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SUMMARY 

Recent experiments of nanoscale materials have shown the strong nano-size 

effects on their mechanical properties, such as the loss of pseudoelasticity and ultrahigh 

mechanical damping in shape memory alloys, and the ultra-high strength phenomena in 

metals. Understanding these unique properties and size effects at the nanoscale is 

critically important to the application of micro/nano-devices. The underlying mechanisms 

of nanoscale plasticity could be governed by the phase transformation or nucleation-

controlled plasticity. In this thesis, we study the plasticity mechanisms of diffusionless 

martensite phase transformation in Nickel-Titanium (NiTi), one of the most widely used 

shape memory alloys. We also study the nucleation-controlled plasticity mechanisms in 

different metals of Copper (Cu), Aluminum (Al) and Nickel (Ni). The objective of this 

thesis is to elucidate the mechanisms of plasticity in the nanoscale metals and alloys by 

both the atomistic and phase field modeling at different time and length scales. 

We study the plasticity mechanisms of martensitic phase transformation in NiTi 

shape memory alloys. NiTi usually exhibits various metastable phases (B2, B19, B19′, R 

etc.), the activation of which depends sensitively on temperature, loading, concentration, 

and precipitation, etc. The formation of a variety of twin structures further complicates 

the study. In the past the continuum theory and first principles calculations have been 

employed to study such a complicated system. However, they are deficient in terms of 

resolving the mechanisms of martensitic phase transformation. The research here 

involves four thrusts focusing on different length and time scales: (I) Molecular statics 

and dynamics simulations are applied to study the nanotwin structures and temperature-

driven B2 → B19′ phase transitions. (II) Molecular dynamics simulations are performed 
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to explore the stress-driven martensitic phase transformation governing the 

pseudoelasticity and shape memory effects in NiTi nanopillars. (III) Monte Carlo 

simulations are conducted to characterize the temperature- driven B2 → B19 phase 

transition and the patterning of martensitic nanotwins in NiTi thin films. (IV) Phase field 

simulations are performed to predict the formation and evolution of complex martensitic 

microstructures, including the detailed analysis of twin compatibility under complex 

loading conditions. The above results not only provide new insights into the nanoscale 

martensitic phase transformation in NiTi, but also provide an effective modeling 

framework for studying the diffusionless phase transformation in large systems with 

atomic resolution. 

We also study the nucleation-controlled plastic deformation in metals. Our work 

focuses on understanding how dislocations nucleate in single crystals. Interatomic 

potential finite element method is applied to determine when, where and how dislocations 

nucleate during nanoindentation in metals such as Cu, Al and Ni. We explore the effects 

of indentation orientation on the characteristics of activated dislocation sources. Results 

provide insight into the nanoscale mechanisms of plastic yielding, and are useful for 

guiding the nanomechanical experiments in the future. 

Overall, the nanomechanics study in this thesis provides novel mechanistic 

insights into the deformation mechanisms in shape memory alloys and ultra-strength 

metallic nanostructures.   
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CHAPTER 1 

INTRODUCTION 

1.1 Martensitic phase transformation in nanoscale NiTi shape memory alloys 

 Shape-memory alloys, when deformed, can recover to their original shape upon 

unloading and heating [1-3]. Nickel-titanium (NiTi) is one of the most widely used SMAs 

[4]. The shape memory effect of NiTi usually results from the diffusionless martensitic 

phase transformation between the cubic B2 (austenite) and monoclinic B19′ (martensite) 

phase. NiTi can also exhibit pseudoelasticity [4],  i.e., deformation is fully recovered 

upon unloading without the aid of heating. Compared to shape memory, pseudoelasticity 

similarly involves the martensitic phase transformation, but it occurs when the 

deformation temperature is higher, typically above the austenite finish temperature Af.  

 The generation of large and reversible strains during both the shape memory and 

pseudoelasticity is governed by the diffusionless martensitic phase transformation of the 

crystal lattice in response to applied thermo-mechanical loadings [4-7]. Recent 

development in the processing, characterization and mechanical testing of nanostructured 

shape memory alloys provides opportunities of revealing the nanometer length scale 

effects on martensitic phase transformation, and may offer practical solutions of efficient 

shape memory, actuation, and mechanical damping in the microscale and nanoscale 

devices [8-16].  

 Understanding the martensitic transformation of nanostructured shape memory 

alloys first depends on knowing the structures of various phases at the nanometer scales. 

NiTi usually exhibits various metastable phases (B2, B19, B19′, R etc.), the activation of 

which depends sensitively on temperature, loading, concentration and precipitation, etc. 
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The most characteristic feature of martensites (B19, B19′, R etc.) is the existence of twin 

structures, which would help to accommodate the incompability between the martensite 

and the austenite. Twin martensites are conventionally classified as type I twin (i.e., the 

twin plane is a rational crystal plane), type II twin (i.e., the twin shear is a rational 

crystallographic direction) and compound twin (both the twin plane and twin shear are 

rational) [1]. The structures of martensite depend sensitively on the size. For example, in 

coarse-grained NiTi, type I and type II twins are more often observed than compound 

twins. This can be rationalized in terms of the requirement of deformation compatibility 

at extended interfaces (i.e. habit planes) between martensite and austenite. In contrast, 

compound twins typically form in nanocrystalline NiTi. Further, the twin-related variants 

were observed to span the entire nano-sized grain, so that the martensitic transformation-

induced kinematic incompatibility is accommodated by the grain boundary rather than 

the habit plane. Such nanostructural size effect on martensitic phase transformation has 

been studied by Waitz and coworkers by considering the competing effects of twin 

boundary energy, grain boundary energy and elastic energy of twin variants and 

surrounding matrix [17, 18]. 

 A next-level study of the martensitic phase transformation is concerned with how 

the phase transformation occurs and what the unique properties are at the nanoscale. A 

typical martensitic phase transition in NiTi involves the transformation from a high-

temperature B2 cubic austenite phase to a low-temperature B19′ monoclinic martensitic 

phase [4]. The nanoscale size effects are observed and illuminated with the aid of recent 

development in the nanomechanical testing [9, 10, 13, 16-24]. For example, Frick et al. 

showed that decreasing diameter of NiTi sub-micrometer pillars inhibits and ultimately 
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suppresses the pseudoelasticity when diameters decrease to 200nm [13]. This size effect 

could be possibly due to the suppression of martensitic phase transformation. However, 

the martensitic phase transformation of B2 → B19′ was observed in NiTi pillars of 

200nm diameter by in situ electron diffraction experiment [16]. It was thus suggested that 

the loss of pseudoelasticity might arise owing to incomplete strain recovery (austenite 

phase transformation), despite the occurrence of martensitic phase transformation [21]. In 

contrast to the loss of pseudoelasticity, the shape memory was usually measured for 

pillars with diameters of 200nm with the help of heating [21].  

 In the past the continuum theory and first-principles calculations have been 

employed to study the NiTi system involving multiple phases, twin structures and their 

temporal evolution during phase transformation. Continuum theory is limited to explain 

the atomistic level structure and deformation mechanisms. And first-principles 

calculations are deficient in terms of resolving the mechanisms of martensitic phase 

transformation and plastic deformation, especially in large systems that are necessary to 

capture the effects of long-range elasticity and complex twin structures. Those previous 

studies are also limited by the simulation time scale. To study the structures of various 

phases and martensitic phase transformation at the micro- and nano-scale, we develop a 

modeling framework that integrates the crystallographic theory of martensite, molecular 

statics and molecular dynamics (MD), Monte Carlo (MC), and phase field simulations. 

Considering the complexity of martensitic microstructures and phase transformation, as 

well as a large range of time and length scales involved, these atomistic and phase field 

modeling approaches are expected to play an important role in bridging the experiments, 



 13

continuum modeling and ab inito calculations for understanding the transformation 

mechanisms in shape memory alloys [18, 25-30]. 

1.1.1 Atomistic nanotwin structures in NiTi martensite  

 In Chapter 2, we perform the molecular statics and dynamics simulations to study 

in detail the atomic-scale structures of nanotwins in NiTi shape memory alloys. An 

empirical interatomic potential [31] is originally developed to describe the properties of 

NiTi, which has been benchmarked by both experimental measurements and first-

principles calculations. However, it is deficient with discontinuities at cutoff radius. We 

modified this potential and improved the predicted properties. Based on the modified 

potential, atomistic simulations are performed to study the structures and geometrical 

limit of nanoscale twins in NiTi martensite. We analyze compound twins as narrow as 

about one nanometer, involving a few atomic layers. A novel nanotwinned structure is 

found, forming through the martensitic transformation of sub-lattices. We predict the 

transition temperatures for the thermal-induced phase transformation in bulk NiTi, which 

are consistent with experimental measurements. The results provide an atomistic basis for 

further study of the martensitic phase transformation process, pseudoelasticity and shape 

memory behavior in nanoscale NiTi.  

1.1.2 Pseudoelasticity and shape memory in NiTi nanopillars 

 In Chapter 3, we perform the molecular dynamics simulations to study the 

atomistic mechanisms governing the pseudoelasticity and shape memory in NiTi 

nanostructures. For a −110 orientated nanopillar subjected to compressive loading-

unloading, we observe either the pseudoelastic or shape memory response, depending on 
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the applied strain and temperature that control the reversibility of phase transformation 

and deformation twinning. We show that the irreversible twinning arises owing to the 

dislocation pinning of twin boundaries, while the hierarchically twinned microstructures 

facilitate the reversible twinning. The nanoscale size effects are manifested as the load 

serration, stress plateau, and large hysteresis loop in the stress-strain curves, resulting 

from the high stresses required to drive the nucleation-controlled phase transformation 

and deformation twinning in nano-sized volumes. Our results underscore the importance 

of atomistically resolved modeling for understanding the phase and deformation 

reversibilities that dictate the pseudoelasticity and shape memory behavior in 

nanostructured shape memory alloys. 

1.1.3 Patterning of martensitic nanotwins in NiTi thin films 

 In Chapter 4, we perform the Monte Carlo simulations of pattern formation in 

NiTi thin films. The above discussed atomistic simulations based on MD are limited by 

the achievable time scale (a few nanoseconds at most), so that the temperature-induced 

phase transformation in nanostructural NiTi is not easily accessible by the MD 

simulations. To overcome this limitation, we develop an atomic-level Monte Carlo 

simulation with importance sampling Markov Chain. We study the martensitic phase 

transformation and the pattern formation of martensitic nanotwins in a NiTi thin film. We 

show that large undercooling can lead to the refinement and branching of nanotwins, 

dictated by geometrical constraints at the interface between the martensitic thin film and 

austenitic substrate. The simulated twin refinement is consistent with a scaling analysis of 

the twin width, which depends on both the sample size and the characteristic material 

length that scales with the twin boundary thickness. Our work opens a new avenue 
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towards predictive modeling of the patterned martensitic microstructure at the atomic 

scale. 

1.1.4 Phase field modeling of martensitic microstructure in NiTi 

 In contrast to the previous chapters that focus on the atomistic simulations, in 

Chapter 5, we perform the coarse-grained phase field simulations of formation and 

evolution of martensitic microstructures in the bulk of NiTi alloys. Atomistic simulations 

are not computationally efficient to study the large systems, with size larger than one 

micrometer involving over one billion atoms. In this chapter, the phase field simulations 

have been performed to study the martensitic microstructures in the large systems of bulk 

NiTi alloys. Our simulations enable the detailed characterization of the martensitic phase 

transformation from the B2 phase to twelve B19′ variants for exploring the twin 

compatibility and temporal evolution of martensitic microstructures under complex 

loading conditions. The three-dimensional simulations show the nucleation and growth of 

twelve monoclinic B19′ variants that form the polytwinned morphology of martensitic 

microstructures. The mechanical constraints govern both the selection and spatial 

patterning of multivariants in the formation of strain-accommodating microstructures. 

The present phase field model is generally applicable to study the dynamic evolution of 

complex alloy systems that involve multi-variants and polytwinned microstructures. 

1.2 Nucleation-controlled plasticity in ultra-strength metallic nanomaterials 

 Metallic nanomaterials usually exhibit the “ultra-strength” properties [32]. That 

is, the measured strength (on the level of a few GPa) reaches a significant fraction of the 

ideal strength of perfect crystal, considerably larger than their coarse-grained 

counterparts (typically in the range of ten to hundred MPa). This phenomenon has been 
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shown by an increasing number of experiments such as bending of silver nanowire using 

atomic force microscopy (AFM) [33], compression of gold nanopillars [34], and 

nanoindentation in copper [35]. Moreover, the force-displacement curves of the 

aforementioned nanopillar compression and nanoindentation experiments are 

discontinuous. This implies the nucleation-controlled plasticity that produces the 

pronounced load discontinuities for releasing the stored deformation/elastic energy by 

dislocation formation.           

 The ultra-strength phenomenon can be caused by dislocation starvation [34]. In 

nanoscale materials, mobile dislocations can only travel a short distance before 

annihilating at a nearby free surface; they tend to leave the crystal rapidly without 

interacting with each other. Thus the probability of dislocation multiplication (through 

the mechanisms such as double cross slip and Frank-Read type sources) decreases. As a 

result, plasticity tends to be controlled by dislocation nucleation instead of dislocation 

multiplication. As the required stress for dislocation nucleation is generally higher than 

the one needed to move and multiply dislocations, the material strength increases. 

Nucleation-controlled plasticity often manifests as discontinuity in the nanopillar 

compression and nanoindentation experiments, because discrete nucleation events could 

lead to a pronounced load drop or displacement burst. The dislocation starvation has been 

directly observed by in situ Transmission electron microscopy (TEM) compression test of 

Ni nanopillars [36] , in which dislocations disappear as a result of mechanical annealing.  

 The above review motivates our study of nucleation-controlled plasticity in 

nanomaterials. However, the mechanisms of nucleation of dislocations are still not well 

understood. A multi-scale simulation method has been applied to explore the nucleation 
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controlled plasticity during the nanoindentation experiments. The effects of 

hyperelasticity have been considered to accurately describe the materials’ properties. 

1.2.1 Dislocation nucleation during nanoindentation 

 In Chapter 6, we perform the interatomic potential finite element method 

(IPFEM) simulations of dislocation nucleation during nanoindentation of face-centered-

cubic metals. Dislocation nucleation is central to our understanding of the onset of 

plasticity during nanoindentation. The shear stress in small volumes beneath the 

nanoindenter can achieve the theoretical limit of a perfect crystal. The ensuing nonlinear 

elastic instability can trigger homogenous dislocation nucleation inside the crystal. Here 

we employ the interatomic potential finite element method to simulate nanoindentation 

and predict dislocation nucleation. Simulations are performed for indentation on the 

(111), (110) and (100) surfaces of Al, Cu, Ni single crystals. We quantify the critical 

conditions of dislocation nucleation, including the indentation load of nucleation, location 

of nucleation site, nucleation stress and activated slip system. We find these conditions 

sensitively depend on indentation orientation, but are consistent for different crystals. The 

results highlight the critical role of hyperelasticity (the nonlinear elasticity caused by 

elastic softening at large strain) and crystallography in dislocation nucleation in small 

material volumes. In addition, we use the IPFEM simulations to analyze the stochastic, 

discontinuous plasticity in nanoindentation experiments, and determine the nature of  

dislocation sources (i.e. surface versus bulk nucleation) in nanoindentation of Cu with 

different crystal orientations [37]. 
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CHAPTER 2 

ATOMISTIC NANOTWIN STRUCTURES IN NITI MARTENSITE 

  

2.1 Introduction 

 Shape-memory alloys (SMAs) are a unique class of alloys which can recover to 

original undeformed shape from the deformed one by heating [1, 2, 5, 7]. Nickel-titanium 

(NiTi) is one of the most important SMAs [4]. The shape memory effect of NiTi based 

alloys typically involves the martensitic phase transformation from cubic B2 (austenite) 

to twinned monoclinic B19′ phase (martensite) through B2 → B19′ or B2 → tetragonal 

B19 → B19′, etc. [4, 38-42]. B19′ phase exhibits different twin structures (type I twin, 

type II twin and compound twin) to accommodate the displacement constraints during the 

martensitic phase transformations.  

 SMAs have strong potential applications such as damping and actuation [14, 43] 

in micro/nano-devices; however, the unique properties at nanoscale raise new challenges 

for further exploration [13, 16, 17, 19, 39, 44, 45]. Understanding the martensitic 

transformation in nanostructured shape memory alloys first requires the understanding of 

the structures of various martensitic phases in nanometer scale. In this chapter, we 

develop an atomistic modeling framework and apply atomistic simulations to study the 

structures of nanotwins in NiTi. We utilize the crystallographic theory of twinned 

martensite [46, 47] to construct the initial twin structures. Then the atomistic calculation 

is performed by using an empirical interatomic potential [31], which has been 

benchmarked by experimental values and first principles calculations. Our atomistic 

simulation goes beyond the crystallographic theory by providing more structural details 
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and mechanistic insights at the sub-lattice level. Compared to the first principles 

calculation [17, 39, 45, 48-51], it enables an efficient exploration of twinned 

microstructures, and can be further utilized to study their spatial-temporal evolution and 

associated phenomena of plasticity at the atomic scale, which is discussed in Chapter 3. 

Considering the complexity of martensite microstructures, as well as a large range of time 

and length scales involved in the martensitic transformation processes, the empirical 

potential-based atomistic modeling approach developed is expected to play an important 

role in bridging experiments, continuum models [18, 25-30, 52-55, 56 ], and ab initio 

calculations for understanding the transformation mechanisms in shape memory alloys. 

 The work in this chapter is focused on understanding the atomic-scale twin 

structures in NiTi martensite, and is motivated by recent high resolution transmission 

electron microcopy (HRTEM) imaging of nanocrystalline NiTi, showing the unique 

martensitic phase of nanoscale compound twins spanning the entire nano-sized grain 

[17]. It is useful to recall that a typical martensitic phase transition in NiTi involves the 

transformation from a high temperature B2 cubic austenite phase to a low temperature 

B19' monoclinic martensitic phase [4]. The most characteristic feature of martensitic 

transformation is the formation of twins, where the arrangement of the lattice on one side 

of the twin boundary plane is related to those on the other. Twin martensites are 

conventionally classified as type I (i.e., the twin plane is a rational crystal plane), type II 

(i.e., the twin shear is a rational crystallographic direction) and compound twin (both the 

twin plane and twin shear are rational); their rigorous definitions  can be found for 

example in the review by Christian and Mahajan [1]. In coarse-grained NiTi, type I and 

type II twins are more often observed than compound twins. This can be rationalized in 
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terms of the requirement of deformation compatibility at extended interfaces (i.e. habit 

planes) between martensite and austenite. Namely, compared to the compound twins, the 

formation of type I and type II twins can better achieve geometrical compatibility with 

the parent B2 phase of austenite [41]. In contrast, compound twins often form in 

nanocrystalline NiTi [17]. Furthermore, the twin-related variants can span the entire 

nano-sized grain, so that the kinematic incompatibility caused by martensitic 

transformation is accommodated by the grain boundary rather than the habit plane. Such 

a size effect of nanostructures on martensitic phase transformation has been studied by 

Waitz and his coworkers by considering the competing effects of twin boundary, grain 

boundary, and elastic energies associated with the twin variants and surrounding matrix 

[17, 18]. However, it is not yet well understood from an atomic basis why they form and 

how stable they are.  

 In this chapter, we study the atomic-level details of nanotwinned structures by 

combining the crystallographic theory and atomistic simulation. We analyze the 

compound twins as narrow as about one nanometer, involving a few atomic layers. The 

HRTEM images of twinned structures [17] provide the validation for our simulations. We 

discover a novel transformation mode that may have implications for the martensitic 

phase transition of materials with the complex lattice structure, common to crystalline 

alloys and compounds. We also study temperature-driven phase transformations and the 

size effects. The results provide an atomistic structural basis for further investigation of 

martensitic phase transformation and shape memory behavior of the shape memory alloys 

at the nanometer scale [57]. 
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2.2 Methods 

2.2.1 Interatomic potential  

 A many-body interatomic potential is developed to describe the NiTi system. This 

potential was originally developed by Lai and Liu [31], and is improved in this work with 

a smooth cutoff behavior to avoid the diverging forces in simulations involving large 

atomic displacements. As a Finnis-Sinclair type potential [58], the potential function is 

constructed by using the second-moment approximation of the tight-binding theory. The 

total energy of the system is expressed as 
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Here,  ijr   is the distance between atom i and j, and α  and β  denote the type of atoms 

(Ni or Ti) at sites i and j, respectively. In Eq. (2.1), the first term in the curly bracket 

describes the pair interaction and the second term represents the many-body effect. The 

potential parameters were fitted to the properties of the B2 phase at 0K from first 

principles calculations, and the potential cut-off radius cr  was determined to be 4.2
o

Α  

[31]. However, )( ijrF  and its derivative about ijr  are non-zero at cr . To be suitable for 

use in molecular statics and dynamics simulations that generally require smooth energies 

and interatomic forces, we have modified the potential by changing )( ijrF  as follows, 
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In Eq. (2.3), for given 1r  the four coefficients of αβ,0c  to αβ,3c  are solely determined by 

four continuity conditions, namely, )( ijrF  and its first derivative are continuous at both 

1r  and cr . We determine 1r  by optimizing the predicted properties. 

Table 2.1. Potential parameters for NiTi. A and ξ  are in the unit of eV, and d   in 
o

Α . 

 Ni-Ni Ti-Ti Ni-Ti or Ti-Ni 
D 2.49 2.95 2.607 
A 0.104 0.153 0.3 
P 11.198 9.253 7.9 
ξ  1.591 1.879 2.48 
Q 2.413 2.513 3.002 

3c  27.3341 122.395 47.8513 

2c  -7.54308 -34.205 -12.92362 

1c  -0.26286 -1.0054 -0.572708 

0c  0.13561 0.59012 0.248676 

 The potential parameters are listed in Table 2.1 with 
o

Α= 0.41r  and 
o

Α= 2.4cr . 

This modified potential not only removes the discontinuities at cr , but also improves the 

predicted properties, including the lattice constant and energy of various phases of NiTi, 

as compared with ab initio calculations in Table 2.2. In our atomistic calculations of 

single phases, both the atomic coordinates as well as the side lengths and angles of the 

simulation box are fully relaxed by using the stress-controlled conjugate gradient energy 

minimization [59, 60].  
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2.2.2 Crystallographic theory of twinned martensite 

 We have utilized the crystallographic theory of twinned martensite to facilitate the 

atomistic simulation of nanotwins in NiTi. While it is desirable to generate and analyze 

the nanotwins by direct molecular dynamics (MD) simulations, the attainable twin 

structures are limited because of the well-known timescale limitation of MD and the 

associated low efficiency of sampling the atomistic energy landscape when the atomic-

level structure is not precisely known. To overcome these limitations, we construct the 

initial twin structures based on the crystallographic theory of twinned martensite, and 

then relax the system by using the stress-controlled conjugate gradient energy 

minimization. In this way, various type I, type II, and compound twins can be accessed 

for detailed analyses. Moreover, the direct atomistic simulation can go beyond the 

crystallographic theory to reveal more sub-lattice level information and insights.  

  

b 

c 

a 

j 

j' 

k' k 

i' 

i 
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Fig. 2.1 Schematically shows a tetragonal unit cell (green lines) and four cubic unit cells 

(black lines) in the lattice of untransformed B2 parent phase. Only Ni atoms are shown 

for clarity. The orthonormal vectors ),,( kji  are along the cube axes, and the orthonormal 

vectors ),,( kji ′′′  are along the cube directions of ]011[ , ]110[  and ]001[ , respectively.  

 The crystallographic theory of twinned martensite requires an input of the 

transformation matrix from the cubic parent phase to the martensitic phase. With this 

information, the twinning elements, including the twin plane normal and twin shear, can 

be predicted by solving the twinning equation that governs the kinematic compatibility 

between adjoining twin variants. Consider, as an example, the martensitic transformation 

from the B2 to B19' phase. Following the notation used by Knowles and Smith [40], the 

transformation takes a tetragonal unit cell of the parent B2 phase (Fig. 2.1) into a 

monoclinic cell of the product B19' phase. The associated lattice deformation involves a 

uniform expansion or contraction of the tetragonal cell, followed by a simple shear. In the 

orthonormal basis ),,( kji ′′′  given in Fig. 2.1, the deformation gradient matrix can be 

represented 

  
















−
=

ac

c

b

a
2/cos0

02/sin0

002/
1

0 β
βF  (2.3) 

where 0a  is the lattice parameter of the cubic unit cell in B2, a , b , c   are the lattice 

parameters of the monoclinic unit cell in B19', and β  is the associated monoclinic angle 

between the edges with lengths of a  and c . Prior to martensitic transformation, 0aa = , 

02acb ==  and o90=β . The shuffling of atoms in the cell was ignored in the 

crystallographic theory of martensitic transformation [40]. 
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   Twin variants of the B19' phase should satisfy the kinematic compatibility 

condition given by the twinning equation [7] 

  nmFQF ⊗=− JI  (2.4) 

where IF  and JF  denote the symmetry-related deformation gradient of variant I  and J, 

respectively, n  is the normal vector of the twinning plane at the untransformed reference 

B2 state, m  is the twinning shear vector at the transformed current B19' state, and 

jiij nm=⊗ ][ nm . Eq. (2.4) essentially requires that any vector lying in the twin plane, 

which separates the two adjoining variants, should undergo the same deformation when 

viewed from either side. Note that Q  represents an additional rotation of variant I  after 

the transformation by IF ; namely, the total transformation imposed on variant I  is IQF . 

The rotation matrix Q  is needed whenever the orientations of the twin planes are 

different after the transformations of variant I  by IF  and variant J  by JF . For the 

martensitic transformation from the cubic B2 to monoclinic B19' phase, there are 12 

distinct variants. The transformation is conventionally described in terms of the 

symmetric deformation matrix U  obtained from the polar decomposition of deformation 

gradient F . Then there are 132 possible variant pairs between 12 monoclinic variants and 

those pairs can be classified as type I, type II or compound twin [1]. Solutions of Eq. 

(2.4) for type I, type II, and compound twins have been cataloged by Hane and Shield 

[41]. In this work, we focus on compound twins in order to directly compare simulations 

with available HRTEM images of twinned structures. Detailed solutions of compound 

twins suitable for atomistic calculations in the periodic supercell, including IF , JF , m , 

and n , are given in the Appendix A. Our method is general and applicable to create type 
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I and type II twins, and it can be further developed to produce complex twin 

microstructures (e.g., twinned wedges in the austenite matrix [7]) for providing an 

atomistic structural basis of studying their spatial-temporal evolution.  

 

2.3 Results and discussions 

2.3.1 Single phases 

 Figure 2.2 shows the relaxed structures of the B2, B19', and base-centered 

orthorhombic (BCO) single phases of equiatomic NiTi. Table 2.2 lists the lattice 

parameter, monoclinic angle and energy per atom for each phase calculated by the 

interatomic potential.  Most results given by the potential are close to the available 

experimental values and ab initio calculations. However, the energy of the BCO phase   

(-5.069eV per atom) is slightly higher than that of the B19' phase (-5.073eV per atom), 

whereas the more accurate ab initio calculations predicted that BCO has a lower energy 

at zero temperature [48]. On the other hand, the B19' phase is most commonly observed 

in experiments at low temperatures [4]. It is still an open question as to the most stable 

martensitic phase at low temperatures. Nevertheless, the geometric features of nanotwins 

reported in this work are expected to be robust, as most of them are symmetry related. 

But one should take caution in interpreting the relative magnitude of energies among 

various phases and twins predicted by the potential. Also note that as shown in Fig.2.2(c), 

the relaxed BCO phase (with an orthorhombic unit cell in white lines) can be equivalently 

considered as B19' twinned at the level of unit cells (green lines) with the resulting 

monoclinic angle o107≈β . This geometrical view was advanced by Huang et al. [48], 
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providing an interesting connection between nanotwinned and single phase structures. 

Table 2.3 lists the elastic constants of the B2 phase calculated from the interatomic 

potential at 0K, which are close to ab initio calculations. Due to omission of the 

temperature effects or lattice vibrations, these results are larger than experimental values 

measured at and above room temperatures [61, 62]. 

  

Fig. 2.2 Relaxed atomic structures of single phase, equiatomic NiTi, viewed from the 

[100] direction in the ),,( kji ′′′  basis of Fig. 2.1. (a) B2 phase, the rectangle indicates a 

tetragonal unit cell. (b) B19' phase, the parallelogram indicates a monoclinic unit cell 

with the monoclinic angle o98≈β . (c) Base-centered orthorhombic (BCO) phases, the 

rectangle (white lines) indicates a BCO unit cell; the BCO structure can also be 

considered as a twinned B19' and each variant consists of one layer of monoclinic unit 

cell (green lines) with o107≈β . 

Table 2.2 Comparison of lattice constant, a, b, c , monocline angle β , and the energy per 

atom E for single phases and compound twins, as well as their differences with the 

energy of the B2 phase 2BE . Results from this work are indicated by Finnis-Sinclair 

(FS)-potential. The experimental and ab initio values are taken from Knowles and Smith 

[40] and Wagner and Windl [45], respectively. The last two rows list the properties of 

(b) B19′ (c) BCO (a) B2 

β 

]001[

]010[

]100[

Ti 

Ni β 
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nanotwins with monolayers of monoclinic unit cells, shown in Fig. 2.6(b) and (c), 

respectively. 

Structure a (
o

Α ) b (
o

Α ) c (
o

Α ) β ( o ) E (eV) 2BEE − (eV) 

B2     experiment  3.015 4.264 4.264 90       
          FS-potential 3.008 4.253 4.253 90 -5.022     
          ab initio 3.008        4.253 4.253 90   
BCO  FS-potential 2.994  4.001 4.883 107.86 -5.069 -0.047 
          ab initio 2.953 3.993 4.951 108.52  -0.050 
B19'  experiment 2.889      4.120   4.622 96.8   
          FS-potential 3.005      4.022    4.466 98.08 -5.073 -0.051 
          ab initio 2.941 4.035 4.685 97.78  -0.044 

B19'  twin (Fig.4.6b)   3.062 4.018 4.391 
Ti 94.44 
Ni 93.96 

-5.058 -0.036 

B19'  twin (Fig.4.6c)   
3.011 
3.011 

4.022 
4.022 

4.464 
4.416 

98.43  
90 

-5.075 -0.053 

Table 2.3 Elastic constants (GPa) of the B2 phase calculated from the interatomic 

potential of this work, in comparison with ab initio calculations and experimental 

measurements at different temperatures.  

 
FS-potential  

(T = 0K) 
ab initio  
(T = 0K) 

experiments  
(T = 298K) 

[62] 

experiments  
 (T = 400K) 

[61] 

11C  
206.3 183 162  137 

12C  
135.8    146 129  120 

44C  46.9 46 34 34 

2.3.2 Compound twins 

Figures 2.3 and 2.4 show the relaxed structures of )001(  and )010(  compound twins, 

respectively. Here (001) and (010) refer to the ),,( kji ′′′  basis in Fig. 2.1, and they are 

equivalent to (001) and (110) in the ),,( kji  basis. We focus on a single twin boundary by 

studying the thick twins such that neighboring twin boundaries are sufficiently separated 

to minimize their interactions. The effect of the twin thickness will be addressed later in 

Fig. 2.5. Notice that the initial structures of )001(  and )010(  twins are constructed by 
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using the transformation matrices of Eq. (A2) and (A1), respectively. When applying 

these transformation matrices to construct the atomic structures, one can choose to 

position the mathematical mirror twin plane at various locations, including exactly on an 

atomic layer or between atomic layers. As a result, several metastable twin-boundary 

structures are obtained after stress-controlled conjugate gradient energy minimization. 

The corresponding mirror twin plane is indicated by the dashed line in Fig. 2.3 and 2.4. 

The position of a twin plane is determined according to its definition, i.e. the 

arrangements of the lattice on one side of the twin boundary plane are mirror reflections 

of those on the other. 

   

Fig. 2.3 Relaxed structures of )001(  compound twins. The mirror twin plane (dashed 

line) is located on (a) the pure Ni laden layer and (b) the pure Ti layer, respectively.  

  
(a) (b1) (b2) ]001[

]010[

]100[

Ti 

Ni 

]001[

]010[

(b) ]100[

Ti 

Ni 

(a) 
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Fig. 2.4 Relaxed structures of (010) compound twins. The mirror twin plane (dashed line) 

is located (a) off the (010) atomic planes, and (b) on the (010) atomic plane. The front 

atomic layer in (b1) and (b2) exposes one of the two different (100) atomic planes of the 

same relaxed structure. The white unit cell of Ti atoms in (b1) and that of Ni in (b2) 

straddle the twin plane (dashed line), respectively, and remain the rectangular shape. 

 For the relaxed )001(  compound twin shown in Fig. 2.3, the mirror twin 

boundary is always located on the atomic plane, irrespective the position of the twin 

plane. Since the )001(  atomic planes consist of alternate pure Ni (blue atoms) or pure Ti 

(red atoms) layers, the mirror twin boundary can be either on a Ni laden plane 

(Fig.2.3(a)) or Ti laden plane (Fig. 2.3(b)). We define the twin boundary energy, γ , as 

the excess energy (in reference to the single phase of B19') divided by the boundary area. 

The calculated value of γ  is, respectively, 0.136 J/m2 and 0.047 J/m2, indicating that the 

twin boundary located on the Ti plane is more energetically favorable than that on the Ni 

plane. 

 In contrast, for the relaxed )010(  compound twin shown in Fig. 2.4, the energy 

minimization results in structures with the twin mirror plane located either on or off the 

atomic layer. To understand the “on” and “off” possibilities, one should notice the 

following geometrical feature of (010) planes. In contrast to the (001) planes that involve 

the alternate pure Ni and pure Ti layers generating the twin structures shown in Fig. 2.3, 

the order arrangement of atoms in a )010(  plane involves a 2D rectangular net of Ni 

atoms interpenetrating a rectangular net of Ti atoms. As such, all the (010) planes are 

equivalent in terms of chemical arrangement of Ni and Ti atoms. Consequently, if the 

mirror twin plane is located on the atomic layer, there exists only one type of boundary 
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structure, as discussed next with Fig. 2.4(b). Interestingly, adjacent )010(  layers differ by 

an in-plane shift in the diagonal direction of the 2D rectangle cell of Ni (or Ti) by one 

half of the diagonal length. As a result, one period in the [010] direction involves two 

neighboring )010(  atomic planes.  

 Figure 2.4(a) shows the relaxed structures when the mirror twin plane is off the 

atomic layers. One can see that the mirror reflection is only approximately satisfied by 

unit cells of atoms near the twin boundary. The corresponding twin boundary energy γ  is 

0.089J/m2, larger than 0.014J/m2 from the first principles calculation [17]. In contrast, 

Fig. 2.4(b) shows the relaxed structure when the mirror twin plane is on the )010(  atomic 

plane. Note that in Figs. 2.4(b1) and (b2) the front atomic layer of the simulation box 

exposes one of the two different (100) planes of the same relaxed structure, respectively. 

It is seen that the mirror reflection is obeyed by the parallelogram-shaped unit cells (in 

green) on the two sides of the twin plane. Moreover, the mirror twin plane is located in 

the middle of unit cells in white, and these cells keep the rectangle shape so as to 

maintain the symmetry about the twin plane. Such boundary is structurally different from 

that in Fig. 2.4(a), resulting in a different twin boundary energy 0091.0−=γ J/m2. While 

the small negative boundary energy could be specific to the interatomic potential, this 

boundary structure can possibly exist as a metastable state, justified by the local 

symmetry of the lattice. It follows that this kind of boundaries is expected to be 

observable in experiments, considering that the shape memory alloys generally consist of 

various co-existing metastable structures. As discussed next, the available HRTEM image 

[17] shows evidence of their existence.  
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Fig. 2.5 Atomistically simulated twin structures with different twin widths, i.e. each 

green-colored twin variants comprises (a) 2, (b) 3 or (c) 6 layers of monoclinic unit cells. 

Black lines are drawn for guiding eyes, equivalent to the white lines in the TEM image 

by Waitz et al. (Fig. 2 in their paper) [17]. 

 The HRTEM image of nanocrystalline NiTi by Waitz et al. has revealed the 

formation of nanoscale )010(  compound twins that can span the entire grain [17]. It was 

observed that the thickness of twins varies in the same grain, and the thinnest variant is 

about 1 nm, involving two layers of monoclinic unit cells. These unit cells seem to be 

rectangular rather than monoclinic, lending a support to the existence of the boundary 

structures shown in Fig. 2.4(b). Further HRTEM experiments and ab initio calculations 

are needed to clarify the exact boundary structure. 

 To understand the effects of the twin thickness, we create )010(  compound twins 

with the thickness of 2, 3 and 6 layers of monoclinic unit cells. Figure 2.5 shows the 

cases with the twin mirror plane located between the atomic planes, similar to Fig. 2.4(a). 

The twin boundary energies extracted from various twin structures in Fig. 2.5 are close to 

09.0≈γ J/m2. These nearly constant values indicate the validity of separating the total 

energy into the bulk and excess interfacial parts for the nanotwinned system. More 

(a) (b (c
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specifically, for coarse twins, it is common to analyze the optimal twin geometry in terms 

of competing effects of the increase of the total twin boundary energy with the decreasing 

twin thickness and the associated decrease of the bulk elastic energy caused by the 

geometric incompatibility of transformed phases with the surrounding materials [18]. The 

foregoing results show that such an approach can be extended to analyze the nanotwinned 

structures at low temperatures, considering the nearly constant twin boundary energies at 

the nanometer scale.  

2.3.3 Geometrical limit of nanotwins 

 We have explored the geometrical limit of nanoscale twins with monolayers of 

the monoclinic unit cell, whereas the hitherto experiment only reveals nanotwins as thin 

as two layers of monoclinic unit cells in each B19' variant, as discussed above. Figure 2.6 

shows the relaxed structures of )010(  compound twins with one layer of monoclinic unit 

cells in each variant. Their boundary structures are similar to those shown in Fig. 2.4, but 

the twin thickness is reduced to the minimum. To understand these structures, it is useful 

to note that the lattice of the B2 phase of NiTi can be viewed as four sets of 

interpenetrating tetragonal sub-lattices, as schematically shown in Fig. 2.6(a). The 

martensitic transformation from the B2 to B19' phase can be considered as an expansion 

or contraction along the edges of the tetragonal unit cell, followed by a simple shear to a 

monoclinic angle β .  

 Figure 2.6(b) shows the relaxed twin structure when the mirror twin plane is 

located off the atomic plane, and its twin boundary structure is similar to that in 

Fig.2.4(a). This is a simple case of uniform martensitic transformation, where each of the 

four sub-lattices consists of alternate single layer of monoclinic unit cells with o94≈β . 
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Fig. 2.6 Relaxed atomic structures of )010(  twins with the smallest thickness (about 

0.5nm), and each variant consists of one layer of monoclinic unit cells, i.e. two atomic 

planes. (a) Schematics of four sets of interpenetrating simple orthorhombic sub-lattices. 

One Ni sub-lattice is represented by a 3D green box, and the other Ni sub-lattice is 

indicated by a 2D pink rectangle instead of a 3D box for clarity. The two Ti sub-lattices 

are indicated by the orange and blue rectangles, respectively. (b) All sub-lattices are 

twinned, as indicated by the sheared unit cells. (c) A sub-set of interpenetrating sub-

lattices is twinned. The front atomic layer of (c1) and (c2) exposes one of the two 

different (100) atomic planes, respectively. The Ni sub-lattice in (c1) and Ti sub-lattice in 

(c2) are twinned. 

 Of particular interest is that a new nanotwinned structure is found: one Ni sub-

lattice and one Ti sub-lattice undergo martensitic transformations, while other Ni and Ti 

sub-lattices remain orthorhombic. This mode is discovered from the relaxed structure 

(a) (b) 

(c2) (c1) 

Ti 

Ni 

]001[

]010[

]100[

β 

β β 

]100[

]010[

]001[
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when the martensitic transformations are imposed according to the matrices in Eq. (A1) 

with the mirror twin plane positioned at the (010) atomic plane; the relaxed boundary 

structure is similar to that in Fig. 2.4(b). Figures 2.6 (c1) and (c2) show the same state of 

such a twinned structure after energy minimization. Notice that because of 

interpenetration of 3D sub-lattices, one period in the [100] direction involves two 

neighboring (100) atomic planes. The front atomic layer of the simulation cell in Fig. 

2.6(c1) and (c2) exposes one of the two different (100) planes, respectively. Comparing 

them with Fig. 2.6(a), one can see that one sub-lattice of Ni atoms (green cells in (c1)) 

and one sub-lattice of Ti atoms (blue cells in (c2)) consist of variants of single layer of 

monoclinic unit cells ( o43.98=β ), while one sub-lattice of Ti atoms (orange cells in 

(c1)) and one sub-lattice of Ni atoms (pink cells in (c2)) consist of orthorhombic unit 

cells ( o90=β ). One interesting feature is the tight coupling of sheared and un-sheared 

sub-lattices, resulting from interpenetration of the multi-lattices. While this nano-twinned 

structure was discovered from our atomistic simulations of equiatomic NiTi at zero 

temperature, it is geometrically reasonable and could present as metastable states in other 

alloy and compound systems with the multi-lattice structure [63, 64].  

 The alternate twinned structures shown in Fig. 2.6 can be considered as a single 

orthorhombic phase with the period doubled in the twin-plane normal direction of [010]. 

This geometrical view is motivated by a similar consideration of the single phase BCO as 

a twinned B19' with the monoclinic angle o107≈β [48], as discussed earlier. Of course, 

there is a notable difference between the two cases: all the sub-lattices of BCO are 

equivalent, whereas the new structure involves the interpenetration of alternatively 

sheared and un-sheared sub-lattices. Moreover, whereas these twin products were 
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obtained by a general procedure of constructing martensites according to Eq. (A1) 

followed by energy minimization, one may equivalently set up their initial states by 

shuffling every other (010) atomic plane in the [001] direction – the shuffling method has 

also been used to study the pathways of martensitic transformation [39, 65]. 

 In the present geometrical limit of monolayer twinned structures, despite the 

spatial overlap of the bulk and twin boundary regions, the effective twin boundary energy 

(i.e., the excess energy per unit boundary area in reference to the B19' mono-variant) is 

still about 0089.0− J/m2, very close the values of 0091.0− J/m2 extracted from the 

previous cases of thicker nanotwins. As explained earlier, one should take caution in 

interpreting the energy values given by the interatomic potential. However, the geometric 

features of those nanotwins are symmetry related. They could possibly exist as 

metastable states, considering that the HRTEM image by Waitz et al. [17] has revealed 

the similar type of thicker nanotwins. Finally, to facilitate the future verification by ab 

initio calculations and experimental measurements, we list in Table 2.2 the predicted 

unit-cell geometry and energy per atom for the monolayer nanotwins shown in Figs. 

2.6(b) and (c).    

2.3.4 Phase transformation and size effect 

 Temperature-driven phase transformation is simulated by using the molecular 

dynamics (MD) simulation package LAMMPS [66]. We have implemented the NiTi 

potential in LAMMPS. In MD simulations, the starting structure is monoclinic B19'. The 

supercell box contains 9216 atoms. The system is subjected to periodic boundary 

conditions and fully relaxed to zero stresses. The temperature is initially set to 100K 

through thermal equilibration. Then the thermal load is applied by linearly varying 
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temperatures in three stages: (I) heating from 100K to 450K; (II) cooling from 450K to 

100K; (III) re-heating until 450K. The MD simulation of each stage involves 200,000 

time steps, each of which is 0.5fs. The phase transformation is characterized by 

geometrical changes of the simulation cell in terms of an order parameter, W, defined as 

the sum of all the shear components of the simulation box. W is further normalized by its 

maximum value, such that it varies between zero and one, corresponding to the cubic B2 

and monoclinic B19' phases, respectively.  

  

 

Fig. 2.7 MD simulation of phase transformation for different sizes of the simulation box. 

(a) The order parameter W as a function of temperature T for three stages of temperature 

loading: (I) heating (blue), (II) cooling (black), and (III) reheating (red). (b) The 

monoclinic B19' phase at the beginning of stage I of heating. (c) The cubic B2 phase at 

the end of stage I of heating. (d) The B19' phase at the end of stage II of cooling, forming 
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nanotwins indicated by dashed lines. (e) Same as (a) except that the volume is 1/8 of that 

in (a). (f) Same as (a) except that the volume is 8 times of that in (a). 

 Figure 2.7 shows that in stage I of heating (blue curve), W first increases slightly 

with temperature due to the effect of thermal expansion. As the temperature is further 

increased to around 350K, W decreases sharply to a very small value close to zero. 

Correspondingly, the B19' phase, Fig. 2.7(b), undergoes a structural phase transition to 

the B2 phase, Fig. 2.7(c). This indicates that both the start temperature, As, and finish 

temperature, Af, of the B2 austenite are close to 350K. 

 In stage II of cooling (black curve), a similar abrupt change of W is observed as 

temperature is decreased to around 300K. This corresponds to the reverse transformation 

from the B2 austenite to the B19' martensite. Due to formation of the twinned B19' 

structures, Fig. 2.7 (d), W only increases to 0.6, smaller than W = 1 of a single B19' 

phase. This reduction of W can be attributed to the canceling effect of shearing of 

adjacent twin variants in the opposite directions, causing a decrease of the overall shear 

of the simulation box. The corresponding start temperature of the B19' martensite, Ms, is 

310K and the finish temperature, Mf, is 290K, indicating that the formation of twinned 

structures occurs in a relatively narrow temperature range. 

 In stage III of reheating (red curve), the twinned B19' structure undergoes the 

transforms to a single B2 phase. The process starts at around 310K and finishes at 350K. 

Correspondingly, W deceases gradually from 0.6 to 0, in contrast to the abrupt change of  

W  around 350K in stage I of heating of a single B19' phase. Both the decrease of As and 

gradual change of W can be attributed to the presence of twin boundaries acting as the 
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heterogeneous interfaces to facilitate the progressive de-twinning through boundary 

migration.  

 We further study the size effects of the simulation box on phase transformations. 

The length of all three sides of the simulation cell is either reduced by one half or 

doubled, corresponding to 1/8 and 8 times the previous volume, respectively. As shown 

in Figs. 2.7(e) and (f), the size effect is small on phase transition temperatures, indicating 

that the present MD predictions can well represent those of bulk NiTi. Indeed, the MD-

predicted temperatures are only slightly lower (by 20K) compared to experimental values 

[67]. On the other hand, a size effect is observed on the magnitude of W. Namely, at the 

end of stage II of cooling, W decreases with the increasing size of the simulation box, 

implying that W will reach its lower limit of zero in bulk NiTi. This trend is expected 

because the twin variants in a large system can better self-accommodate their respective 

shear distortion, thereby reducing the overall (averaged) shear deformation. But the 

quantification of the size limit giving 0≈W  is not feasible yet, due to the computational 

limitation on the time scale of MD simulations of large atomic systems. On the other 

hand, W increases as the size of the simulation box decreases. This is understandable by 

noting the following limit.  For the smallest simulation box with one unit cell, the 

formation of twinned microstructures is completely suppressed because of the 

geometrical constraint of the simulation cell, so that W has to stay at its upper limit of 

one.  
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2.4 Conclusions 

 Combining the crystallographic theory of twinned martensite with atomistic 

simulations, we study the nanoscale twins and martensitic phase transformations in NiTi 

with the multi-lattice structure. We explore the geometrical limits of nanotwins by 

showing the possible formation of a nontrivial mode of twinned martensites: different 

sub-lattices undergo different martensitic transformations. These twin structures are 

metastable and likely to be attainable in nanoscale compound twins, as hinted by the 

HRTEM images by Waitz et al [17]. Our molecular dynamics simulations predict the 

phase transformation temperatures, consistent with experimental measurements [67]. We 

find both the formation of twinned microstructures and associated overall shear 

deformation are sensitive to the size of the simulation system. 

 The present atomistic study focuses on the structural aspects of nanoscale 

compound twins. In view of the imprecision of empirical interatomic potential, 

verification via experiments and first-principles calculations is needed to ascertain the 

conclusions. However, our results reveal the complexity of martensitic phase 

transformations at the sub-lattice level, and provide a structural basis for further atomistic 

study as well as multiscale modeling of the NiTi phase transformations through bridging 

the crystallographic theory with atomistic and quantum mechanical calculations. 

Furthermore, to fully reveal the physical origin of formation of nanotwins, the 

determination of the multilayer generalized gamma surface [44, 68] is needed. This type 

of calculation has been performed for elemental metals [68], but not NiTi with the multi-

lattice structure. Finally, we note that the elemental metals (e.g. Cu) with nanotwins 

exhibited unusual properties, e.g., ultra-high strength with retained ductility and high 
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electrical conductivity [69, 70], the strongest twin size around 15nm [71, 72], etc. 

Nanotwins in alloy and compound systems are more complicated, and possibly work in a 

very different way than normal metals. This work is a necessary step towards 

understanding and exploiting the nanotwinned structure-property relationship in alloys 

and compounds with the complex multi-lattice structures.  



 42

CHAPTER 3  

PSEUDOELASTICITY AND SHAPE MEMORY IN NITI 

NANOPILLARS 

3.1 Introduction 

 Shape-memory alloys (SMAs), when deformed at a low temperature, recover to 

their original shape upon unloading and heating [1, 2, 5]. Nickel-titanium (NiTi) is one of 

the most widely used SMAs [4]. The shape memory effect of NiTi usually results from 

the reversible martensitic phase transformation between the cubic B2 (austenite) and 

monoclinic B19′ (martensite) phase. NiTi can also exhibit pseudoelasticity [4],  i.e., 

deformation is fully recovered upon unloading without the aid of heating. Compared to 

shape memory, pseudoelasticity similarly involves the martensitic phase transformation, 

but it occurs when the deformation temperature is higher, typically above the austenite 

finish temperature Af.  

 Both pseudoelasticity and shape memory have been extensively studied in the 

bulk SMAs [1, 2, 5]. However, these unique properties and size effects remain largely 

unexplored in the nanoscale SMAs [73], while they are being increasingly considered for 

use in micro/nano-devices for sensing, actuation, shape memory and mechanical damping 

[14, 43]. Recent development in the nanomechanical testing provides opportunities of 

illuminating the nanometer length scale effects on SMAs [9, 10, 13, 16-24]. For example, 

Frick et al. showed that decreasing diameter of NiTi nanopillars inhibits the pseudoelastic 

behavior and ultimately suppresses it for diameters of less than 200 nm [13]. This size 

effect could be possibly attributed to the suppression of martensitic phase transformation 

that gives way to dislocation plasticity. However, in a recent in situ electron diffraction 
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experiment, the martensitic phase transformation of B2 → B19′ was observed in NiTi 

pillars of 200nm diameter [16]. It was thus suggested that the loss of pseudoelasticity 

arises owing to incomplete strain recovery, despite the occurrence of martensitic phase 

transformation [21]. In contrast to loss of pseudoelasticity, the shape memory was 

measured for pillars with diameters of 200nm [21].  

 To understand the length scale effects on nanostructured SMAs, it is highly 

desired to develop the physics-based models to explore the structure-property relationship 

in these systems [31, 39, 44, 45, 48, 50, 74-78]. To this end, here we report an atomistic 

study of the pseudoelasticity and shape memory behaviors in NiTi nanopillars by using 

molecular dynamics (MD) simulations. We focus on the stress-induced martensitic phase 

transformation and deformation twinning, while the temperature-driven phase 

transformations has been reported in Chapter 2 [74]. It is important to note that compared 

to the previous atomistic study of pseudoelasticity and shape memory in pure metals [79-

82], the NiTi alloy is complicated with the formation and evolution of a variety of phases 

(e.g., B2, B19, B19′, R and BCO) and twin structures (e.g., type I, type II and compound 

twins) [4]. However, it is likely that the facile multi-phase and multi-twin features could 

produce the pseudoelasticity and shape memory effects that are more robust and thus 

highly desirable to the “smart” micro/nano-devices. In this work, by controlling the 

applied strains and temperatures, we have simulated various characteristic stress-strain 

behaviors in shape memory alloys, such as pseudoelastic deformation, loss of 

pseudoelasticity, and shape memory. Our detailed atomistic characterization of the phase 

transformation and deformation twinning products offers new insights into the physical 

mechanisms governing the thermomechanical behavior of NiTi nanostructures.  
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3.2 Methods 

 A many-body Finnis-Sinclair type interatomic potential [58] is used to describe 

the NiTi system. This potential was originally developed by Lai and Liu [31], but it 

suffered from discontinuities at the cutoff radius. As discussed in Chapter 2, we modified 

the potential function by smooth interpolations near the cutoff with cubic polynomials 

[74]. The resulting NiTi potential not only enabled the well-behaved molecular statics 

and dynamics simulations, but also improved the predicted properties, including lattice 

constant and cohesive energy for a variety of phases [74]. 

 In this chapter, we perform the MD simulations of uniaxial compression of NiTi 

nanopillars by using LAMMPS [66]. The initial structure is taken as the ordered B2 

phase. A nanopillar with 46,080 atoms is constructed. It is 25.6 nm long, with a nearly 

square cross section, 4.8 nm×5.1 nm. The periodic boundary condition is applied only in 

the axial direction, such that the sidewalls of nanopillars are traction-free. The axial 

direction of nanopillar is aligned with B2110><  [19]. By thermal equilibration the 

simulation temperature is set to 400K, about 50K higher than Af (~ 350K). The system is 

relaxed at zero stresses for 200,000 MD time steps, each of which is 0.5fs. The uniaxial 

compression is then applied by strain control. To explore the pseudoelastic deformation, a 

limited load range is applied up to 6.6% engineering strain. Note that all the strain values 

given in this paper refer to the magnitude of the applied compressive strain. The 

aforementioned strain limit is achieved in 400,000 time steps, followed by unloading to 

zero strain in another 400,000 time steps. As such, both loading and unloading 

correspond to a constant strain rate of about 8103× /s. Then we study the irreversible 

deformation after the complete martensitic phase transformation by imposing a larger 
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compressive strain up to 10.6%. Next, the temperature effect is investigated on both 

phase transformation and deformation twinning by reducing the deformation temperature 

to 350K, close to Af. Last, the size effects on the stress- and temperature-driven phase 

transformation are discussed, as compared with the bulk NiTi behavior. 

 In all the MD simulations, we identify the formation of new phases in terms of the 

transformed lattice constants, internal atomic shuffling, and particularly monoclinic angle 

γ , i.e. o90=γ  for B2 and B19, o98=γ  for B19′, o108=γ  for the base centered 

orthorhombic (BCO) phase [74]. To reduce the error from thermal fluctuations, the 

aforementioned geometrical parameters are calculated by averaging over tens of MD time 

steps. Note that for a given temperature, several MD simulations have been performed 

with different initial distributions of randomly assigned atomic velocities, in order to 

explore the possibly different products of phase transformation and deformation 

twinning.   

 It is necessary to recall the crystallography of the B2 phase and B19′ phase of 

NiTi. Fig. 3.1 shows the lattice structure of the B2 phase with both cubic and tetragonal 

unit cells. We use 0a  to represent the lattice constant of the cubic unit cell. 

Correspondingly, the lattice parameters of the tetragonal cell are given by 0aa =  and 

02acb == . In this paper, all the crystallographic orientations of different phases are 

referred to the ),,( kji  basis of the cubic cell of the parent B2 phase. The martensitic 

transformation of B2 → B19′ takes a tetragonal unit cell into a monoclinic cell. The 

associated lattice deformation involves the expansion and contraction of the tetragonal 

cell, as well as a simple shear. We restrict cba <<  in our notation. In B19′ the 

monoclinic angle γ  between edges with length of a  and c  is around o98 , as measured 
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from experiments [4] and predicted from our MD simulations. The martensitic 

transformation also involves the atomic shuffling in unit cells, which can be directly 

simulated by MD.                          

 

Fig. 3.1. Schematic of a tetragonal unit cell (black lines) and four cubic unit cells (green 

lines) in the untransformed B2 phase. Only Ti atoms (red circles) are shown for clarity. 

The orthonormal vectors ),,( kji  are along the cube axes, and the orthonormal vectors 

),,( kji ′′′  are along the cube directions of ]011[ , ]110[  and ]001[ , respectively. The 

rectangle enclosed by dash-dotted lines is the B2}112{  twin plane, refereed to the ),,( kji  

basis of the cubic unit cell. 
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3.3 Results and discussions 

3.3.1 Pseudoelasticity and reversible phase transformation 

 Fig. 3.2 shows the MD results of uniaxial compression of a NiTi nanopillar at a 

temperature of 400K, about 50K above the bulk value of Af. Fig. 3.2 (a) presents the 

initial structure of the nanopillar in the B2 phase. During compression, the successive 

phase transformations of B2 → B19 → B19′ occur. Fig. 3.2(b) plots the corresponding 

stress-strain curve with the maximum compressive strain of ε  = 6.6%. The compressive 

deformation constitutes four stages: (I) the initial linear response (ε  < 2.5%) represents 

the elastic deformation of the B2 (austenite) phase; (II) the continuous but nonlinear 

response (2.5% < ε  < 3%) corresponds to the martensitic phase transformation of B2 → 

B19, manifested by a smooth increase of slope; (III) another linear response (3% <ε

<5.8%) signifies the completion of martensitic phase transformation to B19 and 

subsequent elastic deformation of B19; (IV) the load drop at ε  ~ 5.8% indicates the 

phase transformation of B19 → B19′.  
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Fig. 3.2. Nanopillar compression at 400K with the applied strain up to 6.6%. (a) Initial 

structure in the ordered B2 phase (red atoms represent Ti and blue atoms Ni). (b) Stress-

strain curve of loading (blue) and unloading (red); a positive stress means tension. (c) 

Schematics of B2, B19, B19′ unit cells. (d) Side view of the nanopillar before and after 

the phase transformation of B2 → B19. (e) Top view of the sequential steps of the B19 

→ B19′ phase transformation; the dashed line indicates the phase boundary. 

 Next, each of the aforementioned loading stages is described in detail. During 

stage I (ε  < 2.5%), we start with the cubic B2 (CsCl type) phase of NiTi. Fig. 3.2 (c) 

shows the schematic of its atomic structure in a conventional tetragonal unit cell which 

includes both Ni and Ti atoms. This austenite phase is stable at 400K. Its effective 

Young’s modulus 'E  is about 29GPa, estimated from the slope of the initial stress-strain 
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curve in Fig. 3.2 (b). Since the nanopillar is compressed in the  
B2

110  direction, the 

corresponding Young’s modulus can be related to the elastic constants of the B2 phase by  

   
)/2/(1/1

2
'

111212121144 CCCCCC
E

−++
=  (3.1)        

Using Eq. (3.1) one can compare 'E  predicted from our MD with the experimental value. 

The elastic constants of the B2 phase have been measured by Brill et al. [61] at the same  

temperature of 400K as MD. On the basis of their experimental data, we estimate 

GPa39'=E , consistent with our MD result. On the other hand, the B2 phase at low 

temperatures is metastable. It can be accessed in the well-controlled atomistic modeling, 

but not in experiment. As such, for the 0K case, we compare the results between the 

interatomic potential and ab initio density functional theory calculations. Using Eq. (3.1), 

we calculate 'E  from the 0K elastic constants predicted by the interatomic potential, 

yielding 72.9GPa. It is comparable to the value of 62.2GPa from the ab initio 0K elastic 

constants by Hatcher et al. [44], but smaller than 128.7GPa from Wagner and Windl [45].  

From the above results at 400K and 0K, one see a strong temperature effect on the 

moduli of the B2 phase. 

 During stage II (2.5% < ε  < 3%), the stress-strain curve in Fig. 3.2 (b) is 

continuous but nonlinear. This stage of deformation features the phase transformation of 

cubic B2 → tetragonal B19, as schematically illustrated by their respective unit cells in 

Fig. 3.2 (c). Fig. 3.2 (d) shows the atomic structures of nanopillar before and after B2 → 

B19. The lattice deformation associated with phase transformation can be understood in 

terms of a direct loading effect. The lattice constant b in B19 is smaller than the 

corresponding value of 02a  in B2 [44, 45, 48, 50]. As a result, the applied compression 
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along B2110><  tends to promote the formation of B19 with a smaller lattice constant in 

the loading direction. In addition, internal shuffling of atoms within the unit cell is 

observed in our MD, i.e. the atoms in }110{  planes move in the ]001[  direction, as 

indicated by the arrows in Fig. 3.2 (c). Our results agree well with a recent study by 

Hatcher et al. [39, 44]. They performed the first principles calculations of energy barriers 

of multilayer shear, and found the shuffling on }110]{001[  requires the lowest energy 

barrier or even no energy barrier, depending on the number of the sheared layers. The 

shuffling mode from our MD essentially corresponds to their two-layer }110]{001[  

shuffling. However, this mode is different from the }110]{011[
_

 basal shear/shuffle 

proposed by Otsuka and Ren [83]. It is still an open question concerning which shuffling 

mode dominates in the B2 → B19 phase transformation. 

 During stage III (3% < ε  < 5.8%), the B19 phase is elastically deformed, and its 

effective Young’s modulus is ~ 145GPa. The corresponding experimental data is 

currently unavailable. Combining stages I - III, we note that during the B2 → B19 phase 

transformation, a 5.8 % strain can be achieved through only 0.5 % phase transformation 

and 5.3 % elastic strain. This is because in such a stress-driven transformation process, a 

large elastic strain (~ 2.5%) is required. The large elastic loading can be sustained by the 

system because it is single crystalline without pre-existing internal defects. Furthermore, 

the B2 to B19 phase transformation involves a continuous and nonlinear variation of 

lattice constant. This implies a continuous diminishing of the energy barrier of the B2 to 

B19 transformation with increasing loading, characteristic of a second-order phase 

transition. Such a continuous process results in a small transformation strain of 0.5%. 
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Likewise, the B19 phase can sustain a large elastic strain, as it does not contain pre-

existing internal defects. 

 During stage IV (ε  > 5.8%), the deformation features the phase transformation of 

B19 → B19′. The resulting monoclinic angle γ  of the B19′ phase is ~ o98 , as indicated in 

Fig. 3.2 (c). Notice that the shear transformation occurs in the plane (containing a and c) 

perpendicular to the loading direction. Furthermore, the transformation involves the 

nucleation and growth of the B19′ phase from the B19 parent matrix, to be discussed 

next. The associated stress-strain curve is plotted in Fig. 3.3 (b). During this stage of 

phase transformation, there are two load drops occurring at the strain of 5.9% and 6.6%, 

respectively. The first load drop is relatively small, only a few hundred MPa. It is 

followed by a load increase. The second load drop is considerably larger, ~ 2GPa. The 

compressive loading terminates at this point, while the stress-strain behavior under a 

further load increase will be studied to explore the martensite plasticity in the next 

section.  

 The aforementioned nucleation and growth of the B19′ phase is shown in detail 

by a cross-sectional view of the nanopillar in Fig. 3.2 (e). The B19′ phase first nucleates 

at a B2}011{  free surface of the pillar, Fig. 3.2 (e1), resulting in the first load drop in 

Fig.3.2 (b). As shown in Fig. 3.2(e2), the B19′ phase grows by migration of a phase 

boundary (dashed line) with increasing load. When ε  reaches ~ 6.6%, a B19′ phase also 

nucleates at the opposite B2}011{  free surface, Fig. 3.2 (e3), and it grows similarly by 

migration of a phase boundary. Instability occurs when the two phase boundaries are 

sufficiently close, producing the second load drop and the final product of a uniform B19′ 

phase, shown in Fig. 3.2(e4). The monoclinic angle γ  is o98  in the central region of the 
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pillar, while γ   increases notably to o109  near the outer boundaries of the cross section 

due to the free surface effect.  

 The unloading starts with the B19′ phase. Fig. 3.2 (b) plots the associated stress-

strain curve (in red). It comprises two linear parts with an abrupt stress change in 

between. The Young’s modulus of the initial linear unloading is around 142GPa, close to 

134GPa± 4GPa as measured from experiments at room temperature [84]. At %5.3≈ε , 

the B19′ phase is reverted to B19 and finally to B2, causing a sudden change of stress. It 

is followed by another linear unloading with the associated stress-strain curve 

overlapping the initial loading one (in blue). When the axial strain is reduced to zero, the 

stress also becomes zero. Clearly, both the phase and load recoveries indicate that the 

nanopillar undergoes the pseudoelastic deformation during a loading-unloading cycle. In 

the experiment of NiTi nanopillars, Frick et al. reported that decreasing diameter inhibits 

the pseudoelastic behavior and ultimately suppresses it for diameters of less than 200nm 

[13]. As discussed earlier in the Introduction, this size effect has been ascribed to the 

suppression of martensitic phase transformation in small samples so as to favor the 

irreversible deformation mechanism by dislocation plasticity. Nevertheless, our 

pseudoelastic results do not conflict with their findings. This is because in our strain-

controlled MD simulations, the realization of pseudoelasticity, through the B19′ → B2 

phase transformation during unloading, actually requires the negative compressive (i.e. 

tensile) stress that has not been generally imposed in experiments of nanopillar 

compression [13]. If the unloading was stopped at zero stresses as experiment, the phase 

transformation would not be fully reversible, since the final product would be the B19′ 

martensite instead of the B2 austenite. Lastly, it is important to emphasize that the 
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chemical effect, i.e., formation of surface oxides, could play an important role in the loss 

of pseudoelasticity in the experimentally studied NiTi nanopillars. NiTi alloys can be 

spontaneously covered by a thin film of TiO2+TiOx [85, 86], with thickness typically in 

the range of a few tens of nanometers. San Juan et al. [87] pointed out that in NiTi 

nanopillar, such oxides will exhibit high modulus and compressive strength, thus acting 

as a stiff outer tube to enclose the NiTi inner core. As a result, much higher loads would 

need to be applied to deform the nanopillar, achieving the stress for plastic deformation 

of the NiTi core and potentially suppressing the pseudoelastic behavior, and in particular 

pseudoelastic recovery. In the future, it would be highly desired to study the influence of 

the surface oxides in NiTi nanopillars by atomistic modeling, but it is beyond the scope 

of this work as the Ni-Ti-O interatomic potential is currently not available.   

3.3.2 Irreversible twinning and loss of pseudoelasticity 

 To study the irreversible deformation in NiTi martensite, we apply a larger range 

of compressive strain up to 10.6%. The corresponding stress-strain curve is shown in Fig. 

3.3 (a), where the loading regime between point (I) and (II) represents the successive 

phase transformation of B2 → B19 → B19′, as described in section 3.3.1. In this section 

we focus on the subsequent deformation behavior. Upon continual compression, the B19′ 

phase at point (II) is not stable, and it immediately transforms to the BCO phase [48] 

without an obvious change in the stress-strain curve. Fig. 3.3(b) shows the cross-sectional 

view of the nanopillar with the BCO phase. One major difference between the BCO and 

B19′ phase is the monoclinic angle γ , i.e. o108  in BCO versus o98  in B19′ as 

schematically indicated in Fig. 3.3(c) and Fig. 3.2(c), respectively. It should be 

emphasized that γ  in BCO cannot be an arbitrary value, because the orthorhombic 
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structure dictates )2/arcsin( ca=γ , as illustrated in Fig. 3.3(d)  [48]. Incidentally, the ab 

initio calculations show that the BCO phase in NiTi is the ground state under zero 

stresses at 0K, with its energy lower than that of B19′, the commonly observed 

martensitic phase in experiments [44, 45, 48]. Note that the formation of the BCO phase 

in our MD simulations is driven by the applied mechanical loading at finite temperature.  

 Deformation twinning occurs when the applied compressive strain reaches ~ 

8.5%, causing a sharp load drop from 5GPa to 0.6GPa, i.e. from point (III) to (IV) in Fig. 

3.3 (a). Fig. 3.3 (e) shows the nucleation and growth of a twinned shear band in the 

martensitic BCO phase. Our analysis of the crystallography and structure changes 

indicates that the twin plane is B2}112{ , as highlighted by the shaded plane in a BCO unit 

cell in Fig. 3.3(c) as well as the plane enclosed by the blue dashed lines in Fig. 3.1. The 

direction of twin shear does not appear to coincide with any typical crystallographic 

orientation. Such shear transformation is considered as type I twining.  

 Next, we fully unload the sample to zero strain. The unloading stress-strain curve 

is shown in Fig. 3.3(a) (in red). Compared to Fig. 3.2(b), an abrupt load change similarly 

occurs due to the phase transformation of BCO → B2. However, a major difference is the 

residual tensile stress of ~1.4GPa left in the nanopillar at zero strain, indicating a loss of 

pseudoelasticity. As shown in Fig. 3.3(f), the initial B2 phase has been recovered after 

unloading, but the twinned shear band remains in the final product. It is interesting to 

note that during the loading-unloading cycle, the system undergoes a series of B2 → B19 

→ B19′ → BCO → B19→ B2 phase transformations that finally recover the initial B2 

austenite. However, the deformation twin is irreversible, leading to a loss of 

pseudoelasticity.  
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Fig. 3.3. Nanopillar compression at 400K with the applied strain up to 10.6%. (a) Stress-

strain curve of loading (blue) and unloading (red). (b) Cross-sectional view of nanopillar, 

showing the martensitic BCO phase. (c) Schematic of a BCO unit cell. (d) 2D projection 

of B2 and BCO unit cells, showing the uniquely defined monoclinic angle 

o108)2/arcsin( == caγ  in BCO unit cells. (e) Compressed nanopillar in the BCO phase, 

showing the formation (left) and growth (right) of a twinned shear band in between 
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dashed lines. (f) Nanopillar after unloading to zero strain, showing the residual twinned 

shear band (left) and the cross-sectional view of the B2 phase (right). 

 The above irreversibility of deformation twining can be attributed to the 

dislocation pinning effect on twin boundaries. Twins in the B19′ phase are usually 

reversible in bulk NiTi, as shown in MD simulations of the temperature-driven phase 

transformation at zero stresses [74]. However, the above deformation twinning in BCO is 

irreversible and could be caused by the nucleation of dislocations. In the final product 

containing an irreversible twin shear band, we observed residual dislocations in the 

B2}112{  slip plane. This implies that during unloading, those dislocations could act as 

pinning defects in twin boundaries, preventing the de-twinning process. The irreversible 

twinning could be further related to the delayed formation of deformation twins in de-

confined nanopillars. Namely, the lack of confinement on nanopillars (with the traction-

free sidewalls) does not necessarily require the formation of twins at low loads, and the 

phase transformation to BCO occurs favorably to release the accumulated strain energy 

with increasing deformation instead. It follows that the deformation twining is postponed 

to a late stage of loading when the applied stress is considerably high (~ 5GPa). As a 

result, the high stress could trigger both twinning shear and dislocation nucleation 

concomitantly. Upon further unloading, the reverse load cannot eliminate these 

dislocations that act as pinning defects to impede the motion of twin boundaries, thus 

causing the irreversibility at 400K. Finally, we note that the above MD results are 

qualitatively similar with different initial distributions of randomly assigned atomic 

velocities.   
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3.3.3 Temperature effect and reversible twinning 

 To study the temperature effect on phase transformation and deformation 

twinning in NiTi nanopillars, we lower the deformation temperature from 400K to 350K, 

close to Af. MD simulations are performed with various initial conditions of randomly-

generated atomic velocity distribution, yielding different final products. This implies the 

thermomechanical response of NiTi nanostructures near the phase transformation 

temperature could become less deterministic than that at high temperatures. During 

loading, all the nanopillars undergo the phase transformations of B2 → B19 → BCO at 

350K, in contrast to B2 → B19 → B19′ → BCO at 400K. In addition to phase 

transformations, two different kinds of twin microstructures, i.e., type I twin and ‘twins 

within twin’, form in the nanopillars when further loaded at 350K. Similar to results in 

section 3.3.2, type I twin is also irreversible due to the nucleated dislocations that pin the 

twin boundaries, and it is not further discussed for brevity. Here we focus on the newly 

observed ‘twins within twin’, which are fully recoverable after unloading. As a result, 

both shape memory and pseudoelastic behaviors can be observed.  

    Fig. 3.4 shows a MD result at 350K, exhibiting the reversible twins within twin 

and shape memory effect. Starting with the B2 phase, the transformation to B19 occurs at 

the strain of 0.7%, much smaller than the corresponding strain of 2.5% at 400K. This 

difference is understandable, because the low temperature encourages formation of the 

martensite. As the compressive strain reaches 4%, a direct transformation of B19 → BCO 

occurs at 350K, instead of B19 → B19′ → BCO at 400K. Fig. 3.4 (b) shows the cross-

sectional view of the nanopillar in the BCO phase. Despite the apparently twinned outer 

boundaries, the sample is actually a single phase without twins, as evidenced by the 
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perfect periodicity of unit cells (yellow parallelograms) in the entire system. 

Interestingly, it is a macroscopically twinned structure without the microscopically 

twinned lattice. Such type of structure arises because the orthorhombic BCO phase 

possesses both the mirror and central symmetries.  

 

 

Fig. 3.4. Nanopillar compression at 350K, exhibiting the shape memory behavior. (a) 

Stress-strain curve of loading (blue) and unloading (red). (b) Cross-sectional view of the 

compressed nanopillar, showing a single BCO phase (uniform unit cells in yellow lines) 

in the entire system despite the apparently twined outer boundary. (c) ‘Twins within twin’ 

formed in a compressed nanopillar. Middle: a primary twin with twin boundaries marked 
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by yellow dashed lines. Left: schematics of BCO unit cells of twin variants and the shear 

transformation at the twin boundary. Right: secondary twins (marked by black dashed 

lines) viewed from the 
B2

100  direction. 

 

 After the phase transformation of B19 → BCO completes, further compression 

causes the formation of deformation twins in BCO, resulting in a large load drop at the 

strain of ~ 6.6%. It is interesting to note that a hierarchically twinned microstructure, i.e., 

twins within twin, develops in the nanopillar. As shown in Fig. 3.4(c), the boundaries of 

the primary twin, indicated by yellow dashed lines, are on the B2}110{  plane, close to the 

orientation with the largest resolved shear stress. Within the twinning shear band, the 

secondary twins also develop with smaller twin widths. Such a hierarchically twinned 

microstructure provides an effective means of releasing strain energy, and it also enables 

an approximate satisfaction of geometry incompatibility across the primary twin 

boundaries.   

 During unloading, the hierarchically twinned microstructure shrinks and finally 

disappears, resulting in a single BCO phase without twins, i.e. recovering the structure 

prior to formation of deformation twins as shown in Fig. 3.4(b). Specifically, when the 

applied compressive strain is reduced from 7% to 3%, the width of the primary twin 

begins to decrease by migration of twin boundaries. Correspondingly, the stress-strain 

curve in Fig. 3.4(a) exhibits a plateau, indicating a steady-state process of boundary 

migration that involves a minor variation of the applied stress. At %3≈ε , a discontinuity 

appears in the stress-strain curve, signifying the strain energy release caused by a 

complete elimination of the hierarchically twinned microstructure. No dislocation is 
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observed in this case. After complete unloading to zero strain, the tensile residual stress 

remains in the nanopillar, suggesting a loss of pseudoelasticity. Since the final product is 

a single BCO phase without twins, the shape memory can be realized by heating or 

further tension, and the B2 austenite is then recovered from the BCO martensite.  

 Fig. 3.5 shows a different MD result at 350K. Compared to Fig. 3.4, it also 

exhibits the reversible twins within twin, but pseudoelasticity rather than shape memory. 

The key difference between the two cases is the cross-sectional geometry of the 

nanopillar when the BCO phase forms during loading, i.e., the parallelogram-shaped (Fig. 

3.5(b)) versus twinned outer boundary (Fig. 3.4(b)). As a result, upon complete unloading 

to zero strain, the BCO phase is fully recoverable to B2, Fig. 3.5(c); and the nanopillar 

has no residual stress, Fig. 3.5(a). This is a pseudoelastic deformation.  

 To understand the origin of the above difference in the cross-sectional geometries, 

we note that there are two equivalent variants that could possibly form after the phase 

transformation from B2 to BCO. In Fig. 3.4(b) and 3.5(b), two BCO variants nucleate 

from the free surface, one at the top and another at the bottom, and they grow by 

migration of the respective phase boundary toward each other. If the two variants happen 

to be in the opposite orientation (as selected randomly by thermal fluctuations), the 

twinned outer boundary will eventually form, i.e. Fig. 3.4(b). Otherwise, the 

parallelogram-shaped cross section will develop, i.e. Fig. 3.5(b). Lastly, we note a minor 

difference in the structure of twins within twin between Fig. 3.5(d) and Fig. 3.4(c), while 

they are both reversible upon unloading. 
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Fig. 3.5. Nanopillar compression at 350K, exhibiting the pseudoelasticity. (a) Stress-

strain curve of loading (blue) and unloading (red). (b) Cross-sectional view of the 

compressed nanopillar, showing a single BCO phase. (c) Final product of the B2 phase in 

a fully unloaded nanopillar. (d) A different mode of ‘twins within twin’ formed in the 

nanopillar, showing three side views with the corresponding BCO unit cells of twin 

variants. 

3.3.4 Size effect 

 We have studied the size effect on the stress-driven phase transformations in NiTi 

nanopillars, which appears to be insignificant within the accessible size range. For 

instance, MD simulations at 400K are performed, with the only difference in the doubled 
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side lengths of the cross section. The stress-strain curve exhibits no major change; the 

system similarly undergoes the phase transformations of B2 → B19 → B19′ → BCO; 

and the deformation twinning mode is also similar. However, the twinned structure is 

complicated with formation of multiple twinned shear bands, which arise due to the high 

symmetry of the loading orientation, as well as the large volume that promotes strain 

accommodation by multiple twins.  

 Compared to the coarse-grained NiTi alloys, the nanometer size effect can be 

appreciated in terms of the characteristic stress-strain behaviors of NiTi nanopillars, such 

as the load serration, stress plateau, and large hysteresis loop as revealed by MD 

simulations. During loading, the system has to be over-driven to accumulate a large 

amount of strain energy in order to overcome the nucleation barriers of phase 

transformation and deformation twinning in the nearly perfect nanopillar. Those 

nucleation processes can result in the major load drops to release strain energy, leading to 

serrations in the stress-strain response. During unloading, the nucleation-controlled 

reverse phase transformation can similarly produce discontinuities in the stress-strain 

curve. To understand the stress plateaus in Fig. 3.4(a) and 3.5(a), we note that when the 

deformation involves the interfacial migration, the layer-by-layer movement of the twin 

boundaries can proceed by similar processes of atomic shuffling (as illustrated in Fig. 

3.4(c)), thereby requiring a nearly constant driving stress as manifested by the stress 

plateau. The above considerations also allow us to rationalize the large hysteresis loop, as 

evident in Figs. (3.3-3.5). On one hand, the nucleation-controlled processes during 

loading/unloading require the large forward/reverse transformation stresses. On the other 

hand, while the migration of twin boundaries during unloading is relatively easy 
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compared to nucleation, it still requires a large load reversal, giving a low value of 

reverse transformation stress. This is because in nano-sized systems, there is typically a 

lack of self-sustaining 3D mechanisms (e.g., pole dislocations) to facilitate the easy 

movement of twin boundaries that could prevail in the coarse-grained NiTi alloys. As a 

result, the large hysteresis loop should feature the stress-strain curve of the nanoscale 

shape memory alloys, as experimentally shown in Cu-Ni-Al nanopillars [14].  

 In addition, we have studied the size effect on the temperature-driven martensitic 

phase transformation by comparing the cooling response of a bulk crystal and a 

nanopillar at zero stresses. In the bulk NiTi subjected to periodic boundary conditions, 

the martensite start temperature Ms is 310 K and the finish temperature Mf is 290 K. 

However, in nanopillars, no phase transformation of B2 → B19′ has been observed even 

when the temperature is lowered to 200K. Such a size effect is likely related to the phase 

energy differences between atoms at the free surface and in the bulk. It is noteworthy that 

a recent atomistic study of NiTi nanoparticles by Mutter and Nielaba [76] showed that the 

size effect also exists in the austenite transformation: the smaller the nanoparticle, the 

lower the temperatures of As and Af. This trend appears to be consistent with our MD 

results of the lowered phase transformation temperatures with decreasing pillar size. They 

attributed the size effects to the increasing role of surface atoms on phase transformation 

with decreasing particle size [76]. This size effect on the temperature-driven martensitic 

phase transformation exhibits the similar trend as polycrystalline NiTi [9], where the 

martensitic phase transformation is suppressed when the grain size is smaller than 60nm. 
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3.4 Conclusions 

 The molecular dynamics simulations of 
B2

110 -oriented NiTi nanopillars have 

revealed the atomistic mechanisms governing the pseudoelasticity and shape memory in 

NiTi nanostructures. The major findings of this work are summarized as follows:  

 At high temperatures (e.g. ~ 50K above the austenite finish temperature) and low 

loads (e.g. compressive strain up to 6.6%), pseudoelasticity dominates during the 

loading-unloading cycle. Imposing a higher load will lead to loss of pseudoelasticity, 

owing to the dislocation pinning of twin boundaries that leads to the irreversibility of 

deformation twinning.  

 The thermomechanical responses of NiTi nanostructures become less deterministic as 

the temperature decreases to around the austenite finish temperature. Both phase 

transformation and deformation twinning could be reversible or irreversible at high loads 

(e.g. compressive strain up to 10%). Only when both are reversible, pseudoelasticity is 

realized. If only the deformation twinning is reversible, as facilitated by the formation of 

a hierarchically twinned microstructure, shape memory ensues.   

 The molecular dynamics results also reveal the load serration, stress plateau and large 

hysteresis loop in the stress-strain curves of NiTi nanopillars. These characteristics have 

been rationalized in terms of the nucleation-controlled phase transformation and 

deformation twinning, as well as the migration of phase boundaries, in nano-sized 

volumes. It was suggested that the large hysteresis loop could be potentially utilized to 

provide ultrahigh mechanical damping for applications in nano/micro-devices [14]. 

 Finally, we note that the molecular dynamics are limited in the simulation timescale, 

such that they could not be quantitatively compared with experimental measurements. 
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While some of the atomic processes revealed in this work could be specific to the model 

system, the mechanisms and insights concerning the reversible/irreversible phase 

transformation and deformation twinning should be useful for understanding the 

pseudoelasticity and shape memory behavior in the nanostructured shape memory alloys. 
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CHAPTER 4 

PATTERNING AND BRANCHING OF MARTENSITIC 

NANOTWINS  

4.1 Introduction 

 The phase-change materials, such as shape memory alloys [4], ferroelectrics [88] 

and other multiferroics [89] are being increasingly used for a variety of multifunctional 

applications. In these materials the twinned martensite is often observed [90]. 

Understanding the formation and evolution of the martensitic twinned microstructure is 

crucial for the control of its functional properties, for example, producing large strains in 

response to the thermomechanical stimuli in shape memory alloys.  

 Various theoretical and modeling approaches have been applied to study the 

martensitic microstructure, including the crystallographic and geometrically nonlinear 

theory [4, 7], phase field simulation [91, 92], as well as the atomistic molecular dynamics 

[74, 75] and quantum mechanical calculation [17, 39]. While those studies have greatly 

advanced our understanding of twinned martensite [90], they often require a priori 

assumptions on the phase transformation geometry and energy function, or are limited in 

the spatial-temporal resolution. We report a novel atomistic modeling of nanotwinned 

martensite by using the Monte Carlo (MC) method. Without geometrical construction and 

timescale limitation, our MC simulations reveal the patterning and branching of 

nanotwins in a model system of NiTi thin film. The results generate insights into the 

length scale and temperature effects on the formation of nanotwinned martensite. 
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4.2 Methods 

 As discussed in Chapter 2 and 3, a many-body Finnis-Sinclair [58] type 

interatomic potential is employed to describe the NiTi system. This potential was 

originally developed by Lai and Liu [31], and later improved to smooth the 

discontinuities at its cutoff [74]. Canonical Monte Carlo simulations following the 

Metropolis algorithm [93] are performed to study the temperature-driven martensitic 

transformation and formation of twinned microstructures. We construct a NiTi thin film 

in the austenitic B2 phase. The system is nm8.4nm1.5 × wide in the film plane and 

nm8.16  thick, involving a total of 23,040 atoms. Periodic boundary conditions are 

applied along both 
B2

001  and 
B2

011  directions within the film plane. The top surface 

is free to move in the vertical 
B2

110 direction. Four bottom layers are fixed to the parent 

B2 phase, mimicking the constraint of the austenitic substrate. 

 The martensitic phase transformation starting temperature (Ms) in this model 

system of NiTi thin film has been benchmarked to be around 260K, lower than the bulk 

value of Ms ~ 310K predicted in Chapter 2 [74]. This difference can be attributed to the 

boundary effects. Namely, the atomic bonding environment at the free surface and fixed 

bottom is different from that in the bulk of the thin film, leading to a shift of phase 

transformation temperature. We have performed the MC simulations in a NVT ensemble 

at various undercooling temperatures. For each temperature, tens of simulations are 

conducted to identify the possibly different metastable microstructures. Each of MC 

simulations involves 1.4 billion steps, ensuring the converged twin structure and energy. 

We present the representative MC results at 250K (~ 10K undercooling) and 200K (~ 
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60K undercooling). Simulations at temperatures lower than 200K yield results similar to 

those at 200K. 

4.3 Results and Discussions 

 Our MC simulations reveal the temperature-driven diffusionless phase 

transformation from the parent B2 to the martensitic B19 phase in the NiTi thin film at 

both 250K and 200K. Fig. 4.1(a) shows the schematic of the B2 → B19 transformation in 

a conventional unit cell. In the parent B2 phase, the cell edge is 02a  in both 
B2

110  and 

B2
011  directions, where 0a  denotes the B2 lattice constant.  Upon phase 

transformation, the B19 phase forms two equivalent variants in the plane of the paper, 

with bac >> 02 ; the cell edge in the out-of-plane direction of 
B2

001  remains 

unchanged due to geometrical constraint of the austenitic substrate. Note that the 

previous molecular dynamics simulations with the similar interatomic potential predicted 

the B2 → B19′ phase transformation in the NiTi bulk (temperature-driven)  in Chapter 2 

[74] and nanopillar (stress-driven) in Chapter 3 [94]. In this chapter, the favorable 

formation of the martensitic B19 phase in the thin film can be attributed to the small film 

thickness, resulting in the increasing role of free surface and fixed austenitic substrate in 

selecting the transformation product. Interestingly, the resultant martensitic B19 phase 

exhibits multiple variants, whose periodic arrangement leads to nanotwin patterning.  
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Fig. 4.1 Martensitic transformation and nanotwin patterning in a NiTi thin film at 250K 

(~ 10K undercooling). The region below the red line is fixed to represent the austenitic 

substrate. (a) Schematic of the B2 to B19 transformation in a conventional unit cell. The 

unit cell deformation is exaggerated to increase the geometric contrast of the two B19 

variants. (b) MC snapshot showing the initiation of martensitic phase transformation. (b) 

An intermediate state of formation of twinned martensite. (d) The final converged state 

with the fully developed periodic twin stripes. In (b-d), the left image shows the atomic 

configuration where atoms are colored by the von Mises shear strain invariant, and the 

right one shows the distribution of ratio of the lattice constant in the B2110><  direction 

over that in B2

_

011 >< . In the schematic of twin stripes in (d), the two B19 variants are 

represented respectively by the red and blue rectangle, and the B2 phase by the green 

square.  
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 Figs. 4.1 (b-d) show the sequential process of nanotwin patterning at 250K (~ 

10K lower than Ms). In Fig. 4.1 (b), the initiation of the B2 → B19 transformation 

appears to be a homogeneous nucleation process. The atomic configuration on the left 

shows that the martensitic B19 phase emerges as equally spaced circular nuclei, each of 

which involves a group of light blue atoms with a diameter about 1.5 nm. In the 

corresponding color map on the right, it is seen that the nuclei with the same B19 variant 

(i.e., same color) are neighbored in the o45  direction. Those nuclei grow and coalesce to 

form the inclined twin stripes. Fig. 4.1 (c) shows an intermediate state, and Fig. 4.1 (d) 

the final converged structure of twinned martensite. Notice that the above sequence 

represents a transformation path from an initial state to the mode of the stationary 

distribution along the Markov chain, and it does not necessarily reflects the temporal 

evolution of martensitic phase transformation. A number of repeated MC simulations at 

250K all yield the same final product.  

 Both the atomic configuration and color map in Fig. 4.1(d) reveal the periodic 

stripes of nanotwins, featuring the atomically sharp twin interface with its normal in the 

B2
100  direction. Of particular note are the different twin widths in the periodic 

nanotwinned stripes, i.e., ~ 1.5 nm for variant I (red stripe), and ~ 2.0 nm for variant II 

(blue stripe).  Correspondingly, the volume fraction of variant I, denoted as λ , is 0.42. 

This volume fraction can be readily rationalized on the basis of the geometrical 

compatibility requirement at the habit plane between the martensitic twins and austenitic 

substrate,[4] i.e., 1)1( =−+ γλλβ , where )2/( 0ac=γ  and )2/( 0ab=β .  
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 It should be emphasized that nanotwins near the substrate are not in their 

equilibrium states, as evidenced by the blurred von Mises shear strain plot and color map 

in Fig. 4.1(d). This so-called transformation decay region results from the 

accommodation of lattice mismatch between the austenitic substrate and twinned 

martensite. Such a decay region plays a key role in selecting the size of the nanotwin 

stripes. That is, the nanotwin width is governed by the competition between the strain 

energy in the decay region and the twin interface energy in the film. Incidentally, a 

similar energy competition leads to periodic stripes in the strained liquid crystal 

elastomer, and a scaling analysis of stripe width has been given by Terentjev and 

coworkers [95]. Along the same line of reasoning, we note that the size of the decay 

region is proportional to the twin width d, since the lattice distortion from the equilibrium 

B19 state (being either of the two B19 variants) is periodic in the xL  direction with a 

period of order of d, as indicated in Fig. 4.1(d). Hence the strain energy per stripe is ~

zLd 22µε , where µ  is the shear modulus and ε  is the characteristic lattice strain in the 

stripe. There are dLx / stripes in the film. As a result, the total elastic energy in the decay 

region is dLL zx
2~ µε . On the other hand, the total interfacial energy associated with 

twin boundaries is dLLLf zyx /~ TB , where TBf  is the twin boundary energy per unit 

area. Minimization of the sum of the above elastic and interfacial energies with respect to 

d yields the optimal twin width  

  yL
f

d
2

TB~
µε

 (4.1) 

The scaling relation of Eq. (4.1) makes transparent the physical factors governing the 

characteristic twin width. It depends on the geometric mean of two length scales: one is 
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the extrinsic sample length scale of the film thickness yL ; the other is the intrinsic 

material length scale of )/( 2
TB µεξ f≡  that scales with the twin boundary thickness [95].  

Using the typical values of NiTi martensite [74], 2
TB J/m1.0~f , GPa50~µ , 05.0~ε , 

we estimate nm1~ξ . Given nm8.16=yL  in our MC simulations, Eq. (4.1) predicts the 

twin width d  in the range of a few nanometers, consistent with our MC results. 

Moreover, since µ  increases with decreasing temperature and it usually has a stronger 

temperature dependence than TBf [95], Eq. (4.1) suggests that an increase of 

undercooling can lead to twin refinement. This has been verified in our MC simulations, 

to be detailed next.  

 

Fig. 4.2 Refinement and branching of nanotwins at 200K (~ 60K undercooling). (a) The 

final converged state showing the refined twin stripes, as opposed to the coarse ones in 

Fig. 4.1(d). (b) Branched nanotwins with all the twin boundaries are aligned in the same 

orientation. (c) Sequential process of formation of branched nanotwins. Compared (b), 
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the branched twin boundaries form in another equivalent { }B2100  plane. The coloring 

scheme in (a-c) is the same as in Fig. 4.1. 

 Large undercooling can yield a variety of patterning in nanotwinned martensite. 

Fig. 4.2(a) shows the converged martensitic microstructure at 200K. The nanotwinned 

stripes consist of alternating B19 variants similar to those at 250K, as shown in Fig. 

4.1(d). However, the twin width decreases, so does the size of the transformation decay 

region. This temperature-induced twin refinement is consistent with the prediction from 

our previous scaling analysis.  

 More interestingly, repeated MC simulations reveal the branching of nanotwins 

near the habit plane between the martensitic twins and austenitic substrate. One scenario 

of twin branching is shown in Fig. 4.2(b), where the coarse twins appear near the free 

surface and fine twins, aligned in the same orientation, occur when approaching the habit 

plane. Alternatively, the fine twins could form with twin boundaries in another equivalent 

{ }B2100  plane, as shown in Fig. 4.2(c3). This produces an intriguing pattern of “twins 

within twins” [90], with the primary twin interface of  { }B2110  and the secondary twin 

interfaces of { }B2100 .  

 The branched nanotwins in Fig. 4.2(b-c) are likely more favorable energetically 

than the non-branched ones in Fig. 4.2(a). Along the line of previous analysis of the 

energy competition in twinned martensite, it is understandable that the energy budget 

could be effectively reduced by adopting multiple twin sizes, e.g., the coarse and fine 

twins coexist, but are located at different places, as shown in our MC simulations. The 

fine twins near the habit plane lower the elastic energy by reducing the size of the decay 
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region. On the other hand, the coarse twins near the free surface reduce the overall twin 

interfacial energy. 

 Fig. 4.2 (c1-c3) shows the sequential process of nucleation and growth of the 

branched nanotwins, with their converged state in Fig. 4.2(c3). In contrast to the 

homogenous nucleation of martensite within the bulk of the thin film at 250K in 

Fig.4.1(b), the martensitic nanotwins nucleate simultaneously near the free surface and 

substrate at 200K. They exhibit different twin widths and grow to meet inside the thin 

film, yielding the final product in Fig. 4.2(c3). The geometrical constraints near the free 

surface and habit plane are distinctly different, setting the different characteristic twin 

sizes. The apparent branching of nanotwins actually results from the simultaneous 

nucleation of nanotwins from both the free surface and habit plane. Different branching 

modes in Fig. 4.2(b-c) originate from random selection of the orientation of nanotwins 

when they are initiated. 

4.4 Conclusions 

 In summary, we perform the Monte Carlo simulations to study the patterning of 

martensitic nanotwins at the atomic scale, without geometrical construction and timescale 

limitation. Our results show that large undercooling can lead to the refinement and 

branching of nanotwins. We use a scaling law to make transparent the physical effects 

governing the characteristic twin width. This work opens up the possibilities of predictive 

modeling of the martensitic twinned microstructures down to the atomic scale. 
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CHAPTER 5 

PHASE FIELD MODELING OF MARTENSITIC 

MICROSTRUCTURE IN NITI 

5.1 Introduction 

The martensitic phase transformation in NiTi has been studied by a variety of 

modeling approaches. The continuum models are usually focused on the crystallography 

and compatibility of phase transformation and twin microstructure [7, 40, 41, 96]. First 

principles calculations are well situated to investigate the atomic-level structures and 

their stabilities, as well as phase transformation paths and size effects, at zero Kelvin [17, 

39, 44, 45, 48]. As discussed in Chapter 2-4, atomistic studies based on the empirical 

interatomic potential can explore the phase transformation and martensitic 

microstructures at finite temperatures in systems larger than those accessed by the first 

principles methods [74-76, 94, 97].  However, both the first principles and interatomic 

potential-based studies are severely limited by the achievable spatial-temporal scale. 

Such limitation can be alleviated by the phase field model that is particularly suitable for 

the study of dynamic evolution of martensitic microstructure [91, 98-100].  

The NiTi system generally involves a variety of metastable phases (B2, B19, B19′ 

and R etc.), martensite variants (e.g. twelve variants in B19′ martensite) and twin 

structures (such as type I, II and compound twin). This poses significant challenges to the 

modeling. Nevertheless, encouraging progress has been recently made in the 

development of phase field models for the NiTi system. For example, Shu and Yen 

developed a multi-variant model to study a relatively simple mode of R phase 
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transformation [92]. Yang and Dayal proposed a simple energy function to describe the 

B19′ multi-variants of NiTi [101]. Both models assumed the penalty-based energy 

function and were applied to two-dimensional phase filed simulations. However, the 

phase field model with the physics-based Landau-type energy function is still 

unavailable. The Landau-type polynomial energy function is generally favored in the 

phase field model, as it facilitates an explicit link between the model parameters with the 

physical properties such as overcooling temperature. Constructing the Landau-type 

polynomial energy function is non-trivial, because it requires the co-existence of thirteen 

local metastable energy wells that respectively correspond to the parent B2 phase and 

twelve martensitic B19′ variants; meanwhile other metastable energy wells should be 

eliminated to avoid the interference of physically irrelevant states. In this work, we 

construct an effective Landau-type polynomial energy function, and perform the three-

dimensional phase field simulations of B2 to B19′ phase transformation. Results reveal 

nucleation and growth of polytwinned morphology of martensitic microstructures.  

5.2 Methods 

We take a single crystal of B2 austenite as the start configuration. This parent 

austenitic phase can transform to the B19′ martensite when the temperature is reduced 

below the martensite start temperature. The phase field modeling provides the solutions 

of the temporal evolution of phases and microstructures by numerically solving the time-

dependent partial differential equations of the field variables. Twelve continuous field 

variables ��, ��, ⋯ , ��� between zero and one are defined to describe the B2 to B19′ 

transformation, which involves twelve possible B19′ variants. Austenite is described if all 
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�� = �� = ⋯ = ��� = 0, and martensite with variant i is described if �� = 1	and  �� =
0	for all � ≠ �.  

The stress-free strain, which comes from the locally inhomogeneous martensitic 

phase transformation, can be characterized as 

  �∗(
) = ∑ ��(
)��!���"�   (5.1) 

where the stress-free strain tensor at spatial coordinate 
 is the summation of each field 

variable �� 	multiplied by the B2 to B19′ transformation strain tensor ��!	for each 

corresponding martensitic variant i.  

The free energy of the system can be described by the volume integral of free 

energy density, which contains the local specific free energy density	������, interfacial 

energy density ���		, and the strain energy density	�
��.  

  # = $ (	������ + ���	 + 	�
��)& '()  (5.2) 

 

5.2.1 Local specific free energy 

The local specific free energy density	������ is contributed by the bulk 

thermodynamics properties of the system. A Landau-type polynomial has been applied to 

approximate the local specific free energy	������ as 

	������ = �! + ∆�(+) ,��-(∑ ������"� ) − �(/(∑ ��(���"� ) + �01(∑ ������"� )� + �02(∑ ��0���"� )	3    
   (5.3) 

where �!	represents the free energy density of the austenitic phase, ∆�(+) is the free 

energy density between austenite and martensite, which depends on the temperature T, 

and A, B, C and D are constants describing the shape of free energy density function.    
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The parameters A, B, C and D in Eq. (5.3) cannot be arbitrarily assigned. Two 

constraints must be satisfied. Firstly, the partial derivative of 	������ with respect to all the 

field variables ��, ��, ⋯ , ���  must be zero for all the austenite and martensite phases. 

Secondly, the free energy density difference between austenite and martensite should be 

∆�(+). These requirements lead to 

  4 −- + / − 1 − 2 = 0		��- − �(/ + �01 + �02 = −1  (5.4) 

In this work we choose parameters of - = 1, / = 15, 1 = 7 and 2 = 7 for 

	������. The driving force on the field variable  �� associated with 	������ is 

  7������ = − 89:;<=:8>? = ∆�(+)@−-�� + /��� − 1��A∑ ������"� B − 2��(	C (5.5) 

 

5.2.2 Interfacial energy density 

The interfacial energy density ���	 is the nonlocal part of the chemical free energy 

density. We express ���	 in terms of the gradient of the field variables 

  ���	 = ��∑ D��(E) 8>F8G?��H"� 8>F8GI   (5.6) 

where the Einstein summation convention is applied only for subscript i and j. In Eq. 

(5.6), the coefficients D��(E) are the components of a semi-positive definite tensor. They 

are not necessarily the same among different field variables  �H, and may be anisotropic 

depending on the direction of the gradient given by the partial difference with respect to 

the spatial coordinates J� and J�. To capture the essential phase effects with reduced 

complexity, we consider the isotropic interfacial energy in this work. Namely, we take  

D��(E) = DK��, where  K�� is the Kronecker's delta. Then Eq. (5.6) becomes 
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  ���	 = ��∑ D|∇�H|���H"�   (5.7) 

The driving force on the field variable  �� associated with ���	 is 

  7���	 = D∇��� (5.8) 

 

5.2.3 Elastic energy density 

The elastic energy density can be determined by the total strain minus the stress-

free strain defined above 

  �
�� = �� (� − �∗)N ∙ P ∙ (� − �∗) − Q!N ⋅ � (5.9) 

Where Q! is the external applied stress, and the total strain and non-elastic strain  

� = (S��, 	S��, 	S((, 	2S�(, 	2S(�, 2S��)N, �∗ = (S��∗ , S��∗ , S((∗ , 2S�(∗ , 2S(�∗ , 2S��∗ )N are in term 

of the Voigt notation, and the stiffness matrix P	is 6 by 6. The constitutive equation can 

be derived from Eq. (5.9), giving that the stress tensor  

  U = (V��, 	V��, 	V((, 	V�(, 	V(�, V��)N = P ∙ (� − �∗)  (5.10) 

The driving force acting on field variable  �� due to elastic energy density is 

  7�
�� = − 89W:=8>? = XP ∙ (� − �∗)YN ⋅ 8�∗8>? + Q!N ⋅ 8�8>? = UN ⋅ 8�∗8>? + Q!N ⋅ 8�8>?   (5.11) 

In this work, the boundary conditions are either strain-controlled or zero-stress 

applied, indicating the second term in Eq. (5.11) can be dropped. Note that the total strain 

� and stress U needs to be numerically solved during the simulation. Please see appendix 

B for the details.  

5.2.4 Stochastic Phase Field Kinetic Equation 

The evolution of the field variables is governed by the time-dependent Ginzburg-

Laudau (TDGL) equation, which is a stochastic phase field kinetic equation that assumes 
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the rate of the evolution of the field variables is proportional to the thermodynamics 

driving force.  

  
8>?8	 = ∑ Z[\��A7������ + 7���	 + 7�
��B] + ��(
, �)���"�  (5.12) 

where [\�� is the kinetic coefficient matrix and ��(
, �) is the Langevin noise term. The 

Langevin noise term ��(
, �) is a random variable as a function of location and time, 

which follows the normal distribution and mutually independent at different locations and 

time. To satisfy the requirement of fluctuation-dissipation theorem, the correlation of 

��(
, �) is given by: 

  〈��(
, �)��(
′, �′)〉 = 2��+[\��K��K(
 − 
′)K(� − �′) (5.13) 

where �� is the Boltzmann constant, T is the temperature, K�� is the Kronecker delta, and 

K is the Dirac delta function. For simplification, the kinetic coefficient [\�� is given to be 

diagonal, i.e. [\�� = [K��, with the assumption that the driving force on the field variable 

�� has no concurrent effect on the evolution of field variable �� when � ≠ �. Substitution 

of Eq. (5.5), (5.8) into Eq. (5.12) yields 

 
8>?8	 = [@∆�(+)Z−-�� + /��� − 1��A∑ ������"� B − 2��(] + D∇��� + 7
��� C + ��(
, �) 

   (5.14) 

5.2.5 Numerical simulation 

The phase field simulations are performed in a three-dimensional (3D) cubic cell, 

with periodic boundary conditions imposed in all three directions. We discretize the 3D 

spatial domain into uniform grids and the one-dimensional time domain into equal steps. 

All of the field variables at time step n are in the form of 	���(
, a∆�) for � = 1,2,⋯ ,12, 

where ∆� is the time step size. It is convenient to normalize the length and time scale, 



 81

thereby eliminating the unnecessary parameters. We define the dimensionless space 

coordinate Jb� = J�/d!, Jb� = J�/d! and Jb( = J(/d!, where d! is the length of grid cell, 

and the dimensionless time �̃ = �[∆�(+) and ∆�̃ = ∆�[∆�(+). It follows that the 

normalized Eq. (5.14) is 

8>?8	f = Z−-�� + /��� − 1��A∑ ������"� B − 2��(] + Dg∇h��� + iW:=?∆9(N) + �f�(
j, �)   (5.15) 

where ∇h�= 8k8Gblk + 8k8Gbkk + 8k8Gbmk  , Dg = n∆9(N)�ok and �f�(
j, �) = �p∆9(N) ��(
j, �). Random variable 

�f�(
j, �) , which is mutually independent at different space coordinates and time steps, 

follows the normal distribution with mean of zero and variance of 
�qrN∆9(N)�om. 

To numerically solve a partial differential equation of heat-equation type, one 

typically applies the forward Euler method (explicit), backward Euler method (implicit) 

or Crank-Nicolson method (implicit). The nonlinear terms (the first and third terms in Eq. 

(5.15)) pose the computational challenge to either the backward Euler or Crank-Nicolson 

method. On the other hand, the stability condition of the forward Euler method due to the 

Laplace operator limits the time step size  ∆�̃ ≈ ∆Jb�. The semi-implicit Fourier-spectral 

method proposed by Chen and Shen provides an efficient and accurate solution for the 

TDGL equation [99]. The key of this semi-implicit method is to calculate the Laplace 

operator implicitly and nonlinear terms explicitly, such that the Eq. (5.15) is discretized 

to 

���t� − ���∆�̃ = u7������Av�(
, a∆�)B∆�(+) + Dg∇h����t�(
, (a + 1)∆�) + 7�
��Av�(
, a∆�)B∆�(+) w 

  +�f�(
j, (a + 1)∆�)   (5.16) 
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It is more computationally efficient to solve Eq. (5.16) in the Fourier space, so as 

to avoid the inverse Fourier transformation of stress. The Laplace operator in the real 

space is transformed to −4y(z�� + z�� + z(�) in the Fourier space, where { = (z�, z�, z(	)N 

is the coordinate in the reciprocal space. Eq. (5.16) can be transformed to  

  �|�t�} = ��t0~nh(�lkt�kkt�mk)∆	f ⋅ ��|�� + ∆	f∆9(N)7|�����(v�)} + ∆	f∆9(N)7|
��(v�)} �   (5.17) 

 

5.2.6 Model parameters and simulation setup 

In Eq. (5.1), the stress-free strain of B2 to B19′ transformation is described by 

twelve field variables ��, ��, ⋯ , ���, corresponding to twelve B19′ variants. When the 

global Cartesian coordinate system is aligned with the cubic axes of the parent B2 phase, 

the twelve transformation strain tensors ��� (� = 1,2,⋯ ,12) in Eq. (5.1) are given by 

 ��� = �� � �� V �� � V�, 	��� = � � −� −�−� V �−� � V �, 

 ��� = � � −� �−� V −�� −� V �, ��� = � � � −�� V −�−� −� V �, 

 ��� = �V � �� � �� � V�, ��� = � V −� �−� � −�� −� V �, (5.18) 

  ��� = � V −� −�−� � �−� � V �,  ��� = � V � −�� � −�−� −� V �,  

 ��� = �V � �� V �� � ��,    ���� = � V � −�� V −�−� −� � �, 

 ���� = � V −� �−� V −�� −� � �, ���� = � V −� −�−� V �−� � � � 
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The components of transformation strain in Eq. (5.18) have been calculated by 

Hane and Shield using the lattice constants given by Otsuka et al., i.e.  � = −0.0437, 

V = 0.0243, � = −0.0427 and � = 0.0580 [4, 41]. When the global Cartesian 

coordinate system is not aligned with the cubic axes of the parent B2 phase, a rotation 

operation of  �����N is required, where � is the rotation matrix.  

The elastic constant matrix P	is determined by the density functional calculations 

from Hatcher et al., i.e. 1�� = 183GPa, 1�� = 146GPa and 100 = 46GPa [44]. The 

typical strain energy density (scaled with ���NP���, where the vector ��� is in the Voigt 

notation) is 4.403 × 10�J/m(. We take the free energy density between austenite and 

martensite ∆�(+) to be 10% of the strain energy, i.e., ∆�(+) = 4.403 × 10�J/m(. A 

simple relation between ∆�(+) and undercooling temperature ∆+ is assumed  

  ∆�(+) = [ ⋅ ∆+/+! (5.19) 

In Eq. (5.19), the latent heat is taken as [ = 110MJ/m(,  the equilibrium temperature 

+! = 271K [102, 103], so that the undercooling temperature is  ∆+ = 108¢. 

The specific interfacial energy £ (i.e., interfacial energy per area) is related to the 

coefficient D in Eq. (5.7) according to £ = 0√�( ¥D∆�(+). We use the normalized 

interfacial energy coefficient Dg in Eq. (5.15), then the gird size becomes d! = (¦
0∆9(N)§�nh, 

where  £ is taken as the interfacial energy of type I twin, 187mJ/m� [17]. 

The time step needs to be carefully chosen to ensure the numerical convergence. 

By trial and error, we find that ∆�̃ = 0.01 provides the reasonable accuracy and 

efficiency. The numerical integration is performed up to 12,500 time steps, i.e. �̃ = 125, 

with no further change of microstructures.  
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5.3 Results and Discussions 

5.3.1 Microstructure evolution  

To study the nucleation and growth of martensitic microstructures, we first 

consider a mixed loading mode: zero in-plane strain and zero out-of-plane stress, i.e. 

S��HH = S��HH = S�̈HH = 0 and �(�HH = �0�HH = �©�HH = 0. Such boundary conditions are 

typical of thin films subjected to rigid constraints from the substrate. The global Cartesian 

coordinate system is aligned with the cubic axes of the parent B2 phase. The system 

contains  64 × 64 × 64 mesh grids. We set Dg = 2, so that  d! = (¦
0∆9(N)§�nh = 1.6aª. This 

corresponds to the cubic system with side length of 102.4nm.  
Given the positive value of ∆�(+), the martensitic transformation of B2 to B19′ is 

energetically favored. However, owing to the metastable state of the B2 phase, the 

martensitic transformation would not occur spontaneously, thus requiring thermal 

fluctuations to assist the martensite nucleation. The Langevin noise term ��(
, �) in Eq. 

(5.12) plays the role of thermal fluctuations. This stochastic term is independent with 

each other at different time steps or spatial locations, thus does not provide any 

constraints on the phase transformation process. The stochastic noise term is turned off 

after 3000 simulation steps when �̃ = 30.  
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Fig. 5.1. 3D phase field simulation results. (a) Time-elapse snapshots showing the 

nucleation and growth of polytwinned martensitic microstructures. The mesh grids are 

colored by ∑ ���(
)���"� . (b) The 2D projections of 3D microstructures. For a better 

visualization of polytwinned microstructures, the simulation cell is periodically doubled 

in the two in-plane directions.  



 86

Fig. 5.1(a) shows the nucleation and growth of martensites and polytwinned 

pattern. At �̃ = 8, precursors of martensite form, driven by the free energy difference and 

thermal fluctuations.  Different colors, representing different values of field variables, 

show the nucleation of multivariants. At this stage, none of the field variables �� 	is close 

to 1 and no variant is fully formed. However, the field variables also deviate from all-

zero values (the metastable B2 phase). Those martensite precursors involve lattice 

distortion. They form and disappear during this early stage. The microstructure further 

evolves from the existing lattice distortion promoted by thermal fluctuations, when the 

stochastic noise terms are turned off at �̃ = 30. At �̃ = 32, shortly after the stochastic 

noise terms are turned off, nuclei of size around tens of nanometers are generated. The 

boundaries of nuclei are curved and no obvious laminate twin structure is visible. The 

growth and elimination of these nuclei are driven by the local free energy, interfacial 

energy and elastic energy. The twin-shaped pattern first emerges at �̃ = 60, where some 

of the nuclei, colored by red, blue and green, finally grow to different twin variants. 

Some of other nuclei disappear at �̃ = 85. Soon later at �̃ = 90, the twin pattern becomes 

stable, while the twin boundaries are still not flat planes. Finally at �̃ = 125 the three-

dimensional twin structure containing four different B19′ variants form with the 

respective transformation strain of  ��!, ��!, �!̈ and ��!. Fig. 5.1(b) shows the top view and 

left side view of the final product. The nucleated martensite variants form a novel three-

dimensional polytwinned structures. The multivariants are self-accommodating. The 

average transformation strain is 

  A��� + ��� + ��� + ���B/4 = �−0.01 0 00 −0.01 0.05040 0.0504 0.0243� (5.20) 
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The averaged transformation strain is compatible with the zero in-plane strain boundary 

conditions. 

The in-plane components of the average transformation strain are very small, i.e. 

1% compression normal strain and zero shear strain, thus agree very well with the 

applied zero in-plane strain boundary conditions of  S��HH = S��HH = S�̈HH = 0. The 1% 

difference between normal average transformation strain and zero applied strain increases 

the homogeneous strain energy. However, since the local free energy for martensite is 

smaller than the austenite, total energy decreases. Also, compared with the case where 

single martensite variant nucleates, the self-accommodated twin structures significantly 

decreases the homogeneous strain energy. For the out-of-plane components of average 

transformation strain in Eq. (5.20), although the values are relatively larger, they do not 

increase the homogeneous strain energy under the applied zero out-of-plane stress 

boundary conditions of �(�HH = �0�HH = �©�HH = 0.  

The nucleated martensite variants form twins, where the heterogeneous strain 

energy is minimized if the compatibility requirements are satisfied at twin interfaces. The 

observed twin planes between each pair of variants ®2: 6°, ®1: 8°, ®1: 2°and ®6: 8° are all 

®110° type of plane, as shown in Fig. 5.1 and summarized in Table 5.1. Three of them are 

consistent with theoretical solutions of NiTi type I twin, with the exception of the pair of 

®6: 8°. This exception violates the compatibility of twin interface, and increases short-

range energy due to the incompatibility. However, this scarification is necessary to 

decrease the total energy. Theoretical solution based on compatibility at twin interfaces 

[41] provides a general guide line of twin structures when applied far-field stress are 

zero, but it is inefficient under other boundary conditions. Under stricter conditions, such 
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as zero applied strain and periodic boundary conditions, there might be no “perfect” 

solution which is fully compatible at twin interface (decrease heterogeneous strain 

energy) as well as minimize the free energy (chemical energy) and homogeneous energy. 

Scarification is necessary. Phase field simulations show the compatibility at twin 

interfaces is not always guaranteed.   

Table 5.1. Compatibility of twin variants obtained in phase field simulations and given by 

continuum based solutions. 

Pair Theoretical Solution [41] Phase Field ®2: 6°  ®110°   type I ®110°   ®1: 8°  ®110°  type I ®110°   ®1: 2°  ®110°  compound ®110°   ®6: 8°  ®100°  type I ®110°   
 

The martensitic phase transformation in a complicate system containing multiple 

martensite variants such as NiTi could yield many different final products. We repeat our 

simulation with all the parameters unchanged to explore the different possible 

microstructures. Figure 5.2(a) show the martensite nucleation and microstructures 

evolution process. The precursors of martensite form and disappear similarly with the 

results above. At  �̃ = 50, nuclei form and migrate to each other containing same twin 

variants, and finally form the twin structures at �̃ = 125. The formed twin structures are 

in a two-dimensional shape. The top view of the final products are shown in Figure 

5.2(b), containing four different B19′ variants with the basis transformation strain 

��!, �0!, �©! and �!̈. The twin planes between pair ®2: 6°  and ®4: 5° are in ®110° type of 

plane; while the other two twin planes are in  ®100° type of plane, as summarized in 

Table 5.2. Similarly, the compatibility constraints in pair ®5: 6°  are scarified, while the 



 89

compatibility requirements of other three pairs are still satisfied. Similarly, the average 

transformation strain of variants 2, 4, 5 and 6 reduces the homogeneous strain energy: 

  A��� + ��� + ��� + ���B/4 = �−0.01 0 0.05040 −0.01 00.0504 0 0.0243� (5.21) 

 It is interesting to note that the repeated simulations with the same applied 

boundary conditions always result in the selection of four variants out of variant 1 to 8, 

but not 9-12. This is because the in-plane transformation strains for each of variant 1-8 

contain one tension and one compression component, as shown in Eq. (5.18). They can 

cancel each other to reduce the averaged in-plane transformation strain, so as to lower the 

stored strain energy, as shown by Eq. (5.20) and (5.21). 

 

Fig. 5.2 A different result of polytwinned microstructures with the same boundary 

condition as Fig. 5.1. (a) Nucleation and growth of twinned martensite. (b) 2D projection 

of 3D microstructures. For a better visualization of polytwinned microstructures, the 

simulation cell is periodically doubled in the two in-plane directions. 
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Table 5.2. Compatibility of twin variants obtained in phase field simulations, compared 

with the crystallography theory based solutions. 

Pair Theoretical Solution [41] Phase Field ®2: 4° ®100°  type I ®100°   ®2: 6°  ®110°  type I ®110°   ®4: 5°  ®110°  type I ®110°   ®5: 6°  ®110°  compound ®100°   
5.3.2 Loading effects 

The mechanical loading dictates both the selection and patterning of multivariants 

in the formation of strain-accommodating microstructures. We explore different 

combinations of boundary constraints. Here the simulation system containing 32 × 32 ×
32 mesh grids, Dg is adjusted to be 0.5 and d! = (¦

0∆9(N)§�nh = 3.2aª. Correspondingly, the 

side length of the cubic simulation cell is 102.4nm.  

Fig. 5.3(a) and (b) show the two possible microstructures when the in-plane 

biaxial tensile strain is applied, i.e., S��HH = S��HH = 1% ,	S�̈HH = 0 and �(�HH = �0�HH =
�©�HH = 0. In Fig. 3(a), variants 9 and 12 form the ®100° twin. In Fig. 5.3(b), variants 10 

and 11 form the ®110° twin, as listed in Table 5.3. Variants 9, 10, 11 and 12 belong to the 

same group of transformation strain tensors sharing the same normal components (both 

in-plane tension and out-of-plane compression in Eq. (18)). This group of transformation 

strain tensors can better match the imposed biaxial tension. Pairing of variants in this 

group yields the self-accommodating twin structures through complete canceling of in-

plane shear strains. Repeated simulations all select the variants in the group containing 

variants 9, 10, 11 and 12. In most cases, the twin compatibility is satisfied such as the 

®100° twin between variants 9 and 12, as shown in Fig. 5.3(a). However, exceptions are 
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observed, such as the ®110° twin of variants 10 and 11, as shown in Fig. 5.3(b) and Table 

5.3. The reason is similar with the discussion above. Recall that when the zero in-plane 

strain is applied in section 5.3.1, only variants 1-8 are possible to nucleate because the in-

plane normal strain components contain both tension and compression. 

We also perform simulations under in-plane biaxial compression. The resulting 

microstructures are the same as those obtained in section 5.3.1, as shown in Fig. 5.1 and 

5.2. It can be similarly explained by the compatibility requirement between the 

transformation strain and the imposed boundary conditions. 

Fig. 5.3(c) and (d) show the case when the out-of-plane compressive strains are 

applied, i.e.S(�HH = −2% and ���HH = ���HH = �0�HH = �©�HH = ��̈HH = 0. Such loading 

mode of uniaxial compression yields results similar as those from in-plane biaxial 

tension. The same group containing variants 9, 10, 11 and 12 is the optimal choice, 

generating the ®100° twin for variants 10 and 12, and ®110° twin for variants 9 and 10, as 

listed in Table 5.3.  
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Fig. 5.3 Nucleation of martensite and microstructures at different applied boundary 

conditions. The mesh grids are colored by the nucleated B19′ variant. (a, b) Different 

microstructures form under the in-plane biaxial tension  S��HH = S��HH = 1% ,	S�̈HH = 0 

and �(�HH = �0�HH = �©�HH = 0. (c, d) Different microstructures form under the out-of-

plane compression S(�HH = −2% and ���HH = ���HH = �0�HH = �©�HH = ��̈HH = 0. 

 

Table 5.3. Compatibility of twin variants obtained in phase field simulations, compared 

with the crystallography theory-based solutions. 

Pair Theoretical Solution [41] Phase Field ®9: 12°  Fig.3(a) ®100°	type I ®100° ®10: 11° Fig.3(b) ®100°	type I ®110°   ®10: 12° Fig.3(c) ®100°	type I ®100° ®9: 10° Fig.3(d) ®110°  compound ®110°   
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5.3.3 Orientation effect 

 We also examine the orientation effects on the martensitic microstructure by 

setting three axes of the global Cartesian coordinate system to be parallel with the 〈110〉, 
〈001〉 and 〈11±0〉 directions in the parent B2 phase. The rotation of the transformation 

strain tensor �����²is required with the rotation matrix  

  � = ³0.707 0.707 00 0 10.707 −0.707 0´ (5.22) 

Fig. 5.4(a1) shows the microstructure under the in-plane biaxial compressive 

strain of 0.5%. The ®110° twin between variants 11 and 12 is observed. Variants 11 and 

12 fully cancel out the shear transformation strain with each other, and they also provide 

the in-plane  transformation strain of biaxial compression, thus accommodating the 

imposed mechanical load. The ®110° twin between variants 11 and 12 is also consistent 

with the compatibility requirements [41], and agrees well with our previous atomistic 

simulation of (010)µ�¶ compound twin (Fig. 5.4(a2)) [74].  

Figure 5.4 (b) shows the polytwinned microstructure when the in-plane 1% 

biaxial tensile strain of 1% is applied. Variants 2, 3, 6 and 7 form the ®100° twins. The 

corresponding twin compatibility is given in Table 4. The nucleation of variants 2, 3, 6 

and 7 are determined by the applied biaxial tension, because they are the only four 

variants whose in-plane components of transformation strain tensors ���!�N satisfy the 

loading condition of biaxial tension. The shear component of the average transformation 

strain is also minimized to zero   

  �A��� + ��� + ��� + ���B�N/4 = �0.033 0 00 0.0243 00 0 −0.0524� (5.23) 
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 Fig. 5.4 (c) shows the microstructure formed under the out-of-plane compressive 

strain of 2%. Similarly, variants 2, 3, 6 and 7 nucleate, although the polytwinned 

morphology is different. As summarized in Table 5.5, pair ®2: 3° and ®6: 7° form the 

®100° twin; while ®2: 6°  and ®3: 7°  form the ®110° twin. All the compatibility 

requirements at the twin interface are satisfied. 

 

 

Fig. 5.4 Formation of polytwinned martensitic microstructures at different applied 

boundary conditions. (a1) ®110° compound twin forms under the loading of biaxial 

compression.  (a2) Corresponding atomic structures of ®110° compound twin. (b) 

Layered twin lamellas form under  biaxial tension. (c) Polytwinned structure form under 

out-of-plane compression.  
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Table 5.4. Compatibility of twin variants obtained in phase field simulations and given by 

continuum based solutions, corresponding to double tension in Fig. 5.4(b). 

Pair Theoretical Solution [41] Phase Field ®2: 3°  ®100°type I ®100° ®3: 6°  ®110°type I ®100° ®6: 7°  ®100°type I ®100° ®7: 2°  ®110° type I ®100° 
 

Table 5.5. Compatibility of twin variants obtained in phase field simulations and given by 

continuum based solutions, corresponding to double tension in Fig. 5.4(c). 

Pair Theoretical Solution [41] Phase Field ®2: 3°  ®100°	type I ®100° ®2: 6°  ®110°	type I ®110° ®3: 7°  ®110°	type I ®110° ®6: 7°  ®100°	type I ®100° 
5.4 Conclusions 

 We develop a phase field model based on a Landau-type free energy function to study 

the diffusionless cubic to monoclinic martensitic phase transformation in Nickel-

Titanium (NiTi) shape memory alloys. The three-dimensional simulations reveal the 

nucleation and growth of twelve monoclinic B19′ variants that form the polytwinned 

morphology of martensitic microstructures. Parametric studies demonstrate that the 

mechanical constraints govern both the selection and spatial patterning of multivariants in 

the formation of strain-accommodating microstructures. The present phase field model is 

generally applicable to study the dynamic evolution of complex alloy systems that 

involve multi-variants and polytwinned microstructures. 
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CHAPTER 6 

DISLOCATION NUCLEATION DURING NANOINDENTATION 

  

6.1 Introduction 

 In nanoindentation experiments, the shear stress at the onset of plasticity can 

approach the theoretical shear strength of a perfect crystal [35, 104-108]. Such ultra-high 

stress occurs in small (nanometer-sized) volumes beneath the nanoindenter, which can be 

free of any preexisting defects. A defect-free crystal deforms in a nonlinear manner, 

when the shear stress approaches the theoretical limit. The nonlinear elastic, or the so-

called hyperelastic, response arises from the elastic softening of crystal lattice at large 

strain. This paper is concerned with the critical role of hyperelasticity, as well as 

crystallography, in the onset of plasticity during nanoindentation, a process arguably 

associated with homogenous dislocation nucleation that result from the nonlinear elastic 

instability of crystal at large shear.  

 Here we employ the interatomic potential finite element method (IPFEM) [109-

111] to simulate nanoindentation and predict homogenous dislocation nucleation. The 

IPFEM simulation takes as an input the interatomic potential-based constitutive relation 

derived within the framework of hyperelasticity of single crystals [112]. It can accurately 

capture the essential physical effects of crystal at large deformation: nonlinear elasticity 

and shear asymmetry (i.e., the asymmetry of shear stress with respect to the sense of 

shearing in the Shockley partial direction of 211}111{ ), thereby enabling an accurate 

prediction of dislocation nucleation. Compared to the commonly used molecular 
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dynamics (MD), the IPFEM significantly improves the computational efficiency, so that 

the effects of system size and loading rate can be minimized, and consequently 

simulations of nanoindentation can be performed on the length and time scales close to 

laboratory experiments. 

 In this study, simulations are performed for nanoindentation on several face-

centered cubic (fcc) crystals at low temperature (nearly zero-K) when the effect of 

thermal activation is negligible.  For each crystal, we simulate indentation on the (111), 

(110) and (100) surfaces, and quantify the critical conditions of homogenous dislocation 

nucleation in the bulk perfect crystal. The results highlight the central role of 

hyperelasticity (nonlinear elasticity) and crystallography in dislocation nucleation in 

small material volumes, a process requiring ultra-high stress that is achievable during 

nanoindentation. Our study also reveals the deficiency of commonly used nucleation 

criterion such as the critical resolved shear stress. With the rapid development in the 

experimental techniques of nanoindentation [108], we perform a direct comparison 

between the experiments and atomistics-based quantification of critical conditions of 

dislocation nucleation as predicted in this paper [37].  

6.2 Methods 

6.2.1 Interatomic potential finite element method  

 The key to the interatomic potential finite element method (IPFEM) is the 

interatomic potential-based constitutive relation derived within the framework of 

hyperelasticity with the Cauchy–Born rule [112]. The basic premise of this approach is 

that every point in a continuum corresponds to a large region of uniformly deformed 

lattice at the atomic scale. It follows that the energy of a continuum point can be 
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calculated by summing the energy of the underlying lattice deformed according to the 

continuum deformation gradient,ijF . Specifically, for a continuum point, all underlying 

atoms are identical, one may consider the energy of one atom at the origin to be 

representative, and calculate the energy associated with this atom; the energy density is 

the energy per atom divided by the atomic volume. Within the framework of the 

embedded-atom method (EAM) [113], and consider the crystal at nearly zero-K 

temperature, the energy density W is given by  

  
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where )( KrV  is the pair potential, ∑=
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atom at the origin, and )(ρU is the energy required to embed this atom into the electron 

density. In Eq. (6.1), 0Ω  is the atomic volume in a stress free fcc lattice, namely, 

4/3
00 a=Ω , where 0a  is lattice constant; Kr  denotes the distance between the atom at 

the origin and a neighboring atom when the lattice is deformed, here, the index K runs 

over all atoms within a cut-off radius cR  prescribed by the interatomic potential.  

 The Cauchy (true) stress can be obtained using the standard relation between 

energy density and stress,  
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In Eq. (6.2), the Green strain ijE  is defined as )(
2

1
ijkjkiij FFE δ−= , where ijδ  denotes the 

Kronecker delta; the energy density W, as defined in Eq. (6.1) depends on  ijE  through  
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Here K
jx  denotes the Cartesian coordinate of a neighboring atom in the deformed lattice, 

and it can be calculated by K
jij

K
j xFx 0= . Since the Cauchy stress in Eq. (6.3) involves 

lattice sum and nonlinear functions of )( KrV , )(ρU  and )( Krρ  [114, 115], the effects 

of crystal anisotropy and nonlinear elasticity are incorporated automatically.  

 The tangent modulus,ijklc , can also be calculated from the interatomic potential, 

as detailed in [111],   
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    (6.4) 

Here, the current and reference configurations are assumed to coincide. Because of the 

elastic softening of the hyperelastic crystal, the prediction of dislocation nucleation 

requires an update of the tangent modulus ijklc  when deformation gradient ijF  changes.  

 The above interatomic potential-based constitutive model can accurately describe 

the hyperelastic response of a bulk crystal, whereas it is inadequate to model the elastic 

behavior of atomic layers near the crystal surface [116], where atoms are mis-coordinated 

compared to the perfect crystal. However, since we will consider the indenter with a tip 
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radius of 50nm (an approximate size in experiments), the nucleation sites are located at 

about 10nm below the contact surface, so that the effect of mis-coordinated surface atoms 

are negligible. As such, this constitutive model is sufficient to study nanoindentation-

induced dislocation nucleation inside the bulk crystal, as verified by molecular dynamics 

simulations [111].  

 The interatomic interactions are modeled using the EAM potentials [113], which 

can better describe the many-body effects of metallic bonding compared to the two-body 

pair potential such as Lennard-Jones potential. The EAM potentials used in this study are 

developed by Mishin et al. [114, 115], which have been validated by comparing with 

experimental results (if available) and/or ab initio calculations. Table 6.1 compares the 

elastic constants of the stress-free crystals (Cu/Ni/Al) between experiments and 

predictions by the potentials. It also lists the crystal-anisotropy parameter 

)/(2 121144 ccc −≡β ; for isotropic materials, 1=β . 

 

Table 6.1. Elastic constants of stress-free single crystals of Cu, Ni and Al. Predictions by 

the EAM potentials are compared with experimental data. )/(2 121144 ccc −≡β  measures 

the degree of crystal anisotropy. 

   
 

11c (GPa) 12c (GPa) 44c (GPa) 
1211

442

cc

c

−
≡β  

Cu  
Experiment 168.4 121.4 75.4 

3.2 
Potential 169.9 122.6 76.2 

Ni 
Experiment 247 147 125 

2.5 
Potential 247 148 125 

Al 
Experiment 114 61.9 31.6 

1.2 
Potential 114 61.6 31.6 

 



 101

 We have implemented this interatomic potential-based hyperelastic model for the 

fcc crystals of Cu, Al and Ni in the finite element program ABAQUS/Explicit (2006) by 

writing user material subroutines. In the dynamic, explicit computational procedures of 

this program, as detailed in ABAQUS Theory Manual [117], the nonlinear response is 

obtained incrementally, given the internal forces created by the stresses in the elements, 

as well as the applied external forces at the start of an increment, time t. Finite element 

procedures solve for the acceleration at the start of the increment by solving the 

discretized local equations of motion. The velocities at time 2/tt ∆+  and the 

displacements at time tt ∆+  are updated by a central difference time-integration 

procedure. The deformation gradient ijF  for each integration point at time tt ∆+  is then 

calculated based on the updated displacement field. Given the calculated deformation 

gradient, a constitutive equation subroutine, called VUMAT in ABAQUS/Explicit, is 

required in order to determine the stress in the element at time tt ∆+ . In the 

implementation of stress calculation according to Eq. (6.3), each material point 

(integration point) is represented by an fcc lattice, which deforms according to the local 

continuum deformation gradient ijF . That is, at the beginning of the calculation (0=t ), a 

set of neighboring atoms is created to represent the atomic environment of the central 

atom at the origin, e.g., an atom in the first neighboring shell should be located at (

0 ,2/,2/ 00 aa ), an atom in the second neighboring shell is at )0 ,0,( 0a , etc. Here, the 

lattice spacing 0a is chosen such that the Cauchy stress is zero at 0=t , and the number 

of included neighboring atoms is determined by the cut-off  radius prescribed by 

interatomic potentials [114, 115]. For each time increment, the neighboring atoms update 

their positions according to the local deformation gradient ijF , which is generated 



 102

according to the imposed boundary conditions. Then the Cauchy stress ijσ  and tangent 

modulus ijklc  are calculated by substituting the deformed positions of neighboring atoms 

into Eq. (6.3) and (6.4), respectively. Thus, material properties depend exclusively on the 

atomistic description of the system. 

6.2.2 Nonlinear elasticity and shear asymmetry at large strain  

 In this section, we highlight the important features of the interatomic potential-

based constitutive model: nonlinear elasticity and shear asymmetry at large strain. 

Consider an fcc crystal undergoing uniform simple shear in the Shockley partial direction 

of 211}111{ . Fig. 6.1 shows the shear stress-strain curves predicted by the EAM 

potentials. Evidently, the crystal at large shear exhibits nonlinearity and asymmetry of 

shear stress with respect to the sense of shearing in the 211  direction. The former can 

be attributed to the elastic softening at large strain, whereas the latter arises because of 

the asymmetric packing of atoms in the 211  direction [111]. The two effects critically 

control when, where and how a dislocation homogeneously nucleates beneath the 

indenter. 
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Fig.6.1. Stress-strain curves for simple shear of single crystals of Al, Cu, Ni in the 

Shockley partial direction of 211}111{ , showing the nonlinear elasticity and asymmetry 

of shear stress with respect to the sense of shearing at large deformation. 

6.2.3 Dislocation nucleation criterion 

 Homogenous dislocation nucleation in the bulk perfect crystal can be triggered by 

the nonlinear elastic instability of crystal at large deformation. The onset of instability is 

associated with the Hadamard condition of loss of positive definiteness of the matrix jkQ  

defined by  

  liljkijklijk ncnQ )( δσ+=  (6.5) 

for any unit vector in  [118, 119].  Here, the current and reference configurations are 

assumed to coincide; jkσ  is the Cauchy (true) stress and ijklc  is the tangent (instantaneous 

elastic) modulus, both of which are calculated from the interatomic potential, see Eq. 

(6.3) and (6.4). For small deformations, jkQ  is positive definite. When  

  0)det( =jkQ   (6.6) 
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loss of stability occurs, leading to dislocation nucleation. Correspondingly, the unit vector 

in  predicts the activated slip plane, and the eigenvector ig  associated with the matrix 

jkQ  predicts the slip direction at the onset of dislocation formation. By comparing with 

MD simulations, we have quantitatively verified the accuracy of this nucleation criterion 

in terms of the predictions of the critical indentation load, location of nucleation site and 

activated slip systems [111].  

 To appreciate the key difference between the nucleation criterion of Eq. (6.5) with 

the commonly used one such as the critical resolved shear stress (CRSS), we note that 

jkQ  in Eq. (6.5) contains both the tangent modulus ijklc  and Cauchy (true) stress jkσ . 

When a dislocation is about to nucleate (the corresponding shear strain is large), the 

magnitudes of ijklc  and jkσ  become comparable due to elastic softening of the 

hyperelastic crystal; the nucleation criterion of Eq. (6.5) states that when the decreasing 

ijklc  is balanced with the increasing jkσ , the crystal becomes unstable, leading to 

homogenous dislocation nucleation. Since the instability does not occur precisely when 

the tangent modulus vanishes (equivalently, the RSS maximizes), the nucleation criterion 

based on the CRSS is not accurate. Moreover, the CRSS is not a material constant; it 

depends on other stress components than just the shear. Thus, even an approximate use of 

CRSS to predict nucleation would require a calibration for different stress (deformation) 

states, similar to the construction of a yield surface in stress space in the plasticity theory. 

In contrast, the nucleation criterion of Eq. (6.5) does not require calibration; nucleation 

occurs as a natural consequence of loss of positive definiteness of the matrix jkQ . 

6.2.4 Simulation setup 
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Fig. 6.2. Finite element mesh for indentation simulation. The spherical indenter is 

modeled as a frictionless, analytic rigid surface. The simulation cell is one half of the 

whole system considering the cubic symmetry of the fcc crystal. 

  Using the IPFEM, we have performed 3D simulations of nanoindentation by a 

spherical indenter, and quantified the critical states of dislocation nucleation. Predictions 

will be given as to when and where the dislocation will nucleate within the crystal, and 

what slip mode the nucleated dislocation will take. More specifically, indentation is 

simulated for a spherical indenter pressed into the (111), (110) and (100) surfaces of 

single crystals of Al, Cu, Ni. The radius of the indenter is 50nm, the approximate tip size 

of a nominally sharp Berkovich indenter used in typical nanoindentation experiments. 

The spherical indenter is modeled as a frictionless, analytic rigid surface. Since this 

research is focused on dislocation nucleation inside the bulk crystal, the effects of 

indenter elasticity and contact adhesion are ignored. However, those effects could play an 

important role if a dislocation nucleate directly from the contact surface [120, 121]; a 

detailed study of surface nucleation is beyond the scope of this work. We have previously 
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performed extensive numerical testing to assess the influences of geometry of simulation 

cell, imposed far-field boundary conditions, element type, and node density by comparing 

with the Hertzian solutions for the isotropic and anisotropic, linear elastic material, as 

detailed in [111]. We found for a system with the in-plane size of 300×300 and depth of 

600nm, the effect of boundary constraint is sufficiently minimized. To reduce the 

computational cost, we simulate one half of the whole system considering the cubic 

symmetry of crystal, as shown in Fig. 6.2. The boundary conditions are imposed as 

follows: the displacement along the bottom of the mesh is constrained to be zero, while 

the displacements of lateral surfaces are unconstrained. The graded mesh comprises 8-

node linear brick elements, with typical size of elements near the indenter about 10
o

A . 

The total number of elements is 519,332. Indenter is moved down in displacement 

control at a sufficiently low rate to mimic the quasi-static loading condition, as calibrated 

by the analytic solutions for indentation on a linear anisotropic elastic material [111].  

6.3 Results 

6.3.1 Indentation load-displacement response 

 Figs. 6.3(a)-(c) show the load-displacement (P-h) curves for nanoindentation on 

single crystals of Al, Cu and Ni, respectively. For each crystal, the P-h curves are 

calculated for three indentation orientations (111)/(011)/(001). The different P-h 

responses arise because of the elastic anisotropy of single crystals. For Al, the three P-h 

curves are very close, consistent with the fact that Al is a nearly isotropic material (

2.1=β , see Table 6.1). As the elastic anisotropy increases, i.e., from 5.2=β  for Ni to 

2.3=β  for Cu, the variation in the P-h responses also increases for different indentation 
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orientations. These results are consistent with the variation of indentation moduli given in 

Table 6.2, where the crystal is simplified as a linear, anisotropic and elastic material; such 

simplification renders the indentation moduli analytically solvable, thus providing a 

quantitative reference to the numerical calculation for the hyperelastic crystals. We note 

that the crystal beneath the nanoindenter should have undergone nonlinear elastic 

deformation before homogenous dislocation nucleation. But the effect of nonlinearity is 

not significant on the P-h response. This is because the P-h curve is not a particularly 

sensitive indicator on the nonlinear elastic deformation during nanoindentation, as it 

represents an average of the linear elastic response at the far field and the nonlinear 

elastic response close to indenter. However, the hyperelastic constitutive model, which is 

the basis of IPFEM simulations, is essential to predict dislocation nucleation caused by 

the nonlinear elastic instability of crystals at large shear, as shown later. 

 

Table 6.2. Indentation moduli, *E , for single crystals of Al, Cu and Ni. They are 

calculated by numerical integration using the semi-analytic indentation solution, with the 

elastic constants predicted by the interatomic potentials, as listed in Table 6.1. 

 *
)111(E (GPa) *

)100(E (GPa) 

Al 88.9 87.1 
Cu 153 135 
Ni 254 228 

 

 Specifically, when a cubic crystal deforms in the regime of linear anisotropic 

elasticity, the P-h response can be derived as 2/32/1*

3

4
hREP =  for a spherical indenter 

(radius R) on a half space; for the (111) and (100) indentations, it can be proven that the 
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contact area is circular because of crystal symmetry, and the semi-analytic solution is 

given by [122, 123]. 

Fig. 6.3. Nanoindentation load-displacement curves for indentation on the (111), (110), 

(100) surfaces of single crystals of (a) Al, (b) Cu, (c) Ni.  The (111) indentations are 

compared in (d) for the three crystals. 

 

 In Figs. 6.3(a)-(c), each P-h curve is terminated at an indentation depth (indicated 

by circle), when the onset of dislocation nucleation is first identified by the nucleation 

criterion of Eq. (6.5). For each crystal, the critical load of nucleation (cP  and ch ) 

changes considerably for different indentation orientations, e.g., 

(a) 

(c) 

(b) 

(d) 
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1:2:6.2nm93.1:nm85.3:nm04.5:: }100{}110{}111{ ≈≈ccc hhh  for Cu. This change arises 

because of the effect of crystallography. Specifically, consider a simple situation of 

dislocation nucleation in the bulk single crystal under a uniaxial compressive stress σ . In 

this case a dislocation tends to nucleate on one of the 211}111{  slip systems, where the 

resolved shear stress στ m=  ( m denotes the Schmid factor) first exceeds the shear 

resistance of nucleation in a perfect lattice. By considering the hard sphere packing of an 

fcc lattice and noting the effect of shear asymmetry as shown in Fig. 6.1, one can readily 

calculate m and identify the slip system of nucleation; for different compression 

orientations, the ratio of the inverse Schmid factor is 1:2:3/1:/1:/1 }100{}110{}111{ =mmm

. One may assume the shear resistance of nucleation cτ  is the same for each case, and 

then obtains 1:2:3:: }100{}110{}111{ =ccc σσσ ; here, in a first approximation we ignore the 

influence of other stress components on cτ . The ratio of cσ  for different compression 

orientations is qualitatively consistent with that of the nucleation load ch  for different 

indentation orientations, thereby showing that the variation of ch  is dominantly 

controlled by the effect of crystallography. While the above simple analysis clarifies the 

controlling factor on ch , the IPFEM calculations enable quantification of cP  and ch  by 

solving the distribution of non-uniform and nonlinear elastic deformation beneath the 

indenter, as shown in Fig. 6.3. 

 In Fig. 6.3(d), we compare the P-h curves for the (111) indentation of the three 

crystals. It is seen that Ni is much stiffer than Cu and Al, consistent with the result that Ni 

has a higher indentation modulus as shown in Table 6.2. In terms of the critical 

indentation displacements of nucleation, ch , it is interesting to note that although Cu and 
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Al show very similar response for uniform simple shear (see Fig.6.1),  their ch differ 

considerably; such difference arises because of crystal anisotropy, as well as the non-

uniform deformation beneath the indenter, as manifested in the different indentation 

moduli (see Table 6.2). 

 

6.3.2 Nucleation site and activated slip system 

 Fig. 6.4 shows the predicted nucleation sites from IPFEM calculations, using Al 

as an example. As schematically shown in Fig. 6.4(a), the nucleation site for the (100) 

indentation is at the central loading axis. In contrast, it is off the central axis for the (110) 

and (111) indentations; the number of equivalent sites, as well as their locations, is 

dictated by crystal symmetry, see [111] for example. In Fig. 6.4(b), we show the contours 

of )det( jkQ  at the respective critical moment of nucleation and for the respective 

activated slip system. In each case, the gray element (highlighted with red circles) 

indicates the nucleation site directly visible on the surface of the simulation cell. Because 

of the high symmetry of indentation orientations, there are multiple equivalent slip 

systems at each site; the slip system first activated in experiment or MD simulation would 

be randomly selected by thermal fluctuations. Our predictions by IPFEM, which 

accurately incorporate the effects of elastic softening and crystal anisotropy, have been 

qualitatively verified by MD simulations [37]; but they are at variance with predictions 

based on the linear elastic analysis [124] and/or using the stress-based nucleation 

criterion such as the maximum equivalent shear stress or CRSS [125].   
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Fig. 6.4. IPFEM predictions of nucleation sites by nanoindentation on the (100), (110) 

and (111) surfaces of single crystal Al. (a) Schematics of location of nucleation sites; all 

the solid lines are in the 110  directions and the shaded triangles represent the }111{  

plane. (b) Contours of )det( jkQ at the respective critical moment of nucleation and for the 

respective activated slip plane. The gray element (highlighted with red circles) has a 

small negative value of )det( jkQ , thus showing the nucleation sites.  

6.3.3 Critical resolved shear stress 

 We calculate the critical resolved shear stress (CRSS), cτ , at the onset of 

nucleation, and show the CRSS is not an accurate nucleation criterion. Fig. 6.5 shows the 

indentation displacement versus RSS curves. The RSS, τ , is calculated at the critical 

nucleation site and for the activated slip system, according to jiij gnστ = , where the 

current slip-plane normal, in , and slip direction, ig , are related to those in the 

undeformed crystal, jn0  and jg0 , by 1
0

−= jiji Fnn  and jiji gFg 0= , respectively. In Fig. 
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6.5, circle represents the CRSS, cτ , when the nucleation criterion is first satisfied in 

IPFEM calculations. The respective cτ  is listed in Table 6.3 for the three crystals and 

three indentation orientations. Importantly, cτ  is not a constant for each crystal, and it 

depends on the indentation orientation. Fig. 6.5 also shows that cτ  is close to, but not 

right at the maximum of RSS.  This is due to the elastic-softening effect associated with 

the hyperelastic crystals; namely, according to the physically based nucleation criterion 

of Eq. (6.5), the nucleation occurs when the tangent modulus ijklc  is balanced with the 

Cauchy stress ijσ , rather than when ijklc  vanishes or equivalently the RSS maximizes. 

Hence, these results clearly demonstrate that the CRSS is not an accurate nucleation 

criterion; an approximate use of CRSS needs a calibration by combining experiments and 

IPFEM calculations. 

  Finally, we note that Fig. 6.5(c) reveals a numerical artifact of the RSS response 

for Ni under the (110) indentation, i.e., there is an abrupt change of the slope at low 

loads. Considering the overall reliable performance of the EAM potentials, which have 

been extensively calibrated by comparing with experimental or ab inito data [114, 115], 

we believe such a small artifact should not affect the overall reliability of the results 

reported in this study. 

 

Table 6.3. The critical resolved shear stress (CRSS) of dislocation nucleation  

 (111) (110) (100) 

cτ - Cu (GPa)  3.2 3.0 2.3 

cτ - Al (GPa) 3.8 4.0 3.1 

cτ - Ni (GPa)  8.2 8.0 4.5 
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Fig. 6.5. Nanoindentation displacement versus resolved shear stress at the critical 

nucleation site and for the activated slip system for single crystals of Al, Cu and Ni. 

 

 

(a) 

(b) 

(c) 
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6.4 Discussions 

6.4.1 Nanoindentation experiment 

 We compare our IPFEM results with nanoindentation experimental results. 

Nanoindentation experiments were performed on Cu single crystals by our collaborators 

[37].  Both the pyramid Berkovich tip (with an indenter radius of nm10164± ) and cube-

corner tip (with an indenter radius of nm453± ) were used. Indentations are performed 

on (111), (110), and (100) surfaces under constant loading rate N/s10µ=P& . For each 

orientation, at least 300 indentations were measured. Experimental results show the 

strength is not a constant but fluctuates.   
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Fig. 6.6. Experimental results of (111), (110), and (100) nanoindentation on single crystal 

Cu. (a) Representative P-h curves for (tip radius R = nm10164± ), and (b) Histograms of 

the critical indenter force cP  and displacement ch  at the onset of displacement bursts for 

the same tip radius. (c) Similar with (a), and (d) Similar with (b), except for the tip radius 

R = nm453±  ). In (a) the origin of the indenter force P is shifted for (111) and (110) 

cases to guide the eyes, and in (b) each nanoindentation orientation includes about 300 

indents.  

 Stochastic, discontinuous character is shown by nanoindentation experiments in Fig 

6.6, in contrast to the typical smooth yield behavior in their bulk counterparts [34, 105, 

126-128, 129 ]. Such jerky behavior has been attributed to the stochastic nature of 

dislocation sources in nanoscale and is fundamentally different from the microscale size 

effect often related to hardening associated with strain gradients [130]. In such a small 

volume, the number of potential dislocation sources is severely limited, and initial yield 

events evolving from a single source become measurable, as manifested by displacement 

bursts in a load-controlled nanoindentation test [129]. The statistical distribution of 

source strengths can lead to the fluctuation of yield stresses for a fixed indenter size. 

6.4.2 Theoretical analysis 

 The stochastic nature of a single source can be characterized by using the weakest 

link concept and Weibull statistics [131, 132]. It follows that the cumulative probability 

of discrete plastic yielding is given by [133] 
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where L  is the characteristic length scale of the highly stressed volume, σ  is the average 

stress acting on this volume, d is the dimensionality of the source ( 2=d  for surface and 

3=d  for bulk defects), m is the Weibull modulus, 0L  is the reference length, and 0σ  is 

the reference stress. Eq. (6.7) implies that the yield strength Yσ  satisfying the scaling law 

  βσ −∝ LY   (6.8) 

where the exponent md /=β . 

 On the other hand, we rewrite Eq. (6.7) to 

  ( )( )[ ] [ ]dLLmF )/(ln)/ln(1lnln 00
1 +=− − σσ  (6.9) 

The parameters of β   and Weibull modulus m can be determined by linear regression of 

the experimental data, which finally provide the dimensionality of the nucleation source 

in Table 6.4. 

Table 6.4. The indenter force cP  and displacement ch  at the onset of initial displacement 

bursts from nanoindentation experiments. The power-law exponent β , Weibull modulus  

m, and the dimensionality of dislocation source d = β m are also provided. 

 

Indentation 
plane 

Berkovich tip 
(R = 164nm) 

Cube-corner tip 
(R = 53nm) β  m d 

cP (µN) ch (nm) cP (µN) ch (nm) 

(111) 34.2±9.4 8.2±2.1 10.5±4.1 3.9±0.9 0.22 8.11 1.8 

(110) 31.2±9.2 7.4±1.5 12.5±3.2 3.5±0.8 0.27 7.49 2.0 

(100) 27.0±7.3 7.8±1.2 14.3±3.6 4.2±0.8 0.49 5.67 2.8 
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 These results indicate that bulk defects (3≈d ) are most likely responsible for the 

displacement bursts in the case of (100) indentation. In contrast, surface defects ( 2≈d ) 

are most likely underlying the bursts in the (111) and (110) indentations.  

 

 

6.4.3 Heterogeneous dislocation nucleation 

 Using the IPFEM, we study the nanoindentation-induced homogenous dislocation 

nucleation in a dislocation-free perfect crystal as a possible cause of experimentally 

measured displacement bursts. The IPFEM enables nanoindentation simulations at the 

experimental size scale while retaining the atomic-scale resolution. We consider the 

homogenous dislocation nucleation resulting from the hyperelastic (non-linear elastic) 

instability [111]. When the indenter radius R is 50nm, the critical indenter displacements 

for nucleation are predicted as 1:2:6.2:: )100()110()111( ≈ccc hhh , with the corresponding 

nucleation sites shown in Fig. 6.4 and 6.7 (a). These ratios have been verified 

qualitatively by direct MD simulations in smaller systems (R = 5nm), as shown in Fig. 

6.7 (b), and can also be rationalized by evaluating the Schmid factors or resolved shear 

stresses on the most favorably oriented slip systems for nucleation [134]. Importantly, 

while these predictions are within the range of experimental values of ch (as given in 

Table 6.4), they disagree qualitatively with the measured ratios that exhibited a 

considerably weak orientation dependence. Such differences provide quantitative 

evidence that discontinuous yielding should be triggered by the activation of 
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heterogeneous sources, rather than the homogenous dislocation nucleation in a small 

volume of perfect crystal beneath the indenter tip.   

6.4.4 Dimensionality of nucleation sources 

 In order to understand the effect of crystallographic orientation on the dislocation 

sources responsible for the indenter displacement bursts in experiments, we have 

performed direct MD simulations to study the post homogenous nucleation behavior in 

nanoindentation. Our MD simulation is performed in a displacement-controlled mode, 

such that the discontinuous yielding event is shown as a load drop rather than a 

displacement burst under force control. Fig. 6.7(b) shows that in the (100) indentation, 

the load drop is not observed immediately after the initial homogenous nucleation event 

(as indicated by the square symbol); the indenter force continues to increase, and a 

significant load drop occurs at a much larger force, as also reported by Liang et al. [135]. 

Such hardening response arises because of the immediate formation of dislocation locks.  

In particular, the nucleation site and the site of lock formation coincide, both of which are 

located at the central axis where the four equivalent slip systems (indicated by shaded 

triangles) intersect, see Fig. 6.7(a). Notice that the lock junction creates a wedged-shape 

region bounded by the two }111{  slip planes (see Fig. 6.7(c)), which restricts the plastic 

deformation inside the wedge and prevents a significant load drop. Moreover, the wedge 

transmits the indenter load and generates a stress concentration at its tip.  At larger 

indenter penetrations, the load drops occur due to the heterogeneous dislocation 

nucleation from the junctions near the wedge tip, see Fig. 6.7(d) for example. 

Considering the dominant effect of bulk dislocation junctions on stress relaxation in the 

(100) indentation, we propose that such type of dislocation lock can act as a 
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heterogeneous source to initiate dislocation avalanches and thus the experimentally 

measured indenter displacement burst. This source is located inside the crystal, consistent 

with the Weibull analysis of the (100) nanoindentation experiment ( 3≈d ). In contrast, 

MD simulations show that for both the (111) and (110) indentations, the load drops occur 

immediately after the first nucleation event. In particular, no major locks form owing to 

the fact that several equivalent nucleation sites are located off the central axis and at 

different locations, as shown in Fig. 6.7(a). This facilitates the escape of dislocations to 

the surface, as well as injection into the bulk. The former process creates the 

heterogeneous surface sources that could initiate dislocation avalanches leading to the 

indenter displacement burst. In these two cases, the locations of heterogeneous sources 

are consistent with those from the Weibull analysis of experiments ( 2≈d ).   
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Fig. 6.7. Modeling of nanoindentation on the (111), (110), and (100) surface of single 

crystal Cu. (a) Dislocation nucleation sites. Upper: schematics (stars); middle: IPFEM 

predictions (circles) when the indenter radius R = 50 nm; lower: MD simulations when R 

= 5 nm – atoms are colored by the coordination number and the perfectly coordinated 

atoms are removed to show the surface and dislocation embryos. (b) Indenter load-

displacement responses from MD simulations; (c) Post-nucleation dislocation structures 

for the (100) indentation at a small indentation penetration. (d) Same as (c) except at 

large indenter displacement. In both (c) and (d), atoms are colored by the central 
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symmetry parameter to show the wedged-shape lock junction bounded by the two 

stacking faults on the }111{  slip planes. 

6.5 Conclusions 

 We have simulated nanoindentation and predicted dislocation nucleation in fcc 

single crystals of Al, Cu and Ni. Simulations are performed using the interatomic 

potential finite element method, which is a computationally efficient approach that 

facilitates the study at length scales large compared to atomic dimensions, while 

remaining faithful to the nonlinear interatomic interactions. We consider homogenous 

dislocation nucleation triggered by the nonlinear elastic instability of crystal at large 

strain and nearly zero-K temperature. The results show that the critical resolved shear 

stress of nucleation is at the GPa-level, close to the theoretical limit of perfect crystals. 

However, the critical conditions of dislocation nucleation, including the indentation load 

of nucleation, location of nucleation site, nucleation stress and activated slip systems, 

sensitively depend on the indentation orientation. But these conditions are consistent for 

different fcc crystals.  Last but not least, we have also studied the stochastic, 

discontinuous plastic deformation in the nanoscale volumes of single crystal Cu and 

explored the characteristics of the nucleation. The mechanisms of the nucleation-

controlled plasticity and dimensionality of nucleation source have been studied. 
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CHAPTER 7  

CONCLUTIONS 

  We study the plasticity mechanisms of diffusionless martensite phase 

transformation in Nickel-Titanium. NiTi usually exhibits various metastable phases (B2, 

B19, B19′, R etc.), the activation of which depends sensitively on temperature, loading, 

concentration, and precipitation, etc. The formation of a variety of twin structures further 

complicates the study. Also, nanoscale size effects play an important role in the 

controlling of pseudoelasticity, shape memory and other plastic deformation. We begin 

the study with understanding the nanotwin structure in NiTi martensite by molecular 

statics. Then molecular dynamics simulations are applied to study the temperature-driven 

B2 → B19′ phase transitions. Then the stress-driven martensitic phase transformation 

governing the pseudoelasticity and shape memory effects in NiTi nanopillars is explored 

by molecular dynamics. Monte Carlo simulations are conducted to characterize the 

temperature- driven B2 → B19 phase transition and the patterning of martensitic 

nanotwins in NiTi thin films, which is not easy to be achieved by molecular dynamics 

due to its time scale limitations. Finally, phase field simulations are performed to predict 

the formation and evolution of complex martensitic microstructures, including the 

detailed analysis of twin compatibility under complex loading conditions in a larger 

modeling system. The above results not only provide new insights into the nanoscale 

martensitic phase transformation in NiTi, but also provide an effective modeling 

framework for studying the diffusionless phase transformation in large systems with 

atomic resolution.  
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 We also study the nucleation-controlled plastic deformation in metals, which is 

the underlying deformation mechanism in ultra-strength nano materials. Our work 

focuses on understanding how dislocations nucleate in single crystals. Interatomic 

potential finite element method is applied to determine when, where and how dislocations 

nucleate during nanoindentation in metals such as Cu, Al and Ni. We explore the effects 

of indentation orientation on the characteristics of activated dislocation sources. Results 

provide insights into the nanoscale mechanisms of plastic yielding, and are useful for 

guiding the nanomechanical experiments in the future. 

 Overall, the nanomechanics study in this thesis provides novel mechanistic 

insights into the deformation mechanisms in shape memory alloys and ultra-strength 

metallic nanostructures.   
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APPENDIX A 

CRYSTALLOGRAPHIC THEORY OF TWINNED MARTENSITE 

 We have used the crystallographic theory of twinned martensite [41] to facilitate 

the construction of initial twin structures. This theory only requires an input of the 

transformation matrix from the cubic parent phase to monoclinic martensitic phase. The 

twinning elements, including the twin plane normal n  and twin shear vector m , can be 

predicted by solving the twinning equation of Eq. (4) in the text. This appendix provides 

the solution of twinning elements for compound twins. Their relaxed structures are 

discussed in the section of Results and Discussion. It should be noted that the general 

solutions provided by Hane and Shield [41] sometimes cannot be directly used in the 

atomistic simulation when periodic boundary conditions[59] are imposed to eliminate the 

free surface for studying bulk properties. In other words, it is necessary to construct the 

deformation gradient matrix such that the twin plane after martensitic transformation 

remains parallel to one side of the supercell for ensuring periodic twin structures in 

different supercells. 

 Consider a pair of symmetry-related transformation matrices 
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We solve the twinning equation of Eq. (4) by following the procedure described by James 

and Hane (Proposition 1 in page 202 of their paper).[6] Using the experimental values of 

lattice constant and monoclinic angle listed in Table 1. we obtain two solutions: 

[ ]0 ,1 ,0I =n , [ ]2566.0 ,0 ,0I =m  and [ ]1 ,0 ,0II =n , [ ]0268.0 ,2252.0 ,0II −=m , which 
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give the )010(  and )001(  compound twin, respectively. This pair of twins is 

conventionally called reciprocal or conjugate twins. Note that all the vectors are given in 

the ),,( kji ′′′  basis defined in Fig. 1.  

 Substitution of In  and Im  into Eq. (4) yields IQ = . As discussed earlier, this 

result indicates that after the martensitic transformation of variants I and J, the orientation 

of the twin plane )010(  is unchanged as illustrated in Fig. A1(a). This can be readily 

verified by noting that the twin plane normal after transformation, -1IFn , is still along the 

[ ]0 ,1 ,0  direction. 

 

Fig. A1 Illustration of shear transformation and the rotation of the mirror twin plane 

during the formation of )010(  and )001(  compound twins. (a) The (010) mirror twin 

plane (in blue) is unrotated after the shear transformation of the red rectangle to green 

parallelogram in the ),( kj ′′  plane along the k ′  direction. (b) The (001) mirror twin plane 

(in blue) is rotated after the same shear transformation as (a). (c) The (001) mirror twin 

plane (in blue) is unrotated after the shear transformation of the red rectangle to green 

parallelogram in the ),( kj ′′  plane along the j′  direction. 
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  In contrast, substitution of IIn  and IIm  into Eq. (4) yields Q  unequal to the 

identity matrix. This is consistent with the fact that the orientation of the twin plane (001) 

is changed after martensitic transformation, as shown in Fig. A1(b). Indeed, the twin 

plane normal after transformation, -1IFn , is in the [ ]1 ,0 ,0  direction. To ensure the 

periodicity of )001(  compound twins in different supercells, we construct a pair of 

transformation matrices that are equivalent to those given by Eq. (A1), but keep the twin 

plane unrotated after martensitic transformation (see Fig. A1(c)), 
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The above matrices are constructed by noting that the martensitic transformation of the 

B2 to B19' phase can be considered as an expansion or contraction along the edges of a 

tetragonal unit cell (see Fig. 1), followed by a simple shear to a monoclinic angle β . This 

simple shear can be achieved by rotating the j′  axis about the i′  axis, giving Eq. (A1) or 

equivalently by rotating k ′  about i′ , giving Eq. (A2). Solution of Eq. (1) with an input of 

Eq. (A2) gives compound twins of [ ]0 ,1 ,0I =n , [ ]2550.0 ,0304.0 ,0I −=m  and 

[ ]1 ,0 ,0II =n , [ ]0 ,227.0 ,0II =m . They are equivalent to the results from Eq. (A1), 

differing by a rotation.  

 Incidentally, Eq. (A2) can also be obtained by a more general procedure of 

starting from Eq. (A1)  and then constructing a matrix that rotates the twin plane so that it 

is parallel to the side of the supercell, i.e., JJ FQF *=*  and JI FQF *T=* , where  
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This “transformation and rotation” procedure is general, and can be applied to construct 

other types of twins in periodic supercells. 
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APPENDIX B  

STRESS FIELD IN FOURIER SPACE 

One needs to solve the equilibrium equations to obtain the total strain � and stress 

U. We define a differential operator  

   · =
¸
¹º

88Gl 0 0
0 88Gk 0
0 0 88Gm

				
0 88Gm 88Gk88Gm 0 88Gl88Gk 88Gl 0 »

¼½
N
 (B1) 

where J�, J� and J( are the spatial coordinate. Then the geometry equation of strain can 

be represented as  

  � = ¾¿  (B2) 

where the displacement vector ¿ = (À�, À�, À(	)N is a function of  J�, J� and J(.  
The equilibrium equation can be written as 

  ¾NU = � (B3) 

It is non-trivial to obtain the analytical solution of Eq. (5.10), (B2) and (B3) for 

generally prescribed boundary conditions. Instead, these equations can be discretized and 

numerically solved. However, direct solution of Eq. (5.10), (B2) and (B3) could be 

computationally inefficient, since a set of partial difference equations for the whole field 

needs to be satisfied at each time step. However, for the problem with periodic boundary 

conditions, the semi-implicit algorithm, which is originally developed by Chen and Shen, 

can significantly improve the computational efficiency by applying the Fast Fourier 

Transformation (FFT). The differential equations are transformed to linear equations 

mutually independent at different mesh node [99]. In this appendix, we present the 
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detailed formulation and procedure of solving the equilibrium equations with the FFT 

method by partially following the approach introduced by Shu and Yen [92].  

The total strain �, transformation strain �∗ and stress U are discomposed into the 

homogeneous and inhomogeneous components 

  � = 〈�〉 + �Á, where 〈�〉 = $ �& '()  (B4) 

and 

  �∗ = 〈�∗〉 + �∗Á, where 〈�∗〉 = $ �∗& '() (B5) 

One can further decompose the total displacement ¿ into a homogeneous and an 

inhomogeneous component 

  ¿ = 〈¿〉 + ¿Á  satisfying  〈�〉 = ¾〈¿〉  and   �Á = ¾¿Á  (B6) 

Note that the homogeneous component 〈¿〉 is a linear function of 
, because the 

homogeneous strain 〈�〉 is a constant. Although this decomposition in Eq. (B6) is not 

unique with a constant plus a rigid body rotation, it will not affect the result of our 

interest, because we will only use the differential form of displacement ¿Á.  
Substitution of Eq. (B4) and (B5) into Eq. (5.10) yields 

  U = P ∙ (� − �∗) = P ∙ (〈�〉 − 〈�∗〉) + P ∙ (�Á − �∗Á) = 〈U〉 + UÁ (B7) 

where the homogeneous stress is defined as 

  〈U〉 = P ∙ (〈�〉 − 〈�∗〉) (B8) 

and the inhomogeneous stress is 

  UÁ = P ∙ (�Á − �∗Á) (B9) 

In each simulation time step, once the field variables ��, ��, ⋯ , ��� are known,  �∗ 
is can be directly calculated from Eq. (5.1), so that it is easy to calculate 〈�∗〉  from Eq. 

(B5). The applied boundary conditions can be given by either 〈�〉 = ��HH or 〈U〉 = U�HH, 
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or a mixed type. Together with Eq. (B8), all the homogeneous components 〈�〉 and 

〈U〉	can be obtained.  

The equilibrium equation of  UÁ remain the same form 

  ¾NUÁ = � (B10) 

Substituting Eq. (B6) into Eq. (B9) and (B10), we obtain the partial differential 

equations 

  ¾NP¾¿Á = ¾NP�∗Á (B11) 

For an integral equation  �: Â( → Â, the Fourier transformation is defined by 

  �({)} = ℱ(�) =∭ �(
)ÆÇ�~�
∙{'
ÈÇÈ  (B12) 

where { = (z�, z�, z(	)N is the coordinate in the reciprocal space. 

The inverse Fourier transformation is defined by 

  �(
) = ℱÇ�(�É) =∭ �({)}	Æ�~�
∙{'{ÈÇÈ  (B13) 

It can be shown that the differential operator ¾ in the real space is transformed to 

the linear operator Ê in the reciprocal space, which is given by 

  Ë = 2y� �z� 0 00 z� 00 0 z(				
0 z( z�z( 0 z�z� z� 0�

N
 (B14) 

Then ¿ÁÌ  is obtained from Eq. (B11) as 

  ¿ÁÌ = ℱ(¿Á) = (ÊNPÊ)Ç�	ÊNP�∗Á�  (B15) 

From Eq. (B6), the transformed inhomogeneous strain is 

  �ÁÌ = ℱ(�Á) = Ê(ÊNPÊ)Ç�	ÊNP�∗Á�  (B16) 

From Eq. (B9), the transformed inhomogeneous stress is 

  UÁÌ = ℱ(UÁ) = PÊ(ÊNPÊ)Ç�	ÊNP�∗Á� − P�∗Á�  (B17) 
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The inhomogeneous stress and strain can be obtained by the inverse Fourier 

transformation according to Eq. (B13). Finally, together with the homogeneous stress 

given by Eq. (B8) and the boundary condition, one can obtain the driving force associated 

with elastic energy density given in Eq. (5.11). If the kinetic equations Eq. (5.16) are also 

solved in the Fourier space, the inverse transformation of stress is not needed in the phase 

field simulation. 
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