

the tip of asperities is significantly reduced for surfaces grooved in the direction of 

sliding. The lower stress concentration might be important for reducing wear. Therefore, 

our findings could potentially lead to new way to reduce friction and control wear by 

engineering surface roughness. 

 To get a better insight about the hysteretic friction of our network, we examine 

the effects of temperature and normal load on the coefficient of friction. Figures 5.8a 

shows V  curves of the symmetrically grooved substrate for three different 

temperatures. Our calculations demonstrate that irrespective of the temperature the 

maximum friction happens at the same dimensionless velocity, which again supports our 

argument about the velocity of maximum friction. In Figure 5.8b, we present the 

variation of   as a function of temperature at a fixed sliding velocity below maxV . We see 

that for smooth and grooved surfaces, the friction exponentially decreases with the 

temperature TkBln . Qualitatively similar behavior has been observed 

experimentally [256-257]. 

 Figure 5.9 shows the normal load dependence of the friction coefficient. From 

Figure 5.9a, we see that maxV  is independent of the normal load. The results of Figure 

5.9b also indicate that when the normal load is small,   increases with P . However, in 
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Figure 5.9 (a) Friction coefficient as a function of network velocity at different normal
loads for sliding on the non-adhesive grooved surface with triangular asperities (see
Figure 5.2). (b) Friction coefficient as a function of normal load for sliding on non-
adhesive smooth and grooved substrates (see Figure 5.2). The sliding velocity is

1.0mTkV B . The temperature is 5.0TkB . The network parameters are 2550N

and 8aveC . 

 
 
 
accordance with the experimental measurements [113, 258], the hysteretic friction 

coefficient becomes independent of the normal load at intermediate values of P . In this 

situation, the normal load is proportional to the real area of contact, which itself is 

proportional to the friction force [105, 244]. Hence, the coefficient of friction, defined as 

the friction force divided by the normal load, remains unchanged. 



 87

5.4.2 Sliding on Adhesive Surfaces 

 Similar to the previous section, we first study the velocity dependence of the 

friction coefficient. The results of our simulations are presented in Figure 5.9 for smooth 

and corrugated surfaces (see Figure 5.2) with the attraction coefficient 121 . For all 

substrates, our simulations reproduce the bell-shaped curve for the dependence of friction 

coefficient on the sliding velocity as reported in the earlier theoretical and experimental 

studies [103, 245, 255]. Comparing Figures 5.5 and 5.10, we see that the friction 

increases when there is an attraction interaction between the network and counter surface. 

As mentioned earlier, the energy dissipation happens both in the bulk and at the adhesive 

interface. For the non-adhesive smooth surface, the dissipation in the bulk is almost 

negligible (see Figure 5.5). Thus, the friction on the smooth adhesive surface can be seen 

as a measure of how much energy is dissipated at the interface. We already calculated 

how much energy is dissipated in the bulk for non-adhesive rough surfaces (Figure 5.5). 

Therefore, we should be able to estimate the friction on adhesive rough surfaces by 

adding the friction on non-adhesive rough surfaces to the friction on the adhesive smooth 

surface. In fact, Figure 5.10 shows that the adhesive friction of ratcheted surfaces is 

approximately equal to the summation of the two contributions. 

 Figure 5.10 shows that maxV  depends on the size and shape of surface roughness. 

The velocity of maximum friction is about 5.0~maxV  for the flat wall and for the wall 

with forward sawtooth asperities. Previous studies [255] have shown that when friction is 

dominated by the energy dissipation at the interface, the friction coefficient starts 

decreasing before the period of oscillations reaches the minimum time required to fully 

dissipate the energy. The velocity corresponding to the maximum friction in this case is 
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Figure 5.10 Friction coefficient as a function of velocity for sliding on adhesive smooth
and grooved substrates (see Figure 5.2). The temperature, dimensionless normal load, and
dimensionless attraction coefficient are 5.0TkB , 25.0P , and 121 , respectively.

The network parameters are 2550N  and 8aveC . 

 
 
 
estimated to be smaller by a factor of TkU Be  where 4adh

crU   is the depth of the 

attraction potential. This is consistent with the results shown in Figure 5.10. To further 

test this scaling, in Figure 5.12, we plot V  curves for sliding on the smooth walls 

with three different adhesive strengths. Here, TkU BeVV   is the rescaled velocity. Our 

simulations reveal that for all three cases the maximum friction takes place when the 

rescaled velocity is of the order of unity 1~)(VO  indicating that the rescaling provides 

an accurate approximation for maxV . 

 However, for surfaces with triangular and backward sawtooth asperities, the 

maximum friction occurs at a higher velocity 4.1~maxV . The fact that maxV  coincides 

with the velocity of maximum friction for non-adhesive surfaces (Figure 5.5) indicates 

that for these cases, the energy dissipation in the bulk has a higher contribution than the 

dissipation at the interface. As the sliding velocity increases, the real area of contact 
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Figure 5.11 Snapshots illustrating the change in the real area of contact between the
network and an adhesive wall as the sliding velocity increases. The reduction in the real
area of contact is a result of network stiffening due to the increased frequency of periodic
deformations (see Figure 5.4b). The temperature, dimensionless normal load, and
dimensionless attraction coefficient are 5.0TkB , 25.0P , and 121 , respectively.

The sliding velocity mTkV B  in parts (a), (b), (c), and (d) equals to 01.0 , 1.0 , 1, and

10 , respectively. White arrows display the direction of sliding. The cyan strips indicate
the network deformation in response to the friction force exerted by the substrate. The
network parameters are 2550N  and 8aveC . Only two layers of wall beads are visible

(see Figure 5.2). 
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between the network and counter surfaces decreases (see Figure 5.11). The decrease is 
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Figure 5.12 Friction coefficient as a function of velocity for sliding on smooth surfaces
with different adhesion (see Figure 5.2). The temperature and dimensionless normal load
are 5.0TkB  and 25.0P , respectively. The network parameters are 2550N  and

8aveC . 

 
 
 
more pronounced for the surfaces with triangular and backward sawtooth grooves 

comparing to the wall with forward sawtooth asperities. The energy dissipation at the 

interface is closely related to the real contact area. Therefore, a higher reduction of the 

latter leads to a lower contribution of the former in the friction. 

 The comparison of Figures 5.5 and 5.9 leads to another important observation. In 

contrast to the hysteretic friction on non-adhesive surfaces, we note that there is a little 

difference between the adhesive friction of corrugated surfaces with triangular, and 

forward and backward sawtooth asperities. The results of Figures 5.5 show that the 

energy dissipated in the bulk is the least for the surface with forward sawtooth asperities 

and is the highest for the surface with backward sawtooth asperities. However, the energy 

dissipation at the adhesive interface follows an opposite trend which results in 

approximately the same friction for walls with different topographies. 
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Figure 5.13 Shear stress xz  distribution in the network sliding on adhesive smooth and

grooved surfaces. The stress is averaged over the depth of the network in the y  direction
and normalized by the shear modulus G . The temperature, dimensionless normal load,
and dimensionless attraction coefficient are 5.0TkB , 25.0P , and 121 ,

respectively. The sliding velocity in parts (a), (b), (c), and (d) is 1mTkV B . The

network parameters are 2550N  and 8aveC . Only two layers of wall beads are visible

(see Figure 5.2). 
 
 
 

(c) (d) 

(a) (b) 

z

x

 Figure 5.11 displays a trend similar to that observed in Figure 5.7 for the change 

in the real area of contact as a function of the sliding velocity. However, it is known that, 
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at a given velocity and normal load, the real area of contact is greater for adhesive 

surfaces compared to non-adhesive ones. The shear stress distribution for adhesive 

surfaces (Figure 5.13) is qualitatively similar to that of non-adhesive surfaces (Figure 5.6) 

except for the regions of high shear stress that are more skewed in the direction of sliding 

on adhesive surfaces. 

 Lastly, we probe how the temperature and normal load affect the adhesive 

friction. In Figure 5.14a, we plot the friction coefficient of the symmetrically corrugated 

wall versus the sliding velocity for three different temperatures. We see that when TkB  is 

comparable with U , the friction is maximum at 1~maxV  whereas at lower temperatures 

the maximum friction occurs at 1~max
TkU BeV  . This behavior is consistent with the 

results of Figure 5.12 for the smooth surface and further confirms that when the energy 

dissipation at the interface is dominant, the friction is maximized at 1~V . 

 Figure 5.14b illustrates the temperature dependence of   at a constant sliding 

velocity for smooth and grooved surfaces. Our calculations reveal that the friction 

coefficient for all cases decreases rather exponentially with the temperature which is 

consistent with both theory and experiment [103, 255]. Our results also show a stronger 

temperature dependence for the smooth surface where the energy is mainly dissipated at 

the interface. Comparing with Figure 5.8b, we find that the adhesive friction is more 

sensitive to temperature changes than the hysteretic friction. This is attributed to the 

strong temperature dependence of energy dissipation at adhesive interfaces [255]. 

 To examine the effect of normal load on the friction on adhesive surfaces, in 

Figure 5.15a, we plot V  curves of the symmetrically grooved substrate for three 

different normal loads. Similar to Figure 5.9a, the normal load does not change the 
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Figure 5.14 (a) Friction coefficient as a function of velocity at different temperatures for
sliding on the adhesive grooved surface with triangular asperities (see Figure 5.2). (b)
Friction coefficient as a function of temperature for sliding on adhesive smooth and

grooved substrates (see Figure 5.2). The sliding velocity is 1.0mTkV B . The

dimensionless normal load and attraction coefficient are, respectively, 25.0P  and
121 . The network parameters are 2550N  and 8aveC . 

 
 
 
position of the maximum friction. On the contrary, though, the magnitude of   seems to 

decrease with increasing normal load. We plot the friction coefficient versus the normal 

load at a constant velocity and temperature in Figure 5.15b. We find that when the 

applied pressure is much smaller than the network shear modulus,   slowly increases 
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Figure 5.15 (a) Friction coefficient as a function of velocity at different normal loads for
sliding on the adhesive grooved surface with triangular asperities (see Figure 5.2). (b)
Friction coefficient as a function of normal load for sliding on adhesive smooth and

grooved substrates (see Figure 5.2). The sliding velocity is 1.0mTkV B . The

temperature and dimensionless attraction coefficient are, respectively, 5.0TkB  and

121 . The network parameters are 2550N  and 8aveC . 

 
 
 
with P . As the normal pressure further increases, however, the friction coefficient 

decreases as power law of P . This is because the real area of contact does not increase 

proportionally to the normal load leading to a drop in  . Prior experimental 

measurements [102, 259] have indicated that the power law breaks down at sufficiently 
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high normal loads for which an additional increase in the load does not affect the real 

area of contact and, therefore,   decreases linearly with P . 

5.5 Experimental Realization 

 The results of our calculations in this chapter can be readily converted to 

experimentally realizable values. For instance, our simulations predict that the maximum 

friction for an elastomer with shear modulus Pa10~ 5G , 2msN1.0~  G , 

Pa10~ 5
0  GG , density 33 mkg10~e , and characteristic relaxation time s10~ 7

relT  

at room temperature that slide over a non-adhesive grooved surface with m10~~ 6H  

takes place at velocity sm10~V . According to our simulations, the maximum friction 

velocity of the same elastomer sliding over a smooth wall with adhesive energy twice 

larger than the room-temperature thermal energy is sm1~V . 

5.6 Summary and Future Directions 

 We used our model for polymer networks to study the frictional behavior of dry 

elastomers in relative motion against adhesive and non-adhesive surfaces. We considered 

smooth substrates and those with triangular, forward and backward sawooth asperities. 

We showed that the friction experienced on non-adhesive surfaces is the lowest for a 

surface with forward sawtooth roughness, while the surface with backward roughness 

leads to the highest friction. For adhesive surfaces, our simulations revealed that the 

friction force is independent of the surface geometry when the sliding velocity is 

sufficiently slow. 

 We also examined the effects of sliding velocity, temperature, and normal load on 

the hysteretic and adhesive friction of our network. In particular, our simulations 
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predicted a bell-shaped curve for the dependence of the friction coefficient on the sliding 

velocity. We demonstrated that the velocity at which the friction is maximum depends on 

the system temperature for the hysteretic friction and is a function of the ratio between 

the thermal and adhesion energy for the adhesive friction. Moreover, our calculations 

indicated that at low sliding velocities, both hysteretic and adhesive friction decrease with 

an increase in the temperature. Finally, we showed that while the coefficient of hysteretic 

friction is nearly independent of the normal load, the adhesive friction coefficient exhibits 

an intricate relation with the applied pressure. 

 Overall, our findings in this chapter shed light on the complex frictional behavior 

of elastomers and give insights about the effect of roughness asymmetry on the 

elastomeric friction which could be useful for developing new methods for regulating 

friction and reducing wear using directional surfaces. In addition, our simulations 

revealed that our coarse-grained particle-based model for dry viscoelastic networks can 

be effectively used to predict the influence of system parameters on the friction of 

elastomers. This opens a new avenue for developing high performance computational 

tools to analyze the complex tribological response of polymer networks. 

 As a future direction, our studies could be extended to probe the friction of gels. 

This requires adding the DPD solvent to our model discussed in this chapter. The 

presence of a host solvent would alter the frictional response of the network in a non-

trivial fashion. For instance, the sliding of a polymer network on a grooved surface in an 

aqueous environment could lead to the emergence of small scale fluid flows which may 

substantially influence the friction. 
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 Another direction to extend our work is to consider the sliding of elastomers on 

soft surfaces. This problem is of high practical importance and, yet, has not been fully 

explored. The relative stiffness of counter surfaces becomes a critical parameter in this 

problem. Moreover, elastic instabilities are more likely to develop, especially, when there 

is an attractive interaction between rubbing surfaces. Additionally, the effects of 

roughness size and geometry may be somewhat different from the sliding on hard 

substrates. 
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CHAPTER 6 

CONCLUDING REMARKS AND OUTLOOK 

 

 We developed a mesoscale computational model for permanently cross-linked 

polymer networks. Our model is based on dissipative particle dynamics (DPD), a course-

grained molecular dynamics (MD) method that employs a momentum-conserving 

thermostat and soft repulsive interactions among beads representing clusters of 

molecules. We showed that our fully-coupled three-dimensional model can successfully 

simulate the convective and diffusive transport of fluids and solutes through polymer 

networks. Additionally, we demonstrated that our model is able to capture key features of 

polymer networks micromechanics. 

 Using our particle-based model, we studied the permeability and diffusivity of 

mechanically loaded polymer. The results of our simulations revealed that the transport 

properties of deformed networks are defined by the network porosity and orientation of 

network filaments. We characterized the latter by a second order orientation tensor, and 

showed that the permeability along the principal directions of a deformed network is 

directly related to the magnitudes of the corresponding tensor components. 

 We also utilized our coarse-grained model to examine the release of encapsulated 

solutes from microgel capsules during volume transitions. Our simulations demonstrated 

that both swelling and deswelling of hollow microcapsules can be used for the controlled 

release. We showed that the release from swollen capsules is diffusion driven, whereas 

the release from deswelling gel capsules occurs due to the flow of encapsulated solvent 

that is expelled from the shrinking capsule interior. The latter hydrodynamic release is 
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burst-like and continues only during capsule deswelling. We found that by introducing 

solid microrods inside deswelling capsules, we can control this rapid release. Our 

simulations indicated that the rods locally stretch the deswelling gel membrane and, 

thereby, prevent membrane sealing at the early stages of shrinking. 

 Finally, we employed our model to explore the frictional behavior of elastomers. 

We considered the sliding friction on adhesive and non-adhesive substrates. We 

examined how the friction coefficient changes as we vary the sliding velocity, 

temperature, and normal load. We also scrutinized the effects of roughness size and 

geometry. Our calculations showed that regardless of surface interactions and roughness 

shape, the friction coefficient initially increases with the sliding until it reaches the 

maximum. When the velocity is further increased, the coefficient of friction decreases 

and nearly vanishes at high enough velocities. We found that, depending on the surface 

interactions, the maximum friction velocity is determined by the temperature and ratio 

between the thermal energy of the system and adhesion energy of the counter surface. For 

the same asperity height and wavelength, our simulations revealed that the friction on 

non-adhesive walls strongly depends on the isotropy of surface roughness whereas the 

friction on adhesive substrates is nearly unaffected by the asymmetry of surface asperities 

at sufficiently low velocities. We also demonstrated that the coefficients of hysteretic and 

adhesive friction decrease exponentially with temperature when the sliding is slow. 

Lastly, we showed that the coefficient of hysteretic friction is practically independent of 

the normal load. 

 The results of our studies advance the basic understanding of complex dynamic 

interactions among compliant polymer networks, solutes, and the viscous solvent. In 
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particular, our studies enhance our knowledge of the convective and diffusive transport in 

deformed polymer networks, and provide insights into the relations between the network 

structure and transport properties. Furthermore, our findings enhance our understanding 

of the function of biological polymer networks and, in this manner, provide insight into 

the processes taking place in living cells. The outcomes of our calculations establish the 

engineering guidelines for designing a new type of adaptive and responsive microscopic 

carriers that can be especially useful for targeted delivery and controlled release of drugs 

and other solutes. Our friction simulations shed light on the intricate tribological 

properties of elastomers and provide useful information for regulating friction using 

geometrical surface patterning.  

 Our model of cross-linked polymer networks provides a high performance 

computational tool for future investigations of systems involving active and responsive 

polymer networks. For instance, our model can be readily used to study the release of 

solutes from cubic and tetrahedral capsules and probe how capsule geometry affects the 

rate and duration of release. The sliding friction of elastomers on soft surfaces can be 

considered as well. As another example, our model can be extended to examine the 

influence of gradient in the cross-linking density on the transport properties of polymer 

networks. One could also modify our current model by introducing electrostatic 

interactions to simulate transport of ions and other charged entities 



 101

REFERENCES 

 

[1] C. S. Patrickios, Polymer Networks: Recent Developments, Macromolecular 
Symposia, 291-292 (1): 1-11, 2010. 

[2] K. M. Schmoller, P. Fernandez, R. C. Arevalo, D. L. Blair and A. R. Bausch, 
Cyclic hardening in bundled actin networks, Nature Communications, 1, 2010. 

[3] V. M. Tysseling-Mattiace, V. Sahni, K. L. Niece, D. Birch, C. Czeisler, M. G. 
Fehlings, S. I. Stupp and J. A. Kessler, Self-assembling nanofibers inhibit glial 
scar formation and promote axon elongation after spinal cord injury, Journal of 
Neuroscience, 28 (14): 3814-3823, 2008. 

[4] R. M. Kasi, S. K. Ahn, S. C. Kim, N. Sharma and Y. X. Zhou, Stimuli-responsive 
polymer gels, Soft Matter, 4 (6): 1151-1157, 2008. 

[5] Y. Osada and J. P. Gong, Stimuli-Responsive Polymer Gels and Their Application 
to Chemomechanical Systems, Progress in Polymer Science, 18 (2): 187-226, 
1993. 

[6] M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. 
Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. 
Luzinov and S. Minko, Emerging applications of stimuli-responsive polymer 
materials, Nature Materials, 9 (2): 101-113, 2010. 

[7] M. W. Urban and F. Liu, Recent advances and challenges in designing stimuli-
responsive polymers, Progress in Polymer Science, 35 (1-2): 3-23, 2010. 

[8] Y. Takeoka, A. Bin Imran and T. Seki, Recent advances in hydrogels in terms of 
fast stimuli responsiveness and superior mechanical performance, Polymer 
Journal, 42 (11): 839-851, 2010. 

[9] K. Park and Y. Qiu, Environment-sensitive hydrogels for drug delivery, Advanced 
Drug Delivery Reviews, 53 (3): 321-339, 2001. 

[10] T. Miyata, T. Uragami and K. Nakamae, Biomolecule-sensitive hydrogels, 
Advanced Drug Delivery Reviews, 54 (1): 79-98, 2002. 

[11] I. Tomatsu, K. Peng and A. Kros, Photoresponsive hydrogels for biomedical 
applications, Advanced Drug Delivery Reviews: DOI: 
10.1016/j.addr.2011.1006.1009, 2011. 



 102

[12] H. S. Xia, J. K. Wu, X. L. Gong and Y. C. Fan, Physically crosslinked poly(vinyl 
alcohol) hydrogels with magnetic field controlled modulus, Soft Matter, 7 (13): 
6205-6212, 2011. 

[13] R. T. Olsson, M. A. S. A. Samir, G. Salazar-Alvarez, L. Belova, V. Strom, L. A. 
Berglund, O. Ikkala, J. Nogues and U. W. Gedde, Making flexible magnetic 
aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates, 
Nature Nanotechnology, 5 (8): 584-588, 2010. 

[14] S. Maeda, S. Nakamaru, Y. Hara and S. Hashimoto, Control of Autonomous 
Swelling - Deswelling Behavior for a Polymer Gel, Journal of Physical Chemistry 
B, 113 (14): 4609-4613, 2009. 

[15] R. D. Groot and P. B. Warren, Dissipative particle dynamics: Bridging the gap 
between atomistic and mesoscopic simulation, Journal of Chemical Physics, 107 
(11): 4423-4435, 1997. 

[16] M. Quesada-Perez, J. A. Maroto-Centeno, J. Forcada and R. Hidalgo-Alvarez, Gel 
swelling theories: the classical formalism and recent approaches, Soft Matter, 7 
(22): 10536-10547, 2011. 

[17] L. S. Zha, B. Banik and F. Alexis, Stimulus responsive nanogels for drug delivery, 
Soft Matter, 7 (13): 5908-5916, 2011. 

[18] R. Yoshida, Design of functional polymer gels and their application to biomimetic 
materials, Current Organic Chemistry, 9 (16): 1617-1641, 2005. 

[19] G. Huang, J. Gao, Z. B. Hu, J. V. S. John, B. C. Ponder and D. Moro, Controlled 
drug release from hydrogel nanoparticle networks, Journal of Controlled Release, 
94 (2-3): 303-311, 2004. 

[20] J. Z. Hilt and N. S. Satarkar, Magnetic hydrogel nanocomposites for remote 
controlled pulsatile drug release, Journal of Controlled Release, 130 (3): 246-
251, 2008. 

[21] A. K. Bajpai, S. K. Shukla, S. Bhanu and S. Kankane, Responsive polymers in 
controlled drug delivery, Progress in Polymer Science, 33 (11): 1088-1118, 2008. 

[22] M. Malmsten, H. Bysell and P. Hansson, Biomacromolecules in microgels - 
Opportunities and challenges for drug delivery, Current Opinion in Colloid & 
Interface Science, 15 (6): 435-444, 2010. 



 103

[23] G. B. Sukhorukov, M. F. Bedard, B. G. De Geest, A. G. Skirtach and H. 
Mohwald, Polymeric microcapsules with light responsive properties for 
encapsulation and release, Advances in Colloid and Interface Science, 158 (1-2): 
2-14, 2010. 

[24] S. Minko, M. Motornov, Y. Roiter and I. Tokarev, Stimuli-responsive 
nanoparticles, nanogels and capsules for integrated multifunctional intelligent 
systems, Progress in Polymer Science, 35 (1-2): 174-211, 2010. 

[25] S. Seiffert, J. Thiele, A. R. Abate and D. A. Weitz, Smart Microgel Capsules from 
Macromolecular Precursors, Journal of the American Chemical Society, 132 
(18): 6606-6609, 2010. 

[26] S. Minko and I. Tokarev, Stimuli-Responsive Porous Hydrogels at Interfaces for 
Molecular Filtration, Separation, Controlled Release, and Gating in Capsules 
and Membranes, Advanced Materials, 22 (31): 3446-3462, 2010. 

[27] A. G. Skirtach, M. Delcea and H. Mohwald, Stimuli-responsive LbL capsules and 
nanoshells for drug delivery, Advanced Drug Delivery Reviews, 63 (9): 730-747, 
2011. 

[28] D. F. Moore and W. Geyer, Review of Adhesion Theories for Elastomers, Wear, 
22 (2): 113-&, 1972. 

[29] B. N. J. Persson, Rubber friction and tire dynamics, Journal of Physics-
Condensed Matter, 23 (1), 2011. 

[30] S. W. Zhang, Tribology of elastomers. Elsevier Science, 2004. 

[31] R. F. Salant, Theory of lubrication of elastomeric rotary shaft seals, Proceedings 
of the Institution of Mechanical Engineers Part J-Journal of Engineering 
Tribology, 213 (J3): 189-201, 1999. 

[32] R. Elleuch, K. Elleuch, H. Ben Abdelounis and H. Zahouani, Surface roughness 
effect on friction behaviour of elastomeric material, Materials Science and 
Engineering a-Structural Materials Properties Microstructure and Processing, 465 
(1-2): 8-12, 2007. 

[33] F. Wu-Bavouzet, J. Cayer-Barrioz, A. Le Bot, F. Brochard-Wyart and A. Buguin, 
Effect of surface pattern on the adhesive friction of elastomers, Physical Review 
E, 82 (3), 2010. 



 104

[34] M. J. Hancock, K. Sekeroglu and M. C. Demirel, Bioinspired Directional 
Surfaces for Adhesion, Wetting, and Transport, Advanced Functional Materials, 
22 (11): 2223-2234, 2012. 

[35] E. Degrandi-Contraires, C. Poulard, F. Restagno and L. Leger, Sliding friction at 
soft micropatterned elastomer interfaces, Faraday Discussions, 2012. 

[36] S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. 
Roberts and A. J. Hart, Engineering of Micro- and Nanostructured Surfaces with 
Anisotropic Geometries and Properties, Advanced Materials, 24 (13): 1628-1674, 
2012. 

[37] E. W. Durbin and G. A. Buxton, A coarse-grained model of targeted drug 
delivery from responsive polymer nanoparticles, Soft Matter, 6 (4): 762-767, 
2010. 

[38] N. Park, S. H. Um, H. Funabashi, J. Xu and D. Luo, A cell-free protein-producing 
gel, Nature Materials, 8 (5): 432-437, 2009. 

[39] X. M. Chen, A. C. Dunn, W. G. Sawyer and M. Sarntinoranont, A biphasic model 
for micro-indentation of a hydrogel-based contact lens, Journal of Biomechanical 
Engineering-Transactions of the ASME, 129 (2): 156-163, 2007. 

[40] D. W. Hutmacher, Biomaterials offer cancer research the third dimension, Nature 
Materials, 9 (2): 90-93, 2010. 

[41] Y. Murase, S. Maeda, S. Hashimoto and R. Yoshida, Design of a Mass Transport 
Surface Utilizing Peristaltic Motion of a Self-Oscillating Gel, Langmuir, 25 (1): 
483-489, 2009. 

[42] P. Dayal, O. Kuksenok and A. C. Balazs, Designing autonomously motile gels 
that follow complex paths, Soft Matter, 6 (4): 768-773, 2010. 

[43] M. Shingo, Y. Hara, R. Yoshida and S. Hashimoto, Chemical robot-Design of 
self-walking gel-, In Proceedings of the Intelligent Robots and Systems, 2007. 
IROS 2007. IEEE/RSJ International Conference on2150-2155, 2007. 

[44] R. Daganl, Intelligent gels, Chemical & Engineering News, 75 (23): 26-37, 1997. 

[45] R. Barbucci, B. D. Ratner and S. Atzet, in Hydrogels Springer Milan: pp. 43-51, 
2009. 



 105

[46] N. Ter-Oganessian, D. A. Pink and A. Boulbitch, Active microrheology of 
networks composed of semiflexible polymers: Theory and comparison with 
simulations, Physical Review E, 72 (4), 2005. 

[47] J. M. Mansour and V. C. Mow, Permeability of Articular-Cartilage under 
Compressive Strain and at High-Pressures, Journal of Bone and Joint Surgery-
American Volume, 58 (4): 509-516, 1976. 

[48] S. Whitaker, Flow in porous media I: A theoretical derivation of Darcy's law, 
Transport in Porous Media, 1 (1): 3-25, 1986. 

[49] G. D. J. Phillies, The Hydrodynamic Scaling Model for Polymer Self-Diffusion, 
Journal of Physical Chemistry, 93 (13): 5029-5039, 1989. 

[50] G. D. J. Phillies, T. Pirnat, M. Kiss, N. Teasdale, D. Maclung, H. Inglefield, C. 
Malone, A. Rau, L. P. Yu and J. Rollings, Probe diffusion in solutions of low-
molecular-weight polyelectrolytes, Macromolecules, 22 (10): 4068-4075, 1989. 

[51] D. S. Clague and R. J. Phillips, A numerical calculation of the hydraulic 
permeability of three-dimensional disordered fibrous media, Physics of Fluids, 9 
(6): 1562-1572, 1997. 

[52] J. C. Bosma and J. A. Wesselingh, Partitioning and diffusion of large molecules 
in fibrous structures, Journal of Chromatography B, 743 (1-2): 169-180, 2000. 

[53] W. Y. Gu, H. Yao, C. Y. Huang and H. S. Cheung, New insight into deformation-
dependent hydraulic permeability of gels and cartilage, and dynamic behavior of 
agarose gels in confined compression, Journal of Biomechanics, 36 (4): 593-598, 
2003. 

[54] B. Markert, A constitutive approach to 3-d nonlinear fluid flow through finite 
deformable porous continua - With application to a high-porosity polyurethane 
foam, Transport in Porous Media, 70 (3): 427-450, 2007. 

[55] D. Mu, Z. S. Liu, C. Huang and N. Djilali, Determination of the effective diffusion 
coefficient in porous media including Knudsen effects, Microfluidics and 
Nanofluidics, 4 (3): 257-260, 2008. 

[56] T. Stylianopoulos, A. Yeckel, J. J. Derby, X. J. Luo, M. S. Shephard, E. A. Sander 
and V. H. Barocas, Permeability calculations in three-dimensional isotropic and 
oriented fiber networks, Physics of Fluids, 20 (12): 123601, 2008. 



 106

[57] Y. Cu and W. M. Saltzman, Mathematical modeling of molecular diffusion 
through mucus, Advanced Drug Delivery Reviews, 61 (2): 101-114, 2009. 

[58] W. M. Saltzman, M. L. Radomsky, K. J. Whaley and R. A. Cone, Antibody 
Diffusion in Human Cervical-Mucus, Biophysical Journal, 66 (2): 508-515, 1994. 

[59] P. L. Chandran, T. Stylianopoulos and V. H. Barocas, Microstructure-based, 
multiscale modeling for the mechanical behavior of hydrated fiber networks, 
Multiscale Modeling & Simulation, 7 (1): 22-43, 2008. 

[60] C. Heussinger, B. Schaefer and E. Frey, Nonaffine rubber elasticity for stiff 
polymer networks, Physical Review E, 76 (3): 031906, 2007. 

[61] J. Wilhelm and E. Frey, Elasticity of stiff polymer networks, Physical Review 
Letters, 91 (10): 108103, 2003. 

[62] A. E. X. Brown, R. I. Litvinov, D. E. Discher, P. K. Purohit and J. W. Weisel, 
Multiscale Mechanics of Fibrin Polymer: Gel Stretching with Protein Unfolding 
and Loss of Water, Science, 325 (5941): 741-744, 2009. 

[63] D. A. Fletcher and D. Mullins, Cell mechanics and the cytoskeleton, Nature, 463 
(7280): 485-492, 2010. 

[64] K. A. Erk, K. J. Henderson and K. R. Shull, Strain Stiffening in Synthetic and 
Biopolymer Networks, Biomacromolecules, 11 (5): 1358-1363, 2010. 

[65] F. Urciuolo, G. Imparato and P. A. Netti, Effect of dynamic loading on solute 
transport in soft gels implication for drug delivery, Aiche Journal, 54 (3): 824-
834, 2008. 

[66] A. Caspi, R. Granek and M. Elbaum, Enhanced diffusion in active intracellular 
transport, Physical Review Letters, 85 (26): 5655-5658, 2000. 

[67] E. M. Huisman, C. Storm and G. T. Barkema, Monte Carlo study of multiply 
crosslinked semiflexible polymer networks, Physical Review E, 78 (5), 2008. 

[68] S. B. Lindstrom, D. A. Vader, A. Kulachenko and D. A. Weitz, Biopolymer 
network geometries: Characterization, regeneration, and elastic properties, 
Physical Review E, 82 (5), 2010. 

[69] V. Klepko, Y. Melnichenko and V. Shilov, Liquid flow through polymer gels, 
Polymer Gels and Networks, 4 (4): 351-361, 1996. 



 107

[70] D. P. Holmes, M. Roche, T. Sinha and H. A. Stone, Bending and twisting of soft 
materials by non-homogenous swelling, Soft Matter, 7 (11): 5188-5193, 2011. 

[71] J. U. Sommer, R. Dockhorn, P. B. Welzel, U. Freudenberg and C. Werner, 
Swelling Equilibrium of a Binary Polymer Gel, Macromolecules, 44 (4): 981-986, 
2011. 

[72] Y. L. Li, D. Maciel, H. Tomas, J. Rodrigues, H. Ma and X. Y. Shi, pH sensitive 
Laponite/alginate hybrid hydrogels: swelling behaviour and release mechanism, 
Soft Matter, 7 (13): 6231-6238, 2011. 

[73] S. Y. Xing, Y. Guan and Y. J. Zhang, Kinetics of Glucose-Induced Swelling of 
P(NIPAM-AAPBA) Microgels, Macromolecules, 44 (11): 4479-4486, 2011. 

[74] H. H. Dai and Z. L. Song, Some analytical formulas for the equilibrium states of a 
swollen hydrogel shell, Soft Matter, 7 (18): 8473-8483, 2011. 

[75] P. K. Jha, J. W. Zwanikken, F. A. Detcheverry, J. J. de Pablo and M. O. de la 
Cruz, Study of volume phase transitions in polymeric nanogels by theoretically 
informed coarse-grained simulations, Soft Matter, 7 (13): 5965-5975, 2011. 

[76] M. Caldorera-Moore, M. K. Kang, Z. Moore, V. Singh, S. V. Sreenivasan, L. Shi, 
R. Huang and K. Roy, Swelling behavior of nanoscale, shape- and size-specific, 
hydrogel particles fabricated using imprint lithography, Soft Matter, 7 (6): 2879-
2887, 2011. 

[77] T. Sakai, M. Kurakazu, Y. Akagi, M. Shibayama and U. Chung, Effect of swelling 
and deswelling on the elasticity of polymer networks in the dilute to semi-dilute 
region, Soft Matter, 8 (9): 2730-2736, 2012. 

[78] B. Xu, X. J. Di and G. B. McKenna, Swelling Behavior of Cross-Linked Rubber: 
Explanation of the Elusive Peak in the Swelling Activity Parameter (Dilational 
Modulus), Macromolecules, 45 (5): 2402-2410, 2012. 

[79] H. Q. Jiang, J. P. Zhang, X. H. Zhao and Z. G. Suo, A finite element method for 
transient analysis of concurrent large deformation and mass transport in gels, J. 
Appl. Phys., 105 (9), 2009. 

[80] V. V. Yashin and A. C. Balazs, Pattern formation and shape changes in self-
oscillating polymer gels, Science, 314 (5800): 798-801, 2006. 

[81] J. P. Keener, S. Sircar and A. L. Fogelson, Influence of the standard free energy 
on swelling kinetics of gels, Physical Review E, 83 (4), 2011. 



 108

[82] J. Wahrmund, J. W. Kim, L. Y. Chu, C. J. Wang, Y. Li, A. Fernandez-Nieves, D. 
A. Weitz, A. Krokhin and Z. B. Hu, Swelling Kinetics of a Microgel Shell, 
Macromolecules, 42 (23): 9357-9365, 2009. 

[83] P. A. L. Fernandes, S. Schmidt, M. Zeiser, A. Fery and T. Hellweg, Swelling and 
mechanical properties of polymer gels with cross-linking gradient, Soft Matter, 6 
(15): 3455-3458, 2010. 

[84] C. Y. Gao, S. Leporatti, S. Moya, E. Donath and H. Mohwald, Swelling and 
shrinking of polyelectrolyte microcapsules in response to changes in temperature 
and ionic strength, Chemistry-a European Journal, 9 (4): 915-920, 2003. 

[85] D. A. Head, A. J. Levine and F. C. MacKintosh, Deformation of cross-linked 
semiflexible polymer networks, Physical Review Letters, 91 (10): 108102, 2003. 

[86] J. Liu, G. H. Koenderink, K. E. Kasza, F. C. MacKintosh and D. A. Weitz, 
Visualizing the strain field in semiflexible polymer networks: Strain fluctuations 
and nonlinear rheology of F-actin gels, Physical Review Letters, 98 (19): 198304, 
2007. 

[87] G. A. Buxton and N. Clarke, "Bending to stretching" transition in disordered 
networks, Physical Review Letters, 98 (23): 238103, 2007. 

[88] E. A. Sander, T. Stylianopoulos, R. T. Tranquillo and V. H. Barocas, Image-based 
multiscale modeling predicts tissue-level and network-level fiber reorganization 
in stretched cell-compacted collagen gels, Proceedings of the National Academy 
of Sciences of the United States of America, 106 (42): 17675-17680, 2009. 

[89] G. H. Koenderink, Z. Dogic, F. Nakamura, P. M. Bendix, F. C. MacKintosh, J. H. 
Hartwig, T. P. Stossel and D. A. Weitz, An active biopolymer network controlled 
by molecular motors, Proceedings of the National Academy of Sciences of the 
United States of America, 106 (36): 15192-15197, 2009. 

[90] S. Ulrich, X. Mao, P. M. Goldbart and A. Zippelius, Elasticity of highly cross-
linked random networks, Europhysics Letters, 76 (4): 677-682, 2006. 

[91] O. Lieleg, M. M. A. E. Claessens and A. R. Bausch, Structure and dynamics of 
cross-linked actin networks, Soft Matter, 6 (2): 218-225, 2010. 

[92] J. P. Gong, Why are double network hydrogels so tough?, Soft Matter, 6 (12): 
2583-2590, 2010. 



 109

[93] M. A. Tahir and H. V. Tafreshi, Influence of fiber orientation on the transverse 
permeability of fibrous media, Physics of Fluids, 21 (8): 083604, 2009. 

[94] A. Nabovati, E. W. Llewellin and A. C. M. Sousa, A general model for the 
permeability of fibrous porous media based on fluid flow simulations using the 
lattice Boltzmann method, Composites Part a-Applied Science and 
Manufacturing, 40 (6-7): 860-869, 2009. 

[95] G. W. Jackson and D. F. James, The Permeability of Fibrous Porous-Media, 
Canadian Journal of Chemical Engineering, 64 (3): 364-374, 1986. 

[96] A. F. Morais, H. Seybold, H. J. Herrmann and J. S. Andrade, Non-Newtonian 
Fluid Flow through Three-Dimensional Disordered Porous Media, Physical 
Review Letters, 103 (19): 194502, 2009. 

[97] T. Sochi, Non-Newtonian flow in porous media, Polymer, 51 (22): 5007-5023, 
2010. 

[98] L. Liu, P. S. Li and S. A. Asher, Entropic trapping of macromolecules by 
mesoscopic periodic voids in a polymer hydrogel, Nature, 397 (6715): 141-144, 
1999. 

[99] S. Seiffert and W. Oppermann, Diffusion of linear macromolecules and spherical 
particles in semidilute polymer solutions and polymer networks, Polymer, 49 (19): 
4115-4126, 2008. 

[100] A. Le Gal, X. Yang and M. Kluppel, Evaluation of sliding friction and contact 
mechanics of elastomers based on dynamic-mechanical analysis, Journal of 
Chemical Physics, 123 (1), 2005. 

[101] D. F. Moore and W. Geyer, Review of Hysteresis Theories for Elastomers, Wear, 
30 (1): 1-34, 1974. 

[102] A. Schallamach, The Load Dependence of Rubber Friction, Proceedings of the 
Physical Society of London Section B, 65 (393): 657-661, 1952. 

[103] A. Schallamach, The Velocity and Temperature Dependence of Rubber Friction, 
Proceedings of the Physical Society of London Section B, 66 (401): 386-392, 
1953. 

[104] K. A. Grosch, Relation between Friction and Visco-Elastic Properties of Rubber, 
Nature, 197 (487): 858-&, 1963. 



 110

[105] B. N. J. Persson and E. Tosatti, Qualitative theory of rubber friction and wear, 
Journal of Chemical Physics, 112 (4): 2021-2029, 2000. 

[106] B. N. J. Persson, On the theory of rubber friction, Surface Science, 401 (3): 445-
454, 1998. 

[107] A. R. Savkoor, Mechanics of Sliding Friction of Elastomers, Wear, 113 (1): 37-
60, 1986. 

[108] N. K. Myshkin, M. I. Petrokovets and A. V. Kovalev, Tribology of polymers: 
Adhesion, friction, wear, and mass-transfer, Tribology International, 38 (11-12): 
910-921, 2005. 

[109] Q. V. Bui and J. P. Ponthot, Estimation of rubber sliding friction from asperity 
interaction modeling, Wear, 252 (1-2): 150-160, 2002. 

[110] P. Wriggers and J. Reinelt, Multi-scale approach for frictional contact of 
elastomers on rough rigid surfaces, Computer Methods in Applied Mechanics 
and Engineering, 198 (21-26): 1996-2008, 2009. 

[111] A. K. Singh and V. A. Juvekar, Steady dynamic friction at elastomer-hard solid 
interface: A model based on population balance of bonds, Soft Matter, 7 (22): 
10601-10611, 2011. 

[112] R. J. Pinnington, Rubber friction on rough and smooth surfaces, Wear, 267 (9-
10): 1653-1664, 2009. 

[113] G. Carbone, B. Lorenz, B. N. J. Persson and A. Wohlers, Contact mechanics and 
rubber friction for randomly rough surfaces with anisotropic statistical 
properties, European Physical Journal E, 29 (3): 275-284, 2009. 

[114] M. Du, Y. Maki, T. Tominaga, H. Furukawa, J. P. Gong, Y. Osada and Q. Zheng, 
Friction of soft gel in dilute polymer solution, Macromolecules, 40 (12): 4313-
4321, 2007. 

[115] D. P. Chang, J. E. Dolbow and S. Zauscher, Switchable friction of stimulus-
responsive hydrogels, Langmuir, 23 (1): 250-257, 2007. 

[116] K. Kamada, H. Furukawa, T. Kurokawa, T. Tada, T. Tominaga, Y. Nakano and J. 
P. Gong, Surfactant-induced friction reduction for hydrogels in the boundary 
lubrication regime, Journal of Physics-Condensed Matter, 23 (28), 2011. 



 111

[117] A. Dedinaite, E. Thormann, G. Olanya, P. M. Claesson, B. Nystrom, A. L. 
Kjoniksen and K. Z. Zhu, Friction in aqueous media tuned by temperature-
responsive polymer layers, Soft Matter, 6 (11): 2489-2498, 2010. 

[118] M. Takata, T. Yamaguchi and M. Doi, Friction Control of a Gel by Electric Field 
in Ionic Surfactant Solution, Journal of the Physical Society of Japan, 79 (6), 
2010. 

[119] J. P. Gong, Friction and lubrication of hydrogels - its richness and complexity, 
Soft Matter, 2 (7): 544-552, 2006. 

[120] J. Gong and Y. Osada, Gel friction: a model based on surface repulsion and 
adsorption, The Journal of chemical physics, 109 (18): 8062-8068, 1998. 

[121] Y. Osada, J. P. Gong, Y. Iwasaki, K. Kurihara and Y. Hamai, Friction of gels. 3. 
Friction on solid surfaces, Journal of Physical Chemistry B, 103 (29): 6001-6006, 
1999. 

[122] G. Kagata, J. P. Gong and Y. Osada, Friction of gels. 6. Effects of sliding velocity 
and viscoelastic responses of the network, Journal of Physical Chemistry B, 106 
(18): 4596-4601, 2002. 

[123] J. P. Gong, T. Tominaga, N. Takedomi, H. Biederman, H. Furukawa and Y. 
Osada, Effect of substrate adhesion and hydrophobicity on hydrogel friction, Soft 
Matter, 4 (5): 1033-1040, 2008. 

[124] S. Momozono, K. Nakamura and K. Kyogoku, Theoretical model for adhesive 
friction between elastomers and rough solid surfaces, Journal of Chemical 
Physics, 132 (11), 2010. 

[125] E. A. Sander, A. M. Stein, M. J. Swickrath and V. H. Barocas, edited by T. 
Dumitrica Springer Netherlands, Vol. 9: pp. 557-602, 2010. 

[126] E. Moeendarbary, T. Y. Ng and M. Zangeneh, Dissipative Particle Dynamics in 
Soft Matter and Polymeric Applications - a Review, International Journal of 
Applied Mechanics, 2 (1): 161-190, 2010. 

[127] J. Sweeney, A comparison of three polymer network models in current use, 
Computational and Theoretical Polymer Science, 9 (1): 27-33, 1999. 

[128] P. J. Hoogerbrugge and J. M. V. A. Koelman, Simulating Microscopic 
Hydrodynamic Phenomena with Dissipative Particle Dynamics, Europhysics 
Letters, 19 (3): 155-160, 1992. 



 112

[129] T. Steiner, C. Cupelli, R. Zengerle and M. Santer, Simulation of advanced 
microfluidic systems with dissipative particle dynamics, Microfluidics and 
Nanofluidics, 7 (3): 307-323, 2009. 

[130] N. Filipovic, M. Kojic and M. Ferrari, Dissipative particle dynamics simulation of 
circular and elliptical particles motion in 2D laminar shear flow, Microfluidics 
and Nanofluidics, 10 (5): 1127-1134, 2011. 

[131] H. Masoud and A. Alexeev, Controlled Release of Nanoparticles and 
Macromolecules from Responsive Microgel Capsules, ACS Nano, 6 (1): 212-219, 
2012. 

[132] S. Chen, N. Phan-Thien, X. J. Fan and B. C. Khoo, Dissipative particle dynamics 
simulation of polymer drops in a periodic shear flow, Journal of Non-Newtonian 
Fluid Mechanics, 118 (1): 65-81, 2004. 

[133] A. Alexeev, W. E. Uspal and A. C. Balazs, Harnessing Janus nanoparticles to 
create controllable pores in membranes, ACS Nano, 2 (6): 1117-1122, 2008. 

[134] D. A. Fedosov, G. E. Karniadakis and B. Caswell, Dissipative particle dynamics 
simulation of depletion layer and polymer migration in micro- and nanochannels 
for dilute polymer solutions, Journal of Chemical Physics, 128 (14): 144903, 
2008. 

[135] H. Masoud and A. Alexeev, Selective control of surface properties using 
hydrodynamic interactions, Chemical Communications, 47 (1): 472-474, 2011. 

[136] H. Masoud and A. Alexeev, Permeability and Diffusion through Mechanically 
Deformed Random Polymer Networks, Macromolecules, 43 (23): 10117-10122, 
2010. 

[137] X. J. Fan, N. Phan-Thien, S. Chen, X. H. Wu and T. Y. Ng, Simulating flow of 
DNA suspension using dissipative particle dynamics, Physics of Fluids, 18 (6): 
063102, 2006. 

[138] J. R. Spaeth, I. G. Kevrekidis and A. Z. Panagiotopoulos, Dissipative particle 
dynamics simulations of polymer-protected nanoparticle self-assembly, Journal of 
Chemical Physics, 135 (18), 2011. 

[139] M. Basan, J. Prost, J. F. Joanny and J. Elgeti, Dissipative particle dynamics 
simulations for biological tissues: rheology and competition, Physical Biology, 8 
(2), 2011. 



 113

[140] Y. R. Sliozberg, J. W. Andzelm, J. K. Brennan, M. R. Vanlandingham, V. 
Pryamitsyn and V. Ganesan, Modeling Viscoelastic Properties of Triblock 
Copolymers: A DPD Simulation Study, Journal of Polymer Science Part B-
Polymer Physics, 48 (1): 15-25, 2010. 

[141] M. B. Liu, P. Meakin and H. Huang, Dissipative particle dynamics simulation of 
multiphase fluid flow in microchannels and microchannel networks, Physics of 
Fluids, 19 (3), 2007. 

[142] K. Yang and Y. Q. Ma, Computer simulation of the translocation of nanoparticles 
with different shapes across a lipid bilayer, Nature Nanotechnology, 5 (8): 579-
583, 2010. 

[143] F. Goujon, A. Ghoufi, P. Malfreyt and D. J. Tildesley, Frictional forces in 
polyelectrolyte brushes: effects of sliding velocity, solvent quality and salt, Soft 
Matter, 8 (17): 4635-4644, 2012. 

[144] S. Pal and C. Seidel, Dissipative particle dynamics simulations of polymer 
brushes: Comparison with molecular dynamics simulations, Macromolecular 
Theory and Simulations, 15 (9): 668-673, 2006. 

[145] P. Espanol and P. Warren, Statistical-Mechanics of Dissipative Particle 
Dynamics, Europhysics Letters, 30 (4): 191-196, 1995. 

[146] I. V. Pivkin and G. E. Karniadakis, A new method to impose no-slip boundary 
conditions in dissipative particle dynamics, Journal of Computational Physics, 
207 (1): 114-128, 2005. 

[147] M. Revenga, I. Zuniga and P. Espanol, Boundary conditions in dissipative 
particle dynamics, Computer Physics Communications, 121: 309-311, 1999. 

[148] A. M. Altenhoff, J. H. Walther and P. Koumoutsakos, A stochastic boundary 
forcing for dissipative particle dynamics, Journal of Computational Physics, 225 
(1): 1125-1136, 2007. 

[149] D. A. Fedosov, I. V. Pivkin and G. E. Karniadakis, Velocity limit in DPD 
simulations of wall-bounded flows, Journal of Computational Physics, 227 (4): 
2540-2559, 2008. 

[150] N. A. Spenley, Scaling laws for polymers in dissipative particle dynamics, 
Europhysics Letters, 49 (4): 534-540, 2000. 



 114

[151] M. D. Graham, Fluid Dynamics of Dissolved Polymer Molecules in Confined 
Geometries, Annual Review of Fluid Mechanics, Vol 43, 43: 273-298, 2011. 

[152] W. X. Pan, D. A. Fedosov, G. E. Karniadakis and B. Caswell, Hydrodynamic 
interactions for single dissipative-particle-dynamics particles and their clusters 
and filaments, Physical Review E, 78 (4): 46706, 2008. 

[153] L. Spielman and S. L. Goren, Model for predicting pressure drop and filtration 
efficiency in fibrous media, Environmental Science & Technology, 2 (4): 279-
287, 1968. 

[154] G. Kasper, T. Niida and M. Yang, Measurements of Viscous Drag on Cylinders 
and Chains of Spheres with Aspect Ratios between 2 and 50, Journal of Aerosol 
Science, 16 (6): 535-556, 1985. 

[155] J. H. Irving and J. G. Kirkwood, The Statistical Mechanical Theory of Transport 
Processes .4. The Equations of Hydrodynamics, Journal of Chemical Physics, 18 
(6): 817-829, 1950. 

[156] A. M. Stein, D. A. Vader, D. A. Weitz and L. M. Sander, The Micromechanics of 
Three-Dimensional Collagen-I Gels, Complexity, 16 (4): 22-28, 2011. 

[157] A. V. Dobrynin and J. M. Y. Carrillo, Universality in Nonlinear Elasticity of 
Biological and Polymeric Networks and Gels, Macromolecules, 44 (1): 140-146, 
2011. 

[158] A. W. Lees and S. F. Edwards, Computer Study of Transport Processes under 
Extreme Conditions, Journal of Physics Part C Solid State Physics, 5 (15): 1921-
&, 1972. 

[159] T. Kim, W. Hwang, H. Lee and R. D. Kamm, Computational Analysis of 
Viscoelastic Properties of Crosslinked Actin Networks, Plos Computational 
Biology, 5 (7), 2009. 

[160] M. L. Gardel, K. E. Kasza, C. P. Brangwynne, J. Y. Liu and D. A. Weitz, 
Mechanical Response of Cytoskeletal Networks, Biophysical Tools for Biologists, 
Vol 2: In Vivo Techniques, 89: 487-+, 2008. 

[161] N. A. Peppas, J. Z. Hilt, A. Khademhosseini and R. Langer, Hydrogels in biology 
and medicine: From molecular principles to bionanotechnology, Advanced 
Materials, 18 (11): 1345-1360, 2006. 



 115

[162] R. Langer and D. A. Tirrell, Designing materials for biology and medicine, 
Nature, 428 (6982): 487-492, 2004. 

[163] O. Kreft, A. M. Javier, G. B. Sukhorukov and W. J. Parak, Polymer 
microcapsules as mobile local pH-sensors, Journal of Materials Chemistry, 17 
(42): 4471-4476, 2007. 

[164] I. Gorelikov, L. M. Field and E. Kumacheva, Hybrid microgels photoresponsive 
in the near-infrared spectral range, Journal of the American Chemical Society, 
126 (49): 15938-15939, 2004. 

[165] I. Tomatsu, K. Peng and A. Kros, Photoresponsive hydrogels for biomedical 
applications, Advanced Drug Delivery Reviews, 63 (14-15): 1257-1266, 2011. 

[166] T. Tanaka and D. J. Fillmore, Kinetics of Swelling of Gels, Journal of Chemical 
Physics, 70 (3): 1214-1218, 1979. 

[167] G. A. Buxton, The fate of a polymer nanoparticle subject to flow-induced shear 
stresses, Epl, 84 (2): 26006, 2008. 

[168] A. Jackson and W. Gu, Transport Properties of Cartilaginous Tissues, Current 
rheumatology reviews, 5 (1): 40, 2009. 

[169] R. L. Mauck, C. T. Hung and G. A. Ateshian, Modeling of neutral solute 
transport in a dynamically loaded porous permeable gel: Implications for 
articular cartilage biosynthesis and tissue engineering, Journal of Biomechanical 
Engineering-Transactions of the Asme, 125 (5): 602-614, 2003. 

[170] C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh and D. A. Weitz, 
Intracellular transport by active diffusion, Trends in Cell Biology, 19 (9): 423-
427, 2009. 

[171] J. Li, J. K. Park, R. B. Moore and L. A. Madsen, Linear coupling of alignment 
with transport in a polymer electrolyte membrane, Nature Materials, 10 (7): 507-
511, 2011. 

[172] J. K. Park, J. Li, G. M. Divoux, L. A. Madsen and R. B. Moore, Oriented 
Morphology and Anisotropic Transport in Uniaxially Stretched 
Perfluorosulfonate Ionomer Membranes, Macromolecules, 44 (14): 5701-5710, 
2011. 

[173] D. Vader, A. Kabla, D. Weitz and L. Mahadevan, Strain-Induced Alignment in 
Collagen Gels, Plos One, 4 (6), 2009. 



 116

[174] Batchelo.Gk, Slender-Body Theory for Particles of Arbitrary Cross-Section in 
Stokes Flow, Journal of Fluid Mechanics, 44 (Nov26): 419-&, 1970. 

[175] M. Irie, Stimuli-responsive polymer gels: An approach to micro actuators, 
Microchemical Journal: 363-371, 1994. 

[176] S. Nayak and L. A. Lyon, Soft nanotechnology with soft nanoparticles, 
Angewandte Chemie-International Edition, 44 (47): 7686-7708, 2005. 

[177] A. Fery, F. Dubreuil and H. Mohwald, Mechanics of artificial microcapsules, 
New Journal of Physics, 6: 18, 2004. 

[178] O. I. Vinogradova, O. V. Lebedeva and B. S. Kim, Mechanical behavior and 
characterization of microcapsules, Annual Review of Materials Research, 36: 
143-178, 2006. 

[179] R. Arshady, Microspheres and Microcapsules - a Survey of Manufacturing 
Techniques .1. Suspension Cross-Linking, Polymer Engineering and Science, 29 
(24): 1746-1758, 1989. 

[180] B. G. De Geest, C. Dejugnat, G. B. Sukhorukov, K. Braeckmans, S. C. De Smedt 
and J. Demeester, Self-rupturing microcapsules, Advanced Materials, 17 (19): 
2357-+, 2005. 

[181] H. Y. Koo, S. T. Chang, W. S. Choi, J. H. Park, D. Y. Kim and O. D. Velev, 
Emulsion-based synthesis of reversibly swellable, magnetic nanoparticle-
embedded polymer microcapsules, Chemistry of Materials, 18 (14): 3308-3313, 
2006. 

[182] X. Y. Liu, C. Y. Gao, J. C. Shen and H. Mohwald, Multilayer microcapsules as 
anti-cancer drug delivery vehicle: Deposition, sustained release, and in vitro 
bioactivity, Macromolecular Bioscience, 5 (12): 1209-1219, 2005. 

[183] B. Neu, A. Voigt, R. Mitlohner, S. Leporatti, C. Y. Gao, E. Donath, H. 
Kiesewetter, H. Mohwald, H. J. Meiselman and H. Baumler, Biological cells as 
templates for hollow microcapsules, Journal of Microencapsulation, 18 (3): 385-
395, 2001. 

[184] V. V. Tsukruk, O. Shchepelina, V. Kozlovskaya, S. Singamaneni and E. 
Kharlampieva, Replication of anisotropic dispersed particulates and complex 
continuous templates, Journal of Materials Chemistry, 20 (32): 6587-6603, 2010. 



 117

[185] J. P. Zhang, X. H. Zhao, Z. G. Suo and H. Q. Jiang, A finite element method for 
transient analysis of concurrent large deformation and mass transport in gels (vol 
105, 093522, 2009), Journal of Applied Physics, 105 (12), 2009. 

[186] W. Hong, X. H. Zhao, J. X. Zhou and Z. G. Suo, A theory of coupled diffusion 
and large deformation in polymeric gels, Journal of the Mechanics and Physics of 
Solids, 56 (5): 1779-1793, 2008. 

[187] D. Y. Arifin, L. Y. Lee and C. H. Wang, Mathematical modeling and simulation 
of drug release from microspheres: Implications to drug delivery systems, Adv. 
Drug Deliver. Rev., 58 (12-13): 1274-1325, 2006. 

[188] C. S. Brazel and L. F. Wu, Mathematical model to predict drug release, including 
the early-time burst effect, from swellable homogeneous hydrogels, Ind. Eng. 
Chem. Res., 47 (5): 1518-1526, 2008. 

[189] M. Grassi, G. Lamberti, S. Cascone and G. Grassi, Mathematical modeling of 
simultaneous drug release and in vivo absorption, Int. J. Pharm.: DOI: 
10.1016/j.ijpharm.2010.1012.1044, 2011. 

[190] E. Kaunisto, M. Marucci, P. Borgquist and A. Axelsson, Mechanistic modelling of 
drug release from polymer-coated and swelling and dissolving polymer matrix 
systems, Int. J. Pharm.: DOI: 10.1016/j.ijpharm.2011.1001.1021, 2011. 

[191] L. L. Lao, N. A. Peppas, F. Y. C. Boey and S. S. Venkatraman, Modeling of drug 
release from bulk-degrading polymers, Int. J. Pharm.: DOI: 
10.1016/j.ijpharm.2010.1012.1020, 2011. 

[192] C. Kleinstreuer and Z. Zhang, Optimal Drug-Aerosol Delivery to Predetermined 
Lung Sites, Journal of Heat Transfer-Transactions of the Asme, 133 (1): 011002, 
2011. 

[193] L. Huynh, C. Neale, R. Pomès and C. Allen, Computational approaches to the 
rational design of nanoemulsions, polymeric micelles, and dendrimers for drug 
delivery, Nanomed.-Nanotechnol. Biol. Med.: DOI: 
10.1016/j.nano.2011.1005.1006, 2011. 

[194] A. T. Metters and C. C. Lin, Hydrogels in controlled release formulations: 
Network design and mathematical modeling, Adv. Drug Del. Rev., 58 (12-13): 
1379-1408, 2006. 

[195] N. Clarke and G. A. Buxton, Drug diffusion from polymer core-shell 
nanoparticles, Soft Matter, 3 (12): 1513-1517, 2007. 



 118

[196] S. Zhang, L. Shang, H. J. Du and S. S. Venkatraman, A novel approach for the 
control of drug release rate through hydrogel membrane - II. Thermodynamic 
modeling of the partition control scheme, Journal of Membrane Science, 321 (2): 
331-336, 2008. 

[197] S. Zhang, L. Shang, H. Du and S. S. Venkatraman, A novel approach for the 
control of drug release rate through hydrogel membrane: I. Effect of drug 
immobilization on drug release rate by copolymerization method, European 
Journal of Pharmaceutics and Biopharmaceutics, 68 (3): 715-723, 2008. 

[198] H. Mohammadi and W. Herzog, A novel model for diffusion based release 
kinetics using an inverse numerical method, Med. Eng. Phys.: DOI: 
10.1016/j.medengphy.2011.1002.1003, 2011. 

[199] Y. Li and T. Tanaka, Kinetics of Swelling and Shrinking of Gels, Journal of 
Chemical Physics, 92 (2): 1365-1371, 1990. 

[200] T. Tanaka, Kinetics of Phase-Transition in Polymer Gels, Physica A, 140 (1-2): 
261-268, 1986. 

[201] A. Peters and S. J. Candau, Kinetics of Swelling of Spherical and Cylindrical 
Gels, Macromolecules, 21 (7): 2278-2282, 1988. 

[202] A. Suzuki and T. Hara, Kinetics of one-dimensional swelling and shrinking of 
polymer gels under mechanical constraint, Journal of Chemical Physics, 114 (11): 
5012-5015, 2001. 

[203] C. J. Wang, Y. Li and Z. B. Hu, Swelling kinetics of polymer gels, 
Macromolecules, 30 (16): 4727-4732, 1997. 

[204] S. K. De, N. R. Aluru, B. Johnson, W. C. Crone, D. J. Beebe and J. Moore, 
Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, 
experiments, and simulations, Journal of Microelectromechanical Systems, 11 (5): 
544-555, 2002. 

[205] Z. G. Suo, R. Marcombe, S. Q. Cai, W. Hong, X. H. Zhao and Y. Lapusta, A 
theory of constrained swelling of a pH-sensitive hydrogel, Soft Matter, 6 (4): 784-
793, 2010. 

[206] M. O. de la Cruz, P. K. Jha, J. W. Zwanikken, F. A. Detcheverry and J. J. de 
Pablo, Study of volume phase transitions in polymeric nanogels by theoretically 
informed coarse-grained simulations, Soft Matter, 7 (13): 5965-5975, 2011. 



 119

[207] F. H. Meng, Z. Y. Zhong and J. Feijen, Stimuli-Responsive Polymersomes for 
Programmed Drug Delivery, Biomacromolecules, 10 (2): 197-209, 2009. 

[208] A. P. Esser-Kahn, S. A. Odom, N. R. Sottos, S. R. White and J. S. Moore, 
Triggered Release from Polymer Capsules, Macromolecules, 44 (14): 5539-5553, 
2011. 

[209] Y. L. Luo, Y. S. Shiao and Y. F. Huang, Release of Photoactivatable Drugs from 
Plasmonic Nanoparticles for Targeted Cancer Therapy, ACS Nano, 5 (10): 7796-
7804, 2011. 

[210] M. S. Shoichet, Y. F. Wang, Y. Lapitsky and C. E. Kang, Accelerated release of a 
sparingly soluble drug from an injectable hyaluronan-methylcellulose hydrogel, 
Journal of Controlled Release, 140 (3): 218-223, 2009. 

[211] G. A. Buxton and E. W. Durbin, A coarse-grained model of targeted drug 
delivery from responsive polymer nanoparticles, Soft Matter, 6 (4): 762-767, 
2010. 

[212] J. S. Soares and P. Zunino, A mixture model for water uptake, degradation, 
erosion and drug release from polydisperse polymeric networks, Biomaterials, 31 
(11): 3032-3042, 2010. 

[213] Y. Qian, X. D. Guo, L. J. Zhang and Z. M. Wu, Dissipative Particle Dynamics 
Studies on Microstructure of pH-Sensitive Micelles for Sustained Drug Delivery, 
Macromolecules, 43 (18): 7839-7844, 2010. 

[214] T. Srinophakun and J. Boonmee, Preliminary Study of Conformation and Drug 
Release Mechanism of Doxorubicin-Conjugated Glycol Chitosan, via cis-Aconityl 
Linkage, by Molecular Modeling, International Journal of Molecular Sciences, 12 
(3): 1672-1683, 2011. 

[215] Z. Modrzejewska, R. Zarzycki, G. Rogacki and K. Nawrotek, Modeling of Drug 
(Albumin) Release from Thermosensitive Chitosan Hydrogels, Industrial & 
Engineering Chemistry Research, 50 (9): 5866-5872, 2011. 

[216] Y. H. Bae, T. Okano and S. W. Kim, On-Off Thermocontrol of Solute Transport 
.2. Solute Release from Thermosensitive Hydrogels, Pharmaceutical Research, 8 
(5): 624-628, 1991. 

[217] K. Kono, S. Kimura and Y. Imanishi, Ph-Responsive Permeability of Polyamide 
Capsule Membrane Coated with Lipid Molecules and Amphiphilic Polypeptides, 
Journal of Membrane Science, 58 (1): 1-9, 1991. 



 120

[218] A. Gutowska, J. S. Bark, I. C. Kwon, Y. H. Bae, Y. Cha and S. W. Kim, 
Squeezing hydrogels for controlled oral drug delivery, Journal of Controlled 
Release, 48 (2-3): 141-148, 1997. 

[219] Z. M. Xing, C. L. Wang, J. Yan, L. Zhang, L. Li and L. S. Zha, Dual stimuli 
responsive hollow nanogels with IPN structure for temperature controlling drug 
loading and pH triggering drug release, Soft Matter, 7 (18): 7992-7997, 2011. 

[220] A. M. Pavlov, V. Saez, A. Cobley, J. Graves, G. B. Sukhorukov and T. J. Mason, 
Controlled protein release from microcapsules with composite shells using high 
frequency ultrasound-potential for in vivo medical use, Soft Matter, 7 (9): 4341-
4347, 2011. 

[221] C. Gao, E. Donath, S. Moya, V. Dudnik and H. Mohwald, Elasticity of hollow 
polyelectrolyte capsules prepared by the layer-by-layer technique, European 
Physical Journal E, 5 (1): 21-27, 2001. 

[222] W. Mickel, S. Munster, L. M. Jawerth, D. A. Vader, D. A. Weitz, A. P. Sheppard, 
K. Mecke, B. Fabry and G. E. Schroder-Turk, Robust Pore Size Analysis of 
Filamentous Networks from Three-Dimensional Confocal Microscopy, 
Biophysical Journal, 95 (12): 6072-6080, 2008. 

[223] Q. J. He, L. M. Guo, F. M. Cui, Y. Chen, P. Jiang and J. L. Shi, Facile one-pot 
synthesis and drug storage/release properties of hollow micro/mesoporous 
organosilica nanospheres, Materials Letters, 63 (22): 1943-1945, 2009. 

[224] Y. F. Zhu and J. L. Shi, A mesoporous core-shell structure for pH-controlled 
storage and release of water-soluble drug, Microporous and Mesoporous 
Materials, 103 (1-3): 243-249, 2007. 

[225] Y. F. Zhu, J. L. Shi, W. H. Shen, X. P. Dong, J. W. Feng, M. L. Ruan and Y. S. 
Li, Stimuli-responsive controlled drug release from a hollow mesoporous silica 
sphere/polyelectrolyte multilayer core-shell structure, Angewandte Chemie-
International Edition, 44 (32): 5083-5087, 2005. 

[226] S. Gam, J. S. Meth, S. G. Zane, C. Z. Chi, B. A. Wood, M. E. Seitz, K. I. Winey, 
N. Clarke and R. J. Composto, Macromolecular Diffusion in a Crowded Polymer 
Nanocomposite, Macromolecules, 44 (9): 3494-3501, 2011. 

[227] Z. B. Hu, X. M. Zhang and Y. Li, Synthesis and Application of Modulated 
Polymer Gels, Science, 269 (5223): 525-527, 1995. 



 121

[228] Y. Li and T. Tanaka, Phase-Transitions of Gels, Annual Review of Materials 
Science, 22: 243-277, 1992. 

[229] H. Allan S, Applications of thermally reversible polymers and hydrogels in 
therapeutics and diagnostics, Journal of Controlled Release, 6 (1): 297-305, 1987. 

[230] T. Okano and A. Kikuchi, Pulsatile drug release control using hydrogels, 
Advanced Drug Delivery Reviews, 54 (1): 53-77, 2002. 

[231] R. Yoshida, K. Sakai, T. Okano and Y. Sakurai, Pulsatile Drug-Delivery Systems 
Using Hydrogels, Advanced Drug Delivery Reviews, 11 (1-2): 85-108, 1993. 

[232] D. Patel, B. Patel and C. Patel, An overview on intelligent drug delivery systems, 
International Journal of Advances in Pharmaceutical Research, 2 (2): 57-63, 2011. 

[233] L. S. Zha, Y. Zhang, W. L. Yang and S. K. Fu, Monodisperse temperature-
sensitive microcontainers, Advanced Materials, 14 (15): 1090-1092, 2002. 

[234] Y. J. Zhang, Y. Guan and S. Q. Zhou, Synthesis and volume phase transitions of 
glucose-sensitive microgels, Biomacromolecules, 7 (11): 3196-3201, 2006. 

[235] Z. Xing, C. Wang, J. Yan, L. Zhang, L. Li and L. Zha, Dual stimuli responsive 
hollow nanogels with IPN structure for temperature controlling drug loading and 
pH triggering drug release, Soft Matter, 7 (18): 7992-7997, 2011. 

[236] A. S. Zahr, M. de Villiers and M. V. Pishko, Encapsulation of drug nanoparticles 
in self-assembled macromolecular nanoshells, Langmuir, 21 (1): 403-410, 2005. 

[237] Y. J. Wang, Y. Yan, J. W. Cui, L. Hosta-Rigau, J. K. Heath, E. C. Nice and F. 
Caruso, Encapsulation of Water-Insoluble Drugs in Polymer Capsules Prepared 
Using Mesoporous Silica Templates for Intracellular Drug Delivery, Advanced 
Materials, 22 (38): 4293-4297, 2010. 

[238] V. Kozlovskaya, E. Kharlampieva, M. L. Mansfield and S. A. Sukhishvili, 
Poly(methacrylic acid) hydrogel films and capsules: Response to pH and ionic 
strength, and encapsulation of macromolecules, Chemistry of Materials, 18 (2): 
328-336, 2006. 

[239] S. H. Kim, H. Hwang, C. H. Lim, J. W. Shim and S. M. Yang, Packing of 
Emulsion Droplets: Structural and Functional Motifs for Multi-Cored 
Microcapsules, Advanced Functional Materials, 21 (9): 1608-1615, 2011. 



 122

[240] H. C. Shum, Y. J. Zhao, S. H. Kim and D. A. Weitz, Multicompartment 
Polymersomes from Double Emulsions, Angewandte Chemie-International 
Edition, 50 (7): 1648-1651, 2011. 

[241] L. Dahne, S. Leporatti, E. Donath and H. Mohwald, Fabrication of micro reaction 
cages with tailored properties, Journal of the American Chemical Society, 123 
(23): 5431-5436, 2001. 

[242] D. M. Vriezema, M. C. Aragones, J. A. A. W. Elemans, J. J. L. M. Cornelissen, 
A. E. Rowan and R. J. M. Nolte, Self-assembled nanoreactors, Chemical 
Reviews, 105 (4): 1445-1489, 2005. 

[243] O. Shchepelina, V. Kozlovskaya, E. Kharlampieva, W. B. Mao, A. Alexeev and 
V. V. Tsukruk, Anisotropic Micro- and Nano-Capsules, Macromolecular Rapid 
Communications, 31 (23): 2041-2046, 2010. 

[244] B. N. J. Persson, Theory of rubber friction and contact mechanics, Journal of 
Chemical Physics, 115 (8): 3840-3861, 2001. 

[245] B. N. J. Persson and A. I. Volokitin, Rubber friction on smooth surfaces, 
European Physical Journal E, 21 (1): 69-80, 2006. 

[246] K. Vorvolakos and M. K. Chaudhury, The effects of molecular weight and 
temperature on the kinetic friction of silicone rubbers, Langmuir, 19 (17): 6778-
6787, 2003. 

[247] C. J. Rand and A. J. Crosby, Friction of soft elastomeric wrinkled surfaces, 
Journal of Applied Physics, 106 (6), 2009. 

[248] R. Venkatasubramanian, K. J. Jin and N. S. Pesika, Use of Electrochemical 
Deposition to Create Randomly Rough Surfaces and Roughness Gradients, 
Langmuir, 27 (7): 3261-3265, 2011. 

[249] D. Martina, C. Creton, P. Damman, M. Jeusette and A. Lindner, Adhesion of soft 
viscoelastic adhesives on periodic rough surfaces, Soft Matter, 8 (19): 5350-5357, 
2012. 

[250] B. He, W. Chen and Q. J. Wang, Surface texture effect on friction of a 
microtextured poly(dimethylsiloxane) (PDMS), Tribology Letters, 31 (3): 187-
197, 2008. 

[251] S. Sills, K. Vorvolakos, M. K. Chaudhury and R. M. Overney, edited by E. 
Gnecco and E. Meyer Springer Berlin Heidelberg: pp. 659-676, 2007. 



 123

[252] M. Rubinstein and R. H. Colby, Polymer physics. Oxford University Press, 
Oxford ; New York, 2003. 

[253] W. Philippoff, Mechanical Investigations of Elastomers in a Wide Range of 
Frequencies, Journal of Applied Physics, 24 (6): 685-689, 1953. 

[254] B. N. J. Persson, O. Albohr, G. Heinrich and H. Ueba, Crack propagation in 
rubber-like materials, Journal of Physics-Condensed Matter, 17 (44): R1071-
R1142, 2005. 

[255] M. K. Chaudhury, K. Vorvolakos and D. Malotky, in Polymer thin films, edited 
by O. K. C. Tsui and T. P. Russell World Scientific Pub Co Inc, Singapore: pp. 
195-219, 2008. 

[256] B. N. J. Persson, Rubber friction: role of the flash temperature, Journal of 
Physics-Condensed Matter, 18 (32): 7789-7823, 2006. 

[257] Schallam.A, Abrasion Fatigue and Smearing of Rubber, Journal of Applied 
Polymer Science, 12 (2): 281-&, 1968. 

[258] K. A. Grosch, Realtion between Friction and Visco-Elastic Properties of Rubber, 
Proceedings of the Royal Society of London Series a-Mathematical and Physical 
Sciences, 274 (1356): 21-+, 1963. 

[259] K. Mori, S. Kaneda, K. Kanae, H. Hirahara, Y. Oishi and A. Iwabuchi, Influence 
on Friction Force of Adhesion Force between Vulcanizates and Sliders, Rubber 
Chemistry and Technology, 67 (5): 797-805, 1994. 

 
 



 124

VITA 

HASSAN MASOUD 

 

 

 Hassan Masoud was born in the historic city of Shiraz located in the southwest of 

Iran. He graduated from Tohid high school in 2002 and received his B.S. degree with 

Highest Honors in Aerospace Engineering from the Sharif University of Technology, 

Tehran, Iran in 2006. Subsequently, he joined the State University of New York at 

Buffalo where he earned his M.S. degree in Mechanical Engineering in 2009. Hassan 

then moved to Georgia Tech to pursue a Ph.D. also in Mechanical Engineering. Hassan 

employs theory and computer simulations to find solutions to challenging problems at the 

intersection of engineering, physics, and biology. His research interests include 

mechanics of soft and active materials, fluid-structure interactions, small scale fluid 

mechanics, and biomimetic design. 


