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SUMMARY

This work describes a self-sensing technique for a piezoelectrically driven

MRI-compatible tweezer style end effector, suitable for robot assisted, MRI guided

surgery. Nested strain amplification mechanisms are used to amplify the displacement

of the piezo actuators to practical levels for robotics. By using a hysteretic piezoelec-

tric model and a two port network model for the compliant nested strain amplifiers, it

is shown that force and displacement at the tweezer tip can be estimated if the input

voltage and charge are measured. One piezo unit is used simultaneously as a sensor

and an actuator, preserving the full actuation capability of the device. Experimental

validation shows an average of 12% error between the self-sensed and true values.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Piezoelectric ceramics have been widely used in applications such as sound and

ultrasound transduction, high voltage generation, and acceleration sensing [36]. As

actuators, piezoceramics possess desirable qualities, such as high efficiency, high band-

width, low noise, and no backlash. They have become widely used in micropostioning

applications, most notably in atomic force microscopy [23]. Their small strain has

limited their application in robotics. Most piezoelectric actuators generate on the

order of micrometers of displacement. Recently, piezoelectrically driven devices have

achieved strain of up to 20% by using ”multi-layer nested rhombus” mechanisms that

trade off force for displacement [35]. One such device, devloped by Kurita et. al., is

a tweezer style end effector suitable for robotic surgery, and is the starting point of

this research [24].

Robot assisted surgery has quickly become a highly active field of research and

is beginning to enter mainstream medicine with the success of the Da Vinci robot,

developed by Intuitive Surgical Inc. [12]. Concurrently, research has been undertaken

in magnetic resonance imaging (MRI) guided surgery [29] [14] [17] [25]. The combi-

nation of these two fields has the potential to improve patient outcomes by reducing

risk, and allowing an increasing number of procedures to be completed in a minimally

invasive way. To that end, the investigation of new actuation and sensing strategies

that are MRI compatible is needed to bring robotics into the MRI environment.
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1.2 Research Objectives

This research will investigate a force and displacement self-sensing technique for

a piezoelectrically driven tweezer style end-effector designed for use in robot assisted

surgery. The device is driven by Lead Zirconate Titanate (PZT) actuators, a piezo-

electric ceramic. Due to its ceramic nature it has low magnetic susceptibility, making

it a good choice for use in MRI environments. A self-sensing design is desirable be-

cause it provides sensing without adding additional dedicated sensors, maintaining

the MRI compatibility of the device and the full actuation capability. It also reduces

the device’s complexity and lowers its cost.
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CHAPTER II

BACKGROUND AND LITERATURE REVIEW

2.1 MRI Compatible Robotics

Most traditional actuators and sensors make use of electromagnetic induction or

ferromagnetic materials for their operation, and cannot be used in MRI environments.

Accordingly, a number of strategies for MRI compatible actuation and sensing have

been investigated in the literature, such as hydraulics, pneumatics, piezoelectricity,

and electrostriction [33]. Kim et. al. used a saline based hydraulic system to assist

in minimally invasive liver surgery [20]. The system had some drawbacks, including

leakage and air bubbles. One of the most successful designs is the pneumatically pow-

ered step motor, PneuStep, developed by Stoianovici et. al. [30]. Due to it’s stepping

design it can achieve very precise motion. Additionally it is constructed completely

from non-magnetic, non-conductive materials, producing very minimal image distor-

tion. Another pneumatic robot was developed by Fischer et. al. for prostate needle

placement, and makes use of custom designed MRI compatible pneumatic cylinders.

One of the most popular actuator choices is piezoelectrically driven ultrasonic mo-

tors [6] [18], due to their small size and relatively high torque. Nearly all commercial

piezoelectric actuators are ceramic materials, which do not interact significantly with

magnetic fields. Piezoelectric actuators are also relatively high voltage devices which

draw low current. Electrical currents can interact with MRI and degrade the image.

However, in many cases the trade off for size and weight may be worth the decrease

in image quality.

Many MRI compatible sensors have also been developed. One popular idea is the

use of fiber optic cable for data transmission. In that vein, force sensors [32] [34] [31]

3



and encoders [6] have been proposed and investigated. Another strategy is using the

MR image itself by placing markers on a device to track its location [9].

In this work a self-sensing technique will be developed so that a piezoelectric

actuator driving the device can be used as a sensor simultaneously. This allows the

device to remain compact and simple. It could also open the possibility of providing

a remote surgeon with force feedback for MRI guided tele-surgery.

2.2 Piezoelectric Self-Sensing

Piezoelectric self-sensing was originally proposed by Dosch et. al. in [8]. A bridge

circuit was developed by placing capacitances in series and parallel with the piezo-

electric actuator that produced a voltage output proportional to velocity or force.

The method was subsequently refined and applied by other researchers [10] [23]. The

three main drawbacks of the method are that the operation of the bridge circuit

requires close matching of the piezo capacitance, only dynamic measurements are

possible, and a linear piezoelectric model is used. At the time these drawbacks were

not too significant, but they have limited the method’s applicability as applications

for piezoelectric actuators have diversified to include quasistatic operation. Addi-

tionally, in many modern applications hysteresis is not negligible. More recent work

has addressed some of these issues by developing methods based on charge measure-

ment [15] [16] [27]. New models have also been developed to take hysteresis into

account [13] [11]. One drawback of the previously cited charge measurement tech-

niques is that they assume constant loading conditions, generally zero force or zero

displacement, and none model hysteresis. As explained in [13], hysteresis is observed

between voltage and charge but not charge and displacement, which suggests that

the hysteresis occurs in the the electrical domain. This means that for quasistatic

operation charge is linearly related to displacement if there is zero external force on

the actuator, or vice versa, so the linear model can appear correct. If one attempts

4



to extend this model to a self-sensing scheme with unknown loading conditions, it

is quickly seen that a model taking hysteresis into account is needed. Badel et. al.

use the hysteretic model of [13] to achieve this, as well as implementing force control

based on the self-sensed measurement [2].

Estimating the force and displacement at the endpoint of a compliant mechanism

driven by piezoelectric actuators is a significantly more complicated problem. Kurita

et. al. began to investigate this problem for a tweezer style end effector, and proposed

using one actuator out of five solely as a sensor [24], their work also assumes either

a blocked or free condition at the endpoint of the tweezer structure. Their results

are promising, but in most applications knowledge of the loading condition at the

tip will not be known a priori. Therefore a more sophisticated sensing technique

is needed. Additionally, a self-sensing technique is attractive because it does not

sacrifice actuation capability.
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CHAPTER III

TWEEZER MECHANISM

3.1 Nested Strain Amplification

Piezoelectric actuators produce extremely small strain, in general on the order

of 0.1%, but comparatively large force. For robotic applications, larger displacem-

nts can be achieved by trading off force with amplification mechanisms, such as the

rhomboidal mechanism shown in Fig.1. By nesting several of such mechanisms inside

Figure 1: Idealized Rhomboidal Strain Amplification Mechanism

each other, strain rates of up to 20% can be achieved with sufficient force [35]. Using

this princple, piezoelectrically driven tweezers were developed with three layers of

strain amplification [24]. The first layer is made up of five commercially available

Cedrat APA35XS piezoelectric actuators, seen in Fig.2. The APA35XS consists of

a multilayer Lead Zirconate Titanate (PZT) stack actuator surrounded by a single

rhomboidal strain amplifier. These actuators are surrounded by a second amplifica-

tion mechanism, seen in Fig.3. Finally, the lever action of the tweezer arms themselves

6



Figure 2: Cedrat APA35XS Actuator

Figure 3: First and Second Amplification Layers

provide a third layer of amplification, shown in Fig. 4. The fully assembled tweezer

device is shown in Fig.5. The tweezers produce 0.1 N of pinching force when fully

blocked or 7 mm of displacement when fully free, and require a supply voltage of 0

to 150 V.

Under quasistatic operation, a rhomboidal strain amplifier can be represented

using the lumped parameter model developed by Ueda, Secord, and Asada, shown in

Fig.7 [35]. Based on the model, the following equations are obtained.

fpzt + kBI(∆xc −∆xpzt)− kpzt∆xpzt = 0 (1)
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Figure 4: Tweezer arms, the third layer of amplification

akBO(a∆xc −∆x1) + kJ∆xc + kBI(∆xc −∆xpzt) = 0 (2)

f1 = kload∆x1 = kBO(a∆xc −∆x1) (3)

Note that ∆xc is an artifact of the model that has no physical meaning, while fpzt,

∆xpzt, f1, and ∆x1 are the input and output forces and displacements, as seen in

Fig.6. Combining (2) and (3) we can solve for ∆xc:

∆xc =
akBO∆x1 + kBI∆xpzt
kJ + kBI + a2kBO

(4)

Also, define

fin = fpzt − kpzt∆xpzt (5)

as the force applied by the PZT actuator to its environment. Then, (4) and (5) can

be substituted into (1) and (3) to get f1 and fin solely in terms of ∆x1 and ∆xpzt.

fin =

(
−kBI +

kBI

kJ + kBI + a2kBO

)
∆xpzt +

(
akBOkBI

kJ + kBI + a2kBO

)
∆x1 (6)

f1 =

(
akBOkBI

kJ + kBI + a2kBO

)
∆xpzt +

(
k2BOa

2

kJ + kBI + a2kBO

− kBO

)
∆x1 (7)

8



(a) Open (b) Closed

Figure 5: Fully assembled tweezer structure. The tweezers arms act as the third
layer of amplification.

Equations (6) and (7) can be written equivalently as a matrix equation of the form



fpzt

f1


 =



s1 s3

s3 s2







∆xpzt

∆x1


 (8)

where

s1 = −kBI +
kBI

kJ + kBI + a2kBO

(9)

s2 =
k2BOa

2

kJ + kBI + a2kBO

− kBO (10)

s3 =
akBOkBI

kJ + kBI + a2kBO

(11)

Written in this form, we see the model can be interpreted as a two port network.

The parameters of the model can be interpreted intuitively as follows. s1 is the

stiffness at the input when the output is blocked. s2 is the stiffness at the output when

the input is blocked. Finally, s3 is the ratio of force produced at the blocked output

to a given input displacement. A second rhomboidal strain amplifier constitutes the

9



Figure 6: Schematic diagram of a rhomboidal strain amplifier

second amplification layer, seen in Fig. 8 and can be modeled similarly, where s4,s5,

and s6 are analogous to s1,s2, and s3.


f1

f2


 =



s4 s6

s6 s5







∆x1

∆x2


 (12)

The lever action of the tweezer arms provide the final level of strain amplification.

Figure 9 shows a schematic representation of the second and third layers. Assuming

quasistatic operation, a two port network can also be written describing the third

layer [24] 


∆x2

∆xtip


 =



Q1 Q3

Q3 Q2






f2

ftip


 (13)

where

Q1 =

(
CA2

2EI1
+

CA4

2EI3

)
(14)

Q3 =

(
CA1

2EI1
+

CA3

2EI3

)
(15)

Q2 =

(
CB1

2EI1
+

CB3

2EI2
+

CB4

2EI3

)
(16)

10
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Rhombus
mechanism

Piezoelectric
actuator

Fig. 5. Assembled actuator module. In this prototype, five PZT actuators are
used.

2
∆ xpzt

2
∆ xpzt

f
pzt

kpzt

f
pzt

f
1

∆ x1
kload

Inner piezoelectric
element

Fig. 6. Rhombus Mechanism with structural flexibilities [24]

and the number of the energized actuators, respectively. Then
we have

f̃1 = (kload + k̃1) · ∆x1 (5)

where

k̃1 = Kc ·
(
kBIkJ +

kpzt

N
(kJ + kBI)

)
(6)

f̃1 = Kc · akBI · n

N
fpzt (7)

where

Kc = kBO

(
a2kBIkBO + kBIkJ +

kpzt

N
(a2kBO + kJ + kBI)

)−1

(8)

When there is a “blocked case” as shown in Figure 8 (a)
where the output displacement is totally constrained, the force
becomes largest. On the other hand, when there is a “free
case” as shown in Figure 8 (b), the displacement becomes
largest. From Equation (5) to (7), the largest force fmax

1 and
the largest displacement ∆xmax

1 can be written as

fmax
1 = Kc · akBI · n

N
fmax

pzt (9)

∆xmax
1 =

akBI

kBIkJ +
kpzt

N
(kJ + kBI)

× n

N
fmax

pzt (10)

where fmax
pzt is the maximum force when all the PZT actuators

are energized.

∆ xpzt

f
pzt

kpzt kBI

kJ ∆ xC

a

f
1

∆ x1

kBO kload

Fig. 7. Lumped parameter model of strain amplification mechanism [24]

f b
block

β
f a
block

∆ ax
2
block

β
f a
free

∆ bx

∆ ax
2
free

(a) blocked (b) free

Fig. 8. Deformation in blocked and free cases

C. Design of the Rhombus Mechanism
The four structural lumped parameters, i.e., a, kBI , kBO,

and kJ , are calibrated by the displacements and forces from
the blocked and free-load cases. By applying an input force
to both cases, fpzt, ∆xblock

pzt , f block
1 ,∆xfree

1 , and ∆xfree
pzt can

be obtained. Consequently, Equation (1) to (3) give

kBI =
kJ∆xb

∆xfree
a

·
(

a − ∆xb

∆xfree
a

)−1

(11)

kBO =
(kBI + kJ)fblock

b

∆xblock
a

·
(

akBI − a2fblock
b

∆xblock
a

)−1

(12)

kJ =
affree

a

∆xb
. (13)

Leverage a is determined by using free-displacement char-
acteristics and kinematic characteristics of the structure such
as the angle of the oblique beam β, i.e., ∆xb

∆xfree
a

< a <

cot(β − π
2 ). In this case, leverage a can be determined by

a = (1 − c) cot
(
β − π

2

)
+ c · ∆xb

∆xfree
a

(14)

where 0 < c < 1.
In this paper, the desired performance of robotic end-

effector is set to 1.0[N] for force and 10 [mm] for displacement
at the tip, which are determined based on the performance of
one of Da Vinci’s end-effectors and a surgical clip. Taking
this into account, the dimensions of the rhombus mechanism
are determined to satisfy f1 > 2.0 [N] and ∆x1 > 1.4 [mm]
under the condition that five PZT actuators are used. Figure
9 shows the designed rhombus mechanism. The maximum
force and displacement in this configuration are shown in the
“Simulation” item of Table I.

Figure 7: Schematic representation of the lumped parameter model for a rhomboidal
strain amplifier.

E is the Young’s Modulus of phosphor bronze, and I1, I2, and I3 are the second mo-

ment of area. CA1 → CA4 and CB1 → CB5 are coefficients obtained using Castigliano’s

Theorem and the Bernoulli-Euler beam model [24].

The input-output behavior of nested rhomboidal strain amplifiers can be repre-

sented by single, combined two port network if every layer is represented by a two

port network [35]. However, it is not immediately obvious how to account for the five

actuators in series that drive the input of the second layer. The question arises, can

five rhomboidal strain amplifiers connected in series also be represented by a single

two port network model? If so, the input-output relationship of the tweezer mecha-

nism as a whole could be assumed to be a two port network. Consider Fig. 10 and

Fig. 11. We assume that each strain amplifier sees an identical input since the PZT

actuators are connected electrically in parallel. When the output is blocked, we have

the equivalent of five springs in parallel at the input, meaning the effective s1 would

be five times that of a single rhomboid. When the input is blocked, the rhomboids

act as springs in series in the output direction, so the effective s2 is one fifth that of a

11



Figure 8: Schematic representation of second amplification layer. Note the five
actuators in series that drive the input of the second layer

Figure 9: Schematic representation of the tweezer arms and second amplification
layer

single rhomboid. Finally, when the output is blocked, a given input displacement will

create the same output force for a singe rhombus as for five in series. The reaction

forces at connection points cancel, leaving the output force unchanged. It is now seen

that the series connection of five actuators can be modeled with a single two port

network. The input force to the combined model is 5fin and the input displacement

is ∆xpzt, since the five PZT stack actuators act in parallel on the input.

Equation (8) can be rearranged to show outputs in terms of inputs, yielding




∆x1

f1


 =




−s1
s3

1

s3

s3 −
s1s2
s3

s2
s3







∆xpzt

fin


 (17)

12



Figure 10: Mechanical analysis of five rhomboids in series, output blocked.

Figure 11: Mechanical analysis of five rhomboids in series, input blocked.

Similarly, (12) can be written as




∆x2

f2


 =




−s4
s6

1

s6

s6 −
s4s5
s6

s5
s6







∆x1

f1


 (18)

and (13) as



∆xtip

ftip


 =




−Q1

Q3

1

Q3

Q3 −
Q1Q2

Q3

Q2

Q3







∆x2

f2


 (19)

Equations (17), (18), and (19) can now be combined to give ftip and ∆xtip in terms

of fin and ∆xpzt




∆xtip

fin


 =




−Q1

Q3

1

Q3

Q3 −
Q1Q2

Q3

Q2

Q3







−s4
s6

1

s6

s6 −
s4s5
s6

s5
s6







−nAs1
s3

1

s3

s3 −
s1s2
s3

s2
nAs3







∆xpzt

nAfin


 (20)
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Note that the first layer matrix and input vector have been written in terms of a single

rhomboid and PZT actuator, but the s-parameters and input force been appropriately

modified as discussed above. nA is the number of actuators connected in series, five

in this case. Equivalently, we can write




∆xtip

ftip


 =




−S1

S3

1

S3

S3 −
S1S2

S3

S2

S3







∆xpzt

nAfin


 (21)

where S1,S2, and S3 are the parameters describing the combined effects of all three

amplification layers.

3.2 Material Selection

To ensure MRI compatibility the device must be constructed materials of suffi-

ciently low magnetic susceptibility. As a ceramic, PZT is relatively unaffected by

magnetic fields. The metal amplification structure of the Cedrat APA35XS actua-

tors are titanium. This is a non-standard option, but is readily available from the

manufacturer. The tweezer structure itself is machined from phosphor bronze. Both

titanium and phosphor bronze have relatively low magnetic susceptibility and are

considered safe to use in MRI environments [28].

MRI compatibility encompasses two main ideas. First, the device should experi-

ence forces and torques within the MRI chamber that are low enough to be negligible.

Second, the imaging should be degraded as little as possible [28]. A static test was

performed to asses the MRI compatibility of the device. As expected, the device was

not significantly affected by the magnetic fields. The effect on the image quality is

shown in Fig. 12. The images show a round ball in the MRI chamber. The tweezers

create slight distortion of the image. Additionally the signal to noise ratio of the image

is lowered slightly from 22.84 to 21.08. In general the image distortion is not severe.

Though only a static test was performed, piezoelectrically driven devices constructed

of titanium have been tested by Cedrat and were shown to produce acceptable levels
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of image distortion [4]. Other studies have also shown piezoelectrically driven actua-

tors will produce low levels of noise and distortion with appropriate shielding of the

driving electronics [7] [37]. This indicates that the device could be used in the MRI

environment.

(a) Reference (b) Tweezer Device in Chamber

(c) Difference between reference
and tweezer test

Figure 12: Effect of tweezers on image MRI image quality
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CHAPTER IV

SIMULTANEOUS FORCE AND DISPLACEMENT

SELF-SENSING

4.1 Electromechanical Modeling of Piezoelectric Actuators

Piezoelectric materials have crystal structures such that an electric field is gen-

erated by mechanical deformation. Conversely, an applied electric field will cause a

mechanical deformation. These effects are known as the direct and converse piezo-

electric effects [19]. One of the most widely used models for piezoelectric actuators

come from IEEE Standard 176. The electromechanical coupling is described in tensor

notation by (22) and (23) [19]

Di = εTijEj + dijkTjk (22)

Sij = dijkEk + sEijklTkl (23)

where Di is electric displacement, ε is permittivity, E is electric field, T is stress,

S is strain, s is compliance, and dijk and dijk are the piezoelectric constants. Electric

displacement and strain are assumed to be linearly dependent on electric field strength

and stress. However, the range in which the linear model is accurate is quite small,

as piezoceramics are known to exhibit pronounced hysteresis. Subsequently, more

complex models have been developed, such as the one proposed by Goldfarb and

Celanovic that is now widely in use [13]. Since significant hysteresis has been observed

in the piezoelectrically driven tweezers, this model will be used rather than the simpler

linear model.

A schematic representation of the model is shown in Fig. 13. The model describes

the hysteric behavior of the actuator in addition to the electrical-mechanical interplay
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Figure 13: Piezoelectric Actuator Model

caused the the direct and converse piezoelectric effects. The model is described by

(24) through (27).

q = αx+ CpVp (24)

VH = H(q) (25)

x

F + αVp
=

1

k
(26)

V = Vp + VH (27)

q is electric charge, V is the input voltage supplied to the actuator, α is the transformer

ratio of the actuator with units of N/V, Cp is the clamped capacitance of the actuator,

F is the external force, and k is the short circuit stiffness of the actuator. H(q) is a

hysteresis operator whose form will be discussed in the following section.
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A

B

x(t),y(t)0

Figure 14: Schematic representation of the play operator

4.2 Hysteresis Modeling

4.2.1 The Modified Prandtl-Ishlinskii Hysteresis Model

Many phenomenological models are available for modeling hysteresis, such as the

Prandtl-Ishlinskii operator [21], Preisach operator [5], Generalized Maxwell Slip Op-

erator [13], and differential equations method [3]. Here, the modified Prandtl-Ishlinkii

approach developed by Kuhnen will be used [22]. It has several useful advantages,

such as the ability to model asymmetric loops and minor loops, an automatic identi-

fication procedure, and extendability to creep modeling.

In general the Prandtl-Ishlinskii operator is defined as

y(t) =

∫ ∞

0

p(r)HrH [x, y0](t)dr (28)

where p(r) is a density function and HrH [x, y0](t) is the play operator. A schematic

representation of the play operator is shown in Fig. 14. The input is the position of

element A and the output is the position of element B. r is the threshold value that

characterizes the operator. Such a system will display a simple, rate independent

hysteresis between input and output, shown in Fig. 15. Mathematically, the play

operator can be represented recursively by

y(t0) = H(x(t0), y0, rH) (29)
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y(t)

x(t)

Figure 15: The simple hysteretic behavior of the play operator

y(t) = HrH [x, y0](t) = H(x(t), y(ti), rH) for ti < t ≤ ti+1, 0 ≤ i ≤ N − 1 (30)

for given initial time t0, initial output position y0, and monotonicity partition t0 <

t1 < · · · < tN such that the input x is monotonic on every [ti, ti+1] [5]. H is defined

as

H(x, y, rH) = max(x− rH ,min(x+ rH , y)) (31)

which describes a sliding symmetric dead zone. rH is the threshold of the dead zone,

analogous to width of element B in Fig. 14.

Equation (28) represents the linear superposition of an infinite number of play

operators with thresholds varying from 0 to ∞, and can model more complex hys-

teresis loops than that shown in Fig. 15. In practice, this can be approximated by the

weighted sum of a finite number of play operators, which is expressed as the product

H[x](t) := wT
H ·HrH [x, zH0](t) (32)

where wT
H = [wH0 wH1 · · ·wHn] is a vector of weights, rT

H = [rH0 rH1 · · · rHn] is a vector

of threshold values, zTH0 = [zH00 zH01 · · · zH0n] is a vector of initial conditions, and

HrH [x, zH0](t)
T = [HrH0

[x, zH00](t) HrH1
[x, zH01](t) · · ·HrHn

[x, zH0n](t)] is a vector of

play operators. The threshold values are subject to 0 = rH0 < rH1 < · · · < rHn <∞.
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y(t)

x(t)

(a) Superposition of three play operators

y(t)

x(t)

(b) Superposition of ten play operators

Figure 16: Summation of play operators

Figure 16 shows how play operators combine to form a more complex hyster

This formulation can only model symmetric hysteresis loops, but the introduction

of a memory free superposition operator allows asymmetric loops to be modeled [21].

The superposition operator is defined by a one sided dead zone function

y(t) = SrS [x](t) =





max(x(t)− rs, 0) if rs > 0

x(t) if rs = 0

min(x(t)− rs) if rs < 0

(33)

where rS is the threshold value of the dead zone. In this application the input is the

charge on the PZT actuator, which is assumed to be nonnegative since the applied

voltage is always nonnegative. Therefore for this case we can simplify (33) to

y(t) = SrS [x](t) = max(x(t)− rs, 0) (34)

In a similar fashion to (32) a finite number of superposition operators can be summed

to model more complex behavior.

S[x](t) := wT
S · SrS [x](t) (35)

wT
S = [wS0 wS1 · · ·wSl] is the vector of weights and rT

S = [rS0 rS1 · · · rSl] is the vector of
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thresholds, subject to rS0 = 0 < rS1 < · · · < rSl <∞. The modified discrete Prandtl-

Ishlinksii operator combines the play and superposition operators and is defined as

Γ[x](t) := wT
S · SrS [wT

H ·HrH [x, zH0]](t) (36)

As shown in [21], the operator can model asymmetric loops.
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Figure 17: Hysteresis between input voltage and charge

Figure 17 shows that in addition to hysteresis there is also creep between voltage

and charge. The modified Prantdl-Ishlinskii operator can be extended to model this

phenomenon as well with the addition of a creep operator that models the creep effect

as log(t)-type creep with a hysteretic equilibrium state [22]. The elementary creep

operator is written as

y(t) = KrKaK [x, yK0](t) (37)
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and it is defined as the solution to the differential equation

d

dt
y(t) = aKmax(x(t)− y(t)− rK ,min(x(t)− y(t) + rK , 0)) (38)

Though this definition is somewhat abstruse, (38) can be easily solved numerically.

Using a zero order hold to approximate the integral, it’s numerical solution takes the

form

yk =





e−aKTsyk−1 + (1− e−aKTs)(xk−1 − rK) if xk−1 − yk−1 ≥ rK

e−aKTsyk−1 + (1− e−aKTs)(xk−1 + rK) if xk−1 − yk−1 ≤ −rK

yk−1 if −rK < xk−1 − yk−1 < rK

(39)

Ts is the sampling time, rK is the threshold, aK is called the creep eigenvalue. log(t)-

type creep refers to creep behavior that has a linear step response when viewed with

respect to a logarithmic time scale. The summation of elementary creep operators

produces this behavior when the creep eigenvalues are

aKj
=

1

10j−1Ts
for j = 1, 2, · · · ,m (40)

and is called the log(t)-type creep operator [22]. As before, a finite number of log(t)-

type creep operators will be summed, giving

K[x](t) := wT
K ·KrKaK

[x,ZK0](t) · i (41)

where i is a n × 1 vector of ones, wT
K = [wK0 wK1 . . . wKn] is a vector of weights,

rT
K = [rK0 rK1 · · · rKn] is a vector of thresholds subject to 0 = rK0 < rK1 < · · · <

rKn <∞, and aK = [aK1 · · · aKm] is the vector of creep eigenvalues according to (40).

KrKaK
[x,ZK0](t) is a matrix of elementary creep operators, one for each combination

of creep eigenvalue and threshold, shown below.

KrKaK
[x,ZK0] =




KrK0aK1
[x, zK001] · · · KrK0aKm

[x, zK00m]

KrK1aK1
[x, zK011] · · · KrK1aKm

[x, zK01m]

...
. . .

...

KrKnaK1
[x, zK0n1] · · · KrKnaKm

[x, zK0nm]



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Similarly, ZK0 is a matrix of initial conditions corresponding to each elementary creep

operator.

ZK0 =




zK001 · · · zK00m

zK011 · · · zK01m

...
. . .

...

zK0n1 · · · zK0nm




Now, a combined hysteresis model is formed by adding the creep operator the the

hysteresis operator in (36)

Γ[x](t) := wT
S · SrS [wT

H ·HrH [x, zH0] + wT
K ·KrKaK

[x,ZK0] · i](t) (42)

This operator will be used as H(q) in (25), so we have

VH = H(q) = Γ[q](t) (43)

4.2.2 Model Identification

One drawback of the modified Prandtl-Ishlinskii approach is the relatively large

number of parameters that characterize the model. However, by making certain as-

sumptions about the threshold values, the identification of the weights can be formu-

lated as a quadratic programming problem [22]. This process is described in Appendix

A. In short, one experiment is required to generate an input-output relationship. The

weights are then optimized by a numerical search such that they minimize the error

squared between model and experiment.

4.3 Self-Sensing Technique

4.3.1 Combined Electromechanical Model of the Tweezer Device

Equations (24) and (26) can be written in matrix form, shown in (44).



x

F


 =




1

α

−Cp

α

−k
α

α +
Cpk

α






q

Vp


 (44)
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Note we have negated F since we wish to represent the force supplied by the PZT

actuator rather than the external force on the actuator, since the latter is the input

to the two port network model representing the tweezers. Combining (44) with (21)

the force and displacement at the tip can be written in terms of q and Vp.




∆xtip

ftip


 =




−S1

S3

1

S3

S3 −
S1S2

S3

S2

S3







1

nAα

−Cp

α

−k
α

nAα +
nACpk

α






nAq

Vp




=




−nAk − S1

nAS3α

nACpk + CpS1 + nAα
2

S3α

S2(−nAk − S1) + S2
3

nAS3α

S2(nACpk + CpS1 + nAα
2)− CpS2

3

S3α






nAq

Vp




(45)

Note that the matrix of (44) has been modified to reflect that connection of actuators

electrically in parallel, but constants α, Cp, and k are with respect to a single actuator.

For nA actuators connected in parallel, α, Cp, and k will all increase by a factor of nA,

which is reflected in (45). Additionally the charge will be nA times that of a single

actuator. As described earlier, here nA is five. By noticing the similarity between the

first and second rows of the matrix, (45) can be expressed as




∆xtip

ftip


 =




A1 A2

S2A1 + S3/nAα S2A2 − CpS3/α






nAq

Vp


 (46)

where A1 and A2 are defined by

A1 =
−nAk − S1

nAS3α
(47)

A2 =
nACpk + CpS1 + nAα

2

S3α
(48)

Recalling that Vp = V −H(q), It is now seen that the force and displacement at the

tweezer tip can be sensed simultaneously if the driving voltage, charge, and hysteresis

operator H(q) are known.
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4.3.2 Model Parameter Identification

In prior work on piezoelectric modeling and self-sensing, identification of model

parameters has been relatively straightforward [13] [2]. However, the addition of

strain amplification mechanisms complicates the matter. For a singular, unamplified

PZT actuator, the parameters α, k, and Cp, and the hysteresis operator H(q) can be

identified by taking three measurements, namely the maximum force generated by the

blocked actuator, the maximum displacement of the free actuator, and the charge vs.

voltage profile of the free actuator as the input voltage is varied from it’s minimum to

maximum value [2]. When the PZT actuator is nested inside several layers of strain

amplification, it is impossible to recreate the necessary loading conditions. Since

the PZT actuator and first layer strain amplifier come together as a commercially

available unit, the PZT actuator cannot be removed and evaluated separately. The s-

paramters of each layer could be identified as described in [35], but the same problem

prevents the paramters of the first layer from being measured. However, even if these

approaches were possible, it would be undesirable to require disassembly of the device

for model calibration. The form of (46) hints at the solution to this problem.

The parameters S1, S2, and S3 can be estimated by the following equations [35].

S1 =
f block
in

∆xblockpzt

(49)

S2 =
∆xfreetip

∆xfreepzt

∆xblockpzt

f block
tip

(50)

S3 = − f block
tip

∆xblockpzt

(51)

Recall fin and ∆xpzt are the input force and displacement supplied by the PZT

actuator, while ftip and ∆xtip are the force and displacement at the tweezer tip.The

superscript block or free indicates the loading condition at the tweezer tip when the

measurement is taken. As discussed above, ftip and ∆xtip can be measured easily,

while fin and ∆xpzt cannot. However, based on catalog data fin and ∆xpzt can be
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Table 1: Cedrat MLA 2510 Piezoelectric Actuator Properties

Free Displacement 10 µm
Blocked Force 240 N
Stiffness 24 N/µm
Capacitance 0.25 µF
Maximum Driving Voltage 150 V

Table 2: Actuator Parameter Estimates Based on Catalog Data

(a)

Actuator Measurement Guesses

∆xfreetip 6.4 mm

∆xfreepzt 7 µm
∆xblockpzt 5 µm

f block
in 200 N
f block
tip 0.1 N

(b)

Model Parameters
S1 2× 108 N/m
S2 4.5× 10−3 N/m
S3 −2× 105 N/m
α 1.6 N/V
k 24 N/µm
Cp .25 µF

(c)

Eq. 46 terms
A1 −1000
A2 1.7× 10−3
S2A1 45.7
S2A2 7.5× 10−5
S3/5α −2500
CpS3/α 3.1× 10−3

assumed to fall within certain ranges. Table 1 shows the published values for the

Cedrat MLA 2510, which is the piezoelectric actuator inside the Cedrat APA35XS

amplified actuators that are used in the tweezer device [1]. The values can be used

to get an idea of the relative order of magnitude of the terms in (46). Based on the

information in Table 1, guesses can be made for measurements needed in (49), (50),

and (51) shown in Table 2(a). S1, S2, and S3 can then be estimated as well as the

parameters of the piezoelectric model, shown in Table 2(b). Based on Table 2(b), the

terms of (46) can be calculated, which allows their relative orders of magnitude to

be compared. These are displayed in Table 2(c). Now, we examine the term S2A1 +

S3/5α. The term S2A1 is two orders of magnitude smaller than S3/5α. Similarly,
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the term S2A2 − CpS3/α is examined. S2A2 is two orders of magnitude smaller than

CpS3/α. Based on this insight, we can safely approximate (46) as follows.




∆xtip

ftip


 =




A1 A2

A3/nA −CpA3






nAq

Vp


 (52)

A3 =
S3

α
(53)

This approximation is useful because it allows the hysteresis operator H(q) to be

calibrated without knowledge of A1, A2, or A3. When the tip is free, i.e. ftip ≡ 0, we

can write

q = CpVp (54)

The approximation of used in (52) has allowed the term A3 to cancel. Combining

(54) with (25) and (27) gives

H(q) = V − q

Cp

(55)

Therefore only knowledge of Cp is required to calibrate H(q). Once H(q) is known,

A1, A2, and A3 can be easily determined by regression.
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CHAPTER V

EXPERIMENTAL VALIDATION

5.1 Hardware and Setup

5.1.1 Charge and Voltage Measurement

The inputs to the sensing model are charge and voltage. The actuators are driven

by a Cedrat CA45 high voltage amplifier. The amplifier shows good linearity up to

500 Hz, well above the quasistatic operation considered here. This means that in

practice the supply voltage does not need to be measured directly, but can assumed

to be the amplifier gain times the input voltage to the amp. This eliminates the need

for high voltage measurement equipment. The voltage across the actuator is given by

V = Vc − Vs (56)

Charge can be accurately measured by placing a shunt resistance in series with

a PZT actuator and measuring the voltage drop across it [2]. The charge is then

calculated by integrating the current over time.

q(t) =
1

R

∫ t

0

Vsdτ (57)

q(t) is the charge on the PZT actuator at time t, R is the shunt resistance, and vs is

the measured voltage across the resistance. Figure 18 shows the circuit used to mea-

sure charge. V is the driving voltage from the amplifier and R is the shunt resistance.

An instrumentation amp measures the voltage drop across the shunt resistor. An

instrumentation amp measures a differential voltage with a high impedance input on

both the positive and negative terminals and low impedance at the output. This en-

sures minimal interaction between data acquisition hardware and the PZT actuators.

It also ensures that the data acquisition hardware measures a low impedance source,
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Figure 18: Charge Measurement Circuit

which will give the best accuracy [26]. The relay allows the leads of the PZT actuators

to be shorted to ground. Hysteresis is dependent on initial conditions [5]. Shorting

the leads allows a consistent initial condition to be established so that hysteresis

modeling will be more accurate.

5.1.2 Experimental Setup

To assess the force and displacement self-sensing two experimental setups are

used. Though the self-sensing technique can estimate force and displacement simul-

taneously, they are evaluated separately here because it simplifies taking the reference

measurement. For displacement, a Micro-Epsilon OptoNCDT 1300 Laser Displace-

ment sensor with a range of 20 mm and resolution of 4 mm is used as a reference

measurement. The experimental setup is shown in Fig. 19 To measure the force at

the tip a Futek LSB200 load cell with a range of 1 N and 0.1% accuracy of is used,

with an Omega DRG-SC-BG signal conditioner. The experimental setup is shown in

Fig. 20 For both cases a National Instruments USB 6229 was used to measure Vs and
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Figure 19: Experimental setup for displacement sensing

to output the control signal to the amplifier. Data was recorded at 1000 Hz, and the

resolution was 162 mV for all measurements.

5.2 Experiments and Results

Force and displacement self-sensing were tested under a variety of loading condi-

tions from fully blocked tweezer tips to fully free, as well as with various sizes of rigid

objects used as a disturbances. First, the hysteresis operator H(q) was calibrated

using data from the free case. Figure 21 shows the calibrated hysteresis operator

H(q). Fifteen elementary play, superposition, and creep operators were used. H(q)

shows a good match to the experimental data, with a maximum error of 3.34 V and

an average error of 0.81 V, or 2.4% and 0.58% respectively of the output range.

Table 3 summarizes the performance of the self sensing technique. Figure 25

through 30 shows the self-sensed displacement versus the reference measurement for

a variety of loading conditions. Note these figures show the estimation of ∆xpzt/2

since the laser sensor measures only one side of the tweezers. The displacement of the

30



Figure 20: Experimental setup for force sensing

other side is assumed to be identical. Two simple techniques were implemented to

slightly increase the accuracy. The force and displacement measurements were limited

to their respective maximum and minimum values. Additionally, for the displacement

measurement slight drift was removed with a sliding DC offset. The offset reset as

the current displacement measurement whenever the input voltage was zero. Figure

24 shows the effect of these techniques. Two input signals were used, one purely

sinusoidal shown in Fig. 22 and one a mixture of trapezoidal and sinusoidal inputs,

shown in Fig. 23. The input signal in Fig. 22 was also used for the calibration of H(q).

The average accuracy of the self-sensed measurement is 12% of the dynamic range.

Figures 25 through 30 shows the self sensed force and the reference measurement. The

average accuracy of the self-sensed measurement is also 12% of the dynamic range.

Fig. 37 shows the force and displacement estimation from one trial with a common

time axis. Notice that it agrees with what would be expected. Ideally, the force

should be zero until the tip touches the disturbance, after which is should increase
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Figure 21: Hysteresis operator H(q) calibration

Table 3: Performance of Self-Sensing Technique

Performance of Self-Sensing Technique
Measurement Mean Error Mean Error Reported by Kurita et. al. [24]
Displacement 0.4 mm (12%) 11%
Force 0.012 N (12%) 11%

with increasing supply voltage. As the tip returns to its starting position the force

decreases to zero until the tip is no longer in contact with the disturbance.
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Figure 23: Mixed Trapezoidal and Sinusoidal Driving Voltage
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Figure 24: Effect of limiting and sliding DC offset
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Figure 25: Displacement Data Trial 1: Free Tip
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Figure 26: Displacement Data Trial 2: Free Tip
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Figure 27: Displacement Data Trial 3: Small Disturbance
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Figure 28: Displacement Data Trial 4: Small Disturbance
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Figure 29: Displacement Data Trial 5: Large Disturbance
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Figure 30: Displacement Data Trial 6: Large Disturbance
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Figure 31: Force Data Trial 1: Fully Blocked Tip
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Figure 32: Force Data Trial 2: Fully Blocked Tip
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Figure 33: Force Data Trial 3: Large Disturbance
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Figure 34: Force Data Trial 4: Large Disturbance
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Figure 35: Force Data Trial 5: Small Disturbance
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Figure 36: Force Data Trial 6: Small Disturbance

40



0 2 4 6 8 10 12 14 16
−1

0

1

2

3

T
ru

e 
∆ 

x tip
 (

m
m

)

0 2 4 6 8 10 12 14 16
−1

0

1

2

3

∆ 
x tip

 (
m

m
)

0 2 4 6 8 10 12 14 16
0

0.05

0.1

Time (s)

f tip
 (

N
)

Figure 37: Force and Displacement Self-Sensed Signals

5.3 Discussion

Though error is present, the accuracy of the self-sensing method is comparable

to that reported Kurita, et. al in an earlier study of the same device [24]. However,

the sensing method developed in that work relied on prior knowledge of the loading

condition as either fixed or free. The method presented here maintains a similar

level of accuracy while greatly extending applicability by allowing for unknown tip

conditions. However, the accuracy is lower than that reported by Badel et. al in [2],

where a similar method was used but for a solitary PZT actuator. There are several
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possible causes of error. First, the tweezers mechanism is very compliant. This means

that a large change in displacement at the tip corresponds to a small change at the

PZT actuator. Consider the simple mechanical system in Fig. 38, which represents a

PZT actuator in series with a stiffness and serves to illustrate the effect in question.

If the endpoint is free, the displacement of the midpoint is

∆xpzt =
fpzt
kpzt

(58)

If the endpoint is blocked the displacement becomes

∆xpzt =
fpzt

kpzt + k1
(59)

If k1 is small relative to kpzt the displacements in the blocked and free cases will

be very close to each other. The tweezer mechanism is more complicated than the

system in Fig. 38, but the basic effect is the same, namely the displacement of the

displacement of the PZT actuator will not vary much between the blocked and free

cases. Charge is directly related to the displacement on the actuator and the applied

voltage, based on (24). This means that for the same driving voltage a small change

in the displacement, and subsequently charge, will cover the entire range of loading

conditions at the tip. In effect, the signal to noise ratio is drastically worsened,

meaning that not only the charge and voltage measurements but also the hysteresis

model must be extremely accurate. In fact, despite the less than 1% average error of

the hysteresis model, this mismatch is likely the main cause of error.

The force predicted by the self-sensing technique in the free case shows the effect

of mismatch in the hysteresis model since this is the calibration case for the hysteresis

operator. Therefore the effect of the mismatch on force prediction can be shown by

subtracting this case from any other, given the same input voltage. Figure 39 shows

a self-sensed force measurement, and the same measurement when the error due to

model mismatch has been subtracted. This significantly improves the measurement,

indicating that despite its relatively low error the hysteresis operator is the main
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(a) Free (b) Blocked

Figure 38: A simple model of a PZT actuator and a stiffness in series

limiting factor of accuracy, rather than charge or voltage measurement. This indicates

that for a robot with a set of preprogrammed motions, the model error could be

calculated in advance and used to improve the sensing accuracy. For example, if the

tweezer end effector was controlled by the push of a button to toggle between open

or closed, the self sensing method could be used to obtain useful information such as

the size of a grasped object. If the command is not known in advance, increasing the

number elementary operators in the hysteresis model could provide a slight increase

in accuracy, but this becomes computationally intensive and will reach a point of

diminishing returns. Additionally, the creep effect is another source of error. Prior

work on self sensing, even those assuming quasistatic operation, has been limited to

a time scale of milliseconds, over which the effect of creep is negligible. For a robotic

end effector the time scale of interest is seconds or minutes, at which point creep can

no longer be ignored.
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Figure 39: The effect of hysteresis model mismatch on accuracy
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CHAPTER VI

CONCLUSION

A self-sensing technique has been developed that allows the force and displacement

of a tweezer style end effector to be simultaneously estimated if voltage and charge

are measured. This technique relies on a hysteretic piezoelectric model and two port

network modeling of nested strain amplification mechanisms. The modified prandtl-

ishlinksii approach was used to model hysteresis. Despite the method’s accuracy, it

was seen that hysteresis model mismatch was a major cause of error, due to the highly

compliant tweezer structure. The force and displacement measurements were seen to

have an average error of 12%, comparable to the much more limited method in [24].

Potential future work in this area could involve development of more advanced signal

processing techniques to improve the accuracy of the estimation, as well extending

the applicability of the sensing method to the dynamic case.
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APPENDIX A

IDENTIFICATION PROCEDURE FOR THE MODIFIED

PRANDTL-ISHLINKSII OPERATOR

x(t) is a known input and y(t) is measured output. The error between model and

experiment can be expressed as

E[x, y](t) = H[x](t) +K[x](t)− S−1[y](t) (60)

= wT
H ·HrH [x, zH0](t) + wT

K ·KrKaK
[x,ZK0](t) · i−w′TS · Sr′S

[y](t)

Note that S−1 has the same form as S but with different weights. The threshold

values are determined by the range of measured input and output values according

to equations 61 and 62.

rHi = rKi =
i

n+ 1
‖x(t)‖∞ for i = 0, 1, · · · , n (61)

r′Si =





0 for i = 0

i− l
2

l
‖y(t)‖∞ for i = 1, 2, · · · , l

(62)

Recall the creep eigenvalues are defined in equation 40. Let t0 be the initial time and

tf be the final time of the measurement data. Appropriate weights can be identified

by finding those that minimize the square of the error integrated from t0 to tf . This

gives

w∗ = arg min(V (w)) (63)

V (w) =
1

2

∫ tf

t0

E[x, y](t)dt (64)

=
1

2
wT ·

∫ tf

t0

QQTdt ·w (65)
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with

w =




wH

w′S

wK



∈ R2n+l+3 (66)

Q(t) =




HrH [x, zH0](t)

Sr′S
[y](t)

KrKaK
[x,ZK0](t) · i



∈ R2n+l+3 (67)

w∗ is the optimal set of weights. The optimization is subject to the inequality con-

straints

U ·w− u ≤ o (68)

with

U =




UH 0 0

0 US 0

0 0 UK



∈ R2n+l+3×2n+l+3 (69)

u =




uH

uS

uK



∈ R2n+l+3 (70)

UH = UK =




−1 0 · · · 0

0 −1 · · · 0

...
...

. . .
...

0 0 · · · −1



∈ Rn+1×n+1 (71)

US =




−1 −1 · · · −1

0 −1 · · · −1

...
...

. . .
...

0 0 · · · −1



∈ Rl+1×l+1 (72)

uT
H = [−ε 0 · · · 0] ∈ Rn+1 (73)
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uT
S = [−ε − ε · · · − ε] ∈ Rl+1 (74)

uT
K = [0 0 · · · 0] ∈ Rn+1 (75)

ε > 0 defines a lower bound for the weights, and can be any small number. o and 0

are vectors and matrices of zeros of appropriate size. The optimization is also subject

to the equality constraint

qT ·w− g = o (76)

where

g =




‖x‖∞i− rH

o

m‖x‖∞i−mrK



∈ R2n+l+3 (77)

and

g = ‖x‖∞ (78)

The optimization returns the weights of the hysteresis and creep operators, and the

weights of the inverse superposition operator.

wS =





wS0 =
1

w′S0

wSi = − w′Si(
w′S0 +

i∑
j=1

w′sj

)(
w′S0 +

i−1∑
j=1

w′sj

) i = 1, 2, · · · , l (79)

Additionally, the thresholds are determined by

rSi =
i∑

j=0

w′Sj(r
′
Si − r′Sj) i = 0, 1, · · · , l (80)

If the calibration data is taken starting from a fully relaxed starting point, all initial

conditions can be set to zero. In this case, however, the pre-load on the PZT actuator

prevents this from occurring. The initial conditions can be set experimentally be

starting with zeros, and then incrementing zH0 until the initial slope matches the

experimental data. All terms in zH0 were assumed to be the same for simplicity. The

weights were optimized numerically using the MATLAB command quadprog.

48



REFERENCES

[1] “Cedrat technologies piezo products catalouge,” 2011.

[2] Badel, A., Qiu, J., and Nakano, T., “Self-sensing force control of a piezoelec-
tric actuator,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency
Control, vol. 55, pp. 2571–2581, 2008.

[3] Banning, R., de Koning, W. L., Adriaens, H. J., and Koops, R. K.,
“State-space analysis and identification for a class of hysteretic systems,” Auto-
matica, vol. 37, pp. 1883–1892, 2001.

[4] Belly, C., Mathieu, H., Claeyssen, F., and Letty, R. L., “Mri-compliant
micro-motors for medical and biomedical applications,” tech. rep., Cedrat Tech-
nologies, 2010.

[5] Brokate, M. and Sprekels, J., Hysteresis and Phase Transistions. Springer,
1996.

[6] Chinzei, K., Hata, N., Jolesz, F., and Kikinis, R., “Mr compatible surgical
assist robot: system integration and preliminary feasibility study.,” in Proceed-
ings of Medical Image Computing and Computer-assisted Intervention, 2000.

[7] Chinzei, K., Kikinis, R., and Jolesz, F., “Mr compatibility of mecha-
tronic devices: Design criteria,” in Proceedings of Medical Image Computing
and Computer-assisted Intervention, 1999.

[8] Dosch, J. J., Inman, D. J., and Garcia, E., “A self-sensing piezoelectric
actuator for collocated control,” Journal of Intelligent Material Systems and
Structures, vol. 3, pp. 166–185, 1992.

[9] Dumoulin, C., Souza, S., and Darrow, R., “Real-time position monitoring
of invasive devices using magnetic resonance,” Magnetic Resonance in Medicine,
vol. 29, pp. 411–415, 1993.

[10] Garnett E. Simmers, J., Hodgkins, J. R., Mascarenas, D. D., Park,
G., and Sohn, H., “Improved piezoelectric self-sensing actuation,” Journal of
Intelligent Material Systems and Structures, vol. 15, pp. 941–953, 2004.

[11] Georgiou, H. M. and Mrad, R. B., “Electromechanical modeling of piezo-
ceramic actuators for dynamic loading applications,” ASME Jornal of Dynamic
Systems, Measurement, and Control, vol. 128, pp. 558–567, 2006.

[12] Gerhardus, D., “Robot-assisted surgery: The future is here,” Journal of
Healthcare Management, vol. 4, pp. 242–251, 2003.

49



[13] Goldfarb, M. and Celanovic, N., “A lumped parameter electromechanical
model for describing the nonlinear behavior of piezoelectric actuators,” ASME
Jornal of Dynamic Systems, Measurement, and Control, vol. 119, pp. 478–485,
1997.

[14] Hynynen, K., Darkazanli, A., Unger, E., and Schenck, J., “Mri-guided
noninvasive ultrasound surgery,” Medical Physics, vol. 20, pp. 107–115, 1992.

[15] Ivan, I. A., Rakotondrabe, M., Lutz, P., and Challiet, N., “Current in-
tegration force and displacement self-sensing method for catilevered piezoelectric
actuators,” Review of Scientific Instruments, vol. 80, pp. 126103–1–126103–3,
2009.

[16] Ivan, I. A., Rakotondrabe, M., Lutz, P., and Challiet, N., “Quasistatic
displacement self-sensing method for cantilevered actuators,” Review of Scientific
Instruments, vol. 80, 2009.

[17] Jolesz, F., Nabavi, A., and Kikinis, R., “Integration of interventional
mri with computer-assisted surgery,” Journal of Magnetic Resonance Imaging,
vol. 13, pp. 69–77, 2001.

[18] Kaiser, W. A., Fischer, H., Vagner, J., and Selig, M., “Robotic system
for biopsy and therapy of breast lesions in a high-field whole-body magnetic
resonance tomography unit,” Investagative Radiology, vol. 35, pp. 513–519, 2000.

[19] Kholkin, A., Jadidian, B., and Safari, A., Encyclopedia of Smart Materials,
vol. 1. John Wiley and Sons, 2002.

[20] Kim, D., Kobayashi, E., Dohi, T., and Sakuma, I., “A new, compact mr-
compatible surgical manipulator for minimally invasive liver surgery,” in Pro-
ceedings of Medical Image Computing and Computer-assisted Intervention, 2010.

[21] Kuhnen, K., “Modeling, identification,and compensation of complex hysteretic
nonlinearities a modified prandtl-ishlinskii approach,” European Journal of Con-
trol, vol. 9, pp. 407–418, 2003.

[22] Kuhnen, K., “Modeling, identification, and compensation of complex hysteretic
and log(t)-type creep nonlinearities,” Control and Intelligent Systems, vol. 33,
pp. 134–147, 2005.

[23] Kuiper, S. and Schitter, G., “Active damping of a piezoelectric tube scanner
using self-sensing piezo actuation,” Mechatronics, vol. 20, pp. 656–665, 2010.

[24] Kurita, Y., Sugihara, F., Ueda, J., and Ogasawara, T., “Piezoelec-
tric tweezer-type end-effector with force and displacement sensing capability,”
IEEE/ASME Transactions on Mechatronics, vol. 16, 2011.

50



[25] McVeigh, E., Guttman, M., Lederman, R., Li, M., Kocaturk, O.,
Hunk, T., Kozlov, S., and Horvath, K., “Real-tim interactive mri-guided
cardiac surgery,” Magnetic Resonance in Medicine, vol. 56, pp. 958–964, 2006.

[26] National Instruments Corporation, 11500 North Mopac Expressway, Austin, TX
78759, USA, DAQ M Series Manual, July 2008.

[27] Ohta, N., Furutani, K., and Mieda, Y., “Displacement monitoring of
stacked piezoelectric actuator by observing induced charge,” in Proceedings of
the 1st International Conference on Positioning Technology, 2004.

[28] Schenck, J., “The role of magnetic susceptibility in magnetic resonance imag-
ing: Mri magnetic compatibility of the first and second kinds,” The International
Journal of Medical Physics, vol. 23, pp. 815–850, 1995.

[29] Seifert, V., Zimmerman, M., Trantakis, C., Vitzhum, H.-E., Kuhnel,
K., Raabe, A., Bootz, F., Schnieder, J.-P., Schmidt, F., and Dietrich,
J., “Open mri-guided neurosurgery,” Acta Neurochirurgica, vol. 141, pp. 455–
464, 1999.

[30] Stoianovici, D., Patriciu, A., Petrisor, D., Mazilu, D., and Kavoussi,
L., “A new type of motor: Pneumatic step motor,” IEEE/ASME Transactions
on Mechatronics, vol. 12, pp. 98–106, 2007.

[31] Tada, M. and Kanade, T., “Development of an mr-compatible optical force
sensor,” in Proceedings of the International Conference of the IEEE Engineering
in Medicine and Biology Society, 2004.

[32] Takahashi, N., Tada, M., Ueda, J., Matsumoto, Y., and Ogasawara,
T., “An optical 6-axis force sensor for brain function analysis using fmri,” in
Proceedings of the IEEE International Conference on Sensors, 2003.

[33] Tskos, N., Khanicheh, A., Christoforou, E., and Mavroidis, C., “Mag-
netic resonance compativle robotic and mechatronics systems for image-guided
interventions and rehabilitation: A review study,” Annual Review of Biomedical
Engineering, vol. 9, pp. 351–387, 2007.

[34] Turkseven, M. and Ueda, J., “Design of an mri compatible haptic interface,”
in Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems,
2011.

[35] Ueda, J., Secord, T. W., and Asada, H. H., “Large effective-strain piezo-
electric actuators using nested cellular architechture with exponential strain am-
plification mechanisms,” IEEE/ASME Transactions on Mechatronics, vol. 15,
pp. 770–782, 2010.

[36] van Randeraat, J. and Setterington, R., eds., Piezoelectric Ceramics.
Mullard Limited, 1974.

51



[37] Wang, Y., Cole, G., Su, H., Pilitsis, J., and Fischer, G., “Mri compat-
bility evaluation of a piezoelectric acutator system for a neural interventional
robot,” in Proceedings of the 31st Annual International Conference of the IEEE
EMBS, 2009.

52


