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SUMMARY

The structure and interactions of the defects in material on an atomistic scale ulti-

mately determine the macroscopic behavior of that material. A fundamental understanding

of how defects behave is essential for predicting materials failure; this is especially true in

an irradiated environment, where defects are created at higher than average rates. In this

work, we present two different atomistic scale computational studies of defects in body

centered cubic (bcc) iron. First, the interaction energies between screw dislocations (line

defects) and various kinds of point defects will be calculated, using anisotropic linear elastic

theory and atomistic simulation, and compared. Second, the energetics and behavior of

hydrogen and hydrogen-helium gas bubbles will be investigated.

x



CHAPTER I

INTRODUCTION

The interactions between defects within a material’s microstructure determine the ultimate

behavior of the material on a macroscopic scale. Dramatic macroscopic behavioral changes

include creep, plasticity, radiation-induced segregation, embrittlement, changes in brittle

to ductile transition temperature, hardening, and cracking. Atomistic studies provide a

valuable tool for investigating these interactions in a detailed and fundamental way.

Ferritic steels are a popular choice for current and future reactor designs. These steels

are mainly composed of body centered cubic, or α-phase iron. Thus, this material is a

relevant and important choice for the matrix in which we perform defect studies.

The goal of this work is to examine the interactions and energetics of defects on the

microscale, in order to gain a more fundamental understanding of their behavior. We use

atomistics as a tool for this purpose.

1.1 Radiation Damage

A material undergoing irradiation experiences a high rate of defect creation due to a high

volume of incident particles, so the study of defect behavior is particularly important to the

study of irradiated materials. The process of radiation damage proceeds in several stages,

as is shown in Figure 1. First, and incident particle transfers some or all of its energy to an

atom in the crystal, resulting in the atom being removed from its lattice site. This atom,

known as the primary knock-on atom, or PKA, goes on to interact with other atoms in the

system, creating a cascade of damage. Ultimately, some of the affected atoms will come

to rest in off lattice sites as interstitials, leaving behind an empty lattice site known as a

vacancy. A vacancy and an interstitial are together known as as Frenkel pair. The majority

of Frenkel pairs created during a damage cascade will recombine within several picoseconds.

However, a small number of the created defects some will remain, usually creating a struc-

ture consisting of a core of vacancies surrounded by a shell of interstitials. Over time, these

1



(a) 0.1 ps (b) 0.9 ps - near peak damage

(c) 4.0 ps - partially relaxed (d) 20.0 ps - fully relaxed

Figure 1: Four snapshots from a 10 keV cascade in pure Fe. Red dots show interstitials,
blue dots show vacancies. Note the vacancy rich core surrounded by interstitials.

point defects migrate through the lattice, cluster together, and form extended defects, such

as dislocation lines and loops.

1.1.1 The Crystal Lattice

The Miller indices [86] are the most commonly used notation system for describing planes

and directions in crystal lattices. A unit cell coordinate system is defined by three lattice

vectors (for a cubic lattice, these will be orthogonal). The inverse intercepts along these

lattice vectors expressed in integer form define a plane (hkl), a family of planes {hkl}, a

direction [hkl], or a family of directions < hkl >, of the unit cell. Thus, if an index is zero,

the plane does not intersect the corresponding axis. By convention, a negative integer is

written with a bar over its value (e.g. 1̄).

This notation is particularly useful for for describing orientations of point defects in

materials. Generally, an interstitial will share a lattice site with another matrix atom; this

is known as an interstitial dumbbell. The orientation of the dumbbell can be described

using the Miller indices; several low-index orientations are shown in Figure 2.

2



[1 1 1]

[1 0 0]

vacancy

[1 1 0]

[1 1 0]
Figure 2: A body-centered cubic (bcc) cell with various orientations and types of point
defects.

In the body-centered cubic (bcc) cell, there a matrix atom on every corner of a cube,

plus one atom in the center of the cell. In iron, this structure is referred to as α-iron or

ferritic iron. This is the structure that is stable below 1670 ◦F. In α-iron, the < 1 1 0 >

dumbbell is the most stable (lowest energy) interstitial orientation; this is in contrast to

other bcc transition metals, in which the < 1 1 1 > orientation is preferred.

1.1.2 Dislocations

Dislocations are topological irregularities in the crystal structure. There are two main types,

edge and screw; additionally, a dislocation can be of mixed character. An edge dislocation

can be pictured as a block into which an extra half-plane of atoms has been inserted. A

screw dislocation can be generated by making a cut into a block of material, and slipping

the atoms on either side relative to each other. The result is a helical structure about

the dislocation line (the terminus of the cut in the bulk material). These two structures

are illustrated schematically in Figure 3. Dislocations may be of line form, with the ends

terminating at grain boundaries or surfaces, or they may be loops, in which they are entirely

enclosed within the crystal.

If in a perfect crystal, a closed rectangle in a plane can be drawn about the site of

3



Figure 3: Schematics of the two types of dislocations; edge is on top, screw is on the
bottom. Image from Wikimedia Commons via the Creative Commons Attribution–Share
Alike 3.0 Unported license.

the dislocation, when the dislocation is present, an attempt to draw the same rectangle

will result in a gap in the circuit. The vector required to close this gap is known as the

Burgers vector b. The relationship between the Burgers vector b and the dislocation line ξ

characterize the type of dislocation – in an edge dislocation, b is perpendicular to ξ, while

in a screw dislocation, the two are parallel.

Dislocations strongly affect macroscopic properties. The presence of dislocations lowers

the shear stress needed to deform a material, since dislocations may move incrementally

through climb and glide. The interactions with other defects affect these processes; for

example, some defects may act as pinning sites, while others may be absorbed to aid move-

ment.

1.2 Simulation Methods

The modeling of materials is an inherently multi-scale problem, both in time and length

scales (see Figure 4). Smaller scale methods are more accurate because they can capture

more of the relevant interactions between atoms. However, they are limited in applicability

because of this same feature – the number of atoms goes up, the calculation requires sig-

nificantly more computational resources to detail all of the interactions. Generally, highly

accurate small scale calculations can be used to generate input parameters for larger scale

simulations. These larger scale simulations are able to more directly connect with observed

4



length

time

nm mm mµm

ps

µs

ms

s

accelerated
molecular 
dynamics

atoms

continuum models

mesoscale methods
clusters, extended defects,

grains

kinetic Monte Carlo
atoms, clusters

molecular dynamics
atoms

ab initio
electrons, atoms

Figure 4: Modeling of materials is an inherently multiscale task. This graph shows the
approximate time and length scales over which a particular method is applicable.

phenomena and can (hopefully) be used in predictive capacity. Simulation methods can

be categorized by what type of entity is taken as the basic unit for interactions. That is,

electronic structure calculations consider individual electrons and atoms, while large scale

models may consider entire grains as their basic unit.

First principles, or ab initio, methods seek to find a solution to the Schrödinger equation

for a group of atoms and to determine the electronic structure. There are a wide variety

of methods available to quantum chemists, they vast majority of which rely on the Born-

Oppenheimer approximation. This approximation assumes that the motions of the electrons

and the nuclei are essentially separable, since the atomic nuclei are much heavier than the

electrons. Thus, the ground state of the electrons can be solved based on fixed nuclear

positions. Then, the energy of the system for displaced nuclei can be determined.

Density functional theory (DFT) is one very popular ab initio method, in which the

ground state energy of a group of atoms is a unique functional of the electron density. Min-

imizing this functional theoretically results in the ground state energy that would be found

5



by solving the Schrödinger equation. However, finding the appropriate density functional

is the challenge of DFT. In practice, this problem is solved for iteratively.

Although ab initio methods are extremely valuable, since they consider the most fun-

damental details of a problem, the most advanced methods in this category are currently

limited to several hundred atoms. Molecular dynamics methods are the next step up in

time and length scale and can solve for millions of atoms for times of up to microseconds,

however they do not solve for electrons directly.

Classical molecular dynamics codes operate on a fairly simple principle. For all the

atoms in a system, Newton’s equations of motion are solved for known atomic masses

and velocities to determine trajectories. The interactions between atoms are described via

interatomic potentials, which will be described in more detail in Section 1.2.1. Molecular

dynamics is the chosen method for the majority of this work.

Most molecular dynamics calculations have the capacity to model millions of atoms,

generally for nanosecond timescales. However, an additional class of methods, known as

accelerated molecular dynamics are able to look at even longer timescales. This is particu-

larly useful when the processes one wishes to model are uncommon or infrequent events (e.g.

vacancy diffusion). An example of this class of codes is temperature accelerated dynamics

[132].

Kinetic Monte Carlo methods may use individual atoms or clusters of atoms as their

basic units. These methods rely on probabilities of events occurring to determine the long-

time behavior of a system. These probabilities are often based on binding and diffusion

energies discovered by the smaller scale methods. At even longer time and length scales,

mesoscopic and continuum models follow the behavior of extended defects and grains to

develop constitutive models, based on data found in smaller scale simulations.

1.2.1 Interatomic Potentials

Interactions between particles in atomistic simulations are described by functions and pa-

rameters known as interatomic potentials. Choosing an appropriate potential is essential

for obtaining quality results in any atomistic calculation.

6



The simplest types of interatomic potentials are pair potentials. Pair potentials are

computationally very inexpensive and are often relatively easy to compute. This class of

potentials assumes that by summing up all the individual pair bonds the total energy of the

solid Ecoh can be recovered. However, this assumption turns out to be impossible to prove

theoretically.

An often used form is the Lennard-Jones (L-J) potential [74], where the potential energy

V between particles i and j at a distance r is given by

V (rij) = 4ε
[(σ
r

)12
−
(σ
r

)6
]
. (1)

Here, ε is the depth of the potential well and σ is the distance at which the potential becomes

zero. The second term is responsible for the attractive part of the potential, representing

the weak van der Waals bond. The first term models strong repulsion at short distances

due to electronic overlap; the exponent is given a value of 12 purely for ease of computation,

but has no theoretical justification. Similar to other pair potential forms, the L-J potential

is inadequate for modeling strongly bonded systems or metals.

At close distances, the repulsion between two nuclei is essentially Coulombic, while at

larger distances, the electron clouds of the atoms screen the nuclei. This may be written as

V (rij) =
Z1Z2e

2

r
ϕ
(r
a

)
, (2)

where Z1 and Z2 are the atomic numbers of the two interacting nuclei, e is the charge on

an electron, and ϕ is the screening potential. A commonly used version of this form is

the Ziegler-Biersack-Littmark (ZBL) repulsive potential, in which the universal screening

function is given by

ϕ(x) = 0.1818e−3.2x + 0.5099e−0.9423x + 0.2802e−0.4029x + 0.02817e−0.2016x, (3)

and

a =
0.8854aB

Z0.23
1 + Z0.23

2

(4)

where aB = 0.529Å is the Bohr radius. This potential is purely repulsive, but theoretically

correct at small distances.
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Thus, it is a common practice to create an overall interatomic pair potential for in-

teracting atoms by connecting different types of pair potentials at different distances with

polynomial splines. In this way, a potential can be generated which has both long and short

range attraction and repulsion that is theoretically correct.

In reality, a many-body potential is needed to account for the influence that bonds

between atoms have on each other. To deal with this, the embedded-atom method (EAM)

was developed by Daw and Baskes in 1983 [25, 26, 27] for metallic solids. Essentially, each

atom is treated as if it were a defect embedded in an electron gas created by the presence

of all the other atoms. The cohesive energy of the system can be described in two parts -

by an embedding energy and by an electrostatic interaction with a sum over all atoms in

the system:

Ecoh =
∑

i

Gi

∑
j 6=i

ρa
j (Rij)

+
1
2

∑
i,j(j 6=i)

φij(Rij)

where G is the embedding energy, ρa is the spherically averaged atomic electron density, Rij

is the distance between atoms i and j, and φ is an electrostatic, two-atom interaction. With

this formulation, atoms that are near defects or surfaces, for example, will feel a different

density profile than atoms in the bulk, allowing the potential to treat significantly more

complex systems than pair potentials alone.

While more complex systems can be treated, implementing the method is no more

difficult than implementing a pair potential. The functions G(ρ) and φ(R) can be found

either from first principles or using semi-empirical methods. Normally, they are fit to

data from a particular (pure) metal, such as lattice constants, elastic constants, or defect

formation energies.

A similar method was developed simultaneously by Finnis and Sinclair (FS) [36]. For

pure metals, the two methods are exactly equivalent. For alloys, the FS ansatz requires dif-

ferent functionals ρ for interactions between different elements, while EAM uses an averaged

one.

To simulate all of the interactions between the three different elements considered in

this work, at least six potentials are required. In practice, even more interatomic potentials

8



were used. The relative merits and properties of all potentials used or considered in this

work are discussed in this section.

1.2.1.1 Fe-Fe

The iron-iron interactions in our simulations are described by Ackland’s potential [3]. This

EAM style potential is a slightly improved form of a potential originally published by

Mendelev [83]; we refer to potential #2 of that paper. The original potential is intended

to provide an accurate description of both crystalline and liquid iron; thus, it is sensitive

to a wide-range of separation distances between atoms. The potential is fit to perfect

crystal properties, as well as to forces found from first principles calculations. The new

parametrization takes advantage of further ab initio calculations performed at small inter-

atomic distances with the goal of accurately describing point defect properties. This makes

the potential ideal for describing radiation damage events and interactions between defects.

The Ackland potential for Fe-Fe is widely used in radiation damage studies, as it is

provides an excellent description of defect behavior. Of course, it is not the only available

potential for iron available [95, 93, 2, 31]; even Mendelev et al. provides alternate parame-

terizations of the above potential which may perform slightly better in particular situations

[83]. The potential we choose does not take into account magnetic effects of iron, which

may be important in some situations; there are potentials available with the capability [31],

however they are currently less suitable for describing defect interactions appropriately than

is the potential of Ackland et al.

1.2.1.2 Fe-H and H-H

We take both the iron-hydrogen and hydrogen-hydrogen interactions from Ramasubrama-

niam et al. [119, 121]. Ramasubramaniam provides two parameterizations of the potential,

called A and B. The first takes it’s iron-iron interactions from Mendelev’s potential #4 [83],

while the latter describes Fe-Fe via the improved Ackland potential [3] based on Mendelev’s

potential #2 [83], the potential we use for Fe-Fe interactions. Thus, potential B is a natural

choice for our calculations. Additionally, the authors provide a slightly different version

9



of potential B, called B′, which is available for download from their website1, but is not

described in detail in the literature. We test both potential B and potential B′, as described

in Chapter 3. Potential B is fit to bulk, surface, and vacancy DFT data, while B′ is fit only

to bulk and vacancy data, but has better performance regarding strain fields in the bulk.

1.2.1.3 Fe-He

There are many interatomic potentials for the iron-helium system, many of which have come

out just in the past several years. These include the “classic” potential of Wilson [155], a

three-body potential from Seletskaia et al. [125, 135], and a pair potential from Gao et al.

[41].

For this work, we choose to use the purely repulsive pair potential of Juslin and Nordlund

[69]. This potential is ideally parameterized to be used along with Ackland’s potential for

Fe-Fe [3]. For small interatomic distances, calculations of an Fe-He dimer from the DMol97

program package are used. Farther out, the potential is fit to DFT data. The authors

caution that potential is not appropriate for molecules, but only for helium within the iron

matrix.

1.2.1.4 He-He

Helium is an extremely stable, almost completely inert element. Beck [6] developed a

potential for helium-helium interactions given by

V (rij) = A exp(−αr − βr6)− 0.869
(r2ij + b2)3

(
1 +

2.709 + 3b2

r2ij + b2

)
, (5)

where b = 0.675 Å, α = 4.390 Å−1, β = 3.746× 10−4 Å−6, and A = 398.7 eV.

Beck fit this potential so that the long-range attraction is theoretically correct, and the

short-range repulsion agrees with both experimental and calculated results. Additionally,

the depth and shape of the well were determined by a fit to the second virial coefficient,

which provides a correction to the ideal gas law for the pressure of a multi-particle system.

The potential has its minimum of V (r) = 8.936× 10−4 eV at r = 2.969 Å.

1http://www.princeton.edu/mae/people/faculty/carter/homepage/research/potentials/
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This potential has been used extensively by researchers within the field of nuclear ma-

terials; thus, comparison of our results with those of other researchers is straightforward.

1.2.1.5 H-He

We present a new interatomic potential which is suitable for simulating the interactions

between hydrogen and helium.

Hydrogen and helium have an extremely weak van der Waals attraction, making this

system a good candidate for a L-J potential. Exact quantum mechanical calculations on the

system were performed by Bhattacharya and Anderson [9] using a Green’s-function Monte

Carlo method. They found the H-He potential energy for completely separated atoms as well

as for eleven internuclear distances. They compared their results to multiple experimental

and ab initio studies, with good agreement.

We have fit a Lennard-Jones potential to these data points, finding values of ε = 0.0006

eV and σ = 3.0862 Å. This gives a maximum well depth of 0.0006 eV (6.96 K) at an

interatomic distance of 3.464 Å (6.55 bohr).

In order to simulate the correct short distance repulsion between hydrogen and helium,

we connect the Lennard-Jones form to a ZBL form at short distances. An inverse polynomial

form is chosen for the spline, and parameters are chosen to guarantee continuity of the

potential and its first derivative. The potential energy between a hydrogen atom and a

helium atom at distance r is given by

V (rij) =



Z1Z2e
2

r
ϕ
(r
a

)
, for r < r1

D0 +
D1

r
+
D2

r2
+
D3

r3
, for r1 ≤ r ≤ r2

4ε
[(σ
r

)12
−
(σ
r

)6
]
, for r > r2

(6)

with the fitting parameters found in Table 1, and the screening function ϕ described in

Equations 3 and 4.
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Figure 5: The data points are from Bhattacharya (1994), while the dashed line is our
Lennard-Jones fit. The zero energy line is also shown for reference. Values of ε = 0.0006
eV and σ = 3.0862 Å are used.

Table 1: The parameters for the interatomic potential for hydrogen and helium referenced
in Equation 6. Units are eV and Å where appropriate.

D0 D1 D2 D3 σ ε r1 r2
-0.318151 1.142826 -0.530526 0.116766 3.0862 0.0006 0.5 2.5

12



CHAPTER II

SCREW DISLOCATION-DEFECT INTERACTIONS

2.1 Motivation and Literature Review

The interactions of dislocations with intrinsic point defects are of importance in understand-

ing the processes of plasticity, hardening [4], and irradiation creep. Plasticity is enabled

through the presence of dislocations, which lower the stress needed to deform a material.

Additionally, dislocations act as sinks for point defects, affecting dislocation growth and the

subsequent swelling of irradiated materials.

The problem of modeling the effects of dislocations is inherently multiscale, and the

motion of dislocations through climb, glide, slip, and cross-slip must be well understood

on a microscopic scale in order for larger scale simulations to be properly parameterized

[112, 60, 100, 89, 46]. There is a multi-decade history of computer simulation of dislocations;

an excellent review of methods is found in Bulatov and Cai [13]. From ab initio and

molecular dynamics simulations of single dislocation cores and individual point defects,

parameters may be found which enable simulations of the interactions between dislocations

themselves. Finally, properties found through discrete dislocation simulations, such as

hardening parameters, may be used in large scale crystal plasticity models. There are

several issues that must be considered when linking simulations of different scales, such as

size effects [158, 94]. McDowell [80] and Groh and Zbib [52] provide excellent reviews of the

way in which multiscale simulations of dislocations and crystal plasticity may be structured,

with the larger scale simulations relying on results from atomistics. Elasticity theory is one

of a variety of inputs that are commonly used with the dislocation dynamics methodology.

Groh and Zbib point out that a large number of discrete dislocation codes may only be

properly applied to isotropic materials [76, 153]. Isotropic elasticity is quite general and

easy to implement, thus it is commonly used, if not entirely accurate. Exceptions to this

include the anisotropic discrete dislocation code of Rhee et al. [122], which uses anisotropic
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expressions at least for short-range interactions, and that of Capolungo et al. for hcp

metals [16]. The equations of anisotropic elasticity are much more complex than their

isotropic counterparts and, aside from special cases [34], are often applicable to a particular

orientation of dislocation and must be solved numerically. These factors necessitate an

understanding of where and when theory and approximation may be used successfully, and

where detailed effects of atomic structure must be known.

In both isotropic and anistropic continuum dislocation formulations, the strain field of

the dislocation becomes singular at the core and must be treated carefully. There are clever

solutions in the literature to get around this shortcoming, for example, Cai et al.’s non-

singular formulation [15], but they are not in widespread use. Clearly there is a need to

characterize the deficiencies of isotropic theory as applied to highly anisotropic materials

such as bcc iron, as well as to determine the limitations of the more powerful anisotropic

formulation of continuum dislocation elasticity theory.

2.1.1 Core Structure

The determination of the proper structure of the core of a screw dislocation in bcc transition

metals is a long standing problem [151]. In recent years, many multibody interatomic

potentials have been developed for atomistic simulation of iron, but not all predict the

same core structure for a 1
2 [1 1 1] screw dislocation. Some predict a degenerate structure,

where the relaxed core spreads along three {1 1 0} planes of the <1 1 1> zone. Two

possible configurations exist, related by the symmetry operation of the [1 0 1̄] diad, and

are equivalent in energy. Other potentials predict a compact structure, referred to as the

non-degenerate core.

Until recently, the degenerate structure was accepted as accurate [150, 33]. However,

recent ab initio calculations [37] clearly show the non-degenerate structure to be preferred,

and this structure is now believed to be the lowest energy configuration and a general

feature of many transition metals [157]. One of the very few available embedded-atom

method (EAM) potentials to predict this latter structure, that of Ackland et al. [3], is

employed in this work. In fact, non-central forces are the physical cause for this configuration
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Figure 6: Differential displacement map of the screw core in iron; the non-degenerate
structure is recovered.

[148, 149, 93, 51]; the Ackland potential does not explicitly account for this, while other

types, including bond-order potentials, do [51]. However, this potential is widely used in

the literature and does provide the appropriate core structure; the criteria under which

a potential of this type may be guaranteed to generate this core type are described in

[22]. Thus, it is useful for comparing the effects of atomic structure vs. those of elastic

theory on dislocation-defect interactions. The differential displacement diagram [33] is

used to verify that our computational setup results in the non-degenerate structure, as

shown in Figure 6. The point of this work is not to definitively determine the energetics of

defect-dislocation interactions, but to understand at what point continuum elasticity theory

reproduces atomistic results.

2.1.2 Dislocation-Defect Interaction

In this work we seek to intimately examine the differences in interactions between screw dis-

locations and point defects from linear elastic theory and atomistic simulation, in particular

close to the core of a dislocation. The interactions between dislocations and point defects

have been elucidated in a number of studies for both screw and edge dislocations using

a variety of methods [39, 5, 127, 57], including tight-binding approximations [78, 79] and

hybrid methods [129, 128], as well as studies of interactions with impurities [23] and clusters

of self-interstitials [75, 111, 110, 154]. Additionally, there have been a number of studies

on dislocation glide via the double kink mechanism; different aspects of the nucleation and

energy barriers have been simulated in a number of works [150, 30, 20, 48, 19]. We note

that core spreading and kink nucleation will be assisted by the absorption of defects within
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the core. We endeavour to build upon this knowledge by conducting a detailed investigation

of the direct interaction of a variety of orientations and types of point defects with a screw

dislocation, including calculating interaction energies and performing stability analysis.

We calculate the interaction energy E of intrinsic point defects (vacancies and interstitial

dumbbells) with screw dislocations in alpha-iron. First, using the dipole force tensor and

the dislocation strain field, we calculate the interaction energy using continuum methods

as discussed below. Second we perform atomistic calculations of the defect-dislocation

interaction which incorporates the dislocation core explicitly. A defect is introduced near a

dislocation, the energy of this ensemble of atoms minimized and the interaction energy is

directly determined by comparing this energy to that of a defect far away from a dislocation.

Of these two methods, the first does not contain any description of the dislocation core,

while the other explicitly accounts for the atomic structure of the core. Thus, in order to

determine the effects of the dislocation core structure, we compare these two methods of

calculating the interaction energy.

2.2 Linear Elasticity Theory

Meissner et al. [82] derived the dislocation defect interaction energy from the dipole tensor

and the dislocation strain field in a general anisotropic medium. This model was the basis

of the work by Tomé et al. [144] in which the interaction energy in hexagonal close packed

materials was studied near edge and screw dislocations. Both of these papers used lattice

Green’s functions to calculate the dipole tensors. Additional works invoking this theoretical

framework and the model of point defects diffusion of Dederichs and Schroeder [28] include

those of Tomé et al. [143], Monti et al. [88], and Smetniansky-de Grande et al. [130].

In this formulation, the interaction energy between the point defect and a dislocation

separated by a distance r is given by

E(r) = −εij(r)Pij (7)

where ε is the strain field of the dislocation and Pij are components of the dipole force

tensor P, which will be discussed in the following section.1The strain field of the dislocation
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can be calculated from the displacement field as:

εij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (8)

At large separation distances, where the defect is far enough away from the dislocation to

feel no influence, the interaction energy E = 0.

When we wish to compare to atomistics, it is convenient to add another term to Equation

7, so that

E(r) = −εij(r)Pij + Edefect. (9)

Edefect is an additional energy accounting for different types of configurations of the same

type of defect. This term is especially relevant for interstitial dumbbells. In bcc iron, the

<1 1 0> dumbbell configuration is the lowest energy interstitial defect. Other orientations

are higher energy structures, so the addition of Edefect for the higher energy structures,

relative to the lowest energy structure, allows all interaction energies for a given type of

defect to be compared on equal footing. This term is equal to the additional formation

energy required to form the defect of interest, above what is required for a<1 1 0> dumbbell.

With the interatomic potential we are using, the formation energy for a <1 1 0> dumbbell

is 3.53 eV, 4.34 eV for a <1 0 0> dumbbell, and 4.02 eV for a <1 1 1> dumbbell [83]. Thus,

E<1 1 0>
defect = 0.0 eV, E<1 1 1>

defect = 0.49 eV and E<1 0 0>
defect = 0.81 eV. In this way, all interaction

energies for interstitials can be compared directly.

2.2.1 Dipole Tensor

The dipole force tensor describes the influence that a point defect, either a vacancy or

interstitial, has on its neighbors in otherwise perfect bulk material. It may be calculated

using different methods [47]; in this case it is calculated by

Pij =
N∑

k=1

[S(k)
i + d

(k)
i ]F (k)

j , (10)

1It is important to make sure all calculations and comparisons are done in the same coordinate system.
For example, dipole tensors are given in the crystal coordinate system, while strain fields are given, and
atomistics are performed, in the dislocation coordinate system. First and second order tensors can be
transformed between the crystal and dislocation systems by vC = TvD, and PC = TPDTᵀ where T is the
transformation matrix, which contains the normalized vectors of the dislocation coordinate system as its
columns.
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Table 2: The components of the dipole tensor P for a variety of point defects, expressed
in crystal axes.

defect type P11 P22 P33 P12 P13 P23

vacancy -2.7119 -2.7119 -2.7119 0.00 0.00 0.00
[1 1 0] dumbbell 10.2056 10.2056 10.9080 4.7428 0.00 0.00
[1 0 0] dumbbell 8.7977 8.1689 8.1689 -1.0332 -1.0332 2.9766
[1 1 1] dumbbell 8.5493 8.5493 8.5493 4.6977 4.6977 4.6977

where the summation is over N neighbors of the defect, S denotes the perfect lattice position

of a neighbor with respect to the defect, d is the displacement from the perfect lattice

position caused by the defect’s presence, and the Kanzaki force, F, is defined as the force

that must be applied to maintain the displaced structure when the defect is removed. The

Kanzaki force is equivalently the component of the total force that the defect exerts on a

neighbor when in the relaxed configuration. For a specific potential these quantities can be

calculated with Green function methods or directly with molecular statics.

In this work, the latter method is used. Atomistic simulations are performed in which

a defect is introduced into a perfect lattice. Conjugate gradient minimization is used to

relax the lattice. Care must be taken that the lattice is fully relaxed; this is ensured

by requiring that no component of force on any atom is larger than 1×10−9 eV/Å. An

interstitial dumbbell with the neighboring atoms after relaxation is depicted in Figure 7(a).

Then, the defect is removed and the lattice restored to its original state, but with the

neighbors maintaining their displacements, as shown in Figure 7(b). The force produced by

the defect site on the neighbors can then be calculated; it is equal in magnitude but opposite

in sign to the force produced by the defect itself. In the calculations which follow, we use the

LAMMPS molecular dynamics code [113] and the clsman atomistic code developed at Los

Alamos National Laboratory. The six independent components of the symmetric tensors P

are given in Table 2 for four types of defects: the vacancy and three configurations of the

interstitial ([1 1 0], [1 0 0], and [1 1 1] dumbbells). Convergence testings were performed to

ensure that a sufficient number of neighbor shells were included in the calculations; at least

nine neighbor shells (approx. 2.5 Å) beyond the defect were included.
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(a) A defect displaces its neighbors
by a distance d when the system is
relaxed.

(b) When the defect is removed, a
force F is required to hold the neigh-
bors in their displaced positions.

Figure 7: Schematic of the quantities used when calculating the dipole tensor for a generic
defect in a bcc lattice. Dotted circles denote perfect lattice positions. Red circles denote
displaced atom positions caused by the presence of the defect.

2.2.2 Strain Fields

The strain field may be formulated isotropically or anisotropically. The isotropic formulation

is well-known and generally may be applied to any generic screw dislocation. On the

other hand, the anisotropic formulation must be derived for a particular orientation of the

dislocation.

For any isotropic medium, a screw dislocation results in displacement along the x3

direction only, given by:

u3 =
bx3

2π
tan−1 x2

x1
, (11)

where bx3 is the magnitude of the Burgers vector and ξ lies along the x3 axis [60]. There

are no displacements in the directions perpendicular to the dislocation line. Thus, ε11 =

ε22 = ε33 = ε12 = 0, and the non-zero symmetric strain field components are

ε13 = − bx3

4πr2
x2

ε23 =
bx3

4πr2
x1.

For the anisotropic formulation, the equations needed to generate a <1 1 1> screw

dislocation are given by Hirth [59], based on the solutions of Eshelby, Read, and Shockley

[34], Stroh [136], and Head [56].
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Note that the equations in this section apply to the coordinate system where x1 = [1̄ 2 1̄],

x2 = [1̄ 0 1], and x3 = [1 1 1]. Hirth [59] assumes that the dislocation line ξ lies in the

negative x3 direction, that is, the [1̄ 1̄ 1̄] direction. The equations can be used to describe

right or left handed dislocations, with a negative or positive Burgers vector, respectively.

The elastic constants in the dislocation coordinate system Cij are defined in terms of

the standard elastic constants C0
ij from the crystal coordinate system, and in terms of the

anisotropy factor H = 2C0
44 − C0

12 − C0
11. Their values are given by

C11 = C0
11 +H/2 C44 = C0

44 −H/3

C12 = C0
12 −H/6 C66 = C0

44 −H/6

C13 = C0
12 −H/3 C15 = −

√
2H/6

C33 = C0
11 + 2H/3 2C66 = C11 − C12.

For a right handed dislocation in the x3 direction Hirth gives the displacements as

u1 = − bx3

6π

{
tan−1

(
Fx2

x1

)
− 1

2
tan−1

(
4Fx2

J1x1 −
√

3J3x2

)
− 1

2
tan−1

(
4Fx2

J1x1 +
√

3J3x2

)}

× (A+B)−
√

3bx3

12π

ln

(
J1x

2
1 + J2x

2
2 − 2

√
3J3x1x2

J1

)1/2

− ln

(
J1x

2
1 + J2x

2
2 + 2

√
3J3x1x2

J1

)1/2
×BF, (12)

u2 = −
√

3bx3

12π

{
tan−1

(
4Fx2

J1x1 −
√

3J3x2

)
− tan−1

(
4Fx2

J1x1 +
√

3J3x2

)}
× (A+B)

− bx3

6π

ln(x2
1 + F 2x2

2)1/2 −1
2

ln

(
J1x

2
1 + J2x

2
2 − 2

√
3J3x1x2

J1

)1/2

−1
2

ln

(
J1x

2
1 + J2x

2
2 + 2

√
3J3x1x2

J1

)1/2
×BF, (13)

u3 = − bx3

6π

{
tan−1

(
Fx2

x1

)
+ tan−1

(
4Fx2

J1x1 −
√

3J3x2

)
+ tan−1

(
4Fx2

J1x1 +
√

3J3x2

)}
.

(14)
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where

F =
(R+ 1)1/3 + (R− 1)1/3

(R+ 1)1/3 − (R− 1)1/3
R2 =

C66(C11C44 − C2
15)

C11(C44C66 − C2
15)

J1 = 1 + 3F 2 J6 = C44/C15

J2 = 3 + F 2 J7 = (C15S44)−1

J3 = 1− F 2 J8 = (F 2C11 + C12)−1

J4 = (C12 + C66)/(C15S44) A = J6 − (J2J7/J1)

J5 = [C44(C12 + C66)− 2C2
15]/C15 B = J8[(J2J4/J1)− J5]

S44 = C66/(C44C66 − C2
15).

Using Equation 8, we can calculate the components of the strain field:

∂u1

∂x1
= − bx3

6π

{
2FJ1x2

D+
+

2FJ1x2

D−
− Fx2

G

}
× (A+B)−

√
3bx3

12π

{
K−
M−
− K+

M+

}
×BF

∂u1

∂x2
= − bx3

6π

{
−2FJ1x1

D+
− 2FJ1x1

D−
+
Fx1

G

}
× (A+B)−

√
3bx3

12π

{
L−
M−
− L+

M+

}
×BF

∂u2

∂x1
= − bx3

6π

{
K+

2M+
+

K−
2M−

− x1

G

}
× (BF )−

√
3bx1

12π

{
4FJ1x2

D+
− 4FJ1x2

D−

}
× (A+B)

∂u2

∂x2
= − bx3

6π

{
L+

2M+
+

L−
2M−

− F 2x2

G

}
× (BF )−

√
3bx3

12π

{
4FJ1x1

D−
− 4FJ1x1

D+

}
× (A+B)

∂u3

∂x1
= − bx3

6π

{
−4FJ1x2

D+
− 4FJ1x2

D−
− Fx2

G

}
∂u3

∂x2
= − bx3

6π

{
4FJ1x1

D−
+

4FJ1x1

D+
+
Fx1

G

}
(15)

where

L± = J2x2 ±
√

3J3x1

K± = J1x1 ±
√

3J3x2

M± = J1x
2
1 + J2x

2
2 ± 2

√
3J3x1x2

D± = 16F 2x2
2 +K±

G = (x2
1 + F 2x2

2)−1

and ∂u1/∂x3 = ∂u2/∂x3 = ∂u3/∂x3 = 0.

The elastic constants we use in our calculations have the values C0
11 = 243.4 GPa,

C0
12 = 145.0 GPa, and C0

44 = 116.0 GPa. These numbers come from the interatomic
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Figure 8: The coordinate system for the screw dislocation, with the [1 1 1] direction
pointing into the page. The orientation of all figures in this paper correspond to this
system. The dislocation line ξ and the Burgers vector b point along the [1 1 1] direction,
resulting in a right-handed dislocation. The atoms that comprise the core are shown as
grey circles.

potential we use in this work, where they were parameters used in the fitting procedure

[83].

2.3 Atomistic Simulation

The coordinate system used in describing our results is shown in Fig. 8. The [1 1 1] direction

is into the page. Both the dislocation line vector ξ and the Burgers vector b point in the

same direction along the x3 axis, resulting in a right-handed dislocation.

Our system is cylindrical, with periodic boundary conditions in the direction of the dislo-

cation line. The box size is approximately 37.1 Å in the periodic direction, and the cylinder

has a radius of approximately 100 Å. Initial displacement of all atoms is performed accord-

ing to linear elastic theory. An outer shell of atoms (approximately 20 Å) is then frozen,

while the core is allowed to relax. The resulting core structure was identical when either

isotropic or anisotropic displacement expressions were used for the initial displacements.

We introduce defects into the simulation box in a systematic way. First, an individual

iron atom is replaced by a defect, either by removing it for a vacancy, or shifting it and

22



introducing an additional atom for an interstitial dumbbell. The energy of the system is

minimized, while keeping the outer shell frozen, to obtain the relaxed structure containing

the defect. The energy of the system is then measured. This process is repeated, starting

from the initial dislocation structure without defects, for each unique atomic site within the

simulation box. In this way, the interaction energy can be calculated between a defect and

the dislocation as a function of their relative positions.

2.4 Results

Interaction energy from atomistics is calculated by the following formula:

Eint = [Ed
D + E0]− [ED + Ed

0 ]. (16)

All energies are total energies of the ensemble system, where the D subscript indicates a

system containing a dislocation, the 0 subscript indicates a single crystal system, and a d

superscript indicates that the defect of interest is contained in the system. The energy of

the system containing both the dislocation and the defect given by atomistic calculation

(Ed
D) includes the energy of formation for both the dislocation and the defect. Thus, in

order to extract out just the interaction energy, the last two terms must be subtracted.

Additionally, E0 is added back to the equation for balance of atoms. With this definition,

a negative interaction indicates that the defect is attracted to the dislocation.

Our system contains 100095 atoms, of which 36090 are frozen, before defects are in-

troduced. Thus, E0 = −399082.256 eV and ED = −399043.396 eV. Ed
0 is dependent on

the type of defect. For a vacancy, Ed
0(V ) = −399076.522 eV. For all types of interstitials

considered, the interaction energies are relative to the lowest energy interstitial in the bulk

crystal, the <1 1 0> dumbbell, which gives Ed
0(I) = −399082.740 eV. This also allows for

direct comparison of the energies between all atomistic results. Ed
D is determined by the

atomistic results for each position and defect.

Note that in all figures showing basic interaction energies for atomistic data, the in-

teraction energy scale bar runs from -0.5 eV to 0.5 eV, even when most of the data for a

particular figure does not approach these limits. This was done so that interaction energies

from atomistics could be easily intuitively compared across all defect configurations. In the
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remainder of this section, we will describe the results from atomistic and continuum theory

for <1 1 0>, <1 1 1>, and <1 0 0> dumbbell configurations, and for vacancies.

2.4.1 <1 1 0> Dumbbell

The <1 1 0> type dumbbell is known to be the most stable interstitial configuration in

the bulk in bcc iron, in contrast to many other bcc metals in which crowdions are the

most stable configuration. In our dislocation coordinate system, not all members of the

<1 1 0> family are created equal with respect to their orientation to the dislocation. A

[1 1̄ 0] dumbbell lies perpendicular to the dislocation line, along the x-axis of figure 8, while

a [1 1 0] dumbbell makes an angle of ∼ 35◦ with the core. We define

< 1 1̄ 0 >≡ {[1 1̄ 0], [1 0 1̄], [0 1 1̄], [1̄ 1 0], [1̄ 0 1], [0 1̄ 1]} (17)

to differentiate those specific dumbbells which are perpendicular to the dislocation line from

those of the general <1 1 0> family, and use

< 1 1 0 >+≡ {[1 1 0], [1 0 1], [0 1 1]} (18)

to indicate only those members which have all positive components, and thus have some

extent along the core.

We begin by calculating energetics for [1 1̄ 0] dumbbells; the results are shown in Figure

9. The dumbbell lies on the horizontal axis, with no extent into the page. A clear pattern

of positive and negative interaction energies emerges from the atomistic simulations. The

most negative interaction energies are seen to the left of the core, while to the right, the

most positive energies are seen. Bands of slightly negative interaction energy are seen in

the [0 1̄ 1] and [1 0 1̄] directions, and slightly positive bands are seen in the [1̄ 0 1] and

[0 1 1̄] directions. This pattern reflects the non-degenerate core structure of the screw

dislocation in bcc iron. Even at the angles at which the long-range interaction energy is

positive (repulsive), within about 5-8 Å of the core, all interaction energies are negative.

This indicates that if a defect travels close enough to the core from any direction, it will

ultimately be attracted instead of repelled. As can be seen in Figure 9, there are five

lattice sites in the core (white area) at which the dumbbell is unstable and is spontaneously
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absorbed into the core under minimization. This results in a much lower energy structure,

off the scale in Figure 9, which will be discussed later.

When we compare these atomistic results to those from elasticity theory, we find several

discrepancies. The anisotropic strain field is able to replicate the pattern of negative and

positive interaction energies (given by Eq. 9) around the core, although the magnitude

of the interactions is underestimated. Also, anisotropic elasticity theory does not predict

the negative energies very near the core in all directions that we see from atomistics. The

absolute error and absolute percentage error (referenced to the atomistic solution) between

atomistics and anisotropic elasticity theory can be seen in Figure 10. To the right and left

of the core, where the interaction energies have the largest magnitude, the absolute error

is greatest. However, these areas have some of the lowest relative errors. In areas of very

small magnitude interaction energy, the percentage error is very significant, but errors in

these regions would be of little practical significance. In the core, as we would expect, the

error approaches 1 eV, but outside of the core the error rarely exceeds 0.1 eV. Even so, the

percentage errors are quite large (between about 10 and 50% in significant regions of strong

interaction energy). Overall, anisotropic theory agrees qualitatively with atomistics outside

of the core region, but has large errors quantitatively.

The results from anisotropic theory are significantly better than those from isotropic

theory (Figure 9). Isotropic theory simply predicts a clear divide between positive and

negative interaction energies at the y-axis and does not account for the non-degenerate core

structure at all.

These results can be generalized for any <1 1̄ 0> dumbbell. The pattern of interaction

energy seen in Figure 9 will appear rotated by 120◦ for other dumbbells of this type, with

the strongest positive and negative interaction energies appearing when the dumbbell is

pointed directly towards the core.

A [1 1 0] dumbbell was also examined; results are shown in Figure 11. This dumbbell

displays three regions of negative interaction energy, and three regions of positive/repulsive

interaction. In contrast to the [1 1̄ 0], however, all three regions are the same size, displaying

a symmetry when looking down the dislocation line. Additionally, the magnitudes of the
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Figure 9: Plots of the interaction energy of a [1 1̄ 0] dumbbell with the dislocation core as
a function of distance and angle from the dislocation. In all figures, the core is centered at
(0,0), and the numbers on the axes show distance from the core in Angstroms. Interaction
energies are plotted by color, in eV. (a) shows the interaction energies calculated directly
from atomistics. (b) shows E calculated with elasticity theory, using Equation 9 with the
anisotropic strain field, with the dipole tensor P calculated using atomistic methods. (c)
shows the interaction energy calculated with elasticity theory using the isotropic strain
field. (d) shows profiles of the interaction energy along the directions indicated in the inset
circle. As the interstitial position varies along the [1 1̄ 0] direction (blue) and the [0 1̄ 1]
direction (red) the interaction energy is plotted. Dotted lines indicate isotropic results, solid
lines indicate anisotropic results, and points show atomistic results. The anisotropic strain
field results in interactions of the same sign as those shown by atomistics, even when the
magnitude is in disagreement; however the results when using the isotropic strain field does
not even have this property.
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Figure 10: (a) shows the absolute error in eV between the atomistic and anisotropic
elasticity theory results for the [1 1̄ 0] dumbbell. (b) shows the absolute value of the
percent error between the atomistic and anisotropic elasticity theory results with respect
to the atomistic calculations for the same dumbbell. The same coordinate system that is
used in Figure 9 is used here.

interactions are weaker than for the [1 1̄ 0] dumbbell. Essentially, this indicates that a

member of the <1 1̄ 0> family is energetically preferred over a <1 1 0>+ in the regions

where negative interaction energy is seen (the [1̄ 1 0], [1 0 1̄], and [0 1̄ 1] directions). However,

in the other regions where a positive interaction is observed, a <1 1 0>+ may be preferred

since its interaction is less repulsive than that of a <1 1̄ 0>.

2.4.2 <1 1 1> Dumbbell

The <1 1 1> family of dumbbells is not as energetically favorable in the bulk as the <1 1 0>,

but more so than the <1 0 0> family. However, the pattern of energetic favorability may

change near a strong strain field such as that of a dislocation. [1 1 1] dumbbells, which lie

parallel to the dislocation line, are introduced at each lattice site about our screw dislocation

core (one at a time) and subsequently minimized.

After an analysis of the minimized structures, it is clear that the [1 1 1] dumbbell is not

a stable configuration everywhere, as illustrated in Figure 12. We map the final dumbbell

type by color, using an algorithm that can distinguish between families of directions, but

does not account for permutations within a family (for example, a [1 1 0] and a [1 1̄ 0] will

both appear green). We find that half of the dumbbells convert to <1 1 0>-type structures,

while the other half lie somewhere between <1 1 1> and <2 1 1>; they have a <1 1 1>
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Figure 11: The interaction energies between a [1 1 0] dumbbell and a screw dislocation
core are shown as a function of of distance and angle from the dislocation core. The same
conventions as in Figure 9 are used. Note that the magnitude of interactions is not as strong
as for the [1 1̄ 0] orientation.

that is slightly twisted to conform with the helical structure of the screw dislocation. This

can be explained by comparing to our above results for [1 1̄ 0] dumbbells.

In the regions where it is most energetically favorable to have a dumbbell from the

<1 1 0> family, we also obtain a <1 1 0> structure when starting with a [1 1 1] dumb-

bell structure. Looking at individual dumbbells from the <1 1 0> regions, we find that

dumbbells convert to <1 1 0>+ structures instead of <1 1̄ 0>, due to the smaller degree

of rotation needed, or the relative closeness of the two structures. In the regions where

a <1 1 0> dumbbell was shown to have a positive interaction energy with respect to the

dislocation, [1 1 1] dumbbells rotate away from being perfectly aligned with the core, but

do not convert to <1 1 0>-type. Dumbbells very near the core appear to stay in [1 1 1]

configurations, but this is really an artifact of their being absorbed into the core, creating

a crowdion-like structure along the dislocation line.

Interaction energies from atomistics for the [1 1 1] dumbbell calculations can be seen in

Figure 13. As described above, all interaction energies are referred to the <1 1 0> structure,

so results from all atomistics calculations of interstitials can be compared directly. In the

regions where dumbbells rotated to the [1 1 0] shape, interaction energies are negative.
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Figure 12: [1 1 1] dumbbells are placed at various angles and positions about the disloca-
tion core and minimized; their final orientations are shown by color. Approximately one half
end up as <1 1 0>-type; the other half remain strongly <1 1 1> with some reorientation
to align with the helical structure of the screw dislocation.

Where the dumbbells rotated only slightly, interaction energies remain strongly positive,

while negative energies result when the dumbbell achieves the more stable configuration.

The missing lattice sites near the core indicate where a dumbbell was absorbed in the

dislocation, resulting in the low energy core structure.

Results from elasticity theory (Equation 9) are shown in Figure 14. Again, anisotropic

theory reveals the non-degenerate core structure while isotropic theory neglects it. In

fact, isotropic theory predicts almost no interaction at all. Because of the addition of

the E<1 1 1>
defect = .48 to the interaction energies, results from theory are referenced identically

to those from atomistics, and the results can easily be compared. Where our atomistics

show rotation to <1 1 0> structures, the theory indicates interaction energies slightly be-

low 0.48 for the [1 1 1]. Dumbbells in these regions feel an attraction to the core which

results in their reorientation to a more energetically favorable configuration. Thus, while

anisotropic elasticity does not explicitly predict the spontaneous rotation of <1 1 1> dumb-

bells, the preference for that rotation is present in the interaction energies of the <1 1 1>

dumbbell with the dislocation. Higher interaction energies are seen in the regions where no

reorientation is observed atomistically.
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Figure 13: The interaction energies between what are originally [1 1 1] dumbbells and a
screw dislocation core are shown as a function of of distance and angle from the dislocation
core. The same conventions as in Figure 9 are used. In the red regions, dumbbells convert
to the more energetically favorable <1 1 0>-type.

Figure 14: Interaction energies from elasticity theory (including the Edefect term of Eq. 9)
for a [1 1 1] dumbbell. Results using the anisotropic strain field are shown in (a); isotropic
is shown in (b). Note that the energy is scaled differently than in previous plots, but
quantitatively may be compared directly.
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Although anisotropic elasticity theory provides a glimpse into the energetics near the

core, it is unable to predict where dumbbells may reorient and what their final state will

be. That is, elasticity theory cannot determine when a given structure is stable, only what

its energy is if one assumes that it is stable. Atomistics is needed to obtain this crucial

information.

2.4.3 <1 0 0> Dumbbell

The [1 0 0] dumbbell has the highest formation energy of the three primary dumbbells in the

bulk and is generally not stable for any significant time. So, perhaps it is not surprising that

this dumbbell is also unstable near a dislocation core. A complex landscape of energetics

is revealed in Figure 15. As can be seen in Figure 16, this is due to the fact that all of the

dumbbells originally introduced in the [1 0 0] orientation transform under minimization.

Most become some type of <1 1 0> or <1 1̄ 0> structure. Which variant an individual

dumbbell transitions to depends on its initial location about the core. Vectors are shown for

each lattice site; these run along the resulting dumbbell, and many have partial extent into

the page. [1 0 0] dumbbells lying near the [1 0 1̄] or [1̄ 1 0] directions transition to be one of

the indicated types, respectively; these are the lowest energy structures attained. In other

areas, dumbbells become variants of <1 1 0>. In the [0 1̄ 1] direction, this configuration

is not as low energy as a [1 0 1̄] shape would be. Presumably, the lowest energy <1 1̄ 0>

configurations are unattainable under a simple minimization, while a <1 1 0> orientation

provides an acceptable local minimum.

Due to symmetry considerations, the patterns of behavior described above will occur

for the [0 1 0] and [0 0 1] dumbbell orientations, though rotated by 120◦. Just as for the

case of the [1 1 1] dumbbell, continuum elasticity would not be able to predict the unstable

nature of the [1 0 0] dumbbell.

2.4.4 Vacancy

The results for vacant lattice sites are presented in Figure 17. Perhaps unsurprisingly,

negative interaction energies are seen for vacancies in the regions where positive interaction

energies are observed for interstitials, and vice versa. That is, where an interstitial is
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Figure 15: The interaction energies between [1 0 0] dumbbells and a screw dislocation
core are shown as a function of of distance and angle from the dislocation core. The
same conventions as in Figure 9 are used. (a) shows the interaction energy calculated by
atomistics. It is important to note that the majority of the dumbbells reorient to more
energetically favorable configurations during minimization, so these energies do not truly
represent the interaction between [1 0 0] dumbbells and the core. (b) shows E calculated
by anisotropic continuum theory; in this case the interaction energies are representative of
[1 0 0] dumbbells. Note the different scales for the two graphs. Both are referenced for a
value of 0 equal to a <1 1 0> dumbbell in the bulk.

Figure 16: [1 0 0] dumbbells are placed at various angles and positions about the dis-
location core and minimized; their final orientations are shown by color. The majority of
dumbbells reorient to some variant of a <1 1 0> dumbbell. Vectors on top of each point
indicate the direction of the dumbbell (some are partially pointed into the page).
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Figure 17: The interaction energies between vacancies and a screw dislocation core are
shown as a function of of distance and angle from the dislocation core. The same conventions
as in Figure 9 are used. Results from atomistic calculations are shown in (a); anisotropic
continuum results are shown in (b). No results are displayed for isotropic elasticity theory;
due to the nature of the matrices, this theory predicts no interaction whatsoever.

attracted to the dislocation, the vacancy is repelled, and vice versa. The magnitudes of the

interactions for vacancies are significantly less than those for interstitials, however. Positive

interaction energies do not exceed 0.003 eV, which indicates that the dislocation core never

has a strong repulsive effect on vacancies. Negative interaction energies just outside the

core dip to around -0.07 eV; when a vacancy is absorbed by the core the system energy

falls by about 0.35 eV. A vacancy has a symmetric dipole tensor which, unlike interstitial

dumbbells, results in an isotropic distortion of the lattice around it.

When we compare results from atomistics to those of elasticity theory, agreement is

quite good. The sign and magnitude of the interaction energy is similar everywhere except

within about 10 Å of the core. Here, atomistics shows a negative interaction energy in all

directions, with absorption of the vacancy within about 5 Å of the core. The behavior is

qualitatively similar to that observed for the interstitial.

Comparison with isotropic elasticity theory is not shown because the vacancy dipole

tensor has only diagonal components and the strain field has only off-diagonal components.

As a consequence, no interaction is predicted by Equation 7 at all.
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2.4.5 Absorption by the Core

Spontaneous absorption of an interstitial defect by the core is observed, regardless of the

initial orientation, when the defect is placed within a few angstroms of the core. The radius

within which an interstitial will be absorbed is somewhat larger for the less stable defect

configurations than for the <1 1 0> types. Absorption of an interstitial results in a crowdion

structure along the dislocation line. This crowdion may form along any of several of the

columns of atoms nearest the core. These structures are essentially degenerate in energy

when compared to the energy of the system before absorption. An example of this is shown

in Figure 18. In Figures 12 and 16, the lattice sites which convert to this structure are

shown in blue, with <1 1 1> orientation. This absorption by the core generally occurs

when the dumbbell is placed within an approximately triangular region about 6 Å from the

center of the dislocation; this volume encompasses all the lattice sites in any of 10 [1 1 1]

columns parallel to the dislocation. In the case of <1 1̄ 0> dumbbells, which are the most

stable, absorption occurs only in the 5 columns closest to the core, as shown in Figure 9.

This absorbed state is ∼2.5 eV below the 0.0 eV reference energy of the interstitial infinitely

far from the dislocation; in other words, the system reduces its energy by about 2.5 eV by

absorbing an interstitial, or the binding energy of the interstitial to the core is about 2.5

eV.

Similar to the interstitials, a triangular region of low energy configurations exists for the

vacancy (see the purple region in Figure 17). Having a vacancy within this region lowers

the system energy by about 0.35 eV (the binding energy of a vacancy to the core is about

0.35 eV). However, unlike with absorption of an interstitial, the vacancy keeps its character

within the core region. As is shown in Figure 19, the atoms near the vacancy relax around

it, but the vacancy essentially remains localized to a lattice site.

2.5 Discussion

Absorption of interstitials in the dislocation core enables kink nucleation and glide, as

well as core spreading [33, 117, 118]. These effects are modeled at longer length and time

scales with large scale constitutive models, such as in [112], which rely on input from
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Figure 18: Core structure before (left) and after (right) minimization of a [1 1 0] dumbbell.
The dumbbell reorients to become a crowdion along the dislocation line. The two atoms of
the dumbbell are highlighted as a visual aid.

Figure 19: Core structure before (left) and after (right) minimization of a vacancy. The
vacancy, marked by an empty box, maintains its character within the core; neighboring
atoms relax around it.

35



[1 1 2]

S

[1 0 1] [0 1 1]

[1 1 0]

[1 0 1][0 1 1]

[1 1 0] VVVV VVV VV V

V V
V

V VV

V
VV

V
V V

V

V

V

VV
V

Figure 20: For a right-handed 1/2 [1 1 1] screw dislocation vacancies have the lowest
interaction energies along the [1 1̄ 0], [1̄ 0 1], and [0 1 1̄] directions, while interstitials prefer
to lie perpendicular to the dislocation line along the [1̄ 1 0], [1 0 1̄], and [0 1̄ 1] directions.

atomistic simulations to govern their dynamics. However, as was previously discussed, many

of these codes still rely on isotropic formulations, because of the ease of implementation and

generality.

Isotropic continuum theory is shown to be inadequate for describing the interactions be-

tween defects and the screw core in Fe based systems, both quantitatively and qualitatively.

Anisotropic theory is certainly more promising, with overall good qualitative and improved

quantitative agreement with atomistics; however, our results indicate that anisotropic elas-

ticity calculations can not be used solely to describe the interactions between defects and

dislocation cores. First, anisotropic calculations alone do not predict which dumbbell struc-

tures will be stable near the core. Second, quantitative agreement is not good in this region.

These limitations do not preclude the use of anisotropic theory, but indicate that it must

be carefully and thoughtfully applied.

In addition to being affected by displacements along the dislocation line, slip may be

significantly affected by the atomic displacements perpendicular to the Burgers vector;

these may be considered edge components of the displacement[50, 20, 32, 51]. The stresses
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on these non-glide components affect the plastic behavior, modifying the critical resolved

shear stress needed to move the dislocation. In the isotropic case, there is no displacement

perpendicular to the dislocation line, only along it. In the anisotropic case, there are edge

components of the displacement, however they are not as prominent as they are in the

atomic model. This discrepancy is likely to be very important in determining the behavior

of the interaction of the dislocation with defects very near the core.

Generically, the regions about the core can be split into those with a preference for

vacancies (along the [1 1̄ 0], [1̄ 0 1], and [0 1 1̄] directions) and those with a preference

for interstitials (along the [1̄ 1 0], [1 0 1̄], and [0 1̄ 1] directions), as shown in Figure 20.

This segregation may reduce the overall recombination of defects in the vicinity of the

dislocation, until absorption within the core itself. The determination of what orientation

of interstitial dumbbell is preferred for a given lattice site is a problem for which atomistics

provides some insight. Members of the <1 1̄ 0> family have the most strongly negative

interaction energies, but only in the regions where having an interstitial is preferred over a

vacancy. Here, a dumbbell pointed towards the core with no extent along the dislocation

line is the lowest energy configuration. In the regions where <1 1 0> dumbbells show

positive interactions energies with the core, members of the <1 1 0>+ family are more

likely than those from <1 1̄ 0>; both have positive interaction energies, but the former is

less strongly repelled. [1 1 1] dumbbells may also survive in these regions, although they

are slightly higher in energy. The [1 0 0] configuration is too unstable to exist near the

core; it will typically reorient to a <1 1 0> structure. Continuum theory does reveal the

proper hierarchy of energetics, but does not show conclusively which orientations will be

stable near the core, nor what shape an unstable dumbbell will reorient to under the core’s

influence. Knowing these details is critical for determining, for example, defect absorption

rates into the dislocation core.

Near the core, continuum theory is completely unable to describe interactions, due to the

1/r terms in the strain fields, consistent with previous work. Additionally, atomistics shows

a negative interaction energy close to the core (within approximately 10 Å) for all defects in

all direction, indicating the eventual absorption of the defect into the core. The core shows
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itself in atomistic simulations as a triangular region about the center of the dislocation

with a radius of ∼6 Å. Continuum theory often shows positive interaction energies along

particular directions, neglecting this important core effect. Far from the core, qualitative

agreement is good for the <1 1 0> dumbbells and the vacancies, where stability is not

an issue (that is, there are minima in the potential energy landscape near all the initial

positions of the defects). However, quantitative agreement is lacking. This issue could be

improved with more advanced techniques for calculating the dipole tensor, such as including

higher order terms beyond the first order. In any case, while anisotropic elastic theory does

predict qualitative behavior far reasonably well, and could be used to form the basis of a

higher level model of defect-dislocation interaction, the differences between elasticity and

explicit atomistics are great enough that results should always be validated against atomistic

calculations.
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CHAPTER III

HYDROGEN BUBBLES

3.1 Motivation and Literature Review

Understanding the mechanisms behind phenomena such as embrittlement, hardening, creep,

and swelling requires a fundamental understanding of how these gases interact with defects

in the microstructure. While it seems clear that hydrogen and helium do play an important

role, there are many open questions on how exactly the gases assist in these processes

[107, 24, 96].

There is a large body of work on the role of hydrogen with steels. Many have documented

the deleterious effects of hydrogen [107, 58, 18], but the processes responsible for the effects

remain open for debate. In irradiated environments such as fission and fusion reactors and

accelerator-driven systems, hydrogen may be present due to adsorption, implantation, or

transmutation [45]. Hydrogen has a fairly low solubility in alpha-iron and a rapid diffusion

rate; thus it can be difficult to study experimentally, especially at atomistic scales. Once

in the bulk, hydrogen diffuses quickly between tetrahedral interstitial sites until reaching

a surface or a trap, such as a vacancy or grain boundary [106]. Computational atomistic

studies provide a chance to study the details of this process on a scale not possible with

experiment [87, 72]. There have been a large number of ab initio and atomistic scale studies

performed on the iron-hydrogen system. These include studies on the diffusion of hydrogen

through bulk iron [120, 66, 139], the trapping of hydrogen at monovacancies [62, 115], and

the accumulation of hydrogen at crack tips [131] and dislocations [68, 114, 137].

Hydrogen embrittlement (HE) is a particularly important issue with many different

theories about the cause behind it. Deformed, strained, and irradiated systems are particu-

larly susceptible. There have been multiple theories proposed on what causes HE in metals

[108, 109, 10, 147]. Hydrogen–enhanced localized plasticity (HELP) [10] theory predicts

that hydrogen makes dislocations more mobile, leading to increased deformation in specific
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areas, and ultimately plastic failure. Hydrogen may also cluster at crack tips, eventually

leading to decohesion [108].

However, there is recent evidence that vacancy assisted mechanisms may play the most

important role in HE [140, 101, 63]. The excessive numbers of vacancies generated by irra-

diation may be stabilized internally by hydrogen, allowing for the growth of small individual

vacancies into large voids. The resulting increase in plasticity leads to failure of the steel

[101, 102]. A thorough understanding of the thermodynamics of vacancy-hydrogen clus-

ters is essential to determining the role that hydrogen bubbles may play in the extremely

complex picture of hydrogen embrittlement.

Experimental results from ion beam implantation and detrapping studies provide a basis

for comparison and verification of atomistic studies. Ion-beam experiments by Myers et al.

[98] investigated defect trapping of deuterium in iron. Using ion-channeling analysis, the

locations of hydrogen atoms near defects can be deduced when measurements are taken

along at least two axes. Deuterium atoms were implanted in an bcc iron single crystal and

the crystal was annealed to allow the D to move to traps. Analysis showed that a D trapped

at a monovacancy resides in a positions offset by δ = 0.4 Å from an octahedral interstitial

site (O-site) in the direction of the vacancy. The authors reported that their results allow

for alternate interpretations involving multiple lattice positions for D, but did not feel that

this more complex explanation was necessary. Two detrapping stages were identified at

260 K and 350-450 K when the temperature of the samples was ramped up, with binding

energies of 0.48 and 0.81 eV, respectively. The first release was associated with D trapped

at monovacancies, while the higher temperature release was speculated to correspond to

vacancy clusters or dislocation trapping. Effective medium theory (EMT) was proposed to

explain these experimental results [104, 103].

Later work by Myers et al. [97] identified three types of defect traps, with energies of

0.53, 0.71, and 0.78 eV, when iron was implanted with both D and He. The first type

was assumed to be due to monovacancies, the second type due to vacancy clusters, and the

third type is due to trapping at He bubbles. Further work was performed by Besenbacher et

al. [8]. When the fluence was increased compared to the above mentioned experiment, an
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additional release stage developed at 220 K. The authors deduced that this stage was due

to multiple occupancy of a vacancy by up to six D atoms. When accounting for vacancy

mobility, it was found that 1-2 D are trapped by a vacancy with strength of 0.63 eV, while

3-6 D are trapped by 0.43 eV. A review of many of these results, as well as additional results

for surface interactions and a transport formalism for hydrogen behavior, are described in a

review paper by Myers et al. [99]. Results from effective-medium theory (EMT) [104, 103]

reasonably well to these experimental results, with 1-2 D trapping of about 0.8 eV, 3-4 D

trapping around 0.52 eV, and 5-6 D trapping around 0.41 eV. These numbers were generated

by assuming that all D occupied an offset O-site, with symmetric minimization allowed in

the direction of the nearest (1 0 0) planes.

One of the most crucial pieces of information that must be known about hydrogen-

vacancy systems if complex studies are to be performed is the basic energetic information.

Additional experimental results and most recent density functional theory calculations seek

to answer this question by determining how many hydrogen atoms may be bound to a

monovacancy. A hydrogen atom can be considered to be exothermically bound to a vacancy

its binding energy exceeds the heat of solution. The heat of solution of hydrogen in iron is

quoted as slightly different values from different sources, including 0.25 eV/atom [40], 0.29

eV [81] and 0.32 eV/atom [141] from experiment and calculation. Since experiment showed

that up to six hydrogen atoms are trapped by 0.43 eV, larger than any of the found heats

of solution, it was generally agreed upon in the literature that all six offset O-sites around

a monovacancy are exothermic [63, 40], and the H6V complex will be dominant over the

H2V complex in the bulk.

Tateyama and Ohno [141] performed density functional theory (DFT) calculations that

disagreed with this view. In a 54 atom supercell, up to six hydrogen atoms were placed in

offset O-sites. The first two hydrogens were bound by ∼0.60 eV, in good agreement with

the value of 0.63 eV from experiment. For 3-5 hydrogen atoms, trapping energies ranged

between about 0.4 and 0.3 eV, also showing agreement with the experimental 0.43 eV. The

sixth hydrogen atom showed a slightly negative binding energy, indicating that it would

not be trapped. Compared to the hydrogen heat of solution, which the authors calculated
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to be 0.32 eV, only 1-3 hydrogen atoms were exothermic, with the third just barely so.

The authors concluded that the H2V state is actually dominant, not the conventionally

accepted H6V state. Based on these results, the authors investigate the shapes of H2V

clusters, finding that anisotropic clusters with linear and tabular shapes will be generated.

While there exist many studies on hydrogen bubbles, a fundamental understanding of

themechanisms behind their effects is still largely lacking. Using empirical potentials with

molecular dynamics techniques, we are able to model much larger systems than are currently

possible with first principles techniques, while retaining the detail of modelling individual

atoms. In this chapter, we simulate clusters of hydrogen and vacancies within alpha-iron to

determine their energetic properties.

3.2 Methods

Our goal is to simulate hydrogen-vacancy clusters and calculate their minimum energy

configurations. Clusters consisting of m hydrogen atoms and n vacancies (HmVn) are

created in bcc iron. Unless otherwise mentioned, a simulation cell of size 15a0×15a0×15a0

is employed, where a0 = 2.8553 is the lattice constant of iron. In a perfect cell, there are

6750 Fe atoms. Periodic boundary conditions are used in all dimensions. The LAMMPS

Molecular Dynamics Simulator [113] is used for all relaxation steps.

For the interatomic potentials, two variants of an embedded atom method (EAM) po-

tential developed by Ramasubramaniam et al. [119, 121] for iron and hydrogen are used for

all calculations. Referred to by the developers as potentials B and B′, these potentials both

take their Fe-Fe interactions from Ackland et al. [3], while the H-H and Fe-H interactions

are fit from density functional theory (DFT) data. Potential B′ is fit to bulk and vacancy

DFT data, while potential B is additionally fit to surface DFT data. Potential B is rec-

ommended over B′ by the potentials’ authors, however they note that B′ performs slightly

better under a strain field in a bulk environment. Since our system is essentially a bulk

environment lacking surfaces, it was unclear which variant would be more well-suited to the

problem of hydrogen-vacancy clusters. We test both potentials and characterize the thermo-

dynamic properties of the resulting cluster configurations by calculating formation energies
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and binding energies of vacancies, hydrogen atoms, and self-interstitial atoms (SIAs).

A formation energy is defined as the difference between the total energy of the system

of interest and the sum of the energies of the constituent parts when separated. Thus, the

formation energy of each HmVn bubble is calculated by

Ef (HmVn) = Etot(HmVn)−
{

(N − n)EFe
coh +mEH

coh

}
(19)

where N is the total number of atoms in the perfect system, the tot subscript indicates

total system energy and the coh subscript indicates cohesive energy. Cohesive energy is

calculated for bcc iron at EFe
coh = −4.013 eV/atom, and the cohesive energy for hydrogen is

taken to be EH
coh = −2.37 eV/atom [119]. Additionally, formation energies are calculated

for <1 1 0> SIAs, giving a value of ESIA(110)
f = 3.529 eV, and for hydrogen interstitials

occupying the tetrahedral interstitial site, with EH
f = 0.292 eV or 0.296 eV for potentials B

and B′, respectively. EH
f is equivalently termed the heat of solution of hydrogen in iron. In

order for the formation energies calculated to be meaningful, it is imperative to use minimum

system energies. However, it is non-trivial to find the minimum energy configurations of

(m+n)-body systems; we use a combination of molecular dynamics and Monte Carlo (MC)

algorithms to search for these configurations.

First, the energetics of voids without hydrogen are investigated. A vacancy is introduced

into the simulation cell, and the system is minimized using a conjugate gradient algorithm,

yielding a single vacancy formation energy EV
f of 1.721 eV. Next, the atom with the highest

potential energy is removed from the system, and again the system is minimized. This

scheme is iteratively conducted to create voids up to 10 vacancies, and the formation energy

of each is calculated. These systems with n vacancies form the initial configurations into

which hydrogen atoms are later introduced. In practice, the voids are roughly spherical.

Next, hydrogen atoms are introduced to the systems of n vacancies. For this initial study,

each combination of m and n that fit the following conditions is considered: 0 < m < 50,

1 < n < 10, and the ratio (m/n) ≤ 10.

A region of radius 1.3 Å is defined around each of the n vacant lattice sites. m hydrogen

atoms are randomly inserted into the volume formed by the union of these regions. The
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system is minimized to a local minimum using conjugate gradient in the LAMMPS MD

Simulator. Then, the system is quenched to 0 K by scaling down the velocity components of

each atom. The total system energy is measured and recorded. At this point, a Metropolis

Monte Carlo scheme [85] is used, in combination with minimizations through molecular

dynamics, to aid in finding lower energy configurations. Every hydrogen in the system

is randomly displaced from its site by a maximum of rmax Å in each of the x, y, and z

directions. The system, including both the iron and hydrogen atoms, is again minimized at

300 K with the LAMMPS MD Simulator to come to a new local minimum, then quenched

to 0 K. If the total system energy is lower than in the previous state (∆E < 0), the

transition is accepted, and the newly found configuration is used as the basis for the next

iteration. If ∆E > 0, the transition is accepted with probability p = exp(−∆E/kT ), where

k is Boltzmann’s constant and T is absolute temperature. Accepting some transitions that

raise the system energy allows the cluster to avoid getting stuck in local minima. Iterations

are repeated until the stopping criterion, discussed below, is met. An iteration consists of

three steps: moving the hydrogen atoms within the cluster, minimizing the entire system

using MD methods, and comparing the energy to previously seen states and accepting or

rejecting the new state with MC criterion. A schematic of this iterative process is shown in

Figure 21.

The systems tend to find lower energy states infrequently, but with relatively large

decreases in energy, instead of finding slightly lower energy states on nearly every step.

Thus, we use a stopping criterion based on number of iterations, instead of stopping when

the change in energy is below some set value. Each bubble simulation is continued for a

minimum of 1000 steps, and the total number of steps is adaptively increased for each case

so that the simulation runs for at least q steps without finding a new lowest energy state.

Additionally, a subset of clusters (HmV1, 1 ≤ n ≤ 6) are replicated in a smaller

3a0 × 3a0 × 3a0 simulation cell, using only potential B. Density functional theory (DFT)

is also used to study the energetics of this subset of configurations. In these calculations,

performed by Benjamin Beeler, the lowest energy configuration for each HmV system is
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(a) (b)

(c) (d)

Figure 21: The Monte Carlo process is depicted schematically for the H3V1 cluster. First,
atoms are randomly inserted (a), then minimized (b). The atoms are displaced randomly
in the x, y, and z directions (c) and minimized multiple times. Finally, the low energy
configuration is found (d). Hydrogen atoms are shown colored, the vacancy is shown as a
square in the center of a bcc iron cell.
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placed into a 54 atom supercell and analyzed with the Vienna ab initio Simulation Pack-

age (VASP) [71, 67, 11]. The Projector Augmented Wave (PAW) method [65] is utilized

within the density functional theory [61, 70] framework. Calculations are performed us-

ing the Perdew-Burke-Ernzerhof (PBE) [14] Generalized Gradient Approximation density

functional implementation for the description of the exchange-correlation. Methfessel and

Paxton’s smearing method [84] of the first order is used with a width of 0.2 eV to deter-

mine the partial occupancies for each wave function. Relaxations are performed using the

conjugate gradient method with a convergence criterion on the forces of 0.02 eV/Å. An

iron PAW pseudopotential with the 3d74s1 valence electronic configuration and a core rep-

resented by [Ar] along with a hydrogen PAW pseudopotential with a 1s1 valence electronic

configuration is utilized. A cell was analyzed removing symmetry restrictions with a 4x4x4

gamma-centered k-point mesh, resulting in 36 irreducible k-points in the Brillouin zone. To

make the calculations more accurate, the energy cutoff was increased to 500 eV.

3.3 Results

3.3.1 Performance of Interatomic Potentials

It is desirable to find the ground state, or lowest energy, configuration of hydrogen atoms

with a void of a given size in order to accurately calculate its energetics. Since the formation

and binding energies are on the order of 1-10 eV, configurations with higher energies will

cause scatter in the data. Optimizing the iterative scheme to search out very low energy

configurations with a reasonable amount of computational resources is needed.

The three parameters that control the speed and accuracy of the scheme are rmax, q, and

T . rmax controls the maximum distance in each of the x, y, and z directions that hydrogen

atoms are displaced each iteration, q determines the number of iterations that will be run,

and T gives the temperature that is considered when accepting or rejecting transitions.

To find the optimal values for each of these parameters for each potential, a test system

with m = 18 and n = 3 is considered for its relatively small size but high cluster density [54].

The two potentials vary considerably in their performance. For each parameter variant, two

trials were run, resulting in a total of 34 trials for each potential. When the same energy
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is recovered multiple times, we may be fairly certain that this is the lowest energy state

of the system. This is the case for potential B′, where 29/34 of the trials found the same

lowest energy configuration. However, energies varied tremendously for potential B. The

lowest energy that was recovered was seen in only one case, with the average system energy

over all trials being 0.25 eV higher than the minimum. This difference is significant in the

calculation of bubble formation and binding energies, which are on the order of 1 eV.

Values of rmax between 0.4 and 1.2 Å in increments of 0.1 Å were tested. Values between

0.7 and 1.0 were found to be suitable. Smaller values do not allow for a thorough search of

the potential energy surface (PES), and the hydrogen atoms fall back into their previous

positions under minimization. Larger values may cause hydrogen to be artificially removed

from the bubble or may cause too much randomness, cancelling out the benefits of using

MC. For both potentials, increasing rmax results in increased time per iteration. One value

of rmax must be used for final calculations over all possible combinations of m and n, since

the calculated binding energies for a HmVn bubble depend on the formation and system

energies of bubbles possessing m ± 1 and n ± 1 atoms. A value of rmax = 1.0 Å, nearly

equal to twice the Bohr radius, was selected such that approximately 1/10 of the proposed

transitions that raise the energy will be accepted. This accounts for thermal motion over a

wide variety of combinations of m and n.

Changing the value of T used for the Monte Carlo step affects the number of energy

raising configurations that will be accepted. For the same reasons as were described for

rmax, very low or high values are inappropriate. We tested T = 200, 250, 300, 350, 400,

450, and 1000 K, and found that values between 300 and 450 gave good results. T = 300

was used for the results presented in this paper.

The value of q determines how many iterations will be run before the system settles on

a final energy; values of 500, 1000, 1500, and 2000 were tested. Increasing q significantly

increases computational time, with each iteration taking approximately 1 minute on one

processor. For potential B, trials with values of q greater than 500 were more likely to result

in lower final energies. However, in all cases the number of iterations between lowest energy

states was less than 1000, so q = 1000 was chosen for all runs using potential B. q = 500
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Figure 22: The pair potential part of the EAM potential is shown for Fe-H and H-H
interactions. Solid lines indicate potential B, dotted lines indicate potential B′. φFeFe is
identical for both potentials.

was found to be sufficient to minimize systems using potential B′.

A smaller battery of tests were also run on the lower ratio H24V8 system to confirm the

results. Results were consistent with those described above.

The potential energy surfaces generated by potentials B and B′ are very different and

so result in different minimization characteristics. Both potentials are of the EAM type,

with contributions to the total energy coming from pair potential and electron embedding

functions. The pair potential functions for the H-H and Fe-H interactions for both potentials

can be seen in Figure 22. Due to the deep, short-ranged H-H interaction of potential B, the

PES is complex, pitted, and difficult to fully explore in a reasonable amount of time. The

gradual cutoff of the H-H interaction with potential B′ results in a much smoother PES.

Overall, potential B′ is much quicker and easier to minimize with confidence than potential

B.
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Figure 23: Formation energy curves for clusters of m hydrogen atoms and n vacancies.
Results for potential B are on the left and potential B′ on the right. Ratio m/n is shown
on the abscissa, formation energy on the ordinate, while curves indicate different values of
n.

3.3.2 Energetics

The formation energy, calculated using Equation 19, for each configuration can be seen in

Figure 23. Important theoretical differences between the two potential variants become

apparent when comparing these two graphs. For potential B, the formation energy of a

bubble increases as n increases and is never negative. The minimum formation energy for

a particular value of n shifts from occurring at m/n = 5 for n = 1 to m/n = 2.6 for n = 10.

In contrast, the formation energy of a bubble calculated with B′ decreases as n increases,

becoming more strongly negative as the void grows in size. The minimum formation energy

for a given n always occurs at m/n = 5. The trend seen with potential B′ suggests that

it is energetically favorable for hydrogen to be inside a bubble within bulk iron instead of

taking molecular form outside of the bulk. However, iron is not observed to absorb large

quantities of hydrogen; in fact, the opposite is true - hydrogen has a very low solubility

in iron. The trend shown by potential B is more physically believable. It is energetically

preferable for hydrogen to be outside of iron than trapped in a void, but the formation

energy of the cluster is low enough that a hydrogen-vacancy cluster may form and survive

in the right conditions.
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The jaggedness seen in the formation energy curves is a product of two effects. First,

our method is non-exhaustive in searching for low energy configurations unless an infinite

amount of time is allowed for the search, and the global minimum may not be found for

every cluster. This is occasionally the case for high n or m/n clusters. Second, when the

ratio is too high to support further hydrogen binding, a cluster may eject some hydrogen

atoms out of the bubble proper, effectively resulting in a bubble with a lower ratio. This

appears as scatter in the data, but is actually an important indicator of how much hydrogen

a bubble may support. Potential B suffers compared to potential B′ in both these regards,

due to the potential shape and characteristics.

The energetics of a cluster of given composition were characterized by the binding en-

ergies of a vacancy, a hydrogen atom, and an SIA to that cluster. The following equations

were used for the calculations:

EB(V ) = Ef (HmVn−1) + EV
f − Ef (HmVn) (20)

EB(H) = Ef (Hm−1Vn) + EH
f − Ef (HmVn) (21)

EB(SIA) = Ef (HmVn+1) + ESIA
f − Ef (HmVn). (22)

These equations are similar to those used by Morishita et al. [92] in their work on the

thermal stability of helium-vacancy clusters in iron. Like for their bubbles, we find that the

trends in binding energies can be most easily described as functions of the ratio of m to n.

As can be seen in Figure 24, the presence of hydrogen strongly affects the binding of

vacancies to voids. Both potentials show that the binding energy of a vacancy to a cluster

increases as the hydrogen inventory increases, indicating that hydrogen has a stabilizing

effect on a bubble. With potential B, the data become scattered as the ratio approaches

4, while the data for potential B′ does not show scatter until a ratio of near 7. This is

an indication of the highest ratio that is supported by each potential. Bubbles with ratios

higher than 4 and 7 for potentials B and B′, respectively, have emitted hydrogen atoms from

the cluster core, giving them effectively lower ratios and throwing off the binding energy

calculations. For both potentials, the ‘even’ clusters with n = 6, 8, and 10 vacancies have

the higher values of EB(V ) than do the ‘odd’ clusters of n = 5, 7, and 9 vacancies. The
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Figure 24: Binding energy of a vacancy to the cluster for potentials B (left) and B′ (right).
Ratio m/n is shown on the abscissa, binding energy on the ordinate, while curves indicate
different values of n. As hydrogen inventory increases, so does the binding of vacancies.

odd voids lack the symmetry of the even voids, making them less tightly bound, whether

or not hydrogen is present.

The opposite trend is observed in the binding of iron atoms neighboring the cluster

(Figure 25). These neighbors may be emitted as self-interstitials into the bulk if not tightly

bound, effectively increasing the size of the bubble (i.e. loop punching or Frenkel pair

production). Fe atoms are more easily removed from their lattice sites as the density

of hydrogen is increased, leading to an effective increase in bubble size. This is another

indication of hydrogen’s stabilizing effect on vacancy clusters. With potential B, we observe

a slow decrease in binding energy from ratio 0 to 2, then a more dramatic increase until

scattering begins at around m/n = 4. Potential B′ displays a gradual decrease in SIA

binding energies until leveling off and beginning to scatter as the ratio approaches 7 and

bubbles eject hydrogen atoms to maintain low ratios. Again, we observe some splitting in

the curves due to evenness or oddness of the void.

Finally, Figure 26 shows the binding energy of a hydrogen atom to the cluster vs the ratio

of hydrogen atoms to vacancies. Like with SIAs, this number decreases as ratio increases.

A hydrogen atom can be considered to be unbound from the bubble if its binding energy

is less than the heat of solution (0.29 eV). Each curve crosses this line at approximately
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Figure 25: Binding energy of a neighboring iron atom to the cluster for potentials B
(left) and B′ (right). Ratio m/n is shown on the abscissa, binding energy on the ordinate,
while curves indicate different values of n. As hydrogen inventory increases, binding of
neighboring iron decreases.

where we would expect it to from the discussions of the binding energies of vacancies and

SIAs - at around m/n = 4 for potential B and m/n = 7 for potential B′. Even at lower

densities, hydrogen atoms are not strongly bound to the cluster and may easily be removed

at working temperatures.

Ion implantation and ion-beam analysis studies on hydrogen trapping in iron [97, 8, 99]

provide a basis for comparison with our results. Vacancy traps and a large hydrogen inven-

tory are created by bombarding bulk iron with deuterium and helium at low temperature,

then the temperature is ramped up while simultaneously measuring hydrogen inventory.

The experiments find trap strengths of 0.63 eV and 0.43 eV for 1-2 and 3-6 hydrogen

atoms, respectively, about what are assumed to be monovacancies (plus an additional higher

strength trap within helium bubbles). This is consistent with our findings for the binding

of hydrogen.

Bubble growth may occur by absorption of vacancies or by the emission of neighboring

iron atoms into the bulk. In order for the latter phenomenon of loop punching to occur,

the emission of iron atoms from around the bubble must compete effectively with emission

of a hydrogen atom. However, at any given ratio, hydrogen atoms are significantly less
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Figure 26: Binding energy of a hydrogen atom to the cluster for potentials B (left) and B′

(right). Ratio m/n is shown on the abscissa, binding energy on the ordinate, while curves
indicate different values of n. As hydrogen inventory increases, the binding of hydrogen
atoms decreases.

well bound to the cluster than are SIAs, so loop punching would not be expected to occur.

Vacancies, which may be present in abundance in an irradiated environment, are a more

likely contributor to bubble size.

3.3.3 Multiple Hydrogen Occupancy of Monovacancies

After analysis of the full suite of simulations above, interesting result is discovered for the

case of multiple hydrogen atoms surrounding a monovacancy. The trapping of multiple

hydrogen atoms at a vacancy in bcc iron is an issue that has been considered by many

authors. Experiments [98, 97, 99] have shown that a single hydrogen is trapped by a

vacancy in a position slightly offset by δ = 0.4 Å from an octahedral interstitial site (O-

site) towards the vacant site. Six of these sites exist in the bcc structure for each vacancy,

and it has been assumed that these sites will be the sites of choice when multiple hydrogen

atoms are trapped by a vacancy, with sites being filled in the order shown in Figure 271.

The number of these sites that are thermodynamically favorable has been much debated,

with experiment and effective-medium theory (EMT) [63, 40] favoring H6V complexes, and

1The configurations pictured in Figure 27 depict what will be referred to as the mOct configurations
(before relaxation), with m denoting the number of hydrogen atoms in the system.

53



1

2

3 4

5

6

Figure 27: Generally accepted sites for six hydrogen atoms around a monovacancy (the
6Oct configuration) in bcc iron. Iron atoms are shown in black, octahedral sites are shown
with dotted circles, vacancy is shown as an empty square. The six hydrogen atoms are blue
and offset from octahedral sites by δ; numbers indicate the order in which atoms are added
to the system to generate mOct configurations.

recent ab initio results showing H2V complexes to be preferred [141].

However, our research indicates that there are more energetically favorable HmV con-

figurations than have been studied in the past, and we find new low energy structures for

four, five, and six hydrogen atoms about a monovacancy. Although the method described

above for locating low energy states of a cluster allows us to reach this conclusion because

it makes no initial assumption about the configuration of the hydrogen atoms within a

monovacancy, due to the importance of the electrons in calculations involving hydrogen,

it cannot be used alone to describe energies accurately. Thus, density functional theory

(DFT) calculations are subsequently performed on the low energy configurations obtained

by MD/MC methods.

The space of possible configurations for m hydrogen atoms about a monovacancy (HmV)

is first searched using molecular dynamics (MD) and Monte Carlo (MC) methods, as de-

scribed above. This method allows for a thorough exploration of the potential energy surface
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(PES) in a rather short time; however, due to the importance of the electrons in calcula-

tions involving hydrogen, it cannot be used alone to describe energies accurately. Thus,

density functional theory (DFT) calculations are subsequently performed on the low energy

configurations obtained by MD/MC methods.

The sixmOct configurations are generated and minimized using the LAMMPS molecular

dynamics simulator, using a 3a0 × 3a0 × 3a0 cell with periodic boundary conditions, and

Ramasubramaniam et al.’s potential B. As should be expected, we find results equivalent

to those originally published by Ramasubramaniam et al. [119]. For one, two, or three

hydrogen atoms, the MD/MC method recovers the same configurations that are found

when a system starting from the mOct state is minimized. The minimized position for a

single hydrogen is offset from the O-site by δ=0.26 Å. When a second hydrogen is added, it

occupies the offset O-site opposite from the first hydrogen, as is generally accepted. In this

case, δ is lowered to 0.23 Å. When three hydrogen atoms are placed in the positions shown

in Figure 27, two of the atoms relax off of the lines between the O-site and the vacancy

while continuing to lie on a (1 0 0) plane, forming the configuration shown in Figure 28.

However, the MD/MC method finds new low energy configurations when considering

complexes with four, five, or six hydrogen atoms. When the 4Oct configuration is created,

all four hydrogen atoms lie on one plane. This is the most symmetric, and perhaps the

most intuitive, configuration. After a single 0K minimization, all four hydrogen atoms will

remain near plane, close to their initial positions. Two opposing atoms shift to positions

slightly above the plane; the other two move slightly below it. However, when the MD/MC

method is applied to the H4V system, the hydrogen atoms are found to form a tetrahedron.

This is still closely related to the offset O-sites model; if one of the in-plane hydrogen

atoms is moved to either vacant offset O-site, and the system is relaxed, our configuration

is recovered. The resulting structure is seen in Figure 29.

With 5 hydrogen atoms, the two configurations are similar. However, the one found with

our MD/MC method is a slightly tilted version of the 5Oct configuration, as can be seen in

Figure 30. The third, fourth, and fifth hydrogen atoms are shifted away from their offset

O-sites towards tetrahedral site (T-sites). The two configurations are nearly equivalent in

55



Figure 28: The positions of one, two, and three hydrogen atoms around a monovacancy,
found by the MD/MC method. These are the same positions that are found when the
corresponding mOct configurations are relaxed. As in Figure 27, iron atoms are shown as
black circles, hydrogen atoms are blue, and the vacancy is depicted with an empty square.

Figure 29: The positions of four hydrogen atoms around a monovacancy. 4Oct positions
are shown on the left; the lower energy positions from MD/MC are shown on the right. The
conventions described in Figure 28 are followed.

energy, but ours is slightly lower.

Minimizing a 6Oct configuration will result in no structural change, other than a slightly

varying δ. The MD/MC method gives a different answer. Two opposing H atoms are offset

from octahedral positions by only δ = 0.052 Å. The other four atoms lie in a (1 0 0) plane,

slightly offset from tetrahedral positions by β ∼ 0.12 Å and equidistant from each other.

This is shown in Figure 31, the 2Oct4Tet configuration.

It is important to remember that our minimization and positioning algorithms make no

initial guesses about the ideal positions for the hydrogen atoms; instead, hydrogen atoms

are randomly inserted into the space around the vacancies and allowed to find the lowest

energy positions through Monte Carlo methods. To quantify these results, we compared
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Figure 30: The positions of five hydrogen atoms around a monovacancy. 5Oct positions
are shown on the left; the lower energy positions from MD/MC are shown on the right. The
conventions described in Figure 28 are followed.

Figure 31: The positions of six hydrogen atoms around a monovacancy. 6Oct positions
are shown on the left; the lower energy 2Oct4Tet configuration is shown on the right. The
conventions described in Figure 28 are followed.
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Table 3: Energies (eV) found using molecular dynamics. Note that total energies ET and
formation energies Ef (Equation 19) are lower when m ≥ 4 for the MD/MC states than for
the corresponding mOct configurations.

mOct Positions MD/MC Positions
m ET Ef EB(H) ET Ef EB(H)
1 -213.641 1.417 0.611 -213.641 1.417 0.611
2 -216.323 1.105 0.611 -216.323 1.105 0.611
3 -218.827 0.971 0.432 -218.827 0.971 0.432
4 -221.197 0.971 0.299 -221.255 0.913 0.357
5 -223.511 1.023 0.242 -223.543 0.995 0.217
6 -225.666 1.242 0.084 -225.891 1.018 0.277

the total system, formation, and hydrogen binding energies from our simulations and those

from calculations assuming offset O-sites and experiment.

The formation energy of a HmV complex is calculated as in Equation 19 We calculate

the binding energy of the mth hydrogen to the Hm−1V cluster with

EB(H) = [ET (H1V0)− ET (H0V0)]− [ET (HmV)− ET (Hm−1V)]. (23)

Here, ET (H1V0) is the energy of a system with a tetrahedral hydrogen interstitial, and

ET (H0V0) is the total system energy of a perfect block of iron. This formula is mathe-

matically equivalent to Equation 21, however we use this form in order to directly compare

with results in the literature without worrying about numerical roundoff errors. Results

for ET , Ef , and EB(H) for both mOct and MD/MC configurations can be found in Table

3. Energies are equivalent for m =1, 2, 3 since the configurations are identical. Total

system energies are lower for our configurations than for mOct configurations when m ≥ 4;

formation energies are also lower.

To confirm our results, we performed ab initio calculations as well. We took both the

configurations found by MD/MC and the mOct configurations and analyzed their energet-

ics with DFT. We find that our calculations on the mOct states are consistent with what

has previously been published [141]. Again, we find that our MD/MC configurations have

slightly lower system energies than the mOct configurations in the literature. We compare

our results to those available in the literature; namely, Tateyama and Ohno’s DFT calcula-

tions on mOct configurations [141]. Hydrogen binding energy results can be seen in Table
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Table 4: Hydrogen binding energies EB(H) in eV from previously published DFT calcula-
tions, the DFT calculations done for this work, EMT, and experiment.

m DFT - mOct [141] DFT - MD/MC EMT [103] Experiment [8]
1 0.559 0.584 0.83 0.63
2 0.612 0.607 0.79 0.63
3 0.399 0.384 0.54 0.43
4 0.276 0.343 0.51 0.43
5 0.335 0.297 0.41 0.43
6 -0.019 0.002 0.42 0.43

4.

The mth hydrogen can be considered to be exothermically bound to a monovacancy if

its binding energy is greater than the heat of solution of H2 in iron. The heat of solution of

hydrogen in iron from experiment is 0.29 eV/atom [81]. DFT calculations find the heat of

solution to be 0.32 eV/atom. Using this value, Tateyama shows that up to three hydrogen

atoms are exothermically bound, while the fourth has a binding energy less than the heat

of solution. An addition of the fifth hydrogen atom again results in a slight bonding.

In contrast, we show that each additional hydrogen is less well bound than the one

before it, instead of predicting a jump in binding energy when adding a hydrogen atom

to the H4V cluster. Binding energies are exothermic for up to four hydrogen sites, when

arranged in a tetrahedron shape instead of a plane. For both the 6Oct configuration and

2Oct4Tet, the sixth atom has a binding energy close to zero.

Earlier experimental results from ion beam implantation and hydrogen detrapping stud-

ies, demonstrated that there are two release stages of hydrogen from single vacancies, at

0.63 and 0.43 eV [97, 8]. The former is postulated by these practitioners to be related to 1 or

2 H atoms being trapped at a monovacancy, while the latter corresponds to the presence of

3-6 H atoms. Effective medium theory (EMT) was proposed to explain these experimental

results, which suggests that all six sites are exothermic for hydrogen occupancy [104, 103].

The binding energies from EMT, however, are significantly higher than the experimental

results. Our values, on the other hand, agree rather well with experiment. For one or two

hydrogen atoms, we find hydrogen binding energies of 0.584 and 0.607 eV, which match

quite well to the second stage of release seen in experiment at 0.63 eV. Our values of 0.384
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Figure 32: The binding energy of the mth hydrogen atom to a Hm−1V cluster. The data
points marked with “MD” show data for EB(H) from Table 3, while those marked “DFT”,
“EMT”, and “Experiment” show the data from Table 4. The energies of a hydrogen atom
at an interstitial site and in an H2 molecule in vacuum (the heat of solution, as calculated
by DFT) are pictured as horizontal lines.

and 0.343 eV for the binding of the third and fourth hydrogen atoms are close to the

experimentally observed release stage at 0.43 eV. Unlike the EMT results, we do not see

binding of the fifth and sixth hydrogen atoms.

3.4 Discussion

The question of whether or not hydrogen gas in bubbles can be adequately modelled with

an embedded-atom method potential is a valid one. Hydrogen, as the lightest of elements,

has important quantum mechanical properties that are not directly simulated in this study.

There will surely be some nuances of interaction that cannot be simulated perfectly without

accounting for individual electrons. However, the size limitations of ab initio methods make
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studying this problem prohibitively computationally expensive at this point in time. The

present authors believe that the interatomic potentials we are using adequately reproduce

the important interactions that will take place within a hydrogen bubble. The nature of H-H

interactions within metals have been studied by various authors. Effective medium theory

[105] predicts that hydrogen within a monovacancy will not occupy the center, because of

the below optimum value of electron density. Hybridization with the iron occurs, leaving

room for multiple hydrogen atoms to occupy the vacancy; however, they will repel each

other. This was recently confirmed in ab initio calculations [141, 140] which show Fe 3d -

H 1s hybridization, in which electron transfer occurs from an iron atom to a hydrogen.

Similarly, an H2 molecule inserted into a vacancy will dissociate, suggesting that hydrogen

molecules will not survive in small voids; this effect grows stronger with additional hydrogen

occupancy. The interatomic potentials we have used in this study replicate this behavior,

having been fit to additional density functional theory calculations. If hydrogen sometimes

does exist in a molecular state inside a void, it will dissociate when approaching the iron

on the surface. Thus, we can assume that we will capture the most important energetics of

a cluster as long as the interactions between hydrogen and iron are properly described.

Although no studies on the specific energetics of hydrogen-vacancy clusters in bcc iron

exist in the literature, there are some on helium bubbles [92, 91, 77, 53]. These studies show

good agreement with experimental results, which gives us additional confidence that our

similar system can be modelled well with these methods. The helium bubbles in iron show

the same general trends in binding energy as the hydrogen bubbles we have modelled, with

helium tending to stabilize voids. However, the binding of helium to clusters is significantly

stronger than the binding of hydrogen; it is comparable to the binding of SIAs. Morishita

et al. [91] find that bubbles can support ratios of up to 6 helium atoms per vacancy, at

which point SIA-vacancy pairs are created on the edges of bubbles.

Clusters simulated with potential B′ are much more easily minimized to the lowest

energy state than those created with potential B. This is due to the more complex nature of

the PES generated by potential B. Although the time per iteration is shorter with potential

B than potential B′, the increased value of q that is needed cancels this benefit. However,
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the interactions described by potential B seem to be more physically relevant than those of

B′, based on the formation energy curves seen in Figure 23. In the original paper describing

these potentials [119, 121], only data and fitting for potential B is given, so potential B′ needs

to be characterized. Our calculations provide data on both potential B and B′’s performance

with strongly interacting H clusters which is lacking in the original parameterization.

Binding energy trends are generally consistent between both potential variants. Vacan-

cies become more tightly bound to clusters as the ratio m/n is increased, while both SIAs

and hydrogen atoms become more loosely bound. Results from potential B indicate that

clusters can support a maximum ratio of ∼4; potential B′ allows for ratios up to ∼7. How-

ever, the formation energy curves generated by the two potentials differ, with potential B

providing a trend that more closely matches the observed physics. Thus, the former should

be taken as a limiting factor for hydrogen ratio in bcc iron.

Based on these basic energetics, bubble growth by vacancy absorption would be a more

likely mechanism than loop punching or similar modes. Hydrogen seems to be loosely

bound to clusters even at low densities, and the question remains whether it will be bound

long enough for stabilizing effects to be realized at temperatures seen in reactor structural

materials. However, hydrogen’s effect on the binding of self-interstitials may be relevant to

the HELP theory of hydrogen embrittlement as well. If interstitials are less well-bound in

the presence of hydrogen, dislocation mobility may be increased. Our results for hydrogen

binding agree well with experimental ion-beam studies of hydrogen trapping energies, as

discussed in the previous section. However, our simulations allow for more precision in

calculating energies and allow us to exactly determine the void sizes and bubble ratios

involved in creating the traps.

Finally, we have discovered new low energy configurations for four, five, and six hydrogen

atoms surrounding a monovacancy in bcc iron and confirmed these results with ab initio

calculations. All previous calculations and theories assumed that up to 6 hydrogen atoms

surrounding a monovacancy would reside in offset O-sites. However, we made no initial

assumptions about the positions of the hydrogen atoms, allowing for an unbiased search for

the lowest energy configurations.
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The question of how many hydrogen atoms can exothermically exist about a monova-

cancy has been addressed by calculating binding energies of the mth hydrogen to a HmV

cluster. Our simulations agree with previous results [141] that show that the H6V com-

plex is not the dominant complex in bcc iron, in contrast with earlier experimental and

effective medium theory results. However, unlike those previous results, our DFT results

show that up to four hydrogen atoms may be exothermically bound to a monovacancy.

As more hydrogen atoms are added to a vacancy, each is less well bound than the ones

before. This trend is different than when mOct configurations are assumed; in this case,

the fourth hydrogen atom is not bound, while the fifth is slightly bound when referenced

to the heat of solution. Our low energy configurations provide new insight into the role of

vacancy-hydrogen complexes in materials degradation.

The energetics of HmVn clusters in bcc iron have been investigated using a combination

of molecular dynamics and Monte Carlo techniques, with two different interatomic poten-

tials. The use of empirical potentials allows for larger scale simulations than are currently

possible with ab initio methods. However, the simulations can still model individual atoms,

which gives much more detail than experiment can provide. This detail is essential for

the fundamental understanding of how interactions between defects can affect macroscopic

properties. Significant differences in the potentials can be seen, but overall trends in bind-

ing energies are consistent between both. Hydrogen is seen to have a stabilizing effects on

voids, which supports the idea that increased vacancy concentration and clustering may be

responsible for hydrogen embrittlement. Although hydrogen is relatively weakly bound to

voids, its presence may play a significant role in determining macroscopic properties.
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CHAPTER IV

HYDROGEN – HELIUM BUBBLES

4.1 Motivation and Literature Review

Hydrogen and helium are known to have detrimental effects on structural materials, which

can be aided by irradiation. This is expected to be a significant problem for future genera-

tions of nuclear reactors. This is especially true of fusion reactors [12, 123], in which isotopes

of hydrogen provide fuel for the fusion reaction, and helium is created as a transmutation

byproduct. There are many theories on what mechanisms are responsible for the deleteri-

ous effects of H and He on structural materials [10, 63, 64, 18, 24, 35, 73, 101, 107, 116],

ranging from concentration at crack tips to movement along grain boundaries. Whatever

the underlying cause, it is well known that either element can contribute to embrittlement

and swelling of irradiated materials, with undesirable consequences [102].

In an irradiated system, an above-average concentration of vacancies may assist these

processes. Hydrogen and helium diffusing through the material can become trapped at

small clusters of vacancies, providing internal stabilization [72]. This results in a decreased

likelihood of recombination of self-interstitials with these vacancies, and increased plasticity

of the material as a whole. There is a long history of computational study of both hydrogen

and helium [145], and in particular, there have been several atomistic scale studies of the

energetics of bubbles containing either pure hydrogen [62, 55, 141, 140] or pure helium

[92, 38, 77, 53, 133, 43] in α-iron. These studies confirm the idea that the gas stabilizes

vacancy clusters, as can be seen in Figures 24 and 25. Vacancies are more tightly bound to

the clusters as the inventory of gas increases, while the iron atoms that neighbor the cluster

are less tightly bound to their lattice sites and are more likely to be emitted into the bulk

as self-interstitials.

While either hydrogen or helium alone may be detrimental, there is evidence to suggest

that when both elements are present, synergistic effects occur. It has been shown that
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when steel alloys are irradiated with both hydrogen and helium ion beams simultaneously

(along with an iron ion beam to induce damage), the swelling of the material and the size

of cavities increased significantly compared to samples irradiated with only one of the two

elements [152, 138]. Synergistic effects have also been observed in similar studies on other

bcc transition metals, such as vanadium [124]. In all these cases, an increased dislocation

loop density was also observed under simultaneous irradiation.

Additionally, although the solubility of hydrogen in iron is expected to be quite low by

Sievert’s law, it has been shown that when helium is also present within the crystal, hydrogen

trapping is significantly enhanced even for periods of years after irradiation [142, 45, 44].

It has been theorized that this is due to increased trapping of hydrogen at helium bubbles.

This trapping has been observed in metals [7, 97], and attributed to the hydrogen being

attracted to the stress field of the pressurized helium bubble [1]. However, there have been

no atomistic studies focusing on bubbles containing both hydrogen and helium in iron.

In this work, we present an atomistic study of vacancy clusters containing both pure

hydrogen and hydrogen plus helium in bcc iron. We first introduce an interatomic potential

suitable for describing the interactions between hydrogen and helium. This potential is

used to perform a detailed analysis of the configurations and energetics of a variety of

bubbles. We find that the synergistic effects on bubble properties can be explained not

through a direct interaction between hydrogen and helium, but through the phenomenon

of loop punching. We show that the presence of hydrogen makes loop punching a more

energetically favorable event for a bubble with the required amount of helium. In turn, the

growth of the bubble results in a larger free surface onto which hydrogen may be bound.

4.2 Methods

We simulate clusters of m hydrogen, j helium, and n vacancies (HmHejVn) in bcc iron. In

order to extract the energetic properties of these clusters, it is desirable to find the lowest

energy configuration of the gas atoms with the voids. We achieve this through iterations

of conjugate gradient relaxation and Monte Carlo criteria, using the methods described in

Section 3.2 and simply also including j helium atoms in the initial random distribution of
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gas atoms.

A suite of interatomic potentials is required to describe all of the interactions between

hydrogen, helium, and iron. For the Fe-Fe and Fe-H interactions, we use potential B from

Ramasubramaniam et al. [119, 121], which takes the Fe-Fe interactions from the potential

of Ackland et al. [3, 83]. For the Fe-He interations, we use the repulsive pair potential of

Juslin and Nordlund [69], and for the He-He interactions, Beck’s potential is used [6]. For

the H-He interactions, we use our own interatomic potential, described in Section 1.2.1.5.

4.3 Results

The idea that bubbles may build up sufficient internal pressure to cause neighboring matrix

atoms to be ejected from their lattice sites was proposed many years ago [49], and described

in further detail later [35, 146]. This athermal process, known as loop punching, allows for

bubble growth even when vacancy absorption is unlikely, perhaps at low temperatures when

vacancies are nearly immobile. When neighboring atoms are ejected from their lattice site,

Frenkel pairs are created; the vacancy becomes a part of the cluster, while the interstitial

may move through the lattice. It is known that helium can build up to high enough

pressures within a bubble to cause this occurrence; hydrogen on the other hand, will become

unbound from a bubble long before it can induce loop punching. Additionally, experimental

studies show an increase in interstitial loops and bubble-loop complexes after irradiation

with helium [21].

The process by which bubbles are created progresses in two stages: nucleation and

growth. Helium interstitials may cluster together, acting as self-traps [156], or they may

become trapped at vacancies. Studies on bubble nucleation show that an initial vacancy is

not required for nucleation [90]; instead, the binding between several helium atoms is strong

enough to punch out the first interstitial. Additional helium atoms then become trapped

at the embryonic bubble, eventually resulting in increased pressure and growth [29].

Although the name “loop punching” is suggestive of the thought that an entire inter-

stitial dislocation loop with a radius equal to that of the bubble would be emitted at once
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(a) H12He15V6 cluster (b) H30He30V59 cluster (c) H15He28V7 cluster

Figure 33: The low energy configurations of hydrogen-helium-vacancy clusters are shown.
Vacant lattice sites are pictured as small yellow circles, hydrogen atoms are pink, and helium
atoms are blue. Surrounding iron atoms are not pictured. The helium atoms form the core
of the bubble, with the hydrogen atoms making up the shell. In general, the helium was
not well-ordered, but occasionally highly ordered states such as in 33(c) were seen.

[35, 17], some recent simulations show that the loop may be created through a series of emis-

sions of single interstitials over time [42]. These individual interstitials are initially bound

to the cluster. Whether full loops or single interstitials are emitted may be a function of

the bubble size.

4.3.1 Bubble Structure

In all the simulations performed, the lowest energy configuration of the gas atoms within

the bubble took approximately the same form, regardless of the bubble size. The core of

the bubble was comprised of helium, surrounded by a shell of hydrogen atoms.

This structure does not seem to result from any particular interaction between hydrogen

and helium. If either element is removed, the other maintains essentially the same structure.

That is, in a bubble containing only hydrogen, the hydrogen will attach to the free surface,

leaving the core empty. Once the surface of the bubble is effectively covered, the remaining

hydrogen is emitted into the bulk. In a pure helium bubble, the gas maintains a distance

from the iron atoms comprising the surface of the bubble, as found in the simulations of

Stewart et al. [133]. Examples of these structures are shown in Figure 33. Additionally,

although the helium in a cluster was not generally well ordered, occasionally highly-ordered

states were observed as in Figure 33(c).

For the majority of this work, we consider bubbles made up of six vacancies. Since
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Figure 34: The structure of the unrelaxed configuration of a cluster of 6 vacancies. The
vacant lattice sites are shown in yellow, and the first four shells of neighboring iron atoms
are also shown, sorted by color. The geometric center of the bubble is shown as a small
white circle, and the distance d (Angstroms) at which members of each group reside from
the center is shown on the right. We use the dark blue atoms, which reside at a distance
or ∼3.2 Å from the geometric center, to define the inner and outer radii of the cluster as
described in the text.

our bubble are rather small and may not be considered fully spherical, defining a radius is

not straightforward. However, the iron atoms that surround the six vacancies form shells,

as can be seen in Figure 34. Before gas atoms are added to the bubble, eight iron atoms

reside closest to, and at the same distance from, the geometric center of the bubble in a

symmetric configuration. As we add gas atoms to the bubble, the symmetry is broken.

Thus, we refer to the inner and outer radii as the distances between the geometrical center

of the bubble and the iron atoms of this first shell that are closest to and farthest from that

point, respectively.

Figures 35 and 36 show profiles of where different elements are located within the clus-

ters. Both the inner and outer radii are shown, as well as a profile of where the hydrogen

is located. As can be seen from the red curves in Figure 35, hydrogen has little ability

to enlarge the radius of a bubble. As hydrogen inventory is increased, only a very slight

increase in the radius is observed. At m = 20, a sharp decrease in inner radius is seen,

while the outer radius stays roughly constant. The hydrogen profile explains this behavior.

When m < 19, all of the hydrogen well is within the inner radius. At m > 19, at least one

68



Figure 35: The radii in Angstroms of a HmHejV6 cluster as m is increased; j is constant
with a value of 0 (red, filled points) or 15 (blue/cyan, hollow points). The two lines for
each curve show inner and outer radii, as described in the text. Lightly colored shaded
areas show the geometric profile of the hydrogen atoms within the clusters and follow the
curves that are similarly colored. Helium causes an increase in radius of the bubble, while
hydrogen alone does not. The addition of helium to the bubble changes the hydrogen’s
positioning, but allows more hydrogen to remain close to the interior.

hydrogen atom is residing outside the outer radius. This hydrogen atom sits behind an iron

atom and pushes it towards the center of the bubble. In contrast (as seen in the blue curves

of Figure 35), when 15 helium atoms are also located within the cluster, internal pressure

causes an overall increase in radius. The bubble is fairly symmetric with inner and outer

radii having nearly the same value, and the radius does not increase further as hydrogen

is added. However, the hydrogen profile is affected - hydrogen tends to reside closer to the

iron atoms than when helium is absent, but remains largely within the inner radius. More

hydrogen remains close to the bubble surface when helium is present than when it is absent.

As will be discussed below, this is because the hydrogen has a greater binding energy with

helium present than without it, when j ≥ 19.
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Figure 36: The radii in Angstroms of a HmHejV6 cluster as j is increased; m is constant
with a value of 0 (red, filled points) or 15 (blue, hollow points). The two lines for each
curve show inner and outer radii, as described in the text. The light cyan area shows the
geometric profile of hydrogen atoms within the latter cluster. The radius of the bubble is
an increasing function of the helium inventory. As the helium inventory is increased, some
of the hydrogen is pushed outside the first neighbor shell of iron.
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Figure 36 shows similar profiles, but for bubbles with increasing j and constant m.

Unlike for hydrogen, increasing helium results in an increasing radius. Having 15 hydrogen

atoms in the bubble seems to further increase the radius, but only very slightly. As helium

is increased, the hydrogen in the cluster moves from being primarily inside the inner radius

to primarily outside the outer radius. We see that when the cluster gains 21 helium atoms,

it becomes slightly less symmetric; additionally, the hydrogen moves a bit farther into the

bulk, but it still attracted to the cluster.

4.3.2 Interaction between H and He

The direct interactions between hydrogen and helium can be characterized through their

binding energies to HmHejV6 clusters, as seen in Figure 37. For these simulations clusters

with 0 ≤ m ≤ 30 and 0 ≤ j ≤ 30 were considered. It should be noted that the Monte Carlo

process described in Section 3.2 is essential to obtaining the following results. Since binding

energies are on the order of 1 eV, small deviations from the global minima can result in

large errors.

The formation energy for a particular cluster can be calculated by taking the difference

between a cluster’s energy and the sum of the energies of the constituent parts:

Ef (HmHejVn) = Etot(HmHejVn)−
{

(N − n)EFe
coh +mEH

coh + jEHe
coh

}
. (24)

Here, the “tot” subscript refers to total energy, while the “coh” subscript refers to cohesive

energy. There are N iron atoms in the system lacking defects or impurities. We use the

values EFe
coh = −4.013 eV/atom, EH

coh = −2.37 eV/atom, and EHe
coh = −.00714 eV/atom. In

general, adding a hydrogen atom to the cluster lowers the total system energy, while adding

a helium atom raises it.

The formation energies can be used to calculate the binding of defects and atoms to the

clusters. The binding energy of the mth hydrogen atom to a HmHejVn cluster is given by

EB(H) = Ef (Hm−1HejVn) + EH
f − Ef (HmHejVn), (25)

while the binding energy of the jth helium atom is given by

EB(He) = Ef (HmHej−1Vn) + EHe
f − Ef (HmHejVn). (26)
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The formation energy of a tetrahedral hydrogen interstitial EH
f is 0.29 eV, while the for-

mation energy of a tetrahedral helium interstitial EHe
f is much larger at 4.39 eV.

Helium appears to have a significant effect on the binding of hydrogen to clusters, as

can be see in Figure 37(a). For low concentrations of hydrogen (less than about 18 atoms

in the void), adding helium to the bubble decreases the hydrogen’s binding energy. This is

in contrast to the idea that helium directly causes hydrogen to be more tightly bound to

bubbles, as has been previously suggested [97]. However, at high concentrations of hydrogen,

we see the opposite effect. While hydrogen is essentially unbound from a bubble containing

only hydrogen, the addition of enough helium allows the hydrogen to remain more strongly

bound. This can be attributed to the fact that a large amount of helium atoms will cause

an increase in radius of the bubble, resulting in a larger free surface for a given amount

of hydrogen to spread out in, as was discussed in the previous section. However, we can

generally say that for a bubble with a given radius and a given number of hydrogen atoms,

the addition of further gas atoms of either species results in a decreased hydrogen binding

to the cluster.

On the other hand, the binding of helium to the clusters is only weakly affected by the

presence of hydrogen, as shown in Figure 37(b). For a given amount of helium, introducing

hydrogen to the bubble barely affects the helium. Its binding is a much stronger function

of the concentration of helium atoms in the bubble - as the concentration increases, helium

is less well-bound.

It should be noted that the binding of helium is always much stronger than the binding

of hydrogen in these simulations. While the most tightly bound hydrogen atoms are bound

by less than 1 eV, the most weakly bound helium atoms are bound by more than 1.5 eV.

In summary, the binding energy of hydrogen to the cluster is more strongly affected by

helium’s presence than vice versa.
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Figure 37: The binding energies of hydrogen and helium to HmHejV6 clusters. Binding
energies are depicted by the respective color bars; data are in eV.
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4.3.3 Binding of Vacancies and Interstitials

We can also characterize the clusters through the binding of point defects. The binding

energies of vacancies and self-interstitial iron atoms are given by

EB(V) = Ef (HmHejVn−1) + EV
f − Ef (HmHejVn). (27)

EB(SIA) = Ef (HmHejVn+1) + ESIA
f − Ef (HmHejVn), (28)

where EV
f = 1.721 eV and ESIA

f = 3.529 eV.

As can been seen in Figure 38, the binding energy of a self-interstitial to a cluster of j

helium atoms and 6 vacancies decreases at a faster rate than does the binding of helium itself,

as the helium inventory is increased. This trend has previously been observed in several

studies [92, 126, 77]. Eventually, at a ratio of about three helium atoms per vacancy, self-

interstitials are less well bound than are helium atoms. Once there are several helium atoms

in the cluster, vacancies are more tightly bound than either helium or self-interstitials.

Introducing hydrogen to the clusters affects these binding energies. The binding of

self-interstitials is consistently lower when 15 hydrogen atoms are included in the clusters

than when they are absent, across the entire range of helium inventories. The binding of

helium itself is also slightly affected, primarily at low concentrations of helium. Thus the

SIA binding energy curve intersects with the helium atom binding energy curve at a lower

ratio than when hydrogen is not present, close to j/n = 2. Additionally, including hydrogen

increases the binding of vacancies to clusters.

4.3.4 Loop Punching

A necessary criterion for loop punching to occur is that the binding of the species inside

the bubble to the bubble be stronger than the binding of neighboring matrix atoms to the

bubble. For hydrogen in bubbles, binding is rather weak compared to the binding of self-

interstitials; hydrogen will always be emitted from the bubble before pressures can build up

high enough to generate loop punching. However, for helium, loop punching is a recognized

phenomenon; a cluster of helium atoms in the bulk may even punch out an initial vacancy.
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Figure 38: Binding energies (eV) of helium atoms (red squares), SIAs (blue circles), and
vacancies (green triangles) to HmHejV6 clusters. Filled data points represent pure helium
bubbles (m = 0); hollow data points are from bubbles with m = 15. As the helium
inventory is increased, both the binding of self-interstitials and helium atoms decreases,
while the binding of vacancies increases. Hydrogen exacerbates these effects, especially for
low helium concentrations.

As shown in Figure 38, in this study of clusters with n = 6, this condition occurs for the

pure helium bubbles at a ratio of approximately j/n = 3.

However, this criterion in and of itself is not sufficient to guarantee loop punching;

it must also be energetically favorable for a Frenkel pair to be created. The minimum

energy configurations of HmHejVn and HmHejVn+1 bubbles are generated with the method

discussed in Section 3.2 . To simulate loop punching, an iron atom is introduced to the latter

configuration at a particular lattice site, and the new configuration is minimized. These

lattice sites are chosen both near the (n+ 1)th vacancy and at large distances to determine

how an interstitial created at the surface of the bubble would be bound. At each lattice

site where a dumbbell was placed, the six possible orientations of a <1 1 0> dumbbell are

individually tested; the orientation which results in the lowest energy structure is taken

as our data point. The <1 1 0> family of dumbbells is the most stable in bulk bcc iron,

but no restriction is made to guarantee that a <1 1 0> configuration is maintained under

minimization. However, each minimized state is tested to guarantee that a recombination

event has not occurred and the cluster still contains (n+ 1) vacancies.
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Figure 39: Curves for Frenkel pair formation energy for pure helium bubbles. The x-axis
shows the distance of the interstitial from the center of the bubble; y-axis shows the energy
of the system containing the Frenkel pair referenced to the system without it. The curves
are broken into two plots for ease of understanding. The red curve shows data for j = 0; as
the curves progress to blue (j = 30), the helium concentration increases.

The difference in the energy ∆E of the (HmHejVn+1+SIA) configuration and the energy

of the HmHejVn configuration is due to the change in “defect status” of the atoms in and

around the bubble. This include mainly the Frenkel pair formation energy, but also may

be affected by the hydrogen atoms on the edge of the cluster:

∆E = Etot(HmHejVn+1 + SIA)− Etot(HmHejVn). (29)

If the value of ∆E is below zero, it is more energetically favorable for a Frenkel pair to

exist than not; therefore, it is more favorable for loop punching to occur. This procedure

allows us to examine the energetics of loop punching without the computational expense of

performing dynamics and simply waiting to observe the phenomenon.

In Figure 39, several curves for Frenkel pair formation energies in pure helium bubbles

(m = 0) are shown. The distance shown on the x-axis is the distance from the center of

the void to the dumbbell; the vacancy component of the Frenkel pair is stationary. For the

n = 6 case, loop punching become energetically favorable when j ≥ 29; that is, when the

ratio of helium to vacancies is ∼ 4.8. There is a small barrier for this event to occur.
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We perform these same calculations on bubbles containing both m = 15, with varying

amounts of helium, where n = 6. Representative curves for j = 28, 29 may be seen in

Figure 40. As with the pure helium bubbles, as the interstitial dumbbell of the Frenkel pair

is moved farther away from the surface of the bubble, the energy of a given system initially

drops, but quickly rises again. This indicates that an emitted self-interstitial will be bound

to the cluster at a distance of 1-2 Å from the surface. As the interstitial is moved into the

bulk, each curve levels off to some asymptotic value.

Thus we can conclude that loop punching becomes energetically favorable in pure helium

bubbles when j = 29. However, when 15 hydrogen atoms are also included in the cluster,

loop punching is favorable with only 27 helium atoms. This is shown in Figure 41, where

the minimum value of the ∆E curve is given for each cluster. In almost all cases, when the

concentration of helium is high, the presence of 15 hydrogen atoms in the clusters makes

loop punching more favorable than it would otherwise be. This may be explained through

the binding of hydrogen atoms. When the concentration of helium is high, some hydrogen

is forced outside of the inner radius and may be considered to be occupying an interstitial

position in the bulk, as shown in Figure 36. For hydrogen, occupying an interstitial position

is less energetically favorable than being within a vacancy. Thus, the system is able to lower

its energy by creating a Frenkel pair, removing the hydrogen interstitial by reabsorption

into the cluster, and increasing the free surface of the bubble.

4.4 Discussion

In our simulations of HmHejVn clusters, we see that the low energy configuration is a core

of helium surrounded by a shell of hydrogen. At high concentrations of helium, the presence

of hydrogen makes loop punching more energetically favorable than it would otherwise be.

The mechanisms behind the synergistic effects of hydrogen and helium are complicated and

not obvious, and there are many variables that may affect the outcome of these calculations,

not limited to bubble size, interatomic potentials, and temperature effects. However, our

work provides a basis for further study.
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Figure 40: Curves showing the difference in energy between clusters (HmHejV6) with and
without a Frenkel pair. The x-axis shows the distance of the interstitial from the center of
the bubble; y-axis shows the energy of the system containing the Frenkel pair referenced
to the system without it. The red curves with cirucular data points show data for j = 28;
the blue curves with square points show data for j = 29. Filled data points represent pure
helium bubbles; empty data points represent bubbles with 15 hydrogen atoms. It is more
energetically favorable for a Frenkel pair to exist when the bubbles contain hydrogen. The
SIA is bound to the bubble a short distance from the surface.
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It can be argued that the interatomic potentials used in this work do not accurately rep-

resent the true interactions, however, we do not feel that any deficiencies in the potentials

would substantially change the nature of our conclusions. First, while the H-H interaction

potential does provide an attractive well, H2 molecules are not represented entirely realis-

tically by the EAM formalism. It may be argued that hydrogen could be retained in the

center of bubbles lacking helium, contrary to our simulations. While this is entirely plausi-

ble for large enough bubbles, we capture the most relevant interactions for the analysis of

synergistic and radiation effects. It has been shown with ab initio methods [140] that an

H2 molecule placed in a vacancy will dissociate and hybridize with iron; this is seen in the

covering of the free surfaces of the bubbles with hydrogen [62]. Indeed, if hydrogen were to

be contained in molecular form within the bubbles, the pressures inside the bubbles should

only increase, strengthening our conclusions.

Second, the interaction potential between hydrogen and helium may change in the pres-

ence of iron. However, there is no obvious physical mechanism that would result in a

significantly stronger bonding of hydrogen to helium due to the proximity of iron; hydro-

gen’s predilection to hybridize with iron would still presumably be the dominant interaction.

Thus, we believe that the character of our main conclusions would not change even if an in-

teratomic potential incorporating all the nuances of the interactions between iron, hydrogen,

and helium were used.

However, the area of interatomic potential creation and validation is a very active one, in

particular for the iron-helium system [41, 125]. There are studies which show a dependence

on interatomic potentials for clustering behavior [134], so it would be beneficial to explore

how our results are affected by the use of different interatomic potentials.
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CHAPTER V

CONCLUSIONS

Understanding the interactions between defects in structural materials in a fundamental way

is necessary to develop predictive models for irradiated systems. Atomistic simulation is an

extremely valuable tool in this pursuit, which allows for the exploration of interactions at a

scale and level of detail that is not possible using experiment alone. In this work, we present

computational studies of the interactions between point defects and screw line dislocations

and the energetics of hydrogen-helium-vacancy clusters in body-centered cubic iron.

In our investigation of dislocation-point defect interactions, we analyze the interaction

energy and stability of a variety of interstitial dumbbell configurations and vacancies at a

level of detail that has not been investigated before. Comparing our atomistic results to

continuum elasticity theory, we provide a guide to where theory is valid and may be safely

used in larger scale models, and where more detail that can only be provided by atomistics

is required. We observe that a screw dislocation core will spontaneously absorb defects of

all types within a few Angstroms, resulting in characteristic core structures.

Next, in our simulations of small gas bubbles in the bulk, we provide a method for

searching for minimum energy configurations of hydrogen and helium within vacancy clus-

ters. This method is shown to be of value in our study of multiple hydrogen atoms trapped

at monovacancies, in which we find new low energy configurations that have not been stud-

ied in the past, and we verify these structures with the help of ab initio methods.

We show that hydrogen has a stabilizing effect on vacancy clusters, causing vacancies

to be more tightly bound to clusters, while neighboring iron atoms are less tightly bound.

These studies of the detailed energetics of clusters are conducted on bubbles that are larger

than have been studied in the past, while still retaining the detail of individual interatomic

interactions.

Finally, we present the first atomistic computational studies of hydrogen-helium-vacancy
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clusters in bcc iron. To accomplish this, we introduce a new interatomic potential for

hydrogen and helium. We show that the low energy configuration of a cluster is a core of

helium surrounded by a shell of hydrogen. The binding energy of hydrogen, helium, and

point defects to the clusters are determined, and we show that the binding of hydrogen is

strongly affected by the presence of helium. Finally, we show that the synergistic effects of

hydrogen and helium may be explained through the loop punching phenomenon. In this

process, the presence of hydrogen makes it more energetically favorable for bubbles to grow

through creation of Frenkel pairs at a smaller helium concentration than when hydrogen is

absent. The hydrogen atoms are able to be retained more readily by helium bubbles with

large free surfaces.

Although we did not perform simulations directly involving both dislocations and hy-

drogen, further studies linking these phenomena would be beneficial. In the HELP theory

of hydrogen embrittlement [10], hydrogen causes dislocations to be mobile, resulting in in-

creased plasticity. We show that the presence of hydrogen does cause self-interstitials to

become less well bound to their lattice sites; we also show that the absorption of interstitials

leads to rearrangement of the core of a dislocation, resulting in motion of the dislocation.

Thus, the methods described in this work could easily be extended to further study these

effects.

The interactions of defects within a microstructure are extremely complex and no one

atomistic study can fully explain macroscopic behavior. However, our work provides a

unique insight into fundamental behavior, as well as providing valuable data that may be

used to parameterize further work.
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[11] Blöchl, P., “Projector augmented-wave method,” Physical Review B, vol. 50,
pp. 17953–17979, Jan 1994.

[12] Bloom, E., Zinkle, S., and Wiffen, F., “Materials to deliver the promise of fusion
power – progress and challenges,” Journal of Nuclear Materials, vol. 329, pp. 12–19,
2004.

[13] Bulatov, V. and Cai, W., Computer simulations of dislocations. Oxford University
Press, 2006.

83



[14] Burke, K. and Ernzerhof, M., “Generalized gradient approximation made sim-
ple,” Physical Review Letters, vol. 77, pp. 3865–3868, Jan 1996.

[15] Cai, W., Arsenlis, A., Weinberger, C., and Bulatov, V., “A non-singular
continuum theory of dislocations,” Journal of the Mechanics and Physics of Solids,
vol. 54, pp. 561–587, Jan 2006.

[16] Capolungo, L., Beyerlein, I. J., and Wang, Z. Q., “The role of elastic anisotropy
on plasticity in hcp metals: a three-dimensional dislocation dynamics study,” Mod-
elling and Simulation in Materials Science and Engineering, vol. 18, no. 085002, 2010.

[17] Caro, A., Hetherly, J., Stukowski, A., Caro, M., Martinez, E., Srivil-
liputhur, S., Zepeda-Ruiz, L., and Nastasi, M., “Properties of helium bubbles
in Fe and FeCr alloys,” Journal of Nuclear Materials, vol. 418, pp. 261–268, 2011.

[18] Castellote, M., Fullea, J., de Viedma, P., Andrade, C., Alonso, C.,
Llorente, I., Turrillas, X., Campo, J., Schweitzer, J., and Spillane, T.,
“Hydrogen embrittlement of high-strength steel submitted to slow strain rate test-
ing studied by nuclear resonance reaction analysis and neutron diffraction,” Nuclear
Instruments and Methods in Physics Research Section B: Beam Interactions with Ma-
terials and Atoms, vol. 259, no. 2, pp. 975–983, 2007.

[19] Chang, J., Cai, W., Bulatov, V., and Yip, S., “Molecular dynamics simulations of
motion of edge and screw dislocations in a metal,” Computational Materials Science,
vol. 23, pp. 111–115, Jan 2002.

[20] Chaussidon, J., Fivel, M., and Rodney, D., “The glide of screw dislocations in
bcc Fe: atomistic static and dynamic simulations,” Acta Materialia, vol. 54, no. 13,
pp. 3407–3416, 2006.

[21] Chen, J., Hoffelner, W., Ullmaier, H., and Jung, P., “Dislocation loops and
bubbles in oxide dispersion strengthened ferritic steel after helium implantation under
stress,” Acta Materialia, vol. 56, pp. 250–258, 2008.

[22] Chiesa, S., Gilbert, M., Dudarev, S., Derlet, P., and Swygenhoven, H. V.,
“The non-degenerate core structure of a 1/2<111> screw dislocation in bcc transi-
tion metals modelled using Finnis–Sinclair potentials: The necessary and sufficient
conditions,” Philosophical Magazine, vol. 89, no. 34, pp. 3235–3243, 2009.

[23] Clouet, E., Garruchet, S., Nguyen, H., Perez, M., and Becquart, C., “Dis-
location interaction with C in α-Fe: A comparison between atomic simulations and
elasticity theory,” Acta Materialia, vol. 56, no. 14, pp. 3450–3460, 2008.

[24] Condon, J. and Schober, T., “Hydrogen bubbles in metals,” Journal of Nuclear
Materials, vol. 207, pp. 1–24, 1993.

[25] Daw, M. and Baskes, M., “Semiempirical, quantum-mechanical calculation of hy-
drogren embrittlement in metals,” Physical Review Letters, vol. 50, pp. 1285–1288,
Jan 1983.

[26] Daw, M. and Baskes, M., “Embedded-atom method: Derivation and application
to impurities, surfaces, and other defects in metals,” Physical Review B, vol. 29,
pp. 6443–6453, Jan 1984.

84



[27] Daw, M., Foiles, S., and Baskes, M., “The embedded-atom method - a review of
theory and applications,” Materials Science Reports, vol. 9, pp. 251–310, Jan 1993.

[28] Dederichs, P. and Schroeder, K., “Anisotropic diffusion in stress fields,” Physical
Review B, vol. 17, no. 6, p. 2524, 1978.

[29] Deo, C., Okuniewski, M., Srivilliputhur, S., Maloy, S., Baskes, M., James,
M., and Stubbins, J., “Helium bubble nucleation in bcc iron studied by kinetic
Monte Carlo simulations,” Journal of Nuclear Materials, vol. 361, no. 2-3, pp. 141–
148, 2007.

[30] Domain, C. and Monnet, G., “Simulation of screw dislocation motion in iron by
molecular dynamics simulations,” Physical Review Letters, vol. 95, p. 215506, Nov
2005.

[31] Dudarev, S. and Derlet, P., “A ‘magnetic’ interatomic potential for molecular
dynamics simulations,” Journal of Physics: Condensed Matter, vol. 17, pp. 7097–
7118, Oct 2005.

[32] Duesbery, M. and Vitek, V., “Plastic anisotropy in bcc transition metals,” Acta
Materialia, vol. 46, no. 5, pp. 1481–1492, 1998.

[33] Duesbery, M., Vitek, V., and Bowen, D., “Effect of shear-stress on screw disloca-
tion core structure in body-centered cubic lattices,” Proceedings of the Royal Society
of London A, vol. 332, pp. 85–111, Jan 1973.

[34] Eshelby, J., Read, W., and Shockley, W., “Anisotropic elasticity with applica-
tions to dislocation theory,” Acta Metallurgica, vol. 1, no. 3, pp. 251–259, 1953.

[35] Evans, J., “The role of implanted gas and lateral stress in blister formation mecha-
nisms,” Journal of Nuclear Materials, vol. 76 & 77, pp. 228–234, Jan 1978.

[36] Finnis, M. and Sinclair, J., “A simple empirical n-body potential for transition
metals,” Philosophical Magazine A, vol. 50, no. 1, pp. 45–55, 1984.

[37] Frederiksen, S. and Jacobsen, K., “Density functional theory studies of screw
dislocation core structures in bcc metals,” Philosophical Magazine, vol. 83, pp. 365–
375, Jan 2003.

[38] Fu, C.-C. and Willaime, F., “Ab initio study of helium in alpha-Fe: Dissolution,
migration, and clustering with vacancies,” Physical Review B, vol. 72, no. 6, p. 064117,
2005.

[39] Fujita, S., Okita, T., Kuramoto, E., and Sekimura, N., “A study of the inter-
action between irradiation induced-defect and a line dislocation in bcc-iron,” Journal
of Nuclear Materials, vol. 386-388, pp. 93–96, Feb 2009.

[40] Fukai, Y., The Metal-Hydrogen System. Springer, 2005.

[41] Gao, N., Samaras, M., and Swygenhoven, H. V., “A new Fe–He pair potential,”
Journal of Nuclear Materials, vol. 400, pp. 240–244, 2010.

85



[42] Gao, N., Swygenhoven, H. V., Victoria, M., and Chen, J., “Formation of
dislocation loops during He clustering in bcc Fe,” Journal of Physics: Condensed
Matter, vol. 23, p. 442201, 2011.

[43] Gao, N., Victoria, M., Chen, J., and Swygenhoven, H. V., “Helium-vacancy
cluster in a single bcc iron crystal lattice,” Journal of Physics: Condensed Matter,
vol. 23, p. 245403, 2011.

[44] Garner, F. A., Oliver, B., Greenwood, L., James, M., Ferguson, P.,
Maloy, S., and Sommer, W., “Determination of helium and hydrogen yield from
measurements on pure metals and alloys irradiated by mixed high energy proton and
spallation neutron spectra in lansce,” Journal of Nuclear Materials, vol. 296, no. 1-3,
pp. 66–82, 2001.

[45] Garner, F. A., Simonen, E., Oliver, B., Greenwood, L., Grossbeck, M.,
Wolfer, W., and Scott, P., “Retention of hydrogen in fcc metals irradiated at
temperatures leading to high densities of bubbles or voids,” Journal of Nuclear Ma-
terials, vol. 356, no. 1-3, pp. 122–135, 2006.

[46] Ghoniem, N., Tong, S., Huang, J., Singh, B., and Wen, M., “Mechanisms of
dislocation-defect interactions in irradiated metals investigated by computer simula-
tions,” Journal of Nuclear Materials, vol. 307, pp. 843–851, 2002.

[47] Gillan, M., “The elastic dipole tensor for point defects in ionic crystals,” Journal
of Physics C: Solid State Physics, vol. 17, no. 9, pp. 1473–1488, 1984.

[48] Gordon, P., Neeraj, T., Li, Y., and Li, J., “Screw dislocation mobility in bcc
metals: the role of the compact core on double-kink nucleation,” Modelling and Sim-
ulation in Materials Science and Engineering, vol. 18, p. 085008, 2010.

[49] Greenwood, G., Foreman, A., and Rimmer, D., “The role of vacancies and
dislocations in the nucleation and growth of gas bubbles in irradiated fissile material,”
Journal of Nuclear Materials, vol. 4, pp. 305–324, 1959.
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[77] Lucas, G. and Schäublin, R., “Stability of helium bubbles in alpha-iron: A molec-
ular dynamics study,” Journal of Nuclear Materials, vol. 386, pp. 360–362, 2009.

[78] Masuda, K., Sugano, K., and Sato, A., “Interaction energy between a self-
interstitial and a (1/2)<111> screw dislocation in b. c. c. transition metals,” Journal
of the Physical Society of Japan, vol. 48, no. 4, pp. 1233–1236, 1980.

[79] Masuda-Jindo, K., “On the interaction between a screw dislocation and point de-
fects in bcc transition metals,” physica status solidi (b), vol. 129, no. 2, pp. 595–599,
1985.

[80] McDowell, D., “Viscoplasticity of heterogeneous metallic materials,” Materials Sci-
ence and Engineering: R: Reports, vol. 62, no. 3, pp. 67–123, 2008.

[81] McLellan, R. and Harkins, C., “Hydrogen interactions with metals,” Mater Sci
Eng, vol. 18, pp. 5–35, 1975.

[82] Meissner, N., Savino, E., Willis, J., and Bullough, R., “The dislocation loop
in an anisotropic medium and its interaction with an interstitial atom,” physica status
solidi (b), vol. 63, no. 1, 1974.

[83] Mendelev, M., Han, S., Srolovitz, D., Ackland, G., Sun, D., and Asta, M.,
“Development of new interatomic potentials appropriate for crystalline and liquid
iron,” Philosophical Magazine, vol. 83, no. 35, pp. 3977–3994, 2003.

[84] Methfessel, M., “High-precision sampling for brillouin-zone integration in metals,”
Physical Review B, vol. 40, pp. 3616–3621, Jan 1989.

[85] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller,
E., “Equation of state calculations by fast computing machines,” The Journal of
Chemical Physics, vol. 21, no. 6, p. 1087, 1953.

[86] Miller, W., Treatise on Crystallography. Cambridge, 1839.

[87] Monasterio, P., Lau, T., Yip, S., and Vliet, K. V., “Hydrogen-vacancy inter-
actions in Fe-C alloys,” Physical Review Letters, vol. 103, no. 8, p. 85501, 2009.

88



[88] Monti, A., Sarce, A., Smetniansky-DeGrande, N., Savino, E., and Tomé,
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