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SUMMARY

There is a need for smaller and more economic transportation systems. Per-

sonal transporters have made their way as consumer products to address this need.

They can be found in two, three or 4-wheeled con�guration. The two-wheeled con-

�guration is a two-wheeled inverted pendulum system. One example of a commercial

two-wheeled transporter is the Segway Human Transporter. However, the Segway

places the operator on top of a naturally unstable platform that is stabilized by

means of a control system. The control stability of the Segway can be severely af-

fected when minor disturbances are presented. In this thesis, a dynamic model of a

Segway is developed and used in simulations of non ideal conditions that can arise

during normal use.

A dynamic model of a two-wheeled inverted pendulum and human rider was de-

veloped using a simple cart-pendulum system with the human rider modeled as a

rigid body. Initial estimates of the parameters were calculated or obtained from ref-

erences. Numerous experiments were performed better understand the dynamics of

the vehicle. Di�erent operator roles were studied. In some experiments, the operator

tried to resist the movement of the vehicle, while in others he passively stood in it.

The dynamic responses in both cases di�ered signi�cantly and provided insights into

the interaction between the person and the machine. Turning experiments were done

to gather data used to characterize the yaw-rate controller of the vehicle. The data

collected was then used to adjust the model parameters to match the dynamics of a

real Segway Human Transporter.

xvi



The model was used to simulate di�erent failure conditions. The simulations pro-

vide an understanding of how these conditions arise, and help identify which param-

eters play an important role in their outcome. The pitch angle, for example, a�ected

the stability when traction was lost from one or both wheels. It also played a role in

how well the vehicle climbed an inclined surface. Likewise, the speed was in�uential

in the roll direction stability when making turns. The results in this thesis provide

valuable information about the dynamic response of two-wheeled inverted-pendulum

human transporters. The methods described in this thesis lay the groundwork for

many possible future studies that may thoroughly investigate numerous di�erent as-

pects of dynamics and failure modes of two-wheeled inverted-pendulum human trans-

porters.
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CHAPTER I

INTRODUCTION

There is clearly a need for personal human transporters that use less energy and take

up less space than cars. Motorcycles are an obvious example of such transporters,

but they cannot be used on sidewalks or indoors. Bicycles are another example that

can be used in a wider range of locations, but they are human powered and have

not gained much acceptance for indoor use - except in large factories. In an attempt

to address one of the market-segment needs in personal human transportation, the

Segway was developed. Unfortunately, the Segway is expensive and has some design

defects that have resulted in its poor performance in the marketplace. The primary

design defect of the Segway is that it places the operator on top of a naturally unstable

mobile platform. It then attempts to both stabilize the platform and move it in a

controlled manner in response to operator commands.

Given the complex dynamic behavior of inverted-pendulum human transporters,

there is a need to understand their dynamic properties and their failure modes. This

thesis seeks to model inverted-pendulum human transporters so that these important

issues can be studied and methods for reducing the dangers of such machines can be

reduced.

1.1 Inverted pendulums

The Segway is a dynamic system that is commonly referred to as an inverted pen-

dulum. The Segway and rider form a more complicated inverted pendulum that has

uncertain time-varying dynamics. Non-inverted pendulums, like crane payloads and

the oscillating arm inside a grandfather clock, swing back and forth in a stable man-

ner with limited amplitude. These types of dynamic systems occur throughout the
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world in useful products. On the other hand, inverted pendulums do not naturally

swing back and forth with a well-controlled oscillation. Rather, they fall over.

The simplest form of an inverted pendulum consists of a mass attached through

a massless rod to a base mass. This is commonly known as a cart-pendulum system.

This system is shown in Figure 1.1. The cart is free to move horizontally. The rod

is connected to the cart through a rotational pin joint. This system is in unstable

equilibrium when the rod is standing upright. Mathematically, this equilibrium can be

maintained as long as there are no input forces whatsoever on the system. However,

such conditions do not exist in real systems and some means of stabilization is needed

to maintain the pendulum in the upright position. A force F must be applied to the

cart in order to move the cart pivot back and forth from one side of the pendulum

mass center to the other side. The pendulum is always falling over, but the cart

motion tries to keep the leaning angle, θ, at a small level.

Given their unstable dynamics, inverted pendulums rarely occur in useful prod-

ucts. However, their dynamics and control have been well studied by engineers. The

timeline in Figure 1.2 shows the progression of research on the dynamics and control

of inverted pendulums marked by some noted events. The earliest paper listed in the

database of this report is from 1908, but it is likely that even older documented work

could be located.

In 1908, Stephenson [51] examined an inverted pendulum and demonstrated that

it could be stabilized by applying rapid, vertical, harmonic oscillations to its base.

In 1909 [52], he developed stability conditions for double and triple inverted pendu-

lums. In 1932, Lowenstern [30] developed general equations of motion for inverted

pendulums. His stability conditions aligned well with those of Stephenson.

By the 1960's, the dynamics of inverted pendulums were well understood. Many

of the papers in this decade developed analytic and approximate solutions to how

an inverted pendulum would respond to various inputs. The studied inputs were

2



Figure 1.1: Cart-pendulum systems.
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Algorithm

Figure 1.2: Timeline of the Inverted Pendulum Literature

generally sinusoidal, random, or impulsive. Ranges of stability were reported as a

function of the input amplitude and frequency content. In particular, it was shown

by several researchers that high-frequency driving inputs in both the vertical and

horizontal directions could stabilize the pendulum. Numerous experimental studies

were conducted to verify the stability properties [4, 40, 5, 36].

Papers in the 1980's presented controllers that could stabilize inverted pendulums

for a much wider range of inputs such as parabolic and sawtooth waves [41]. Sahba [44]

used an optimization algorithm to design a servocontroller instead of the more usual
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approach of designing a controller for the linearized system. Later, Yamakawa used

a specialized fuzzy controller with very high processing power for the same purpose

[62]. Miles [31] found the frequencies at which a harmonic excitation can stabilize an

inverted pendulum for the near vertical position. Anderson [3] managed to balance

an inverted pendulum for a limited period of time by means of a single and double

layer neural network. Rozenblat [42] found the optimal parametric vertical excitation

required to stabilize the system.

To this day the cart-pendulum system serves as a benchmark problem for testing

di�erent control theories and visual educational demonstrations.

1.2 Two-wheeled inverted pendulum

To form a two-wheeled inverted pendulum (TWIP), the pendulum is anchored to a

base platform that has a wheel mounted on each side, as shown in Figure 1.3. In this

case, a motor drives each wheel independently. The torque from the motors makes

the base move to balance pitch angle of the pendulum. It can move along curved

paths by driving the motors at di�erent speeds.

The two-wheeled inverted pendulum been proposed as a portable transporter due

to its high maneuverability and small footprint [27, 9]. It has been suggested as a

suitable unit for home and o�ce environments [23]. Controlling such a system is

a challenging problem due to its nonlinearities, complex dynamics, and uncertain

environmental conditions [21]. The modeling of the system is also complex because

of the rolling/slipping constraints of the wheels. In spite of its dynamic complexity,

numerous two-wheeled inverted pendulums have been created by research institutions

and companies [24] .

One of the �rst reported implementations of a two-wheeled inverted pendulum

was done by Kanamura in 1988 [61]. By 1996, Ha [14] developed an autonomous

two-wheeled inverse pendulum type robot, called the �Yamabico Kurara�. This robot
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Figure 1.3: Two-wheeled inverted pendulum.

was driven by two independent driving wheels on the same axle and had a gyro type

sensor to measure the inclination angular velocity of the robot's body. The same

year, Shiroma [50] designed similar robots that coordinated with each other to carry

a load cooperatively. In 2003, Bui [7] developed a welding mobile robot consisting

of a welding torch mounted on a two-wheeled inverted pendulum that was able to

follow a speci�ed welding trajectory. In 2005, another robot [24] was introduced as a

service unit for reporting �re and intruders in indoor settings. Similar robots such as

the uBot series [26] and the Segway Robotic Mobility Platform (Segway RMP) series

[49] continue to be used as mobile research platforms for diverse studies within the

�eld of robotics.

In 2000, Ding [11] designed a TWIP platform intended to act as a personal trans-

porter with an adjustable seat to keep the rider posture permanently vertical. In

5



2002, Grasser, et al. [13] described the development of a two-wheel vehicle named

�JOE�. The two-wheeled human transporter was able to stabilize the system using

two decoupled DC motors driving the wheels. For safety reasons, they decided to

substitute a constant weight for the driver. In 2004, Sasaki and Matsumoto [11] de-

signed a similar vehicle but without a steering control stick. Instead, the steering

was commanded by the user leaning towards one side. In 2007, Li [27] proposed a

dual function vehicle that would serve both as a personal transporter and a goods

transporter. In 2009, a similar robot was proposed as a baggage transporter that

could follow prede�ned paths [55].

In 2007, Morrell and Field [32] published a paper on the design of the control algo-

rithm used to control the Segway. In the �rst line of Morrell's paper, he described the

two-wheeled, balancing transporter as �a novel� device. However, the authors failed

to acknowledge the previous works published in the control of inverted pendulums

including the highly-related papers on two-wheeled transporters like the Yamabico

Kurara [14] and JOE [13]. In 2009, an experimental electric TWIP vehicle called

PUMA was unveiled by GM and Segway [48].

In recent years TWIP mobile platforms have been proposed as alternatives to

biped humanoid robots because of their better mobility and simpler dynamics [54].

In 2006, Kaiko [18] made an assessment of the e�ect of controller gains on how

people perceive a TWIP humanoid robot. People were asked to judge the reaction

of the robot after pushing it based on four psychological categories. Studies have

also been performed on robots that coordinate their two-wheeled inverted pendulum

dynamics with manipulation actions like pushing, pulling, sitting, and kicking a ball

[54, 53, 25, 10].

Several approaches have been used to stabilize two-wheeled inverted pendulums.

In the year 2000, Ding used a sliding mode control scheme to deal with paramet-

ric and functional uncertainties [11]. Pathak used partial feedback linearization to

6



design a two level position-velocity control in 2005 [38]. In 2006, Kim designed a

linear quadratic regulator state feedback controller from the linearized state space

equations in order to follow a reference velocity and position pro�le [23]. In the same

year, Nasrrallah showed that a similar system could be globally stabilized without

resorting to linearization techniques by choosing appropriate input and output vari-

ables [33]. Nawawi used Kim's model to develop a two-wheeled inverted pendulum

robot balanced by a pole-placement controller [34]. In 2007, Jeong and Takahashi

implemented a LQR state feedback control for their mobile humanoid experimental

robot [16]. Meanwhile, Li implemented PID control in an experimental vehicle with

two reference inputs corresponding to a human transport mode and a goods trans-

port mode [27]. In 2008, Hop�eld-type neural networks were used to balance a TWIP

robot with a �exible link imitating a human lumbar spine [43]. Jung combined a neu-

ral network with a PID control to perform balancing and path following tasks [17]. In

2009, Li and Xu implemented an adaptive fuzzy controller [28], while Vlassis applied

a Monte Carlo expectation-maximization algorithm to achieve balance by model free

reinforcement learning [59]. In 2011, a fuzzy logic controller was designed by Huang

to achieve stabilization and velocity control [15].

The unmodeled dynamics have motivated researchers to explore model-free control

techniques such as neural networks and fuzzy logic implementations like the studies

mentioned above. However, other studies have tried to understand these dynamics

and design control techniques that consider them. Several studies have considered the

dynamics involved when there are surface irregularities. For instance, Kim analyzed

the e�ects of driving a TWIP up inclined surfaces on the torques required from the

motors [23]. He noted that the turning motion had little e�ect on the tilting and

forward motion. In 2007, Gao and Huang tested a mobile base using PID control

by driving it on inclined surfaces and testing its capacity to surpass road obstacles
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[27]. In 2010, Li modeled the friction between the wheels and the driving surface as

uncertainties and tested an adaptive fuzzy control on this model [29].

Other studies considered changing the relative position of the global center of mass

for their balance control. Humanoid Robot I-PENTAR [16] calculates the location

of its center of mass and uses it to adapt the balancing controller. Another baggage

transportation robot [55] adjusts its reference angle as a response to a variable load.

A few other studies have tried to incorporate external disturbance forces into

their controller design. Shiroma [50] used two mobile inverted pendulum robots to

cooperatively carry a load, and included a disturbance observer on their controller to

improve their performance by making both robots exert the same force on the load.

Sasaki [45] modeled the interaction between a TWIP vehicle with its rider as a torque

exerted from the ankle of the rider to the vehicle. He included this model into the

dynamics of the system which were later used to design the controller [56]. He then

added a disturbance observer to estimate the handling force by the human and the

slope of the ground. Choi used a reduced order disturbance observer to estimate the

forces exerted by a human on a handlebar and to prevent the system from becoming

unstable [9].

Even though many applications of the two-wheeled inverted pendulum system are

meant to work in human environments, very little has been done to improve their

safety. Kim [22] compared the performance of a PID controller with the performance

of a linear quadratic regulator in preserving tilt stability at high speeds. Matsumoto

[56] used a disturbance observer to account for the forces that a rider applies on a

personal transporter when getting on and o� the vehicle on both �at and inclined

surfaces. Choi [9] applied the same approach to reject human forces on a mobile robot

base that could otherwise become unstable and potentially cause harm or injury. In

regard to the Segway Human Transporter, one study found that 42 injuries related

to Segways were reported over a period of 44 months at one hospital, with several

8



degrees of severity, including 4 traumatic brain injuries [6]. Given these facts, it is

important to study in more detail the circumstances under which these types of de-

vices can fail.

1.3 Segway Human Transporter

The Segway personal transporter, shown in Figure 1.4, is a device that transports

one person at relatively low speeds. The low-speed (limited to approximately 12

mph) operation combined with its electric propulsion system makes the Segway a

candidate for providing short-distance transportation on city streets, sidewalks, and

inside buildings. When a Segway is in use, the device is driven by two wheels that

are placed side-by-side, rather than the standard in-line con�guration of a bicycle

or a motorcycle. When the operator leans forward, the wheels turn in unison in

the same direction to provide forward motion. In order to stop, the wheels must

accelerate forward to get out in front of the system's center of mass and then apply

a deceleration torque to slow the system down without causing the operator to fall

forward o� the device. These operating principles are reversed to allow the system

to move backward.

In order to turn, the wheels rotate at unequal speeds causing the system to travel

in an arc. If the system is not translating forward or backward, then the wheels can

rotate in opposite directions to turn the machine in place.

Given the side-by-side wheel con�guration, and the elevated center of mass, the

mechanical design of the transporter is unstable. It will fall over if the computerized

control system is not continuously turning the wheels. This constant adjusting of

the device is similar to a person balancing an inverted broom in their hand. In

order to keep the broom upright, the person must continually move their hand in

the direction that the broom is falling. The hand must pass to the other side of
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Figure 1.4: Segway Personal Transporter.

the broom's center of mass to generate a torque that will cause the broom to start

rotating in the opposite direction. As a result, the broom is always falling, but the

hand motion keeps changing the direction of the fall.

Just like the inverted broom, the Segway and rider are always falling. However,

it is not possible for the human operator to balance the device, as they can with

a human-powered inverted pendulum such as a unicycle. The sensors in the device

must constantly be measuring the state of the machine and feeding this information

to the computer controller. The controller then uses this feedback signal to adjust

the wheel speed so that the forward/backward (pitch) falling motion is maintained

within an acceptable envelope so that device and rider do not fall over. Note that

under many operating conditions, the system is mechanically stable in the side-to-side

(roll) direction. Therefore, the computer does not attempt to control the roll motion.

Assuming wheel-ground rolling stiction, the system is also stable in the yaw direction.

However, the computer must change the yaw rate in order to turn the machine in
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response to the operator input. It also limits the turning rate to a maximum value

[32].

There are several di�erent Segway models. The one shown in Figure 1.4 is the

i167 model. In this model, the driver can turn by twisting a grip located on the left

of the handlebar. This twisting-grip control was replaced by a leaning bar in later

models, like the Segway i2. With this interface, the user has to tilt the handlebar

towards the side he desires to turn. This function is shown in Figure 1.5.

Figure 1.5: Segway i2 LeanSteer technology [47].

Another version of the Segway, the x2, is intended for o�-road use. It has wider

tires and higher ground clearance, as shown in Figure 1.6.

Figure 1.6: Segway x2 [47].
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Both the x2 and i2 models have variations that include cargo capacity. These

are called the Segway i2 Commuter and the Segway x2 Adventure and are shown in

Figure 1.7.

Figure 1.7: Segway i2 Commuter and Segway x2 Adventure [47].

The Segway has also been compared against other mobility methods for people

with disabilities, and it is being used by the Canadian and United States Postal

Services, Chicago Police, Boston Emergency Medical Services, and local university

and airport security forces, among others [46].

1.4 Thesis Contributions

This thesis makes contribution to expand the understanding of the dynamics of tow-

wheeled inverted pendulum and their interaction with their environments. The main

contributions are:

1. A dynamic model of a two-wheeled inverted pendulum.

2. Experimental determination of the model parameters of a Segway human trans-

porter.

3. Dynamic models of several failure conditions.
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1.5 Thesis Outline

Chapter II starts by describing the dynamics of a cart-pendulum system. Then, it

describes the model of a two-wheeled inverted pendulum and derives its dynamic

equations. It then lists the parameters of the human body, and presents the dynamic

equations of the two-wheeled inverted pendulum carrying a human rider. Chapter III

presents the results of the experimental testing. It shows the dynamic response of two

Segway human transporters to disturbance forces and turning commands. Chapter IV

presents the process followed to match the simulation parameters with those of a real

Segway transporter. This simulation was later used on models of failure conditions

which included: inclined surfaces, loss of traction in one and two wheels, sudden

turning commands, and response to disturbance forces. Finally, Chapter V provides

concluding remarks and future work.
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CHAPTER II

DYNAMIC MODEL OF A TWO-WHEELED INVERTED

PENDULUM HUMAN TRANSPORTER

This chapter presents a model of a two-wheeled inverted-pendulum human trans-

porter. We begin by describing the well known planar inverted pendulum.

2.1 Planar inverted pendulum model

Figure 1.1 shows the cart-pendulum system. It consists of a cart with a mass M . An

inverted pendulum with a mass m, and a moment of inertia I, is attached to the cart.

The center of mass of the pendulum is located at a distance l from the base. A force

F is applied to the cart.

Figure 2.1: Cart-pendulum system.

A balance of forces and torques yields the following equations:
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(
I +mL2

)
θ̈ − gmLsinθ −mLcosθv̇ = 0 (2.1)

mLsinθθ̇2 + (M +m) v̇ − F −mLcosθθ̈ = 0 (2.2)

where θ is the angle of the pendulum with respect to its vertical position, and v is

the speed of the base with respect to the ground. These equations are combined to

yield:

θ̈ =
mL

[
cosθ

(
F −mLθ̇2sinθ

)
+ g (M +m) sinθ

]
(M +m) (I +mL2)−m2L2cos2θ

(2.3)

This system is unstable. If an impulse force is applied to the base, the angle of

the pendulum increases without bounds as shown for an example case in Figure 2.2.

Figure 2.2: Impulse response of a cart-pendulum system.

By adding a feedback controller, the system can be stabilized. If PD control is

used, the control law has the form:

F = KP θ +KDθ̇ (2.4)

where KP is the proportional gain and KD is the derivative gain of the PD controller.

The stabilized system is able to keep the pitch angle within �nite bounds around
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θ = 0°. This is shown by the impulse response in Figure 2.3. Here, the pitch angle

increases initially, but the controller applies a force on the base mass that makes it

decrease and stabilize around zero.

Figure 2.4 shows the position of the cart. Using Figure 2.1 as a reference, the

pendulum �rst rotates counter clockwise, and moves towards the left of the cart. As

a result, the controller pushes the cart towards the left in an attempt to get below

the pendulum.

In a non-inverted pendulum the characteristics of the system's response depend,

besides the controller gains, on the length and inertia of the pendulum. The re-

sponse of the cart-pendulum system will also be a�ected by the mass of the cart and

pendulum.

Figure 2.3: Response of the cart-pendulum stabilized by a PD controller.

2.2 Two-wheeled inverted-pendulum model

A model of a two-wheeled inverted pendulum human transporter (TWIPHT) is de-

veloped in this section. The model consists a handlebar-base assembly that will be

referred to as the inverted pendulum. Attached to the base of the pendulum are two

motors, that are used to drive each of the wheels. This is shown in Figure 2.5.

Figure 2.6 shows the global coordinate system `N'. θ,γ and β are the rotation

angles around the x, y and z axes, also known as pitch, roll and yaw.
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Figure 2.4: Position of the cart-pendulum.

Figure 2.5: Main components of a two-wheeled inverted pendulum transporter.
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Figure 2.6: Newtonian coordinate system.
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The relative rotation of the vehicle, β, with respect to the vertical axis of the

global reference frame, is used to de�ne an auxiliary reference frame `S'. This frame

is shown in Figure 2.7. Meanwhile, the rotation of the base around the wheel axis

with a pitching angle θp de�nes the reference frame 'P', which is shown in Figure 2.8.

Figure 2.7: Slewing Frame `B'.

θL and θL are the rotation angles of the left and right wheels, respectively, around

the y axis of the `S' frame. These are shown in Figure 2.9.

Figure 2.10 shows the relevant points to consider when modeling the system.

Points `lp' and `rp' are the contact points between the base and the left and right

wheels respectively. Points `LN' and `RN' are the contact points of each wheel with

the ground. Point `mid' is the point at mid distance between the centerpoint of both

wheels. Point `im' is the point at which a disturbance force can be applied. Point

pcm is the center of mass of the base-handlebar combination. Points lcm and rcm are

the centers of mass of each wheel.
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Figure 2.8: Pitching Frame `P'.

The relevant geometric characteristics are also shown in Figure 2.10. The location

of pcm is de�ned by coordinates xwp and zwp with respect to the midpoint between

both wheels. Point `im' is located a distance xpi in front of the axis of the wheels

and a distance zpi above it. The radii of the wheels is given by rl and rr , and the

distance from point `mid' to the center of each wheel is w.

Figure 2.11 shows the masses and forces present on the system during unloaded

operation, where a test force, Fi, is a disturbance force acting on the handlebars.

Besides the variables shown in Figure 2.11, the wheel inertias Iwx,Iwy,Iwz , and the

pendulum inertias Ipx,Ipy,Ipz, are de�ned around their respective centers of mass.
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Figure 2.9: Local reference frames `L' and `R'.

2.3 Dynamic equations

This section �rst shows the kinematic equations used to de�ned the dynamic model of

a two-wheeled inverted pendulum. These relations were introduced into a commercial

multibody dynamics package to obtain the equations of motion of the system.

To develop this model, it is assumed that:

� Both wheels have same radius.

� Both wheels have the same mass.

� The wheels are not deformable.

� The wheels roll on the ground without slipping.

� The ground is a �at surface with a certain slope.

� The handlebar of the vehicle cannot be tilted sideways.
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Figure 2.10: Segway model geometry parameters.

� The wheels always make contact with the ground so the vehicle is restricted

from tilting in the roll direction.

� Unlike the real Segway, the vehicle does not attempt to slow down when the

speed limit is reached.

� The vehicle does not attempt to push the user back if the pitch angle is too

large, as it happens on commercial transporters.

� The vehicle can rotate at any desired yaw rate independently of the speed.

The velocity of the midpoint between both wheels with respect to an inertial,

Newtonian reference frame, `N', is de�ned as:

~vmid/N = vx~xn + vy~yn (2.5)
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Figure 2.11: Masses and torques present during unloaded operation.

An auxiliary frame called `S' is the frame of reference that rotates about `N' at

the same yaw angle as the vehicle. This frame of reference is used in order to simplify

the de�nition of the angular rotation of the wheels with respect to the chassis of the

vehicle. The rotational velocity of the `S' frame about `N' is:

~ωS/N = β̇~zN (2.6)

The machine tilts in the pitch direction at an angle θP . The angular velocity of

the pendulum with respect to frame `S' is given by:

~ωP/S = θ̇P~yP (2.7)

The angular velocity of the pendulum with respect to the Newtonian frame `N' is

then:

~ωP/N = ~ωP/S + ~ωS/N (2.8)
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Likewise, both wheels, which are identi�ed by the subindices `L' and `R' for left

and right, have angular speeds given by:

~ωL/S = θ̇L~yS (2.9)

~ωL/N = ~ωL/S + ~ωS/N (2.10)

~ωR/S = θ̇R~yS (2.11)

~ωR/N = ~ωR/S + ~ωS/N (2.12)

The position vectors to the relevant points of the vehicle are de�ned with respect

to the midpoint between the wheels. The locations of the center of mass of the

pendulum and of both wheels with respect to this point are:

~rPcm/mid = xWP~xP + zWP~zP (2.13)

~rRcm/mid = −w~yP (2.14)

~rLcm/mid = w~yP (2.15)

The contact point with the ground of each wheel is de�ned as:

~rrn/rcm = −r~zN (2.16)

~rln/lcm = −r~zN (2.17)

Using this information, the velocities of all the relevant points can be obtained:
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~vPcm/mid = ~ωP/N × ~rPcm/mid (2.18)

~vP/N = ~vPcm/mid + ~vmid/N (2.19)

~vLcm/mid = ~ωP/N × ~rLcm/mid (2.20)

~vLcm/N = ~vLcm/mid + ~vmid/N (2.21)

~vRcm/mid = ~ωP/N × ~rRcm/mid (2.22)

~vRcm/N = ~vRcm/mid + ~vmid/N (2.23)

In order to account for the no-slip velocity constraint on both wheels, the velocity

of the contact point of each wheel with the ground is constrained:

~vln/N = ~vLcm/N + ~ωL/N × ~rln/Lcm = 0 (2.24)

~vrn/N = ~vRcm/N + ~ωR/N × ~rrn/Rcm = 0 (2.25)

The resultant equations of motion are:

θ̈p = (mp(xwpsin(θp)−zwpcos(θp))(Fi+(Tl+Tr)/r+mp(xwpcos(θp)θ̇
2
p+zwpsin(θp)θ̇

2
p+

(xwpcos(θp) + zwpsin(θp))β̇
2)) − (mp + 2mw + 2Iwy/r

2)(Tl + Tr + Fi(xpisin(θp) −

zpicos(θp))−gmp(xwpcos(θp)+zwpsin(θp))−((Ipx−Ipy)sin(θp)cos(θp)−mp(xwpcos(θp)+

zwpsin(θp))(xwpsin(θp)−zwpcos(θp)))β̇2))/((Ipy+mp(x
2
wp+z

2
wp))(mp+2mw+2Iwy/r

2)−

m2
p(xwpsin(θp)− zwpcos(θp))

2)
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β̈ = −(w(Tl−Tr)/r+β̇(2(Ipx−Ipy)sin(θp)cos(θp)θ̇p−mp(xwpcos(θp)+zwpsin(θp))(2xwp

sin(θp)θ̇p−v−2zwpcos(θp)θ̇p)))/(Ipy+2Iwxz+2mww
2+2Iwyw

2/r2+(Ipx−Ipy)sin(θp)2+

mp(xwpcos(θp) + zwpsin(θp))
2)

v̇ = ((Ipy + mp(x
2
wp + z2wp))(Fi + (Tl + Tr)/r + mp(xwpcos(θp)θ̇

2
p + zwpsin(θp)θ̇

2
p +

(xwpcos(θp)+ zwpsin(θp))β̇
2))−mp(xwpsin(θp)− zwpcos(θp))(Tl+Tr+Fi(xpisin(θp)−

zpicos(θp))−gmp(xwpcos(θp)+zwpsin(θp))−((Ipx−Ipy)sin(θp)cos(θp)−mp(xwpcos(θp)+

zwpsin(θp))(xwpsin(θp)−zwpcos(θp)))β̇2))/((Ipy+mp(x
2
wp+z

2
wp))(mp+2mw+2Iwy/r

2)−

m2
p(xwpsin(θp)− zwpcos(θp))

2)

2.4 Human model

The model in the previous section did not account for the human operator. In this

section, a simple human model is described. The model of a human user of the

personal transporter is shown in Figure 2.12. The silhouette of the person is shown

for illustration purposes, but the model consists of a solid body with massmb, inertias

Ibx,Iby,Ibz, and a center of mass located at a distance hcg above the feet. This rigid

body has four contact points with the personal transporter, one for each hand and

foot. The distance between both hands is hw, and the distance between both feet is

fw. The height at which the hands make contact with the handle bar is hh.

Figure 2.13 shows the relevant points in the human body: its center of mass, and

the contact points between the Segway and the person. The points labeled as `b' are

the points in the human body, while the points labeled as `p' are the corresponding

points on the Segway.
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Figure 2.12: Model of the human rider.

Figure 2.13: Human points.
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Figure 2.14 shows the variables used to locate the hands with respect to the feet

of the person. These are the height of the shoulder from the ground, the lengths of

the arm and the forearm.

Figure 2.14: Dimensions relevant to hands location.

Figure 2.15 shows the forces that are assumed to be acting between the human

body and the Segway. A torque on the feet was included because it is assumed that a

person should be able to maintain balance without using his hands. This is supported

in previous studies by [60].

The human body is positioned on the Segway as seen in Figure 2.16. Taking the

midpoint between the centers of the wheels as the reference, the center of mass is

located on the pendulum frame by the vector:

~rBcm/mid = xwb~xP + zwb~zP (2.26)

Note that the center of mass of the system moves including a human rider has a

higher center of mass. The center of mass also moves in the negative-x direction with

respect to the unloaded transporter.
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Figure 2.15: Forces acting on human body.

Figure 2.16: Segway model geometry.
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The same procedure followed in the previous section was used to obtain the dy-

namic equations of motion of a human transporter with a human rider on it. A rigid

body model of the human rider is considered. Because of this, it is assumed that:

� There is no relative motion between the person and the transporter.

� The human model cannot actively command the movements of the transporter.

� The connections between body segments are rigid, so there is no movement

between body parts.

� The model assumes a single static posture.

� There is no �exibility between the body and the transporter. This means that

the arms and legs are assumed to be rigid solid bodies.

� The human model cannot compensate for centrifugal forces during turning mo-

tion to maintain roll stability.

When the human body is included in the model, the equations of motion are given

by:

θ̈p = ((mb(xwb sin(θp) − zwb cos(θp)) + mp(xwp sin(θp) − zwp cos(θp)))((Tl + Tr)/r +

mp(xwp cos(θp)θ̇
2
p + zwp sin(θp)θ̇

2
p + (xwp cos(θp) + zwp sin(θp))β̇

2) +mb(xwb cos(θp)(θ̇
2
p +

cos(θp)
2β̇2) + sin(θp)(zwbβ̇

2 + zwbθ̇
2
p + xwb sin(θp) cos(θp)β̇

2))) − (mb + mp + 2mw +

2Iwy/r
2)(Tl+Tr−gmb(xwb cos(θp)+zwb sin(θp))−gmp(xwp cos(θp)+zwp sin(θp))−((Ibx−

Ibz) sin(θp) cos(θp)+(Ipx−Ipz) sin(θp) cos(θp)−mp(xwp cos(θp)+zwp sin(θp))(xwp sin(θp)−

zwp cos(θp))−mb(2xwbzwb sin(θp)
2+x2wb sin(θp) cos(θp)−xwbzwb−z2wb sin(θp) cos(θp)))β̇2))/

((mb+mp+2mw+2Iwy/r
2)(Iby+Ipy+mb(x

2
wb+z

2
wb)+mp(x

2
wp+z

2
wp))−(mb(xwb sin(θp)−

zwb cos(θp)) +mp(xwp sin(θp)− zwp cos(θp)))
2)

β̈ = −(w(Tl − Tr)/r+ β̇(2(Ibx− Ibz) sin(θp) cos(θp)θ̇p + 2(Ipx− Ipz) sin(θp) cos(θp)θ̇p−

mb(xwb cos(θp) + zwb sin(θp))(2xwb sin(θp)θ̇p − v − 2zwb cos(θp)θ̇p) − mp(xwp cos(θp) +
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zwp sin(θp))(2xwp sin(θp)θ̇p−v−2zwp cos(θp)θ̇p)))/(Ibz+Ipz+2Iwxz+2mww
2+2Iwyw

2/r2+

mb(xwb cos(θp) + zwb sin(θp))
2 + mp(xwp cos(θp) + zwp sin(θp))

2 + (Ibx + Ipx − Ibz −

Ipz) sin(θp)
2)

v̇ = ((Iby + Ipy + mb(x
2
wb + z2wb) + mp(x

2
wp + z2wp))((Tl + Tr)/r + mp(xwp cos(θp)θ̇

2
p +

zwp sin(θp)θ̇
2
p+(xwp cos(θp)+zwp sin(θp))β̇

2)+mb(xwb cos(θp)(θ̇
2
p+cos(θp)

2β̇2)+sin(θp)(zwb

β̇2+zwbθ̇
2
p+xwb sin(θp) cos(θp)β̇

2)))− (mb(xwb sin(θp)−zwb cos(θp))+mp(xwp sin(θp)−

zwp cos(θp)))(Tl+Tr−gmb(xwb cos(θp)+zwb sin(θp))−gmp(xwp cos(θp)+zwp sin(θp))−

((Ibx−Ibz) sin(θp) cos(θp)+(Ipx−Ipz) sin(θp) cos(θp)−mp(xwp cos(θp)+zwp sin(θp))(xwp

sin(θp)− zwp cos(θp))−mb(2xwbzwb sin(θp)
2 + x2wb sin(θp) cos(θp)− xwbzwb− z2wb sin(θp)

cos(θp)))β̇
2))/((mb+mp+2mw+2Iwy/r

2)(Iby+Ipy+mb(x
2
wb+z

2
wb)+mp(x

2
wp+z

2
wp))−

(mb(xwb sin(θp)− zwb cos(θp)) +mp(xwp sin(θp)− zwp cos(θp)))
2)
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CHAPTER III

EXPERIMENTAL DETERMINATION OF PARAMETERS

Several types of experiments were performed on a Segway i2 and a Segway i167

personal transporter. The purpose of the experiments was to obtain the dynamic

response of both transporters to disturbance inputs, and use that information to

develop a realistic dynamic model. Additionally, turning commands were given to

both Segways and their responses were recorded. We start with a description of the

experimental procedures and then discuss the results and their implications.

3.1 Experimental procedures1

A Vicon MX motion capture system was used to measure the position and orientation

of the Segway in real-time. The motion capture system is composed by 12 infrared

cameras that track re�ective markers placed on the objects to be tracked. The data

signal �ow in this system is shown in Figure 3.1. The system consists of 12 MX-3+

cameras connected via 2 Vicon MX Ultranet HD units that stream camera data to the

computer at a 120 Hz rate. Vicon iQ version 2.5 software running on the computer

processed the camera data. The resulting position and orientation measurements were

exported to MATLAB using the Vicon Tarsus Realtime data streaming application.

The orientations, measured with respect to the global reference frame, were converted

to Euler angles. Each MX-3+ camera can record 659x493 grayscale pixels, and posi-

tion measurements made using this system have a resolution of approximately 1 mm

[57, 58].

1Experiments were performed with the collaboration of C.J. Adams and James

Potter.
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Figure 3.1: Motion Capture System Signal Flow.

Figure 3.2 shows the experiment setup for applying a disturbance force to the

handlebars. On the left side is an elevated weight that is dropped. This falling

weight applies forces to the Segway via the attached rope that passes through a

pulley and attaches to the handlebars. Once the markers were placed on each body,

a calibration was performed. Each body requires an arrangement of makers so that

the software can compute their position and orientation. During the calibration, the

body is placed at an arbitrarily chosen reference position and orientation. Then,

within the Vicon iQ software, the body is de�ned and its initial coordinates stored.

The recorded coordinates of each bodies during each test are measured relative to the

initial calibration reference.

The position and orientation data is processed by the Vicon iQ software and

recorded by a MATLAB script. The recorded data is stored as a MATLAB-variable

�le that contains the three coordinates and three orientation angles of each object.

A wood structure was built to apply disturbance forces on the Segway by dropping

a set of weights. This structure is shown in Figure 3.3. It has a pulley attached at

its top that converts the vertical rope to a horizontal state so that it can connect to

the Segway. A load of 100 lbs. was used for most disturbance testing.
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Figure 3.2: Markers and cameras.

3.1.1 Description of the experiments

The experiments performed can be divided into three categories: pulse response tests,

yaw input command tests, and road disturbance tests. The �rst two tests were

performed on both a Segway i2 and a Segway i167. The road disturbance tests were

performed only on a Segway i2.

In the pulse response tests, a force �pulse� was applied on a Segway that was

initially at rest. This was done for both unloaded Segways and loaded Segways (with

a human rider on it). Figure 3.4 shows a manual pulse being applied to an unloaded

Segway i167. The person simply pushed on the upper part of the Segway handlebars

and the resulting motion of the Segway was recorded.

Segways have four pressure sensors covered by a mat over which a rider normally

would stand. When the sensors are not pushed, the control system of the Segway

limits the maximum speed it can reach. Therefore, if the sensors are not pushed, the

impulse response is distorted, and instead of reaching an equilibrium pitch angle, this

angle drifts back in order to reduce the speed. This is illustrated in Figure 3.5. To

obtain the true impulse response in the unloaded tests, the sensors were held closed,

and thus, the speed-limiting function was not triggered.
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Figure 3.3: Weight dropping mechanism.

For the loaded Segway case, the force could either be applied manually or by using

the weight dropping mechanism described previously described. When the force was

applied manually, it was done by pushing the rider on the back, as shown in Figure

3.6. When the weight dropping mechanism was used, the force was applied to the

handlebars, making the Segway pitch and move forward. This is shown in Figure 3.7.

The pulse tests were performed with di�erent operator states. In one case, the

operator acted as a rigid body attached to the Segway. In another case, the operator

tried to resist the Segway motion, or slow it down. In a third case, the operator

actively set the Segway into motion himself. In this case, the user riding the Segway

performed the actions required to start and stop the transporter. To start moving,

the user leaned forward, making the center of mass of the user-transporter system
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Force pulse

Figure 3.4: Manual pulse force applied on an unloaded Segway i167.

move forward, and causing the base to speed up in order to achieve balance. To stop,

the user leaned backwards, and the controller responded by reducing the speed.

The second class of tests that were done were the yaw command input tests. These

can be divided in two categories: spinning tests and turning tests.

A spinning test is shown in Figure 3.8. The rider made the Segway i2 spin at

a constant rate by rolling the handlebars to the side at a �xed angle. This type

of control input to induce turning di�ers from earlier versions of the Segway, which

were turned by twisting the left hand grip. After a few seconds, the handlebars were

tilted to a di�erent angle which produced a di�erent rotation rate. This process was

repeated for a range of handlebar roll angles. These spinning tests were repeated on

a Segway i167, but the left hand twisting grip yaw control was used instead of the

tilting handlebar. In this case, the grip was twisted at di�erent angles to achieve a

range of turning rates.

Figure 3.9 shows a Segway i2 turning test. The Segway started at rest (Frame 1

in Figure 3.9), and then accelerated forward to a constant speed (Frame 2). The rider

then made a 180-degree turn. Note that the rider must lean into the turn (Frame 3)

to keep from falling o� the machine. This lean must be maintained throughout the
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Figure 3.5: Speed limited response.

turn (Frames 4-6). The operator must adjust their lean angle to o�set the centripetal

acceleration caused by the turning machine. If the machine makes an unexpected

turn, or unexpectedly changes its turning radius, then the rider can fall o� the device

because they cannot change their lean angle fast enough. This was repeated using a

Segway i167.

Finally, the Segway i2 road obstacle tests were performed. These consisted of

having the Segway drive over a block on the ground. This is shown in Figure 3.10.
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Figure 3.6: Manual pulse force applied on a loaded Segway i167.

Figure 3.7: Force applied to the handlebars using the weight dropping mechanism.
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Figure 3.8: Spinning Test on a Segway i2.

Figure 3.9: Turning test on a Segway i2.
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Block

Figure 3.10: Bump test on a Segway i2.
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3.1.2 Weight fall calibration

Initial tests with the weight dropping mechanism revealed that the friction between

the weights as they fell and the support structure could be a signi�cant force that

could a�ect the �nal measurements. A test was performed to measure this friction

force. The acceleration was obtained from the position data by using a 9th order

smooth noise robust di�erentiator [39]. The upward force, T that opposes the fall of

the weights is given by:

T −mg = ma (3.1)

T = mg +ma (3.2)

where g is the acceleration of gravity (9.81m/s2) and a is the acceleration of the

weights.

Figure 3.11 shows the position of the weight as it falls down, as well as the opposing

upward force that resists the fall. This test was performed two times. Initially,

the weight was held at a height near 0.84 m. In this position, the weight has zero

acceleration, so by using (3.2), the total upward force is initially equal to the weight

being held. When the weight is allowed to fall, this force drops almost to zero. This

means that as it falls down, the upward force that opposes motion is close to zero.

It can be seen in Figure 3.11 that there is a sudden increase of this force towards

the end of the test. Given that in both cases the peak towards the end has a similar

magnitude, there is an aspect of the weight dropping mechanism that caused the

weights to experience a disturbance at a certain height. After this, there is a gap

in the collected data. This was caused by structural components at a low height,

that blocked the view of some of the cameras. For each test, an average force was

calculated from the falling range during which it was relatively constant (for example
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from 8.5 to 8.8 s in Figure 3.11), and then both values averaged. This resulted in an

average resisting force equal to 59.62 N.

Figure 3.11: Weight fall calibration tests.

3.2 Segway i2 tests results

3.2.1 Manual pulse on an unloaded Segway i2

Figure 3.12 shows the pitch response to a manual force input of a Segway i2. Initially,

both the handlebar and the base orientation were recorded. Note in Figure 3.12 that

there is not a signi�cant di�erence between the base and the handlebar pitch angles,

which means both measurements record the same information. At time 1.2 s, when

the Segway starts tilting, Figure 3.12 shows a gap in the handlebar pitch data that

was caused by the motion capture system losing track of the markers.

The Segway i2 was manually pushed with di�erent strength forces. Because this

�pulse� force was applied manually, it could not be measured. However, the strength

of the pulse is identi�ed by the maximum pitch angle of the response. Figure 3.13,

shows the speed and pitch angle for the 5.1◦ maximum pitch case. Note that when

the pitch angle settles, the speed continues to increase. Also, the speed shows a delay
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Figure 3.12: Base and handlebar pitch angle.

in its response with respect to the pitch as can be seen in the delay between both

peaks. It can be observed that when the pitch is positive, the acceleration of the

transporter increases.

Figure 3.13: Speed and pitch angle responses for a small (5.1°) impulse.

Figure 3.14 shows the pitch responses for several di�erent pulse magnitudes. Note

that the greater the magnitude of the exerted pulse, the larger the period of the

response. Therefore, the response is not exactly a linear under damped response. In
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spite of the nonlinearities, damping ratios and damped periods were estimated using

the �rst positive and the �rst negative peaks of the responses. The damping ratio

was found by solving:

ln

(
θmax − θss
θss − θmin

)
=

πζ√
1− ζ2

(3.3)

where θmax is the maximum pitch, θmin is the minimum pitch, θss is the steady-state

pitch and ζ is the damping ratio.

Figure 3.14: Pitch angle.

Figure 3.15 shows the period for each pitch response amplitude, or maximum

pitch. Notice that as the response amplitude increases, the period does the same. An

inverted pendulum can be considered linear for small pitch angles, but as the pitch

angle increases, the nonlinearity manifests itself as a change in the frequency of the

response. Even though the maximum angle is near to 18◦ (~0.3 rad) it is large enough

to produce noticeably di�erent oscillation periods.
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Figure 3.15: Period vs. Pitch response amplitude.

Figure 3.16: Damping ratio vs. Pitch amplitude.
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Figure 3.16 shows the damping ratios for each peak pitch angle. Damping ratios

were found to be between 0.4 to 0.6 for maximum pitch angles under 6°. Above that,

the damping is approximately 0.2. The use of of these damping ratios is limited

because the system is not linear. However, they do indicate the system will have a

multi-peak response to large disturbances.

In Figure 3.17 the base speed is plotted for the four di�erent pulses magnitudes.

It shows that the speed increases as the initial pulse is stronger. The speed response

oscillates around a line with positive slope (constant acceleration). As in the pitch

responses, the frequency decreases as the pulse is stronger. This e�ect is noted by

observing the period of time between the oscillations around the steady state speed.

The exception to this behavior is the highest impulse (16.4◦) response, which was

probably a�ected by the speed limiting mechanism of the Segway.

Figure 3.17: Base speeds for di�erent impulse magnitudes.

Figure 3.18 shows the initial maximum speed (�rst local maximum in the speed

response) against the maximum pitch angle. Here it is noted that both follow the same

trend. Figure 3.19 shows the steady state acceleration plotted against the maximum

pitch. This is the acceleration of the vehicle after the oscillations have dissipated.

The steady state acceleration decreases as the pulse is stronger. For strong enough
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force inputs, the Segway reaches its speed limit and cannot increase it beyond that.

This is why for strong pulse forces the Segway settles to a very low acceleration value.

Figure 3.18: Peak Speed vs. Pitch Amplitude.

3.2.2 Manual pulse on a loaded Segway i2 - static user

Figure 3.20 shows the pitch angle response of an i2 Segway when the person riding

it was pushed from behind on his back. It is noticed that in this case the peak angle

does not reach values as large as the ones that were present in the unloaded case. The

period of the response is larger because the center of mass is vertically higher than the

unloaded Segway. Because the maximum pitch angle ranges within a smaller interval,

the variation of periods of the responses is also smaller than the unloaded case. A

smaller pitch angle range means that all the responses deviate similarly from the near

zero pitch angle behavior (which can be referred to as the linear range). Figure 3.20

shows some noisy data in the 5.42° pulse response near time 1.8 s that was caused by

the motion capture system losing track of the markers mounted on the Segway.

Figure 3.21 shows the speed response of the loaded i2 Segway. As in the unloaded

case, speed is larger as the impulse is increased. In this case, however, the speed

oscillates around a constant value instead of a constant acceleration line. This is due
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Figure 3.19: Steady-State Acceleration vs. Pitch Amplitude.

to the center of mass of the transporter-rider system being more directly above the

axis of the wheels.

The loaded i2 Segway response, as mentioned before, shows larger time periods

than the unloaded Segway. As shown in Figure 3.22, the period shows a decreasing

trend with respect to the maximum pitch. However, all periods are within a very

small range between 0.94 s and 1.08 s. This constitutes a small sample and does not

provide strong evidence to conclude that the period decreases with an increasing pitch

for all pitch angles. It is likely that the error associated with the measurement and

computation of the periods is larger than the range presented here. It was expected

that a larger maximum pitch would produce lower frequencies [35].
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Figure 3.20: Pitch Response of a loaded i2 Segway to a force input.

Figure 3.21: Speed response of a loaded i2 Segway to a force input.
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Figure 3.22: Period vs. Pitch amplitude - loaded i2 Segway.

The damping ratio does not show any clear trend with respect to the peak angle.

This is shown in Figure 3.23. Most values lie between 0.08 and 0.012, except for

the two cases related with the lowest pitch angles. However, these values do indicate

that the Segway and rider will have a lightly damped multipeak response to a distur-

bance. Such responses indicate signi�cant oscillatory behavior that is unsettling to

the operator.

Figure 3.23: Damping ratio vs. Pitch amplitude - loaded i2 Segway.
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The peak speed for di�erent pitch angles is shown in Figure 3.24. Here it is

seen that the that the �rst local maximum of the speed response increases with the

maximum pitch angle. The increase rate seems to slow down at higher pitch angles.

Figure 3.24: Peak speed vs Pitch amplitude - Loaded i2 Segway.
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3.2.3 Manual impulse on Segway i2 - reactive user

An �impulse� force was manually applied on the back of the rider. Both the pitch

angle and the speed of the Segway base were recorded. Two representative responses

with di�erent characteristics are examined here. In the �rst case, shown in Figure

3.25, the operator attempted to resist the motion and bring the vehicle to rest. The

�gure shows how initially the pitch angle and speed increase. Shortly afterward, the

pitch angles decreases very suddenly to around -10° (with a negative overshoot to

near -13°) and stays constant for nearly one second. This illustrates an important

fundamental property - the base of the machine must accelerate forward and get

out in front of the center of gravity so that the system pitches backward and can

be decelerated back to zero velocity. During the time when the pitch angle remains

negative, the speed of the vehicle decreases and goes negative to almost -1 m/s. At

this point, the system reacts to the change in movement direction, and leans forward

to increase the pitch angle so that the speed increases again. The system continues

to compensate for this until it is able to stop. It takes around 2.5 seconds to do

so. Note that these forward and backward pitch movements are partially induced

by the Segway feedback controller and partially from the human rider. One of the

signi�cant challenges in analyzing the dynamics (and designing such vehicles) is to

estimate what the human will do in all the possible conditions.

In the previous case, the user attempted to stop the vehicle aggressively, and

their dynamics complicated the response. Therefore, the test was repeated with the

operator reacting as passively as possible without falling of the vehicle. In the second

case, shown in Figure 3.26, the user was able to stop the vehicle without producing

a negative speed overshoot. Additionally, he decreased the time it took him to do

so. Similarly to the previous case, the system reacted to the applied force and initial

movement of the vehicle by tilting it backwards. The maximum negative pitch was

very similar to the previous case. However, in this case, it did not keep the negative
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Figure 3.25: Active user resisting motion response - case 1.

pitch constant at -10°. Instead, it increased slowly back towards 0°. This allowed the

vehicle to return to rest with very little negative speed overshoot, and in less time.

Figure 3.26: Active user resisting motion response - case 2.

3.2.4 Weight dropping tests-relaxed operator i2

The previous impulse tests used an unknown input force. To provide more certainty

to the input and produce more of a �pulse� input, dropping weights were used to

apply forces. Initially the user kept the Segway at rest, without exerting any forces

and standing up straight. The rope was also relaxed so that the force would be

applied on the Segway only after the weights had fell some distance. At the moment
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when the force begins to be applied on the Segway handlebar, the Segway �rst tilts

forward before speeding up. As it tilts, it pulls the user's arms, and it is impossible

for him not to change his elbow angle and damp some of the forces being exerted on

him by the Segway. This causes him to change his relative position and orientation

with respect to the Segway. As the Segway moves forward and runs out of space, the

user reacts and changes his position to stop the vehicle. Under these circumstances,

the rigid body-model of the human does not fully describe the system. Therefore, the

dynamic responses of these tests do not share the characteristics of a stabilized rigid

inverted pendulum.

Figure 3.27 shows a sample pitch response, as well as the force exerted on the

Segway's handlebar by the rope. The speed response is shown in Figure 3.28. As

was mentioned before, the pitch curve does not share the characteristics of a linearly

under damped response. In a stabilized rigid inverted pendulum the speed response

would look more similar to the ones obtained from the manual pulse tests, where the

user could passively be driven by the vehicle without the risk of an accident because

the applied forces were smaller. In this case, the user movements are di�cult to

characterize because they were not voluntary.

3.2.5 Weight dropping tests-tense operator i2

In contrast with the previous case, here the user would lean backwards right from

the start to resist movement. Because of this, the Segway also tilted backwards, and

tensed the rope. Once the weight support was released, the rope transmitted the

force to the Segway faster. The force applied and the pitch response are shown in

Figure 3.29. Figure 3.30 shows the resulting speed response.

In this case, there was a considerably less relative motion between the user and

the vehicle. This means that the rigid body model should have more validity than in
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Figure 3.27: Pulse test pitch response - relaxed operator on a Segway i2.

Figure 3.28: Pulse test speed response - relaxed operator on a Segway i2.

the relaxed operator case. However, because the user was leaning backwards, this test

produced data corresponding to a breaking motion. The posture of the rider makes

the e�ective center of mass of the system move backwards and a�ects its inertia. In

Figure 3.29 a second frequency component can be observed. This could have been

caused by the characteristics of the force being applied or the �exible nature of the

machine/human connection.
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The speed response is considerably di�erent from the manual tests. In this case,

after the pulse of force is applied, the vehicle decelerates until the end of the exper-

iment. If the user stood straight, the system speed would have settled towards a

constant value.

Figure 3.29: Pulse test pitch response - tense operator on a Segway i2.

Figure 3.30: Pulse test speed response - tense operator on a Segway i2.
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3.2.6 User lean on a Segway i2

Figure 3.31 shows the pitch angle and speed response of the Segway as the user leaned

forward to accelerate. Initially, both the pitch and the speed decreased below their

equilibrium values. When the user started to lean forward, the initial reaction of the

vehicle was to tilt and move backwards so that the global center of mass remained at

the same position. This is the expected behavior of any system without signi�cant

external forces being applied. In this case, the motor torques were very small at

the beginning, because the torque input depends on the pitch angle error, which was

initially small. However, as the Segway started to fall forward, the controller response

increased, and the vehicle started moving forward to decrease the pitch error.

The opposite occurred when the person leaned backward in order to stop accel-

erating. As this action was performed the vehicle compensated by initially tilting

forward. Finally, the motor torques became large enough to balance the system and

reduce the speed to decrease the pitch angle error.

Figure 3.31: Pitch and speed response- i2 Segway with active user.

Figure 3.32 shows the pitch response for two user lean tests. Each test is identi�ed

by the maximum pitch it reached. Both responses can be divided into several phases.

First, the vehicle tilted back when the user leaned forward. Following, the vehicle
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started to fall forward, as is noted by the increasing pitch angle. After it reached

a maximum value, it dropped back to a smaller angle. In this phase the user was

adjusting his desired speed. Then, when the user decided to lean back and stop the

vehicle, there was a slight increase (forward tilting) in the pitch angle as a reaction.

After that, it started to fall backwards, until the user attempted to bring it to rest

and stay at a balanced position by moving his body as needed. Figure 3.33 shows the

speed for the two cases in Figure 3.32.

Figure 3.32: Pitch response - i2 Segway with active user.

It was observed from these graphs that the person is a very in�uential part of the

control loop. In fact, the experiments when the user was just a passive element in

the system showed that it oscillated signi�cantly for some seconds. In this case the

user motions are the control actions that can bring the system to a constant speed

or to an absolute stop. The vehicle can reach a desired speed only if the human is an

active part of the control loop.
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Figure 3.33: Speed response - i2 Segway with active user.

3.2.7 Turning tests at di�erent speeds i2

In these tests the rider turned the handlebar at a �xed angle, and held that position

for a period of time. This action is shown in Figure 3.34. This was done for various

values of handlebar roll and the yaw turning rate of the Segway was measured. Figure

3.35 shows the handlebar roll angle and the resulting yaw rate of one experiment.

Figure 3.34: Spinning Test on a Segway i2.
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Figure 3.35: Turning rate at di�erent handlebar roll inputs.

An average handlebar roll angle, as well as an average base yaw rate, were calcu-

lated from the intervals during which the operator attempted to keep the handlebar

roll angle constant. Figure 3.36 shows the relationship between the yaw rate of the

transporter and the roll angle of the handlebar. They increase in an almost linear

relationship until a handlebar roll of about -0.5 rad, after which further tilting of the

handlebar does not achieve a higher turning rate.

Figure 3.36: Turning rate vs handlebar roll angle - Segway i2.
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3.2.8 Turning tests speed limit i2

In these tests, the operator rode the Segway at a certain speed and then turned

suddenly. The purpose was to test if the Segway has a limit on its turning rate

that avoids it from turning too fast at high that cause large centripetal accelerations

which could cause the operator to fall o�. The results of one experiment are shown

in Figure 3.37. In this �gure, the roll angle of the handlebar is the input command

to the system. As the handlebar is tilted towards the left, increasing its roll angle,

the turning rate increases. After a period of time, the handlebar roll angle is held

constant which causes the yaw rate to remain almost constant.

Figure 3.37: Handlebar roll angle and resulting yaw turning rate - Segway i2.

The process was repeated with di�erent initial speeds. the rider attempted to

keep constant for all the tests to make sure that the di�erences in the turning rate

were only due to the initial speed. The results are shown in Figure 3.38. Figure 3.38

shows the turning rate at di�erent speeds. There seems to be a small tendency of the

turning rate to decrease as the speed increases, but it is not a strong correlation.
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Figure 3.38: Base yaw rate at di�erent initial speeds - full handlebar roll tilting.
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3.2.9 Bump tests on a Segway i2

In these tests, the Segway was ridden over a brick. In one case the Segway was

traveling at 1.5 m/s before hitting the block on the �oor, and in the other, it was

traveling at approximately 2 m/s. This was repeated several times for speeds near to

those values.

Figure 3.39 shows the speed components of the Segway for the 2 m/s case. Shortly

after 12 s, the Segway hit the bump. When the Segway started climbing over the

bump, the speed in the horizontal (X) direction suddenly decreased slightly, while the

speed in the lateral (Y) direction increased initially but then oscillates. This is an

expected result from the right wheel climbing the brick while the left wheel continues

traveling straight on the ground. There is also a small increase in the vertical (Z) speed

of the vehicle. The reduction in the horizontal speed, and increases on the lateral

and vertical speeds reach a maximum values simultaneously. Oscillation occurs in all

speed components.

Figure 3.39: Medium speed travel over a brick - speed in x and y directions

Figure 3.40 shows the roll, pitch, and yaw angles of the Segway. As a result of the

right wheel lifting o� the ground, the Segway tilted towards the left. This explains

the sudden decrease in the roll angle. As the right wheel climbed over the brick, the
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left wheel continued to travel in contact with the ground. This makes the Segway's

left wheel to move more distance in the XY plane than the right wheel. Therefore,

the Segway turns towards the right, which is indicated by the decrease in the yaw

angle.

Before the Segway traveled across the bump, the pitch angle can be seen to oscillate

in Figure 3.40. This oscillation stopped at the same time when the disturbances in

the roll and yaw angles were observed and resumes with a higher frequency after the

Segway has crossed the bump. The initial oscillations are due to the rider attempting

to reach a constant speed before crossing the obstacle. The period during which

the obstacle is crossed takes around 0.2 s, which is a very small time for the user

to actuate on the pitch angle. Towards the end, the oscillations are related to the

instability of the Segway's right wheel while it is recovering traction with the ground.

Oscillations at the same frequency were also observed in the X and Y speeds.

Figure 3.40: Medium speed travel over a brick - roll, pitch and yaw angles

Figure 3.41 shows the maximum roll angle of the Segway after crossing the brick.

From the graph, it does not appear that the speed have an e�ect on how much the

Segway tilts.

64



Figure 3.41: Maximum roll angle after crossing obstacle at di�erent speeds.

3.3 Segway i167 tests results

The same experiments, except the bump tests, were carried out using a Segway i167,

shown in Figure 3.42.

.

Figure 3.42: Segway i167.
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3.3.1 Manual impulse on an unloaded Segway i167

Impulse response tests were carried out on a Segway i167 without a rider. The Segway

i167 model has three settings that are enabled using di�erent keys. The di�erence

between the three settings is that the black key has the lowest speed limit; while the

red key has the highest, and the yellow key has a speed limit in between those two.

The red key pitch angle manual �impulse� response is plotted in Figure 3.43 and the

speed response is shown in Figure 3.44. The pitch response shows that the system's

response is close to a linearly under damped response. The speed converges to a

positive slope line as the pitch angle settles to zero, similar to the results observed

in the i2 Segway tests. Also, the speed is higher with a higher initial pitch response

(larger applied impulse). For a peak pitch range from 4.68° to 11.98°, the initial peak

speed varied from 1.37 m/s to 2.95 m/s.

Figure 3.43: Pitch Responses - Red Key.
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Figure 3.44: Pitch Responses - Red Key.
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The pitch response for the medium-speed setting (yellow key) is shown in Figure

3.3.1. The frequencies are very similar for all three cases but it was noticed that at

higher pulse magnitudes, the settling point of the angle decreases. The speed response

is shown in Figure 3.46. It shows very similar responses for the three cases.

.

Figure 3.45: Pitch Responses - Yellow Key.

Figure 3.46: Speed Responses - Yellow Key.
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The pitch response using the black key is shown in Figure 3.47. The speed response

is shown in Figure 3.48. The initial peak speed range varied from 1.82 m/s to 2.65

m/s, and the peak pitch range was from 3.22° to 13.1°. This speed range is smaller

than the one obtained in the red key case but larger than the yellow key case. In

this case, the negative settling angle is more evident and the periods are larger than

in the yellow and red key responses. Note that as a harder pulse is applied to the

Segway, the settling pitch is lower.

Figure 3.47: Pitch Responses - Black Key.

Figure 3.48: Speed Responses - Black Key.

The response properties were compared for all three keys. Figure 3.49 shows the

oscillation periods for various peak angles using the di�erent keys. The yellow and red

keys do not show any clear tendency on how the period changes with increasing the
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initial pitch maximum. However, as in the Segway i2 tests, that the period increases

with bigger impulses when the black key is used.

Note that the Segway i167 oscillated with a wide range of frequencies for the same

maximum pitch. While in Figure 3.15 the period could be found between 0.25 and

0.5 s, in this case, the periods went as low as 0.15 s, but above 0.4 s.

Figure 3.49: Damped Periods.

Figure 3.50 show that the damping ratio increases with increasing impulse am-

plitude. The black key produced signi�cantly lower damping ratios than the yellow

and red keys. However, as the impulse amplitude increases, the measurement of the

damping ratio becomes less signi�cant, because the damping ratio calculation comes

from a linear approximation of the response. In contrast with the Segway i2 results,

the damping ratio does exhibit an increasing trend with respect to the maximum

angle of the pitch response.
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Figure 3.50: Damping Ratios.

Figure 3.51 shows the initial maximum speed for di�erent impulse sizes. The

yellow key produces a higher peak speed than the black key. However, the red key

achieved the highest speed of all. The peak speed increases up to an angle value close

to 12°, after which it does not increase any further. This di�ers from the Segway

i2 experiments, where the speed kept increasing for cases above maximum pitch of

12°. In fact, the Segway i2 reached greater speeds than those of the Segway i167

experiment, regardless of the key that was being used.

.

Figure 3.52 shows the approximate acceleration about which the speed response

oscillates as it settles over time. There is not a clear trend with respect to the

maximum pitch. The red key was able to reach a very high acceleration in one

case. Compared to the Segway i2 experiments, the Segway i167 exhibited greater

accelerations, regardless of which key was being used.

These results reveal an important di�erence in how the two Segways limit their

speed. The Segway i2 limits its speed by not allowing it to increase beyond a speci�ed

speed limit. While the speed stays below that value, the Segway i2 does not try to
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Figure 3.51: Peak Speed.

limit the speed in any sense. The Segway i167, on the other hand, exhibit di�erent

dynamics according to the key being used. This is revealed by the results that show

it settles at a constant non-zero acceleration, but at di�erent steady-state speeds.

Figure 3.52: Steady-State Acceleration.
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3.3.2 Manual impulse on a loaded Segway i167 - static user

The results obtained from the loaded Segway i167 response are very similar to the

i2 Segway experiment results. The pitch angle response is shown in Figure 3.53.

There is some noise in the measurements as seen in the �gure, that occurred when

the markers on the Segway got close to the workspace limits of the motion capture

system. Figure 3.54 shows the speed responses.

Figure 3.53: Pitch Response - loaded i167 Segway

Figure 3.55 shows the oscillation period for di�erent amplitudes. The range over

which the period varies is similar to the i2 loaded range. It also shows, as in the

Segway i2 case, that the period decreases with an increasing pitch angle. However,

it must be noted that in both cases, the range over which the period changes is too

small.

Figure 3.56 shows the damping ratio for di�erent pitch angles. In this case the

damping decreases as the pitch angle increases, in contrast with the Segway i2 exper-

iment. However, it must be noted that the range over with the damping varies is too

small to consider this as a general rule. In this case, the damping is above 0.1 for the
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Figure 3.54: Speed response - loaded i167 Segway.

5° to 8° range, while for the same range in the Segway i2, the damping varied from

0.08 to 0.11.

Figure 3.57 shows the speed overshoot for di�erent maximum pitch angles. This

speed increases with an increasing pitch angle, which is a similar behavior to the one

observed with the Segway i2. The maximum speeds are also similar for both Segways

models.

3.3.3 Manual impulse on a Segway i167 - reactive user

Figure 3.58 shows the pitch angle response of a Segway-rider system after being

pushed on the back with an �impulse�. The speed response is shown in Figure 3.59.

The 5.63° maximum pitch case resembles the Segway i2 case shown in Figure 3.25. In

both cases there was an initial increase in the pitch angle and then a sudden reduction

until a minimum was reached. Afterward, the pitch angle started increasing slowly

for a while, which is slightly di�erent from the i2 case, where the pitch angle was

maintained constant for a period. Then, the pitch increased until it reached another

maximum, and then settles down to zero. The similarities are more pronounced in
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Figure 3.55: Period vs. Pitch amplitude - loaded i167 Segway.

the speed response, where both the i2 case mentioned above and the 5.63° i167 case

have similar shapes.

The 7.4° case exhibits a di�erent behavior from the two i2 cases studied before,

as well as the 5.63° case just discussed. This is evidence of the numerous ways the

user can act to stop the Segway. The main di�erence that the 7.4° case exhibits is

that after reaching the maximum pitch, the pitch does not decrease directly towards

a minimum negative value, but instead, decreases for a while, then stays constant for

around 0.2 seconds, and then continues decreasing towards a minimum pitch angle.

This indicates that the initial leaning back insu�ciently, in order to stop the Segway

within the space available. The user had to lean further back after noticing that

the initial lean was insu�cient. This appears in the speed response when the speed

decreased after reaching the maximum speed �rst to a speed, and then at a faster

rate. In this case, it also took more time to stop the Segway.

In these experiments, the user took around 2 seconds to bring the Segway i167 to

a stop, which is less than the 2.5 seconds it had taken him to stop the Segway i2.
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Figure 3.56: Damping Ratio vs. Pitch Amplitude - loaded i167

3.3.4 Weight dropping tests-relaxed operator i167

As in the Segway i2 tests, numerous dynamics e�ects in the response are due to

voluntary or involuntary motions of the operator. Pitch responses of a �pulse� force

applied on the Segway i167 being driven by a relaxed operator are shown in Figure

3.60. The speed response is shown in Figure 3.61. Contrary to the i2 tests, both

pitch responses exhibit similar characteristics. They have an initial oscillation that

extends for one cycle after which the pitch drops dramatically as the vehicle comes to

a stop. This initial cycle is similar to the manual pushing experiments, except that

its amplitude is smaller, and it exhibits a slightly smaller period of 0.8 s. Afterward,

the pitch decreases towards a minimum value, then it settles in a smooth oscillation

around 0°.

Compared to the Segway i2 relaxed operator experiments, the pitch response is

smaller in this case; below 4°, compared to 8° on the Segway i2. There does not seem

to be a signi�cant di�erence in the force applied to account for this behavior, except

possibly, the point at which it was applied. The speeds reached in both the Segway

i167 and Segway i2 experiments are comparable.
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Figure 3.57: Peak speed vs. Pitch amplitude - loaded i167 Segway.

3.3.5 Weight dropping tests-tense operator i167

Figure 3.62 shows the pitch response of the Segway i167 with a tense rider to a pulse

force. The speed response is shown in Figure 3.63. Initially, the speed increased while

the force was being applied. During this phase, the human body can be regarded as

a rigid body.

However, when the deceleration starts, there is a high frequency oscillation that

can be noticed in the speed response. To some extent, this might be an indication of

the operator controlling the deceleration rate. Initially, he leaned back to reduce the

speed, but after noticing that he was stopping too quickly, he corrected his leaning

to produce a smaller deceleration. This e�ect was also present in the Segway i2 tests.
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Figure 3.58: Active user resisting motion pitch response.

Figure 3.59: Active user resisting motion speed response.

Figure 3.60: Pulse test pitch response - relaxed operator on a Segway i167.
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Figure 3.61: Pulse test speed response - relaxed operator on a Segway i167.

Figure 3.62: Pulse test pitch response - tense operator on a Segway i167

Figure 3.63: Pulse test speed response - tense operator on a Segway i167
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3.3.6 i167 Segway no weight user pulse

Figure 3.64 shows the pitch and speed responses to a user motion intended to accel-

erate the Segway i167. Here, the deceleration phase was not recorded. This response

is similar to the Segway i2 response in the initial reduction in the pitch angle as the

user leans forward to start motion. Afterward, the user kept a constant speed by

keeping the pitch angle near zero degrees. Figure 3.65 shows pitch angle responses

for di�erent user motion strengths.

Figure 3.64: Pitch and speed response- i2 Segway with active user.

Figure 3.66 shows di�erent speed responses for the same cases as in the pitch angle

responses in Figure 3.65.Even though there is only one case signi�cantly di�erent from

the rest, the 9.1° case, it shows how a stronger forward lean accomplishes a higher

acceleration, and a larger initial back-tilting.

3.3.7 Turning tests at di�erent speeds on a Segway i167

Figure 3.67 shows the response of the Segway as the grip on the right side of the

handlebars is twisted. Comparing with the tilting of the handlebar in the Segway i2

case, the Segway i167 provides a more constant control of the turning rate. Figure 3.68

80



Figure 3.65: Pitch response - i167 Segway with active user.

Figure 3.66: Speed response - i167 Segway with active user.

shows the relationship between the turning rate of the Segway and the rotation angle

of the twisting grip. The Segway i167 has a lower turning rate limit, in comparison

with the Segway i2.

3.3.8 Turning tests speed limit on a Segway i167

Figure 3.69 shows the results of a turning limit test. The twisting grip was turned

completely and the resulting turning rate was recorded. Figure 3.70 shows the result-

ing turning rate at di�erent initial speeds. This was repeated over a small range of

initial speeds. In all cases, the resulting turning rate was very similar.

81



Figure 3.67: Turning rate at di�erent grip twisting inputs.

Figure 3.68: Turning rate vs handlebar roll angle - Segway i2.

Figure 3.69: Handlebar roll angle and resulting yaw turning rate - Segway i167.
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Figure 3.70: Base yaw rate at di�erent initial speeds - full grip twisting.
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CHAPTER IV

SIMULATION STUDIES

The �rst section of this chapter describes the process to develop a simulation of a

TWIP with dynamic properties similar to those of a Segway carrying a human rider.

The second section describes the simulation of di�erent scenarios that could lead to

a failure condition.

4.1 Dynamic properties

4.1.1 System parameters

In order to model the Segway personal transporter, it is necessary to obtain the

physical properties of the system such as masses and inertias of the wheels and the

base. The wheels were modeled as uniform-mass discs with diameter dw and thickness

ww, as shown on the left side of Figure 4.1. The base was modeled as a rectangular

prism with dimensions lpb x wpb x hpb. The handlebar was modeled as an aluminum

bar with length lph, outer diameter dh and wall thickness of tph, with a point mass

mpu on its top. The mass mpu has the e�ect of moving the location of the center of

mass forward, similar to a real transporter. The geometry of these components are

shown in Figure 4.1.

The mass moments of inertia of the base around its center of mass are given by:

Ipbx =
1

12
mpb

(
w2
pb + h2pb

)
(4.1)

Ipby =
1

12
mpb

(
h2pb + l2pb

)
(4.2)

Ipbz =
1

12
mpb

(
w2
pb + l2pb

)
(4.3)
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Figure 4.1: Base and wheel geometry

where mb is the mass of the base. Meanwhile, the mass moments of inertia of the

wheels are given by:

Iwy =
1

8
mwd

2
w (4.4)

Iwx = Iwz = Ixz =
1

12
mw

(
3

4
d2w + w2

w

)
(4.5)

where mw is the mass of each wheel. The mass moments of inertia of the handlebar,

not including the point mass mu are given by

Iphx = Iphy =
1

12
mph

[
3
(
r21 + r22

)
+ l2ph

]
(4.6)

Iphz =
1

2
mph

(
r21 + r22

)
(4.7)

where mh is the mass of the handlebar and r1 and r2 are its inner and outer radii.

The approximate values of the masses and dimensions used to calculate the inertias

are shown in Table 4.1.

The base, handlebar, and the upper point mass were combined into one body in

order to speed up simulation time. This body's moments of inertia around its center

of mass are given by Ipx, Ipy, Ipz with its center of mass located on the (x,z) plane at
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Table 4.1: Estimated parameters of the components of the Segway.
Parameter Value

mpb 37 kg
mw 4.5 kg
mph 0.489 kg
mpu 0.5 kg
lpb 0.65 m
wpb 0.43 m
hpb 0.2 m
dw 0.4826 m
ww 0.1 m
tph 2 · 10−3m
lph 1.1 m
dph 0.0508 m

point (xp,zp). Table 4.1.1 shows the resulting moments of inertia and the location of

the center of mass of the base-handlebar assembly.

Table 4.2: Estimated parameters of the Segway.
Parameter Value

Ipx 1.67 kg·m2

Ipy 2.63 kg·m2

Ipz 2.48 kg·m2

Iwx 0.0693 kg·m2

Iwy 0.131 kg·m2

Iwz 0.0693 kg·m2

xp 0.0067 m
zp 0.0171 m

Table 4.3 shows the estimated parameters of the human rider. The mass of the

person riding the Segway, mb, was known to be 85 kg. An average center of gravity

for adult subjects with similar body type was found in the report Moments of Inertia

and Centers of Gravity of the Living Human Body done by the U.S Air Force in

1964 [2]. Approximate inertia properties were extracted from the report Moments

of Investigation of the Inertial Properties of the Human Body from 1975 [1]. The

moments of inertia around the x, y, and z axes are Ibx, Iby, and Ibz. The height of

the center of mass of the person from the �oor is zwb .
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Finally, the location of the center of mass of the person in the x direction with

respect to the axes of the Segway wheels was calculated so that the global center of

mass of the Segway-person system was located directly over the wheel axes.

Table 4.3: Initial estimates of the human body parameters.
Parameter Value

mb 85 kg
Ibx 12.558 kg·m2

Iby 15.0886 kg·m2

Ibz 1.7424 kg·m2

xwb -0.00378 m
zwb 1.072 m

4.1.2 MotionGenesis model

The TWIP human transporter was modeled using MotionGenesis. The MotionGene-

sis code produces a MATLAB script that contains the di�erential equations of motion.

Input torques on each of the wheels are de�ned in the MATLAB script in terms of

the dynamic variables and parameters. The structure of the code is as follows:

1. Body and frame de�nition: The base and both wheels were de�ned as three

independent bodies. Two coordinate frames were de�ned, a global coordinate

frame named `N', and a frame named `S' that rotates an angle β around the

y axis of the global coordinate system, as described in chapter 2. This second

frame, shown in Figure 4.2, simpli�ed the process of de�ning the relative rota-

tion between the wheels and the base. Each body de�nition includes a speci�c

frame of reference for that body.

2. Parameter de�nition: Geometric dimensions, masses, and inertias around the

center of mass of each component were de�ned.

3. Dynamic variables de�nition: The variable names of input torques, system

speeds, accelerations, and forces were de�ned.
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Figure 4.2: Rotating frame `S' .

4. Point de�nition: Relevant system points were de�ned, speci�cally, wheel contact

points with the ground and with the base, the center point of the base, and the

point where the impulse force is exerted. The de�nition includes the body to

which these points belong.

5. Body and frame rotation: Here, the rotation of frame `S' with respect to frame

`N' was de�ned. Then, the rotation of the wheels and the base with respect to

frame `S' was de�ned.

6. Relative velocities: Once the angles were de�ned, the vectors between the points

were de�ned to allow the calculation of relative velocities and accelerations.
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7. Constraints de�nition: The no slip constraint of the wheels was de�ned.

8. Forces and torques: The gravitational force, the location of forces and torques

between bodies, as well as those of the input forces and torques were de�ned.

9. Generate di�erential equations.

10. De�ne inputs and outputs: Numerical values of the parameters may be intro-

duced here or in the resulting MATLAB code. The same applies to input torques

and forces. The output de�nition speci�ed which variables the MATLAB were

logged into a data �le during the simulation.

11. Produce MATLAB code.

4.1.3 MATLAB Simulation

The MotionGenesis program produces a MATLAB script that simulates the system

dynamics. It consists of the following sections:

1. Variable de�nitions.

2. Assignment of numerical values to the geometric and mass parameters of each

component, as well to the initial conditions of all the dynamic variables.

3. Assignment of numerical values to the parameters of the MATLAB numerical

solver.

4. Di�erential equation solving script.

5. Function to evaluate the di�erential equations and provide the next set of values

of the dynamic variables to be input into the next integration step. A space to

enter the equations that rule the input torques and forces is provided here.

6. Print variables for each integration step into a log �le.
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A controller was added to stabilize the simulated pendulum. A paper written by

the designers of the Segway describes a relatively simple control law that can be

used to stabilize two-wheeled inverted-pendulum human transporters [32]. While the

controller on the production version of the Segway is obviously more complex, this

simple controller provides a good representation of the overall dynamic properties.

The control law implemented in the simulation is given by:

τl = Kp (θp − θdes) +Kdθ̇p − τβ (4.8)

τr = Kp (θp − θdes) +Kdθ̇p + τβ (4.9)

τβ = Kff β̇d +Kβp

(
β̇ − β̇d

)
+Kβi

t∫
0

(β − βd) dt (4.10)

where Kp, is the proportional gain, and Kd is the derivative gain of the balancing

controller. Meanwhile, Kff is the feedforward gain, Kβd is the proportional gain, and

Kβi is the integral gain of the yaw rate controller. τl and τr are the torques applied

by the motors at each of the wheels, and τβ is the yaw rate command torque. The

desired balancing pitch is given by θdes, which in this case was set to zero, and the

measured pitch is θp. The desired yaw rate is β̇d and the measured yaw rate is β̇. The

power output limit of the motors was set to 1500 W [12]. The yaw rate is measured

by using the rotation speeds of both wheels and using the following equation:

β̇ =
r
(
θ̇r − θ̇l

)
l

(4.11)

4.1.4 Unloaded i2 Segway parameter adjustment

A manual pulse pitch response of an unloaded Segway is shown in Figure 4.3. The

peak value in this graph was selected as an important parameter to match in the

simulations. Even though the response is not exactly under damped, the parameters

of an under damped response will be used here to characterize it. The frequency
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was obtained by using the times at which the �rst positive and �rst negative peaks

occur in the angular acceleration response. The damping ratio was obtained from the

maximum and minimum pitch angles by using the following equation:

ln

(
θmax − θss
θss − θmin

)
=

πζ√
1− ζ2

(4.12)

where θmax is the maximum pitch, θmin is the minimum pitch, θss is the steady-state

pitch, and ζ is the damping ratio.

The base speed is shown in Figure 4.4. Two characteristics should be noted from

this plot: the value of the �rst local maximum speed and the steady-state acceleration.

These two values were also selected as important parameters for the simulation to

match. In summary, the simulation goals are:

1. Peak pitch value = 8.19°

2. Period = 0.316 s

3. Damping ratio = 0.295

4. Peak speed = 2.474 m/s

5. Steady-state acceleration = 0.45 m/s2

4.1.4.1 Simulation results

Initially, the parameters were set to the values presented in tables 4.1 and 4.1.1. The

parameters were adjusted using the System Identi�cation Toolbox of MATLAB. Since

the force was unknown, the speed and pitch data were cropped at the time of the

maximum pitch. At this time, no external force is applied on the Segway. Therefore,
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Figure 4.3: Experimental pitch response

numerical values of the system states at that time describe the system completely.

The experimental pitch and speed responses were given to the identi�cation routine

as desired outputs. The identi�cation toolbox tries di�erent sets of parameters to

optimize the error between the outputs obtained from the experiments and the ones

obtained from the model.

First, the controller gains were manually set to values that would yield a stable

behavior, which were Kp=1000 and Kd=30. Then, the parameters of the unloaded

modeled were estimated as it was described in the previous section. Those parame-

ters were introduced into the identi�cation routine. Then, the routine was run several

times until a satisfactory response was found. In each of these runs, di�erent param-

eters were �xed to their initial values. The best result was obtained when the inertias

of the wheels and the location of the center of mass of the unloaded Segway were

allowed to change.
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Figure 4.4: Experimental speed.

Table 4.1.4.1 shows the di�erence between the initial parameters estimations and

the values used to match the experiments. The parameters not shown in Table 4.1.4.1

remained unchanged.

Table 4.4: Original and adjusted parameters of the unloaded Segway i2.

Parameter Initial estimates Adjusted Di�erence %

Iwy 0.131 kg·m2 0.0682 kg·m2 48.1
xp 0.0067 m 0.038092 m 468
zp 0.0171 m 0.10551 m 517
Kp 1000 373 -
Kd 30 7.82 -

The comparison between the adjusted model pitch response and the experimental

response from the chosen initial conditions is shown in Figure 4.5. As shown, the

response matches pretty well before 0.2 s. After that, the experiment response shows

more damping. This might occur because of the pitch limiting system of the vehi-

cle. The speed responses of both the model and the simulation are shown in Figure
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4.1.4.1. Table 4.1.4.1 shows the performance of the simulation in matching the desired

response parameters.

Figure 4.5: Experiment and Simulation pitch response

Figure 4.6: Experiment and Simulation speed

4.1.5 Loaded i2 Segway

Figure 4.7 shows a pitch angle response of a loaded Segway i2 after a manual pulse

was applied to it. As in the previous case, the data was cropped at the maximum
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Table 4.5: Simulation performance
Response characteristic Desired Actual Error %

Peak pitch value 8.19° 8.19° 0
Period 0.316 s 0.342 s 8.2
# of oscillations 0.295 0.299 1.36
Peak speed 2.474 m/s 2.284 m/s 7.67
Steady state acceleration 0.45 m/s2 0.925 m/s2 105.5

pitch angle point. Figure 4.8 shows the speed response of the same manual pulse test.

The pitch, its derivative, and the base speed values at that time were recorded as the

initial conditions to be used in the parameter identi�cation simulations.

Figure 4.7: Pitch angle response of the loaded Segway i2.

In this case, the desired simulations parameters are:

� Damping ratio = 0.079

� Period = 1.03 s

� Maximum speed = 2.1 m/s

� Steady-state acceleration = 0 m/s2
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Figure 4.8: Speed response of the loaded Segway i2.
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4.1.5.1 Loaded Segway simulation

As in the unloaded Segway case, the estimated parameters were introduced. The

inertia of the human body in the y-axis and the relative location of its center of mass

were allowed to be adjusted by the identi�cation routine. The mass of the person was

left as a �xed value. After several runs, a satisfactory response of the simulation was

found. The resulting parameters are shown in Table 4.6.

Table 4.6: Original and adjusted parameters of the loaded Segway i2.
Parameter Original Adjusted Di�erence %

Iby 12.558 16 27.4
xwb -0.00378 -0.043 1037
zwb 1.072 1.2 11.9

Figure 4.9 shows the pitch response of both the simulation and the experiment.

Figure 4.10 shows the speed response. From both �gures it is evident that the simu-

lation adjusts very well to the collected data.

Figure 4.9: Pitch response comparison between simulation and experiment results.

Table 4.7 shows the performance criteria of the loaded simulation with respect to

the experiment results.
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Figure 4.10: Speed response comparison between simulation and experiment results.

Table 4.7: Loaded Simulation Performance.
Response characteristic Desired Actual Error %

Damping ratio 0.079 0.11 39.2
Period 1.03 s 1.02 0.97
Maximum speed 2.1 2.02 3.81

4.1.5.2 Loaded segway veri�cation

The loaded Segway simulation was tested using a loaded pulse test where the force

was applied by means of the weight-dropping mechanism. In this case, the force

was known, so this same force was applied to the simulation and the results were

compared with the experiments. Figure 4.11 shows the pitch response and Figure

4.12 the speed response. Even though the pitch response of the simulation matches

reasonably well the response of the experiment, the speed responses do not look so

similar. The reason for this is that during the experiments, the user leaned back to

stop the Segway.

A new identi�cation routine was carried out using the measured force as the input

and the pitch and speed responses as desired outputs. The identi�cation routine

attempted to increase the inertia of the human body and the height of its center of
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Figure 4.11: Pitch response comparison between simulation and experiment results.

Figure 4.12: Speed response comparison between simulation and experiment results.

mass beyond realistic values, so they were set as �xed numbers. The only parameter

set as not �xed was the location of the center of mass of the human body along the

x-axis, xwb. As a result, this parameter changed to -0.1011 m, compared to an initial

value equal to -0.043 m. This means that, as discussed in Chapter 3, the center of

mass of the person moved backwards as he tried to stop the Segway. The pitch and

speed responses of the new adjusted simulation are shown in Figure 4.13.
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Figure 4.13: Pitch and speed response comparisons between simulation and experi-
ment results.

4.1.6 Yaw rate controller

A set of data from a turning rate experiment was used to tune the yaw controller

gains. Figure 4.14 shows the input handlebar roll. The experimental response to this

input is shown in Figure 4.15.

An identi�cation routine was set up in MATLAB to adjust the yaw controller

gains, while the rest of the Segway and human body parameters were �xed. The yaw

controller was described in equation 4.10. The initial estimates of the controller gains

were all set to zero. After running the identi�cation routine, the gains obtained were

Kff = 39, Kβp = 243, and Kβi = 280. Figure 4.16 shows the yaw rate response of

the experiment and the simulation.
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Figure 4.14: Handlebar roll input angle

Figure 4.15: Yaw rate measured output.

Figure 4.16: Experiment and Simulation yaw rate
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4.2 Failure analysis1

Given the complex sequence of actions that must continually be performed for the

Segway to maintain balance, the Segway has numerous failure modes. Most failures

result in the rider falling o� the device. However, other outcomes include i) the device

running into the rider after the rider has fallen from the device, ii) the device running

into a nearby pedestrian, or iii) the device damaging property. The list of failure

modes is quite extensive, but a representative list is:

1. The device is not turned on. If the user attempts to mount the device when

it is not turned on, then they will fall o� because the system has no means to

balance. This failure mode was made famous by President Bush in June 2003.

2. The device turns o� unexpectedly because of low battery power. When the

battery power runs low, the device is supposed to sense this condition and ini-

tiate a safety shutdown procedure during which the device makes loud beeping

noises, vibrations, and attempts to slow the transporter to a very low velocity.

However, sensing the available power in batteries is challenging, so under some

conditions, the low-battery condition is not properly sensed and the machine

turns o� quickly - without going through the safety shutdown procedure.

3. The device turns o� unexpectedly because of dangerous conditions. When an

operator leans forward, the center of mass is moved in front of the wheel and

the device starts to fall forward. In order to regain balance, the bottom of

the machine must race forward and get the wheels out in front of the center

of mass so that the system starts to tip backwards. If the forward pitching

angle is too large, then the machine cannot accelerate the wheels fast enough

to regain balance. The control system is programmed to detect this condition,

1This section includes excerpts from �An Engineering Overview of the Segway Per-

sonal Transporter� by Dr. William Singhose.
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and many other conditions that are outside of the machine's ability to regain

balance. Rather than increase the machine's speed in a futile attempt to regain

balance, the machine turns o� to limit the severity of the failure. A typical

example is when the operator leans backward in order to break suddenly, but

ends up going backwards, so to correct the situation he leans forward again,

action which very often results in a very high forward pitching angle.

4. The device falls over because a wheel hits an immovable object. If a wheel

contacts an object that stops the wheel from moving in a desired direction,

then the machine cannot balance. Common examples of problematic obstacles

include: doorjambs, chairs, and curbs.

5. The device falls over because a wheel loses traction. If a wheel loses traction,

then it cannot apply the correct forces in order to balance the system. If the

wheel spins excessively, then the machine will turn o� - this is a case of dangerous

conditions as previously discussed. Common ways to lose traction include: one

wheel dropping o� a curb or into a hole and passing over slick surfaces such as

ice, sand, wet grass, and mud.

6. The device moves without rider in balance mode. If the rider steps o� the device

and does not hold it while it is in balance mode, the device will start moving

forward. If this happens, the device might run into nearby objects causing

damage. It can also run into a pedestrian, which can result in injury.

7. The device runs into the rider. This can happen when the rider steps o� the

device while pulling back the handle bar. This makes the device go backwards

and run into the leg of the rider. This can also occur if a surface irregularity

causes the rider to jump o� to the front of the device.
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8. The device becomes unstable when making turns. At certain combinations

of speed and turning radii, centrifugal force shifts the weight towards one of

the wheels, and less to the other. This can cause the device to roll over very

suddenly, carrying with it a consequent loss of traction in one of the wheels.

It does not need to travel at very high speeds for this to occur, as long as the

turning radius is small enough.

Several failure conditions were simulated and the results are presented in the next

sections. These consist of:

� Turning motion at di�erent speeds and turning rates.

� Traveling along inclined surfaces at di�erent pitch angles, speeds and slopes.

� Losing traction in one or both wheels.

� Applying disturbance forces in a wheel and in the base-handlebar set.

4.2.1 Turning

The turning motion occurs when the rider tilts the handlebar towards the left or the

right. In the Segway i2, tilting the handlebar occurs simultaneously as the rider tilts

his body. This sideways bending by the person is a natural result of the movements

required to tilt the handlebar. This helps to maintain balance in the roll direction

and counteracts the centrifugal e�ect of the turning motion on the human body. In

the Segway i167, the yaw rate is commanded by a grip on the left handle and the user

must actively tilt towards the side he is turning in order to maintain balance. Turning

the grip only requires wrist motion, so the roll stability is reduced. The simulations

presented in this section work under the following assumptions:

� All the basic assumptions presented in Chapter 2.

� The yaw command is assumed to be a step function.
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A series of left turns (positive yaw rate) were simulated. Here, a sideways bending

motion of the person riding the Segway was not accounted for. For that reason, these

simulations are best to describe the turning motion of a Segway i167 or the turning

of a Segway i2 at small yaw rates. Turning motion towards the left (positive yaw

rate) was simulated for di�erent initial speeds and di�erent initial pitch angles. The

yaw rate, pitch, speed, and normal force on the wheels were recorded to study what

e�ect does changing the initial speed and pitch have on them. First, the e�ect of the

vehicle's initial speed is studied.

The e�ect of the travel speed on the turning motion of the Segway was studied

using an initial pitch angle of 0°, or the angle at which the simulation balances. The

transporter balances actually around a pitch of 1.2° with respect to the `S' frame, but

in the following sections this case will be labeled as 0°. This angle was chosen because

it represents any case in which the vehicle is traveling at constant speed. Figure 4.17

shows the yaw rate response of the Segway when a desired yaw command of 1 rad/s

is given to the model at di�erent initial speeds. As noticed, the initial speed of the

vehicle doesn't seem to a�ect the yaw dynamics of the Segway.

Figure 4.18 shows the pitch response. Similarly to the yaw response, the initial

speed doesn't a�ect the tilting dynamics of the Segway in the forward/backward

direction. Furthermore, since the Segway was initially balanced, the pitch angle

remained very close to its balanced position. This is consistent with the dynamic

equations of the vehicle, and assumes absolutely no external disturbances during the

turning motion. Therefore, it is expected that in a real turning test, the pitch angle

would not remain as stable as in these simulations.

Figure 4.19 shows the normal force between the left wheel and the ground. Ini-

tially, the normal force seems to be only a�ected by the posture of the vehicle, and

was the same for all initial speeds. However, as the vehicle turned left, the normal
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Figure 4.17: Yaw rate response at di�erent initial speeds - turning simulations.

Figure 4.18: Pitch response at di�erent initial speeds - turning simulations.

force decreased. When the initial speed was 3 m/s or higher, the force actually de-

creased to zero. Hence, at speeds above 3 m/s, the right wheel lost contact with the

ground and the simulation was terminated. It is important to note that as a conse-

quence of this, the right wheel loses traction and the no-slip constrain ceases to be

valid. Because the yaw rate is measured by using the rotation speeds of both wheels,

losing contact with the ground can render the yaw rate dynamics unstable, making

the situation worse. From Figure 4.19 it can also be noted that the loss of contact

with the ground occurs in less that 0.04 s, which is a very small frame of time for the

user to react. This normal force is given by:
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Fnlz = 0.5g(mb +mp + 2mw)− 0.5(Ibyβ̇θ̇p + Ipyβ̇θ̇p + Iwyβ̇θ̇l + Iwyβ̇θ̇r + ra(2mwvβ̇ +

mb(vβ̇+zwb(2 cos(θp)β̇θ̇p+sin(θp)β̈)−xwb(2 sin(θp)β̇θ̇p−cos(θp)β̈))−mp(2xwp sin(θp)β̇θ̇p

−vβ̇−xwp cos(θp)β̈−zwp(2 cos(θp)β̇θ̇p+sin(θp)β̈)))−sin(θp)(Ibx sin(θp)β̇θ̇p−zwbmbwθ̈p−

Ibz(sin(θp)β̇θ̇p−cos(θp)β̈))−cos(θp)(Ipz cos(θp)β̇θ̇p−xwbmbwθ̈p−mpw(zwpθ̇
2
p+xwpθ̈p)−

Ipx(cos(θp)β̇θ̇p+sin(θp)β̈)−mpzwp(vβ̇+xwp cos(θp)β̈+zwp(2 cos(θp)β̇θ̇p+sin(θp)β̈)))−

cos(θp)(Ibz cos(θp)β̇θ̇p−zwbmbwθ̇
2
p−Ibx(cos(θp)β̇θ̇p+sin(θp)β̈)−zwbmb(vβ̇+zwb(2 cos(θp)

β̇θ̇p+sin(θp)β̈)−xwb(4 sin(θp)β̇θ̇p− cos(θp)β̈)))− sin(θp)(xwbmbwθ̇
2
p+ Ipx sin(θp)β̇θ̇p+

mpw(xwpθ̇
2
p−zwpθ̈p)+xwbmb(vβ̇+zwb sin(θp)β̈−xwb(2 sin(θp)β̇θ̇p−cos(θp)β̈))−Ipz(sin(θp)

β̇θ̇p − cos(θp)β̈) − mpxwp(2xwp sin(θp)β̇θ̇p − vβ̇ − xwp cos(θp)β̈ − zwp(4 cos(θp)β̇θ̇p +

sin(θp)β̈))))/w

Figure 4.19: Left wheel-ground normal force at di�erent initial speeds - turning
simulations.

Figure 4.20 shows the speed of the vehicle. Given that the pitch angle remains

stable during the turning motion, the speed also does, and remains constant at its

initial value. This, as in the pitch response, is an idealization from a real scenario

where there are always unknown disturbance forces. It is important to note that the

limit speed of the Segway of 12.5 mph (marked with green lines on Figure 4.20) was

not exceeded.
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Figure 4.20: Speed response at di�erent initial speeds - turning simulations.

Next, the initial speed was �xed to 1 m/s, a desired yaw rate of 0.5 rad/s was

used. Next,the initial pitch angle was varied between -20° and 20°. Figure 4.21 shows

the normal force between the left wheel and the ground. In the 10° and 20° initial

pitch cases, the force became negative almost instantly. It is not likely that this

would be the case in a real system where the wheels are deformable. If the elasticity

of the wheels was taken into account, the response would approximate more closely

to a real scenario. However, these simulations are helpful to get an idea of how

di�cult it is to yield the Segway unstable when making turns. In the cases where the

initial pitch angle was negative, the force initially increased and then dropped and

oscillated around the upright balancing value. As the pitch angle increased in the

negative direction, the force reached lower minimum values.

Figure 4.22 shows the yaw rate response of the vehicle. The simulations were

cropped at the moment when the normal force of the wheel reached zero. The pitch

angle a�ects the speed and stability of the yaw rate controller. A larger negative

angle caused more overshoot and a slower response.

Figure 4.23 shows the pitch angle response. As expected, a larger initial pitch

angle caused oscillations with higher amplitudes and with a slightly changing period.
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Figure 4.21: Left wheel-ground normal force at di�erent initial pitch angles - turning
simulations.

Figure 4.22: Yaw rate response at di�erent initial pitch angles - turning simulations.

However, in none of the cases the pitch went outside of the limit range from -40° to

40°, shown as the green lines in Figure 4.23.

Figure 4.24 shows the speed response of the vehicle. Even though the initial speed

was the same for all cases, the speed was a�ected by the initial pitch angle. Larger

pitch angles, whether positive or negative, caused more speed oscillation. In spite of

this, the speed limits of the Segway were never exceeded.

109



Figure 4.23: Pitch response at di�erent initial pitch angles - turning simulations.

Figure 4.24: Speed response at di�erent initial pitch angles - turning simulations.

Even though only relatively low yaw rates and low speeds were simulated, the

Segway can lose roll stability in some of these conditions. At higher speeds and yaw

rates, it will be more likely to lose stability in the roll direction.
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4.2.2 Inclined surface

When a Segway travels along an inclined surface, like any other vehicle, the torque

requirements to achieve balance will inevitably change. The Segway needs additional

torque to advance uphill or to remain at rest. In this section, the e�ect of traveling

along inclined surfaces with di�erent slope angles is studied. Several simulations were

carried on with a range of di�erent initial pitches and initial speeds.

A new dynamic model was developed to include the possibility of traveling along

an inclined surface. Here, the simulation was restricted to travel only up or down

the hill, without any possibility to perform turning motion, in order to simplify the

analysis. Figure 4.25 shows the system of coordinates de�ned to represent the system.

The Newtonian reference frame is `N'. The frame `Slope' is rotated an angle θSlope

with respect to the frame `N' and its 'x' axis is parallel to the inclined surface. The

coordinate system `S' was de�ned in previous models as an auxiliary frame that rotates

with respect to frame `N' around the zN axis. In this case, the frames `S' and `Slope'

are parallel. The reference frame `P' rotates along with the human-pendulum system

an angle of θP with respect to frame `Slope'. The rotation angle of the pendulum

with respect to frame `N' is given by:

θP/N = θP + θSlope (4.13)
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Figure 4.25: Segway model traveling over an inclined surface.
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The dynamic equations that take into e�ect the inclination of the ground surface

are:

θ̈p = ((gmb(xwbcos(θslope+ θp) + zwbsin(θslope+ θp))− 2Ty + gmp(xwpcos(θslope+ θp) +

zwpsin(θslope + θp)))(mb + mp + 2mw + (2iy)/r2) − (mb(zwbcos(θp) − xwbsin(θp)) +

mp(zwpcos(θp)−xwpsin(θp)))((2Ty)/r+θ̇2p(mb(xwbcos(θp)+zwbsin(θp))+mp(xwpcos(θp)+

zwpsin(θp)))+gmbsin(θslope)+gmpsin(θslope)+2gmwsin(θslope)))/((mb+mp+2mw+

(2iy)/r2)(iby+ ipy+mb(x
2
wb+ z

2
wb)+mp(x

2
wp+ z

2
wp))− (mb(zwbcos(θp)−xwbsin(θp))+

mp(zwpcos(θp)− xwpsin(θp)))
2)

v̇ = ((Iby + Ipy + mb(x
2
wb + z2wb) + mp(x

2
wp + z2wp))((2Ty)/r + θ̇2p(mb(xwbcos(θp) +

zwbsin(θp)) +mp(xwpcos(θp) + zwpsin(θp))) + gmbsin(θslope) + gmpsin(θslope) + 2gmw

sin(θslope))− (mb(zwbcos(θp)− xwbsin(θp)) +mp(zwpcos(θp)− xwpsin(θp)))(gmb(xwb

cos(θslope + θp) + zwbsin(θslope + θp))− 2Ty + gmp(xwpcos(θslope + θp) + zwpsin(θslope +

θp))))/((mb + mp + 2mw + (2Iy)/r
2)(Iby + Ipy + mb(x

2
wb + z2wb) + mp(x

2
wp + z2wp)) −

(mb(zwbcos(θp)− xwbsin(θp)) +mp(zwpcos(θp)− xwpsin(θp)))
2)

Since the pitch angle of the Segway was de�ned with respect to the frame `Slope',

the control law was modi�ed, since the pitch angle to be controlled is the absolute

pitch θP/N . The new control law is given by:

τy = KpθP/N +Kdθ̇P/N (4.14)

Assuming that the person stands in an upright posture on the Segway, with respect

to axis zP , the normal force between him and the transporter was found to be:

Ffz = 0.5mb[gcos(θSlope + θp) + sin(θp)v̇ − zwbθ̇
2
p − xwbθ̈p] (4.15)

In summary, these simulations work under the following assumptions:

� All the basic assumptions presented in Chapter 2.
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� A rigid body model of the human rider is used.

� The ground is an inclined plane of constant slope.

� The pitch angle is measured with respect to the upright posture of the vehicle.

� The simulation vehicle follows a straight trajectory along the line of greatest

slope.

Figure 4.26 shows the pitch response for di�erent slope angles. A positive slope

means that the Segway is going downhill while a negative one means that the Segway

is going uphill. The initial speed for all tests was 1 m/s and the initial pitch with

respect to frame `N' was 0°. On a �at surface, the simulated transporter remained

balanced, since there are no disturbances at all. When the slope angle becomes

positive the pitch response shifts below the initial pitch angle. This means that

when going downhill, the Segway needs to tilt backward in order to achieve balance.

When the slope is negative the pitch angle increases, which indicates that when the

transporter climbs a slope it needs to tilt forward to increase the torque applied on

the wheels.

Figure 4.26: Pitch response at di�erent slopes - slope simulations.

Figure 4.27 shows the speed response of the Segway. When the slope is positive,

or the transporter is traveling downhill, the speed increases. As can be noticed in

114



Figure 4.27, in the case of a slope angle of -30°, the speed almost reached the speed

limit. In the same �gure, it can be seen that when the slope was positive (uphill

trajectory), the speed decreased over time. Here it is assumed that the person is

standing passively on the Segway, so it is easy to imagine that the person might need

to tilt forward at a higher angle to keep the Segway going uphill in a real scenario.

The Segway might not be able to climb pronounced positive (downhill) slopes, since

as it was seen in Figure 4.26, without the operator doing any motion, the Segway

already reached pitch angles of 30°. If the operator tried to lean further, the load on

the motors might be to large to balance the transporter e�ectively.

Figure 4.27: Speed response at di�erent slopes - slope simulations.

Figure 4.28 shows the force between the person and the Segway as it travels along

the inclined surface. Even though the amplitude and frequency of the force were

a�ected by the slope angle, the force never went dangerously closely to zero.

The e�ect of the initial speed was also studied. Figure 4.29 shows the pitch

response after setting the initial speed at di�erent values. The initial pitch angle was

set to 0° and the slope angle was 30°. As seen in Figure 4.29, the pitch is not a�ected

by the initial speed of the vehicle.
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Figure 4.28: Base-person normal force at di�erent slopes - slope simulations.

Figure 4.29: Pitch response at di�erent initial speeds - slope simulations.

Figure 4.30 shows that the speed response has the same dynamic characteristics

for all cases, except that they are shifted vertically according to the initial value. The

5 m/s case shows that even if the Segway starts going downhill at a speed within its

limits, this speed can be easily increased beyond that value within less than 0.5 s.

Going beyond the speed limit of the Segway for a very long period of time can be

dangerous.

Figure 4.31 shows the normal force at di�erent speeds. In all cases the force stayed

well above 0.
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Figure 4.30: Speed response at di�erent initial speeds - slope simulations.

Figure 4.31: Base-person normal force at di�erent initial speeds - slope simulations.

The e�ect of changing the initial pitch angle was studied for both the uphill and

downhill case. For the downhill case, the initial speed was set to 2.5 m/s and the

slope angle to 20°. Figure 4.32 shows the pitch response for di�erent cases. The

amplitude of the pitch response increased as the initial pitch angle is increased. This

means that if the transporter enters a downhill while accelerating the risk of going

beyond bounds of the admissible pitch is greater. It also shows, as in the 20° case,

that the pitch angle can change drastically in a very short period of time.
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Figure 4.32: Pitch response at di�erent initial pitch angles - downhill slope simula-
tions.

Figure 4.33 shows the speed as the simulated Segway went downhill. The higher

the initial pitch angle was, the greater was the reached speed. In the case where the

initial pitch was 20°, the speed went above the speed limit of the transporter within

less than 0.5 s into the simulation. This is consistent with the previous observation

in that it is risky to go downhill while accelerating (tilting forward).

Figure 4.33: Speed response at di�erent initial pitch angles - downhill slope simula-
tions.

Figure 4.34 shows the forces between the rider and the Segway, assuming that the

rider has no movement relative to it. In the case of the 20° initial pitch, the force
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decreased considerably. This is a result of the initial increase of the speed as shown

in Figure 4.33 and initial reduction of the pitch as shown in Figure 4.32. In other

words, the Segway initially accelerated while it rotating backwards. This combination

of movements caused the force between the rider and the Segway to decrease.

Figure 4.34: Base-person normal force response at di�erent initial pitch angles -
downhill slope simulations.

The e�ect of changing the initial pitch angle was also studied for a transporter

going uphill. Figure 4.35 shows the pitch response. As seen, as the initial pitch angle

was reduced, the pitch response reached a greater maximum value. In one case it even

got close to the pitch limit. This was a result of the Segway slowing down as it went

uphill due to the force of gravity. The decrease in speed caused it to tilt forward.

Figure 4.36 shows the speed response. It is seen that when the transporter was

initially tilted forward, the speed oscillated slightly as it traveled uphill. However,

when it was initially tilted backwards, the speed decreased. This caused the trans-

porter to tilt forward. As a reaction, the motors increased the speed in order to try

to keep it balanced.

Figure 4.37 shows the force between the person and the Segway. In the cases

where the initial pitch was negative, the force decreased very closely to zero in a very

short period of time. When the Segway started going uphill it slowed down and the
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Figure 4.35: Pitch response at di�erent initial pitch angles - uphill slope simulations.

Figure 4.36: Speed response at di�erent initial pitch angles - uphill slope simulations.

pitch angle increased. As this happened, the inertia of the person resisted this motion

and tried to keep going forward. As a consequence, the contact force between the

body and the vehicle was reduced.
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Figure 4.37: Base-person normal force response at di�erent initial pitch angles -
uphill slope simulations.
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4.2.3 Slipping

When designing a controller for an inverted pendulum system it is assumed that there

is no slip between the wheel and the ground. This produces the kinematic constraint

that is given by:

v = rθ̇ (4.16)

where v is the speed of the center point of the wheel, r is its radius and θ̇ is its

angular speed. However, when there is slip, this constraint no longer applies and the

performance of the controller can degrade.

Two-wheeled inverted pendulums can travel along two dimensional paths by mod-

ifying the angular speeds of both wheels. So if it wants to move towards the right,

then the left wheel is spun at a higher rate than the right wheel. In order to adjust

the turning rate, the controller measures the current turning rate and compares it

with the desired turning rate to produce torques on the wheels according to this error,

as explained by equation 4.10.

In a Segway Human Transporter the controller approximates the turning rate by

using the following equation [20, 19]:

β̇ =
r
(
θ̇r − θ̇l

)
l

(4.17)

where β̇ is the turning rate, l the distance between the center points of the two

wheels, and θ̇l and θ̇r are the angular speeds of the left and right wheel [32]. However,

this turning rate is only accurate when there is no slip between the wheels and the

ground. Therefore, if one wheel gets stuck in a slick surface and starts spinning faster

without moving, the controller might sense that the turning ratio is too high and try

to accelerate the other wheel to compensate for this. This would produce a turning
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motion towards the wheel that is slipping. If the right wheel slips, and the left wheel

maintains its current speed, the vehicle ends up turning towards the right.

The modeling of the friction force between a turning wheel and a ground surface is

a complex subject in itself. The friction force required to maintain a no slip condition

or a speci�ed slip velocity depends on the acceleration and normal forces at a certain

time. Here, the e�ect on the vehicle dynamics when the no slip condition is suddenly

lost is studied. First, the wheel slip is de�ned as:

s=
θ̇wr − v

v
(4.18)

where θ̇w is the angular speed of the wheel, r is the radius of the wheel, and v is the

speed at the hub of the wheel of the wheel.

The friction force acting at the contact point between the wheel and the ground

is given by:

Ff = µFn (4.19)

where µ is the traction coe�cient and Fn is the normal force between the wheel and

the ground. The friction forces are represented as Ffrx and Fflx in Figure 4.38.

In the literature, di�erent friction force models can be found. However, the most

widely used is the so called Magic Formula, or Pacejka model [37]. In this model,

the friction coe�cient depends on the slip. Di�erent curves have been adjusted for

di�erent surface-tire interactions and are speci�c for each of them. In this study,

the objective is to identify how the presence of wheel slip a�ects the dynamics of

the vehicle. For this purpose, 3 �ctitious surfaces where simulated using the Magic

Formula: a high-friction, a medium-friction and a low-friction surface. According to

Pacejka, the friction coe�cient can be described by the following set of equations:

C=1 +

[
1− 2

π

(
arcsin

(ya
D

))]
(4.20)
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Figure 4.38: Friction forces acting on the wheels of the Segway.

E=

[
Bxm − tan π

2c

]
Bxm − arctan (bxm)

(4.21)

µ=D sin [C arctan (Bs− E (Bs− arctan (Bs)))] (4.22)

where D is the maximum friction coe�cient, xm is the slip at which the maximum

friction coe�cient occurs, B is the slope of the curve at the origin, and ya is the

friction coe�cient at high slips.. Although the Pacejka model can be applied for the

self aligning torque and transverse friction forces, here the analysis is limited only to

the force in the longitudinal direction, namely, the x-axis. It is assumed that there

is no aligning moment (no slip angle), nor lateral forces actuating between the wheel

and the ground. Only a vertical normal force, and a longitudinal friction force actuate

between the wheel and the ground.
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Based on the curves found in the works by Pacejka [37], di�erent parameters were

tested until three di�erent friction models were obtained. These are shown in Figure

4.39. Table 4.8 shows the parameters used to generate each of the curves.

Figure 4.39: Fictitious friction curves.

Table 4.8: Parameters of the friction curves.
Curve B D ya xm

Low-friction 6.25 0.05 0.049 0.04
Medium-friction 9.5 0.38 0.01 0.15
High-friction 14 0.8 0.27 0.12

A new set of dynamic equations was generated in which the no slip constrain of

the wheels was relaxed. This means that the contact point of the wheel with the

ground has a non-zero velocity, which is called vs. The new kinematic restriction is

described by:

θ̇w=
v − vs
r

(4.23)

The relative velocities of each wheel's contact point with the ground were de�ned

as generalized velocities and a new dynamic model was developed. A simpli�ed dy-

namic model was develop to study the e�ect of friction on both wheels while traveling

in a straight path. A more complete model, that allows for the vehicle to turn left or
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right, was used to study the e�ect of one of the wheels losing traction. These models

are discussed in the next sections.

In summary, the simulations presented in this section work under the following

assumptions:

� The basic assumptions presented in Chapter 2 except the wheels can no slip on

the ground.

� A Rigid body model of the human rider.

� The vehicle can rotate at any desired yaw rate independent of the speed.

� Contact between the wheels and the ground is never lost, so the simulation

vehicle cannot tilt sideways.

� There is no self-aligning torque between the wheel and the ground.

� The friction force acts in the longitudinal direction of the wheel, without a

transverse component.

� In the two-wheel slipping simulations, both wheels are subject to the same

friction model of the surface.

� In the one-wheel slipping simulations, the non slipping wheel rolls without slid-

ing on the ground.
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4.2.3.1 Linear trajectory with slip on both wheels

Simulations of a Segway traveling in a straight line were carried on to see how the

dynamics of the system change when the wheels are allowed to slip on the ground.

The e�ect of di�erent surfaces, di�erent initial speeds and di�erent initial pitch angles

are studied. It is assumed that initially, the Segway is not slipping and that there is

perfect matching between the linear speed of the wheel hub and its angular speed.

Since the Segway is traveling along a straight path and the traction surface is the

same on both wheels, a simpli�ed model that does not turn left of right was devel-

oped. This allowed simulations to be carried in less time. The dynamic equations are:

θ̈p = r2((mb + mp + 2mw)(2Ty − gmb(xwb cos(θp) + zwb sin(θp)) − gmp(xwp cos(θp) +

zwp sin(θp))) − 2Ff (mb(xwb sin(θp) − zwb cos(θp)) + mp(xwp sin(θp) − zwp cos(θp))) −

(mb(xwb cos(θp) + zwb sin(θp)) +mp(xwp cos(θp) + zwp sin(θp)))(mb(xwb sin(θp)− zwb

cos(θp))+mp(xwp sin(θp)− zwp cos(θp)))θ̇
2
p)/(2Iy(Iby+ Ipy+mb(x

2
wb+ z2wb)+mp(x

2
wp+

z2wp)) − r2((mb +mp + 2mw + 2Iy/r
2)(Iby + Ipy +mb(x

2
wb + z2wb) +mp(x

2
wp + z2wp)) −

(mb(xwb sin(θp)− zwb cos(θp)) +mp(xwp sin(θp)− zwp cos(θp)))
2));

v̇ = r2((mb(xwb sin(θp)− zwb cos(θp)) +mp(xwp sin(θp)− zwp cos(θp)))(2Ty − gmb(xwb

cos(θp) + zwb sin(θp))− gmp(xwp cos(θp) + zwp sin(θp)))− 2(Iby + Ipy +mb(x
2
wb+ z2wb) +

mp(x
2
wp + z2wp))Ffz − (Iby + Ipy + mb(x

2
wb + z2wb) + mp(x

2
wp + z2wp))(mb(xwb cos(θp) +

zwb sin(θp))+mp(xwp cos(θp)+zwp sin(θp)))θ̇
2
p)/(2Iy(Iby+Ipy+mb(x

2
wb+z

2
wb)+mp(x

2
wp+

z2wp)) − r2((mb +mp + 2mw + 2Iy/r
2)(Iby + Ipy +mb(x

2
wb + z2wb) +mp(x

2
wp + z2wp)) −

(mb(xwb sin(θp)− zwb cos(θp)) +mp(xwp sin(θp)− zwp cos(θp)))
2))

v̇s = −r4((Ffz−Ty/r)((mb+mp+2mw+2Iy/r
2)(Iby+Ipy+mb(x

2
wb+z

2
wb)+mp(x

2
wp+

z2wp))− (mb(xwb sin(θp)− zwb cos(θp))+mp(xwp sin(θp)− zwp cos(θp)))
2)/(Iy(2Iy(Iby+

Ipy + mb(x
2
wb + z2wb) + mp(x

2
wp + z2wp)) − r2((mb + mp + 2mw + 2Iy/r

2)(Iby + Ipy +
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mb(x
2
wb + z2wb) +mp(x

2
wp + z2wp)) − (mb(xwb sin(θp) − zwb cos(θp)) +mp(xwp sin(θp) −

zwp cos(θp)))
2)))−((mb(xwb sin(θp)−zwb cos(θp))+mp(xwp sin(θp)−zwp cos(θp)))(2Ty−

gmb(xwb cos(θp)+zwb sin(θp))−gmp(xwp cos(θp)+zwp sin(θp)))−(Iby+Ipy+mb(x
2
wb+

z2wb) +mp(x
2
wp + z2wp))(2Ty/r + (mb(xwb cos(θp) + zwb sin(θp)) +mp(xwp cos(θp) +

zwp sin(θp)))θ̇p
2))/(r2(2Iy(Iby+ Ipy+mb(x

2
wb+ z2wb)+mp(x

2
wp+ z2wp))− r2((mb+mp+

2mw+2Iy/r
2)(Iby+Ipy+mb(x

2
wb+z

2
wb)+mp(x

2
wp+z

2
wp))−(mb(xwb sin(θp)−zwb cos(θp))+

mp(xwp sin(θp)− zwp cos(θp)))
2))))

The normal force between any of the wheels and the ground is given by:

Fnz = 0.5g(mb +mp + 2mw) + 0.5sin(θp)(xwbmbθ̇
2
p +mp(xwpθ̇

2
p − zwpθ̈p))

−0.5zwbmbcos(θp)θ̇
2
p − 0.5zwbmbsin(θp)θ̈p

−0.5cos(θp)(xwbmbθ̈p +mp(zwpθ̇
2
p + xwpθ̈p))

(4.24)

Since there is no turning, it is safe to assume that the rider does not lean sideways.

Assuming no rider motion, which is valid for the �rst instants after a disturbance

occurs, the normal force between the rider and the transporter is given by:

Ffz = −0.5mb(gcos(θp) + sin(θp)v̇ − zwbθ̇
2
p − xwbθ̈p) (4.25)

First the e�ect of changing the initial speed was studied. The initial pitch angle

was set to 10° and a medium-friction surface was used. The initial speed was changed

for each case between 1 m/s and 4 m/s. Figure 4.40 shows the pitch response of the

Segway. The initial speed does not play an important role in how well the Segway is

able to balance itself. It is important to note that the Pacejka model does not account

for the speed, whereas other models do. However, this e�ect is more noticeable at

high speeds found in other types of vehicles [8].
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Figure 4.40: Pitch response at di�erent initial speeds - loss of traction on both
wheels.

Figure 4.41 shows the speed of the transporter. The dynamic characteristics of

the response are not a�ected by the initial speed. However, the response translates

according to the initial value along the speed axis of the graph.

Figure 4.41: Speed response at di�erent initial speeds - loss of traction on both
wheels.

Figure 4.42 shows the normal force between the rider at the transporter. Even

though there is some oscillation at the beginning, the value of the force does not

decrease signi�cantly, so the contact between the person and the vehicle is kept strong.
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Figure 4.42: Person-base normal force response at di�erent initial speeds - loss of
traction on both wheels.

Following, the e�ect of di�erent initial pitch angles is studied. The speed of the

vehicle was set to 3 m/s and a medium-friction surface was used. The pitch angle was

varied between 10° and 15°. The pitch response is shown in Figure 4.43. It shows that

when the initial pitch is below 12° the vehicle balances without a problem. However,

at higher pitch angles it becomes unstable. If the rider does not compensate for this,

as in this simulation, the pitch increases past its safe limit. This shows the results

of the available traction force being too small for the vehicle to change its speed fast

enough and keep the system balanced. This is con�rmed by the results in Figure 4.44

where in spite of the pitch increasing or decreasing away from the balanced position,

the speed remained nearly constant.

Figure 4.45 shows the contact force between the Segway and the person. At higher

pitch angles the force decreased and even dropped down to zero. This is a result of

the tilting of the vehicle as well as the pitch angular speed. However, it must be

noted that this occurred one second after it started traveling along the slick surface,

which should be enough time for the rider to produce a di�erent dynamic response

by his reaction.
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Figure 4.43: Pitch response at di�erent initial pitch angles - loss of traction on both
wheels.

The e�ect of di�erent traction surfaces was studied. The simulation was done

at an initial speed of 3 m/s and initial pitch of 15° and repeated with low, medium

and high friction surfaces. Figure4.46 shows the pitch response for each surface. In

the high friction surface, the vehicle was able to keep its balance. The medium and

low friction surfaces didn't provide the necessary traction needed to control the pitch

angle.

Figure 4.47 shows the speed response of the transporter. It shows how the speed

initially increases in the high friction surface more than it does in the medium friction

case. In the high traction case there is more available traction on the wheels so the

transporter can be balanced. In the low friction case, the traction force is so low that

the speed actually decreases and only increases back after 0.75 s.

Both the medium and low friction simulations were terminated earlier because

contact between the Segway and the rider was lost, as shown in Figure 4.48. In the

low friction case, contact was lost at 0.75 s of simulation time while it took around

1.25 s for this to happen in the medium friction case.
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Figure 4.44: Speed response at di�erent initial pitch angles - loss of traction on both
wheels.

Figure 4.45: Base-person normal force response at di�erent initial pitch angles - loss
of traction on both wheels.
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Figure 4.46: Pitch response at di�erent traction forces - loss of traction on both
wheels.

Figure 4.47: Speed response at di�erent traction forces - loss of traction on both
wheels.
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Figure 4.48: Person-base normal force response at di�erent traction forces - loss of
traction on both wheels.
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4.2.3.2 Sudden slip on one wheel

A di�erent set of simulations were run to study the e�ect of only one of the wheels

losing traction with the ground. To do this, the no slip constrain was applied only to

the left wheel, while the right slip was allowed to slip. Therefore, the angular speeds

of the wheels are, given by:

θ̇r =
−(vs − v − wβ̇)

r
(4.26)

θ̇l =
(v − wβ̇)

r
(4.27)

where v is the speed at the midpoint between both wheels, w is half the distance

before both wheels, r is the radius of the wheels, and β̇ is the turning rate of the

vehicle.

The slip on the right wheel is given by:

s =
θ̇rr − (v + wβ̇)

v + wβ̇
(4.28)

The relative velocity of the right wheel's contact point with the ground was de�ned

as a generalized speed. This resulted in the dynamic equations that can be found in

Appendix A.

Simulations were run with the initial conditions matching a situation in which

the transporter would not be slipping. That means that the initial condition of

the right wheel's angular speed was related to the wheel's hub speed by the no slip

constrain. The e�ects of the initial speed, initial pitch angle and the traction surface

were studied.

A set of simulations with an initial pitch angle of 5°, using a medium friction

surface were performed at di�erent initial speeds. Figure 4.49 shows the contact force

between the right wheel and the ground for these cases. It is important to note that
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the force initially decreases. For initial speeds of 2 m/s or higher the force becomes

zero in less than 0.25 s. That is, the right wheel loses contact with the ground

only after 0.25 s. This time is smaller as the speed increases. The simulations were

terminated at the moment that contact with the ground was lost.

Figure 4.49: Wheel-ground normal force response at di�erent speeds - loss of traction
on the right wheel.

Figure 4.50 shows the pitch response of the transporter for di�erent initial speeds.

It shows that in the cases where the simulation was not terminated early due to loss of

contact between the wheel and the ground, the controller was able to achieve balance

in the pitch direction. Another visible e�ect was that the amplitude of the oscillation

increased with higher initial speeds.

Figure 4.51 shows the speed response. In the cases were the simulation was not

terminated due to wheel-ground contact loss, the speed stayed within close bounds

to its initial value. An increase in initial speed only caused the entire speed response

to translate in the positive direction of the speed axis.

Figure 4.52 shows the yaw rate response for each initial speed case. It is seen that

at the start, when the no-slip constrain between the right wheel and the ground is

lost, the transporter starts to turn towards the right (negative yaw rate). The graph

also shows that the left turning rate increased as the initial speed increased. A static
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Figure 4.50: Pitch response at di�erent speeds - loss of traction on the right wheel.

Figure 4.51: Speed response at di�erent speeds - loss of traction on the right wheel.

analysis of a mass with two supports on the ground traveling along a circular trajec-

tory yields that the normal force on the right support is given by mvehicle

(
g + 1

2w
vβ̇
)
.

Therefore, the force is reduced as the turning rate negatively increases. This means

that the results shown in Figure 4.52 and Figure 4.49.

The e�ect of the initial pitch angle is studied next. A medium friction surface

was used and the initial speed was set to 1.5 m/s. Higher speeds did not allow to

study di�erent characteristics in the dynamic response because the Segway would

lose contact with the ground very early in the simulation. Figure 4.53 shows the

137



Figure 4.52: Yaw rate response at di�erent speeds - loss of traction on the right
wheel.

pitch response for di�erent angles. The 10° case was terminated almost from the

start because the normal force dropped to instantly, as will be discussed later. The

0° and 8° cases were also terminated early. It must be noted, though, that the real

equilibrium angle of the pendulum is 1.2°. This means that an initial pitch just 1.2°

below the balanced position, like 0°, caused the device to fail.

Figure 4.53 shows that in all cases were ground contact was not terminated early,

the pitch oscillation amplitude increased as the initial pitch was increased.

Figure 4.53: Pitch response at di�erent initial pitch angles - loss of traction on the
right wheel.
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Figure 4.54 shows the speed response at di�erent initial pitches. It shows that

regardless of the initial pitch, the speed remained very close to the initial value. The

same e�ect that was observed when the initial speed was modi�ed.

Figure 4.54: Speed response at di�erent initial pitch angles - loss of traction on the
right wheel.

Figure 4.55 shows the yaw rate response for di�erent initial pitch angles. All the

yaw rates initially decrease (the vehicle turns to the right), except for the 0° (turns to

the left). So the di�erence between the initial pitch and the equilibrium pitch a�ects

the yaw rate both in magnitude and direction. If the transporter is tilted forward,

losing traction in the right wheel will cause the vehicle to turn right. To the contrary,

it will turn left if it is tilted backwards. In none of the cases presented here was the

transporter able to stabilize in the yaw direction within simulation time.
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Figure 4.55: Yaw rate response at di�erent initial pitch angles - loss of traction on
the right wheel.

Figure 4.56 shows the normal force between the right wheel and the ground. For

almost all cases, it decreased abruptly at the beginning of the simulation. In the 10°

initial pitch case it almost instantly drops to zero. In the other cases, except for an

initial pitch of 0°, it gets very close to zero but then increases back. It is interesting to

note that in the 8° the normal force on the right wheel didn't go below zero, and the

contact loss occurred in the left wheel instead, as shown in Figure 4.57. In the 0° initial

pitch case (which is less than the equilibrium pitch), the force initially increased but

then decreased below zero afterward, and contact with the ground was lost. Figure

4.57 shows that contact was not lost in the left wheel during the simulation of the 0°

initial pitch case.

Next, the initial pitch was set to 4° and the intiial speed to 3 m/s. Then, simu-

lations were run using di�erent traction surfaces. The simulations were terminated

when the contact force of any of the wheels with the ground dropped to zero. Figure

4.58 shows the pitch response. In all cases the pitch did not increase signi�cantly

away from the equilibrium pitch. The low and high friction cases failed before the

simulation time ended. However, the medium friction case didn't. This indicates that
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Figure 4.56: Wheel-ground normal force response at di�erent initial pitch angles -
loss of traction on the right wheel.

besides the friction coe�cient magnitude, other characteristics of the friction model

might play a role.

Figure 4.59 shows the speed response for the same cases. The speed does not

deviate considerable from its initial value.

Figure 4.60 shows the yaw rate response. At the beginning, the yaw rate became

negative (the vehicle turns to the right). It was noted that the higher the friction

force, the higher was the right turning rate. However, after reaching a minimum,

the yaw rate increases and the turning rate becomes positive (turning to the left).

Then the turning rate kept increasing until the contact between the left wheel and

the ground is lost. It is interesting to note that the high friction curve intersected

with both the medium and low friction cases. The important fact to note is that the

loss of traction in one of the wheels yields unstable responses in the yaw direction.

The normal force between the right wheel and the ground is shown in Figure 4.61.

It is important to note also that at higher pitch angles and higher speeds failure

occurs earlier in time. The previous simulations were repeated at an initial pitch of

4° and initial speed of 3 m/s. Figure 4.62 shows the right wheel contact forces with
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Figure 4.57: Left wheel-ground normal force response at di�erent initial pitch angles
- loss of traction on the right wheel.

the ground. It shows how just a slight increase in pitch and speed made the vehicle

lose traction within tenths of seconds.
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Figure 4.58: Pitch response at di�erent traction forces - loss of traction on the right
wheel.

Figure 4.59: Speed response at di�erent traction forces - loss of traction on the right
wheel.
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Figure 4.60: Yaw rate response at di�erent traction forces - loss of traction on the
right wheel.

Figure 4.61: Right Wheel-ground normal force response at di�erent traction forces
- loss of traction on the right wheel.
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Figure 4.62: Right Wheel-ground normal force response at di�erent traction forces
- loss of traction on the right wheel at higher speeds and pitches.
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4.2.4 Disturbance forces simulations

Two types of disturbance forces where applied on the model of the transporter. These

forces were: a disturbance force applied on the handlebar of the Segway, and a distur-

bance force applied on the left wheel of the Segway. These simulations are described

in more detail in the following sections.

In summary, the limitations of the disturbance force simulations are:

� All the assumptions presented previously in Chapter 2 regarding the two-wheeled

inverted pendulum.

� In the central disturbance force cases, the force was a step function with a

duration of 0.02 s and applied horizontally on the handlebar.

� A rigid body model of the human rider.

4.2.4.1 Central Disturbance

A force was applied on the handlebar of the Segway model, as shown in Figure 4.63.

Because the base of the Segway, the handlebar, and the person experience no relative

motion with respect to each other, the force was located on the pendulum body by

using a vector from the midpoint between the wheels .

Di�erent initial pitch angles and speeds conditions were assumed and the applied

force was varied from 0 N to 5000 N. The force was a constant pulse with a duration

of 0.2 s. The initial pitch angles were -40°, -20°, 0°, 20° and 40°. The initial speeds

were 0 m/s, 2 m/s and 4 m/s. The force was applied on the handlebar at a height

of 1 m from the base of the Segway. The transporter falls forward as the pitch angle

increases.

The criteria for failure are:

� Speed above 12.5 mph

� Pitch angle above within ±40°
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� Ground-Segway normal equal zero.

� Segway-rider normal forces equal zero.

The times at which these failure conditions were detected were plotted against the

magnitude of the disturbance force. When no failure condition occurred before the

simulation ended, no failure time was recorded for that case.

Figure 4.63: Disturbance force acting on the handlebar of the Segway.

Figure 4.64 shows the maximum oscillation amplitude of the pendulum. Each

graph corresponds to one initial speed, and each curve corresponds to a speci�c ini-

tial pitch angle for that particular speed. At low forces, the maximum pitch angle

increases gradually with an increase in the applied force. In the case where the initial

pitch is -20°, this increase occurs until the force approaches values between 2kN and

3 kN. For these forces, the maximum pitch exceed 90°. This means is that when

the force is strong enough, the Segway hits the ground before being able to regain

balance. In the case of the -40° initial pitch, this happened at around 3000 N. For
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the other cases at 0 m/s initial speed, the Segway was able to regain balance before

hitting the ground.

Comparing the 2m/s case with the 4 m/s shows that as the speed of the Segway

increases, a smaller force is needed to destabilize it. For example, in the case cor-

responding to an initial pitch of 20° and an initial speed of 2 m/s a force of around

2.5 kN destabilized the transporter, while at 4 m/s initial speed, the force was only

2 kN. Both cases showed that a negative initial pitch value makes it easier for the

transporter to become unstable.

Figure 4.64: Maximum Pitch vs. Force.

Figure 4.65 shows the period of oscillation for the same sets of initial conditions

and the same forces as previously described. The oscillation period increases steadily
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before the pitch exceeds the value at which the transporter would hit the ground. Both

graphs on Figure 4.65 show that at higher pitch values, the oscillation period remains

constant, regardless of the force being applied. However, very negative initial pitch

values cause the period to increase signi�cantly as the applied force gets stronger.
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Figure 4.65: Oscillation vs. Disturbance.

Figure 4.66 shows the time at which the maximum pitch is reported. The cases

where the model Segway hit the ground before regaining balance are identi�ed by

the data before the end of the graph. As shown in these curves, the maximum pitch

always occurred between 0.5 and 1 s after the force was applied. This means that for

a strong enough force, the Segway will crash against the ground in less than 1 second.

The maximum pitch time depends on the initial pitch. As the initial pitch in-

creases, the time of the maximum pitch also increases. This can be observed in both

graphs in Figure 4.66. The initial speed does not signi�cantly a�ect how long it takes

for the maximum pitch to be reached. Changing the initial speed only translates the

curves towards the left on the Force axis.
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Figure 4.66: Time at which maximum pitch occurs.
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Figure 4.67 shows the time at which the pitch limit angle of 40° is reached after

the disturbance force is applied. When the initial speed was 2 m/s, this limit was

only reached for initial pitch angles of -20° and -40°. In the case where the initial

speed was 4 m/s, the 0° initial pitch angle case also exceeded the pitch limit. The

pitch limit angle was reached slightly before the maximum pitch angle. This can be

observed by comparing curves in Figure 4.66 with those in Figure 4.67.

Figure 4.67: Time at which pitch limit is reached.

Figure 4.68 shows the time at which the Segway speed limit of 12.5 mph was

reached. The speed limit is reached at smaller forces and at shorter times than the

pitch limit. The speed limit is reached when the initial pitch angle is positive. Re-

member that the controller compensates for positive pitch by accelerating the vehicle.

At negative pitch angles, the speed does not increase signi�cantly with the applied
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force. At higher speeds, a smaller force is needed in order for the vehicle to reach the

speed limit. This can be observed by comparing both graphs in Figure 4.68.

Figure 4.68: Time at which speed limit is reached.
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Figure 4.69 shows the failure time for each case. Failure time is the earliest time

during the simulation at which a condition of failure arose, whether it was an excess

pitch angle, high speed limit, a zero contact force between the vehicle and ground, or

a zero contact force between the vehicle and rider. In most cases, the failure cause

was exceeding the speed limit.

Figure 4.69: Time at Failure.

Figure 4.70 shows the distance traveled by the Segway before a condition of failure

occurred. It can be noticed, in most cases, how the distance traveled increases as

the force increases. However, a point is reached for each case when the distance

drops dramatically. This means a condition of failure occurred very quickly. In the

simulation code, the failure time also accounted for the points at which wheel-ground

and rider-base dropped to zero. These are the cases when the Segway fell down.
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The way to determine this is if any normal force is found to be zero before the

pitch limit, or the maximum pitch was reached. This indicates a normal force of

zero while the Segway still trying to balance itself. The reason why this can occur

is that the person is not only standing on the Segway but is also rotating as it falls

down. If this rotation is fast enough, the person will be thrown o� the Segway. This

happens because the contact force is a compression force, and cannot pull the person

towards the vehicle. If the vehicle also accelerates in a direction opposite to which it

is rotating, the e�ect can be aggravated.

Figure 4.71 shows the time at which the normal forces between the base of the

Segway and the rider become zero. It is assumed that the rider does not do any

relative movements with respect to the Segway. It shows that for some initial pitch

angles, -40°, -20° and 40°, these normal forces become zero at around 0.25 s after

the disturbance was applied. As noticed in Figure 4.64, for forces below 2000 N, the

Segway did not crash to the ground, and the pitch did not exceed 90° (~1.57 rad),

which means that the person lost support from the Segway before the Segway was

completely tilted down.
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Figure 4.70: Distance traveled before failure.
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Figure 4.71: Rider-Segway Forces
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4.2.4.2 Disturbance on wheel

A force was applied on the left wheel of the Segway model as shown in Figure 4.72.

The force was located xlb in front of the center of the wheel and zlb above it. The

components of the force were approximated by those measured on the bump tests

performed on the Segway i2, as described before. . The forces were de�ned as a half

sine pulse with a duration of 0.1 s, and peak magnitudes in the X,Y and Z axes of 594

kN, 561 kN, and 792 kN. These values were calculated by using the peak accelerations

measured during the medium speed bump test. They then were multiplied by the

mass of the Segway-rider system, 132 kg.

It is important to note that this simulation restricts the Segway to travel along

the ground plane. For this reason, even if the vertical force is big enough to lift the

Segway o� the ground, the simulation will not represent this behavior.

Figure 4.72: Disturbance force acting on a wheel.

Figure 4.73 shows the maximum pitch angle reached by the Segway after the

disturbance force was applied on its left wheel. The graph shows the results for

di�erent initial pitch angles and initial speeds. It is important to note that any pitch

angle above 1.57 (90°) means that the person-pendulum set is below ground level.
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Therefore, as it is shown in Figure 4.73, the Segway fell down to the �oor (the pitch

exceeded 90°) for all the cases when the initial pitch angle was greater than or equal

to -20°. This means the Segway can better resist these kind of disturbances when it

is tilted backwards. It is interesting to note that the initial speed did not have an

e�ect on the maximum pitch.

Figure 4.73: Maximum pitch angle.

Figure 4.74 shows the time at which the maximum pitch occurred. Unlike the

period of oscillation, in this case, the time at which the peak pitch occurred is in�u-

enced by the initial pitch angle, with the time increasing as the pitch angle increases.

This is taking into account only the cases where the Segway did not crash against the

ground (initial pitch of -40° and -30°). Again, the speed did not seem to a�ect the

time of the maximum pitch angle.

Figure 4.74: Time at which maximum pitch occurred.
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Figure 4.75 shows the time at which the pitch limit of 40° is reached. For an initial

pitch of -40°, the pitch limit was not reached at all. For the rest of the cases, the ones

with negative initial pitch angles, the pitch limit was reached around 2 seconds into

the simulation. For the cases when the initial pitch angle was zero or positive, the

pitch limit was reached almost immediately after the force was applied on the wheel.

The speed did not a�ect this time either. This means that when the rider is about to

hit a bump, it can be bene�cial to lean backwards in order to make the vehicle more

robust to it.

Figure 4.75: Time at which pitch limit is reached.

Figure 4.76 shows the time at which the speed limit was reached after applying

the disturbance force on the wheel. The case where the initial speed is 6 m/s is not

shown, because 6 m/s is above the speed limit of 12.5 mph. For the other cases,

the speed limit is reached before the maximum pitch occurred, as can be noticed by

comparing Figure 4.74 and Figure 4.76. However, this is not the case for the 10°

initial pitch case, where the speed limit was not reached during the simulation at all.

It was noticed that the pitch limit is reached before the speed limit when the

initial pitch angle is positive. This is visible when comparing Figures 4.75 and 4.76.

It is important to note that even when the speed limit is reached before the pitch

limit, the Segway would still fall over.
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Figure 4.76: Time at which speed limit is reached.

Figure 4.77 shows the time at which contact is lost between the rider feet and the

base of the Segway. Both feet lose contact almost immediately after the disturbance

force is applied. However, it is interesting to note that the order in which this happens

depends the initial pitch angle. If the initial pitch angle is less or equal than -20°,

then contact is �rst lost on the right foot. The opposite occurs for angles greater than

-20°. These results are limited in accuracy by the simulation restricting the trajectory

of the Segway wheels to travel in a plane parallel to the ground.

Figure 4.78 shows the simulation time at which the normal force between the

wheels and the ground becomes zero. In all cases, the left wheel lost contact almost

immediately after the disturbance force was applied. The right wheel lost contact later

in time as the initial pitch angle was increased, and this time reached a maximum

when the initial pitch was 10°.

When the initial pitch angle was greater than -20°, the right wheel was able to

maintain contact with the ground for some time after the left wheel lost contact. This

explains why when the initial pitch angle was greater than -20°, the right foot lost

contact after the left foot.

Figure 4.79 shows the global failure time, which is the time at which the �rst

condition of failure was detected. This takes into account the Segway-ground and
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Figure 4.77: Time of contact loss at each foot.

rider-base normal forces. As seen, the �rst condition of failure is always detected

almost immediately after the disturbance is applied. The largest time before a failure

was detected occurred in the initial pitch angle of 20° case, in which the failure time

was 0.125 s.
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Figure 4.78: Time of contact loss of each wheel.
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Figure 4.79: Failure Time.

4.3 Summary of failure modes

In this chapter, di�erent failure modes were studied. It was found that sudden turn-

ing of the vehicle, without the person leaning over, caused the wheel-ground forces to

become zero in less than 0.02 s. In the slope simulations, failure occurred due to sur-

passing the speed limit, which occurred within time frames of 0.1 to 0.7 s, depending

on the initial pitch angle and the slope angle.

Simulations showed that slick surfaces make it hard for the vehicle to balance

itself, and it falls to the ground within 0.75 to 1.25 s if no corrective measure is taken

by the rider. When only one wheel slips on the ground, the wheel-ground contact is

lost in as little as 0.1 s.

Disturbance simulations showed that depending on the magnitude of the distur-

bance force applied, as well as initial speed and pitch angle, the vehicle will fall down

to the ground in as little as 0.2 to 0.8 s. When a force was applied to the wheel of

the vehicle, the failure time occurred between 0.03 s to 0.1 s.
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CHAPTER V

CONCLUSIONS

Two-wheeled inverted pendulums are systems that can be stabilized by simple con-

trollers, such as a PD feedback controller. This approach is satisfactory in conditions

where the disturbance forces are negligible and the system parameters are �xed. The

Segway human transporter is a two-wheeled inverted pendulum that has been com-

mercialized for its use in public spaces. In these spaces, there are numerous factors

that can interfere with the performance of the balancing controller and can cause

safety hazards to its user and the surrounding environment. Furthermore, operators

with variable inertia parameters and time-varying actions make the system deviate

considerably from simple linear dynamical behavior. In this thesis, a dynamic model

of a two-wheeled inverted pendulum carrying a human rider was developed. This

model was used to simulate basic dynamic behavior, as well as possibly dangerous

conditions that can arise when traveling in real-world environments.

The literature review showed that many control techniques have been applied to

the stabilization problem of two-wheeled inverted pendulums. These systems have

also been proposed for some practical applications. However, there is a lack of under-

standing of how non ideal conditions and time-varying uncertainties a�ect the stability

of such systems. This is especially important for practical applications, where non

ideal conditions arise on a regular basis.

A dynamic model of a two-wheeled inverted pendulum was presented in Chapter

II. The basic dynamics of a simple pendulum were studied where the movements of

the cart in the direction in which the pendulum is falling down was demonstrated

using simulations. Then, the basic geometric and mass properties of a two-wheeled
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inverted pendulum were used to produce the dynamic equations of motion of the

system. Following, a rigid-body model of a human rider was de�ned and added to

the model to produce the equations of motion of a two-wheeled inverted-pendulum

human transporter.

Experiments were performed to study the dynamic behavior of the Segway hu-

man transporter. Under small disturbances, the Segway-Human system has a very

predictable behavior. In such cases, pitch angle and speed responses showed almost

linearly under-damped responses. However, when stronger forces were involved, the

human dynamics started to play a role. In such cases, the responses were di�cult

to predict due to the movements performed by the rider, showing the importance of

their role in controlling the vehicle. Yaw turning dynamics were also studied and a

map between the turning command and a resulting yaw rate was obtained from the

experimental results.

The experimental results were used to set the simulation parameters for three dif-

ferent cases. First, the parameters of a two-wheeled inverted pendulum were adjusted

to simulate the impulse response of an unloaded Segway. Then, a rigid-body model

of a human was added to the model and its parameters adjusted until the simulation

response matched the experimental impulse response of a loaded Segway to a manu-

ally applied force on the rider. Finally, the model parameters were set to match the

response of the Segway and human rider to a known force.

The dynamic model was used to simulate di�erent environmental conditions. Sim-

ulations of sudden turning motions showed the importance of the human rider for the

stability in the roll direction. Without the person compensating for the centrifugal

e�ect, the Segway model could not turn at very high speeds or high yaw rates with-

out losing wheel-ground contact. When traveling on inclined surfaces, the pitch angle

stability and speed are a�ected. It was found that the ability to climb up or go down

a hill is highly a�ected by the pitch angle. Higher pitch angles helped the vehicle
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climb up, and negative pitch angles helped to avoid instability when going down a

slope. Slick surfaces also a�ected how well the vehicle could balance. Low friction

surfaces limit the capability of the motors to accelerate the vehicle. When a high

pitch angle is present and the traction provided by the ground is low, the vehicle is

more likely to lose balance. If only one of the wheels loses traction with the ground,

unstable yaw dynamics can be observed, and the e�ect was aggravated when high

pitch angles were present.

Simulations of inclined surfaces and slipping in both wheels also showed that

contact between the rider and the vehicle can be lost under many combinations of

pitch angular accelerations and linear accelerations. Because the forces between the

rider and the vehicle are compressive contact forces, when abrupt changes in net

accelerations occur at high pitch angles, there is no force available to hold the rider

and the vehicle together. In many of these simulations, failure conditions such as

surpassing pitch and speed limits, or normal forces dropping to zero, occurred within

tenths of seconds.

5.1 Future work

The work presented here can be extended in several di�erent directions. The dynamic

model presented here could be extended in order to account for an active human

rider. More experimental testing can be carried out to track the human motion on

di�erent roles such as accelerating, decelerating, and turning. Markers can be placed

on di�erent segments of the person operating the vehicle. A more complex human

model, in which each body segment is modeled as one rigid body could be developed.

Then, the motion tracking data can be used to command the movements of the model

person in the simulation.
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A �rst step in extending the human model would be to model the interaction

between him and the vehicle as a �exible link replacing the arm, as shown in Figure

5.1.

Figure 5.1: Flexible link between the transporter and its rider.

Tracking human motion when turning will provide information needed to simulate

the movements required to tilt the handlebar. A more realistic scenario of the roll

stability of the Segway i2 can be constructed from this information.

The model of the transporter could also be extended to account for the elasticity

of the wheels. This will produce more realistic results when roll instability occurs.

Currently, when sudden turning motion occurs, the model produces forces that change

instantly. Including deformable wheels would eliminate this e�ect. The traction

model can also be extended to include self aligning torques and transverse friction

forces. This will allow the inclusion of more general trajectories in simulations of

slipping conditions.

Steps of di�erent heights can be simulated to determine the e�ectiveness of the

transporter when dealing with irregularities on the surface. Having deformable wheels
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will also be useful to simulate the dynamics of a Segway in this case because it plays

an important role during the collision between the wheel and the obstacle.
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APPENDIX A

DYNAMIC EQUATIONS - SLIPPING IN ONE WHEEL
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zwp cos(θp))−mb(2xwbzwb sin(θp)
2+x2wb sin(θp) cos(θp)−xwbzwb−z2wb sin(θp) cos(θp)))β̇2)))

/(Iwy(Iby+Ipy+mb(x
2
wb+z

2
wb)+mp(x

2
wp+z

2
wp))(Ibz+Ipz+2Iwxz+2mww

2+2Iwyw
2/r2+

mb(xwb cos(θp) + zwb sin(θp))
2 + mp(xwp cos(θp) + zwp sin(θp))

2 + (Ibx + Ipx − Ibz −

Ipz) sin(θp)
2)− (Iwyw

2+r2(Ibz+Ipz+2Iwxz+2mww
2+mb(xwb cos(θp)+zwb sin(θp))

2+

mp(xwp cos(θp) + zwp sin(θp))
2 + (Ibx + Ipx − Ibz − Ipz) sin(θp)

2))((mb + mp + 2mw +

2Iwy/r
2)(Iby + Ipy +mb(x

2
wb+ z2wb)+mp(x

2
wp+ z2wp))− (mb(xwb sin(θp)− zwb cos(θp))+

mp(xwp sin(θp)− zwp cos(θp)))
2))
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v̇ = −(r2(Ibz+Ipz+2Iwxz+2mww
2+mb(xwb cos(θp)+zwb sin(θp))

2+mp(xwp cos(θp)+

zwp sin(θp))
2 + (Ibx + Ipx − Ibz − Ipz) sin(θp)

2)((Iby + Ipy +mb(x
2
wb + z2wb) +mp(x

2
wp +

z2wp))Ffr + (Iby + Ipy + mb(x
2
wb + z2wb) + mp(x

2
wp + z2wp))(Tl/r + mp(xwp cos(θp)θ̇

2
p +

zwp sin(θp)θ̇
2
p+(xwp cos(θp)+zwp sin(θp))β̇

2)+mb(xwb cos(θp)(θ̇
2
p+cos(θp)

2β̇2)+sin(θp)

(zwbβ̇
2+zwbθ̇

2
p+xwb sin(θp) cos(θp)β̇

2)))−(mb(xwb sin(θp)−zwb cos(θp))+mp(xwp sin(θp)−

zwp cos(θp)))(Tl+Tr−gmb(xwb cos(θp)+zwb sin(θp))−gmp(xwp cos(θp)+zwp sin(θp))−

((Ibx − Ibz) sin(θp) cos(θp) + (Ipx − Ipz) sin(θp) cos(θp)−mp(xwp cos(θp) + zwp sin(θp))

(xwp sin(θp)−zwp cos(θp))−mb(2xwbzwb sin(θp)
2+x2wb sin(θp) cos(θp)−xwbzwb−z2wb sin(θp)

cos(θp)))β̇
2)) + Iwyw(2w(Iby + Ipy + mb(x

2
wb + z2wb) + mp(x

2
wp + z2wp))Ffr + w(Iby +

Ipy+mb(x
2
wb+ z

2
wb)+mp(x

2
wp+ z

2
wp))(mp(xwp cos(θp)θ̇

2
p+ zwp sin(θp)θ̇

2
p+(xwp cos(θp)+

zwp sin(θp))β̇
2) +mb(xwb cos(θp)(θ̇

2
p + cos(θp)

2β̇2) + sin(θp)(zwbβ̇
2 + zwbθ̇

2
p + xwb sin(θp)

cos(θp)β̇
2)))−(Iby+Ipy+mb(x

2
wb+z

2
wb)+mp(x

2
wp+z

2
wp))β̇(2(Ibx−Ibz) sin(θp) cos(θp)θ̇p+

2(Ipx−Ipz) sin(θp) cos(θp)θ̇p−mb(xwb cos(θp)+zwb sin(θp))(2xwb sin(θp)θ̇p−v−2zwb cos(θp)

θ̇p)−mp(xwp cos(θp)+zwp sin(θp))(2xwp sin(θp)θ̇p−v−2zwp cos(θp)θ̇p))−w(mb(xwb sin(θp)−

zwb cos(θp)) +mp(xwp sin(θp)− zwp cos(θp)))(Tl+ Tr − gmb(xwb cos(θp) + zwb sin(θp))−

gmp(xwp cos(θp)+zwp sin(θp))−((Ibx−Ibz) sin(θp) cos(θp)+(Ipx−Ipz) sin(θp) cos(θp)−

mp(xwp cos(θp)+zwp sin(θp))(xwp sin(θp)−zwp cos(θp))−mb(2xwbzwb sin(θp)
2+x2wb sin(θp)

cos(θp)−xwbzwb− z2wb sin(θp) cos(θp)))β̇
2)))/(Iwy(Iby+ Ipy+mb(x

2
wb+ z

2
wb)+mp(x

2
wp+

z2wp))(Ibz+Ipz+2Iwxz+2mww
2+2Iwyw

2/r2+mb(xwb cos(θp)+zwb sin(θp))
2+mp(xwp cos(θp)

+ zwp sin(θp))
2 + (Ibx + Ipx − Ibz − Ipz) sin(θp)

2) − (Iwyw
2 + r2(Ibz + Ipz + 2Iwxz +

2mww
2 +mb(xwb cos(θp) + zwb sin(θp))

2 +mp(xwp cos(θp) + zwp sin(θp))
2 + (Ibx+ Ipx−

Ibz − Ipz) sin(θp)
2))((mb+mp+2mw +2Iwy/r

2)(Iby + Ipy +mb(x
2
wb+ z2wb) +mp(x

2
wp+

z2wp))− (mb(xwb sin(θp)− zwb cos(θp)) +mp(xwp sin(θp)− zwp cos(θp)))
2))

v̇s = −r4((Ffr − Tr/r)(Ibz + Ipz + 2Iwxz + 2mww
2 + 2Iwyw

2/r2 + mb(xwb cos(θp) +

zwb sin(θp))
2 +mp(xwp cos(θp) + zwp sin(θp))

2 + (Ibx + Ipx − Ibz − Ipz) sin(θp)
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mp + 2mw + 2Iwy/r
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2
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zwb cos(θp)) + mp(xwp sin(θp) − zwp cos(θp)))
2)/(Iwy(Iwy(Iby + Ipy + mb(x

2
wb + z2wb) +

mp(x
2
wp+z

2
wp))(Ibz+Ipz+2Iwxz+2mww

2+2Iwyw
2/r2+mb(xwb cos(θp)+zwb sin(θp))

2+

mp(xwp cos(θp)+zwp sin(θp))
2+(Ibx+Ipx−Ibz−Ipz) sin(θp)2)− (Iwyw

2+r2(Ibz+Ipz+

2Iwxz+2mww
2+mb(xwb cos(θp)+zwb sin(θp))

2+mp(xwp cos(θp)+zwp sin(θp))
2+(Ibx+

Ipx−Ibz−Ipz) sin(θp)2))((mb+mp+2mw+2Iwy/r
2)(Iby+Ipy+mb(x

2
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2
wb)+mp(x

2
wp+
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2
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2
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2
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2
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2
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2
p + (xwp cos(θp) + zwp sin(θp))β̇
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2
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cos(θp)
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2
p + xwb sin(θp) cos(θp)β̇
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2
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2
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sin(θp)− zwp cos(θp))−mb(2xwbzwb sin(θp)
2 + x2wb sin(θp) cos(θp)− xwbzwb− z2wb sin(θp)

cos(θp)))β̇
2))/(r2(Iwy(Iby + Ipy +mb(x

2
wb + z2wb) +mp(x

2
wp + z2wp))(Ibz + Ipz + 2Iwxz +
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2/r2+mb(xwb cos(θp)+ zwb sin(θp))
2+mp(xwp cos(θp)+ zwp sin(θp))

2+

(Ibx+Ipx−Ibz−Ipz) sin(θp)2)−(Iwyw
2+r2(Ibz+Ipz+2Iwxz+2mww

2+mb(xwb cos(θp)+

zwb sin(θp))
2 +mp(xwp cos(θp) + zwp sin(θp))

2 + (Ibx + Ipx − Ibz − Ipz) sin(θp)
2))((mb +

mp + 2mw + 2Iwy/r
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2
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2
wp + z2wp))− (mb(xwb sin(θp)−

zwb cos(θp)) +mp(xwp sin(θp)− zwp cos(θp)))
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173



REFERENCES

[1] Aerospace Medical Research Laboratory, �Investigation of the Iner-
tial Properties of the Human Body,� Accessed on May 24, 2012. Available:
http://www.dtic.mil.

[2] Aerospace Medical Research Laboratory, �Moments of Inertia and Cen-
ters of Gravity of the Living Human Body,� Accessed on May 24, 2012. Available:
http://www.dtic.mil.

[3] Anderson, C. W., �Learning to control an inverted pendulum with connec-
tionist networks,� in American Control Conference, 1988, pp. 2294 �2298, june
1988.

[4] Bagdanoff, J. L. andCitron, S. J., �Experiments with an inverted pendulum
subject to random parametric excitation,� pp. 447�452, 1965.

[5] Blitzer, L., �Inverted pendulum,� vol. 33, no. 12, pp. 1076�1078, 1965.

[6] Boniface, K.,McKay, M. P., Lucas, R., Shaffer, A., and Sikka, N., �Se-
rious injuries related to the Segway personal transporter: A case series,� Annals
of Emergency Medicine, vol. 57, no. 4, pp. 370 � 374, 2011.

[7] Bui, T. H., Nguyen, T. T., Chung, T. L., and Kim, S. B., �A simple
nonlinear control of a two-wheeled welding mobile robot,� International Journal
of Control, Automation, and Systems, vol. 1, no. 1, pp. 35�42, 2003.

[8] Canudas de Wit, C. and Tsiotras, P., �Dynamic tire friction models for
vehicle traction control,� in Decision and Control, 1999. Proceedings of the 38th
IEEE Conference on, vol. 4, pp. 3746�3751, IEEE, 1999.

[9] Choi, D. and Oh, J.-H., �Human-friendly motion control of a wheeled inverted
pendulum by reduced-order disturbance observer,� in Robotics and Automation,
2008. ICRA 2008. IEEE International Conference on, pp. 2521 �2526, may 2008.

[10] Deegan, P., Thibodeau, B., and Grupen, R., Designing a self-stabilizing
robot for dynamic mobile manipulation. Proc. RSS Workshop: Manipulation for
Human Environments, Philadelphia, PA, Aug, 2006.

[11] Ding, F., Huang, J.,Wang, Y.,Matsuno, T., Fukuda, T., and Sekiyama,
K., �Modeling and control of a novel narrow vehicle,� in Robotics and Biomimet-
ics (ROBIO), 2010 IEEE International Conference on, pp. 1130 �1135, dec.
2010.

174



[12] D.W, �Segway,� Accessed on May24, 2012. Available:
http://www.dudeworld.com.au/REVIEW.SEGWAY.HTML.

[13] Grasser, F., D'Arrigo, A., Colombi, S., and Rufer, A. C., �Joe: A mo-
bile, inverted pendulum,� IEEE Transactions on Industrial Electronics, vol. 49,
pp. 107�114, February 2002.

[14] Ha, Y.-S. and Yuta, S., �Trajectory tracking control for navigation of the
inverse pendulum type self-contained mobile robot,� Robotics and Autonomous
Systems, 1996.

[15] Huang, C., Wang, W.-J., and Chiu, C.-H., �Velocity control realisation for a
self-balancing transporter,� Control Theory Applications, IET, vol. 5, pp. 1551
�1560, 8 2011.

[16] Jeong, S. H. and Takahashi, T., �Wheeled inverted pendulum type assistant
robot: inverted mobile, standing, and sitting motions,� in Intelligent Robots and
Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pp. 1932
�1937, 29 2007-nov. 2 2007.

[17] Jung, S. and Kim, S. S., �Control experiment of a wheel-driven mobile inverted
pendulum using neural network,� Control Systems Technology, IEEE Transac-
tions on, vol. 16, pp. 297 �303, march 2008.

[18] Kakio, M., Miyashita, T., Mitsunaga, N., Ishiguro, H., and Hagita,

N., �Natural re�exive behavior for wheeled inverted pendulum type humanoid
robots,� in Robot and Human Interactive Communication, 2006. ROMAN 2006.
The 15th IEEE International Symposium on, pp. 451 �456, sept. 2006.

[19] Kamen, D., Ambrogi, R., Dattolo, J., Duggan, R., Field, J., Heinz-
mann, R., McCambridge, M., Morrell, J., Piedmonte, M., Rosasco,
R., and others, �Control of a personal transporter based on user position,�
Oct. 2 2007. US Patent 7,275,607.

[20] Kamen, D., Arling, R., Field, J., Morrell, J., and Pompa, J., �Steering
control of a personal transporter,� June 24 2003. US Patent 6,581,714.

[21] Katariya, A. S., �Optimal State-Feedback and Output-Feedback Controllers
for the Wheeled Inverted Pendulum System,� Master's thesis, Georgia Institute
of Technology, 2010.

[22] Kim, Y., Kim, S. H., and Kwak, Y. K., �Improving driving ability for a two-
wheeled inverted-pendulum-type autonomous vehicle,� Proceedings of the Insti-
tution of Mechanical Engineers, Part D: Journal of Automobile Engineering,
vol. 220, no. 2, pp. 165�175, 2006.

[23] KIM, Y., KIM, S. H., and KWAK, Y. K., �Dynamic analysis of a nonholo-
nomic two-wheeled inverted pendulum robot,� Journal of Intelligent and Robotic
Systems, vol. 44, pp. 25�46, 2005.

175



[24] Ko, A., Lau, H., and Lau, T., �Soho security with mini self-balancing robots,�
The Industrial Robot, vol. 32, no. 6, pp. 492�498, 2005.

[25] Kolhe, P., Dantam, N., and Stilman, M., �Dynamic pushing strategies for
dynamically stable mobile manipulators,� in Robotics and Automation (ICRA),
2010 IEEE International Conference on, pp. 3745 �3750, may 2010.

[26] Kuindersma, S., �Control model learning for whole-body mobile manipulation,�
vol. 3, (Atlanta, GA, United states), pp. 1939 � 1940, 2010.

[27] Li, J., Gao, X., Huang, Q., Du, Q., and Duan, X., �Mechanical design
and dynamic modeling of a two-wheeled inverted pendulum mobile robot,� in
Automation and Logistics, 2007 IEEE International Conference on, pp. 1614
�1619, aug. 2007.

[28] Li, Z. and Xu, C., �Adaptive fuzzy logic control of dynamic balance and mo-
tion for wheeled inverted pendulums,� Fuzzy Sets and Systems, vol. 160, no. 12,
pp. 1787 � 1803, 2009. <ce:title>Theme: Control Engineering</ce:title>.

[29] Li, Z. and Zhang, Y., �Robust adaptive motion force control for wheeled in-
verted pendulums,� Automatica, vol. 46, no. 8, pp. 1346 � 1353, 2010.

[30] Lowenstern, E. R., �Stabilising e�ect of imposed oscillations on a dynamical
system,� Philosophical Magazine, vol. 13, pp. 458�486, 1932.

[31] Miles, J., �Directly forced oscillations of an inverted pendulum,� Physics Letters
A, vol. 133, no. 6, pp. 295 � 297, 1988.

[32] Morrell, J. B. and Field, D., �Design of a closed loop controller for a two
wheeled balancing transporter,� in Proceedings of the 2007 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, (San Diego, CA, USA), Oct
29 - Nov 2 2007.

[33] Nasrallah, D., Angeles, J., and Michalska, H., �Velocity and orientation
control of an anti-tilting mobile robot moving on an inclined plane,� in Robotics
and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Con-
ference on, pp. 3717 �3723, may 2006.

[34] Nawawi, S., Ahmad, M., and Osman, J., �Development of a two-wheeled
inverted pendulum mobile robot,� in Research and Development, 2007. SCOReD
2007. 5th Student Conference on, pp. 1 �5, dec. 2007.

[35] Nelson, R. A. and Olsson, M. G., �The pendulum rich physics from a simple
system,� American Journal of Physics, vol. 54, no. 2, pp. 112�121, 1986.

[36] Ness, D. J., �Small oscillations of a stabilized, inverted pendulum,� vol. 35,
no. 10, pp. 964�967, 1967.

176



[37] Pacejka, H., Bakker, E., and Nyborg, L., �Tyre modelling for use in vehicle
dynamics studies,� SAE paper, vol. 870421, 1987.

[38] Pathak, K., Franch, J., and Agrawal, S. K., �Velocity and position con-
trol of a wheeled inverted pendulum by partial feedback linearization,� IEEE
Transactions on Robotics, vol. 21, no. 3, pp. 505�513, 2005.

[39] Pavel Holoborodko, �Smooth noise-robust di�erentiators,� Accessed on
May14, 2012. Available: http://www.holoborodko.com/pavel/numerical-
methods/numerical-derivative/smooth-low-noise-di�erentiators.

[40] Phelps, F. and Jr., J. H., �An analytical solution of the inverted pendulum,�
1964.

[41] Pippard, A. B., �The inverted pendulum,� European Journal of Physics, vol. 8,
no. 3, p. 203, 1987.

[42] Rozenblat, G. H., �Optimal parametric stabilization of an inverted pendulum,�
Journal of Applied Mathematics and Mechanics, vol. 45, no. 1, pp. 45 � 50, 1981.

[43] Ruan, X.-g. and Zhao, J., �The �exible two-wheeled self-balancing robot based
on hop�eld,� in Intelligent Robotics and Applications (Xie, M., Xiong, Y.,
Xiong, C., Liu, H., and Hu, Z., eds.), vol. 5928 of Lecture Notes in Computer
Science, pp. 1196�1204, Springer Berlin / Heidelberg, 2009.

[44] Sahba, M., �Computer-aided design of feedback controllers for nonlinear sys-
tems with applications to control of a double-inverted pendulum,� IEE proceed-
ings. D, Control theory and applications, vol. 130, no. 6, pp. 350�358, 1983.

[45] Sasaki, M., Yanagihara, N., Matsumoto, O., and Komoriya, K., �For-
ward and backward motion control of personal riding-type wheeled mobile plat-
form,� in Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE
International Conference on, vol. 4, pp. 3331 � 3336 Vol.4, 26-may 1, 2004.

[46] Sawatzky, B., Denison, I., and Tawashy, A., �The segway for people
with disabilities meeting clients' mobility goals,� American journal of physical
medicine and rehabilitation, vol. 88, no. 6, pp. 484�490, 2009.

[47] Segway Inc., �PT Models for Individuals,� Accessed on May 6, 2012. Available:
http://www.segway.com/individual/models/index.php.

[48] Segway Robotics, �Project PUMA,� Accessed on May 6, 2012. Available:
http://www.segway.com/puma/.

[49] Segway Robotics, �Segway RMP,� Accessed on May 6, 2012. Available:
http://rmp.segway.com/.

[50] Shiroma, N., Matsumoto, O., and Tani, K., �Cooperative behavior of a me-
chanically unstable mobile robot for object transportation,� JSME International
Journal Series C, vol. 42, no. 4, pp. 965�973, 1999.

177



[51] Stephenson, A., �A new type of dynamic stability,� Proc. of the Manchester
Literary and Philosophical Society, 1908.

[52] Stephenson, A., �On induced stability,� Philosophical Magazine, 1909.

[53] Stilman, M., Wang, J., Teeyapan, K., and Marceau, R., �Optimized con-
trol strategies for wheeled humanoids and mobile manipulators,� in Humanoid
Robots, 2009. Humanoids 2009. 9th IEEE-RAS International Conference on,
pp. 568 �573, dec. 2009.

[54] Takahashi, Y., Nonoshita, H., Nakamura, T., and Maeda, Y., �Behav-
ioral development of ball kicking motion of a two-wheeled inverted pendulum
mobile robot,� in Fuzzy Systems (FUZZ), 2010 IEEE International Conference
on, pp. 1 �6, july 2010.

[55] Takei, T., Imamura, R., and Yuta, S., �Baggage transportation and nav-
igation by a wheeled inverted pendulum mobile robot,� Industrial Electronics,
IEEE Transactions on, vol. 56, pp. 3985 �3994, oct. 2009.

[56] Takei, T., Matsumoto, O., and Komoriya, K., �Simultaneous estimation of
slope angle and handling force when getting on and o� a human-riding wheeled
inverted pendulum vehicle,� in Intelligent Robots and Systems, 2009. IROS 2009.
IEEE/RSJ International Conference on, pp. 4553 �4558, oct. 2009.

[57] Vicon Motion Systems Limited, �Vicon | Products | Cam-
eras | MX-3+ [Online],� Accessed on March 15, 2012. Available:
http://www.vicon.com/products/mx3.html.

[58] Vicon Motion Systems Limited, �Vicon MX Hardware System Reference,
Revision 1.6, Oxford, UK, 2007.�

[59] Vlassis, N., Toussaint, M., Kontes, G., and Piperidis, S., �Learning
model-free robot control by a monte carlo em algorithm,� Autonomous Robots,
vol. 27, pp. 123�130, 2009. 10.1007/s10514-009-9132-0.

[60] Winter, D., Patla, A., Prince, F., Ishac, M., and Gielo-Perczak,

K., �Sti�ness control of balance in quiet standing,� Journal of Neurophysiology,
vol. 80, no. 3, pp. 1211�1221, 1998.

[61] Yamafuji, K. and Kawamura, T., �Study on the postural and driving control
of a coaxial bicycle,� Transactions of the JSME, Series C, vol. 54, no. 501,
pp. 1114�1121, 1988.

[62] Yamakawa, T., �Stabilization of an inverted pendulum by a high-speed fuzzy-
logic controller hardware system,� Fuzzy Sets and Systems, vol. 32, no. 2, pp. 161�
180, 1989.

178


