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SUMMARY

Recent experiments of nanoscale materials haverstiestrong nano-size
effects on their mechanical properties, such asogeof pseudoelasticity and ultrahigh
mechanical damping in shape memory alloys, andlthe-high strength phenomena in
metals. Understanding these unique properties izeceffects at the nanoscale is
critically important to the application of microfma-devices. The underlying mechanisms
of nanoscale plasticity could be governed by thesphransformation or nucleation-
controlled plasticity. In this thesis, we study fiasticity mechanisms of diffusionless
martensite phase transformation in Nickel-TitaniiNiTi), one of the most widely used
shape memory alloys. We also study the nucleatotraolled plasticity mechanisms in
different metals of Copper (Cu), Aluminum (Al) aNitkel (Ni). The objective of this
thesis is to elucidate the mechanisms of plastinithe nanoscale metals and alloys by
both the atomistic and phase field modeling akeddht time and length scales.

We study the plasticity mechanisms of martensitiage transformation in NiTi
shape memory alloys. NiTi usually exhibits varioustastable phases (B2, B19, BI®
etc.), the activation of which depends sensitiwlytemperature, loading, concentration,
and precipitation, etc. The formation of a varietywin structures further complicates
the study. In the past the continuum theory ared firinciples calculations have been
employed to study such a complicated system. Hoky#vey are deficient in terms of
resolving the mechanisms of martensitic phase foamsition. The research here
involves four thrusts focusing on different lengiid time scales: (I) Molecular statics
and dynamics simulations are applied to study #rtwin structures and temperature-

driven B2— B19 phase transitions. (II) Molecular dynamics simiolag are performed



to explore the stress-driven martensitic phasestoamation governing the
pseudoelasticity and shape memory effects in Nahiapillars. (11l) Monte Carlo
simulations are conducted to characterize the tesyoe- driven B2» B19 phase
transition and the patterning of martensitic nameg$wn NiTi thin films. (IV) Phase field
simulations are performed to predict the formaaod evolution of complex martensitic
microstructures, including the detailed analysisnoh compatibility under complex
loading conditions. The above results not only mewnew insights into the nanoscale
martensitic phase transformation in NiTi, but gisovide an effective modeling
framework for studying the diffusionless phase $farmation in large systems with
atomic resolution.

We also study the nucleation-controlled plastiod®ition in metals. Our work
focuses on understanding how dislocations nucieategle crystals. Interatomic
potential finite element method is applied to detiee when, where and how dislocations
nucleate during nanoindentation in metals suchuiasACand Ni. We explore the effects
of indentation orientation on the characteristitaaivated dislocation sources. Results
provide insight into the nanoscale mechanisms asti yielding, and are useful for
guiding the nanomechanical experiments in the &utur

Overall, the nanomechanics study in this thesisiges novel mechanistic
insights into the deformation mechanisms in shapmary alloys and ultra-strength

metallic nanostructures.



CHAPTER 1

INTRODUCTION

1.1 Martensitic phase transformation in nanoscale NiTi shape memory alloys

Shape-memory alloys, when deformed, can recovigreio original shape upon
unloading and heating [1-3]. Nickel-titanium (NiT$)one of the most widely used SMAs
[4]. The shape memory effect of NiTi usually resdtom the diffusionless martensitic
phase transformation between the cubic B2 (ausdesitd monoclinic BIqmartensite)
phase. NiTi can also exhibit pseudoelasticity [4é,, deformation is fully recovered
upon unloading without the aid of heating. Compdoceshape memory, pseudoelasticity
similarly involves the martensitic phase transfatiorg but it occurs when the
deformation temperature is higher, typically abtwe austenite finish temperatuke

The generation of large and reversible straingiduroth the shape memory and
pseudoelasticity is governed by the diffusionlesstensitic phase transformation of the
crystal lattice in response to applied thermo-meid#d loadings [4-7]. Recent
development in the processing, characterizationna@chanical testing of nanostructured
shape memory alloys provides opportunities of rievgdhe nanometer length scale
effects on martensitic phase transformation, ang affer practical solutions of efficient
shape memory, actuation, and mechanical dampitigeimicroscale and nanoscale
devices [8-16].

Understanding the martensitic transformation efaséructured shape memory
alloys first depends on knowing the structuresasfous phases at the nanometer scales.
NiTi usually exhibits various metastable phases @, B19, R etc.), the activation of

which depends sensitively on temperature, loadingcentration and precipitation, etc.
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The most characteristic feature of martensites (BI19, R etc.) is the existence of twin
structures, which would help to accommodate thermgability between the martensite
and the austenite. Twin martensites are converlljoclassified as type | twin (i.e., the
twin plane is a rational crystal plane), type linyi.e., the twin shear is a rational
crystallographic direction) and compound twin (bthta twin plane and twin shear are
rational) [1]. The structures of martensite deps@aasitively on the size. For example, in
coarse-grained NiTi, type | and type Il twins arerenoften observed than compound
twins. This can be rationalized in terms of theursgment of deformation compatibility
at extended interfaces (i.e. habit planes) betwegnensite and austenite. In contrast,
compound twins typically form in nanocrystallineNiFurther, the twin-related variants
were observed to span the entire nano-sized gaithat the martensitic transformation-
induced kinematic incompatibility is accommodatgdie grain boundary rather than
the habit plane. Such nanostructural size effeehartensitic phase transformation has
been studied by Waitz and coworkers by consideghegcompeting effects of twin
boundary energy, grain boundary energy and elasgecgy of twin variants and
surrounding matrix [17, 18].

A next-level study of the martensitic phase transftion is concerned with how
the phase transformation occurs and what the urpgueerties are at the nanoscale. A
typical martensitic phase transition in NiTi invel/the transformation from a high-
temperature B2 cubic austenite phase to a low-teatyre B19monoclinic martensitic
phase [4]. The nanoscale size effects are obsamneédluminated with the aid of recent
development in the nanomechanical testing [9, 3016-24]. For example, Frick et al.

showed that decreasing diameter of NiTi sub-micitemgillars inhibits and ultimately
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suppresses the pseudoelasticity when diametersatecto 200nm [13]. This size effect
could be possibly due to the suppression of mattemphase transformation. However,
the martensitic phase transformation of-B2B19 was observed in NiTi pillars of

200nm diameter by in situ electron diffraction esapent [16]. It was thus suggested that
the loss of pseudoelasticity might arise owingitmomplete strain recovery (austenite
phase transformation), despite the occurrence ofemsitic phase transformation [21]. In
contrast to the loss of pseudoelasticity, the smageory was usually measured for
pillars with diameters of 200nm with the help ohheg [21].

In the past the continuum theory and first-prifespcalculations have been
employed to study the NiTi system involving mulégdhases, twin structures and their
temporal evolution during phase transformation. ttmum theory is limited to explain
the atomistic level structure and deformation madras. And first-principles
calculations are deficient in terms of resolving thechanisms of martensitic phase
transformation and plastic deformation, especialliarge systems that are necessary to
capture the effects of long-range elasticity anahglex twin structures. Those previous
studies are also limited by the simulation timdesc&o study the structures of various
phases and martensitic phase transformation abittr®- and nano-scale, we develop a
modeling framework that integrates the crystallpbra theory of martensite, molecular
statics and molecular dynamics (MD), Monte CarldC)Mand phase field simulations.
Considering the complexity of martensitic microstures and phase transformation, as
well as a large range of time and length scaleslued, these atomistic and phase field

modeling approaches are expected to play an impaxée in bridging the experiments,
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continuum modeling andb inito calculations for understanding the transformation

mechanisms in shape memory alloys [18, 25-30].

1.1.1 Atomistic nanotwin structuresin NiTi martensite

In Chapter 2, we perform the molecular statics @yrthmics simulations to study
in detail the atomic-scale structures of nanotwinsiTi shape memory alloys. An
empirical interatomic potential [31] is originaltleveloped to describe the properties of
NiTi, which has been benchmarked by both experialeaneasurements and first-
principles calculations. However, it is deficientiwdiscontinuities at cutoff radius. We
modified this potential and improved the predigedperties. Based on the modified
potential, atomistic simulations are performedttay the structures and geometrical
limit of nanoscale twins in NiTi martensite. We giz& compound twins as narrow as
about one nanometer, involving a few atomic layArsovel nanotwinned structure is
found, forming through the martensitic transforroatof sub-lattices. We predict the
transition temperatures for the thermal-inducedsptieansformation in bulk NiTi, which
are consistent with experimental measurementsrddts provide an atomistic basis for
further study of the martensitic phase transforamgtirocess, pseudoelasticity and shape

memory behavior in nanoscale NiTi.

1.1.2 Pseudoelasticity and shape memory in NiTi nanopillars
In Chapter 3, we perform the molecular dynamiosugations to study the
atomistic mechanisms governing the pseudoelastcitishape memory in NiTi

nanostructures. For(&lO} - orientated nanopillar subjected to compressiveifgad

unloading, we observe either the pseudoelastib@pes memory response, depending on
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the applied strain and temperature that controftekersibility of phase transformation
and deformation twinning. We show that the irrei@estwinning arises owing to the
dislocation pinning of twin boundaries, while therarchically twinned microstructures
facilitate the reversible twinning. The nanoscate €ffects are manifested as the load
serration, stress plateau, and large hysteregisitothe stress-strain curves, resulting
from the high stresses required to drive the ntideacontrolled phase transformation
and deformation twinning in nano-sized volumes. @sults underscore the importance
of atomistically resolved modeling for understamggihe phase and deformation
reversibilities that dictate the pseudoelasticitg ahape memory behavior in

nanostructured shape memory alloys.

1.1.3 Patterning of martensitic nanotwinsin NiTi thin films

In Chapter 4, we perform the Monte Carlo simuladiof pattern formation in
NiTi thin films. The above discussed atomistic siations based on MD are limited by
the achievable time scale (a few nanoseconds a),nsoghat the temperature-induced
phase transformation in nanostructural NiTi is @asily accessible by the MD
simulations. To overcome this limitation, we deyeén atomic-level Monte Carlo
simulation with importance sampling Markov Chaine\&tudy the martensitic phase
transformation and the pattern formation of maitensanotwins in a NiTi thin film. We
show that large undercooling can lead to the refe@ and branching of nanotwins,
dictated by geometrical constraints at the interfaetween the martensitic thin film and
austenitic substrate. The simulated twin refinenenbnsistent with a scaling analysis of
the twin width, which depends on both the sampe and the characteristic material

length that scales with the twin boundary thickn€as work opens a new avenue
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towards predictive modeling of the patterned masitenmicrostructure at the atomic

scale.

1.1.4 Phase field modeling of martensitic microstructurein NiTi

In contrast to the previous chapters that focutheratomistic simulations, in
Chapter 5, we perform the coarse-grained phasediglulations of formation and
evolution of martensitic microstructures in thelbaf NiTi alloys. Atomistic simulations
are not computationally efficient to study the lagystems, with size larger than one
micrometer involving over one billion atoms. Inglghapter, the phase field simulations
have been performed to study the martensitic mirosres in the large systems of bulk
NiTi alloys. Our simulations enable the detailedreltterization of the martensitic phase
transformation from the B2 phase to twelve Bi&riants for exploring the twin
compatibility and temporal evolution of martensitiicrostructures under complex
loading conditions. The three-dimensional simulaishow the nucleation and growth of
twelve monoclinic B19variants that form the polytwinned morphology adntensitic
microstructures. The mechanical constraints gotseth the selection and spatial
patterning of multivariants in the formation ofastr-accommodating microstructures.
The present phase field model is generally applectdostudy the dynamic evolution of

complex alloy systems that involve multi-variantgl golytwinned microstructures.

1.2 Nucleation-controlled plasticity in ultra-strength metallic nanomaterials

Metallic nanomaterials usually exhibit the “ulsrength” properties [32]. That
is, the measured strength (on the level of a few)@@aches a significant fraction of the
ideal strength of perfect crystal, considerablgdarthan their coarse-grained

counterparts (typically in the range of ten to m@adViPa). This phenomenon has been
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shown by an increasing number of experiments sadieading of silver nanowire using
atomic force microscopy (AFM) [33], compressiorgold nanopillars [34], and
nanoindentation in copper [35]. Moreover, the fedesplacement curves of the
aforementioned nanopillar compression and nanotatien experiments are
discontinuous. This implies the nucleation-con&dlplasticity that produces the
pronounced load discontinuities for releasing tloeesl deformation/elastic energy by
dislocation formation.

The ultra-strength phenomenon can be caused mcdion starvation [34]. In
nanoscale materials, mobile dislocations can aalel a short distance before
annihilating at a nearby free surface; they teniéawe the crystal rapidly without
interacting with each other. Thus the probabilitylislocation multiplication (through
the mechanisms such as double cross slip and Raa#-type sources) decreases. As a
result, plasticity tends to be controlled by disibon nucleation instead of dislocation
multiplication. As the required stress for disloacatnucleation is generally higher than
the one needed to move and multiply dislocatidms nhaterial strength increases.
Nucleation-controlled plasticity often manifestsdascontinuity in the nanopillar
compression and nanoindentation experiments, beahssrete nucleation events could
lead to a pronounced load drop or displacement.bling dislocation starvation has been
directly observed bin situ Transmission electron microscopy (TEM) compress$ssh of
Ni nanopillars [36] , in which dislocations disapp@s a result of mechanical annealing.

The above review motivates our study of nucleatontrolled plasticity in
nanomaterials. However, the mechanisms of nucleatiaislocations are still not well

understood. A multi-scale simulation method hasts#plied to explore the nucleation
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controlled plasticity during the nanoindentatiopesiments. The effects of
hyperelasticity have been considered to accurdietgribe the materials’ properties.
1.2.1 Dislocation nucleation during nanoindentation

In Chapter 6, we perform the interatomic poterftrate element method
(IPFEM) simulations of dislocation nucleation dgyinanoindentation of face-centered-
cubic metals. Dislocation nucleation is centrabtim understanding of the onset of
plasticity during nanoindentation. The shear stiessnall volumes beneath the
nanoindenter can achieve the theoretical limit pédect crystal. The ensuing nonlinear
elastic instability can trigger homogenous dislaranucleation inside the crystal. Here
we employ the interatomic potential finite elemsrdthod to simulate nanoindentation
and predict dislocation nucleation. Simulations@edormed for indentation on the
(111), (110) and (100) surfaces of Al, Cu, Ni sengtystals. We quantify the critical
conditions of dislocation nucleation, including theentation load of nucleation, location
of nucleation site, nucleation stress and activalpdsystem. We find these conditions
sensitively depend on indentation orientation,dretconsistent for different crystals. The
results highlight the critical role of hyperelagiqthe nonlinear elasticity caused by
elastic softening at large strain) and crystallpgsain dislocation nucleation in small
material volumes. In addition, we use the IPFEMuations to analyze the stochastic,
discontinuous plasticity in nanoindentation expems, and determine the nature of
dislocation sources (i.e. surface versus bulk ratide) in nanoindentation of Cu with

different crystal orientations [37].
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CHAPTER 2

ATOMISTIC NANOTWIN STRUCTURESIN NITI MARTENSITE

2.1 Introduction

Shape-memory alloys (SMASs) are a unique clasfi@fsawhich can recover to
original undeformed shape from the deformed onkdating [1, 2, 5, 7]. Nickel-titanium
(NIiTi) is one of the most important SMASs [4]. Theape memory effect of NiTi based
alloys typically involves the martensitic phasensfmrmation from cubic B2 (austenite)
to twinned monoclinic B1'Phase (martensite) through B2 B19 or B2 — tetragonal
B19— B19, etc. [4, 38-42]. B1'Phase exhibits different twin structures (typeiit,
type Il twin and compound twin) to accommodatedisplacement constraints during the
martensitic phase transformations.

SMAs have strong potential applications such aspilag and actuation [14, 43]
in micro/nano-devices; however, the unique propsrét nanoscale raise new challenges
for further exploration [13, 16, 17, 19, 39, 44].43nderstanding the martensitic
transformation in nanostructured shape memory affiogt requires the understanding of
the structures of various martensitic phases iomater scale. In this chapter, we
develop an atomistic modeling framework and appdynastic simulations to study the
structures of nanotwins in NiTi. We utilize the stgllographic theory of twinned
martensite [46, 47] to construct the initial twinustures. Then the atomistic calculation
is performed by using an empirical interatomic ptigd [31], which has been
benchmarked by experimental values and first gplesicalculations. Our atomistic

simulation goes beyond the crystallographic thdgrproviding more structural details
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and mechanistic insights at the sub-lattice le@eimpared to the first principles
calculation [17, 39, 45, 48-51], it enables ancasint exploration of twinned
microstructures, and can be further utilized tagttheir spatial-temporal evolution and
associated phenomena of plasticity at the atonaileswhich is discussed in Chapter 3.
Considering the complexity of martensite microstuoes, as well as a large range of time
and length scales involved in the martensitic ti@msation processes, the empirical
potential-based atomistic modeling approach deweslop expected to play an important
role in bridging experiments, continuum models [28,30, 52-55, 56 ], anab initio
calculations for understanding the transformati@chanisms in shape memory alloys.
The work in this chapter is focused on understagthe atomic-scale twin
structures in NiTi martensite, and is motivatedégent high resolution transmission
electron microcopy (HRTEM) imaging of nanocrystadliNiTi, showing the unique
martensitic phase of nanoscale compound twins $pgutine entire nano-sized grain
[17]. It is useful to recall that a typical martértsphase transition in NiTi involves the
transformation from a high temperature B2 cubidenite phase to a low temperature
B19' monoclinic martensitic phase [4]. The mostrahteristic feature of martensitic
transformation is the formation of twins, where #neangement of the lattice on one side
of the twin boundary plane is related to thosehendther. Twin martensites are
conventionally classified as type | (i.e., the tywiane is a rational crystal plane), type Il
(i.e., the twin shear is a rational crystallograptirection) and compound twin (both the
twin plane and twin shear are rational); their r@e definitions can be found for
example in the review by Christian and Mahajan [ijoarse-grained NiTi, type | and

type Il twins are more often observed than compdumas. This can be rationalized in
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terms of the requirement of deformation compatipéit extended interfaces (i.e. habit
planes) between martensite and austenite. Nanmitypared to the compound twins, the
formation of type | and type Il twins can bettehi@wve geometrical compatibility with
the parent B2 phase of austenite [41]. In cont@stpound twins often form in
nanocrystalline NiTi [17]. Furthermore, the twirated variants can span the entire
nano-sized grain, so that the kinematic incompétliaused by martensitic
transformation is accommodated by the grain boyndgher than the habit plane. Such
a size effect of nanostructures on martensitic @@nsformation has been studied by
Waitz and his coworkers by considering the compgegiffiects of twin boundary, grain
boundary, and elastic energies associated withwtimevariants and surrounding matrix
[17, 18]. However, it is not yet well understoodrfr an atomic basis why they form and
how stable they are.

In this chapter, we study the atomic-level detaflsanotwinned structures by
combining the crystallographic theory and atomisimulation. We analyze the
compound twins as narrow as about one nanomet@lying a few atomic layers. The
HRTEM images of twinned structures [17] provide Wadidation for our simulations. We
discover a novel transformation mode that may hanications for the martensitic
phase transition of materials with the complexdatstructure, common to crystalline
alloys and compounds. We also study temperatuxeialphase transformations and the
size effects. The results provide an atomisticcstmal basis for further investigation of
martensitic phase transformation and shape menahrguor of the shape memory alloys

at the nanometer scale [57].
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2.2 Methods

2.2.1 Interatomic potential

A many-body interatomic potential is developediéscribe the NiTi system. This
potential was originally developed by Lai and L81], and is improved in this work with
a smooth cutoff behavior to avoid the divergingcés in simulations involving large
atomic displacements. As a Finnis-Sinclair typesptal [58], the potential function is
constructed by using the second-moment approximatiohe tight-binding theory. The

total energy of the system is expressed as

E:Z{,Z.:Auﬁ ex;{— p”ﬁ(%_lﬂ_ /Z: F(rij)} (2.1)
F(ry)=&a ex;{— anp[drij —lﬂ (2.2)
ap

Here, r; is the distance between atomandj, anda and S denote the type of atoms

where

(Ni or Ti) at sites andj, respectively. In Eq. (2.1), the first term in thely bracket
describes the pair interaction and the second tepmesents the many-body effect. The
potential parameters were fitted to the propendigbe B2 phase at OK from first
principles calculations, and the potential cutraffiusr, was determined to be 4A2
[31]. However,F(r;) and its derivative about are non-zero at,. To be suitable for

use in molecular statics and dynamics simulatibas generally require smooth energies

and interatomic forces, we have modified the pagéby changingF(r;) as follows,

21



2 T

Caup (i — r1)3 +Cpup(ly = r1)2 +Cpap(Fy =1) +Copp, M <Iy <T¢
In Eqg. (2.3), for giverr, the four coefficients o€, ,, to c,,; are solely determined by
four continuity conditions, namelys (r;) and its first derivative are continuous at both

r, andr,. We determine;, by optimizing the predicted properties.

Table 2.1. Potential parameters for Nii.and & are in the unit of eV, and in A

Ni-Ni Ti-Ti Ni-Ti or Ti-Ni
D 2.49 2.95 2.607
A 0.104 0.153 0.3
P 11.198 9.253 7.9
¢ 1.591 1.879 2.48
Q 2.413 2.513 3.002
C, 27.3341 122.395 47.8513
c, -7.54308 -34.205 -12.92362
C, -0.26286 -1.0054 -0.572708
Cy 0.13561 0.59012 0.248676

The potential parameters are listed in Table 2th wy = 40A and r.= 42A.
This modified potential not only removes the didoaunties atr,, but also improves the

predicted properties, including the lattice constard energy of various phases of NiTi,
as compared withb initio calculations in Table 2.2. In our atomistic caétidns of

single phases, both the atomic coordinates asasdhe side lengths and angles of the
simulation box are fully relaxed by using the stresntrolled conjugate gradient energy

minimization [59, 60].
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2.2.2 Crystallographic theory of twinned martensite

We have utilized the crystallographic theory oinmed martensite to facilitate the
atomistic simulation of nanotwins in NiTi. Whileig desirable to generate and analyze
the nanotwins by direct molecular dynamics (MD) d@ations, the attainable twin
structures are limited because of the well-knownrescale limitation of MD and the
associated low efficiency of sampling the atomistiergy landscape when the atomic-
level structure is not precisely known. To overcdimese limitations, we construct the
initial twin structures based on the crystallogragheory of twinned martensite, and
then relax the system by using the stress-contraltsmjugate gradient energy
minimization. In this way, various type I, type dind compound twins can be accessed
for detailed analyses. Moreover, the direct atamsmulation can go beyond the

crystallographic theory to reveal more sub-latteee| information and insights.

K4k’
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Fig. 2.1 Schematically shows a tetragonal unit (@ten lines) and four cubic unit cells
(black lines) in the lattice of untransformed B2gyd phase. Only Ni atoms are shown

for clarity. The orthonormal vector§, j,k) are along the cube axes, and the orthonormal

vectors(i',j',k') are along the cube directions [@fL0], [L10] and [00]], respectively.
The crystallographic theory of twinned martensgguires an input of the
transformation matrix from the cubic parent phasthe martensitic phase. With this
information, the twinning elements, including tert plane normal and twin shear, can
be predicted by solving the twinning equation t@aterns the kinematic compatibility
between adjoining twin variants. Consider, as angle, the martensitic transformation
from the B2 to B19' phase. Following the notatieed by Knowles and Smith [40], the
transformation takes a tetragonal unit cell ofgheent B2 phase (Fig. 2.1) into a
monoclinic cell of the product B19' phase. The asded lattice deformation involves a
uniform expansion or contraction of the tetragarel, followed by a simple shear. In the

orthonormal basigi’,j’,k") given in Fig. 2.1, the deformation gradient mat&n be

represented

b/+2 0 0
=—| 0 csing/v2 0 (2.3)
0 —ccos,B/x/E a

where a, is the lattice parameter of the cubic unit celBR, a, b, ¢ are the lattice
parameters of the monoclinic unit cell in B19', gfids the associated monoclinic angle

between the edges with lengthsabfand c. Prior to martensitic transformationa,= a,,

b=c= \/an and £ =90 . The shuffling of atoms in the cell was ignoredhie

crystallographic theory of martensitic transforraat[40].
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Twin variants of the B19' phase should satisg/kinematic compatibility
condition given by the twinning equation [7]

QF, -F, =mUn (2.4)
whereF, andF, denote the symmetry-related deformation gradiémtinant! andJ,
respectively,n is the normal vector of the twinning plane at tiransformed reference
B2 state,m is the twinning shear vector at the transformederu B19' state, and
[mOn]; =mn;. Eq. (2.4) essentially requires that any vectordyn the twin plane,
which separates the two adjoining variants, shaaldergo the same deformation when
viewed from either side. Note th& represents an additional rotation of variarafter
the transformation by, ; namely, the total transformation imposed on variais QF, .
The rotation matrixQ is needed whenever the orientations of the twamed are
different after the transformations of varianby F, and variand by F,. For the
martensitic transformation from the cubic B2 to mdimic B19' phase, there are 12
distinct variants. The transformation is convengibndescribed in terms of the
symmetric deformation matrikJ obtained from the polar decomposition of defororati
gradientF . Then there are 132 possible variant pairs bet@@emonoclinic variants and
those pairs can be classified as type |, type damnpound twin [1]. Solutions of Eq.
(2.4) for type I, type Il, and compound twins hdeen cataloged by Hane and Shield
[41]. In this work, we focus on compound twins ider to directly compare simulations

with available HRTEM images of twinned structurBstailed solutions of compound
twins suitable for atomistic calculations in theipdic supercell, includind-, , F,, m,

andn, are given in the Appendix A. Our method is gehanal applicable to create type
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| and type Il twins, and it can be further develdpe produce complex twin
microstructures (e.g., twinned wedges in the autst@matrix [7]) for providing an

atomistic structural basis of studying their sdeanporal evolution.

2.3 Results and discussions

2.3.1 Single phases

Figure 2.2 shows the relaxed structures of theE3®,, and base-centered
orthorhombic (BCO) single phases of equiatomic NiEble 2.2 lists the lattice
parameter, monoclinic angle and energy per atoradoh phase calculated by the
interatomic potential. Most results given by tluegmtial are close to the available
experimental values arab initio calculations. However, the energy of the BCO phase
(-5.069eV per atom) is slightly higher than thatled B19' phase (-5.073eV per atom),
whereas the more accuratie initio calculations predicted that BCO has a lower energy
at zero temperature [48]. On the other hand, tH# Biiase is most commonly observed
in experiments at low temperatures [4]. It is still open question as to the most stable
martensitic phase at low temperatures. Neverthalesgeometric features of nanotwins
reported in this work are expected to be robustpast of them are symmetry related.
But one should take caution in interpreting thatree magnitude of energies among
various phases and twins predicted by the potertiab note that as shown in Fig.2.2(c),
the relaxed BCO phase (with an orthorhombic urlticevhite lines) can be equivalently

considered as B19' twinned at the level of unitlsogreen lines) with the resulting

monoclinic anglef =107 . This geometrical view was advanced by Huang.448],
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providing an interesting connection between nanoted and single phase structures.
Table 2.3 lists the elastic constants of the B&plaalculated from the interatomic
potential at OK, which are close &b initio calculations. Due to omission of the
temperature effects or lattice vibrations, theseillte are larger than experimental values

measured at and above room temperatures [61, 62].

fLoo] 001

(a) B2 (b) B19' (c) BCO

Fig. 2.2 Relaxed atomic structures of single phagaiatomic NiTi, viewed from the
[100] direction in the(i’,j',k") basis of Fig. 2.1. (a) B2 phase, the rectangleatés a
tetragonal unit cell. (b) B19' phase, the paratjedon indicates a monoclinic unit cell
with the monoclinic angles =98’ . (c) Base-centered orthorhombic (BCO) phases, the

rectangle (white lines) indicates a BCO unit cile BCO structure can also be

considered as a twinned B19' and each variant si3nsi one layer of monoclinic unit
cell (green lines) with3 =107 .

Table 2.2 Comparison of lattice constamth, ¢, monocline angle3, and the energy per
atomE for single phases and compound twins, as weheis tifferences with the
energy of the B2 phask;,. Results from this work are indicated by Finnis<ir

(FS)-potential. The experimental aal initio values are taken from Knowles and Smith

[40] and Wagner and Windl [45], respectively. Thstltwo rows list the properties of
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nanotwins with monolayers of monoclinic unit celpown in Fig. 2.6(b) and (c),

respectively.

Structure a (A) b (A) c (A) B() E(eV) E-Eg,(eV)
B2 experiment 3.015 4.264 4.264 90
FS-potential 3.008 4.253 4.253 90 5.022
ab initio 3.008 4.253 4.253 90
BCO FS-potential 2994 4001 4.883 107.86 -5.069 -0.047
ab initio 2.953 3.993 4951 108.52 -0.050
B19' experiment 2.889 4.120 4.622 96.8
FS-potential 3.005 4.022 4.466 98.08 -5.073 -0.051
ab initio 2941 4.035 4.685 97.78 -0.044
BLO' twin (Fig.4.6) 3.062 4.018 4301 | g‘é‘g‘é 5058  -0.036
e 3.011 4.022 4.464 98.43
B19' twin (Fig.4.6¢) 3011 4022 4416 90 -5.075 -0.053

Table 2.3 Elastic constants (GPa) of the B2 phakmikated from the interatomic
potential of this work, in comparison wittb initio calculations and experimental

measurements at different temperatures.

experiments  experiments

FS-potential abinitio
(sz 0K) = 0K) (T = 298K) (T = 400K)
[62] [61]
C., 206.3 183 162 137
C, 135.8 146 129 120
Cus 46.9 46 34 34

2.3.2 Compound twins

Figures 2.3 and 2.4 show the relaxed structure@@f) and (010) compound twins,
respectively. Here (001) and (010) refer to {Hg', k") basis in Fig. 2.1, and they are
equivalent to (001) and (110) in tifej,k) basis. We focus on a single twin boundary by

studying the thick twins such that neighboring tWwoundaries are sufficiently separated
to minimize their interactions. The effect of thart thickness will be addressed later in

Fig. 2.5. Notice that the initial structures @01) and (010) twins are constructed by
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using the transformation matrices of Eq. (A2) afdl)( respectively. When applying
these transformation matrices to construct the @tstnuctures, one can choose to
position the mathematical mirror twin plane at wad locations, including exactly on an
atomic layer or between atomic layers. As a reseleral metastable twin-boundary
structures are obtained after stress-controllejugate gradient energy minimization.
The corresponding mirror twin plane is indicatedtiy dashed line in Fig. 2.3 and 2.4.
The position of a twin plane is determined accaydmits definition, i.e. the
arrangements of the lattice on one side of the heundary plane are mirror reflections

of those on the other.

®Ti
® Ni

o109 S " T
nog [oog

Fig. 2.3 Relaxed structures @#01) compound twins. The mirror twin plane (dashed

(b)

line) is located on (a) the pure Ni laden layer émdhe pure Ti layer, respectively.
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Fig. 2.4 Relaxed structures of (010) compound twiite mirror twin plane (dashed line)
is located (a) off the (010) atomic planes, andofbjhe (010) atomic plane. The front
atomic layer in (b1) and (b2) exposes one of thedifferent (100) atomic planes of the
same relaxed structure. The white unit cell oftbnas in (b1) and that of Ni in (b2)
straddle the twin plane (dashed line), respectj\aahygl remain the rectangular shape.

For the relaxed001) compound twin shown in Fig. 2.3, the mirror twin
boundary is always located on the atomic planespective the position of the twin
plane. Since thg001) atomic planes consist of alternate pure Ni (bkoens) or pure Ti
(red atoms) layers, the mirror twin boundary careitieer on a Ni laden plane
(Fig.2.3(a)) or Ti laden plane (Fig. 2.3(b)). Wdide the twin boundary energy,, as
the excess energy (in reference to the single pbfaB&9") divided by the boundary area.
The calculated value of is, respectively, 0.136 Jfrand 0.047 J/f indicating that the
twin boundary located on the Ti plane is more eeigeglly favorable than that on the Ni
plane.

In contrast, for the relaxe®10) compound twin shown in Fig. 2.4, the energy
minimization results in structures with the twinrror plane located either on or off the
atomic layer. To understand the “on” and “off” pibd#ties, one should notice the
following geometrical feature of (010) planes. tmtrast to the (001) planes that involve
the alternate pure Ni and pure Ti layers generdtirgwin structures shown in Fig. 2.3,
the order arrangement of atoms ir0d.0) plane involves a 2D rectangular net of Ni
atoms interpenetrating a rectangular net of Ti atoAs such, all the (010) planes are
equivalent in terms of chemical arrangement of il &i atoms. Consequently, if the

mirror twin plane is located on the atomic laykere exists only one type of boundary
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structure, as discussed next with Fig. 2.4(b).régengly, adjaceni010) layers differ by
an in-plane shift in the diagonal direction of 212 rectangle cell of Ni (or Ti) by one
half of the diagonal length. As a result, one priothe [010] direction involves two
neighboring (010) atomic planes.

Figure 2.4(a) shows the relaxed structures whemrtinror twin plane is off the
atomic layers. One can see that the mirror retbaas only approximately satisfied by
unit cells of atoms near the twin boundary. Theesponding twin boundary energyis
0.089J/m, larger than 0.014J/mfrom the first principles calculation [17]. In doast,

Fig. 2.4(b) shows the relaxed structure when theamiwin plane is on theg010) atomic
plane. Note that in Figs. 2.4(b1) and (b2) thetfieomic layer of the simulation box
exposes one of the two different (100) planes efstéime relaxed structure, respectively.
It is seen that the mirror reflection is obeyedsy parallelogram-shaped unit cells (in
green) on the two sides of the twin plane. Moreptrex mirror twin plane is located in
the middle of unit cells in white, and these ckbégp the rectangle shape so as to
maintain the symmetry about the twin plane. Suamidary is structurally different from
that in Fig. 2.4(a), resulting in a different twinundary energy = -0.0091J/nf. While
the small negative boundary energy could be spedfthe interatomic potential, this
boundary structure can possibly exist as a metiessadite, justified by the local
symmetry of the lattice. It follows that this kindl boundaries is expected to be
observable in experiments, considering that thpein@emory alloys generally consist of
various co-existing metastable structures. As dised next, the available HRTEM image

[17] shows evidence of their existence.
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Fig. 2.5 Atomistically simulated twin structurestlvdifferent twin widths, i.e. each
green-colored twin variants comprises (a) 2, (by &) 6 layers of monoclinic unit cells.
Black lines are drawn for guiding eyes, equivaterthe white lines in the TEM image
by Waitz et al. (Fig. 2 in their paper) [17].

The HRTEM image of nanocrystalline NiTi by Waitzad. has revealed the
formation of nanoscalgd10) compound twins that can span the entire grain. [L1ijas
observed that the thickness of twins varies instim@e grain, and the thinnest variant is
about 1 nm, involving two layers of monoclinic uodlls. These unit cells seem to be
rectangular rather than monoclinic, lending a supiwothe existence of the boundary
structures shown in Fig. 2.4(b). Further HRTEM ekpents andab initio calculations
are needed to clarify the exact boundary structure.

To understand the effects of the twin thicknesscreate(©010) compound twins
with the thickness of 2, 3 and 6 layers of monaclimit cells. Figure 2.5 shows the
cases with the twin mirror plane located betweenatomic planes, similar to Fig. 2.4(a).
The twin boundary energies extracted from variews structures in Fig. 2.5 are close to

y = 009J/nf. These nearly constant values indicate the vglifiseparating the total

energy into the bulk and excess interfacial pantgtfe nanotwinned system. More

32



specifically, for coarse twins, it is common to lgma the optimal twin geometry in terms
of competing effects of the increase of the tatahtboundary energy with the decreasing
twin thickness and the associated decrease ofullkeslastic energy caused by the
geometric incompatibility of transformed phasedwiite surrounding materials [18]. The
foregoing results show that such an approach caxtemded to analyze the nanotwinned
structures at low temperatures, considering theyeanstant twin boundary energies at

the nanometer scale.

2.3.3 Geometrical limit of nanotwins

We have explored the geometrical limit of nanaosd¢ains with monolayers of
the monoclinic unit cell, whereas the hitherto ekpent only reveals nanotwins as thin
as two layers of monoclinic unit cells in each Bi#&iant, as discussed above. Figure 2.6

shows the relaxed structures @f.0) compound twins with one layer of monoclinic unit

cells in each variant. Their boundary structuressamilar to those shown in Fig. 2.4, but
the twin thickness is reduced to the minimum. Tdarstand these structures, it is useful
to note that the lattice of the B2 phase of NiTh t& viewed as four sets of
interpenetrating tetragonal sub-lattices, as schieally shown in Fig. 2.6(a). The
martensitic transformation from the B2 to B19' ghaan be considered as an expansion
or contraction along the edges of the tetragonialagfi, followed by a simple shear to a

monoclinic angles.

Figure 2.6(b) shows the relaxed twin structure e mirror twin plane is
located off the atomic plane, and its twin boundgrycture is similar to that in

Fig.2.4(a). This is a simple case of uniform masien transformation, where each of the

four sub-lattices consists of alternate single dafenonoclinic unit cells withs =94,
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(c1) (c2)

Fig. 2.6 Relaxed atomic structures @fLO) twins with the smallest thickness (about

0.5nm), and each variant consists of one layerariaulinic unit cells, i.e. two atomic
planes. (a) Schematics of four sets of interpetietyagimple orthorhombic sub-lattices.
One Ni sub-lattice is represented by a 3D green aoa the other Ni sub-lattice is
indicated by a 2D pink rectangle instead of a 3R foo clarity. The two Ti sub-lattices
are indicated by the orange and blue rectanglspectively. (b) All sub-lattices are
twinned, as indicated by the sheared unit cel)sA(sub-set of interpenetrating sub-
lattices is twinned. The front atomic layer of (&@h)d (c2) exposes one of the two
different (100) atomic planes, respectively. Thest-lattice in (c1) and Ti sub-lattice in
(c2) are twinned.

Of particular interest is that a new nanotwinnidciure is found: one Ni sub-
lattice and one Ti sub-lattice undergo martensitinsformations, while other Ni and Ti

sub-lattices remain orthorhombic. This mode isalisced from the relaxed structure
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when the martensitic transformations are imposedrading to the matrices in Eq. (Al)
with the mirror twin plane positioned at the (0&)mic plane; the relaxed boundary
structure is similar to that in Fig. 2.4(b). Figsi26 (c1) and (c2) show the same state of
such a twinned structure after energy minimizatiaotice that because of
interpenetration of 3D sub-lattices, one periothm[100] direction involves two
neighboring (100) atomic planes. The front atoraiel of the simulation cell in Fig.
2.6(cl) and (c2) exposes one of the two differ&@0] planes, respectively. Comparing
them with Fig. 2.6(a), one can see that one suizdadf Ni atoms (green cells in (cl))
and one sub-lattice of Ti atoms (blue cells in J&@nsist of variants of single layer of
monoclinic unit cells f = 9843), while one sub-Ilattice of Ti atoms (orange calls

(c1)) and one sub-lattice of Ni atoms (pink celifa2)) consist of orthorhombic unit

cells (8 =90). One interesting feature is the tight couplingloéared and un-sheared
sub-lattices, resulting from interpenetration a thulti-lattices. While this nano-twinned
structure was discovered from our atomistic simaoihest of equiatomic NiTi at zero
temperature, it is geometrically reasonable anddcpresent as metastable states in other
alloy and compound systems with the multi-lattivecture [63, 64].

The alternate twinned structures shown in Fig.cam be considered as a single
orthorhombic phase with the period doubled in thi@4plane normal direction of [010].
This geometrical view is motivated by a similar smeration of the single phase BCO as
a twinned B19' with the monoclinic angfg=107 [48], as discussed earlier. Of course,
there is a notable difference between the two cadlehe sub-lattices of BCO are
equivalent, whereas the new structure involvesrtezpenetration of alternatively

sheared and un-sheared sub-lattices. Moreovergatdhese twin products were
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obtained by a general procedure of constructingenaites according to Eq. (Al)
followed by energy minimization, one may equivalgset up their initial states by
shuffling every other (010) atomic plane in theIp@irection — the shuffling method has
also been used to study the pathways of martemsatisformation [39, 65].

In the present geometrical limit of monolayer taga structures, despite the
spatial overlap of the bulk and twin boundary regiahe effective twin boundary energy
(i.e., the excess energy per unit boundary areefémence to the B19' mono-variant) is
still about—0.00891/m2, very close the values 6f0.0091)/m2 extracted from the
previous cases of thicker nanotwins. As explaireetiex, one should take caution in
interpreting the energy values given by the intarat potential. However, the geometric
features of those nanotwins are symmetry relatbdy Tould possibly exist as
metastable states, considering that the HRTEM inbgg&aitz et al. [17] has revealed
the similar type of thicker nanotwins. Finally,fexilitate the future verification bsgb
initio calculations and experimental measurements, winliEable 2.2 the predicted
unit-cell geometry and energy per atom for the nteyer nanotwins shown in Figs.

2.6(b) and (c).

2.3.4 Phase transformation and size effect

Temperature-driven phase transformation is siradlaty using the molecular
dynamics (MD) simulation package LAMMPS [66]. WerBamplemented the NiTi
potential in LAMMPS. In MD simulations, the stadistructure is monoclinic B19'. The
supercell box contains 9216 atoms. The systembsied to periodic boundary
conditions and fully relaxed to zero stresses. fEngperature is initially set to 100K

through thermal equilibration. Then the thermati@aapplied by linearly varying
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temperatures in three stages: (1) heating from 1@0450K; (II) cooling from 450K to
100K; (1) re-heating until 450K. The MD simulaticof each stage involves 200,000
time steps, each of which is 0.5fs. The phase fibamstion is characterized by
geometrical changes of the simulation cell in teaihan order parametéesy, defined as
the sum of all the shear components of the simaridiox.W is further normalized by its
maximum value, such that it varies between zeroceng] corresponding to the cubic B2

and monoclinic B19' phases, respectively.
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Fig. 2.7 MD simulation of phase transformation ddferent sizes of the simulation box.
(a) The order paramet® as a function of temperature T for three stagdsraperature
loading: (1) heating (blue), (I1) cooling (blackand (lIl) reheating (red). (b) The
monoclinic B19' phase at the beginning of stagehleating. (c) The cubic B2 phase at

the end of stage | of heating. (d) The B19' phaskeaend of stage Il of cooling, forming
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nanotwins indicated by dashed lines. (e) Same)ax(&pt that the volume is 1/8 of that
in (a). () Same as (a) except that the volumetim8s of that in (a).

Figure 2.7 shows that in stage | of heating (louere),W first increases slightly
with temperature due to the effect of thermal espam As the temperature is further
increased to around 350KY decreases sharply to a very small value closenm. z
Correspondingly, the B19' phase, Fig. 2.7(b), ugoes a structural phase transition to
the B2 phase, Fig. 2.7(c). This indicates that lo¢hstart temperaturds, and finish
temperaturedy, of the B2 austenite are close to 350K.

In stage Il of cooling (black curve), a similarapt change oW is observed as
temperature is decreased to around 300K. This sjoorels to the reverse transformation
from the B2 austenite to the B19' martensite. u@tmation of the twinned B19'
structures, Fig. 2.7 (dyV only increases to 0.6, smaller thah= 1 of a single B19'
phase. This reduction §¥ can be attributed to the canceling effect of shegauf
adjacent twin variants in the opposite directiarajsing a decrease of the overall shear
of the simulation box. The corresponding start terafure of the B19' martensitds, is
310K and the finish temperatuid;, is 290K, indicating that the formation of twinned
structures occurs in a relatively narrow temperatange.

In stage Il of reheating (red curve), the twini&ID' structure undergoes the
transforms to a single B2 phase. The process staat®und 310K and finishes at 350K.
CorrespondinglyW deceases gradually from 0.6 to O, in contrasteacabrupt change of
W around 350K in stage | of heating of a single 'Bitthse. Both the decreasefgfand

gradual change dl can be attributed to the presence of twin bouedacting as the
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heterogeneous interfaces to facilitate the progreste-twinning through boundary
migration.

We further study the size effects of the simulattox on phase transformations.
The length of all three sides of the simulation ieéither reduced by one half or
doubled, corresponding to 1/8 and 8 times the ptesvwolume, respectively. As shown
in Figs. 2.7(e) and (f), the size effect is smallphase transition temperatures, indicating
that the present MD predictions can well represiaoge of bulk NiTi. Indeed, the MD-
predicted temperatures are only slightly lower Z8¥K) compared to experimental values
[67]. On the other hand, a size effect is obseethe magnitude dV. Namely, at the
end of stage Il of cooling/V decreases with the increasing size of the sinauidiox,
implying thatW will reach its lower limit of zero in bulk NiTi. fiis trend is expected
because the twin variants in a large system caertstlf-accommodate their respective
shear distortion, thereby reducing the overall (aged) shear deformation. But the
guantification of the size limit givinyV =0 is not feasible yet, due to the computational
limitation on the time scale of MD simulations afde atomic systems. On the other
hand,W increases as the size of the simulation box deesed his is understandable by
noting the following limit. For the smallest sinatibn box with one unit cell, the
formation of twinned microstructures is completelyppressed because of the
geometrical constraint of the simulation cell, satiV has to stay at its upper limit of

one.
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2.4 Conclusions

Combining the crystallographic theory of twinnedrtensite with atomistic
simulations, we study the nanoscale twins and msitte phase transformations in NiTi
with the multi-lattice structure. We explore theogeetrical limits of nanotwins by
showing the possible formation of a nontrivial madéwinned martensites: different
sub-lattices undergo different martensitic transfations. These twin structures are
metastable and likely to be attainable in nanosoatepound twins, as hinted by the
HRTEM images by Waitz et al [17]. Our molecular dgmics simulations predict the
phase transformation temperatures, consistentexierimental measurements [67]. We
find both the formation of twinned microstructugesd associated overall shear
deformation are sensitive to the size of the sitmrasystem.

The present atomistic study focuses on the straicaspects of nanoscale
compound twins. In view of the imprecision of enngaf interatomic potential,
verification via experiments and first-principlesl@ulations is needed to ascertain the
conclusions. However, our results reveal the corifyl®f martensitic phase
transformations at the sub-lattice level, and pde\a structural basis for further atomistic
study as well as multiscale modeling of the NiTapé transformations through bridging
the crystallographic theory with atomistic and quam mechanical calculations.
Furthermore, to fully reveal the physical originfofmation of nanotwins, the
determination of the multilayer generalized gamondase [44, 68] is needed. This type
of calculation has been performed for elementabiag68], but not NiTi with the multi-
lattice structure. Finally, we note that the eletabmetals (e.g. Cu) with nanotwins

exhibited unusual properties, e.g., ultra-highrgjtk with retained ductility and high
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electrical conductivity [69, 70], the strongestrivgize around 15nm [71, 72], etc.
Nanotwins in alloy and compound systems are mongptioated, and possibly work in a
very different way than normal metals. This worlaisecessary step towards
understanding and exploiting the nanotwinned stineeproperty relationship in alloys

and compounds with the complex multi-lattice stuves.
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CHAPTER 3
PSEUDOELASTICITY AND SHAPE MEMORY IN NITI

NANOPILLARS

3.1 Introduction

Shape-memory alloys (SMAs), when deformed at atemperature, recover to
their original shape upon unloading and heatin@[B]. Nickel-titanium (NiTi) is one of
the most widely used SMAs [4]. The shape memoryotfdf NiTi usually results from
the reversible martensitic phase transformatiowéen the cubic B2 (austenite) and
monoclinic B19 (martensite) phase. NiTi can also exhibit pseuakiwlity [4], i.e.,
deformation is fully recovered upon unloading withthe aid of heating. Compared to
shape memory, pseudoelasticity similarly involves martensitic phase transformation,
but it occurs when the deformation temperaturaghéer, typically above the austenite
finish temperaturdy.

Both pseudoelasticity and shape memory have bdensvely studied in the
bulk SMAs [1, 2, 5]. However, these unique progertnd size effects remain largely
unexplored in the nanoscale SMAs [73], while theylzeing increasingly considered for
use in micro/nano-devices for sensing, actuatibaps memory and mechanical damping
[14, 43]. Recent development in the nanomechatestihg provides opportunities of
illuminating the nanometer length scale effectsSohAs [9, 10, 13, 16-24]. For example,
Frick et al. showed that decreasing diameter ofi Nahopillars inhibits the pseudoelastic
behavior and ultimately suppresses it for diametétsess than 200 nm [13]. This size
effect could be possibly attributed to the suppogssef martensitic phase transformation

that gives way to dislocation plasticity. Howeueara recentn situ electron diffraction
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experiment, the martensitic phase transformatidd2f B19 was observed in NiTi
pillars of 200nm diameter [16]. It was thus suggdghat the loss of pseudoelasticity
arises owing to incomplete strain recovery, degpigeoccurrence of martensitic phase
transformation [21]. In contrast to loss of pseudskkcity, the shape memory was
measured for pillars with diameters of 200nm [21].

To understand the length scale effects on nardated SMAS, it is highly
desired to develop the physics-based models t@exfhe structure-property relationship
in these systems [31, 39, 44, 45, 48, 50, 74-78}his end, here we report an atomistic
study of the pseudoelasticity and shape memorywheaisan NiTi nanopillars by using
molecular dynamics (MD) simulations. We focus oa $tress-induced martensitic phase
transformation and deformation twinning, while teenperature-driven phase
transformations has been reported in Chapter 2 [74]important to note that compared
to the previous atomistic study of pseudoelastiaitg shape memory in pure metals [79-
82], the NiTi alloy is complicated with the formai and evolution of a variety of phases
(e.q., B2, B19, B19R and BCO) and twin structures (e.g., type letiijpand compound
twins) [4]. However, it is likely that the facileutti-phase and multi-twin features could
produce the pseudoelasticity and shape memorytetieat are more robust and thus
highly desirable to the “smart” micro/nano-devicksthis work, by controlling the
applied strains and temperatures, we have simulaedus characteristic stress-strain
behaviors in shape memory alloys, such as psetmetieformation, loss of
pseudoelasticity, and shape memory. Our detaileabiatic characterization of the phase
transformation and deformation twinning productiers new insights into the physical

mechanisms governing the thermomechanical beha¥/idiTi nanostructures.
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3.2 Methods

A many-body Finnis-Sinclair type interatomic pdiah[58] is used to describe
the NiTi system. This potential was originally deyeed by Lai and Liu [31], but it
suffered from discontinuities at the cutoff radiAs.discussed in Chapter 2, we modified
the potential function by smooth interpolationsitéa cutoff with cubic polynomials
[74]. The resulting NiTi potential not only enabldgk well-behaved molecular statics
and dynamics simulations, but also improved thdipted properties, including lattice
constant and cohesive energy for a variety of php&4.

In this chapter, we perform the MD simulationsiafaxial compression of NiTi
nanopillars by using LAMMPS [66]. The initial sttuce is taken as the ordered B2
phase. A nanopillar with 46,080 atoms is constiaidieis 25.6 nm long, with a nearly
square cross section, 4.8 RBi1 nm. The periodic boundary condition is appbedy in
the axial direction, such that the sidewalls ofoyaltars are traction-free. The axial

direction of nanopillar is aligned witk110>_, [19]. By thermal equilibration the

simulation temperature is set to 400K, about 50§hér thands (~ 350K). The system is
relaxed at zero stresses for 200,000 MD time segud) of which is 0.5fs. The uniaxial
compression is then applied by strain control. Xpl@e the pseudoelastic deformation, a
limited load range is applied up to 6.6% enginagstrain. Note that all the strain values
given in this paper refer to the magnitude of thpli@d compressive strain. The
aforementioned strain limit is achieved in 400,66tk steps, followed by unloading to
zero strain in another 400,000 time steps. As doethn loading and unloading

correspond to a constant strain rate of at3oui0®/s. Then we study the irreversible

deformation after the complete martensitic phaaestiormation by imposing a larger
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compressive strain up to 10.6%. Next, the tempegadtiect is investigated on both
phase transformation and deformation twinning lepoing the deformation temperature
to 350K, close td. Last, the size effects on the stress- and terhperdriven phase
transformation are discussed, as compared witbuleNiTi behavior.

In all the MD simulations, we identify the formari of new phases in terms of the
transformed lattice constants, internal atomic #imgf, and particularly monoclinic angle
y,i.e.y=90" for B2 and B19, =98 for B19, y =108 for the base centered
orthorhombic (BCO) phase [74]. To reduce the eim@n thermal fluctuations, the
aforementioned geometrical parameters are calculat@veraging over tens of MD time
steps. Note that for a given temperature, sevebalsihulations have been performed
with different initial distributions of randomly signed atomic velocities, in order to
explore the possibly different products of phaaadformation and deformation
twinning.

It is necessary to recall the crystallographyhef B2 phase and B1phase of
NiTi. Fig. 3.1 shows the lattice structure of th2 jghase with both cubic and tetragonal

unit cells. We use,, to represent the lattice constant of the cubict cgil.

Correspondingly, the lattice parameters of theatginal cell are given b =a, and

b= c=\/§a0. In this paper, all the crystallographic orierdas of different phases are
referred to the(i, j,k) basis of the cubic cell of the parent B2 phase fMlartensitic

transformation of B2» B19 takes a tetragonal unit cell into a monoclinid.CEhe
associated lattice deformation involves the exmanand contraction of the tetragonal
cell, as well as a simple shear. We restaistb <c in our notation. In B1%he

monoclinic angley between edges with length afandc is around98’, as measured
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from experiments [4] and predicted from our MD siations. The martensitic
transformation also involves the atomic shufflingunit cells, which can be directly

simulated by MD.

Fig. 3.1. Schematic of a tetragonal unit cell (klices) and four cubic unit cells (green
lines) in the untransformed B2 phase. Only Ti atdred circles) are shown for clarity.

The orthonormal vector§, j,k) are along the cube axes, and the orthonormal reecto
(i',j', k') are along the cube directions [&fL0], [L10] and [00]] , respectively. The
rectangle enclosed by dash-dotted lines i11&} ,, twin plane, refereed to thg, j,k)

basis of the cubic unit cell.
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3.3 Resaults and discussions

3.3.1 Pseudoelasticity and reversible phase transfor mation

Fig. 3.2 shows the MD results of uniaxial compi@s®f a NiTi nanopillar at a
temperature of 400K, about 50K above the bulk valu&. Fig. 3.2 (a) presents the
initial structure of the nanopillar in the B2 phaBeiring compression, the successive
phase transformations of B2 B19— B19 occur. Fig. 3.2(b) plots the corresponding
stress-strain curve with the maximum compressinarsbf € = 6.6%. The compressive
deformation constitutes four stages: (I) the ihitieear responseq < 2.5%) represents
the elastic deformation of the B2 (austenite) ph@fethe continuous but nonlinear
response (2.5% € < 3%) corresponds to the martensitic phase tramsftoon of B2—
B19, manifested by a smooth increase of slope;gHbther linear response (3% <
<5.8%) signifies the completion of martensitic ph&snsformation to B19 and
subsequent elastic deformation of B19; (IV) thedldeop ate ~ 5.8% indicates the

phase transformation of B19 B19.
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Fig. 3.2. Nanopillar compression at 400K with tippléed strain up to 6.6%. (a) Initial
structure in the ordered B2 phase (red atoms reptds and blue atoms Ni). (b) Stress-
strain curve of loading (blue) and unloading (redjpositive stress means tension. (c)
Schematics of B2, B19, B1Anit cells. (d) Side view of the nanopillar befamed after
the phase transformation of B2 B19. (e) Top view of the sequential steps of ti® B
— B19 phase transformation; the dashed line indicatepliase boundary.

Next, each of the aforementioned loading stagdsssribed in detail. During
stage | € < 2.5%), we start with the cubic B2 (CsClI typeagh of NiTi. Fig. 3.2 (c)
shows the schematic of its atomic structure inraveational tetragonal unit cell which
includes both Ni and Ti atoms. This austenite paséable at 400K. Its effective

Young’s modulust' is about 29GPa, estimated from the slope of thialistress-strain
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curve in Fig. 3.2 (b). Since the nanopillar is coegsed in the<110>Bz direction, the

corresponding Young’s modulus can be related telhastic constants of the B2 phase by

_ 2
Y Cu +1(Cy +C, -2C,C,, /Cyy)

(3.1)

Using Eq. (3.1) one can compake predicted from our MD with the experimental value.
The elastic constants of the B2 phase have beesurezhby Brill et al. [61] at the same
temperature of 400K as MD. On the basis of theregxnental data, we estimate
E'=39GPa, consistent with our MD result. On the other hahd,B2 phase at low
temperatures is metastable. It can be accesshd indll-controlled atomistic modeling,
but not in experiment. As such, for the OK casecammpare the results between the
interatomic potential andb initio density functional theory calculations. Using E)1),
we calculateE' from the OK elastic constants predicted by theratbmic potential,
yielding 72.9GPa. It is comparable to the valué2P2GPa from thab initio OK elastic
constants by Hatcher et al. [44], but smaller th28.7GPa from Wagner and WindI [45].
From the above results at 400K and OK, one semagstemperature effect on the
moduli of the B2 phase.

During stage Il (2.5% < < 3%), the stress-strain curve in Fig. 3.2 (b) is
continuous but nonlinear. This stage of deformateatures the phase transformation of
cubic B2— tetragonal B19, as schematically illustrated Birthespective unit cells in
Fig. 3.2 (c). Fig. 3.2 (d) shows the atomic struesuof nanopillar before and after B2
B19. The lattice deformation associated with phemesformation can be understood in

terms of a direct loading effect. The lattice cansb in B19 is smaller than the

corresponding value oﬁa0 in B2 [44, 45, 48, 50]. As a result, the applietpression
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along<110>,, tends to promote the formation of B19 with a serdittice constant in

the loading direction. In addition, internal shinfff of atoms within the unit cell is

observed in our MD, i.e. the atoms {i1.0} planes move in thgp01] direction, as

indicated by the arrows in Fig. 3.2 (c). Our resalgjree well with a recent study by
Hatcher et al. [39, 44]. They performed the finshpiples calculations of energy barriers

of multilayer shear, and found the shuffling @01{11G requires the lowest energy

barrier or even no energy barrier, depending omtimber of the sheared layers. The

shuffling mode from our MD essentially correspotalsheir two-layer[001]{110}

shuffling. However, this mode is different from i#0]{11Q basal shear/shuffle
proposed by Otsuka and Ren [83]. It is still anrogaestion concerning which shuffling
mode dominates in the B2 B19 phase transformation.

During stage Il (3% <¢ < 5.8%), the B19 phase is elastically deformed, its
effective Young’s modulus is ~ 145GPa. The corresiogty experimental data is
currently unavailable. Combining stages | - lll, n@te that during the B2> B19 phase
transformation, a 5.8 % strain can be achievediutihanly 0.5 % phase transformation
and 5.3 % elastic strain. This is because in sustheas-driven transformation process, a
large elastic strain (~ 2.5%) is required. Thedagtpstic loading can be sustained by the
system because it is single crystalline withoutgxesting internal defects. Furthermore,
the B2 to B19 phase transformation involves a camtiis and nonlinear variation of
lattice constant. This implies a continuous dintimg of the energy barrier of the B2 to
B19 transformation with increasing loading, chagastic of a second-order phase

transition. Such a continuous process resultssimall transformation strain of 0.5%.
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Likewise, the B19 phase can sustain a large elas, as it does not contain pre-
existing internal defects.
During stage IV € > 5.8%), the deformation features the phase toamsftion of

B19 — B19. The resulting monoclinic angle of the B19 phase is 98°, as indicated in

Fig. 3.2 (c). Notice that the shear transformatioaurs in the plane (containiagandc)
perpendicular to the loading direction. Furthermdine transformation involves the
nucleation and growth of the B18hase from the B19 parent matrix, to be discussed
next. The associated stress-strain curve is platt&ay. 3.3 (b). During this stage of
phase transformation, there are two load dropsraoguat the strain of 5.9% and 6.6%,
respectively. The first load drop is relatively sinanly a few hundred MPa. It is
followed by a load increase. The second load dsansiderably larger, ~ 2GPa. The
compressive loading terminates at this point, winéestress-strain behavior under a
further load increase will be studied to explore mhartensite plasticity in the next
section.

The aforementioned nucleation and growth of th@ Bhase is shown in detail
by a cross-sectional view of the nanopillar in B (e). The B19hase first nucleates
ata{110},, free surface of the pillar, Fig. 3.2 (el), resigtin the first load drop in
Fig.3.2 (b). As shown in Fig. 3.2(e2), the BpBiase grows by migration of a phase
boundary (dashed line) with increasing load. Wiereaches ~ 6.6%, a B1jShase also
nucleates at the opposite10} ., free surface, Fig. 3.2 (e3), and it grows simjldny

migration of a phase boundary. Instability occutewthe two phase boundaries are
sufficiently close, producing the second load darag the final product of a uniform B19

phase, shown in Fig. 3.2(e4). The monoclinic angle 98° in the central region of the
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pillar, while y increases notably tt09° near the outer boundaries of the cross section

due to the free surface effect.

The unloading starts with the Blfghase. Fig. 3.2 (b) plots the associated stress-
strain curve (in red). It comprises two linear pawith an abrupt stress change in
between. The Young’s modulus of the initial line@atoading is around 142GPa, close to
134GPa: 4GPa as measured from experiments at room tempergdd]. At £ = 35%,
the B19 phase is reverted to B19 and finally to B2, cagigirsudden change of stress. It
is followed by another linear unloading with thesedated stress-strain curve
overlapping the initial loading one (in blue). Whityve axial strain is reduced to zero, the
stress also becomes zero. Clearly, both the phagdoad recoveries indicate that the
nanopillar undergoes the pseudoelastic deformatiomg a loading-unloading cycle. In
the experiment of NiTi nanopillars, Frick et alpogted that decreasing diameter inhibits
the pseudoelastic behavior and ultimately suppsegder diameters of less than 200nm
[13]. As discussed earlier in the Introduction,stisize effect has been ascribed to the
suppression of martensitic phase transformatiorsnrall samples so as to favor the
irreversible deformation mechanism by dislocatiofaspicity. Nevertheless, our
pseudoelastic results do not conflict with themdings. This is because in our strain-
controlled MD simulations, the realization of psealhsticity, through the B19- B2
phase transformation during unloading, actuallyuness the negative compressive (i.e.
tensile) stress that has not been generally impaese@xperiments of nanopillar
compression [13]. If the unloading was stoppedeab stresses as experiment, the phase
transformation would not be fully reversible, sirtbe final product would be the B19

martensite instead of the B2 austenite. Lastlyisiimportant to emphasize that the
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chemical effect, i.e., formation of surface oxidesuyld play an important role in the loss
of pseudoelasticity in the experimentally studiediNanopillars. NiTi alloys can be

spontaneously covered by a thin film of B#JiOy [85, 86], with thickness typically in

the range of a few tens of nanometers. San Juah ¢B7] pointed out that in NiTi

nanopillar, such oxides will exhibit high modulusdacompressive strength, thus acting
as a stiff outer tube to enclose the NiTi innerecdks a result, much higher loads would
need to be applied to deform the nanopillar, achgethe stress for plastic deformation
of the NiTi core and potentially suppressing theymoelastic behavior, and in particular
pseudoelastic recovery. In the future, it wouldhizghly desired to study the influence of
the surface oxides in NiTi nanopillars by atomistiodeling, but it is beyond the scope

of this work as the Ni-Ti-O interatomic potentialdurrently not available.

3.3.2 Irreversibletwinning and loss of pseudoelasticity

To study the irreversible deformation in NiTi nearsite, we apply a larger range
of compressive strain up to 10.6%. The correspansiress-strain curve is shown in Fig.
3.3 (a), where the loading regime between poiragt) (1) represents the successive
phase transformation of B2 B19— B19, as described in section 3.3.1. In this section
we focus on the subsequent deformation behavioondpntinual compression, the B19
phase at point () is not stable, and it immediateansforms to the BCO phase [48]
without an obvious change in the stress-straineurig. 3.3(b) shows the cross-sectional
view of the nanopillar with the BCO phase. One mdjfference between the BCO and

B19 phase is the monoclinic angje i.e.108° in BCO versu®8’ in B19 as

schematically indicated in Fig. 3.3(c) and Fig.(8)2respectively. It should be

emphasized thag in BCO cannot be an arbitrary value, because ttidhombic
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structure dictateg = arcsin@/2c), as illustrated in Fig. 3.3(d) [48]. Incidentaltheab

initio calculations show that the BCO phase in NiTi ssginound state under zero
stresses at OK, with its energy lower than thd& ¥, the commonly observed
martensitic phase in experiments [44, 45, 48]. Nlo#e the formation of the BCO phase
in our MD simulations is driven by the applied macital loading at finite temperature.
Deformation twinning occurs when the applied coespive strain reaches ~
8.5%, causing a sharp load drop from 5GPa to 0.6G&Rdrom point (111) to (IV) in Fig.
3.3 (a). Fig. 3.3 (e) shows the nucleation and ¢naf a twinned shear band in the
martensitic BCO phase. Our analysis of the crysgaiphy and structure changes

indicates that the twin plane{$12,,, as highlighted by the shaded plane in a BCO unit

cell in Fig. 3.3(c) as well as the plane enclosgdhe blue dashed lines in Fig. 3.1. The
direction of twin shear does not appear to coingitk any typical crystallographic
orientation. Such shear transformation is consitlasetype | twining.

Next, we fully unload the sample to zero straine Tinloading stress-strain curve
is shown in Fig. 3.3(a) (in red). Compared to Bg(b), an abrupt load change similarly
occurs due to the phase transformation of BE6®2. However, a major difference is the
residual tensile stress of ~1.4GPa left in the pélao at zero strain, indicating a loss of
pseudoelasticity. As shown in Fig. 3.3(f), theialiB2 phase has been recovered after
unloading, but the twinned shear band remainsarfittal product. It is interesting to
note that during the loading-unloading cycle, th&tsm undergoes a series of B2B19
— B19 — BCO— B19— B2 phase transformations that finally recoverittigal B2
austenite. However, the deformation twin is irrevge, leading to a loss of

pseudoelasticity.
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Fig. 3.3. Nanopillar compression at 400K with tippléed strain up to 10.6%. (a) Stress-
strain curve of loading (blue) and unloading (réd).Cross-sectional view of nanopillar,
showing the martensitic BCO phase. (c) SchematacBCO unit cell. (d) 2D projection
of B2 and BCO unit cells, showing the uniquely dei monoclinic angle

y = arcsin(a/2c) =108 in BCO unit cells. () Compressed nanopillar i@ BCO phase,

showing the formation (left) and growth (right)atwinned shear band in between
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dashed lines. (f) Nanopillar after unloading toazstrain, showing the residual twinned
shear band (left) and the cross-sectional vievhef82 phase (right).

The above irreversibility of deformation twiningrcbe attributed to the
dislocation pinning effect on twin boundaries. Twin the B19phase are usually
reversible in bulk NiTi, as shown in MD simulatioothe temperature-driven phase
transformation at zero stresses [74]. Howeveratim/e deformation twinning in BCO is
irreversible and could be caused by the nucleatfatislocations. In the final product
containing an irreversible twin shear band, we oleseresidual dislocations in the
{112, slip plane. This implies that during unloadingygk dislocations could act as
pinning defects in twin boundaries, preventingdieetwinning process. The irreversible
twinning could be further related to the delayedhfation of deformation twins in de-
confined nanopillars. Namely, the lack of confinemen nanopillars (with the traction-
free sidewalls) does not necessarily require th@#&bion of twins at low loads, and the
phase transformation to BCO occurs favorably teas¢ the accumulated strain energy
with increasing deformation instead. It followstthi@e deformation twining is postponed
to a late stage of loading when the applied sigesensiderably high (~ 5GPa). As a
result, the high stress could trigger both twinrshgar and dislocation nucleation
concomitantly. Upon further unloading, the revdosal cannot eliminate these
dislocations that act as pinning defects to impgedanotion of twin boundaries, thus
causing the irreversibility at 400K. Finally, wetadhat the above MD results are
qualitatively similar with different initial distbutions of randomly assigned atomic

velocities.
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3.3.3 Temperatur e effect and reversible twinning

To study the temperature effect on phase transtthom and deformation
twinning in NiTi nanopillars, we lower the deforrmat temperature from 400K to 350K,
close toA;.. MD simulations are performed with various initt@nditions of randomly-
generated atomic velocity distribution, yieldindfelient final products. This implies the
thermomechanical response of NiTi nanostructures the phase transformation
temperature could become less deterministic thainathhigh temperatures. During
loading, all the nanopillars undergo the phasestamations of B2-» B19— BCO at
350K, in contrast to B2> B19— B19 — BCO at 400K. In addition to phase
transformations, two different kinds of twin mictagtures, i.e., type | twin and ‘twins
within twin’, form in the nanopillars when furtheraded at 350K. Similar to results in
section 3.3.2, type | twin is also irreversible do¢he nucleated dislocations that pin the
twin boundaries, and it is not further discussedofevity. Here we focus on the newly
observed ‘twins within twin’, which are fully recexable after unloading. As a result,
both shape memory and pseudoelastic behaviorsecahderved.

Fig. 3.4 shows a MD result at 350K, exhibitthg reversible twins within twin
and shape memory effect. Starting with the B2 phiheetransformation to B19 occurs at
the strain of 0.7%, much smaller than the corredpanstrain of 2.5% at 400K. This
difference is understandable, because the low teatyre encourages formation of the
martensite. As the compressive strain reaches 4fiteet transformation of B19> BCO
occurs at 350K, instead of B19 B19 — BCO at 400K. Fig. 3.4 (b) shows the cross-
sectional view of the nanopillar in the BCO phd3espite the apparently twinned outer

boundaries, the sample is actually a single phatbewut twins, as evidenced by the
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perfect periodicity of unit cells (yellow parallgams) in the entire system.
Interestingly, it is a macroscopically twinned stire without the microscopically
twinned lattice. Such type of structure arises heeahe orthorhombic BCO phase

possesses both the mirror and central symmetries.

(@ (b)

Stress (GPa)

A 77 ~
} Wit <110>g,
0 0.02 0.04 0.06 0.08

<110>5, <0014,

(c) ()
S ——
b
o o
a
Twin shear
<111>
N\ a
Twinned
lattice b
\ @ Parent
I lattice
A >
«— Twin plane
LSRR ~{110}
.\ < e "y
C ”
'//, <110>g, <110>g,
a/ e
. /108
b A0 <0015y, OOy <tizng,

Fig. 3.4. Nanopillar compression at 350K, exhilgtthe shape memory behavior. (a)
Stress-strain curve of loading (blue) and unloadieg). (b) Cross-sectional view of the
compressed nanopillar, showing a single BCO phasiéofm unit cells in yellow lines)
in the entire system despite the apparently twmgedr boundary. (c) ‘Twins within twin’

formed in a compressed nanopillar. Middle: a priyrtauin with twin boundaries marked
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by yellow dashed lines. Left: schematics of BCQt grlls of twin variants and the shear

transformation at the twin boundary. Right: secopdains (marked by black dashed

lines) viewed from th§001>B2 direction.

After the phase transformation of B9 BCO completes, further compression
causes the formation of deformation twins in BC&utting in a large load drop at the
strain of ~ 6.6%. It is interesting to note thdti@rarchically twinned microstructure, i.e.,
twins within twin, develops in the nanopillar. Alsasvn in Fig. 3.4(c), the boundaries of
the primary twin, indicated by yellow dashed linase on thefl1Q,, plane, close to the
orientation with the largest resolved shear std@&thin the twinning shear band, the
secondary twins also develop with smaller twin Wwi&ltSuch a hierarchically twinned
microstructure provides an effective means of ateastrain energy, and it also enables
an approximate satisfaction of geometry incomphtiytacross the primary twin
boundaries.

During unloading, the hierarchically twinned misticture shrinks and finally
disappears, resulting in a single BCO phase witheuns, i.e. recovering the structure
prior to formation of deformation twins as showrFig. 3.4(b). Specifically, when the
applied compressive strain is reduced from 7% to tB&width of the primary twin
begins to decrease by migration of twin boundaf&srespondingly, the stress-strain
curve in Fig. 3.4(a) exhibits a plateau, indicatingteady-state process of boundary
migration that involves a minor variation of theplipd stress. At = 3%, a discontinuity
appears in the stress-strain curve, signifyingsth&n energy release caused by a

complete elimination of the hierarchically twinneacrostructure. No dislocation is
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observed in this case. After complete unloadingeti® strain, the tensile residual stress
remains in the nanopillar, suggesting a loss ofigselasticity. Since the final product is
a single BCO phase without twins, the shape mermanybe realized by heating or
further tension, and the B2 austenite is then remVfrom the BCO martensite.

Fig. 3.5 shows a different MD result at 350K. Camgal to Fig. 3.4, it also
exhibits the reversible twins within twin, but pgeelasticity rather than shape memory.
The key difference between the two cases is th&sesectional geometry of the
nanopillar when the BCO phase forms during loadimg, the parallelogram-shaped (Fig.
3.5(b)) versus twinned outer boundary (Fig. 3.4(B¥ a result, upon complete unloading
to zero strain, the BCO phase is fully recoverablB2, Fig. 3.5(c); and the nanopillar
has no residual stress, Fig. 3.5(a). This is ags&astic deformation.

To understand the origin of the above differemcthe cross-sectional geometries,
we note that there are two equivalent variants¢batd possibly form after the phase
transformation from B2 to BCO. In Fig. 3.4(b) an8(®), two BCO variants nucleate
from the free surface, one at the top and anothiesbottom, and they grow by
migration of the respective phase boundary towaunth @ther. If the two variants happen
to be in the opposite orientation (as selectedaary by thermal fluctuations), the
twinned outer boundary will eventually form, i.egF3.4(b). Otherwise, the
parallelogram-shaped cross section will devel@p,Rig. 3.5(b). Lastly, we note a minor
difference in the structure of twins within twintbeen Fig. 3.5(d) and Fig. 3.4(c), while

they are both reversible upon unloading.
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Fig. 3.5. Nanopillar compression at 350K, exhilgtthe pseudoelasticity. (a) Stress-
strain curve of loading (blue) and unloading (réd).Cross-sectional view of the
compressed nanopillar, showing a single BCO pha}&inal product of the B2 phase in
a fully unloaded nanopillar. (d) A different modE'twins within twin’ formed in the
nanopillar, showing three side views with the cspanding BCO unit cells of twin

variants.

3.3.4 Size effect
We have studied the size effect on the stresednphase transformations in NiTi
nanopillars, which appears to be insignificant witthhe accessible size range. For

instance, MD simulations at 400K are performedhuwlite only difference in the doubled
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side lengths of the cross section. The stressasttave exhibits no major change; the
system similarly undergoes the phase transformsind®2— B19 — B19’ — BCO;

and the deformation twinning mode is also simitdwwever, the twinned structure is
complicated with formation of multiple twinned shé&ands, which arise due to the high
symmetry of the loading orientation, as well aslrge volume that promotes strain
accommodation by multiple twins.

Compared to the coarse-grained NiTi alloys, theonaeter size effect can be
appreciated in terms of the characteristic stréssasbehaviors of NiTi nanopillars, such
as the load serration, stress plateau, and largtet®gis loop as revealed by MD
simulations. During loading, the system has to\@r-a@lriven to accumulate a large
amount of strain energy in order to overcome thdeaation barriers of phase
transformation and deformation twinning in the mgaerfect nanopillar. Those
nucleation processes can result in the major leapgsito release strain energy, leading to
serrations in the stress-strain response. Duritgading, the nucleation-controlled
reverse phase transformation can similarly prodliseontinuities in the stress-strain
curve. To understand the stress plateaus in FgaBand 3.5(a), we note that when the
deformation involves the interfacial migration, thger-by-layer movement of the twin
boundaries can proceed by similar processes ofiasmffling (as illustrated in Fig.
3.4(c)), thereby requiring a nearly constant digvatress as manifested by the stress
plateau. The above considerations also allow wationalize the large hysteresis loop, as
evident in Figs. (3.3-3.5). On one hand, the ndiaacontrolled processes during
loading/unloading require the large forward/revdraasformation stresses. On the other

hand, while the migration of twin boundaries dururgoading is relatively easy
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compared to nucleation, it still requires a larged reversal, giving a low value of
reverse transformation stress. This is becausann-sized systems, there is typically a
lack of self-sustaining 3D mechanisms (e.g., paédations) to facilitate the easy
movement of twin boundaries that could prevaihe toarse-grained NiTi alloys. As a
result, the large hysteresis loop should featugesthess-strain curve of the nanoscale
shape memory alloys, as experimentally shown ilNG& nanopillars [14].

In addition, we have studied the size effect antédmperature-driven martensitic
phase transformation by comparing the cooling respof a bulk crystal and a
nanopillar at zero stresses. In the bulk NiTi satgd to periodic boundary conditions,
the martensite start temperativigis 310 K and the finish temperatuvk is 290 K.
However, in nanopillars, no phase transformatioB2f> B19 has been observed even
when the temperature is lowered to 200K. Sucheaaddiect is likely related to the phase
energy differences between atoms at the free sugad in the bulk. It is noteworthy that
a recent atomistic study of NiTi nanoparticles bytddr and Nielaba [76] showed that the
size effect also exists in the austenite transftionathe smaller the nanopatrticle, the
lower the temperatures 8§ andA;. This trend appears to be consistent with our MD
results of the lowered phase transformation tentpeya with decreasing pillar size. They
attributed the size effects to the increasing oblsurface atoms on phase transformation
with decreasing particle size [76]. This size dff@t the temperature-driven martensitic
phase transformation exhibits the similar trengasgcrystalline NiTi [9], where the

martensitic phase transformation is suppressed wieegrain size is smaller than 60nm.
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3.4 Conclusions

The molecular dynamics simulations «éIlO)Bz-oriented NiTi nanopillars have

revealed the atomistic mechanisms governing thaduedasticity and shape memory in
NiTi nanostructures. The major findings of this Ware summarized as follows:

At high temperatures (e.g. ~ 50K above the autgdimish temperature) and low
loads (e.g. compressive strain up to 6.6%), psdasieaty dominates during the
loading-unloading cycle. Imposing a higher loadlwelad to loss of pseudoelasticity,
owing to the dislocation pinning of twin boundarigmt leads to the irreversibility of
deformation twinning.

The thermomechanical responses of NiTi nanostrestbecome less deterministic as
the temperature decreases to around the austenigh ftemperature. Both phase
transformation and deformation twinning could beersible or irreversible at high loads
(e.g. compressive strain up to 10%). Only when laothreversible, pseudoelasticity is
realized. If only the deformation twinning is resie, as facilitated by the formation of
a hierarchically twinned microstructure, shape mgnemsues.

The molecular dynamics results also reveal thd kmration, stress plateau and large
hysteresis loop in the stress-strain curves of M@nopillars. These characteristics have
been rationalized in terms of the nucleation-cdiedo phase transformation and
deformation twinning, as well as the migration dfape boundaries, in nano-sized
volumes. It was suggested that the large hysteless could be potentially utilized to
provide ultrahigh mechanical damping for applicasian hano/micro-devices [14].

Finally, we note that the molecular dynamics aretéd in the simulation timescale,

such that they could not be quantitatively compasgith experimental measurements.
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While some of the atomic processes revealed invtbik could be specific to the model
system, the mechanisms and insights concerning réversible/irreversible phase
transformation and deformation twinning should bseful for understanding the

pseudoelasticity and shape memory behavior in #mn@structured shape memory alloys.

65



CHAPTER 4
PATTERNING AND BRANCHING OF MARTENSITIC

NANOTWINS

4.1 Introduction

The phase-change materials, such as shape mehuyy [d], ferroelectrics [88]
and other multiferroics [89] are being increasingbgd for a variety of multifunctional
applications. In these materials the twinned maitens often observed [90].
Understanding the formation and evolution of theterssitic twinned microstructure is
crucial for the control of its functional propegjdor example, producing large strains in
response to the thermomechanical stimuli in shag@ony alloys.

Various theoretical and modeling approaches haea lapplied to study the
martensitic microstructure, including the crystghaphic and geometrically nonlinear
theory [4, 7], phase field simulation [91, 92],vesll as the atomistic molecular dynamics
[74, 75] and quantum mechanical calculation [17, B¢hile those studies have greatly
advanced our understanding of twinned martensiig fBey often require a priori
assumptions on the phase transformation geometrg@@rgy function, or are limited in
the spatial-temporal resolution. We report a natemistic modeling of nanotwinned
martensite by using the Monte Carlo (MC) methodthélit geometrical construction and
timescale limitation, our MC simulations reveal ffadterning and branching of
nanotwins in a model system of NiTi thin film. Thesults generate insights into the

length scale and temperature effects on the foonatf nanotwinned martensite.
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4.2 Methods

As discussed in Chapter 2 and 3, a many-body &i8mclair [58] type
interatomic potential is employed to describe th€& Nystem. This potential was
originally developed by Lai and Liu [31], and laterproved to smooth the
discontinuities at its cutoff [74]. Canonical Mor@arlo simulations following the
Metropolis algorithm [93] are performed to studg temperature-driven martensitic
transformation and formation of twinned microstures. We construct a NiTi thin film
in the austenitic B2 phase. The systenbimx 4.8 mwide in the film plane and

168 m thick, involving a total of 23,040 atoms. Periotimundary conditions are

applied along botf@OO]}B2 and<1_10>32 directions within the film plane. The top surface

is free to move in the verticé110>BZ direction. Four bottom layers are fixed to the pare

B2 phase, mimicking the constraint of the austemsitibstrate.

The martensitic phase transformation starting tnaupire ks in this model
system of NiTi thin film has been benchmarked t@bmind 260K, lower than the bulk
value ofMs ~ 310K predicted in Chapter 2 [74]. This differerean be attributed to the
boundary effects. Namely, the atomic bonding emrirent at the free surface and fixed
bottom is different from that in the bulk of thertlilm, leading to a shift of phase
transformation temperature. We have performed tlResihulations in a NVT ensemble
at various undercooling temperatures. For each ¢eayre, tens of simulations are
conducted to identify the possibly different mesdde microstructures. Each of MC
simulations involves 1.4 billion steps, ensuring tonverged twin structure and energy.

We present the representative MC results at 250K0K-undercooling) and 200K (~
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60K undercooling). Simulations at temperatures lotlvan 200K yield results similar to

those at 200K.

4.3 Results and Discussions
Our MC simulations reveal the temperature-drivgfusionless phase
transformation from the parent B2 to the martea8t9 phase in the NiTi thin film at

both 250K and 200K. Fig. 4.1(a) shows the schenwdtibe B2— B19 transformation in

a conventional unit cell. In the parent B2 phake,dell edge is/Ea0 in both <110>BZ and
<1_10>BZ directions, wherea, denotes the B2 lattice constant. Upon phase

transformation, the B19 phase forms two equivalaniants in the plane of the paper,

with ¢>+/2a, >b; the cell edge in the out-of-plane direction(601)_, remains

unchanged due to geometrical constraint of theeaitgt substrate. Note that the
previous molecular dynamics simulations with theikir interatomic potential predicted
the B2— B19 phase transformation in the NiTi bulk (temperatdrieen) in Chapter 2
[74] and nanopillar (stress-driven) in Chapter &][9n this chapter, the favorable
formation of the martensitic B19 phase in the fiim can be attributed to the small film
thickness, resulting in the increasing role of fsaeface and fixed austenitic substrate in
selecting the transformation product. Interestingte resultant martensitic B19 phase

exhibits multiple variants, whose periodic arrangetrieads to nanotwin patterning.
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(a) (b)

Fig. 4.1 Martensitic transformation and nanotwittgraing in a NiTi thin film at 250K

(~ 10K undercooling). The region below the red limé&xed to represent the austenitic
substrate. (a) Schematic of the B2 to B19 transétion in a conventional unit cell. The
unit cell deformation is exaggerated to increasegometric contrast of the two B19
variants. (b) MC snapshot showing the initiatiom@drtensitic phase transformation. (b)
An intermediate state of formation of twinned masiée. (d) The final converged state
with the fully developed periodic twin stripes.(lmd), the left image shows the atomic
configuration where atoms are colored by the vosddishear strain invariant, and the

right one shows the distribution of ratio of th#ite constant in the110>, direction

over that in< 110 >, . In the schematic of twin stripes in (d), the t8@9 variants are

represented respectively by the red and blue rgldaand the B2 phase by the green

square.
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Figs. 4.1 (b-d) show the sequential process obtvein patterning at 250K (~
10K lower thanMy). In Fig. 4.1 (b), the initiation of the B2 B19 transformation
appears to be a homogeneous nucleation processtdiné configuration on the left
shows that the martensitic B19 phase emerges adlygpaced circular nuclei, each of
which involves a group of light blue atoms withiardeter about 1.5 nm. In the

corresponding color map on the right, it is seet the nuclei with the same B19 variant

(i.e., same color) are neighbored in & direction. Those nuclei grow and coalesce to
form the inclined twin stripes. Fig. 4.1 (c) shoarsintermediate state, and Fig. 4.1 (d)
the final converged structure of twinned martend\tatice that the above sequence
represents a transformation path from an initialesto the mode of the stationary
distribution along the Markov chain, and it does$ mecessarily reflects the temporal
evolution of martensitic phase transformation. Anfer of repeated MC simulations at
250K all yield the same final product.

Both the atomic configuration and color map in.Hd.(d) reveal the periodic

stripes of nanotwins, featuring the atomically ghavin interface with its normal in the
<100>BZ direction. Of particular note are the differentrtwvidths in the periodic
nanotwinned stripes, i.e., ~ 1.5 nm for varianed(stripe), and ~ 2.0 nm for variant Il
(blue stripe). Correspondingly, the volume fraataf variant |, denoted a8, is 0.42.

This volume fraction can be readily rationalizedtla basis of the geometrical

compatibility requirement at the habit plane betw#e martensitic twins and austenitic

substrate,[4] i.e. A8+ (1-A)y =1, wherey = c/(\/iao) and S5 = b/(\/iao) :
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It should be emphasized that nanotwins near thstste are not in their
equilibrium states, as evidenced by the blurredMases shear strain plot and color map
in Fig. 4.1(d). This so-called transformation decagion results from the
accommodation of lattice mismatch between the austesubstrate and twinned
martensite. Such a decay region plays a key rodeliecting the size of the nanotwin
stripes. That is, the nanotwin width is governedh®/competition between the strain
energy in the decay region and the twin interfagergy in the film. Incidentally, a
similar energy competition leads to periodic stsipethe strained liquid crystal
elastomer, and a scaling analysis of stripe width lbeen given by Terentjev and
coworkers [95]. Along the same line of reasoning,nete that the size of the decay
region is proportional to the twin width d, sinbe lattice distortion from the equilibrium
B19 state (being either of the two B19 variantgesodic in theL, direction with a
period of order of d, as indicated in Fig. 4.1¢d@nce the strain energy per stripe is ~

ue*d’L,, where i is the shear modulus ardis the characteristic lattice strain in the

stripe. There aré., /d stripes in the film. As a result, the total elagtiergy in the decay
region is~ ue’L L,d. On the other hand, the total interfacial energgoaiated with
twin boundaries is- f;L L L,/d, where f; is the twin boundary energy per unit

area. Minimization of the sum of the above elaatid interfacial energies with respect to

f
d~ ety (4.1)

The scaling relation of Eq. (4.1) makes transpatfemphysical factors governing the

d yields the optimal twin width

characteristic twin width. It depends on the geginebhean of two length scales: one is

71



the extrinsic sample length scale of the film tinieksL  ; the other is the intrinsic

material length scale of = . /(ue”) that scales with the twin boundary thickness [95].
Using the typical values of NiTi martensite [74],, ~0.1/n’, u ~50GPa, £ ~005,
we estimatef ~Inm. GivenL, = 168m in our MC simulations, Eq. (4.1) predicts the

twin width d in the range of a few nanometers, consistent @ithMC results.
Moreover, sincey increases with decreasing temperature and it iysua$ a stronger
temperature dependence thép [95], Eq. (4.1) suggests that an increase of

undercooling can lead to twin refinement. This baen verified in our MC simulations,

to be detailed next.

(b)

(c3)

Fig. 4.2 Refinement and branching of nanotwins0éi(~ 60K undercooling). (a) The
final converged state showing the refined twinp&si, as opposed to the coarse ones in
Fig. 4.1(d). (b) Branched nanotwins with all theérntlwoundaries are aligned in the same

orientation. (c) Sequential process of formatiot@nched nanotwins. Compared (b),
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the branched twin boundaries form in another eqeli\la[loc}B2 plane. The coloring

scheme in (a-c) is the same as in Fig. 4.1.

Large undercooling can yield a variety of pattegnin nanotwinned martensite.
Fig. 4.2(a) shows the converged martensitic micuasiire at 200K. The nanotwinned
stripes consist of alternating B19 variants simitathose at 250K, as shown in Fig.
4.1(d). However, the twin width decreases, so doesize of the transformation decay
region. This temperature-induced twin refinemerttossistent with the prediction from
our previous scaling analysis.

More interestingly, repeated MC simulations revbalbranching of nanotwins
near the habit plane between the martensitic tammisaustenitic substrate. One scenario
of twin branching is shown in Fig. 4.2(b), where toarse twins appear near the free
surface and fine twins, aligned in the same orieraoccur when approaching the habit
plane. Alternatively, the fine twins could form Wwitwin boundaries in another equivalent

{10(}Bz plane, as shown in Fig. 4.2(c3). This producemaiguing pattern of “twins
within twins” [90], with the primary twin interfacef {11(}Bz and the secondary twin
interfaces 0f10Q,, .

The branched nanotwins in Fig. 4.2(b-c) are likalyre favorable energetically
than the non-branched ones in Fig. 4.2(a). Alorgitie of previous analysis of the
energy competition in twinned martensite, it is erstiandable that the energy budget
could be effectively reduced by adopting multiplént sizes, e.g., the coarse and fine
twins coexist, but are located at different plaessshown in our MC simulations. The

fine twins near the habit plane lower the elastiergy by reducing the size of the decay
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region. On the other hand, the coarse twins neafréie surface reduce the overall twin
interfacial energy.

Fig. 4.2 (c1-c3) shows the sequential processioleation and growth of the
branched nanotwins, with their converged statagn42(c3). In contrast to the
homogenous nucleation of martensite within the lfilthe thin film at 250K in
Fig.4.1(b), the martensitic nanotwins nucleate siameously near the free surface and
substrate at 200K. They exhibit different twin viasitand grow to meet inside the thin
film, yielding the final product in Fig. 4.2(c3)h€& geometrical constraints near the free
surface and habit plane are distinctly differenttisg the different characteristic twin
sizes. The apparent branching of nanotwins actuedlylts from the simultaneous
nucleation of nanotwins from both the free surfand habit plane. Different branching
modes in Fig. 4.2(b-c) originate from random setecof the orientation of nanotwins

when they are initiated.

4.4 Conclusions
In summary, we perform the Monte Carlo simulatitmstudy the patterning of
martensitic nanotwins at the atomic scale, withgmdgmetrical construction and timescale
limitation. Our results show that large undercoglgan lead to the refinement and
branching of nanotwins. We use a scaling law toertedknsparent the physical effects
governing the characteristic twin width. This wanens up the possibilities of predictive

modeling of the martensitic twinned microstructudesvn to the atomic scale.

74



CHAPTER S

PHASE FIELD MODELING OF MARTENSITIC

MICROSTRUCTURE IN NITI

5.1 Introduction

The martensitic phase transformation in NiTi hasrbstudied by a variety of
modeling approaches. The continuum models are lydoalised on the crystallography
and compatibility of phase transformation and tmicrostructure [7, 40, 41, 96]. First
principles calculations are well situated to inigetie the atomic-level structures and
their stabilities, as well as phase transformagiatins and size effects, at zero Kelvin [17,
39, 44, 45, 48]. As discussed in Chapter 2-4, atbmstudies based on the empirical
interatomic potential can explore the phase transftion and martensitic
microstructures at finite temperatures in systeangdr than those accessed by the first
principles methods [74-76, 94, 97]. However, bibigh first principles and interatomic
potential-based studies are severely limited byattteevable spatial-temporal scale.
Such limitation can be alleviated by the phaselfiabdel that is particularly suitable for
the study of dynamic evolution of martensitic matrocture [91, 98-100].

The NiTi system generally involves a variety of astable phases (B2, B19, B19
and R etc.), martensite variants (e.g. twelve wsian B19 martensite) and twin
structures (such as type I, Il and compound twih)s poses significant challenges to the
modeling. Nevertheless, encouraging progress hes feeently made in the
development of phase field models for the NiTi egst For example, Shu and Yen

developed a multi-variant model to study a reldyig@mple mode of R phase
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transformation [92]. Yang and Dayal proposed a &nepergy function to describe the
B19 multi-variants of NiTi [101]. Both models assuntbéé penalty-based energy
function and were applied to two-dimensional phded simulations. However, the
phase field model with the physics-based Landae-gergy function is still
unavailable. The Landau-type polynomial energy fiamcis generally favored in the
phase field model, as it facilitates an expliaiklbetween the model parameters with the
physical properties such as overcooling tempera@oastructing the Landau-type
polynomial energy function is non-trivial, becauiseequires the co-existence of thirteen
local metastable energy wells that respectivelyespond to the parent B2 phase and
twelve martensitic B1'9variants; meanwhile other metastable energy vséiaild be
eliminated to avoid the interference of physicaliglevant states. In this work, we
construct an effective Landau-type polynomial egdupction, and perform the three-
dimensional phase field simulations of B2 to B@Base transformation. Results reveal

nucleation and growth of polytwinned morphologynwdrtensitic microstructures.

5.2 Methods
We take a single crystal of B2 austenite as the stefiguration. This parent
austenitic phase can transform to the Bffrtensite when the temperature is reduced
below the martensite start temperature. The phakerodeling provides the solutions
of the temporal evolution of phases and microstmgst by numerically solving the time-
dependent partial differential equations of thédfsariables. Twelve continuous field
variablesn,,n,, -+, 11, between zero and one are defined to describe2he B19

transformation, which involves twelve possible Bi&riants. Austenite is described if all
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N =Ny =+ =11, = 0, and martensite with variants described ify, = 1 and n; =
0 for all j # i.

The stress-free strain, which comes from the lgagathomogeneous martensitic
phase transformation, can be characterized as

£ (x) = LiZimi(x)e] (5.1)

where the stress-free strain tensor at spatialdooatex is the summation of each field
variablen; multiplied by the B2 to B1@ransformation strain tensef for each
corresponding martensitic variant

The free energy of the system can be describetdydlume integral of free
energy density, which contains the local specrgefenergy densitfj,..;, interfacial

energy density;,; , and the strain energy densfy,,.

F = fV (flocal + fint + fela) d37" (5-2)

5.2.1 Local specific free energy
The local specific free energy densfty,,; is contributed by the bulk
thermodynamics properties of the system. A Langae-polynomial has been applied to

approximate the local specific free enefgy,; as

fuocar = fo + AF(N S AT 0?) = SBEZ 1) + 1 C(E2 122 + 1D (B0 |
(5.3)

wheref, represents the free energy density of the austgrhiaseAf (T) is the free

energy density between austenite and martensitehwdepends on the temperatiie

andA, B, C andD are constants describing the shape of free ertenggity function.
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The parametera, B, C andD in Eq. (5.3) cannot be arbitrarily assigned. Two
constraints must be satisfied. Firstly, the padevative of f;,.,; With respect to all the
field variablesy;,n,, -+, 11, must be zero for all the austenite and marteps$igses.
Secondly, the free energy density difference betvaasstenite and martensite should be
Af(T). These requirements lead to

—A+B-C-D=0
{ (5.4)

CA-IB+iCc+-D=-1
2 3 4 4
In this work we choose parametersdof 1, B = 15, C = 7 andD = 7 for

fiocar- The driving force on the field variablg, associated withfj,qq; IS

af oca
plocal _ _alTil = Af(T){—An; + Bn? — Cn;(X}2,n%) — Dn} } (5.5)

5.2.2 Interfacial energy density
The interfacial energy densify,; is the nonlocal part of the chemical free energy

density. We express,,; in terms of the gradient of the field variables

fine = 35821 By () S22 (5.6)

dx; 0x;j
where the Einstein summation convention is appelgt for subscript and;j. In Eq.
(5.6), the coefficientg;;(p) are the components of a semi-positive definitadenThey
are not necessarily the same among different fiatthblesn,,, and may be anisotropic
depending on the direction of the gradient givertieypartial difference with respect to
the spatial coordinates andx;. To capture the essential phase effects with etiuc
complexity, we consider the isotropic interfaciaggy in this work. Namely, we take

Bij(p) = Bd;j, where §;; is the Kronecker's delta. Then Eq. (5.6) becomes
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1
int = 521172:13|V77p|2 (5.7)
The driving force on the field variablg; associated witlf;,,; is

Fint = pv2y, (5.8)

5.2.3 Elastic energy density
The elastic energy density can be determined byotlaé strain minus the stress-

free strain defined above
foa=3(E—€)-C-(e—&)—0," & (5.9)

Wherea, is theexternal applied stress, and the total strain amdelastic strain
€= (&11, £33, E33, 2823, 2831,2812)7, € = (€11, €57, €33, 2653, 2631, 2€},)T are in term
of the Voigt notation, and the stiffness maifix 6 by 6. The constitutive equation can
be derived from Eq. (5.9), giving that the stresssor

T = (011, 022, 033, O3, 031,012)" = C - (€ — &) (5.10)
The driving force acting on field variablg; due to elastic energy density is

Of ela % og* de og* T 0
F.ela:_ ela C £E—¢& T == O'T.—:‘[T'— g T 511
l on; LC-( )] on; O oy on; O o ( )

In this work, the boundary conditions are eitheaistcontrolled or zero-stress
applied, indicating the second term in Eq. (5.1 be dropped. Note that the total strain
€ and stresg needs to be numerically solved during the simoihatPlease see appendix

B for the details.

5.2.4 Stochastic Phase Field Kinetic Equation
The evolution of the field variables is governedthg time-dependent Ginzburg-

Laudau (TDGL) equation, which is a stochastic pHeedé kinetic equation that assumes
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the rate of the evolution of the field variablepisportional to the thermodynamics

driving force.

% _ Z}il[iij(Fjlocal n Fjint n Fjeza)] + &) (5.12)
whereiij Is the kinetic coefficient matrix aréd(x, t) is the Langevin noise term. The
Langevin noise term;(x, t) is a random variable as a function of location tme,

which follows the normal distribution and mutuailhgependent at different locations and
time. To satisfy the requirement of fluctuationsilmtion theorem, the correlation of
&i(x,t) is given by:

(&:(x, )& (X', t")) = 2kpTL;;6;;6(x — x)5(t — t) (5.13)
wherek; is the Boltzmann constanit,is the temperaturd,; is the Kronecker delta, and
¢ is the Dirac delta function. For simplificatiohgtkinetic coefficieniij is given to be
diagonal, i.eZl-j = Lé&;j, with the assumption that the driving force onfiled variable

n; has no concurrent effect on the evolution of fieddiabler; wheni # j. Substitution

of Eq. (5.5), (5.8) into Eq. (5.12) yields

2 = L{AF(D)[~An; + Bn? — Cni(812407) — Dn?] + BV2n; + Fli} + &(x.0)

(5.14)

5.2.5 Numerical simulation

The phase field simulations are performed in agftienensional (3D) cubic cell,
with periodic boundary conditions imposed in atieth directions. We discretize the 3D
spatial domain into uniform grids and the one-disienal time domain into equal steps.
All of the field variables at time stepare in the form ofy}'(x, nAt) fori = 1,2,---,12,

whereAt is the time step size. It is convenient to norgethe length and time scale,
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thereby eliminating the unnecessary parametersdéfiee the dimensionless space
coordinatex; = x,/l,, X, = x,/l, andx; = x3/l,, wherel, is the length of grid cell,
and the dimensionless tinie= tLAf(T) andAt = AtLAf(T). It follows that the
normalized Eq. (5.14) is

9 A% Fega E (=~
% = [~An; + Bn? — Cni(T}21n7) — Dnf] + BV%n; + s+ E® D (5.15)

1
LAf(T)

92 092 [ 3> 5 B
T ﬂ_Af(T)lg

=2 =2 52
0x{ 0xX;  0X%

andé; (%, t) =

whereV2=

¢ (%, t). Random variable

(%, t) , which is mutually independent at different spagerdinates and time steps,

follows the normal distribution with mean of zemdavariance o%.
0

To numerically solve a partial differential equatiof heat-equation type, one
typically applies the forward Euler method (exglicbackward Euler method (implicit)
or Crank-Nicolson method (implicit). The nonlingarms (the first and third terms in Eq.
(5.15)) pose the computational challenge to eitherackward Euler or Crank-Nicolson
method. On the other hand, the stability condibbthe forward Euler method due to the
Laplace operator limits the time step si&& ~ A%2. The semi-implicit Fourier-spectral
method proposed by Chen and Shen provides anegftiand accurate solution for the
TDGL equation [99]. The key of this semi-implicitatmod is to calculate the Laplace

operator implicitly and nonlinear terms explicitgych that the Eq. (5.15) is discretized

to
77;’L+1 _ r’ln _ Filocal(nn(x' nAt)) e i1 Fiela(nn(x' nAt))
I¥: = < AFCT) + BV (x, (n + 1)At) + AF(T) )
+&(%, (n + 1)At) (5.16)
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It is more computationally efficient to solve E§.16) in the Fourier space, so as
to avoid the inverse Fourier transformation ofsdrel'he Laplace operator in the real
space is transformed te4m(s? + s2 + s2) in the Fourier space, whese= (s;, 5,55 )7

is the coordinate in the reciprocal space. Eq.6)5can be transformed to

-r’{l+1 1 (ﬁlﬁ Flocal (nn) b —

l
1+47B (s3+5% +52)AE Af(T) o B a(nn)) (5-17)

Af (T)

5.2.6 Model parametersand simulation setup
In Eq. (5.1), the stress-free strain of B2 to Bt@nsformation is described by
twelve field variableg),,n,, -+, 112, corresponding to twelve Bl®ariants. When the

global Cartesian coordinate system is aligned thighcubic axes of the parent B2 phase,

the twelve transformation strain tensefs(i = 1,2,---,12) in Eq. (5.1) are given by

& p p & —-p -p
g=(p o 7| g=(-p o 1|
p T O -p T O

& —p p & p —p
g=-p o —-1) &=p o -1)
p —-T O —-p —T O
o p T o —p T
sg=(p 6 p>, 82=<—p 6 —p), (5.18)
T p O T —p O
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The components of transformation strain in Eq.g§bHave been calculated by
Hane and Shield using the lattice constants giye@tsuka et al., i.e6 = —0.0437,
o = 0.0243, p = —0.0427 andt = 0.0580 [4, 41]. When the global Cartesian
coordinate system is not aligned with the cubicsaofethe parent B2 phase, a rotation
operation of Re?RT is required, wher® is the rotation matrix.

The elastic constant matrékis determined by the density functional calculasion

from Hatcher et al., i.&C;; = 183GPa, C;, = 146GPa andC,, = 46GPa [44]. The

typical strain energy density (scaled V\A'EQ'lTCs‘l’, where the vectae is in the Voigt
notation) is4.403 x 108]/m3. We take the free energy density between austanite
martensiteAf (T) to be 10% of the strain energy, i£f,(T) = 4.403 x 107]/m3. A
simple relation betweeaf (T) and undercooling temperatu& is assumed

Af(T) =L - AT/T, (5.19)
In Eq. (5.19), the latent heat is takenLas 110M]/m3, the equilibrium temperature
T, = 271K [102, 103], so that the undercooling temperatsirAT = 108K.

The specific interfacial energy(i.e., interfacial energy per area) is relatetht®

coefficientg in Eq. (5.7) according tp = 4T‘/E,/BA]C(T). We use the normalized

interfacial energy coefficierf in Eq. (5.15), then the gird size becorgs: 3—’/,
o) 78

where y is taken as the interfacial energy of type | twli87m]/m? [17].

The time step needs to be carefully chosen to erthernumerical convergence.
By trial and error, we find thatt = 0.01 provides the reasonable accuracy and
efficiency. The numerical integration is performguto 12,500 time steps, ife= 125,

with no further change of microstructures.
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5.3 Results and Discussions

5.3.1 Microstructure evolution

To study the nucleation and growth of martensiticrostructures, we first
consider a mixed loading mode: zero in-plane staaith zero out-of-plane stress, i.e.
g/PP = ;PP = g,PP = 0 andt,"? = 1,7P = 7;'F = 0. Such boundary conditions are
typical of thin films subjected to rigid constrasrftom the substrate. The global Cartesian
coordinate system is aligned with the cubic axehefparent B2 phase. The system

3
Y

contains 64 x 64 x 64 mesh grids. We s = 2, so thatl, = = 1.6nm. This

corresponds to the cubic system with side length0@f4nm.

Given the positive value df (T), the martensitic transformation of B2 to Bi®
energetically favored. However, owing to the methk state of the B2 phase, the
martensitic transformation would not occur sponteusty, thus requiring thermal
fluctuations to assist the martensite nucleatidre Tangevin noise terg)(x, t) in Eq.
(5.12) plays the role of thermal fluctuations. Téiigchastic term is independent with
each other at different time steps or spatial loaat thus does not provide any
constraints on the phase transformation processsidcthastic noise term is turned off

after 3000 simulation steps whér= 30.
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(100),, (010),,
Fig. 5.1. 3D phase field simulation results. (am&ielapse snapshots showing the
nucleation and growth of polytwinned martensiticcrostructures. The mesh grids are
colored byY!Z, in;(x). (b) The 2D projections of 3D microstructures. Forbetter
visualization of polytwinned microstructures, thmslation cell is periodically doubled

in the two in-plane directions.
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Fig. 5.1(a) shows the nucleation and growth of ereites and polytwinned
pattern. Att = 8, precursors of martensite form, driven by the #rergy difference and
thermal fluctuations. Different colors, represegtdifferent values of field variables,
show the nucleation of multivariants. At this stagene of the field variableg is close
to 1 and no variant is fully formed. However, tiedd variables also deviate from all-
zero values (the metastable B2 phase). Those nségqmecursors involve lattice
distortion. They form and disappear during thidyestage. The microstructure further
evolves from the existing lattice distortion proeby thermal fluctuations, when the
stochastic noise terms are turned off at 30. At £ = 32, shortly after the stochastic
noise terms are turned off, nuclei of size arows tof nanometers are generated. The
boundaries of nuclei are curved and no obviousrateitwin structure is visible. The
growth and elimination of these nuclei are driverthe local free energy, interfacial
energy and elastic energy. The twin-shaped pafitstremerges at = 60, where some
of the nuclei, colored by red, blue and green,ligngrow to different twin variants.
Some of other nuclei disappeartat 85. Soon later af = 90, the twin pattern becomes
stable, while the twin boundaries are still not fillanes. Finally af = 125 the three-
dimensional twin structure containing four differ&19 variants form with the
respective transformation strain ef, 2, €2 ande?. Fig. 5.1(b) shows the top view and
left side view of the final product. The nucleataedrtensite variants form a novel three-
dimensional polytwinned structures. The multivatsaare self-accommodating. The
average transformation strain is

001 0 0
(2+ed+e2+ed)/4=( 0 —001 00504 (5.20)
0  0.0504 0.0243

86



The averaged transformation strain is compatibté e zero in-plane strain boundary
conditions.

The in-plane components of the average transfoomatirain are very small, i.e.
1% compression normal strain and zero shear stiauis, agree very well with the
applied zero in-plane strain boundary conditiongft = ;77 = ¢/PP = 0. The1%
difference between normal average transformatiainsand zero applied strain increases
the homogeneous strain energy. However, sinceottad free energy for martensite is
smaller than the austenite, total energy decreéd¢es, compared with the case where
single martensite variant nucleates, the self-accodated twin structures significantly
decreases the homogeneous strain energy. For tid-plane components of average
transformation strain in Eq. (5.20), although tladues are relatively larger, they do not
increase the homogeneous strain energy under flie@gero out-of-plane stress
boundary conditions of;?? = 7,77 = ;PP = 0.

The nucleated martensite variants form twins, wileeeheterogeneous strain
energy is minimized if the compatibility requirenteare satisfied at twin interfaces. The
observed twin planes between each pair of varights}, {1: 8}, {1: 2}and{6: 8} are all
{110} type of plane, as shown in Fig. 5.1 and summaiizédable 5.1. Three of them are
consistent with theoretical solutions of NiTi typ&vin, with the exception of the pair of
{6:8}. This exception violates the compatibility of twimerface, and increases short-
range energy due to the incompatibility. Howewvieis scarification is necessary to
decrease the total energy. Theoretical solutioedbas compatibility at twin interfaces
[41] provides a general guide line of twin struewvhen applied far-field stress are

zero, but it is inefficient under other boundaryditions. Under stricter conditions, such
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as zero applied strain and periodic boundary cardit there might be no “perfect”

solution which is fully compatible at twin interia¢decrease heterogeneous strain

energy) as well as minimize the free energy (chah@nergy) and homogeneous energy.

Scarification is necessary. Phase field simulatsirsy the compatibility at twin

interfaces is not always guaranteed.

Table 5.1. Compatibility of twin variants obtainedphase field simulations and given by

continuum based solutions.

Pair Theoretical Solution [41] Phase Field
{2:6} {110} typel {110}
{1:8} {110} typel {110}
{1:2} {110} compound {110}
{6:8} {100} type |l {110}

The martensitic phase transformation in a comp@isgstem containing multiple

martensite variants such as NiTi could yield maiffecent final products. We repeat our

simulation with all the parameters unchanged tdarphe different possible

microstructures. Figure 5.2(a) show the martemsitdeation and microstructures

evolution process. The precursors of martensit@ fand disappear similarly with the

results above. At = 50, nuclei form and migrate to each other contairsiage twin

variants, and finally form the twin structuresat 125. The formed twin structures are

in a two-dimensional shape. The top view of thalfproducts are shown in Figure

5.2(b), containing four different B19ariants with the basis transformation strain

£9, &9, €2 ande?. The twin planes between pé#: 6} and{4: 5} are in{110} type of

plane; while the other two twin planes arefit00} type of plane, as summarized in

Table 5.2. Similarly, the compatibility constraimbspair{5: 6} are scarified, while the
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compatibility requirements of other three pairs stikk satisfied. Similarly, the average
transformation strain of variants 2, 4, 5 and Gupas the homogeneous strain energy:

001 0  0.0504
(2+e2+e2+)/4= 0 -001 0 (5.21)
0.0504 0  0.0243

It is interesting to note that the repeated situhs with the same applied
boundary conditions always result in the selectibfour variants out of variant 1 to 8,
but not 9-12. This is because the in-plane transétion strains for each of variant 1-8
contain one tension and one compression compoagstiown in Eqg. (5.18). They can
cancel each other to reduce the averaged in-ptansformation strain, so as to lower the

stored strain energy, as shown by Eq. (5.20) artl )5

(b)

(010),,

(100),,

t=125
Fig. 5.2 A different result of polytwinned microsttures with the same boundary
condition as Fig. 5.1. (a) Nucleation and growthwahned martensite. (b) 2D projection
of 3D microstructures. For a better visualizatidnpolytwinned microstructures, the

simulation cell is periodically doubled in the tweplane directions.
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Table 5.2. Compatibility of twin variants obtainedphase field simulations, compared

with the crystallography theory based solutions.

Pair Theoretical Solution [41] Phase Field
{2:4} {100} type |l {100}
{2:6} {110} typel {110}

{4: 5} {110} type | {110}
{5:6} {110} compound {100}

5.3.2 Loading effects
The mechanical loading dictates both the selec@imhpatterning of multivariants
in the formation of strain-accommodating microstaues. We explore different

combinations of boundary constraints. Here the Etran system containing2 x 32 x

32 mesh gridsf is adjusted to be 0.5 argl= — 3 __ —32nm. Correspondingly, the
oo 78

side length of the cubic simulation cellli82.4nm.

Fig. 5.3(a) and (b) show the two possible micragtites when the in-plane
biaxial tensile strain is applied, i.e;,"” = &;7 = 1% ,e,'" = 0 andty’? =1,7° =
75'F = 0. In Fig. 3(a), variants 9 and 12 form #i90} twin. In Fig. 5.3(b), variants 10
and 11 form th¢110} twin, as listed in Table 5.3. Variants 9, 10, hil 42 belong to the
same group of transformation strain tensors shahegame normal components (both
in-plane tension and out-of-plane compression in(E®)). This group of transformation
strain tensors can better match the imposed bitexigion. Pairing of variants in this
group yields the self-accommodating twin structuhgsugh complete canceling of in-
plane shear strains. Repeated simulations alltslewariants in the group containing

variants 9, 10, 11 and 12. In most cases, the ¢mpatibility is satisfied such as the

{100} twin between variants 9 and 12, as shown in ER(a). However, exceptions are
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observed, such as th#&10} twin of variants 10 and 11, as shown in Fig. 5.2(d Table
5.3. The reason is similar with the discussion ab®&ecall that when the zero in-plane
strain is applied in section 5.3.1, only variani8 are possible to nucleate because the in-
plane normal strain components contain both tens@hcompression.

We also perform simulations under in-plane biag@hpression. The resulting
microstructures are the same as those obtainezttios 5.3.1, as shown in Fig. 5.1 and
5.2. It can be similarly explained by the compditfprequirement between the
transformation strain and the imposed boundary itiond.

Fig. 5.3(c) and (d) show the case when the outlaiggpcompressive strains are
applied, i.es3?? = —2% andt{P? = 737 = PP = ¢JPP = 7{PP = 0. Such loading
mode of uniaxial compression yields results simalsthose from in-plane biaxial
tension. The same group containing variants 911@&nd 12 is the optimal choice,
generating th¢100} twin for variants 10 and 12, agd10} twin for variants 9 and 10, as

listed in Table 5.3.
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(a)

(c)

(001),,

& (100),,

010

Fig. 5.3 Nucleation of martensite and microstruesuait different applied boundary
conditions. The mesh grids are colored by the mieteB19variant. (a, b) Different

microstructures form under the in-plane biaxiakten &7 = ;77 = 1% ,e,"" = 0

andz3?? = 7,PP = ;PP = 0. (c, d) Different microstructures form under the-of-
plane compressiogy ¥ = —2% andt;*? = 7,;FF = 1,PP = 1P = ;PP = 0.

Table 5.3. Compatibility of twin variants obtainedphase field simulations, compared

with the crystallography theory-based solutions.

Pair Theoretical Solution [41] Phase Field
{9:12} Fig.3(a) {100} type | {100}
{10:11} Fig.3(b) {100} type | {110}
{10:12} Fig.3(c) {100} type | {100}
{9: 10} Fig.3(d) {110} compound {110}
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5.3.3 Orientation effect

We also examine the orientation effects on theenaitic microstructure by
setting three axes of the global Cartesian cootdisgstem to be parallel with tk&10),
(001) and(110) directions in the parent B2 phase. The rotatiotheftransformation

strain tensoReYRTis required with the rotation matrix

R=] 0 0 1

0.707 -=0.707 O

(5.22)

0.707  0.707 0]

Fig. 5.4(al) shows the microstructure under thplame biaxial compressive
strain 0f0.5%. The{110} twin between variants 11 and 12 is observed. Vitgid1 and
12 fully cancel out the shear transformation straitth each other, and they also provide
the in-plane transformation strain of biaxial casgsion, thus accommodating the
imposed mechanical load. ThE10} twin between variants 11 and 12 is also consistent
with the compatibility requirements [41], and agreell with our previous atomistic
simulation of(010)g,9 compound twin (Fig. 5.4(a2)) [74].

Figure 5.4 (b) shows the polytwinned microstructwreen the in-plan@%
biaxial tensile strain of 1% is applied. Variant326 and 7 form th€100} twins. The
corresponding twin compatibility is given in TallleThe nucleation of variants 2, 3, 6
and 7 are determined by the applied biaxial tensienause they are the only four
variants whose in-plane components of transformatteain tensorReR” satisfy the
loading condition of biaxial tension. The shear poment of the average transformation
strain is also minimized to zero

0033 0 0
R(3+3+e2+e)RT/4= 0 00243 0 (5.23)
0 0  —0.0524
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Fig. 5.4 (c) shows the microstructure formed urilerout-of-plane compressive
strain of 2%. Similarly, variants 2, 3, 6 and 7 leate, although the polytwinned
morphology is different. As summarized in Table, p&ir{2: 3} and{6: 7} form the
{100} twin; while {2: 6} and{3:7} form the{110} twin. All the compatibility

requirements at the twin interface are satisfied.

Fig. 5.4 Formation of polytwinned martensitic mistrmictures at different applied
boundary conditions. (af)110} compound twin forms under the loading of biaxial
compression. (a2) Corresponding atomic structof¢$10} compound twin. (b)
Layered twin lamellas form under biaxial tensi¢o).Polytwinned structure form under

out-of-plane compression.
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Table 5.4. Compatibility of twin variants obtainedphase field simulations and given by

continuum based solutions, corresponding to dotdsision in Fig. 5.4(b).

Pair Theoretical Solution [41] Phase Field
{2:3} {100}type | {100}
{3:6} {110}type | {100}
{6:7} {100}type | {100}
{7:2} {110} type | {100}

Table 5.5. Compatibility of twin variants obtainedphase field simulations and given by

continuum based solutions, corresponding to dotgnlsion in Fig. 5.4(c).

Pair Theoretical Solution [41] Phase Field
{2:3} {100} type | {100}
{2:6} {110} type | {110}
{3:7} {110} type | {110}
{6:7} {100} type | {100}

5.4 Conclusions
We develop a phase field model based on a Langaiftee energy function to study
the diffusionless cubic to monoclinic martensitiape transformation in Nickel-
Titanium (NiTi) shape memory alloys. The three-dnmsienal simulations reveal the
nucleation and growth of twelve monoclinic BiAriants that form the polytwinned
morphology of martensitic microstructures. Paramnetiudies demonstrate that the
mechanical constraints govern both the selectiohspatial patterning of multivariants in
the formation of strain-accommodating microstruesuiThe present phase field model is
generally applicable to study the dynamic evolutboomplex alloy systems that

involve multi-variants and polytwinned microstruits.
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CHAPTER G

DISLOCATION NUCLEATION DURING NANOINDENTATION

6.1 Introduction

In nanoindentation experiments, the shear stitetbe anset of plasticity can
approach the theoretical shear strength of a pesfgstal [35, 104-108]. Such ultra-high
stress occurs in small (hanometer-sized) volumasdth the nanoindenter, which can be
free of any preexisting defects. A defect-free talydeforms in a nonlinear manner,
when the shear stress approaches the theoretigal Tihe nonlinear elastic, or the so-
called hyperelastic, response arises from theielssftening of crystal lattice at large
strain. This paper is concerned with the criticdé rof hyperelasticity, as well as
crystallography, in the onset of plasticity durimgnoindentation, a process arguably
associated with homogenous dislocation nucleatiahresult from the nonlinear elastic
instability of crystal at large shear.

Here we employ the interatomic potential finiteraknt method (IPFEM) [109-
111] to simulate nanoindentation and predict homogs dislocation nucleation. The
IPFEM simulation takes as an input the interatopaitential-based constitutive relation
derived within the framework of hyperelasticitysahgle crystals [112]. It can accurately
capture the essential physical effects of crystidrge deformation: nonlinear elasticity

and shear asymmetry (i.e., the asymmetry of shesgsswith respect to the sense of

shearing in the Shockley partial direction{mﬁ]}<11§>), thereby enabling an accurate

prediction of dislocation nucleation. Comparedhe tommonly used molecular
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dynamics (MD), the IPFEM significantly improves tbemputational efficiency, so that
the effects of system size and loading rate camibemized, and consequently
simulations of nanoindentation can be performetheriength and time scales close to
laboratory experiments.

In this study, simulations are performed for nadentation on several face-
centered cubic (fcc) crystals at low temperatuea(ly zero-K) when the effect of
thermal activation is negligible. For each crysta simulate indentation on the (111),
(110) and (100) surfaces, and quantify the critocadditions of homogenous dislocation
nucleation in the bulk perfect crystal. The reshighlight the central role of
hyperelasticity (nonlinear elasticity) and crystglaphy in dislocation nucleation in
small material volumes, a process requiring uligitlstress that is achievable during
nanoindentation. Our study also reveals the defayieof commonly used nucleation
criterion such as the critical resolved shear strésth the rapid development in the
experimental techniques of nanoindentation [10&] perform a direct comparison
between the experiments and atomistics-based djgatin of critical conditions of

dislocation nucleation as predicted in this pap&i.[

6.2 Methods

6.2.1 Interatomic potential finite element method

The key to the interatomic potential finite elemerethod (IPFEM) is the
interatomic potential-based constitutive relati@niged within the framework of
hyperelasticity with the Cauchy—Born rule [112].eTlhasic premise of this approach is
that every point in a continuum corresponds tageaegion of uniformly deformed

lattice at the atomic scale. It follows that themgy of a continuum point can be
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calculated by summing the energy of the underlyatiice deformed according to the
continuum deformation gradier, . Specifically, for a continuum point, all underig
atoms are identical, one may consider the energymefatom at the origin to be
representative, and calculate the energy assoamtkdhis atom; the energy density is
the energy per atom divided by the atomic voluméhi® the framework of the
embedded-atom method (EAM) [113], and considectlgstal at nearly zero-K

temperature, the energy density W is given by

w :QL{ZV(rKHU(/_))} 6.1)

0

whereV (r“) is the pair potentialp = Zp(r “) is the ambient electron density for the
K

atom at the origin, and () is the energy required to embed this atom intcetbetron

density. In Eq. (6.1)Q, is the atomic volume in a stress free fcc lattr@emely,

Q, =a; /4, wherea, is lattice constantt “ denotes the distance between the atom at
the origin and a neighboring atom when the latsocdeformed, here, the ind&runs
over all atoms within a cut-off radiu, prescribed by the interatomic potential.

The Cauchy (true) stress can be obtained usingtémelard relation between

energy density and stress,

1 ow
g = I:im in A=
. det(F;) " oE,,

(6.2)

In Eqg. (6.2), the Green straif; is defined as; :%(Fki F, —9;), whereg; denotes the

Kronecker delta; the energy density W, as defimeld. (6.1) depends oit; through
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= \/(5 +2E; )X Xo; » Wherexg; is the coordinate of a neighboring atom in the

stress-free fcc lattice. Substitution of Eq. (6t Eq. (6.2) leads to

1 ZF V() U(P) dp(r ) [ XX

g, =———— -

' det(F)Q, 2 or 0p or r
Here x}‘ denotes the Cartesian coordinate of a neighbatioig in the deformed lattice,
and it can be calculated Ixfl =F, xc'fj . Since the Cauchy stress in Eq. (6.3) involves

lattice sum and nonlinear functions\{r“), U(p) and p(r) [114, 115], the effects
of crystal anisotropy and nonlinear elasticity e@rporated automatically.

The tangent modulus,, , can also be calculated from the interatomic pegn

as detailed in [111],

.- 2 av (r ) _ 1 V(rM)), U@ (%) _ 1 ap(r*) )| XXX
= det(F )Q, |4 2 r or ap oz r* ar (r*)?

9°U (D) [ 8p(r*) XX} |5 901 ) X X
+ —o [; or K J{Z or K j}

0p r K r

(6.4)
Here, the current and reference configurationsaasemed to coincide. Because of the
elastic softening of the hyperelastic crystal, ghediction of dislocation nucleation
requires an update of the tangent moduyswhen deformation gradier; changes.
The above interatomic potential-based constitutimelel can accurately describe
the hyperelastic response of a bulk crystal, wheeiteia inadequate to model the elastic
behavior of atomic layers near the crystal surfadd€], where atoms are mis-coordinated

compared to the perfect crystal. However, sincewlleconsider the indenter with a tip
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radius of 50nm (an approximate size in experimethg) nucleation sites are located at
about 10nm below the contact surface, so thatffeeteof mis-coordinated surface atoms
are negligible. As such, this constitutive modedufficient to study nanoindentation-
induced dislocation nucleation inside the bulk talsas verified by molecular dynamics
simulations [111].

The interatomic interactions are modeled usinggA#&1 potentials [113], which
can better describe the many-body effects of metadinding compared to the two-body
pair potential such as Lennard-Jones potential.BA potentials used in this study are
developed by Mishin et al. [114, 115], which haeeib validated by comparing with
experimental results (if available) and&dy initio calculations. Table 6.1 compares the
elastic constants of the stress-free crystals (ZAI\between experiments and

predictions by the potentials. It also lists thgstal-anisotropy parameter

B =2c,/(c,—c,); for isotropic materialsg =1.

Table 6.1. Elastic constants of stress-free siogistals of Cu, Ni and Al. Predictions by
the EAM potentials are compared with experimengadg = 2c,, /(c,, —c,,) measures

the degree of crystal anisotropy.

2c

c.(GPa) c,(GPa) c,(GPa) B=—"—
C1~Cp
Cu Experiment 168.4 121.4 75.4 3.9
Potential 169.9 122.6 76.2 '
Ni Experiment 247 147 125 25
Potential 247 148 125 )
Al Experiment 114 61.9 31.6 1.2
Potential 114 61.6 31.6 )
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We have implemented this interatomic potentialelldsyperelastic model for the
fcc crystals of Cu, Al and Ni in the finite elemgmrbgram ABAQUS/Explicit (2006) by
writing user material subroutines. In the dynareiplicit computational procedures of
this program, as detailed in ABAQUS Theory Manudl{], the nonlinear response is
obtained incrementally, given the internal forcesated by the stresses in the elements,
as well as the applied external forces at the efaah increment, time Finite element
procedures solve for the acceleration at the efdte increment by solving the
discretized local equations of motion. The velesitat timet + At /2 and the
displacements at time+ At are updated by a central difference time-integrati
procedure. The deformation gradieft for each integration point at tinte+ At is then
calculated based on the updated displacement iekn the calculated deformation
gradient, a constitutive equation subroutine, call&) MAT in ABAQUS/Explicit, is
required in order to determine the stress in teeneht at timd + At . In the
implementation of stress calculation according @o ®.3), each material point
(integration point) is represented by an fcc lattiwhich deforms according to the local
continuum deformation gradiem; . That is, at the beginning of the calculatidr=(Q), a
set of neighboring atoms is created to represenatbmic environment of the central
atom at the origin, e.g., an atom in the first hbigring shell should be located at (

a, /2,8, /2,0), an atom in the second neighboring shell i&gt0,0), etc. Here, the
lattice spacinga, is chosen such that the Cauchy stress is zere &t, and the number

of included neighboring atoms is determined bydineoff radius prescribed by
interatomic potentials [114, 115]. For each timer@ment, the neighboring atoms update

their positions according to the local deformatypadientF; , which is generated
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according to the imposed boundary conditions. TtherCauchy stresg; and tangent
moduluscy, are calculated by substituting the deformed parsstiof neighboring atoms

into EqQ. (6.3) and (6.4), respectively. Thus, matgroperties depend exclusively on the

atomistic description of the system.

6.2.2 Nonlinear elasticity and shear asymmetry at large strain
In this section, we highlight the important fe&siof the interatomic potential-
based constitutive model: nonlinear elasticity andar asymmetry at large strain.

Consider an fcc crystal undergoing uniform simieas in the Shockley partial direction

of {l11{112). Fig. 6.1 shows the shear stress-strain curvetiqeel by the EAM

potentials. Evidently, the crystal at large shednilgits nonlinearity and asymmetry of

shear stress with respect to the sense of shaarthg <11§> direction. The former can

be attributed to the elastic softening at largaisirwhereas the latter arises because of

the asymmetric packing of atoms in t<rla§> direction [111]. The two effects critically

control when, where and how a dislocation homogesiganucleates beneath the

indenter.
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Fig.6.1. Stress-strain curves for simple sheargfle crystals of Al, Cu, Ni in the

Shockley partial direction 0{11]}<11§>, showing the nonlinear elasticity and asymmetry

of shear stress with respect to the sense of stgearilarge deformation.

6.2.3 Dislocation nucleation criterion
Homogenous dislocation nucleation in the bulk gertrystal can be triggered by
the nonlinear elastic instability of crystal atgardeformation. The onset of instability is

associated with the Hadamard condition of lossositjve definiteness of the matr@@;,
defined by

Qi =n(Ccyy +T )N, (6.5)
for any unit vectom, [118, 119]. Here, the current and reference gométions are
assumed to coincide7,, is the Cauchy (true) stress aqg is the tangent (instantaneous

elastic) modulus, both of which are calculated frttwa interatomic potential, see Eq.

(6.3) and (6.4). For small deformatiorg, is positive definite. When

detQ,) =0 (6.6)
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loss of stability occurs, leading to dislocatiorclaation. Correspondingly, the unit vector

n, predicts the activated slip plane, and the eigetaovey, associated with the matrix
Q;c predicts the slip direction at the onset of diatamn formation. By comparing with

MD simulations, we have quantitatively verified thecuracy of this nucleation criterion
in terms of the predictions of the critical inddrda load, location of nucleation site and
activated slip systems [111].

To appreciate the key difference between the @atiole criterion of Eq. (6.5) with
the commonly used one such as the critical resadhedr stress (CRSS), we note that

Q; In Eq. (6.5) contains both the tangent modudys and Cauchy (true) stress, .

When a dislocation is about to nucleate (the cpording shear strain is large), the

magnitudes ot and o, become comparable due to elastic softening of the

hyperelastic crystal; the nucleation criterion of E6.5) states that when the decreasing

Cyjs IS balanced with the increasing, , the crystal becomes unstable, leading to

homogenous dislocation nucleation. Since the ingtatdoes not occur precisely when
the tangent modulus vanishes (equivalently, the R&8mizes), the nucleation criterion
based on the CRSS is not accurate. Moreover, tH&SJRnot a material constant; it
depends on other stress components than just dae. skhus, even an approximate use of
CRSS to predict nucleation would require a calibrator different stress (deformation)
states, similar to the construction of a yield so€fin stress space in the plasticity theory.
In contrast, the nucleation criterion of Eq. (6dBps not require calibration; nucleation

occurs as a natural consequence of loss of posiéfiaiteness of the matrig,, .

6.2.4 Simulation setup
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Fig. 6.2. Finite element mesh for indentation simtioh. The spherical indenter is
modeled as a frictionless, analytic rigid surfaldee simulation cell is one half of the
whole system considering the cubic symmetry offticecrystal.

Using the IPFEM, we have performed 3D simulatiohsanoindentation by a
spherical indenter, and quantified the criticatessaof dislocation nucleation. Predictions
will be given as to when and where the dislocatidhnucleate within the crystal, and
what slip mode the nucleated dislocation will talkiere specifically, indentation is
simulated for a spherical indenter pressed intq 1), (110) and (100) surfaces of
single crystals of Al, Cu, Ni. The radius of thel@mter is 50nm, the approximate tip size
of a nominally sharp Berkovich indenter used indgpnanoindentation experiments.
The spherical indenter is modeled as a frictionlasalytic rigid surface. Since this
research is focused on dislocation nucleation enghe bulk crystal, the effects of
indenter elasticity and contact adhesion are ighdA®wever, those effects could play an
important role if a dislocation nucleate directigrh the contact surface [120, 121]; a

detailed study of surface nucleation is beyondsttape of this work. We have previously
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performed extensive numerical testing to assessthences of geometry of simulation
cell, imposed far-field boundary conditions, eletgpe, and node density by comparing
with the Hertzian solutions for the isotropic amdsatropic, linear elastic material, as
detailed in [111]. We found for a system with theplane size of 300x300 and depth of
600nm, the effect of boundary constraint is sugintly minimized. To reduce the
computational cost, we simulate one half of the ivlsystem considering the cubic
symmetry of crystal, as shown in Fig. 6.2. The ltarg conditions are imposed as
follows: the displacement along the bottom of theshis constrained to be zero, while

the displacements of lateral surfaces are unconsttaThe graded mesh comprises 8-

node linear brick elements, with typical size areents near the indenter about&lo
The total number of elements is 519,332. Indestenaved down in displacement
control at a sufficiently low rate to mimic the girstatic loading condition, as calibrated

by the analytic solutions for indentation on a éinanisotropic elastic material [111].
6.3 Results

6.3.1 Indentation load-displacement response

Figs. 6.3(a)-(c) show the load-displaceméhh] curves for nanoindentation on
single crystals of Al, Cu and Ni, respectively. [eaich crystal, thB-h curves are
calculated for three indentation orientations (1(DM)1)/(001). The differer®-h
responses arise because of the elastic anisotfopygle crystals. For Al, the thré&h
curves are very close, consistent with the fadtAh@s a nearly isotropic material (

LB =12, see Table 6.1). As the elastic anisotropy in@gase., fromg = 25 for Ni to

S = 3.2 for Cu, the variation in thEe-h responses also increases for different indentation
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orientations. These results are consistent withvémation of indentation moduli given in
Table 6.2, where the crystal is simplified as &din anisotropic and elastic material; such
simplification renders the indentation moduli aniaigily solvable, thus providing a
guantitative reference to the numerical calculatanthe hyperelastic crystals. We note
that the crystal beneath the nanoindenter showd badergone nonlinear elastic
deformation before homogenous dislocation nucleatut the effect of nonlinearity is
not significant on th&-h response. This is because By curve is not a particularly
sensitive indicator on the nonlinear elastic defation during nanoindentation, as it
represents an average of the linear elastic respairtbe far field and the nonlinear
elastic response close to indenter. However, tipeigjastic constitutive model, which is
the basis of IPFEM simulations, is essential taljmtedislocation nucleation caused by

the nonlinear elastic instability of crystals agk shear, as shown later.

Table 6.2. Indentation modulE”, for single crystals of Al, Cu and Ni. They are
calculated by numerical integration using the sanatytic indentation solution, with the

elastic constants predicted by the interatomicm@bs, as listed in Table 6.1.

E*(m; (GPa) E*aoo) (GPa)
Al 88.9 87.1
Cu 153 135
Ni 254 228

Specifically, when a cubic crystal deforms in tBgime of linear anisotropic
elasticity, theP-h response can be derived Bs g E 'RY*h¥? for a spherical indenter

(radiusR) on a half space; for the (111) and (100) indéonat it can be proven that the
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contact area is circular because of crystal symmatrd the semi-analytic solution is

given by [122, 123].
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Fig. 6.3. Nanoindentation load-displacement cufeesndentation on the (111), (110),

(100) surfaces of single crystals of (a) Al, (b), @) Ni. The (111) indentations are

compared in (d) for the three crystals.

In Figs. 6.3(a)-(c), eadP-h curve is terminated at an indentation depth (iatgid

by circle), when the onset of dislocation nucleai®first identified by the nucleation
criterion of Eq. (6.5). For each crystal, the catiload of nucleation®, andh,)

changes considerably for different indentationmaéons, e.g.,
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hi? : h1% b = 504nm :385nm :193nm= 26:2:1 for Cu. This change arises

because of the effect of crystallography. Spedificaonsider a simple situation of

dislocation nucleation in the bulk single crystatlar a uniaxial compressive stregs In
this case a dislocation tends to nucleate on orliaaeo{lll]}<11§> slip systems, where the
resolved shear stregs= mo ( mdenotes the Schmid factor) first exceeds the shear
resistance of nucleation in a perfect lattice. Bgsidering the hard sphere packing of an

fcc lattice and noting the effect of shear asymynasr shown in Fig. 6.1, one can readily

calculatem and identify the slip system of nucleation; foifelient compression

orientations, the ratio of the inverse Schmid fagd/m™™" :1/m™® :1/m®® =3:2:1

. One may assume the shear resistance of nucleatisrthe same for each case, and
then obtainsg™* : g% : g% = 3:2:1; here, in a first approximation we ignore the
influence of other stress componentsmonThe ratio ofo, for different compression
orientations is qualitatively consistent with tledthe nucleation loadh, for different
indentation orientations, thereby showing thatwheation of h, is dominantly

controlled by the effect of crystallography. Whilee above simple analysis clarifies the
controlling factor onh,, the IPFEM calculations enable quantificationRfand h, by

solving the distribution of non-uniform and nonlareslastic deformation beneath the
indenter, as shown in Fig. 6.3.

In Fig. 6.3(d), we compare thieh curves for the (111) indentation of the three
crystals. It is seen that Ni is much stiffer tham&hd Al, consistent with the result that Ni

has a higher indentation modulus as shown in Té2leln terms of the critical

indentation displacements of nucleatidm, it is interesting to note that although Cu and
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Al show very similar response for uniform simpleah(see Fig.6.1), theh, differ

considerably; such difference arises because stargnisotropy, as well as the non-
uniform deformation beneath the indenter, as matgtkin the different indentation

moduli (see Table 6.2).

6.3.2 Nucleation site and activated dlip system

Fig. 6.4 shows the predicted nucleation sites flBFEM calculations, using Al
as an example. As schematically shown in Fig. §,.4lfe nucleation site for the (100)
indentation is at the central loading axis. In cast, it is off the central axis for the (110)
and (111) indentations; the number of equivaleessias well as their locations, is
dictated by crystal symmetry, see [111] for examid~ig. 6.4(b), we show the contours

of det@Q, ) at the respective critical moment of nucleatiod tor the respective

activated slip system. In each case, the gray elethehlighted with red circles)
indicates the nucleation site directly visible be surface of the simulation cell. Because
of the high symmetry of indentation orientatiorgere are multiple equivalent slip
systems at each site; the slip system first ad/at experiment or MD simulation would
be randomly selected by thermal fluctuations. Qedjctions by IPFEM, which
accurately incorporate the effects of elastic swiftg and crystal anisotropy, have been
qualitatively verified by MD simulations [37]; bthey are at variance with predictions
based on the linear elastic analysis [124] anddorgithe stress-based nucleation

criterion such as the maximum equivalent sheasstoe CRSS [125].
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Fig. 6.4. IPFEM predictions of nucleation sitesnanoindentation on the (100), (110)

and (111) surfaces of single crystal Al. (a) Schigeeaf location of nucleation sites; all
the solid lines are in th@lO} directions and the shaded triangles represenfithi
plane. (b) Contours afet@Q, ) at the respective critical moment of nucleation torche

respective activated slip plane. The gray elemiggh{ighted with red circles) has a

small negative value afet@Q, ), thus showing the nucleation sites.

6.3.3 Critical resolved shear stress
We calculate the critical resolved shear stre$838), 7., at the onset of
nucleation, and show the CRSS is not an accurateamion criterion. Fig. 6.5 shows the

indentation displacement versus RSS curves. The RSIS calculated at the critical

nucleation site and for the activated slip systaoeprding tor = o; ng,, where the
current slip-plane normabh, , and slip directiong,, are related to those in the

undeformed crystaln,; and g,;, by n, =n, F;* and g, = F; gy, , respectively. In Fig.
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6.5, circle represents the CRSS, when the nucleation criterion is first satisfiad
IPFEM calculations. The respective is listed in Table 6.3 for the three crystals and
three indentation orientations. Importantty,is not a constant for each crystal, and it

depends on the indentation orientation. Fig. 6s6 ahows that, is close to, but not

right at the maximum of RSS. This is due to tlestt-softening effect associated with
the hyperelastic crystals; namely, according toptimgsically based nucleation criterion

of Eq. (6.5), the nucleation occurs when the tahgesdulusc, is balanced with the

Cauchy stresw; ,

rather than wheu,, vanishes or equivalently the RSS maximizes.
Hence, these results clearly demonstrate that R&SCis not an accurate nucleation
criterion; an approximate use of CRSS needs aradiliim by combining experiments and
IPFEM calculations.

Finally, we note that Fig. 6.5(c) reveals a nuoarartifact of the RSS response
for Ni under the (110) indentation, i.e., theraimsabrupt change of the slope at low
loads. Considering the overall reliable performaoiche EAM potentials, which have
been extensively calibrated by comparing with expental orab inito data [114, 115],

we believe such a small artifact should not affbetoverall reliability of the results

reported in this study.

Table 6.3. The critical resolved shear stress (QR$8islocation nucleation

(111) (110) (100)
.- Cu (GPa) 3.2 3.0 2.3
I.- Al (GPa) 3.8 4.0 3.1
I.- Ni (GPa) 8.2 8.0 4.5
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6.4 Discussions

6.4.1 Nanoindentation experiment

We compare our IPFEM results with nanoindenta¢ioperimental results.
Nanoindentation experiments were performed on Ggisicrystals by our collaborators
[37]. Both the pyramid Berkovich tip (with an inder radius 0fLl64+10nm) and cube-

corner tip (with an indenter radius 68+ 4hm) were used. Indentations are performed
on (111), (110), and (100) surfaces under consvading rateP = 104N/s. For each

orientation, at least 300 indentations were measuggperimental results show the

strength is not a constant but fluctuates.
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Fig. 6.6. Experimental results of (111), (110), &bd0) nanoindentation on single crystal
Cu. (a) Representative P-h curves for (tip radiuslB4+10nm), and (b) Histograms of

the critical indenter forcd, and displacemertt, at the onset of displacement bursts for

the same tip radius. (c) Similar with (a), and $ithilar with (b), except for the tip radius
R =53+ 4nm). In (a) the origin of the indenter force P isftgd for (111) and (110)
cases to guide the eyes, and in (b) each nanomtttambrientation includes about 300
indents.

Stochastic, discontinuous character is shown Iopimaentation experiments in Fig
6.6, in contrast to the typical smooth yield bebawn their bulk counterparts [34, 105,
126-128, 129 ]. Such jerky behavior has been aitteidh to the stochastic nature of
dislocation sources in nanoscale and is fundamgrdidderent from the microscale size
effect often related to hardening associated withirs gradients [130]. In such a small
volume, the number of potential dislocation souiseseverely limited, and initial yield
events evolving from a single source become mebkyras manifested by displacement
bursts in a load-controlled nanoindentation te20]1The statistical distribution of

source strengths can lead to the fluctuation dtlys&resses for a fixed indenter size.

6.4.2 Theoretical analysis
The stochastic nature of a single source can bectesized by using the weakest
link concept and Weibull statistics [131, 132]tdilows that the cumulative probability

of discrete plastic yielding is given by [133]

F(o,L)=1- ex;{—{%} {Uij ] 6.7)

115



wherelL is the characteristic length scale of the highihgssed volumeg is the average
stress acting on this volumejs the dimensionality of the sourcd € 2 for surface and

d =3 for bulk defects)mis the Weibull modulusl., is the reference length, amg is
the reference stress. Eq. (6.7) implies that te&l\dtrengtho,, satisfying the scaling law
o, OL# (6.8)
where the exponenf =d/m.
On the other hand, we rewrite EqQ. (6.7) to

In[in(1- F)* = min(a/ a,) + In[(L/ Ly)°] (6.9)

The parameters g8 and Weibull modulusn can be determined by linear regression of

the experimental data, which finally provide thendnsionality of the nucleation source

in Table 6.4.

Table 6.4. The indenter ford@ and displacemerty, at the onset of initial displacement

bursts from nanoindentation experiments. The pdaxsrexponenys, Weibull modulus

m, and the dimensionality of dislocation soudce S m are also provided.

_ Berkovich tip Cube-corner tip
Indentation (R = 164nm) (R = 53nm) B m d

plane PN)  h(m) P@N) h(m)

(111) 34.249.4 8.22.1 10.34.1 3.209 0.22 8.11 1.8

(110) 31.2+9.2 7.41.5 12.33.2 3508 0.27 7.49 2.0

(100) 27.0t7.3 7.81.2 14.33.6 4.20.8 0.49 5.67 2.8
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These results indicate that bulk defeds<(3) are most likely responsible for the
displacement bursts in the case of (100) indemtatiocontrast, surface defectd € 2)

are most likely underlying the bursts in the (14t (110) indentations.

6.4.3 Heter ogeneous dislocation nucleation

Using the IPFEM, we study the nanoindentation-aetbhomogenous dislocation
nucleation in a dislocation-free perfect crystahgsossible cause of experimentally
measured displacement bursts. The IPFEM enablaesnmentation simulations at the
experimental size scale while retaining the atosaigle resolution. We consider the
homogenous dislocation nucleation resulting fromhliperelastic (non-linear elastic)
instability [111]. When the indenter radiRas 50nm, the critical indenter displacements

for nucleation are predicted & : h*? : hf = 26:2:1, with the corresponding

nucleation sites shown in Fig. 6.4 and 6.7 (a).sEhmatios have been verified
qualitatively by direct MD simulations in smallgrstems R = 5nm), as shown in Fig.
6.7 (b), and can also be rationalized by evaluatiegSchmid factors or resolved shear

stresses on the most favorably oriented slip sysfemnucleation [134]. Importantly,
while these predictions are within the range ofezipental values oh, (as given in

Table 6.4), they disagree qualitatively with theasigred ratios that exhibited a
considerably weak orientation dependence. Suchrdifices provide quantitative

evidence that discontinuous yielding should begergd by the activation of
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heterogeneous sources, rather than the homogemsbosation nucleation in a small

volume of perfect crystal beneath the indenter tip.

6.4.4 Dimensionality of nucleation sources

In order to understand the effect of crystallofiamrientation on the dislocation
sources responsible for the indenter displacemarstdin experiments, we have
performed direct MD simulations to study the pastlegenous nucleation behavior in
nanoindentation. Our MD simulation is performedidisplacement-controlled mode,
such that the discontinuous yielding event is shawa load drop rather than a
displacement burst under force control. Fig. 6.8fmws that in the (100) indentation,
the load drop is not observed immediately afteniteal homogenous nucleation event
(as indicated by the square symbol); the indemtexref continues to increase, and a
significant load drop occurs at a much larger foesealso reported by Liang et al. [135].
Such hardening response arises because of the iatméosrmation of dislocation locks.
In particular, the nucleation site and the sitéook formation coincide, both of which are
located at the central axis where the four equntadép systems (indicated by shaded
triangles) intersect, see Fig. 6.7(a). Notice thatlock junction creates a wedged-shape
region bounded by the twfi12 slip planes (see Fig. 6.7(c)), which restrictsplastic
deformation inside the wedge and prevents a saanfiload drop. Moreover, the wedge
transmits the indenter load and generates a stoeg®entration at its tip. At larger
indenter penetrations, the load drops occur dilegdeterogeneous dislocation
nucleation from the junctions near the wedge &g, Big. 6.7(d) for example.
Considering the dominant effect of bulk dislocatjonctions on stress relaxation in the

(100) indentation, we propose that such type dbdation lock can act as a
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heterogeneous source to initiate dislocation awiles and thus the experimentally
measured indenter displacement burst. This soaroeated inside the crystal, consistent
with the Weibull analysis of the (100) nanoindeimtatexperiment @ = 3). In contrast,

MD simulations show that for both the (111) andQ)lihdentations, the load drops occur
immediately after the first nucleation event. Imtgalar, no major locks form owing to
the fact that several equivalent nucleation sitedacated off the central axis and at
different locations, as shown in Fig. 6.7(a). Thaisilitates the escape of dislocations to
the surface, as well as injection into the bulke Tormer process creates the
heterogeneous surface sources that could initiatecation avalanches leading to the
indenter displacement burst. In these two casedptiations of heterogeneous sources

are consistent with those from the Weibull analpdiexperimentsd = 2).
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Fig. 6.7. Modeling of nanoindentation on the (1X1),0), and (100) surface of single
crystal Cu. (a) Dislocation nucleation sites. Uppehematics (stars); middle: IPFEM
predictions (circles) when the indenter rad®is 50 nm; lower: MD simulations when R
=5 nm — atoms are colored by the coordination remaind the perfectly coordinated
atoms are removed to show the surface and distocatnbryos. (b) Indenter load-
displacement responses from MD simulations; (cY4Aasleation dislocation structures
for the (100) indentation at a small indentationgteation. (d) Same as (c) except at

large indenter displacement. In both (c) and (tme are colored by the central

120



symmetry parameter to show the wedged-shape loxkign bounded by the two

stacking faults on th€l13 slip planes.

6.5 Conclusions

We have simulated nanoindentation and predictgidchtion nucleation in fcc
single crystals of Al, Cu and Ni. Simulations aezfprmed using the interatomic
potential finite element method, which is a compatally efficient approach that
facilitates the study at length scales large coeghém atomic dimensions, while
remaining faithful to the nonlinear interatomicardctions. We considenmogenous
dislocation nucleation triggered by the nonlindasgc instability of crystal at large
strain and nearly zerd-temperature. The results show that the criticabIneed shear
stress of nucleation is at the GPa-level, clogbédheoretical limit of perfect crystals.
However, the critical conditions of dislocation teation, including the indentation load
of nucleation, location of nucleation site, nudleatstress and activated slip systems,
sensitively depend on the indentation orientatigut. these conditions are consistent for
different fcc crystals. Last but not least, wedalso studied the stochastic,
discontinuous plastic deformation in the nanosealames of single crystal Cu and
explored the characteristics of the nucleation. Meehanisms of the nucleation-

controlled plasticity and dimensionality of nucleatsource have been studied.
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CHAPTER 7

CONCLUTIONS

We study the plasticity mechanisms of diffusi@slenartensite phase
transformation in Nickel-Titanium. NiTi usually eiklits various metastable phases (B2,
B19, B19, R etc.), the activation of which depends senalyiwn temperature, loading,
concentration, and precipitation, etc. The formaté a variety of twin structures further
complicates the study. Also, nanoscale size effdetg an important role in the
controlling of pseudoelasticity, shape memory atietoplastic deformation. We begin
the study with understanding the nanotwin structufdiTi martensite by molecular
statics. Then molecular dynamics simulations apieg to study the temperature-driven
B2 — B19 phase transitions. Then the stress-driven mattepsiase transformation
governing the pseudoelasticity and shape memoegtsfin NiTi nanopillars is explored
by molecular dynamics. Monte Carlo simulations@educted to characterize the
temperature- driven B2> B19 phase transition and the patterning of maitiens
nanotwins in NiTi thin films, which is not easylbe achieved by molecular dynamics
due to its time scale limitations. Finally, phasgd simulations are performed to predict
the formation and evolution of complex martengmicrostructures, including the
detailed analysis of twin compatibility under coewploading conditions in a larger
modeling system. The above results not only prone® insights into the nanoscale
martensitic phase transformation in NiTi, but gisovide an effective modeling
framework for studying the diffusionless phase sfarmation in large systems with

atomic resolution.
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We also study the nucleation-controlled plastifodeation in metals, which is
the underlying deformation mechanism in ultra-sgtbmano materials. Our work
focuses on understanding how dislocations nucieasngle crystals. Interatomic
potential finite element method is applied to detee when, where and how dislocations
nucleate during nanoindentation in metals suchuigsACand Ni. We explore the effects
of indentation orientation on the characteristitaaivated dislocation sources. Results
provide insights into the nanoscale mechanismdastip yielding, and are useful for
guiding the nanomechanical experiments in the &utur

Overall, the nanomechanics study in this thesisides novel mechanistic
insights into the deformation mechanisms in shapmary alloys and ultra-strength

metallic nanostructures.
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APPENDIX A

CRYSTALLOGRAPHIC THEORY OF TWINNED MARTENSITE

We have used the crystallographic theory of twthmartensite [41] to facilitate
the construction of initial twin structures. Thieebry only requires an input of the
transformation matrix from the cubic parent phasmbnoclinic martensitic phase. The
twinning elements, including the twin plane normahand twin shear vectan, can be
predicted by solving the twinning equation of E4). iq the text. This appendix provides
the solution of twinning elements for compound tsviliheir relaxed structures are
discussed in the section of Results and Discus#tishould be noted that the general
solutions provided by Hane and Shield [41] somesicennot be directly used in the
atomistic simulation when periodic boundary comhi§[59] are imposed to eliminate the
free surface for studying bulk properties. In otiverds, it is necessary to construct the
deformation gradient matrix such that the twin plafter martensitic transformation
remains parallel to one side of the supercell fgueing periodic twin structures in
different supercells.

Consider a pair of symmetry-related transformatiatrices

. b/+/2 0 0 . b//2 0 0
FF=—| 0 csinB/v2 0|andF,=—| 0 csinB/v/2 0| (Al)
% 0 -ccosB/v2 a % 0 ccosB/v2 a

We solve the twinning equation of Eq. (4) by foliog the procedure described by James
and Hane (Proposition 1 in page 202 of their paj@Jsing the experimental values of

lattice constant and monoclinic angle listed in[€ah we obtain two solutions:

n' =[010], m' =[0,0,02564 andn" =[0,01], m" =[0,0.2252-0.0264, which
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give the 010) and (001) compound twin, respectively. This pair of twins is
conventionally called reciprocal or conjugate twiNste that all the vectors are given in
the (i',j',k") basis defined in Fig. 1.

Substitution ofn' andm' into Eq. (4) yieldsQ =1 . As discussed earlier, this
result indicates that after the martensitic trarmeftion of variants | and J, the orientation
of the twin plane(©10) is unchanged as illustrated in Fig. A1(a). This ba readily
verified by noting that the twin plane normal aftemsformationn'F™, is still along the

[0,10] direction.

Fig. Al lllustration of shear transformation ane tiotation of the mirror twin plane
during the formation of010) and (001) compound twins. (a) The (010) mirror twin
plane (in blue) is unrotated after the shear tamnsétion of the red rectangle to green
parallelogram in th€j',k") plane along thé&' direction. (b) The (001) mirror twin plane
(in blue) is rotated after the same shear transdtion as (a). (c) The (001) mirror twin
plane (in blue) is unrotated after the shear tamnsétion of the red rectangle to green

parallelogram in th€j’,k") plane along thg' direction.
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In contrast, substitution of" andm" into Eq. (4) yieldsQ unequal to the
identity matrix. This is consistent with the falsait the orientation of the twin plane (001)

is changed after martensitic transformation, asvshio Fig. A1(b). Indeed, the twin
plane normal after transformation)F™, is in the[ 0,0,1] direction. To ensure the
periodicity of (001) compound twins in different supercells, we corwtaupair of

transformation matrices that are equivalent toehgisen by Eq. (A1), but keep the twin

plane unrotated after martensitic transformatiae (Sig. A1(c)),

. b/N2 0 0 . b/v2 0 0
FF=—| O c//2 —acosf| and F, =—| 0 c/\/2 acosf |(A2)
0 0 asing % 0 0 asing

The above matrices are constructed by noting Heatrtartensitic transformation of the
B2 to B19' phase can be considered as an expamsmontraction along the edges of a

tetragonal unit cell (see Fig. 1), followed by mple shear to a monoclinic angl®. This
simple shear can be achieved by rotatingjthaxis about the' axis, giving Eq. (Al) or
equivalently by rotating' abouti’, giving Eq. (A2). Solution of Eq. (1) with an infpof
Eq. (A2) gives compound twins of =[0,1,0], m' =[0,-0.0304,0.255d and

n" =[0,01], m" =[ 0,0227,0]. They are equivalent to the results from Eq. (A1),

differing by a rotation.
Incidentally, Eqg. (A2) can also be obtained by@engeneral procedure of

starting from Eq. (A1) and then constructing anmahat rotates the twin plane so that it

is parallel to the side of the supercell, ife,,=Q’F, andF, =Q"'F,, where
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1 0 0
Q =|0 sinB cosp (A3)
0 -cosf sing

This “transformation and rotation” procedure is g, and can be applied to construct

other types of twins in periodic supercells.
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APPENDIX B

STRESSFIELD IN FOURIER SPACE

One needs to solve the equilibrium equations taiolihe total strai and stress

7. We define a differential operator

a a a\T
o 0 0 7
a d d
a d
0 0 o 6_xz a_x1 0

wherex;, x, andx; are the spatial coordinate. Then the geometrytemuaf strain can
be represented as

£ =Au (B2)
where the displacement vector= (u;, u,,u; )T is a function ofx;, x, andx;.

The equilibrium equation can be written as

ATt =0 (B3)

It is non-trivial to obtain the analytical solutiof Eq. (5.10), (B2) and (B3) for
generally prescribed boundary conditions. Instéaeke equations can be discretized and
numerically solved. However, direct solution of £5.10), (B2) and (B3) could be
computationally inefficient, since a set of parti#ference equations for the whole field
needs to be satisfied at each time step. Howevethé problem with periodic boundary
conditions, the semi-implicit algorithm, which igginally developed by Chen and Shen,
can significantly improve the computational efficdy by applying the Fast Fourier
Transformation (FFT). The differential equations tlansformed to linear equations

mutually independent at different mesh node [99}his appendix, we present the
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detailed formulation and procedure of solving thaikbrium equations with the FFT
method by partially following the approach introéddy Shu and Yen [92].
The total strairg, transformation straig™ and stress are discomposed into the

homogeneous and inhomogeneous components
e = (&) + &', where(e) = fv ed3r (B4)
and
e = (") + &', where(e*) = J, €ad’r (B5)
One can further decompose the total displacemento a homogeneous and an
inhomogeneous component
u = (u) + u’ satisfying (g) = A(u) and &' = Au’ (B6)
Note that the homogeneous componentis a linear function ok, because the
homogeneous strafz) is a constant. Although this decomposition in Bf)(is not
unique with a constant plus a rigid body rotatibmyill not affect the result of our
interest, because we will only use the differerfoaim of displacement’.
Substitution of Eq. (B4) and (B5) into Eq. (5.103lgs
T=C-(e—&)=C-({(&)—(eN+C- (€ —eH)=()+1T (BT
where the homogeneous stress is defined as
() = C- (&) —(£") (B8)
and the inhomogeneous stress is
T=C-(¢-¢) (B9)
In each simulation time step, once the field vdaah,,n,,::-,n;, are known,&*
is can be directly calculated from Eqg. (5.1), satihis easy to calculaté™) from Eq.

(B5). The applied boundary conditions can be glvemrither(e) = £*P or (1) = TP,
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or a mixed type. Together with Eq. (B8), all thertameneous componers) and
(t) can be obtained.
The equilibrium equation of’ remain the same form
ATt =0 (B10)
Substituting Eq. (B6) into Eq. (B9) and (B10), waain the partial differential
equations
ATCAU = ATCe" (B11)

For an integral equatioif: R® - R, the Fourier transformation is defined by
F& =F0) = [l f(e "> dx (B12)
wheres = (s, s, 53 )T is the coordinate in the reciprocal space.
The inverse Fourier transformation is defined by
f) =F1(F) = [[J2, F(s) e*™*<ds (B13)
It can be shown that the differential operaddn the real space is transformed to
the linear operataB in the reciprocal space, which is given by
s; 0 0 0 s3 s, T
B = 2mi (0 s; 0 s3 0 sl> (B14)
0 0 s3 s, s; O
Thenu' is obtained from Eq. (B11) as
uw' =Fu) = (B"CB)™* B"Ce" (B15)
From Eq. (B6), the transformed inhomogeneous stsain
g =F(¢) = B(BTCB) ™' B"Ce" (B16)
From Eg. (B9), the transformed inhomogeneous sisess

7 = F(r') = CB(BTCB)"! BTCe" — C&" (B17)
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The inhomogeneous stress and strain can be obtayndw inverse Fourier
transformation according to Eq. (B13). Finally,eétiger with the homogeneous stress
given by Eq. (B8) and the boundary condition, oae cbtain the driving force associated
with elastic energy density given in Eq. (5.11)hé kinetic equations Eg. (5.16) are also
solved in the Fourier space, the inverse transfoomaf stress is not needed in the phase

field simulation.
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