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SUMMARY 

For the past 50 years, the paradigm of on-condition rotorcraft maintenance has suffered 

from random failures and intrusive scheduled maintenance that regularly disrupted flight 

operations.  The British Ultra-Reliable Aircraft Pilot Program of the late 1990s introduced 

the paradigm of Maintenance Free Operating Period (MFOP) as a solution.  A MFOP 

aircraft is a fault tolerant, highly reliable system that minimizes disruptive failures and 

maintenance for an extended period of operations.  After the MFOP, a single Maintenance 

Recovery Period (MRP) consolidates repair of accrued faults and inspections to restore an 

aircraft’s reliability for the next MFOP cycle.  A MFOP strategy provides assurance to the 

user that flight operations will continue without disruption for the duration of the MFOP at 

a given success rate. 

 The U.S. Department of Defense recently adopted MFOP as a maintenance strategy for 

the next generation of rotorcraft named the Future Vertical Lift (FVL) Family of Systems.  

The U.S. military desires uninterrupted flight operations to enable a more expeditionary 

force that operates from remote, austere bases.  It is thought that a 100-flight hour MFOP 

at 90% availability will support such deployments; yet, today’s fleet has the system 

reliability to fly less than ten hours without significant repair at 75% availability.  The 

challenge presented is to achieve an order of magnitude improvement to meet the FVL 

target and set the conditions for near-zero maintenance. 

 The thesis posits that statistical based metrics using the mean are insufficient in a 

MFOP strategy and that metrics such as the MFOP, which include the time history of 

failure, are as important as the rate of failure.  It utilizes a Discrete Event Simulation to 

model the MFOP, MRP, and their success rates as operational metrics.  The work identifies 



xxi 

which subsystem(s) limit the MFOP of an aircraft and which components drive MRP 

higher.  It explores the relationship between MFOP and availability where preventive 

component renewals occur at discrete multiples of the MRP.  The thesis provides a 

framework to a maintenance policy that balances availability, dependability, and 

maintainability of a MFOP rotorcraft.  Finally, it tests the hypothesis that an operational 

commander has some control over the MFOP by varying the MRP through an aggressive 

lifing policy.  
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1 INTRODUCTION 

1.1 Progression Towards Ultra-Reliable Design 

The paradigm of rotorcraft maintenance is shifting after almost 40 years of time-based, 

preventive scheduled maintenance.  Figure 1 shows the progression of maintenance 

approaches starting from the 1970s to the desired future state in the mid-21st century.  The 

introduction of new technologies enabling Condition Based Maintenance (CBM) has 

opened new options for sustainment.  The industry is now pushing towards greater 

reliability, lower costs, and lower maintenance burdens.  The promise of steadily 

developing technologies has inspired aspirations of a near-zero maintenance environment 

where rotorcraft have the dependability and maintainability of modern automobiles. 

 

Figure 1:  Evolution of the Maintenance Paradigm from [1] 

 

Year 1

Year 2

Year 3
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 Since the 1970s, rotorcraft maintenance has been a time-based, on-condition 

maintenance paradigm to ensure readiness [2].  Maintainers considered maintenance 

activities as unscheduled or scheduled.  Unscheduled maintenance is the repair of an 

aircraft after random component failure.  Random failures are very disruptive to operations.  

They cancel missions and cause aircraft accidents.  Despite a slow evolution in part 

reliability, system reliability has not improved significantly.  The increasing complexity of 

aircraft systems often offset gains in component reliability.  Even airplanes are not immune 

to decreasing returns in overall availability (see Figure 2).  Unscheduled maintenance is 

costly in terms of dollars and lost operating time.  As a result, the maintenance burden and 

operating costs remain high (see Figure 1).  Scheduled maintenance has occurred at fixed 

time intervals, typically flight hours or number of days.  It has taken a preventive approach, 

involving intrusive inspections and replacement of parts with useful life remaining [3]. 

 

Figure 2:  Historical Defect Rate [4] 
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 Operators are demanding improvement and new approaches.  Condition Based 

Maintenance (CBM) attempts to alleviate some of the maintenance burden associated with 

scheduled inspections by replacing components as needed based upon evidence.  The U.S. 

Army Aeronautical Design Standard (ADS) 79-D Handbook describes CBM as “a set of 

maintenance processes and capabilities derived primarily from the real-time assessment of 

system condition which are obtained from embedded sensors and/or external test and 

measurements using portable equipment” [5].  Over the past ten years, the success of CBM 

has grown with capability of sensors and health management systems, giving CBM an 

advantage that was not available to the on-condition maintenance strategy.  CBM 

acknowledges the inefficiencies of the past’s on-condition maintenance and eliminates 

unnecessary removal of a working part; thereby lowering maintenance burden.   

Minimizing unscheduled maintenance with early detecting of imminent failure further 

reduces Operation and Support (O&S) cost.  CBM is showing itself as a steady evolution 

with sensor technology and data management maturation.  The latest upgrades for Black 

Hawk and Apache helicopters have integrated CBM technologies. 

 A program of Maintenance Free Operating Period (MFOP) is the next maintenance 

paradigm.  The British Royal Air Force’s Ultra Reliable Aircraft Pilot study introduced the 

concept of aircraft MFOP in the late 1990s [6].  The Pilot study became a Project with the 

research goal to find affordable Life Cycle Costs (LCC) and “enable substantial increases 

in aircraft operational availability and reliability” [4].  A MFOP maintenance program was 

the first objective of the program.  A MFOP maintenance program seeks to eliminate 

disruptive random failures for over an extended period and consolidate any scheduled 
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maintenance into a succinct, repair period called Maintenance Recovery Period (MRP).  

Hockley [7] provides the most accepted definition for the terms: 

a. Maintenance Free Operating Period (MFOP).  A period of operation during which 

the equipment must be able to carry out all its assigned missions without any 

maintenance action and without the operator being restricted in any way due to 

system faults or limitations. 

b. Maintenance Recovery Period (MRP).  The downtime during which appropriate 

scheduled or corrective maintenance is done to recover the system to its fully 

serviceable state so that it can achieve the next MFOP. 

MFOP and MRP form a cycle as shown in Figure 3.  MFOP is measured in flight hours 

and MRP is measured in Maintenance Man Hours (MMH) or the total hours the aircraft is 

unavailable for repair. 

 

Figure 3:  MFOP Cycle 

 

 CBM enhances MFOP duration by identifying failures with sufficient lead time to 

schedule repair at the next MRP.   Maintainers preventively replace parts with an 

impending failure at the next MRP.  A MFOP aircraft provides assurance of Fully Mission 
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Capable (FMC) aircraft to the operator for a specified number of flight hours.  MFOP does 

benefit from improved inherent reliability; however, the focus is on providing a dependable 

aircraft that operators can use for a long period of time. 

 The United States Department of Defense (DoD) has adopted MFOP as the 

maintenance paradigm for its next generation fleet of military aircraft named Future 

Vertical Lift (FVL) Family of Systems (FoS).  DoD expects to begin fielding these aircraft 

in the next 10-20 years.  Unlike CBMs steady inclusion into the current fleet, FVL’s FoS 

design for MFOP capability from the beginning.  The work of this thesis occurs within the 

MFOP maintenance paradigm.  For a full discussion on MFOP, please see Section 3.2. 

 Zero Maintenance Aircraft (ZMA) represents a true revolution in aircraft maintenance.  

ZMA seeks an order of magnitude change in the MFOP for helicopters beyond 2050 [8].  

The U.S. Army Aviation Development Directorate (ADD) envisions FVL setting the 

conditions for a near zero maintenance program under Ultra Reliable Design (URD) [8].  

It requires no scheduled maintenance for extended MFOPs and to have a low maintenance 

burden and small logistical footprint.  Reduced life cycle costs are then a consequence of 

ultra-reliability. 

 The progression of the rotorcraft maintenance paradigms is not unlike the story of 

improvement in automobile reliability.  Cars and trucks integrate CBM in the form of 

system diagnosis such as the check engine light and tire pressure sensor.  A MFOP-MRP 

cycle is not unlike a regular automobile inspection every 10,000 to 20,000 miles.  ZMA is 

the state of today’s cars where system availability is near 100% and almost no maintenance, 

short of oil changes and tire rotation, are due between inspection intervals.  For rotorcraft, 
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the future seeks a similar progression, with the goal of ultra-reliable aircraft arriving in the 

ZMA revolution. 

1.2 Relevance 

The U.S. Department of Defense recently started a MFOP effort with goal of an ultra-

reliable aircraft.  The next generation of U.S. military rotorcraft, termed Future Vertical 

Lift (FVL) Family of Systems (FoS), is “intended to provide the joint force a leap-ahead 

improvement in vertical lift capabilities over today's rotorcraft” [9].  The U.S. Joint Force 

is seeking self-deployable, agile aircraft to support a more expeditionary future force.  

Minimizing the logistical footprint and maintenance burden will be key enablers of a more 

agile force.  FVL FoS will deploy and operate 30 days with minimal support.  A conceptual 

goal of a 100-flight hour Maintenance Free Operating Period (MFOP) at 90% availability 

[9] will be necessary to support such deployments (see Table 1); yet, today’s fleet has the 

system reliability to fly less than 10 hours without significant repair at 75% availability 

[10].  Historical data of MFOP for DoD aircraft is not available because the DoD does not 

track MFOP as a metric.  This research estimates a representative UH-60M Black Hawk 

model’s MFOP at 5.1 hours (see section 4.3.2.2 for the analysis).  Another work found the 

OV-22 Osprey’s MFOP to be around 2 hours [11].  The 100-flight hour MFOP for FVL 

represents a single order of magnitude increase in MFOP. 
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Table 1:  Maintenance Metrics 

Metric Current Fleet 

Benchmark 

 

(today) 

Future Vertical 

Lift Target 

 

(years 2030s) 

Zero 

Maintenance 

Threshold 

(years 2040-50) 

Zero 

Maintenance 

Objective 

(years 2040-50) 

Rm 

 

 TBD TBD TBD 

MFOP < 10 hours 100-FH 

one week 

 

480 FH 720 FH 

Ao 

 

75% 90% 90% 95% 

MRP   3 days 

144 MMH 

 

1.5 days 

108 MMH 

MTTR 

(unscheduled) 

 

  3 MMH 1.5 MMH 

 

 Beyond FVL, Zero Maintenance Aircraft (ZMA) will push the boundaries of reliability 

and maintainability even further.  ZMA will grow MFOP towards a threshold of 480-hour 

and an objective of 720-hour.  This represents two orders of magnitude increase from 

today’s rotorcraft.  The challenge is to achieve an order of magnitude changes to meet the 

FVL target and set the conditions for ZMA. 

1.3 Motivation 

1.3.1 Driven by FVL Opportunity 

The paradigm shift to a MFOP program is driven by the needs of the U.S. future Joint 

Force.  The DoD fleet consists mostly of the UH-1 Iroquois, AH-1 Cobra, UH-60 Black 

Hawk, AH-64 Apache, CH-47 Chinook, CH-53 Sea Stallion, and the OV-22 Osprey.  Of 

those aircraft, the DoD only fielded one first generation aircraft, the Osprey, in this century.  
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The current fleet is aging and likely to reach end of life by the mid-2030s.  In 2008, the 

Congressional Rotorcraft Caucus stated its concern “about the lack of a strategic plan for 

improving the state of vertical lift aircraft” [12]. 

 

Figure 4:  FVL Genesis as Presented by FVL Science and Technology IPT in 2015 [12] 

 

 FVL FoS is the subsequent response to the need for a next generation fleet.  The current 

fleet is mature and unable to make gross improvement in availability and dependability due 

to the diminishing returns previously drawn in Figure 2.  FVL provides the impetus and 

opportunity to make the paradigm shift towards near zero maintenance.  By designing for 

MFOP from the beginning, FVL aircraft are the best opportunity to make the leap forward 

and achieve the magnitude change in extended MFOP. 
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1.3.2 Mandated to Balance with Affordability 

This section outlines how the valuing of FVL FoS designs and technologies must include 

affordability as a metric.  Improving reliability and MFOP will drive down O&S cost and 

reduce life cycle cost.  This helps achieve affordability requirements.  Finally, the 

evaluation of a MFOP maintenance strategy must include value and cost. 

 Over the past 30 years, the Army’s acquisition effort has not successfully developed a 

new vertical lift aircraft.  In an address to members of the NATO’s Future Rotorcraft 

Requirements in 2015, Daniel Schrage recounts that the technology push did not fit DoD 

needs or the technology was not affordable.  He summarized that “this lack of consensus 

between the user and materiel developer has resulted in a lack of top Army commitment 

and; therefore, no new development of Army vertical lift systems over the past thirty years” 

[13].  The failed acquisition of the RAH-66 Comanche and the Armed Reconnaissance 

Helicopter (ARH) reflect an era of increasing complexity with long development timelines 

that neglected affordability.  Even the Marine and Air Force V-22 Osprey, which looks to 

be a success, took 24 years from program start (1983) to first fielding (2007) [14].  Paul 

Collopy and Peter Hollingsworth, in their formative paper on Value Driven Design [15], 

extrapolated acquisition program cost to completion.  They showed that the total loss to 

delay, overruns, and reductions in materiel (generally caused by overruns) is $55 billion 

per year, or $150 million each day [15].  Similarly, a RAND Corporation study in 2008 

concluded that DoD acquisitions cost growth varies between 38-60% from program start 

to finish [16].  FVL is attempting to produce a new fleet of helicopters by the 2030s and 

avoid the financial mistakes of the past.  As such, the U.S. Government has issued a 

mandate for affordability in design and operation of FVL. 
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 The correlation between affordability and system reliability is well documented.  The 

2015 Future Rotorcraft Requirements Technical Evaluation by NATO concluded that O&S 

cost accounts for 50% to 70% of Life Cycle Costs over a 40-year life of a modern rotorcraft 

[17].  Table 2 shows that repairable account for 78% and 88% of total cost per flight hour 

for the Black Hawk and Apache, respectively.  These facts support the conclusion that 

O&S is most of life cycle cost and that repair of failed components accounts for the greatest 

portion of O&S costs.  An identified path to affordability is with high reliability. 

 

Table 2:  Cost per Flight Hour as Reported by GlobalSecurity.org 

 Cost per Flight Hour 

System 

 

Total Consumables Repairables 

UH-60 Black Hawk $1,602.70 $351.54 

(22%) 

 

$1,251.16 

(78%) 

AH-64D Longbow Apache $3,851.18 $444.20 

(12%) 

 

$3,406.98 

(88%) 

Data taken from GlobalSecurity.org [18] 

 

 The DoD Reliability, Availability, Maintainability, and Cost (RAM-C) Rationale 

Report Manual summarizes the relationship between cost and reliability.  Low reliable 

systems result in high life cycle costs due to increased O&S cost.  Overly high reliable 

systems drive exorbitant Research and Development (R&D) cost.  The RAM-C manual 

urges to achieve a balance between reliability and cost [19].  Although Figure 5 shows the 

balance in the middle, historical data demonstrates that the optimal point leans in favor of 

higher reliability and lower O&S cost (shifting the balance point left).  This is due to the 

mentioned dominance of O&S cost in total life cycle  
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Figure 5:  Optimum Life Cycle Cost and Reliability Curve from RAM-C Manual [19] 

 

 The Office of the Under Secretary of Defense Acquisition Technology and Logistics 

(OSD AT&L) initiated the Better Buying Power 1.0 initiative in 2010 that reshaped the 

DoD acquisition for efficiency.  The Better Buying Power framework mandated 

affordability as a requirement in all new programs so that “cost considerations must shape 

requirements and design” [20].  The 2.0 initiative added cost trades as a requirement to the 

process. 

 Reviewing the Better Buying Power cost trade mandate, DOD RAM-C’s search for 

balancing reliability and cost, and FVL’s affordability requirements reveals the strong link 

between sustainability and affordability. 
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1.3.3 Invested in Science and Technology 

The Army is the lead amongst the military services for the FVL Science and Technology 

development and Acquisition.  The Army’s Aviation and Missile Research and 

Development Engineering Center (AMRDEC) heads the Science and Technology IPT.  

Over the next few years, AMRDEC will lead the discovery and investment into the science 

and technology.  A study to investigate the impacts of a MFOP strategy on the balance 

between affordability, dependability, and capability is well timed to inform FVL decisions 

on sustainment.  It is the desire of the author to add to the rotorcraft community’s efforts 

in transforming the future sustainment strategy to one of a MFOP paradigm. 

 Within AMRDEC, the Aviation Development Directorate (ADD) issued a call for 

proposal in 2015 for Ultra-Reliable Design (URD) [8] in support of FVL and the 

development of MFOP and ZMA.  More recently, ADD stated the need for a path to 

transform from today’s time-based maintenance to a MFOP program in FVL and finally to 

near zero maintenance.  ADD identified several gaps to accomplishing the transformation.  

These gaps are summarized in Table 3. 

 

Table 3:  MFOP Knowledge Gaps 

1. Identify metrics that measure desired sustainment and readiness 

outcomes 

2. Find tools and methodologies needed to support the selected 

sustainment approach 

3. Create sustainment approaches for FVL and near-future to mid-future 

to far-future (ZMA) technologies 

4. Account for varying OPTEMPO in a future sustainment strategy 

5. Realize savings in O&S and other life cycle cost components 
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 The MFOP knowledge gaps in Table 3 motivate the proposed research to address the 

gaps from an aircraft system and MFOP maintenance perspective. 

1.4 Scope of Work 

The scope of the academic effort is to stay within the aircraft materiel solution and 

associated MFOP-MRP strategy.  Considering all potential repercussions of a MFOP 

strategy on a large bureaucratic organization like the Department of Defense is beyond the 

scope of a single thesis.  As such, research starts from the materiel solution vantage point.  

It leaves the broader domains of Doctrine, Organization, Training, materiel analysis, 

Leadership and education, Personnel, Facilities, and Policy (DOTMLPF-P) to future work. 

 Although a MFOP strategy may equally apply to fixed wing aircraft, the focus of this 

work is on a vertical lift family of systems.  A goal is to demonstrate how to balance 

benefits and penalties of an applied a MFOP strategy.  The thesis applies a MFOP strategy 

in the context of FVL to achieve relevance.  FVL presents the current and largest effort 

towards near zero maintenance.  The framework shown should equally apply to aircraft 

other than FVL FoS; however, this work does not directly address airplane MFOP. 

1.5 Dissertation Outline 

This chapter reviewed the history of modern maintenance strategies and addressed the 

approaching of paradigm change towards MFOP.  It identified the relevance of the problem 

as a need for an order of magnitude change in aircraft dependability to meet future 

operational requirements.  The opportunity that FVL presents to transform rotorcraft 
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maintenance motivates the research.  Simultaneously, the mandate to balance any MFOP 

strategy with affordability constrains the work.  MFOP and MRP influence in rotorcraft 

design is a relevant topic.  In 2013, the Army began considering which technologies to 

invest in to achieve FVL and transition to near zero maintenance.  This discovery will 

continue over the next five years. 

 The following chapter of the dissertation will begin with defining the problem, its 

structure, identifying appropriate stakeholders, and identify current challenges to solving 

the problem.  Chapter 3 presents background research to inform the formation of research 

questions.  It presents a literature review on the relevant topics of reliability definitions, 

MFOP options, the acquisition process, reliability modeling, and value driven design.  It 

concludes with a brief discussion on appropriate performance and cost modeling to the 

problem and an overview of zero maintenance technologies.  Chapter 4 develops the tools 

to measure MFOP using operational metrics.  Chapter 5 introduces a framework to 

construct a maintenance policy that maximizes availability in a MFOP context.  Chapter 6 

presents a method to provide some control over MFOPS of a given system.  It tests whether 

the provided framework can improve MFOPS and provides an adaptable policy that 

maintains MFOPS after an extension to the MFOP duration.  Chapter 7 provides 

concluding statements on the framework and its results.  Finally, the dissertation ends with 

a discussion on future work with a focus on balancing system effectiveness with 

affordability.  To assist the reader, the document’s references to page numbers, table, 

figure, and sections are hyperlinked. 

  



15 

2 PROBLEM DEFINITION 

The previous Chapter (see 1.2 Relevance) provided evidence of an order of magnitude gap 

between the MFOP of today’s rotorcraft fleet and the desired MFOP of the FVL FoS.  It 

also established the need to balance system effectiveness against affordability.  The larger 

problem presenting the rotorcraft community is FVL FoS require a leap ahead in capability 

and in dependability to meet the future Joint Force’s need for agile, dependable aircraft 

while remaining affordable. 

 The larger problem statement spans the entire life cycle of the FoS.  This problem is 

too broad for the scope of a single thesis.  A full analysis of the DOTMLPF-P domains as 

required USD AT&L’s Defense Acquisition process is best suited for the larger problem.  

The larger problem needs scaling to a more manageable problem.  To formulate an 

appropriate problem statement, the next section investigates the stakeholder needs.  

2.1 Stakeholders 

There are numerous stakeholders in the development of a FoS of MFOP rotorcraft.  A 

sample listing includes Research and Development (R&D) organizations, acquisition 

organizations, Original Equipment Manufacturers (OEMs), industry vendors, the Vertical 

Lift Consortium (VLC) consisting of academic and industry rotorcraft experts, academic 

institutions, Congress, senior leaders (Department of Defense, Joint Staff and Service), 

operational commanders, training organizations, logistic commands, safety regulators, and 

more.  Stakeholders are grouped by the major role they take in the life cycle of a rotorcraft 

system.  Major stakeholder groups are developers, operational commanders, and senior 
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leaders or decision makers.  Each stakeholder has an additional role in bringing ultra-

reliable aircraft to the flight line as summarized in Table 4 and presented below. 

 

Table 4:  Stakeholder Roles in a MFOP Strategy 

Stakeholder Group Additional Roles in a MFOP strategy 

 

Developers Calculate reliability statistics 

Predict operational metrics 

 

Operational Commanders Manage MFOP-MRP to meet objectives 

 

Decision Makers Balance system effectiveness against 

affordability and risk 

 

 

 Developers include research and development organizations, acquisition managers, and 

industry.  R&D organizations encourage science and technology growth.  They discover 

prospective technologies, fund promising technologies, and develop the best to maturity.  

Acquisition organizations evaluate, integrate, and manage systems developed by industry.  

Industry, heavily represented by the OEM and vendors, design and produces the aircraft 

systems and components.  Developers have a need to estimate the traditional reliability 

statistics such as materiel reliability, Mean Time Between Failure (MTBF), and Mean Time 

to Repair (MTTR).  Under a MFOP maintenance strategy, developers also need to predict 

the MFOP, MRP, and their probability of success. 

 Operational commanders support strategic goals by employing forces and capabilities.  

At the tactical level, they are responsible for the daily execution of the mission.  They make 

use of the provided aircraft systems and personnel to meet operational needs.  This effort 

includes integrating maintenance and logistics to achieve the required operational tempo 
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(OPTEMPO).  OPTEMPO defines the type of missions flown, rate of flying, and necessary 

aircraft availability.  Commanders have the need to adapt current systems and procedures 

to meet a changing operational environment.  They need to understand the relationship 

between MFOP and MRP and their probability of success to assess risk, create supply lines, 

assign and train personnel, and apply limited resources. 

 Decision makers are senior civilian and military leadership.  They enact policy for the 

joint force to accomplish strategic goals.  Department of Defense senior leaders ensure the 

strategy is mutually supporting throughout each DOTMLPF-P domain within each service.  

They liaison with Congress to obtain funding for acquisition programs.  Decision makers 

balance the capability given finite resources.  Decision makers set requirements to balance 

system effectiveness against affordability, schedule, and risk. 

2.2 Overall Problem and Problem Structure 

Decomposing the problem from the stakeholders’ perspectives helps identify the principal 

issues.  The conceptual diagram of Figure 6 shows the linkages between stakeholders and 

the knowledge gaps found in Table 3. 
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Figure 6:  Stakeholder and Knowledge Gaps  

 

 Connecting stakeholders to the knowledge gaps reveals that the knowledge gaps inhibit 

stakeholders from effectively creating a MFOP strategy. 

 

 

 Decision makers need the ability to measure what a MFOP option or technology does 

to the value.  Such an investigation requires modeling an organizations performance across 

the DOTMLPF-P spectrum.  Any methodology must consider the influence of bureaucratic 

policies and funding limitations on the acquisition cycle of a MFOP family of systems.  

Defining value and communicating the balance with affordability is a third problem for 

decision makers but remained beyond the scope of the thesis.  The work provided in this 

dissertation supports, but does not solve, the larger problem of modeling an organization’s 

Overall Problem Statement 
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suitable for the development of MFOP aircraft. 

Missing Tools 
& Methods 
for MFOP 

Maintenance

Realizing 
savings in 
O&S and 

LCC

Accounting 
for Varying 
OPTEMPO

Lack of 
Operational 

Metrics

Developers

Unit 
Commanders

Sr Decision 
Makers

Benchmark a design’s 
dependability

Tailor the maintenance 
strategy to meet 
OPTEMPO and 

resource constraints

Balance system 
effectiveness, 

affordability, risk, and 
schedule

Improve a design’s 
dependability

St
ak

e
h

o
ld

e
rs

K
n

o
w

le
d

ge
 G

ap
s

N
e

ed
s



19 

performance over the DOTMLPF-P spectrum.  Section 3.5 Valuing a MFOP Aircraft 

discussed how Problem 1 and Problem 2 support the comprehensive need to balance 

dependability and maintainability with system value. 

 The proposed research intends to remove the major hindrances that block each 

stakeholder from creating a balanced MFOP strategy.  To achieve a MFOP strategy with 

an order of magnitude improvement in dependability, stakeholders need to overcome the 

two remaining problems of Figure 7.  The presented solutions to Problem 1 found in 

Chapter 4 provide stakeholders’ with the new tools necessary to measure the dependability 

of a MFOP aircraft in operational metrics.  Chapters 5 and 6 address Problem 2 by 

providing a framework capable of tailoring maintenance policies to meet low, high, or a 

changing operational tempo. 

 

Figure 7:  Problem Structure and Overall Thesis 

 

  

 r   em  

 e e   ers need     redic   he 
de enda i i      an      aircra   in 
  era i na  me rics   e  c rren  design 
  i i es s a is ica  me rics  

Problem 2

Commanders need the freedom to
manage maintenance and logistics
to best meet operational demands,
yet current maintenance programs
are inflexible.

Overall Problem: Stakeholders’ current approaches to aircraft dependability are not
suitable for the development of MFOP aircraft.

  erall  hes s   Stakeholders’  eed  e  tools a d a  ra e ork s  ta le to a       
strate   



20 

2.3 Problem 1:  Measuring MFOP 

Problem 1 provides new tools necessary for stakeholders to measure the MFOP of an 

aircraft using new operational metrics.  A challenge to implementing a MFOP strategy is 

the change in paradigm away from what has always worked (on-condition maintenance).  

Traditional metrics such as materiel reliability (Rm), MTBF, and MTTR are useful for 

manufacturing design and safety analysis; however, these statistical metrics using the mean 

do not tell an operational commander about the dependability of their system in a MFOP 

strategy. 

2.3.1 MTBF:  The Wrong Metric 

 Al Shaalane and Vlok summarized why a paradigm shift in maintenance is necessary 

to make the transition to MFOP.  They stated, “MTBF presumes that failure is inevitable, 

and thus creates the general assumption that there is no point in striving for the ultimate 

goal of reliability excellence” [21].  A thought experiment of Figure 8 highlights the fallacy 

of MTBF as a metric. 

 

Figure 8:  Misleading Nature of MTBF. Figure reprinted with permissions from [21] and 

from original source [22] 
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 All three systems have three failures over 3,000 hours for the same MTBF of 1000 

hours per failure.  A designer considering only MTBF has no preference between the 

systems.  This is because MTBF is hiding information about the distribution of failures.  

System 2 is undesirable to a MFOP designer.  System 3, with failures later in run time, is 

preferable because it provides over 2,500 hours of MFOP before mission disruption. 

System 1 does provide a similar 2,500 hours if the infant mortality failures are avoided 

through burn-in.  Unlike MTBF, MFOP does not hide the relevant information and 

provides a better understanding of the impact on operations.  MFOPS is a more appropriate 

metric because it accounts for the random nature of failures, while traditional metrics, like 

MTBF, falsely assume a deterministic nature.  A major consequence of the use of the 

incorrect metric is a complication in logistics planning (see vignette below). 

 

 

 

Vignette on Incorrect Dependability Metrics 

As reported in “Air strategy that can’t fail” by John Dunn in Professional 

Engineering, August 1997. [69] 

“Assume the maintainer is waiting for an aircraft to return.  He knows 

it has an MTBF of 10 hours and has just flown a five-hour sortie, so he 

will have half a fault to fix.  No one knows is where [sic] that ‘fault’ 

might be.  To be safe, a crane, a tug, a full set of jacks, a full tool kit and 

a spare for every replaceable unit on the aircraft, is ordered up on 

standby.  This is real life.  The traditional system for defining reliability 

is a nightmare to the logistics manager and the accountant, who are 

asked to fund and provision spares that may not be needed for years.” 

    Wg/Cdr Trevor Turner, RAF 
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2.3.2 Resolving the MTBF Fallacy 

 According to DI Knowles as reported by Kumar et al. [23], the drawback of MTBF is 

that it is “almost impossible” to determine the failure rate if the distribution is not 

exponential.  Exponentials are most attractive due to their mathematical ease; however, this 

becomes a fallacy with aging parts over multiple MFOP cycles.  At the Annual Reliability 

and Maintainability Symposium in 1997, Hockley and Appleton recommended 

transitioning from MTBF as the reliably metric towards a probability of failure to meet a 

specified MFOP.  They [6] and Relf [24] cautioned MTBF sets an ill-fated acceptance of 

failure and an inevitability to unscheduled maintenance.  The quest for improved 

dependability with fault free parts becomes ever increasingly expensive in terms of time, 

weight, and cost.  Instead, Hockley and Appleton recommended creating fault tolerant 

systems [6].  MFOP and MRP are examples of operational metrics that measure the ability 

of a system to remain failure free (fault tolerant), not fault free.  By doing so, the designer 

adds fault tolerance to inherent reliability as options to improve dependability of the 

systems.  

 

 

 Dr. Michael Hammer, a noted expert in process engineering, created four principles for 

measurement.  (1) “measure what matters, rather than what is convenient or traditional; (2) 

measure only what matters most; rather than everything; (3) measure what can be 

controlled, rather than what cannot be controlled; and (4) measure what has impact on 

Problem 1 

Designers need to predict the dependability of an MFOP aircraft in 

operational metrics, yet current design utilizes statistical metrics. 
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desired business goals, rather than ends in themselves” [25].  In short, MTBF is the 

convenient and MFOP is what matters.  This led to the statement of the first problem. 

2.3.3 Research Question 1 

 The shift to what matters, MFOP, has only just started.  As late as 2009, the DoD RAM-

C Report Manual maintained AO (operational availability), Rm, and several modes of mean 

time to repairs as key metrics [19].  A review by Kumar et al. [23] found the Air Force, by 

the year 2000, began emphasizing reliability metrics based on operational requirements 

over mean time statistical metrics.  The Army’s ADD recently acknowledged the need for 

new metrics in a MFOP strategy gap [9] when it marked it as the first MFOP Knowledge 

Gap (see Table 3).  This knowledge gap and the need for methods to estimate MFOP 

metrics present a challenge for establishment of a MFOP strategy.  With the right metrics 

identified as MFOP and its probability of success, the next step was to estimate the MFOP 

by modeling a system.  This gave rise to the first research question. 

 

 

 Section 3.3 reviews the current literature on predicting MFOP.  The majority of 

analytical and modeling efforts [24], [26], and [27] focused on estimating the MFOP.  

Kumar et. al [23] and Price et. al [28] add and then use the concept of MFOP probability 

success to the measurement.  Chapter 4 begins with an evaluation of the state of the art 

modeling methods and their suitability to model an MFOP rotorcraft.  The remainder of 

Research Question 1 

What method(s) are suited to model MFOP? 
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the chapter develops a customized Discrete Event Simulation, followed by a series of 

experiments to verify the model’s accuracy. 

2.3.4 Research Questions 2a and 2b 

Once the model estimates a system’s MFOP, the designer may wish to improve its 

performance.  To do so, developers need to understand where a component or subsystem 

is limiting a given MFOP.  By locating the limiting component, designers may redesign 

the architecture or improve component inherent reliability to better achieve targets.  

Research Question 2a asks to identify components limiting the MFOP duration.  Answering 

this research question attends to MFOP Knowledge Gap 2: Find tools and methodologies 

needed to support the selected sustainment approach.  The ability to quantify the limiting 

component provides the developer with a tool to measure and improve a MFOP design. 

 

 

 Maintainers and logisticians are also keenly interested in repairs that increase the 

maintenance burden inside the MRP.  Identifying what repairs are driving MRP higher is 

equally as important as what limits a MFOP.  The author could not find significant work 

published on the estimation of the MRP outside of Price et al. [28].  Most of scheduled 

Research Question 2a 

Which components/subsystems limit an MFOP? 

 

Research Question 2b 

Which components/subsystems are the greatest contributor(s) to MRP 

duration? 
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maintenance modeling in the reliability field follows the on-condition repair paradigm with 

the goal to minimize total cost.  Acknowledging the importance of affordability, the 

maintenance burden measured in Maintenance Man Hours (MMH) or Maintenance 

Downtime (hours) is also critical to operators.  Measuring the maintenance burden is the 

topic of Research Question 2b.  Answering the research question addresses MFOP 

Knowledge Gap 2 by providing developers with an approach to estimating a system’s MRP 

burden. 

2.4 Problem 2:  Adaptive Maintenance for Agile Aircraft 

Problem 2’s objective is to provide a framework that leads to maintenance policies suitable 

to a MFOP strategy.  A suitable maintenance policy must enable FVL family of systems to 

be adaptable and interoperable.  The white paper, Future Aviation Maintenance Concept:  

Bridging the Gap toward Mobility and FVL stated, “maintenance doctrine must change to 

meet the challenges of future enemy” [29].  The Future of Aviation Maintenance Concept 

(FAMC) Interdisciplinary Concept Team (ICT), led by Lieutenant Colonel J. Peter 

Velesky, continued to state, “Army Aviation sustainment must become more agile and 

responsive” [29].  The FMAC ICT is using agile to mean a quick response to changing 

operational demands. Its context is not as the measure of an aircraft’s handling or 

maneuverability.  Today, the Army has begun to limit inspections using CBM to support 

an agile aircraft.  The on-condition paradigm of frequent, scheduled maintenance of the 

past 40 years was anything but agile.  For example, prior to CBM the UH-60 underwent 

routine “daily, 10-hour/14-day, 40-hour and other required inspections” [9].  Required 

inspections include 120-hour inspections and intensive phase maintenance every 360 
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hours.  Maintainers conducted 30-day, 90-day, 120-day, 6-month, and yearly special 

scheduled inspections.  CBM has begun to eliminate some of these inspections but its 

progress is not complete.  There still exists a disparity between today’s maintenance and 

the need for adaptive maintenance.  The U.S. Army’s Aviation Development Directorate 

denoted the disparity in MFOP Knowledge Gap 4:  Account for varying OPTEMPO in 

future sustainment strategy as introduced in Table 3.  This disparity or gap constitutes the 

second problem.  MFOP with CBM+ is planned to eliminate the gap. 

 

 

 An adaptive maintenance program should respond to the current operational needs of 

a commander.  A commander has few options on the maintenance of a fielded aircraft under 

the paradigm of on-condition maintenance.  Generally, aircraft architecture remains fixed 

and vendors ship components with fixed reliability.  The versatility of rotorcraft has meant 

a wide variety of missions in every environment in the world.  A fleet-wide scheduled 

maintenance plan assumes a “one-size fits all” approach to maintenance regardless of 

mission or environment.  Creating a MFOP-MRP cycle fixed to one design tempo is a lost 

opportunity to maximize dependability. 

  

Problem 2 

Commanders need the freedom to manage maintenance and logistics to 

best meet operational demands, yet current maintenance programs are 

inflexible. 
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2.4.1 Research Question 3 

 A commander that understands the relationship between MFOP and MRP has more 

flexibility to balance requirements.  The war time operational tempo by FVL is thought to 

be about 100 flight hours in 7 days [9].  Not all aircraft will be at such a high tempo as the 

FVL war-time target.  A unit in training may lower the maintenance burden or save money 

by trading for a shorter MFOP or seek maximum operational availability.  Conversely, a 

unit with a very high operational tempo may “buy” a longer MFOP with a longer MRP.  

ADD recognizes the trade between MFOP, MRP, maintainability, and affordability in the 

third and fourth knowledge gaps of Table 3.  The third research question seeks to uncover 

the maintenance policy that maximizes availability at the potential reduction of a MFOP 

duration.  This simulates a garrison environment where an extended MFOP is not an 

operational necessity. 

 

 

 The development of a policy to minimize downtime is similar to classical renewal 

theory as presented in its literature review (section 3.4.2).  Chapter 5 begins to answer the 

research question by examining classical renewal theory in a MFOP strategy.  

Unfortunately, the Chapter 5 shows the theory is unable to protect the MFOP from 

disruptive maintenance.  Section 5.1 revises the theory to satisfy a MFOP strategy.  Section 

5.2 demonstrates the need for a framework to achieve a suitable policy that minimizes 

downtime while obtaining a sufficient reliability.  The reminder of the chapter constructs 

Research Question 3 

What is the maintenance policy that minimizes downtime? 



28 

a framework (section 5.3) and tests a hypothesis in an experiment on a simple system 

(sections 5.4 and 5.5).  Results, a sensitivity study, and a discussion conclude the chapter. 

2.4.2 Research Question 4 

The final research question looks at the war-time tempo and FVL’s call to minimize the 

forward footprint by operating aircraft for extended periods without disruptive 

maintenance.  The objective is to maintain the MFOP probability of success above a 

minimum level for a pre-determined number of MFOP cycles.  The minimum level is a 

quantification of the commander’s risk tolerance.  The pre-determined number of MFOP 

cycles accounts for the planned duration at the extended MFOP or high operational tempo. 

 A policy that supports an extended MFOP is exercising some control over the risk of a 

failed MFOP.  Controlling a MFOP inherently requires management of the MFOP duration 

and its probability of success.  Extending the MFOP naturally results in a decreased 

MFOPS given the same MRP.  Similarly, avoiding risk by raising the MFOPS requirement 

will shorten the MFOP.  This thinking relies upon a common assumption to MFOP 

modeling in literature:  the assumption that only failed parts are replaced.  This section 

questions the general assumption.  What if maintainers pursue an aggressive lifing policy 

that replaces parts before failure?  Would this help control MFOPS? 

 

 

Research Question 4 

What is a maintenance policy that controls MFOPS? 
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 The problem is best thought of as managing the MRP to maintain the desired success 

over time or after an increased MFOP.  To increase the MFOPS, one would expect to 

replace the oldest parts first with the greatest likelihood of mission failure.  Additional 

repairs, consequently, increase the MRP burden.  Intuitively, one would assume pushing a 

system of fixed architecture to a longer MFOP while maintaining the MFOPS results in a 

longer MRP.  The aircraft would fly longer hours and accumulate more repairs for the 

MRP.  The thought process gives rise to Research Question 4. 

2.5 Current MFOP Methodologies 

In 1999, Mark Relf introduced the broader public to the MFOP paradigm with his formative 

journal article, titled “Maintenance-Free Operating Periods—The Designer’s Challenge” 

in Quality and Reliability Engineering International [24].  Relf had worked on the British 

Ultra-Reliable Aircraft project in the late 1990s with British Aerospace and his article 

served as catalyst for academic exploration of MFOP.  He proposed an iterative design 

methodology drawn in the figure below. 

 

Figure 9:  MFOP Design Methodology from Relf [24] Copyright © 1999 John Wiley & 

Sons, Ltd. 
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Relf’s methodology provided a template to assess where and how to improve a system’s 

MFOP.  He recommended a Monte Carlo simulation to approximate the MFOP value of a 

given system [24].  If the MFOP proved insufficient, the methodology sought the “weak 

link” that limited the MFOP.  MFOP Options (section 3.2.3) provided means to improve a 

system’s MFOP.  Calculation of the MFOP value and identification of the weak link 

constitutes Problem 1 found in Chapter 4.  Research Question 1 addresses the selection, 

development, and validation of a modeling technique to estimate the MFOP.  Research 

Question 2a queries how to find the weak link (section 4.2) and Research Question 3 asks 

for a technique to quantify the MRP’s maintenance burden (section 4.3). 

 

Figure 10:  Summary of Problem 1:  Measure MFOP 

 

 Relf’s methodology focused on the improvement of the system to achieve a given 

MFOP goal.  When introducing potential MFOP Options, Relf stated a “policy of hard 

lifing would be the most viable method to realize a MFOP” outside new technologies of 

CBM or the use of redundancy.  This introduces the notion that a system’s MFOP 

performance is a function of its design and the applied maintenance policy.  The original 

Problem 1

Measure MFOP

RQ 2a: Which components/

Subsystems limit an MFOP?

RQ 1: Which method(s) are 

suited to model MFOP?

RQ 2b: Which components are the
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duration?
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methodology of Figure 9, however, does not directly provide a means to design a 

maintenance policy in conjunction with the design of the cyber-physical system. 

 The long-term reliability of a system is a function of its inherent reliability and the 

supporting maintenance policy.  In a survey of reliability modeling techniques published 

in the Journal of Mechanical Engineering Science, Andrews [26] stated,  

Traditionally the system design process and the specification of the 

maintenance programme have been carried out separately.  There are 

advantages to be gained by considering the two aspects simultaneously 

where the system is designed to enable an efficient and effective 

maintenance strategy to be employed. 

Like Relf’s methodology, none of the recent MFOP modeling methodologies found in a 

literature search [28], [30], [31] and summarized in section 4.1.2.1 provide a means to 

construct a MFOP maintenance policy.  In summary, there exists the need to link system 

design and maintenance policy development for a MFOP strategy. 

 

Figure 11:  Summary of Problem 2:  Adaptive Maintenance 

 

 To fill this knowledge gap, Research Question 2b and its conjecture research how to 

measure the maintenance burden generated by a component or subsystem.  Problem 2, 

consisting of the entirety of Chapters 5 and 6, develops a framework to design a MFOP 

maintenance policy.  Chapter 5 applied a revised maintenance theory in the framework to 

construct a policy to best meet a MFOP while maximizing availability.  Chapter 6 follows 

RQ 4: What is a maintenance

policy that controls MFOPS?

RQ 3: What is the maintenance 

policy that minimizes downtime?

Problem 2

Adaptive Maintenance

Chapter 

5

Chapter 
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the framework to construct an adaptable policy that meets a desired MFOP probability of 

success over a changing operational tempo. 

2.6 Framework Introduction 

This section introduces a generic framework that constructs policies to meet operational 

requirements of a MFOP strategy.  The framework establishes an approach to design a 

system and its maintenance policy to meet availability and dependability requirements.  

This section provides the reader a roadmap to the research and context to the need, 

development, and evaluation of the framework.  Chapter 3 provides definitions, 

background, and literature summary on modeling and maintenance methods.  Problem 1 of 

Chapter 4 establishes the tools to model the MFOP of a system, diagnose the weak link, 

and construct subsystem failure and repair distributions.  Chapter 5 establishes the need for 

the framework, presents the fully developed framework, and shows how the framework 

satisfies a MFOP strategy.  The chapter ends with an experiment that develops a policy to 

maximize availability for a MFOP system.  Chapter 6 elaborates on the framework’s use 

to improve a system’s MFOP probability of success and provides an application of an 

adaptable policy to meet the needs of changing operational tempo.  

2.6.1 Framework Overview 

The framework to design a MFOP maintenance policy (Figure 12) complements Relf’s 

methodology through three major actions: define, build, and evaluate. It builds upon Relf’s 

methodology by adding the design of a maintenance policy.  The framework begins by 

defining the current system and MFOP setting goals.  Principles specific to a MFOP 

strategy, namely the need to protect the MFOP from disruptive maintenance and ensure 
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sufficient reliability, guide the construction of a MFOP policy.  Finally, the framework 

calls for evaluation of the policy for sufficient MFOP, its probability of success, and 

resultant downtime.  The framework guides the designer in the iterative design of a system 

and policy until it satisfies the goals for MFOP, MFOP success, and availability. 

 

Figure 12:  Overview of Designing a Maintenance Policy 

 

 Figure 13 presents the conceptual framework on page 34 in full detail. 

2.6.2 Define the System 

The define action establishes inputs and key metric goals that drive the development of a 

supporting maintenance policy.  Figure 13 (page 34) shows the conceptual framework.  The 

figure lists major sections that introduce or derive key concepts for a process inside 

rounded, rectangles.  Bowlegs (#) denote the input, process, or decision number.  Define 

action events are: 

(1) Start.  The processes to construct a MFOP design and supporting maintenance 

policy begins here. 

  

Define the System

Build a Maintenance Policy

Evaluate the Maintenance Policy

Start

Done
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Figure 13:  Conceptual Framework to a MFOP Design 
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(2) Layout Baseline System.  Much like Relf’s Design Methodology, an initial step is 

defining the current system.  The framework permits the design of the system 

architecture with performance modeled through a series of phased, fault trees 

(section 4.1.2.2).  Key inputs include component failure distributions (section 

4.3.2.1) and associated repair times (sections 4.3.2.3 and 5.1.1). 

(3) Set Operational Goals.  This process defines the phased or segmented mission based 

upon model requirements set in section 3.3.1 and methods evaluated in section 

4.1.1.1.  The MFOP duration requirement and its MFOP Success rate (section 3.2.5) 

goals are determined based upon operational requirements.  The operator must also 

select the desired availability (section 3.1.2.3). 

(4) Calculate Downtime Function.  The contribution of component and subsystem 

downtimes are modeled in accordance with a revised renewal theory developed in 

section 5.1.1. 

2.6.3 Build a Maintenance Policy 

The build action constructs the draft policy by constraining preventive maintenance 

replacement intervals to MRPs.  It consists of the following processes: 

(5) Optimize Replacement Intervals.  Initial renewal intervals are drafted for 

components assigned to preventive maintenance with tasks of repair, replace, or 

service.  Draft intervals begin by following a policy that maximizes availability. 

(6) Protect the MFOP by Constraining Replacement Intervals.  This process manages 

intervals such that all preventive maintenance to occurs in the MRPs.  The applied 

policy determines the way renewal intervals are constrained.  Problem 2.1 of 
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Chapter 5 provides a policy to maximize availability.  Chapter 6 provides a policy 

to control MFOPS over a given number of cycles. 

(7) Is MFOP Value Okay?  The constraining of replacement intervals provides a limit 

on the MFOP duration.  The decision considers if the policy limited MFOP meets 

the MFOP duration goal.  If the policy’s MFOP duration is sufficient, the designer 

moves to Decision (8).  If the policy’s MFOP duration is insufficient, the designer 

must make a change to the system’s design by applying one or more of Relf’s 

MFOP Options (section 3.2.3).  This feedback to Process (13) is where the design 

of the system and policy interact. 

2.6.4 Evaluate the Maintenance Policy 

With the MFOP protected by the build action, the evaluate action checks for sufficient 

reliability and availability of the system.  Checking MFOP and downtime drives the 

designer to iteratively find the balance between the two. 

(8) Is MFOPS Value Okay?  The decision checks if the policy’s MFOP Success 

(MFOPS), or probability of success, meets the risk level set in Input (2).  Research 

Question 1’s investigates how to model a system’s MFOP.  The developed 

Discrete Event Simulation (section 4.1) provides the tool to measure the success 

rate.  If the MFOPS is insufficient to the goal set in Process (2), the designer 

moves to Process (9).  If the MFOPS is sufficient, the designer moves to Process 

(11). 

(9) Identify the Weakest Link.  Relf identified the weakest link as a necessary step to 

improve the system’s MFOP.  Research Question 2a seeks a means to identify 

the weakest link(s) that limit a system’s MFOP.  Conjecture A answers with the 



37 

concept of Failure Cause Identification.  Section 3.2.1 introduces the concept and 

section 4.2 provides further development as a quantifiable technique.  Problem 2 

makes extensive use of Failure Cause Identification in the application of the 

framework. 

(10) Adjust Replacement Intervals.  The framework requires the designer to shorten 

intervals of components identified as weak links.  The policy’s goals determine 

the approach to shortening.  Sections 5.3 and 6.2 provide guidance for policies 

that maximize availability and improve MFOPS, respectively.  An adjustment to 

the interval makes a change in the policy that returns the designer to Process (6).  

The iterative, inner loop between (6) to (10) is the MFOPS control loop 

supporting Problem 2.2 and is fully discussed in section 6.2. 

(11) Is Downtime Okay?  The final check of downtime occurs after the policy satisfies 

both the MFOP and MFOPS targets.  Decision (11) ensure the policy balances 

MFOPS against the downtime calculated using the revised renewal theory created 

in Chapter 5.  If the policy’s downtime is unacceptable, the designer moves to 

Process (12).  If the policy’s downtime is acceptable, the policy is complete with 

Process (14). 

(12) Rank Parts by Downtime.  This process orders components by their individual, 

expected downtime contribution.  The components with the greatest downtime 

are targets for improvement via a MFOP Option in Process (13) or an 

improvement to its maintainability in Process (1). 
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2.6.5 Concluding the Policy 

Should the policy become unable to meet the MFOP or downtime goals, the designer must 

seek a redesign to the cyber-physical system itself.  This feedback loop from Decision (7) 

and Process (12) to the Define action connects the cyber-physical system to the policy 

development. 

(13) Apply MFOP Option to Weak Link.  This process originates from Relf’s Design 

Methodology.  Possible MFOP Options include inherent reliability, 

prognostic/diagnostics, redundancy, and reconfigurability [24].  Please see 

section 3.2.3 for more detail on Relf’s MFOP Options. 

(14) Done.  Policy construction may end once the designed system and policy yield 

sufficient MFOP duration, sufficient MFOPS, and an acceptable downtime. 

 The building of a policy begins after the designer defines the system’s architecture and 

component reliability.  The framework is intended to guide the operational commander 

through a series of processes and decisions to create a policy best suited to meet the MFOP 

need while balancing policy risk measured by MFOPS and the desired availability.  The 

feedback loops to Define the System provide an opportunity for interaction between the 

system designer and the policy author.  In this way, the framework supports conceptual 

and preliminary design of a new system. 
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3 LITERATURE REVIEW AND BACKGROUND 

3.1 Reliability, Availability, Dependability, and Other -Abilities 

In everyday language, the terms reliable and dependable are often synonyms.  In the context 

of aircraft readiness their meanings differ and are significant.  Engineers, regrettably, are 

often ambiguous with their language when using the terms reliability, availability, and 

dependability.  This section provides definitions to avoid confusion.  The DoD believes all 

three metrics are important when predicting readiness and discussing a maintenance 

strategy.  The Joint Capabilities Integration and Development System (JCIDS) Manual 

requires reliability as a Key System Attribute (KSA) and availability as a Key Performance 

Parameter (KPP) [19].  In a MFOP strategy, dependability as measured by MFOP and MRP 

should be a KPPs. 

3.1.1 Reliability 

3.1.1.1 Basic and Materiel Reliability 

The DoD RAM-C Rationale Report Manual [19] defines reliability as “the probability that 

the system will perform without failure over a specified interval under specified 

conditions.”  In [32], Smith provides a similar definition.  He summarizes reliability as “the 

probability of non-failure in a given period.”  Probability analysis is clearly fundamental 

to the calculation of reliability.  In this thesis, the random variable of interest is the Time 

to Failure (TTF).  Let f(t) be the probability density function of the TTF distribution (also 

called the failure distribution) and is the probability density function, f(t).  The failure 

function, F(t), is the probability that the Time To Failure (TTF) occurs before time t.  F(t) 
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is the integral of the failure distribution from time zero to t and is known as the cumulative 

distribution function (cdf). 

𝐹(𝑡) = ∫ 𝑓(𝑡)𝑑𝑡
𝑡

0
= 𝑃(𝑇𝑇𝐹 ≤ 𝑡) ( 1 ) 

The reliability function, or survival function, is complementary to the cdf and is defined as 

𝑅(𝑡) = ∫ 𝑓(𝑡)𝑑𝑡 = 1 − 𝐹(𝑡)
∞

𝑡
 ( 2 ) 

 Basic reliability is the probability of the system to operate without faults requiring 

repair, R(t).  Materiel Reliability, RM, is the basic reliability of a specified system based on 

materiel condition.  DoD RAM-C requires an appropriate materiel reliability to meet the 

capability needed in the operating environment [19].  Part of fulfilling this requirement in 

FVL FoS is calculating the Rm necessary to achieve the target MFOPs listed in Table 1. 

3.1.1.2 Mission reliability 

Mission reliability (MR) is “the probability that the system aged tb is able to complete 

mission duration of tm successfully” [33].  There are two major considerations that 

distinguish between basic reliability and mission reliability.  According to DoD RAM-C, 

mission reliability considers “failures that cause mission aborts” while basic reliability 

considers “all failures requiring maintenance” [19].  Basic reliability must be less than or 

equal to mission reliability because basic reliability includes other failures that do not 

disrupt mission accomplishment.  The second distinction, is that mission reliability is for a 

system with a given age of each component.  As noted by Kumar, in mission reliability ‘we 

recognize the age of the system before the mission” [33].  Following conditional 

probability, mission reliability is  
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𝑀𝑅(𝑡𝑏 , 𝑡𝑚) = 
𝑅(𝑡𝑏+𝑡𝑚)

𝑅(𝑡𝑏)
 ( 3 ) 

Mission and basic reliability are distinct and have separate uses.  DoD RAM-C states that 

mission reliability is for operational availability calculations and basic reliability supports 

materiel availability calculations [19]. 

3.1.1.3 Unreliability 

Unreliability, Q, is probability of failure over a specified interval.  It is the complement of 

reliability 

𝑄 = 1 − 𝑅 ( 4 ) 

Unreliability is useful in theoretical calculations when it is more convenient to calculate 

probabilities of failure than probability of success.  The use of an inclusion-expansion 

expression of prime implicants as outlined in Chew et al. [27] provides an analytical 

solution for system unreliability and, consequently, reliability.  Unreliability may be 

expressed to any level (MFOP cycle, mission, phase, etc.).  It is important to denote 

whether the unreliability is from MFOP start through a level (i.e. start to phase four) or the 

unreliability is at a level using conditional probability (i.e. phase four).  The former 

decreases with the progression of levels while the latter requires the use of conditional 

probability (i.e. unreliability of phase 4 given that phases one to three are successful). 

3.1.2 Availability 

Whereas reliability involves a duration of time, availability is a measure in an instant of 

time.  The DoD divides availability into Materiel Availability (AM) and Operational 

Availability (AO). 
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3.1.2.1 Materiel Availability 

Materiel availability measures the number of in service aircraft against the total fleet 

inventory.  Operational availability is a measure for of a set of aircraft typically under a 

unit.  The RAM-C Rationale Report [19] defines the term as the percentage of systems in 

operational use. 

3.1.2.2 Operational Availability 

Operational Availability (AO) is “the percentage of time that a system or group of systems 

within a unit are operationally capable of performing an assigned mission” as defined by 

the RAM-C Rationale Report [19].  It is important to note that AO, not AM, is an operational 

metric.  This is because AO measures downtime beyond materiel condition.  Smith [32], 

expresses AO as  

𝐴𝑂 = 
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒+𝐷𝑜𝑤𝑛 𝑡𝑖𝑚𝑒
=

𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝐷𝑇
 ( 5 ) 

where MTBF is the Mean Time Between Failure and MDT is the Mean Downtime.  MTBF 

is the number of operating hours divided by the total number of failures.  MDT is the 

average downtime of a system.  It is the sum of Mean Time to Repair (MTTR), Logistics 

Downtime (LDT), and Administrative Downtime (ADT).  Downtime measured as MTTR 

only yields inherent (or materiel) reliability [34].  For further definitions, see the DoD 

RAM-C Rationale Report [19]. 
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3.1.2.3 Achieved Availability 

Achieved Availability (AA) removes the operational aspects of downtime to consider the 

materiel’s performance only.  It accounts for downtime due to both corrective and 

preventive maintenance using Mean Time Between Maintenance (MTBM).  The Defense 

Acquisition Glossary [35] defines Achieved Availability as 

Availability of a system with respect to operating time and both 

corrective and preventive maintenance.  It ignores Mean Logistics Delay 

Time (MLDT) and may be calculated as Mean Time Between 

Maintenance (MTBM) divided by the sum of MTBM and Mean 

Maintenance Time (MMT) that is 

𝐴𝐴 =  
𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀+𝑀𝑀𝑇
 ( 6 ) 

AA allows analysis of a system without accounting for the logistic and administrative delays 

in maintenance units.  AO is the preferred measure of availability; however, AA is a metric 

obtainable when maintenance delays are unknown or unaccounted.  

3.1.3 Dependability 

Availability and dependability are both strongly a function of reliability but have different 

meanings.  AO is the probability the system is ready to perform a mission at any given time.  

The former Reliability Analysis Center, now under the Defense Systems Information 

Analysis Center (www.dsiac.org), described operational dependability, DO, as the 

probability the system remains up during a mission given it started a mission operational 

[34].  The key difference is that dependability is conditional upon the aircraft beginning a 

mission up.  Figure 14 shows the connection between reliability, materiel availability, and 

materiel dependability. 
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Figure 14:  System Effectiveness [34] 

 

A dependable system must stay functional throughout the mission but makes no statement 

about the system before flight.  A dependable system must work when called to work.  In 

a MFOP strategy, a dependable system has little unscheduled maintenance but says nothing 

about scheduled maintenance.  An aircraft may remain dependable and have a large amount 

of scheduled maintenance (MRP).  Dependability is necessary and sufficient for a high 

MFOP.  A reliable system has little unscheduled maintenance and little scheduled 

maintenance.  A reliable aircraft keeps O&S costs low and will support better availability 

and dependability.  MFOP makes a stronger statement about an aircraft’s dependability 

than availability. 
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3.1.4 Other -Abilities 

3.1.4.1 Affordability 

Affordability is the measure of financial means and willingness to support a system’s life 

cycle costs.  Greater means (and the willingness to spend) or lower costs will increase 

affordability.  This study focusses on the system itself and shall not consider factors 

external to the system such as an organization’s means or willingness to spend.  The Cost 

Capability Analysis curve (see section 3.5.2) informs decision makers of the system 

effectiveness and life cycle costs.  Decision makers are free to consider costs themselves.  

Consequently, life cycle costs measures affordability absent consideration of an 

organization. 

3.1.4.2 Capability 

The purpose of a system is to provide a needed capability to the user.  The Joint Capabilities 

Integration and Development System (JCIDS) compiles capability needs for military 

systems.  JCIDS capability documents cite the vehicle performance, RAM, cost, 

sustainment, and other requirements.  The title system effectiveness addresses the 

performance capability, availability, and dependability of a system.  When using system 

effectiveness, capability refers to the vehicle’s performance to meet operational capability 

requirements.  Availability and dependability is different than operational capability.  

Equation ( 22 ) in section 3.5.1 presents a Mission Capability Index (MCI) as a 

measurement of operational capability. 
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3.1.4.3 Maintainability 

Like reliability, availability and dependability share the concept of maintainability. The 

DoD RAM-C does not provide an explicit definition; however, maintainability describes 

the ease of effort necessary to preserve and restore a system’s functionality.  

Maintainability metrics are measured in time (i.e., Maintenance Man Hours) or cost.  

Example metrics include MTTR, MDT, LDT, and ADT.  In the model of renewal theory 

introduced in section 3.4.2, the time to repair failures (Tf) and the time to conduct 

preventive replacements (Tp) measure a components maintainability.  Maintainability 

supports a MFOP strategy with minimal inspections and repairs during a MFOP cycle and 

limiting the MDT associated with each recovery period. 

3.1.4.4 Survivability 

Survivability commonly refers to the survival of a crew and system.  DoD’s Joint Technical 

Coordinating Group on Aircraft Survivability (JTCG/AS) defined survivability as 

The capability of a system and crew to avoid or withstand a man-made 

hostile environment without suffering an abortive impairment of its 

ability to accomplish its designated mission.  Survivability consists of 

susceptibility, vulnerability, and recoverability.  JTCG/AS [36] 

JTCG/AS’ definition is more comprehensive than considered in this thesis.  Kumar et al. 

coined the term MFOP Survivability as the confidence level that an item successfully 

completes the MFOP [23].  This thesis uses the term MFOP Success (MFOPS) to reference 

Kumar’s confidence level to avoid confusion with the JTCG/AS definition.  MFOP Success 

relates to reliability and does not address the vulnerability to enemy action.  Section 3.2.5 

provides an expanded review of MFOP Success. 
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3.2 MFOP Concepts 

The idea of a MFOP is a different way of approaching aircraft reliability.  Traditional 

reliability seeks fault free operations, yet this section shows why the interest in a MFOP 

strategy is the duration of failure free operations.  A MFOP is as a renewable assurance 

against system failure.  This section discusses how mean based metrics such as MTBF fail 

to convey the information necessary to predict a MFOP and its probability of success.  

Finally, it reviews various approaches to improve system MFOP and a few examples of 

the different non-aviation related industries employing MFOP strategies. 

3.2.1 Failure Cause Identification 

Statistical metrics using the mean capture the frequency of failure, but not the history of 

failure (section 2.3.1).  Measuring failure using the median is an interesting notion.  The 

median is a step in the right direction with a rough accounting of failure history; however, 

it is inadequate because the median makes no statement on the frequency of failure.  Two 

components may have the same median time before failure yet failure at different rates.  

To account for both the frequency of failure and time history, one must look to Failure 

Cause Identification. 

 Trindade and Nathan in [22] and [37] demonstrate another useful concept in reliability 

theory that has a new application in MFOP.  The traditional way of showing the cause of 

failure is through a Failure Cause Pareto chart.  Looking at Figure 15, one would assume 

that Cause A is the biggest limiting factor to the systems MFOP.  With this information, 

Cause E looks like the most reliable and least likely limiting factor to the MFOP. 
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Figure 15:  Failure Cause Pareto Chart. Figure reprinted with permissions from [22] 

 

 

Figure 16:  Failure Cause Versus Calendar Date. Figure reprinted with permissions from 

[22] 

 

 Examine the same system proposed by Trindade and Nathan in Figure 16.  This figure 

shows the time history of failures.  Although this example uses calendar time, a MFOP 
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designer could easily use flight hours to measure time.  Looking at the figure, one sees that 

Cause E, thought to be the best performer by a Pareto chart, has failures occurring early in 

the year.  Cause A has the most total failures in the year but does not experience failures 

and limit MFOP until mid-year.  To get any significant system MFOP, the designer needs 

to rework causes B, C, D, and E.  Failure Cause history provides the designer the right 

information to identify which components to improve to better the system’s MFOP. 

 The issues with MTBF and traditional failure bar charts have the same root cause.  

Reporting the mean destroys the time history information.  Under a MFOP strategy, the 

“when” is as important as the “how often.”  An effective MFOP strategy may accept more 

total failures over time in favor of those failures occurring later in usage.  This example is 

an important concept in understanding how to improve MFOP and shapes the approach to 

solving Problem 1. 

3.2.2 The Incompleteness of Availability 

In the strictest interpretation of a MFOP cycle, a system does not experience any 

unscheduled maintenance during the MFOP period and defers all scheduled maintenance 

to the MRP.  The expected downtime due to logistical and administrative delay is minimal 

because the designer has perfect knowledge of the repairs occurring in the next MRP.  

Under this interpretation, the ratio of MFOP to MFOP cycle duration may be expressed as 

the achieved availability, AA. 

𝐴𝐴 =  
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒+𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
=

𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀+𝑀𝑀𝑇
≅

𝑡𝑚𝑓

𝑡𝑚𝑓+𝑇𝑚𝑟
 ( 7 ) 
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where tmf and Tmr denote the duration of the maintenance free operating and maintenance 

recovery periods, respectively.  The equivalency goes even further if the system operates 

continuously with no standby time. 

 Equation ( 7 ) is valid when two assumptions are true.  The MFOP duration becomes 

an MTBM with no deviation under the strict interpretation which allows system failure 

only after achieving the MFOP.  Likewise, the MRP duration becomes the MMT only if 

all maintenance is deferred successfully to the MRP. 

 Availability is an important metric to measure the system’s efficiency of uptime to 

downtime; however, it is an incomplete metric in a MFOP context as it suffers from loss 

of time information like the MTBF fallacy.  Consider two different systems performing the 

same functions.  The systems run continuously with uptime and downtimes as illustrated 

in Figure 17.  The first system has an operating period of 9 hours (tmf), a repair period of 1 

hour (Tmr), and a total MFOP cycle of 10 hours.  From ( 7 ), the availability is 90%.  A 

second system has an operating period of 3 hours, a repair period of 20 minutes, and a total 

MFOP cycle of 3.33 hours.  This too has an achieved availability of 90%, yet at more 

frequent repair intervals.  The operational needs will dictate an operator’s preference in 

systems.  To an operator seeking greater MFOP, the second system is more disruptive, yet 

the availability metric alone is incomplete in measuring this deficiency. 
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Figure 17:  Incompleteness of Operational Availability 

 

 The ratio of MFOP to MRP should accompany availability to completely measure a 

system to satisfy operational needs.  In the above example, the systems have MFOP to 

MRP ratios of 9:1 hours and 3:0.33 hours.  Viewing the ratio communicates the time 

information necessary for a MFOP design. 

3.2.3 MFOP Options 

Hockley and Appleton first suggested designing from a “bottom-up” approach to achieving 

a MFOP target [6].  The bottom-up approach involved understanding why, how, and when 

items failed.  They listed the following approaches to improve MFOP: 

• Condition Monitoring 

• Useful Life 

• Fault Tolerance 

• Acceptable Degradation 

• New Technology 

tmf=9 System 1  AA = 90%

Tmr=1

tmf=3

Tmr=⅓

System 2  AA = 90%
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 Relf identified a more refined strategy to obtain the capacity for MFOP.  He began with 

the premise that an effective MFOP strategy should include multiple approaches [24].  He 

introduced six MFOP Options to extend the MFOP as shown in Figure 18.  Relf’s general 

MFOP methodology, as previous introduced by Figure 9 of section 2.5, applies the MFOP 

Options. 

 

Figure 18:  Hierarchy of MFOP Options [24] Copyright © 1999 John Wiley & Sons, Ltd. 

 

Component inherent reliability makes a direct improvement to the systems reliability but 

has limits based upon manufacturing and material capabilities.  Relf warns of runaway 

costs if a strategy relies only on inherent reliability [24].  Prognostics forecast failure by 

detecting signs of impending failure with sufficient time to take corrective action.  

Prognostics are normally on line by working during aircraft operation.  Diagnostics identify 

the source of the fault and are normally off line.  Failure life characteristics involves 

understanding of how parts wear out and fail.  Redundancy adds an additional like 

component or software portioning that performs the task of a failed component at the 

penalty of additional weight and complexity.  Both redundancy and reconfigurability are 

MFOP options because they are ways for a system to be fault tolerant and continue to 
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function despite a component failure [21].  Designers make the choice to use the first five 

MFOP options early in the design process; thereby constraining the MFOP before the 

aircraft reaches a unit. 

 A lifing policy is the one option to improve MFOP that is under the influence of 

maintainers in a unit.  Some components tend to wear with use and follow a distribution 

with an increasing failure rate over time or cycles.  Lifing policy is the preventive 

replacement of those aging parts upon reaching the safe life or exceeding a damage 

tolerance threshold.  The goal of a lifing policy is to improve the success of the MFOP.  An 

effective MFOP maintenance plan appropriately times the replacement of worn parts to the 

MRP.  A lifing policy is costly in that it replaces items that are functioning and may be 

perfectly fine.  It also creates the need for item refurbishment before reinstall.  Despite 

these drawbacks, it is the one option most easily changed to by operators.  Chapter 6 

explores the concept of aggressive lifing to adapt the MFOP to increasing or decreasing 

operational demands. 

3.2.4 Failure Free Versus Fault Free 

Hockley and Appleton [6] first introduced the notions of failure free and fault free when 

outlining the Ultra-Reliable Aircraft Project in 1997.  Hockley [7] then elaborated on the 

terms in 1998.  The articles [6], [7] define  

1. Failure free to mean “that the equipment is able to operate to its full mission 

requirement for the period required or specified.” 

2. Fault free means that “there are no faults and the system is also able to operate to 

its full mission requirement for the period required or specified.” 
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 Failure free means that faults may exist but that they did not prevent the system from 

accomplishing its task.  Fault free is a stricter requirement, requiring no faults to exist in 

the system.  A system that is fault free is always failure free (if designed correctly).  A 

system that is failure free may not necessarily be fault free.  The design may be fault or 

damage tolerant.  MFOP options that improve fault tolerance are redundancy and 

reconfigurability.  Inherent reliability, prognostics/diagnostics, and lifing policies are ways 

to achieve fault free design. 

 An aircraft may achieve a desired MFOP by reducing failures or being more fault 

tolerant or both.  The important concept is that faults may occur if the system can cope 

with the fault and continue to fully function.  The requirements to be completely fault free 

or even completely failure free is very stringent; however, the good news is that neither is 

necessary to obtain a MFOP.  A MFOP system just needs to be failure free long enough to 

achieve the desired period. 

3.2.5 MFOP Success 

Kumar et al. in [23] introduced the concept of MFOP Survivability.  The authors defined 

MFOPS as “the probability that the item will survive for the duration of the MFOP” [23].  

Although Kumar et al. follows the field of reliability engineering’s use of the term 

survivability, it creates a confusion with the military term of survivability (section 3.1.4.4).  

MFOPS is renamed as MFOP Success to avoid confusion.  MFOPS is the probability that 

a system remains functional after the ith MFOP cycle given that it was functional in 

previous cycles.  Conditional probability states that the probability of event B occurring 

given that event A has already occurred is 
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 In this case, event B is the probability that the next MFOP cycle is successful given 

that the previous MFOP cycle (event A) was successful.  The MFOPS after a series of i 

cycles can be calculated then as 
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 where Rk is the mission reliability of the kth component in the ith cycle and tmf is the period 

of the cycle (or MFOP) [23].  Equation ( 9 ) is constructed for a system with parts arranged 

in serial.  In more complex fault trees or phased missions, a generic equation that represents 

MFOP is 

𝑀𝐹𝑂𝑃𝑆(𝑡𝑚𝑓 , 𝑖) = 
𝑅𝑠𝑦𝑠(𝑖×𝑡𝑚𝑓)

𝑅𝑠𝑦𝑠([𝑖−1]×𝑡𝑚𝑓)
 ( 10 ) 

where Rsys is the mission reliability of the system.  MFOPS is a named term for the 

confidence level that a system survives the next cycle.  It is like a system hazard rate in 

that both are conditional probabilities; however, MFOPS measures success over time, 

while the hazard rate measures failure at an instant of time. 

 Two sources, [23] and [21], recommend renewal theory to solve the MFOPS of a 

repairable system.  This models the MFOPS after a series of operating periods followed by 

recovery periods.  Kumar et al. [23], again provides a concise application of renewal theory 

for MFOPS.  Assuming a MFOP system has two states, 1 (operating) or 0 (failed), the 

probability, P1, that the system survives on the Tth cycle of tmf is found in ( 11 ).  The 

probability it does not, P0, is ( 12 ).   
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𝑃1(𝑇) = 𝑅(𝑡𝑚𝑓) + ∫ 𝑓(𝑢|𝑡𝑚𝑓)𝑃0(𝑇 − 𝑢)
𝑇

0
𝑑𝑢 ( 11 ) 

𝑃0(𝑇) = ∫ 𝑔(𝑣)𝑃1(𝑇 − 𝑣)𝑑𝑣
𝑇

0
 ( 12 ) 

where f(t) is the failure density function for the system, g(t) is the repair time density 

function, and f(u|tmf) is the probability that a system survives to time u given it has survived 

tmf.  Using numerical methods will solve ( 11 ) and ( 12 ) [23], [26].  P1 is of the primary 

concern to find the MFOPS.  Finally, [26] gives the probability of failure or unreliability, 

q(t), of the system as 

𝑞(𝑇) = ∫ [𝑃1(𝑧) − 𝑃0(𝑧)]𝑑𝑧
𝑇

0
 ( 13 ) 

3.2.6  Examples of MFOP 

3.2.6.1 South African Mining Industry 

Al Shaalane and Vlok [21] applied the MFOP concept as outlined by Relf and Hockley to 

the mining industry.  The authors modeled three rock crushers working in parallel.  They 

tested each rock crusher’s data with the Laplace trend test and then fitted with them to 

Weibull distributions. 

 Analysis by the authors showed the MTBF of Crusher 1 and Crusher 2 were similar at 

49 and 50 hours, respectively.  Figure 19 plots the MFOPS versus MFOP.  The MFOPS of 

each crusher at 50 hours was significantly different despite like MTBFs.  Crusher 1 had a 

50% chance of reaching the 50-hour mark.  Crusher 2 had a 40% chance.  This is an 

example of correctly applied failure cause identification (see section 3.2.1) and shows the 

advantage in a MFOP analysis. 
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Figure 19:  Probability of Crushers Surviving a MFOP Length. Figure reprinted with 

permissions from [21] 

 

3.2.6.2 U.S. Navy CBM+MFOP Demonstration 

In the spring of 2011, the U.S. Navy Program Executive Office (PEO) Ships briefed the 

results of a CBM + MFOP philosophy.  The concept was to take advantage of condition 

based maintenance to utilize a commercial off the shelf automated monitoring system for 

self-checking, self-healing capabilities, and remote monitoring and control [38].  The USS 

Iwo Jima successfully completed a six-month deployment with an AO of 99.7%.  The 

MFOP program demonstrated improved availability through the MFOP options of 

redundancy and prognostics with diagnostics.  It projected a 99% availability after one year 

compared to the non-redundant systems value of 83%.  At four years, the program 

estimated an 89% availability compared to the non-redundant systems value of 48%.  PEO 

Ships carried forward a recommendation for further expansion of the MFOP program to 

the fleet. 
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3.2.6.3 Airline Industry 

The airline industry’s maintenance rhythm is loosely a short cycling of MFOP and MRP 

[39].  Except for “red-eye” and international flights, maintenance resets the airplanes 

overnight in a short MRP.  Airlines dispatch planes for duty throughout the day under a 

Time Limited Dispatch (TLD) approach.  SAE International’s Aerospace Recommended 

Practice (ARP) 5107B [40] states, 

The TLD concept is one wherein a redundant system is allowed to 

operate for a predetermined length of time with faults present in the 

redundant elements of the system, before repairs are required. 

Extending the dispatch to a predetermined length of time creates a MFOP with a given 

probability of success.  Both TLD and a MFOP strategy share the goal to manage risk.  

They sequence maintenance to the recovery period such that the probability of success 

meets a desired threshold.  In conjunction with the British Ultra-Reliable Aircraft Project, 

Airbus BAe undertook an experiment with an A320.  A benchmarking showed a MFOP of 

ten days (150 flight hours) with a MFOPS of 0.8 to 0.9 [41].  Albeit rotorcraft maintenance 

is historically more challenging, this experiment showed the potential for significant 

MFOP durations by combining options outlined by Relf [24]. 

3.2.7 MFOP Summary 

Improving the duration of failure free operations is the key to unlocking MFOPs.  Equally 

as important, an acceptable risk level of MFOPS must accompany any MFOP projection.  

Plotting a time history provides the necessary information to determine the MFOP at a 

given success.  Finally, both the U.S. Navy and the Airbus BAe demonstrated the power 

of multiple MFOP options to great success. 
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3.3 Reliability System Modeling 

The definition of availability, dependability, and MFOPS rely upon the calculation of a 

system’s materiel reliability.  It is also worth taking note that reliability is a key metric for 

safety and risk analysis.  Meeting Target Levels of Safety drives much of the certification 

or air worthiness processes [42].  While not discounting the need for a safe aircraft, this 

review of modeling techniques focusses on an aircraft’s dependability to best address 

MFOP problems.  A hazard, in a MFOP context, is the occurrence of any event that causes 

mission failure.  Unlike a safety hazard, a MFOP hazard may or may not place human lives 

or equipment at risk.  Andrews, in an article in the Journal of Mechanical Engineering 

Science, stated that the “methods used to quantify the frequency or probability of the 

system failure resulting in the materialization of the hazard are generally applicable and 

used across all industrial sectors” [26].  Much like a safety analysis, but with a different 

purpose, modeling of a MFOP strategy begins with the modeling of a system’s materiel 

reliability. 

 In that same article, Andrews surveyed state-of-the-art reliability modeling that is 

applicable to all industries.  His primary guidance to the reader was to consider the 

assumptions of each method.  He recommended the selection of a method to be based on 

the applicability of the model’s assumptions [26].  The discussion of the proceeding 

methods in this chapter will address each’s assumptions.  Chapter 4 will then consider the 

assumptions in selecting the best method to solve the thesis’ problems. 
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3.3.1 Model Criteria 

A MFOP model for rotorcraft requires certain characteristics and functionality.  Like the 

call for operational metrics, there is a growing expectation that models support operational 

conditions [26]; therefore, an acceptable MFOP method shall  

1. support phased missions 

2. be repairable 

3. monitor part wear and aging 

4. be flexible 

 A MFOP model must be compatible with a phased mission approach.  A MFOP is the 

compilation of repeated missions.  Each mission consists of different phases such as warm-

up, hover, take-off, climb, cruise, descent, and landing.  Each phase likely has varying 

duration, flight conditions (e.g. altitude, temperature, airspeed), and component usage.  For 

example, the landing gear only experiences cycles and wear during take-off and landing.  

An accurate model shall include these differences.  Mission unreliability is the probability 

of at least one failed phase [27].  The three methods, FTA, Markov, and simulation, 

consider phased missions but with varying complexity. 

 Integral to a MFOP strategy is the maintenance recovery period at the end of the cycle.  

Any method must be able to account for a repairable system that adjusts component age 

and failure distributions. 

 A great number of parts on a helicopter experience wear and vibration that decreases 

performance over time or increases unreliability over time.  Some components experience 

burn-in and some components experience wear-out, and others such as electronics tend to 

have a constant rate of failure.  The model must handle a variety of failure distributions. 
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 Flexibility is also important to the model’s usability.  Methods that are easily to employ 

have an advantage over those that are difficult to modify or take an extensive effort to 

calculate.  A MFOP model should also provide a time history across the phased mission 

and throughout multiple missions to predict the MFOPS over flight time.  

3.3.2 Analytical Fault Tree Analysis 

The origins of Fault Tree Analysis (FTA) date to the 1960s.  Andrews called FTA and 

reliability block diagrams “the cornerstone” of most risk and safety analysis [26].  FTAs 

are combinatorial methods that work off a minimal cut set to build a systems likelihood of 

failure [26].  Each cut set represents a failure mode of the system.  The MFOPS shown in 

section 3.2.5 is an example of a combinatorial method. 

 FTAs prevent several problems in a MFOP strategy.  A primary assumption of FTA is 

that component failure events occur independently [26], [27].  This eliminates FTA from 

modeling a sequence of events such as cascading failures.  If component failure is not 

independent, then other methods like Markov or simulation are more appropriate [27].  

Non-coherent fault trees can handle dependency through the use of prime implicants 

(combinations of states that cause failure) [27], but Andrews says that they are “highly 

complex and infrequently used” [26].   Chew et al. [27] demonstrated how to adapt non-

coherent FTAs to analytically solve a phased mission.  The approach created a new fault 

tree for each phase and then summed the unreliability for each phase to yield the mission 

unreliability.  It showed the probability of a failure at phase p to be 

𝑃(𝑝ℎ𝑎𝑠𝑒 𝑝 𝑓𝑎𝑖𝑙𝑢𝑟𝑒) = 1 − 𝑃(𝑝ℎ𝑎𝑠𝑒 𝑝 𝑠𝑢𝑐𝑐𝑒𝑠𝑠|𝑝ℎ𝑎𝑠𝑒 𝑝 − 1 𝑠𝑢𝑐𝑐𝑒𝑠𝑠) 

= 1 −
𝑃(𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑢𝑝 𝑡𝑜 𝑒𝑛𝑑 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒 𝑝)

𝑃(𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑢𝑝 𝑡𝑜 𝑒𝑛𝑑 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒 𝑝−1)
  ( 14 ) 
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For all but the simplest systems, the approach authored by Chew becomes computationally 

intensive [26].  Finally, FTAs typically model a non-repairable system using the minimal 

cut sets elimination technique.  They become very large and complex with repairable 

systems [26], [27]. 

 Binary Decision Diagrams (BDDs) are another option.  Their structure is like FTAs but 

each entry takes a system state.  BDDs are faster and their calculations are a more efficient 

depiction than an FTA; however, building their structure is somewhat of an art form and it 

is difficult to extract the fault structure [26]. 

3.3.3 Markov Chains 

Markov models belong to a family of state space models.  The Markov method considers 

all possible states a system may take [32] and may be continuous or discrete.  The general 

strategy is to solve the probability of failure for all states and then sum them together for 

the system unreliability.  A Markov system is both exhaustive (every state is accounted 

for) and mutually exclusive (system may only occupy one state at a time) [26], [27], [32].  

State outcomes are calculated as 

𝒔(𝑚) = 𝑺. 𝑨(𝒎) ( 15 ) 

where s(m) is a vector of state probabilities after the mth step and A is the transition matrix 

[26].  Markov analysis model repairs systems by transitioning back from a failed to 

operating state.  This makes it appropriate for MFOP-MRP cycles. 

 Classical Markov methods have two assumptions:  (1) the system lacks a memory; and 

(2) the system is homogeneous [26], [32].  A homogeneous system has a constant failure 

rate; therefore, they do not work for non-constant failure or repair rates.  Chew et al. in [27] 
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noted that non-homogeneous models support aging parts but they become complex.  

Another disadvantage of Markov methods is that the model’s size grows exponentially as 

more components join the system [26].  They suffer from state space explosion [43]. 

3.3.4 Event Simulation 

Simulation’s greatest advantage is that it is unrestricted by any set of assumptions.  It does 

not suffer from the complexities found in phased mission FTAs or non-homogeneous 

Markov analysis [27].  Simulation may use different failure distributions including non-

constant failure distributions like Weibull.  They support repair queuing, component 

interdependence, and repairable systems [27].  Simulation has become attractive because 

computing permits multiple iterations that quickly approximates solutions to problems that 

are mathematically complex or impossible [26].  Most importantly, simulation can easily 

depict failures in a time history to permit the identification of MFOP to a given success 

rate.  A correctly drawn simulation meets the four criteria (phased mission support, 

repairable, aging parts, and flexibility) to model cycles of MFOP-MRP in the problem. 

3.3.4.1 Discrete Event Simulation 

A Discrete Event Simulation (DES) is a type of event simulation.  DES models the behavior 

of a dynamic system by approximating the system as a sequence of instantaneous 

occurrences [44].  A DES has the following characteristics: 

• Discrete because the system only occupies one state at a time 

• Events cause instantaneous transition from one state to another. 

• a Simulation of a real-world system that progresses through a series of missions. 
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The system is in a fixed state until the next event occurs.  Events may occur at regular or 

random intervals.  After an event, the event and the new state of the system are recorded.  

Unlike a time-based simulation, the simulation does not record information at a uniform 

time step; time is merely an artifact of the simulation [44]. 

 DES provides two advantages over time-based simulations in a MFOP analysis.  

Depending on the application, recording the state only after event transition may save 

significant computational time.  Secondly, DES is valuable when mixing deterministic and 

non-deterministic (stochastic) aspects [44].  When considering the MFOP problem, the 

proposed DES has both aspects as shown in the table below. 

 

Table 5:  Discrete Event Simulation Aspects 

Deterministic Stochastic 

Phase duration and mission progression 

System architecture 

Repair decisions 

Detection of failures 

Performance modeling 

Part failure 

Part repair time 

Repair cost 

Technology impacts 

 

 Compiling multiple iterations of the DES approximates the answer to a complex 

problem.  Relf [24] suggested such an effort in 1999 when he first introduced MFOP 

options.  [43], [26], [27] also recommended Monte Carlo simulation to quickly 

approximate solutions.  Chew et al. [27] noted that applying analytical methods like FTA 

and Markov to a more complicated system requires “extensive calculations,” yet simulation 
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like Monte Carlo “does not require a much greater increase in the length of time to find 

phase reliability.” 

3.3.4.2 Petri Nets 

Several papers [26], [27], [39], [43] endorse the use of state space based Petri nets to run 

within a Monte Carlo simulation to model MFOP.  Petri nets are a flexible, graphical 

modeling technique that describes a system with places and transitions (see Figure 20).  

Transitions connect places.  Tokens occupy places and move to places via transitions.  

Transitions may be instantaneous, a fixed time, or follow any random distribution.  Total 

token position marks the system’s state.  In modeling a system’s failure, tokens may 

assume the role of components as in [39] or work to define component operation or failed 

states as in [27].  References [27] and [43] demonstrated the use of Petri nets in a systems 

reliability with comparable results to analytical models.  Phase modeling occurs by 

transitioning tokens from one phase state to another.  Volovoi in [43] proves how tokens 

may age to support component wear and can change color to model Relf’s MFOP options.  

Event simulation is similar to a Petri net in that both are state-based and event driven, but 

event simulation may not have a graphical depiction of the states. 
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Figure 20:  Simple Petri Net with Repairing and Shared Pool of Spares. Figure reprinted 

with permission1 

3.4 Maintenance Modeling 

A coupling exists between the MFOPS and MRP.  A well-designed policy of scheduled 

maintenance is “the most cost effective way” [26] to maintain the MFOPS for aging 

systems.  Historically, design and maintenance planning are separate [26] .  There exists 

great potential in marrying the system’s reliability to a flexible MRP policy.  The notion 

of Time Limited Dispatch (TLD) supports a MRP policy. TLD permits the dispatching of 

aircraft with known faults but no mission critical failures.  TLD operates as failure free but 

not fault free. Andrews [26] notes that, in TLD, dispatch is halted when the risk of further 

failure exceeds a risk or safety threshold.  The threshold for dispatch in a MFOP strategy 

is the MFOPS.  Generating a maintenance policy that maintains a MFOPS and minimizes 

downtime is of relevance in military aircraft operations. 

 

                                                 
1 Reprinted from Reliability Engineering & System Safety, vol. 84, V. Volovoi, “Modeling of system 

reliability Petri nets with aging tokens,” pp. 149-161, Copyright (2004), with permission from Elsevier. 
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3.4.1 Maintenance Recovery Period 

The Maintenance Recovery Period (MRP) enables a MFOP by repairing worn components 

and replacing failed components.  This goal of the MRP is to reset the system reliability to 

the point where it can achieve the next MFOP at the required success rate (see Figure 21).  

A secondary goal of a MRP is to trade for less unscheduled maintenance with more 

scheduled maintenance.  The airline industry almost always desires this trade because 

scheduled maintenance affords the opportunity to reduce administrative and logistical 

downtimes.  The predictability of a MRP limits mission disruption and reduces total 

downtime.  An outcome for a MRP is the reduction in cost.  The major “hurt” of airlines 

was that of unscheduled maintenance; costing on the order £1M per aircraft [6].  The British 

URA Project predicted a 15-20% savings in O&S cost with the application of a MRP [7]. 

 

Figure 21:  Achieving Reliability and MFOPS Based on Replacement Strategy. Figure 

reprinted with permissions from [45] 
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 While literature has studied MFOP in recent years, it has neglected MRP.  The majority 

of published work on scheduled maintenance policies to include [3], [46], and [45] are 

motivated by industry’s desire to minimize cost only.  In military operations, reduction of 

cost is not always the primary objective.  There is the need for an adaptive maintenance 

policy that is flexible enough to meet the next MFOP.  Each MRP should not look the same 

because components’ usage varies in a phased mission and parts wear at different rates.  

[21], [41] reinforce the need for such a policy.  In a survey of maintenance policies, Galante 

and Passannanti [46] identified adaptive maintenance policies as a problem that “has been 

poorly examined.”  A major effort of the dissertation is to adopt renewal theory as described 

in the next section to create an adaptive maintenance policy. 

3.4.2 Renewal Theory 

A previous section, 3.2.1, discussed how to use failure cause identification to discern which 

components or subsystems are limiting a MFOP.  Section 3.2.2 reviewed options to 

improve the limiting components or subsystems.  This section outlines the theory to 

determine the best time to replace the limiting components.  Jardine and Tsang [3] 

demonstrated the use of renewal theory on a single part, repairable system to minimize 

downtime.  Minimizing downtime is of primary interest because the RAM-C Rationale 

Report labeled downtime as “a main driver of system life cycle costs partly due to the 

necessity for additional system acquisitions to meet operational needs” [19].  Figure 22 

shows the interval model from [3].  One cycle is the sum of the time to preventive 

maintenance, tp, and the time of replacement Tp.  This equates to one MFOP cycle where 

MFOP is tp and the MRP is Tp.  The mean time to replace a failure during unscheduled 

maintenance is Tf. 
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Figure 22:  Preventive Replacement Interval Model. Republished with permission of 

Taylor and Francis from Maintenance, Replacement, and Reliability Theory and 

Applications, A. K. Jardine and A. H. C. Tsang, 2006; permission conveyed through 

Copyright Clearance Center, Inc. 

 

 The total downtime is represented as a dimensionless quantity in 

𝐷(𝑡𝑝) = 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑜𝑤𝑛 𝑡𝑖𝑚𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠+
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑜𝑤𝑛 𝑡𝑖𝑚𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝐶𝑦𝑐𝑙𝑒 𝐿𝑒𝑛𝑔𝑡ℎ
 ( 16 ) 

The expected downtime due to failures is the product of the number of failures in the 

interval from 0 to tp, H(tp), times the mean time to make the replacement, Tf.  The expected 

downtime due to preventive replacement is Tp.  Cycle length is tp + tf.  The downtime may 

be expressed as 

𝐷(𝑡𝑝) = 
𝐻(𝑡𝑝)𝑇𝑓+𝑇𝑝

𝑡𝑝+𝑇𝑝
 ( 17 ) 

 Under renewal theory, H(tp) has an analytical form of 

 

𝐻(𝑡) = ∑ 𝐹𝑛(𝑡)
∞
𝑛=1  ( 18 ) 

where Fn(t) is the cumulative distribution function of the time up to the nth failure.  A 

solution is found by solving for the Laplace transformation of ( 18 ).  See [3] for a full 
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derivation using renewal theory.  Solving with Laplace transformations on continuous 

functions can only be found on simple distributions like the exponential distribution. 

 A discrete approach uses all failure distributions including the Weibull and normal 

distributions.  Again, [3] provides the full derivation of H(T).  H(T) takes the discrete form 

of  

𝐻(𝑇) = ∑ [1 + 𝐻(𝑇 − 𝑖 − 1)] ∫ 𝑓(𝑡)𝑑𝑡,   𝑇 ≥ 1
𝑖+1

𝑖
𝑇−1
𝑖=0  ( 19 ) 

where f(t) is failure probability density function.  Equation ( 19 ) is recursive where the 

starting value of the recursive equation is H(0).  The expected number of failures at the 

start of the cycle, H(0), is zero because the item is functional at the start of the cycle.  

Calculation of H(1) continues the recursion, followed by H(2), and so on.  The intervals of 

T must be discrete increments and can take on any time duration.  A 1-hour interval of T is 

probably sufficient for a MFOP maintenance policy.  An assumption to the theory is not 

more than one failure occurs in one interval [3].  A precise estimate using 1-minute 

intervals reduces the chance of multiple failures in an interval.  Cataloging the downtime 

at each T yields a plot like Figure 23 where the optimal point tp is the minimal downtime. 
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Figure 23:  Plot Downtime per Unit Time versus Preventive Maintenance Interval tp 

 

3.5 Valuing a MFOP Aircraft 

Relf states the need for “some form of trade-off” to assess the impact of a MFOP option 

on system penalties like weight, cost, and logistics [24].  A frequently used technique to 

assess the impact of a value function is benefit over penalty.  Often, Net Present Value 

(NPS) measures penalty in terms of cost.  Value functions are advantageous in trade 

studies, design optimization as objective functions, an understanding of design spaces, and 

technology evaluation [47]. 

𝑉𝑎𝑙𝑢𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  
𝐵𝑒𝑛𝑒𝑓𝑖𝑡

𝑃𝑒𝑛𝑎𝑙𝑡𝑦
 ( 20 ) 

 Under pure Value Driven Design, there is no explicit requirements on extensive 

attributes such as weight, reliability, and cost [15], [48].  A correctly designed value 

function has no need for extensive requirements.  The alternatives value will dip as it nears 

an undesirable attribute, effectively steering an optimizer away.  Design is unrestricted with 

the only obligation to maximize the value.  Collopy and Hollingsworth advise against 
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extensive attributes in [15].  They argue that extensive attributes result in less efficient 

designs and, instead, objective functions should flow down to each component.  A MFOP 

strategy, by nature, is imposing a minimal duration of failure free operations as an 

extensive requirement.  This suggests the need for another approach to valuing a MFOP 

aircraft. 

 Net Present Value is an attractive measure of value because a direct trade may be made 

between cost and effectiveness.  It eases the flowing of objective functions down to the 

component level and reduces the problem to a consistent unit of measurement.  Under 

NPV, alternatives have a clear, ordered preference.  Net Present Value is highly applicable 

to business but may not be as attractive in military applications.  Certain military 

applications have an effectiveness metric that cannot easily be measured by a dollar value.  

According to the DoD RAM-C Rationale Report, minimizing LCC is desired but not the 

goal.  In discussing the link between reliability and cost, it cautions, “Note that the optimal 

reliability value must be sufficient to meet the most strenuous warfighter requirements, 

which may result in the system having higher than the minimum possible LCC” [19].  In 

the case of a MFOP strategy, the operationally required MFOP may exist at a less than 

optimal LCC. 

 Value Based Acquisition (VBA) provides an approach that accommodates a MFOP 

requirement and permits quantification of military utility.  In VBA, the benefit to cost ratio 

assumes the form of system effectiveness over LCC.  Capability, availability, and 

dependability comprise a weapons system’s effectiveness [49].  The next two sections 

outline such a single value function for a MFOP aircraft and its balancing with Cost 

Capability Analysis. 
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3.5.1 Single Objective Function 

An Overall Evaluation Criteria (OEC) from Schrage [49] is an example of an aggregated 

value function that follows the form of benefit over cost.  The function captures the systems 

benefit through its weighted capability, availability, and dependability.  The system penalty 

is the Life Cycle Costs (LCC). 

𝑂𝐸𝐶 = 
𝛼(

𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝐵𝑎𝑠𝑙𝑖𝑛𝑒 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦
)+𝛽(

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑖𝑖𝑡𝑦

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑖𝑡𝑦
)+𝛾(

𝐷𝑒𝑝𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐷𝑒𝑝𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦
)

(
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐿𝐶𝐶

𝐿𝐶𝐶
)

 ( 21 ) 

The weights (α, β, γ) are typically an output of a Quality Function Deployment’s (QFD’s) 

technical weighting.  The OEC equation must normalize values of capability, availability, 

dependability, and life cycle costs to baseline values to remain non-dimensional.  In this 

way, the OEC reflects a design’s value with quantities greater than one improving on the 

baseline’s value.  Figure 24 from Al Shalaane and Vlok [21] draws the complementary 

benefits between availability and dependability with cost in a MFOP context.  The 

motivating concept parallels the OEC equation.   
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Figure 24:  Motivators for MFOP. Figure reprinted with permissions from [21] 

 

 The final piece of the OEC is the operational capability.  Capability typically captures 

vehicle performance (i.e. endurance, range, payload) as well as any other metrics desired 

by the customer.  Delsing [50] encourages the use of utility functions for each component 

of the greater value function.  This work proposes the use of a simple utility function called 

the Mission Capability Index (MCI) from [49].  The MCI measures a helicopter’s 

maximum payload while Hovering Out of Ground Effect (HOGE) and block speed (VBlock) 

against the aircraft’s empty weight and fuel weight.  Block speed is the total distance 

travelled divided by the mission time.  It accounts for an increasing cruise speed as the 

engines burn fuel throughout the mission.  Conceptual design models are appropriate for 

the required level of analysis in the thesis, because the intent is to show relative changes, 

not provide a detailed performance estimate.   
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𝑀𝐶𝐼 =
𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝐻𝑂𝐺𝐸 × 𝑉𝐵𝑙𝑜𝑐𝑘

𝐸𝑚𝑝𝑡𝑦 𝑊𝑒𝑖𝑔ℎ𝑡+𝐹𝑢𝑒𝑙 𝑊𝑒𝑖𝑔ℎ𝑡
 ( 22 ) 

The use of the OEC ( 21 ) and a normalized MCI ( 22 ) are a simple means to measure and 

communicate the value associated with a rotorcraft in a MFOP context. 

3.5.2 Cost Capability Analysis 

The 2016 Defense Acquisition Guidebook described Cost Capability Analysis as an 

analytical tool to explore affordability and military utility [51].  It stated CCA’s purpose is 

“to support delivery of cost-effective solutions through deliberate trade-off analysis 

between operational capability and affordability” [51].  Figure 25 is from the Guidebook 

showing a typical CCA plot of alternatives where effectiveness is on the y-axis and cost is 

on the x-axis.  The term CCA has since been removed from the Guidebook and subsumed 

by a broader concept describing cost-effectiveness analysis; however, the Defense 

Acquisition University’s website describes the Air Force Life Cycle Management Center’s 

(AFLCMC) Standard Process for Cost Capability Analysis as “a “framework and a high 

level summary of the steps necessary to properly conduct CCA at various decision points 

in a program life cycle” [52].  It appears the DoD has delegated the term CCA to the 

AFLCMC for execution and standardization. 
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Figure 25:  Scatter Plot of Effectiveness versus Cost from RAM-C Rationale Report [19] 

 

 CCA is the Air Force’s solution to balancing effectiveness and cost throughout the 

acquisition process as mandated in various DoD directives [19], [52], [53], [54], [55], and 

recommended in [9], [20], and [38].  Cost Capability Analysis was mandated for all 

acquisition and materiel solutions per Air Force Instruction 10-601, dated June 2012 [56] 

and is now required in Air Force Policy Directive 10-6 dated November 2013 [57].  

AFLCMC provides the definition of CCA. 

CCA is an analysis process that uses warfighter involvement, subject 

matter expertise, and a rigorous multi-attribute, multi-objective decision 

analysis methodology to define tradespace between cost and warfighting 

capabilities.  AFLCMC [58] 

 CCA informs on the trade-offs between effectiveness and affordability.  It seeks to 

identify the right place on the Pareto frontier or Cost Capability Curve.  Figure 26 is a 

relatively simple plot for a multi-objective decision analysis.  AFLCMC recommends 

weighting and then aggregating objectives into a single value function like the OEC ( 21 ) 

as a means of understanding and communicating multi-objective analysis [58].  Another 

https://acc.dau.mil/docs2/dagfigures/chapter3/Figure.3.3.3.7.F1.pptx
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name for the a priori optimization used by OSD AT&L is Multi-Attribute Decision Model 

(MADM) [50].  AFLCMC cites the reason for supporting the single curve by stating, 

“Without aggregation, it is often too difficult to simultaneously and objectively consider 

alternatives with multiple decision criteria” [58].  The curve is an important means to 

communicate complex design trade-offs to decision makers.  Understanding where the 

curve bends informs decision makers on the point of diminishing returns where further 

investment provides little additional value.  The FVL program mentions this point. 

 

Figure 26:  Cost Capability Curve from AFLCMC [58] 

 

3.6 Zero Maintenance Technologies 

Technologies either reduce the volume of failures through an increased reliability, improve 

fault tolerance, or extend component service life are a benefit to a MFOP strategy.  Zero 

maintenance technologies improve inherent reliability or fault tolerance 

(prognostics/diagnostics, redundancy, and reconfigurability).  These four technologies plus 
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lifing policy comprise Relf’s MFOP options.  Table 6 lists some of the zero maintenance 

technologies planned for FVL FoS. 

 

Table 6:  FVL Technologies 

Technology Benefit 

Improved Turbine Engine 

Program (ITEP) 

 

More Power and better fuel consumption 

Greater sustainability/reliability 

Integrated Health Management 

 

Improved availability 

Open System Architecture 

 

Reconfigurability, sustainability 

Advanced Control Laws 

 

Reconfigurability 

 

 The U.S. Army’s Aviation Applied Technology Directorate (ADD-AATD) and 

Sikorsky Aircraft Corporation joined together for Capability-Based Operations and 

Sustainment-Aviation (COST-A) to enable the transition to Condition Based Maintenance 

(CBM) and serve as an initial step towards a near-zero maintenance paradigm.  COST-A 

is a program intended to mature diagnostics and prognostics to reduce O&S costs.  COST-

A development matured prognostic/diagnostic technologies in propulsion, drive, structural, 

rotor, electrical, and vehicle management systems to TRL 6 [2].  The team installed the 

technologies on a prototype UH-60 Black Hawk and assessed the impacts.  Table 7 lists 

the successful COST-A technologies tested in 2015. 
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Table 7:  COST-A Final TRL High-Level Summary from [2]  

IPT Technology Groups 
Final 

TRL 

Propulsion 

Improved Power Assurance 6 

Main Engine Prognostics 6 

LRU Diagnostics for:  AISBV, IPS 

Blower, Accumulator, Torque 

Split, Cross-Bleed Valve 

6 

Drives 

Drive Train Loads Monitoring 6-7 

Improved CIs and sensor quality 6 

Tail Drive Shaft Diagnostics 5 

Bearing and Gear Prognostics 4-5 

Maintenance Reasoner 6 

Structures 

Fatigue and Impacts SHM 6 

Usage/Loads/Damage Prognostics 6 

Corrosion Monitoring 5 

Airframe Health & Prognostics 5 

Rotors 

Smart LRUs: Rod End, Bearing, 

Damper, Actuated Push Rod 
6 

Wireless LRU and Gateway 

Communications 
6 

Blade Impact & Damage Detection 5-6 

Electrical 

LRU Distributed Signal Processing 6 

LRU Fault Classifier 5-6 

SSTDR Wire Fault Sensing 5-6 

Wiring Constraint-Based Reasoner 6 

Wiring Interactive Troubleshooting 6 

VMS 

Pump Reservoir Diagnostic and Leak 

Trending 
6 

TR Servo Diagnostics 6 

Pump Diagnostics 5-6 

 

3.7 Literature Gaps 

Andrews [26] and Chew et al. [27] provide a survey of methods to calculate a systems 

reliability and MFOP.  Both promoted the advantages of a Petri-net method in a Monte 

Carlo simulation.  Price et al. [28] has provided the most developed state-space Monte 

Carlo simulation that approximated MFOP, MFOPS, and added MRP.  Renewal theory 
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provides some assistance for a single component.  Most of published work such as [3] and 

[45] minimizes repair cost instead of maximizing a MFOP.  This work modifies renewal 

theory to model a multi-part system’s downtime under a MFOP constraint.  Failure Cause 

Identification by Trindade and Nathan [22] provided a helpful guide; but a quantifiable 

method is missing.  To the author’s knowledge, literature has not addressed the 

maintenance policies that support a MFOP strategy; therefore, a desired, but unaddressed 

topic is adaptive maintenance policies.  Adaptive policies, which tailor each MRP to meet 

the availability or MFOPS requirements, is an immature topic. 

 

Table 8:  MFOP Literature Gaps 

Gap 

 

State-of-the-Art/Current Proposed Solution 

MFOP metrics 

 

Statistical metrics Rm, 

MTBF, MTTR 

 

MFOP, MFOPS, MPS 

Identifying weakest links 

in system 

Cost based, 

Graphical Failure Cause 

Analysis 

MFOP based, 

Quantifiable Failure Cause 

Analysis 

 

Availability Maintenance 

Policy 

 

Cost based with renewal 

theory 

Time based in a MFOP 

context through framework 

Adaptable Maintenance 

Policies to Maintain 

MFOPS 

 

None Aggressive Lifing Policy 

through framework 

 

Cost-effective balance Value Driven Design, 

Value Based Acquisition 

(USAF CCA) 

 

Not fully addressed but 

CCA in a MFOP strategy is 

promising 
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4 PROBLEM 1:  MEASURE MFOP 

A necessary step to developing a framework for rotorcraft MFOP is the modeling of a 

system’s dependability and its measurement using operational metrics.  Section 2.3 

formulated three questions to find the necessary tools and models that enable MFOP 

measurement.  They are reshown below for the reader’s convenience with the associated 

hypothesis and conjectures that are developed later in this chapter. 

 

Figure 27:  Problem 1 Summary with Hypothesis and Conjectures 

 

 This chapter has major subsections dedicated to answer each research question.  The 

first subsection answers Research Question 1 with a validated hypothesis.  The next two 

subsections address the two remaining questions with conjectures.  Each of the major 

subsections give a research question, propose a hypothesis or conjecture, test the proposal 

by validation or thought experiment, and conclude with a discussion on the results. 

Problem 1

Measure MFOP

Hyp 1:  If a phased, repairable system 

operates over MFOP cycles, then a 

Discrete Event Simulation provides a 

suitable means to model Rm, MFOP, 

MRP, and the success.

RQ 2a: Which components/

Subsystems limit an MFOP?

Conj A: Failure Cause Identification 

reveals the limiting components or 

subsystems to a MFOP.

RQ 1: Which method(s) are 

suited to model MFOP?

Conj B: The greatest contributor is the 

component with the greatest expected 

downtime.

RQ 2b: Which components are the

greatest contributor(s) to MRP

duration?

Chapter 

4

Section 

4.1

Section 

4.2

Section 

4.3
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4.1 Research Question 1:  What Methods Are Suited to Model MFOP 

The first research question seeks the calculation of operational metrics like MFOP and 

MRP as well as the supporting metric of Rm.  It asks what method(s) are suited to model 

MFOP.  The research question asks which analytical methods or modeling techniques may 

predict the MFOP, MRP, and reliability of a system. 

4.1.1 Hypothesis 1:  Modeling MFOPS with Discrete Event Simulation 

4.1.1.1 Selection of a Modeling Technique 

Table 9 summarizes the methods and screening criteria discussed in section 3.3.  The table 

compares the discussed modeling methods against the screening criteria (phased mission 

support, repairable, aging parts, and flexibility).  Only non-homogeneous Markov methods 

and simulation meet three of the screening criteria (phased mission support, repairable, and 

aging parts) for a supportable MFOP model.  Simulation is preferable over non-

homogeneous methods because it avoids state space explosion and is more flexible.  BDDs 

and homogeneous Markov models may be the fastest or computationally efficient of the 

models, but simulation is not far behind using today’s computing power.  The repairable 

system screening criteria eliminates both FTAs and BDDs.  Homogeneous Markov models 

are unacceptable because they require unchanging failure rates. 
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Table 9:  Comparison of Modeling Methods 

  Fault 

Tree 

Analysis 

Binary 

Decision 

Diagrams 

Markov Chain 

Models 

Petri 

Nets 

Customized 

Discrete 

Event Sim 
Homog Non-homog 

Phased 

missions 
✓ ✓ ✓ ✓ ✓ ✓ 

Repairable 

 
  

✓ ✓ ✓ ✓ 

Aging parts 

 
   

✓ ✓ ✓ 

Flexibility 

/Ease of Use 
    ? ✓ 

Dependency (dynamic 

only) 
✓ ✓ ✓ ✓ ✓ 

Avoids state 

space explosion 
✓ ✓   

✓ ✓ 

Speed 

 
✓ ✓ ✓ ✓   

 

 Petri nets and Discrete Event Simulations (DES) meet the screening criteria and have 

the advantages of handling component dependency, modeling flexibility under a variety of 

architectures and maintenance policies, and avoiding state space explosion.  Token 

locations define the system’s state in the Petri net.  This graphical depiction is a nice feature 

for simple models but can become overwhelming when displaying complex systems.  The 

recommended DES runs a state space model like a Petri net, but without the graphical 

interface.  DES requires a considerable bookkeeping effort to record event histories.  Both 

the Petri net and DES approximate the solution of a complex system using a Monte Carlo 

simulation over many iterations.  Speed varies for both simulation models, where system 

complexity or desire for high precision increase computation time. 
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 Given the availability of increasing computational power, a customized DES was an 

attractive model technique.  This assessment leads to the hypothesis that a discrete event 

simulation is an appropriate approach to solving for MFOP and MRP. 

 

 

 The first hypothesis offers that event simulation provides the tools to conduct basic 

MFOP analysis.  Computer simulation easily supports the processing of discrete events 

necessary to solve the problem.  A review of current simulation models informed the 

modeling technique selected. 

4.1.2 Development of a Discrete Event Simulation 

4.1.2.1 Review Existing Event Simulation Models 

Simulation models have steadily progressed in sophistication over the years.  Relf in [24] 

introduced a MFOP design methodology that was an iterative process to apply MFOP 

options to reach a desired target (see Figure 9).  The Georgia Institute of Technology added 

to Relf’s template in “A State-based System Integrated Sustainment Tool” (ASSIST) [30].  

ASSIST accounted for a phased mission, ran a Petri net simulation, and optimized a generic 

Value Based Acquisition (VBA) function.  In a separate project [31], a team improved 

upon ASSIST to model the UH-60M helicopter.  This work created separate FTAs for each 

Research Question 1 

What method(s) are suited to model MFOP? 

Hypothesis 1:  If a phased, repairable system operates over MFOP 

cycles, then a Discrete Event Simulation provides a suitable means to 

model Rm, MFOP, MRP, and the success. 
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aircraft system failure distributions before applying to phase and safety critical events trees 

(see Figure 28).  The most recent work from Price et al [28], added a maintenance manager 

module that models the downtime in unscheduled repair and scheduled repair (see Figure 

29).  The figures of the improved ASSIST and Price models are on the next page. 
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Figure 28:  Integrated Petri-Net for Reliability and Safety Analysis [31] 

 

 

Figure 29:  Integrated DES from Price et al. Figure reprinted with permission [28] 
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4.1.2.2 Shaping a Discrete Event Simulation 

A pattern emerges after reviewing the four presented models.  Each begins with describing 

the mission by phase and laying out aircraft systems and component architecture.  The 

models align event trees with the architecture to generate phase specific fault trees.  Event 

trees connect the initiating event failure to possible outcomes [32].  Component failure 

distributions feed the phased fault trees.  A single simulation run progresses through 

multiple missions and records failure times.  The model in Figure 28 runs the Petri net-like 

simulation on subsystem distributions while Figure 29 deals with components directly. 

 

Figure 30:  Shape of DES Model  

 

 A Monte Carlo simulation repeats each run thousands of times to generate a histogram 

of failure over time (Figure 31a).  With sufficient runs the MFOP distribution takes the 

shape of a gaussian or normal distribution in accordance with the Central Limit Theorem.  
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The complement of the cumulative distribution function is the probability the system 

functions to at least a mission time of tm and is termed the MFOP Success.  A plot over 

time is in Figure 31b below. 

 

Figure 31:  Generating MFOP Success and MRP Success 

 

 An important part of this conjecture is the MRP.  Just as MFOP has a success rate, 

MRP should have a success rate.  The MRP Success (MRPS) is the probability that the 

recovery period ends by a given time.  MFOP is measured in flight hours while MRP is 

measured in maintenance man hours (MMH).  Both MFOP and MRP are a compilation of 

component individual failure or repair distributions, respectively.  The general structure is 

in Figure 30.  The author conjectures that the MRPS may be found in the same process as 

the MFOPS by using the cdf of total repair times in Figure 31c.  The concept of the 

Maintenance Manager came from Price et al [28].  A Maintenance Manager follows a 

policy that determines when to perform maintenance.  In the case of a MFOP aircraft, the 

intent is to perform all maintenance in the MRP. 

4.1.2.3 Sampling Part Failure Age 

The DES calculates the failure age of each part a priori by sampling from the part’s known 

failure distribution.  It then compares the current part age to the known failure age during 
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each phase of flight.  If the current part age is greater than or equal to the failure age, than 

part failure occurs.  If the current part age is less than the failure age, then the part is 

functional throughout the phase.  This necessitates the ability to calculate the mission 

reliability (defined in section 3.1.1.2) where parts begin the simulation with a known age. 

 At the start of the simulation, it is assumed that each part begins in an “up” or fully 

operational state and that each part has a starting age of tage,0.  We are seeking to sample 

from a known failure distribution where the lowest possible outcome of the random 

variable, T, is the starting age, tage,0.  Possible outcomes of T must be between tage,0 and 

infinity as shown in Figure 32.  The figure shows a tage,0 of 30 hours as an example. 

 

Figure 32:  pdf of Aged Parts Sampling and Known Failure Distribution 

 

 Conditional probability of successful operation through time t+ tage,0 given successful 

operation through tage,0 still holds valid as 

𝑃(𝑇𝑇𝐹 ≥ 𝑡𝑎𝑔𝑒,0 + 𝑡 | 𝑇𝑇𝐹 ≥ 𝑡𝑎𝑔𝑒,0) = 
𝑃(𝑇𝑇𝐹≥𝑡𝑎𝑔𝑒,0+𝑡)

𝑃(𝑇𝐹𝑇≥𝑡𝑎𝑔𝑒,0)
 ( 23 ) 

(a) Weibull Example (b) Exponential Example (c) Normal Example
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where tage,0 is the starting age and TTF is the random variable of age to failure.  The 

probability that the part successfully functions in the interval [0, tage,0] is known as one 

because this has already occurred; therefore, 

𝑃(TTF ≥ 𝑡𝑎𝑔𝑒,0 + 𝑡 | 𝑇𝑇𝐹 ≥ 𝑡𝑎𝑔𝑒,0) = 
𝑃(𝑇𝑇𝐹≥𝑡𝑎𝑔𝑒,0+𝑡)

1
   

                                                            = 𝑃(𝑇𝑇𝐹 ≥ 𝑡𝑎𝑔𝑒,0 + 𝑡) ( 24 ) 

Equation ( 24 ) is the complement of the failure cumulative distribution function (cdf)  

𝑃(𝑇𝑇𝐹 ≥ 𝑡𝑎𝑔𝑒,0 + 𝑡 | 𝑇𝑇𝐹 ≥ 𝑡𝑎𝑔𝑒,0) = 1 − 𝐹(𝑡𝑎𝑔𝑒,0 + 𝑡)  ( 25 ) 

The above relationship permits the sampling using an inverse cdf as outlined in the example 

below. 

 Consider an example with a part that has a Weibull failure distribution where we wish 

to sample the random variable T from the failure distribution Weibull(t; η; β) with a range 

of [tage,0, +∞).  The first step is to find the probability that TTF is less than tage,0 using the 

Weibull cumulative distribution function of 

𝐹(𝑡𝑎𝑔𝑒,0; 𝜂; 𝛽) = 𝑃(𝑇𝑇𝐹 ≤ 𝑡𝑎𝑔𝑒,0) = 1 − 𝑒
−(

𝑡𝑎𝑔𝑒,0

𝜂
)
𝛽

  ( 26 ) 

where TTF is the random variable, η is the distribution’s size, and β is the distribution’s 

shape.  We need to sample from all possible t’s such that 

𝐹(t𝑎𝑔𝑒,0) < 𝐹(t𝑎𝑔𝑒,0 + t) ≤ 1   ( 27 ) 

 The above equation is a statement on acceptable percentiles where the minimum is 

found with ( 26 ) and the maximum is 100%.  There is no preference for t if it is positive; 

therefore, the percentile follows a uniform distribution U(0,1) in 
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𝑝𝑟 = 𝐹(𝑡𝑎𝑔𝑒,0) + [1 − 𝐹(𝑡𝑎𝑔𝑒,0)] ∗ 𝑈(0,1)   ( 28 ) 

where pr is the percentile.  The quantile function (inverse cdf) may be solved for the 

random variable t using  ( 26 ) where F is equal to pr.  In the case of Weibull distribution, 

solving for tage,0 from ( 26 ) yields the quantile function as  

𝑡𝑎𝑔𝑒,𝑠𝑎𝑚𝑝𝑙𝑒 = 𝜂[− ln(1 − 𝑝𝑟)]
1
𝛽⁄    ( 29 ) 

where pr is from ( 28 ). 

 Equivalent equations for the exponential and normal (Gaussian) distribution are in 

Table 10.  Example results of the samplings are in Figure 32 above.  The figure shows a 

histogram of samplings from: (a) Weibull distribution; (b) exponential distribution; and (c) 

normal distribution.  The histogram is normalized into a pdf.  The mean of each distribution 

is 45.8 hours and the starting age, tage,0, is 30 hours.  The histograms show consistency to 

the known distribution plot (shown as a solid, red line). 

 

Table 10:  Finding A Randomly Distributed Failure Age Given a Starting Age 

Failure 

Distribution Type 

 

Equations 

Weibull 

 

η is size 

β is shape 

𝐹 = 1 − 𝑒
−(

𝑡𝑎𝑔𝑒,0

𝜂
)
𝛽

   ( 26 ) 

𝑝𝑟 = 𝐹 + (1 − 𝐹) ∗ 𝑈(0,1)   ( 28 ) 

𝑡𝑎𝑔𝑒,𝑠𝑎𝑚𝑝𝑙𝑒 = 𝜂[− ln(1 − 𝑝𝑟)]
1
𝛽⁄    ( 29 ) 

Exponential 

 

μ is mean or 1/λ 

𝐹 = 1 − 𝑒
−(

𝑡𝑎𝑔𝑒,0

𝜇
)
   ( 30 ) 

𝑝𝑟 = 𝐹 + (1 − 𝐹) ∗ 𝑈(0,1)   ( 28 ) 

𝑡𝑎𝑔𝑒,𝑠𝑎𝑚𝑝𝑙𝑒 = 𝜇[− ln(1 − 𝑝𝑟)]   ( 31 ) 
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Table 10 (continued) 

 

Failure 

Distribution Type 

 

Equations 

Normal 

 

μ is mean 

σ is std deviation 

𝐹 =
1

2
[1 + 𝑒𝑟𝑓 (

𝑡𝑎𝑔𝑒,0−𝜇

𝜎√2
)]   ( 32 ) 

𝑝𝑟 = 𝐹 + (1 − 𝐹) ∗ 𝑈(0,1)   ( 28 ) 

𝑡𝑎𝑔𝑒,𝑠𝑎𝑚𝑝𝑙𝑒 = 𝜇 + 𝜎√2𝑒𝑟𝑓−1(2𝑝𝑟 − 1)   ( 33 ) 

 

4.1.3 Experiment Plan 

Table 9 summarized a qualitative appraisal of state-of-the-art methods.  Verifying the DES 

against known solutions shall support substantiation of the hypothesis.  The simulation’s 

MFOP and unreliability results shall be compared to solutions provided from Chew et al. 

[27] for a phased mission with a simple non-repairable system and a repairable system.  

Chew et. al [27] calculated an analytical solution from unreliability cut-sets of the simple 

non-repairable system.  The article then calculated the solution to the repairable system 

using an approximate Markov chain and a Petri net in a Monte Carlo simulation.  Results 

from this work’s customized DES was compared against the solutions from Chew et. al for 

the non-repairable and repairable systems.  Finally, DES results to the repairable system 

were verified against this author’s own Markov model that provided an exact solution. 

 A set of four tests verified the DES before experiments in Problem 2 began.  The 

verification process progressively builds from a simple, single-part test case to a more 

complicated, multi-phased, multi-part, repairable system.  The build-up verifies that the 

DES successfully handles: 

a. varying failure distributions 



93 

b. multiple parts 

c. a mix of serial and parallel fault tree logic 

d. multiple phases with different fault trees 

e. non-repairable and repairable systems 

f. multiple missions in a MFOP cycle 

g. single or multiple MFOPs 

Table 11 outlines the progression of test cases for verification. 

 

Table 11:  Verification Test Cases 

Test Case Parts Repairable Phases MFOPs Verification Source 

Test Case #1   1 Non-repairable 1   1 Known distributions 

Test Case #2a 

(serial) 

 

Test Case #2b 

(parallel) 

 

11 

 

 

11 

Non-repairable 

 

 

Non-repairable 

1 

 

 

1 

19 

 

 

19 

Engine by Kumar 

[67] 

 

Author’s analytical 

solution 

Test Case #3   4 Non-repairable 4   1 Chew et al. [26], 

Author’s Markov 

model 

 

Test Case #4   4 Repairable 4 12 Chew et al. [26], 

Author’s Markov 

model 

 

 

 The verification sources listed above provide either an analytical answer or different 

modeling method to compare the simulation’s results. Increasing the number of Monte 

Carlo iterations of the simulation will improve convergence to the true solution and reduce 
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the error; however, the user must balance the desired precision with limiting factors such 

as computing power and time.  For the purposes of model verification, less than one percent 

error is a sufficient verification each test case.  Each test case also examines issues related 

to convergence. 

4.1.4 Verification of the DES 

4.1.4.1 Test Case #1:  Single Part Distributions 

The first test case examines a single-part, single-phase, non-repairable system.  This is a 

relatively simple test where the reliability of three different types of failure distributions 

are checked against the known analytical answer.  Knowing that the system reliability is 

the complement of the failure distribution’s cdf, 𝑅(𝑡) = 1 − 𝐹(𝑡), we can anticipate the 

shape of the simulation’s output if it is correct.  The parameters of the failure distributions 

are in Table 12.  For this test case, the starting part age was zero.  The simulation operated 

the part until failure or until reaching 50 missions.  Phase duration was set such that the 50 

missions brought the ending system reliability close to zero. 
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Table 12:  Text Case #1 Summary Data 

 Exponential 

 

Weibull Normal 

Parameters λ = 0.1 η = 20 

β = 2.5 

 

μ = 10 

σ = 1.7 

Phase Duration 

 

1 hour 1 hour 0.5 hour 

DES Reliability 

(Known Reliability) 

@ midpoint 

0.081974 

(0.082085) 

t = 25 

 

0.17384 

(0.17431) 

t = 25 

0.071266 

(0.070701) 

t = 12.5 

Reliability Mean Square Error 

@ 1e6 iterations 

0.0011 

from t = 0 to 50 

0.0034 

from t = 0 to 50 

 

0.0020 

from t = 0 to 25 

 

 For each distribution, data was collected for a smaller and larger number of iterations 

(100 and one million iterations, respectively).  System reliability of the data sets is in Figure 

33 from start through 50 missions.  Even at a small number of iterations, the data follows 

the known reliability shape.  At one million iterations, the simulation’s curve is 

indistinguishable from known reliability function.  The Mean Square Error (MSE) of 

system reliability for the 50 missions as shown above and the confirms the plots and 

success of Test Case #1. 

 

Figure 33:  Test Case #1 Reliability Plots  

(c) Normal(a) Exponential (b) Weibull
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4.1.4.2 Test Case #2:  Engine Example 

4.1.4.2.1 Test Case #2a:  Series System 

The second test case is a reliability problem written by U. Dinesh Kumar [33].  The problem 

assembles eleven parts in series to model a turbine engine’s mission reliability (see Figure 

34).  Weibull failure distributions model the engine components with parameters listed in 

Table 13.  The use of the Weibull distribution accounts for an increasing hazard rate as the 

part ages. 

 

Figure 34:  Reliability Block Diagram from Kumar Engine Example [33] 

 

Table 13:  Component Failure Distributions from Kumar Engine Example [33] 

Item 

No. 

 

Item Distribution Parameter Values 

01 LP Compressor Weibull η = 15,000, β = 3 

02 LP Stage 2 Stator Weibull η = 5,000, β = 2.8 

03 Intermediate Casing Weibull η = 11,000, β = 3 

04 HP Compressor Weibull η = 12,000, β = 3.5 

05 HP NGV Weibull η = 8,000, β = 3 

LP 

Compressor

LP Stage 2 

Stator

Intermediate

Casing

HP

Compressor

LP Turbine LP NGV HP Turbine

HP NGV

Exhaust MixerExternal 

Gearbox

Oil Tank and 

Filter
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Table 13 (continued) 

Item 

No. 

 

Item Distribution Parameter Values 

06 HP Turbine Weibull η = 25,000, β = 4 

07 LP NGV Weibull η = 7,000, β = 2.2 

08 LP Turbine Weibull η = 20,000, β = 2.8 

09 Exhaust Mixer Weibull η = 7,000, β = 3 

10 External Gearbox Weibull η = 6,500, β = 3 

11 Oil Tank and Filler Weibull η = 5,000, β = 3.8 

 

 

 The reliability through time t of components in series is the product of each 

component’s reliability through time t.  Time t can be measured as discrete MFOP cycles 

where t is the product of the ith cycle and MFOP duration, tmf.  The expression is 

𝑅(𝑖) = ∏ 𝑅𝑘(𝑖 × 𝑡𝑚𝑓)
𝑛
𝑘=1   ( 34 ) 

 It is little effort to analytically calculate the system reliability using ( 34 ) at each MFOP 

cycle where the tmf is 500 hours.  The system reliability is equivalent to mission reliability 

for the single phased mission.  Plots of Mission reliability for each cycle are in Figure 35(a) 

for simulations with 500 and one million iterations.  Even at a relatively small number of 

iterations, mission reliability achieves a representative shape of the analytical solution.  The 

Mean Square Error is 0.0527 and 0.0019 for the 500 and one million iterations, 

respectively. 
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Figure 35:  Test Case #2a Mission Reliability and MFOPS  

 

 Figure 35(b) compares the DES MFOPS results for 500 and one million simulations 

against the analytical solution.  Recall MFOPS is calculated from ( 9 ) as a conditional 

probability and is repeated for the reader’s convenience as 

𝑀𝐹𝑂𝑃𝑆(𝑡𝑚𝑓 , 𝑖) = ∏
𝑅𝑟(𝑖×𝑡𝑚𝑓)

𝑅𝑟([𝑖−1]×𝑡𝑚𝑓)
𝑛
𝑟=1  ( 35 ) 

where r is the component in a serial system.  The simulation with 500 iterations suffers 

from low surviving iterations and departs from the analytical solution at 11 cycles.  One 

million iterations delay the departure from the analytical solution until the 16th cycle.  The 

Mean Square Error for the MFOPS is 0.3316 through 11 cycles for 500-iterations and 

0.0511 through 16 cycles for one million-iterations. 

 The successful approximation of mission reliability and MFOPS (with sufficient 

iterations) verifies the DES correctly handles multiple parts and serial logic in a phase, over 

multiple MFOP cycles.  Finally, it is interesting to note that the Mean Square Error for 

mission reliability with 500 iterations (0.0527) is close to the Mean Square Error for 

(a) Mission Reliability (b) MFOPS
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MFOPS at one million iterations (0.0511).  This introduces a recurring phenomenon that 

MFOPS requires greater iterations than mission reliability due to the nature of conditional 

probability. 

4.1.4.2.2 Test Case#2b:  Parallel System 

Test Case #2b ordered the same eleven components from Test Case #2a into a parallel 

configuration (Figure 36) to verify the DES’ handling of parallel logic.   

 

Figure 36:  Reliability Block Diagram for Test Case of a Parallel System [33] 

 

 The reliability of a parallel system that measures time t in i discrete intervals of the 

MFOP, tmf, is written as 

𝑅(𝑖) = 1 − ∏ [1 − 𝑅𝑘(𝑖 × 𝑡𝑚𝑓)]
𝑛
𝑘=1  ( 36 ) 

Mission reliability, MR(i), is from ( 36 ) by substituting MRk for Rk.  DES output is 

compared against the analytical solution for system reliability using ( 36 ) at each MFOP 

cycle of 3,500 hours.  The MFOP duration as extended from 500 to 3,500 hours to induce 

sufficient failures in the more reliable parallel system to show the degeneration of 

reliability over 19 cycles.  Figure 37 plots mission reliability at each cycle for 500 and one 

million iterations.  Even at a relatively small number of iterations, mission reliability 

Part n=01
. . . .

Part n=02

Part n=11
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achieves a representative shape of the analytical solution.  The test has similar convergence 

as in Teste Case #2a.  The Mean Square Error of reliability is 0.0689 and 0.0018 for the 

500 and one million iterations, respectively.   

 

Figure 37:  Test Case #2b Mission Reliability and MFOPS  

 

 MFOPS was calculated from ( 35 ) where the MSE was found to be 0.1575 for 500 

iterations through twelve cycles.  After eleven cycles, only 66 iterations survived for the 

eleventh cycle and only 15 iterations survived for the twelfth cycle.  Calculating MFOPS 

beyond this point becomes ineffective.  This illustrates the weakness of simulation in 

dealing with low probability events.  Increasing the number of starting iterations to ensure 

a larger surviving set overcomes the weakness.  Using one million iterations, the MSE was 

lowered to 0.0686 and results were useable through 15 cycles.  These results lead to the 

conclusion that the output of the DES adheres to the analytical solution under the 

stipulation that the measured cycle has sufficient surviving iterations.  Test Case #2b 

successfully verifies the simulation of parallel configurations. 

(a) Mission Reliability (b) MFOPS
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4.1.4.3 Test Case #3:  Non-repairable System 

Test Case #3 increases the system complexity with a four-phase, four-part system as 

introduced by Chew et al. [27].  The Test Case is a notional system designed such that each 

phase has a different fault tree (see Figure 38) and duration (see Table 14).  Component 

failures are all exponential with failures occurring at the rates shown below.  Four phases 

comprise a single mission.  Mission essential components vary according to a phase as 

illustrated in the fault trees.  The system undergoes a single MFOP cycle comprised of 

three missions in the cycle.  All components age during each phase and may fail despite 

not appearing in a phase’s fault tree.  The system is non-repairable. 

Figure 38:  Test Case #3 System Phase Fault Trees.  Figure reprinted with permission2 

 

Table 14:  Test Case #3 Phase Durations and Component Failure Rates 

Phase 

 

Phase Duration (h)  Component Failure Rate λ (h-1) 

1 0.5  A 0.0045 

2 2.5  B 0.0130 

3 4.0  C 0.0081 

4 1.25  D 0.0011 

 

                                                 
2 Reprinted from Reliability Engineering & System Safety, vol. 93, S. P. Chew, S.J. Dunnett and J. D. 

Andrews, “Phased mission modelling of systems with maintenance-free operating periods using simulated 

Petri nets,” pp. 980-994, Copyright (2008), with permission from Elsevier 
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4.1.4.3.1 Theoretical Solution 

The theoretical solution combines the 4-phase, 3-mission cycle into a single, 12-phase 

mission (i.e. phases 1, 5, and 9 are the same).  The combination creates a simple framework 

for the use of non-coherent fault trees to calculate phase unreliability.  The inclusion of 

NOT gates in a fault tree makes the tree non-coherent.  Chew et al. [27] show that the use 

of non-coherent fault trees is necessary to calculate the unreliability of phase p because it 

requires that phases 1 to 1-p to not have failed.  They transform any non-coherent fault 

trees into coherent fault trees using De Morgan's laws shown as 

(�̅� + �̅�) = �̅� ∙ �̅�,     (𝐴 ∙ 𝐵̅̅ ̅̅ ̅̅ ) = �̅� + �̅�  ( 37 ) 

This creates a set of prime implicants (or cut sets) that are all the set of possible causes of 

phase failure [59].  The inclusion-exclusion principal from Inagaki and Henley [60] using 

notation from Chew et al. [27] provides the expression for unreliability as 

𝑄𝑖 = ∑ 𝑃𝑟(𝐶𝑗) −
𝑁𝑖
𝑗=1

∑ ∑ 𝑃𝑟(𝐶𝑗 ∩ 𝐶𝑘) + ⋯+ (−1)𝑁𝑖−1 × 𝑃𝑟(𝐶1 ∩
𝑗−1
𝑘=1

𝑁𝑖
𝑗=1

𝐶1 ∩⋯∩ 𝐶𝑁𝑖)  ( 38 ) 

where Pr is probability, Cj is the jth prime implicant, and Ni is the number of prime 

implicants in phase i.  Chew et al. [27] takes the reader through a sample calculation and 

provides the theoretical solution used in the Test Case (see Table 15). 
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Table 15:  Test Case #3 Theoretical Solution 

Phase 

i 

 

Theoretical 

Phase 

Unreliability, 

Qi 

 

Theoretical 

System 

Reliability, 

R1,i 

 Phase 

i 

Theoretical 

Phase 

Unreliability, 

Qi 

Theoretical 

System 

Reliability, 

R1,i 

1 0.00225 0.9977  7 0.05210 0.7862 

2 0.03850 0.9593  8 0.00327 0.7836 

3 0.05107 0.9103  9 0.03271 0.7580 

4 0.00194 0.9086  10 0.05493 0.7164 

5 0.03452 0.8772  11 0.05302 0.6784 

6 0.05448 0.8294  12 0.00451 0.6753 

 

 Chew et al. remarked, “It is not possible to find the mission reliability by simply 

multiplying the phase reliabilities, due to the statistically dependent nature of the phases” 

[27].  The dependency of the current phase on the previous phases manifests in the first 

fault tree found in Phases 1, 5, and 9.  Dependency’s influence occurs in Phases 1, 5, and 

9 when the phase unreliability rises from 0.00225 to 0.03452 then falls slightly to 0.03271.  

System reliability shows a consistent decline expected from a system with constant failure 

rates.  Phase pairs 3-4, 7-8, and 11-12 show a very small decline due to the low unreliability 

of Phase 4 fault tree. 

4.1.4.3.2 Markov Chain Model 

A Markov Chain model verifies the lengthy theoretical solution for Test Case #3 and 

provides the means to calculate the solution for the next test case.  The presented system 

supports a Markov analysis because the system is homogeneous due to the four components 

possessing an exponential failure distribution (see section 3.3.3 Markov Chains).  The 
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system is binary in operation where a component is either working (W) or failed (F).  With 

n binary components, there exist 2n possible states.  The four components (𝑛 = 4) in the 

test case’s system have a possible 24, or sixteen possible states.  Figure 39 defines the 

sixteen possible states in terms of components A, B, C, and D as working or failed. 

 

Figure 39:  Markov Model of 4-Phase Test Case Figure reprinted with permission3 

 

 Equation ( 15 ) models the progression from one state to the next.  Equation ( 39 ) 

defines the steps as phase changes from the current phase, p, to the next phase, p+1 as 

                                                 
3 Reprinted from Reliability Engineering & System Safety, vol. 93, S. P. Chew, S.J. Dunnett and J. D. 

Andrews, “Phased mission modelling of systems with maintenance-free operating periods using simulated 

Petri nets,” pp. 980-994, Copyright (2008), with permission from Elsevier. 
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𝒔(𝑝+1) = 𝒔(𝑝). 𝑨 ( 39 ) 

where s is the state space vector and A is the transition matrix.  The system starts in a fully 

working state, s(0), with the first element of s to have a probability of one and all other 

elements to be zero.  The element Aij is the probability of transition from the current state 

i to the new state j.  The 16 x 16 transition matrix, A, changes by phase because the 

probability of component failure is dependent upon the different phase durations.  Step (or 

phase change) must be calculated one step at a time because of the changing transition 

matrix.  For the non-repairable system, the transition matrix is written in a more compact 

notation as 

 

 

( 40 ) 

where Component B has a probability of failure of 𝐵 and component non-failure is �̅�.  The 

transition matrix is an upper triangular and A16,16 is always one because the system is non-

repairable. 

 Table 16 shows the Markov Chain results for the non-repairable system next to Chew 

et al.’s theoretical solution.  Listed are the unreliability, Q, in each phase and the system 
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reliability, R from start to phase p.  System reliability is used instead of mission reliability 

for the test case because components have no age at the start of system operation.  The 

Markov results match Chew et al.’s theoretical solution with the only difference being the 

number of digits expressed.  This validates the Markov model and confirms the solution. 

 

Table 16:  Markov Chain Results and Chew et al. Theoretical Solution 

 

4.1.4.3.3 Simulation Verification 

The DES simulated the non-repairable Chew system of Test Case #3 with 10 million 

iterations to gain sufficient precision of the known solution presented above.  Figure 40 

and Figure 41 on the next page plot the simulation’s results for phase unreliability and 

system reliability, respectfully.   
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Figure 40:  Test Case #3 Phase Unreliability Results 

 

 

Figure 41:  Test Case #3 System Reliability Results 
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 The simulation performed well with a phase unreliability Mean Square Error (MSE) of 

0.00020016 and a system reliability MSE of 0.00014546.  Percent error for each phase was 

below the desired 1% as shown in Table 17.  Multiple simulations showed no systemic 

trend in the results.  Error in phase unreliability was randomly positive or negative. 

 

Table 17:  Test Case #3 Comparison of Analytical and Simulation Unreliability 

Phase 1 2 3 4 5 6 

Markov 0.002251 0.038504 0.051071 0.001936 0.034517 0.054475 

Simulation 0.002270 0.038475 0.051049 0.001947 0.034529 0.054549 

% Error 0.843% -0.075% -0.043 0.583% 0.034% 0.136% 

       

Phase 7 8 9 10 11 12 

Markov 0.052096 0.003273 0.032713 0.054927 0.053024 0.004509 

Simulation 0.051940 0.003294 0.032784 0.054970 0.053046 0.004535 

% Error -0.299% 0.655% 0.216% 0.078% 0.040% 0.580% 

 

 The system converged on the known phase unreliability with increasing iterations.  The 

next page shows the convergence of each phase in increments of 40,000 iterations to 10 

million iterations.  All phases showed convergence toward the known solution with Phase 

7 (Phase 3, Mission 2) taking the longest.  Phase 7’s slow convergence is attributed to 

randomness because:  (1) Phase 7 percent error of -0.299% was well under 1% target and; 

(2) the repetition of the same fault tree in Phase 3 and Phase 11 showed good convergence 

with low percent errors (-0.043% and 0.040%, respectively). 
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 As expected, lower probability events found in the fault trees of Phases 1-5-9 and 

Phases 4-8-12 had greater percent errors than the higher probability of the other phases.  

More iterations are needed to gain precision in lower probability events.  In summary, the 

DES successfully handled the phased-mission, non-repairable system with the 

approximation of phase unreliability and system reliability converging to the known 

solution. 

4.1.4.4 Test Case #4:  Repairable System 

Test Case #4 is same system of the Test Case #3 with repairs following a maintenance 

policy.  A policy makes repairs to Components A and B at the end of each MFOP cycle.  

The policy makes repairs to Components C and D every third MFOP cycle.  Repairs renew 

the part to its starting age of zero with no wear.  After completing MFOP cycles 3, 6, 9, 

and 12 the system is reset to its starting condition.  MFOP cycles 1, 4, 7, and 10 begin in 

the starting condition.  Mission Reliability is appropriate because unrepaired parts are 

accumulating age and the system always begins MFOP cycles 2, 3, 5, 6, 8, 9, 11, and 12 

with aged parts. 

4.1.4.4.1 Repairable Markov Chain Model 

Use of a Markov chain model is a means to verify the simulation because it produces an 

analytical solution to the repairable system.  The memoryless property of the system is 

essential to the Markov model and allows component failure to be dependent upon phase 

duration, but independent of part age or history.  Should any of the components have a 

failure distribution other than exponential, then homogeneous Markov modeling cannot be 

used. 
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 Repairs made every cycle partially restore the system.  Repairing only Components A 

and B (as done after cycles 1, 2, 4, 5, 7, 8, 10, 11) may leave the system in states 1, 4, 5, or 

11.  Repairs made every third MFOP cycle bring the system back to its original state, state 

1.  Repairs may be approximated by the insertion of zero duration repair phase after the 

completion of the cycle and before the start of the next cycle.  The repair transition matrix, 

A, is lower triangular.  Repairs are perfect with a probability of one.  The transition matrix 

for full repairs every third cycle are shown Figure 43(a) and the matrix for partial repair is 

shown in Figure 43(b). 

 

Figure 43:  Repair Transition Matrixes 

 

 A mathematically equivalent approach to a repair phase is by altering the state vectors, 

s(p) where p is the final state (after phase 4, mission 3) of a cycle.  In either approach, a 

repaired system will have probabilities in states 1, 4, 5, and 11.  Table 18 compares results 

with the solution presented in Chew et al. [27].  The Mean Square Error of Reliability is 

0.00025 and MFOPS is 0.00038. 
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Table 18:  Repairable Markov Chain Results and Chew et al. Solution  

 

 There exists a slight decay in MFOPS from the first MFOPS cycle (0.67533) to the 

second MFOPS cycle (0.66686) to the third MFOP cycle (0.66059).  The decay is due to 

the demand to operate Components C and D longer without failure (24.75 to 49.5 to 74.25 

hours, respectively).  The system is fully restored with full repairs every third cycle and 

the decay begins again (see Figure 44).  The results presented in [27], show small variation 

between the cycles 1, 4, 7, 10 and so on.  The variation may be due to the numerical 

integration or the precision used by the authors.  The analytical solution from this work’s 

Markov model shows no variation with exact repetition of MFOPS. 
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Figure 44:  Markov Model Comparison  

 

4.1.4.4.2 Simulation Verification 

The simulation of twelve cycles was run one million times with Reliability and MFOPS 

shown in Figure 45and Figure 46 on page 114.  The shape of the curves found in the figures 

is expected from an exponential system.  The Reliability curve follows the complement of 

an exponential cdf.  The MFOPS curve shown in Figure 46 is the complement of the 

system’s hazard curve.  The hazard curve of an exponential distribution has zero slope due 

to the memoryless property; therefore, the MFOPS, which is merely the complement of the 

hazard curve, is nearly flat.  The repair policy manifests the same three-cycle decay as 

predicted in the analytical solution.  MFOP Cycle Reliability Mean Square Error (MSE) 

was 0.00103 and Cycle Unreliability was 0.00062.  Multiple simulations showed no 

systemic error or trends in the results. 

  



114 

Figure 45:  Reliability vs. MFOP Cycle 

 

 

Figure 46:  MFOPS vs. MFOP  
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 The simulation approximates the analytical solution at one million iterations to a 

MFOPS MSE of 0.00853.  Percent error for each cycle was below the desired 1% as shown 

in Table 19. 

 

Table 19:  Test Case #4 Comparison of Markov and Simulation MFOPS 

Cycle 1 2 3 4 5 6 

Markov 0.67533 0.66686 0.66059 0.67533 0.66686 0.66059 

Simulation 0.67482 0.66672 0.66007 0.67686 0.66636 0.66398 

% Error -0.076% -0.020% -0.079% 0.227% -0.074% 0.513% 

       

Cycle 7 8 9 10 11 12 

Markov 0.67533 0.66686 0.66059 0.67533 0.66686 0.66059 

Simulation 0.67580 0.66639 0.66120 0.67640 0.66460 0.65737 

% Error 0.070% -0.069% 0.092% 0.158% -0.338% -0.487% 

 

 Like Test Case #3, the Test Case #4’s convergence of MFOPS (Figure 47) takes more 

iterations than the reliability (Figure 48) due to the conditional nature of MFOPS.  Arrows 

on the figure highlight the bands of the repeating three cycle decay.  The convergence of 

these cycle results to the analytical Markov solution verify the DES for use with repair 

policies in complex systems comprised of multiple parts flying phased missions over 

several MFOP cycles.  The progressive verification of each test case provides confidence 

in the DES’ accuracy and for use in experiments that test the hypotheses. 
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Figure 47:  Convergence of MFOPS 

 

 

 

Figure 48:  Convergence of MFOP Cycle Reliability 
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4.2 Research Question 2a:  Which components limit a MFOP 

The second research question sought the identification of components or subsystems that 

limit a given system’s dependability.  Using MFOP as the metric for dependability and 

MRP as the metric for maintainability yields the Research Question 2a and 2b, respectively.  

The identification of limiting component or “weakest link” is a key step in helping the 

designer improve the MFOP. 

 

 

The weakest link step found in Relf’s methodology (Figure 9) and in the ASSIST 

methodology tells the designer where to apply a MFOP option.  None of the major 

references [23], [26], [27], [28], [45], directly address how to identify the weak link; 

however, Trindade and Nathan in [22] offer Failure Cause Identification theory as 

introduced in section 3.2.1.  Finding the part with the greatest mean from component failure 

distributions is a good indication of a weak link, but that may not necessarily provide the 

correct prediction.  Two concepts hide the answer.  First, a phased mission means some 

components will receive greater usage (and wear) than others.  Second, an aircraft and its 

parts each have their own history after several MFOP cycles.  A simulation shows is helpful 

because it does not have to solve the two problems directly.  It merely needs to record the 

Research Question 2a 

Which components/subsystems limit an MFOP? 

Conjecture A:  Failure Cause Identification reveals the limiting 

components or subsystems to a MFOP. 
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time history of causes.  Failure Cause Identification then identifies the weak links to answer 

Research Question 2. 

4.2.1 Development of Failure Cause Identification 

Consider the system of Test Case #4 with the first phase’s fault tree shown below.  There 

are 2r states in a binary system where r parts are either operating (0) or failed (1).  In the 

four-part system (𝑟 = 4), there are sixteen possible states.  A binary number of r digits 

from one to 2r describes each state. Phase 1 has six operating and ten failed states as shown 

in Figure 49. 

 

Figure 49:  Failure Causes of Phase 1, Test Case #4 Left most figure reprinted with 

permission4 

 

 A detection algorithm denotes when a failed phase occurred by matching the current 

state’s binary sequence to the failed conditions shown above.  The algorithm discovers a 

part’s contribution to the failure cause by investigating the current state’s binary sequence.  

It creates a temporary state by changing one failed component to operating.  If the 

temporary repaired state is in an operating condition, the temporary repaired part is a 

                                                 
4 Reprinted from Reliability Engineering & System Safety, vol. 93, S. P. Chew, S.J. Dunnett and J. D. 

Andrews, “Phased mission modelling of systems with maintenance-free operating periods using simulated 

Petri nets,” pp. 980-994, Copyright (2008), with permission from Elsevier. 

# A B C D Status

1 0 0 0 0 Operating

2 0 0 0 1 Operating

3 0 0 1 0 Operating

4 0 0 1 1 Operating

5 0 1 0 0 Operating

6 0 1 0 1 Failed

7 0 1 1 0 Operating

8 0 1 1 1 Failed

# A B C D Status

9 1 0 0 0 Failed

10 1 0 0 1 Failed

11 1 0 1 0 Failed

12 1 0 1 1 Failed

13 1 1 0 0 Failed

14 1 1 0 1 Failed

15 1 1 1 0 Failed

16 1 1 1 1 Failed
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member of the failure cause.  If the temporary repaired state remains failed, then the 

temporary repaired part is not a member of the failure cause.  The temporary part repairs 

are conducted one at a time to discover all members of the failure cause. 

 Phase 1 has two failure causes:  (1) Component A failed; and (2) the combination of 

Components B and D failed.  For example, suppose the system enters Phase 1 in an 

operating condition with Components B and C failed (state 7).  Component D then fails 

during the phase bringing the system into a failed condition (state 8).    A failed state is 

noted and the failure cause algorithm begins.  The algorithm temporarily repairs 

Component B, moving the system into an operating condition (state 4).  Component B is 

denoted as a failure cause and the algorithm returns the system to its original failed state 

(state 8). 

 The algorithm next makes a temporarily repair to Component C which moves the 

system into state 6.  Since state 6 remains a failure condition, Component C is not a failure 

cause.  The algorithm removes the temporary repair to Component C, return the system 

back to State 8.  The process checks the last failed part, Component D, and denotes C as a 

failure cause.  Finally, both B and D are recorded as members of the failure cause in Phase 

1 for this mission and MFOP’s iteration.  It is possible that multiple failure causes may 

occur in the same phase (such as Component A failing after D in the example); however, 

the first cause is the significant cause because mission abort would have already occurred. 

4.2.2 Verification of Failure Cause Algorithm 

Verification of the failure cause algorithm begins with a simple test using a single part 

system.  The tested part has an exponential failure distribution with a failure rate of 0.0045 

failures/hour.  The system is simulated 100,000 times with the same phase durations of 
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Test #3-4 over twelve MFOPs of three missions each.  Simulation results adhere to the 

known distribution’s cdf in Figure 50.  The discrete nature of the event simulation, in which 

no information is collected between events, yields a stair effect to the plot. 

 

Figure 50:  Verification of Failure Cause Identification 

 

4.2.3 Results and Discussion of Failure Cause Identification 

In a MFOP strategy, the “when” a system fails is as important as the “how often” or 

frequency of failure.  Metrics using the mean like MTTF and MTBF do not report the 

“when” that is essential to a MFOP strategy.  The problem is further complicated by a 

phased mission with different durations and fault trees.  As outlined in section 3.2.1, Failure 

Cause Identification provides the necessary time history of the “when” and reveals primary 

members that fail a system before completing an operating period. 
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4.2.3.1 The Need to Measure Failure Cause 

The traditional ranking failure cause based upon component failure rate does not account 

for the complexity introduced by an aging system following a phased mission with different 

fault trees.  Even with the constant failure rate system of Test Case #4 where the 

memoryless property negates aging effects, ranking parts based upon only the part failure 

rate is misleading.  The failure rate predicted order (best to worse) is D (0.0011 fails/hour), 

A (0.0045 fails/hour), C (0.0081 fails/hour), B (0.0130 fails/hour).  Simulating the system 

through twelve MFOP cycles, reveals the order (best to worse) to be D, C, A, B.  Figure 

51 plots the failure history of the system (shown as solid lines).  Parts A’ and C’ represent 

a single part system (shown as dashed lines below).  The expected failure history of shown 

in A’ and C’ neglect the impacts of architecture and a phased mission. 

 

Figure 51:  Failure Cause History of Test Case #4 

 

4.2.3.2 Establishing a Metric for Failure Cause Identification 

In the previous example, it was easy to see the contribution of each component to system 

failure by examining the plot of Failure Cause History.  Each part was exponential.  The 
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system was memoryless and hazard rates were constant.  With aging effects, the hazard 

rate as a function of time, thereby making visual inspection difficult. 

 

Figure 52:  Phase with Components in Series  

 

 Consider a four-part system in serial with the fault tree shown in Figure 52 above.  The 

new system replaces Component C’s exponential failure distribution with C”.  C’’ has a 

Weibull failure distribution (𝜂 = 55, 𝛽 = 9).  The use of a Weibull distribution introduces 

the effects of aging through a changing hazard rate.  The system is simulated over 200,000 

iterations through three MFOPs for a total duration of 74.25 hours.  The Failure Cause 

history parts and system are shown in Figure 53. 

 

Figure 53:  Failure Cause History of a Serial System 
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 Part C” begins the simulation with a low hazard rate and does not experience frequent 

failures until 30 hours.  Part C” ends the period with the second most failures; however, it 

is the best performer through the first half of the mission.  Later failures are preferred over 

early failures in a MFOP strategy.  The ideal part has few failures with those failures 

occurring late in the period.  A poor performing part has many failures with those failures 

occurring early in the period.  What is the performance of a part with few failures with 

those failures occurring early or a part with many failures with those failures occurring 

later?  It is this conflict between the total failures (how often) and the time of failure (when) 

that complicates identifying the weakest link.  This establishes the need to evaluate the 

weakest link with a new metric. 

 The development of a metric begins with the failure cause frequency.  In the continuous 

form, let g(t) be the failure cause frequency as a function of time t.  The cumulative failure 

cause history, G(t), is the integral from start of the system to the end of i operating periods 

tmf. 

𝐺(𝑡) = ∫ 𝑔(𝑡)𝑑𝑡
(𝑖×𝑡𝑚𝑓)

𝑡=0
 ( 41 ) 

Note, g(t) differs from a failure distributions pdf, f(t).  f(t) measures the probability of 

failure whose integral over time is one, while g(t) is a frequency of occurrence that does 

not sum to one.  It is necessary to use g(t) when comparing different failure causes to 

capture the “how often” or magnitude of part failures.  Both the cdf F(t) and G(t) are 

cumulative; however; F(t) is integrated over [0,∞] and sums to one, while G(t) is integrated 

over the operating period and does not sum to one. 
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 The area under the failure cause history curve is a metric of cumulative failure that 

considers both time and frequency.  The total area is the sum of the differential areas, where 

the differential areas are the product of the differential time step and cumulative count.  

The failure area, A(t), up to time t is the integral of G(t) of 

𝐴(𝑡) = ∫ 𝐺(𝑡)𝑑𝑡
(𝑖×𝑡𝑚𝑓)

𝑡=0
 ( 42 ) 

The growth of A(t) is in Figure 54(a) and values at the end of the period are listed in Table 

20. 

 

Figure 54:  Measuring Failure Cause in Serial System 

 

 The plot of A(t) provides information when part performance changes relative to other 

parts.  Higher values of A(t) are worse than lower values as they represent greater 

cumulative failures.  The area of Part C” grows past Part D at 𝑡 = 7 hours and exceeds Part 

A at 𝑡 = 69 hours.  The area growth helps answer the question:  What is the part 

contribution to failure from start to time t?  For example, if the MFOP period is set at 33 

(a) Failure Cause Area Growth (b) Failure Cause Metric
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hours, then the greatest contributors to failure are B, A, D, and C’’ from (greatest to least).  

If the MFOP period is 66 hours, the greatest contributors to failure are B, A, C’’, D. 

 

Table 20:  Metrics for Failure Cause Identification of Series System 

Component Mean per 

Iteration 

(FC) 

Mean 

per Iteration 

Normalized 

 

Area 

(FC-h) 

Area 

Normalized 

Metric 

(FC-h)2 

Metric 

Normalized 

A 0.146 4.22 7.89 4.23 2,495 4.23 

B 0.420 12.15 22.71 12.16 7,180 12.17 

C” Weibull 0.372 10.78 9.13 4.89 690 1.17 

D 0.035    1 1.87    1 590      1 

 

4.2.3.3 Distinguishing Between Early and Late Failures 

A(t) is useful to identify the weakest links up to time t; however, it cannot differentiate 

between early and late failures.  This is because A(t) sums all differential elements equally.  

For example, the area for Part C” Weibull (9.13) is slightly larger than Part A (7.89); yet, 

Figure 53(a) shows that Part C” has much later failures than Part A.  The area metric is 

insufficient because a MFOP strategy prefers later failures over earlier failures. 

 A time weighted metric is needed to understand which component most limits the 

chance to achieve the longest MFOP period.  Such a metric is the Failure Cause Metric 

(FCM).  It weighs early failures worse than later failures and is defined as  

𝐹𝐶𝑀(𝑡) = ∫ [(𝑖 × 𝑡𝑚𝑓) − 𝑡]𝐴(𝑡)𝑑𝑡
(𝑖×𝑡𝑚𝑓)

𝑡=0
 ( 43 ) 

Plots of FCM(t) are shown in Figure 54(b).  The metric is most useful as a quantitative 

number shown in Table 21.  The metric ranks Part C” Weibull with its later failures as 
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better than Part A.  FMC provides a quantitative means to identify which component(s) 

most (and least) limit a desired MFOP based upon when failure occurs. 

 

Table 21:  Metrics for Failure Cause Identification of a Sample System 

Component Mean 

per 

Iteration 

(FC) 

Mean 

per 

Iteration 

Rank 

 

Area 

(FC-h) 

Area 

Rank 

Metric 

(FC-h)2 

Metric 

Rank 

A 0.146 2 7.89 2 2,495 3 

B 0.420 4 22.71 4 7,180 4 

C” Weibull 0.372 3 9.13 3 690 2 

D 0.035 1 1.87 1 590 1 

 

 The testing of maintenance policies presented by Hypothesis 2 and 3 utilized Failure 

Cause Identification extensively to diagnose system behavior. 

4.3 Research Question 2b:  What is the Greatest Contributor to MRP 

The companion to a MFOP’s weakest link is a MRP’s greatest contributor.  The greatest 

contributor is the component or subsystem that maintainers spend the most time repairing 

in a MRP.  If a unit wanted to reduce the length of a MRP, they would ask designers to 

improve the greatest contributor’s reliability or maintainability (ease of repair).  The MRP 

measures a system’s maintainability.  A thought experiment and a practical exercise 

follows to investigate the greatest contributor to the MRP. 
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4.3.1 Thought Experiment 

A brief thought experiment demonstrates a key concept of the MRP.  The repair with the 

greatest Mean Time To Repair (MTTR) is not necessarily the greatest contributor to the 

MRP.  Similarly, the most failed part is not necessarily the greatest contributor.  A brief 

thought experiment demonstrates this concept.  Consider a simple system of three parts in 

series.  Parts A, B, and C have mean repair times shown in Table 22.  Suppose a MFOP 

consists of 100 missions and a counter records the number of failures over the MFOP.  

Neither the part with greatest MTTR (Part C) nor the part with the highest failure rate (Part 

A) has the largest total repair time (Part B). 

 

Table 22:  MRP Thought Experiment 

Part MTTR Failures per 100 

missions 

 

Expected Cumulative 

Repair Time 

A 

 

1 hour 12 12 hours 

B 

 

4 hours 5 20 hours 

C 8 hours 2 16 hours 

 

 

 The discussion is looking for the repair with the greatest expectation of contribution to 

MRP.  The greatest contributor should not be as difficult to find as the weakest link because 

repair times, although stochastic, follow a distribution that does not change over time.  It 

is worth noting that component failure rates calculate the expectation a priori as the part 

aging is derived from a percentage of flight hours. 
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 The dissertation accepts the conjecture that each component’s mean downtime predicts 

the greatest contributors.  The expected downtime is 

𝐸(𝐻 ∙ 𝑇𝑇𝑅) = 𝐻[𝑡]𝐸(𝑇𝑇𝑅) + 𝐶𝑜𝑣(𝐻, 𝑇𝑇𝑅) ( 44 ) 

where H is the expected number of failures to time t, TTR  is the Time to Repair 

distribution, and (𝐻 ∙ 𝑇𝑇𝑅) is the total repair time over a MFOP cycle.  The expected 

number of failures is a function of the components Time to Failure (TTF) distribution.  The 

expectation of repair time is the MTTR.  The expectation of total repair time is the MDT 

for the part.  Assuming H and repair times (TTR) are independent, random variables, the 

covariance will be zero.  A system’s total MRP is then 

𝑀𝑅𝑃 = ∑ 𝐻𝑟 ∙ 𝐸(𝑇𝑇𝑅𝑟)
𝑛
𝑟=1  ( 45 ) 

where there are n parts in the system. 

 The use of ( 45 ) assumes part unreliability is independent of its time to repair.  There 

is likely a small dependency between frequency of failure and repair times in real 

operations.  A maintainer that sees the same failure frequently is likely to become faster in 

diagnosing and repairing the item.  A unit is also likely to keep spares of commonly failed 

items, reducing logistical downtime.  The repair times are assumed to follow a distribution 

that is independent of unreliability.  Measuring MRP in MMH eliminates the need to model 

Research Question 2b 

Which components/subsystems are the greatest contributor(s) to MRP 

duration? 

Conjecture B:  The greatest contributor is the component/subsystem 

with the greatest expected downtime. 
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a unit’s repair capacity and available manpower to answer the question.  The next section 

conducts a practical exercise to determine the TTF distribution and expected downtime of 

a utility helicopter. 

4.3.2 Construction of a Utility Helicopter Model 

FVL develop includes the technology demonstrators of the Joint Multi-Role (JMR) 

program.  The initial effort of JMR focused on fulfilling Capability Set 3, consisting of 

medium utility and attack configurations.  The Black Hawk and AH-64 Apache currently 

perform these roles in the U.S. Army.  The aircraft serve as baselines for the medium class 

demonstrators and the medium configuration.  The Black Hawk is attractive due to its 

proliferation, long service history, and availability of maintenance data. 

 

 

Figure 55:  Sikorsky Black Hawk Helicopter from [61] 
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 The constructed utility helicopter is representative of the U.S. Army’s UH-60M Black 

Hawk.  The Black Hawk is a medium lift, utility helicopter from Sikorsky Aircraft of 

Lockheed Martin Corporation.  There are over 4,000 Black Hawk variants in service with 

the 2,135 operated by the U.S. Army [61].  The commercial designation of the Black Hawk 

is the S-70.  The UH-60 first saw service in 1979 and has several major model updates.  

The Army expects an upgraded UH-60M and a future model, the UH-60V, to remain in 

service through 2045 and the fielding of FVL [62].  

 Modeling a Representative Utility Helicopter (RUH) model requires the construction 

of three random variable distributions: (1) Time to Failure (TTF); (2) Time to Repair 

(TTR); and (3) Repair Cost (if capturing affordability).  TTF captures the frequency and 

nature of failures necessary to calculate MFOPS and understand the weakest link using 

Failure Cause Identification.  TTR establishes the duration of the MRP and the likelihood 

of meeting a desired duration, MRPS.  It also provides downtime, measured in 

Maintenance Main Hours, for prediction of Achieved Availability by renewal theory.   

4.3.2.1 Time to Failure Distributions 

The U.S. Army scores aircraft reliability and maintainability events with the Failure 

Definition and Scoring Criteria (FDSC).  Resulting maintenance actions are either 

scheduled or unscheduled maintenance.  The FDSC classifies unscheduled maintenance as 

Unscheduled Maintenance Action (UMA).  The FDSC further distinguishes UMAs as an 

Essential Maintenance Action (EMA), Mission Affecting Failure (MAF), or Mission Abort 

(MA) based upon its impact to the mission and time of discovery.  FDSC definitions from 

[63] for the UH-60M event categories are in Table 23.  The categories are hierarchical with 

some terms nested in others as depicted in Figure 56. 
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Table 23:  FDSC Failure Definitions 

Term Name FDSC Definition [63] 

 

UMA Unscheduled 

Maintenance 

Action 

Any maintenance action that is not identified in the 

technical documentation of the system as scheduled 

maintenance. 

 
MEF Mission Essential 

Function 

An MEF is the operational capabilities that the system must 

perform to complete its missions successfully. 

 

EMA Essential 

Maintenance 

Action 

Results from any incident or malfunction which causes the 

inability to perform, or degrades, one or more MEFs 

regardless of time of discovery, plus any additional 

unscheduled maintenance required prior to initiating the next 

mission, to include restoring mission essential equipment 

redundancy. 

 

 

 

 

 

Table 23 (continued) 

Term Name FDSC Definition [63] 

 

MAF Mission Affecting 

Failure 

An incident or malfunction which causes the inability to 

perform, or severely degrades, one or more MEFs and was 

discovered during mission time, regardless of the operational 

mission in progress. 

 

MA Mission Abort An incident or malfunction that causes the loss of a mission 

essential function specifically required for the operational 

mission in progress. 
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Figure 56:  Hierarchical Structure of Failure Classification  

 

 EMAs are the classification of interest when studying a MFOP.  An “essential” incident 

prevents the aircraft from performing its Mission Essential Functions (MEFs).  MEFs for 

the Black hawk are fly, communicate, navigate, survive, transport, and provide patient care 

(HH-60M only) [63].  EMAs are incidents that result in unscheduled maintenance and, 

therefore, disrupt the MFOP.  Even if an EMA incident does not result in a Mission Abort 

(MA) on a given flight, it still requires maintenance upon returning base.  This is an 

important concept of a MFOP strategy.  A successful MFOP system must have a high 

mission reliability (measured by MA) and minimal unscheduled maintenance (measured 

by EMA).  Given that all MAs are an EMAs, the number of EMAs is equal to or greater 

than the number of MAs. 

 EMAs that occur during the mission time (pre-flight to shutdown) are MAFs.  EMA’s 

discovered outside the mission time (after post flight inspection and before the next mission 

time) do not have a specified label.  Whether the operator discovers the fault during or after 

the mission time, it is still an EMA.  An incident that does not interfere with an MEF has 

a non-essential maintenance action.  The maintainer may defer the non-essential UMA to 

Event

UMA

EMA

MAF

MA

MAF in 

Other Mission

EMA Outside

Mission Window

Non-essential 
UMAs

Scheduled 
Maintenance
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the next MRP, to any subsequent MRP, or to the next reset.  Although an operator may 

choose to repair a non-essential UMA, it does not necessarily disrupt a MFOP and should 

not be used to evaluate an aircraft’s MFOP.  The ideal near-zero maintenance aircraft has 

no UMAs because MFOP Options such as prognostics and diagnostics provide warning of 

a failure with sufficient time to synchronize preventive action at the next MRP; however, 

the state of the art is far from this capability.  Until aircraft achieve the near-zero 

maintenance paradigm, EMAs represent the proper way to capture both failure and 

unscheduled maintenance that could disrupt a MFOP. 

4.3.2.2 Results of Constructed Time to Failure Distributions 

The Reliability, Availability, and Maintainability Engineering and System Assessment 

Division of the U.S. Army’s AMRDEC provided EMA data to study the UH-60M.  To 

ensure public release-ability, data shown in the thesis has been skewed randomly by ±20% 

from the actual data.  This permits the presentation of methodology and results for a 

Representative Utility Helicopter (RUH) that is similar in class and performance to the 

UH-60M Black Hawk.  Table 24 consolidates EMA data from 55,634 flight hours recorded 

in a recent two-year period.  The data is a compilation of entries manually verified by a 

RAM expert and represents approximately 24% of all UH-60M flight hours over the two-

year period. 
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Table 24:  Representative Utility Helicopter EMAs 

Functional 

Group 

Code 

Subsystem Essential 

Maintenance 

Actions 

 

EMAs per 

1,000 h 

02 Airframe 2,173 39.06 

03 Landing Gear 750 13.48 

04 Power Plant 1,423 25.58 

05 Rotor 1,800 32.35 

    

06 Drive 804 14.45 

07 Pneumatics and Hydraulics 653 11.74 

08 Instruments 294 5.28 

09 Electrical 395 7.10 

    

10 Fuel 174 3.13 

11 Flight Control 1,001 17.99 

12 Utility 434 7.80 

13 Environmental Control 21 0.38 

    

15 Auxiliary Power Unit 198 3.56 

16 Mission Equipment 237 4.26 

17 Emergency Equipment 17 0.31 

18 Ground Support Equipment 71 1.28 

    

19 Avionics 285 5.12 

52 Stabilization (AFCS) 160 2.88 

    

Total  10,890 195.75 

 

 The system EMA rate is 195.75 failures per 1,000 flight hours.  Recognizing that each 

subsystem is essential to mission accomplishment leads to a reliability block diagram in 

series (Figure 57). 
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Figure 57:  RUH Reliability Block Diagram 

 

 The reliability for the serial system is 

𝑅𝑠𝑦𝑠 = ∏ 𝑅𝑟(𝑡)
18
𝑟=1  ( 46 ) 

where the eighteen subsystems of Figure 57 comprise the RUH.  The memoryless property 

of a system comprised of only exponential TTF distributions system provides that 

𝑅𝑠𝑦𝑠 = ∏ 𝑒−𝜆𝑟𝑡18
𝑟=1 = 𝑒−𝑡∑ 𝜆𝑟

18
𝑟=1 = 𝑒−𝜆𝑠𝑦𝑠𝑡 ( 47 ) 

and, thus, the system failure rate is 

𝜆𝑠𝑦𝑠 = ∑ 𝜆𝑟
18
𝑟=1 = 0.19575 failures/h ( 48 ) 

 Although the RUH is a repairable system, the MTTF provides a useful notion.  MTTF 

is the expected duration the system can achieve without repair.  Given that a system must 

remain without failure and maintenance free during the MFOP duration, the MTTF is a 

metric of interest.  The MTTF of a system is  

𝑀𝑇𝑇𝐹𝑠𝑦𝑠 = ∫ 𝑅𝑠𝑦𝑠 𝑑𝑡
∞

0
 ( 49 ) 

Substituting ( 48 ) into ( 49 ) gives 

02 Airframe 03 Landing 

Gear

04 Power Plant 05 Rotor

09 Electrical 08 Instruments 07 Pneumatics 

& Hydraulics

06 Drive

10 Fuel11 Flight 

Control

12 Utility 13 

Environmental

18 Ground 

Support Equip

17 Emergency 

Equipment

16 Mission 

Equipment

15 APU

52 Automatic 

Flight Control

19 Avionics
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𝑀𝑇𝑇𝐹𝑠𝑦𝑠 = ∫ 𝑒−𝜆𝑠𝑦𝑠𝑡 𝑑𝑡
∞

0
 ( 50 ) 

Evaluating the integral at the EMA rates found in Table 30 yields  

𝑀𝑇𝑇𝐹𝑠𝑦𝑠 = 
1

𝜆𝑠𝑦𝑠
 = 

1

0.19575 𝐸𝑀𝐴𝑠/ℎ
 = 5.11 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝐸𝑀𝐴 ( 51 ) 

 The RUH has a mean duration of 5.11 hours before an EMA occurs.  This number is 

of the same order of magnitude to the 5-hour MFOP suggested by [31].   A plot of MFOPS 

verse MFOP duration is in Figure 58.  In this circumstance, the MFOPS equals the 

probability that the system does not incur an EMA through in the first cycle through time 

tmf given the system started fully functional. 

 

Figure 58:  Exponential RUH Model Plot of MFOPS vs MFOP  
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 The memoryless property of an exponential system, specifically expressed as Equation 

( 51 ), permits a simple analytical solution to MFOP through the quantile (or inverse cdf) 

function.  In a MFOP context, the quantile function of the exponential system is 

𝑀𝐹𝑂𝑃 = −
ln(𝑀𝐹𝑂𝑃𝑆)

𝜆𝑠𝑦𝑠
 ( 52 ) 

Systems with non-exponential TTF distributions or complex reliability block diagrams 

systems may not have an attainable closed form expression.  The table below lists MFOP 

values at specific, given MFOPS.  The RUH has a 50% chance to achieve 3.54 flight hours 

without incurring any essential maintenance.  It has a 36.8% chance to achieve the mean 

of 5.11 flight hours and only a 14% chance to reach 10 flight hours without essential 

maintenance. 

 

Table 25:  Exponential RUH Model MFOPS 

MFOPS 

 

MFOP Remarks 

0.00000039% 100.00 h  

14% 10.00 h  

36.8% 5.11 h Mean 

50% 3.54 h Median 

90% 0.54 h  

95% 

 

0.26 h  

 

 Table 25 shows that a MFOP of 100 hours, as sought by FVL, is a radical improvement 

in system reliability from today’s aircraft. 
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4.3.2.3 Construction of Time to Repair Distributions 

A Time to Repair (TTR) distribution measures the probability that a specific maintenance 

action takes a duration of t.  TTR accounts for any resulting maintenance action of an EMA.  

Ideally, actual repair times build the distribution; however, this data is not always available.  

New designs may not have a large historical database to generate sufficient data or the 

information may not be recorded (as is the case of the RUH).  Relevant repair times for an 

EMA event were difficult to identify in the current Army maintenance database.  

Fortunately, the use of a Maintenance Allocation Chart (MAC) can overcome the lack of 

comprehensive repair time data. 

 The MAC accounts for the expected time to complete a maintenance action on a 

component.  Maintenance actions include inspect, service, adjust, repair, replace, and test.  

The MAC assigns expected action time based upon the experience, skills, and tools at each 

level of maintenance.  Time is tracked as MMH to the tenth of an hour.  The author 

manually compared the 774 working unit codes with an EMA to the 900 component action 

times of the MAC.  Overall, 8,982 of the possible 10,890 EMAs (82%) had a matching 

TTR.  Figure 59 shows the number of matched and unmatched EMAs by subsystem.  The 

distribution fitting excluded unmatched EMAs. 
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Figure 59:  RUH Subsystem EMA to TTR Matching  

 

 An excerpt of the Airframe Subsystem is in Table 26 with data organized by working 

unit code.  The table lists EMAs and the matched TTR in third and fourth columns, 

respectively.  Unmatched working unit code EMAs, such as the 24 EMAs of the ‘02A 

Forward Fuselage Section, are excluded from building the TTR distribution.  72% (1,557 

out of a possible 2,173) of Airframe EMAs matched a TTR.  Working Unit Codes’ fractions 

of the 1,557 events are in the fifth column.  Column six multiplies the fraction by its 

respective TTR.  The mean TTR for the subsystem is the sum of working unit codes’ 

contributions.  The Airframe Subsystem has a mean of almost 2.9 hours per EMA event. 
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Table 26:  Extract of '02 Airframe TTR 

(1) 

Working 

Unit 

Code 

 

(2) 

Nomenclature 

 (3) 

     EMA 

(4) 

TTR 

(5) 

Fraction 

(6) 

Contribution 

'02 Airframe 4 2.3 0.0026 0.0059 

'02A Forward Fuselage Section (24) --- 0.0000 0.0000 

'02A01 Windshield Installation 8 1.4 0.0051 0.0072 

'02A01A Pilot's Windshield 35 1.9 0.0225 0.0427 

      

'02A01B Co-Pilot's Windshield 29 1.9 0.0186 0.0354 

'02A01C Upper Overhead Window 45 1.4 0.0289 0.0405 

'02A01D Lower Nose Window 49 1.4 0.0315 0.0441 

'02A01E Center Panel Windshield 32 1.4 0.0206 0.0288 
. 
. 
. 
 

. 

. 

. 
 

. 

. 

. 
 

. 

. 

. 
 

. 

. 

. 
 

. 

. 

. 
 

'02C15J Tail Pylon Fitting 1 0.2 0.0006 0.0001 

      

Total  1,557 

(2,173) 

 

 1 2.8963 

 

 

 The product of a working unit code’s EMA and its matched TTR builds a time weighted 

histogram.  The MATLAB’s distribution fit application turned the histogram into a density 

plot with a distribution fit as demonstrated for the Airframe subsystem in Figure 60.  Most 

of the fits are not ideal.  The TTR histograms tend to be heavily weighted with TTRs below 

3 hours creating a left leaning distribution.  Weibull distribution with a shape value between 

1 and about 3.4 model the left leaning distributions.  The histograms also show a small 

number of high time repairs.  High time repairs represent major maintenance actions like 

main transmission or rotor installation. The high time maintenance action of the Airframe 

subsystem is the 29.7 MMH replacement of the tail pylon.  This characteristic makes fitting 

a continuous distribution difficult. 

 The assumption of a fixed TTR worsens the fit.  The assumption removes some of the 

variability existing in actual maintenance times.  Capturing the true variability would 



141 

reduce the peaks, “smooth” the frequency plot, and provide data easier to fit.  For larger 

subsystems with many components, the Central Limit Theorem predicts the distribution 

should become normal.  The Weibull distribution may approximate the normal (β≈3.44) 

but with thicker tails.  The advantage of the Weibull distribution is that it takes a probability 

of zero when the random variable is less than zero.  This property prevents negative TTRs, 

unlike the normal which has a range of [-∞, +∞].  Despite the less than ideal fit, the use of 

a Weibull does provide a better tool than making a generic assumption of a constant TTR 

rate. 

 

Figure 60:  Airframe Subsystem Density Plot and Fit 

 

 Table 27 lists the fitted Weibull distribution for the Airframe and the fitted distributions 

for the remaining subsystems.  Eleven of the eighteen distributions are left leaning with the 

characteristic high-time assembly installation.  Every ‘017 Emergency Equipment essential 
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maintenance action was 0.2 hours.  A normal distribution with a very small standard 

deviation models the short replacement of emergency equipment. 

 

Table 27:  RUH Time to Repair Distributions 

Subsystem MTTR 

    (h) 

Distribution 

Type 

 

Parameter Parameter 

02 Airframe 2.9 Weibull η=3.137 β=1.154 

03 Landing Gear 6.8 Weibull η=7.521 β=1.468 

04 Power Plant 1.6 Weibull η=1.396 β=0.851 

05 Rotor 11.6 Weibull η=11.595 β=1.006 

      

06 Drive 5.5 Weibull η=4.321 β=0.707 

07 Pneu & Hydraulics 4.7 Exponential μ=4.704  

08 Instruments 0.7 Weibull η=0.804 β=1.406 

09 Electrical 2.3 Weibull η=2.578 β=1.474 

      

10 Fuel 7.1 Exponential μ=7.079  

11 Flight Control 5.1 Weibull η=5.352 β=1.119 

12 Utility 1.3 Weibull η=1.444 β=1.341 

13 Enviro Control 3.0 Weibull η=3.320 β=3.553 

      

15 Auxiliary Power Unit 5.9 Weibull η=6.675 β=1.753 

16 Mission Equipment 1.6 Weibull η=1.795 β=1.451 

17 Emergency Equipment 0.2 Normal μ=0.2 σ=3e-17 

18 Ground Support Equip 0.6 Weibull η=0.683 β=3.214 

      

19 Avionics 0.7 Weibull η=0.729 β=3.552 

52 Stabilization (AFCS) 0.8 Weibull η=0.936 β=2.444 

 

 

     

00 RUH System 5.5 Lognormal μ=0.830 σ=1.278 

 

 

 Compiling system data into a single distribution yielded best fit with a lognormal 

distribution (μ=0.830, σ=1.278).  Figure 61 compares the TTR density against the fitted 

lognormal distribution.  Actual mean of matched TTR data was 5.45 hours per EMA.  

Predicted mean of matched TTR data was 5.19 hours per EMA. 
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Figure 61:  RUH System Density Plot and Fit 
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5 PROBLEM 2.1:  MAXIMIZE AVAILABILITY IN A 

MFOP POLICY 

Problem 1 worked to provide the tools to assess a maintenance strategy and its limiting 

factors to MFOP and MRP.  Both MFOP and availability are important operational metrics 

to an aircraft’s value.  Understanding how they influence each other will help develop the 

right maintenance strategy to meet operational requirements.  Problem 2 decomposed this 

interaction into two research questions.  They are reshown below for the reader’s 

convenience with the hypotheses introduced in this chapter. 

 

Figure 62:  Problem 2 Summary with Hypotheses 

 

 Problem 2 addresses MFOP Knowledge Gap 4 (see Table 3):  Account for varying 

operational tempo in future sustainment strategy.  The problem, consisting of two research 

questions, explores how to develop adjustable maintenance policies to best meet changing 

operational demands.  This chapter examines Research Question 3 by testing a second 

hypothesis.  The section develops a framework to the creation of a maintenance policy that 

maximizes availability in a MFOP context.  Such a policy of maximum availability is best 
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of cycles.
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suited for a garrison or training environment where the operational tempo is low and a 

shorter MFOP duration is tolerable. 

5.1 Research Question 3:  What is the Policy to Minimize Downtime 

The third research question probes maintenance policies to minimize the downtime and 

thereby maximize availability.  The renewal theory work by Jardine and Tsang in [3] 

provides a useful model that minimizes the downtime of a single part system.  Section 3.4.2 

of the background chapter has a review of the Optimal Preventive Replacement Interval 

model.  The time to preventive maintenance in this model may be viewed as a MFOP 

duration.  The downtime is quantified by the dimensionless quantity, D, and is reshown as 

𝐷(𝑡𝑝) = 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑜𝑤𝑛 𝑡𝑖𝑚𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑓𝑎𝑙𝑢𝑟𝑒𝑠+
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑜𝑤𝑛 𝑡𝑖𝑚𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝐶𝑦𝑐𝑙𝑒 𝐿𝑒𝑛𝑔𝑡ℎ
 ( 16 ) 

 Total system downtime is the sum of downtime from each part 

𝐷𝑠𝑦𝑠𝑡𝑒𝑚 = ∑ 𝐷𝑖(𝑡𝑝)
𝑁
𝑖=1  ( 53 ) 

where Di is the dimensionless downtime caused by the ith part and tp is the MFOP length.  

Equation ( 17 ) shows the calculation for Di.  The optimization statement is the 

minimization of the system’s downtime.  This in turn, causes the maximization of materiel 

availability [3]. 

 

min       Dsystem 
tp, mi 

subject to        𝑡𝑝 −𝑀𝐹𝑂𝑃𝑚𝑖𝑛  ≥ 0 

 

 A discrete approach avoids the difficulties of finding the Laplace transformation for 

numerous continuous distributions.  Considering each part’s tp to be αr multiples of MFOP 
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will synchronize the maintenance.  The tp must be at least the minimally acceptable MFOP 

duration.  Since the calculation of D is recursive, a computer makes quick work of the 

calculations. 

 

 

 This effort tested a maintenance policy that conducts preventive maintenance repairs 

during the MRP only.  This differs from the modeling conducted in the first two research 

questions because the earlier work assumed an unoptimized preventive maintenance plan.    

The hypothesis postulates that a correctly optimized maintenance policy of preventive 

maintenance will improve the materiel availability with a penalty of more MRP actions.  

The hypothesis is tested on a simple system with an accompany sensitivity study on the 

interaction of key variables. 

5.1.1 Revised Renewal Theory Model for MFOPs 

A MFOP strategy needs to limit corrective action of failures and cluster scheduled 

maintenance into a MRP.  This problem looks at the clustering of scheduled maintenance 

using renewal theory’s Optimal Preventive Replacement Interval model to quantify a 

system’s downtime.  The Optimal Preventive Replacement Interval model is appropriate 

for a MFOP strategy when the policy makes preventive replacements at multiples of the 

replacement interval (tp).  Synchronizing the preventive replacement interval of all items 

Research Question 3 

What is the maintenance policy that minimizes downtime? 

Hypothesis 2:  If a policy synchronizes the system’s optimal 

preventive replacement interval to the MRP, than  the policy minimizes 

the total achieved downtime. 
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in the system to designated recovery periods establishes the MRP and creates an assurance 

that scheduled maintenance will not disrupt operations through the MFOPs. 

 This section provides an adaptation of the classical renewal theory model to support 

multiple parts with replacement intervals synchronized as multiples of the MFOP.  The 

work begins with a review of the Optimal Preventive Replacement Interval model, then 

highlights current limitations of the theory, and finishes with an adaptation to a MFOP 

strategy.  As presented later, the maintenance planner must take care not to minimize 

downtime through optimal replacement intervals at the expense of system reliability.  An 

effective MFOP maintenance policy balances the operator’s need for sufficiently long 

preventive replacement intervals against the risk of disruptive unscheduled failures 

occurring in the MFOP. 

5.1.1.1 Understanding the Optimal Replacement Interval Model 

Section 3.4.2 introduced renewal theory as applied in the Optimal Replacement Interval 

Model.  The reader is encouraged to review this section before continuing with the 

application below.  The model predicts downtime per cycle (D) for a single part over a 

replacement interval (tp) and is 

𝐷(𝑡𝑝) = 
𝐻(𝑡𝑝)𝑇𝑓+𝑇𝑝

𝑡𝑝+𝑇𝑝
 ( 17 ) 

where H(tp) is the expected number of failures over the interval tp, and where Tf and Tp are 

the time to make corrective actions and preventative replacements, respectively.  The 

model assumes that corrective repairs times are inclusive of tp.  The assumption is valid 

when the failure repair times (Tf) are small compared tp.  The assumption keeps tp’s clock 

running even when the system is down during corrective replacement.  The model works 
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well for long running systems that operate for weeks or months and have corrective repairs 

made in hours or days. 

 An example of a single item system shown in Figure 63 demonstrates the behavior of 

the model.  The figure plots data points taken from Jardine and Tsang [3] over the model’s 

downtime ratio predicted by Equation ( 17 ).  It also includes a revised model developed 

later.  The item has a failure distribution that is normal (μ=5, σ=1), a failure replacement 

time of 0.07 units, and a preventive replacement time of 0.035 units.  Table 28 shows the 

results for the first 6 intervals.  The downtime function begins with a ratio of 1 at a tp of 

zero.  This represents a state of 100%, continuous, preventive repair with zero operating 

time (𝑡𝑝 = 0).  The function decreases rapidly with a series of local minima (3.65, 8.62, 

and 13.96) and maxima that dampen over time.  The global minimum is at a tp* of 3.65 

units of time with a downtime of ratio of 0.0112 or 1.12%. 

 

Figure 63:  Downtime Ratio versus Preventative Replacement Interval 
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Table 28:  Downtime of Optimal Preventative Replacement Interval 

tp 

 

0 1 2 3 4 5 6 

Jardine & Tsang [3] 

D(tp) 

 

 0.0338 0.0173 0.0121 0.0114 0.0139 0.0156 

Original Model 

D(tp) 

 

1 0.03382 0.01725 0.01206 0.01143 0.01391 0.01558 

Revised Model 

DA(tp) 

 

1 0.03382 0.01724 0.01205 0.01140 0.01381 0.01543 

 

 The periodic, non-linear nature of the function is due to the expected number of 

failures, H(tp).  In the above example, the mean time to failure of the part is five units of 

time.  On average, the first failure occurs at 5 units of time.  The model assumes a corrective 

action after failure at t=5.  The next failure is then expected to occur five units of time later 

at t=10.  In this way, the mean approximates the period of the H(tp) with the variance of 

the distribution influencing the amplitude.  A failure distribution with a low variance (a pdf 

that has a pronounced peak and short tails) more closely is periodic at the mean.  A helpful  

non-dimensional measure is the coefficient of variation.  The coefficient of variation 

normalizes the standard deviation with the mean as 

𝑐𝑣 = 
𝜎

𝜇
 ( 54 ) 

Figure 64(a) shows a low variance distribution with a cv of 0.02.  In this chart, the failure 

distribution is normal with a standard deviation of 0.1 units of time.  Low variance 

distributions take a more pronounced step-like shape due to the steepness of the 

distribution’s cdf.  Increasing the standard deviation to 1.0 units of time gives a cv of 0.2.  
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Figure 64(b) shows a smoother, less step-like curve as cv increases.  Increasing the variance 

to a cv of 0.33 creates Figure 64(c).  Here, failures occur throughout the interval yielding a 

flatter curve.  The exponential distribution shown in (d) is straight due to its high variance 

(Var=λ-2=25) and a cv of 1. 

 

Figure 64:  Expected Number of Failures, H(tp) 

 

 Since the mean represents the average unit time per failure, the inverse of the mean is 

failures per unit time, or slope of the H(tp).  The slope of the curve at t=tp is the 

(b) Normal (μ=5, σ=1.00)(a) Normal (μ=5, σ=0.10)

(d) Exponential (λ=0.2)(c) Normal (μ=5, σ=1.67)
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instantaneous rate of failure per replacement interval.  The mean and the influence of the 

variance effect the slope. Figure 64(c) and (d) show a normal distribution and exponential 

distribution with the same mean (μ=5) and same general slope.  This holds true if the mean 

is sufficiently larger than the standard deviation.  A best practice provided by Kumar [33], 

is for the mean to be at least three times the standard deviation (𝜇 > 3𝜎) to ensure the part 

functions at its starting age.  An exponential distribution’s slope is the rate of failure, λ=0.2 

failures per unit of time.  Both distributions have the same y-intercept by starting at H(0)=0.  

The normal distribution in Figure 64(c) is offset to the right as compared to the exponential 

distribution in Figure 64(d).  The offset indicates that the normal experiences delayed 

failures early on (tp<μ) while the exponential distribution has a constant rate of failure. 

 Understanding the relationship between distribution parameters and H(tp) provides 

insight into how failure distributions influence the downtime ratio of a system.  Low 

variance failure distributions have more pronounced dips or lower relative local optima in 

D(tp) than higher variance distributions (see Figure 65).  It will also have greater peaks or 

higher relative D.  This is an important consideration for the maintenance planner.  A low 

variance distribution will take on greater significance when choosing an optimal 

replacement interval.  A lower variance item introduces greater amplitudes in the system 

downtime curve making potential selections of tp either much better or much worse.  Figure 

65 shows that the selection of tp of 4.5 units of time yields the global optimum with 

D(4.5)=0.0555.  A slight increase to tp of 5.2 units of time yields local maximum with 

D(5.2)=0.0690.  This suggests that, in a highly complex design with many parts and a large 

dimensionality, the low variance items dominate the sensitivity of tp.  The designer, 
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consequentially, may exclude items with a high variance in time to failure with the purpose 

of reducing the dimensionality of the problem. 

 

Figure 65:  System Downtime Ratio versus Replacement Interval 

 

 The limit of the downtime ratio as the replacement interval grows large is 

lim
𝑡𝑝→∞

𝐷(𝑡𝑝) = lim
𝑡𝑝→∞

𝐻(𝑡𝑝)𝑇𝑓+𝑇𝑝

𝑡𝑝+𝑇𝑝
 ( 55 ) 

This limit is dependent upon the rate at which H(tp) increases over time.  With the 

exponential distribution, we may take advantage of the memoryless property to express the 

expected number of failures as the integral of the hazard function, h(t), as 

𝐻(𝑡𝑝) = ∫ ℎ(𝑡)
𝑡𝑝

0
𝑑𝑡 = 𝜆𝑡𝑝 ( 56 ) 

where h(t) is equal to the constant failure rate λ.  Jardine and Tsang [3] provide an 

approximation for the normal distribution as 
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𝐻(𝑡) ≈
𝑡

𝜇
+

𝜎2−𝜇2

2𝜇2
 ( 57 ) 

if tp is sufficiently larger.  The second term in ( 57 ) creates the right offset discussed above.  

Other distributions require the use of the recursive formula found in ( 19 ) to estimate H. 

 The downtime ratio dampens over time due to the compounding effect of variance in 

many replaced items.  The downtime approaches the limit from above and has a horizontal 

asymptote.  Substituting equations ( 56 ) or ( 57 ) into ( 55 ), yields an approximation of 

the limit to be  

lim
𝑡𝑝→∞

𝐷(𝑡𝑝) ≈ 
1

𝜇
  𝑇𝑓 ( 58 ) 

where μ is the mean or expectation of the failure distribution.  Figure 66 shows the 

convergence of items towards the limit.  In this example, each distribution has a mean of 5 

time units per failure with a Tf of 0.07 units of time.  Item’s individual downtimes converge 

to  

lim
𝑡𝑝→∞

𝐷(𝑡𝑝) ≈
1

5
(0.07) ≅ 0.014 ( 59 ) 
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Figure 66:  Example Limit of Downtime Ratio  

 

 Taking the limit of D as tp is large, represents an item’s downtime ratio without 

preventive replacement or an item with almost no preventive replacement time, Tp.  A 

policy should preventively replace an item if it has an increasing hazard rate.  The intent is 

to replace the item before it breaks down due to wear.  A policy should not replace an item 

with a constant failure rate (exponential distribution) when attempting to minimize 

downtime, because the downtime ratio improves towards the limit (see Figure 66).  

Similarly, a policy should never preventively replace an item with a decreasing hazard rate 

when attempting to minimize downtime, because the downtime improves over time.  

Distributions with a decreasing hazard rate include hyper-exponential distributions and 

Weibull distributions with a shape (β) less than one. 

 The limit stands as a useful benchmark to ensure that the chosen replacement interval 

does not worsen the downtime.  As shown in Figure 65, it is possible to have a tp that 

exacerbates downtime.  A maintainer should reject a policy that yields a higher downtime 
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ratio than the limit.  A good maintenance policy replaces items near a local minimum if not 

at its optimal minimum.  This results in the best overall system downtime. 

5.1.1.2 Limitations of the Current Preventive Replacement Model 

Classical renewal theory provides for a method to minimize downtime as a function of a 

component’s preventive replacement interval (tp); however, the current theory is unsuitable 

for a MFOP strategy.  First, the renewal theory assumes that replacement times due to 

failure (Tf) are much greater than the replacement interval.  This assumption is not 

necessarily valid for today’s helicopters.  Section 4.3.2 Construction of a Utility Helicopter 

Model for further discussion provided an exercise that showed the MMT to be 5.5 hours 

compared to a MTBM of 5.1 hours.  Should FVL make a significant gain in maintainability, 

the assumption becomes more attractive.  Second, current renewal theory considers either 

single parts or like parts to minimize downtime.  A MFOP strategy needs a maintenance 

policy that handles different components replaced at different intervals.  Third, renewal 

theory permits any range of component intervals that will disruption operations in a 

complex system of unlike components.  Finally, classical renewal theory minimizes 

downtime only and makes no statement about the reliability performance of the system.  

Optimization of downtime alone may lead to an unreliable design.  The limitations of 

classical renewal theory establish the need for a modified approach.  The following three 

sections and a later sensitivity study with reliability address the limitations with the 

development of a new framework. 
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Table 29:  Limitations of Classical Renewal Theory in a MFOP Strategy 

MFOP Strategy Need  Classical Renewal Theory 

Limitations 

 

Include Tf as part of cycle time  Assumes Tf ≪ tp.  May not be 

valid (RUH) 

 

Multiple parts  Single part 

Synchronize replacements to MRPs  Preventive replacements may 

disrupt MFOP 

 

Manage the balance between 

downtime and reliability 

 Makes no guarantee on sufficient 

reliability 

 

 

5.1.1.2.1 Removal of the Tf and Tp Assumption 

The original model’s assumption that 𝑇𝑓 ≪ 𝑡𝑝  is inappropriate for a helicopter.  Rotorcraft 

typically have an operating period (tp) measured in hours and repairs (Tf and Tp) that can 

take hours to days.  For example, the rigging of flight controls often takes several days of 

work after major repair of the system. The construction of the RUH model shows a mean 

time between EMA of 5.11 hours with a MTTR of 5.5 hours (section 4.3.2).  The 

benchmark suggests this assumption is one to two orders of magnitude from being valid; 

therefore, the revised model must remove the assumption.  A truer assessment of the 

downtime per cycle should include the repair time lost to unscheduled failures as well as 

the uptime and downtime due to preventive replacements. 

𝐷𝐴(𝑡𝑝) = 

𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠+
𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠

𝑀𝐹𝑂𝑃 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒
 ( 60 ) 
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where cycle time is 

𝑀𝐹𝑂𝑃 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒 = 𝑀𝐹𝑂𝑃 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠
+ 𝑀𝑅𝑃

 ( 61 ) 

 In this way, the ratio DA is the Achieved Downtime and represents the percent of cycle 

time the system is unavailable where cycle time is the sum of the MFOP, MRP, and any 

downtime due to failures.  Achieved downtime is the same as achieved non-availability.  

Achieved downtime is the compliment of Achieved Availability (AA) as defined in section 

3.1.2. 

𝐷𝐴 = 1 − 𝐴𝐴 ( 62 ) 

 A key phrase in AA’s definition is “operating time.”  In Achieved Availability, an 

unused aircraft that sits in a hangar or on a ramp does not accumulate operating time.  The 

MFOP duration is like a MTBM where time is operating flight hours.  MMT is the average 

downtime on corrective and preventive repairs.  Estimation of MMT is presented in section 

4.3.2.3. 

 Downtime due to failures is the product of the expected number of failures, H(tp), and 

the time to replace an unscheduled failure (Tf).  Equation ( 63 ) adds the term H(tp)Tf  to 

the denominator in 

𝐷𝐴(𝑡𝑝) = 
𝐻(𝑡𝑝)𝑇𝑓+𝑇𝑝

𝑡𝑝+𝐻(𝑡𝑝)𝑇𝑓+𝑇𝑝
 ( 63 ) 

where H is a function of the operating period. and is found recursively using ( 19 ) described 

in section 3.4.2. 

 The impact of the additional term changes the definition of the tp.  Unlike the original 

model, the revised model’s operating period clock stops during a repair.  The total 
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downtime per unit time (D) of the original model becomes achieved downtime (DA) in a 

revised model.  In this way, the operating period measures accumulated flight hours and is 

more reflective of a helicopter’s downtime.  DA acknowledges that a system with a MFOPS 

less than 100% will experience unscheduled failures.  This accounting drives the change 

from downtime per cycle of Equation ( 17 ) to achieved downtime of ( 63 ).  Inclusion of 

failure repairs creates a slightly larger denominator; hence, the revised model is slightly 

smaller than the renewal theory’s original Optimal Preventive Replacement Model.  Table 

28 above (page 149) compared the revised model to the original model. 

5.1.1.2.2 Expansion to a Multiple Part System 

Basic renewal theory and the optimal replacement interval model account for a single item 

in a system.  The proposed optimal MFOP model needs expansion to include multiple items 

comprising a system.  The formulation of equation ( 63 ) is advantageous because it permits 

the system’s achieved downtime to be the sum of n component’s achieved downtime as 

𝐷𝐴(𝑡𝑝) = ∑ 𝐷𝐴,𝑟
𝑛
𝑟=1  ( 64 ) 

Each part’s contribution of achieved downtime is 

𝐷𝐴,𝑟(𝑡𝑝) = 
𝐻𝑟(𝑡𝑝)𝑇𝑓,𝑟+𝑇𝑝,𝑟

𝑡𝑝+∑ [𝐻𝑟(𝑡𝑝)𝑇𝑓,𝑟+𝑇𝑝,𝑟]
𝑛
𝑟=1

 ( 65 ) 

where each part has its own expected number of failures (Hr), time to repair failures (Tf,r), 

and time to make preventive replacements (Tp,r). 

 Equation ( 65 ) assumes a uniform preventive replacement interval (tp) for all n parts.  

A uniform tp works well when the system is comprised of n identical parts or with parts of 

similar mean as shown in the example of Figure 65 and Figure 66.  A simple way to 
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optimize DA is to find the common interval, tp, that minimizes the system downtime.  Table 

30 shows the part’s downtime at specified replacement intervals.  Again, the exponential 

part should never have a replacement to lower downtime; therefore, the exponential part 

shall have a downtime contribution equal to the limit, 0.014.  The last row named System 

DAsys(tp) shows the sum of the part downtimes (with the last fixed at 0.014).  The first three 

parts have ideal replacement intervals at tp’s of 4.75, 3.65, and 3.85 units of time, 

respectively.  Let * denote an optimal state.  The optimal system DA* with a uniform 

preventive replacement interval is 0.0476 at a tp* of 4.1 units of time.  Finally, there is a 

benefit to preventive replacements.  Achieved downtime of the system without preventive 

replacements (tp→∞) increases to 0.0560. 

 

Table 30:  DA of Uniform and Non-Uniform Replacement Interval of Like-System 

 Uniform tp Ideal Non-

Uniform tp  

 

tp=3.65 tp=3.85 tp=4.10 tp=4.75 tp→∞ 

Norm(μ=5,σ=0.1) 

DA,1(tp) 

 

0.0095 0.0090 0.0085 0.0074 0.0140 0.0074 
(tp=4.75) 

Norm(μ=5,σ=1) 

DA,2(tp) 

 

0.0112 0.0113 0.0116 0.0132 0.0140 0.0112 
(tp=3.65) 

Norm(μ=5,σ=1.67) 

DA,3(tp) 

 

0.0135 0.0135 0.0135 0.0139 0.0140 0.0135 
(tp=3.85) 

Exp(μ=5) 

DA,4(tp) 

 

    0.0140 0.0140 
(tp→∞) 

System 

DAsys(tp) 

 

0.0482 0.0478 0.0476* 0.0485 0.0560 0.0461** 

*Optimal DA with uniform tp 

**Optimal DA with non-uniform tp 
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 A uniform replacement interval forces components into an unoptimized condition and 

results in a higher than necessary DA.  The item replacement interval need not be uniform.  

Even with the example system of Table 30, a non-uniform preventive replacement interval 

policy may further improve DA.  Replacing each part at its individual optimal interval as 

shown in the last column of Table 30 yields a further improved DA of 0.0461.  This 

represents the unconstrained, global optimum of the system. 

 Consider a system comprised of Part 1, Part 2, and Part 3 with distributions shown in 

Table 31 and part DA plotted in Figure 67.  Tf is 0.035 units of time and Tp is 0.07 units of 

time.  The optimal replacement intervals (tp,r*) for the parts are 2, 3, and 4 units of time.  

Like the previous example, the non-uniform replacement interval policy has an improved 

DA,sys of 0.0455 compared to the uniform replacement interval policy’s 0.0502. 

 

Table 31:  Three Part System with Non-Uniform Optimal tp 

Part 

 

Failure 

Distribution 

 

Parameters Optimal tp,r Optimal DA,r(tp,r) 

Part 1 Weibull η=3.0 

β=3.9 

 

2 0.0234 

Part 2 Normal μ=3.6 

σ=0.3 

 

3 0.0121 

Part 3 Weibull η=5.5 

β=8.0 

 

4 0.0100 

DA,sys(tp,r) 

 

   0.0455 
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Figure 67:  Achieved Downtime of Components with Non-Uniform Optimal tp  

 

 The non-uniform replacement interval policy provides the unconstrained, optimal; 

however, it may lead to frequent, disruptive scheduled maintenance.  Figure 68 draws the 

operating and downtime of the system and its components.  Replacing each component of 

the example at its ideal interval takes the system offline at tp values of 2, 3, 4, 6, 8, 9, 10, 

and 12 units of time as depicted in Figure 68.  This prevents a MFOP of no more than two 

units of time and often one unit of time.  The disruptions will be more frequent in a complex 

system with a variety of part failure distributions.  The policy of non-uniform, component 

optimal replacements represents today’s paradigm of preventive maintenance.  Although 

it yields the ideal achieved downtime, it is not supportive of a MFOP strategy. 
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Figure 68:  Disruptive Intervals in a Non-Uniform Replacement 

 

5.1.1.2.3 Synchronizing Replacement Intervals to Create a MFOP 

A MFOP policy should synchronize item replacement intervals at MRPs to protect the 

MFOP from disruption.  A policy does not have to replace the part at each MRP but it must 

replace the part in a MRP.  Clustering preventive repairs involves the extension or 

shortening of items’ replacement intervals such that the interval tp,r is a multiple of the 

MFOP duration (tmf) as 

𝑡𝑝,𝑟 = 𝛼𝑟𝑡𝑚𝑓 ( 66 ) 

where αr is a whole number multiple of tmf for the rth part.  αr must be a whole number 

multiple to synchronize preventive maintenance into MRPs.  Figure 69 shows an example 

synchronization of the three-part system shown earlier.  tp,1 is extended from two to three 

units of time and tp,3 is extended from four to six units of time.  Multipliers of α1 = 1, α2 = 

Tp,1

Tp,2

Tp,3

tp,1=2

tp,2=3

tp,3=4

Part 1

Part 2

Part 3

System

t

Disruptions
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1, and α3 = 2 create a MFOP of three hours.  Figure 69 shows a maintenance policy where 

the sequence repeats every two MFOP cycles and six units of time.  The duration of the 

maintenance policy sequence is the least common multiple of the system’s set of αr and is  

𝑡𝑚𝑝 = 𝛼𝑙𝑐𝑚𝑡𝑚𝑓 ( 67 ) 

where tmp is the duration of the maintenance policy sequence and αlcm is the least common 

multiple of all αr’s.  In the below example, tmp is 6 units of time. 

 

Figure 69:  Synchronized Intervals of Replacement 

 

 Substituting equations ( 66 ) and ( 67 ) into equation ( 65 ) yields the achieved downtime 

for a synchronized policy.  Summation of n item’s DA is  

𝐷𝐴(𝑡𝑚𝑓 , 𝛼) = 
∑ (

𝛼𝑙𝑐𝑚
𝛼𝑟

)[𝐻𝑟(𝛼𝑟𝑡𝑚𝑓)𝑇𝑓,𝑟+𝑇𝑝,𝑟]
𝑛
𝑟=1

𝛼𝑙𝑐𝑚𝑡𝑚𝑓+∑ (
𝛼𝑙𝑐𝑚
𝛼𝑟

)[𝐻𝑟(𝛼𝑟𝑡𝑚𝑓)𝑇𝑓,𝑟+𝑇𝑝,𝑟]
𝑛
𝑟=1

 ( 68 ) 

System

Tp,3

Tp,1

Tp,2

tp,2=3

tp,3=6

Part 1

Part 2

Part 3

t

MRP MRP MRP MRP

tmf=3

tp,1=3
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 Although αlcm may be divided out, ( 68 ) leaves the term to communicate the notion 

that achieved downtime equals downtime divided by the sum of operating time and 

downtime.  The model considers downtime to be the sum of repair time of all components 

and all preventive replacements occur in a MRP.  A maintainer may defer the scheduled 

replacement of a still operating item or a non-mission critical failed item from the current 

MRP to the next.  This model does not account for any deferred maintenance.  Equation ( 

68 ) provides DA given the policy replaces all items in the MRP as dictated by α. 

 In the discussion above, the renewal theory model is for optimal replacement intervals.  

Replacements are made with new items, thereby renewing the system.  Part renewal may 

originate from either replacement or repair.  The term “replacement interval” refers to a 

full renewal whether replacement or repair.  The theory only requires complete renewal of 

the component.  Partial repairs or installment of partially worn parts means an adjustment 

to the calculation of expected number of failures (H) and is not addressed in this work. 

5.2 Establishing the Need for a Framework 

Recall that an acceptable MFOP policy of the revised renewal theory must: (1) protect the 

MFOP; and (2) balance the desire for low downtime with the requirement for high MFOPS.  

Neither the uniform or non-uniform models provide a sufficient policy for a MFOP 

strategy.  The uniform replacement interval model protects the MFOP by forcing 

components outside their optimal setting.  Replacing unlike components of a complex 

system at the same interval may drive reliability low or create an unrealistic maintenance 

burden with excessive O&S.  The non-uniform replacement interval model provides the 



165 

system’s optimal downtime, but it may lead to disruptive scheduled maintenance that 

destroys the MFOP. 

 The inclusion of component replacement multipliers, αr, protect the MFOP; however, 

it provides no assurance of a reliable system.  Figure 70(a) below shows the reliability of 

each component in the three-part system.  Figure 70(b) draws the reliability of the serial 

system over the life of the policy.  In this case, the reliability of the system is low due to 

the unreliability of the first part.  We can conclude that the desire for sufficient reliability 

as expressed as mission reliability or MFOPS adds a constraint to the optimization of 

downtime.  The models by themselves, therefore, are incomplete in meeting the needs of a 

MFOP strategy. 

 

Figure 70:  3-Part System 

 

 With both models shown as insufficient, there exists a need for a new way to build 

policies that meet the final two MFOP needs.  This work proposes to use αr multipliers to 

protect the MFOP and a framework to balance downtime and MFOPS.  The revision of 

(b) Four Sequences(a) Component Reliability (b) Maintenance Policy Reliability
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renewal theory permitted the discover of the necessary steps that shaped the framework 

developed in the next section. 

5.3 Framework to Designing a MFOP Maintenance Policy 

The framework to design a maintenance policy has three major steps (Figure 71)   The 

framework begins with defining the current system and MFOP setting goals.  Principles 

specific to a MFOP strategy guide the construction of a MFOP policy.  Finally, the 

framework calls for evaluation of the policy for sufficient reliability and acceptable 

achieved downtime (DA).  

 

Figure 71:  Overview of Designing a Maintenance Policy 

 

5.3.1 Define the System 

The first action in developing a MFOP maintenance policy is the definition of the system.  

Component TTF distributions assembled in a system architecture determine the system’s 

reliability.  Tf and Tp are the time to renewal a part, by repair or replacement, under 

corrective or preventive maintenance.  Tf and Tp are fixed values in the revised renewal 

theory model.  Use of the mean time to repair is acceptable for the times.  Use of time to 
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Build a Maintenance Policy

Evaluate the Maintenance Policy

Start

Done
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repair distributions is possible in a simulation environment but is unnecessary because 

repair times are additive and the solution will tend towards the mean.  Given that 

unscheduled maintenance is disruptive and unexpected, most components will have a Tf 

equal to or greater than Tp.  This is especially true in a MFOP strategy where logistic and 

administrative delays are small with the predictability of the MRP. 

 

Figure 72:  Define the System 

 

 The next input to the define action is establishment of the MFOP duration (tmf) and the 

minimally sufficient MFOPS.  The two goals establish the performance needed from the 

policy.  The last process in the define action is to calculate the mean (μ), standard deviation 

(σ), and coefficient of variance (cv) of each component TTF distribution.  From here, each 
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component contribution to achieved downtime (DA,r) may be created as a function of the 

component’s replacement interval (tp,r). 

 No decisions are made within the first action related to the maintenance policy.  A 

designer may apply a MFOP option (see section 3.2.3) within the iterative design loop.  

The framework assumes the operational unit has a fielded aircraft already built and 

designed.  In this way, the framework provides an adaptability to a maintenance strategy 

that can accommodate different policies to meet changing operational needs.  It is possible 

and may be necessary to conduct a redesign iteration of a subsystem or aircraft if MFOP 

and availability goals cannot be met with an affordable maintenance policy. 

5.3.2 Build a Maintenance Policy 

Once the designer defines the system, the policy designer may start to build the policy 

following Figure 73.  Equation ( 63 ) provides the first calculation of component’s optimal 

interval, tp,r*.  Each interval should then be checked with Equation ( 65 ).  Fixed point 

iteration using ( 65 ) provides a converged solution.    The policy is a function of selecting 

the multipliers αr and tmf as discussed below. 
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Figure 73:  Build a Maintenance Policy 

 

 Following the best practice for a reliable design (see section 5.6.1), each component’s 

tp,r should not be extended beyond tp,r*.  Following this logic, the component with the least 

tp,r* establishes the upper limit for the design’s MFOP duration, tmf.  The tmf should be set 

to the minimum tp,r* of all components.  The multiplier for the component with the 

minimum tp,r* has a multiplier of one.  The designer should then select multipliers for the 

remaining components such that   

𝛼𝑟 𝑡𝑚𝑓 ≤ 𝑡𝑝,𝑟
∗  ( 69 ) 

to ensure the component is not extended to the point of unreliability.  

 If the minimum tp,r* is less than the MFOP duration goal, the policy designer will have 

to adjust expectations for the MFOP duration or apply a MFOP Option to improve system 

reliability.  For component redesign, increasing the MTTF provides the greatest gains.  

Shifts in the variance can alleviate smaller gaps with a carefully chosen tp,r.  If the minimum 

Define the SystemStart

Yes

Evaluate the Maintenance Policy

Done

Find Optimal Non-
Uniform Replacem. 

Intervals, tp,r*

Set tmf to min(tp,r*)

Select αr such that 
    𝒎 ≤   , 

∗

No

Is tmf

sufficient?

Build a Maintenance Policy



170 

tp,r* is equal to or greater than the MFOP goal, the policy designer may move to the 

evaluation action.   

 A recurring theme is that the mean and coefficient of variation (cv) largely measure the 

downtime of a component.  A lower a component’s cv, the more crucial the quantify 

(𝛼𝑟𝑡𝑚𝑓) should approach tp,r*.  A cv close to zero causes a greater amplitude centered 

about the limit while a cv close to one has small amplitudes.  Figure 74 is reproduction of 

Figure 65 where the mean of each component is 5 units of time.  Figure 74 shows the cv of 

each component. 

 

Figure 74:  Selecting the Ideal tp* 

 

 A low cv describes a distribution where the failure is likely only close to the mean.  As 

the cv approaches zero, the expected number of failures just prior to tp
- (left hand limit) is 

zero and the expected number of failures just after tp
+ (right hand limit) is one.  The 

amplitude is one half the difference of the downtime just prior to and just after tp. 

Idea  t
p
* 
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lim
𝑐𝑣→0

𝑎 = 
1

2
[

𝑇𝑓 lim
𝑡→𝑡𝑝

+
𝐻(𝑡)

𝑡𝑝+𝑇𝑝
−

𝑇𝑓 lim
𝑡→𝑡𝑝

−𝐻(𝑡)

𝑡𝑝+𝑇𝑝
]   

lim
𝑐𝑣→0

𝑎 = 
1

2
[
𝑇𝑓(1)

𝑡𝑝+𝑇𝑝
−

𝑇𝑓(0)

𝑡𝑝+𝑇𝑝
]  

lim
𝑐𝑣→0

𝑎 = 
1
2⁄ 𝑇𝑓

𝑡𝑝+𝑇𝑝
 ( 70 ) 

 The amplitude a captures the extremes that the systems takes about the mean.  The 

amplitude provides an informative measure to evaluate which parts are most important to 

optimize close to its tp,r*.  The ideal design point to select is on the left side of the tp*. 

5.3.3 Evaluate the Maintenance Policy 

The final action is an evaluation of the maintenance policy against MFOPS and DA.as 

shown in Figure 75. The Minimum Policy Success (MPS) is the worst MFOPS through k 

cycles 

𝑀𝑃𝑆 = min (𝑀𝐹𝑂𝑃𝑆 𝑓𝑟𝑜𝑚 𝑖 = 1 𝑡𝑜 𝑘 𝑐𝑦𝑐𝑙𝑒𝑠) ( 71 ) 

The policy must maintain the system’s MFOPS above the required MFOPS throughout k 

cycles where 

𝑀𝐹𝑂𝑃𝑆𝑟𝑒𝑞 ≤ 𝑀𝑃𝑆(0 ≤ 𝑡 ≤ 𝑘 𝑡𝑚𝑓) ( 72 ) 

 If the MPS is less than the MFOPS goal, than the policy is insufficient and needs a 

redesign.  The failure in MFOPS is a function of the system’s mission reliability.  A 

technique to identify limiting components in a serial system is to calculate the mission 

reliability of each component for the duration of αr tmf.  Failure Cause Identification (see 

section 4.2) is a more robust method that rank orders components by A(t) or FCM(t) for 
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any system architecture.  The policy designer reduces the weakest component’s multiplier.  

If the weakest component is also the component with the minimum tp,r*, then the MFOP 

duration (tmf) must be reduced.  Either change creates a new policy.  If the new tmf is 

insufficient or the new multiplier is undesirable, then the weakest component requires 

improvement through a MFOP Option.  If the MPS is acceptable, then the evaluation 

continues. 

 

Figure 75:  Evaluate the Maintenance Policy 

 

 The last check is against the achieved downtime, DAsystem.  If the downtime is 

unacceptable, then a redesign of the system is necessary using a MFOP Option or 

improving component maintainability (Tf or Tp).  A redesign of the policy itself will only 
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worsen achieved downtime, because the system was set at its optimal achieved downtime 

at the first iteration using Equation ( 69 ).  A MFOP Option or maintainability improvement 

is necessary.  Candidate components for redesign should by their downtime contribution 

(DA,r) using Equation ( 65 ).  Once tmf and MPS are sufficient and DAsys is acceptable, the 

policy meets the operational demands and the process is complete. 

5.3.4 Assembling the Framework to Designing a Maintenance Policy 

Figure 76 on the next page assembles the detailed framework from the outcome of the 

above sections.  The framework has three feedback loops that trigger actions in an iterative 

manner: 

1. The first loop occurs if the policy’s tmf cannot meet the target goal.  The build action 

block provides the framework to create a policy with the highest tmf where all 

preventive maintenance occurs in the MRP.  A redesign of the system using one or 

more MFOP Options is necessary to achieve a higher tmf without disrupting the 

MFOP.   

2. The second loop occurs if the MPS cannot meet the MFOPS goal for its expected 

duration of k cycles.  The resolution is a lowering of the multiplier(s) or the tmf.  If 

the new tmf is below the MFOP goal, this triggers the first feedback loop. 

3. The third loop occurs if a system has an unacceptable achieved downtime.  In this 

case, improving the maintainability of the system by lowering the replacement 

times (Tf and Tp) is appropriate.  A second choice is to select a MFOP Option that 

improves component reliability. 

 The framework serves as a guide to building an acceptable maintenance policy that 

meets the operational requirements for MFOP and MFOPS while maximizing availability.  
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Figure 76:  Framework to Design a Maintenance Policy 
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5.4 Using the Framework to Satisfy a MFOP Strategy 

Table 32 summarizes the four approaches introduced in the chapter.  Classical renewal 

theory’s optimal replacement interval model provides a means to minimize downtime for 

a single part only and is unsuitable for a MFOP strategy.  The uniform replacement interval 

model resolves several of classical renewal theory’s limitations.  It protects the MFOP and 

minimizes downtime only by forcing each components replacement at the same MRP.  The 

non-uniform replacement interval model provides the global downtime solution but 

permits disruptive scheduled maintenance that does not protect the MFOP.  Neither the 

uniform or non-uniform models provide assurance of a sufficient reliability or MFOPS. 

 

Table 32:  Review of Models to Minimize Downtime in a MFOP Strategy 

MFOP Strategy Need Classical 

Renewal 

Theory 

Author’s Revised Models 

 

Uniform 

Replacement 

Interval 

Non-Uniform 

Replacement 

Interval 

αr Multipliers 

with 

Framework 

 

Minimizes Downtime ✓  ✓ constrained 

Include Tf as part of cycle 

time 

 

 ✓ ✓ ✓ 

Multiple parts  ✓ ✓ ✓ 

Synchronize replacements 

to MRPs (protects the 

MFOP) 

 

 ✓  ✓ 

Manage the balance 

between downtime and 

reliability 

 

   ✓ 
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 The Framework to Design a Maintenance Policy resolves the shortcoming.  The policy 

starts at the unconstrained downtime minimum and changes replacement multipliers 

iteratively until the policy meets the MFOPS constraint.  In this way, the policy built by 

the framework seeks the constrained downtime solution by exploring designs away from 

the global optimum. 

5.5 Experiment Plan 

The first hypothesis utilized a discrete event simulation that assumed a rudimentary 

maintenance plan without optimization to maximize availability.  The second hypothesis 

postulates that an unconstrained maintenance policy using renewal theory’s Optimal 

Replacement Interval model will maximize availability.  The experiment continues by 

examining the implications of the above model on reliability and MFOP.  It will test the 

framework to build a constrained maintenance policy that synchronizes preventive 

maintenance to the MRPs and protects the MFOP from disruption.  This is done using the 

revised renewal theory developed in the thesis. 

 

 

 The framework and revised renewal theory model will be tested on a simple three-part 

system.  A baseline materiel availability for the non-preventive repairs will be compared 

Research Question 3 

What is the maintenance policy that minimizes downtime? 

Hypothesis 2:  An aggressive lifing policy in the MRP can maintain an 

MFOPS to a required success over a certain number of cycles. 
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to the materiel availability of an Optimal Preventive Replacement Interval model as well 

as revised model. 

 The experiment has three major assumptions.  First, a necessary condition of the 

renewal theory modeled is that only one failure occurs in a discrete interval.  A one-hour 

interval is assumed but may be shortened to 1-minute to mitigate the chance of multiple 

failures in one interval.  Second, no logistical or administrative downtimes will be included.  

This is a conservative assumption because preventive maintenance provides predictability 

to part demand.  Units may pre-order parts and store them for use at the next MRP thereby 

reducing the logistical downtime.  A final assumption is that the system has a significant 

portion of the components experiencing aging, which causes unreliability to increase with 

usage.  This precludes a system comprised of all exponential distributions and constant 

failure rates.  Success is the improvement in downtime while still meeting a MFOPS goal. 

5.6 Results and Discussion 

5.6.1 Using Coefficient of Variation for Diagnosis 

In regards to components qualifying for preventive replacement (those with an increasing 

hazard rate), the earliest local downtime minimum is always that component’s individual, 

global downtime minimum.  This occurs because the earliest minimum does not contend 

with the compounding replacement time of previous failures.  Reliability decreases when 

extending a component beyond its optimal replacement interval.  The drop becomes 

precipitous in components with a low coefficient of variation. 

 Figure 77 shows the decrease in reliability after exceeding the optimal replacement 

interval.  Coefficient of variation for the presented system are Part 1 cv of 0.287, Part 2 cv 
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of 0.083, Part 3 cv of 0.148.  Low coefficient of variation components, like Part 2’s normal 

distribution, are less likely candidates for extension beyond its optimal replacement 

interval.  Extending a component with a low coefficient of variation beyond the optimal 

interval results in rapid decrease of reliability.  A designer may offset the effects with 

redundancy or redesign of the component’s inherent reliability.  Components with higher 

coefficient of variation are candidates for a MFOP options of prognostics or diagnostics to 

reduce the uncertainty of failure. 

 

Figure 77:  Component Reliability verse Replacement Interval 

 

5.6.2 Examining Success of a Maintenance Policy 

Selecting part replacement close to its optimal interval yields the least downtime and is the 

recommended strategy to ensuring high reliability.  Extending the component to later local 

minimums increases the probability of component failure.  This places a practical limitation 

on the extension of the replacement interval and MFOP.  The least reliable component is 
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the limiting component.  Such a component becomes a candidate for improved inherent 

reliability, redundancy, or other MFOP options. 

5.6.2.1 Creating the Maintenance Policy 

Recall the 3-Part System with a non-uniform replacement interval policy as introduced in 

Figure 68 (page 163).  The maintenance policy duration, tmp, is 12 units of time.  The system 

has components arranged in serial; therefore, the system reliability is the product of 

component reliability.  Component reliability is a function of its replacement interval (tp,r).  

If a policy replaces the component every MRP, then the multiple (αr) is one and tp,r equals 

the MFOP duration (tmf).  Figure 78 and Figure 79 show the achieved downtime and system 

reliability.  Subfigure (a) is for a single policy and subfigure (b) is over three policy 

sequences. 

 The step-like improvements of DA are the result of component replacement at discrete 

intervals.  The policy duration (tmp) is 12 units of time.  Figure 79(a) shows a single policy 

and (b) shows the policy repeats every 12 units of time.  Part 1 is the greatest contributor 

to downtime of the system.  A component’s downtime is due to the cost of failure 

replacement (Tf), expected number of failures (H), and cost of preventive replacement (Tp), 

and frequency of preventive replacements (αr).  In the example system, all parts have like 

Tf and Tp.  Part’s 1 high downtime is due to the lower reliability of Part 1, which raises H 

and drives a lower multiple α. 

 

  



180 

 

Figure 78:  Reliability of a Non-Uniform Optimal Interval Policy 

 

Figure 79:  Achieved Downtime of a Non-Uniform Optimal Interval Policy 

 

 The beginning DA of follow on sequences have a peak value of 0.0455.  The peak 

remains the same at the start of each policy, signifying a full renewal.  Cumulative effects 

of failure variability shrink DA’s amplitude over time (see Figure 80).  With enough time, 

the system converges to the theoretical solution predicted by the revised renewal theory 

model and Equation ( 73 ).  The converged values of 0.0234, 0.0121, and 0.010 match 

(a) Single Sequence (b) Three Sequences

(a) Single Sequence (b) Three Sequences



181 

those of the theoretical prediction found in Table 31.  This verifies the revised model’s 

accuracy as a predicting means of achieved downtime.  The benefit of a plot like Figure 80 

is that the maintainer can see the early effects of a new policy before it reaches steady state.    

With short term deployments or large αlcm, the aircraft may never reach the end of the 

policy and steady state.  This has application to FVL where an aircraft deploys for weeks 

or months under a higher operational tempo and then redeploys to a lower tempo. 

 

Figure 80:  Steady State of Non-Uniform Optimal Interval Policy 

 

5.6.2.2 Measuring Maintenance Policy Reliability and Success 

The reliability of a component at time t that has survived k replacement intervals is 

𝑅𝑟(𝑡) = 𝑅(𝑡𝑝,𝑟)
𝑘
𝑅(𝑡 − 𝑘 𝑡𝑝,𝑟) ( 73 ) 

Theory D
A
(t

p,r
*)=0.0455 
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where tp,r is the replacement interval and 𝑘 𝑡𝑝,𝑟 < 𝑡 < (𝑘 + 1) 𝑡𝑝,𝑟 [64].  To define the rth 

component’s reliability in terms of the MFOP duration, tmf, substitute ( 66 ) into ( 73 ) to 

yield 

𝑅𝑟(𝑡) = 𝑅(𝛼𝑟 𝑡𝑚𝑓)
𝑘
𝑅(𝑡 − 𝑘 𝛼𝑟 𝑡𝑚𝑓) ( 74 ) 

 The equation represents the probability that component r survives to time t.  Note k 

equals 𝛼𝑙𝑐𝑚 𝛼𝑟⁄  if the component r survives one sequence of the maintenance policy that 

is a duration tmp.  To assembling component reliabilities of ( 74 ) into reliability of a serial 

system reliability use  

𝑅𝑠𝑦𝑠(𝑡) = ∏ 𝑅𝑟(𝑡)
𝑛
𝑟=1  ( 75 ) 

 Evaluating the Rsys at tmp represents the probability the system survives to the end of 

the maintenance policy without failure 

P(𝑇𝑇𝐹 ≥ 𝑡𝑚𝑝) = 𝑅(𝑡𝑚𝑝) ( 76 ) 

This is the Maintenance Policy’s Reliability (MPR).  Substituting ( 74 ) into ( 76 ) and 

evaluating at t equal to tmp forms the expression 

MPR(𝑡𝑚𝑝) = P(𝑇𝑇𝐹 ≥ 𝑡𝑚𝑝) = 𝑅𝑟(𝛼𝑟 𝑡𝑚𝑓)
(𝛼𝑙𝑐𝑚 𝛼𝑟⁄ )

 ( 77 ) 

 Equation ( 75 ) or an appropriate reliability block diagram estimates the value.  A serial 

system is 

MPR(𝑡𝑚𝑝) = ∏ 𝑅𝑟(𝛼𝑟 𝑡𝑚𝑓)
(𝛼𝑙𝑐𝑚 𝛼𝑟⁄ )𝑛

𝑟=1  ( 78 ) 

 System reliability and MPR are both reliability measurements.  System reliability is 

aircraft’s reliability at any instantaneous point of time.  MPR measures the cumulative 
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probability the system survives from the start of the policy through the entire life of the 

policy, tmp. 

 In the 3-Part Non-Uniform Optimal Interval system, the tmf is one unit of time.  The 

policy renews parts at multiples of 2, 3, and 4.  The least common multiple is 12.  Table 31 

lists the part reliabilities and the probability.  There is a 0.2099 probability that the system 

completes the maintenance policy without a failure.   

 

Table 33:  Three Part System with Non-Uniform Optimal tp 

Part 

 

Failure 

Distribution 

 

tp,r αr αlcm / αr Rr(αr tmf ) MPR 

Part 1 Weibull 

η=3.0, β=3.9 

 

2 2 6 0.8141 0.2911 

Part 2 Normal 

μ=3.6, σ=0.3 

 

3 3 4 0.9772 0.9119 

Part 3 Weibull 

η=5.5, β=8.0 

 

4 4 3 0.9247 0.7909 

System 

 

     0.2099 

 

 Figure 81 plots MPR of the three-part system at each MFOP cycle.  It illustrates of the 

maintenance policy’s performance over time.  The plot clearly shows that Part 1 is limiting 

the system’s performance.  This makes the component a candidate for improvement 

through a MFOP Option. 
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Figure 81:  Maintenance Policy Reliability of a Non-Uniform Optimal Interval Policy 

 

 The MPR allows the policy designer to view the policy’s effects on component and 

system reliability.  From the figure, Part 1 is driving the system reliability downward.  A 

policy may improve MPR by increasing the frequency of replacement of Part 1.  Adjusting 

α1 from two to one yields a better performing system; however, the penalty is the reduction 

of the MFOP from two units of time to one unit of time.  Figure 82 shows the policy 

reliability for an improved policy with α1=1, α2=3, and α3=3.  The price paid for better 

success is the reduction of MFOP to one unit of time along with a doubling of the number 

of Part 1 replacements and a 33% increase in Part 3 replacements. 

 

(a) Single Sequence (b) Three Sequences
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Figure 82:  Maintenance Policy Reliability Comparison 

 

 An insufficient probability indicates the policy is not making enough replacements of 

one or more components or the tmf is too long.  The performance of the system under a 

policy is denoted as the Minimum Policy Success (MPS).  MPS is the minimum MFOPS 

over k cycles.  MFOPS and the Minimum Policy Success communicate different 

information.  MFOPS looks at the probability of completing the next cycle.  MPS 

probability measures the long-term system performance over the life of a policy.  The MPS 

also differs from the policy’s reliability(MPR).  A policy’s ending probability (MPR) states 

nothing about the intermediate cycles’ MFOPS; whereas, MPS does check intermediate 

cycles.  Figure 83 plots the MFOPS of both policies over 12 operating hours (which is also 

12 hours with a MFOP duration of 1 hour). 

 

(a) 2-3-4 Design (b) 1-3-3 Design
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Figure 83:  Minimum Policy Success 

 

 In the 3-part system, the first cycle’s MFOPS is one (per definition that the system 

states in a fully operational state).  The second MFOPS is 0.986 and third MFOPS is 0.957.  

This meets a minimum MFOPS requirement of 90%.  The original design with multiplies 

of 2, 3, and 4 has MFOPS that fall below a 90% requirement as shown in Table 34.  In this, 

we can say that the 2-3-4 design is an insufficient policy and that the 1-3-3 policy is 

acceptable. 

  

(a) 2-3-4 Design (b) 1-3-3 Design
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Table 34:  Evaluation of Two Maintenance Policies 

MFOP 

Cycle 

 

Operating 

Time, t 

1-3-3 Design  2-3-4 Design 

MPR MFOPS  MPR MFOPS 

Start 0 1   1  

1 1 0.9863 0.9863  0.9863 0.9863 

2 2 0.9725 0.9860  0.8138 0.8267 

3 3 0.9304 0.9567  0.7785 0.9566 

4 4    0.5989 0.7693 

. 

. 

. 

    . 

. 

. 

. 

. 

. 

12 12    0.2099 0.7518 

       

Cycle 

End 

  0.9567   0.7518 

       

MPS 0.9567  MPS 0.7518 

 

 

5.6.3 Sensitivity Study 

The discrete nature of DAsys arises from a maintenance policy where replacements occur at 

defined intervals.  This characteristic results in sharp changes of the gradient in Figure 79 

(page 180).  Consequently, gradient based optimization techniques are ill-suited to 

optimize the problem.  Instead, a sensitivity study was conducted to explore the 

relationships between failure replacement time versus preventive replacement time and the 

response of DAsys to disturbances. 

 The sensitivity study consisted of creating a Design of Experiments (DoE), fitting a 

surrogate model, and understanding the behavior of the response.  Figure 84 provides a 

schematic sketch of the study’s analysis that yielded conclusions on the policy.  The DoE 

began with defining the model’s variables (section 5.6.3.1) and ended with inputs and 

responses in a completed data table (section 5.6.3.2) .  The model fit began with screening 
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out variables with low impact on the responses (section 5.6.3.3).  A selection of surrogate 

model type and fit followed (section 5.6.3.4).  The fitting ended with an evaluation of the 

goodness of fit and acceptance of the surrogate model (section 5.6.3.5).  Understanding the 

downtime and reliability responses began with an observation of trends in a scatter plot 

(section 5.6.3.6).  Use of the software JMP and its built-in prediction profiler enabled 

observations of downtime and reliability sensitivities to design variables (section 5.6.3.6).  

The study ends with drawing conclusions from the observed trends (section 5.7). 

 

Figure 84:  Block Diagram of Sensitivity Study 
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5.6.3.1 Modeled System Responses 

System achieved downtime and system reliability was collected on the 3-part system with 

non-uniform replacement intervals using a Design Of Experiments (DOE).  The 

independent design variables building the design space were MFOP duration (tmf), 

component multipliers (αr), failure replacement times (Tf,r), and preventive replacement 

times (Tp,r). 

 Table 35 shows the variables and levels that constructed the DOE.  The inclusion of 

intermediate levels ensured exploration of the space to better capture non-linear behavior.  

Tp and Tf range of 0.01 to 0.20 units of time capture the same behavior of the example’s 

fixed values of 0.070 and 0.035 units of time, respectively.  Tp and Tf represent repair times 

in the achieved downtime analysis; however, they weight the policy more towards failure 

or preventive replacements. 

 

Table 35:  3-Part DOE Independent Variables 

Variable 

 

Units Levels 

tmf time 1 2 3 4 5 

       

α1 --- 1 2 3 4  

α2 --- 1 2 3 4  

α3 --- 1 2 3 4  

       

Tf,3 time 0.01 0.1 0.2   

Tf,3 time 0.01 0.1 0.2   

Tf,3 time 0.01 0.1 0.2   

       

Tp,1 time 0.01 0.1 0.2   

Tp,2 time 0.01 0.1 0.2   

Tp,3 

 

time 0.01 0.1 0.2   
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 A MFOP strategy seeks to minimize disruptive failures in favor of preventive 

replacements at the MRP.  Consequently, a MFOP strategy drives failure replacement (Tf) 

to be costlier than the preventive replacement (Tp).  The explored design space considers 

designs with Tf up to twenty times costlier than Tp.  The MFOP duration (tmf) was explored 

between one to five to cause failures when αr equaled one.  Policy multipliers (αr) remain 

whole numbers and drive explored component replacement intervals (tp,r) from one to five 

times the MFOP duration.  This causes some failures in all components when tmf was its 

minimum of one.  The potential combinations of tp,r explore the full range of component 

reliability from near one to near zero. 

 The DOE had 5 ∙ 43 ∙ 36 or 233,280 possible combinations.  A fractional factorial 

reduced the number to 10,000 cases to keep computational time reasonable.  The DOE and 

statistical analysis were conducted with the software JMP Pro v16.1 by SAS Institute Inc 

[65].  Response of the system were achieved downtime and system reliability at the end of 

the maintenance policy (ending MPS).  Responses were calculated using the same 

MATLAB script written for the work in section 5.6.2.2 above. 

 The DoE data table presented in Table 36 shows the design variables, actual and 

predicted system downtime, and actual system reliability.  The table shows the first 15 of 

10,000 data samples in the experiment. 
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Table 36:  DoE Data Table with Responses 

Design Variables (Inputs) Downtime Response   

tmf Tf,1 Tf,2 Tf,3 Tp,1 Tp,2 Tp,3 α1 α2 α3 DA,sys 

Actual 

DA,sys 

Pre-

dicted 

DA,sys 

Percent 

Error 

Rsys  

5 0.2 0.2 0.2 0.1 0.01 0.2 4 4 3 0.1434 0.1435 0.0004 0.0000 T 

5 0.1 0.01 0.2 0.1 0.2 0.1 3 3 1 0.0831 0.0821 -0.0116 0.0000 V 

5 0.01 0.1 0.01 0.1 0.01 0.2 2 1 2 0.0535 0.0593 0.1083 0.0000 T 

4 0.2 0.2 0.01 0.2 0.1 0.2 3 4 1 0.1582 0.1578 -0.0025 0.0000 V 

5 

 

0.1 0.01 0.2 0.2 0.1 0.01 1 2 4 0.1008 0.0989 -0.0189 0.0000 T 

2 0.1 0.01 0.2 0.01 0.01 0.1 2 2 4 0.0667 0.0681 0.0214 0.0000 T 

2 0.1 0.1 0.2 0.1 0.1 0.2 2 3 1 0.1558 0.1605 0.0302 0.0000 T 

2 0.1 0.2 0.1 0.2 0.1 0.1 3 4 1 0.1480 0.1436 -0.0295 0.0000 V 

5 0.01 0.01 0.2 0.2 0.1 0.2 3 4 1 0.0733 0.0750 0.0234 0.0000 T 

2 

 

0.01 0.2 0.01 0.1 0.2 0.2 1 3 2 0.1437 0.1447 0.0072 0.0000 T 

5 0.01 0.01 0.2 0.2 0.1 0.2 3 4 1 0.0733 0.0750 0.0234 0.0000 T 

2 0.01 0.2 0.01 0.1 0.2 0.2 1 3 2 0.1437 0.1447 0.0072 0.0000 T 

3 0.01 0.2 0.01 0.1 0.01 0.2 4 1 2 0.0487 0.0498 0.0231 0.0000 T 

2 0.1 0.2 0.01 0.01 0.1 0.01 2 1 1 0.0772 0.0747 -0.0324 0.0464 T 

1 0.1 0.1 0.01 0.2 0.1 0.01 3 2 4 0.1235 0.1154 -0.0651 0.0145 T 

 T = Model Training Data              V = Model Validation Data 

 

5.6.3.2 Calculation of Responses 

Component r’s achieved downtime derives from revised renewal theory’s Equation ( 68 ) 

and maybe expressed as 

𝐷𝐴,𝑟(𝑡𝑚𝑓 , 𝛼𝑟) = 
(
𝛼𝑙𝑐𝑚
𝛼𝑟

)[𝐻𝑟(𝛼𝑟𝑡𝑚𝑓)𝑇𝑓,𝑟+𝑇𝑝,𝑟]

𝛼𝑙𝑐𝑚𝑡𝑚𝑓+∑ (
𝛼𝑙𝑐𝑚
𝛼𝑟

)[𝐻𝑟(𝛼𝑟𝑡𝑚𝑓)𝑇𝑓,𝑟+𝑇𝑝,𝑟]
𝑛
𝑟=1

 ( 79 ) 

 Sample 15, the last row of Table 36 has a least common multiplier of 12 and yields 

component achieved downtimes of 

𝐷𝐴,1(1,3) = 
(
12

3
)[(0.64459)0.1+0.2]

12∙1+[1.0578+0.6+0.0323]
 = 

1.0578

12+1.6901
 = 0.07727 (80a) 
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𝐷𝐴,2(1,2) = 
(
12

2
)[(4.8213𝐸−8)0.1+0.1]

12∙1+[1.0578+0.6+0.0323]
 = 

0.6000

12+1.6901
 = 0.04383 (80b) 

𝐷𝐴,3(1,4) = 
(
12

4
)[(0.075283)0.01+0.01]

12∙1+[1.0578+0.6+0.0323]
 = 

0.0323

12+1.6901
 = 0.00236 (80c) 

 This leads to a total achieved downtime of 

𝐷𝐴,𝑠𝑦𝑠(1,  ) = 0.07727 + 0.04383 + 0.00236 = 0.1235 ( 81 ) 

The surrogate model predicted Sample 15’s achieved downtime to be 0.1154 with a percent 

error of -6.56%. 

 Calculation of the policies ending reliability followed the calculations of section 

5.6.2.2.  Unlike downtime, a surrogate model was not necessary for reliability because 

Equation ( 77 ) yielded component reliability as a function of tmf, αr, and the TTF 

distributions of Table 31.   

𝑅1(𝛼1 𝑡𝑚𝑓)
(𝛼𝑙𝑐𝑚 𝛼1⁄ )

= [𝑒−(
3
3⁄ )
3.9

]
(12 3⁄ )

= 0.36794 = 0.0184 (82a) 

𝑅2(𝛼2 𝑡𝑚𝑓)
(𝛼𝑙𝑐𝑚 𝛼2⁄ )

= [
1

2
(1 + 𝑒𝑟𝑓 (

2−3.6

0.3√2
))]

(12 2⁄ )

= 1.00006 (82b)  

𝑅3(𝛼3 𝑡𝑚𝑓)
(𝛼𝑙𝑐𝑚 𝛼3⁄ )

= [𝑒−(
4
5.5⁄ )

8

]
(12 4⁄ )

= 0.92473 = 0.7907 (82c) 

Likewise, Equation ( 78 ) yielded system reliability as the product of each component’s 

reliability. 

MPR(𝑡𝑚𝑝) = (0.0184)(1.0000)(0.7907) = 0.0145 ( 83 ) 

5.6.3.3 A First Look at System Sensitivity 

A response screening test was conducted on the responses of system achieved downtime 

and system reliability.  The screening test measured the contribution of each design 
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variable (labeled predictor in Figure 85) to the responses DAsys and Rsys.  Variable 

contribution measures the degree of change in the response with respect to variable change.  

The portion column normalizes the contribution value such that all variable portion sums 

to one.  The horizontal bar graph plots portions by variable.  The screening plots provide a 

visualization of variable contribution to responses in a similar manner as a Pareto plot.  The 

benefit of predictor screen is that it “can identify predictors that might be weak alone but 

strong when used in combination with other predictors” [66].  This attribute is especially 

useful to analyze the achieved downtime model where the expected number of failures is 

a function of the product of tmf and αr.  

 

Figure 85:  Contribution of a 3-Part System’s Design Variables on Responses 

 

 The most significant factor is the MFOP duration, tmf, because it impacts all 

components in the system.  The top replacement costs belong to Part 1 because it is the 

weakest link and has its greatest number of expected failures at given replacement interval, 

tp,1.  The system is relatively insensitive to Part 3 within the design space because the 

component has the greatest inherent reliability of all components.  Like achieved 

downtime, system reliability is most sensitive to the MFOP duration.  Multipliers for Part 
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1 and 2 account for almost all the remain contribution and are a function of component 

inherent reliability.  As expected, system reliability is independent of replacement times.   

 The number of variables is a manageable ten for this system; however, a complex 

system may quickly grow large.  For example, an 18-component system has a single tmf, 

36 replacement times, and 18 multipliers for a total of 55 factors.  Screened variables 

remove their small contribution to the responses but provide the benefit of a more 

manageable model. 

5.6.3.4 Fit of the Model 

System reliability for serial architecture was readily calculated as a function of design 

variables; however, achieved downtime was more difficult to measure.  The downtime has 

both a discrete nature and a non-linear shape.  The non-linear shape is due to the expected 

number of failures, H(tp), first introduced in section 5.1.1.1 (page 147).  Models with linear 

coefficients such as a least squares fit do not perform well in capturing the behavior at 

smaller tp’s.  A neural network with at least ten nodes in the first and second layer 

performed well in capturing the non-linear behavior of DAsys.  The hidden layered approach 

of a neural net makes it difficult to describe the “functional form of the response surface” 

[66].  Instead, prediction profilers addressed response relationships later in the section.  The 

neural network used 75% of the 10,000 data points to train the model.  The remaining 25% 

of data points supported the validation of the fit. 

5.6.3.5 Goodness of Fit 

The fitted neural net had a training data R-square value of 0.9934, which indicated the 

model was accounting for most of the variation.  The validation R-square value of 0.9928 
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suggested the fit was a candidate for continued consideration.  Figure 86 provides the actual 

by predicted plots for the training and validation data.  Both data sets show good adherence 

of predicted to actual through the entire response range, especially at the troublesome early 

tp values that have greater non-linear effects. 

 

Figure 86:  DAsys Actual by Predicted Plots of a 3-Part System Fit 

 

 Figure 87 plots of the residual error by predicted DAsys.  The sparsity of points above a 

predicted DAsys of 0.22 are an artifact of the selected design space.  The explored space 

focused more on candidate designs with lower downtimes.  There is no discernable 

clustering and the fit has good symmetry.  The validation plot has similar attributes as the 

training plot.  The fit has a larger than residual span to minimum predicted than desired.  

The fit is good but not great. 
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Figure 87:  DAsys Residual by Predicted Plots of a 3-Part System Fit 

 

 The Model Fit Error (MFE) and Model Response Error (MRE) measure the distribution 

of the error with respect to actual values.  The histograms take the desired bell curve shape 

with 5.4% of the data greater than ±0.1 normalized error.  There was no discernable pattern 

of conditions to the error.  Both training and validation data meet the best practice of means 

close to zero and standard deviations less than one.  This indicates the model has large error 

for a small minority (5.4%) of the data. The remaining 94% of data points had a small error.  

Overall, the fit is sufficient to determine trends and the sensitivity of the response DAsys to 

the design variables. 
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Figure 88:  DAsys MFE and MRE of a 3-Part System Fit  

 

5.6.3.6 Observed Trends 

A tool to identify trends in responses is a scatterplot matrix.  Figure 89 is a scatterplot of 

the nine design variables boxed by the system achieved downtime and reliability responses.  

Linear trend lines are in red.  The trend lines assist in reading the scatterplot; however, they 

can be misleading if the true trend is not linear.  System reliability trends, shown in the 

bottom row of Figure 89, are straightforward.  Increasing the tmf or αr multipliers increases 

the component’s replacement interval.  Longer replacement intervals operate components 

longer before renewal, thus the component accumulates a greater chance of failure and 

results in lower reliability and more downtime.  Horizontal trend lines reflect that 

replacement times have no impact on system reliability. 
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Figure 89:  Response Scatter Plot of a 3-Part System Fit 

 

 The system’s achieved downtime responds as expected with replacement costs.  The 

span of downtime increases as replacement times grow.  Greater replacement times, Tf and 

Tp, magnify the effect of the replacement interval and expand the range of achieved 

downtime.  Since the system cannot occupy a downtime less than zero but can increase 

toward one, the higher downtimes take an upward trend.  The trend line for αr multipliers 

is misleading; the top ends of the scatterplots have a concave shape with moderate 

multipliers yielding lower peaks.  This suggest there may be multipliers that are better than 

others.  Finally, the MFOP duration shows very interesting results.  The clear downward 

trend suggests that as tmf increases, the range of downtime shrinks.  This speaks to the 

convergence of the system towards its limit.  It does not mean that increasing the MFOP 

duration will necessarily lower downtime.  In fact, the prediction profiler illustrates the 

effect of longer MFOP durations depends on the weighting dictated by replacement times. 
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 The prediction profiler of Figure 90 draws the systems responses, achieved downtime 

and reliability, for a given setting of design variables.  The black lines indicate a one-on 

response of the system.  It measures the response sensitivity to one variable while fixing 

all others.    The case shown in the profiler has a tmf of 1 and multiplies of 1-3-3.  Preventive 

replacements are favored over failure replacements with repair time costs of 0.01 and 0.1 

respectively.  This design is similar to the baseline setting used in section 5.4.  The model 

predicts an achieved downtime of 0.0221 and a reliability of 0.9304.  Actual achieved 

downtime is 0.0213 and reliability is 0.9304. 

 

Figure 90:  Prediction Profiler  

 

 The profiler conveys increasing the MFOP duration (tmf) results in a dramatic decrease 

in reliability and a doubling of downtime.  The model’s downtime is most sensitive to an 

increase in the preventive repair time (Tp,1) of Part 1 because Part 1 has the lowest inherent 

reliability and multiplier.  The lowest multiplier creates more preventive replacements than 

the other components leading to more downtime.  The multiplier α2 has a concave curve 

with 3 being the optimal multiplier.  This creates a replacement interval of 3 units of time 

which coincides with the theoretical prediction.  Setting α3 to a multiplier of 4 puts the 
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component at its optimal interval and yields a system downtime of 0.0221; however, this 

multiplier pushes reliability to 0.61.  This is down from the reliability of 0.93 achieved at 

α3 = 3.  The behavior of the αr sensitivity curves matches the behavior of downtime versus 

replacement interval plots.  Part 1 is on the upslope of the global minimum.  Part 2 is close 

to its minimum.  Part 3 is on the downslope of its minimum. 

 Reliability decreases as components operate over longer preventive replacement 

intervals, tp.  Recall Equation ( 66 ) reshown below.  

𝑡𝑝,𝑟 = 𝛼𝑟𝑡𝑚𝑓 ( 66 ) 

An increase in either αr or tmf raises tp,r, reduces component reliability, and reduces system 

reliability.  tmf has a more powerful impact on the system than any one multiplier because 

tmf raises tp,r for all components in the system.  Consequently, extending the tmf is more 

challenging of a design feat than increasing a single component’s multiplier.  Figure 90 

also assists the policy author to set the right multipliers.  All of Part 1’s multipliers lie on 

the system reliability’s negative slope.  This is indicative of a part sacrificing reliability for 

downtime or tmf.  It also points to the fact that the range of tmf was set too high to fully 

capture the design space where Part 1’s reliability is high.  Multipliers α2 and α3 are fully 

explored and showed that they lie on the precipitous of the negative slope.  This is an ideal 

multiplier to minimize downtime while retaining high reliability. 

 Figure 91 measures the sensitivity of the system to the MFOP duration, tmf.  The first, 

second, and third row have tmf’s of one, three, and five, respectively.  As tmf increases, the 

importance of Tf grows while Tp diminishes.  This is a natural consequence of a higher 

resulting tp.  The longer a component operates without renewal, the greater the chance of 

failure and the lower the number of preventive replacements.  The consequence also occurs 
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with αr.  Downtime’s sensitivity to multipliers lessens as the resulting tp approaches the 

limit of DAsys. 

 

Figure 91:  Effect of MFOP Duration 

 

 A rise in a replacement time always increases the downtime of the system.  Increasing 

the ratio of Tf to Tp drives the optimal downtime solution towards a shorter tmf., because the 

penalty for failure replacements is more.  Increasing the failure replacement time (Tf) of 

component r has a compounding effect on the system’s reaction to other design variables.  

Greater Tf affects downtime’s sensitivity to the multiplier αr.  In Figure 92 below, Tf,2 varies 

from 0.01 to 0.1 to 0.2 units of time.  The optimal Part 2’s multiplier, α2, shifts to smaller 

values with more Tf,2.  This is the optimization attempting to avoid the failure penalty by 

favoring shorter replacement intervals. 
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Figure 92:  Sensitivity of Failure Replacement Times, Tf  

 

 Decreasing the preventive replacement time (Tp) of component r also has a 

compounding effect on the system’s reaction to other design variables.  Part 3’s Tp changes 

from 0.2 to 0.1 to 0.01 units of time.  Lowering Tp,3 diminishes downtime’s sensitivity to 

α3.  The other multipliers remain unaffected.  The trending direction and concavity of the 

αr is a function of how close tp,r is to the component’s optimal tp. 

Figure 93:  Sensitivity of Preventive Replacement Times, Tp  

 

 

 

f 
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5.7 Conclusions on a Policy that Minimizes Downtime 

A MFOP maintenance policy synchronizes preventive replacement intervals, tp, to MRPs.  

Synchronization of different components means an extension or shortening of their optimal 

replacement interval; doing so takes the components and system out of its optimal state.  

This has design consequences.  An extension sacrifices part reliability and worsens 

MFOPS.  A shortening increases reliability and improves MFOPS but raises the 

maintenance burden due to more frequent preventive replacements. 

 The classical Optimal Preventive Replacement model has several limitations that 

prevent its immediate application in a MFOP strategy.  The model accounts for a single 

part and does not provide an optimum solution for a multi-part system that meets minimum 

requirements for a MFOP duration and MFOPS.  This thesis presented a revised model that 

establishes the framework to: 

1. Account for failure replacements (Tf) and preventive replacements (Tp) that are not 

significantly greater than the replacement interval (tp) 

2. Find the downtime of a multi-part system 

3. Synchronize multiple parts replacement intervals (tp) without disrupting the MFOP 

(tmf) 

4. Manages a system constrained by minimum reliability or MFOPS requirements 

 

 A set of recommendations and best practices create a framework to build a maintenance 

policy that provides a MFOP while balancing downtime and reliability.  The primary 

conclusions from the work are: 



204 

a. Availability achieved, AA, is equal to one minus achieved downtime, DA; therefore, 

AA, is maximized by minimizing DA.   The revised model predicts achieved 

downtime under MFOP constraints. 

b. A time to failure distribution with a low coefficient of variation (𝑐𝑣 ≪ 1) has 

greater amplitude in the downtime model.  A low cv component is a component 

whose DA contribution is more sensitive to its replacement interval, tp.  Setting tp at 

the optimal point creates lower downtimes.  A low cv component with a slight 

change (earlier or later) from the optimal results in high downtimes.  A distribution 

with cv closer to one is a smoother curve with steadier behavior.  It is less sensitive 

to non-optimal tp’s.  A distribution with a cv greater than one does has a DA limit of 

zero and does not benefit from preventive replacement. 

c. A MFOP maintenance policy demands synchronized preventive replacement 

intervals that are whole number intervals of the MFOP duration. 

d. The smaller tmf relative to the components mean, the more choices the policy 

designer must select a multiplier that improves DAsys. 

e. An optimized system with a shorter Tf or longer Tp prefers a longer MFOP duration. 

f. Preventively replacing components at the optimal uniform replacement interval is 

not the global downtime minimum but does create a MFOP.  There is no guarantee 

this MFOP is sufficient for operational needs. 

g. The global minimum downtime occurs when components are replaced at their non-

uniform preventive replacement intervals.  This answers Hypothesis 2.  In a 

complex system, the non-uniform policy will result in disruptive preventive 

maintenance that opposes a MFOP strategy. 
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h. A larger replacement interval opposes reliability. 

i. There is an optimal replacement interval to minimize downtime, but it may result 

in an undesirable reliability. 

j. Low coefficient of variation components are less likely candidates for extension 

beyond its optimal replacement interval; however, these components have a more 

predicable time to failure that makes designing for reliability easier. 

k. High reliability designs are systems with components preventively replaced before 

its first minimal replacement intervals.  This places a practical limit on a MFOP 

duration. 

l. Minimum Policy Success (MPS) measures the performance of a maintenance 

policy over many MFOP cycles.  The policy’s ending MPS is not necessarily the 

best judge of a policy, because the ending provides no information about the 

probability of success of intermediate MFOP cycles.  It would not be unusual for a 

complex system like a helicopter to have the policy duration, tmf, exceed the 

expected use of the policy.  An acceptable policy maintains its MPS throughout the 

expected number of MFOP cycles that use the policy. 

m. Aligning preventive replacements at whole number multiples of the MFOP duration 

makes the response discrete.  The discrete nature makes finding of a constrained, 

minimum downtime difficult with gradient based optimization techniques.  A 

sensitivity study is an alternate and appropriate means to understanding the 

problem. 
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n. Neural networks can adequately model the non-linear characteristics of a system 

with components that have time to failure distributions with low coefficients of 

variation. 

o. Increasing tmf is more challenging than increasing an αr, because tmf influences every 

components behavior. 

 

  



207 

6 PROBLEM 2.2:  CONTROL MFOPS WITH A MFOP 

POLICY 

This chapter utilizes the new framework of the previous chapter to give a maintainer some 

control over MFOPS given a MFOP duration.  A policy providing MFOPS control is 

attractive for FVL’s vision where aircraft conduct maintenance free operating periods from 

remote, forward operating bases.  Availability is less than 100% in a MFOP strategy; 

however the MFOP is protected from Mission Affecting Failures (see section 4.3.2 

Construction of a Utility Helicopter Model) and essential maintenance actions.  An 

established MFOP provides 100% system availability during the operating period.  A 

cycle-ending MRP then completes all deferred and necessary preventive replacements to 

meet the next cycle.   

 

Figure 62:  Problem 2 Summary with Hypotheses (reshown) 

 

 

RQ 4: What is a maintenance

policy that controls MFOPS?

Hyp 3:  If an aging system’s lifing policy 

in the MRP is aggressive, then the 

policy can maintain a MFOPS to a 

required success over a certain number 

of cycles.

Hyp 2: If a policy synchronizes the 

system’s optimal preventive 

replacement interval to the MRP, then  

the policy minimizes the total 

achieved downtime.

RQ 3: What is the maintenance 

policy that minimizes downtime?

Problem 2

Adaptive Maintenance

Chapter 

5

Chapter 

6
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6.1 Research Question 4:  What is a maintenance policy that controls 

MFOPS 

A MRP has a minimum number of repairs needed to restore faults that did not cause 

mission failure.  A system with aging parts, such as a helicopter, will also have a safe lifing 

policy to meet safety requirements.  A maintenance plan must conduct these minimum 

repairs to replace non-critical faults and required lifing policies.  Repairs beyond the 

minimum number are deemed “aggressive” and are hypothesized to improve the MFOPS 

of the next MFOP cycle.  Two factors upset the stability of a MFOPS.  First, an extension 

to a MFOP will yield a lower MFOPS.  Second, the failure rate for wearing parts increases 

for aging aircraft.    Cinci and Griffith [41] in Journal of Quality in Maintenance 

Engineering, commented 

“However, there is a view within the reliability engineering community 

that if a non ‘constant failure rate’ approach to equipment reliability is 

used, systems are likely to contribute towards longer MRPs as the 

aircraft gets older.”  [41] 

 A well-designed policy should minimize the effects of aging and help an aircraft 

achieve the desired MFOPS in the next MFOP cycle.  It is hypothesized that an aggressive 

lifing policy restores the life of aging parts, improves system reliability, and manages the 

MFOPS to remain at its goal. 
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 The aggressive lifing policy must identify which components to replace preventively 

to most improve the MFOPS.  An algorithm shall rank orders each component and apply 

the necessary changes until the policy obtains the MFOPS goal.  Failure Cause 

Identification, introduced in section 3.2.1, provides the means to rank order candidates that 

most limit the MFOPS.  This ordering creates a maintenance policy that distinguishes 

which components to replace first in a MFOP.  The methodology to achieve such a policy 

follows an inner loop of the previously introduced framework. 

 The development and testing of the hypothesis followed the scientific method.  Section 

6.2 developed the framework using a simple, 4-part system as a thought experiment.  

Section 6.4 repeats the experiments on larger, 10-part systems in random, complex 

architectures.  Experiments tested a total of fifteen samples to demonstrate repeatability.  

Appendix A has full experiment inputs and results to provide transparency. 

6.2 Framework to Control MFOPS 

The methodology to control MFOPS follows the same framework introduced in the 

previous chapter.  Much of the framework remains unchanged.  The processes to manage 

the MFOPS occurs with an inner design loop between building and evaluating a policy.  

Figure 94 on page 211 highlights the inner loop within the framework. 

Research Question 4 

What is a maintenance policy that controls MFOPS? 

Hypothesis 3:  If an aging system’s lifing policy in the MRP is 

aggressive, then the policy can maintain a MFOPS to a required 

success over a certain number of cycles. 
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 Inputs used by the MFOPS control loop arise from the system definition.  The system 

designer determines the system’s architecture and component TTF distributions. Aligning 

system components to the architecture creates the system fault tree.  The designer and 

operator work together to assign the fault trees by mission phase and duration.  The 

operational commander sets the MFOP duration (tmf) and the MFOPS goal (MFOPSreq) 

based upon operational demands.  The MFOP duration is a function of mission duration 

(tphase) and the number of missions in the cycle and is 

𝑡𝑚𝑓 = (𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑀𝐹𝑂𝑃) 𝑡𝑝ℎ𝑎𝑠𝑒 ( 84 ) 

After establishing the inputs, the MFOP control loop may begin.  Figure 94 of page 211 

marks the five steps of the MFOPS control loop. 
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Figure 94:  MFOPS Control Loop of the Framework 
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6.2.1 Step 1:  Set αr 

The strategy of controlling MFOPS is one of incremental improvement from a conservative 

starting point.  The policy projects the conservative starting point from the serial 

arrangement of components.  A serial arrangement of components represents the worst 

possible mission reliability (MR) of n components over a given duration (t) 

𝑀𝑅𝑠𝑦𝑠(𝑡) = ∏ 𝑀𝑅𝑟(𝑡)
𝑛
𝑟=1  ( 85 ) 

 The starting point assumes each of the components has the same mission reliability 

over t.  Unless the system is n-like components, the assumption is merely a rough order 

approximation of the system’s behavior.  The closer a system is to a serial arrangement of 

like components, the more accurate the approximation.  This assumption, however rough, 

provides a starting point to develop the draft policy of replacement intervals. 

 Let mR denote the mission reliability of each component, then 

𝑀𝑅𝑠𝑦𝑠 = 𝑚𝑅𝑛 ( 86 ) 

with n components.  The components do not have to have the same TTF distribution.  The 

assumption only requires each component has a uniform reliability mR.  Solving for mR 

yields 

𝑚𝑅 = 𝑀𝑅𝑠𝑦𝑠
1
𝑛⁄  ( 87 ) 

Let pr be the probability each component failures before time t.  Since mR is the probability 

each component survives through time t, then pr is 

𝑝𝑟 = 1 −𝑚𝑅 = 1 −𝑀𝑅𝑠𝑦𝑠
1
𝑛⁄  ( 88 ) 



213 

 If each component has a mission reliability of mR, then the quantile function provides 

the endurance of the part to that mission reliability.  The quantile function, also known as 

the inverse cdf, is defined as 

𝐹−1(𝑝𝑟) = 𝑡 ( 89 ) 

The function returns the time t that yields the probability (pr) for a given TTF cumulative 

distribution function.  Table 10 of section 4.1.2.3 summarizes the quantile function for the 

exponential, Weibull, and normal distributions.  Applying the quantile function to Equation 

( 89 ) to Equation ( 88 ) yields 

𝐹𝑟
−1(𝑝𝑟) = 𝐹−1(1 − 𝑚𝑅) = 𝑡𝑙𝑎 ( 90 ) 

where tla is the minimum lifing age of the component r.  The minimum lifing age represents 

the age at which the policy preventively replaces the component to yield a mission 

reliability of mR. 

 The true replacement multiplier, αr, is the number of MFOP durations that occur before 

the part receives a preventive replacement.  Component r has a true replacement multiplier 

of 

𝛼𝑟,𝑡𝑟𝑢𝑒 = 
𝑡𝑙𝑎

𝑡𝑚𝑓
 ( 91 ) 

The replacement multiplier, αr, must be a whole number to ensure replacements occur in a 

MRP and do not disrupt a MFOP.  Rounding down αr,true to the nearest whole number 

defines αr as 

𝛼𝑟 = {
1, 𝑖𝑓 0 < 𝛼𝑟,𝑡𝑟𝑢𝑒 ≤ 1 

𝑓𝑙𝑜𝑜𝑟(𝛼𝑟,𝑡𝑟𝑢𝑒), 𝑖𝑓 𝛼𝑟,𝑡𝑟𝑢𝑒 > 1          
 ( 92 ) 
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 An αr,true less than one indicates the MFOP duration (tmf) may be too large.  The draft 

set of multipliers provides a minimum estimation to start policy refinement.  The first draft 

is conservative; the true tmf at a MFOPS may be higher, but never lower than the shortest 

tla.  The process of establishing a standard policy for a MFOP duration is driven the setting 

of tmf’s Equation ( 84 ) and αr’s Equation ( 91 ).  Step 1 adds the two fundamental equations 

to the framework drawn by Figure 94. 

 The set of component αr’s creates a conservative draft maintenance policy that 

guarantees a MFOPS of at least a worst-case condition.  The worst-case condition 

(MFOPSwc), is the probability that each component survives through its replacement 

interval given that it survived up to the last MFOP cycle: 

𝑀𝐹𝑂𝑃𝑆𝑤𝑐 = ∏ P𝑟(𝑇𝑇𝐹𝑟 > 𝛼𝑟 𝑡𝑚𝑓|𝑇𝑇𝐹𝑟 > 𝛼𝑟 𝑡𝑚𝑓 − 𝑡𝑚𝑓)
𝑛
𝑟=1  ( 93 ) 

𝑀𝐹𝑂𝑃𝑆𝑤𝑐 = ∏
𝑅𝑟(𝛼𝑟 𝑡𝑚𝑓)

𝑅𝑟(𝛼𝑟 𝑡𝑚𝑓−𝑡𝑚𝑓)
𝑛
𝑟=1  ( 94 ) 

MFOPSwc is the MFOPS of the ending cycle in a maintenance policy sequence of duration 

tmp.  It represents the most conservative condition of the MFOPS from a serial system.  

Each component is it its worst reliably in the cycle before replacement.  MFOPSwc is the 

worst case, because, at the end of the policy, all components of the system are replaced in 

a large MRP or reset.  The effects of the final cycle cause the lowest possible MFOPS for 

the system.  The implications of frequency alignments are discussed in the conclusions of 

the chapter.  A system architecture other than serial arrangement will yield a MFOPS 

higher than MFOPS.  MFOPSwc is most useful when the operator plans for the system to 

use the entire life of tmp. 
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6.2.2 Step 2:  Check tmf 

As the first draft policy, the tmf is set to the MFOP duration goal and is sufficient.  Step 2 

progresses without fail on the first iteration.  During later iterations, the policy designer 

may choose to lower the tmf when faced with an insufficient MFOPS.  Step 2 checks if tmf 

is low enough to drive a system redesign.  The lowest tla of all components provides the 

minimal MFOP duration (tmf) the system will survive.  The MFOPS of the system may be 

higher if any portion of the system has components arranged in a manner other than serial 

(i.e., parallel or n choose k). 

 The duration of the maintenance policy sequence is the operational time before the 

policy renews the entire system in the last MRP.  Maintenance policy duration, tmp, is  

𝑡𝑚𝑝 = 𝛼𝑙𝑐𝑚 𝑡𝑚𝑓 ( 95 ) 

where αlcm is the least common multiple of the set of αr.  tmp is the amount of flight hours 

before the system goes into a reset of phase.  In a complex system such as a helicopter, the 

number of varied parts is high and αlcm may be a large number.  The effective tmp will be 

enormous and beyond the practical use of the policy or even the life of the aircraft.  If tmp 

is large, then the operator should define the number of cycles, k, the system must endure 

above MFOPS. 

6.2.3 Step 3:  Check MFOPS 

Step 3 compares the MFOPS of the system to the goal MFOPS at the given tmf.  The 

Minimum Policy Success (MPS), defined by Equation ( 72 ) of section 5.3.3, must last for 

k cycles.  The restated equation is 

𝑀𝐹𝑂𝑃𝑆𝑟𝑒𝑞 ≤ 𝑀𝑃𝑆(0 < 𝑡 < 𝑘 𝑡𝑚𝑓) ( 72 ) 
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Step 3 checks to see if the MPS over k cycles remains above the MFOPS goal. 

 Running the DES over k cycles estimates the MPS and behavior of the system.  The 

policy repairs failed components not causing a mission abort at the next MRP.  The policy 

makes preventive replacements of component r with cycle frequency of αr.  A plot of 

MFOPS by cycle provides a graphical depiction of the system behavior under the policy.  

Figure 95 is an example plot of a policy with a sequence of 30 cycles and a MFOPS goal 

of 90%.  The example has the same fault trees as Test Case #4 with each phase as a duration 

of 0.5 hours.  The policy is sufficient through the eleventh cycle.  The system has an αlcm 

of 30 and fully resets after the 30th cycle.  The 31st cycle and 1st cycle have the same 

MFOPS. 

 

Figure 95:  MPS by Cycle  

 

 Convergence of the system through k cycles is necessary for quality MFOPS estimates.  

An acceptable MFOPS has convergence to a steady state estimate on the kth cycle.  
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Although convergence of all cycles is necessary, the last cycle is the most critical.  The last 

cycle will always have the least number of iterations surviving and suffers the most from 

precision error.  Figure 96 shows the convergence of 31 cycles as an example.  By 10,000 

iterations, the system has stabilized and convergence is good by 30,000 iterations.  The 

simulation is more susceptible to poor convergence with a system returning with lower 

MFOPS.   

 

Figure 96:  MFOPS Convergence 

 

 The cycle performance is the key interest in policy design.  A speed advantage is 

available to the simulation by running fewer iterations at longer mission durations.  There 

is more than one way to simulate a cycle with the same tmf duration.  For example, consider 

a 20-hour MFOP.  The first way is to simulate the mission duration of 2 hours over a 10-

Cycle k=30
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mission MFOP.  A faster way is to simulate a mission duration of 20 hours in a 1-mission 

MFOP.  Both methods simulate the same 20-hour tmf; however, the first way collects 

information on each phase, mission, and cycle.  The second method runs faster on a 

computer, because it does not collect information by phase and mission.  The second 

method compiles data into cycle information.  The disadvantage of this technique is the 

inability to assign an event to a phase and mission. 

 The policy designer may leave the loop if the MPS is above the MFOPS goal and the 

policy is satisfactory.  The designer must continue to Step 4 if the MPS is insufficient or if 

the operational commander desires to refine the maintenance policy.  Reasons to refine the 

policy may be a desire to increase tmf, improve MFOPS, reduce MRP, or manage O&S 

resulting from the policy. 

6.2.4 Step 4:  Rank Parts 

The framework assigns draft replacement intervals conservatively.  Should one or more 

component’s αr,true be less than one, the system may not support the goal MFOPS.  A 

redesign of the component(s) may be necessary, taking the policy designer back to the 

define action.  Otherwise, the system is likely better than the goal MFOPS.  The design can 

tolerate greater replacement intervals which extend the MFOP duration, reduce the MRP, 

and lower O&S costs.  In either condition, it is necessary to identify which parts are limiting 

a MFOP.  Components performing well are candidates for extension with less penalty to 

MFOPS. 

 An approximate technique is to rank components by their reliability at the end of the 

policy.  The policy resets the system at the end of the maintenance policy; hence, each 
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component completes its replacement interval of (αr tmf) when time equals tmp.  The 

equation below represents component r’s reliability when time t is equal to tmp 

𝑅𝑟(𝑡𝑚𝑝) = 1 − 𝐹𝑟(𝛼𝑟𝑡𝑚𝑓) ( 96 ) 

where Fr(t) is the component’s TTF cumulative distribution function.  The contribution of 

a component’s reliability Rr to the system reliability depends upon the system architecture.  

The worst-case MFOPS is the final cycle of a serial arrangement before the policy replaces 

all components in a single MRP and was found in Equation ( 94 ).  MFOPSwc also makes 

a weak statement on the MFOPS at the end of the policy.  The conditional nature of MFOPS 

and Equation ( 10 ) is such that MFOPS at cycle k is dependent upon the reliability at cycle 

k-1.  The reliability at cycle k-1 is less than or equal to one; therefore, the MFOPS at cycle 

k is equal to or better than the reliability at cycle k.  Given each component ends its 

replacement interval at its worst reliability at tmp, Equation ( 94 ) serves as the lower limit 

for a possible MFOPS. 

 Unlike the above technique, Failure Cause Identification, established in section 3.2.1, 

provides a direct, quantifiable measure of a component’s contribution to failure.  Figure 97 

provides the cumulative plot and area growth of failure cause for the system with a MFOP 

duration of 64 hours.  Failure Cause Identification linked to a DES tells the full time-

history.  Figure 97(b) indicates that between the twelfth and fourteenth cycle, the failure 

causes change.  Parts 1 and 2 are the greater contributors until 800 and 870 hours, 

respectively.  Between the twelfth and thirteenth cycles, Parts 3 and 5 overtake Parts 1 and 

2.  After the 14th cycle (896 hours), Parts 3 and 5 are the greatest causes of system failure 

through the life of the maintenance policy.  A great advantage of Failure Cause 
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Identification is the process is robust enough to measure non-repairable, repairable 

systems, and a change in maintenance policy without any adjustment to the process. 

 

Figure 97:  Failure Cause Identification in the Framework  

 

6.2.5 Step 5:  Reduce αr or tmf 

If Step 3 brings an insufficient MFOPS, the policy shall reduce the MFOP duration (tmf) or 

lower one or more component multiplier (αr).  Lowering tmf lowers the replacement interval 

for all components.  It places less demand on all components and yields greater component 

reliability.  The penalty is a reduced MFOP duration.  If the operational commander cannot 

tolerate a lower MFOP duration, then changing a component’s multiplier provides a target 

means to better MFOPS.  Lowering a component’s multiplier lowers its replacement 

interval.  The component reliability improves at the penalty of more preventive 

replacements. 

 By changing the multiplier, the commander is accepting a strategy of reduced risk 

(higher MFOPS) through a longer MRP and greater O&S costs.  The recommended 

(a) Stacked Failure Cause History (b) Failure Cause Area Growth
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strategy is to begin the policy close to the true multiplier.  The designer should 

incrementally lower the multipliers of the greatest Failure Cause component(s) until the 

policy meets the MFOPS goal for k cycles at the designated tmf.  If the MFOPS is not 

sufficient with multiples of one or the maintenance burden is too high, then the operator 

must lower the MFOP duration. 

 If the penalty of frequent replacements is intolerable, then the MFOP duration must 

decrease to meet MFOPS.  A method to find the correct MFOPS at a given set of αr 

multiples is to start with the MFOP duration of 

𝑡𝑚𝑓 ≤ min (𝑡𝑙𝑎) ( 97 ) 

where tla is the minimum lifing age of all components.  The number of missions to define 

a MFOP must be such that  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑀𝐹𝑂𝑃 ≤ 
𝑡𝑚𝑓

𝑡𝑝ℎ𝑎𝑠𝑒
 ( 98 ) 

Setting the MFOP duration as a multiple of mission duration allows easier MFOP 

management from an operational perspective.  If tmf is insufficient but MFOPS is sufficient, 

then the policy may accommodate more missions in the cycle.  Adding more missions will 

decrease the true multiplier αr,true and close the gap with αr.  The smaller the gap between 

the actual and true multiplier, the more optimized tmf is at the established MFOPS goal.  A 

MFOP duration with an αr,true less than one will result in a decrease to MFOPS. 

6.2.6 Revaluating the New Policy:  A Thought Experiment 

Returning to the example problem of this section where the MFOPS fell below the 90% 

goal after the twelfth cycle.  The applied policy had multipliers shown in Table 37.  The 
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disparity between multipliers αr and αr,true in Part 3 and Part 5 are the primary reason the 

system experiences a drop in MFOPS over time. 

 

Table 37:  Example Policy 

Component Distribution Mean 

[h] 

Multiplier, 

αr 

True 

Multiplier, 

αr,true 

 

Lifing Age, 

tla 

[h] 

Part1 Normal 

μ=593.42 

σ=155.76 

 

593.42 5 4.543 290.75 

Part2 Weibull 

η=523.18 

β=8.79 

 

494.9 6 5.405 345.94 

Part3 Exponential 

λ=0.00231 

 

433.35 6 0.178 11.41 

Part5 Weibull 

η=862.27 

β=7.08 

 

807.19 15 8.072 516.6 

 

 Figure 98(a) below identifies the cycles where MFOPS is low due to the extension of 

parts beyond their lifing age.  The clue to Part 3 is the restoration of MFOPS in cycles 7, 

13, 19, 25, and 31.  The clue to Part 5 is the restoration of MFOPS in cycles 16 and 30.  

The restorations occur following a repair of Parts 3 every six cycles and Part 5 every 15 

cycles.  Figure 98(b) shows that tuning the multipliers of the components improved the 

MPS of the system.  Part 3’s replacement frequency doubled using an α3 of three.  Part 4’s 

multiplier dropped to five.  Part 2 remained at six and Part 1 increased to seven without 

major impact.  The tuned policy has a minimum MFOPS of 94.2% and is successful. 
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Figure 98:  Comparison of Maintenance Policies  

 

 Figure 98 captures a sensitivity study of MFOP duration for the improved policy above.  

The plot shows the decrease in the system’s MPS (measured as the minimum MFOPS in 

cycles 1 to 30).  Closely following this curve is the final MFOPS at cycle 30.  The final 

curve shows the system reliability at cycle 30.  This is the probability the system will 

successfully complete all 30 cycles without an unscheduled failure.  The figure shows the 

trade-offs available to the operational commander in terms of operational capability 

(MFOP duration), operational risk (MFOPS), and policy risk (reliability). 

 

Part3 Limiting

Part5 Limiting

(a) MPS Limiting Components (b) Improved MPS
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Figure 99:  Policy Sensitivity to MFOP Duration  

 

6.3 Design of Experiments 

The phenomena of a MRP fully restoring the MFOPS for the next cycle as shown in Figure 

21 (page 67) only occurs if the MRP fully renews the life of each component.  It is not 

practical to renew a rotorcraft with tens of thousands of parts at each MRP.  A real aircraft 

ages and the MFOPS will degenerate over many cycles without intervention.  The work 

hypothesized to maintain a MFOPS, an aggressive lifing policy must selectively renew the 

aged parts that most lower the MFOPS.  Following the provided framework created a 

policy that maintained MFOPS over k cycles by manipulating the replacement multipliers, 

αr. 
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 A paired t-test examined the significance of an aggressive lifing policy to maintain 

MFOPS over k cycles.  The population for the test was rotorcraft system architectures; 

however, detailed modeling of thirty or more rotorcraft system architecture is an 

extraordinarily complicated and time-consuming effort.  An alternate solution was to 

randomly generate a master system architecture based upon a set of common constraints.  

The constraints made the experiment feasible while providing sufficient variety in system 

architecture and components.  Constraints include: 

1. A three-level hierarchy 

2. A reasonable number of components (no more than 10 components) 

3. No more than a sixth of the components followed an exponential failure distribution 

to ensure sufficient inclusion of parts that experience wear and an increasing hazard 

rate 

 The architecture had AND/OR gates randomly selected at each level as well as the 

number of components inside each branch of the tree.  Component TTF distributions were 

randomly generated from the range of parameters listed in Table 38.  The range of MTBF 

provided sufficient exploration of the FVL-target MFOP duration between ten and one-

hundred hours. 

 

Research Question 4 

What is a maintenance policy that controls MFOPS? 

Hypothesis 3:  If an aging system’s lifing policy in the MRP is 

aggressive, then the policy can maintain a MFOPS to a required 

success over a certain number of cycles. 
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Table 38:  Ranges of Randomly Generated Component TTF Distributions 

Distribution Type Min MTBF 

[h per failure] 

 

Max MTBF 

[h per failure] 

Second Parameter 

Exponential 

 

1,500 18,200  

Weibull 

 

75 910 1.5 ≤ 𝛽 ≤ 10 

Normal 

 

75 910 0.05 ≤ 𝑐𝑣 ≤ 0.286 

 

 The blank fault tree had three levels with 27 slots in the arrangement of Figure 100.  

The ten components were randomly selected to fill a portion of slots A to AA.  Slots not 

filled with a component were removed from the fault tree and failure logic.  Components 

without a sibling in its branch moved to the higher level. 

 

Figure 100:  Fault Tree Template 

 

99 99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99 99

A B C D E F G H I

J K L M N O P Q R

S T U V W X Y Z AA
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 Determination of the MFOP duration was a challenge.  Each sample’s MFOP varied 

due to the randomness of the architecture, component selection, and starting age.  A 

possible solution was to generate a pool of components that, on average, yield a similar 

MFOP; however, the method would introduce bias to the experiment and narrow the 

exploration of the design space.  A better option was to calibrate the MFOP to each sample.  

Simulating missions without repair until failure provided calibration.  Repeating these 

multiple times via a Monte Carlo simulation built a reliability profile.  The MFOP was set 

as the duration to experience a reliability of 10%.  This ensured the MFOP duration induced 

a sufficient amount of failures to necessitate a preventive replacement policy. 

 The experiments paired samplings from two different maintenance policies created by 

following the framework’s MFOPS control loop (Figure 94).  Three randomly generated 

fault trees with five different sets of components constructed a total of fifteen, random 

samples.  The DES flew each sample through k cycles of the calibrated MFOP and recorded 

the mean MFOPS and minimum MFOPS (MPS).  The experiment collected a paired 

sample by virtually flying the system for k MFOP cycles under two maintenance policies:  

(1) a maintenance policy that only replaced failed components at the lifing age; and (2) an 

aggressive lifing policy. 

 The experiments approached the hypothesis from two perspectives.  The first set 

experiment attempted to improve MFOPS with an aggressive lifing policy.  The second 

experiment checked if a policy could maintain or improve a MFOPS after the extension of 

the MFOP duration.  Each experiment examined MFOPS and MPS for a total of four t-

tests on the paired samples. 
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 The t-tests had a null hypothesis of 𝐻0:  𝜇𝑑 = 0, where the mean difference, μd, between 

the policies was zero.  The alternate hypothesis was 𝐻𝑎:  𝜇𝑑 > 0 where the mean difference 

was greater than zero.  A significance level, α, of 0.05 was applied in the test.  Rejection 

of the null hypothesis in the t-test would conclude the two policies had a statistically 

different MFOPS and the aggressive policy improved the success rate.  The relative 

preventive maintenance burden was recorded for discussion of results. 

6.4 Results and Discussion 

6.4.1 Experiment 1:  Improving MFOPS 

The first experiment investigated if an aggressive lifing policy can improve the MFOPS of 

a system over k cycles.  The standard lifing policy follows the control loop of the 

framework reviewed in the methodology.  Two architectures ran five samples a piece for a 

total of ten paired samples.  Figure 101 shows the component slotting for the first sample 

of the first fault tree.  The second fault tree is in Appendix A. 
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Figure 101:  Fault Tree of Architecture 1, Sample 1 

 

6.4.1.1 Following the Control Loop 

 Step 1 calibrated the system using a MFOP duration that produced a reliability of 10%.  

Equation ( 88 ) provided the target quantile for each component using a system Mission 

Reliability, MRsys, of 0.80.  Next, the framework calculated the component minimum lifing 

age and the corresponding replacement interval multiplier.  The standard lifing policy 

rounded up all component multipliers to establish a MRP with room for improvement. 

 Step 2’s tmf remained fixed from the calibration of the previous step.  The simulation 

ran in accordance with Step 3.  Convergence typically occurred by 30,000 iterations.  Table 

40 logged the MFOPS for the standard policy.  Figure 102(a) is the plot of MFOPS for 

Sample 3.  This sample had a mean MFOPS of 0.9429 over the 30 cycles.  The sample’s 

minimum MFOPS (MPS) of 0.8245 occurred in cycle 6. 

 

10 14 28 17 14

18 11 4

21 6 20

A B E H I S T AA

N O P
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Figure 102:  Policy Comparison of Sample 1’s MFOPS 

 

 Step 4 identified Parts 10, 20, and 28 as the primary failure causes for the system.  

Figure 103(a) shows the stacked failures causes of Sample 1.  Part 10 ranked worst with a 

normalized failure cause area of 24.7.  Part 20 was second with an area of 8.04 and Part 28 

was 2.8.  In Step 5, the aggressive policy improved the MFOPS by reducing Part 10’s 

multiplier from 2 to 1, Part 20’s multiplier from 6 to 5, and Part 28’s multiplier from 17 to 

16.  Figure 102(b) and Figure 103(b) provided the aggressive policy’s new MFOPS plot 

and stacked failure cause. 

 

(a) Standard Policy (b) Aggressive Policy
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Figure 103:  Comparison of Sample 1’s Failure Causes 

 

6.4.1.2 Evaluating the Results and the t-Test 

 The aggressive policy yielded an improved MFOPS of 0.9775 (a 0.0339 improvement 

from the standard policy) and an MPS of 0.9329 (an improvement of 0.1121).  The 

experiment followed the same control loop for the other nine samples.  Appendix A 

contains the full data set from the experiment.  Table 39 and Table 40 summarize the test 

results.  

  

Part10

Part20

Part28

(a) Standard Policy (b) Aggressive Policy

Part10

Part20

Part28
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Table 39:  Hypothesis 3, Experiment 1 Paired Test of MFOPS 

Sample Aggressive Policy 

MFOPS 

 

Standard Policy 

MFOPS 

Difference 

d 

1 0.9775 0.9436 0.0339 
2 0.9834 0.9694 0.0140 
3 0.9650 0.9411 0.0239 
4 0.9710 0.9622 0.0088 
5 0.9755 0.9645 0.0110 
    

6 0.9771 0.9250 0.0521 
7 0.9918 0.9831 0.0087 
8 0.9857 0.9716 0.0141 
9 0.9897 0.9222 0.0675 
10 

 
0.9955 0.9724 0.0231 

   

Mean difference �̅� = 0.02571  

Sample std. deviation 𝑠𝑑 = 0.01995  

Degrees of freedom 𝑛 − 1 = 9  

t-statistic 𝑡𝑛−1 = 4.07441  

Significance level 𝛼 = 0.05  

    

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑡 (𝑜𝑛𝑒 𝑡𝑎𝑖𝑙) < 𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 
1.83311 < 4.07441 

Reject Ho.  The aggressive lifing policy is statistically different. 

 

 

 The tables also show the t-tests of the paired samples for means.  The null hypothesis 

stated assumed a mean difference between the policies of zero.  The test t-statistic was far 

greater than the critical t-statistic for both the mean MFOPS and the MPS tests; leading to 

the rejection of the null hypothesis.  This gave credence to the alternate hypothesis 𝐻𝑎 >

𝜇𝑑 where the aggressive policy provided a statistical improvement to the system’s MFOPS. 

  



233 

Table 40:  Hypothesis 3, Experiment 1 Paired Test of MPS 

Sample Aggressive Policy 

MPS 

 

Standard Policy 

MPS 

Difference 

d 

1 0.9329 0.8200 0.1129 
2 0.8903 0.6126 0.2777 
3 0.7990 0.5313 0.2677 
4 0.8562 0.7412 0.1150 
5 0.8951 0.8065 0.0886 
    

6 0.9334 0.7806 0.1528 
7 0.9571 0.8986 0.0585 
8 0.8685 0.7122 0.1563 
9 0.9230 0.4987 0.4243 
10 

 
0.9621 0.6336 0.3285 

   

Mean difference �̅� = 0.19823  

Sample std. deviation 𝑠𝑑 = 0.11963  

Degrees of freedom 𝑛 − 1 = 9  

t-statistic 𝑡𝑛−1 = 5.24016  

Significance level 𝛼 = 0.05  

    

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑡 (𝑜𝑛𝑒 𝑡𝑎𝑖𝑙) < 𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 

1.83311 < 5.24016 

Reject Ho.  The aggressive lifing policy is statistically different. 

 

 

6.4.2 Experiment 2:  Extending the MFOP Duration 

The first experiment considered how an aggressive policy may improve a system’s MFOPS 

over k cycles.  The next experiment investigates if an aggressive policy may help an 

operational commander minimize risk when extending a MFOP duration.  Both are equally 

valid questions that an operational commander may ask when planning a deployment. 

6.4.2.1 Following the Control Loop 

The experiment compares the standard and aggressive policies after an extension to the 

MFOP duration using the third architecture (see Appendix A for its fault tree).  The baseline 
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duration was set as the flight time at which system reliability reached 10% or less.  The 

standard policy started with an MRsys of 0.8.  It followed Step 1 of the control loop to 

establish the replacement multipliers.  The process then fixed the standard policy’s αr 

multipliers while the MFOP duration was incrementally increased.  The extension of tmf 

stopped when the mean MFOPS dropped to approximately 90%.  This captured the effects 

of unreliability after extending the MFOP duration.  The extension of the MFOP duration 

was a dependent on the fault tree and components TTF distribution.  On average, the MFOP 

was successfully extend by 40% more than the baseline value. 

 The experiment recorded the standard policy’s MFOPS and the MPS over 60 cycles in 

Table 41 and Table 42.  The duration of the policy sequences tended to exceed a thousand 

cycles for even the simplest architectures.  Such long sequences were impractical in both 

operational application and computational time.  As a counter, the cycle duration was 

limited to a reasonable number expected in a deployment but made sufficiently high to 

encompass at least one replacement interval for each component. 

 Like Experiment 1, Failure Cause Identification discovered the worst performing 

components which limited the MFOPS and MPS.  The aggressive policy selectively 

lowered the replacement interval of no more than three components by a single interval.  

The simulation ran under the aggressive policy over the 60 cycles. 

6.4.2.2 Evaluating the Results and t-Test 

The experiment conducted paired t-tests on the MFOPS and MPS data to the policies’ 

control of MFOPS and MPS.  In both MFOPS and MPS the test statistic was greater than 

the critical statistic.  The tables below summarize the tests and the calculation of the t-

statistic. 
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Table 41:  Hypothesis 3, Experiment 2 Paired Test of MFOPS 

Sample Aggressive Policy 

MFOPS 

 

Standard Policy 

MFOPS 

Difference 

d 

11 0.9675 0.8942 0.0733 

12 0.9572 0.9000 0.0572 

13 0.9360 0.8994 0.0366 

14 0.9620 0.9063 0.0557 

15 

 

0.9800 0.9412 0.0388 

   

Mean difference �̅� = 0.05232  

Sample std. deviation 𝑠𝑑 = 0.01504  

Degrees of freedom 𝑛 − 1 = 4  

t-statistic 𝑡𝑛−1 = 7.77651  

Significance level 𝛼 = 0.05  

    

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑡 (𝑜𝑛𝑒 𝑡𝑎𝑖𝑙) < 𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 
2.13185 < 7.77651 

Reject Ho.  The aggressive lifing policy is statistically different. 

 

 

 The rejection of the null hypothesis suggests the policies have different impacts on the 

system mean MFOPS and MPS.  The alternate hypothesis proposed the mean difference 

was greater than zero, 𝐻𝑎 > 𝜇𝑑.  This leads to the conclusion that the aggressive policy can 

restore a system’s MFOPS despite a longer MFOP duration. 
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Table 42:  Hypothesis 3, Experiment 2 Paired Test of MPS 

Sample Aggressive Policy 

MPS 

 

Standard Policy 

MPS 

Difference 

d 

11 0.8975 0.5160 0.3815 

12 0.8833 0.4445 0.4388 

13 0.8489 0.7156 0.1333 

14 0.7449 0.6080 0.1369 

15 

 

0.9182 0.7269 0.1913 

   

Mean difference �̅� = 0.25636  

Sample std. deviation 𝑠𝑑 = 0.14369  

Degrees of freedom 𝑛 − 1 = 4  

t-statistic 𝑡𝑛−1 = 5.45313  

Significance level 𝛼 = 0.05  

    

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑡 (𝑜𝑛𝑒 𝑡𝑎𝑖𝑙) < 𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 
2.13185 < 3.98931 

Reject Ho.  The aggressive lifing policy is statistically different. 

 

 

6.5 Conclusions on Controlling MFOPS 

6.5.1 Connecting Reliability with MFOPS 

A desirable state for a policy is a constant MFOPS above the MFOPS goal.  A constant 

MFOPS provides dependability and a steady maintenance burden.  The reliability curve of 

a constant MFOPS policy is a geometric decay from one to zero over k cycles.  Equation ( 

99 ) shows the theoretical, geometric relationship between reliability and MFOPS as 

𝑀𝐹𝑂𝑃𝑆(𝑡𝑚𝑓 , 𝑖) = 0.9000 = 
𝑅𝑠𝑦𝑠(𝑖×𝑡𝑚𝑓)

𝑅𝑠𝑦𝑠([𝑖−1]×𝑡𝑚𝑓)
 ( 99 ) 

where Sample 12 has a mean MFOPS of 0.9000 under the standard policy.  The ith cycle 

reliability was 90% of the i-1 cycle.  The ith cycle under the aggressive policy was 95.72% 

of the i-1 cycle.  The ideal, constant MFOPS curve for 90% and 95% are drawn over 
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reliability plots of Figure 104.  The curves follow the geometric decay of reliability.  The 

standard policy’s actual MFOPS had a less ideal shape than the aggressive policy’s shape.  

The ideal curve provides a qualitative measurement of a policy’s consistency and ability to 

meet a MFOPS goal. 

 

Figure 104:  Relationship Between Reliability and MFOPS 

 

6.5.2 Diagnosing MFOPS Hunting 

MFOPS hunting frequency measures the alignment of multiple components replacements 

to a MRP that results in a low MFOPS prior to the MRP.  It is like the meshing of teeth of 

two gears.  Gear hunting occurs when tooth a of the gear meshes with tooth b of the pinion.  

Based upon the number of teeth in the gear and pinion and their common factors, the teeth 

a and b will contact each other with a known frequency.  If the gear and pinion each have 

a defective tooth, a bad mesh occurs at a frequency.  A high contact frequency can lead to 

early tooth failure. 

(b) Aggressive Policy(a) Standard Policy

90% MFOPS
95% MFOPS

90% MFOPS
95% MFOPS
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 For a maintenance policy, component replacements align at the cycle of a common 

multiple of αr.  At the cycle of alignment, both components are reaching the end of their 

useful life.  Their unreliability compounds and MFOPS drops sharply at the cycle of 

alignment.  The signature tell of alignment is the return of the MFOPS on the next cycle 

after both components are renewed.  Sample 12’s sharp drop and return of MFOPS between 

cycles 6 and 7 as shown in Figure 105(a) is the result of MFOPS hunting.  The Minimum 

Policy Success (MPS) is especially susceptible to hunting even if it has a high mean 

MFOPS.  The standard policy of sample 12 had an otherwise successful mean MFOPS but 

suffered from hunting in cycles 6, 12, 18, 36, 42, 48, and 54. 

 

Figure 105:  MFOPS Hunting Frequency in Sample 12 

 

 Sample 12’s standard policy was an exceptionally example of hunting.  Table 43 lists 

the αr multiples.  Part 26 had a multiple of 2.  Parts 2, 20, and 15 had multipliers of 3.  Parts 

11 and 21 had multipliers of 6.  At MRP’s 6, 12, 18 and so on, the policy renewed six of 

the ten components.  This resulted in a high burden MRP.  More importantly, the hunting 

(a) Standard Policy (b) Aggressive Policy
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added a compounding risk of failure as the aligned components reach or exceed their lifing 

age at cycles 6, 12, 18 and so on.  Replacement of Parts 28 and 16 at cycle 42 magnified 

the effect. 

 

Table 43:  Multipliers of Sample 12’s Standard Policy 

Component Policy 

Multiplier, 

αr 

True 

Multiplier, 

αr,true 

 

Lifing Age, 

tla 

[h] 

Failure Cause 

Area Normalized 

[fail-h] 

Part2 3 1.32 105.4 34.1 

Part28 7 4.24 338.8 34.1 

Part20 3 1.39 110.8 34.1 

Part11 6 3.47 277.9 34.1 

Part27 8 4.69 375.5 4.4 

     

Part26 2 0.93 74.6 33.7 

Part21 6 3.28 262.2 7.8 

Part16 7 4.28 342.4 14.1 

Part15 3 1.75 140.4 3.64 

Part27 

 

8 4.69 375.5 1 

 

 An effective policy resolves hunting by shifting αr multiples such that they do not have 

a high frequency of alignment.  The best candidate for shifting is one that adds greatest to 

system failure.  For this example, the area of the failure cause curve of Figure 106 provided 

the means to diagnose which component, Part 11 or 21, to shift.  The MFOP duration was 

80 hours.  At the 480 hours and Cycle 6, Part 11 had a much greater contribution to failure 

than Part 11; therefore, the policy lowered Part 11 before Part 21. 
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Figure 106:  Sample 12’s Failure Cause Identification  

 

 The aggressive policy lowered the multiplier for parts 26, 11, and 21.  It changed Part 

26 first, followed by Parts 11 and 21.  The change yielded higher reliability and more 

evenly distributed their alignment with other components as shown in Figure 105(b). The 

new, aggressive lifing policy improved MPS from 0.4445 to 0.8833 while raising the mean 

MFOPS by more than 5%. 

6.5.3 Reaching the Limit of MFOP Extension 

Extending the MFOP duration will ultimately push the limits of system reliability and the 

maintenance policy will not be sufficient to maintain the MFOPS.  This discussion 

continues the analysis of Sample 12.  The experiment extended the sample’s MFOP 

duration from 50 hours to 80 hours.  The weakest link of the system is Part 26 as shown in 

Figure 107(a) and in the Failure Cause Identification of Figure 106 above.   

 

Part21
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Figure 107:  Sample 12 Stacked Failure Causes 

 

 Part 26 began the standard policy with a multiplier of 2 and a true multiplier of 0.93.  

The discrepancy between the multipliers signifies the extension of the component.  The 

true multiplier requested replacement almost every MRP, yet the policy only provided 

replacement every other MRP.  The aggressive policy reduced Part 26’s multiplier to 1, 

which was a slight extension.  The slight changes made by the aggressive policy saved just 

over 0.5 failure causes per iteration.  The cost of the reduction in failure was a higher 

maintenance burden and cost from an additional 0.5 replacements per cycle.  Even with the 

reduction to 1, Part 26 remains the greatest cause of failure in the system.  Any further 

extension of the MFOP duration will exacerbate the worsening condition.  The 

consequence of the further extension will be a precipitous drop in system reliability.  At 

this point, the policy is unable to sustain the MFOPS.  It cannot replace the component any 

more frequently than every MRP (α26 = 1); thus, there exists a practical limit to a MFOP 

extension where no MFOP policy will be sufficient. 

Part26

Part11

Part26

(b) Aggressive Policy(a) Standard Policy
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 A policy with fixed multipliers trades MFOPS for a longer duration.  At lower relative 

MFOP durations, the sacrifice of MFOPS may be small.  Figure 108 plots MFOPS, MPS, 

and the number of preventive replacements per cycle as a function of the MFOP duration.  

Data was collected from the simulation using the αr multipliers of the aggressive policy 

found in Table 47 of Appendix A.  The figure shows extending the MFOP duration from 

40 hours to 75 hours resulted in a MFOPS decrease from 0.991 to 0.966.  The extension 

traded less than 3% of MFOPS for a 75% increase in the MFOP duration.  After 75 hours, 

the MFOPS decayed at a higher rate.  Still, the policy achieved a MFOP duration of 95 

hours (a 138% increase) at a MFOPS of 0.9. 

 

Figure 108:  Sample 12, Fixed Policy’s Sensitivity to MFOP Duration 

 

 The above figure supports several major conclusions.  First, the MFOP of a system 

does have a practical limit.  After 105 hours, Sample 12’s mean MFOPS dropped to zero.  

The decay is rapid and the result of the loss of MPS.  The drop originated from an 

interaction of several factors; the most influential factor being Part 2 reached its lifing age 

0

1

2

3

4

5

6

7

8

9

10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 45 50 55 60 65 70 75 80 85 90 95 100 105

A
ve

ra
ge

 R
ep

la
ce

m
e

n
ts

 p
e

r 
M

R
P

MFOP Duration [h]

Limits of an MFOP Extension under a Fixed Policy

MFOPS

MPS

Replacements

Poly. (MFOPS)

Poly. (MPS)

Linear (Replacements)



243 

of 105.4 hours.  Part 2 of Sample 12 occupied slot A of the fault tree (Figure 116).  This 

slot had only OR gates in its path to the top of the fault tree.  A failure of Part 2 

automatically resulted in a system failure.  This was the system’s critical part that limits 

the MFOP duration.  It was an excellent candidate for an additional MFOP Option like 

prognostics/diagnostics in the form of health monitoring to better predict an impending 

failure. 

 A second major conclusion is that the drop in MFOPS is sudden at the MFOP duration 

limit.  The system’s critical part has a cumulative probability of failure close to one at the 

limit.  Another conclusion is in regards to MPS.  The minimum MFOPS (MPS) is naturally 

less than or equal to the MFOPS value.  MPS had a more dramatic break in its drop than 

MFOPS.  The figure shows the break beginning at a MFOP duration of 75 hours and an 

MPS of 90%.  Although the mean MFOPS remain above 90% until 95 hours, the 

operational commander should expect a select number of cycles to have poor performance 

with a probability of success of only 60%. 

 Finally, a commander should weigh the trade in MFOPS for an extended MFOP 

duration and understand more cycles will perform poorly even if the mean cycle MFOPS 

remains tolerable.  Fortunately, the drop in cycles is, on average, predictable.  A MFOP 

strategy should provide this information as part of the planning process.  Of course, the 

operating unit may always “buy” its way out of the loss of MFOPS and MPS through more 

frequent preventive replacements. 

6.5.4 Trade-Offs of an Adaptive Maintenance Policy 

Figure 109 shows the MFOPS, MPS, and replacements per cycle of an unconstrained 

policy.  Unlike the above fixed policy, this policy adapted to the MFOP extension through 
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the successive lowering of its αr multipliers.  The approach rewrote the policy at each 

extension interval by going through one iteration of the loop.  This approach produced 

positive results in its ability to maintain the MFOPS for 60 cycles.  At 100 hours, the 

MFOPS was above 95%.  At 150 hours, the MFOPS crossed below 90%.  The adaptable 

policy achieved a MFOP of 200 hours before experiencing the limit. 

 

Figure 109:  Sample 12, Adaptable Policy’s Sensitivity to MFOP Duration 

 

 The MPS had a milder decay under the adaptable policy than the fixed policy.  It 

remained below the mean, by definition, but declined in an almost linear fashion.  Like a 

fixed policy, the adaptable approach experienced a sudden loss of MFOPS at the MFOP 

limit.  The loss was sudden and occurred between hours 200 and 201.  It may be the true 

drop was not a step function; however, this was not testable within computational time 
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limits.  A large number of iterations at smaller time steps should show a rapidly-decaying, 

smooth curve.  The difference is hypothetical.  The practical application of designing 

MFOP by a discrete number of missions or flight hours creates a finite limit that cannot be 

exceeded. 

 Figure 109 includes a plot of the preventive replacements made by the policy at each 

MFOP duration.  The climb in replacement frequency is steady with a linear trend.  The 

theoretical number of preventive replacements in a cycle is 

𝑅𝑒𝑝𝑙𝑎𝑐𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝐶𝑦𝑐𝑙𝑒 = ∑
1

𝛼𝑟

𝑛
𝑟  ( 100 ) 

for a system with n components.  The cost per MFOP cycle is estimated as  

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑅𝑒𝑝𝑙𝑎𝑐𝑚𝑒𝑛𝑡𝑠 𝐶𝑦𝑐𝑙𝑒 = ∑
C𝑝,𝑟

𝛼𝑟

𝑛
𝑟  ( 101 ) 

where Cp,r is the cost of a preventive replacement of component r. 

 The trade-off for a better MFOPS performance policy is an additional maintenance 

burden.  Figure 110 shows the number of preventive replacements per cycle per flight hour 

of the fixed policy and the adaptable policy.  The fixed policy keeps constant the αr 

multipliers which holds the maintenance burden fixed.  The adaptable policy increases the 

preventive replacements as needed to maintain MFOPS.  The replacements per cycle per 

hour is an informative plot for the maintenance planners and commanders for their 

selection of a policy and a MFOP duration.  The MRP burden is proportional to the curves 

of Figure 110, but the MRP varies by cycle depending on the part scheduled for 

replacement and its time to repair distribution. 

 



246 

Figure 110:  Comparison of Policy Maintenance Burden 

 

6.5.5 Rounding the Multiplier 

The ability of an adaptable policy to maintain a MFOPS without degradation over k cycles 

is a testament to the effectiveness to the lifing age approach established as 

𝛼𝑟,𝑡𝑟𝑢𝑒 = 
𝑡𝑙𝑎

𝑡𝑚𝑓
 ( 91 ) 

Some loss of MFOPS occurs as the system may only replace components in whole number 

multiples of tmf.  The components with a greater difference between αr and αr,true contribute 

more to the failure, because they are further away from their optimal.  The policy may 

round to the nearest whole number of αr,true, round up, or round down.  Rounding down is 

more conservative in that it reduces risk (and MFOPS) through slightly more preventive 

replacements.  Rounding up reduces the maintenance burden but may cause a significant 

decrease in MPS if the αr,true is closer to the lower whole number (i.e., 2.2 is worse than 2.8 

if rounding up to 3). 
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6.5.6 Potential Problems Solved Using the Framework 

6.5.6.1 MSG-3 

This chapter and the previous chapter presented policies to improve MFOPS and minimize 

downtime.  Additionally, the chapter examined how the framework enables adaptable 

policies to keep pace with changing operational tempo.  Another potential policy for use 

with the framework is the application of Maintenance Steering Group (MSG-3).  MSG-3 

is “a rigorous, structured process that identifies optimal scheduled inspection tasks and 

intervals for aircraft maintenance” [67].  The purpose of MSG-3 is to control maintenance 

costs and maximize efficiency [67]. 

 The sustainment policy utilizes a top-down approach to optimize maintenance tasks 

and scheduled inspections.  Much like the policy to control MFOPS, MSG-3 permits the 

use of an aggressive lifing policy to gain sufficient reliability and safety.  Unlike the 

MFOPS policies, MSG-3 has been focused on lowering cost.  MSG-3 currently does not 

protect the MFOP, but it does provide for combing inspections to scheduled intervals that 

reduce downtime.  The interval nature makes MSG-3 a candidate for use in a MFOP 

strategy with the correct synchronization established by the framework’s multiplier 

approach. 

 One of the attractive features of MSG-3 is that it seeks the minimization of preventive 

replacement times (Tp) and maintenance burden through the proper sequencing of 

replacements by zones.  Examples include items that are co-located behind the same access 

panels or require the same removal of parts to service.  An everyday example of zonal 

analysis occurs in a car’s timing belt replacement.  Mechanics often recommended 

replacing the vehicle’s water pump during the replacement of the timing belt.  The removal 
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of the timing belt is a time-consuming maintenance task and must be done to prior to 

removing the water pump.  Since the labor costs to remove the belt is significantly higher 

than the pump’s replacement, many mechanics suggest replacing both items together.  This 

saves labor and reduces overall costs.  Reduction in the overall replacement time reduces 

downtime and O&S costs. 

 The U.S. Air Force is employing MSG-3 to maintain its aging C-5 fleet.  Major depot 

renewals and minor scheduled inspections are done over an eight-year policy life [68].  The 

use of MSG-3 and zonal analysis reduced the Westover Minor ISO inspection from an 

average of 40 days to 18 days [68]. 

 Applying MSG-3 to a MFOP strategy takes Tp from the deterministic value used by 

renewal theory to a stochastic Time to Repair (TTR) distribution.  Zonal analysis adds a 

dependency between component TTR distributions.  The added complexity of dependency 

eliminates analytical methods for all but the simplest systems.  For complex systems like 

rotorcraft, Petri nets or DES provide a suitable means to handle dependency.  Application 

MSG-3 to protect the MFOP and reduce costs is potential new research using the 

framework’s multipliers. 

6.5.6.2 Heterogenous Fleet 

The concept of an adaptable maintenance strategy has tremendous potential for a fleet 

comprised of a mix of models, variants, and age.  Since each variant has different upgrades 

and components, the maintenance needs differ greatly.  A maintainer may force one 

maintenance policy across all aircraft at the risk of unnecessary or inappropriate 

procedures.  A maintainer must manage each variant differently to avoid risk; therefore, 

maintenance management of heterogeneous fleet is a time-intensive, expensive effort. 
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 The U.S. Marines V-22 Osprey fleet is an example of a heterogeneous fleet.  The MV-

22 experienced frequent upgrades since its fielding began in 1999.  Seventeen years of war 

in Afghanistan and Iraq disrupted the complete upgrading of the fleet.  Upgrades have 

occurred at such frequent, disparate intervals, that almost no two MV-22’s are alike today 

[11].  The MV-22 is an excellent candidate for an adaptable policy tailored to each aircraft. 

 An adaptable policy tailoring maintenance by airframe promises to limit the risk and 

maximize MFOPS or availability.  The notion of a “digital twin” is a fully representative 

model managed electronically that replicates reliability performance of the aircraft.  

Automated management of the “digital twin” results in optimization of the aircraft’s actual 

performance.  With an adaptable policy tailored to the digital twin, each aircraft achieves 

its best MFOPS.  Younger aircraft no longer undergo excessive scheduled maintenance 

and aging aircraft experience preventive renewals to maintain reliability.  The framework 

has the demonstrated ability to produce adaptable policies to optimize policy goals by 

considering upgrade levels, component age, and operational tempo. 
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7 CONCLUSIONS 

After summarizing his formative MFOP methodology, Relf remarked, “There are no 

broadbrush design rules available at this stage” [24].  The research of this dissertation 

presented some of the tools and approaches necessary to the initiation of a MFOP strategy.   

After Relf’s seminal paper, Long et al. suggested a MFOP methodology drives change in 

“design, operation, and maintenance planning” [45].  This dissertation argued how to 

measure a MFOP design.  It offered a framework to construct maintenance policies that 

favor availability or MFOP success.  Finally, it demonstrated the value of a policy that 

adapts to a changing operational need. 

7.1 Measuring MFOP 

The first problem addressed the designers need to measure a MFOP rotorcraft in an 

effective manner.  Figure 111 summarizes Problem 1.  The work reasoned the “when” is 

as important as “how often” of failure analysis in a MFOP strategy.  Historical metrics, 

however, prove ineffective in accounting for the time-history of failure.  A discrete event 

simulation estimated the MFOP and reliability of a repairable aircraft flying phased 

missions.  Its verification was successful and the approximation of a complex system was 

accurate with sufficient iterations.  Failure Cause Identification provided the history of 

failure that is essential to quantifying which components most limit a MFOP.  It was very 

useful in diagnosing a system’s limitations during the development of policies constructed 

with the framework.  Finally, the research of Problem 1 postulated the greatest contributor 

to a MRP is the component with the greatest expected downtime.  A practical exercise 
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constructed a representative utility helicopter model that supported calculation of the 

expected downtime.  The exercise partially answered the research question because of the 

author’s inability to dedicate sufficient manpower to the data analysis beyond the top, 

hierarchical level of function groups.  More manpower would be necessary to achieve a 

sufficiently detailed model down to the second or third working code level. 

 

Figure 111:  Summary of Problem 1 with Final Status 

 

 A primary conclusion of the thesis is tracking the history of failure for a system reveals 

which components limit the system’s MFOP.  The discrete event simulation provided an 

event history that fed Failure Cause Identification’s quantification of the weakest links.  

The area metric captured a components contribution to system failure along its history.  

The failure cause metric weighed early failures worse than later failures—a trait that is 

necessary to quantify the “when” of a proper MFOP approach. 
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 The greatest assumption (and challenge) to the accurate modeling of MFOP is 

component failure distributions.  Relf [24] named this as “failure life characteristics” and 

stressed it as a necessary supporting action to a MFOP strategy.  Andrews reinforced the 

need when he wrote, “lack of good quality data remains a serious challenge and at times 

an obstacle to credible quantitative analysis” [26].  All the surveyed modeling techniques 

and models of renewal theory are dependent upon the three distributions:  time to failure, 

time to repair, and cost of repair.  The environmental effects on component reliability were 

absent in this work for simplification yet remains a necessary part of failure life 

characteristics.  The importance and challenges serve to highlight how defining failure life 

characteristics must be a concerted effort in FVL if the DoD wishes to achieve a MFOP 

strategy. 

 A MFOP strategy is an exercise in knowledge—the operator and maintainer may only 

avoid failure if the failure is known to be imminent.  Preventing disruptions through 

sophisticated health monitoring systems, well sequenced preventive maintenance policies, 

and on-time logistics require knowledge of the impending failure.  It is essential that 

designers, OEMs and vendors, and acquisition organizations understand the criticality of 

collecting and distributing accurate failure and repair data to support a fully developed 

MFOP methodology. 

7.2 Maximize Availability 

The second problem addressed the need for operators to manage a maintenance policy that 

best met the operational demands of availability and dependability.  A key desire of 

operational commanders is to maximize availability and to minimize downtime.  Solving 
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Problem 2 informs on how to minimize the downtime while balancing the desire for a long 

MFOP against the desire for a short MRP.  A MFOP maintenance policy synchronized the 

preventive replacement intervals to the MRP.  This applied a constraint on the optimization 

of downtime that necessitated an adaptation of classical renewal theory. 

 

Figure 112:  Summary of Problem 2 with Final Status 

 

 Renewal theory’s Optimal Preventive Replacement Interval model is appropriate for a 

MFOP strategy when the policy makes preventive replacements at αr multiples of the 

replacement interval.  Unfortunately, the least replacement interval of all components 

places a limit on the MFOP duration.  The constraint takes components and the system 

away from their unconstrained optimum.  A revised renewal theory accommodated this 

constraint.  The thesis presented a revised model for use in a framework that: (1) accounted 

for failure and preventive replacement times that are of the same order of magnitude as the 

replacement interval; (2) support a multi-part system of unlike components; (3) 
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synchronized component replacement intervals without disrupting the MFOP; and (4) 

manage a system constrained by reliability or MFOPS requirements. 

 The framework to design a maintenance policy provided the means to apply the revised 

renewal theory on a MFOP system.  The framework defined the system, built a 

maintenance policy, and evaluated the maintenance policy as shown on the next page.  The 

framework assumed the operational unit has a fielded aircraft.  In this way, the framework 

provided an adaptability to a maintenance strategy that can accommodate different policies 

to meet changing operational needs.  
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Figure 113:  Framework to Enable MFOP Policy 
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 Application of the modified renewal theory through the framework demonstrated 

preventively replacing components at the optimal uniform replacement interval is not the 

global downtime minimum.  It was shown the global minimum exists using unconstrained, 

non-uniform replacement intervals.  This directly answered Hypothesis 2.  Unfortunately, 

non-uniform replacement intervals lead to disruptive maintenance during the MFOP.  This 

was the state of on-condition maintenance for many years and is a condition in which the 

MFOP paradigm intends to eliminate.  A test on a simple three-part system showed there 

exists a multiplier-constrained solution that minimizes downtime and protects the MFOP; 

however, it may result in an undesirable reliability. 

 Aligning replacement intervals at whole number multiples of the MFOP duration 

makes the downtime response discrete.  The discrete nature made finding the constrained, 

preventive replacements difficult with traditional gradient based optimization methods.  A 

sensitivity study served as an alternate means to understanding the problem and achieve 

partial success.  The application of a constrained, optimization technique to fit the discrete 

nature of the problem is remains as the final element to achieve full success. 

 The sensitivity study uncovered the most influential factors in a policy that minimizes 

downtime: 

a. A component’s earliest downtime minimum is always its global minimum.  

Preventively replacing a component at the earliest minimum yields the least 

downtime contribution and higher reliability. 

b. Components with a time to failure distribution with a low coefficient of variation 

are less likely candidates for extension beyond their optimal replacement interval.  

These components, however, have a more distinct amplitude near their optimal 
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replacement time.  The larger amplitude creates more distinct local minima and 

maxima.  Consequently, they provide a greater opportunity to minimize downtime 

than high variance distributions.  This suggests that, in a highly complex design 

with many parts and a large dimensionality, the low variance items dominate the 

sensitivity of downtime. 

c. Increasing the MFOP duration is more challenging than increasing a multiplier 

because the MFOP duration affects the replacement interval of all components. 

d. A larger replacement interval opposes reliability. 

e. Failure and preventive replacement times weight the influence of a component on 

downtime.   

7.3 Control MFOPS 

A MFOP strategy seeks a dependable aircraft that operates its mission without failure and 

an assurance of disruption free operations for extended period.  MFOPS measures that 

assurance against failure.  Correct synchronization of component renewal (either repair or 

replacement) must occur outside the MFOP duration and at the next MRP.  An effective 

maintenance policy must manage the need for MFOPS within the constraints of discrete 

replacement intervals.  The fourth research question sought a suitable method to maintain 

the MFOPS for a given duration or over k cycles.  The third hypothesis answered that an 

aggressive lifing policy may successful manage the MFOPS above a given requirement. 
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Figure 112:  Summary of Problem 2 with Final Status (reshown) 
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 Two experiments tested if the framework provided a sufficient maintenance policy.  

The first experiment considered how an aggressive policy may improve a system’s MFOPS 

over k cycles.  The next experiment investigated if an aggressive policy may help an 

operational commander minimize risk when extending a MFOP duration.  Both are equally 

valid questions an operational commander may ask when planning a deployment. 

 The first experiment tested the framework’s attempt at a more aggressive lifing policy 

to improve MFOPS over k cycles.  Random architectures and part distributions created ten 

samples.  The aggressive lifing policy selectively lowered the multiplier of the worst three 

Failure Cause components.  A t-test rejected the null hypothesis that the standard and 

aggressive policy have the same mean MFOPS and minimum MFOPS (termed Minimum 

Policy Success).  The test was in favor of the alternate hypothesis—the aggressive policy 

had a higher mean MFOPS and a higher MPS in the sample. 

 The second experiment investigated if an aggressive lifing policy would recover the 

lost MFOPS after an extension of the MFOP duration.  The simulation measured the 

MFOPS and MPS of a standard policy at a baseline MFOP.  The experiment then extended 

the MFOP duration by an average of 40%.  The simulation collected the MFOPS and MPS 

with the aggressive lifing policy.  A second set of t-tests rejected the same null hypothesis 

in favor of an aggressive policy that improved MFOPS. 

 The phenomenon of sharp drops in MFOPS followed by an equally sharp recovery, 

named MFOPS hunting, may occur during the design of a policy.  The hunting occurred at 

regular intervals between multiples of failure cause contributors.  The experiments 

discovered hunting was the major cause of a low MPS early in the maintenance policy’s 

sequence.  The experiment also showed the mean MFOPS may remain high despite select 
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cycles having a significantly low MFOPS.  Understanding the effect of hunting is crucial 

in designing a maintenance policy that requires consistent, dependable performance 

through k cycles.  A plot of MFOPS by cycle or a review of the αr multipliers diagnosed 

the hunting between components.  Shifting of replacement intervals and lowering of 

multiplies increased the common factors and reduced the effect of hunting.   

 The experiments observed a finite limit on the MFOP duration in a MFOP strategy.  A 

policy may not replace components more than every MRP without disrupting the MFOP.  

Should the ideal multiplier, αr,true, be less than one, the MFOP duration extended the 

component beyond its lifing age.  Low variance components with a high Failure Cause 

metric will affect a precipitous drop in MPS when the duration is beyond the lifing age.  

Such a component is the system’s critical part.  Critical parts are ideal candidates for one 

of Relf’s MFOP Options. 

 An investigation demonstrated a policy with fixed αr during a MFOP extension will 

incur a decay in MFOPS and MPS.  There does exist trade-space between the MFOP 

duration and its success; however, when the system reaches the MFOP limit, the MFOPS 

drops sharply.  An adaptable policy that manages the αr in accordance with the proposed 

framework corroborated the notion that an operational commander has some control over 

the MFOPS after changing the MFOP duration.  A sample case showed the framework 

leads to policies robust enough to maintain MFOPS despite a 100% increase in the MFOP 

duration.  Maintaining MFOPS at a greater MFOP duration created a trade space between 

MFOP duration and the number of preventive replacements per cycle per hour.  The 

adaptable policy had both a better MFOPS and a greater maintenance burden than a fixed 

policy. 
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 The success of the experiments and sample studies substantiated the claim that a 

maintainer does have some control over the MFOPS of a system through a lifing policy.  

This provides one means to fulfill the MFOP Knowledge Gap 4:  Account for varying 

operational tempo in a future sustainment strategy.  The policy, however aggressive, has 

a limit to its control.  As the MFOP duration approaches its limit, the real number of 

replacements per MFOP cycle increases proportionally.  A policy may have an earlier 

practical limit that depends on the operator’s tolerance for the maintenance burden in the 

MRP and associated O&S costs. 

7.4 Research Contributions 

This thesis addressed three of the five knowledge gaps identified by the U.S. Army’s 

Aviation Development Directorate. 

 

Table 3:  MFOP Knowledge Gaps (reshown) 

 

1. Identify metrics that measure desired sustainment and readiness 

outcomes 

2. Find tools and methodologies needed to support the selected 

sustainment approach 

3. Create sustainment approaches for FVL and near-future to mid-future 

to far-future (ZMA) technologies 

4. Account for varying operational tempo in a future sustainment 

strategy 

5. Realize savings in O&S and other life cycle cost components 
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 The work contended operational metrics such as MFOP, MFOPS, MRP, and MPS 

measure sustainment and readiness in a MFOP strategy.  It offered tools to support a MFOP 

strategy.  The validation of a discrete event simulation substantiated the first hypothesis’s 

objective to model a MFOP aircraft flying phased missions.  Failure Cause Identification 

was refined to support a MFOP context and proved robust enough to handle a variety of 

maintenance policies.  A framework to define, build, and evaluate MFOP maintenance 

policies enabled the construction of policies that maximized availability and controlled 

MFOPS.  The framework provided an adaptable policy that managed MFOPS over a 

varying operational tempo.  It is the author’s desire that the thesis provides some measure 

of reduction in the knowledge gaps. 

 In summary, the thesis’ major contributions to academia and the sustainment field 

consist of: 

1. The reinforcement of discrete event simulation as a suitable means to model a 

MFOP aircraft using operational metrics. 

2. The maturation of Failure Cause Identification as a primary tool in diagnosing 

MFOP system failure.  It also provided an area-based metric and time weighted 

metric to quantify which components most limit a MFOP. 

3. The introduction of a modified, optimal replacement model that minimized 

downtime while preserving the MFOP.  The research framed the optimization 

problem’s as a synchronization of preventive replacements to the maintenance 

recovery periods. 

4. The presentation of a testable framework that constructed policies to minimize 

downtime or control MFOP probability of success.  The experiments proved the 
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ability of an aggressive lifing policy to improve a system’s MFOPS over k cycles 

and that of an adaptable policy to maintain MFOPS after an extension to MFOP. 

5. The identification of the information requirements necessary for the modeling of a 

MFOP system as time to failure, time to repair, and cost of repair. 
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8 FUTURE WORK 

Application of an optimization technique to minimize downtime using the modified 

optimal replacement interval model remains a challenge.  Classical gradient based methods 

are ill-equipped to cope with the discrete nature of synchronized replacements at MRPs.  

The work of Hypothesis 2 framed the problem and investigated the interaction of the 

response to MFOP duration, replacement multipliers, and time of replacement.  

Successfully applying a technique to find the MFOPS-constrained, optimal solution would 

be a significant benefit.  Secondly, there is potential to further revise the model’s downtime.  

Not all renewals will be full in a MFOP strategy.  A model should accommodate partial 

repairs that renew a component enough to reach maintain success in the next MFOP.   A 

robust model that adds a renewal factor would provide an expected number of failures 

based upon partial repairs or installment of partially worn parts.  Both advancements add 

techniques needed to fill the second knowledge gap and support MFOP-ready, sustainment 

approaches. 

 This dissertation examined dependability at the individual aircraft level and sets the 

conditions for examination of a broader fleetwide problem.  Under the statistical metrics 

and older paradigm of maintenance, maintenance plans considered all periods of time 

equal; however, to a MFOP planner, all periods of time are not equal.  A MFOP strategy 

prefers later failures over earlier failures.  There is future work to study the application of 

a MFOP strategy where periods of time are not equal across all domains of DOTMLPF-P. 

 The concept of an adaptable maintenance policy provides the operational commander 

with a tremendous advantage when coping with change in operational tempo.  The 

presented framework builds policies to manage the change.  There exists room for 
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development of a policy that adapts to events occurring inside the MFOP cycle.  The ideal 

policy plans the next MRP based upon the current wear and usage in the current MFOP.  A 

smart aircraft continuously updates its plan for the next MRP using an awareness of its 

health and expected remaining life of components.  It taps into the MFOP Options of 

prognostics/diagnostics and failure life characteristics to update the maintainer after each 

flight of the real time MFOPS.  The vision of an agile FVL family of systems becomes a 

reality with the advent of a smart aircraft and a fully adaptable maintenance policy. 

 The fifth MFOP knowledge gap:  Realize savings in O&S and other life cycle cost 

components requires a methodology to realize the MFOP paradigm.  DoD has documented 

the need for cost-effective studies in various directives ( [53], [54], [20] ) and handbooks ( 

[69] [19]).  The Air Force offers Cost Capability Analysis as a solution to show the balance 

between system effectiveness and affordability.  Published work has not fully explored the 

application of Cost Capability Analysis in a MFOP context. 

 The goal of acquisition process is to maximize the value within given constraints.  Cost 

Capability Analysis captures a technology impact with a plot like Figure 114.  Providing 

the Cost Capability Curve graphically communicates the value of a design and its balance 

between effectiveness against life cycle cost. 

 



266 

Figure 114:  Example of a Cost Capability Plot 

 

 The key to communicating the benefit of a technology is to show the movement from 

a baseline design to a point closer to the Pareto Frontier.  Quantification of uncertainty for 

risk analysis is also important.  Bands on the plot depict the probability of achieving an 

outcome.  They advise the decision maker on the risk associated with variability in system 

effectiveness and life cycle cost modeling. 

 The thesis provided designers and operators tools and a framework to understand a 

MFOP design’s dependability (MFOP) and maintainability (MRP).  The first problem 

argued for a discrete event simulation and Failure Cause Identification to measure 

operational metrics like MFOP and its probability of success.  The second problem offered 

a testable framework to generate maintenance policies that adapt to change demands in 

availability and MFOP duration.  Future work should expand the measurement of system 

effectiveness by incorporating performance and cost modeling.  A methodology to 

communicate the balance between capability, availability, dependability, and affordability 

meets the final MFOP knowledge gap. 
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APPENDIX A:  EXPERIMENT DATA 

Table 44:  Experiment Parts Pool 

No. Distribution Type Parameter 1 

 

Parameter 2 Mean 

[h] 

Starting Age, 

tage,0 [h] 

 

1 Weibull 676.1 8.20 637.5 206.3 

2 Weibull 212.2 5.44 195.7 24.8 

3 Normal 356.2 57.21 356.2 108.6 

4 Weibull 806.3 6.32 750.1 25.8 

5 Normal 322.3 88.58 322.3 12.9 

      

6 Weibull 534.2 6.47 497.7 92.1 

7 Normal 830.1 115.76 830.1 273.5 

8 Exponential 1.407e-4  7,109.5 42.9 

9 Normal 150.1 36.97 150.1 41.9 

10 Weibull 93.4 3.10 83.6 14.3 

      

11 Weibull 432.6 8.60 408.8 122.6 

12 Weibull 88.1 9.72 83.7 15.1 

13 Weibull 746.5 8.38 704.6 33.1 

14 Exponential 1.160e-4  8,621.6 772.8 

15 Normal 306.6 82.61 306.6 82.2 

      

16 Weibull 642.8 6.04 596.5 61.8 

17 Weibull 147.0 7.49 138.0 21.6 

18 Normal 909.1 85.60 909.1 144.4 

19 Weibull 322.9 8.72 305.3 59.5 

20 Normal 238.9 63.62 238.9 59.8 

      

21 Weibull 528.5 5.42 487.5 18.1 

22 Normal 270.9 17.66 270.9 17.7 

23 Weibull 792.4 4.44 722.5 151.4 

24 Normal 165.9 37.91 165.9 8.0 

25 Normal 134.2 29.85 134.2 7.1 

      

26 Weibull 471.0 2.06 417.2 131.0 

27 Exponential 5.943e-5  16,825.3 4,977.2 

28 Normal 395.5 28.15 395.5 33.7 

29 Normal 750.3 159.50 750.3 170.3 

30 

 

Weibull 917.0 3.93 830.3 19.1 
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The exponential parameter is λ [failures/h].  The Weibull parameters are η [h] and β.  The 

normal parameters are μ [h] and σ [h]. 

 

 The part assignment, MFOP duration, and multipliers for each architecture is shown in 

Table 45, Table 46, and Table 47.  Parts are slotted into A to AA in sequence.  The standard 

and aggressive policy αr multipliers are also in sequence.  For example, the standard policy 

multiplier for Parts 10 and 14 of the first sample are 2 and 10.  The MFOP duration of 

Table 47 shows the original and extended for the second experiment of Hypothesis 3.  As 

part of the aggressive policy, up to three components had their multiplier lowered by one.  

The selected improvement is listed in the last column. 

 

Table 45:  Architecture 1 Test Data 

Sample Parts MFOP 

tmf 

Standard 

Policy 

Multipliers 

 

Aggressive 

Policy 

Multipliers 

Selected 

Improve-

ment 

1 [10;14;28;17;18;11;

4;21;6;20] 

20 [2;10;17;5;37; 

14;23;14;15;6] 

[1;10;16;5;37; 

14;23;14;15;5] 

10,28,20 

2 [9;5;25;8;13;24;4;4

;12;12] 

9 [9;17;9;18;53; 

10;50;50;7;7] 

[9;17;9;18;53; 

10;50;50;6;5] 

11,22,19 

3 [14;7;22;12;26;5;4;

19;13;11] 

25 [8;24;10;3;3;6; 

18;9;19;12] 

[8;24;9;3;3;6; 

18;8;19;11] 

11,23,19 

4 [3;13;29;17;1;27;6;

15;24;4] 

20 [13;24;22;5;22;

19;15;8;5;23] 

[11;24;22;5;22;

19;15;8;5;23] 

3,3 

5 [17;9;15;17;19;1;14

;14;15;24] 

16 [6;5;9;6;14;27; 

13;13;9;6] 

[5;4;9;6;14;27;

13;13;9;6] 

9,17 
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Table 46:  Architecture 2 Test Data 

Sample Parts MFOP 

tmf 

Standard 

Policy 

Multipliers 

 

Aggressive 

Policy 

Multipliers 

Selected 

Improve-

ment 

6 [20;11;13;23;29;10;

27;9;19;17] 

25 [5;12;19;14;18;2;

16;4;9;4] 

[5;12;19;14;18;1

;16;4;9;4] 

10 

7 [40;19;6;10;30;23;3

0;29;13;20] 

78 [8;4;1;2;6;5;6;6;3

;4] 

[8;4;1;2;6;3;6;6;

3;4] 

23,23 

8 [30;24;10;21;30;21;

17;7;5;21] 

65 [6;2;1;5;6;5;2;10;

3;5] 

[6;2;1;5;6;4;2;8;

3;5] 

7,7,21 

9 [5;5;4;7;17;27;10;9

;20;7] 

40 [4;4;12;15;3;10; 

1;2;3;15] 

[4;4;12;15;2;10;

1;2;3;15] 

17 

10 [13;4;28;16;21;19;1

5;28;16;18] 

41 [12;11;9;5;7;6;4;

8;4;18] 

[12;11;9;5;6;4;4;

8;4;18] 

19,19,21 

      

 

 

 

Table 47:  Architecture 3 Test Data 

Sample Parts MFOP 

tmf 

Standard 

Policy 

Multipliers 

 

Aggressive 

Policy 

Multipliers 

Selected 

Improve-

ment 

11 [16;20;9;25;14;30; 

24;6;23;7] 

70→100 [5;2;2;2;3;5;2;5;5

;9] 

[5;2;2;2;3;4;2;3;

5;9] 

6,6,30 

12 [2;28;20;11;27;26; 

21;16;15;27] 

50→80 [3;7;3;6;8;2;6;7;3

;8] 

[3;7;3;5;8;1;5;7;

3;8] 

26,11,21 

13 [15;9;6;29;10;2;19;

8;23;30] 

30→38 [5;3;10;15;1;4;7;

6;12;12] 

[5;3;10;15;1;2;7;

6;12;12] 

2,2 

14 [16;22;7;6;11;20;17

;3;8;30] 

30→44 [12;8;20;10;6;4;3

;9;6;12] 

[12;8;20;10;5;3;

3;8;6;12] 

3,20,11 

15 [23;25;8;22;14;23; 

16;2;11;7] 

41→57 [9;2;4;6;5;9;9;3;7

;15] 

[9;2;4;6;5;7;9;2;

7;15] 

2,23,23 

      

 

 The fault trees for the architectures are in the three figures below.  These are examples 

showing the slotted components for a sample of each fault tree.  The part slotting of the 

other samples follows the listing in the tables above Table. 
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Figure 101:  Fault Tree of Architecture 1, Sample  

 

 

Figure 115:  Fault Tree of Architecture 2, Sample 6 
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Figure 116:  Fault Tree of Architecture 3, Sample 12 
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APPENDIX B:  COPYRIGHT PERMISSIONS 

The below table summarizes the figures included in this thesis from other’s scholarly work.  

This author obtained permission from the copyright holder for each of the figures.  

Documentation of copyright permissions are provided in remaining pages of Appendix B. 

 

Table 48:  Copyright Permissions Summary 

Thesis Figure 

or Table 

 

Ref 

No. 

Source Figure 

or Table 

Copyright Holder 

via Permission Source 

 

Figure 22 [3] Figure 2.27 Taylor and Francis 

via Copyright Clearance Center 

Figure 9 

Figure 18 

[24] Figure 3 

Figure 1 

John Wiley and Sons 

via Copyright Clearance Center 

Figure 38 

Table 14 

Figure 39 

Figure 49 

[27] Figure 9 

Table 1 

Figure 15 

Figure 9 

Elsevier 

via Copyright Clearance Center 

Figure 29 [28] Figure 2 AHS International 

via Email from Technical Programs 

Director, Ms. Gibbs 

Figure 8 

Figure 24 

Figure 19 

[21] Figure 2 

Figure 4 

Figure 11 

South African Journal of Industrial 

Engineering 

via Email from Editor, Prof Schutte 

Figure 8 

Figure 15 

Figure 16 

[22] Figure 1 

Figure 10 

Figure 11 

Trindade and Nathan 

via Email with author 

Figure 20 [43] Figure 7 Elsevier 

via Rights Link of Copyright Clearance 

Center 

Figure 21 [45] Figure 1 Sage Publishing 

via Rights Link of Copyright Clearance 

Center 
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