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SUMMARY

A pulse height tally response expansion (PHRE) method is developed for detec-

tors. By expanding the incident flux at the detector window/surface, a set of response

functions is constructed via Monte Carlo estimators for pulse height tallies. B-spline

functions are selected to perform the expansion of the response functions as well as

for the expansion of the incident flux in photon energy. The method is verified for

several incident flux spectra on a CsI(Na) detector. Results are compared to the so-

lutions generated using direct Monte Carlo calculations. It is found that the method

is several orders faster than MCNP5 while maintaining paralleled accuracy.

viii



CHAPTER I

INTRODUCTION

Interrogation of cargo containers falls within the category of large radiation de-

tector problems in which numerical radiation transport calculations are needed to

identify clandestine materials. Cargo containers may carry numerous amounts and

types of cargos that, in turn, may be used to shield clandestine nuclear materials.

For each of the various cargos, a new and distinct Monte Carlo simulation would be

required. Due to the large number of required simulations in combination with the

size of the cargo containers and the level of attenuation within the cargo, direct use

of Monte Carlo methods is not a viable means for modeling these systems.

Current research in interrogation problems has spurred the use of hybrid meth-

ods to accelerate simulations for these types of problems. Hybrid methods allow

the implementation of multiple approaches within one problem by breaking down a

problem into various facets. Each facet is then paired with the best-suited method

and modeled accordingly. For example, interrogation problems can be separated into

two components: the field region (e.g., cargo container), and the detector. The field

region and detector can then be modeled respectively using deterministic and Monte

Carlo methods [1].

Though the hybrid method provides faster solutions than previous methods, a

more efficient method would involve further reduction of the need for Monte Carlo

methods. For example, in cargo interrogation problems where the cargo container

changes for nearly every problem, the detector can remain the same. Having to

perform Monte Carlo calculations for the same detector for each cargo scenario is

computationally inefficient. In this study, a method is introduced that accelerates the
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computation of detector responses for multiple cargo scenarios in which the detector

remains the same. The new method utilizes response functions generated using Monte

Carlo methods. These functions are dependent only on the geometry and composition

of the detector and, therefore, can be precomputed as the method’s library. Once the

incident flux is known, this library is used to construct the detector’s response (pulse

height tally) with accuracy parallel to Monte Carlo methods but significantly more

efficiently.

A brief background and the application of the new method are given in chapter

II. The new method is described in chapter III. The method’s accuracy and efficiency

are presented in the results (chapter IV). Finally, conclusions, recommendations, and

future work are found in chapter V.
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CHAPTER II

BACKGROUND

Monte Carlo methods can simulate a detector’s response through pulse height tal-

lies. Pulse height tallies provide the total energy deposited by each particle and the

respective progeny within the detector. To obtain the energy deposition of each parti-

cle, detailed information on the history of each individual particle within the detector

is needed. For this reason, simulation of detector responses has been, for the most

part, limited to Monte Carlo methods. Only recently a deterministic method has been

introduced to simulate detector responses. However, it has only been demonstrated

for one-dimensional cases [2].

When attempting to compute detector responses for large detector problems such

as the interrogation of cargo containers, direct Monte Carlo calculations of the pulse

height tally can require large computation times. Consequently, direct Monte Carlo

calculations are not a practical means to compute such problems. Hybrid methods

have been introduced recently to reduce the use of Monte Carlo calculations in an

effort to accelerate the computations of interrogation type problems [1]. Where the

detector is modeled using Monte Carlo methods, the typically faster deterministic

methods are used to model the remainder of the problem or the field region (e.g.,

cargo container). Unlike the detector, modeling of the field region does not require the

detailed history of the individual particles, thus a deterministic method can be applied

[1]. To compute the pulse height tally using a hybrid method, the deterministic

method must first be used to compute the angular flux of the field region on the

boundaries of the detector. Then, these angular fluxes are inputted into the Monte

Carlo model of the detector that, in turn, computes the pulse height tally.
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Commonly for interrogation problems, Monte Carlo simulations are repeatedly

performed in the detector with various incident angular fluxes resulting from the

changes within the field region. Therefore, the only change in these simulations is

the detector boundary conditions (i.e., incident flux). In these circumstances, the

geometry and composition of the detector remain the same. Within this study, the

lack of change in the geometry and composition of the detector is taken advantage of

in order to improve the efficiency of the Monte Carlo calculations of the detector re-

sponse. The basis for the new method is the incident flux response expansion method

(IFRE) developed for reactor core transport problems by Mosher and Rahnema [3].

The IFRE method approximates the solution (angular flux) of the neutron transport

equation for a mesh by equating it to a set of truncated expansions. These expansions

are composed of a set of response functions and the corresponding coefficients that

depend on the mesh boundary incident fluxes. The response functions are solutions

to the transport equation in each unique mesh with boundary conditions defined as a

set of known (pre-selected) orthogonal basis functions (e.g., Legendre polynomials).

The response functions depend only on the geometry and composition of the mesh

(e.g., fuel assembly type) and therefore can be precomputed as the library for the

method. Adapting the IFRE method to detectors and using Monte Carlo simulations

to generate the detector response functions, pulse height tally calculations for detec-

tors can then be computed significantly more efficiently, as described in the following

sections.
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CHAPTER III

METHOD

This chapter describes the pulse height tally response expansion (PHRE) method.

The general form of the method is developed from the Monte Carlo estimators for

pulse height tallies via expansion of the incident flux. B-splines are introduced as the

selected choice of bases for the expansions. Finally, the implementation of the energy

dependent method utilizing B-splines is discussed.

3.1 Monte Carlo Estimators

Photon interactions within a detector bring about the release of electrons or

photons resulting from pair production, Compton scatter, photoelectric effects, and

electron-positron annihilation. For the Monte Carlo estimator of a pulse height tally,

these interactions can be bundled into a function, denoted by g which represents the

probability that a particle and its progeny will deposit a certain amount of energy

in the detector. On a seven-dimensional phase space represented by space (~r), angle

(Ω̂), energy (E), and time (t) with γ = (~r, Ω̂, E, t), the function g for a given particle

is given by g(ε, γ) where ε denotes the energy deposited by a particle and its progeny.

The function g(ε, γ) represents the probability that a particle at location ~r, angle

Ω̂, energy E, and time t will deposit ε in energy within the detector. From g(ε, γ)

and a volumetric uncollided flux, Ψ(γ), the pulse height tally for the detector can be

represented as a function of energy deposition

r(ε) =

∫
Γ

g(ε, γ)Ψ(γ)dγ, (1)

where Γ represents the domain of integration that encompasses the seven-dimensional

phase.
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The integral nature of Monte Carlo estimators prevents direct acquirement of a

continuous function of Equation (1). Instead, a binned estimator is computed. First,

the energy deposition phase space is restricted to the finite interval [a, b] with the

interval represented by N + 1 bins,

a = ε0 < ε1 < ... < εN = b. (2)

Then, integrating the function r(ε) over a given bin, the binned estimator for the

pulse height tally can be represented as,

ri =

∫ εi

εi−1

r(ε)dε, i = 1, 2, ...N. (3)

A simple and common representation of the function r(ε) is a histogram represen-

tation, which assumes r(ε) to be piece-wise constant. The histogram approximation

can be given by

rH(ε) =
N∑
i=1

ri
εi − εi−1

χ[εi−1,εi], (4)

where

χ[εi−1,εi] =


1, εi−1 ≤ ε ≤ εi

0, otherwise

. (5)

3.2 Expansion Method

For a detector of volume V , the volumetric uncollided flux, Ψ(γ), satisfies the

following transport equation,

Ω̂ · OΨ(γ) + σΨ(γ) = 0, ~r ∈ V, (6)

with the boundary condition defined as the flux incident on the detector,

Ψ(γ+) = ϕ(γ+), ~r ∈ ∂V. (7)

The macroscopic cross section, σ, depends on position and energy. The superscript

”+” represents the incoming direction on the surface, ~r ∈ ∂V . The incident flux ϕ is
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assumed to be known. Any change in the incident flux requires the recomputation of

this transport equation. By representing the incident flux as an expansion function,

a set of transport equations can be solved that are independent of the shape of the

incident flux.

Let Fj, where j = 1, 2, ..., represent a complete set of arbitrary expansion (of not

necessarily orthogonal) basis functions on γ+
s , where the subscript ”s” represents one

of the surfaces of the detector. The incident flux on the detector surfaces can be

represented by the following equation,

ϕ(γ+) =
∞∑
j=1

∑
s

αj,sFj(γ
+
s ), (8)

where the set of coefficients αs = {α1,s, α2,s, ..., αj,s, ...} for surface s is computed by

the pseudoinverse [4]

αs = (F ∗F )−1F ∗ϕ(γ+). (9)

Instead of solving the transport equation using the incident flux as the boundary

conditions, it is solved with boundary conditions defined as expansion basis functions.

The transport equation now takes the form

Ω̂ · OHj,s(γ) + σHj,s(γ) = 0, ~r ∈ V, (10)

with the boundary condition

Hj,s(γ
+) = Fj(γ

+
s ), ~r ∈ ∂V. (11)

The volumetric uncollided flux of Equations (6) and (7) can now be represented by

Ψ(γ) =
∞∑
j=1

∑
s

αj,sHj,s(γ). (12)

Replacing the volumetric uncollided flux of Equation (1) with the form provided in

Equation (12), the pulse height tally becomes

r(ε) =
∞∑
j=1

∑
s

αj,sRj,s(ε), (13)
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where

Rj,s(ε) =

∫
Γ

g(ε, γ)Hj,s(γ)∂γ. (14)

The response function R is the pulse height response to an incident photon with a

given phase space distribution defined by the chosen basis functions, F . The response

function Rj,s is directly estimated using a Monte Carlo method with incident flux as

defined by the basis function Fj.

In order to construct an efficient response expansion method for pulse height

tallies, it is necessary to identify a set of expansion bases Fj in Equation (8) to

truncate the incident flux:

ϕ(γ+) ≈
M∑
j=1

∑
s

αj,sFj(γ
+
s ), (15)

so that the pulse height can be approximated as

r(ε) ≈
M∑
j=1

∑
s

αj,sRj,s(ε). (16)

The degree of truncation depends on the how well the expansion basis F approximates

the incident flux. Additionally, a histogram representation of the response expansion

can be approximated in a similar fashion shown in Equations (3-5) by substituting

the pulse height for the response function Rj,s(ε).

The number of calculations for the response functions depends on the number of

expansion functions, M , and S number of detector surfaces with a nonzero incident

flux. For the case of a highly collimated detector, only one surface needs defining.

Thus only M numbers of calculations are required to compute the response functions

for the expansion method.

The IFRE method made use of Legendre polynomials for expanding the incident

flux. In this method, Legendre polynomials are not used in expanding the energy

dependence of the flux and instead a multigroup treatment is used. In general, Leg-

endre polynomials are not a good choice for expanding the energy dependence of the
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flux due to its sharp gradients. It is found that a significantly better choice is B-spline

functions. Attention shall be directed towards the energy variable.

3.3 Incident Flux Approximation

B-splines are chosen as the basis for the incident flux expansion given in Equation

(15). It is noted here that the incident flux is assumed mono-directional and constant

in space and time. The incident flux ϕ(γ+
s ) is written as ϕ(E), where the other phase

space variables are suppressed for clarity. Let the incident flux be defined on the

interval [E0, EL]. The approximation is given by the following,

ϕ(E) ≈ ϕk(E) =
M∑
j=1

αjBj,k(E), E0 ≤ E ≤ EL, 1 ≤ k ≤M, (17)

where αj are the coefficients [obtained using Equation (9)] of the M control points

and Bj,k are the normalized B-spline basis functions of order k. The kth order B-spline

basis functions form a set of degree k − 1 piecewise polynomials (k − 2 continuously

differentiable) with breaks at L+1 points in [E0, EL] where El−1 ≤ El (l = 1, 2, ..., L).

The number of control points, M , is a function of the number of points, L, and the

order of B-splines, k. With k − 2 continuous derivatives on the interval defined by

L+ 1 points, the number of control points M is

M = L+ k − 1. (18)

The B-spline can be defined recursively by the Cox-de Boor recursion formulas [5]:

Bj,1(E) =


1, tj ≤ E ≤ tj+1

0, otherwise

, k = 1, (19)

Bj,k(E) =
E − tj

tj+k−1 − tj
Bj,k−1(E) +

tj+k − E
tj+k − tj+1

Bj+1,k−1(E), 2 ≤ k ≤M. (20)

The elements tj are referred to as knots and make up the knot vector. The knot vector

determines the continuity and differentiability of the B-spline over a given interval
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[6]. The only requirement of a knot vector is that the relation tj ≤ tj+1 must be

satisfied. Thus, a knot can have a multiplicity greater than one. A commonly used

knot vector is the open knot vector which has multiplicity of knot values at the ends

equal to the order k of the B-spline basis [5]. For the case of M control points, the

knot vector can be defined as,

tj =


E0, 1 ≤ j ≤ k

Ej−k, k + 1 ≤ j ≤M

EL, M + 1 ≤ j ≤M + k

. (21)

An example of 1st, 2nd, and 3rd order B-spline basis set is shown in Figure 1 for the

interval [0, 1] with 5 evenly spaced breakpoints.

Figure 1: 1st (top), 2nd (middle) and 3rd (bottom) order B-spline basis on the interval
[0,1] with 5 uniform subintervals.

The following section describes the application of the B-splines in the response

expansion method of section 3.2.

3.4 Implementation of the Method

Initially, a model of a detector of volume V is given in which fluxes are incident on

the detector surfaces, s. From here, the B-spline basis knots and order are selected
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based on whether the fluxes that will be incident on the detector are given as discrete

in energy or continuous in energy. In the case of discrete in energy fluxes where

energies are binned, a 1st order B-spline with knots located at the bin boundaries will

provide an exact solution to the incident flux. For continuous flux cases, orders up to

the 3rd usually suffice and knots are selected based on an understanding of the shape

of the incident flux. For example, more knots are desired in energies where resonance

peaks occur. In the continuous flux cases, the selection of the knots can have a much

greater impact on the accuracy of the approximation than an increase in the B-spline

order.

Once the knots and order of the B-spline are selected, a response function library

is constructed using a modified version of MCNP5. The modifications allow for a

continuous form of the B-spline to be applied as a boundary condition in MCNP5.

Using the B-spline Bj,k(E) as the boundary condition to Equations (10) and (11) for

surface s of the detector, MCNP5 obtains the binned form of the solution to Equation

(14). This is repeated over j = 1, ...,M for each surface s. Since the MCNP5 solutions

of the response functions are in binned form, they are subsequently represented as

histograms.

When constructing the response functions Rj,s(E), it is important to note that

MCNP5 will form a probability density function of the boundary condition prior

to computation. Since the response functions Rj,s(E) are computed separately, this

means the total probability of each of the boundary conditions will be equal to one

even though they only represent a fraction of the total probability. Thus, each re-

sponse function is weighted according to the following equation:

ωi =
tj+k − tj

k(tM+k − tk)
. (22)

Since MCNP5 forms probability density functions of the boundary conditions prior

to computation, the probability density function of a given incident flux is computed.

The incident flux is then approximated as a set of B-splines. The coefficients of

11



the B-spline approximation can be computed by solving a least squares fit utilizing

Equation (9). The linear combination of the products of the incident flux coefficients

and the weighted response functions are computed to obtain the solution to the pulse

height tally. Chapter IV provides some examples utilizing the method.
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CHAPTER IV

RESULTS

For validation of the energy dependent B-spline PHRE method, several flux spec-

tra are employed as incident fluxes on a detector surface/window. To demonstrate

the accuracy and applicability of the method for both deterministic and stochastic

incident fluxes, discrete and continuous in energy incident fluxes are used.

4.1 Method Verification

A simple model is constructed for the purpose of verifying the response expansion

method. The model is a 13.5x13.5x7.62 cm CsI(Na) crystal in which photon fluxes

are incident on one of the 13.5x13.5 cm detector faces. The incident fluxes are energy

dependent, mono-directional (e.g., highly collimated), spatially uniform, time inde-

pendent, and are defined on the interval [0, 20 MeV] as either discrete (multigroup,

see Appendix A for energy grouping), or continuous in energy.

Figure 2: Diagram of the detector with a photon flux incident on one of the 13.5x13.5
cm detector faces. The detector is composed of a CsI(Na) crystal.
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4.1.1 Multigroup Flux Approximations

The multigroup incident fluxes are represented as histograms. From Equation (19),

it can be seen that the first order B-spline approximation is equivalent to histogram

approximations. Thus, first order B-splines with knots located at the bin boundaries

are used in approximating the pulse height tallies for the multigroup fluxes.

The following figures show the two multigroup fluxes used for verification of the

response expansion method. The first represents the flux from a cargo container

homogenously filled with air and the second with third-density water. These two

fluxes are similar to those found in active interrogation scenarios, where deterministic

methods are used to solve for the incident fluxes.

Figure 3: Incident flux from an air cargo
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Figure 4: Incident flux from a third-density water cargo

4.1.2 Continuous Flux Approximations

An analytical form of a U-235 prompt fission gamma spectrum is used for the

continuous flux spectrum. The energy spectrum of the prompt fission gamma rays

for U-235 can be given by the following probability function [7]:

N(E) =


38.13(E − 0.085)e1.648E, 0.085 < E < 0.3MeV

26.8e−2.30E, 0.3 < E < 1.0MeV

8.0e−1.10E, 1.0 < E < 8.0MeV

. (23)

The 1st, 2nd, and 3rd order B-spline curves with knots located at the bin boundaries

(see Appendix A) are used to approximate the spectrum. Figure 5 shows the approx-

imations in comparison to the exact spectrum. The approximations were performed

using the least squares method of Equation (9).
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Figure 5: The 1st , 2nd and 3rd order B-spline approximations of the U-235 prompt
fission gamma distribution compared to the exact solution of the distribution.

To improve the goodness-of-fit, the multiplicity of the knots located at the dis-

continuities 0.3 MeV and 1.00 MeV of Equation (23) are set to one for the 2nd order

approximation and two for the 3rd order approximation. Figure 6 shows the improve-

ments made as a result of the additional knots.
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Figure 6: The 2nd and 3rd order B-spline approximations, with additional knots at
0.3 MeV and 1.0 MeV, of the U-235 prompt fission gamma distribution compared to
the exact solution of the distribution.

For the least squares fits, the 2-norm of the difference between the B-spline ap-

proximations and the exact solution, which corresponds to the Euclidean distance

between the two, is used to determine the goodness-of-fit:(∫
E

|ϕk(E)− ϕ(E)|2
) 1

2

. (24)

Smaller 2-norm values correspond to better fits, where the smallest value is zero

(which is equivalent to an exact fit). Table 1 shows the 2-norms for the approxima-

tions.
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Table 1: 2-Norms of U-235 flux distribution for B-spline approximations

Order 2-Norm

1st 17.52

2nd 12.67

3rd 4.60

2nd(added knots) 1.05

3rd(added knots) 0.25

Approximations beyond 3rd orders provide little improvement to estimate the flux

spectrum.

4.1.3 Pulse Height Tally Solutions

The response functions for the response expansion method are computed using a

modified version of MCNP5. The modifications allow for the B-spline basis functions

to be input as continuous functions. The B-spline bases used to approximate the

multigroup and continuous cases of the incident fluxes are utilized to construct the

response functions over the interval [0, 20 MeV], with 0.2 MeV binning. Coefficients

of the B-spline approximations of the incident fluxes are obtained. The pulse height

tally is then constructed from the linear combination of the coefficients and the re-

sponse functions. The response expansion method’s solutions of the detector pulse

height tally are compared to those directly obtained from MCNP5. The MCNP5

solutions were computed using the incident fluxes as the boundary conditions to the

detector over the same interval and binning used to construct the response func-

tion. Solutions using MCNP5 were well converged, with average relative standard

deviations
[∑N

i=1 σi/
∑N

i=1 r(εi)
]

of 0.1%.

Figure 7 shows the response expansion method and MCNP5 pulse height tally

solutions associated with the incident flux from the air cargo (left plot), with an

error analysis plot that compares the absolute differences of the two methods against

their standard deviations (right plot). As seen by the standard deviations of the
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response expansion method, σRM , and MCNP5’s standard deviations, σMCNP5, the

response expansion method’s results are found to be better converged than that of

MCNP5 with the response expansion method’s average relative standard deviation of

0.03%. Resulting from the better convergence of the response expansion method, the

standard deviation of the absolute differences, σMCNP5−RM , is mainly dominated by

σMCNP5. Comparing σMCNP5−RM to the absolute differences of the two methods, it

can be seen that the differences between the two methods can be mainly attributed

to statistical uncertainty. The same arguments above apply for the pulse height tally

solutions associated with the incident flux from the third-density water cargo shown in

Figure 8. The average relative standard deviation of the response expansion method

for the pulse height tally from the third-density water cargo was also 0.03%.

Figure 7: Comparison of MCNP5’s and the response expansion method’s pulse height
tally associated with the incident flux from the air cargo.
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Figure 8: Comparison of MCNP5’s and the response expansion method’s pulse height
tally associated with the incident flux from the third-density water cargo.

For the case of the 1st order B-spline approximation of the U-235 prompt fis-

sion gamma distribution, the absolute differences of the response expansion method

and MCNP5 solutions were roughly an order of magnitude higher than σMCNP5−RM ,

as can be seen in Figure 9. The difference between the absolute difference and

σMCNP5−RM is attributed to the differences between the approximated and exact in-

cident flux. Again, as in the multigroup flux cases, the σMCNP5−RM is dominated by

σMCNP5, more so than the multigroup flux cases as the average relative standard de-

viation of the response expansion method using the 1st order B-spline approximation

is 0.004%. The remainder of the approximations (2nd and 3rd with and without added

knots) of the U-235 example had average relative standard deviations of 0.005%.
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Figure 9: Comparison of the pulse height tally associated with the U-235 distribution
from MCNP5 and the pulse height tally from the response expansion method using
the 1st order B-spline approximation of the U-235 distribution.

The 2nd order B-spline approximation is shown in Figure 10. Again as in the

1st order approximation, the difference in the approximation compared to the exact

incident flux results adds additional error to the response expansion method solutions.

The largest difference can be seen in the range 0 to 1 MeV. This is associated with the

approximation’s difficulty in capturing the peak at 0.3 MeV. Going to the 3rd order

B-spline approximation made significant improvements to the response expansion

method’s solution within this range as can be seen in Figure 11.
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Figure 10: Comparison of the pulse height tally associated with the U-235 distribu-
tion from MCNP5 and the pulse height tally from the response expansion method
using the 2nd order B-spline approximation of the U-235 distribution.

Figure 11: Comparison of the pulse height tally associated with the U-235 distribu-
tion from MCNP5 and the pulse height tally from the response expansion method
using the 3rd order B-spline approximation of the U-235 distribution.
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For the 2nd and 3rd order B-spline approximations with additional knots, further

improvements were made to the response expansion method solutions of the U-235

spectrum. The absolute differences between the response expansion method and

MCNP5 were reduced to within the same magnitude as that of σMCNP5−RM . This

can be seen in Figures 12 and 13 for the 2nd and 3rd order B-spline approximations

with additional knots.

Figure 12: Comparison of the pulse height tally associated with the U-235 distribu-
tion from MCNP5 and the pulse height tally from the response expansion method
using the 2nd order B-spline approximation (with additional knots) of the U-235 dis-
tribution.
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Figure 13: Comparison of the pulse height tally associated with the U-235 distribu-
tion from MCNP5 and the pulse height tally from the response expansion method
using the 3rd order B-spline approximation (with additional knots) of the U-235 dis-
tribution.

4.2 Accuracy and Efficiency

For comparison of the response expansion method to MCNP5, the following is

used:

e1 =
||rk − rMCNP5||1
||rMCNP5||1

, (25)

where ||.||1 is the 1-norm of the values within. For a set of values, the 1-norm is

equivalent to the sum of their absolute values [4]. The value e1 is equivalent to the

mean weighted error, ∑N
i=1 |RE| · rMCNP5(εi)

N · r̄MCNP5

, (26)

where,

RE =
rk(εi)− rMCNP5(εi)

rMCNP5(εi)
, (27)

which places more importance on larger values than on those nearest zero. Since the

pulse height tallies encompass several orders of magnitude, this is a very good method

of comparison. The mean weighted errors for the response expansion solutions of the

pulse height tallies with error associated with standard deviations (1σ) are shown in

Table 2.
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Table 2: Percent mean weighted errors of response expansion method for pulse height
tallies

Percent Mean Weighted Error

Pulse Height Tally 1st Order 2nd Order 3rd Order 2nd Order 3rd Order

(added knots) (added knots)

Air cargo 0.07 ± 0.02 - - - -

Third-density water cargo 0.09 ± 0.02 - - - -

U-235 2.16 ± 0.03 3.83 ± 0.03 0.49 ± 0.03 0.29 ± 0.03 0.10 ± 0.03

Computation times for each of the response functions were set to 5000 minutes to

reduce standard deviations to a nominal level. Table 3 shows the computation times

for the response expansion method (excluding the response function computation

times), as compared to MCNP5 calculations where the average relative standard

deviation was used to obtain similar statistical precision. Computation times for the

U-235 using the response expansion method are longer due to the least squares fitting

for the flux approximation.

Table 3: Computation times for pulse height tally solutions for MCNP5 and the
response expansion method

Computation Times

Pulse Height Tally MCNP5 Response Method

Average
Relative
Standard
Deviation 1st Order 2nd Order 3rd Order 2nd Order 3rd Order

(added knots) (added knots)
Air cargo 451 min 0.01 sec - - - -

0.0010
Third-density water cargo 665 min 0.01 sec - - - -

0.0010
U-235 141 min 0.34 sec 0.35 sec 0.36 sec 0.37 sec 0.38 sec

0.0010

Note that the run time of the direct Monte Carlo calculations is significantly

underestimated (by a factor of 9). The direct Monte Carlo results presented in table

3 have a statistical uncertainty 3 times larger than the response expansion method.
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CHAPTER V

CONCLUSION, RECOMMENDATION, AND FUTURE

WORK

A new pulse height tally response expansion method has been developed. The

method uses a library of precomputed response functions that depend on the geometry

and composition of the detector. Provided the incident flux, the library is used

to construct a pulse height tally on-the-fly. The method’s accuracy and efficiency

were evaluated for both discrete in energy and continuous in energy incident fluxes.

Pulse height tallies computed using the response expansion method were in excellent

agreement to MCNP5, having mean weighted errors around 0.1 percent. To reduce

the mean weighted error to 0.1 percent for the continuous flux approximations, the 3rd

order spline with additional knots was needed. The addition of knots and increase

in order had little impact on the computation time of the pulse height tally. The

method is computationally 4-6 orders of magnitude faster than MCNP5.

Response functions can take a substantial amount of time to compute. However,

they are calculated in a precomputation phase and serve as a library for future cal-

culations of detector responses. Thus, computation of response functions does not

affect the detector response calculation times and computing detector responses take

a fraction of a second.

A direct application of the response expansion method is to interrogation prob-

lems. These types of problems usually consist of a radiation detector and a container

with an assortment of materials to be identified via the emission of particles. In ac-

tive interrogation, a source is also present and is incident on the container to improve

identification of materials with normally low particle emissions. Such problems could
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include interrogation of conventional explosives or cargo containers with special nu-

clear materials. To rapidly simulate interrogation problems, the source and container

would normally be modeled by a deterministic method to obtain the angular flux

incident on the detector window. For the detector, the response expansion method

is used to generate the detector’s response. Thus, the angular flux incident on the

detector boundaries together with a pre-computed library of response functions is

used to generate the detector’s response on-the-fly.

The incident fluxes in this study were assumed uniform in space and mono-

directional in angle. Additional work is required to expand this method in modeling

the incident flux in its full phase space (i.e. angular and spatial variables).
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APPENDIX A

FLUX ENERGY BINS

Table 4: Energy bins for flux spectrums

Energy Bins (MeV)
0.00
0.02
0.03
0.06
0.10
0.20
0.40
0.60
0.70
0.80
1.00
1.50
2.00
3.00
4.00
5.00
6.00
7.00
8.00
10.0
14.0
20.0
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