
MODELING AND CONTROL OF
HELICOPTERS CARRYING SUSPENDED LOADS

A Thesis
Presented to

The Academic Faculty

by

Christopher James Adams

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Mechanical Engineering

Georgia Institute of Technology
August 2012

MODELING AND CONTROL OF
HELICOPTERS CARRYING SUSPENDED LOADS

Approved by:

Dr. William Singhose, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Mark Costello
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Eric Johnson
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: 12 June 2012

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. William Singhose, for his guidance and patience. His

constant support and boundless enthusiasm have helped and inspired me greatly. I would

also like to thank my committee members, Dr. Mark Costello and Dr. Eric Johnson, for

their support of this work. Also, special thanks go to Dr. Mark Costello for providing

use of the Indoor Flight Facility for conducting some of the radio-controlled helicopter

experiments and for providing me with resources in my initial research of model-following

control. I would also like to thank James Potter for his help, tutelage, and encouragement

and Dr. Joshua Vaughan for his help and wisdom.

I would also like to thank my parents for their love and unquestioning support, without

which I would not be where I am today. They have made many sacrifices to provide me

with opportunities in life and to ensure that I have received a good education.

Lastly, I would like to thank God for the many blessings he has given me. Ad majorem

Dei gloriam.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

SUMMARY . x

I INTRODUCTION . 1

1.1 Motivation . 1

1.2 Solution Approach . 5

1.2.1 Input Shaping . 5

1.2.2 Integrating Input Shaping with Helicopter Flight Controllers 6

1.2.3 Helicopter Modeling . 7

1.3 Helicopter Handling Qualities . 7

1.3.1 Cooper-Harper Rating Scale . 8

1.3.2 Aeronautical Design Standard 33E 8

1.3.3 Handling Qualities for Flight with Suspended Loads 10

1.4 Helicopter Flight Control Systems . 10

1.5 Helicopter Control When Carrying a Suspended Load 12

1.6 Thesis Outline . 14

II DYNAMIC MODELING OF HELICOPTERS CARRYING SUSPENDED
LOADS . 16

2.1 Planar Crane Model . 17

2.1.1 Model Description . 18

2.1.2 Linearized Planar Crane Equations and Load Swing Natural Frequency 19

2.1.3 Model Verification . 20

2.2 Load-Attitude Coupling Model . 26

2.2.1 Model Description . 26

2.2.2 Derivation of Equations of Motion 28

2.3 Sikorsky S-61 Models . 30

2.3.1 Unloaded Sikorsky S-61 Model . 31

iv

2.3.2 Loaded Sikorsky S-61 Model . 32

2.3.3 Analysis of Sikorsky S-61 Models 34

III INPUT SHAPING CONTROL OF SUSPENDED LOADS 41

3.1 Input Shaping Background . 41

3.2 Input Shaping on the Blade CX3 Radio-Controlled Helicopter 43

3.3 Input Shaping on the Planar Experimental Radio-Controlled Helicopter . . 45

3.3.1 Planar Experimental Radio-Controlled Helicopter 45

3.3.2 Input Shaper Design . 47

3.3.3 Input Shaping Experimental Results 49

3.4 Input Shaping On Full-Scale Helicopters 50

IV FLIGHT CONTROLLER DESIGN COMBINING INPUT SHAPING
WITH MODEL-FOLLOWING CONTROL 52

4.1 Model-Following Control . 52

4.1.1 Controller Description . 54

4.1.2 Theoretical Model-Following Controller Performance 55

4.2 Near-Hover, Attitude-Command Model-Following Controller for the Siko-
rsky S-61 Helicopter . 58

4.2.1 Feedback Controller Design Using Unloaded S-61 Model 59

4.2.2 Prescribed Models . 59

4.2.3 Controller Implementation and Simulation 61

4.2.4 Simulation Results and Controller Performance 62

4.3 Combining Input Shaping and Model-Following Control 67

4.3.1 Input Shaper Design . 68

4.3.2 Simulation Results and Controller Performance with Input Shaping 69

V SUMMARY AND FUTURE WORK . 75

5.1 Future Work . 76

APPENDIX A — MATLAB INPUT SHAPING PROGRAM 79

REFERENCES . 121

v

LIST OF TABLES

1 Unloaded Sikorsky S-61 model [16] eigenvectors, with the associated eigen-
values and flight modes labeled. 36

2 Loaded Sikorsky S-61 model [15] eigenvectors, with the associated eigenvalues
and flight modes labeled. 39

3 get Methods for the InputShaper class. 84

4 Demos included with the Input Shaping Program. 87

vi

LIST OF FIGURES

1 Helicopter delivering supplies to a stranded cruise ship. 2

2 Helicopter transporting logs during a remote logging operation. 2

3 Helicopter carrying a power transmission tower. 2

4 Unmanned K-MAX R© helicopter transporting cargo during a demonstration
to the U.S. Marine Corps. 3

5 Lateral load oscillation caused by a lateral helicopter move. 4

6 Helicopter roll attitude response to a pilot’s attitude command when carrying
a heavy suspended load. 4

7 Cooper-Harper handling qualities rating scale [9]. 9

8 Underside of the K-MAX R© helicopter showing the suspension point mechanism. 13

9 Schematic diagram of a helicopter-suspended load system modeled as a planar
crane. 18

10 Plot of suspended load linearized natural frequency for a range of helicopter-
load configurations. 21

11 Photograph of the CX3 helicopter flying in the Indoor Fight Facility. 22

12 Motion capture and flight controller signal flow [63, 64]. 22

13 Composite photo of the CX3 helicopter performing a lateral move. 23

14 Comparison of simulated and experimental (a) payload and (b) helicopter
responses. 25
(a) Payload response. 25
(b) Helicopter response. 25

15 Schematic diagram of a helicopter carrying a suspended load with the heli-
copter attitude incorporated. 27

16 Eigenvalues of the unloaded Sikorsky S-61 model from [16]. 37

17 Eigenvalues of the loaded Sikorsky S-61 model from [15]. 38

18 Two self-canceling impulses. 42

19 Comparison of unshaped and ZV-shaped experimental (a) payload and (b)
helicopter responses for the CX3 helicopter. 44
(a) Payload response. 44
(b) Helicopter response. 44

20 Photograph of the Planar Experimental Radio-Controlled Helicopter exper-
imental setup. 46

21 Schematic diagram of the Planar Experimental Radio-Controlled Helicopter. 46

vii

22 Planar Experimental Radio-Controlled Helicopter suspended load impulse
response. 48

23 Comparison of unshaped and ZV input-shaped experimental (a) payload and
(b) helicopter responses for the Planar Experimental Radio-Controlled Heli-
copter. 50
(a) Payload response. 50
(b) Helicopter response. 50

24 Block diagram of an explicit model-following control structure. 55

25 Model-following controller for the unloaded Sikorsky S-61 helicopter. 58

26 Model-following controller for the load-carrying Sikorsky S-61 helicopter. . . 59

27 Pilot command, prescribed model response, and helicopter attitude response
in the (a) pitch and (b) roll channels and for the unloaded Sikorsky S-61. . 63
(a) Pitch pilot command. 63
(b) Roll pilot command. 63

28 Control effort required by the model-following controller in the (a) longitu-
dinal and (b) lateral channels for the unloaded Sikorsky S-61. 64
(a) Longitudinal command. 64
(b) Lateral command. 64

29 Pilot command, prescribed model response, and helicopter attitude response
in the (a) pitch and (b) roll channels for the loaded Sikorsky S-61. 66
(a) Pitch channel. 66
(b) Roll channel. 66

30 Suspended load swing in the (a) longitudinal and (b) lateral directions. . . 67
(a) Longitudinal load swing. 67
(b) Lateral load swing. 67

31 Model-following controller for the load-carrying Sikorsky S-61 helicopter with
input shaping added. 68

32 Input-Shaped pilot command, prescribed model response, and helicopter at-
titude response in the (a) pitch and (b) roll channels for the loaded Sikorsky
S-61. 70
(a) Pitch channel. 70
(b) Roll channel. 70

33 Unshaped and ZV-shaped suspended load swing in the (a) longitudinal and
(b) lateral directions. 71
(a) Unshaped and ZV-shaped longitudinal load swing. 71
(b) Unshaped and shaped lateral load swing. 71

34 Unshaped and ZV-shaped two-dimensional load oscillation. 72

35 Control effort required by the model-following controller in the (a) longitu-
dinal and (b) lateral channels for the unloaded Sikorsky S-61. 73
(a) Longitudinal command. 73

viii

(b) Lateral command. 73

36 Illustration of the technique used to implement input shaping in real-time. . 85

ix

SUMMARY

Helicopters are often used to transport supplies and equipment. When a heavy

load is carried via suspension cables below a helicopter, the load oscillates in response to

helicopter motion and disturbance forces, such as wind. This oscillation is dangerous and

adversely affects control of the helicopter, especially when carrying large or heavy loads.

By adding a command-shaping method called input shaping to the helicopter’s flight

controller, the suspended load oscillation caused by helicopter motion is greatly reduced.

A significant benefit of this approach is that it does not require measurement of the load

position.

This thesis contains derivations and analysis of simple planar helicopter-load dynamic

models, and these models are verified using experimental data from model-scale, radio-

controlled helicopters. The effectiveness of input shaping at eliminating suspended load

oscillation is then demonstrated on this experimental hardware. In addition, the design

of an attitude command, near-hover flight controller that combines input shaping and a

common flight control architecture is illustrated using dynamic models of a Sikorsky S-61

helicopter, and simulation results are shown for example lateral and longitudinal reposition-

ing movements. Results show that applying input shaping to simulated pilot commands

greatly improves performance when carrying a suspended load.

x

CHAPTER I

INTRODUCTION

1.1 Motivation

A helicopter can be used as a “flying crane” by hanging a load (most often called a sus-

pended load or sling load) from cables attached to the helicopter. A flying crane is extremely

versatile. It can be used to transport logs during remote logging operations, deliver power

transmission towers to their installation locations, rescue people stranded in remote areas,

and even deliver food and supplies to a disabled cruise ship, as shown in Figure 1. He-

licopters transporting logs and power transmission towers are shown in Figures 2 and 3,

respectively. These are just a few examples of tasks that are too expensive, too slow, or

physically impossible to perform with other types of vehicles.

One example of such a heavy lift helicopter is the Kaman K-MAX R© Aerial Truck4. It

is available in both manned and unmanned versions. A photo of the unmanned version

during a demonstration to the U.S. Marine Corps is shown in Figure 4. As an example

of the utility of flying crane helicopters, two of the unmanned K-MAX helicopters have

transported over one million pounds of cargo over a four-month period for the U.S. Marine

Corps in Afghanistan6.

Unfortunately, the suspended load behaves as a pendulum, making efficient and accurate

transfer of the load difficult. Load swing also adversely affects control of the helicopter. In

fact, accidents can be caused by violent suspended load swing [58]. The helicopter becomes

particularly difficult to control when carrying heavy loads [18].

1Photo Source: Gregory Bull. “Navy helicopter drops supplies onto the Carnival Splendor off Mexico s
Baja Peninsula,” Associated Press, 11 November 2010. Appears in: Gene Sloan, “On disabled cruise ship,
a ‘nightmare’,” USA Today, page FA.

2Photo Source: http://tealjones.com/Forestry Heli.htm
3Photo Source: http://dorukhava.en.ec21.com/Slung Cargo Transportation–4186984.html
4http://www.kaman.com/aerospace/helicopters/products-services/k-max/
5Photo Source: http://www.armybase.us/2010/02/k-max-demonstrates-successful-unmanned-helicopter-

cargo-resupply-to-u-s-marine-corps/
6http://www.kaman.com/news/deployment-extended-for-k-max-unmanned-aerial-cargo-hauler-as-it-

exceeds-million-pound-milestone/

1

Figure 1: Helicopter delivering supplies to a stranded cruise ship1.

Figure 2: Helicopter transporting logs
during a remote logging operation2.

Figure 3: Helicopter carrying a power
transmission tower3.

2

Figure 4: Unmanned K-MAX R© helicopter transporting cargo during a demonstration to
the U.S. Marine Corps5.

Figure 5 shows the lateral load oscillation during and following a simulated near-hover

lateral move performed by a helicopter carrying a heavy suspended load. The load oscillates

with a large amplitude and slow period. The load suspension point is below the helicopter’s

center of gravity, so the tension in the suspension cable produces an oscillating torque about

the helicopter’s center of gravity as the load swings. This effect is known as load-attitude

coupling.

A plot of the pilot’s attitude command and the resulting helicopter roll attitude during

and following the lateral move is shown in Figure 6. Due to load-attitude coupling, the load

swing causes residual roll attitude oscillations that have an amplitude of nearly 2 degrees.

Residual attitude oscillations larger than 0.5 degrees are considered excessive for any type

of maneuver [59]. These attitude oscillations make the helicopter difficult to control, and

the load swing slows down load transfer operations.

3

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Lateral Payload Oscillation - Unshaped

L
a

te
ra

l
P

a
y

lo
a

d
 O

sc
il

la
ti

o
n

 (
ft

)

Time (seconds)

Figure 5: Lateral load oscillation caused by a lateral helicopter move.

-8

-6

-4

-2

0

2

4

6

8

0 5 10 15 20 25 30 35

Pilot Attitude Command

Helicopter Response

R
o
ll

 A
n

g
le

 (
d

eg
)

Time (seconds)

Figure 6: Helicopter roll attitude response to a pilot’s attitude command when carrying
a heavy suspended load.

Guidelines for suspended load operations suggest that the best way for a pilot to regain

control when load swing becomes too large is to slow down the helicopter [8, 58]. By trying

to actively cancel load swing, the pilot may actually amplify the problem if his or her

control inputs are not in the correct phase relative to the swing [8]. In cases where the

swing amplitude becomes extreme and the pilot has difficulty stabilizing the load, the pilot

4

may elect to jettison the load to regain control of the helicopter [58]. The safety of sling

load operations would be improved significantly by reducing load swing and its effects on

helicopters.

Reducing load swing would also increase productivity during load transfer operations.

Once a load is positioned above its desired location, it cannot be safely deposited until the

swing amplitude settles below an acceptable level. Keeping the swing at a low amplitude

would allow the pilot to transfer and deposit loads more quickly and safely.

1.2 Solution Approach

1.2.1 Input Shaping

This thesis investigates a method to improve performance during suspended load operation

by adding a technique called input shaping to the helicopter’s flight controller. Input shaping

strategically modifies a reference command by convolving it with a series of impulses, called

an input shaper. The resulting command induces little or no residual vibration [39, 50].

Designing input shapers only requires estimates of the natural frequency and damping ratio

of the undesired vibratory mode.

By applying input shaping control to helicopters carrying suspended loads, residual

load oscillations caused by helicopter motion can be significantly reduced. A significant

advantage of this approach is that it does not require real-time measurement or estimation

of the load states.

Input shaping has proven effective on many kinds of machines, including cranes [7, 51],

robotic arms [10, 14, 29], coordinate measuring machines [24, 48], and satellites [2, 45, 56,

65]. Input shapers can be designed to suppress multiple flexible modes [22, 40, 42, 46].

In addition, many studies of crane operators have shown that input shaping can greatly

improve performance [25, 26, 30]. The primary disadvantages of input shaping are that it

cannot reduce vibration caused by external disturbances and it introduces a small response

lag due to the method used to form the shaped commands.

The application of input shaping to helicopters carrying suspended loads has been con-

sidered by a few previous researchers [6, 35, 37]. Bisgaard et al. [6] used a state estimator

5

to measure the natural frequency of the suspended load oscillation. They then used this

measurement to adaptively change an input shaper to suppress oscillation at the measured

natural frequency. Ottander and Johnson [35] combined input shaping with delayed feed-

back control of the payload swing angle. This controller allowed the the payload to more

accurately track a desired trajectory. Input shaping reduced load swing caused by helicopter

motion, and external payload disturbances were canceled using feedback of the load swing

angle. Both approaches required using a vision system to measure the load swing. A vision

system that yields accurate measurements of the load swing would be costly and potentially

difficult to implement in most real-world situations.

Input shapers are designed to suppress motion-induced residual oscillation, so they will

not decrease oscillation induced by external disturbance forces, such as wind gusts. Sup-

pressing that swing does require feedback of the load states or an estimation technique

that can accurately predict the load swing caused by a measured wind gust. Although it

can be effective to combine input shaping with feedback control [35], this thesis focuses on

eliminating load swing caused by helicopter motion through use of input shaping control.

1.2.2 Integrating Input Shaping with Helicopter Flight Controllers

Effective design of a helicopter’s flight control system is critical to the overall performance

of the aircraft. Stability augmentation systems and high authority control augmentation

systems assist the pilot in maneuvering the aircraft by stabilizing its response, adding

damping to oscillatory aircraft modes, and/or introducing different flight characteristics

such as altitude or heading holds [23, 27, 38]. When carrying a heavy load, the pilot’s

control task is challenging despite the assistance of these control systems [8, 18, 58].

To be effective at suppressing suspended load oscillations, the input-shaping technique

must be integrated with the rest of the helicopter’s flight control system. Done properly,

this would combine the features of helicopter flight control systems listed above with the

suspended load oscillation suppression characteristics of input shaping. The most logical

location for the input shaper in the controller is immediately after the pilot inputs have

been received by the digital flight control system. The integration of input shaping into a

6

common flight control architecture will be investigated in Chapter 4.

1.2.3 Helicopter Modeling

Helicopter dynamic models assist in the design of flight control systems. Models that

incorporate the suspended load dynamics can be used to design input shapers by providing

estimates of the natural frequency and damping ratio of the load oscillation. These estimates

should be good enough for the purposes of designing input shapers and would not rely on a

vision system to obtain measurements of the suspended load natural frequency. This thesis

will investigate using such models to design input shapers.

Potter et al. [37] experimentally verified a simple model of the suspended load oscillation,

and used the model to test via simulation the effectiveness and robustness of various types

of input shapers. However, as was explained above, suspended load oscillation adversely

affects control of the helicopter due to coupling between the load swing and the helicopter

motion. The model they investigated did not take into account this coupling effect. The

models investigated in this thesis will incorporate load back-driving of the helicopter and

load-attitude coupling effects.

More sophisticated models that include more of the helicopter dynamics can be used to

design and test helicopter flight control systems for suspended load operations. This thesis

will use such a model to study the combination input shaping with a flight control system

for use during suspended load operations.

1.3 Helicopter Handling Qualities

The characteristics of an aircraft and its flight control system affect the aircraft’s aptitude

at performing flight tasks. It is also important to consider the pilot workload required to

accomplish these tasks. Military and civil ratings requirements governing task performance

and pilot workload for various missions, maneuvers, visual cues, external environments,

and a range of influencing factors have been developed [59]. Under these requirements, the

flight characteristics of an aircraft along with its control system and accompanying visual

displays are rated based on how effective they make the aircraft and pilot at performing

tasks and maneuvers in various environments. These ratings are known as the handling–or

7

flying–qualities of the aircraft. Padfield states that handling qualities are considered good

when “safe flight is guaranteed throughout the operational flight envelope” [36]. Cooper

and Harper defined handling qualities as “those qualities or characteristics of an aircraft

that govern the ease and precision with which a pilot is able to perform the tasks required

in support of an aircraft role” [9].

1.3.1 Cooper-Harper Rating Scale

Cooper and Harper’s handling qualities rating scale, shown in Figure 7, is based on pilot

evaluation of an aircraft’s characteristics for a variety of maneuvers and tasks [9]. For a

given maneuver, flight test pilots use the decision tree shown in Figure 7 to assign a given

aircraft configuration a rating from 1 to 10. A rating of 1 indicates a controllable aircraft

with satisfactory performance and 10 indicates an uncontrollable aircraft. This rating is

then used to assign a handling qualities level from 1 to 3. Most aircraft are required to

be Level 1, but Level 2 is acceptable in failed and emergency situations; Level 3 is never

acceptable [36]. According to Padfield [36], the handling qualities rating scale developed

by Cooper and Harper is “the most developed and widely recognized quality scale” for

helicopters.

1.3.2 Aeronautical Design Standard 33E

In addition to Cooper and Harper’s handling qualities ratings scale, performance specifica-

tions such as the U.S. Army’s Aeronautical Design Standard 33E (ADS-33E) [59] quantify

the requirements necessary to achieve each handling-quality level for many mission-related

tasks. Such numerical requirements enable helicopter design and control engineers to use

flight test data and simulation to assign a handling-quality level to aircraft characteristics

for various tasks. Aircraft are designed to achieve Level 1 handling qualities for all mis-

sion tasks and visual environments to ensure that they will be safe to fly throughout their

operational flight envelope.

8

Im
pr

ov
em

en
t

m
an

da
to

ry

D
ef

ic
ie

nc
ie

s
re

qu
ire

im
pr

ov
em

en
t

D
ef

ic
ie

nc
ie

s
w

ar
ra

nt
im

pr
ov

em
en

t

Ad
eq

ua
cy

fo
rs

el
ec

te
d

ta
sk

or
re

qu
ire

d
op

er
at

io
n*

D
em

an
ds

on
th

e
pi

lo
t

in
se

le
ct

ed
ta

sk
or

op
er

at
io

n*
Pi

lo
t

ra
tin

g

E
xc

el
le

nt
H

ig
hl

y
de

si
ra

bl
e

Ai
rc

ra
ft

ch
ar

ac
te

ris
tic

s

G
oo

d
N

eg
lig

ib
le

de
fic

ie
nc

ie
s

Fa
ir

-S
om

e
m

ild
ly

un
pl

ea
sa

nt
de

fic
ie

nc
ie

s

M
in

or
bu

ta
nn

oy
in

g
de

fic
ie

nc
ie

s

M
od

er
at

el
y

ob
je

ct
io

na
bl

e
de

fic
ie

nc
ie

s

Ve
ry

ob
je

ct
io

na
bl

e
bu

t
to

le
ra

bl
e

de
fic

ie
nc

ie
s

M
aj

or
de

fic
ie

nc
ie

s

M
aj

or
de

fic
ie

nc
ie

s

M
aj

or
de

fic
ie

nc
ie

s

M
aj

or
de

fic
ie

nc
ie

s

P
ilo

tc
om

pe
ns

at
io

n
no

ta
fa

ct
or

fo
rd

es
ire

d
pe

rfo
rm

an
ce

P
ilo

tc
om

pe
ns

at
io

n
no

ta
fa

ct
or

fo
rd

es
ire

d
pe

rfo
rm

an
ce

M
in

im
al

pi
lo

tc
om

pe
ns

at
io

n
re

qu
ire

d
fo

rd
es

ire
d

pe
rfo

rm
an

ce

D
es

ire
d

pe
rfo

rm
an

ce
re

qu
ire

s
m

od
er

at
e

pi
lo

tc
om

pe
ns

at
io

n

A
de

qu
at

e
pe

rfo
rm

an
ce

re
qu

ire
s

co
ns

id
er

ab
le

pi
lo

tc
om

pe
ns

at
io

n

A
de

qu
at

e
pe

rfo
rm

an
ce

re
qu

ire
s

ex
te

ns
iv

e
pi

lo
tc

om
pe

ns
at

io
n

A
de

qu
at

e
pe

rfo
rm

an
ce

no
ta

tta
in

ab
le

w
ith

m
ax

im
um

to
le

ra
bl

e
pi

lo
tc

om
pe

ns
at

io
n.

C
on

tro
lla

bi
lit

y
no

ti
n

qu
es

tio
n

C
on

si
de

ra
bl

e
pi

lo
tc

om
pe

ns
at

io
n

is
re

qu
ire

d
fo

rc
on

tro
l

In
te

ns
e

pi
lo

tc
om

pe
ns

at
io

n
is

re
qu

ire
d

to
re

ta
in

co
nt

ro
l

C
on

tro
lw

ill
be

lo
st

du
rin

g
so

m
e

po
rti

on
of

re
qu

ire
d

op
er

at
io

n
N

o

Ye
s

N
o

N
o

Ye
s

Ye
s

P
ilo

td
ec

is
io

ns

Is
it

sa
tis

fa
ct

or
y

w
ith

ou
t

im
pr

ov
em

en
t?

1 2 3 4 5 6 7 8 9 10

Is
ad

eq
ua

te
pe

rfo
rm

an
ce

at
ta

in
ab

le
w

ith
a

to
le

ra
bl

e
pi

lo
tw

or
kl

oa
d?

Is
it

co
nt

ro
lla

bl
e?

C
oo

pe
r-H

ar
pe

rR
ef

N
A

S
A

T
D

-5
15

3
*

D
ef

in
iti

on
of

re
qu

ire
d

op
er

at
io

n
in

vo
lv

es
de

si
gn

at
io

n
of

fli
gh

tp
ha

se
s

an
d/

or
su

bp
ha

se
w

ith
ac

co
m

pa
ny

in
g

co
nd

iti
on

s.

Le
ve

l1

Le
ve

l2

Le
ve

l3

3.
5

6.
5

8.
5

F
ig

u
re

7
:

C
o
op

er
-H

ar
p

er
h

an
d
li

n
g

q
u

al
it

ie
s

ra
ti

n
g

sc
al

e
[9

].

9

1.3.3 Handling Qualities for Flight with Suspended Loads

Hoh et al. [18] studied the influence of the suspended load on pilots’ perceptions of the

aircraft handling qualities and the overall controllability of the aircraft for a variety of heli-

copter and suspended load configurations. Their conclusions indicate that the translational

response of the aircraft when carrying a load has a much greater impact on the perceived

handling qualities than the attitude response, particularly for small- and medium- ampli-

tude maneuvers. This is somewhat contrary to the guidelines provided by ADS-33E, where

more emphasis is placed on the attitude response. Their results also show that the handling

qualities degrade significantly when the load mass approaches or is greater than half of the

helicopter mass.

Other agencies regulate suspended load operations and ensure proper safety procedures

are in place during suspended load flight. One such group in the United Kingdom is the

Civil Aviation Authority Safety Regulation Group [58]. They publish the CAP 426 standard

[58] that provides rules and guidelines that address many factors associated with suspended

load operations. Some of the rules and guidelines include the types of loads that can be

carried, how to properly connect the load to the helicopter, how to ensure the safety of

personnel on the ground, take-off and set-down procedures, and how to prevent accidents

caused by load oscillation.

1.4 Helicopter Flight Control Systems

Control of helicopters is primarily accomplished by producing moments and forces on the

helicopter via one or more rotors that change the helicopter velocity and orientation, or

attitude, relative to a trim or equilibrium state [23]. The forces and moments are applied

by changing the pitch of the rotor blades as they rotate around the rotor hub and/or by

changing the engine power. The changes in pitch as a function of the angle of a rotor blade

around the rotor changes the angle of attack of the rotor blades. This produces aerodynamic

forces that vary over the area of the rotor disk and effectively cause the rotor to tilt relative

to the helicopter. These aerodynamic forces resolve into a thrust vector that changes with

the rotor tilt, producing a moment about the helicopter center of gravity via the rotor hub

10

and shaft [23].

A helicopter is not stable without some type of stability or control augmentation. There-

fore, without augmentation the pilot must perform the duties of a feedback controller to

stabilize the aircraft. Automatic flight control systems are designed to modify the heli-

copter’s control characteristics and performance and to reduce the pilot’s workload [23].

Helicopters and their flight controllers must be designed to satisfy handling qualities

specifications, such as ADS-33E [59], imposed by regulatory agencies [23]. Typically, control

design for hover and forward flight require separate analysis because the helicopter has

different responses and performance requirements in these two flight regimes [23].

Longitudinal and lateral stability analysis and control design are usually performed sep-

arately by uncoupling the helicopter equations of motion. This approach relies on assuming

that the longitudinal and lateral dynamics of the helicopter are separable [23]. Also, only

the steady-state response of the rotor is included in the model [23], and the rotor is used

as a source of control forces and moments applied to the helicopter in response to control

inputs or changes in the flight condition [38]. Johnson [23] states that the basic charac-

teristics of the helicopter flight dynamics are well-represented by a model with these two

approximations.

Control and stability can also be augmented through the use of control gyros and an

entirely mechanical control system, such as stabilizer bars for two-bladed teetering rotors

and gyro stabilizers for three- and four-bladed hingeless rotors [23].

In modern flight control systems, digital fly-by-wire makes higher-authority control pos-

sible. One type of modern flight control system is model-following control. Model-following

control is used in helicopter flight control systems to force specified helicopter states, such

as the attitude, to respond like a prescribed ideal model [52]. Model-following control has

become an attractive control technique for helicopter flight control systems. For example,

Boeing Helicopters used a control law architecture consisting of model-following control on

several demonstrator programs in the 1980’s and 1990’s, including the V-22 and RAH-66

[27].

11

1.5 Helicopter Control When Carrying a Suspended Load

Several strategies have been proposed for improving control of helicopters carrying sus-

pended loads. Strategies include active and passive cable suspension point systems that

minimize the effect of the load on the helicopter or reduce the load swing itself. Other ap-

proaches incorporate feedback of the load states to modify the pilot’s reference commands

in such a way that minimizes load swing. These approaches rely on measurement and

estimation of the load states.

One focus is on the control of helicopters carrying suspended loads in near-hover op-

erations [15, 28]. The near-hover case is often studied because, according to Szustak and

Jenney [53], “the ultimate hovering task for a [flying] crane pilot is to acquire and maintain

a stable hover over a specific point on the ground while a slung load is attached or dropped.”

The Kaman K-MAX R© Aerial Truck is equipped with a cable suspension point mecha-

nism that passively reduces load-attitude coupling effects. Figure 8 shows a photo of the

underside of the K-MAX R© helicopter where the suspension point mechanism can be seen.

The suspension cable hook is mounted on a trolley that slides along a curved rail. The

curved rail is oriented along the lateral axis of the vehicle.

Instead of allowing the load swing in the lateral direction to be directly transmitted to

the helicopter, this sliding suspension point absorbs some of the load back-driving in the

motion of the trolley along the rail. The rail also helps keep the suspension point centered

vertically below the helicopter center of gravity during rolling maneuvers.

The suspension cable hook itself can pivot relative to the trolley. The pivot is aligned

parallel to the rail to absorb some load motion in the longitudinal direction. Longitudinal

load-attitude coupling is not as much of a problem as lateral coupling because the longitu-

dinal moment of inertia of a helicopter is typically much larger than the lateral moment of

inertia. The larger moment of inertia provides better resistance to load-attitude coupling

effects, so a longitudinal sliding rail system is not necessary.

Control strategies for damping the suspended load swing include an actuated suspension

7Photo Source: http://www.kaman.com/aerospace/helicopters/products-services/k-max/

12

Figure 8: Underside of the K-MAX R© helicopter showing the suspension point sliding-rail
mechanism7.

point or some other form of active load stabilization [49]. In fact, Dukes [11, 12] states that

an actively controlled, moving suspension point is an effective way of damping the load

oscillation. However, retrofitting existing heavy-lift helicopters with moving suspension

points would be very costly compared to small modifications to the digital fight control

system.

Some proposed control strategies rely on feedback of the suspended load states. Such

control algorithms require real-time measurements of the load states and may be difficult

to implement in practice due to the difficulty and cost of obtaining accurate and reliable

measurements. For example, one approach for suspended load state measurement relies on

using a vision system to measure the load swing [6, 35].

Instead of using direct measurement of the load states, other control strategies rely on

estimation techniques to predict the load swing [4, 5, 15, 31]. To accurately predict the load

13

states, these estimation processes require complicated models accounting for aerodynamic

effects and estimation of external disturbances caused by wind [4]. Such models tend to be

computationally expensive due to their complexity and therefore may not be feasible for

estimating the load state information in real-time. Another load state estimation technique

requires accurate measurements of the helicopter position relative to a reference point on

the ground [15]. Many of these control strategies may not be robust to slight changes in

parameters such as suspension cable length or payload geometry.

1.6 Thesis Outline

Chapter II discusses dynamic modeling of a helicopter carrying a suspended load. The first

model is a simple planar crane model. The model is experimentally verified on a radio-

controlled helicopter carrying a suspended load. The next model attempts to correct some

shortcomings of the planar crane model by including the helicopter attitude, allowing load-

attitude coupling effects in the model. The last two models investigated are models of a

Sikorsky S-61 helicopter with and without a suspended load. These models will be used in

Chapter IV to design and test the combination of input shaping and a common helicopter

flight controller.

Chapter III investigates the application of input shaping to helicopters carrying sus-

pended loads. The simple dynamic models from Chapter II are used to obtain estimates

of the natural frequency and damping ratio of the suspended load oscillation for a radio-

controlled helicopter carrying a suspended load. It is shown that an input shaper designed

using the estimated natural frequency and damping ratio is effective at reducing the sus-

pended load oscillation. Also, an input shaping MATLAB program written for and delivered

to two helicopter companies is briefly presented. These companies will use the program to

test the effectiveness of input shaping at reducing suspended load operations.

Chapter IV studies the integration of input shaping with a common helicopter flight

control system. The flight control architecture investigated is known as model-following

control. A model-following controller is designed and implemented in simulation for a

Sikorsky S-61 helicopter with and without a suspended load. The control of the unloaded

14

helicopter is analyzed as a baseline case to compare to the performance of the controller

for the loaded helicopter. Lastly, input shaping is added to the controller for the loaded

helicopter. With input shaping is added to the controller, the helicopter better tracks the

prescribed model and the suspended load oscillation is greatly reduced. This chapter shows

that input shaping can be effectively integrated with a helicopter flight control system.

Lastly, Chapter V summarizes the contributions of this thesis and provides suggestions

for future work.

15

CHAPTER II

DYNAMIC MODELING OF HELICOPTERS CARRYING

SUSPENDED LOADS1

In this chapter, the dynamic modeling of a helicopter carrying a suspended load will be

addressed. One goal is to develop a model that yields estimates of the natural frequency

and damping ratio of the suspended load swing for a range of helicopter and load configura-

tions. A primary goal of this modeling effort is to produce natural frequency and damping

ratio estimates that are sufficiently accurate for the purposes of designing input shapers.

Another goal is to identify models that incorporate most of the dynamic effects important

to helicopter-suspended load operations. These models can then be used for designing and

simulation testing of flight controllers proposed for suspended load operation.

Many researchers have studied dynamic modeling of helicopters carrying suspended

loads. Dukes [11, 12] studied helicopters carrying suspended loads using simple models

consisting of only a few degrees of freedom. He used those models to study methods of

damping the pendulum mode of the sling load for various helicopter maneuvers. Potter et

al. [37] used a simple translational model motivated by the similarities between helicopters

carrying suspended loads and cranes to approximate the suspended load dynamics. Lucassen

and Sterk [28] showed that a helicopter carrying a suspended load near hover is mechanically

similar to a double pendulum. Bisgaard et al. [3] modeled different slung load suspension

types including multi-lift configurations and experimentally verified the results on a small-

scale helicopter.

The first goal is addressed by considering that the dynamics of a load suspended from

a helicopter are similar to those of crane payloads. In fact, both systems can be most

simply modeled as pendulums. This justifies modeling the complex helicopter-load system

1Parts of this chapter have been accepted for publication in the 2012 12th International Conference on
Control, Automation and Systems

16

using some of the same techniques used to model cranes, while also including some of

the more complicated dynamics such as load-vehicle coupling. With the relaxation of a

few assumptions used to derive models of cranes, simple models of the helicopter-load

system can be derived. A similar approach used by Potter et al. [37] involved combining

a simple second-order underdamped model of the payload swing with a first order model

that approximates the helicopter attitude and translational dynamics.

The second goal is addressed by considering a model of a Sikorsky S-61 helicopter [15, 16].

Two versions of the model are presented. The first is an unloaded model linearized about

hover obtained directly from flight test data [16]. The second is a loaded model [15], also

linearized about hover, that combined the model from [16] with a model of the suspended

load states. In Chapter IV, the Sikorsky S-61 models will be used to develop a near-

hover flight controller that combines input shaping and a standard helicopter flight control

architecture.

In the first section of this chapter, a planar model is presented where the load is allowed

to back-drive the suspension point, an effect commonly seen with heavy sling loads. In the

second section, load-attitude coupling is included in addition to the back drive effect. In

the last section, a linearized model of a Sikorsky S-61 helicopter in hover from the literature

[15, 16] is presented and analyzed.

2.1 Planar Crane Model

In this section, a simple model is proposed for designing input shapers for suppressing sus-

pended load oscillations. A micro coaxial radio-controlled helicopter was used to experimen-

tally verify this model. The model can be used to design input shapers for helicopter-load

configurations that cannot be safely or effectively tested using the available experimental

setup. By experimentally verifying a model that better captures the dynamics of a heli-

copter carrying a suspended load, this section extends the work performed by Potter et al.

[37].

17

M

L

m

x

gα

u

Figure 9: Schematic diagram of a helicopter-suspended load system modeled as a planar
crane.

2.1.1 Model Description

A simple crane model that captures the lateral motion of a helicopter carrying a suspended

load is a two-degree of freedom planar crane model. Figure 9 shows a schematic diagram

of a planar crane.

Heavy payloads have a significant impact on the translational degrees of freedom of

the helicopter [18]. To incorporate this effect, the payload is assumed to back-drive the

helicopter position. The suspension cable is assumed to be rigid and massless and to be

attached at the centers of gravity of the helicopter and load. The load is modeled as a point-

mass. Due to the low speeds attainable by the model helicopter, the effects of aerodynamic

drag are modeled as viscous damping terms on the helicopter position and cable angle.

Rotor downwash effects are neglected. There are several other assumptions implicit in the

application of a planar crane model to the lateral motion of a helicopter; it is assumed that

the helicopter maintains a constant heading and altitude, and the helicopter’s attitude and

position in the longitudinal direction remain constant.

18

As derived in [13], the equations of motion of a planar crane are

ẍ =
−m sinα(Lα̇2 + g cosα)

M +m sin2 α
+

1

M +m sin2 α
u− DH

M
ẋ, (1)

α̈ =
−(m+M)g sinα−mLα̇2 sinα cosα

ML+mL sin2 α
+

cosα

ML+mL sin2 α
u− DP

m
α̇, (2)

where x is the helicopter displacement, α is the deflection angle of payload cable, and

DH and DP are viscous damping coefficients on the helicopter position and payload an-

gle, respectively. The helicopter and payload masses are M and m, respectively, and the

suspension cable length is given by L. The input to the system is a force applied to the

helicopter in the horizontal direction, given by u. Note that the horizontal displacement of

the payload relative to the helicopter can be calculated as

xL = L sinα (3)

This expression is useful when converting the payload deflection angle to position for com-

parison with experimental payload swing results.

2.1.2 Linearized Planar Crane Equations and Load Swing Natural Frequency

(1) and (2) can be linearized by applying a small angle approximation to α (sinα ≈

α, cosα ≈ 1) and neglecting higher order terms such as sin2 α and α̇2. This yields the

following linearized equations of motion

ẍ =
−mαg
M

+
1

M
u− DH

M
ẋ (4)

α̈ =
−(m+M)gα

ML
+

1

ML
u− DP

m
α̇ (5)

The linearized equations of motion given by (4) and (5) suggest that the planar crane

has two modes: one rigid body mode corresponding to translation of the helicopter and load

as a whole and an underdamped mode corresponding to oscillation of the load relative to

the helicopter. By inspection of (5), the natural frequency ωn of the load oscillation mode

can be expressed as

ωn =

√
g

L

(
m+M

M

)
(6)

19

The ratio of the payload mass to the total mass of the helicopter and the load is com-

monly referred to as the Load-Mass Ratio. In equation form, the Load-Mass Ratio R is

defined as

R ≡ m

M +m
(7)

Using this definition of the Load-Mass Ratio, (6) can be rewritten as

ωn =

√
g

L

(
1

1−R

)
(8)

(8) agrees with an approximation for the load natural frequency used by flying qualities

engineers at Boeing Helicopters2.

The natural frequency predicted by (8) is plotted for a range of the suspension cable

lengths and Load-Mass Ratios in Figure 10. The configuration represented by the CX3

experimental helicopter that will be analyzed in this section is labeled by the circle. The

natural frequencies predicted by (8) for three helicopters carrying a suspended load are

also labeled on the plot. These helicopters include E-flite Blade CX3 and Blade 400 radio-

controlled helicopters and a Sikorsky S-61 helicopter. The CX3 helicopter will be discussed

in the next section and the Blade 400 is part of an experimental setup that will be discussed

in Chapter III. The Sikorsky S-61 helicopter will be discussed in Section 2.3.

2.1.3 Model Verification

2.1.3.1 Experimental Hardware: Blade CX3 Radio-Controlled Helicopter and Indoor
Flight Facility

Figure 11 shows an experimental setup in the Indoor Flight Facility at the Georgia Institute

of Technology. The helicopter shown is a E-Flite Blade CX3 micro coaxial radio-controlled

(RC) helicopter. The mass of the RC helicopter and its payload are 0.534 lb and 0.033 lb,

respectively. The length of the load suspension cable is 3.38 ft. The load was designed to

approximate a point mass and have a low aerodynamic profile to minimize the unmodeled

effects of aerodynamic drag and rotor downwash. A Vicon MX motion capture system is

used to measure the position and orientation of the helicopter in real-time.

2Source: Email correspondence with Pamela Montanye of Boeing Helicopters on 4 November 2011.

20

10
20

30
40

50
60

70 0
0.1

0.2
0.3

0.4
0.5

0

1

2

3

4

5

6

7

Load Mass Ratio
Suspension Cable

Length (ft)

N
at

ur
al

Fr
eq

ue
nc

y
(ra

d/
s)

CX3
Blade 400
Sikorsky S-61

Figure 10: Plot of suspended load linearized natural frequency for a range of
helicopter-load configurations.

The data signal flow in the motion capture system is shown in Figure 12. The system

consists of 12 MX-3+ cameras connected via 2 Vicon MX Ultranet HD units that stream

camera data to the computer at 120 Hz. Vicon iQ version 2.5 software running on the

computer processes the camera data. The resulting position and orientation measurements

are exported to MATLAB using the Vicon Tarsus Realtime data streaming application.

Each MX-3+ camera can record 659x493 grayscale pixels, and position measurements made

using this system have a resolution of approximately 1 mm [62, 63].

The spatial and orientation information sent to MATLAB is used in a feedback controller

to automatically control the position and orientation of the helicopter. Vicon measures

orientation angles with respect to a global reference frame. The feedback controller requires

an Euler angle representation of the helicopter orientation, where the Euler angles are

defined using a ZYX Tait-Bryan convention. Therefore, the measured orientation angles

are converted to Euler angles in MATLAB. The control signals calculated by the feedback

21

Vicon
Motion-
Capture
Cameras

RC Helicopter
(E-flite CX3)

Vicon
Computer

Payload

Figure 11: Photograph of the CX3 helicopter flying in the Indoor Fight Facility.

MX-3+
Cameras

(12)
Vicon MX Ultranet

units (2)
CX3 RC

Helicopter

Computer
with Vicon

Ethernet card

Gigabit
Ethernet

Vicon iQ Software
(Version 2.5)

Camera
Data

Camera data processed to
identify tracked objects

and determine their
positions and attitudes

Vicon Tarsus
data streaming

application

Flight Control
Law programmed

in MATLAB

USB

SC-8000 Servo
Controller RC Transmitter

Stereo
Cable

CX3 RC Helicopter

Position and
Orientation in
the workspace

H
A

R
D

W
A

R
E

S
O

F
T

W
A

R
E

H
A

R
D

W
A

R
E

Figure 12: Motion capture and flight controller signal flow [63, 64].

22

1 2 3 4 5

Figure 13: Composite photo of the CX3 helicopter performing a lateral move.

controller are then sent to the helicopter through a Spektrum DX6i transmitter connected

to the computer using a SC-8000 Servo Controller that performs serial to Pulse Position

Modulation (PPM) conversion.

2.1.3.2 Experimental Validation

The responses predicted by the nonlinear model given by (1) and (2) were compared to

experimental results from the CX3 RC helicopter flying in the Indoor Flight Facility.

For the experiments in this section, lateral commands were sent to the CX3 helicopter.

The flight controller used feedback of the helicopter’s position and attitude to suppress

motion in all of the helicopter’s degrees of freedom except for the lateral position and roll

angle. The sling load position was not recorded by the motion capture system but was later

extracted from video recordings of the experimental trials.

The lateral move executed by the helicopter is illustrated by the photo composite shown

in Figure 13. The helicopter begins in hover at the left of the image (step 1), moves to the

right approximately 7 ft (steps 2-4), and resumes hovering at the target location (step 5).

The command sent to the helicopter to execute this lateral move was preprogrammed in

the flight controller to ensure consistent responses for each experimental trial.

The model given by (1) and (2) was simulated with parameters matching the physical

23

parameters of the CX3 helicopter and its payload and with the same initial conditions seen

in the experimental data. Because the experimental payload deflection was measured in

terms of horizontal displacement relative to the helicopter, the simulated payload deflection

angle was converted to horizontal displacement relative to the helicopter using (3).

Figure 14a shows a plot comparing the experimental and simulated payload responses

to the lateral move, which began at 0.35 s. The model accurately predicts the payload

response for the first two periods.

Figure 14b shows a plot of the helicopter position as it executes the lateral move. The

model does not predict as much translational oscillation of the helicopter following the

command as seen in the experimental trial. This is likely because the model does not

account for coupling between the roll attitude and the load. As a result of this coupling,

the load swing causes changes in the roll attitude not predicted by this model. This load-

attitude coupling effect causes changes in the thrust vector angle that result in changes

in helicopter acceleration. The acceleration changes cause the small oscillations seen in

the position trajectory of the CX3 helicopter. If more accurate predictions of the helicopter

response are required, then the next step in modeling complexity is to include the helicopter

attitude as a state with the suspension cable attachment point offset from the helicopter

center of gravity. This would incorporate load-attitude coupling in the model. Another

possible modeling solution could be to use a 5th-order model similar to that proposed in

[28], where the helicopter-load system was shown to behave similarly to a double pendulum.

The load-attitude coupling approach will be considered in the next section.

While the helicopter response is not as accurately predicted by the model as the payload

response, an accurate prediction of the payload response is more important for designing

input shapers that will suppress the payload swing. The natural frequency and damping

ratio of the experimental payload swing were approximately 3.2 rad/s and 0.09, respec-

tively, while the values predicted by the simulation were 3.15 rad/s and 0.1. This shows

close agreement between the simulation and the experimental trial in terms of the two im-

portant input-shaper design parameters. Therefore, the simulation predicts the payload

swing with enough accuracy to design an effective input shaper for the experimental CX3

24

-8
-6
-4
-2
0
2
4
6
8

0 1 2 3 4 5 6 7 8

Simulation
Experiment

Pa
yl

oa
d

Sw
in

g
(in

)

Time (sec)
(a) Payload response.

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8

Simulation
Experiment

H
el

ic
op

te
r

Po
si

tio
n

(ft
)

Time (sec)
(b) Helicopter response.

Figure 14: Comparison of simulated and experimental (a) payload and (b) helicopter
responses.

helicopter. The effectiveness of an input shaper shaper designed using these parameters will

be investigated in Chapter III.

The estimate for the natural frequency given by (8), found by linearizing the equations

of motion, also provides an accurate estimate of the natural frequency of the CX3 helicopter

configuration. (8) predicts a natural frequency of 3.18 rad/s, which is only about 1% less

than the actual natural frequency of 3.2 rad/s. This is also enough accuracy for designing

25

an effective input shaper.

2.2 Load-Attitude Coupling Model

The next step in modeling complexity is to incorporate the helicopter attitude and an offset

between the helicopter center of gravity and the load cable suspension point into the model.

This model is called the load-attitude coupling model because incorporating the helicopter

attitude in the model will introduce a coupling effect between the load and the helicopter

attitude. This coupling is an important factor because the load suspension cable is not

attached to the helicopter at its center of gravity, so the tension in the cable produces an

oscillatory torque about the helicopter center of gravity as the load swings.

2.2.1 Model Description

Figure 15 shows a schematic diagram representing this model. The helicopter rigid body is

attached to a massless cart that translates horizontally and enables the helicopter to rotate

about the pivot point G. Point G is also the helicopter center of gravity. It is assumed that

the helicopter maintains a constant heading and altitude, and its attitude and position in

the off-axis direction (perpendicular to the page) remain constant. As with the planar crane

model, the suspension cable is assumed to be rigid and massless, the load is modeled as

a point-mass, the effects of aerodynamic drag are modeled as viscous damping terms, and

rotor downwash effects are neglected.

The horizontal displacement of the helicopter’s center of gravity is given by x, the

helicopter attitude relative to horizontal is given by θ, and the load deflection angle relative

to vertical is given by β. The helicopter and payload masses are M and m, respectively,

the helicopter moment of inertia about point G is IG, and the suspension cable length is

L. There is a linear damper attached to the helicopter at point G, and its viscous damping

coefficient is given by c. Also, there is a rotational damper on the helicopter attitude, and

its viscous damping coefficient is given by d.

Several frames will be used in the derivation. The inertial frame has unit vectors Î

and Ĵ . Another frame attached to the helicopter has unit vectors î and ĵ. The helicopter

attitude θ is measured clockwise relative to Î, and load deflection angle β is measured

26

A

F

g

G
R

L

Figure 15: Schematic diagram of a helicopter carrying a suspended load with the
helicopter attitude incorporated.

counterclockwise relative to Ĵ .

This model uses a quasistatic representation, or approximation, of the rotor dynamics.

The quasistatic rotor representation neglects the rotor dynamics by assuming that the

rotor tilt relative to the helicopter fuselage can be changed instantaneously using the cyclic

controls [15, 23]. This assumption is justified because the rotor blade flapping response is

fast compared to a pilot’s control inputs to the rotor [19, 23, 38]. In essence, only the steady-

state response of the rotor is considered [23]. Use of the quasistatic rotor approximation

is common practice when the models will be used for helicopter stability analysis or in the

design of flight control systems [16, 19, 23].

Due to the use of the quasistatic rotor approximation, the control inputs to the model

are the longitudinal rotor tilt angle α and the thrust force F applied to the helicopter by

the rotor at point R. The force F models the thrust generated by the rotor, and α models

the rotor tilt angle relative to the helicopter body. In this sense, the line between points R

and G represents the rotor shaft. Note that α is measured clockwise relative to ĵ.

27

The distance between the helicopter center of gravity, point G, and the suspension point,

point A, is defined as

~rA/G = xAî+ yAĵ (9)

The distance between the helicopter center of gravity and point R is defined as

~rR/G = xRî+ yRĵ (10)

Note that xA, yA, xR, and yR are defined relative to the helicopter body. The position vec-

tors ~rA/G and ~rR/G are expressed using those values in the frame attached to the helicopter.

2.2.2 Derivation of Equations of Motion

Lagrange’s equations will be used to derive the equations of motion of the load-attitude

coupling model. The generalized coordinates are x, θ, and β. Lagrange’s equations are

given by

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
+
∂V

∂qj
= Qj , j = 1, 2, . . . , N (11)

where qj are the generalized coordinates, T is the total kinetic energy of the system, V

is the total potential energy of the system, Qj are the generalized forces, and N is the

number of generalized coordinates. In this case, N = 3 because their are three generalized

coordinates.

The total kinetic energy of the helicopter and suspended load is given by

T =
1

2
M (~vG · ~vG) +

1

2
IGθ̇

2 +
1

2
m (~vm · ~vm) +

1

2
Imβ̇

2 (12)

where vG is the velocity of the point G, vm is the velocity of the payload, and Im is the

moment of inertia of the payload. For a rigid, massless suspension cable with a point-mass

payload, Im is given by

Im = mL2 (13)

The velocity of point G is given by

~vG = ẋÎ (14)

28

and the velocity of the payload is given by

~vm =
(
ẋ cos θ − xAθ̇ + β̇L cosβ cos θ − β̇L sinβ sin θ

)
î (15)

+
(
ẋ sin θ + yAθ̇ + β̇L cosβ sin θ + β̇L sinβ cos θ

)
ĵ (16)

Substituting (13), (14), and (15) into (12) and simplifying gives the following expression for

the kinetic energy

T =
1

2
Mẋ2 +

1

2

[
IG +m

(
xA

2 + yA
2
)]
θ̇2 +

1

2
m
[
ẋ2 + 2 (yA sin θ − xA cos θ) ẋθ̇

+ 2Lẋβ̇ cosβ + 2L
(
yA sin (β + θ)− xA cos (β + θ)

)
θ̇β̇ +

(
L2 − L2 sin 2β sin 2θ

)
β̇2
] (17)

(17) expresses the kinetic energy as a function of the generalized coordinates and velocities.

It can be differentiated with respect to the generalized coordinates and velocities for use in

Lagrange’s equations.

The total potential energy of the helicopter and suspended load is given by

V = mg (−L cosβ − xA sin θ + yA cos θ) (18)

where the potential energy datum is a horizontal line passing through point G. (18) expresses

the potential energy as a function of the generalized coordinates. It can be differentiated

with respect to the generalized coordinates for use in Lagrange’s equations.

The generalized forces were found using the method of virtual displacements. The

generalized force for the helicopter position generalized coordinate x is

Qx = F sin (α+ θ)− cẋ (19)

The generalized force for the helicopter attitude generalized coordinate θ is

Qθ = F (yR sinα− xR cosα)− dθ̇ (20)

The generalized force for the payload deflection angle generalized coordinate β is

Qβ = 0 (21)

The equations of motion can be found by taking the necessary derivatives of (17) and

(18), and substituting them and the expressions for the generalized forces given in (19),

29

(20), and (21) into Lagrange’s equations for the three generalized coordinates. This process

yields the following equations of motion for x, θ, and β:

(M +m) ẍ+mLβ̈ cosβ −m (xA sin θ − yA cos θ) θ̈ + cẋ

−mLβ̇2 sinβ +m (xA cos θ + yA sin θ) θ̇2 = F sin (α+ θ)

(22)

[
IG +m

(
x2A + y2A

)]
θ̈ + dθ̇ −m (xA sin θ − yA cos θ) ẍ− gm (xA cos θ + yA sin θ)

−mL [xA sin (β + θ)− yA cos (β + θ)] β̈ −mL [xA cos (β + θ) + yA sin (β + θ)] β̇2

= F (yR sinα− xR cosα)

(23)

Lβ̈ + ẍ cosβ − [xA sin (β + θ)− yA cos (β + θ)] θ̈

− [xA cos (β + θ) + yA sin (β + θ)] θ̇2 + g sinβ = 0

(24)

These equations describe the dynamics of the helicopter translation, helicopter orienta-

tion, and the payload swing for this model. The correctness of the equations was verified

by also using MotionGenesis, a commercial dynamic modeling software package, to inde-

pendently derive the equations of motion.

2.3 Sikorsky S-61 Models

Designers of helicopter flight control systems often use helicopter models linearized about a

given flight condition. These models are often obtained from flight-test data, or flight-test

data is used to improve existing models [17, 20, 54]. One such model of a 13, 200 lb Sikorsky

S-61 helicopter in near-hover operation was investigated by Hall and Bryson [16]. Gupta

and Bryson [15] combined Hall and Bryson’s linearized, near-hover model of the Sikorsky

S-61 with a linear model of a helicopter carrying a suspended load. This gave them a

linearized, near-hover model of a Sikorsky S-61 carrying a suspended load. The mass of the

suspended load is 4, 400 lb and the suspension cable length is 65.6 ft.

Both the unloaded and loaded models only incorporate the longitudinal and lateral

motion of the helicopter. The heave and yawing modes of the aircraft are not included.

This is equivalent to assuming a fixed heading and altitude for the aircraft. The models

also neglect the effects of wind and changes in atmospheric properties as a function of

vehicle position. These models will be used in the flight control system design presented in

30

Chapter IV. The unloaded model will give a baseline performance measure for evaluating

the performance of the loaded helicopter model. This will make it easier to identify the

effects of carrying a load on the helicopter response.

2.3.1 Unloaded Sikorsky S-61 Model

The S-61 models are state-space models of the form

~̇x = A~x+ B~u (25)

Both models use a quasistatic representation of the rotor dynamics [15, 16]. Due to

the use of the quasistatic rotor approximation, the control inputs to the models are the

longitudinal and lateral rotor disk angles. The rotor disk angles are also sometime referred

to as the rotor tilt angles or the angles of the tip-path-plane. The tip-path-plane is the

plane formed by the tips of the rotor blades.

The helicopter state and input vectors for the unloaded model are defined as

~x =

[
θH θ̇H ẋH φH φ̇H ẏH

]T
(26)

~u =

[
θs θc

]T
(27)

where θH is the helicopter fuselage pitch attitude, θ̇H is the fuselage pitch rate, ẋH is the

fuselage longitudinal velocity, φH is the fuselage roll attitude, φ̇H is the fuselage roll rate,

ẏH is the fuselage lateral velocity, θs is the longitudinal cyclic blade pitch angle, and θc is

the lateral cyclic blade pitch angle. All units are in ft, sec, and rad.

By neglecting rotor dynamics and through proper scaling of the input matrix B, the

input vector given by (27) becomes identical to the rotor tilt angles [16]

~u =

[
θR φR

]T
(28)

where θR is the longitudinal rotor tilt angle and φR is the lateral rotor tilt angle, with both

angles having units of rad.

31

The state matrix A for the unloaded S-61 model is [16]

A =

0 1 0 0 0 0

0 −0.415 0.00338 0 0.318 0.00116

−32.2 4.70 −0.0198 0 −1.02 −0.0059

0 0 0 0 1 0

0 −1.23 0.00415 0 −1.58 −0.0124

0 −1.02 0.0059 32.2 −4.70 −0.0198

(29)

and the input matrix B is [16]

B =

0 0

6.27 0.295

−32.2 −0.977

0 0

−1.08 23.1

−0.977 32.2

(30)

The input matrix given by (30) is scaled such that the inputs are the rotor tilt angles and

the input vector is given by (28).

2.3.2 Loaded Sikorsky S-61 Model

Gupta and Bryson [15] modified the unloaded Sikorsky S-61 model above to include sus-

pended load dynamics. The helicopter state and input vectors for the loaded model are

defined as

~x =

[
θH θ̇H xH ẋH xL ẋL φH φ̇H yH ẏH yL ẏL

]T
(31)

~u =

[
θR φR

]T
(32)

where θH is the helicopter pitch attitude, θ̇H is the helicopter pitch rate, xH is the helicopter

longitudinal position, ẋH is the helicopter longitudinal velocity, xL is the load longitudinal

position, ẋL is the load longitudinal velocity, φH is the helicopter roll attitude, φ̇H is the

helicopter roll rate, yH is the helicopter lateral position, ẏH is the helicopter lateral velocity,

32

yL is the load lateral position, ẏL is the load lateral velocity, θR is the longitudinal rotor

tilt angle, and φR is the lateral rotor tilt angle. All units are in ft, sec, and rad.

The state matrix A for the loaded S-61 is [15]

A =

A11 A12

A21 A22

 (33)

where

A11 =

0 1 0 0 0 0

−2.25 −0.415 −0.0317 0.0034 0.0317 0

0 0 0 1 0 0

−43.6 4.69 −0.164 −0.0198 0.164 0

0 0 0 0 0 1

2.41 0 0.491 0 −0.491 −0.0026

, (34)

A12 =

0 0 0 0 0 0

0 0.318 0 0.0012 0 0

0 0 0 0 0 0

0 −1.02 0 −0.0059 0 0

0 0 0 0 0 0

0 0 0 0 0 0

, (35)

A21 =

0 0 0 0 0 0

0 −1.23 0 0.0041 0 0

0 0 0 0 0 0

0 −1.02 0 0.0059 0 0

0 0 0 0 0 0

0 0 0 0 0 0

, (36)

33

and

A22 =

0 1 0 0 0 0

−8.28 −1.58 0.117 −0.0124 −0.117 0

0 0 0 1 0 0

43.6 −4.69 −0.164 −0.0198 0.164 0

0 0 0 0 0 1

−2.41 0 0.491 0 −0.491 −0.0026

(37)

and the input matrix B is [15]

B =

0 0

8.38 0.393

0 0

−3.99 −0.121

0 0

0 0

0 0

−1.43 30.7

0 0

−0.121 3.99

0 0

0 0

(38)

2.3.3 Analysis of Sikorsky S-61 Models

The unloaded and loaded Sikorsky S-61 models are open-loop unstable. This makes it

difficult to simulate their time responses to evaluate the open-loop performance of the

aircraft in unloaded and loaded configurations. Instead, it can be useful to plot the pole

locations for each model. This is typically done to enable identification of various aircraft

flight modes since each flight mode is associated with an eigenvalue or pole [36]. This

analysis can be performed with uncoupled longitudinal and lateral helicopter models, and

it is often simpler to analyze the uncoupled models [36]. However, in this thesis the coupled

34

models will be used.

The poles can be found by calculating the eigenvalues of the models’ A matrices. Each

real eigenvalue or pair of complex conjugate eigenvalues corresponds to a flight mode of

the helicopter [36]. The eigenvectors corresponding to each mode can be used to determine

what model states are most affected by the mode. Each row of an eigenvector corresponds

to one state from the model. States related to each flight mode have a larger magnitude in

their row of the eigenvector. By determining the states that have the largest contribution

in a given eigenvector, the helicopter’s flight modes can be identified.

Table 1 shows the eigenvalues and eigenvectors of the unloaded Sikorsky S-61 A matrix

given in (29). The flight mode that corresponds to each real eigenvalue or complex conju-

gate pair is labeled at the top of the table. As an example of how the flight modes were

determined, note that the value of the third row of the Long Term Longitudinal Oscillation

Mode eigenvectors is 0.8717. This value is larger than the other elements of those eigenvec-

tors. It is also larger than any of the elements in the third row of the other eigenvectors.

The third row corresponds to the longitudinal velocity state, ẋH . This suggests that the

mode represented by these two eigenvectors is related to the longitudinal motion of the heli-

copter. Because the corresponding eigenvalues are 0.1092±0.3635i, this mode is oscillatory.

Its oscillatory nature and its relation to the longitudinal motion of the helicopter give the

Long Term Longitudinal Oscillation Mode its name. This mode is also referred to as the

long phugoid or long-period phugoid mode [36]. Note that this mode is also unstable.

A plot of the real and imaginary parts of the eigenvalues of the unloaded model is shown

in Figure 16. The mode names are labeled for each real eigenvalue or complex conjugate

pair. The source of the real, negative-valued Short Term Pitch Mode is the rotor pitch

damping [23]. The Long Term Longitudinal Oscillation Mode corresponds to the unstable

oscillation caused by the coupling of the helicopter pitch and longitudinal velocity [23]. The

instability results from coupling between the pitch moments caused by longitudinal velocity,

or speed stability, and the component of the helicopter weight force acting on the helicopter

in the longitudinal direction due to the pitch angle [23].

The Roll Mode is a result of rotor roll damping [23]. The Roll Mode is faster than the

35

T
a
b

le
1
:

U
n

lo
ad

ed
S

ik
o
rs

k
y

S
-6

1
m

o
d

el
[1

6]
ei

ge
n
ve

ct
or

s,
w

it
h

th
e

as
so

ci
at

ed
ei

ge
n
va

lu
es

an
d

fl
ig

h
t

m
o
d

es
la

b
el

ed
.

M
o
d

e
s

R
ol

l
M

o
d

e
S

h
o
rt

T
er

m
P

it
ch

M
o
d

e
L

at
er

al
O

sc
il

la
ti

on
M

o
d

e
L

on
g

T
er

m
L

on
gi

tu
d

in
al

O
sc

il
la

ti
on

M
o
d

e

E
ig

e
n
v
a
lu

e
s
−

1
.2

7
00

−
1
.0

68
0

0
.0

42
6

+
0
.4

96
2
i

0.
04

26
−

0.
49

62
i

0.
10

92
+

0
.3

63
5i

0
.1

09
2
−

0
.3

63
5
i

States

θ H
0
.0

4
35

0
.0

50
7

0
.0

18
6
−

0.
00

19
i

0.
01

86
+

0
.0

01
9i

−
0.

00
97
−

0
.0

33
5i
−

0
.0

09
7

+
0
.0

33
5i

θ̇ H
−

0
.0

5
52

−
0
.0

54
1

0
.0

01
7

+
0
.0

09
2
i

0.
00

17
−

0.
00

92
i

0.
01

11
−

0
.0

07
2i

0
.0

11
1

+
0
.0

07
2
i

ẋ
H

0
.4

3
90

0
.5

77
2

0
.0

16
7

+
0
.3

61
8
i

0.
01

67
−

0.
36

18
i

0.
87

17
0
.8

71
7

φ
H

−
0
.0

9
65

−
0
.0

76
2

0
.0

02
5

+
0
.0

47
6
i

0.
00

25
−

0.
04

76
i

−
0.

01
63

+
0
.0

10
7i
−

0
.0

16
3
−

0
.0

10
7i

φ̇
H

0
.1

2
25

0
.0

81
4

−
0
.0

23
5

+
0
.0

03
3
i
−

0
.0

23
5
−

0.
00

33
i
−

0.
00

57
−

0
.0

04
7i
−

0
.0

05
7

+
0
.0

04
7i

ẏ H
0
.8

8
20

0
.8

05
5

0
.9

30
3

0.
93

03
0.

14
93

+
0
.4

64
9i

0
.1

49
3
−

0
.4

64
9
i

36

Roll Mode

Short Term

Pitch Mode

Lateral

Oscillation

Mode Long Term

Longitudinal

Oscillation

Mode

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

Unloaded Sikorsky S-61 Model (Hall 1973) Eigenvalues

I
m
a
g

Real

Figure 16: Eigenvalues of the unloaded Sikorsky S-61 model from [16].

Short Term Pitch Mode because the helicopter, like most traditional single-rotor helicopters,

has a smaller moment of inertia about the roll axis than the pitch axis. The Lateral

Oscillation Mode is unstable as a result of the rotor dihedral effect [23]. The instability

of the Lateral Oscillation Mode is more objectionable to pilots than the instability of the

Long Term Longitudinal Mode because it has a higher frequency [23]. This means that it

is important for the flight controller to stabilize this mode.

While resources such as Johnson [23] and Padfield [36] present detailed discussions of

flight modes for unloaded helicopters with a variety of rotor configurations, not much work

has been done on identifying or labeling flight modes of a helicopter with a suspended load.

The following analysis will attempt to identify flight modes of the loaded Sikorsky S-61.

This analysis will show that poles, and therefore the behavior of the flight modes, change

significantly when the helicopter is carrying a suspended load.

Table 2 shows the eigenvalues and eigenvectors of the loaded Sikorsky S-61 A matrix

given in (33). The flight mode that corresponds to each real eigenvalue or complex conjugate

pair is labeled above each eigenvalue and eigenvector. Also, a plot of the real and imaginary

37

Roll Oscillation
Mode

Longitudinal-Lateral
Coupling Mode

Lateral
Load-Aircraft
Coupling
Mode

Pitch Oscillation
Mode

Longitudinal and
Lateral Rigid

Body Modes (x2)

Longitudinal
Load-Aircraft
Coupling
Mode

-3

-2

-1

0

1

2

3

-0.8 -0.6 -0.4 -0.2 0 0.2

Loaded Sikorsky S-61 Model (Gupta 1976) Eigenvalues

Im
ag

Real
Figure 17: Eigenvalues of the loaded Sikorsky S-61 model from [15].

parts of the eigenvalues is shown in Figure 17.

The first two modes listed in Table 2 result from the relationships between the helicopter

attitudes, attitude rates, and translational velocities. The eigenvectors of the first mode

have strong contributions from the roll rate and lateral velocity, and the mode is oscillatory.

Similarly, the eigenvectors of the longitudinal mode have strong contributions from the pitch

rate and longitudinal velocity, and the mode is also oscillatory. As a result, the first two

modes are labeled the Roll and Pitch Oscillation Modes, respectively.

The eigenvectors of the third mode have the largest contributions from the helicopter

longitudinal and lateral translational motion. The entries in the eigenvectors in the rows

related to the helicopter longitudinal and lateral positions are approximately 90 degrees out

of phase. This suggests an exchange of energy between the longitudinal and lateral degrees

of freedom indicative of coupling between the two directions. For this reason, this mode is

labeled the Longitudinal-Lateral Coupling Mode.

The eigenvectors of the fourth mode suggest coupling between the lateral helicopter and

load translational motion. This mode has a complex conjugate pair of eigenvalues that have

38

T
a
b

le
2
:

L
oa

d
ed

S
ik

or
sk

y
S

-6
1

m
o
d

el
[1

5]
ei

ge
n
ve

ct
or

s,
w

it
h

th
e

as
so

ci
at

ed
ei

ge
n
va

lu
es

an
d

fl
ig

h
t

m
o
d

es
la

b
el

ed
.

M
o
d

e
s

R
ol

l
O

sc
il

la
ti

on
M

o
d

e
P

it
ch

O
sc

il
la

ti
on

M
o
d
e

L
on

gi
tu

d
in

al
-L

at
er

al
C

ou
p

li
n

g
M

o
d

e

E
ig

e
n
v
a
lu

e
s
−

0
.6

80
4

+
2
.9

30
6
i
−

0
.6

80
4
−

2.
93

06
i
−

0.
10

87
+

1
.6

59
3i
−

0
.1

08
7
−

1
.6

59
3i
−

0
.4

21
9

+
0
.1

04
8
i
−

0.
42

19
−

0
.1

04
8i

States

θ H
0
.0

21
2

+
0
.0

06
9
i

0.
02

12
−

0.
00

69
i

0.
02

07
−

0
.0

85
4i

0
.0

20
7

+
0
.0

85
4
i

−
0
.0

05
2
−

0.
00

63
i
−

0.
00

52
+

0
.0

06
3i

θ̇ H
−

0
.0

34
8

+
0
.0

57
5
i
−

0
.0

34
8
−

0.
05

75
i

0.
13

94
+

0
.0

43
6i

0
.1

39
4
−

0
.0

43
6
i

0
.0

02
8

+
0
.0

02
1i

0.
00

28
−

0
.0

02
1i

x
H

0
.0

18
3
−

0.
02

0
6i

0.
01

83
+

0
.0

20
6i

−
0.

03
09
−

0
.4

72
0i
−

0
.0

30
9

+
0
.4

72
0i

0
.1

24
5

+
0
.4

79
4i

0.
12

45
−

0
.4

79
4i

ẋ
H

0
.0

48
0

+
0
.0

67
6
i

0.
04

80
−

0.
06

76
i

0.
78

66
0
.7

86
6

−
0
.1

02
8
−

0.
18

92
i
−

0.
10

28
+

0
.1

89
2i

x
L

−
0
.0

02
3

+
0
.0

01
8
i
−

0
.0

02
3
−

0.
00

18
i

0.
02

02
+

0
.1

27
7i

0
.0

20
2
−

0
.1

27
7
i

0
.0

39
4

+
0
.3

56
6i

0.
03

94
−

0
.3

56
6i

ẋ
L

−
0
.0

03
8
−

0
.0

07
9
i
−

0
.0

03
8

+
0
.0

07
9i
−

0.
21

41
+

0
.0

19
7i
−

0
.2

14
1
−

0
.0

19
7i
−

0
.0

54
0
−

0.
14

63
i
−

0.
05

40
+

0
.1

46
3i

φ
H

−
0
.0

79
9

+
0
.1

39
8
i
−

0
.0

79
9
−

0.
13

98
i
−

0.
02

03
−

0
.0

04
1i
−

0
.0

20
3

+
0
.0

04
1i

0
.0

08
3
−

0.
00

39
i

0.
00

83
+

0
.0

03
9i

φ̇
H

−
0
.3

55
2
−

0
.3

29
2
i
−

0
.3

55
2

+
0
.3

29
2i

0.
00

89
−

0
.0

33
2i

0
.0

08
9

+
0
.0

33
2
i

−
0
.0

03
1

+
0
.0

02
5
i
−

0.
00

31
−

0
.0

02
5i

y H
−

0
.0

60
5
−

0
.2

60
6
i
−

0
.0

60
5

+
0
.2

60
6i

0.
12

56
−

0
.0

08
6i

0
.1

25
6

+
0
.0

08
6
i

0
.5

53
4

0.
55

34
ẏ H

0
.8

04
9

0.
80

49
0.

00
06

+
0
.2

09
3i

0
.0

00
6
−

0
.2

09
3
i

−
0
.2

33
5

+
0
.0

58
0
i
−

0.
23

35
−

0
.0

58
0i

y L
0
.0

09
4

+
0
.0

25
3
i

0.
00

94
−

0.
02

53
i

−
0.

03
31

+
0
.0

05
8i
−

0
.0

33
1
−

0
.0

05
8i

0
.3

96
6

+
0
.0

57
6i

0.
39

66
−

0
.0

57
6i

ẏ L
−

0
.0

80
6

+
0
.0

10
3
i
−

0
.0

80
6
−

0.
01

03
i
−

0.
00

60
−

0
.0

55
6i
−

0
.0

06
0

+
0
.0

55
6i
−

0
.1

73
4

+
0
.0

17
3
i
−

0.
17

34
−

0
.0

17
3i

M
o
d

e
s

L
a
te

ra
l

L
oa

d
-A

ir
cr

af
t

C
ou

p
li

n
g

M
o
d

e
L

on
gi

tu
d

in
al

L
oa

d
-A

ir
cr

af
t

C
ou

p
li

n
g

M
o
d

e
L

on
gi

tu
d

in
al

R
ig

id
B

o
d

y
M

o
d

e
L

at
er

al
R

ig
id

B
o
d

y
M

o
d

e

E
ig

e
n
v
a
lu

e
s

0
.1

14
9

+
0
.2

79
6
i

0.
11

49
−

0.
27

96
i

0.
07

63
+

0
.2

62
5i

0
.0

76
3
−

0
.2

62
5
i

0
0

States

θ H
0
.0

03
2

+
0
.0

02
5
i

0.
00

32
−

0.
00

25
i

−
0.

00
33

+
0
.0

01
8i
−

0
.0

03
3
−

0
.0

01
8i

0
0

θ̇ H
−

0
.0

00
3

+
0
.0

01
2
i
−

0
.0

00
3
−

0.
00

12
i
−

0.
00

07
−

0
.0

00
7i
−

0
.0

00
7

+
0
.0

00
7i

0
0

x
H

0
.0

24
4

+
0
.4

09
0
i

0.
02

44
−

0.
40

90
i

−
0.

45
29
−

0
.0

46
3i
−

0
.4

52
9

+
0
.0

46
3i
−

0
.7

00
4

−
0.

27
74

ẋ
H

−
0
.1

11
6

+
0
.0

53
8
i
−

0
.1

11
6
−

0.
05

38
i
−

0.
02

24
−

0
.1

22
4i
−

0
.0

22
4

+
0
.1

22
4i

0
0

x
L

0
.1

03
7

+
0
.4

59
6
i

0.
10

37
−

0.
45

96
i

−
0.

52
50

−
0
.5

25
0

−
0
.7

00
4

−
0.

27
74

ẋ
L

−
0
.1

16
6

+
0
.0

81
8
i
−

0
.1

16
6
−

0.
08

18
i
−

0.
04

01
−

0
.1

37
8i
−

0
.0

40
1

+
0
.1

37
8i

0
0

φ
H

−
0
.0

03
7

+
0
.0

03
0
i
−

0
.0

03
7
−

0.
00

30
i

0.
00

23
+

0
.0

02
8i

0
.0

02
3
−

0
.0

02
8
i

0
0

φ̇
H

−
0
.0

01
3
−

0
.0

00
7
i
−

0
.0

01
3

+
0
.0

00
7i
−

0.
00

06
+

0
.0

00
8i
−

0
.0

00
6
−

0
.0

00
8i

0
0

y H
0
.4

69
8

+
0
.0

76
9
i

0.
46

98
−

0.
07

69
i

−
0.

03
22
−

0
.4

37
1i
−

0
.0

32
2

+
0
.4

37
1i
−

0
.0

97
0

0.
65

04
ẏ H

0
.0

32
5

+
0
.1

40
2
i

0.
03

25
−

0.
14

02
i

0.
11

23
−

0
.0

41
8i

0
.1

12
3

+
0
.0

41
8
i

0
0

y L
0
.5

47
5

0.
54

75
−

0.
08

82
−

0
.4

97
7i
−

0
.0

88
2

+
0
.4

97
7i
−

0
.0

97
0

0.
65

04
ẏ L

0
.0

62
9

+
0
.1

53
1
i

0.
06

29
−

0.
15

31
i

0.
12

39
−

0
.0

61
1i

0
.1

23
9

+
0
.0

61
1
i

0
0

39

a positive real part, suggesting that the mode is unstable. Similarly, the eigenvectors of

the fifth mode suggest coupling between the longitudinal helicopter and load translational

motion. This mode is also unstable because it has a complex conjugate pair of eigenvalues

that have a positive real part. These modes were labeled Lateral and Longitudinal Load-

Aircraft Coupling Modes. Note that the lateral mode is further from the origin, indicating

that the lateral motion occurs at a higher frequency and will diverge more quickly than

the longitudinal mode. The presence of these modes agree with the observation of Hoh

et al. [18] that there is strong coupling between the load oscillation and the helicopter

translational degrees of freedom. Hoh et al. also show that the strength of this coupling

effect has a strong influence on the pilot’s controllability of the helicopter, and therefore,

on the handling qualities of the helicopter.

The final two modes correspond to the helicopter and load moving together in the

longitudinal and lateral directions as if they are one rigid body. They appear in the loaded

model due to the integration of the helicopter and load longitudinal and lateral velocities

to calculate the helicopter and load positions.

40

CHAPTER III

INPUT SHAPING CONTROL OF SUSPENDED LOADS1

3.1 Input Shaping Background

Input shaping is a command-shaping control technique where the reference command is

strategically modified by convolving it with a sequence of impulses. The impulse sequence

is called an input shaper. When this modified, or input-shaped, command is applied to a

vibratory system, the system will respond with little or no residual vibration [39, 50]. The

input-shaping technique does not require real-time measurement of the system states to

generate the impulse sequence.

Figure 18 demonstrates how two impulses can create a self-canceling vibratory response

if they are correctly timed. In the top of Figure 18, an impulse is applied to a flexible

dynamic system and induces a lightly-damped response. A similar response (shown by

the dashed line) would result if a second impulse was applied a short time later. The

bottom of Figure 18 shows the response that results from both impulses. Because the

dynamic system is assumed to be linear and time-invariant, the two responses combine

and eliminate vibration. Furthermore, the two specially-timed impulses can be convolved

with any arbitrary function, and the resulting function will maintain the vibration-canceling

properties of the original impulses.

The transfer function of a generic input shaper with n impulses is:

Gis = A1e
−t1s +A2e

−t2s + · · ·+Ane
−tns, (39)

where Ai are the impulse amplitudes, and ti are the time locations of each impulse. Without

loss of generality, the first impulse time is t1 ≡ 0. The impulse amplitudes and time locations

are calculated using the estimated natural frequencies and damping ratios of flexible modes

to be suppressed. These parameters are never known exactly in real situations. To account

1Parts of this chapter have been accepted for publication in the 2012 12th International Conference on
Control, Automation and Systems

41

Response to First Impulse
Response to Second Impulse

Time

-1

1

0

A
m

pl
itu

de

1

0A
m

pl
itu

de

First
Impulse

Second
Impulse

Response to Both Impulses

Time

Figure 18: Two self-canceling impulses.

for this uncertainty, researchers have developed robust input shapers [39, 42, 41, 44, 47, 60]

that are effective even when there are large errors in the estimated parameter values.

Various input shapers can be designed using different combinations of performance re-

quirements. By constraining the impulses to be all positive and the residual vibration to be

zero when parameter estimates are perfect, a Zero Vibration (ZV) shaper [50] is obtained.

Its transfer function is:

Gzv = A1 +A2e
−t2s, (40)

where A1, A2, and t2 depend on the natural frequency and damping ratio of the flexible

mode. Only the ZV shaper will be used in this thesis. For a description of many other

kinds of shapers, see [60, 61].

Input shapers can be designed to suppress multiple flexible modes [22, 40, 42, 46], such

as those caused by double pendulum and distributed-mass payloads. In addition, many

studies of crane operators have shown that input shaping can greatly improve performance

[25, 26, 30]. The primary disadvantages of input shaping are that it cannot reduce vibration

caused by external disturbances and it introduces a small time lag due to the method used

to form the shaped commands.

42

3.2 Input Shaping on the Blade CX3 Radio-Controlled Helicopter

The goal of this section is to demonstrate the performance improvement obtained by using

input-shaped commands on the CX3 helicopter when it is carrying a suspended load. A ZV

shaper was selected because the natural frequency and damping ratio of the payload swing

were found fairly accurately from the experimental trial shown in Figure 14. A natural

frequency of 3.1 rad/s and a damping ratio of 0.1 were used to design the ZV shaper.

Figure 19 shows the payload and helicopter responses from the same experimental un-

shaped trial from Figure 14 compared to the payload and helicopter responses from a trial

where a ZV shaper was used to shape the lateral command. The lateral command began at

1.35 seconds. As shown in Figure 19a, the ZV shaper significantly reduces the amount of

payload swing caused by the helicopter motion. The residual swing peak-to-peak amplitude

was reduced from 17 inches to 4 inches by using input shaping. The swing is not completely

eliminated by the input shaping because the input shaper does not specifically target the

small amount of initial swing present as the command began at 1.35 seconds.

The ZV-shaped helicopter response shown in Figure 19b is only slightly slower due to

the time lag introduced by the shaper. Also, the helicopter arrives at the final hover position

with much less overshoot and back-drive than in the unshaped case, even though the shaper

was not designed to suppress the frequency of the helicopter translational oscillation. This

is a result of the coupling between the load oscillation and the helicopter translation.

These results show that input shaping can be used to suppress the payload swing on

the experimental helicopter. Also, the natural frequency predicted by the nonlinear planar

crane model given by (1) and (2) (3.15 rad/s) was close to the natural frequency used to

suppress the payload swing in the experiment (3.1 rad/s), and the damping ratio was nearly

the same. This suggests that the model can predict the natural frequency and damping

ratio of the experimental helicopter’s payload swing with sufficient accuracy for designing

effective ZV shapers. The expression for the natural frequency obtained from the linearized

planar crane model, given by (8), predicts a natural frequency of 3.18 rad/s, which is only

about 1% less than the actual natural frequency of 3.2 rad/s. This is also enough accuracy

for designing an effective input shaper. As a result, the model can justifiably be used to

43

-8
-6
-4
-2
0
2
4
6
8

0 1 2 3 4 5 6 7 8

Unshaped
ZV Shaped

Pa
yl

oa
d

Sw
in

g
(in

)

Time (sec)
(a) Payload response.

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8

Unshaped
ZV ShapedH

el
ic

op
te

r
Po

si
tio

n
(ft

)

Time (sec)
(b) Helicopter response.

Figure 19: Comparison of unshaped and ZV-shaped experimental (a) payload and (b)
helicopter responses for the CX3 helicopter.

estimate the natural frequency and damping ratio of other helicopter-load configurations

and use them as first approximations for designing input shapers. Another helicopter-load

configuration will be investigated in the next section to further verify if the natural frequency

estimates provided by the model are effective for other helicopter-load configurations.

44

3.3 Input Shaping on the Planar Experimental Radio-Controlled Heli-
copter

The helicopter experimental setup that will be used in this section is the Planar Experimen-

tal Radio-Controlled Helicopter (PERCH). This helicopter will be used to further demon-

strate the effectiveness of input shaping at suppressing suspended load oscillations.

3.3.1 Planar Experimental Radio-Controlled Helicopter

A photograph of the PERCH experimental setup is shown in Figure 20. The setup consists

of an E-flite Blade 400 RC helicopter attached to a frame. The frame pivots about two carts

that roll on the two guide rails. The helicopter is only able to pitch and translate forwards

and backwards. The guide rails restrict motion in the lateral, yaw, and heave directions. A

hard stop is positioned at the ends of each guide rail to stop the helicopter. A suspended

load is attached to the helicopter. The round objects seen below the helicopter are colored

circles attached to the helicopter frame that are used to extract the helicopter attitude from

videos of experimental trials using a MATLAB image processing program.

A schematic diagram of the PERCH expeirmental setup is shown in Figure 21. Rather

than directly transmitting operator commands to the helicopter using the manually-controlling

transmitter, the commands are sent to a microcontroller that can modifiy the operator’s

commands. The microcontroller receives input from the manually-controlling transmitter

using a 10-bit analog-to-digital converter. The commands are sent from the microcontroller

to the helicopter via the signal-sending transmitter. The microcontroller sends the com-

mands to the signal-sending transmitter using 8-bit Pulse-Width Modulation (PWM). The

signal-sending transmitter then transmits the commands to the helicopter. This setup al-

lows an operator to fly the RC helicopter using the manually-controlling transmitter, and

input shaping may be applied to the operator’s commands using the microcontroller. The

microcontroller used in the PERCH setup is an Arduino UNO microcontroller.

The mass of the helicopter and its frame is 2.82 lb. The mass of the cart on each guide

rail is 0.9 lb. The mass of the suspended load is 1.2 lb and the suspension cable length is

72 inches. Due to the hard stops and the length of the guide rails, the usable workspace is

45

RC Helicopter
(E-flite Blade 400)

Suspended
Load

Guide Rails

Microcontroller,
Computer, and
Transmitters

Figure 20: Photograph of the Planar Experimental Radio-Controlled Helicopter
experimental setup.

Microcontroller

Signal-

Sending

Transmitter

Helicopter

Suspended

Load

Guide Rails

Manually-

Controlling

Transmitter

Analog-to-Digital

Converter

PWM

Figure 21: Schematic diagram of the Planar Experimental Radio-Controlled Helicopter.

46

80 inches long.

By constraining the motion of the helicopter to the pitch direction only, this experimen-

tal setup slightly changes the dynamics of the helicopter. In an unconstrained helicopter,

pitching forward is accompanied by downward motion. This occurs because the increase in

pitch angle leads to a decrease in the vertical component of the thrust vector. The smaller

vertical force does not fully support the weight of the helicopter, so pitching forward leads

to a small downwards acceleration. When carrying a suspended load, this downward accel-

eration of the helicopter causes effects similar to a pendulum with a vertically accelerating

suspension point. The accelerating suspension point affects the natural frequency load

swing. This coupling between the pitch and vertical motions is small compared to the he-

licopter pitch and suspended load swing dynamics for small to moderate pitch angles. By

allowing the helicopter to pitch and translate in the longitudinal direction, the experimental

setup captures many of the important dynamics, such as coupling between the load and

helicopter, and allows these effects to be studied.

3.3.2 Input Shaper Design

To design an input shaper for suppressing the oscillation of PERCH’s suspended load,

an estimate of the natural frequency and damping ratio of the oscillation is needed. An

estimate of the natural frequency can be obtained using the expression for the natural

frequency obtained from the linearized planar crane model (8). Including the mass of both

carts, the total effective helicopter mass is 4.62 lb. Using this value for the helicopter

mass, the suspended load mass of 1.2 lb, and the suspension cable length of 72 inches, (8)

yields a natural frequency of 2.6 rad/s. This frequency is labeled in the 3D plot of natural

frequencies shown in Figure 10.

An impulse response was performed to verify this estimate of the natural frequency and

measure the damping ratio of the suspended load oscillation. The impulse response was

performed by quickly pushing the load while the helicopter hovered at the center of the

guide rail workspace. The suspended load oscillation relative to the helicopter position was

extracted from a video recording of this experimental trial.

47

-24

-18

-12

-6

0

6

12

18

24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
u

sp
en

d
ed

 L
o

a
d

 O
sc

il
la

ti
o

n
 (

in
)

Time (seconds)

Figure 22: Planar Experimental Radio-Controlled Helicopter suspended load impulse
response.

The impulse response of the suspended load is shown in Figure 22. The impulse was

applied at approximately two seconds. The oscillation amplitude damps to less than 50%

of the peak amplitude within four periods. The natural frequency and damping ratio of the

oscillation can be calculated from this impulse response using the log decrement method.

The log decrement method yielded a natural frequency of 2.27 rad/s and a damping ratio

of 0.075. These values were used to design a ZV input shaper. The effectiveness of this

input shaper at suppressing suspended load oscillation will be shown in the next section.

The natural frequency of 2.6 rad/s predicted by (8) has an error of 12.7% relative to the

actual frequency of 2.27 rad/s. If the natural frequency approximation given by (8) is used

to design a ZV input shaper, then this ZV input shaper will not fully suppress the suspended

load oscillation due to the 12.7% error between the estimated and actual values. This is

because the ZV input shaper is not very robust to error between the natural frequency used

to design the input shaper and the actual natural frequency [39].

However, other types of input shapers have been derived that are more robust to error in

the natural frequency, such as the Zero Vibration and Derivative [39] and Extra-Insensitive

[44] input shapers. These robust input shapers would still be effective at suppressing the

suspended load oscillation even with 12.7% error in the natural frequency used to design the

48

input shaper. Therefore, (8) yields estimates of the natural frequency that are acceptable

for use in the design of effective input shapers if more robust types of input shapers are

used.

3.3.3 Input Shaping Experimental Results

A ZV input shaper was designed using the natural frequency and damping ratio estimates

obtained from the suspended load impulse response

To perform the unshaped and input-shaped trials, a human operator flew the helicopter

from one position to another on the guide rails using the manually-controlling transmitter

to issue commands. The helicopter’s collective pitch input was set at the same level for

both trials in the microcontroller. The collective pitch sets the thrust of the helicopter and

was set at a level that balances the weight of the helicopter and the load.

Figure 23 shows the payload and helicopter responses for unshaped and ZV input-

shaped commands. Figure 23a shows a plot of the suspended load oscillation relative to

the helicopter. The use of the ZV input shaper significantly reduces the amount of payload

swing caused by the helicopter motion. Input shaping reduces the residual oscillation peak-

to-peak amplitude from 22 inches to 1 inch.

The helicopter responses are shown in Figure 23b. In the unshaped response, the load

oscillation significantly back-drove the helicopter following the move. This back-driving is

not seen in the ZV-shaped response because the oscillation of the load was suppressed by

the input shaping. The ZV-shaped helicopter response was slightly slower. This is due

to the scaling of the command by the impulses resulting in less acceleration. The move

distances in both responses were slightly different because the human operator’s commands

were not exactly the same. The helicopter drifts slightly in the shaped response because

the human operator was not sending a completely neutral command. It is only noticeable

because there is not significant back-driving of the helicopter by the load in the shaped

response.

49

-12

-8

-4

0

4

8

12

0 1 2 3 4 5 6 7 8 9 10 11 12

Unshaped
ZV Shaped

S
u

sp
en

d
ed

 L
o

a
d

 O
sc

il
la

ti
o

n
 (

in
)

Time (sec)

(a) Payload response.

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12

Unshaped
ZV ShapedH

el
ic

o
p

te
r

P
o
si

ti
o

n
 (

ft
)

Time (sec)

(b) Helicopter response.

Figure 23: Comparison of unshaped and ZV input-shaped experimental (a) payload and
(b) helicopter responses for the Planar Experimental Radio-Controlled Helicopter.

3.4 Input Shaping On Full-Scale Helicopters

A full-scale helicopter with a suspended load is not available for testing the effectiveness of

input shaping at suppressing suspended load oscillations. A project with the Vertical Lift

Consortium and the National Rotorcraft Technology Center is investigating flight control

concepts and handling qualities requirements for suspended load operation. Through this

project, an input-shaping MATLAB program was prepared for, and delivered to, Boeing

50

Helicopters, Kaman Aerospace, and Sikorsky. They will use this MATLAB program for

testing and evaluation of the input-shaping technique as part of full-scale helicopter flight

control systems. A thorough discussion of the input shaping MATLAB program is available

in Appendix A. Appendix A explains the MATLAB syntax for using the program and

includes the complete program code.

51

CHAPTER IV

FLIGHT CONTROLLER DESIGN COMBINING INPUT SHAPING

WITH MODEL-FOLLOWING CONTROL

This chapter investigates combining input shaping with model-following control to improve

helicopter performance when carrying a suspended load. First, the model-following control

architecture is presented. Model-following control is commonly used in helicopter flight con-

trollers to force specified helicopter states, such as the attitude, to respond like a desirable

model [52]. There are obvious benefits in terms of designing to satisfy handling qualities re-

quirements if the helicopter’s response can be prescribed by an ideal model of the designer’s

choosing [52]. However, tracking of the prescribed model is significantly degraded when the

helicopter is carrying a suspended load. Also, this approach cannot eliminate suspended

load oscillation without using feedback of the suspended load states.

A near-hover, attitude-command model-following controller is designed for a Sikorsky S-

61 helicopter with and without a suspended load using the dynamic models of this helicopter

obtained from previous researchers [15, 16]. The design of the attitude-command model-

following controller is demonstrated for the unloaded helicopter case, and simulation results

demonstrate the controller’s effectiveness. Next, this controller is applied to the loaded

helicopter case, and it is shown that the model tracking performance is degraded by large

load oscillations. Then, input shaping is added to the model-following controller. The

results show that input-shaping reduces swing of the suspended load and greatly improves

helicopter tracking of the prescribed model.

4.1 Model-Following Control

Model-following control has become an attractive control technique for helicopter flight

controllers. Boeing Helicopters used a control law architecture consisting of model-following

control on several demonstrator programs in the 1980’s and 1990’s, including the V-22 and

RAH-66 [27]. It is an effective and viable control architecture because the aircraft response

52

can be specified via the prescribed model to achieve favorable handling qualities and is

well-suited for full authority fly-by-wire control systems [27].

Model-following control for aircraft first appeared in the literature in the 1960’s and

1970’s. Murphy and Narendra [34] adjoined a model that approximates the pilot’s inputs to

the helicopter equations of motion, and then used optimal control to design a regulator that

would track the model response. Winsor and Roy [66] showed used a combination of partial

state feedback and feedforward compensation to achieve good tracking of the prescribed

model. More recently, Trentini and Pieper [55] designed a model-following controller for a

helicopter in hover to meet handling qualities requirements using an optimal control design

approach. Model-following has also been used for other types of aircraft, such as NASA

Ames’ and the U.S. Navy’s oblique wing research aircraft [1]. Furthermore, model-following

control has been synthesized with other types of controllers to achieve better performance

in difficult flight conditions or for specific missions, such as gust rejection during shipboard

operations [21].

There are two types of model-following control. Implicit model-following uses optimal

control to design a feedback controller that yields a closed-loop control system whose dy-

namics match the dynamics of the prescribed model [66]. The prescribed model itself does

not appear in the control law directly; its output is only used in an optimal control per-

formance index used to calculate feedback controller gains [1, 55, 57]. Explicit, or real,

model-following control uses the prescribed model directly in the control system, typically

as a feedforward compensator [1, 32, 52, 55]. The control law in explicit model-following is

typically constructed using the feedforward of the prescribed model states and a feedback

controller that uses plant-state feedback [57, 66].

Explicit model-following control is preferred over implicit model-following control for use

in aircraft control systems [55]. Explicit model-following controllers incorporate real-time

measurement of the model tracking error, allowing the controller to reject disturbances and

to correct the aircraft trajectory in the presence of errors in the model used in the design

process [66]. In addition, explicit model-following can be implemented with partial state

feedback and effective model tracking can still be achieved [66]. Most importantly, the

53

feedback stabilization can be designed independently from the feedforward compensator

and prescribed model [27]. For these reasons, explicit model-following control was selected

for the baseline helicopter flight controller implemented in this chapter.

The implemented controller combines feedforward and feedback control. A state feed-

back controller is used to stabilize the helicopter system. Also, the state feedback control

enables the error dynamics of the model tracking to be specified. Based on the recommen-

dation of Tyler [57], the feedback controller is designed as a regulator independent from

the rest of the controller using only the helicopter plant model. The regulator is designed

using the pole placement state feedback technique. The feedforward controller uses model

inversion techniques to cancel the undesired helicopter dynamics.

However, tracking of the prescribed model is significantly degraded when the helicopter

is carrying a suspended load. One way to improve helicopter performance when carrying a

suspended load would be to replace the original feedforward model with one that accounts

for the sling-load dynamics. A drawback of this method is that the feedback portion of

such a controller would require real-time measurement of the sling load position or angle,

which is almost never available in practice. This chapter investigates an alternative way

to improve system performance without measurements of the load states by adding input

shaping to the controller.

4.1.1 Controller Description

Figure 24 shows the block diagram of an explicit model-following controller. The structure

of this controller is similar to that presented in Landis et al. [27]. The pilot command

is used as the input to a prescribed model GM . The rest of the controller is designed to

force the output ~x of the helicopter plant GP to track the prescribed model output ~xM .

Generally, helicopters have one or more unstable modes, so a feedback controller is used to

stabilize GP . Also, the feedback GFB determines the error dynamics of the model tracking.

The feedforward control GFF is then selected to cancel undesired helicopter dynamics using

model inversion techniques.

54

F e e d b a c k

+ -

F e e d f o r w a r d

++

P i l o t
C o m m a n d

Figure 24: Block diagram of an explicit model-following control structure.

4.1.2 Theoretical Model-Following Controller Performance

4.1.2.1 Steady-State Performance

If the feedforward control GFF equals the inverse of the helicopter plant, G−1P , then the

helicopter output ~x asymptotically tracks the model output ~xM . The feedback portion

of the controller also enables the controller to reject disturbances that affect the model

tracking. The asymptotic model tracking can easily be shown from the block diagram in

Figure 24 using block diagram reduction. The helicopter output ~x is given by

~x = GP~u (41)

where ~u is the input to the helicopter plant GP . From the block diagram, the control law,

or the input to the plant, is given by

~u = GFF~xM + GFB~xM −GFB~x (42)

Substituting (42) into (41), the output of the helicopter plant ~x can be expressed as

~x = GP (GFF~xM + GFB~xM −GFB~x) (43)

If GFF equals the inverse of the helicopter plant G−1P , then (43) simplifies to

~x = ~xM + GPGFB~xM −GPGFB~x (44)

collecting terms and simplifying yields

~x = ~xM (45)

55

Therefore, if the feedforward control cancels the helicopter dynamics, then the helicopter

output tracks the prescribed model output. This can be accomplished by inverting a model

of the helicopter plant. In this case, the control law is given by

~u = G−1P ~xM + GFB~xM −GFB~x (46)

4.1.2.2 Model Tracking Error Dynamics

It can be shown that the design of the feedback controller determines the dynamic charac-

teristics of the model tracking error. The helicopter plant can be expressed in state space

form as

~̇x = A~x+ B~u (47)

A state space representation of the prescribed model is given by

~̇xM = AM~xM + BM~r (48)

where ~r is the pilot command. The model tracking error ~e is given by

~e = ~xM − ~x (49)

Assuming that all of the helicopter states are measurable, full state feedback is selected

for the feedback controller. Full state feedback calls for feedback control of the form ~u =

−K~x, where K is a constant state feedback gain matrix. Therefore, GFB from Figure 24

equals the gain K. Using state feedback for the feedback controller with constant gain

matrix K, the control law in (46) can be written as

~u = ~uD + K~xM −K~x (50)

where ~uD is the output of the feedforward block and its corresponding signal is labeled

in Figure 24. Recall that the feedforward block is chosen to be an inverted model of the

helicopter plant. A state space representation of the helicopter plant model to be inverted

is given by

~̇xD = AD~xD + BD~uD (51)

56

In practice, this model will not perfectly represent the helicopter. An expression for ~uD is

obtained by solving (51) for ~uD, or

~uD = B†D

(
~̇xD −AD~xD

)
(52)

where B†D is the pseudoinverse of BD and ~xD is the input to the inverse, which equals the

prescribed model output ~xM as can be seen in Figure 24. The pseudoinverse is required

because B is usually not a square matrix.

Substituting the plant inverse given in (52) into (50), and setting ~̇xD = ~̇xM and ~xD =

~xM , the control law can be written as

~u = B†D

(
~̇xM −AD~xM

)
+ K~xM −K~x (53)

To analyze the dynamics of the model tracking error, an expression for the derivative of

~e must be found. Taking the derivative of (49) gives

~̇e = ~̇xM − ~̇x (54)

Substituting (48) and (47) for ~̇xM and ~̇x in (54) gives

~̇e = AM~xM + BM~r −A~x−B~u (55)

Substituting (53) into (55) yields

~̇e = AM~xM + BM~r −A~x−B
(
B†D

(
~̇xM −AD~xM

)
+ K~xM −K~x

)
(56)

If the model inversion is exact, or equivalently AD = A and BD = B, then (56) simplifies

to

~̇e = AM~xM + BM~r − ~̇xM + (A−BK) (~xM − ~x) (57)

Recognizing that ~xM − ~x = ~e and ~̇xM = AM~xM + BM~r, (57) reduces to

~̇e = (A−BK)~e (58)

This result shows that the eigenvalues of (A−BK) determine the dynamics of the model

tracking error, ~e = ~xM − ~x, and designing a controller for the model tracking error reduces

to the regulator design problem as discussed by Tyler [57]. Therefore, using techniques such

as pole placement to calculate a state feedback gain K allows the designer to specify the

model tracking error dynamics.

57

+ -

++

Feedforward Feedback

-1

Figure 25: Model-following controller for the unloaded Sikorsky S-61 helicopter.

4.2 Near-Hover, Attitude-Command Model-Following Controller for
the Sikorsky S-61 Helicopter

A near-hover, attitude-command model-following controller for the unloaded Sikorsky S-

61 helicopter was designed using the Sikorsky S-61 model from Hall and Bryson [16]. The

characteristics of this model were discussed in Chapter II. The model was used for designing

the feedback controller and for the model inversion part of the feedforward controller. The

block diagram of this controller is shown in Figure 25. This is a more specific version of the

generic model-following block diagram shown in Figure 24, where the unloaded helicopter

model is used for the model inversion and for simulating the helicopter response. Note that

the inversion of the unloaded model leads to cancellation of the dynamics of the unloaded

helicopter plant.

However, when the helicopter carries a suspended load, the controller will no longer

completely cancel the dynamics of the plant, and error between the actual output and the

prescribed model will develop. The block diagram for this scenario is shown in Figure 26.

Note that the loaded helicopter is simulated using the model of the load-carrying Sikorsky

S-61 from Gupta and Bryson [15] and discussed in Chapter II. With the plant helicopter

carrying a suspended load, the model inversion will cancel only the baseline helicopter

dynamics but not the additional dynamics introduced by the presence of the suspended

load.

58

Loaded Helicopter

+ -

++

Feedforward Feedback

-1

Figure 26: Model-following controller for the load-carrying Sikorsky S-61 helicopter.

4.2.1 Feedback Controller Design Using Unloaded S-61 Model

According to the analysis above and (58), the dynamics of the model tracking error are

dependent on the eigenvalues of A−BK. The model tracking performance can be specified

by selecting eigenvalues that give suitable model tracking error dynamics, and then the pole

placement technique may be used to calculate K. This feedback controller could be designed

using other techniques, but the pole placement technique proves simple and effective.

The gain matrix K was calculated with the MATLAB place function using the helicopter

state matrix A and input matrix B and the selected poles. Using the unloaded Sikorsky

S-61 A and B matrices give a gain matrix of

K =

22.60 2.735 −1.523 1.464 −0.1871 0.7717

1.339 0.1425 −0.0536 2.083 0.2455 0.1808

 (59)

4.2.2 Prescribed Models

The prescribed model GM determines how the helicopter responds to pilot commands. A

model that yields the desired helicopter performance must be selected. However, the model

should not be too aggressive. An overly-aggressive model will lead to plant commands that

the helicopter actuators cannot reproduce. When the actuators cannot faithfully repro-

duce the commanded inputs, the helicopter will not follow the trajectory specified by the

prescribed model.

59

For the Sikorsky S-61 model-following controller, a third-order model was selected that

prescribes the helicopter attitude and attitude rate. This third-order model is a combination

of an underdamped second-order model and a first-order lag. The first-order lag is included

to account for actuator dynamics, and effectively smooths the plant command, ensuring that

the command is something that the helicopter rotor can reproduce. This was accomplished

with a relatively fast time constant for the first-order model. The majority of the dynamics

at the time scale of gross helicopter translation and attitude response is prescribed by the

second-order underdamped model.

The state-space model of the third-order pitch and roll model is given by

~̇xM =

0 1 0

0 0 1

−ω2
nτ −

(
ω2
n + 2ζωnτ

)
− (2ζωn + τ)

 ~xM +

0

0

1

~r (60)

~yM =

ω2
nτ 0 0

0 ω2
nτ 0

 ~xM
where τ is the time constant of the first-order lag, ωn is the natural frequency of the second-

order model, and ζ is the damping ratio of the second-order model. The pilot’s attitude

command (a pitch or roll angle) is the input r to this model. Note that this model was

designed to have a steady-state gain of one, though this can be changed depending on the

application and the source of the pilot’s attitude command. Specifying the prescribed model

requires selecting values for the parameters τ , ωn, and ζ.

The model in (60) is applied to the pitch and roll attitude commands. There are two

of these third-order models in the control system, one each for the longitudinal and lateral

channels. Each model is applied independently to the pilot’s attitude command in that

channel. The same first-order time constant, natural frequency, and damping ratio are used

in the two models to give similar characteristics to the pitch and roll attitude responses.

The parameters of the two third-order models were selected to have a damping ratio of

0.707 because it yields a good balance between fast rise time and low overshoot. A settling

time ts of 2.5 seconds was selected. Using this damping ratio and settling time, the natural

60

frequency was found using the following approximation

ts =
4

ωnζ
(61)

Solving (61) with the selected damping ratio and settling time resulted in a corresponding

natural frequency of 2.26 rad/s.

A first-order time constant of 0.125 seconds was selected. This time constant was slow

enough to ensure that the helicopter rotor could respond to the commanded rotor tilt

angles, while not significantly altering the performance characteristics prescribed by the

second-order model.

The pitch and roll prescribed models are solved in real time by the controller, and

the outputs of each model, ~yM , are composed of the desired attitude trajectory and the

corresponding attitude rate trajectory. With models in both the longitudinal and lateral

channels, the result is pitch attitude, pitch rate, roll attitude, and roll rate trajectories

prescribed by the models. Because the helicopter velocities are also needed to form the

full state vector for inverting the unloaded model, the measured velocities of the plant are

used. The attitude trajectories are combined with the measured longitudinal and lateral

velocities to form the complete helicopter state vector. This state vector can be interpreted

as the desired state trajectory.

4.2.3 Controller Implementation and Simulation

This controller was tested in simulation using the unloaded and loaded Sikorsky S-61 models

from [16] and [15]. The controller and models were programed in MATLAB and Simulink

to perform the simulation. Simulated pilot pitch and roll attitude commands were used

that moved the helicopter from one position to another, starting and stopping in hover. A

fairly conservative maneuver was selected to ensure that the helicopter response does not

exceed the near-hover regime of the unloaded and loaded models.

61

4.2.4 Simulation Results and Controller Performance

4.2.4.1 Unloaded S-61 Performance

To evaluate the performance of this controller for the unloaded Sikorsky S-61 helicopter, a

pitch and roll maneuver was simulated. The pilot attitude command was selected to move

the helicopter in both the longitudinal and lateral directions to a target location, starting

and stopping in hover. The attitude command has a maximum amplitude of 7.16 degrees,

and this can be considered a small-to-moderate amplitude command.

Figure 27a shows the pilot command, the resulting response of the prescribed model,

and the helicopter attitude response for the pitch channel. The pitch attitude tracks the

prescribed model almost perfectly. Figure 27b shows the pilot command, the resulting

response of the prescribed model, and the helicopter attitude response for the roll channel.

As in the pitch channel, the roll attitude tracks the prescribed model almost perfectly. The

controller also minimizes the coupling between the longitudinal and lateral motion of the

helicopter.

If the control effort required to execute this maneuver is too fast or has too large of

an amplitude, then the quasistatic rotor assumption used in the modeling process may be

inadequate for approximating the rotor dynamics. In other words, the commanded rotor

disk angle may require the helicopter rotor to tilt faster than it can. Due to the larger inertia

of the helicopter about the pitch axis, it is expected that the command in the longitudinal

channel will need to be more aggressive and, therefore, more likely to exceed the limits of

the rotor.

To investigate this, the command sent to the helicopter plant in the longitudinal channel

is shown in Figure 28a. Recall that the commands for the Sikorsky S-61 models are the

rotor tilt, or disk, angles. At this point, it is worth noting that the response of the rotor

to control inputs occurs on the same time scale as the rotor rotation rate. The time to

half amplitude of the rotor tilt is on the order of 0.05 seconds [23], or similarly, the time

constant of the rotor response is typically a quarter to a half of the rotor rotation period

[38]. Half of the rotor rotation period for the Sikorsky S-61 main rotor is approximately

0.15 seconds [16]. The longitudinal command generated by the controller requires a rotor

62

-8

-6

-4

-2

0

2

4

6

8

0 5 10 15 20 25 30

Pilot Command
Model Response
Helicopter Response

Pi
tc

h
A

ng
le

 (d
eg

)

Time (seconds)

(a) Pitch pilot command.

-8

-6

-4

-2

0

2

4

6

8

0 5 10 15 20 25 30

Pilot Command
Model Response
Helicopter Response

R
ol

l A
ng

le
 (d

eg
)

Time (seconds)

(b) Roll pilot command.

Figure 27: Pilot command, prescribed model response, and helicopter attitude response
in the (a) pitch and (b) roll channels and for the unloaded Sikorsky S-61.

response with a time to half amplitude of approximately 0.4 seconds, which is almost an

order of magnitude slower than the rotor capability. Also, the maximum amplitude reached

by the command is only 1 degree, which is a small rotor tilt angle.

The lateral command is shown in Figure 28b. As can be seen by comparing Figure 28b

with Figure 28a, the longitudinal command is more aggressive. As expected due to the

63

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0 5 10 15 20 25 30

L
on

gi
tu

di
na

l R
ot

or
 D

is
k

A
ng

le
 C

om
m

an
d

(d
eg

)

Time (seconds)

(a) Longitudinal command.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30

L
at

er
al

 R
ot

or
 D

is
k

A
ng

le
 C

om
m

an
d

(d
eg

)

Time (seconds)

(b) Lateral command.

Figure 28: Control effort required by the model-following controller in the (a)
longitudinal and (b) lateral channels for the unloaded Sikorsky S-61.

larger inertia of the helicopter about the pitch axis, the longitudinal command has a larger

magnitude and changes more rapidly than the lateral command.

4.2.4.2 Loaded S-61 Performance

The performance of the load-carrying Sikorsky S-61 helicopter was investigated using the

same controller and pilot commands as for the unloaded helicopter in the previous section.

64

For feedback, the controller still uses only the unloaded helicopter states (pitch and roll

attitudes and attitude rates, and longitudinal and lateral translational velocities). Mea-

surements of the load states are not required.

Figure 29 shows the pilot command, the resulting response of the prescribed model, and

the helicopter attitude response for the pitch and roll channels. The response in the pitch

channel is shown in Figure 29a. The pitch attitude tracking of the prescribed model is not

significantly affected by the addition of a suspended load. This is due to the larger pitch

inertia of the helicopter resisting the moment applied by the swinging suspended load.

The response in the roll channel is shown in Figure 29b. The roll attitude does not

track the model response very well, particularly following the completion of the command.

Following the command, there are residual roll attitude oscillations that have an amplitude

of nearly 2 degrees. These oscillations are caused by the tension in the suspension cable

supporting the load applying an oscillatory torque about the helicopter center of gravity as

the load swings. In this sense, the load is acting like a disturbance applied to the helicopter.

According to ADS-33E requirements [59], residual attitude oscillations larger than 0.5

degrees are considered excessive for any type of maneuver. As seen in Figure 29a, the pitch

attitude residual oscillation amplitude is less than 0.5 degrees, and remains within ADS-33E

requirements. However, the residual roll attitude oscillation amplitude is nearly 2 degrees,

so it does not satisfy ADS-33E requirements.

Figure 30 shows the longitudinal and lateral load oscillation caused by the helicopter

motion. The 65.6 ft suspension cable leads to a large-amplitude, low-frequency response of

the load. The peak-to-peak amplitude of the load oscillation in both directions is nearly

55 ft. This amount of load swing would be dangerous and hard for the pilot to control

following the maneuver. It would also increase the time it takes for the pilot to set down

the load, as he or she would have to wait for the load oscillation to damp out or actively

move the helicopter to cancel out the swing before setting the load down.

The amount of residual attitude and load oscillation is dependent on properties of the

pilot’s commands, such as move distance and velocity. This means the amount of residual

oscillation will vary depending on the pilot’s commands, making the oscillations hard for

65

-8

-6

-4

-2

0

2

4

6

8

0 5 10 15 20 25 30 35

Pilot Command
Model Response
Helicopter Response

Pi
tc

h
A

ng
le

 (d
eg

)

Time (seconds)

(a) Pitch channel.

-8

-6

-4

-2

0

2

4

6

8

0 5 10 15 20 25 30 35

Pilot Command
Model Reponse
Helicopter Response

R
ol

l A
ng

le
 (d

eg
)

Time (seconds)

(b) Roll channel.

Figure 29: Pilot command, prescribed model response, and helicopter attitude response
in the (a) pitch and (b) roll channels for the loaded Sikorsky S-61.

the pilot to predict and thus difficult to control.

The model-following controller should be modified to improve tracking of the prescribed

model and to reduce the suspended load oscillation. These modifications should make the

helicopter response more predictable to the pilot and improve the speed and safety of load

transfer operations.

66

-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30

0 5 10 15 20 25 30 35 40

L
on

gi
tu

di
na

l P
ay

lo
ad

 O
sc

ill
at

io
n

(ft
)

Time (seconds)

(a) Longitudinal load swing.

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Lateral Payload Oscillation - Unshaped

L
a

te
ra

l
P

a
y

lo
a

d
 O

sc
il

la
ti

o
n

 (
ft

)

Time (seconds)

(b) Lateral load swing.

Figure 30: Suspended load swing in the (a) longitudinal and (b) lateral directions.

4.3 Combining Input Shaping and Model-Following Control

The model-following controller does not address the load oscillation nor its disturbance-like

effects on the model tracking error. As was demonstrated in the previous section, oscillation

of the load is dangerous and adversely affects control of the helicopter. To reduce the load

oscillation, input shaping is added to the model-following controller. The model-following

controller block diagram with input shaping is shown in Figure 31. Input shaping is added

67

Loaded Helicopter

+ -

++

Feedforward Feedback

-1

Input Shaping

Figure 31: Model-following controller for the load-carrying Sikorsky S-61 helicopter with
input shaping added.

to the controller before the prescribed model.

This implementation approach is equivalent to incorporating an input shaper in the

prescribed model. Effectively, the input shaping is built into the prescribed model, and the

model output is an input-shaped that does not excite suspended load swing. The order of

the input shaper and the prescribed model in the controller does not matter because input

shapers and the chosen prescribed model are linear.

4.3.1 Input Shaper Design

To design an input shaper that suppresses the load oscillation in the longitudinal and

lateral directions, the natural frequencies and damping ratios of the oscillation in those

directions are required. The frequencies and damping ratios of the longitudinal and lateral

load oscillations shown in Figure 30 were determined using the log decrement method. The

longitudinal load oscillation has a frequency of 0.907 rad/s and a damping ratio of 0.001.

The lateral load oscillation has a frequency of 0.869 rad/s and a damping ratio of 0.007. The

frequencies are slightly different, and the damping ratio of the lateral oscillation is slightly

larger. The damping is larger because more energy is being transferred to or exchanged

with the helicopter’s roll attitude oscillation.

It is worth noting here that the natural frequency and damping ratio are also partially

influenced by the feedback part of the controller. The feedback controller is trying to drive

the model tracking error to zero. However, the load acts like a disturbance on the helicopter

motion, as can be seen in Figure 29, because the load is coupled with the helicopter attitude

68

and translation. This disturbance introduces an error between the trajectory specified by

the prescribed model and the actual helicopter states that the feedback controller attempts

to eliminate. The feedback controller affects the load oscillation as the controller attempts

to eliminate the model tracking error. It does so by adjusting the commands sent to the

helicopter plant and therefore affects the motion of the helicopter and the load. This means

the poles used to design the feedback controller and calculate the gain matrix K end up

having a small effect on the motion of the load and its swing frequencies and damping ratio.

ZV shaping was selected for use in this model-following controller. The shaper am-

plitudes and times were calculated from the natural frequencies and damping ratios. A

separate shaper was used for the longitudinal and lateral load oscillations because their

frequencies were somewhat different.

4.3.2 Simulation Results and Controller Performance with Input Shaping

Figure 32 shows the input-shaped pilot command, the resulting response of the prescribed

model, and the helicopter attitude response for the pitch and roll channels with input

shaping added to the model-following controller. The response in the pitch channel is shown

in Figure 32a. The pitch attitude tracking of the prescribed model is not as significantly

affected as the roll channel by the addition of a suspended load as shown in Figure 29, but

adding input shaping to the controller improves the tracking by reducing the small residual

pitch attitude oscillations.

The real benefit, in terms of the attitude response, of adding input shaping to the

controller is in the roll channel. The response in the roll channel is shown in Figure 32b. The

roll attitude tracking of the model response is greatly improved with input shaping added

to the controller. The amplitude of the roll attitude oscillations following the command

has been greatly reduced by adding input shaping to the controller, and the ADS-33E

requirements for residual attitude oscillation amplitude are satisfied. With the residual

attitude oscillations reduced, the addition of input shaping to the controller should make

the response of the helicopter more predictable to the pilot.

Figure 33 shows the longitudinal and lateral load oscillation caused by the helicopter

69

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 25 30 35

Input-Shaped Pilot Command
Model Response
Helicopter Response

Pi
tc

h
A

ng
le

 (d
eg

)

Time (seconds)

(a) Pitch channel.

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 25 30 35

Input-Shaped Pilot Command
Model Response
Helicopter Response

R
ol

l A
ng

le
 (d

eg
)

Time (seconds)

(b) Roll channel.

Figure 32: Input-Shaped pilot command, prescribed model response, and helicopter
attitude response in the (a) pitch and (b) roll channels for the loaded Sikorsky S-61.

motion with and without input shaping. Input shaping significantly reduces the residual

load oscillation in both the longitudinal and lateral directions. Note that there is a still

some transient swing that occurs during the command. Input shapers are only designed to

suppress residual oscillation, but they have the added benefit of greatly reducing transient

swing as well.

70

-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30

0 5 10 15 20 25 30 35 40

Unshaped
ZV Shaped

L
on

gi
tu

di
na

l P
ay

lo
ad

 O
sc

ill
at

io
n

(ft
)

Time (seconds)

(a) Unshaped and ZV-shaped longitudinal load swing.

-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30

0 5 10 15 20 25 30 35 40

Unshaped
ZV Shaped

L
at

er
al

 P
ay

lo
ad

 O
sc

ill
at

io
n

(ft
)

Time (seconds)

(b) Unshaped and shaped lateral load swing.

Figure 33: Unshaped and ZV-shaped suspended load swing in the (a) longitudinal and
(b) lateral directions.

The effectiveness of input shaping is even more clear when looking at the load oscillation

in two dimensions. Figure 34 shows the two-dimensional load oscillation. The oscillation is

measured relative to the position of the helicopter, so it is what the pilot would see when

looking down on the load. The oscillation is significantly reduced by input shaping. The

small amount of swing that occurs in the ZV-shaped case is the transient oscillation. This

71

-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

Unshaped
ZV Shaped

L
at

er
al

 O
sc

ill
at

io
n

(ft
)

Longitudinal Oscillation (ft)

Figure 34: Unshaped and ZV-shaped two-dimensional load oscillation.

plot does not give a sense of time, but 80 seconds of data is shown in the plot. Because

input shaping significantly reduces the residual load oscillation, it should decrease the time

it takes for the pilot to transfer a load from one location to another.

As with the controller for the unloaded helicopter, the control effort required to exe-

cute the maneuver should be examined. The command sent to the helicopter plant in the

longitudinal and lateral channels is shown in Figure 35 with and without input shaping.

Figure 35a shows the longitudinal command, and Figure 35b shows the lateral command.

When there is no shaping, the command is oscillatory and has a larger amplitude compared

to the case with input shaping. This is the case for both the longitudinal and the lateral

command.

As discussed previously, the swing of the load acts like a disturbance applied to the

helicopter. This causes error in the model tracking that the feedback controller tries to

correct. This corrective action causes the command to have a larger amplitude and to be

oscillatory. On the other hand, input shaping proactively suppresses the load swing before

it disturbs the helicopter, causing no need for extra corrective action from the controller.

While model-following control has been suggested for use in helicopter flight controllers

72

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6

0 5 10 15 20 25 30 35

Unshaped
ZV Shaped

L
on

gi
tu

di
na

l R
ot

or
 D

is
k

A
ng

le
 C

om
m

an
d

(d
eg

)

Time (seconds)

(a) Longitudinal command.

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 25 30 35

Unshaped
ZV Shaped

L
at

er
al

 R
ot

or
 D

is
k

A
ng

le
 C

om
m

an
d

(d
eg

)

Time (seconds)

(b) Lateral command.

Figure 35: Control effort required by the model-following controller in the (a)
longitudinal and (b) lateral channels for the unloaded Sikorsky S-61.

since the 1960’s, the implementation presented here for suspended-load control is unique.

A model-following controller designed for an unloaded helicopter was combined with an

input shaper designed to suppress the suspended load oscillation in the longitudinal and

lateral directions. The results show that the combined controller suppresses oscillations of

a suspended load and improves tracking of the prescribed model.

73

This approach works and is effective because the model inversion part of the model-

following controller eliminates the undesirable dynamics of the helicopter, while the input

shaper suppresses suspended load oscillation. This allows the model-following control design

to be accomplished using a model of just the helicopter, while the input shaping is used to

suppress the load oscillation.

Suppressing suspended load oscillation also improves the helicopter attitude response

because the effects of the load on the helicopter are reduced when the load swing is reduced.

As a result, the attitude better tracks the prescribed model response. Another benefit of this

controller is that real-time measurement or estimation of the suspended load states is not

required. The approach presented here simply requires an estimate of the load oscillation

frequency and damping ratio.

It should be easier for the pilot to fly the helicopter with input shaping added to the

model-following controller for a number of reasons. The response to attitude commands

becomes more predictable in the sense that the pilot does not need to account for the slow-

period and large amplitude load oscillations and their effects on the helicopter. In addition,

the load oscillation following the command will be greatly reduced and the load will be

positioned directly below the helicopter. This should make it easier, safer, and quicker for

the pilot to transfer a suspended load from one location to another.

74

CHAPTER V

SUMMARY AND FUTURE WORK

Helicopters are often used as flying cranes to transport supplies and equipment to remote

areas. Unfortunately, when a load is carried via suspension cables below a helicopter,

the load oscillates in response to helicopter motion and disturbance forces such as wind.

This oscillation is dangerous and adversely affects control of the helicopter, especially when

carrying heavier loads. Keeping the swing at a low amplitude should allow the pilot to

transfer loads more quickly and safely and improve control of the helicopter.

In this thesis, the effectiveness of input shaping at suppressing suspended load oscillation

caused by helicopter motion was investigated. Designing an input shaper for this purpose

requires an estimate of the natural frequency and damping ratio of the suspended load

oscillation. Adequate estimates can be obtained from relatively simple models. As shown

in Chapters III and IV, using input shaping to modify commands sent to the helicopter

reduces oscillation of the suspended load.

In order to better understand the dynamics of suspended loads and their effects on the

helicopter, several dynamic models of a helicopter carrying a suspended load were developed

or discussed in Chapter II. The simplest model is that of a two-dimensional planar crane.

This model was experimentally verified on a radio-controlled helicopter. Even this simple

model was found to give good enough estimates of the natural frequency and damping to

design input shapers that suppress the suspended load oscillation.

A linearized model of a near-hover Sikorsky S-61 with and without a suspended load

from previous researchers was also examined in Chapter II. The flight modes of both config-

urations were identified. This model was used to design and simulate an attitude-command

model-following controller in Chapter IV. The controller was first applied to the unloaded

Sikorsky S-61, and simulation results were shown for example lateral and longitudinal repo-

sitioning movements. The same controller was then applied to the model of a Sikorsky S-61

75

carrying a suspended load. Simulation results showed that the performance of the controller

degraded and that the load oscillation had a large amplitude and low period, suggesting

that the helicopter and load would be difficult for a pilot to control.

Input shaping was then added to the model-following controller. The results showed

that applying input shaping to the simulated pilot commands greatly reduced oscillation

of the suspended load. By proactively eliminating load swing using input shaping, the

helicopter response itself also improved because the helicopter and load are coupled. This

analysis showed that input shaping can be combined with a helicopter flight control system

to suppress suspended load oscillation and improve helicopter performance.

The combination of input shaping and a model-following controller should make it easier

for the pilot to fly the helicopter when carrying a suspended load. The helicopter’s response

to pilot commands becomes more predictable because the pilot does not need to account

for the slow-period and large-amplitude load oscillations and their effects on the helicopter.

The residual load oscillations are greatly reduced and the load is positioned directly below

the helicopter, once the helicopter stops. This should make transferring a suspended load

from one location to another safer, faster, and easier for the pilot.

5.1 Future Work

In terms of helicopter performance, the best way to quantify the improvement offered by

input shaping over other control systems would be to analyze input shaping in terms of

handling qualities requirements, such as those in ADS-33E [59].

As was shown in Chapter IV, the residual oscillation in the roll attitude response when

carrying a suspended load had an amplitude that exceeded the requirements in ADS-33E.

Adding input-shaping to the model-following controller reduced the attitude oscillations to

below the required amplitude.

However, input shaping may have a negative impact on other handling qualities, partic-

ularly those related to bandwidth. It remains to be studied whether or not the bandwidth

criteria accurately accounts for the performance benefits gained by using input shaping to

76

suppress suspended load oscillation. There may be better ways of quantifying the perfor-

mance requirements for suspended load oscillations. One such investigation by Hoh et al.

[18] concluded that pilots’ opinions on helicopter handling and controllability were corre-

lated with the quality of the helicopter translational response, and the attitude requirements

of ADS-33E do not accurately correlate with pilot rating of the controllability of the heli-

copter. In light of these advancements, the handling qualities requirements for suspended

load operations may need to be further refined, particularly when analyzing the performance

benefits offered by input shaping.

Input shaping should also be studied with real pilots in flight simulators and, once

it is shown to be safe in the simulators, on actual helicopters carrying suspended loads.

This would allow the pilots to evaluate the effectiveness of input shaping in terms of the

controllability of the helicopter, and rating scales such as the Cooper-Harper scale may be

used to assess the handling qualities.

The potential for input shaping to cause pilot-induced oscillations should also be studied.

It should be noted that the oscillations of an uncontrolled suspended load can result in back-

driving of the aircraft, and this back-driving can also result in pilot-induced oscillations [53].

If there is cause for concern about input shaping causing pilot-induced oscillations, then

research should be done to investigate whether the potential for pilot-induced oscillations

caused by input shaping is worse than the potential for those caused by an uncontrolled

suspended load back-driving the helicopter.

Further studies should be done to better understand the effects of cable length and

load-mass ratio on the damping ratio of the suspended load oscillation. While an approxi-

mate expression was found for natural frequency, a similar expression or correlation for the

damping ratio would further assist in designing input shapers for suppressing suspended

load swing. These parameter studies should also be accompanied by studies of the effec-

tiveness of more robust shapers for suppressing oscillation for a larger range of cable lengths

and payload types.

The model-following controller with input shaping should also be simulated with more

complex models of helicopters carrying suspended loads to further verify its effectiveness.

77

Models that incorporate rotor dynamics and effects such as aerodynamic drag on the payload

should be used. Furthermore, the combination of input shaping and a model-following

controller may be implemented on an experimental radio-controlled helicopter to verify its

effectiveness.

While input shaping is effective at reducing suspended load oscillation caused by heli-

copter motion, it does not help with oscillation caused by wind or other external distur-

bances. To also eliminate disturbance-induced oscillations, input shaping may be combined

with a feedback controller that reacts to load disturbances. Such a feedback controller

would require measuring the load swing angle, which can be accomplished using cable-angle

feedback or a vision system that tracks the load position relative to the helicopter.

Regardless of the feedback controller architecture selected for this task, the input shaper

should remain directly after the pilot commands in the overall control system, as was done

in the model-following controller in this thesis. Because input shaping would suppress resid-

ual oscillation caused by helicopter motion resulting from pilot commands, any oscillation

detected by the feedback controller could only be caused by external disturbances. This

approach allows input shaping to suppress load swing caused by helicopter motion resulting

from pilot commands, while the feedback controller can be designed to target load swing

caused by disturbances.

78

APPENDIX A

MATLAB INPUT SHAPING PROGRAM

A.1 Background

Through a project with the Vertical Lift Consortium and the National Rotorcraft Tech-

nology Center, Georgia Tech is working on flight control concepts and handling qualities

requirements for suspended load operation. Through this program, an input shaping MAT-

LAB program was prepared for and delivered to Boeing Helicopters, Kaman Aerospace,

and Sikorsky. They will use this MATLAB program for testing and evaluation of the input-

shaping technique as part of helicopter flight control systems. This project is still on-going

and results are not yet available. Future collaboration should see input shaping tested

in flight simulation with and without pilots, and eventually on actual helicopters carrying

suspended loads.

The program was written as a MATLAB class using MATLAB’s object-oriented pro-

gramming capabilities. The following sections contain an overview of the program structure

and available functions, with sample code. Additionally, demos illustrating the use of the

program in a simulation environment are discussed. These demos were prepared as MAT-

LAB scripts and Simulink models, and the required files to run these demos are included

with the program. A few videos were also included in the program package to demonstrate

the use of input shaping on real machines, including RC helicopters and cranes.

A.2 Program Functions and Sample Code

This section is an overview of some of the functions available in the MATLAB program.

The core functionality is contained in a MATLAB class called InputShaper implemented

using MATLAB’s object-oriented programming capabilities. Object-oriented programming

in MATLAB allows the programmer to create custom variable types called classes. Objects,

or variables, of a class can then be created.

79

In the case of the InputShaper class, each object of the class contains an input shaper’s

impulse sequence, the type of input shaper (such as ZV), design natural frequency and

damping ratio, and all other information needed by the input shaping process. The user

can create objects with many input shaper types to suppress vibration at a specified natural

frequency and damping ratio. When applicable to the type of input shaper, the tolerable

residual vibration can also be specified.

An InputShaper object can then be implemented with a simulation or real-time phys-

ical system using a method, or function, available in the program that is passed the raw

command to be shaped by the input shaper.

A.2.1 Directory Structure

The following folders are included with the program:

@InputShaper

HelperFunctions

In order to use the program, the HelperFunctions folder and the directory containing

the @InputShaper folder must be on the MATLAB path.

A.2.2 Creating an Object of the InputShaper Class – The Constructor Function

An object of the InputShaper class is created using the class’s constructor function. The

syntax for this function is

obj = InputShaper(shaperType, designNatFreq, designDampingRatio, samplingTime);

where:

• obj is the created InputShaper object;

• shaperType is a 1x2 cell array with a string representing the type of shaper for the

first entry and a double representing the tolerable vibration in percent for the second

entry (when applicable). The string representing the type of shaper is simply the

shaper’s abbreviated name, for example ‘ZV’;

80

• designNatFreq and designDampingRatio are the natural frequency (in rad/s) and

damping ratio of the vibratory mode to be suppressed by the input shaper;

• samplingTime is the sampling period (in seconds) of the system, or the size of the

time step of the command to be input-shaped. A constant sampling time or time step

size must be used.

Here is an example of creating a ZV shaper InputShaper object using the constructor

function. To create a ZV shaper called IS 1 to suppress a vibratory mode with a natural

frequency of 1 rad/s and zero damping ratio to be used with a 10 ms (0.01 s) sampling time

or time step size, the following command should be used:

IS_1 = InputShaper({‘ZV’}, 1, 0, 0.01)

Using this command (without a semicolon) or using the MATLAB disp function on the

IS 1 variable results in the following output to the command window:

This display contains all of the relevant information about the InputShaper object, includ-

ing the shaper type, the full impulse sequence, and the design natural frequency and damp-

ing ratio. Once an InputShaper object such as IS 1 has been created, the design natural

frequency and damping ratio cannot be changed. In addition, InputShaper objects cannot

be copied1. If an InputShaper object identical to IS 1 is desired, then a new InputShaper

1The InputShaper class is a subclass of the handle superclass. Therefore, a variable representing an
InputShaper object is merely a pointer to the actual object in memory, so a command such as IS 2 = IS 1

does not create a copy of IS 1 called IS 2. Rather, using such a command results in IS 2 pointing to the
same InputShaper object as IS 1. This is identical to the behavior of figure handles in MATLAB (figure
objects are also a subclass of the handle superclass).

81

object should be created with a different variable name by calling the constructor function

with the same shaper type, natural frequency, damping ratio, and sampling time.

When an input shaper is created by the constructor function, a technique from Murphy

[33] is used to digitize the shaper impulses using the specified sampling time. This is why the

constructor requires the sampling period to be specified. The digitization process ensures

that the shaper impulses occur at an integer multiple of the sampling time. Therefore, an

InputShaper object should only be used with commands that have a sampling time equal

to the one specified when it was created. The amplitude and time locations of the digi-

tized impulses are stored in the InputShaper object and are used to shape the commands.

However, the continuous amplitudes and times are what is shown in the command window

when using the disp function as in the above examples.

A.2.3 Creating Multi-Mode Input Shapers – The convolveShapers Method

The InputShaper class has a method that allows the user to create multi-mode shapers.

The method is called convolveShapers. Alternatively, the mtimes operator * may be used.

The syntax is

multiModeShaper = convolveShapers(shaper1, shaper2);

or, using the mtimes operator *

multiModeShaper = shaper1 * shaper2;

where shaper1 and shaper2 are the single-mode input shapers and multiModeShaper is

the multi-mode shaper created by convolving shaper1 and shaper2 together.

Suppose one wants to create the multi-mode input shaper. First, a ZV shaper to suppress

vibration at 1 rad/s and an EI shaper to suppress vibration at 2.5 rad/s with Vtol = 5% are

created using the constructor function. This was done in the above examples, where IS 1

is the ZV shaper and IS 2 is the EI shaper. Next, the convolveShapers method or the

mtimes operator * is used to create the multi-mode shaper IS 2mode

82

This command results in the following output to the command window

A.2.4 Accessing Important Properties of InputShaper Objects – The get Meth-
ods

Several methods are available to access important properties of InputShaper objects. A

list of these ‘get’ methods and what property each returns is given in Table 3. For the

structures returned by getShaper and getDigitalShaper, it should be clear what each

field represents based on its name. Properities with a Convolved flag in the name involve

the process of combining two shapers together using convolution.

Note that the user is only given read permissions to the property values via these

methods – the user does not have write permissions to an InputShaper object’s properties.

Any desired changes to these properties should instead be accomplished by creating a new

InputShaper object with the desired properties.

A.2.5 Applying InputShaper Objects to Commands – The shapeCommand Method

The shapeCommand method applies an input shaper to a reference command. It can be

thought of as the input shaping control element or block in a control system block diagram.

It can be used with a real-time command from a human operator or pilot, or be used with

a predetermined command. In either case, the method calculates the shaped command

one time step at a time. Because an input shaper is a series of time-delayed impulses, the

83

Table 3: get Methods for the InputShaper class.

get Methods Properties Returned

getShaperType String representing the type of input shaper
getShaperTypeConvolved Cell array that is a list of strings indicating the types

of shapers in a multi-mode shaper
getModelingParameters Natural frequency (in rad/s) and damping ratio used

to design the input shaper
getShaperNumPulses Number of impulses in the input shaper
getShaperPulseTimes Vector of input shaper impulse times (in seconds)
getShaperPulseAmplitudes Vector of input shaper impulse amplitudes (unitless)
getShaper Structure with the following fields: shaperType,

shaperTypeConvolved, natFreq model,
dampingRatio model, numPulses, pulseTimes, and
pulseAmplitudes

getDigitalShaper Structure with the following fields: shaperType,
shaperTypeConvolved, natFreq model,
dampingRatio model, numPulsesDigital,
pulseTimesDigital, and pulseAmplitudesDigital

method stores the command history in a buffer so that command values at each time step

can be accessed. Each value in the buffer corresponds to the command at a specific, discrete

time step.

This command buffering technique for implementing input shaping in real-time is illus-

trated in Figure 36 [43]. There is a command value corresponding to each time step. The

unshaped value at time 1 is broken into two pieces when the input shaper is applied to the

command. The value scaled by the first impulse is stored at time 1, and the value scaled by

the second impulse is stored at time 5. At time 5, the shaped command becomes the sum of

the unshaped command at time 5 scaled by the first impulse plus the unshaped command

at time 1 scaled by the second impulse. The output of the shapeCommand method at time

n is the value at time n in the shaped-command buffer.

The syntax for the shapeCommand method is

u_shaped(curTimeStep) = obj.shapeCommand(u(curTimeStep));

where curTimeStep is the index of the current time step, u(curTimeStep) is the com-

mand at the current time step, obj is the InputShaper object applied to command u, and

u shaped(curTimeStep) is the resulting shaped command at the current time step.

84

1 5 10 15 1 5 1 5 10 15

Shaped-Command Buffer
Shaped value

at Time 1
Store this value

for later

1 5 10 15

Shaped value
at Time 8

Unshaped Command

Time 1
.
.
.
.
.
.
.

Time 8

Unshaped value
at Time 1

1 5 10 15 1 5

Unshaped value
at Time 8

*

*

Input Shaper

Input Shaper

Figure 36: Illustration of the technique used to implement input shaping in real-time
[43].

The shapeCommand method can be used either in a real-time control loop or with a

predetermined command. Examples of both approaches are given in the provided demos.

The demos are discussed in the next section. When using a predetermined command, first

the command must be fully created before applying the input shaper. Next, shapeCommand

method must be applied at each time step of the predetermined command. This requires

looping through the entire duration of the command, and using the shapeCommand method

with the command value at each time step. The resulting shaped command can then be

used in simulation or applied to the physical system.

A.2.6 Plotting Sensitivity Curves to Analyze Robustness – The sensitivityCurve

Method

The InputShaper class can also be used to calculate and plot the sensitivity curve of an

input shaper. This is done using the sensitivityCurve method. The method plots the

sensitivity curve in a new figure for a range of frequencies with percent residual vibration

on the vertical axis and the natural frequency in rad/s on the horizontal axis. The method

also returns the vectors of frequency and percent residual vibration used to create the plot.

This allows the user to normalize the frequency by the natural frequency before plotting

the sensitivity curve, to plot multiple sensitivity curves on one figure, or to export the data

85

from MATLAB to another program.

Also, the sensitivity curve of an input shaper can be calculated and plotted using either

the continuous-time or discretized impulses. There will only be a noticeable difference

between the two if the sampling time specified when creating the input shaper is not at

least an order of magnitude smaller than the natural frequency used to design the input

shaper. Therefore, plotting the digital representation is a good way of checking whether

or not the selected sampling time is low enough to not cause significant degradation of the

vibration-suppressing properties of the input shaper.

The syntax for the sensitivityCurve method is

[resVib, wVec] = obj.sensitivityCurve(freqRange, shaperDomainFlag);

where obj is the InputShaper object to plot the sensitivity curve of. freqRange is the

frequency range over which to plot the sensitivity curve, and must be a 1× 2 vector where

the entries are the lower and upper end of the frequency range to plot, given in rad/s

(e.g., freqRange = [ωlower, ωupper]). resVib is a vector of residual vibration in percent,

and wVec is a vector of frequencies in rad/s at which the residual vibration in resVib was

plotted. The residual vibration at a given index of resVib corresponds to the frequency

at that index in wVec. shaperDomainFlag is a string input flag used to indicate whether

the continuous or digital representation of the input shaper should be used to calculate the

residual vibration and plot the sensitivity curve. To plot the sensitivity curve using the

continuous impulses, shaperDomainFlag should be either ‘continuous’ or ‘’. To plot

the sensitivity curve using the discretized impulses, shaperDomainFlag should be either

‘digital’ or ‘discrete’.

A.2.7 MATLAB and Simulink Demos

Several demos are provided with the program. These demos contain sample code that can

be reused in other control programs, with some adjustments such as changing the natural

frequency to match the frequency of the undesirable vibratory mode in a given application.

The demos included with the program are documented in Table 4.

86

DEMO 1 SecondOrderSystem.m Uses the InputShaper class and shapeCommand

method to suppress the vibration of an
underdamped second order dynamic system.

DEMO 2 control loop skeleton code.mSkeleton code that provides an outline for using
the InputShaper class in conjunction with a
control loop written in MATLAB. It illustrates
how an input shaper can be created, used to
shape commands obtained in real-time (from a
pilot or human operator, for example), and
passed on to other control elements or even
hardware operated by MATLAB.

DEMO 3 Simulink.m,
DEMO 3 Simulink Model.mdl

Overview of how to use the InputShaper class in
conjunction with Simulink (or another program).
An input shaper is created using the constructor
function, and the impulse amplitudes and times
are extracted from the InputShaper object. The
script then runs DEMO Simulink Model.mdl,
which is a Simulink model of a generic input
shaper and uses the impulse amplitudes and
times to create a shaped command.
Alternatively, the impulse amplitudes and times
could be exported from MATLAB for use in
another program.

DEMO 4 FourthOrderSystem.m Uses the InputShaper class to suppress both
underdamped vibratory modes of a fourth order
dynamic system. This is done by creating two
shapers and using the convolveShapers method
to create a multi-mode input shaper.

Table 4: Demos included with the Input Shaping Program.

Each demo has comments that explain the code to users and will guide them through

the demo’s use. The demo files should be placed in and run from the same directory as

the @InputShaper and HelperFunctions folders, and the HelperFunctions folder must be

added to the MATLAB path. Alternatively, if the demos are placed in a different directory,

then the @InputShaper folder must be in a directory that is on the MATLAB path and the

HelperFunctions folder must be added to the MATLAB path.

The provided MATLAB script DEMO 2 control loop skeleton code.m demonstrates the

use of the method in a real-time control loop. The rest of the provided demo scripts use

a predetermined command. The DEMO 3 Simulink.m script is a demo that shows how to

use the program with Simulink or another program outside of MATLAB.

87

A.2.8 How to Implement the Program

There are two main components to using the InputShaper class. First, the constructor is

used to create an InputShaper object. Second, the InputShaper object is applied to a pre-

planned or real-time command using the shapeCommand method. This takes the following

form in MATLAB code:

% Create the input shaper

obj = InputShaper(shaperType, designNatFreq, designDampingRatio, samplingTime);

% Control loop, or loop through the pre-planned command

for curTimeStep = 1:length(time)

% other code, if this loop is a control loop...

% Apply the input shaper to the command u

u_shaped(curTimeStep) = obj.shapeCommand(u(curTimeStep));

% other code, if this loop is a control loop...

end

where time is the vector of times associated with the pre-planned command, or length(time)

is equal to the total number of time steps in your simulation.

If a dynamic system has multiple inputs that need to be input-shaped to reduce the

excitation of the same or different vibratory mode(s), then in the context of the program

a unique InputShaper object must be created for each individual input. For example, the

longitudinal and lateral cyclic inputs from a helicopter pilot both lead to helicopter motion

that causes oscillation of a sling load. Therefore, if it is desirable to reduce the sling load

oscillation using input shaping, then each of these inputs must be shaped by a separate

input shaper. In the context of the program, this requires creating an input shaper for both

of these inputs:

% Create the input shapers for each input:

88

IS_long = InputShaper(shaperType1, designNatFreq1, designDampingRatio1, samplingTime);

IS_lat = InputShaper(shaperType2, designNatFreq2, designDampingRatio2, samplingTime);

% Control loop, or loop through the pre-planned longitudinal and lateral commands

for curTimeStep = 1:length(time)

% other code, if this loop is a control loop...

% Apply the input shaper IS_long to the longitudinal cyclic command u

u_shaped(curTimeStep) = IS_long.shapeCommand(u(curTimeStep));

% Apply the input shaper IS_lat to the lateral cyclic command v

v_shaped(curTimeStep) = IS_lat.shapeCommand(v(curTimeStep));

% other code, if this loop is a control loop...

end

Note that the shaper types and parameters used to create the InputShaper objects

may not necessarily be equal, but the sampling time is likely the same if the commands are

issued from the same control loop or within the same simulation. The example above could

be extended for as many inputs as desired simply by duplicating the process of creating

InputShaper objects and applying them to commands using the shapeCommand method.

A.3 MATLAB Program Code

classdef InputShaper < handle

% classdef InputShaper < handle

%

% An object-oriented approach to defining and implementing the Input

% Shaping algorithm. Input shaping is a command generation technique that

% reduces motion-induced vibration in a flexible system. It does this by

% modifying, or shaping, reference commands in real time such that

% specified vibratory modes of the flexible system are canceled. It is

% implemented by convolving a sequence of impulses, called an input shaper,

% with a reference command. The product of the convolution is issued to the

% system or plant in place of the reference command.

%

% The InputShaper class is a subclass of the handle superclass. This means

% that objects of the InputShaper class are passed by reference, or handle,

% rather than by value like most MATLAB objects. This is similar to how

% figure objects work.

%

% ***

89

% List of Input Shaper types currently available in this class:

% ZV

% ZVD

% ZVDD

% ZVDDD

% EI

% UMZV

% UMZVD

% UMEI

% SI (requires Optimization toolbox)

% SI2Mode (requires Optimization toolbox)

% Unshaped

% ***

%

% ***

% The InputShaper class has the following public methods available:

%

% InputShaper

% Constructor function for the class. It creates an InputShaper

% object of a specified type. The input shaper is then designed

% to suppress vibration at a specified natural frequency

% and damping ratio.

%

% shapeCommand

% Applies the InputShaper to the given command while storing the

% partial command history.

%

% mtimes

% Overloads MATLAB default mtimes.m operator * with a method that

% convolves, or combines, two shapers.

%

% convolveShapers

% Convolves, or combines, two shapers to create a multi-mode

% multi-mode shaper.

%

% sensitivityCurve

% Plots the Sensitivity Curve of the InputShaper object

%

% disp

% Overloads MATLAB default disp.m

%

% getShaper

% Return all shaper properties as a struct

%

% getDigitalShaper

% Return all properties of the digitized shaper as a struct

%

% getShaperType

% Return type of shaper (a string)

%

% getShaperTypeConvolved

% Return types of shapers in the convolved shaper (a cell array

% that is a list strings indicating shaper type)

%

% getModelingParameters

% Return modeling natural frequency and damping ratio of shaper

%

% getShaperNumPulses

% Return shaper numPulses

90

%

% getShaperPulseAmplitudes

% Return shaper pulseAmplitudes

%

% getShaperPulseTimes

% Return shaper pulseTimes

%

% More detailed descriptions of these methods, including descriptions of

% the methods’ inputs and outputs, can be found in each method’s help or

% in the function header in the method’s .m file.

% ***

properties(GetAccess = ’private’, SetAccess = ’private’)

% Shaper Design Parameters

shaperType = ’OFF’;

natFreq_model = [];

dampingRatio_model = [];

vTol = 0;

convolved = false;

convolvedShaperTypes = {};

% Shaper Impulse Sequence

numPulses = [1];

pulseAmplitudes = [1];

pulseTimes = [0];

% Digital representation of the above impulse sequence (the

% pulseTimesDigital are correctly timed with the sampling period)

numPulsesDigital = [1];

pulseAmplitudesDigital = [1];

pulseTimesDigital = [0];

% Simulation Parameters

T_sampling = [];

n = 0;

t_history = [];

y_history = [];

end % Properties

methods (Access = public)

% Public Methods

%% CLASS CONSTRUCTOR:

function obj = InputShaper(shaper, natFreq, dampingRatio, T, varargin)

% Constructor function that creates an object of class InputShaper

%

% function obj = InputShaper(shaper, natFreq, dampingRatio, T)

% is the constructor function for the InputShaper class. It creates

% an InputShaper object of the specified input shaper type. The

% input shaper suppresses vibration at the specified natural

% frequency and damping ratio. The sampling time of the simulation

% or real-time command that the input shaper will be used with must

% also be provided.

%

% Inputs:

% shaper A cell array where the first cell is a

% string representing the type of input

% shaper (see list below for options). The

91

% second cell is the tolerable vibration as

% a percentage (only applicable for EI and

% SI type shapers, and defaults to 5% for these

% shapers when it is not specified).

% natFreq The natural frequency of the vibrational

% mode to be suppressed, in rad/s.

% dampingRatio The damping ratio of the vibrational mode to

% be suppressed.

% T The sampling time, in seconds, of the

% simulation, physical system, real-time

% command, etc. that this input shaper will

% be used with.

% varargin Optional input arguments. Used internally

% in other class methods (see below).

%

% The form of some inputs change when using SI or SI2Mode shapers:

% For SI shapers:

% - natFreq should be a [1x2] vector of frequencies (in rad/s) of

% the form [w_min, w_max] where w_min is the lower frequency

% of the range to suppress vibration within and w_max is the

% upper frequency of the range to suppress vibration within.

% For SI2Mode shapers:

% - The second cell of shaper should be a [1x2] vector of

% tolerable percentage vibration of the form [vTol1, vTol2]

% - natFreq should be a [1x4] vector of frequencies (in rad/s) of

% the form [w1_min, w1_max, w2_min, w2_max]

% - dampingRatio should be a [1x2] vector of damping ratios of the

% form [damp1, damp2]

% ...where...

% FOR THE FIRST MODE:

% w1_min = lower frequency of range to suppress vibration within

% w1_max = upper frequency of range to suppress vibration within

% damp1 = damping ratio

% vTol1 = vibration level tolerated, in percent

% FOR THE SECOND MODE:

% w2_min = lower frequency of range to suppress vibration within

% w2_max = upper frequency of range to suppress vibration within

% damp2 = damping ratio

% vTol2 = vibration level tolerated, in percent

%

% Outputs:

% obj An InputShaper object.

% ***

% List of Input Shaper types currently available:

% ’ZV’

% ’ZVD’

% ’ZVDD’

% ’ZVDDD’

% ’EI’

% ’UMZV’

% ’UMZVD’

% ’UMEI’

% ’SI’

% ’SI2Mode’

% Unshaped (use ’OFF’ for shaper type)

% ***

% SAMPLE FUNCTION CALLS:

% ZV_shaper = InputShaper({’ZV’}, 2, 0, 0.01);

% This forms a ZV shaper to suppress an undamped mode with

92

% natural frequency = 2 rad/s. The sampling time is 10 ms

% (input as 0.01 s). Note that no tolerable vibration percent

% is specified in the first input cell array because ZV

% shapers do not use tolerable vibration in the design process.

%

% EI_shaper = InputShaper({’EI’, 5}, 2*pi, 0.1, 0.001)

% This forms an EI shaper to suppress an underdamped mode with

% natural frequency = 2*pi rad/s. The sampling time is 1 ms

% (input as 0.001 s). Note that a tolerable vibration percent

% of 5% is specified in the first input cell array.

%

% SI_shaper = InputShaper({’SI’, 8}, [1.5, 4], 0.05, 0.01)

% This forms a SI shaper to suppress vibration in the frequency

% range from 1.5 rad/s to 4 rad/s with 0.05 damping ratio.

% The sampling time is 10 ms (input as 0.01 s).

% ***

% A NOTE ON THE OPTIONAL INPUT ARGUMENTS (varagin)

% This constructor is also called by some of the other methods

% in the InputShaper class to create InputShaper objects. One

% example is in the convoleShapers method. This method combines

% two input shapers to form a shaper that suppresses multilple

% modes of vibration. This is known as a multi-mode shaper. The

% constructor function must be called to create the multi-mode

% shaper as a new InputShaper object. The constructor is called

% with an additional input flag accepted by the varargin input to

% identify that the new InputShaper object to be created should

% be a combination of two other InputShaper objects.

% ***

if isempty(varargin)

% Was the constructor called from the convolveShapers method?

% Set convolveFlag to false if it wasn’t.

convolveFlag = false;

else

convolveFlag = varargin{1};

end

if ~convolveFlag

% The constructor was NOT called from the convolveShapers

% method, so perform the standard design procedure.

% Error checking and input management

if ((iscell(shaper)) && (length(shaper)==1))

obj.shaperType = shaper{1}; % Use given input shaper type

if strcmp(obj.shaperType, ’ei’) || strcmp(obj.shaperType, ’EI’)

warning(’Using tolerable residual vibration of 5% (default for EI shaper).’);

obj.vTol = 5/100; % Use default vTol for EI shapers (5%)

elseif strcmp(obj.shaperType, ’SI’) || strcmp(obj.shaperType, ’SI’)

warning(’Tolerable residual vibration must be specified for SI shapers.

Using tolerable residual vibration of 5%.’);

obj.vTol = 5/100; % Use default vTol for SI shapers (5%)

elseif strcmp(obj.shaperType, ’si2mode’) || strcmp(obj.shaperType, ’SI2Mode’)

warning(’Tolerable residual vibration must be specified for SI2Mode

shapers. Using tolerable residual vibration of 5% for both modes.’);

obj.vTol(1) = 5/100; % Use default vTol for SI2Mode shapers (5%)

obj.vTol(2) = 5/100; % Use default vTol for SI2Mode shapers (5%)

end

elseif ((iscell(shaper)) && (length(shaper)==2))

if ~strcmp(class(shaper{2}), ’double’)

error(’Second entry in SHAPER cell array must be a double

representing tolerable residual vibration (as a percentage).’);

93

end

obj.shaperType = shaper{1}; % Use given input shaper type

if ~(strcmp(obj.shaperType, ’ei’) || strcmp(obj.shaperType, ’EI’) || ...

strcmp(obj.shaperType, ’si’) || strcmp(obj.shaperType, ’SI’) || ...

strcmp(obj.shaperType, ’si2mode’) || strcmp(obj.shaperType, ’SI2Mode’))

if strcmp(obj.shaperType, ’umei’) || strcmp(obj.shaperType, ’UMEI’)

obj.vTol = 0.05;

warning(’Value for tolerable vibration (Vtol) automatically set

to 5% (0.05). This is the only Vtol value available for UMEI

shapers in this version of the shaper design program.’);

else

warning([’Tolerable residual vibration cannot be specified

for ’, obj.shaperType, ’ shapers.’]);

end

else

obj.vTol = shaper{2}/100; % Use given input value of vTol

end

elseif iscell(shaper)

warning(’Improper shaper cell array length. Using default values

of ’’OFF’’ (no shaping) and vTol = 5%.’);

else

error(’Improper type for SHAPER; input variable

SHAPER must be a cell array.’);

end

% Simulation Parameters

obj.T_sampling = T;

obj.n = 1;

% Shaper Design Parameters

obj.natFreq_model = natFreq;

obj.dampingRatio_model = dampingRatio;

% Design Input Shaper of the appropriate type using the

% given system parameters

if (strcmp(obj.shaperType, ’si’) || strcmp(obj.shaperType, ’SI’))

% Call the function that performs the SI shaper design

% routine using optimization.

% But first some error checking...

if length(natFreq) ~= 2

error(’Must specify a frequency range in the

form of [wmin, wmax] for SI shapers.’)

elseif length(dampingRatio) ~= 1

error(’Must specify only one damping ratio for SI shapers.’)

end

ShaperLength = 3; % Redefined in si_fmincon function

ShaperFlag = 0; % Positive SI shaper

neg = -1;

X0 = 0; % Unknown initial guess for optimization routine

fmin = natFreq(1)./(2.*pi); % [Hz]

fmax = natFreq(2)./(2.*pi); % [Hz]

damp = dampingRatio(1);

% Design SI shaper

SI_shaper = si_fmincon(ShaperLength,ShaperFlag,neg,X0,...

fmin,fmax,damp,obj.vTol,obj.T_sampling);

obj.pulseAmplitudes = SI_shaper(:,2)’;

obj.pulseTimes = SI_shaper(:,1)’;

obj.numPulses = length(obj.pulseAmplitudes);

elseif (strcmp(obj.shaperType,’si2mode’)||strcmp(obj.shaperType,’SI2Mode’))

% Call the function that performs the SI2Mode shaper design

% routine using optimization.

% But first some error checking...

94

if length(natFreq) ~= 4

error(’Must specify two frequency ranges in the form

of [w1min, w1max, w2min, w2max] for SI shapers.’)

elseif length(dampingRatio) ~= 2

error(’Must specify two damping ratios for SI2Mode shapers.’)

elseif length(obj.vTol) ~= 2

error(’Must specify exactly two tolerable residual vibrations

levels for SI2Mode shapers.’)

end

ShaperLength = 3; % Redefined in si_fmincon function

ShaperFlag = 0; % Positive SI2Mode shaper

neg = -1;

X0 = 0; % Unknown initial guess for optimization routine

f1min = natFreq(1)./(2.*pi); % [Hz]

f1max = natFreq(2)./(2.*pi); % [Hz]

f2min = natFreq(3)./(2.*pi); % [Hz]

f2max = natFreq(4)./(2.*pi); % [Hz]

damp1 = dampingRatio(1);

damp2 = dampingRatio(2);

% Design SI2Mode shaper

SI2Mode_shaper = si2mode_fmincon(ShaperLength,ShaperFlag,neg,X0,...

f1min,f1max,damp1,obj.vTol(1),f2min,f2max,damp2,...

obj.vTol(2),obj.T_sampling);

obj.pulseAmplitudes = SI2Mode_shaper(:,2)’;

obj.pulseTimes = SI2Mode_shaper(:,1)’;

obj.numPulses = length(obj.pulseAmplitudes);

else

% Design shaper using closed form solutions for some

% shaper types and polynomial curve fits for other

% types

ShaperDesign_Poly(obj);

end

% Create a digital respresentation of the shaper from its

% continuous-time representation

if ~(strcmp(obj.shaperType, ’off’) || strcmp(obj.shaperType, ’OFF’))

digitizeShaper(obj);

end

if strcmp(obj.shaperType, ’off’) || strcmp(obj.shaperType, ’OFF’)

obj.t_history = [0];

obj.y_history = [0];

else

% Prebuffer t_history and y_history up to the time step

% at which the last impulse in the shaper’s impulse

% sequence occurs

obj.t_history = 0:obj.T_sampling:(obj.pulseTimesDigital(obj.numPulsesDigital));

obj.y_history = zeros(1, length(obj.t_history));

end

obj.convolvedShaperTypes{1} = obj.shaperType;

else

% The constructor was called from the convolveShapers method,

% so don’t perform the shaper design process. Use values

% for some shaper parameters as inherited from the shapers

% being convolved together.

% Shaper Parameters

obj.convolvedShaperTypes = shaper{1};

type_str = obj.convolvedShaperTypes{1};

for i = 2:(length(obj.convolvedShaperTypes))

type_str = [type_str, ’-’, obj.convolvedShaperTypes{i}];

end

95

obj.shaperType = type_str;

obj.natFreq_model = sort(natFreq);

obj.dampingRatio_model = sort(dampingRatio);

obj.vTol = shaper{2}/100;

obj.convolved = true;

% Simulation Parameters

obj.T_sampling = T;

obj.n = 1;

% NOTE: The convolveShapers method handles the continuous

% to digital conversion and prebuffers t_history and

% y_history. There is no real benefit to doing it there

% versus here.

end

end % InputShaper Constructor

%% COMMON INPUT SHAPING ACTIONS:

y_shaped = shapeCommand(obj, y);

% Applies the InputShaper to the given command while storing the

% partial command history.

convolvedShaper = convolveShapers(obj1, obj2);

% Convolves, or combines, two shapers to create a multi-mode

% multi-mode shaper.

product = mtimes(obj1, obj2);

% Overloads MATLAB default mtimes.m operator * with a method that

% convolves, or combines, two shapers.

[resVib, wVec] = sensitivityCurve(obj, freqRange, shaperDomainFlag);

% Plots the Sensitivity Curve of the InputShaper

disp(obj);

% Overloads MATLAB default disp.m

%% ’GET’ METHODS:

shaperOut = getShaper(obj);

% Returns all shaper properties as a struct

digitalShaperOut = getDigitalShaper(obj);

% Returns all properties of the digitized shaper as a struct

typeOut = getShaperType(obj);

% Returns type of shaper (a string)

typeConvolvedOut = getShaperTypeConvolved(obj);

% Returns types of shapers in the convolved shaper (a cell array

% that is a list strings indicating shaper type)

[w_model, zeta_model] = getModelingParameters(obj);

% Returns modeling natural frequency and damping ratio of shaper

numPulsesOut = getShaperNumPulses(obj);

% Returns shaper numPulses

pulseAmplitudesOut = getShaperPulseAmplitudes(obj);

% Returns shaper pulseAmplitudes

pulseTimesOut = getShaperPulseTimes(obj);

% Returns shaper pulseTimes

end % Public Methods

methods (Access = private)

% Private Methods

ShaperDesign_Poly(obj);

% Used by the Constructor method to design the InputShaper

digitizeShaper(obj);

% Creates a digital respresentation of the shaper given in obj

% from its continuous-time representation

resVib = residualVibration(obj, w_n, zeta, shaperDomainFlag);

% Returns the residual vibration resulting from the InputShaper’s

% impulse sequence at the given frequency w_n and damping ratio

% zeta as a percentage of the amount of residual vibration caused

% by a single, unity-magnitude impulse

96

end % Private Methods

end % InputShaper classdef

function ShaperDesign_Poly(obj)

%

% List of Input Shapers available in this method:

% ZV

% ZVD

% ZVDD

% ZVDDD

% EI

% UMZV

% UMZVD

% UMEI

% Unshaped (use OFF or off for shaperType)

%% Define anonymous function --

valPoly = @(M0,M1,M2,M3,T,zeta) T*(M0 + M1*zeta + M2*zeta^2 + M3*zeta^3);

%% Define structures --

shaperContinuous = struct;

%% Calculate system parameters --

freqNaturalIn = obj.natFreq_model;

dampingIn = obj.dampingRatio_model;

K = exp((-dampingIn*pi)/sqrt(1-dampingIn^2));

freqDamped = freqNaturalIn*sqrt(1-dampingIn^2);

periodDamped = (2*pi)/freqDamped;

periodUndamped = (2*pi)/freqNaturalIn;

%% Design specified input shaper --

if strcmp(obj.shaperType, ’zv’) || strcmp(obj.shaperType, ’ZV’)

denom = K + 1;

shaperContinuous.numPulses = 2;

shaperContinuous.pulseAmps = [1/denom K/denom];

shaperContinuous.pulseTimes = [0 periodDamped/2];

elseif strcmp(obj.shaperType, ’zvd’) || strcmp(obj.shaperType, ’ZVD’)

denom = K^2 + 2*K + 1;

shaperContinuous.numPulses = 3;

shaperContinuous.pulseAmps = [1/denom (2*K)/denom (K^2)/denom];

shaperContinuous.pulseTimes = [0 periodDamped/2 periodDamped];

elseif strcmp(obj.shaperType, ’zvdd’) || strcmp(obj.shaperType, ’ZVDD’)

denom = K^3 + 3*K^2 + 3*K + 1;

shaperContinuous.numPulses = 4;

shaperContinuous.pulseAmps = [1/denom (3*K)/denom ...

(3*K^2)/denom K^3/denom];

shaperContinuous.pulseTimes = [0 (1/2)*periodDamped ...

periodDamped (3/2)*periodDamped];

elseif strcmp(obj.shaperType, ’zvddd’) || strcmp(obj.shaperType, ’ZVDDD’)

denom = K^4 + 4*K^3 + 6*K^2 + 4*K + 1;

shaperContinuous.numPulses = 5;

shaperContinuous.pulseAmps = [1/denom (4*K)/denom (6*K^2)/denom...

(4*K^3)/denom (K^4)/denom];

shaperContinuous.pulseTimes = [0 (1/2)*periodDamped ...

periodDamped (3/2)*periodDamped 2*periodDamped];

elseif strcmp(obj.shaperType, ’ei’) || strcmp(obj.shaperType, ’EI’)

A1 = 0.24968 ...

+ 0.24962*obj.vTol ...

+ 0.80008*dampingIn ...

+ 1.23328*obj.vTol*dampingIn ...

+ 0.49599*dampingIn^2 ...

97

+ 3.17316*obj.vTol*dampingIn^2;

A3 = 0.25149 ...

+ 0.21474*obj.vTol ...

- 0.83249*dampingIn ...

+ 1.41498*obj.vTol*dampingIn ...

+ 0.85181*dampingIn^2 ...

- 4.90094*obj.vTol*dampingIn^2;

t2 = periodDamped*(0.49990 ...

+ 0.46159*obj.vTol*dampingIn ...

+ 4.26169*obj.vTol*dampingIn^2 ...

+ 1.75601*obj.vTol*dampingIn^3 ...

+ 8.57843*obj.vTol^2*dampingIn ...

- 108.644*obj.vTol^2*dampingIn^2 ...

+ 336.989*obj.vTol^2*dampingIn^3);

shaperContinuous.numPulses = 3;

shaperContinuous.pulseAmps = [A1 1-(A1+A3) A3];

shaperContinuous.pulseTimes = [0 t2 periodDamped];

elseif strcmp(obj.shaperType, ’umzv’) || strcmp(obj.shaperType, ’UMZV’)...

|| strcmp(obj.shaperType, ’um-zv’) || strcmp(obj.shaperType, ’UM-ZV’)

t1 = valPoly(0, 0, 0, 0, periodUndamped, dampingIn);

t2 = valPoly(0.16724, 0.27242, 0.20345, 0.00000, periodUndamped, dampingIn);

t3 = valPoly(0.33323, 0.00533, 0.17914, 0.20125, periodUndamped, dampingIn);

if dampingIn == 0

t1 = 0;

t2 = periodUndamped/6;

t3 = periodUndamped/3;

end

shaperContinuous.numPulses = 3;

shaperContinuous.pulseAmps = [1 -1 1];

shaperContinuous.pulseTimes = [t1 t2 t3];

if dampingIn > 0.4

warning(’Damping ratio is very high: polynomial fit for UM-ZV shaper design

is outside of its ideal range. Shaper effectiveness may be impaired.’);

end

elseif strcmp(obj.shaperType, ’umzvd’) || strcmp(obj.shaperType, ’UMZVD’)...

|| strcmp(obj.shaperType, ’um-zvd’) || strcmp(obj.shaperType, ’UM-ZVD’)

t1 = valPoly(0, 0, 0, 0, periodUndamped, dampingIn);

t2 = valPoly(0.08945, 0.28411, 0.23013, 0.16401, periodUndamped, dampingIn);

t3 = valPoly(0.36613, -0.08833,0.24048, 0.17001, periodUndamped, dampingIn);

t4 = valPoly(0.64277, 0.29103, 0.23262, 0.43784, periodUndamped, dampingIn);

t5 = valPoly(0.73228, 0.00992, 0.49385, 0.38633, periodUndamped, dampingIn);

shaperContinuous.numPulses = 5;

shaperContinuous.pulseAmps = [1 -1 1 -1 1];

shaperContinuous.pulseTimes = [t1 t2 t3 t4 t5];

if dampingIn > 0.4

warning(’Damping ratio is very high: polynomial fit for UM-ZVD shaper design

is outside of its ideal range. Shaper effectiveness may be impaired.’);

end

elseif strcmp(obj.shaperType, ’umei’) || strcmp(obj.shaperType, ’UMEI’)...

|| strcmp(obj.shaperType, ’um-ei’) || strcmp(obj.shaperType, ’UM-EI’)

t1 = valPoly(0, 0, 0, 0, periodUndamped, dampingIn);

t2 = valPoly(0.09374, 0.31903, 0.13582, 0.65274, periodUndamped, dampingIn);

t3 = valPoly(0.36798, -0.05894,0.13641, 0.63266, periodUndamped, dampingIn);

t4 = valPoly(0.64256, 0.28595, 0.26334, 0.24999, periodUndamped, dampingIn);

t5 = valPoly(0.73664, 0.00162, 0.52749, 0.19208, periodUndamped, dampingIn);

shaperContinuous.numPulses = 5;

shaperContinuous.pulseAmps = [1 -1 1 -1 1];

shaperContinuous.pulseTimes = [t1 t2 t3 t4 t5];

if dampingIn > 0.4

98

warning(’Damping ratio is very high: polynomial fit for UM-EI shaper design

is outside of its ideal range. Shaper effectiveness may be impaired.’);

end

elseif strcmp(obj.shaperType, ’off’) || strcmp(obj.shaperType, ’OFF’)

shaperContinuous.numPulses = 1;

shaperContinuous.pulseAmps = 1;

shaperContinuous.pulseTimes = 0;

else

error(’Not an expected kind of shaper!’);

end

obj.numPulses = shaperContinuous.numPulses;

obj.pulseAmplitudes = shaperContinuous.pulseAmps;

obj.pulseTimes = shaperContinuous.pulseTimes;

end % ShaperDesign_Poly

function digitizeShaper(obj)

% Creates a digital respresentation of the shaper given in obj from its

% continuous-time representation

%

% ***

% References:

% Murphy, B.R. and Watanabe, I., "Digital Shaping Filters for Reducing

% Machine Vibration," IEEE Transactions on Robotics and Automation, Vol.

% 8, No. 2, April 1992.

% ***

% System parameters

w_n = obj.natFreq_model(1);

zeta = obj.dampingRatio_model(1);

% Calculate damped natural frequency

w_d = w_n.*sqrt(1-zeta.^2);

% Move impulses onto multiples of the sampling period (except the first

% impulse)

B = [obj.pulseAmplitudes(1)]; % digitized pulseAmplitudes

t = [obj.pulseTimes(1)]; % digitized pulseTimes in [s]

for i=2:(obj.numPulses)

if(mod(obj.pulseTimes(i), obj.T_sampling)==0)

% If an impulse happens exactly at a sampling time, do nothing

B = [B, obj.pulseAmplitudes(i)];

t = [t, obj.pulseTimes(i)];

else

% Find sampling times on either side of each impulse

t_k = floor(obj.pulseTimes(i)./obj.T_sampling).*obj.T_sampling;

t_k_plus_1 = ceil(obj.pulseTimes(i)./obj.T_sampling).*obj.T_sampling;

t = [t, t_k, t_k_plus_1];

% Use technique in Murphy (1992) to calculate amplitudes of two

% impulses that fall on sampling times on either side of each

% original impulse

phi_k = abs(t_k - obj.pulseTimes(i)).*w_d;

phi_k_plus_1 = abs(t_k_plus_1 - obj.pulseTimes(i)).*w_d;

B_k = obj.pulseAmplitudes(i).*exp(-zeta.*(t_k-obj.pulseTimes(i))...

.*w_n).*sin(phi_k_plus_1)./(sin(phi_k_plus_1).*cos(phi_k)...

+sin(phi_k).*cos(phi_k_plus_1));

B_k_plus_1 = obj.pulseAmplitudes(i).*exp(-zeta..

.*(t_k_plus_1-obj.pulseTimes(i)).*w_n)...

.*sin(phi_k)./(sin(phi_k_plus_1).*cos(phi_k)...

+sin(phi_k).*cos(phi_k_plus_1));

B = [B, B_k, B_k_plus_1];

end

99

end

% Scale each impulse so that the sum of the digitzed impulse sequence is 1.

B = B./sum(B);

obj.numPulsesDigital = length(B);

obj.pulseAmplitudesDigital = B;

obj.pulseTimesDigital = t;

end % digitzeShaper

function y_shaped = shapeCommand(obj, y)

% Applies the InputShaper to the given command while storing the

% partial command history

%

% function y_shaped = shapeCommand(obj, y) applies the input shaper

% given in obj to the command y (note that the input command y is

% a single value). Be sure to apply shapeCommand to each command value

% or time step only once.

%

% Inputs:

% obj InputShaper object to use to shape the given command.

% y Command (at time t) to be input shaped. Units should be

% consistent from one function call to the next for a

% given InputShaper object. For example, do not call

% shapeCommand with a y in meters in one time step and

% then use a y in m/s in the next time step for the same

% InputShaper object.

%

% Outputs:

% y_shaped The input shaped command at the current time step.

obj.y_history = [obj.y_history, 0];

% Input Shape y

for i = 1:obj.numPulsesDigital

cur_timeStep = round(obj.pulseTimesDigital(i)./obj.T_sampling) + obj.n;

obj.y_history(cur_timeStep) = y.*obj.pulseAmplitudesDigital(i)...

+ obj.y_history(cur_timeStep);

end

% Update index for next time step

obj.n = obj.n + 1;

% Return the shaped command at the current time step only

y_shaped = obj.y_history(obj.n - 1);

end % shapeCommand

function product = mtimes(obj1, obj2)

% Overloads MATLAB default mtimes.m operator * with a method that

% convolves two shapers together.

%

% function product = mtimes(obj1, obj2) combines InputShaper object obj1

% with InputShaper object obj2 to create a multi-mode shaper that

% suppresses vibration at the design modes of both obj1 and obj2.

%

% Inputs:

% obj1 First InputShaper object

% obj2 Second InputShaper object

%

% Outputs:

% product A multi-mode InputShaper object. It is created by

% convolving InputShaper objects obj1 and obj2.

product = convolveShapers(obj1, obj2);

end % mtimes

100

function convolvedShaper = convolveShapers(obj1, obj2)

% Convolves, or combines, two shapers to create a multi-mode shaper.

%

% function convolvedShaper = convolveShapers(obj1, obj2) combines

% InputShaper object obj1 with InputShaper object obj2 to create a

% multi-mode shaper that suppresses vibration at the design modes of both

% obj1 and obj2.

%

% Inputs:

% obj1 First InputShaper object

% obj2 Second InputShaper object

%

% Outputs:

% convolvedShaper A multi-mode InputShaper object. It is created by

% convolving InputShaper objects obj1 and obj2.

%% Create new shaper. Uses modeled w_n and

%% zeta from both obj1 and obj2 for bookkeeping purposes.

if (obj1.convolved || obj2.convolved)

warning(’Not recommended to convolve a shaper with another

that was created by convolving two shapers.

May result in unexpected performance.’)

elseif (strcmp(obj1.shaperType, ’si’) || strcmp(obj1.shaperType, ’SI’)...

|| strcmp(obj2.shaperType, ’si’) || strcmp(obj2.shaperType, ’SI’))

warning(’Use a SI2Mode shaper instead of convolving an SI shaper

with another shaper’)

elseif (strcmp(obj1.shaperType, ’si2mode’) ||...

strcmp(obj1.shaperType, ’SI2Mode’) || strcmp(obj2.shaperType, ’si2mode’)...

|| strcmp(obj2.shaperType, ’SI2Mode’))

warning(’SI2Mode shapers already account for 2 modes. If more than

two modes are to be suppressed, it would be better to convolve

simpler shapers together’)

end

% Hyphenate shaper names together (put the shaper with the lower

% design natural frequency first). Also, concatenate vTol levels

% for both shapers in the same order.

if (obj1.natFreq_model(1) <= obj2.natFreq_model(1))

shaperType = {obj1.shaperType, obj2.shaperType};

vTol = [obj1.vTol, obj2.vTol];

else

shaperType = {obj2.shaperType, obj1.shaperType};

vTol = [obj2.vTol, obj1.vTol];

end

% Both obj1 and obj2 should have the same sampling times. If not, the

% function uses the larger sampling time.

if obj1.T_sampling >= obj2.T_sampling

T_s = obj1.T_sampling;

else

T_s = obj2.T_sampling;

end

% Use modified version of constructor to create the new shaper object

convolvedShaper = InputShaper({shaperType, vTol.*100}, ...

[obj1.natFreq_model, obj2.natFreq_model],...

[obj1.dampingRatio_model, obj2.dampingRatio_model], T_s, true);

%% Convolve impulse sequences of both shapers

% Extract impulse sequences for both shapers from the object properties

101

A1 = obj1.getShaperPulseAmplitudes;

A2 = obj2.getShaperPulseAmplitudes;

T1 = obj1.getShaperPulseTimes;

T2 = obj2.getShaperPulseTimes;

seq1 = [T1; A1];

seq2 = [T2; A2];

% Convolve impulse sequences

seq = seqconv(seq1’, seq2’);

A = seq(:,2)’;

T = seq(:,1)’;

% % Convolution of a series of impulses:

% k = 1;

% for j=1:obj1.numPulses

% for i=1:obj2.numPulses

% A(k) = A1(j)*A2(i);

% T(k) = T1(j)+T2(i);

% k=k+1;

% end

% end

%

% % Sort new impulses sequence based on time locations

% [T, loc] = sort(T,’ascend’);

% % Sort amplitudes using the mapping from the time locations sort

% A = A(loc);

%% Assign the impulse sequence to the new shaper object

convolvedShaper.numPulses = length(A);

convolvedShaper.pulseAmplitudes = A;

convolvedShaper.pulseTimes = T;

%% Create a digital respresentation of the new shaper from its

%% continuous-time representation

digitizeShaper(convolvedShaper);

%% Assign remaining class properties of the new shaper object

% Prebuffer t_history and y_history up to one time step before the time

% of the last impulse in the InputShaper’s impulse sequence

convolvedShaper.t_history = 0:convolvedShaper.T_sampling...

:(convolvedShaper.pulseTimesDigital(convolvedShaper.numPulsesDigital));

convolvedShaper.y_history = zeros(1, length(convolvedShaper.t_history));

end % convolveShapers

function seq = seqconv(seq1,seq2)

% SEQUENCECONVOLVE Convolve two continuous sequences together.

%

% seq = seqconv(seq1,seq2)

%

% Convolves two sequences together.

% A Sequence is an n*2 matrix with impulse times (sec) in

% the first column and amplitudes in the second column.

%

% Parameters:

% seq1, seq2 the two sequences to convolve together.

%

% Returns:

% seq, the sequence resulting from the convolution.

index = 1;

tempseq = [];

for i=1:length(seq1),

102

for j=1:length(seq2),

tempseq(index,1) = seq1(i,1)+seq2(j,1);

tempseq(index,2) = seq1(i,2)*seq2(j,2);

index = index+1;

end

end

seq = seqsort(tempseq);

function sortedseq = seqsort(unsortedseq)

% SEQUENCESORT Sort a continuous sequence into correct

% order and combine impulses at the same time.

%

% sortedseq = seqsort(unsortedseq)

%

% A sequence is an n*2 matrix with times (sec) in the first

% column and amplitudes in the second column.

%

% PARAMETERS:

% unsortedseq is the continuous sequence to sort

%

% RETURNS:

% sortedseq, the sorted sequence.

[badsortseq,sortingindex] = sort(unsortedseq);

for nn=1:length(unsortedseq),

goodsortseq(nn,1) = badsortseq(nn,1);

goodsortseq(nn,2) = unsortedseq(sortingindex(nn,1),2);

end

% Combine impulses with the same times

% (creates seq from goodsortseq)

idx = 1;

seq = [];

seq(1,:) = goodsortseq(1,:);

for nn=2:length(goodsortseq),

if goodsortseq(nn,1)==seq(idx,1),

seq(idx,2) = seq(idx,2)+goodsortseq(nn,2);

else

idx = idx+1;

seq(idx,:) = goodsortseq(nn,:);

end

end

% Eliminate any impulse with amplitude less than 0.0001

% (creates sortedseq from seq)

idx = 1;

for nn=1:length(seq),

if abs(seq(nn,2))>=0.0001,

sortedseq(idx,:) = seq(nn,:);

idx = idx+1;

end

end

function [resVib, wVec] = sensitivityCurve(obj, freqRange, shaperDomainFlag)

% Plots the Sensitivity Curve of the InputShaper object

%

% function [resVib, wVec] = sensitivityCurve(obj, normFreqRange,

% shaperDomainFlag) plots the sensitivity curve of the InputShaper obj. The

% sensitivity curve is used as a measure of the robustness of the input

% shaper to changes in the system parameters. This is typically plotted as

103

% residual vibration in percent caused by a command shaped by the input

% shaper on the vertical axis and system natural frequency on the

% horizontal axis. Residual vibration is defined as the ratio (at a given

% frequency and damping ratio) of the vibration caused by the input

% shaper’s impulse sequence to the amount of residual vibration caused by

% a single, unity-magnitude impulse.

%

% Inputs:

% obj InputShaper object to plot the sensitivity curve

% of.

% FreqRange Range of frequencies to plot the residual vibration

% at

% shaperDomainFlag Input flag used to indicate whether the continuous

% or digital representation of the input shaper

% should be used to calculate the residual

% vibration and plot the sensitivity curve.

% For continuous: use ’continuous’ or ’’.

% For digital: use ’digital’ or ’discrete’.

% Plotting the digital representation is a good way

% of checking whether or not the selected sampling

% time is low enough to not cause significant

% degradation of the vibration-suppressing

% properties of the input shaper.

%

% Outputs:

% resVib Vector of residual vibration, in percent.

% wVec Vector of frequencies, in rad/s, at which the

% residual vibration was plotted. The

% residual vibration at a given index of resVib

% corresponds to the frequency in wVec at that

% index.

if(length(freqRange) ~= 2)

error(’Range of frequencies to plot must be a 1x2 vector’)

end

% System parameters

if strcmp(obj.shaperType, ’SI’) || strcmp(obj.shaperType, ’SI’)

w_n = (obj.natFreq_model(1)+obj.natFreq_model(2))/2;

zeta = obj.dampingRatio_model(1);

elseif strcmp(obj.shaperType, ’si2mode’) || strcmp(obj.shaperType, ’SI2Mode’)

w_n_1 = (obj.natFreq_model(1)+obj.natFreq_model(2))/2;

w_n_2 = (obj.natFreq_model(3)+obj.natFreq_model(4))/2;

if w_n_1 > w_n_2

w_n = w_n_2;

else

w_n = w_n_1;

end

zeta_1 = obj.dampingRatio_model(1);

zeta_2 = obj.dampingRatio_model(2);

if zeta_1 > zeta_2

zeta = zeta_2;

else

zeta = zeta_1;

end

else

w_n = obj.natFreq_model(1);

zeta = obj.dampingRatio_model(1);

end

% % Calculate damped natural frequency

104

% w_d = w_n.*sqrt(1-zeta.^2);

% Determine number of frequencies to plot

divs = 1000; % points per 1 unit of frequency

numFreqs = round(divs.*(freqRange(2)-freqRange(1)));

% Create vector of frequencies at which the residual vibration

% will be plotted

wVec = linspace(freqRange(1), freqRange(2), numFreqs);

% Prebuffer resVib

resVib = zeros(1, numFreqs);

for k = 1:numFreqs

resVib(k) = residualVibration(obj, wVec(k), zeta, shaperDomainFlag);

end

% Plot

if nargout == 0

figure;

plot(wVec, resVib);

% Figure formatting

xlabel(’Frequency (rad/s)’);

xlim([freqRange(1), freqRange(2)]);

ylabel(’Percentage Residual Vibration’);

ylim([0, ceil(max(resVib))]);

titleStrLine1 = [’Shaper Type: ’, obj.shaperType];

titleStrLine2 = [’Modeled Natural Frequency and Damping Ratio: \omega_m = ’,...

num2str(w_n), ’ rad/s, \zeta_m = ’, num2str(zeta)];

if strcmp(shaperDomainFlag, ’continuous’) || strcmp(shaperDomainFlag, ’’)

title({’Sensitivity Curve’, titleStrLine1, titleStrLine2})

elseif strcmp(shaperDomainFlag, ’digital’) || strcmp(shaperDomainFlag, ’discrete’)

title({’Sensitivity Curve for the Shaper’’s Digital Representation’, ...

titleStrLine1, titleStrLine2})

else

error(’Input shaperDomainFlag is not a recognized flag.’)

end

end % else Don’t plot, return function outputs resVib and wVec

end % sensitivityCurve

function resVib = residualVibration(obj, w_n, zeta, shaperDomainFlag)

% Returns the residual vibration resulting from the input shaper’s

% impulse sequence at the given frequency w_n and damping ratio zeta as a

% percentage of the amount of residual vibration caused by a single,

% unity-magnitude impulse

% % Calculate damped natural frequency

w_d = w_n.*sqrt(1-zeta.^2);

if strcmp(shaperDomainFlag, ’s’) || strcmp(shaperDomainFlag, ’continuous’)...

|| strcmp(shaperDomainFlag, ’’)

% Use continuous (normal) shaper representation

C = zeros(1, obj.numPulses);

S = zeros(1, obj.numPulses);

for k = 1:obj.numPulses

C(k) = obj.pulseAmplitudes(k).*exp(zeta.*w_n.*obj.pulseTimes(k))...

.*cos(w_d.*obj.pulseTimes(k));

S(k) = obj.pulseAmplitudes(k).*exp(zeta.*w_n.*obj.pulseTimes(k))...

.*sin(w_d.*obj.pulseTimes(k));

end

C = sum(C);

S = sum(S);

% Calculate residual vibration (normalized as a percentage of

% the vibration caused by a single, unity-magnitude impulse)

105

resVib = 100.*exp(-zeta.*w_n.*obj.pulseTimes(obj.numPulses))...

.*sqrt(C.^2+S.^2); % [%]

elseif strcmp(shaperDomainFlag, ’z’) || strcmp(shaperDomainFlag, ’digital’)...

|| strcmp(shaperDomainFlag, ’discrete’)

% Use digital shaper representation

C = zeros(1, obj.numPulsesDigital);

S = zeros(1, obj.numPulsesDigital);

for k = 1:obj.numPulsesDigital

C(k) = obj.pulseAmplitudesDigital(k).*exp(zeta.*w_n.*obj.pulseTimesDigital(k))...

.*cos(w_d.*obj.pulseTimesDigital(k));

S(k) = obj.pulseAmplitudesDigital(k).*exp(zeta.*w_n.*obj.pulseTimesDigital(k))...

.*sin(w_d.*obj.pulseTimesDigital(k));

end

C = sum(C);

S = sum(S);

% Calculate residual vibration (normalized as a percentage of

% the vibration caused by a single, unity-magnitude impulse)

resVib = 100.*exp(-zeta.*w_n.*obj.pulseTimesDigital(obj.numPulsesDigital))...

.*sqrt(C.^2+S.^2); % [%]

else

error(’Input shaperDomainFlag is not a recognized flag.’)

end

end % residualVibration

function disp(obj)

% Overloads MATLAB default disp.m

if strcmp(obj.shaperType, ’SI’) || strcmp(obj.shaperType, ’SI’)

fprintf(’Shaper Type:\t\t\t\t\t%s\n’, obj.shaperType);

fprintf(’Natural Frequency Range: \t\t%0.5g - %0.5g [rad/s]\n’,...

obj.natFreq_model(1), obj.natFreq_model(2))

fprintf(’Design Damping Ratio: \t\t\t%0.5g\n’, obj.dampingRatio_model(1))

fprintf(’Tolerable Residual Vibration: \t%0.5g%% \n’, obj.vTol(1)*100);

elseif strcmp(obj.shaperType, ’si2mode’) || strcmp(obj.shaperType, ’SI2Mode’)

fprintf(’Shaper Type:\t\t\t\t\t%s\n’, obj.shaperType);

fprintf(’Natural Frequency Range (Mode 1): \t\t%0.5g ...

- %0.5g [rad/s]\n’, obj.natFreq_model(1), obj.natFreq_model(2))

fprintf(’Design Damping Ratio (Mode 1): \t\t\t%0.5g\n’, obj.dampingRatio_model(1))

fprintf(’Tolerable Residual Vibration (Mode 1): \t%0.5g%% \n’, obj.vTol(1)*100);

fprintf(’Natural Frequency Range (Mode 2): \t\t%0.5g ...

- %0.5g [rad/s]\n’, obj.natFreq_model(3), obj.natFreq_model(4))

fprintf(’Design Damping Ratio (Mode 2): \t\t\t%0.5g\n’, obj.dampingRatio_model(2))

fprintf(’Tolerable Residual Vibration (Mode 2): \t%0.5g%% \n’, obj.vTol(2)*100);

else

if obj.convolved

fprintf(’Convolved Shaper: %s\n The properties of each shaper that were...

convolved to form this one are listed separately:\n’, obj.shaperType)

for i = 1:length(obj.natFreq_model)

fprintf(’ Shaper Type (Shaper %d):\t\t\t\t\t%s\n’, i,...

obj.convolvedShaperTypes{i});

fprintf(’ Design Natural Frequency (Shaper %d): \t\t%0.5g [rad/s]\n’, i,...

obj.natFreq_model(i))

fprintf(’ Design Damping Ratio (Shaper %d): \t\t\t%0.5g\n’, i,...

obj.dampingRatio_model(i))

if ~(strcmp(obj.convolvedShaperTypes{i}, ’ei’) || ...

strcmp(obj.convolvedShaperTypes{i}, ’EI’) ||...

strcmp(obj.convolvedShaperTypes{i}, ’si’) ||...

strcmp(obj.convolvedShaperTypes{i}, ’SI’) ||...

strcmp(obj.convolvedShaperTypes{i}, ’si2mode’) ||...

106

strcmp(obj.convolvedShaperTypes{i}, ’SI2Mode’) ||...

strcmp(obj.convolvedShaperTypes{i}, ’umei’) ||...

strcmp(obj.convolvedShaperTypes{i}, ’UMEI’))

fprintf(’ Tolerable Residual Vibration (Shaper %d): \tOnly...

applicable for EI and SI type shapers. \n’, i);

else

fprintf(’ Tolerable Residual Vibration (Shaper %d): \t%0.5g%%...

\n’, i, obj.vTol(i)*100);

end

end

fprintf(’ ’)

else

fprintf(’Shaper Type:\t\t\t\t\t%s\n’, obj.shaperType);

fprintf(’Design Natural Frequency: \t\t%0.5g [rad/s]\n’, obj.natFreq_model)

fprintf(’Design Damping Ratio: \t\t\t%0.5g\n’, obj.dampingRatio_model)

if ~(strcmp(obj.shaperType, ’ei’) || strcmp(obj.shaperType, ’EI’) || ...

strcmp(obj.shaperType, ’si’) || strcmp(obj.shaperType, ’SI’) || ...

strcmp(obj.shaperType, ’si2mode’) || strcmp(obj.shaperType, ’SI2Mode’) ||...

strcmp(obj.shaperType, ’umei’) || strcmp(obj.shaperType, ’UMEI’))

fprintf(’Tolerable Residual Vibration: \tOnly applicable for EI and ...

SI type shapers. \n’);

else

fprintf(’Tolerable Residual Vibration: \t%0.5g%% ...

\n’, obj.vTol*100);

end

end

end

fprintf(’Impulse Sequence:\n’)

fprintf(’ Times \tAmplitudes\n’)

for i = 1:obj.numPulses

fprintf(’ %#0.4g \t %#0.3g\n’, obj.pulseTimes(i), obj.pulseAmplitudes(i))

end

end % disp

function shaperOut = getShaper(obj)

% Returns all shaper properties as a struct

shaperOut.shaperType = obj.shaperType;

shaperOut.shaperTypeConvolved = obj.convolvedShaperTypes;

shaperOut.natFreq_model = obj.natFreq_model;

shaperOut.dampingRatio_model = obj.dampingRatio_model;

shaperOut.numPulses = obj.numPulses;

shaperOut.pulseAmplitudes = obj.pulseAmplitudes;

shaperOut.pulseTimes = obj.pulseTimes;

end % getShaper

function typeOut = getShaperType(obj)

% Returns type of shaper (a string)

typeOut = obj.shaperType;

end % getShaperType

function pulseAmplitudesOut = getShaperPulseAmplitudes(obj)

% Returns shaper pulseAmplitudes

pulseAmplitudesOut = obj.pulseAmplitudes;

end % getShaperPulseAmplitudes

function pulseTimesOut = getShaperPulseTimes(obj)

% Returns shaper pulseTimes

pulseTimesOut = obj.pulseTimes;

end % getShaperPulseTimes

107

function numPulsesOut = getShaperNumPulses(obj)

% Returns shaper numPulses

numPulsesOut = obj.numPulses;

end % getShaperNumPulses

function [w_model, zeta_model] = getModelingParameters(obj)

% Returns modeling natural frequency and damping ratio of shaper

w_model = obj.natFreq_model;

zeta_model = obj.dampingRatio_model;

end % getModelingParameters

function typeConvolvedOut = getShaperTypeConvolved(obj)

% Return stypes of shapers in the convolved shaper (a cell array

% that is a list of strings indicating shaper type)

typeConvolvedOut = obj.convolvedShaperTypes;

end % getShaperType

function digitalShaperOut = getDigitalShaper(obj)

% Returns all properties of the digitized shaper as a struct

digitalShaperOut.shaperType = obj.shaperType;

digitalShaperOut.shaperTypeConvolved = obj.convolvedShaperTypes;

digitalShaperOut.natFreq_model = obj.natFreq_model;

digitalShaperOut.dampingRatio_model = obj.dampingRatio_model;

digitalShaperOut.numPulsesDigital = obj.numPulsesDigital;

digitalShaperOut.pulseAmplitudesDigital = obj.pulseAmplitudesDigital;

digitalShaperOut.pulseTimesDigital = obj.pulseTimesDigital;

end % getDigitalShaper

function [exactshaper,exitflag] = si_fmincon(ShapLength,ShaperFlag,...

neg,X0,fmin,fmax,damp,V_tol,deltaT)

% [exactshaper,exitflag] = si_fmincon(ShapLength,ShaperFlag,...

% neg,X0,fmin,fmax,damp,V_tol,deltaT)

%

% function to determine amplitudes and time locations

% for an SI, UM-SI, or SNA-SI shaper

%

% necessary files: optimization toolbox

%

% Can be either a SNA, UM, or positive shaper, depending on the

% value of UMFlag.

%

% The user enters desired frequency range to suppress vibration;

% the program calculates insensitivity values and generates input shaper.

%

% ShaperLength = number of impulses, will be redefined if X0 = 0

% ShaperFlag = 0 for positive, 1 for UM shaper, 2 for SNA

% neg = max negative amplitude for SNA shaper, ignored otherwise

% X0 = initial guess - [a1 a2 ... an t1 t2 ... tn] or 0 if unknown

% fmin = lower frequency of range to suppress vibration within (Hz)

% wmin = lower frequency of range to suppress vibration within (rad/s)

% fmax = upper frequency of range to suppress vibration within (Hz)

% wmax = upper frequency of range to suppress vibration within (rad/s)

% damp = damping ratio

% V_tol = vibration level tolerated (0.05 = 5%)

% deltaT = sampling period (s)

%

% This function generates the exact impulse sequence.

108

ShaperLength = ShapLength; % if X0 = 0 this will be redefined during intial guess

Vtol = V_tol;

UMFlag = ShaperFlag;

zeta = damp;

if UMFlag == 1;

neg = 1;

end

%***** Determine median frequecny of range to be suppressed

%***** and Insensitivity.

wmin = 2*pi*fmin; % convert to rad/s

wmax = 2*pi*fmax; % convert to rad/s

wn = (wmin+wmax)/2; % median frequency

Ins = (wmax-wmin)/wn; % Insensitivity

%***** Calculate period; use for initial time guess ****

T=2*pi/wn;

if X0==0 % if I.C.’s unknown, create X0

if UMFlag==0 % For pos shaper

if Ins <= 0.3992

ShaperLength = 3; % EI

X0 = [0.28 0.46 0.28 0 T/2 T];

elseif Ins <= 0.7;%0.7262

ShaperLength = 4; % 2hump EI

X0 = [0.16 0.34 0.34 0.16 0 T/2 T 1.5*T];

elseif Ins <= 0.9654

ShaperLength = 5; % 3 hump EI

X0 = [0.0625 0.25 0.375 0.25 0.0625 0 T/2 T 1.5*T 2*T];

else

disp(’Code only work for positive shapers up to I(5%) = 0.9654’)

end

else % for negative shapers

if Ins <= 0.0333*neg^2-0.0672*neg+0.3956

ShaperLength = 5;

t(1) = 0;

t(2) = -0.0091*neg^2 - 0.041*neg + 0.1466;

t(3) = 0.0923*neg^2 - 0.2134*neg + 0.4881;

t(4) = 0.1933*neg^2 - 0.3856*neg + 0.8297;

t(5) = 0.1843*neg^2 - 0.4267*neg + 0.9763;

a(1) = 0.4067*neg^3 - 0.5703*neg^2 + 0.9112*neg + 0.25;

a(2) = -neg;

a(3) = -0.8135*neg^3 + 1.1401*neg^2 + 0.1782*neg + 0.4998;

a(4) = -neg;

a(5) = a(1);

X0 = [a t*T]; % EI node

elseif Ins <= 0.0604*neg^2 - 0.1061*neg + 0.7186;

ShaperLength = 7;

t(1) = 0;

t(2) = -0.0698*neg^2 + 0.0185*neg + 0.1171;

t(3) = 0.1952*neg^2 - 0.3032*neg + 0.4949;

t(4) = 0.1571*neg^2 - 0.3053*neg + 0.7294;

t(5) = 0.1190^neg^2 - 0.3075*neg + 0.9639;

t(6) = 0.3839*neg^2 - 0.6290*neg + 1.3416;

t(7) = 0.3138*neg^2 - 0.6102*neg + 1.4587;

a(1) = 1.6343*neg^4 - 2.4423*neg^3 + 1.0978*neg^2 + 0.5355*neg + 0.1772;

a(2) = -neg;

a(3) = -1.6343*neg^4 + 2.4423*neg^3 - 1.0978*neg^2 + 0.9645*neg +0.3228;

a(4) = -neg;

a(5) = a(3);

a(6) = -neg;

a(7) = a(1);

109

X0 = [a t*T]; % 2Hump EI Node

elseif Ins <= .2895*neg^4 - 0.6258*neg^3 + 0.5211*neg^2 - 0.2382*neg + 0.9654

ShaperLength = 9;

t(1) = 0;

t(2) = -0.0856*neg^2 + 0.0235*neg + 0.1148;

t(3) = 0.3095*neg^2 - 0.4085*neg + 0.4947;

t(4) = 0.1438*neg^2 - 0.3033*neg + 0.7011;

t(5) = 0.2201*neg^2 - 0.3867*neg + 0.9686;

t(6) = 0.2973*neg^2 - 0.4709*neg + 1.237;

t(7) = 0.1308*neg^2 - 0.3648*neg + 1.4424;

t(8) = 0.5266*neg^2 - 0.7978*neg + 1.8226;

t(9) = 0.4407*neg^2 - 0.7738*neg + 1.9372;

a(1) = 0.3615*neg^5 + 2.2773*neg^4 - 4.501*neg^3 + 2.5652*neg^2 ...

+ 0.1458*neg + 0.1537;

a(2) = -neg;

a(3) = -4.7821*neg^5 + 10.014*neg^4 - 7.4091*neg^3 + 2.4361*neg^2 ...

+ 0.492*neg + 0.2475;

a(4) = -neg;

a(5) = 8.7667*neg^5 - 24.359*neg^4 + 23.578*neg^3 - 9.8884*neg^2 ...

+ 2.7027*neg + 0.1989;

a(6) = -neg;

a(7) = a(3);

a(8) = -neg;

a(9) = a(1);

X0 = [a t*T]; %3 Hump EI Node

elseif Ins <= 1.2

ShaperLength = 11; % ???

X0 = [1 -1 1 -1 1 -1 1 -1 1 -1 1 ...

0 0.0427*T 0.4242*T 0.5635*T 0.8305*T 1.0976*T 1.2371*T...

1.6189*T 1.6619*T 1.85*T 2.4*T];

else

disp(’Code only works for negative shapers up to I(5%) = 1.2’)

end

end

end

% Increase ShapLen temporarily... it gets reduced during first iteration of

% optimization

if UMFlag == 0

ShaperLength = ShaperLength + 1;

else

ShaperLength = ShaperLength + 2;

end

% Create zero vectors to store amplitudes and times

% These also trigger the while loop to execute the first time

amps=zeros(1,ShaperLength);

tms=zeros(1,ShaperLength);

seek_solution = 1; % flag for while loop about solution

% Check for zero amplitudes and repeated impulse times

% If they exist, decrease the shaper length by one and solve again

while (seek_solution == 1)

if UMFlag == 0

%Reduce number of impulses if min(amps) is small

% ShaperLength = ShaperLength-1;

ShaperLength = length(X0)/2;

else

ShaperLength = ShaperLength-2;

end

% Define Linear Constraints based on UMFlag

if UMFlag == 0 % All Positive Impulses

110

%Linear Equality Constraints

Aeq=zeros(2,2*ShaperLength); % define to speed comp.

for ii=1:ShaperLength

Aeq(1,ii)=1; % all impulses sum to one

end

Aeq(2,ShaperLength+1)=1; % first impulse at t=0

Beq=[1;0];

%Linear Inequality Constraints

A=zeros(ShaperLength-1,2*ShaperLength); % define to speed comp.

B=[zeros(3*ShaperLength-1,1)];

% loop is constraints that t(i+1) > t(i)

for ii=1:ShaperLength-1

A(ShaperLength+ii,ShaperLength+ii)=1;

A(ShaperLength+ii,ShaperLength+1+ii)=-1;

end

for ii=1:ShaperLength

A(ii,ii)=-1; %All Imp. pos

A((2*ShaperLength+ii-1),ShaperLength+ii)=-1; %All times pos

end

elseif UMFlag == 1 % Unity Magnitude

%Linear Equality Constraints

Aeq=zeros(ShaperLength+2,2*ShaperLength); % define to speed comp.

for ii=1:ShaperLength

Aeq(1,ii)=1; % all impulses sum to one

Aeq(ii+1,ii)=(-1)^(ii+1); % Alternating signs and unity magnitude constraints

end

Aeq(ShaperLength+2,ShaperLength+1)=1; % first impulse at t=0

Beq=[1;ones(ShaperLength,1);0];

%Linear Inequality Constraints

A=zeros(2*ShaperLength-1,2*ShaperLength); % define to speed comp.

B=[zeros(2*ShaperLength-1,1)];

% loop is constraints that t(i+1) > t(i)

for ii=1:ShaperLength-1

A(ii,ShaperLength+ii)=1;

A(ii,ShaperLength+1+ii)=-1;

end

for ii=1:ShaperLength

A((ShaperLength+ii-1),ShaperLength+ii)=-1; %All times pos

end

elseif UMFlag == 2 % Specified Negative Amplitude

%Linear Equality Constraints

count = 0; % counter for #neg imp.

for ii=2:2:ShaperLength

count = count+1;

end

Aeq=zeros(2+count,2*ShaperLength); % define to speed comp.

for ii=1:ShaperLength

Aeq(1,ii)=1; % all impulses sum to one

end

count = 0;

for ii=2:2:ShaperLength

count = count + 1;

Aeq(1+count,ii) = -1/neg; % alternating negative amps

end

Aeq(2+count,ShaperLength+1)=1; % first impulse at t=0

Beq=[1;ones(count,1);0];

%Linear Inequality Constraints

A=zeros(2*ShaperLength-1,2*ShaperLength);

B=[zeros(2*ShaperLength-1,1);neg*ones(ShaperLength,1);...

111

ones(ShaperLength,1);zeros(ShaperLength,1);ones(ShaperLength,1)];

% loop is constraints that t(i+1) > t(i)

for ii=1:ShaperLength-1

A(ii,ShaperLength+ii)=1;

A(ii,ShaperLength+1+ii)=-1;

end

for ii=1:ShaperLength

A((ShaperLength+ii-1),ShaperLength+ii)=-1; %All times are pos

A(2*ShaperLength+ii-1,ii) = -1;

A(3*ShaperLength+ii-1,ii) = 1;

% running total >= 0

A(4*ShaperLength+ii-1,1:ii) = -1;

A(5*ShaperLength+ii-1,1:ii) = 1;

end

else

error(’ZV2mode:UMFlagCheck’,...

’\nPlease enter a correct ShaperFlag value: \n ShaperFlag = 0 -> ...

Only positive impulses \n ShaperFlag = 1 -> Unity Magnitude shaper \n ...

ShaperFlag = 2 -> Specified Negative Amplitude’)

end

%******* Set maximum number of iterations ****************

options = optimset(’Algorithm’,’active-set’,’MaxIter’,5000*ShaperLength,...

’Display’,’off’,’MaxFunEvals’,5000*ShaperLength,’TolFun’,1e-9);

%******* make call to optimizer ****************************

%x=fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon) - format of call to

%fmincon

[x,fval,exitflag]=fmincon(@si_fmincon_fun,X0,A,B,Aeq,Beq,...

[],[],@si_fmincon_const,options);

i=2*ShaperLength;

clear tms_X0 amps_X0

amps_X0=x(1:ShaperLength);

tms_X0=x(ShaperLength+1:i);

% uncomment to see incremental solutions

% shaper = [tms_X0’ amps_X0’]

% check for zero amplitudes or identical times

% if so, create new intial guess from current solution and re-solve

if (min(abs(amps_X0)) < 1e-4) | (min(diff(tms_X0)) < 1e-4)

disp(’ ’)

disp(’Nearly-identical times or zero-amplitude impulses found. ’)

disp(’Reducing the number of impulses and re-solving...’)

disp(’ ’)

%Generate next initial guess

if UMFlag == 0 || UMFlag == 2

% check for impulses occuring at the same time

% if so, remove one, sum amplitudes, and resolve

for ii = length(tms_X0)-1:-1:1;

if tms_X0(ii+1)-tms_X0(ii) < 1e-4

tms_X0(ii) = [];

amps_X0(ii+1) = amps_X0(ii)+amps_X0(ii+1);

amps_X0(ii) = [];

end

end

for ii = length(amps_X0):-1:1

if abs(amps_X0(ii)) < 1e-4

amps_X0(ii) = [];

tms_X0(ii) = [];

end

end

% create new initial Guess

112

X0=[amps_X0 tms_X0];

else % "smart" simplification for negative shapers

for ii = length(tms_X0)-1:-1:1;

if tms_X0(ii+1)-tms_X0(ii) < 1e-3

tms_X0(ii:ii+1) = [];

amps_X0(ii:ii+1) = [];

end

end

X0=[amps_X0 tms_X0];

ShaperLength = length(X0)/2;

end

else

% there are zero amp impulses or repeated times

% use current solution

seek_solution = 0;

end

end

% Check for convergence and assign shaper

if exitflag <= 0

disp(’ERROR: optimization did not converge’)

exactshaper = [];

shaper = [];

else

i=2*ShaperLength;

amps=x(1:ShaperLength);

time=x(ShaperLength+1:i);

time(1) = 0;

exactshaper = [time’ amps’];

% shaper = digseq(exactshaper,deltaT);

end

%%%%% Cost Function to Minimize %%%%%%

function [f,g]=si_fmincon_fun(x)

i=2*ShaperLength; % length of x

f=x(i); % function to be minimized (time of tn)

end %end cost function

%%%%% Nonlinear Constraints %%%%%%%%

function [c,ceq]=si_fmincon_const(x)

i=2*ShaperLength; % length of x

ceq=[]; % Nonlinear equality constraints

StepMax=50; % # of points at which vibration is limited

% Generate constraints to satisfy insensitivity parameters

for jj=1:StepMax

w(jj)=wn*((1-Ins/2)+Ins/(StepMax-1)*(jj-1));

w_damp(jj) = w(jj)*sqrt(1-zeta^2);

% cosine terms of vibration equation

csum=sum(x(1:i/2).*exp(zeta*w(jj)*x(i/2+1:i))...

.*cos(-w_damp(jj)*x(i/2+1:i)));

% sine terms of vibration equation

ssum=sum(x(1:i/2).*exp(zeta*w(jj)*x(i/2+1:i))...

.*sin(-w_damp(jj)*x(i/2+1:i)));

% if last impulse amplitude is zero, measure vib. at previous impulse

if abs(x(i/2)) < 1e-6

g(jj,:)=exp(-zeta*w(jj)*x(i-1))*sqrt(csum^2+ssum^2)-Vtol;

else

g(jj,:)=exp(-zeta*w(jj)*x(i))*sqrt(csum^2+ssum^2)-Vtol;

end

end

% uncomment next line to watch convergence

% shap = [x(ShaperLength+1:2*ShaperLength)’ x(1:ShaperLength)’]

113

c=g;

end %end nonlinear constraint function

end % end main function

function [exactshaper,exitflag] = si2mode_fmincon(ShapLength,ShaperFlag,...

neg,X0,f1min,f1max,damp1,V_tol_1,f2min,f2max,damp2,V_tol_2,deltaT)

% [exactshaper,exitflag] = si2mode(ShapLength,ShaperFlag,...

% neg,X0,f1min,f1max,damp1,V_tol_1,f2min,f2max,V_tol_2,deltaT)

%

% Function determines the amplitudes and time locations

% for a Two-mode SI shaper.

%

% Can be either a SNA, UM, or positive shaper, depending on UMFlag value.

% (As of 11/8/10 - negative and UM shapers sometimes fail to converge)

%

% Necessary auxilliary files: optimization toolbox

% EI2M_und.m and negumei.m also needed if no initial guess is given

%

% ShapLength = number of impulses - Redefined if X0 = 0

% ShaperFlag = 0 for positive, 1 for UM shaper, 2 for SNA

% neg = desired negative amplitude for SNA shaper, no function othersise

% X0 = initial guess - [a1 a2 ... an t1 t2 ... tn] or 0 if unknown

% deltaT = sampling period (s)

%

% FOR FIRST MODE

% f1min = lower frequency of range to suppress vibration within (Hz)

% f1max = upper frequency of range to suppress vibration within (Hz)

% damp1 = damping ratio

% V_tol_1 = vibration level tolerated (0.05 = 5%)

%

% FOR SECOND MODE

% f2min = lower frequency of range to suppress vibration within (Hz)

% f2max = upper frequency of range to suppress vibration within (Hz)

% damp2 = damping ratio

% V_tol_2 = vibration level tolerated (0.05 = 5%)

% Convert user input to function variables

ShaperLength = ShapLength;

UMFlag = ShaperFlag;

Vtol1 = V_tol_1;

zeta1 = damp1;

Vtol2 = V_tol_2;

zeta2 = damp2;

%***** Determine median frequecny of range to be suppressed

%***** and Insensitivity for FIRST mode.

f1 = (f1min+f1max)/2; % median freq in Hz

w1min = 2*pi*f1min; % convert to rad/s

w1max = 2*pi*f1max; % convert to rad/s

wn1 = (w1min+w1max)/2; % median frequency

Ins1 = (w1max-w1min)/wn1; % Insensitivity

%***

%***** Determine median frequecny of range to be suppressed

%***** and Insensitivity for SECOND mode.

f2 = (f2min+f2max)/2; % median freq in Hz

w2min = 2*pi*f2min; % convert to rad/s

w2max = 2*pi*f2max; % convert to rad/s

wn2 = (w2min+w2max)/2; % median frequency

114

Ins2 = (w2max-w2min)/wn2; % Insensitivity

%***

% Generate intial guess if none given

if X0 == 0

if UMFlag == 0

% Use 2-mode EI as Initial Guess

[temp,EI2mode] = ei2m_und(f1,f2,Vtol1,Vtol2,deltaT);

X0 = [EI2mode(:,2)’ EI2mode(:,1)’];

ShaperLength = length(EI2mode);

else

% Use 2-mode UM-EI (Vtols = 0.05) as Initial Guess

[temp,UMEImode1] = negumei(f1,zeta1,0.05,deltaT);

[temp,UMEImode2] = negumei(f2,zeta2,0.05,deltaT);

UMEI_tot = seqconv(UMEImode1,UMEImode2);

X0 = [UMEI_tot(:,2)’ UMEI_tot(:,1)’];

ShaperLength = length(UMEI_tot);

end

end

% seek_solution = 1 until solution is found

% will remain = 1 if zero amplitudes and repeated impulse times are found

seek_solution = 1;

while (seek_solution == 1)

%**** Generate linear constraints according to shaper-type

if UMFlag == 0 % Positive Impulse Shapers

%**** Linear Equality Constraints (of form Aeq*x = Beq)

Aeq=zeros(2,2*ShaperLength);

for ii=1:ShaperLength

Aeq(1,ii)=1; % all impulses sum to one

end

Aeq(2,ShaperLength+1)=1; % first impulse at t=0

Beq=[1;0];

%**** Linear Inequality Constraints (of form A*x <= B)

A=zeros(ShaperLength-1,2*ShaperLength); % define matrix to speed comp.

% loop is constraints that t(i+1) > t(i)

for ii=1:ShaperLength-1

A(ShaperLength+ii,ShaperLength+ii)=1;

A(ShaperLength+ii,ShaperLength+1+ii)=-1;

end

for ii=1:ShaperLength

A(ii,ii)=-1; %All Imp. are pos

A((2*ShaperLength+ii-1),ShaperLength+ii)=-1; %All times are pos

end

B=[zeros(3*ShaperLength-1,1)];

elseif UMFlag == 1 % Unity Magnitude

%**** Linear Equality Constraints (of form Aeq*x = Beq)

Aeq=zeros(ShaperLength+2,2*ShaperLength); % define to speed comp.

for ii=1:ShaperLength

Aeq(1,ii)=1; % all impulses sum to one

Aeq(ii+1,ii)=(-1)^(ii+1);% Alternating signs and unity magnitude constraints

end

Aeq(ShaperLength+2,ShaperLength+1)=1; % first impulse at t=0

Beq=[1;ones(ShaperLength,1);0];

%**** Linear Inequality Constraints (of form A*x <= B)

A=zeros(2*ShaperLength-1,2*ShaperLength); % define to speed comp.

115

B=[zeros(2*ShaperLength-1,1)];

% loop is constraints that t(i+1) > t(i)

for ii=1:ShaperLength-1

A(ii,ShaperLength+ii)=1;

A(ii,ShaperLength+1+ii)=-1;

end

for ii=1:ShaperLength

A((ShaperLength+ii-1),ShaperLength+ii)=-1; %All times pos

end

elseif UMFlag == 2 % Specified Negative Amplitude

%**** Linear Equality Constraints (of form Aeq*x = Beq)

count = 0; % counter for #neg imp.

for ii=2:2:ShaperLength

count = count+1;

end

Aeq=zeros(2+count,2*ShaperLength); % define to speed comp.

for ii=1:ShaperLength

Aeq(1,ii)=1; % all impulses sum to one

end

count = 0;

for ii=2:2:ShaperLength

count = count + 1;

Aeq(1+count,ii) = -1/neg; % alternating negative amps

end

Aeq(2+count,ShaperLength+1)=1; % first impulse at t=0

Beq=[1;ones(count,1);0];

%**** Linear Inequality Constraints (of form A*x <= B)

% define matrices to speed comp.

A=zeros(2*ShaperLength-1,2*ShaperLength);

B=[zeros(2*ShaperLength-1,1);neg*ones(ShaperLength,1);...

ones(ShaperLength,1);zeros(ShaperLength,1);ones(ShaperLength,1)];

% loop is constraints that t(i+1) > t(i)

for ii=1:ShaperLength-1

A(ii,ShaperLength+ii)=1;

A(ii,ShaperLength+1+ii)=-1;

end

for ii=1:ShaperLength

% All times are pos

A((ShaperLength+ii-1),ShaperLength+ii)=-1;

A(2*ShaperLength+ii-1,ii) = -1;

A(3*ShaperLength+ii-1,ii) = 1;

% running total >= 0

A(4*ShaperLength+ii-1,1:ii) = -1;

A(5*ShaperLength+ii-1,1:ii) = 1;

end

else

error(’SI2mode:UMFlagCheck’,...

’\nPlease enter a correct ShaperFlag value: \n ShaperFlag = 0...

-> Only positive impulses \n ShaperFlag = 1 ->...

Unity Magnitude shaper \n ShaperFlag = 2 -> Specified Negative Amplitude’)

end % End formation of linear constraints

%******* Set optimization options ****************

options = optimset(’MaxIter’,1e4,’Display’,’off’,...

’Algorithm’,’active-set’,’MaxFunEvals’,1e4,’TolFun’,1e-4);

%***** make call to optimizer ****************************

%x=fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon) - format of call to fmincon

[x,fval,exitflag]=fmincon(@si2mode_fmincon_fun,X0,A,B,Aeq,Beq,...

[],[],@si2mode_fmincon_const,options);

116

i=2*ShaperLength;

clear tms_X0 amps_X0

amps_X0=x(1:ShaperLength);

tms_X0=x(ShaperLength+1:i);

% % Uncomment below for helpful debugging

% disp(’ ’)

% disp([’exitflag = ’,num2str(exitflag)])

% disp(’Run "help fmincon" for meaning of flag’)

% disp(’ ’)

% disp(’fmincon solution - may have closely spaced times and 0 ampl. pulses’)

% fmincon_solution = [tms_X0’ amps_X0’]

% % End debugging comments

% check for zero amplitudes or nearly-identical times

% if so, create new intial guess from current solution and re-solve

if (min(abs(amps_X0)) < 1e-3) || (min(diff(tms_X0)) < 1e-3)

disp(’ ’)

disp(’Nearly-identical times or zero-amplitude impulses found. ’)

disp(’Reducing the number of impulses and re-solving...’)

disp(’ ’)

% Generate next initial guess

% "smart" solution simplification for positive shapers

if UMFlag == 0 || UMFlag == 2

% check for impulses occuring at the same time

% if so, remove one, sum amplitudes, and resolve

for ii = length(tms_X0)-1:-1:1;

if tms_X0(ii+1)-tms_X0(ii) < 1e-3

tms_X0(ii) = [];

amps_X0(ii+1) = amps_X0(ii)+amps_X0(ii+1);

amps_X0(ii) = [];

end

end

for ii = length(amps_X0):-1:1

if abs(amps_X0(ii)) < 1e-3

amps_X0(ii) = [];

tms_X0(ii) = [];

end

end

% create new initial Guess

X0=[amps_X0 tms_X0];

ShaperLength = length(X0)/2;

else % "smart" simplification for negative shapers

for ii = length(tms_X0)-1:-1:1;

if tms_X0(ii+1)-tms_X0(ii) < 1e-3

tms_X0(ii:ii+1) = [];

amps_X0(ii:ii+1) = [];

end

end

X0=[amps_X0 tms_X0];

ShaperLength = length(X0)/2;

end

else

% there are no zero amp impulses or repeated times

% use current solution

seek_solution = 0; % breaks while loop

end

end % end seek_solution while loop

%**** Check for convergence and assign shaper

117

if exitflag < 0

disp(’ERROR: optimization did not converge’)

exactshaper = [];

shaper = [];

else

i=2*ShaperLength;

amps=x(1:ShaperLength);

times=x(ShaperLength+1:i);

times(1) = 0;

% assign exact shaper

exactshaper = [times’ amps’];

% digitize sequence according to deltaT

%shaper = digseq(exactshaper,deltaT);

end

%%%%%%% Cost Function for Optimization %%%%%%%%%%%%%

function [f,g]=si2mode_fmincon_fun(x)

i=2*ShaperLength; % length of x

f=x(i); % function to be minimized (time of tn)

end % end cost function

%%%%%%% Nonlinear Constrain Function for Optimization %%%%%%

function [c,ceq]=si2mode_fmincon_const(x)

i=2*ShaperLength; % length of x

StepMax=50; % # of points at which vibration is limited

% Define matrices to speed computation (see MATLAB doc for reason)

w1 = zeros(1,StepMax); % Frequencies to test around FIRST mode

w2 = zeros(1,StepMax); % Frequencies to test around SECOND mode

w_damp1 = zeros(1,StepMax);

w_damp2 = zeros(1,StepMax);

csum1 = zeros(1,StepMax); % cosine terms for 1st mode vib equation

csum2 = zeros(1,StepMax); % cosine terms for 2nd mode vib equation

ssum1 = zeros(1,StepMax); % sine terms for 1st mode vib equation

ssum2 = zeros(1,StepMax); % sine terms for 2nd mode vib equation

%**** No nonlinear equality constraints (of form ceq*x = 0)

ceq=[];

%**** Nonlinear inequality constraints (of form c*x <= 0)

% These constraints are the insensitivity inequalities (Vib <= Vtol)

for jj=1:StepMax

% For FIRST mode

w1(jj)=wn1*((1-Ins1/2)+Ins1/(StepMax-1)*(jj-1));

w_damp1(jj) = w1(jj)*sqrt(1-zeta1^2);

csum1=sum(x(1:i/2).*exp(zeta1*w1(jj)*x(i/2+1:i))...

.*cos(-w_damp1(jj)*x(i/2+1:i)));

ssum1=sum(x(1:i/2).*exp(zeta1*w1(jj)*x(i/2+1:i))...

.*sin(-w_damp1(jj)*x(i/2+1:i)));

% For SECOND Mode

w2(jj)=wn2*((1-Ins2/2)+Ins2/(StepMax-1)*(jj-1));

w_damp2(jj) = w2(jj)*sqrt(1-zeta2^2);

csum2=sum(x(1:i/2).*exp(zeta2*w2(jj)*x(i/2+1:i))...

.*cos(-w_damp2(jj)*x(i/2+1:i)));

ssum2=sum(x(1:i/2).*exp(zeta2*w2(jj)*x(i/2+1:i))...

.*sin(-w_damp2(jj)*x(i/2+1:i)));

% if nth impulse is 0, use n-1th impulse of damping envelope

if abs(x(i/2)) < 1e-4

g(jj,:)=exp(-2*zeta1*w1(jj)*x(i-1))*(csum1^2+ssum1^2)-Vtol1^2;

g(StepMax+jj,:)=exp(-2*zeta2*w2(jj)*x(i-1))*(csum2^2+ssum2^2)-Vtol2^2;

118

else

g(jj,:)=exp(-2*zeta1*w1(jj)*x(i))*(csum1^2+ssum1^2)-Vtol1^2;

g(StepMax+jj,:)=exp(-2*zeta2*w2(jj)*x(i))*(csum2^2+ssum2^2)-Vtol2^2;

end

end

c=g;

end % end nonlinear constraint function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end % end main function

function [shaper,exactshaper] = ei2m_und(f1,f2,Vlim1,Vlim2,deltaT)

% EI2M_UND(f1,f2,Vlim1,Vlim2,deltaT)-- Bill Singhose

% Generates an EI shaper 2 UNDAMPED modes.

% (The vibration at the modeling frequency is limited to Vlim

% and the insensitivity is maximized)

% The shapers for each mode are convolved together to give the

% final shaper.

% f1,f2 - frequency (Hz) of vibration being controlled.

% Vlim1,Vlim2 - vibration limits, for 5% vibration, Vlim=0.05.

% deltaT - time spacing at which input to system is updated.

% Mode 1

Wn1=2*pi*f1;

shaperdeltaT1=pi/Wn1;

T21=shaperdeltaT1;

T31= 2*shaperdeltaT1;

A11=(1+Vlim1)/4;

A21=2*(1-Vlim1)/4;

A31=(1+Vlim1)/4;

% shaper for mode1

exactshaper1=[0 A11;T21 A21;T31 A31];

% Mode 2

Wn2=2*pi*f2;

shaperdeltaT2=pi/Wn2;

T22=shaperdeltaT2;

T32= 2*shaperdeltaT2;

A12=(1+Vlim2)/4;

A22=2*(1-Vlim2)/4;

A32=(1+Vlim2)/4;

% shaper for mode2

exactshaper2=[0 A12;T22 A22;T32 A32];

% Convolve the two shapers together

exactshaper=seqconv(exactshaper1,exactshaper2);

shaper = [];%digseq(exactshaper,deltaT);

function [shaper,exactshaper,minBB] = negumei(f,z,V,deltaT)

% [shaper,exactshaper,minBB] = NEGUMEI(f,zeta,V,deltaT)-- Bill Singhose

% Generates a negative Bang-Bang EI shaper for 1 mode

% that when used with a bang-bang unshaped command

% will NOT cause over-currenting if the pulses in the

% bang-bang are longer than the shaper length.

%

% Returns the digital sequence by default, and

% the exact sequence as the second variable.

% The minimum duration for the unshaped bang-bang command to

% avoid over-currenting is also returned(minBB=2*shaper length)

%

% f - undamped frequency (Hz) =Wn/2*pi.

% z - damping ratio

119

% deltaT - sampling period

%

% This function generates the exact sequence and then uses

% DigitizeSeq to convert the exact sequence to digital format.

%

% This function produces good answers over the range 0<z<0.4.

% Only V=0.05 and V=0.0125 are available at this time.

amps=[1;-1;1;-1;1];

T=1/f;

if z>0.4,

fprintf(’WARNING: Damping Ratio is probably too large.\n’);

end

if V==0.05,

t(1)=0;

t(2)=(0.09374+0.31903*z+0.13582*z^2+0.65274*z^3)*T;

t(3)=(0.36798-0.05894*z+0.13641*z^2+0.63266*z^3)*T;

t(4)=(0.64256+0.28595*z+0.26334*z^2+0.24999*z^3)*T;

t(5)=(0.73664+0.00162*z+0.52749*z^2+0.19208*z^3)*T;

elseif V==0.0125,

t(1)=0;

t(2)=(0.09051+0.29315*z+0.20436*z^2+0.29053*z^3)*T;

t(3)=(0.36658-0.081044*z+0.21524*z^2+0.27994*z^3)*T;

t(4)=(0.64274+0.28822*z+0.25424*z^2+0.34977*z^3)*T;

t(5)=(0.73339+0.006322*z+0.51595*z^2+0.29764*z^3)*T;

else

fprintf(’Only V=0.05 or V=0.0125 can be used at this time.\n’);

end

exactshaper=[t’ amps];

shaper = [];%digseq(exactshaper,deltaT);

minBB=2*length(shaper)*deltaT;

120

REFERENCES

[1] Alag, G. S., Kempel, R. W., Pahle, J. W., Bresina, J. J., and Bartoli, F.,
“Model-following control for an oblique-wing aircraft,” Technical Memorandum 88269,
NASA Ames Research Center, August 1986.

[2] Banerjee, A. K., “Dynamics and control of the WISP shuttle-antennae system,” J.
Astronaut. Sci., vol. 41, no. 1, pp. 73–90, 1993.

[3] Bisgaard, M., Bendtsen, J. D., and Cour-Harbo, A. l., “Modeling of generic
slung load system,” AIAA J. of Guid. Control Dyn., vol. 32, no. 2, 2009.

[4] Bisgaard, M., Cour-Harbo, A. l., and Bendtsen, J. D., “Full state estimation for
helicopter slung load system,” in AIAA Guidance, Navigation, and Control Conference,
vol. 4, (Hilton Head, SC), pp. 4036–4050, 2007.

[5] Bisgaard, M., Cour-Harbo, A. l., Johnson, E. N., and Bendtsen, J. D., “Vi-
sion aided state estimator for helicopter slung load system,” in 17th IFAC Symposium
on Automatic Control in Aerospace, (Toulouse, France), 2007.

[6] Bisgaard, M., la Cour-Harbo, A., and Dimon Bendtsen, J., “Adaptive control
system for autonomous helicopter slung load operations,” Control Engineering Practice,
vol. 18, no. 7, pp. 800–811, 2010.

[7] Blackburn, D., Singhose, W., Kitchen, J., Patrangenaru, V., Lawrence, J.,
Kamoi, T., and Taura, A., “Command shaping for nonlinear crane dynamics,” J.
Vib. Control, vol. 16, pp. 477–501, Apr. 2010.

[8] Brown, E., “The Flying Crane,” in The Helicopter in Civil Operations, ch. 6, pp. 56–
70, New York: Van Nostrand Reinhold Co., 1981.

[9] Cooper, G. E. and Harper Jr., R. P., “The use of pilot rating in the evaluation of
aircraft handling qualities,” AGARD Report 567, North Atlantic Treaty Organization
Advisory Group for Aerospace Research and Development, April 1969.

[10] Drapeau, V. and Wang, D., “Verification of a closed-loop shaped-input controller
for a five-bar-linkage manipulator,” in IEEE Int. Conf. Rob. Autom., (Atlanta, GA),
pp. 216–221, May 1993.

[11] Dukes, T. A., “Maneuvering heavy sling loads near hover part I: Damping the pen-
dulous motion,” J. American Helicopter Soc., vol. 18, no. 2, pp. 2–11, 1973.

[12] Dukes, T. A., “Maneuvering heavy sling loads near hover part II: Some elementary
maneuvers,” J. American Helicopter Soc., vol. 18, no. 3, pp. 17–22, 1973.

[13] Fantoni, I. and Lozano, R., Non-linear Control for Underactuated Mechanical Sys-
tems. Springer Verlag, 2001.

121

[14] Grosser, K. and Singhose, W., “Command generation for reducing perceived lag
in flexible telerobotic arms,” JSME Int J., Ser. C, vol. 43, no. 3, pp. 755–761, 2000.

[15] Gupta, N. K. and Bryson Jr., A. E., “Near-hover control of a helicopter with a
hanging load,” J. Aircraft, vol. 13, pp. 217–222, March 1976.

[16] Hall Jr., W. E. and Bryson Jr., A. E., “Inclusion of rotor dynamics in controller
design for helicopters,” J. Aircraft, vol. 10, pp. 200–206, April 1973.

[17] Hamel, P. G. and Kaletka, J., “Advances in rotorcraft system identification,”
Progress in Aerospace Sciences, vol. 33, pp. 259–284, March-April 1997.

[18] Hoh, R. H., Heffley, R. K., and Mitchell, D. G., “Development of handling
qualities criteria for rotorcraft with externally slung loads,” U.S. Army RDECOM No.
AFDD/TR-06-003, NASA Ames Research Center, 2006.

[19] Hohenemser, K., “Dynamic stability of a helicopter with hinged rotor blades,” Tech-
nical Memorandum 907, NACA, 1939.

[20] Hong, S. W. and Curtiss Jr, H. C., “An analytic modeling and system identification
study of rotor/fuselage dynamics at hover,” Mathematical and Computer Modelling,
vol. 19, pp. 47–67, February 1994.

[21] Horn, J. F. and Bridges, D. O., “A model following controller optimized for gust
rejection during shipboard operations,” in American Helicopter Society 63rd Annual
Forum, (Virginia Beach, VA), American Helicopter Society, May 2007.

[22] Hyde, J. and Seering, W., “Using input command pre-shaping to suppress multiple
mode vibration,” in IEEE Int. Conf. Rob. Autom., vol. 3, (Sacramento, CA), pp. 2604–
2609, Apr. 1991.

[23] Johnson, W., Helicopter Theory. New York: Dover, 1994.

[24] Jones, S. and Ulsoy, A. G., “An approach to control input shaping with application
to coordinate measuring machines,” J. Dyn. Syst. Meas. Control, vol. 121, pp. 242–247,
Jun. 1999.

[25] Khalid, A., Huey, J., Singhose, W., Lawrence, J., and Frakes, D., “Human
operator performance testing using an input-shaped bridge crane,” J. Dyn. Syst. Meas.
Control, vol. 128, pp. 835–841, Dec. 2006.

[26] Kim, D. and Singhose, W., “Performance studies of human operators driving double-
pendulum bridge cranes,” Control Eng. Pract., vol. 18, pp. 567–576, Jun. 2010.

[27] Landis, K. H., Davis, J. M., Dabundo, C., and Keller, J. F., “Advanced flight
control research and development at Boeing Helicopters,” in Advances in Aircraft Flight
Control (Tischler, M. B., ed.), ch. 4, pp. 103–141, Bristol, PA: Taylor & Francis,
1996.

[28] Lucassen, L. R. and Sterk, F. J., “Dynamic stability analysis of a hovering heli-
copter with a sling load,” J. American Helicopter Soc., vol. 10, no. 2, pp. 6–12, 1965.

122

[29] Magee, D. P. and Book, W. J., “Filtering micro-manipulator wrist commands to
prevent flexible base motion,” in American Control Conf., (Seattle, WA), pp. 924–928,
Jun. 1995.

[30] Manning, R., Clement, J., Kim, D., and Singhose, W., “Dynamics and control
of bridge cranes transporting distributed-mass payloads,” J. Dyn. Syst. Meas. Control,
vol. 132, p. 014505, Jan. 2010.

[31] Morikawa, C. and Murakami, T., “Vibration suppression control for a hanging
load of autonomous helicopter using simplified transfer function,” in Asia International
Symposium on Mechatronics, (Hokkaido University, Japan), Aug. 2008.

[32] Morrow, L. D. and Balasubramanian, R., “Real model following control,” J.
Aircraft, vol. 12, no. 12, pp. 996–998, 1975.

[33] Murphy, B. R. and Watanabe, I., “Digital shaping filters for reducing machine
vibration,” in Robotics and Automation, IEEE Transactions on, vol. 8, pp. 285–289,
1992.

[34] Murphy, R. D. and Narendra, K. S., “Design of helicopter stabilization systems
using optimal control theory.,” J. Aircraft, vol. 6, no. 2, pp. 129–136, 1969.

[35] Ottander, J. A. and Johnson, E. N., “Precision slung cargo delivery onto a mov-
ing platform,” in AIAA Modeling and Simulation Technologies Conference, (Toronto,
Canada), 2-5 August 2010.

[36] Padfield, G. D., Helicopter Flight Dynamics: The Theory and Application of Fly-
ing Qualities and Simulation Modeling. AIAA Educational Series, Washington, DC:
American Institute of Aeronautics and Astronautics, Inc., 1996.

[37] Potter, J., Singhose, W., and Costello, M., “Reducing swing of model helicopter
sling load using input shaping,” in 9th IEEE International Conference on Control and
Automation, (Santiago, Chile), pp. 348–353, 19-21 Dec. 2011.

[38] Prouty, R. W., Helicopter Performance, Stability, and Control. Malabar, FL: Krieger
Publishing Company, Inc., 1990.

[39] Singer, N. C. and Seering, W. P., “Preshaping command inputs to reduce system
vibration,” J. Dyn. Syst. Meas. Control, vol. 112, pp. 76–82, Mar. 1990.

[40] Singh, T. and Heppler, G. R., “Shaped input control of a system with multiple
modes,” J. Dyn. Syst. Meas. Control, vol. 115, pp. 341–347, Sep. 1993.

[41] Singh, T. and Vadali, S. R., “Robust time-delay control,” J. Dyn. Syst. Meas.
Control, vol. 115, pp. 303–306, Jun. 1993.

[42] Singhose, W., Kim, D., and Kenison, M., “Input shaping control of double-
pendulum bridge crane oscillations,” J. Dyn. Syst. Meas. Control, vol. 130, p. 034504,
May 2008.

[43] Singhose, W. and Seering., W., Command Generation for Dynamic Systems. Lulu,
2009.

123

[44] Singhose, W., Seering, W., and Singer, N., “Residual vibration reduction using
vector diagrams to generate shaped inputs,” J. Mech. Des., vol. 116, pp. 654–659, Jun.
1994.

[45] Singhose, W., Bohlke, K., and Seering, W., “Fuel-efficient pulse command pro-
files for flexible spacecraft,” AIAA J. of Guid. Control Dyn., vol. 19, no. 4, pp. 954–960,
1996.

[46] Singhose, W., Crain, E., and Seering, W., “Convolved and simultaneous two-
mode input shapers,” IEE Control Theory Appl., vol. 144, pp. 515–520, Nov. 1997.

[47] Singhose, W., Seering, W., and Singer, N., “Input shaping for vibration reduction
with specified insensitivity to modeling errors,” in Japan-USA Sym. Flexible Autom.,
vol. 1, (Boston, MA), pp. 307–313, 1996.

[48] Singhose, W., Singer, N., and Seering, W., “Improving repeatability of coordinate
measuring machines with shaped command signals,” Precis. Eng., vol. 18, pp. 138–146,
Apr. 1996.

[49] Smith, J. H., Allen, G. M., and Vensel, D., “Design, fabrication, and flight test
of the active arm external load stabilization system for cargo handling helicopters,”
tech. rep., Boeing Vertol Co., September 1973.

[50] Smith, O. J. M., Feedback Control Systems. New York, NY: McGraw-Hill Book Co.,
Inc., 1958.

[51] Sorensen, K. L., Singhose, W., and Dickerson, S., “A controller enabling precise
positioning and sway reduction in bridge and gantry cranes,” Control Eng. Pract.,
vol. 15, pp. 825–837, Jul. 2007.

[52] Stevens, B. L. and Lewis, F. L., “Modern design techniques,” in Aircraft Control
and Simulation, ch. 5, pp. 421–437, Hoboken, NJ: John Wiley & Sons, Inc., 1992.

[53] Szustak, L. S. and Jenney, D. S., “Control of large crane helicopters,” J. American
Helicopter Soc., vol. 16, pp. 11–22, July 1971.

[54] Tischler, M. B., “System identification requirements for high-bandwidth rotor-
craft flight control system design,” in American Control Conference, (Boston, MA),
pp. 2494–2502, June 1991.

[55] Trentini, M. and Pieper, J. K., “Model-following control of a helicopter in hover,”
in IEEE International Conference on Control Applications, (Dearborn, MI), pp. 7–12,
15–18, September 1996.

[56] Tuttle, T. and Seering, W., “Experimental verification of vibration reduction in
flexible spacecraft using input shaping,” AIAA J. of Guid. Control Dyn., vol. 20,
pp. 658–664, Jul. 1997.

[57] Tyler Jr., J., “The characteristics of model-following systems as synthesized by
optimal control,” IEEE Transactions on Automatic Control, vol. 9, no. 4, pp. 485–498,
1964.

124

[58] UK Civil Aviation Authority Safety Regulation Group, Helicopter External
Load Operations. The Stationery Office, April 2006. CAP 426.

[59] United States Army Aviation and Missile Command, Aeronautical Design Stan-
dard 33E: Handling Qualities Requirements for Military Rotorcraft. Aviation Engineer-
ing Directorate, Redstone Arsenal, Alabama, 21 March 2000. ADS-33E-PRF.

[60] Vaughan, J., Yano, A., and Singhose, W., “Comparison of robust input shapers,”
J. Sound Vib., vol. 315, pp. 797–815, Sep. 2008.

[61] Vaughan, J., Yano, A., and Singhose, W., “Robust negative input shapers for
vibration suppression,” J. Dyn. Syst. Meas. Control, vol. 131, p. 031014, May 2009.

[62] Vicon Motion Systems, Vicon MX Hardware System Reference. Oxford, UK, 2007.
Revision 1.6.

[63] Vicon Motion Systems, “Vicon | Products | Cameras |MX-3+.” [Online]. Available:
http://www.vicon.com/products/mx3.html, Date Accessed: 15 March 2012.

[64] Vicon Motion Systems, “Vicon | Products | Hardware | MX Ultranet HD.” [On-
line]. Available: http://www.vicon.com/products/ultranethd.html, Date Accessed: 15
March 2012.

[65] Wie, B., Sinha, R., Sunkel, J., and Cox, K., “Robust fuel- and time-optimal
control of uncertain flexible space structures,” in AIAA Guid. Navig. Control Conf.,
(Monterey, CA), pp. 939–948, Aug. 1993.

[66] Winsor, C. and Roy, R., “The application of specific optimal control to the design
of desensitized model following control systems,” IEEE Transactions on Automatic
Control, vol. 15, no. 3, pp. 326–333, 1970.

125

