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SUMMARY

The development of low-frequency SONAR systems, using a network of au-

tonomous systems in unmanned vehicles, provides a practical means for bistatic mea-

surements (i.e. when the source and receiver are widely separated, thus allowing

multiple viewpoints of a target). Furthermore, time-frequency analysis, in partic-

ular Wigner-Ville analysis, takes advantage of the evolution of the time dependent

echo spectrum to differentiate a man-made target (e.g. an elastic spherical shell, or

cylinder) from a natural one of the similar shape (e.g. a rock). Indeed, key ener-

getic features of man-made objects can aid in identification and classification in the

presence of clutter and noise. For example, in a fluid-loaded thin spherical shell, an

energetic feature is the mid-frequency enhancement echoes (MFE) that result from

antisymmetric Lamb waves propagating around the circumference of the shell, which

have been shown to be an acoustic feature useful in this pursuit. This research inves-

tigates the enhancement and benefits of bistatic measurements using the Wigner-Ville

analysis along with acoustic imaging methods. Additionally, the advantage of joint

space-time-frequency coherent processing is investigated for optimal array processing

to enhance the detection of non-stationary signals across an array. The proposed

methodology is tested using both numerical simulations and experimental data for

spherical shells and solid cylinders. This research was conducted as part of the Shal-

low Water Autonomous Mine Sensing Initiative (SWAMSI) sponsored by ONR.
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CHAPTER I

INTRODUCTION

1.1 Introduction

Detecting and classifying man-made objects in shallow water is a challenging problem

with high operational importance. Because of their effective propagation in water,

acoustical waves have become a major tool in the detection of objects in underwater

systems. Some applications include, but are not limited to, mine countermeasures

(MCM), pipeline maintenance, buried waste retrieval, as well as underwater archeol-

ogy [11].

Mine-countermeasure (MCM) advancement has been a priority of the military for

decades. Mine technology has continued to develop alongside these counter-measures,

and therefore this is a never-ending pursuit [71, 80, 44, 50, 15]. Naval mine coun-

termeasures are performed to counter the effectiveness of underwater mines. The

primary motivation for the research presented here is intended to be focused toward

target detection intended for future application to the MCM problem. The MCM

application will provide the overarching elements (i.e. detection using the structural

acoustic regime of frequencies from bistatic data) for this research. The full solution

to mine countermeasure problem will not be the goal of the research, rather the goal

will be to develop methods and tools useful for simple man-made target detection

under the basic MCM elements laid out in this chapter.

1.2 Motivation

The current detection of underwater targets, includes methods that consists of high

frequency acoustic imaging from SONAR equipped ships or unmanned vehicles (e.g.
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using the Remote Environmental Monitoring Units (REMUS)) of an area for detec-

tion [80, 71, 28]. These systems are not always capable of detection and require

improvement for certain scenarios, such as, when a object is buried in the sediment,

or when the area has a large amount of clutter (i.e. rocks or decoys) that make

detection difficult.

During the past decade, systems consisting of multiple Autonomous Underwater

Vehicles (AUV) have been developed in order to accomplish the complex mission of

identifying and classifying man-made targets in the presence of other objects on the

sea bottom. Furthermore, using a network of autonomous unmanned vehicles pro-

vides a practical means for bistatic measurements (i.e. when the source and receiver

are widely separated). These bistatic measurements allow for multiple viewpoints

of the target of interest. Such systems can potentially yield bistatic enhancement

for detection and classification capabilities when compared to traditional monostatic

systems [50, 61].

The Office of Naval Research (ONR) recently sponsored a research project to aid

the development of a multi-Autonomous Underwater Vehicle (AUV) framework for

mine-countermeasure activities, which has been designated as the Shallow Water Au-

tonomous Mine Sensing Initiative (SWAMSI). The SWAMSI program was developed

to collect at-sea data using multiple AUVs and provide a proof of concept for the

improvement of concurrent detection and classification. The multistatic (source and

receivers are located separately) field characteristics obtained from SWAMSI, rather

than classical SONAR imaging (monostatic - source and receiver co-located), can

then be used as a foundation for enhancing concurrent detection and classification.

The SWAMSI main objective was the achievement of robust multi-static detection

and classification of proud (lying on the ocean bottom) and buried seabed objects

using cooperative networks of autonomous vehicles equipped with acoustic sources

and receiving arrays.
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1.3 Detection Problem

Mine technology has become increasingly more complex through the years (i.e. in-

cluding complex shapes such as composite truncated cones), though there are design

features that are not likely to change in the near future. Mines have to not only hold

explosives, but also are required to be stable during transportation and deployment

at depth in the ocean. These requirements usually lead to the use of a thin shell

design, typically made from a steel alloy or polymer. The thin shell is an optimal

solution to the design criteria of stability, cost, and capacity, thus this was selected

to be the focus for developing a detection scheme for determining acoustic features

of targets.

Extensive work has been completed on the underwater target detection in shallow

water problem to improve capability. This has included development of broadband

high resolution (high frequency > 70 kHz) imaging systems for target detection;

however, there remains a need for improvement for detection and classification of the

buried objects on the ocean floor. Some proposed methods include low frequency

SONAR, dual frequency SONAR (high and low frequency), and magnetic detection

systems [15, 80, 43].

In the context of low-mid frequency active SONAR (structural acoustics regime

< 70 kHz), a key interest in target detection is the ability to identify acoustic echoes

of man-made targets, such as elastic shells, from ocean reverberation due to volume

scattering and ambient noise especially in the presence of multipath [50]. The anal-

ysis of acoustic scattering by elastic shells, such as spheres is a topic that has been

receiving attention for the last several decades [25, 65, 91, 55]. In particular, time-

frequency analysis has been shown to be a relevant tool for the acoustic detection and

classification of elastic shells and propagation in dispersive media [24, 105, 102].

Additionally the use of multiple AUV’s allows bistatic or multistatic data col-

lection, but also presents challenges in operation and signal processing due to the
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collection of multiple viewpoints on different systems. A monostatic configuration is

a traditional approach for SONAR and imaging systems; However, additional infor-

mation may be obtained using bistatic views of targets from the various AUV’s where

the receiver location differs from the source. The literature and tools for low-mid

frequency bistatic processing of scattered data is sparse and deserves further

attention. Focusing on the low-mid frequency regime allows the excitation of the

structural acoustics and allows the response to propagate with lower attenuation.

The scattered field of a man-made target (e.g. an elastic shell) can be simplified

and separated into a specular contribution and a structural or elastic response (e.g.

due to the target’s resonances) [24, 52, 73]. The specular contribution is simply the

direct geometrical reflection from an object, which depends on the reflectivity and

shape of the object; whereas the elastic response is dependent on both the object’s

structure, shape, and material properties. Therefore, the elastic response portion

of the scattered field contains additional information about an object, which can be

useful in detection and classification. However, this elastic response often has a lower

amplitude than the specular echo and requires additional processing for detection.

One of the important issues regarding the physics of the scattering from elastic

shells is the isolation and the analysis of the energetic acoustic features of the target.

In target detection and classification, resonance of man-made elastic targets is a key

concept that differentiates them from rocks or other clutter that may have similar

shapes. In addition, it has been established that at lower frequencies, man-made

targets, such as elastic shells, support the excitation and radiation of strong structural

waves and resonances that create a specific acoustic signature that distinguishes them

from other objects, and can be used for recognition of certain types of targets. Most

of the previous work in this area has addressed the far-field monostatic scattering

problem, though this research will present methods that could make full use of AUV’s,

which could possibly make better use of the bistatic target response.
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1.4 Approach

For target detection and classification systems, development of a signal processing

methods require detailed knowledge of the physical behavior of the acoustic energy

insonifying an elastic object. The analysis of the target acoustic scattering response is

of crucial importance to identify a set of relevant parameters that due to their direct

relationship to the physical properties best represent the fundamental characteristics

of a target.

This dissertation sets out to present and analyze tools for improving detection

of elastic targets using low-mid frequency monostatic and bistatic data, especially in

the presence of guided or elastic waves that appear in the structural acoustics regime

of frequencies [86, 40, 52]. Consequently, in order to implement optimum receiver

and signal processing algorithms for such bistatic SONAR systems, it is then fruitful

to further understand the spatial and temporal variations of the bistatic acoustic

scattering responses of elastic shells.

Furthermore, this research will focus on low-mid frequency SONAR for detection

and classification as opposed to common detection techniques that use higher fre-

quency SONAR for sea-floor imaging. Under this research, the goal will ultimately

be to develop processing tools to improve the use of bistatic data to enhance detection

of man-made targets. Specifically, the use of space-time-frequency methods will be

implemented in order to enhance detection of the elastic contribution to the measured

scattered field from an object. Time-frequency analysis allows further understanding

of the time and frequency evolution of a signal in the bistatic regime; similarly, the

additional information available via the time-frequency analysis provides a means to

combine signals coherently from a given source in an optimal fashion.
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1.5 Background

This section will briefly introduce some necessary background knowledge and highlight

the scope of this research. Additional background information will be presented in

the subsequent chapters where it will be more relevant.

One of the first requirements of any detection system is to find a robust feature or

phenomenon that is unique to the target of interest. For underwater target detection,

this requires a robust acoustic scattering feature that will allow a system to distinguish

between targets of interest (elastic shells in this case) and clutter. The system can

then leverage signal-processing methods (i.e. array processing, acoustic imaging) to

enhance the detection capabilities of an identifying feature. This section will justify

the use of SONAR operating at the structural acoustic regime of frequencies to excite

elastic response (e.g. guided waves circumnavigating the shell) of targets with simple

canonical shapes (i.e. sphere, cylinder).

1.5.1 Frequency Selection

Traditional detection systems operate at high frequencies (i.e. when the acoustic

wavelength is much smaller than the target dimensions) for high resolution acoustic

imaging. However, if a target were to be buried or covered in sediment these higher

frequencies do not allow sound to effectively penetrate into the ocean bottom. The use

of the lower structural acoustic regime of frequencies or low to mid frequency regime,

approximated in literature at f < 80 ka (normalized frequency unit, where k is the

wavenumber and a is the fundamental dimension of the object) has been an emerging

trend for detection and classification scenarios [54, 80, 60, 50]. This trend is due to

the low frequency SONAR having better ability to penetrate the ocean floor through

evanescent coupling, as shown in Fig. 1.1, as well as having lower attenuation.

The critical angle for propagation at an interface can be found as θc = sin−1(ρ2c2/ρ1c1)

(where ρ and c are the medium density and sound speed of the water (1) and sediment
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Figure 1.1: Low-frequency representation of subcritical scattering and evanescent
coupling for a buried shell. Image adapted from Fig. 3 in Lucifredi et al. [52].

(2) respectively). For large standoff distances, the low frequency acoustic energy is

able to penetrate the bottom for subcritical scattering angles, which is necessary to

detect a buried object at a reasonable standoff distance. The acoustic penetration into

the ocean bottom typically requires a powerful and directional source to accomplish

this subcritical insonification of the sediment [76, 52, 43].

Furthermore, previous literature has shown the detection performance for buried

objects increases when angles and frequencies below the shallow water environment

critical angle are used in the presence of a rippled seabed [76]. Low-mid frequency

systems additionally allow for greater standoff distance for sound propagation in

shallow water due to attenuation and environmental propagation effects, which can

be beneficial for large coverage areas, since the SONAR system would not be required

to be directly on top of an object for detection. In this low frequency regime, one can

excite guided waves which couple to the elastic structure of man-made objects and

radiate into the surrounding medium. As previously mentioned, these guided waves
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are of particular interest as they are typically apparent only in man-made objects and

can be used for detection and classification as will be further discussed in Chapter II.

1.5.2 Bistatic Detection

The acoustic scattered field from a target is a function of the structure, shape, and

material as well as other propagation and environmental factors [58]. For reliable

detection and classification, a robust and unique acoustic target feature should be

used (in some cases this may be the specular reflection). In particular to bistatic

detection, these features should also exist when measured in a bistatic source-receiver

configuration. These robust features can be used by classifier software, which is used

to determine the identity of a specific target [101].

Recent studies have demonstrated the benefit of bistatic measurements for target

detection applications [50, 61]. These bistatic measurements allow for collection of

multiple viewpoints of the target, which can potentially enhance the detection and

classification capabilities of SONAR systems when compared to traditional monos-

tatic systems. These recent studies have primarily been presented as a method to

collect additional specular viewpoints from around a target [61, 50].

One approach for target detection is to use the monostatic (θ = 180◦) specular

echo and diffuse bottom scattering, which can be processed to form an acoustic image.

These images can be processed to locate targets shaped like mines, or those casting

an acoustic shadow that is expected of a mine shaped object. A pitfall of this type of

processing is that the image relies on the specular reflections from a target, and diffuse

scattering from the bottom to return in the direction of the source. Certain stealthy

objects, such as mines have considered this and reduced the amount of specular

scattering that occurs with acoustic coatings and shapes such as truncated cones or

cylinders (see depiction of specular reflection in Fig. 1.2) [71]. One difference of this

dissertation research will be to make use of bistatic data to enhance the imaging of
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the elastic response from a spherical shell. Another proposed improvement would be

to use a larger portion of the scattered field beyond the monostatic view by placing a

receiver in the bistatic field, which would allow the strongest scattered sound within

the bistatic regime to be collected [50, 7]. This could be accomplished by having an

AUV circle an object of interest to collect all source-receiver aspects of the target.

Detection of even simple objects, such as a cylinder, can be improved by the

bistatic measurement of the scattered field. The shape and response from a cylinder

by monostatic detection schemes alone are not able to collect the entire shape of the

object effectively since only the edges of the cylinder are able to scatter energy in the

monostatic direction (θs = θr labeled on Fig. 1.2). The monostatic response from a

cylinder additionally does not allow for a complete image of the object to be formed

without further processing of multiple monostatic viewpoints. However, bistatic data

from the cylinder could allow for more information about the shape of the object

from the specular reflections collected along bistatic receiver positions as depicted in

Fig. 1.2.

Current detection processes could be improved using the specular portion of the

scattered field to determine the shape of the object based on the shape of the monos-

tatic or bistatic scattering amplitude of a target. The collection of data from circular

paths of the source and receiver at different angles θs and θr respectively could allow

for the amplitude of the direct scattered field and scattered field radiation pattern to

be obtained [100]. The pattern of the specular echo from a target may not be unique

enough to allow identification of similarly shaped targets. The elastic contribution of

a target will have a different angular dependence than the specular reflection simply

due to the physical mechanisms of the guided wave and radiation of energy from a

target as will be discussed in Chapter III. This method is complicated by the fre-

quency dependence of the scattered field pattern. Moreover, a directional receiver

can be scanned across different angles where the target reflection is expected to be
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Figure 1.2: Schematic of bistatic specular scattering from a cylinder. This figure
depicts a plane wave source angle (θs) resulting in the scattered field which primarily
reflects at an angle (here as the receiver angle (θr)), located away from the source
location.

highest, which typically requires the use of a bistatic system as the monostatic system

will not necessarily have the highest return [75, 52].

1.5.3 Simple Elastic Targets

Another approach to this bistatic detection problem is to use the elastic response of

the scattered field from an object, which will also be a contribution of this research.

Effective use of the elastic response of the scattered field requires the scattering be-

havior to be well understood in order to coherently combine and process various

viewpoints of a target. For this purpose, an in depth study of the elastic behavior in

a bistatic configuration from a simple elastic target is beneficial.

Scattering of an acoustic plane wave from an elastic spherical shell has been consid-

ered a standard problem, for which analytical solutions have been extensively studied
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both theoretically and experimentally [55, 62, 85, 90]. These standard problems are

important for the evaluation of approximate numerical models and can contribute to

the understanding of the physics and behavior of acoustic interaction with the elastic

target. This canonical target shape was selected as the basis for developing the meth-

ods presented in this dissertation as its acoustic scattered field and echo generation

mechanism is well understood.

The main motivation of previous studies was to develop a precise description of the

mechanisms of echo formation, in order to accurately describe the physical features

of acoustic scattering. In particular, a separate and unique goal of this dissertation

is to identify low-mid frequency acoustic features unique to elastic shells (i.e. man-

made objects) and how these acoustic features change with a particular source-target-

receiver geometry in order to ultimately use these features for classification purposes.

Understanding of the acoustic response can be simplified by separating the scat-

tered field of an elastic object into two types of waves, the specular and guided waves,

which have distinctly different behavior (i.e. rigid body and elastic response). In the

low to mid frequency acoustic regime (< 80 ka), a fluid-loaded thin spherical shell

produces the specular or direct reflection similar to any acoustically reflective object

of comparable shape, as well as, guided waves or Lamb waves circumnavigating the

shell, as shown schematically in Fig. 1.3. The canonical model presented here, as-

sumes a plane-wave broadband pulse is incident from the left on a thin spherical shell

immersed in water. The ray diagram, shown in Fig. 1.3, of the simplified scattered

field is displayed for the specular reflection (dash dot line), and surface guided waves

(dashed line) circumnavigating the shell. The surface guided wave couples into the

shell’s wall at angle α, measured from the normal direction to the shell’s wall, and

radiates out towards a receiver, located at a distance r and azimuth angle θ, at the

same angle α. For simplicity, only the counter-clockwise path around the shell is

illustrated in Fig. 1.3, but note that similar clockwise paths also propagate around
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the shell. The guided waves excited in the scattered field are a result of the elastic

material and thin shell structure of the sphere. These waves are robust, but often are

of a low amplitude when measured away from the backscatter region.

Figure 1.3: Schematic and ray diagram for the simplified acoustic scattering problem
under consideration. Depicting a simplified ray path for the specular and guided
waves.

Consequently, bistatic detection of these guided waves would need to be enhanced,

for instance by combining the signals measured on an array of receivers using array

beamforming techniques. But, the design of an optimal beamformer for detection

applications should then be determined by the specific time-frequency coherence of

the bistatic echoes in order to allow optimal coherent addition of these echoes across

a bistatic aperture [89]. The main goal of Chapter III is to investigate theoretically

and numerically the bistatic variations of the MFE for a fluid-loaded, thin spherical

shell and propose a method for processing data with the behavior.
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1.5.4 Acoustic Imaging

Synthetic aperture SONAR (SAS) imaging is one acoustic imaging method used in

detection applications [61, 43, 58, 27]. The principle of SAS is to combine successive

pings coherently along known positions in order to increase length of the array without

requiring a physically larger array. SAS has the potential to produce high resolution

images down to millimeter resolution from hundreds of meters away in the ocean and

thus is a suitable technique for imaging of the ocean bottom for detection applications.

SAS has a very close resemblance with synthetic aperture RADAR (SAR). While SAS

technology is maturing fast, it is still relatively new compared to SAR and has key

differences in implementation due to the fundamental differences in frequencies and

propagation speed.

SAS operated at high frequency is a proven method of detecting objects, and is a

current technology used by the Navy for shallow water target detection; however, it

may result in false alarms, due to the lack of ability to classify targets from clutter of

similar shape such as rocks or decoys[84, 28]. One example of the limitation is shown

in Fig. 1.4b, in which there is a sphere and a mine-like object side-by-side in the high

frequency (120-180 kHz) SAS image. From this picture and information alone, it is

difficult to distinguish a rock from a mine of comparable geometry. These objects cast

an acoustic shadow behind them due to the object blocking the acoustic wave from

scattering off the ocean bottom directly behind them (see Fig. 1.4a). The shadows

cast by the objects can be extremely useful in the detection and classification allowing

the system to better determine an object’s shape and height. However, if a target is

buried, an acoustic shadow no longer exists, and this shadow classification method

becomes obsolete for the purposes of detection. Additionally, the elastic waves excited

from low-frequency SONAR can fill this shadow region and sometimes may appear

as secondary targets behind a target true location in an image.

Typical acoustic imaging uses the specular reflection and diffuse bottom scattering
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Figure 1.4: Schematic (a) and Example (b) of acoustic imaging, where the image
is formed from ground scatter, specular echo from a target, and an acoustic shadow.
The example here is of a High frequency SAS system of a 1 m spherical shell, and a
mine like object. The acoustic data was taken on a fixed rail SONAR platform using
a signal of the frequency band 120-180 kHz. Image reproduced from Sutton et al.
[84].
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from an array in order to form an image of the ocean bottom [60]. This imaging

process will be presented in detail in Chapter IV. One complication to imaging occurs

with the presence of the elastic contribution from a target, due to the delayed arrival

and coupling with the target structure. The elastic response can skew the image of

the target or appear as a separate target using standard SAS methods. It is possible

to isolate the specular reflection to eliminate this effect; however, the information of

the elastic portion of the scattered field will then be lost. As mentioned previously the

elastic contribution could add information in the SAS image and may be used to help

discriminate between a man-made object and a simple rock (with no characteristic

elastic return).

This research will propose a method to modify the SAS processing for leverag-

ing these elastic contributions for imaging and detection. This phenomenon will be

presented and discussed in detail in Chapter V.

1.6 Research Objectives and Overview

The objective of this research is to improve and propose methods available for the

detection and classification of a man-made target by means of time-frequency analysis

and bistatic enhancement. The goal of the tools developed in this dissertation can be

expressed in two words: “detection” and “classification.” The proposed methodology

was tested by means of numerical simulations and experimental data (conducted

in the pond at the Naval Surface Warfare Center in Panama City, Florida). The

complete solution to the overarching MCM buried object detection and classification

reaches well beyond the scope of this research, and therefore the contributions of the

research may be broken down into four main objectives:

1. Investigate and show bistatic variations in time-frequency representation of the

acoustic response from elastic spherical shell.
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2. Implement an acoustic imaging algorithm that simply takes into account the

delayed elastic echoes compared to the specular echo for elastic shells.

3. Apply the proposed methodology to an experimental data set collected in a

controlled environment: the pond at Naval Surface Warfare Center Panama

City (NSWCPC).

4. Develop Coherent Space-Time-Frequency array processing method to enhance

detection of non-stationary signals.

1.7 Organization

The dissertation has been separated into six chapters based on the various research

objectives. Chapter II reviews the numerical modeling techniques and the behavior

and description of the scattered field of the spherical elastic shell. Additionally this

chapter introduces methods used for the analysis and presents results from a param-

eter study of the spherical shell to highlight the important elastic feature useful for

classification. Chapter III goes on to introduce and discuss the bistatic behavior of

the elastic target response, and the time-frequency beamforming approach to adjust

for the behavior. Chapter IV takes the approach to apply back-propagation methods

and a SAS imaging algorithm to the simple targets, and presents the limitations.

Then a modification to the SAS method is proposed for handling the elastic contri-

butions in the structural acoustics regime. The SAS algorithms are then applied to

the NSWC-PC pond experiment for spherical shell and solid cylinder targets. Chap-

ter V introduces some noise reduction techniques of non-stationary signals across an

array and proposes a new Space-Time-Frequency approach to reduce noise for such

a problem. Chapter VI concludes the dissertation with a summary of the work and

contributions as well as suggested future work.
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CHAPTER II

ACOUSTIC SCATTERING FROM SPHERICAL SHELLS:

MODELING AND ANALYSIS METHODS

2.1 Motivation and Background

One of the goals of this research is to gain knowledge of the complexities and chal-

lenges associated with detecting targets in a shallow water environment. Once these

challenges are understood and defined, the subsequent chapters will propose and in-

vestigate methods to enhance the detection capability of the targets. The process

taken in this endeavor is first to understand the scattered field from a man-made

object of interest, and study robust features that may be useful for detection as well

as classification. This includes implementing and utilizing a MatLab code developed

by Manell E. Zakharia’s research group using the canonical model of a spherical shell

in order to determine a strategy for acoustic detection. Even in seemingly simple

axisymmetric objects, the detection process is full of caveats, which quickly make the

problem complex. This chapter presents the tools used for modeling and analyzing

a spherical shell, studies in depth the mid-frequency energetic feature of a spherical

shell. The purpose of this chapter is to introduce, review, and investigate previous

work dealing with acoustic waves scattered by an elastic spherical shell. This re-

view will lay the groundwork for the methods and serve to study the mechanisms for

detection of these waves.

The problem of sound scattering by an air-filled elastic spherical shell was first

considered by Junger [45], who used the theory of thin shells to describe shell motion

as a rigid body scatter plus the “radiation scattering” found from the forced vibrations

on a plane wave excitation. Later, it was demonstrated that this theory did not
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completely describe the flexural vibrations of a shell [47]. A full solution of the

problem for scattering by a fluid loaded shell was proposed by Goodman and Stern

[31] and based on the exact theory of elasticity and matched boundary conditions.

Goodman and Stern’s work placed a fluid filled shell in an ideal fluid, and simplified

the model to approximate several special cases. This dissertation uses the generalized

results presented by Goodman and Stern [31], which are true not only for thin shells

but also for an elastic spherical layer of arbitrary thickness.

This chapter is divided into four remaining sections. Section 2.2 presents the

theoretical model used for computing the acoustic scattering from spherical shell.

This section will then present a discussion of the low-mid frequency response from the

spherical shell. Section 2.3 will present the time-frequency methods and discuss the

Wigner-Ville distribution used to analyze the elastic scattering of the target. Section

2.4 then reviews and investigates the robust nature of the elastic response from the

spherical shell with a parameter study to fully explore the proposed energetic feature

for possible detection and classification. The final section contains a summary and

discussion of the elastic spherical shell target response of interest for this research.

2.2 Scattering from an Elastic Spherical Shell: Theory and
Numerical Modeling in Free Space

The canonical model presented here, assumes a plane-wave broadband pulse is inci-

dent from the left on a thin spherical shell immersed in water. The ray diagram, shown

in Fig. 1.3, of the simplified scattered field is displayed for the specular reflection,

and surface guided waves circumnavigating the shell.

The basic physical principles that are involved in the formulation of the scattered

field from a spherical shell are similar to those found when investigating a fluid loaded

plate. In such an instance, there are a combination of flexural and compressional

waves formed, which can be separated into antisymmetric and symmetric modes. The

zero order antisymmetric mode (A0) and symmetric mode (S0) exist over the entire
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frequency range and typically carry more energy than higher order modes. These two

types of modes in a plate are depicted in Fig. 2.1. Where the figure indicates the

in plane and out of plane motion of the symmetric and antisymmetric waves, as well

as in the thickness view, the nomenclature of the wave types becomes evident. The

solutions for these modes are well understood and the vibration behavior of a flat

plate can be calculated using the Rayleigh-Lamb equations [2].

Symmetric Anti-Symmetric 

Figure 2.1: Illustration of the Symmetric and Anti-symmetric wave modes that occur
in a fluid loaded plate. The plate compression and expansion at each surface is shown
by arrows.

In particular, the interaction of the flexural and compressional waves can create

a phenomenon called a leaky Lamb mode, which radiates energy from the plate into

the surrounding fluid medium. This mode is of particular interest for target detection

purposes, due to the energy being ‘leaked’ into the outer fluid medium. Additionally

this physical behavior can now be extended to a thin shell in which the plate is simply

wrapped into a curved surface. Thus the behavior is no longer the true definition of
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a Lamb mode (since it is no longer occurring on an infinite flat plate), and is why the

literature sometimes refers to these waves as Lamb-type modes.

Consequently, from the formation of these waves, a key energetic feature of spher-

ical shells is the mid-frequency enhancement (MFE) echo - also called the coincidence

pattern - that is created by the combination of first antisymmetric Lamb waves (A0)

propagating clockwise and counterclockwise around the shell.

This MFE yields energetic acoustic echoes radiating in the surrounding fluid and

thus provides a unique acoustic signature of fluid loaded spherical shells, as previ-

ously demonstrated theoretically and experimentally [55, 85, 106]. For instance, the

frequency band over which the MFE occurs is indicative of the shell material, and

the temporal spacing between successive circumnavigating Lamb waves allows an es-

timate of the radius of the spherical shell [87] as well as the shell material properties

[53, 103]. Previous time-frequency analysis of the MFE has focused on source-receiver

configurations close to monostatic where the MFE is most energetic [46, 48, 53]. But

the MFE persists for bistatic configurations and thus still carries information about

the physical features of the elastic shell. However, a practical challenge is that the

amplitude of the bistatic MFE is significantly reduced when compared to monostatic

measurements, which render its detection more difficult in the presence of high clutter

or ambient noise levels.

The mid-frequency enhancement is an energetic acoustic feature common to thin

spherical shells created by strong coupling of the first anti-symmetric modal wave

with the outer fluid. This energetic feature has been shown to be a useful acoustic

feature for classification and detection of a spherical shell. Elastic contributions to the

scattered field from a target can provide additional information about the structure,

size, and material of the object. These elastic contributions can thus be used for

detection and classification of underwater targets [73, 85, 86, 51]. The scattered field

from the MFE in the bistatic configuration will be addressed in Chapter III.
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2.2.1 Theory

The scattered field of a thin fluid-loaded elastic spherical shell is computed in the

MatLab code using the classical theoretical formulation of Goodman and Stern [31] as

described hereafter. Assuming that an incident harmonic plane wave with amplitude

P0 and frequency ω impinges on a shell in a homogeneous free space medium with

sound speed c0, the harmonic scattered field, P (r, θ, t), recorded at a receiver distance

r and azimuthal angle θ, may be decomposed into a modal expansion. The inclination

angle (orthogonal to the azimuth) of the sphere is taken to be equal to zero because

it is not of particular concern in this study due to the azimuthal symmetry of the

sphere excited by a plane wave. Thus, the response calculations presented may be

applied for any selected inclination angle. The general equations and process for this

modal expansion will be reviewed here to set a basic understanding for the research

to follow. This work summarizes the formula of the Goodman and Stern paper for a

spherical shell in free space [31].

In this approach, the displacement u is first expressed in terms of a scalar potential

φ and the vector potential ψ: u = ∇φ + ∇ × ψ [2]. Additionally the use of the

linearized Euler equation will allow the acoustic pressure to be determined from the

velocity via the displacement.

Using the decomposition of the displacement into scalar and vector quantities

allows the equation of motion to be easily satisfied by two separate wave equations

as follows.

(
1

C2
L

)(
∂2φ

∂t2
) = ∇2φ (1)

(
1

C2
T

)(
∂2ψ

∂t2
) = −∇×∇× ψ (2)
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Where CL = [(λ+ 2µ)/ρ](1/2) and CT = (µ/ρ)(1/2) are the longitudinal and trans-

verse wave speeds, respectively, given in terms of density ρ and Lamé’s constants λ

and µ. The problem can then be broken down further for each medium of interest

numbered as shown in Fig. 1.3. To simplify the representation the index, i will indi-

cate each of the three mediums. Now taking the wave-numbers, k to be the angular

frequency divided by the respective wave speed results in Eq. (3) and Eq. (4).

k2
i,L ≡

ω2ρi
λi + 2µi

(3)

k2
i,T ≡ ω2 ρi

µi
(4)

Then each equation can be expressed in terms spherical coordinates and assume

a harmonic time dependence of e−jωt. Taking the time derivative, and substituting

the wave-numbers results in Eq. (5) and Eq. (6) for the potential functions.

(∇2 + k2
i,L)φi = 0 (5)

1

r2

∂

∂r

(
r2∂Ψi

∂r

)
+

1

r2

∂

∂θ

[
1

sin θ

∂

∂θ
sin θΨi

]
= −k2

i,TΨi (6)

The modal form of the solutions, Ψi and φi, for these wave equations are the spheri-

cal Bessel functions of the first kind jl, the second kind nl, and Legendre polynomials

Pl that appear when solving partial differential equations in spherical coordinates.

Where l is the mode number, and θ is the azimuthal angle on the shell, which is the

only angle of consideration in the measurement due to the problem symmetry (see

Fig. 1.3):

φi =
∞∑
l=0

Pl(cos θ)[Ailjl(ki,Lr) +Bi
lnl(ki,Lr)] (7)
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Ψi =
∞∑
l=0

∂

∂θ
Pl(cos θ)[Ci

l jl(ki,T r) +Di
lnl(ki,T r)] (8)

Finally, the appropriate boundary conditions must be applied to define the coeffi-

cient constants Ail, B
i
l , C

i
l , D

i
l . The boundary conditions for this problem are matching

displacements and normal stresses at the interfaces, and setting tangential stress to

be zero in the fluid domain, which allows one to obtain values for these coefficients. In

this study, the concern is only with the acoustic response in the outer fluid (i.e. only

the pressure field). Hence, the φ1 term is the only one of importance, and therefore

only the A1
l needs to be computed. This φ1 term can be written as:

φ1 =
∞∑
l=0

Pl(cos θ)A1
l hl(k1,Lr) (9)

Where hl is the Hankel function (Bessel function of the third kind). The scattered

field of a thin fluid-loaded elastic spherical shell can then be computed using the

modal expansion of scalar displacement in Eq. 9. Assuming that an incident harmonic

plane wave with amplitude P0 and frequency ω impinges on a shell then the harmonic

scattered field P (r, θ, t) [recorded at a receiver located in polar coordinates at (r, θ)

(see Fig. 1.3)] is decomposed into the modal expansion:

P (r, θ, t) = P0e
−iωt

∞∑
l=0

il(2l + 1)A1
l h

(1)
l (kr)Pl(cos θ) (10)

Therefore each modal contribution involves the Hankel function of the first kind

h
(1)
l (x), and Legendre polynomial, Pl(x), and the acoustic wavenumber, k = ω/c0,

in the outer medium. Furthermore, the modal coefficients A1
l are determined by the

appropriate boundary conditions (i.e. continuity of constraints and displacements) at

the interfaces separating the outer (1), shell (2), and inner (3) mediums as numbered

in Fig. 1.3. The calculations for the modal coefficients, and a modified version of

the MatLab code developed by Manell E. Zakharia’s research group can be found

in Appendix A and Appendix D. Table 1 lists the selected physical properties for
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the numerical simulations which are representative for the elastic shells and sur-

rounding fluid media with no attenuation for a 1.06 m diameter hollow steel shell

(thickness=26.5 mm) immersed in water. These physical parameters were selected

to be identical to those used by Zhang et al. [106] in order to ease the subsequent

analysis and validation of the MFE mechanism. Numerical simulations for a finite

number of modes were calculated in the frequency band [100 Hz-90 kHz] and time-

series were generated using Fourier synthesis of the harmonic solution given by Eq.

(10). Experimental validation of this code and results are presented in Chapter IV,

using data collected at the instrumented pond at the Naval Surface Warfare center

Panama City Division.

Table 1: Shell Model Parameter Details
Parameter Shell Outside Inside

Material 304 Stainless Steel Water Air
Density (ρ) 7570 kg/m3 1000 kg/m3 1.29 kg/m3

Longitudinal 5675 m/s 1470 m/s 331 m/s
Wave Speed (CL)
Transverse 3141 m/s 0 m/s 0 m/s
Wave Speed (CT )

In particular, the modal sum was truncated arbitrarily at a mode index of l = 100

based on convergence tests, where the amplitude’s contribution of the higher-order

modes (l > 100) were found not to significantly contribute to the amplitude of the

synthesized broadband time-series. Though the numerical simulation was run up to

90 kHz or 200 ka, the convergence criterion for the number of modes was conducted

when analyzing the MFE in the lower frequency band 100 Hz-45 kHz. A Hann

windowing function was used as a bandpass frequency filter. This bandpass filter

limits the energy for the simulation to < 101.9 ka, so the higher frequency content

does not significantly affect the frequency region around the MFE. In this frequency

band of 100 Hz-45 kHz, a 99.96% correlation coefficient was obtained between the

Fourier synthesized waveform using l=800 and l=100 modes. This convergence of the
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100 mode inclusion is shown in Fig. 2.2, where below 45 kHz the numerical results

have no difference. Additionally the frequency filter is overlaid on top of the frequency

response. Hence 100 modes were used for subsequent simulations. Fig. 2.2 shows the

result of the simulations which reveal the instabilities at higher frequency and shows

that the region of filtered data matches closely in the frequency region of interest 100

Hz-45 kHz.
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Figure 2.2: Frequency representation of backscatter response from a spherical shell,
with overlaid filter and higher mode simulation for comparison and mode convergence
test.

2.2.2 Time Domain Analysis of the Scattered Field

Using a partial wave series (see Eq. (10)) formulation to model spherical shell response

provides a means for analysis of time-domain far-field scattering pressure. Fig. 2.3

displays the predicted monostatic response of the elastic shell for a receiver located
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at an azimuth θ = 180◦ and distance r = 10 m using the acoustic model described in

the previous section (see Fig. 1.3 and Eq. (10)) and the physical parameters listed in

Table 1. The model simulates a Gaussian pulse exciting the sphere in the frequency

range of 1 Hz - 50 kHz. A series of narrowband energetic arrivals are clearly visible

following the first broadband specular arrival labeled (a) on Fig. 2.3. The following

weak arrival, labeled (b) corresponds to the first symmetric mode of the shell S0.

This S0 arrival will not be the focus of this research due to the presence of the

more energetic feature of the MFE for the selected incident pulse shape. The lowest

antisymmetric A0 waves contains two types of propagating waves, classically referred

to as A0+ and A0− depending whether their energetic contribution is mainly localized

within the elastic shell (i.e. shell-borne) or within the surrounding fluid at the shell’s

surface (i.e. fluid-borne) [55]. These two A0 waves have different dispersion behavior

and bifurcation occurs as a result of this localization of energy [73]. A similar type of

wave (i.e. fluid borne waves) exist for a rigid body for the behavior of the A0+ below

the coincidence frequency; However, these types of waves are purely geometrically

diffracted waves and do not contain information about the material. Additionally

these waves have fairly strong attenuation, which makes detection difficult[18]. The

next energetic arrival, labeled (c), and the ensuing weaker replicas correspond to

the lowest antisymmetric mode, A0− , circumnavigating the shell. This first energetic

return is characteristic of the MFE occurring due to the A0− mode propagating around

the shell after one revolution, see Fig. 1.3 [85, 55]. The increased energy is a result

of the interference of the clockwise and counter-clockwise propagation paths for the

A0− mode. The quantitative ray model reveals that the amplitude of this pattern

results from an optimal balance between the radiation damping parameter, the phase

velocity, and the coupling coefficient, which only occurs within a narrow frequency

band near the coincidence frequency fc (giving raise to the MFE phenomenon) [55].

This quantitative ray model approach will be discussed in detail in Chapter III.
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Figure 2.3: Impulse response of the spherical shell in the backscatter direction θ =
180◦ (computed from Eq. (10)) using the physical parameters listed in Table 1. The
time series is filtered in the frequency band [100 Hz-45 kHz], thus low frequency
oscillations are not present. The displayed values were normalized by the maximum
value of the specular echo. The three arrows indicate the specular echo, labeled
(a), and the echoes of the circumnavigating surface guide waves associated with the
first symmetric modes, S0, labeled (b) and first antisymmetric mode, A0− , labeled
(c), which corresponds to the MFE. Subsequent arrivals correspond to surface guide
waves undergoing multiple revolutions around the spherical shell.

Previous studies for monostatic configurations have shown that the frequency

content and repetition rate of these A0 arrivals contain important information about

the shell radius and thickness and physical properties such as the compressional and

shear wave velocities in the shell as determined from successive arrival times (see

Fig. 2.3) [53, 87, 51, 103]. Recently the MFE was studied in a paper by Li [51]

for classification purposes in which it was shown that the repetition and frequency

of the MFE could be used to estimate the radius and thickness of a shell. Note

that the amplitude of the subsequent MFE arrivals are proportionally reduced by

the cumulated radiation damping effects after multiple revolutions around the shell.

Hence these later arrivals are likely to be even more difficult to detect in the presence

of high ambient noise or clutter levels. Consequently, the first and most energetic

Lamb-wave echo is the most attractive feature for target’s detection or classification

purposes.
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The examination of the mid-frequency enhancement feature has been extensively

studied in articles covering a variety of spherical and cylindrical shells [46, 48, 53, 55,

62, 85, 90, 106]. Both theoretical and experimental analyses of fluid loaded shells were

reported. Many papers on this topic can be traced back to the closed form solution

model presented by Goodman and Stern. The canonical form of this solution and

extensive literature published for a spherical shell makes this shape an obvious choice

for theoretical analysis of the MFE using time frequency analysis [31]. Further work

was done by Felsen [22] and Ho [38], in which exact and approximate formulations of

fully three-dimensional model of the scattered field from a spherical shell surface were

presented. Additionally, papers written by Talmant, Zhang, and Marston [55, 85, 106]

covered a variety of experiments and ray modeling techniques to better understand the

MFE phenomenon with respect to differing types of excitation. These ray techniques

will be addressed further in Chapter III, to aid in understanding the bistatic behavior.

Though these articles investigate the formation mechanism of the MFE, none ex-

pand on the MFE features measured in a bistatic setup. Instead, previous literature

primarily focused on the backscatter (monostatic) direction, which is the most en-

ergetic direction for this feature due to the symmetry of the sphere and coherent

addition of clockwise and counter-clockwise circumnavigating waves. The bistatic

behavior is mentioned briefly in papers by Marston, Sun, and Zhang [55, 56, 82, 106],

but no attention is given to the time-frequency content of the MFE. One of the con-

tributions of this research is to quantify the dependence of the time-frequency shifts

of the MFE on the bistatic receiver angles and explain the observed time-frequency

shifts using a previously derived quantitative ray theory for spherical shell’s scattering

[107].
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2.3 Methods and Mathematical Tools for the Analysis of
Scattering of Elastic Targets

2.3.1 Time-Frequency Analysis: Smooth Pseudo Wigner-Ville Transform

As mentioned in the introductory chapter, the main goal of this research is to pro-

pose and develop tools to aid in the detection and classification of elastic targets.

The approach taken by this research involves the ability to analyze the evolution

of frequency content over time. Time-frequency representations have clearly been

shown in literature to be useful when analyzing non-stationary signals, which is of

use for analyzing the elastic echoes from a spherical shell as will be discussed in the

next chapter [80, 24, 14, 16]. Indeed, time-frequency analysis has been shown to be

a relevant tool for analyzing the acoustic echoes of elastic shells for MCM purposes

[24, 62, 104, 105, 102, 53]. The most general Cohen class of time-frequency analysis

in which all time-frequency representations are obtained is defined as follows [16]:

CC(t, ω) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
s(u+

τ

2
)s∗(u− τ

2
)φ(θ, τ)e−jθt−jτω+jθududτdθ (11)

where t is time, ω is the angular frequency, θ, u are substitution parameters rep-

resenting frequency and time respectively. φ(θ, τ) is defined as the two dimensional

kernel function in which the type and properties of the time-frequency distribution

can be defined. The functions s(u + τ
2
)s∗(u − τ

2
) are the local autocorrelation of

the analyzed signal. The traditional and well known Spectrogram can be obtained

using a kernel defined as
∫
h(u + τ

2
)h∗(u − τ

2
)e−jθudu. Time-frequency analysis car-

ried out using the Short Time Fourier Transform (STFT), or spectrogram (squared

STFT), can be considered a linear method of estimating instantaneous frequency.

But the time-frequency resolution of the STFT method is inherently limited by the

time-frequency uncertainty principle [78]: higher temporal resolution requires using

narrower time-window, which reduces in turn the achievable frequency resolution and

vice-versa.
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One potential improvement towards higher resolution in both time and frequency

is to utilize the higher-order Cohen class of a quadratic time-frequency transform such

as the Wigner-Ville transform [16] in which the kernel is defined as φ(θ, τ) = 1. This

distribution was first introduced by Wigner in the context of quantum mechanics [96],

and later independently developed by Ville who applied the same transformation to

signal processing and spectral analysis [92]. This kernel results in the Wigner-Ville

distribution defined as follows:

WV (t, ω) =
1

2π

∫ +∞

−∞
s(t+

τ

2
)s∗(t− τ

2
)e−jτωdτ (12)

Although, the Wigner-Ville transform can provide an optimal localization of broad-

band and transient signals in the time-frequency plane, it is not readily used in prac-

tice as it generates interference patterns between multiple components of the signal,

which can complicate the analysis of the results.

Instead, for practical applications, it has been shown that a variant of the Wigner-

Ville transform, such as the Smoothed Pseudo Wigner-Ville transformation (SPWV)

[16], can be used to smooth these inherent interferences patterns with independent

time and frequency smoothing windows. Thus, the SPWV transform can ease the

physical identification of multi-component signals in the time-frequency plane while

maintaining good instantaneous frequency estimates. More specifically, the kernel for

the SPWV distribution is defined by separable kernel functions for time and frequency

smoothing windows h(τ) and g(u− t). The SPWV can then be defined as:

SPWV (t, ω) =

∫ +∞

−∞
h(τ)

∫ +∞

−∞
g(u− t)s(u+

τ

2
)s∗(u− τ

2
) due−jωτ dτ (13)

where the functions h and g are used to smooth, independently in the time-

domain and frequency domain. Hence, contrary to the STFT, the SPWV transform

allows one to set the temporal smoothing resolution independently from the frequency
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smoothing resolution by selecting appropriately the smoothing functions h and g (e.g.

using Hann windows of various lengths) [16]. The result is a better time-frequency

localization then STFT without the complications of interference patterns inherent to

standard Wigner-Ville transform (see Fig. 2.4). One practical use of the Wigner-Ville

transform is the possibility to yield estimates of the group velocity of each specific

echo component [104, 105].

However in practice, the optimal time and frequency resolution of the SPWV is

limited by the re-apparition of the interference patterns between signal components

if the smoothing effect is reduced significantly. Even with the higher order represen-

tation, there remains the time and frequency uncertainty limitation when selecting

these windows, and higher resolution can lead to artifacts and aliasing of the time-

frequency representation. Even with sacrificing resolution to suppress the interference

patterns, the SPWV still outperforms the STFT to estimate instantaneous frequency

as shown in Fig. 2.4. Here a superposition of two linear chirps is shown for three

different time-frequency representations to show the improvement with the SPWV.

A study, which can be found in Appendix B, was conducted to determine the

appropriate smoothing windows to suppress the interference patterns and maintain

resolution for the MFE. Results of the selected smoothing windows are then ap-

plied to the modeled sphere response (see Fig. 2.5), and give a clear picture of the

backscattered time-frequency behavior from the spherical shell. Showing the filtered

broadband signal arriving first, followed by the more narrowband MFE (at a cen-

ter frequency of about 20 kHz at 7.1 ms arrival time) and its first circumnavigating

replica.

From this representation the center time (tc) and center frequency (fc) of the MFE

can be measured as the maximum point within this time-frequency atom, labeled in

Fig. 2.5.
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Figure 2.4: Time frequency representations of a signal composed of two linear chirps
spanning, respectively, the frequency bands 5-15 kHz and 15-25 kHz: (a) Short Time
Fourier Transform, (b) Wigner-Ville distribution showing interference patterns be-
tween two signals, and (c) smoothed pseudo Wigner-Ville distribution.

Figure 2.5: SPWV representation of shell response with appropriate smoothing win-
dow size based on empirical study. The Hann windows used for smoothing were a
time window of 0.2ms (205 points) in length and a frequency smoothing window of
192 Hz (171 points).
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2.3.2 Propagation Modeling

Acoustic propagation in the shallow water ocean environment is governed by the wave

equation. Standard acoustic techniques enlist the use of the Green’s function (fun-

damental solution to a linear differential equation) to account for the propagation

between a source and receiver. The Green’s function can be calculated to include the

environmental boundary conditions and thus can be thought of as an environmen-

tal transfer function. For a majority of the work presented, the free space Green’s

function, Eq. (14), will be used to reduce the complexity of analysis of the problem.

Where r is the distance from source to receiver, t is the time, and c0 is the sound

speed.

G(r, t) =
1

4πr
δ(t− r

c0

) (14)

The free-space Green’s function is not applicable in the presence of inhomo-

geneities. Therefore, it cannot be used to model the propagation of acoustic waves in

inhomogeneous media; a more complicated Green’s function is required.

An analytic form of the Green’s function is difficult to obtain for an inhomogeneous

medium except for the most trivial cases, e.g., a simple waveguide. Thus, numerical

methods and/or simplifying assumptions must be made to obtain a first order solution

to gain valuable insight to the behavior of the scattered field near an interface. For

comparison to experimental data, where the target is laying on reflective sediment,

an acoustic is modeled. This gives a slightly more inclusive Green’s function, which is

needed to account for the multipath or bottom reflections. As this method is not used

in the simulations, but only to confirm experimental arrival times due to multipath

(Chap. IV), the details of this type of modeling is discussed further in Appendix

C. The full propagation modeling and environmental effects of the MCM problem is

complex and requires additional study for both modeling and processing techniques.

Further work on this aspect of MCM research can be found in current literature, and
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will be left for suggested future work [52, 97].

2.4 Spherical Shell Scattering: Parameter Study

As previously mentioned, in order for an acoustic feature to be useful for detection

or classification, the feature needs to be robust to various parameter changes and or

environmental conditions. The uniqueness of the high amplitude of the MFE gives

immediate interest to using this as a feature to detect man-made objects and be

able to distinguish them from natural clutter that occurs on the ocean floor. Fig. 2.5

indicates the center time, tc, and the center frequency, fc, of the MFE to be measured

for distinct identification useful for classification purposes. Previous literature has

mentioned and given results for a few materials of the shell and shown that different

types of guided waves exist with a plastic filler and fiberglass shell[88]. However,

no complete study or compilation of results exists to show how the Mid Frequency

Enhancement changes with various materials parameters, or if it still exists under a

variety of conditions.

This section will present various studies that were conducted in order to determine

the robust behavior of the MFE with changes of the following parameters: shell

thicknesses, shell materials, shell size, surrounding medium, and the inner (filler)

material. The baseline shell parameters are for an air-filled steel shell surrounded by

water with a thickness ratio of 0.975 and a diameter of 1.06 m, using values listed

in Table 1. Each individual parameter study indicates the perturbation from this

baseline shell, while holding the remaining values constant. The first parameter to

account for variation to manufacturing fluctuations and different types of shell designs

is the thickness of the shell to determine the effect on the specular reflection as well

as the MFE. The MFE is presented in literature to only exist in thin shell designs.

As stated previously the guided wave phenomenon can still exist for thicker shells or

even solid elastic objects, though the physics for a guided wave in these cases differs
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from the Lamb type waves that create the MFE to Rayleigh type waves in these cases.

2.4.1 Specular

Additionally to verify the shell model as well as determine expected response from a

shell given different filler materials, it is important to look at the reflected amplitudes

of the specular reflection from low-mid frequency acoustic excitation. This was done

by two approaches: the first being measurement from the shell model introduced in

Section 2.2, and the other being an implementation of a theoretical reflection coeffi-

cient for a three medium interface. The first method is taken from the synthesized

time series from the shell model to determine the amplitude for two different filler

materials at various shell thicknesses to verify the reflection was due to the shell outer

medium interface, and not the reflection from the internal medium.

The three medium infinite plane problem is a standard problem that has been

solved [49]. For the case of the shell the first medium (1) is the water outer medium,

the second medium (2) is the shell material, and the third medium (3) is the filler ma-

terial. Applying this method to estimate reflection amplitude from the thin spherical

shell is an approximation, and only being used to verify that the calculated values

of the specular reflection are reasonable. Furthermore, to obtain an estimate of the

broadband reflection and to compare the modeled reflected amplitude, we can average

the reflection coefficient over the frequency range of interest.

R =
(1− r1/r3)cos(k2L) + j(r2/r3 − r1/r2)sin(k2L)

(1 + r1/r3)cos(k2L) + j(r2/r3 + r1/r2)sin(k2L)
(15)

where rn (medium=1,2,3) is the acoustic impedance of the medium (i.e. ρncn), k

is the wave number, and L is the thickness of medium 2 [49]. This equation assumes

a narrow bandwidth for calculating the reflection coefficient.

Fig. 2.6 displays the results of the two methods for estimating the specular re-

flection from an excitation of a broadband plane wave. This study allows additional
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Figure 2.6: Specular Amplitude Reflection from Shell for Low to mid-frequency
pulse.

validation of the numerical model that shows for very thin shells (Thickness ratio

> .99) the reflected wave amplitude results in an acoustically transparent shell when

filled with a matched inner medium (specular reflection drops to 0).

2.4.2 Shell Thickness

Variations in design require the MFE to be robust and exist for different thicknesses

and material selections. Fig. 2.7 depicts that the MFE amplitude has a peak at a

thickness ratio of 0.9775. The amplitude decreases at lower ratios (thicker) due to the

decrease of the lamb-wave formation, whereas the dip in the higher ratio (thinner)

occurs because the shell becomes acoustically transparent at the thinner ratios.

Moreover, the shell thickness has an impact on the apparent center frequency

of the MFE. Table 2 shows that between a 0.85 to 0.99 thickness ratio, there is
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Figure 2.7: MFE Amplitude versus Shell Thickness

approximately significant change in the apparent center frequency of the MFE. This

change in frequency helps to show that the apparent frequency is a result of the

dispersion relationship and radiation damping of the antisymmetric waves in the

shell, which vary with a change in shell thickness. It is important to note that the

thicker results in a lower MFE frequency which merges with other features of thicker

shells [29].

Table 2: MFE frequency for shell thickness
Shell Thickness Center Frequency

(ratio) (Hz)
0.85 3900
0.925 5600
0.95 10100
0.975 22500
0.98 28100
0.99 56000
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2.4.3 Shell Material

The next parameter in this study for the spherical shell keeps the shell thickness

constant at 0.975 and changes the shell material to various structural materials with

a range of wave speeds and densities. For each of the different materials, the MFE

exists and the difference in acoustic impedance effects appears to shift the center

frequency of the MFE. The non-metallic materials for the shell have a lower sound

speed and densities which have a significant impact on the frequency of the MFE.

It is important to note a limitation of the model assuming homogeneous material

properties, which is not true of the composite materials (e.g. fiberglass, carbon fiber)

listed in the table, further study is necessary to determine the effects of the inho-

mogeneities and the anisotropic propagation effects inherent in these materials. An

approximate relationship between the material and MFE was found by Gaunaurd et

al. [29] to rely on several factors including the MFE center frequency fMFE, sound

speed of outer medium cw, and thickness of the shell h and is given by:

fMFE =
γcw
2πh

(16)

The γ coefficient is a material constant that is calculated from the complex form

function and ranges from values 0.8 < γ < 2.4. This relationship has been shown to

be useful for the classification of simple shells by predetermining the γ parameter for

a shell then estimating the thickness based on the recorded frequency of the MFE [1].

Additionally the bandwidth and amplitude can be impacted by the difference in

shell material. As Fig. 2.8 shows for the two different shell materials the specular

remains constant and the arrival time, center frequency, and amplitude vary. The

amplitudes of the MFE for the fiberglass and acrylic shell materials result in -7.7

dB and -10.1 dB with respect to the specular, whereas the steel shell had an MFE

amplitude of -1.1 dB. This may make these guided waves more difficult to detect in

the presence of noise, and may require further processing to detect the signal.
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Table 3: Shell material for parameter study

Compression Shear Density Center Frequency
Material Velocity (m/s) Velocity (m/s) (kg/m3) (Hz)

Steel 5960 3235 7850 19700
Steel Alloy 5554 3021 6217 22500
Titanium 6070 3125 4540 22000
Aluminum 6420 3040 2710 25100
Magnesium 5770 3050 1740 29900

Brass 4700 2110 8575 33000
Fiberglass 3500 1720 1875 32800

Acrylic 2718 1283 1180 21000
Carbon Fiber 2970 1956 1800 43800

Subsonic Material 1300 1100 1180 40240
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Figure 2.8: Time-Frequency representations for spherical shell surrounded by water
and filled with air, and different shell materials of (a) Fiberglass and (b) Acrylic.
Material parameters are listed in Table 3.

2.4.4 Shell Size

Results of running different shell sizes indicated the center frequency scales with re-

spect to ka and arrival time depends on the path length of the guided waves. The
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fc ~ 20 kHz 

tc ~ 7.1 ms 

(a)

fc ~ 18 kHz 
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(b)

Figure 2.9: Comparison figure depicting the difference in arrival time and frequency
between two shells of size (a) a = 0.53 m and (b) a = 0.60 m.

shell size changes reveal a delay in time of arrival of the MFE, and subsequent repeti-

tions are based on path length of the waves circumnavigating the shell. This is to say

that for a bigger shell, the path length, and thus arrival time of the MFE increases.

Additionally the amplitude decreases due to the increased path length and radiation

damping. Fig. 2.9 is the time-frequency result of two spherical shells, to illustrate

the time and center frequency change with an increase of shell size.

2.4.5 Outer Medium Effects

Table 4: Outer Medium Effect (Properties from [33])
Compression Density Center Frequency

Material Velocity (m/s) (kg/m3) (Hz)
Water 1470 1000 20000
Clay 1517 1480 20100
Silt 1615 1740 20600

Sand 1759 1962 21100

The scope of the detection problem outlined as the motivation provides that the

objects are able to be detected when buried in sediment, and therefore the study

includes the effect on the MFE for different outer mediums (results are shown in

Table 4). The results indicated that the outer medium influences both the amplitude

and center frequency of the MFE. Incidentally, the ability of the outer medium to
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Figure 2.10: SPWV representation of a stainless steel shell surrounded by outer
medium of sand in free space.

transfer shear waves increases the coupling of the first symmetric S0 mode, which

now radiates more strongly (shown in Fig. 2.10).

2.4.6 Inner Medium Effects

Table 5: Filler Material Properties
Compression Density

Material Velocity (m/s) (kg/m3)
Air 331 1.29

Water 1470 1000
Oil 1460 942

Plastic 2480 2176

For additional robustness and potential classification of a given target the param-

eter study included different filler materials, shown in Table 5. Because the MFE is

a result of waves in the shell materials the A0 modes still exist with various materials

filling the shell. The air-filled shell maintains the clearest signature for identifying

the MFE due to the lack of sound coupling with the inner material, and thus there is

little to no sound reflecting internally within the spherical shell. Due to model limi-

tations, the plastic filler was modeled as a high speed dense fluid with no shear wave

speed, and therefore is probably missing some of the scattering structure. Two ways
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Figure 2.11: SPWV time frequency representation of backscatter response for various
filler material. Spherical Shell filler materials, where the expected MFE arrival and
replicas are indicated for each test case. (a) Air filled (b) Oil Filled (c) Plastic Filled
(d) Water Filled.

Figure 2.12: Bistatic Sinograms of Spherical Shell filler materials, where the expected
MFE Energy is indicated for each test case. (a) Air filled (b) Oil Filled (c) Plastic
Filled (d) Water Filled.
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in which the existence of the MFE was analyzed in the shell are the time-frequency

domain and the energy plotted over various receiver angles. For the air filled shell,

these representations are seen in top left panel Fig. 2.11 and Fig. 2.12.

A look at the time frequency representations of the different filler materials al-

lows a closer examination of robustness of the MFE. The MFE and its replicas are

highlighted. The propagation of sound through the filler material, and internal re-

flections create some complications, with interference between the MFE and internal

specular bounces. As expected the frequency and repetition rate do not change for

the different filler materials. A broadband signal, expected to be the reflection off

the back wall of the sphere obscures the MFE for the materials with higher acoustic

impedance. Even with these complications, it is evident the MFE is present and can

be used for detection. Although the MFE appears buried in the signal due to pres-

ence of internal reflections, the use of a time frequency filter method as presented by

Cheveret et al. could be implemented to isolate the MFE from the recorded signal.

Fig. 2.13a displays the results of a applying a time-frequency filter created from the

air-filled response (Fig. 2.11a) to isolate the MFE from the internal reflections for

the water-filled case (Fig. 2.11d). This filter results in an MFE amplitude of -0.8

dB with respect to the specular amplitude. Fig. 2.13b displays this same filter ap-

plied to a thicker shell (ratio = 0.9), which does not have the same expected MFE

frequency, and shows that there is much lower energy (-18.1 dB) present at the MFE

time-frequency filter location. Thus, this feature and method could be used to classify

a target in the presence of a noisy environment, or internal reflections[14].

An additional method to verify the MFE presence and reduce the effect of the

internal reflections for detection is to look at the scattered field with bistatic receivers,

which would allow varying separation in time of the features. Fig. 2.12 reveals that

the X-pattern of the antisymmetric wave from a bistatic sinogram which is easy

to identify and shows the existence of the MFE. This X-pattern is caused by the

43



6 6.5 7 7.5 8 8.5 9 9.5
10

20

30

40

50

60

Time (ms)

F
re

qu
en

cy
 (

kH
z)

 

 

6 6.5 7 7.5 8 8.5 9 9.5
10

20

30

40

50

60

Time (ms)

F
re

qu
en

cy
 (

kH
z)

 

 

−30

−20

−10

0

−30

−20

−10

0

(a)

(b)

(dB)

(dB)

Figure 2.13: SPWV time frequency representation of time-frequency filtered
backscatter response for water filled shell applied to two thickness ratios (a) 0.975
and (b) 0.9.

separation of the clockwise and counter clockwise waves (further discussion will be

presented in Chapter III).

2.4.7 Parameter Study Summary

The time-frequency analysis in the backscatter region for the various parameters

in this study revealed the MFE to be robust to numerous design parameters, and

each providing a shift in time or frequency that can be useful for classification. The

frequency typically was shifted down when the stiffness of a shell was decreased (by

material, size, thickness etc). The results are summarized below:

Specular Specular return remains present except for extremely thin (> 0.999%) for

the broadband low frequency excitation.

Thickness There is an increased amplitude of the MFE for thickness ranges between

97− 98%, and the center frequency is decreased as thickness decreases (i.e. less

stiff).

44



Shell Material Each material has a variation in the center frequency that is depen-

dent on the material, since the MFE is dependent on the dispersion behavior

which is material dependent. Additionally the bandwidth and amplitude can

be impacted by the shell material.

Shell Size A shift in time and frequency occurs for a change in shell size, where the

bigger the diameter results in a later arrival and lower frequency.

Outer Medium The outer medium shifts the center frequency and enhances the

coupling of the lowest symmetric wave.

Filler Material Inner filler complicates the wave field due to internal reflections and

coupling, but the MFE remains present.

2.5 Discussion and Summary

This chapter built on the fundamental knowledge of acoustics to present the methods

employed in the research. The theory and numerical model for a spherical shell was

presented, and the scattered field was discussed. The basis for numerical tools in

this analysis of the scattered field was covered and applied to the monostatic receiver

position to familiarize the reader with previous work. Then, the results of a problem

parameter study were covered in detail to present the trends and response of the MFE

to various design changes. This extensive parameter study contributes to previous

literature and confirms trends expected to be useful for classification purposes. The

following chapter will extend the knowledge and work previously completed in the

literature to highlight and fill a gap in the documented knowledge of the scattered

field from a spherical target.
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CHAPTER III

BISTATIC ACOUSTIC SCATTERING AND

PROCESSING

This chapter1 extends the knowledge and methods presented in Chapter II to cover

the analysis of the bistatic scattering from an elastic sphere. Previous work with

time-frequency analysis of the MFE have focused on source-receiver configuration

close to monostatic where the MFE is most energetic, when source and receiver are

closely spaced with respect to the shell [46, 48, 53]. This work contributes the new

knowledge of the time-frequency analysis of the variations of the MFE in the bistatic

configuration.

The MFE persists for bistatic configurations and thus still carries information

about the physical features of the elastic shell (e.g. see Fig. 3.1). However, a practical

challenge is that the amplitude of the bistatic MFE is significantly reduced when

compared to monostatic measurements, which render its detection more difficult in

the presence of high clutter or ambient noise levels. Consequently, bistatic detection of

the MFE would need to be enhanced, for instance, by combining the signals measured

on an array of receivers using array beamforming techniques [52]. The design of an

optimal beamformer for detection applications should then be determined by the

specific time-frequency coherence of the bistatic MFE echoes, in order to allow for an

optimal coherent addition of these echoes across a bistatic aperture [89].

The main goal and contribution of the research in this chapter is to investigate

theoretically and numerically the bistatic variations of the MFE for a fluid-loaded and

1Part of this work is published in The Journal of the Acoustical Society of Acoustics “Time-
frequency analysis of the bistatic acoustic scattering from a spherical elastic shell” [5].
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thin spherical shell. Additionally, the research will quantify the dependence of time-

frequency shift of the MFE on the bistatic receiver angles and explain the observed

shifts using a previously derived quantitative ray theory for spherical shell scattering.

The time-frequency analysis of the most energetic bistatic echo, associated with the

circumnavigating antisymmetric Lamb waves, is performed using the Wigner-Ville

transform because it can provide an unbiased group velocity estimation that in turn

can be used for characterizing a shell’s physical properties [103, 105, 102].

This chapter will present the work of time-frequency analysis extended into the

bistatic domain for elastic contributions to the scattered field. The chapter is di-

vided into six sections. Section 3.1 presents the bistatic scattering from a spherical

shell. Section 3.2 investigates the bistatic evolution of the MFE arrival in the time

and frequency domains. Section 3.3 develops the quantitative ray interpretation to

explain the observed time-frequency shifts of the bistatic MFE arrival. Based on the

previous findings, section 3.4 extends the interpretation and behavior to Rayleigh

waves propagating around a solid elastic cylinder. Section 3.5 presents a generalized

time-frequency beamformer formulation to coherently process MFE echoes recorded

along a bistatic sensor array. Finally, the findings and contributions are summarized.

3.1 Bistatic Scattering from Spherical Shell

One method of investigating behavior of the bistatic data is to track the time evo-

lution of acoustic energy across a bistatic receiver array. This method has ties to

RADAR and medical imaging. Fig. 3.1 displays the evolution of the envelope of the

simulated bistatic responses of the elastic shell, computed using Eq. (10) and the

model parameters listed in Table 1, for a full 360◦ revolution of the receiver angle θ.

The receiver was kept a constant distance, r = 10 m, from the sphere’s centroid. It is

important to note that the values displayed for θ = 180◦ correspond to the envelope

of the monostatic time-series shown in Fig. 2.3. The first wavefront visible on this
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time-angle representation, with nearly constant amplitude over all receiver angles,

corresponds to the specular reflection of the shell. The two branches of the following

“X-shaped” pattern between 6.5 ms≤ t ≤ 8.5 ms, labeled “c” and “cc” on Fig. 3.1,

corresponds respectively to the interference of the circumnavigating components of

the A0− waves or MFE propagating in the clockwise and counter-clockwise directions.

This difference in arrival times between the clockwise and counter-clockwise interfer-

ence patterns can be simply explained from a geometric ray analysis, as presented

in the next section (see Fig. 3.3). Furthermore, as expected, these clockwise and

counter-clockwise interference patterns intersect in the monostatic direction θ = 180◦,

as they both have the same path length around the shell before reaching the receiver.

Consequently, the MFE pattern is most energetic in the monostatic configuration

where all the wave components interfere constructively.

As shown quantitatively on Fig. 3.1, the energetic MFE pattern begins to split

into two branches as the receiver moves away from the monostatic configuration

(θ = 180◦), and the MFE amplitude rapidly decays [48]. Consequently, for practical

MCM applications in noisy environments, bistatic measurements of the MFE would

likely need to be combined coherently, using array processing, in order to enhance

the bistatic detection of the MFE pattern. However, a coherent combination of these

bistatic A0− wave echoes, using standard time-delay beamforming by compensating

for their relative time shift, would not be optimal if the frequency content of the

MFE varies with each bistatic receiver angle θ. To test this hypothesis, the SPWV

transform, as described in Chapter II (see Eq. (13)), is used hereafter to investigate

the time-frequency analysis of the bistatic MFE pattern.
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Figure 3.1: Evolution of the envelope (in logarithmic scale) of the bistatic impulse
response of the spherical shell (computed with Eq. (10) using the model parameters
listed in Table 1) vs. bistatic angle, θ. The amplitudes were normalized with respect
to the maximum values of the scattered field in the monostatic (or backscatter) di-
rection θ = 180◦. The first curved arrival corresponds to the specular echo. The two
branches of the subsequent X-shaped pattern correspond respectively to the counter-
clockwise (“cc” symbol) and clockwise (“c” symbol) propagating components of the
A0 mode. Note that the arrival-times of these two components differ for bistatic re-
ceivers (see Fig. 3.3), except for the monostatic direction θ = 180◦ where their path
around the spherical shell become symmetric with equal lengths.

3.2 Time-Frequency Analysis of the Bistatic Evolution of
Spherical Shell’s Scattered Field

Fig. 3.2 depicts the SPWV of the time-series computed for three different bistatic

angles spaced apart by 45◦ (θ = 180◦, 135◦, 90◦). The selected smoothing functions for

the SPWV analysis were Hann windows yielding respectively a time and frequency

resolution of 1.5 µs and 200 Hz (see Eq. (2)). As predicted, the SPWV associated

with angles θ = 135◦ and θ = 90◦ illustrates the splitting of the energetic main

MFE pattern’s arrival (as shown for θ = 180◦, see Fig. 3.2a) into two weaker dis-

tinct arrivals with the left (resp. right) pattern corresponding to counter-clockwise

(resp. clockwise) interference pattern, as labeled on Fig. 3.2b-c. Less intuitively,
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Figure 3.2: Smoothed Pseudo-Wigner Ville representation (in logarithmic scale) of
the impulse response of the spherical shell for three representative receiver’s azimuth
angles (a) monostatic direction θ = 180◦, or bistatic directions (b) θ = 135◦ and
(c) θ = 90◦. The energetic MFE echo due to the interference of the clockwise and
counterclockwise propagating A0− wave in the monostatic direction is visible at time
t = 7.66 ms (dashed vertical line) and a normalized frequency ka = 46 (dashed
horizontal line). The bistatic configurations illustrate the progressive splitting of the
MFE echo into two distinct clockwise and counterclockwise arrivals (see Fig. 3.1), as
well as their relative time-frequency shift with respect to the monostatic echo. For
each angle, the magnitude was normalized by the maximum displayed value.

this time-frequency analysis also reveals that the counter-clockwise (resp. clockwise)

MFE pattern exhibits an upward (resp. downward) frequency shift of +1.8 ka (or

−1.1 ka) for θ = 135◦ when compared to the monostatic MFE pattern. A physical

interpretation of this time-frequency shift will be presented in the next section us-

ing a quantitative ray analysis for spherical shell’s scattering [106]. Furthermore, as

discussed later in Section 3.5, a generalized time-frequency beamformer can be de-

veloped to compensate for the observed time-frequency shifts of the bistatic MFE as

revealed by the SPWV analysis. Similar time-frequency beamformers have previously

been developed for compensating wideband Doppler effects when tracking a moving

source [94].
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3.3 Physical Interpretation of the Time-Frequency Evolu-
tion of the Bistatic MFE Pattern from Quantitative
Ray Theory

(a) (b)

Figure 3.3: Bistatic ray diagrams for the subsonic A0− wave in the vicinity of the
coincidence frequency for (a) the counter-clockwise or (b) the clockwise propagating
components. Note the difference in arc path angles φcc and φc for respectively the
counter-clockwise or clockwise components (see Eq. (20-21)) and that α = π

2
for the

subsonic A0− wave. The bistatic receiver is located at a distance r and azimuth angle
θ.

3.3.1 Overview of the Quantitative Ray Theory for a Spherical Shell

Extensive literature has been published on the quantitative ray theory for scattered

fields from elastic targets of various shapes [55, 97]. This work created ray approxi-

mations of the work completed in the 1970’s which developed work fully describe and

model the scattered field from spherical and cylindrical shells by means of the reso-

nant scattering theory and exact partial-wave series [18, 19, 25, 90]. Consequently,

only a terse summary of the quantitative ray theory applied to spherical shells is

presented hereafter.

The Resonance Scattering Theory can be used to calculate and identify the target

resonances and their relation to the geometrical and material properties of the elastic

object. Some previous work has presented a target recognition scheme based on the

analysis of the resonance response from the elastic objects [25]. Theoretical analysis
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and tank experiments focusing on the scattering from elastic shells were conducted

throughout the 1980’s and early 90’s by various authors such as Kargl and Marston

[48, 55]. These studies presented modeling of the backscattering from elastic spherical

shells in terms of Lamb wave returns, axial reverberations, and glory effects, often

using a generalization of the theory of geometric diffraction to elastic objects in water

[25, 65, 91, 55]. Their work investigated the plane wave scattering from elastic spheres

and cylinders in terms of infinite partial-wave series and introduced the Sommerfeld-

Watson transformation to this application, which led to Ray theory approximations.

Ray theory approximations provide a high-frequency approximation to the Helmholtz

equation. This high frequency approximation holds for the smooth geometry tran-

sitions and coupling that occurs near the MFE frequencies [55]. It is an intuitive

approach originally attributed to Euclid that predates a mathematical formulation.

Applying the Fermat principle to the ray method essentially states a path exists that

has the minimum travel time from a source to receiver, which can include the guided

waves as seen in Chapter II. The approximate ray analysis provides a physical basis

for an intuitive interpretation of the different echoes and their paths including the

specular and A0 waves, which are visible on the simulated bistatic time-series (e.g. see

Fig. 2.3 and Fig. 3.1). In particular, this geometric approach associates an individual

ray component with each of the various specular and guided surface wave components

within the shell, as shown qualitatively on Fig. 1.3. This simple ray theory has been

shown to be quantitatively accurate [55, 97] and only needs a slight correction in

the forward scatter direction (i.e. θ ≈ 0◦) to account for forward diffraction effects

around the shell. The arrival time of each ray component can be computed from a

geometric calculation of its path length around the shell and within the surrounding

medium. Furthermore, the quantitative ray analysis presented hereafter will be fo-

cused on the most energetic MFE, which correspond to the interference of the A0−

wave components as discussed in Chapter II. In particular, based on the matched
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boundary conditions at the interface between the shell’s wall and the surrounding

medium, the angle of incidence αi with respect to the normal of the shell’s surface,

as shown on Fig. 1.3, for a ray associated with either of the A0 wave components,

A0− and A0+ , is determined by

sin(α(fc)) =
C0

Cphase(fc)
(17)

where fc is the frequency of the harmonic excitation, C0 is the sound speed of the

surrounding fluid, and Cphase(fc) is the frequency-dependent phase velocity of the A0+

or A0− wave components (see Fig. 3.4a). Note that this angle, α, is also the launch

angle of the ray radiating out from the shell (see Fig. 1.3). Based on the selected

parameters for the elastic shell (see Table 1) it can be noted that the phase velocities

of the A0− and A0+ components come close to the value of the sound velocity of the

surrounding fluid C0 = 1500 m/s (see Fig. 1.3), in the vicinity of the coincidence

frequency (i.e. where the MFE occurs), i.e. ka ≈ 46. Additionally the group velocity

curves of the A0− and A0+ components intersect at the coincidence frequency (as

shown in Fig. 3.4b), which indicates an efficient energy coupling and, thus, strong

constructive interference of the A0 components as reported earlier [106].

Previous developments of the quantitative ray theory can be used to predict the

amplitude variations of the A0− and A0+ components in the vicinity of the MFE

[106]. Assuming that an incident harmonic plane wave with amplitude P0 and fre-

quency ω impinges on a shell in a homogeneous free space medium with sound speed

C0, the harmonic scattered field, P (r, φ, t), recorded at a range r is expressed as a

superposition of the various ray components.

P (r, φ, t) =
P0

r
ei(kr−wt)

∞∑
l

fl,m(φ) (18)

Where the angle (φ) parameterizes the angle of the arc path of each lth ray compo-

nent (see Fig. 3.3), each having a complex amplitude fl,m(φ) (commonly referred to

as the form-function). The second index m = 0, 1, 2... denotes the number of full
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Figure 3.4: Evolution of (a) Phase velocities, (b) Group velocities, and (c) Radiation
damping coefficients vs. normalized frequency ka for the antisymmetric guided wave
modes A0+ (dashed line) and A0− (solid line)-adapted from Fig. B1 in Zhang et al
[106]

.

circumnavigations of the individual ray components around the spherical shell. In

particular, the form function associated with the antisymmetric A0 Lamb waves (i.e.

either the A0+ or A0− components) can be approximated by [106]

fl,m(φ) = Ble
iηlβle

(−φβl−2πmβl) (19)

where Bl is a complex constant whose exact expression differs for the A0+ or A0−

component, ηl is a propagation related phase shift parameter, and βl (Np/rad) is the

radiation damping parameter for the considered A0 component. Physically speaking,

the parameter ηl determines the arrival time of the A0+ or A0− waves, and the param-

eter βl quantifies the amount of energy radiated by these waves into the surrounding

fluid while circumnavigating the spherical shell. Fig. 3.4c displays the frequency
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dependence of the radiation damping modal coefficients for the A0+ or A0− waves

computed using the shell’s physical parameters listed in Table 1 (the curves were

adapted from a previous study by Zhang et al. for a spherical shell with identical

physical parameters [106].) In the vicinity of the coincidence frequency (i.e. ka ≈ 46)

the radiation damping parameter of the A0− wave is significantly lower than the radi-

ation damping parameter of the A0+ wave. Consequently, this indicates that the A0−

wave is radiating out most of the energy associated with the MFE. Therefore, the

theoretical variations of the form function fl,m=0, predicted from Eq. (19) and the

geometric path length of the ray associated with the A0− wave will be used hereafter

to quantify the observed time-frequency shift of the bistatic MFE arrival as observed

previously (see Fig. 3.2).

3.3.2 Ray Interpretation of the Observed Time-Frequency Shift of the
Bistatic MFE Arrival

In the vicinity of the MFE, the phase velocity of the A0− becomes close to the value of

the sound velocity of the surrounding fluid C0 (see Fig. 3.4a). Consequently, the angle

of incidence becomes α ≈ π/2 based on Eq. (17), which simplifies the computation

of the path length of the A0− wave propagating around the shell (see Fig. 3.3). For

a bistatic receiver, the arc path angles φc and φcc of respectively the clockwise (see

Fig. 3.3a) and the counter-clockwise (see Fig. 3.3b) propagating A0− waves differ

such that:

φcc(θ) =
π

2
+ θ − cos−1

(a
r

)
(20)

φc(θ) =
5π

2
− θ − cos−1

(a
r

)
(21)

where θ is the bistatic receiver angle, a is the shell radius, and r is the distance

between the sphere’s centroid and the receiver distance. Note that φc = φcc only

when θ = π (i.e. for a monostatic configuration)
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Figure 3.5: Variations of the arrival time of the MFE echo vs. bistatic receiver angle
θ (see geometry in Fig. 3.3) with respect to the monostatic arrival time of the MFE
(i.e. θ = 180◦). The triangle and circle symbols indicate the measured arrival times
for, respectively, the clockwise and counter-clockwise A0− waves, as measured using
the local maxima in the time-frequency plane of the smoothed pseudo Wigner-Ville
representation of the bistatic scattered field (see Fig. 3.2). For comparison, the solid
and dashed lines correspond to the arrival-times predicted from the ray synthesis for
the same clockwise and counter-clockwise A0− waves.

Overall, the difference in path length between the clockwise and the counter-

clockwise propagating A0− waves determines the apparent time-frequency shift of

the bistatic MFE arrival as measured by the SPWV analysis (see Fig. 3.2). More

specifically, the local maximum of the SPWV amplitude in the time-frequency plane

indicates the arrival time of the propagating energy of the A0− wave packet, and is

thus determined by the value of the group velocity, Cgroup(ka = 46) of the A0− wave

in the vicinity of the coincidence frequency (ka=46 see Fig. 3.4b) [101]. Hence for a

bistatic angle θ the variations of the arrival-time for the clockwise and the counter-

clockwise propagating A0− waves (with respect to the arrival times in the monostatic
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configuration i.e. θ = π) can be simply predicted from the ray analysis using the fol-

lowing expressions [(π−θ)a]/[Cgroup(ka = 46)] and −[(π−θ)a]/[Cgroup(ka = 46)] (for

90◦ ≤ θ ≤ 180◦). Fig. 3.5 shows a good agreement between these linear predictions

of the time-shift of the MFE arrival from the ray analysis (plain and dashed lines)

and the measured values from the SPWV analysis (dotted lines) for bistatic angles

varying between 90◦ ≤ θ ≤ 180◦ . The slight discrepancy visible around 90◦ between

the measured and predicted arrival times for the counter-clockwise wave (dashed line)

likely result from error in arrival-time picking from the SPWV due to interferences

occurring between the S0 arrival and the A0− arrival.
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Figure 3.6: Ray models of the amplitudes of the earliest counter-clockwise A0− wave
arrival (based on the form function, fl,m given by Eq. (19) for m = 0) in the vicinity
of the coincidence frequency for same three bistatic receiver angles θ shown in Fig.
3.2. Note the maximum of the amplitude’s enhancement in the mid-frequency region
progressively increases from ka ≈ 46 at θ = 180◦ to ka ≈ 49 at θ = 90◦.

The quantitative ray analysis can also be used to predict the apparent frequency

shift of the bistatic MFE arrival (see Fig. 3.2). More specifically, as the bistatic

angle θ varies away from π, the arc path angles φc and φcc (see Eq. (20-21)) of
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respectively the clockwise and the counter-clockwise propagating A0− waves vary

as stated earlier (see Fig. 3.3). Consequently, for a given bistatic angle θ , the

MFE occurs at the normalized frequency ka, which maximizes the form function

associated with the ray corresponding to the first A0− arrival, i.e. |fl=A0− ,m=0(φ)| =

|Blβl(ka)e(−φ(θ)βl(ka))|, for φ = φcc or φ = φc (see Eq. (20-21)). Hence the frequency

dependence of the radiation damping parameter βl(ka) (see Fig. 3.4c) ultimately

determines the apparent frequency shift of the bistatic MFE arrival. As an illustration

of this phenomenon, Fig. 3.6 displays the evolution of magnitude of the form function

|fl=A0− ,m=0(φ)| for the counter-clockwise propagating A0− wave for the same three

bistatic angles (θ = 180◦, 135◦, 90◦) used for the SPWV calculations shown in Fig.

3.2.

As the bistatic angle θ decreases from θ = 180◦ to θ = 90◦, it can be observed

that the maximum of the form function shifts upward towards higher normalized

frequency values from ka = 46 to ka = 49 (i.e. in the vicinity of the coincidence

frequency) for the counter-clockwise propagating A0− wave. A similar analysis can be

conducted to quantify the downward frequency shift of the clockwise propagating A0−

wave. Overall, Fig. 3.7 shows a good agreement between the bistatic frequency shifts

predicted by this quantitative ray analysis and the frequency-shifts values measured

from the SPWV analysis (dot symbols) of the computer time-series. Furthermore, the

spread of the frequency-shift measurements falls within the measurement error of the

SPWV analysis, which is determined by the frequency resolution of the smoothing

kernel indicated by the vertical error bar displayed on Fig. 3.7. This measurement

error can potentially be mitigated by reducing the frequency smoothing of the SPWV.

However doing so could increase the interference pattern artifacts of the Wigner-Ville

analysis, which would in turn bias the estimation of the SPWV maxima in the time-

frequency plane [16].
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Figure 3.7: Variations of the normalized center frequency of the MFE echo or coin-
cidence frequency vs. bistatic receiver angle θ (see geometry in Fig. 3.3) with respect
to the monostatic arrival time of the MFE (i.e. θ = 180◦). The triangle and circle
symbols indicate the center frequencies for respectively the clockwise and counter-
clockwise A0 arrival as measured from the local maxima in the time-frequency plane
of the smoothed pseudo Wigner-Ville (SPWV) representation of the bistatic scat-
tered field (see Fig. 3.3). The vertical error bar depicts the measurement resolution
along the frequency axis on the SPWV representation, which accounts for most of the
spread in the measured values. For comparison, the solid and dashed lines correspond
to the center frequency of MFE echo predicted from the theoretical ray amplitude
variations as shown on Fig. 3.6.

3.4 Bistatic Behavior for Finite Solid Elastic Cylinder

After presenting the quantitative ray theory based on the form function for a sphere,

it is fruitful to note in this section the similarities and differences in behavior of the

scattered field from the more complex target of a solid cylinder. Due to the single

axis axisymmetry of a finite cylinder, the bistatic literature and analysis is much

more in depth due to the obvious changes in bistatic detection [7, 26, 97, 57]. It

has been shown bistatic views offer an improvement in detection of a simple cylinder

with various viewpoints from the the specular response alone [62]. Due to the angle

of reflection equaling the angle on incidence, the off-axis monostatic response from a
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Figure 3.8: Sketch of the three types of Rayleigh wave coupling with a solid elastic
cylinder: (A) the face crossing waves, (B) the meridional wave, and (C) helical wave
wrapping around the cylinder. Note this wave will propagate around the circumfer-
ence of the cylinder when the impinging wave is broadside.

cylinder results in scattering only from its edges (only broadside and end on source-

receiver configurations return a significant specular echo). Therefore, the acoustic

scattering pattern from the specular reflection able to be measured from a cylinder is

limited broadside monostatic configurations unless a bistatic receiver is used as shown

in Fig. 1.2.

Additional complexity is found when investigating the elastic response of the cylin-

der, due to the single axis of symmetry. However, for this shape a comparison to the

results found in literature reveals the waves on the cylinder can be represented by a

form function similar structure to the form function of the spherical shell (Eq. (19))

that causes the unique time-frequency behavior [7, 26, 97, 57]. For the solid cylinder

however, the MFE does not exist rather other types of surface guided waves exist.

These surface waves do not have the same behavior as the Lamb waves responsible
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for the MFE, but they do offer a similar benefit to the classification based on the

behavior and existence of such guided waves. From this similarity, the same analy-

sis presented for the sphere can be applied to the cylinder, in future research. For

the case of a solid elastic cylinder, the energetic waves guided around the object are

Rayleigh waves and similar time-frequency techniques and detection tools developed

in this research will apply. To briefly introduce the paths of these Rayleigh waves,

we can look at the geometry of the cylinder and how these couple with the cylinder.

These types are described in the literature as meridional, helical, and face crossing.

Fig. 3.8 presents a schematic of how these rays propagate around the cylinder in

three dimensions. Each wave only couples to an excitation wave when the wave in-

cidents on the cylinder at a coupling angle (θr) [7]. This coupling angle limits the

directions the guided waves can be excited and detected, and as such, the behavior is

similar to glint angles from flat surfaces on targets. Similar to the excitation of the A0

Lamb waves on the sphere, this coupling angle is determined by the ratio of the outer

medium sound speed (c0) to the phase speed (cph) of the wave (i.e. θr = sin−1( c0
cph

)).

The geometry and guided wave mechanisms makes off axis numerical methods

complex, and from the findings of the spherical shell, the behavior of these waves

could be approximated using ray paths and the cylinder form function [57]. The

broadside return can be computed from the Goodman and Stern Formulation by

assuming an infinite cylinder. This research will leave the matter for suggested future

work to develop a more complete model to account for expected frequency shifts at

any given source and receiver combination for the cylinder. And the limited nature

of the excitation of these waves will be a source of difficulty in using these waves for

detection, as will be presented in chapter IV.
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3.5 Application to Time-Frequency Beamforming

The time vs. angle representation displayed in Fig. 3.1 shows that the MFE persists

for bistatic source-receiver configurations and, thus, still carries information about the

physical features of the elastic shell. However, the bistatic amplitude of the A0 wave

arrival is significantly reduced compared to the monostatic configuration. Therefore,

bistatic detection of the MFE would need to be enhanced for practical implementa-

tions, by coherently combining the signals measured on an array of receivers using

beamforming techniques [89]. To do so, it is necessary to use a generalized time-

frequency beamformer to account for the time-frequency shifts occurring between the

various bistatic MFE echoes recorded on an array of sensors surrounding the spherical

shell. This generalized time-frequency beamformer can be implemented using a simi-

lar formalism developed for compensating wideband Doppler effects when tracking a

fast moving acoustic source based on companded or time-scaled replica of the Doppler-

free source signal [94]. The term “companded” is a portmanteau of compressed and

expanded. It is assumed hereafter that the bistatic A0− arrival recorded at a bistatic

angle θj is centered at time tj and frequency fj in the time-frequency plane. Addition-

ally, the scattered time-domain signal recorded by the jth receiver located at a bistatic

angle θj is noted Pj(t) (j = 1..N). A generalized time-frequency beamformer B(t;N)

can then be defined by combining companded versions of the N receiver signals Pj(t)

such that:

B(t;N) =
N∑
j=0

Pj(γj(t+ τj)) (22)

where the parameter τj = tj − t1 is selected to compensate the apparent bistatic

time-shift (e.g. see Fig. 3.5) of the A0− wave, defined here with respect to the bistatic

arrival time of the A0− wave recorded on the first receiver. Similarly, the companding

(or time-scaling) parameter γj = 1 + (fj − f1)/f1 is selected to compensate for the
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apparent bistatic frequency-shift the A0− wave (e.g. see Fig. 3.7). The values of the

parameters τj and γj can be estimated based on predictions from the quantitative

ray analysis (as described in Section 3.3) or by directly measuring the time-frequency

shifts of the bistatic A0− arrival from SPWV analysis (as described in Section 3.2), the

latter being the selected approach hereafter. It can be noted that when γj = 1 (i.e.

in the absence of frequency-shift), the expression of the generalized time-frequency

beamformer shown in Eq. (22) reduces to the expression of the conventional time-

delay beamformer [89, 94].

This study focuses on the first MFE arrival since it is the most energetic echo. The

subsequent counter-clockwise mid-frequency enhancement wave packets that occur

later are much weaker (see Fig. 3.1) and thus likely more difficult to measure in

practice.
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Figure 3.9: (a) Upper Panel: Stacked representation of the time-aligned arrivals
of counter-clockwise propagating A0− waves (see Fig. 3.1) recorded at five different
bistatic angles. The relative bistatic time-shifts, with respect to first bistatic angle
θ1 = 100◦, were obtained from the SPWV analysis (see Fig. 3.5). Lower Panel:
Coherent addition of the five time-shifted waveforms using a conventional time-delay
beamformer (computed by when setting the companding parameter as γj = 1 see
Eq. (22)). (b) Upper Panel: same as (a), but each waveform was also companded
to account for the apparent frequency shift of the bistatic counter-clockwise prop-
agating A0− arrival-with respect to the first bistatic angle θ = 100◦- based on the
measured frequency-shifts values from the SPWV analysis (see Fig. 3.7). Lower
Panel: Coherent addition of the five time-frequency shifted waveforms using a gener-
alized time-frequency beamformer (see Eq. (22)). Note that each bistatic waveform,
in both upper panels, was normalized to its maximum value, such that one would
expect a maximum beamformer output of 5 when an optimal coherent addition of
these waveforms is achieved.
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As an illustration of the proposed array beamforming methodology, the upper

panel of Fig. 3.9a displays the A0− arrivals recorded by five bistatic sensors uni-

formly distributed in azimuth around the spherical shell between 100◦ ≤ θ ≤ 140◦.

The analysis window was limited to the first A0− echo. These A0− arrivals were

simply time-aligned with respect to the counter-clockwise MFE arrival for the first

receiver (j=1, θ1 = 100◦). It can be noted that the shape of the waveforms remain

slightly different due to the bistatic frequency-shift of the A0− wave. Additionally,

the maximum amplitude of each receiver signal Pj(t) was normalized to unity, to

account for the bistatic amplitude variations of the A0− arrival (see Fig. 3.1) so that

each receiver had an equal contribution to the beamforming summation in Eq. (22).

These five time-aligned and normalized waveforms were then simply summed to gen-

erate the output of the conventional time-delay beamformer (i.e. using Eq. (22) with

N=5 and γj = 1), as shown on the lower panel of Fig. 3.9a. The maximum of this

conventional time-delay beamformer signal is only 1.63 (i.e. < 5), which indicates

that the five received signals were not coherently added in an optimal fashion. On

the other hand, the upper panel in Fig. 3.9b displays the A0− arrival for the same

five receivers, but after applying both time shift and frequency shift corrections to

each waveform based on the measured values from respectively Fig. 3.5 and Fig. 3.7

for the counter-clockwise A0− echo. The lower panel of Fig. 3.9b shows that the

maximum of the generalized time-frequency beamformer, computed using Eq. (22),

is equal to 4.98 and thus close to the optimal value of 5. Hence this value indicates

that the five received signals were indeed coherently added in an near optimal fashion

using the generalized time-frequency beamformer (see Eq. (22)).

The influence of the receiver array aperture or the number N of bistatic receivers

on the performance of the generalized time-frequency beamformer (see Eq. (22)) is

investigated next. Fig. 3.10 displays the layout of the bistatic receivers around the
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Figure 3.10: Schematic of the bistatic receivers layout around the spherical shell
used for the numerical simulations (see Fig. 3.11). Each receiver array is centered on
the monostatic direction-θ = 180◦-and is composed of an odd number N of receivers,
which are uniformly spaced in azimuth 1◦ apart.

spherical shell, which are centered on the monostatic direction θ = 180◦. These re-

ceivers are uniformly spaced in azimuth 1◦ apart, which implies a relative shift of the

center frequency of the counter-clockwise A0− echo of approximately 250 Hz between

two consecutive receivers based on the results displayed in Fig. 3.7. Fig. 3.11 displays

the variations of the maximum value of the generalized time-frequency beamformer

B(t;N) (dot symbols) for an increasing number of receivers N (i.e. corresponding

to an increasing azimuthal aperture of the receiver array). Similarly, to the results

shown in Fig. 3.9b, each counter-clockwise A0− arrival was also companded to ac-

count for the apparent frequency shift between bistatic receivers. As expected, the

maximum value of the generalized time-frequency beamformer B(t;N) linearly in-

creases with the number of receivers (up to N = 19 here), thus indicating that all
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Figure 3.11: Evolution of the maximum value of the array beamformer B(t;N) (see
Eq. (22)) for an increasing number of receiver N (equivalent here to an increasing
angular aperture of the receiver array see Fig. (3.10)). Asterisk and dot symbols
mark, respectively, the values obtained by the conventional time-delay beamformer
formulation when the companding (or time-scaling) parameter is set to γj = 1 or the
generalized time-frequency beamformer formulation. The linear dependency of the
number of N of receiver (dashed line) is also added for comparison and corresponds
to the optimal achievable value of the array beamformer output B(t;N) when the
arrivals of counter-clockwise propagating A0− waves recorded by the N receivers add
in phase coherently.

counter-clockwise A0− arrivals were indeed coherently processed across the array aper-

ture. For comparison the maximum value of the conventional time-delay beamformer

(star symbols) are also displayed on Fig. 3.11. It can be observed that those values

start to significantly deviate from the optimal linear increase beyond N = 5 receivers.

These numerical results thus confirm that conventional time-delay beamformer would

not be an optimal way to coherently process MFE arrivals recorded across a bistatic

aperture.

Practical implementation of this type of processing may be limited, as the method
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requires prior knowledge of the time-frequency behavior for a given target. An alter-

nate approach would be to use a library of models for searching for a time-frequency

behavior and to maximize the output of the beamformer, and thus when a maximum

is found the corresponding model could be used to classify the target. Additionally,

it is important to consider the approach here uses a circular aperture as opposed to

the traditional linear aperture, which would require compensation for spreading and

attenuation losses along an array to maintain maximum array output.

3.6 Discussion and Summary

The bistatic acoustic scattering of a fluid-loaded spherical elastic shell was investi-

gated both numerically, using a partial wave series expansion, and theoretically using

a quantitative ray analysis. This study focused on the most energetic bistatic echoes

also referred to as mid-frequency enhancement echoes, or MFE, which are associated

with the circumnavigating first antisymmetric guided wave (primarily its A0− modal

component). In particular, the time-frequency analysis of the MFE was conducted

using the Smooth Pseudo Wigner-Ville transform.

Overall, the results of this study demonstrated that time-frequency variations of

the bistatic echoes associated with the structural response of elastic spherical shell

can be predicted. Additionally, due to the apparent bistatic time-frequency shifts of

these MFE echoes, optimal coherent processing of those weak MFE echoes cannot

be achieved by conventional array processing techniques simply relying on variants of

the time-delay beamformer algorithm. In particular, these results imply that conven-

tional Synthetic Aperture SONAR (SAS) algorithms may not yield optimal imaging

results for the detection and classification of the MFE echoes of spherical elastic shells

insonified by low-frequency bistatic SONAR systems. Similar conclusions may be ap-

plicable to elastic shells with other canonical shapes supporting propagating guided

waves (such as finite cylinders). Further joint theoretical and numerical analysis, as
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well as experiments, are required to further understand the mechanisms of bistatic

echo formation for elastic shells and the time-frequency coherence of structure-borne

acoustic echoes. Such studies should provide valuable insights to guide the design of

optimal receiver architecture for low-frequency bistatic SONAR systems (e.g. using

distributed sensor networks) and SAS imaging algorithms.

The following three contributions can be drawn from this chapter:

1. The bistatic MFE echoes were found to exhibit a time-shift and frequency-

shift, as well as a decrease in amplitude, with respect to the monostatic receiver

configuration. This behavior is a relevant finding and has not been previously

published.

2. A simple quantitative ray theory can be used to understand and predict these

observed time-frequency shifts of the MFE arrival. The shifts primarily result

from the combined effect of 1) the bistatic variations of the path length around

the spherical shell of the clockwise or counter-clockwise circumnavigating A0−

waves, and 2) the frequency dependence of the radiation damping parameter

for the A0− wave.

3. A generalized time-frequency beamformer can be used for coherent processing

the bistatic MFE echoes recorded along a distributed receiver array around the

spherical shell. Using companded replica of the bistatic MFE echoes to account

for a known time-frequency shift of the MFE arrival between receivers. This

beamformer can be used in combination with the qualitative ray model to create

a library of time-frequency behavior for classification.
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CHAPTER IV

ACOUSTIC IMAGING OF SIMPLE ELASTIC TARGETS:

SPHERICAL SHELL AND SOLID CYLINDER

4.1 Motivation

The development of robust methodologies allowing for the concurrent detection,

classification, and localization of underwater targets is a challenging problem with

high operational importance for mine countermeasure activities (MCM). To this end,

acoustical imaging offers an attractive approach, especially when visibility is lim-

ited, a large standoff distance is required, or if the target is buried in the bottom

sediments [83, 60]. A straightforward approach for acoustical imaging of specular

echoes from rigid targets consists of beamforming (or back-propagating) the acoustic

backscatter signals recorded on a receiver array back to a selected imaging plane by

assuming free-space propagation in a stationary and homogeneous medium [72]. This

approach is commonly used in underwater SONAR systems and medical ultrasound

scanners. This beamforming-based technique has been applied to image large targets

(with respect to the characteristic acoustic wavelength of the imaging system) us-

ing the so-called “distributed bright-spot model” [4] which consists of assuming that

the target echo results from a number of range-distributed point scatterers along the

actual target’s contour. The spatial resolution of this imaging technique primarily

increases with the selected frequency band and the aperture of the receiver array [8].

For instance, high-frequency (f∼MHz) SONAR systems using a large synthetic aper-

ture created by towing a single receiver- commonly referred to as Synthetic Aperture

0Part of this work was submitted July 2012 for publication in IEEE Journal of Oceanic
Engineering.
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SONAR (SAS) processing [32]-can potentially provide photography-like images of the

seafloor with up to millimetric resolution. However, these conventional high-frequency

SONAR systems cannot image buried targets (due to the limited penetration of the

high-frequency acoustic energy into the sediments [41]), nor produce significantly

different acoustic images of a man-made elastic shell (i.e. potentially containing haz-

ardous explosives) from a solid object (e.g. mine decoy) of similar outer shapes (see

Section 1.5.4).

To address these limitations of high-frequency SONAR systems, low-frequency

(f∼kHz) SONAR systems have been developed to enhance the detection of buried

targets as well as the recognition of mine-like elastic targets by exciting their structural

responses (or resonance signatures) [50, 67, 52]. In this “structural acoustic regime”

of frequencies, the target’s elastic response includes both specular echoes as well as

structural echoes, such as guided waves circumnavigating a thin shell [73]. This elastic

response has been suggested as a basis for target classification through acoustic “finger

printing” using time-frequency analysis or acoustic color representation [97, 50]. In

parallel, previous studies have attempted to image these elastic echoes (also referred to

as structural echoes) using the aforementioned free-space back-propagation algorithm

(such as SAS processing), [52, 97, 58] although this algorithm was originally designed

for imaging specular echoes of rigid targets based on the so-called “distributed bright-

spot”’ model. However, due to their specific generation mechanisms, the elastic echoes

of the elastic target can have a complex radiation pattern, causing the corresponding

backscatter wavefronts to have different time-delay laws and frequency content than

the backscatter wavefronts associated with specular echoes[48]. Thus, when compared

to the specular echoes, these elastic echoes typically appear defocused away from the

actual target’s location on acoustic images generated using the same standard free-

space back-propagation algorithm. This apparent defocusing on conventional acoustic

images occurs as a single time-delay law-based on point scatter’s radiation only- is
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applied for each pixel of the selected imaging plane. This defocusing is especially

detrimental for target recognition purposes when one attempts to image the spatial

origin of weak elastic echoes (compared to usually more energetic specular echoes) in

the presence of ambient noise, reverberation, and clutter.

As an alternative to these standard acoustical imaging techniques, the acous-

tic holography technique has been suggested as a means for analyzing and visual-

izing structural echoes from elastic targets [7]. However, its implementation is not

straightforward for a receiver array with complex geometry such as a two-dimensional

synthetic aperture array with non-uniform spacing produced by imperfect positioning

of the moving sensor platform. One potential improvement for acoustical imaging of

elastic targets would be to include in the back-propagation algorithms a more accurate

model of the target’s elastic response, as obtained from quantitative ray theory [55]

or the generalized target description model [4, 23], to account for the specific features

of structural echoes. This would allow enhancement of the refocusing for both the

specular and structural echoes to their actual spatial origin akin to time-reversal ex-

periments in the presence of elastic targets [68]. However this potential improvement

would add significant computational complexity to the back-propagation algorithm as

it would become target-dependent, thus requiring in practice a search over the various

parameters of a (large) database of known target models (e.g. target’s dimensions,

shell thickness etc...) when attempting to image unknown targets. Indeed, this po-

tentially enhanced imaging resolution obtained at the cost of increased computational

complexity is akin to what one encounters when using matched-field processing algo-

rithms [41] instead of simple time-delay free-space beamforming for acoustic source

localization.

The main objective of this chapter is to demonstrate that the same simple free-

space beamforming algorithm can actually be used to image the full evolution of

the spatio-temporal refocusing of both specular and elastic echoes by varying the
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time-delay law applied to each pixel of the selected imaging plane. This implemen-

tation has the advantage of using the same simple free-space beamforming algorithm

used to generate conventional acoustic images. Furthermore, it allows to partially

account for the delayed arrivals of elastic echoes with respect to specular echoes in

order to enhance the refocusing of these elastic echoes onto the actual target’s lo-

cation. in practice, this enhanced focusing ultimately may produce acoustic images

with higher signal-to-noise ratio for target detection purposes. The proposed ap-

proach is illustrated using time-domain free-space back-propagation as it allows for

arbitrary receiver configuration (e.g. randomly spaced array) without requiring data

interpolation necessary for other implementations of the standard back-propagation

algorithms relying on frequency-wavenumber transforms [32, 37, 36]. Furthermore,

this approach is especially efficient when a large angular aperture of the receiver ar-

ray, for instance surrounding the target of interest as used by circular SAS systems

[60, 27, 61]. Imaging results are presented for canonical elastic targets (thin spherical

shell and rigid cylinder) whose acoustic responses are well characterized in the previ-

ous literature [97, 5] using both numerical simulations and experimental data. The

influence of the receiver aperture and radiation pattern of the target echoes on the

imaging resolution is also discussed.

This chapter is divided into five sections. The following section reviews and for-

mulates the free-space beamforming method used in acoustic imaging. Section 4.3

formulates the modified free-space beamforming algorithm in the time-domain for

imaging elastic targets. The proposed imaging approach is illustrated based on nu-

merical simulations of the monostatic and bistatic response of a thin spherical shell

in the structural acoustic regime of frequencies. Section 4.4 presents experimental

results using the low-frequency elastic response of the same thin spherical steel shell

as well as a solid aluminum cylinder both laying proud on a sandy bottom. Finally,

Section 5.7 summarizes the findings and contributions from this imaging study.
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4.2 Acoustic Imaging Fundamentals

This section is designed to give a brief overview of acoustic imaging principles and

in particular Synthetic Aperture SONAR (SAS). This section assumes the reader

is familiar with SONAR and acoustic propagation but not necessarily conventional

acoustic imaging techniques. A review of SONAR imaging by means of the back-

propagation method will be described by an overview of the signal processing method.

The main difference between traditional array processing and synthetic aperture

is the construction of the data set from either a physical array or a series of successive

recordings at various positions to create a synthetic array along the path of travel.

To construct a synthetic aperture data set, it is required that the environment being

observed does not change between successive positions. This assumption allows the

data to be processed as if it were collected at the same instance as if on a single

physical array. Advantages of the SAS data collection allow arbitrary array configu-

rations and greater resolution capabilities with a limited physical array size. There

are however some drawbacks to this approach, as it does require data to be collected

and processed after the required positions are recorded (i.e. cannot process the im-

age without sufficient aperture data). Furthermore, the arbitrary array configuration

can require data interpolation for computationally efficient imaging techniques that

require equal spacing of data, and this requires accurate positioning for each location

measured. The remainder of this section is applicable to image processing from phys-

ical or synthetic arrays, therefore no distinction between the two will be made unless

necessary.

Traditionally SONAR uses broadband frequency modulated pulses, sometimes

referred to as pings or chirps. Virtually all SAS systems, use broadband transmitted

signals where the signal bandwidth is determined by the required resolution. This

broadband pulse can then be pulse compressed via Matched Filtering (which, simply

put, is the cross-correlation of the received signal with the source signal). The image
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plane can be described along two perpendicular axes, down range and cross range,

where the latter is parallel with the array path (see Fig. 4.1). This image plane can

then be separated into pixels with the size determined by the resolution limits of the

system parameters.
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Figure 4.1: Schematic of Line Array Setup and Process for Imaging.

The cross range resolution of a SONAR system is dependent on the ratio between

the acoustic wavelength (sound speed divided by frequency , λ = c0
f

), and the length of

the array, L. These parameters determine the array beam width and in turn determine

cross-range resolution. Therefore, λ/L reveals that a longer array or higher frequency

will increase the cross range resolution. However; higher frequency systems limit the

achievable propagation down range due to increased absorption, and do not allow for

bottom penetration. Therefore the SAS approach allows the length to be extended

indefinitely by collecting data from several consecutive pings to form a longer array.

The theoretical cross-range resolution in SAS is half the length between each element

in the receive array, at all ranges based on beam width. A practical limitation of
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SAS occurs due to source/receiver directivity, which limits the sound propagation to

limited angles shown as the cones emitting from the array schematic in Fig. 4.1. The

direction dependent sensitivity of the source or receivers can be taken into account.

This amplitude factor can also be used to control the side lobe suppression versus

the angular resolution [89]. The down range resolution is independent of range and

determined by the compressed pulse width (in time) which is directly related to the

bandwidth of the signal. Therefore the pulse width and down range resolution can

be determine from c0/2BW where BW is the bandwidth in Hz.

A simple schematic to aid the description of the imaging method is shown in Fig.

4.1. The N-element array depicted on the left records signals at each nth receiver

position. From here the signals are match filtered (pulse compressed). Then beam-

forming is applied to focus the array output for a given pixel (i, j). Beamforming

is well covered in the literature [42, 13, 66]. The simplest and most intuitive type

of beamforming is equally weighted time-domain beamforming by back-projection.

This is done by back propagating the received signal via each pixel. Back propaga-

tion is also known as Delay-And-Sum beamforming ([41], [42] pg. 117-119). Formally,

back-propagation is straightforward and can be applied by summing the time delayed

signal across the array explicitly given by the equation:

Bi,j(t) =
N∑
1

sn(t− 2rni,j
c0

) (23)

where c0 is the sound-speed of the surrounding medium and rni,j is the distance

between the nth receiver and the center of the imaging pixel (i, j). By convention, for

the case of a point target, the refocused acoustic amplitude recorded by the N receiver

elements is concentrated on the pixel’s location at a delay t =
2ri,j
c0

. The expected

arrival time accounts for the time for the pulse to travel to and from the selected

pixel. Then the energy recorded around this time can be mapped to that pixel on

the image. This progression is repeated for all pixels to form the acoustic image. The
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method can be extended to the three dimensional case by using appropriate array

configuration to capture the full field and beamforming to account for the three-

dimensional propagation. When a reflective object is present the amplitude of the

return is fairly high, and when there is no object the bottom typically returns the

bottom scattering which appears as speckle in the imaging (see Fig. 1.4).

Practical implementation to the acoustic imaging approach requires accurate po-

sitioning of the location of the source and receiver for sharp images. The amount

of positioning error is dependent on the required image quality. The sonar has to

be positioned with accuracy better than a fraction of a wavelength along the entire

aperture to obtain the theoretical resolution limits (at 100 kHz this is approximately

1 mm). This can become exceedingly difficult with moving AUV platforms, and

requires further processing for determining micro-navigation and receiver locations.

Current methods for micronavigation are based on the principle of displaced phase

center antenna (DPCA) in combination with inertial navigation systems to estimate

the platform motion.

Furthermore acoustic imaging is near-field processing and requires the sound ve-

locity to be accurately estimated for a focused imaging to be formed. The sound

velocity in the ocean varies with depth, and can also contain local horizontal and

temporal variations[34]. One possible approach is to correct for incorrect sound ve-

locity and positioning is use of an auto-focus technique to maximize the sharpness of

any image within set ranges. If the SONAR platform is in motion as in SAS applica-

tions, the Doppler effect can cause defocussing of the ambiguity function and requires

some form of Doppler compensation. Doppler tolerant pulses can be used to negate

this spreading after Matched Filtering occurs [3]. These limitations for implementa-

tion described above are outweighed by the benefits of acoustic imaging results and

thus it is still widely used for detection purposes.

It is of use to note that the expected arrival time can be selected at various times to
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form a time evolving back propagation movie of the image plane, in order to observe

the scattered field behavior as is propagates. This movie contains the entire scattered

field information and can be extremely useful when analyzing the formation of echoes

from an elastic target. The following section will expand on the basic imaging to

introduce the method of forming this movie and propose a method to handle the

elastic echoes that arrive later than this expected arrival time.

4.3 Spatio-Temporal Visualization of the Acoustic Response
of an Elastic Target Using Free-Space Back-Propagation

4.3.1 Acoustic imaging using free-space back-propagation

For simplicity, the two-dimensional configuration is used in this study, as depicted

in Fig. 4.2. Assuming free-space back-propagation between the target and the nth

receiver element (n=1,2,..N), the backscattered waveforms recorded by each receiver,

noted here sn(t) can be back-propagated toward a given pixel (i, j) of the two-

dimensional imaging grid using the following beamformer formulation in Eq. (23).

Furthermore, to account for the finite temporal resolution of the SONAR system

(typically limited by the frequency bandwidth of the recorded waveforms), the value

of each pixel i, j on the acoustic images is set equal to the integral of the envelope

(defined here as the magnitude square of the Hilbert’s transform) of the beamformer

output Bi,j(t):

Ci,j(α) =

∫ α+∆

α−∆

abs(Hilbert(Bi,j(t)))
2dt (24)

where the parameters 2∆ and α denote the length and center time delay of the

integration window. The spatio-temporal refocusing of the backscattered waveforms

(referred to hereafter as “back-propagated movie”) can then be visualized by dis-

playing successive snapshots (or frames) of the amplitude variations of the integrated
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Figure 4.2: Schematic of the two-dimensional configuration for the source, receivers,
and target. The azimuthal angle for the spherical shell’s backscatter is indicated as
θ = 180◦ (θ = 0 for forward scattering). The distance between pixel (i,j) and the nth

receiver is denoted rni,j (n = 1, 2, ..., N).

beamformer amplitudes Ci,j(α) across the imaging area by varying the center time-

delay α (e.g. see Fig. 4.5 and Fig. 4.6). However, standard acoustical imaging of

targets, based on the distributed bright-spot model, typically only display the values

of Ci,j(α = 0) over the imaging grid, i.e. at the center time-delay α = 0. Yet this

value of α = 0 may not be the optimal one to maximize the refocused amplitude of the

backscattered waveforms, especially when considering elastic targets. This limitation

is illustrated next using numerical simulations of the acoustic backscatter generated

by a 1.06 m diameter thin elastic spherical shell (thickness of 13.25 mm) excited in

the structural acoustic regime of frequencies (100 Hz< f <45 kHz). Details of the

numerical simulation are given in Chapter II and the shell’s parameters are listed in
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Figure 4.3: Simulated backscatter response of a thin spherical shell (filtered in the
frequency band [100 Hz-45 kHz]). (a) Monostatic response (θ = 180◦) The first elastic
echo corresponds to the antisymmetric A0 guided wave circumnavigating the shell.
(b) Variations of the shell’s bistatic response vs azimuthal angle θ of the receiver
(See Fig. 4.2). The specular and first elastic echoes (propagating either clockwise
(cw) or counter-clockwise (ccw) around the shell are also indicated). Subsequent
arrivals correspond to surface guide waves undergoing multiple revolutions around
the spherical shell. All displayed values were normalized by the maximum value of
the specular echo for θ = 180◦.

4.3.2 Acoustic imaging of the monostatic response of a thin spherical
shell

Fig. 4.3a displays the simulated monostatic response ( i.e. where the source and

receiver’s azimuth angles are equal) of the spherical shell. The scattered field in

this structural acoustic regime of frequencies contains both a broadband specular

echo (centered here at t=6.1 ms) followed by more narrowband elastic echoes which
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Figure 4.4: Beamformer waveform (dashed line, see Eq. (23)) and its envelope (solid
line) obtained when focusing the monostatic response of the spherical shell on either
(a) Pixel 1, located at the shell surface or (b) Pixel 2 located behind the shell (as
marked on Fig. 4.2). The vertical lines indicate for different focus window-all of
width 2∆ = 0.07 ms- centered respectively on delay times α = −0.3, 0, 0.8, 1.25 ms,
which correspond to four frames of the back-propagation movie shown in Fig. 4. The
receivers cover a 180◦ circular aperture and are equally spaced 1◦ apart.

correspond to antisymmetric Lamb-type waves circumnavigating the shell, and sub-

sequent revolutions of the same. The first and most energetic elastic echo (centered

here at t=7.7 ms) is of primary interest for target detection and classification[48, 5].

Due to the axisymmetry of the spherical shell, N = 180 replicas of this monostatic

response are used to mimic the received signals collected by a monostatic source-

receiver SONAR system circling around the elastic shell (see Fig. 4.2) at a range of

10 m with respect to the sphere’s center. The successive source-receiver’s positions

have an equal angular spacing of 1◦ and cover a 180◦ circular aperture (i.e. ranging

from θ =90◦ to θ =270◦). Using these N received monostatic waveforms, Fig. 4.4

displays the output of the free-space beamformer output Bi,j (see dashed line in Fig.

4.4) and its envelope (solid line) for two selected pixels: pixel 1 is located close to the

shell’s surface and faces the receiver array while pixel 2 is located behind the shell’s
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surface opposite to the receiver array (as indicated on Fig. 4.2). The shell center is

located at a cross-range of 0 m and down-range of 10 m on the imaging grid. This

geometry mimics the experimental set-up used in Section III. Conventional acous-

tic imaging (e.g. SAS-like imaging) displays the integrated value of the beamformer

envelope Ci,j(α) (using ∆= 0.035 ms here) for the time-delay α = 0 ms (see Fig.

4.5b).

As expected Fig. 4.5b shows that the specular echo is focused along the shell’s

wall. But the first elastic echo is not tightly focused and is imaged behind shell at

down-ranges larger than 11 m-thus spreading in part over pixel 2, as revealed also by

inspecting the beamformed waveforms displayed on Fig. 4.4. Fig. 4.5a-d displays the

integrated beamformer output Ci,j(α) for three other time-delays α=-0.3 ms, 0.8 ms,

and 1.25 ms (as marked by vertical lines on Fig. 4.4). Overall, these four successive

frames of the back-propagated movie (see Fig. 4.5a-d) show the spatio-temporal

refocusing (resp. diverging) of the wavefronts associated with the specular and first

elastic echo onto (resp. away from) the spherical shell’s center occur at different

delays α. To ease comparison, the logarithmic values of Ci,j(α) displayed in each of

the four frame were all normalized to the maximum value of Ci,j(α = 0 ms) over the

imaging grid (i.e. as shown on Fig. 4.5b).

Fig. 4.5b confirms that the conventional acoustic image obtained for α = 0 ms

allows one to image the shell’s outer wall using the specular echo (with a reference

amplitude set here to 0dB). But the same specular echo was actually tightly focused

on the shell center for an earlier time delay α=-0.3 ms, thus having a significantly

higher amplitude of +15dB (see Fig. 4.5a ). Furthermore, on the conventional acous-

tic image shown in Fig. 4.5b the elastic echoes are imaged as a separate low-amplitude

feature (with a value -15.2 dB compared to the specular echo’s amplitude) located

more than one meter behind the shell. Thus this elastic feature could be misrepre-

sented as a secondary target or might not be visible at all on this image if the ambient
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noise or clutter levels were to be too high in practice. On the other hand, using a

later time-delay α=1.25 ms, brings the same elastic echo into focus at the shell’s

center, thus now appearing as an energetic feature with a +6 dB amplitude (see Fig.

4.5d) which could provide a significant signal-to-noise ratio advantage for detection

purposes. As mentioned in the introductory section, this elastic echo could be used to

help discriminate between a man-made object and a simple rock of similar dimension

(i.e. with no characteristic elastic return). Fig. 4.5a-d also shows the entire recorded

backscatter data actually emanate from the same location at a down range of 10

m and not from two different targets. Consequently, these results indicate that the

conventional acoustic image shown on Fig. 4.5b only provides an incomplete repre-

sentation of the full spatio-temporal refocusing of the elastic response of the spherical

shell contained in the backpropagation movie when the time-delay α varies as shown

on Fig. 4.5a-d. Thus tracking the spatio-temporal evolution of selected energetic

features from the backpropagation movie, simply obtained by varying the parameter

α in Eq. (24) (as shown on Fig. 4.5a-d ), could potentially be used to develop robust

methods to image and detect elastic objects with little added computational effort

over what’s required to obtain the conventional acoustic image (i.e. α = 0 only here).

One alternative to visualizing or analyzing multiple frames of the back propagating

movie, could simply be to generate a single acoustic image where the value Di,j at

each pixel is set to the maximum value of the integrated beamformer output Ci,j(α)

(see Eq. (24)) over a selected interval of time-delay α i.e. such that

Di,j = max
α

(Ci,j(α)) (25)

This maximum search method (MSM) allows one to simply visualize where each

received wavefront (or backscatter’s feature) focuses with maximal amplitude in the

imaging plane. But this MSM requires in effect to first separate each received wave-

front in the received backscattered data, for instance by directly time-windowing

out the specular echo or first elastic echo from the received data. Otherwise, the
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MSM would simply represent the stronger of the two signal components (i.e. here

the broadband specular echo) and ignore the weaker one (i.e. here the narrowband

elastic echo). Fig. 4.5e and Fig. 4.5f display the images obtained with the MSM after

selecting respectively the specular or first elastic wavefront from the received mono-

static data. As expected, both MSM images show a tight focus of both wavefronts

on the elastic shell’s center -thus confirming that both echoes are generated by the

same elastic target instead of two closely spaced targets. This occurs at the center

of the sphere due to the spherical spreading, and would only be expected to occur as

such for similar objects or point scatterers (such as corners or edges of a target). The

amplitude of the specular increases by +15.4 dB by the tight focus of energy produced

by the MSM image. Furthermore, the amplitude of the refocused elastic echo at the

center of the MSM image is +6.9dB as opposed to the low-amplitude (-15.2 dB) and

defocused elastic wavefront displayed on the conventional acoustic image (see Fig.

4.5b).
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Figure 4.5: Spatio-temporal evolution of the integrated value of the beamformer
envelope Ci,j(α) (see Eq. (24)) of the monostatic response of a spherical shell for
four increasing time-delays (a) α = −0.3 ms, (b) α = 0 ms, (c) α = 0.8 ms, and
(d) α = 1.25 ms. (e) Amplitude variations of the MSM output Di,j (see Eq. (25))
using only the portion of the backscattered data corresponding to the specular echo.
(f) Same as (e) but using only the portion of the backscattered data corresponding
to the first elastic echo. The solid circle overlaid on the imaging area-centered at
(10m,0m)-indicates the location of the shell’s outer surface. All logarithmic values (dB
scale) were normalized by the same reference amplitude defined here as the maximum
amplitude of the refocused specular echoes measured along the shell’s outer wall on
the conventional acoustic image shown in (b).
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4.3.3 Acoustic imaging of the bistatic response of a thin spherical shell

Fig. 4.3b displays the simulated bistatic response ( i.e. where the source and re-

ceiver’s azimuth angle differ) of the same spherical shell used in the previous section.

This bistatic response was computed by keeping the far-field source at an azimuth

of θ = 180◦ while the receiver’s azimuth vary from θ =90◦ to θ =270◦ at 1◦ incre-

ments thus covering the same 180◦ circular aperture sketched in Fig. 4.2. Fig. 4.3b

displays the variations of the shell’s bistatic response across the N = 180 receiver

positions. The first wavefront still corresponds to the specular echo. But contrary

to the previous monostatic configuration, the first elastic echo is now split in two

branches corresponding to the clockwise and counter-clockwise antisymmetric Lamb

waves propagating around the shell[5]. Later replicas of this X-shaped feature corre-

spond to multiple revolutions of these two counter-propagating Lamb waves. Thus,

the clockwise and counter-clockwise Lamb waves effectively appear as two moving

sources circling around the shell while radiating energy into the surrounding fluid.

Note that these two counter-propagating Lamb waves interfere constructively for

θ =180◦ (monostatic configuration) to generate a single enhanced return centered

at t=7.7 ms (see Fig. 4.3a).

In a similar fashion to Fig. 4.5a-d, Fig. 4.6a-d display four successive frames of the

backprogation movie generated using this bistatic response of the spherical shell. To

ease comparison, the logarithmic values of Ci,j(α) displayed in each of the four frames

were also normalized by the maximum value of Ci,j(α = 0 ms) over the imaging grid

(i.e. as shown on the conventional acoustic image on Fig. 4.6a). As expected, this

conventional acoustic image Fig. 4.6a shows that the specular echo is focused around

the front of sphere’s contour -facing the receiver array- while the first elastic echo

appears defocused at the back of the sphere (i.e. spread in the cross-range direction

at a down-range of 10.5) with a low amplitude of -16.9 dB. On the other hand, Fig.

4.6b-d show the progressive spatio-temporal refocusing of the bistatic elastic echoes
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as two bright spots circling around the shell-fluid interface in a symmetric fashion.

These trajectories of these bright spots appear to trace back the original path of the

original circumnavigating Lamb waves while radiating into the surrounding fluid. For

instance these refocused elastic echoes are visible at a 10 m range and ±0.5 m cross

range location on Fig. 4.6c for a time delay α = 0.94 ms, or at a 9.6 m range and

±0.45 m cross range location on Fig. 4.6d for a later time delay α = 1.4 ms. Thus

the full spatio-temporal refocusing of the bistatic response of the thin spherical shell

provides additional insights on the generation mechanism and spatial origin of the

elastic echoes, when compared to the single frame Fig. 4.6a corresponding to the

conventional acoustic image.

Finally, Fig. 4.6e and Fig. 4.6f display the acoustic images of the bistatic response

of the spherical shell obtained with the MSM (see Eq. (25)) after selecting respectively

the specular or first elastic wavefront from the received bistatic data (see Fig. 4.3b).

When compared to the 0 dB reference for the amplitude of the specular echo in the

conventional acoustic image shown in Fig. 4.6a, the specular echo appears instead as

a concentrated energetic bright spot on the MSM image (see Fig. 4.6e) centered at

a 9.7 m range and 0 m cross range location with a significantly higher amplitude of

+19.7 dB. Similarly the maximum amplitude of the elastic echo on the MSM image

(at a 10.3 m range and ± 0.5 m cross range location on Fig. 4.6f) is -11.2 dB, i.e. 5.7

dB higher than the amplitude of the elastic echo on the conventional acoustic image

(see Fig. 4.6a). Furthermore, the refocused energy of the elastic echo is also clearly

localized around the shell-fluid interface and not behind the shell as in Fig. 4.6a,

-thus confirming that both specular and elastic echoes are generated by the same

elastic target instead of two closely spaced targets.
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Figure 4.6: Same as Fig. 4.5 but showing instead the spatio-temporal evolution of
the integrated value of the beamformer envelope Ci,j(α) of the bistatic response of a
spherical shell. Note that for four different time-delays were selected here (a) α = 0
ms, (b) α = 0.23 ms, (c) α = 0.94 ms, and (d) α = 1.4 ms.

4.4 Experimental Results

4.4.1 Experimental set-up

The monostatic responses of a thin steel spherical shell and a solid aluminum cylinder

were measured during experiments conducted by the Naval Surface Warfare Center

(Panama City, Florida) at their instrumented pond facility, which is a 14-m deep,

110-m long, and 80-m wide test-pool with a 1.5 m layer of sand on the bottom. The

sound speed in the water was 1486 m/s. The experimental collection methods and

apparatus is discussed in details in a previous study[97] conducted by the team of
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Figure 4.7: Overhead view of the experimental geometry used for backscatter mea-
surements of (a) the thin spherical shell and (b) solid cylinder. (c) Elevation view of
the experimental geometry. The direct and single bottom bounce paths between the
target and source/receiver locations are also indicated qualitatively.

researchers who shared these acoustic backscatter data from the experiment. In short,

the source and receiver array were mounted in quasi-monostatic configuration on a

rigid tower frame and were located at a depth of 10 m (see Fig. 4.7c ). The transmitter

and receiver array were mounted on a panel -tilted at 20◦ angle towards the bottom

and were separated horizontally by about half a meter. The receiver array, composed

of six hydrophones, had a 10 cm horizontal aperture and 1 m vertical aperture. The
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received signals by the 6 elements were added coherently (broadside summation) to

minimize scattering interference from the water/air boundary. The source-receiver

tower was moved in 2.5 cm increments along a 20 m long rail to create a synthetic

aperture and collect backscattering measurements of the elastic targets over a 40◦

aperture (see Fig. 4.7a-b). The transmitter maintained a horizontal beamwidth

greater than 40◦ over the entire frequency band to allow for SAS processing. At

the point of closest approach- corresponding to a cross-range of 0.8 m here- the

horizontal distance between the source-receiver tower and targets (both centered on

approximately the same location) was close to 10 m. From these measurements, the

grazing angle for the ray drawn from the centers of the transmitter and receiver array

to the center of each target was approximately 21◦ (see Fig. 4.7c).
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rival structure of the shallow water waveguide (see Fig. 4.7c). The amplitudes were
normalized with respect to the maximum displayed value.

4.4.2 Thin Spherical Shell

The first target studied was a hollow 59.9 cm diameter steel spherical shell with a

thickness of 1.54 cm (density = 5773 kg/m3, compressional velocity = 7970 m/s and

shear velocity = 3020 m/s). Using the setup described in the previous subsection, the

sphere was excited by a linear frequency modulated (LFM) waveform ranging from 12

kHz to 28 kHz. Fig. 4.8 displays the 400 backscatter signals measured by the source-

receiver tower while moving in 2.5 cm increment along the cross-range axis, the image
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shows illumination of approximately an arc of 37◦ on the sphere (slightly less than the

40◦ aperture used). Two main groups of wavefronts, centered respectively around 16

ms and 16.8 ms, correspond respectively to the specular echo and first elastic echo (i.e.

antisymmetric guided wave) of the spherical shell convolved with the multipath arrival

structure of the shallow water waveguide. Based on a simple ray approximation (see

Fig. 4.7c), these various arrivals shown on Fig. 4.8 can be interpreted as acoustic

energy traveling along four different paths between the source and receiver arrays,

namely (1) the first direct reflection path (Source-Shell-Receiver path), followed by (2)

two reciprocal paths of equal length (thus recorded simultaneously by the receivers)

interacting only once with the bottom (Source-Shell-Bottom-Receiver and Source-

Bottom-Shell-Receiver paths) and finally (3) a path interacting twice with the bottom

(Source-Bottom-Shell-Bottom-Receiver) thus having a weaker amplitude than the

previous paths. Note, that the angles of incidence on the shell of these bottom-

interacting multipath effectively introduce bistatic scattering paths even though the

source and receiver are arranged in a quasi-monostatic geometry [97, 26, 20]. This

bistatic effect can be seen if an approach of an image source and receiver is used to

analyze the multipath, as discussed in Appendix C.

In a similar fashion to Fig.4.5a-d, Fig.4.9a-d displays the successive spatio-temporal

refocusing and defocusing of the experimental backscattered wavefronts shown on Fig.

4.8 along the pond’s bottom in the vicinity of the sphere’s location (indicated by a

thin line). In particular, the elastic echoes located along the back wall of the shell (at

an average down range of 10.5 m) appear slightly defocused with an amplitude of -2.7

dB on the conventional acoustic image (Fig. 4.9b, α = 0 ms). But the same elastic

echoes are more tightly focused at the sphere’s center on the next selected frame of

the backpropagation movie (Fig. 4.9c, α = 0.74 ms) and consequently are imaged

with a slightly higher amplitude of 1.0 dB.
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Figure 4.9: Spatio-temporal evolution of the integrated value of the beamformer
envelope Ci,j(α) (see Eq. (24)) of the monostatic response of a spherical shell for
four increasing time-delays (a) α = −0.2 ms, (b) α = 0 ms, (c) α = 0.74 ms, and
(d) α = 1.58 ms. The refocused specular (labeled S) and elastic echoes (labeled
E) are marked on each plots. (e) Amplitude variations of the MSM output Di,j

(see Eq. (25)) using only the portion of the backscattered data corresponding to
the specular echo (f) Same as (e) but using only the portion of the backscattered
data corresponding to the first elastic echo. The solid circle overlaid on the imaging
area indicates the approximate location of the shell’s outer surface. All logarithmic
values (dB scale) were normalized by the same reference amplitude defined here as
the maximum amplitude of the refocused specular echoes measured along the shell’s
outer wall on the conventional acoustic image shown in (b).

Furthermore, similarly to Fig. 4.5e-f, Fig. 4.9e-f shows the acoustic images ob-

tained with the MSM output (see Eq. (25)) after selecting respectively the specular

or first elastic wavefront from the measured backscattered wavefronts shown on Fig.
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4.8. Compared to the conventional acoustic image, (Fig. 4.9b, α = 0 ms), the maxi-

mum amplitude of the refocused specular and elastic echoes are now located near the

sphere’s center at a down range of 10 m. In particular, the maximum amplitude of the

elastic echo displayed on the MSM image (Fig. 4.9f) appears to be +6dB higher than

the maximum amplitude of the elastic echo displayed on the conventional acoustic

image (Fig. 4.9a). But this increase in refocused amplitude in the MSM image (Fig.

4.9f) comes at the expense of the spatial localization of the elastic echo when com-

pared to conventional acoustic image (Fig. 4.9b). Hence the refocused energy is now

“smeared” across the down range (or time resolution) direction due to the definition

of the MSM output in Eq. (25). Indeed, this smearing of the focus region on Fig.

4.9f along a X-shaped pattern (whose branches are centered on the sphere’s center)

corresponds of the whole area illuminated by the refocused elastic wavefront while

it successively converges to and diverges away from the sphere’s center (as shown in

the successive frames on Fig. 4.9a-d). Furthermore, when compared to Fig. 4.5f,

the spatio-temporal refocusing on the sphere’s center is significantly less pronounced

on Fig. 4.9f as the received backscattered wavefronts are now only measured across

a limited angular aperture of 40◦ instead of the larger aperture of 180◦ used for the

numerical simulations. A similar explanation can be applied when comparing the

spatial extent of the refocused specular echo on Fig. 4.9b and Fig. 4.9e.

4.4.3 Model Validation and Experimental Comparison

Though the model and numerical methods have been well studied, the implementation

and work in this research benefits greatly from the validation of the model with

experimental results. Objectives of this section are to validate the results of the

imaging method and the numerical mode based on the results from the experimental

data. Additionally the model allows one to isolate the features to confirm behavior

and echoes associated with each image feature. For this purpose the data from the
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spherical shell will be compared directly to that of the numerical model.

The numerical model presented in Chapter II was implemented using parameters

that match the conditions of the experimental data, in order to validate the code and

verify the imaging results. The following model parameters where modeled: a 59.9 cm

diameter steel spherical shell (density = 5773 kg/m3, compressional velocity = 7970

m/s and shear velocity = 3020 m/s). The model is excited by a Gaussian shaded pulse

ranging from frequencies of 12 kHz to 28 kHz, which is the same spectrum and length

as the matched filtered LFM pulse used in the experiment. The backscatter data

was calculated across 400 positions to simulate the source-receiver positions at 2.5

cm increment along the cross-range axis, thus illuminating an approximate arc of 40◦

on the sphere. The sound speed of the water was modeled as 1486 m/s. The distance

at the point of closest approach to the target was set to 10 m. The comparison of

the backscatter data at the point of closest approach for the model and experiment

is shown in Fig. 4.10.
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Figure 4.10: Comparison of experimental (solid line) and model (dashed line)
backscatter data at the point of closest approach from source/receiver to the tar-
get.

The direct comparison of the time series from the model data and experimental
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data, shown in Fig. 4.10 verifies the expected behavior in both the model and exper-

iment, with a broadband specular arrival and subsequently a narrower band elastic

echo arrival. For easier comparison, the signals are overlaid and the first specular ar-

rivals are time aligned. For this comparison, the multipath effect of the experimental

data was neglected on the model, but will be added in for comparison of the imaging

results. The comparison reveals that the peak of the first (direct path) elastic echo

arrives 0.88 ms and 0.87 ms after the specular echo for the experimental data and

model respectively.

Furthermore the center frequency and behavior of the time-frequency representa-

tion of the model and experiment are presented in Fig. 4.11. Measuring the peak

amplitude of the elastic echo results in the center frequencies of 16.75 kHz (data)

and 16.65 kHz (model) with an uncertainty of ± 150 Hz in the approximation of the

instantaneous frequency. These results in combination with the time series overlay

show close matching of the numerical and experimental results and thus verify the

model is accurate for the thin spherical shell. It would be beneficial for future work to

validate the model with other types of materials similar to those presented in Chapter

II.

Additionally to confirm the results and impact of each component on the image for-

mation, a model to data comparison will be presented here. For the standard imaging

method, the multipath has significant impact on the image, and therefore the imaging

model includes the first energetic multipath effect. The multipath effect induced by

the bottom reflection was simply simulated by adding the free-space contribution of

various image spheres with respect to the bottom interface following the approach

used by Williams et al. [97] and presented in Appendix C. This approach neglects

the reduced energy of the reflection off the sediment. This loss can be neglected since

the second arrival is actually a combination of two simultaneous arrivals of the sin-

gle bottom bounce (Source-Shell-Bottom-Receiver and Source-Bottom-Shell-Receiver
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Figure 4.11: Time-Frequency Distribution of Model and Experiment results, where
the model amplitude was normalized to the max amplitude of the experimental data.
Center Frequency of model = 16650 ±150 Hz dt between spec and MFE = 0.87 ms,
for experiment Fc=16750 Hz and dt =0.88 ms
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paths), which is a fairly energetic return.

Using the same numerical model as previously presented, a comparison of the

experiment and model imaging was conducted for two reasons. The first was to

discern if the arrivals after the specular were associated with the multipath and elastic

response, as opposed to possible clutter or noise. The second was to verify that the

expected spherical shell model images match the results from experimental data.

Good agreement is shown between the numerical model in Fig. 4.12 for the different

imaging methods, though slightly more curvature can be seen in the specular (9.75,0)

image. This difference is most likely due to the plane wave source in the model being

able to fully illuminate the target at all angles equally, whereas the experimental data

does not illuminate the sphere equally over all cross ranges.
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Figure 4.12: Acoustic images of monostatic spherical shell for experimental data
for (a) conventional imaging method (b) MSM image of the specular echoes and (c)
MSM image of the elastic echoes. Simulated data matching the experimental setup
for (d) conventional imaging, and (e) MSM image of the specular echoes and (f)
MSM image of the elastic echoes. The solid circle overlaid on the images indicates
the approximate location of the shell’s outer surface. All logarithmic values (dB
scale) were normalized by the same reference amplitude defined here as the maximum
amplitude of the refocused specular echoes measured along the shell’s outer wall on
the conventional acoustic image shown in (a) and (d). The refocused specular (labeled
S) and elastic echoes (labeled E) are marked on (a).
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Overall, the simulated imaging results shown in Fig. 4.12d-f closely match the ex-

perimental results shown in Fig. 4.12a-c, thus confirming the previous interpretation

in Section 4.4.2 of the spatio-temporal refocusing of the shell’s elastic response in the

presence of multipath effects.

4.4.4 Solid Aluminum Cylinder
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Figure 4.13: Evolution of the envelope (in logarithmic scale) of the solid cylinder’s
backscatter vs receiver’s cross-range. The amplitudes were normalized with respect to
the maximum displayed value. The section labeled (I) and (II) along the cross-range
axis correspond to the receiver laying broadside or approximately 25◦ off-axis from
the cylinder (see Fig. 4.7b).

The second elastic target under study is a 30.6 cm by 61 cm solid aluminum

cylinder. The cylinder was excited by a 6 ms long linear frequency modulated (LFM)

waveform ranging from 1 kHz to 30 kHz, transmitted every 2.5 cm along the 20 m

track. Figure 4.13 displays the stacked backscattered measurements (obtained after
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matched filtering) measured along the receiver’s track. Due to the lack of axisymmetry

about all axes, the orientation of the cylinder relative to the receiver array must be

considered for detection purposes. As indicated in Fig. 4.7b, when the receiver’s cross

range lies between -6 m to -3 m (labeled as Section I), the receiver array orientation

lays approximately parallel or broadside to the cylinder’s main axis. Fig. 4.13 shows

that the backscatterer measurements collected over broadside Section I correspond

to high amplitude echoes caused by the specular reflection of the cylinder in a quasi-

monostatic configuration. On the other hand, when the receiver’s cross range lies

between -3 m to 4m (labeled as Section II), the cylinder is insonified at a tilted

angle of approximately 25◦ ±15◦. This off-axis insonification efficiently excites guided

waves (meridional and helical elastic waves) radiating back to the receiver [97]. An

additional acoustic feature in the data is the earliest faint arc (t = 15.9 ms) that

extends through both regions. This faint arc can be attributed to the edge diffraction

of the cylinder, while the faint replica behind this arc can be attributed to multipath

effect. Further discussion and details of the nature of these waves can be found in

previous studies.[97, 7]

Fig. 4.14a-c displays three frames of the backpropagation movie for the cylinder’s

backscatter data recorded under broadside illumination only (i.e. for receivers located

within Section I). As expected, the conventional acoustic image (see Fig. 4.14b) show

that the refocused specular echoes and multipath replicas highlight the cylinder’s

length insonified by the broadside illumination. This good spatial focusing indicates

that the distributed bright-spot model is applicable to the backscatter data-dominated

by specular echoes- recorded under broadside illumination. However, when using this

quasi-monostatic source/receiver configuration, the wavefronts associated with these

specular echoes were recorded only a very small cross-range aperture (≈1m) and

thus had very little curvature . Consequently, this short receiver aperture limits

the effective amplitude of the refocused field. This short aperture also explains why
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Figure 4.14: Spatio-temporal evolution of the integrated value of the beamformer
envelope Ci,j(α) (see Eq. (24)) of the broadside backscatter of the cylinder (i.e.
for receivers located within Section I-see Fig. 4.13) for three increasing time-delays
(a)α = −2.98 ms, (b)α = 0 ms, and α = 0.98 ms. (d) Amplitude variations of the
MSM output Di,j (see Eq. (25)) using only the same portion of the backscattered
data. The estimated cylinder location is marked with a solid line. All logarithmic
values (dB scale) were normalized by the same reference amplitude defined here as
the maximum amplitude obtained for the conventional acoustic image shown in (b)

the three progressive frames shown on Fig. 4.14a-c do not display the same focusing

and diverging of the refocused field onto the cylinder’s location as previously observed

when imaging the spherical shell’s data recorded along a much larger receiver aperture

(see Fig. 4.8 and Fig.4.9a-c). Finally, Fig. 4.14 displays the amplitude variations of

the MSM output Di,j (see Eq. (25)) for the same Section I of the backscatter data.

Here, the MSM method fails to accurately localize the cylinder’s location since the

specular echoes were only recorded over a very short aperture, instead the refocused

energy is “smeared” across the down range direction.

For comparison, Fig. 4.15 displays similar results for the backscatter data when

the cylinder is insonified off-axis (i.e. for receivers located within Section II) thus
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Figure 4.15: Same as Fig. 4.14 but using instead the off-axis backscatter of the
cylinder (i.e. for receivers located within Section II-see Fig. 4.13).

favoring the generation of elastic echoes. Overall, Fig. 4.15 indicates that the free-

space backpropagation approach does not yield a clear focusing of the elastic echoes

regardless of the method used to image these echoes. These results confirm that that

the distributed bright spot model is not directly applicable to elastic echoes having

a complex generation mechanism such as meridional and helical elastic waves here.

But, it can be noted that the MSM image (see Fig. 4.15d) provides a small-and

potentially fortuitous- gain in refocused amplitude of +2dB when compared to the

conventional acoustic image (see Fig. 4.15b).

4.5 Discussion and Summary

In conclusion, it can be noted that the original use of the free-space back-propagation

algorithms (as done in SAS processing) was to primarily image the contours (and

shadows) of rigid targets based on the “distributed bright-spot model” using only

specular echoes. When using high-frequency monostatic SONAR systems and a suf-

ficiently large receiving aperture, this approach can yield high-resolution acoustic
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images which can be processed using automatic target recognition algorithms (typ-

ically relying on image processing) to detect specific target shapes. On the other

hand, the development of low-mid frequency SONAR systems was motivated for

their capability to excite and detect elastic echoes of the target of interest to enhance

target’s recognition and classification. So although acoustic imaging can be per-

formed using low-frequency SONAR systems-as shown in this study- these systems

can only offer limited spatial resolution for shape-recognition purposes due to their

significantly larger insonification wavelengths. Furthermore, similar to glint angles

of non-axis symmetric targets, these elastic echoes are frequently observed only over

a limited angular aperture. This physically limits the effective recording aperture

of these elastic echoes-especially for monostatic systems-which in turn drastically re-

duce the focusing ability of the standard acoustic imaging methods. To address this

issue, one could use instead bistatic or multi-static low-frequency SONAR systems

to obtain a wider coverage of the target’s elastic echoes, thus potentially enhancing

the probability of detection of these elastic echoes. However, due to their complex

generation mechanisms, these elastic echoes cannot be effectively focused onto their

spatial origin using a simple free-space back-propagation algorithm, contrary to well-

behaved specular echoes. Consequently, this may ultimately limit the usefulness of

SAS-like algorithms for accurately imaging the spatial origin of elastic echoes using

low-frequency SONAR systems.

The numerical simulations and experimental results presented in this study indi-

cate that the elastic response of simple targets (spherical shell and solid cylinder here)

excited in the structural acoustic regime of frequencies create additional complexities

for acoustic imaging. In particular, due to their specific generation mechanisms and

radiation patterns, these elastic echoes (also referred to as elastic echoes) cannot be

simply described by the distributed bright-spot model used for conventional acous-

tical imaging (e.g as used for SAS processing) of the specular echoes of the same
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targets. Consequently, the elastic echoes can appear defocused (or blurred) and not

centered on the target location on the conventional acoustic image. However, this

study demonstrates that the same simple free-space beamforming algorithm used by

conventional acoustic imaging can also provide images of the full evolution of the

spatio-temporal refocusing (as a “back propagation movie”) of both specular and

elastic echoes. This was achieved by varying the selected time-windows of the beam-

former output used for acoustic imaging to partially account for the delayed arrivals

of elastic echoes with respect to specular echoes. Numerical and experimental results

for a thin spherical shell indicate that this approach can significantly enhance the

refocusing of elastic echoes onto the actual target’s location if the echoes are effec-

tively recorded across a large angular aperture (e.g. as used in circular SAS systems

[60, 27]). In this case, this approach may produce acoustic images with higher SNR

compared to conventional acoustic images obtained for a single reference time-delay.

Thus in practice, this enhanced SNR could then provide a significant advantage for

detecting elastic echoes in the presence of high level of ambient noise or clutter. How-

ever, experimental results for a solid cylinder show that this approach provides little

focusing capability for elastic echoes radiating within a small angular aperture.

This chapter also investigated the possibility of condensing the whole information

contained in the successive frames of the backpropagation movie into a single acoustic

image (as done by conventional acoustic imaging) by simply representing the maxi-

mum refocused amplitude at each pixel of the acoustic image across all times. This

modified imaging can thus yield a single acoustic image with higher amplitude for the

elastic echoes, especially when using a larger aperture as done in circular SAS[60, 27].

However this modified imaging method loses the time resolution (or down range res-

olution) for tight focusing of the acoustic energy which becomes a clear disadvantage

over conventional acoustic images, especially when using a limited receiver aperture.

Thus overall, tracking the kinematics of the refocusing of high-amplitude features
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associated with elastic echoes across successive frames of the whole backpropagation

movie could potentially enhance the concurrent detection, classification and local-

ization of elastic targets. Furthermore, the kinematics of the elastic echoes do not

appear to be easily condensed in an optimal fashion in a single acoustic image: doing

so appear to inherently limit the amplitude or spatial resolution of the refocused elas-

tic echoes based on the two approaches (conventional and modified imaging methods)

illustrated in this research.

The bistatic results for the spherical shell may be particularly useful since the

elastic response essentially illuminates part of the shell that would not be able to

be imaged with only the specular response in a bistatic recording. Additionally

it is worthwhile to note on the imaging of the elastic response from a target that

there is physically a limited aperture that is useful for elastic response from a target.

Similar to glint angles of non-axis symmetric targets the elastic response will only

be constructively combined on a limited range along an array. This is due to the

acoustic energy being shed only in certain directions and not acting as a spherical or

point source from the target’s surface.

The important contributions to take away from this chapter are:

1. The back-propagated movie contains the information of the full scattered field

and different approaches that exist to process the information from elastic tar-

gets.

2. The new maximum search method (MSM) proposed allows one to partially

account for the non-free space propagation paths that the guided waves travel

around a spherical elastic target.

3. This imaging method resulted in an improvement in maximum amplitude of the

resultant image, but lost time information to focus the image. This resulted

in a “smearing” of the image and required a large array angular coverage for
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focusing the image to a recognizable target.

4. The bistatic result from the spherical shell and a 180◦ circular aperture provided

an improved result using the MSM over the conventional approach, since it is

able to focused the energy at the surface of the shell.

5. The physics of the guided waves on a solid cylinder limits the effective recording

aperture (which is also the expected case for other complex shapes like truncated

cones), thus practical use of simple imaging methods in this chapter is drastically

reduced when applied to elastic echoes.
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CHAPTER V

SPACE-TIME-FREQUENCY PROCESSING

5.1 Motivation

Noise reduction is a necessity in a variety of fields requiring signal processing, espe-

cially in SONAR and array processing. Measurements of any type have an inherent

difficulty of recording a signal of interest in the presence of noise, which can have

a detrimental effect on detection and classification performance. Noise can be the

result of a variety of factors for acoustic measurements including ambient noise, ther-

mal acoustic noise, reverberation, electrical line noise, flow noise etc. Methods for

optimal array processing attempt to mitigate the impact of noise on a signal. Some

common approaches include Wiener filter, frequency filtering, Kalman filtering, and

beamforming (spatial filtering). An ideal solution to noise reduction would allow noise

to be completely isolated from the signal and thus return an exact measurement of

the input signal. This process in fact becomes extremely challenging when signal

characteristics (e.g. duration, frequency content) are not precisely known a priori.

Processing a signal without knowing the source specifics is often referred to as blind

source separation in the literature [9, 63, 93, 99].

Further complications arise when processing non-stationary signals (signals that

change in frequency content through time). These signals require broadband noise

reduction techniques in order to not distort the original signal. Previous work has

demonstrated that signal decorrelation occurs due to Doppler shift, and it has been

shown that differential Doppler compensation is required for two sensor cross corre-

lation cases [70]. There has also been previous work on handling noise reduction of

non-stationary signals recorded across a receiver for the application of speech signals
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[39]. Several methods currently exist to leverage this space-time-frequency informa-

tion from an array. For example a wideband spatial processing method was developed

using wavelets for the analysis of the received signals. But, this implementation is

dependent on the selected wavelet basis functions used to decompose the received

signals [95, 94]. There remains a need for noise reduction of signals that contain

different frequencies (i.e. non-stationary signals) along the array itself. This is a

standard problem dealt with in Doppler compensation of signals along an array. In

addition to the Doppler application, this effect is shown in Chapter III where the

signal from the MFE (elastic wave) of a spherical shell has an apparent frequency

shift that is dependent on the bistatic receiver angle along an array. Chapter III ap-

plied a time-frequency beamformer developed for Doppler compensation to address

the shift, which required knowledge of the time-frequency behavior. However, if the

signal behavior is unknown, blind noise reduction techniques need to be implemented.

The noise reduction problem for this research can then be posed to handle the non-

stationary signal measured across an array.
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Figure 5.1: Schematic of the model setup with a source located 8 m from the receiver
array (8 receivers) depicted with a radial range to each receiver at angle θi
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In order to isolate one component of the bigger problem, this chapter will utilize an

arbitrary time frequency relationship rather than the complex time-frequency behav-

ior of guided waves measured bistatically from a spherical shell (see Chapter III). For

this research and noise reduction method, a dilation parameter, β, and geometrical

distance from source to each receiver will allow for each receiver in the array to record

the source signal at a unique time and frequency shift. This arbitrary frequency shift

will be defined by the following relationship:

∆f = − β
c0

cos(θi)Fc (26)

where the recorded change in frequency of the signal is dependent on the center

frequency, Fc, and the source-receiver angle, θi, and the medium sound speed, c0.

This simple model will ease the analysis and allow control of the time and frequency

behavior across the array.

This chapter will introduce the background and previous work done in this area.

Then two previously developed broadband subspace methods utilizing the Singular

Value Decomposition (sometimes referred to as Principle Component Analysis) will

be reviewed and a third noise reduction method will be introduced. Finally, the use of

the Space-Time-Frequency distribution incorporating the Smoothed Pseudo Wigner-

Ville distribution is proposed to separate the signal from the background noise. This

numerical tool is developed to process and enhance the signal for a non-stationary

behavior measured along an array (i.e. Doppler, MFE, etc). In the following section

these methods will be applied to a simple case of an arbitrary shift across an array for

a performance comparison. A performance and parameter study of this space-time-

frequency distribution (STFD-SVD) will be presented, followed by an application to

data from the monostatic shell experiment presented in Section 4.4.
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5.2 Background

There are many methods present in literature to reduce noise from a measured sig-

nal. The SVD and principle component analysis are subspace methods that allow

the separation between noise and signal subspace, thus allowing for noise reduction

[30]. The compact and sparse representation of a signal is extremely useful for noise

suppression and signal detection, as it eases the signal detection. The quality of how

sparse a signal is compared to the noise can be quantitatively measured with a Signal

to Noise Ratio (SNR) metric. Known methods of obtaining a sparse representation

of a signal include Fourier transforms as well as time-frequency transforms.

For example, a simple Gaussian pulse of 30 ms, with a center frequency of 500 Hz

and a 100 Hz bandwidth can be simply represented in time and frequency domain (see

Fig. 5.2). This signal will be the baseline pulse used in this chapter. The sampling

frequency is set to 5 kHz hereafter. Without additive noise, the signal remains sparse

in all three domain representations: Fig. 5.2a represents the Fourier domain, Fig.

5.2b is the Smoothed Pseudo Wigner-Ville (SPWV) time-frequency domain, and Fig.

5.2c presents the time domain representation of the pulse.

The addition of white Gaussian zero mean noise to the baseline pulse will, as

expected, obscure the signal representation. A noise level with a standard deviation

of 0.5 is added to the baseline pulse using the normally distributed pseudo-random

number generator function “randn” built in to the numerical software MatLab, fol-

lowed by a low-pass filter set at the Nyquist Frequency of 2.5 kHz. The three domains

of interest, time, frequency, and time-frequency, are presented in Fig. 5.3. The signal

is shown to be more sparse in the frequency domain than the time domain (compare

Fig. 5.3a to Fig. 5.3c). This gain in signal to noise level is due to the spreading of

the energy across all frequencies. The time-frequency domain is particularly useful

for SNR gain when analyzing chirps as well as non-stationary signals. There is SNR

gain across both time and frequency domains as shown in Fig. 5.3b. This gain is
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due to the even spread of white noise across the entire domain, where as the signal is

compact over its bandwidth in this domain.

Figure 5.2: Depiction of the transmitted pulse without added noise: (a) Fourier
domain depicting frequency content of the signal of a 500 Hz signal with a 100 Hz
bandwidth, (b) time-frequency plot via Smoothed Pseudo Wigner-Ville distribution
of the pulse, and (c) time domain signal of a 30 ms chirp emitted from the source.

Figure 5.3: Time frequency representation of a signal from Sensor 1 (located at
y = −1.2 shown in Fig. 5.1) with added whitenoise (σ = 0.5): (a) the frequency
spectrum of the noisy signal, (b) Smoothed Pseudo Wigner-Ville Distribution, and
(c) time domain plot of the signal.
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Additional processing has been shown to further increase SNR (reduce noise) by

using spatial domain behavior to process array data. For example there is extensive

literature to handle RADAR jamming by non-stationary interference. Some of these

methods include the use of the spatial time-frequency distribution (STFD which is

discussed in further detail in Section 5.3.3) with subspace methods for use with Blind

Source Separation by STFD, time-frequency multiple signal classification (TF-Music),

and time-frequency minimum variance distortionless response (TF-MVDR) [9, 10, 17,

99, 108]. These studies assume a non-stationary signal is recorded across the entire

array, and the use of wideband processing takes into account the change frequency

content. However, for a Doppler signal the non-stationary behavior is recorded across

the array (each receiver records a different time and frequency), and these methods

may not be applicable. Additionally, the previous methods utilizing the Space-Time-

Frequency distribution only proved to be effective when isolating the signal in the

time and frequency space, requiring some a priori knowledge of the signal.

Further studies have shown Space-Time Adaptive Processing (STAP) is capable

of wideband processing using the receiver (space), fast-time (time), and slow-time

(snapshot) three dimensional space for processing. The STAP methods do not take

full advantage of the time-frequency information across an array; unlike the STFD

which uses it to characterize the non-stationary space-time-frequency data. Using the

space-time-frequency coherence simultaneously will provide a means for improving

processing non-stationary signals along an array and merits further investigation in

this research.

For clarity the following sub-sections will present the basic background method-

ology used in modeling the noisy signal, present a means to measure SNR in the

time-frequency domain, and introduce singular value decomposition for the purpose

of noise reduction.
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5.2.1 Discrete Signal Model

The method of developing a process for noise reduction requires a noisy signal model

for the data from an array. For the purposes of this research the model is given as a

simple linear mixture of original source signal (s) plus noise (ν). This model can also

be represented for the observed discrete time samples, t, during the sample time as:

xi[t] = si[t] + νi[t] (27)

where the subscript, i, indicates the sensor number on the array from i = 1, 2, ..., N ,

with N being the total number of sensors in the array. The added noise is modeled as

zero mean white Gaussian noise, with a known variance, σ2
v , and will be assumed to

be uncorrelated across the array shown in Fig. 5.1. For physical arrays, this uncorre-

lated model may not hold since the dominant noise sources (reverberation, flow noise,

ambient ocean noise) tend to be coherent. However, when the system is setup as a

synthetic array each position of the receiver occurs at different times and locations

and therefore the incoherent model will hold for flow and ambient noise, though not

necessarily reverberation since this is environment dependent and will most likely not

be affect by the different times the synthetic array data is captured. The signal at each

sensor, i, is then modeled at different times and frequencies along the array to obtain

a non-stationary signal along the array. The companded signal model presented in

Chapter III, xi = si[γi(t+ τi)]+νi[t], can be used to model the signal across the array

for a time and frequency shift based on the propagation distance and frequency shift

respectively. Where the parameter τi is selected for the time shift, and companding

(or time-scaling) parameter γi is selected to model the frequency shift. This noisy

signal model will be used to present noise reduction methods.

A discrete Fourier transform may then be applied to this signal to obtain a discrete

representation of the signal in the frequency domain as presented in Eq. (28).
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xi[f ] = FFT (xi[t]) (28)

In practice the discrete Fourier transform computes the Fourier domain represen-

tation of the signal using the numerically efficient Fast Fourier Transform (FFT).

Here f denotes the frequency samples in Hz, and the Fourier samples are divided into

finite length frequency bins of length ≈10 Hz given the selected sampling parameters

and signal duration. The array data can then be represented by a set of single fre-

quency vectors with entries for each receiver, where X(fl) represents the data vector

across the array at frequency, fl.

X(fl) = [x1(fl), x2(fl), ..., xi(fl)] (29)

It is now useful to define the conventional Cross Spectral Density Matrix (CSDM),

sometimes referred to as the spatial correlation matrix since it contains the inter-

element correlation information from the data within an array. This matrix has

been defined and shown to be extremely useful in numerous optimal array processing

techniques including beamforming [42, 89]. The CSDM is a narrowband matrix that

computes the correlation between all inter-element array pairs at a specified frequency.

This is simply implemented by taking the outer product (in frequency domain) of the

array data as follows:

CSDM(f1) = X(f1)X†(f1) =


x1(f1)x∗1(f1) · · · x1(f1)x∗N(f1)

...
. . .

...

xN(f1)x∗1(f1) · · · xN(f1)x∗N(f1)

 (30)

Here the notation † indicates the Hermitian transpose and ∗ indicates the complex

conjugate of the scalar. Applying this formulation to noisy data allows the formation

of a sample or estimated CSDM. This is simply an estimate of the expected or true

value of the CSDM. Taking multiple “snapshots” of the array can provide a better
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estimate of the true CSDM [59, 6, 79]. These snapshots are obtained using a fixed

environment and signal behavior with different noise realizations. Previous studies

have shown the number of snapshots, R, should be greater than two times the number

of receivers, N, in the array (R > 2N) [69, 21]. This criteria was proposed in order to

obtain a well conditioned (or a Full Rank) sample CSDM [69]. Studies and methods

exist [59, 6, 79] to process and deal with rank deficient sample CSDM; however, for

simplicity and for optimal performance, the numerical experiments in this research

will be run with R = 2N + 1 (R = 17 here). Eq. (31) defines the expected value of

the correlation by the linear addition of the snapshots.

Ĉ ≡ E〈XX†〉 =
1

R

R∑
i=1

{Xi[f ]Xi[f ]†} (31)

These discrete representations of the signal and estimated CSDM can now be

used to present the methods for constructing noise reduction methods, which will be

presented in the next section.

5.2.2 Signal-to-Noise Ratio

In order to properly quantify the performance for a given noise reduction method, it is

necessary to perform a measurement of the signal level with respect to the noise level.

This measure can however depend on the domain in which these levels are observed

[98]. For example a narrowband signal in the presence of white noise can have a

different measure of signal amplitude above noise amplitude between observations in

the time or frequency domain (see Fig. 5.3). The narrowband signal will be sparse in

the frequency domain (represented by very few Fourier coefficients). For the purpose

of non-stationary signals, this research will be measuring the SNR of a given signal in

the time-frequency domain, which allows for sparse representation, by spreading the

noise energy across all time-frequency bins, allowing for a sparse representation of the

signal. For this purpose, the method presented by Xiang et al. [98] for measuring SNR
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directly in the time frequency domain will be used and is presented in the following

equation:

SNR =

1

β

∑
t,f∈β
|SPWV [t, f ]|2

σ2
(32)

where SPWV [t, f ] is the smoothed pseudo Wigner-Ville time-frequency representa-

tion (i.e. discrete time and frequency locations), β is defined as the area of domain

for the signal above the -3dB level from the maximum amplitude measured, and σ2

is the variance away from this region (selected as the boxed region in Fig. 5.3b). In

general terms this method provides a ratio of the average signal power with respect

to the noise level (variance).

5.2.3 Singular Value Decomposition Approach to Noise Reduction

For a subspace projection method, one must first estimate orthogonal subspaces of

the data. The Singular Value Decomposition (SVD) has been shown to be a reliable

tool for determining subspace projections [77, 93]. This method of using the SVD

for subspace decomposition is presented here then applied to three noise reduction

approaches in the following section. The SVD theory states that for any matrix

C ∈ Cm×n (C is an element of the complex numbers of dimension m × n), there

exists unitary matrices U ∈ Cm×m and V ∈ Cn×n such that its decomposition can

be written as follows [74]:

C = UΣV † (33)

where Σ is the diagonal matrix whose entries are the singular values σi of C in

descending order. The columns of U are referred to as the left singular vectors, and

the columns of V are referred to as the right singular vectors. The singular values

represent the energy content of the singular vectors.

An application of the SVD approach allows separation of the decomposition into

subspaces. From Eq. (33) this subspace separation allows the CSDM Ĉ to be written
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as:

Ĉ =

(
Us Un

)Σs 0

0 Σn

(Vs Vn

)†
(34)

where Σs contains the largest singular values which are associated with the highest

energy (i.e. signal space), and Σn contains the remaining noise space. It is important

to note that this estimate of the signal subspace contains an amount of noise as well,

and therefore it is not possible to completely remove the noise, without knowing

the true subspace of the signal alone. The column vectors associated with Us is the

subspace spanned by the signal and therefore referred to here as the signal subspace,

and Un is referred to as the noise subspace. From linear algebra, it is known that Us

provides the orthonormal bases for the signal subspace [81]. Therefore the signal and

noise subspaces are mutually orthogonal, and noisy array data can be projected onto

the signal subspace by an projection matrix formed by these bases to obtain noise

reduction [39, 89]. For this purpose the orthonormal projection matrix, P, can be

calculated directly from the left singular vectors as follows:

P = UsU
†
s (35)

This projection matrix can then be used to project to the noisy data onto the

signal subspace:

PX(fl) ≈ [s1(fl), s2(fl), ..., si(fl)] (36)

The projected signal PX(fl) can provide a partially denoised replica of the original

source signals, si(fl). This method for noise reduction by SVD can be implemented

in a number of ways to account for different types of signal behavior. The following

section will provide three approaches to noise reduction utilizing this subspace (signal

space projection) applied to a non-stationary signal across an array.
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5.3 Subspace Noise Reduction Methods

This section will present two previously developed noise reduction methods, and pro-

pose a third method. The first uses the CSDM and applies the subspace noise re-

duction independently frequency-by-frequency, essentially combining frequency data

individually to create a wideband method, whereas the second method uses a ‘super’

CSDM that uses all the frequencies simultaneously for noise reduction, utilizing the

cross-frequency coherence. The third proposed method uses space-time-frequency co-

herence simultaneously for noise reduction across the array. The goal of this section

is not to provide an exhaustive presentation of denoising methods, but rather present

techniques developed in literature, which are applicable to the denoising of signals

that exhibit non-stationary behavior across an array for comparison to the proposed

method. This section is divided into three subsections, each dedicated to introducing

the concepts and implementation of the proposed methods.

5.3.1 Single Frequency Processing

Array Signal 
(n,t) 

F
~

Array Signal 
S(n, ω) Fourier 

CSDM 
(nxn) 

Loop for Each Frequency 

SVD 
Projection 
Matrix (P) 

P (n,ω) S(n,ω) x 
Denoised 

Signal Sf(n,ω) 

1~F Denoised 
Signal Sf(n,t) 

SPWV 

Figure 5.4: Depiction of the single frequency denoising process flow.
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The first noise reduction method is the conventional and most widely documented

method in literature [59, 39, 89]. The single frequency process uses the standard

narrowband CSDM presented in Section 5.2.1. To incorporate broadband processing,

the frequency data vectors are calculated via the FFT, denoised by the SVD project

onto the signal subspace (done frequency by frequency), and then the denoised data

vectors are recombined via the inverse Fourier transform (IFFT). This method is

limited in its effectiveness in handling non-stationary signals as it only exploits spatial

coherence along the array and can not take into account cross-frequency behavior that

occurs in non-stationary signals.

The first step of this method is to take the Fourier transform of the data across the

array and form the sample CSDM for each frequency. The CSDM is formed by taking

the outer product of the data vector as shown in Eq. (30). Additional snapshots are

combined to form an accurate estimate and full rank CSDM. For each frequency,

the SVD of the CSDM matrix is formed; then the signal subspace is determined

by selecting the highest valued singular values to create a projection matrix. The

projection matrix is then applied to the frequency domain data vector. This is then

repeated for all frequencies, and the projected data is recombined before taking the

inverse Fourier transform to obtain the denoised signal. Fig. 5.4 depicts the visual

process flow of this method, and indicates the loop to include all frequencies to extend

the method to wideband processing.

5.3.2 Cross Frequency Processing

The next method was developed to coherently process wideband data across an array,

and the schematic of the process described in this section is presented in Fig. 5.5. In

order to accomplish the wideband processing of the array it has been shown that by

concatenating the frequency data vectors from an array, one can form a super-vector

as shown in Eq. (37) [17]. This super-vector can then be used in place of the single
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Figure 5.5: Depiction of the simultaneous frequency denoising process flow.

data vector X in Eq. (30) to create a “Super” CSDM.

X̂ = [x1(f1), x2(f1), ..., xN(f1), ..., x1(fL), x2(fL), ..., xN(fL)]T (37)

For succinct representation xi(fl) denotes the frequency (complex field) received

on the receiver, i, and fl is the individual frequency bin to be considered. The con-

struction of a Super-CSDM provides additional information between cross-frequency

correlations as shown in the off diagonal terms in Eq. (38), which have been shown to

be useful in processing non-stationary signals [17]. Once the Super-CSDM is formed,

a similar SVD approach is applied to separate the signal and noise subspace, then

project the super-vector onto the signal space to denoise the data.
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X̂X̂† =



x1(f1)x∗1(f1) · · · x1(f1)x∗4(f2) · · · x1(f1)x∗N(fl)

...
. . . · · · · · · ...

x4(f2)x∗1(f1) · · · x4(f2)x∗4(f2) · · · x4(f2)x∗N(fl)

...
...

...
. . .

...

xN(f1)x∗1(f1) · · · xN(f1)x∗4(f2) · · · xN(fl)x
∗
N(fl)


(38)

This approach also requires snapshots of data to properly estimate the true CSDM

blocks. These snapshots are simple linear combinations as presented in Section 5.2.3.

The linear combination of these snapshots results in an expected value of the Super-

CSDM shown here:

E〈X̂X̂†〉 =
1

R

R∑
i=1

{X̂iX̂i
†} (39)

Then by unstacking the super-vector and applying the IFFT one can potentially

obtain the noise reduced version of the original received data.

5.3.3 Space-Time-Frequency Processing Using Cross Wigner-Ville

One approach for utilizing time-frequency distributions is discussed previously in

literature [35] where the SVD is used on a single Time-Frequency representation of

non-stationary signals. This method does not utilize spatial information available

across an array of N receivers. To use the extent of all three dimensions of space-

time-frequency, one approach is to construct a matrix that uses this information

simultaneously. The use of the Smoothed Pseudo Wigner-Ville distribution lends

itself to this methodology quite well, in that the implementation for this Cohen class

time-frequency distribution involves the Fourier transform of the autocorrelation (or

cross-correlation) to estimate instantaneous frequency (See Chapter 2). Eq. (40)

presents the cross Smooth Pseudo Wigner-Ville distribution between two different

signals denoted x1(t) and x2(t).
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WVx1x2(t, f) =

∫ +∞

−∞
h(τ)

∫ +∞

−∞
g(u− t)x1(u+

τ

2
)x∗2(u− τ

2
)e−j2πfτ du dτ (40)

Where g(u − t) and h(τ) are the time and frequency smoothing windows, and

the inner integral produces a function similar to a time correlation of the signals

(analogous to the X̂X̂† matrix used in the previous approach). The outer integral

then takes the Fourier transform of this and produces a cross time-frequency distri-

bution. It is then possible to construct a spatial time frequency distribution (STFD)

by stacking these distributions in the same manner and construction of the Super-

CSDM presented in Section 5.3.2. These methods are similar in that the blocks of

the Super-CSDM are correlations of the array output, likewise the STFD uses the

Fourier transform of these correlations to form the time-frequency distribution. The

STFD “super” matrix is then formatted as follows:

STFD =



WVx1x1(t, f) WVx1x2(t, f) · · · WVx1xN (t, f)

WVx2x1(t, f) WVx2x2(t, f) · · · WVx2xN (t, f)

...
...

. . .
...

WVxNx1(t, f) WVxNx2(t, f) · · · WVxNxN (t, f)


(41)

where each WVxixj(t, f) (i, j = 1...N) represents the discrete matrix blocks. The

diagonal blocks of the STFD are the Auto Wigner-Ville distributions and the off-

diagonal elements are Cross Wigner-Ville distributions of the receiver signals. This

“super” matrix then contains all the inter-element (space) time-frequency information

and can now be used for noise reduction.

The noise reduction process flow will now be summarized and the visual repre-

sentation is shown in Fig. 5.6. First, the array data is recorded across N sensors,

and discrete times, t. Then each SPWV and Cross-SPWV is computed for all sensor

pairs. These time frequency distributions are then stacked block-wise into the STFD

which now has dimensions Nt × Nf (number of sensors times time samples by number
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of sensors times frequency samples). The SVD of the “super” matrix is computed

and only the most energetic singular values (which represent the signal subspace) are

used to reconstruct a denoised version of the STFD. The diagonal blocks from the

reduced STFD are the denoised time-frequency distributions for each sensor.

It is important to note that some important differences of this method, which will

be referred to hereafter as the STFD-SVD. This method does not require multiple

snapshots for lower noise levels in order to effectively reduce the noise; due to the ad-

ditional information provided by the inter-element time-frequency process, the STFD

has a rank sufficient to perform the SVD to decompose the data into subspaces. Ad-

ditional snapshots can be used in the same manner as the other methods to improve

the performance of the method for higher noise levels. Additionally this method does

not project the data onto an estimated CSDM like the previous two method, since

the data is directly used to form the noise reduced signal.

Array Signal 
(n,t) 

Compute 
 SPWV (t,f)  

all Sensor Pairs 

Reconstruct 
STFD(nt,nf)=U* ŝ *V’ 

Denoised  
Time-Frequency 

Distribution for each 
Sensor (SPWV) 

SVD 

Stack  Spatial Time 
Frequency 

Distribution 
STFD(nt,nf) 

Threshold 
Singular Values 

(ŝ) 

Use Diagonal Terms to 
form SPVW(t,f,n) 

Figure 5.6: Depiction of the space time frequency denoising process flow.
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5.4 Numerical Experiment Results

The Doppler experiment introduced at the beginning of this Chapter (presented in

Fig. 5.2) will now be used for numerical experiments for a side by side comparison

of the three noise reduction methods presented. This section will measure the per-

formance of the methods based on the SNR gain (SNR of denoised signal minus the

SNR of the noisy signal both measured from Eq. (32)) for a noise level of additive

white Gaussian noise with a standard deviation of σ = 0.5 added to the baseline

signal of a normalized amplitude of 1. For this noise level, the signal is buried within

the noise and not easily identified in the time domain (see Fig. 5.3). Additionally,

the baseline comparison will be modeled using a source velocity of Vs = 600 m/s with

the sound speed of air used at c0 = 343 m/s. The average frequency shift between

adjacent receivers is calculated to be ≈36 Hz. With the bandwidth of 100 Hz, this

results in approximately 64% frequency overlap between adjacent receivers, with the

first and last receiver having a difference of about 250 Hz between their respective

center frequencies.

5.4.1 Singular Value Selection Methodology

One consideration that arises in the SVD process as stated previously is the selection

and separation of the singular values associated with the signal and with the noise

subspaces. When there is a high enough SNR in the noisy signal, the singular values

drop off rapidly (this behavior is also dependent on the number of snapshots, R, used).

However, when the signal is buried in the noise, the delineation is not as clear-cut.

For the numerical simulation, this selection is slightly different for each method.

The first single frequency method requires an SVD for each frequency, and there-

fore the frequencies that contain the signal have larger separation between the signal

singular values and noise. As seen in Fig. 5.7a only some of the frequencies show a

first singular value with significant value due to the limited bandwidth of the signal

123



0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 A
m

pl
itu

de
Singular Value

 

 

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Singular Value

N
or

m
al

iz
ed

 A
m

pl
itu

de

2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 A
m

pl
itu

de

Singular Value

 

 

R=1, σ=0.5
R=1, σ=0.95
R=17, σ=0.95

R=17, σ=0.5
R=17, σ=0.95
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R=17, σ=0.95

(a) (b) (c)

Top 10% Cutoff for R=1, σ=0.95

Top 10% Cutoff for R=17, σ=0.95

Figure 5.7: Singular value amplitude plotted for each denoising method: (a) single
frequency (singular values for each frequency are stacked), (b) cross-frequency, and
(c)STFD-SVD. Results shown for the added noise level of σ = 0.5. The STFD-
SVD (c) additionally depicts the singular values for a noise level of σ = 0.95, for 1
realization (R=1) and 17 realizations (R=17). And depicts the threshold of the top
10% based on energy for these cases.

(100 Hz); therefore, there are frequency bins here that only contain noise. These bins

have a low amplitude first singular value. Next, the Cross Frequency method uses the

SVD of the Super-CSDM, and again, with a well conditioned CSDM, the separation

between the signal and noise is apparent and the first singular value can be used (see

Fig. 5.7b).

The separation is not nearly as apparent for the STFD-SVD method as shown in

Fig. 5.7c (R=1, σ = 0.5). In this situation, a threshold can be selected to separate

the signal from noise subspace. For the sparse signal and a given noise level, the top

10% of the singular values were chosen to estimate the signal subspace, which results

in the first 2 singular values to be used for the σ = 0.5 case. For a higher noise case

(σ = 0.95), the singular values do not drop off as quickly, and the first 6 singular

values lie within the top 10%. The use of the same number of snapshots (R=17) as

the previous two methods brings the higher noise level to roughly the same drop off
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as the lower noise with a single snapshot.

The first two SVD methods use 17 noise realizations to form snapshots in order

to create the projection matrices for denoising an 18th realization. The same noise

realization was used for each of the three methods for easy side-by-side comparison

and consistency. Each method was successful at reducing the noise floor and thus

increasing the SNR. These methods are all applied as blind noise reduction, and thus

no information about the signal of non-stationary behavior was required. The STFD

did perform better than the first two methods in this case. Additionally, the method

performed better with only a single realization at the lower noise level. The measured

SNR gain for this baseline noise reduction is 7.8 dB, 10.6 dB, and 13.1 dB for the

Single Frequency, Cross-Frequency, and STFD-SVD respectively. The time-frequency

representation of these results is shown in Fig. 5.8.

It should be noted that the performance of the STFD-SVD would likely be de-

graded for signals that are not as sparsely represented in the time-frequency domain.

The reason for this thought is seen in Fig. 5.8d in which the noise reduction appears

to be a result similar to applying a band-pass filter and time-gate around the signal

(though with the STFD, the selection of this time-frequency filter is done automati-

cally via the SVD processing).
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Figure 5.8: Time-frequency representation of sensor 1 from the receiver array shown
in Fig. 5.1 with added white noise (σ = 0.5) and an average frequency overlap between
sensors of 64%. The time frequency representation is calculated using the Smoothed
Pseudo Wigner-Ville Distribution for (a) noisy signal, (b) single frequency denoised
method (R=17), (c) cross-frequency method (R=17), and (d) STFD method (R=1).

5.5 STFD Parameter Study

Since the Space Time Frequency Distribution singular value decomposition method is

a new approach to noise reduction, there exists an interest to determine the sensitivity

and performance relative to the numerous inputs to the method. A parameter study

was conducted to test a variety of input parameters. The parameters chosen to

include in the study were: noise level, snapshots, time overlap, frequency overlap,

center frequency of the signal, bandwidth of the signal, and the amount of smoothing

in the time and frequency domain. The performance of the STFD-SVD method will
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be measured based on the SNR gain [SNR(Denoised signal) - SNR(Noisy Signal)]. For

the study each parameter was changed from the baseline (σ = 0.5, R=1, fc =500 Hz,

BW=100 Hz) while holding all other parameters constant, except for the time and

frequency overlap study which were interdependent on one another for the denoising

performance.

The study results are summarized below:

� Time and frequency overlap, noise level, and snapshots are the most crucial

parameters affecting the performance of this method.

� Time and frequency overlap are interdependent, and the performance is best

around 70%− 95% range for both domains.

� The SNR gain decreases with increased noise level due to the reduced ability to

separate signal and noise subspaces.

� Increased snapshots increase the performance by effectively reducing noise prior

to subspace separation via SVD.

5.5.1 Study Details

The first case of the study uses two high noise levels of additive white Gaussian noise

with a standard deviation of σ = 0.5 and σ = 0.95. These cases were run through a

range of frequency overlaps to determine the performance of all three methods with

respect to varying degrees of Doppler shift for two high noise scenarios. The frequency

overlap is determined by the frequency shift between adjacent receivers and the signal

bandwidth:

Overlap% = 100%− fc2 − fc1
BW

∗ 100 (42)

where fc1 and fc2 are the center frequencies of the received signal for sensor 1 and

2 respectively, and BW is the bandwidth of the source signal. Similarly the time
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overlap is calculated using the center times and pulse duration.

The STFD-SVD method performs better than the other two methods for the

σ = 0.5 noise level; However, the higher noise level brought the performance of the

STFD-SVD down. This is thought to be due to the selection of the singular values,

which becomes much more difficult with higher noise levels (see Fig. 5.7).

The noise level directly influences the use of the SVD for separation of the signal

and noise subspaces. As shown in Fig. 5.10, the performance of the STFD-SVD

method degrades as noise level increases, holding all else equal. This is similar be-

havior of other subspace methods, due to the difficulty of accurately estimating the

signal subspace.

The performance at the higher noise level can be improved by using a higher

number of snapshots (equal to those used in the previous methods, R=17). This

leads to the next parameter study in which the higher noise level (σ = 0.95) is used

to study the impact of snapshots on the SNR gain. As expected, the increase of

snapshots increases the SNR gain to a point, when the signal and noise subspace can

be separated.

Further study suggested that the performance or gain of this process seems to rely

on the overlap in time and frequency of the signals across the array. These overlaps

of time and frequency are mutually dependent on each other as shown in Fig. 5.12.

This figure depicts the SNR gain, resulting in lower performance when either time or

frequency overlap are less than 80% and 60% respectively. Changing one affects the

other, which makes sense, in that if the signal does not share any common time or

frequency with the signals on other receivers, little is gained by processing the array

data simultaneously. Additionally, it is seen that if the same signal is measured across

the array (i.e. 100% frequency overlap), there is slightly less gain, which is thought

to be due to loss of the inter-sensor gain brought about by the off-diagonal blocks

within the STFD.
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Figure 5.9: Comparison of SNR gain for the three noise reduction methods for the
average array received signals for added white noise at high level of (a) σ = 0.5 (b)
σ = 0.95, versus frequency overlap for the reference signal (Fc = 500 Hz, BW = 100
Hz).

129



0 

2 

4 

6 

8 

10 

12 

14 

16 

0 0.2 0.4 0.6 0.8 1 1.2 

SN
R

 G
ai

n
 (

d
B

) 

Noise Level (σ) 

Single-Frequency 

Cross-Frequency 

STVD-SVD 

Figure 5.10: Plot of noise level vs SNR gain for the three different methods as labeled
in the legend.

Bandwidth had some effect on the SNR gain, though this is thought to be due

to the reduced frequency overlap as the frequency shift, bandwidth, and pulse length

are dependent on one another. This parameter does not appear to be a critical input

for the denoising performance. The change in performance shown in the Fig. 5.13a

is due to the change in frequency overlap, not the bandwidth. Further study reveals

that both center frequency and time smoothing window size did not drastically affect

the STFD-SVD performance. Finally the frequency smoothing window size does not

appear to affect the performance of the method until the smoothing becomes larger

than the chirp bandwidth. The smoothing window being larger than the chirp results

in the performance drop due to the stretching the signal and loss of compact and

sparse time-frequency representation (see smoothing selection study in Appendix B).

This study reveals that the STFD-SVD method remains robust to various input

parameters and signal behavior. In the certain case of time-frequency overlap of

between the 70%-95% range, the method performed its best. Further extension of
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Figure 5.11: Plot of snapshots vs. SNR Gain for a noise level of σ = 0.95, for
the three methods. The STFD-SVD is using the top 10% of the singular values.
Error bars displayed are representative of one standard deviation from 10 numerical
experiments with different noise realizations for the indicated number of snapshots.

this method could involve the use of a mask to isolate the signal in the time-frequency

domain, which could be used as a time-frequency filter. Another method would be

to map the two dimensional time-frequency function back to a one dimensional time

function using a Wigner-Ville synthesis algorithm [12, 64]. The Wigner-Ville synthesis

algorithm presented by Boudreaux et al. [12] is a minimization problem to best

approximate a digital signal whose time-frequency representation matches the given

time-frequency distribution by a least squares approach. The synthesized signal must

be bounded by additional phase information since the synthesis will not result in a

unique signal, since multiple signals with different phases may give the same time

frequency distribution (i.e. sine and cosine functions have phase offset of π/2 but

present the same time-frequency distribution). These approaches would allow time

domain processing to be used on the synthesized version of the denoised signal. This

extension will remain as a possible direction for future work.
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Figure 5.12: Surface plot of the STFD-SVD approach depicting the SNR gain for
various combinations of time overlap and frequency overlap from adjacent receivers
for the reference signal (Fc = 500 Hz, BW = 100 Hz,Tl = 40 ms).
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Figure 5.13: Graph results of study for STFD sensitivity to input parameters.
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5.6 Application to Experimental Data

In order to test the viability and performance for application beyond simulated data,

the STFD-SVD method is applied to the synthetic aperture experiment introduced in

Chapter IV. As this experiment was not conducted for the purposes of a noise reduc-

tion experiment, additional snapshots are not available to implement the two other

methods, and the signal to noise ratio of the experimental data is already fairly high

(22.4 dB in time-frequency domain) due to low ambient noise, and preprocessing via

Matched Filter. This section the results of the improvement to the SNR will be dis-

cussed and some of the factors that influence the results of denoising the experimental

data will be discussed.

For consistency, the application to the data will remain a blind noise method

though the signal time and frequency content is known. Additionally the signal con-

tains more complex behavior than the previous modeled approach with the signal

containing: a broadband specular echo, narrow band MFE, noise, multipath, and

reverberation. These added features to the signal are expected to decrease the per-

formance of the SVD approach since the signals are not completely sparse in the

time-frequency domain, and are expected to lead to complications with separating

singular values that contain the noise and signal. Therefore, care will need to be

taken when selecting the singular values to recover a distinguishable signal from the

noise.

It was found that choosing the top 20% of singular values was the best threshold

for the balance between recovering the signal and maximize the noise reduced from

the recorded data. The data set has 400 positions available for creating a synthetic

array spaced at 2.5 cm apart. For the denoising purpose 8 elements were selected

to create an array over 3 different spacing between elements, (2.5 cm, 10 cm, 50

cm). These spacing to create synthetic arrays were selected in attempt to reduce any

coherence of the noise from sensor to sensor created by reverberation, as the further
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apart the sensors, the less likely each sensor would record the same diffuse scattering

from the environment.

The initial SNR for the noisy signal in the time domain (using Eq. (32)) was 22.4

dB. Using the 8 sensors at the minimum separation distance gave a 2.9 dB increase in

the SNR. The further separations with 10 cm and 50 cm resulted in an SNR increase

of 4.4 dB and 4.6 dB respectively. This increase in noise reduction performance

supports the idea of the correlation of noise playing a role in the denoising. The

synthetic array data collection method lends itself to containing uncorrelated noise

quite well since the recording is both at different times as well as capable of wide

separation in space, so time varying white noise and environment reverberation will

have little correlation between sensors.

The time-frequency results from the noise reduction for the 10 cm separation case

are shown in Fig. 5.14. The specular echo and its multipath arrivals are seen at

times 15.6 and 15.7 ms, followed by the MFE arrival at 16.4 and 16.6 ms. The noise

considered here is measured before the arrival of the signal as indicated in Fig. 5.14a.

The results reveal that not only is the noise reduced by this approach but additional

smoothing of the interference patterns (seen in between the specular arrivals at 15.65

ms) is accomplished with the SVD applied to the Smoothed Pseudo Wigner-Ville.

In conclusion, the STFD-SVD method performs well in the experimental case,

where the noise level was cut by over half of the initial value through a blind noise

reduction method. Based on this experimental application and modeling results, the

method is expected to perform better for narrowband signals and higher noise levels

(where the signal is sparse in the time-frequency domain). This should be investigated

in future research with simple experiments developed in particular for this approach,

which could verify this expectation. The experiment could also be developed to take

additional snapshots to allow for the model and experiment validation of the other

two methods as well.
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Figure 5.14: Experimental data representations for point of closest approach for
monostatic data of spherical shell from the NSWC pond experiment (a)time series
(b) Time-frequency noisy signal (c) Time-frequency STFD-SVD data. Experiment
setup details are presented in section 4.4.
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5.7 Discussion and Summary

The blind source separation of non-stationary signals across an array is a valuable tool

in many applications, specifically bistatic detection of elastic echoes (see Chapter III),

and as applied in this chapter, an arbitrary frequency shift of a signal along an array

of receivers. The non-stationary behavior of the signals require wideband methods

for proper treatment of the signal for noise reduction. The STFD-SVD method using

the cross Wigner-Ville time-frequency distribution was proposed as an extension to

the single and cross-frequency subspace methods. The main benefit of the STFD-

SVD method, in addition to its performance, is the ability to achieve blind source

separation of a Doppler shifted signal using only a single snapshot for lower noise

levels. This becomes important, especially for a Doppler signal, due to the constantly

changing Doppler shift (as the source moves) across the array, which can physically

limit the number of snapshots available. Further improvement can be achieved for

higher noise levels with additional snapshots.

The conclusions and contributions that can be drawn from this research for de-

noising via the proposed STFD-SVD method are as follows:

� At lower noise levels the STFD-SVD performs as well if not better than single

frequency and cross-frequency subspace methods.

� For the higher noise levels, the methods show an SNR gain though the sparse

representation of the signal begins to degrade and the SVD approach begins to

breakdown, which requires more singular values to represent the signal subspace.

� Time and frequency overlap, noise level, and snapshots are the critical param-

eters affecting the performance of this method.

� There is a performance increase using the STFD-SVD method for non-stationary

signals that have an overlap between ≈70-95% in both time and frequency.
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� The time and frequency smoothing windows only weakly affect the performance

of the STFD-SVD Method, and only when the smoothing window exceeds the

bandwidth of the signal.

� The actual bandwidth and center frequency do not appear to have a significant

impact on the performance of the proposed method.

� The STFD-SVD method performs well in the experimental case, where the noise

level remaining after the Matched filter processing was cut by over half of the

initial value through a blind noise reduction method.
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CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

The goal of research in the field of mine countermeasure efforts can be conveyed in

two words: “detection” and “classification.” The tools proposed in this research were

investigated and developed with the intent to improve these processes, through the

use of the elastic echoes from simple elastic targets in both monostatic and bistatic

source-receiver configurations.

The monostatic and bistatic behavior of a thin spherical shell at low-mid frequency

ranges was thoroughly investigated. From this research it was determined that the

elastic echoes from the spherical shell target required methods to account for the

varying time-frequency behavior for bistatic measurements. A time-frequency beam-

former was found to work to improve signal amplitude across an array, for known

time and frequency shifts.

The acoustic imaging of the simple elastic targets was then investigated to de-

termine the limitations and possible improvements of this detection method. It

was shown that the elastic echoes are not properly focused with conventional back-

propagating methods due to their delayed propagation physical formation. An al-

ternative maximum search method was proposed and applied to simulation and ex-

perimental data. The MSM image allowed tracking of the maximum energy across

varying focus times, which increased the signal level. However, the MSM image is of

limited use due to the loss of time resolution, and therefore requires sufficient angular

coverage of a target to be recorded. This limitation also highlights a flaw in using the

elastic echoes from more complex shapes, such as a solid cylinder, due to the limited

angles at which guided waves can be excited and recorded.
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Finally, with the knowledge of the time-frequency behavior of the elastic echoes

(analogous to a arbitrary time and frequency shifts), a Space-Time-Frequency blind

noise reduction technique was proposed using an SVD subspace methodology. The

Space-Time-Frequency Distribution SVD method was implemented for a numerical

model of an arbitrary frequency shift law along an array. Furthermore, the STFD-

SVD approach was investigated to determine the performance sensitivity to the input

parameters selected.

The investigation of the simple spherical shell led to the application and devel-

opment of several approaches for handling the time-frequency behavior of the elastic

echoes observed. The objectives of this research were met by developing methods for

improving the detection and classification of a man-made target by means of time-

frequency analysis and bistatic enhancement of the elastic echoes from a man-made

target.

6.1 Contributions

The main accomplishments and contributions of the research are summarized below:

� The study of the bistatic behavior for the mid-frequency enhancement revealed

the occurrence of a time-frequency shift.

� The benefit of using a time-frequency beamformer to enhance detection of the

MFE was applied to simulation data.

� The limitations of acoustic imaging (i.e. SAS processing) of guided waves from

a spherical shell were investigated.

� The Maximum Search Acoustic Imaging method was introduced and applied to

simulation data from a spherical shell and experimental data from a spherical

shell and solid cylinder. Limitations and requirements of large angular coverage

for imaging of guided waves were discussed.
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� Space-Time-Frequency method using the smoothed pseudo Wigner-Ville trans-

form was proposed and investigated as a method for blind noise reduction of

non-stationary signals measured on an array.

6.2 Suggested Future Directions

This work has provided additional tools for enhancement and use of the elastic con-

tributions from simple elastic targets. These tools have proven to be useful in the

numerical models and a single controlled pond experiment. The results suggest a

number of directions for future research to continue this work.

1. The obvious extension is to apply these methods to investigate and study of

more complex objects. These should include cylindrical shells and truncated cones,

which are representative of modern mine designs.

2. The imaging of the elastic echoes from a spherical shell especially, in the

bistatic measurement region, gave promising results when using the MSM imaging

for large angular coverage. Further investigation on the use of models that account

for the full propagation paths of the guided waves and account for the environmental

multipath could be helpful to determine the usefulness of imaging elastic echoes from

non-axisymmetric shapes.

3. Finally the blind noise reduction method using the STFD-SVD method seems

to have excellent denoising behavior for the cases in which it was applied. Further

investigations and extensions to other applications, such as RADAR or speech pro-

cessing (which contain non-stationary signals) may prove to be fruitful for future

research.
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APPENDIX A

MODAL EXPANSION COEFFICIENTS

Figure A.1: Modal expansion coefficients taken from Eq. (6a) and Eq. (6b) in paper
by Goodman and Stern [31].
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Figure A.2: Additional details of Modal Expansion coefficients taken from Eq.(6a)
and Eq. (6b) in paper by Goodman and Stern [31].
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APPENDIX B

SMOOTHED PSEUDO WIGNER VILLE SMOOTHING

SELECTION

B.1 Smoothing Window Selection

Stated in Chapter II, the benefit of using the SPWV analysis is the ability to select

the time and frequency smoothing windows separately. This does present additional

complexity in choosing the appropriate type and size of the window for optimal time

and frequency localization. In order to select the window size, further study was

conducted on a representative temporal response for a spherical shell computed from

Fig. 2.3. This was selected to investigate the appropriate amount of smoothing for

the best visualization of the time-frequency distribution of the echoes from a shell.

The initial step for selecting a window size was to choose the shape of smoothing

window. For this, five types of standard smoothing windows were overlaid to compare

the shape of each windowing function (see Fig. B.1). It was decided that the Hann

type of window was a good compromise between the sharpness of the Kaiser window,

and the broadness of the Hamming window. Additionally, for the given structure of

the scattered field from a shell, the Hann window gave a time frequency representa-

tion that could suppress the interference patterns of the higher order transform and

maintain a higher time frequency resolution than standard STFT technique.

Once the type of window was selected, an empirical study was conducted to evalu-

ate the effect of broad vs. narrow smoothing windows in both time and frequency for

the given SPWV representation. These results are shown in Fig. B.2. As shown, when

little smoothing is used, the results revert to a standard Wigner-Ville distribution in

which the interference patterns are prevalent. The goal of getting the smoothing
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Figure B.1: Overlay of standard amplitude smoothing windows including Hann,
Hamming, Blackman, Gauss, and Kaiser. Each window has length of 100 points, and
the defining parameters of the Gaussian window and the Kaiser window were selected
to be α = 0.005, and β = 3π respectively.

windows set at a desired width in time domain is a balance between suppressing the

interference patterns and retaining a good time-frequency localization of a signal. For

the given response of the shell, the time smoothing window was determined to be a

Hann window of 0.2 ms (205 points) and a frequency smoothing window was a Hann

window of 192 Hz (171 points). This is not to say that these are the resolution limits

(which are 0.0012 ms and 210 Hz), but rather the length of smoothing window. The

results of appropriately selected smoothing windows for the SPWV representation are

shown in Fig. B.2. Though this empirical method is not readily applied in the field,

one can select smoothing windows a priori that are appropriate for the targets, and

noise anticipated for a given environment.
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Figure B.2: SPWV with different Hann window sizes with double (wide) and half
(narrow) the length of reference smoothing window (reference window sizes are 205
points in time and 171 points in frequency): (a) narrow window in frequency domain,
(b) narrow window in time domain, (c) broad window in frequency domain, and (d)
broad window in time domain.
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APPENDIX C

IMAGE METHOD FOR EXPERIMENTAL

OBSERVATIONS

For continuous inhomogeneities, deviation from the propagation predicted by the

free-space Green’s function is referred to as refraction (bending of rays). For disconti-

nuities in the medium, the deviation is referred to as diffraction or scattering. These

mechanisms are both forms of wave propagation. However, typically, they are treated

differently.

Ray theory provides a high-frequency approximation to the Helmholtz equation.

It is an intuitive approach, which significantly predates its formal mathematical for-

mulation; the original concept of rays is attributed to Euclid in the 3rd century BC.

Rays have been used extensively for modeling electromagnetic and acoustic wave

propagation [41]. The ray theory is derived in Appendix A2, and the practical imple-

mentation of an acoustic ray in the quantitative ray theory model uses the ray-tracing

technique to determine the distance and path traveled by individual waves interacting

with the shell. For propagation to and from the target, this simple ray method will

be used in conjunction with the free space Green’s function.

To account for this simplified half-space, an image method is used [41](pg. 100-

102). This method allows the use of the free space Green’s function by accounting for

the half-space reflection by the addition of image sources or receives. This method

is depicted in Fig. C.1, where there is an image source/receiver and the arrows

indicate the path to or from the receiver or source respectively. The four propaga-

tion paths identified correspond physically to the (1 to 2) Source-Target-Receiver,

Source-Target-Bottom-Receiver (1 to 4), Source-Bottom-Target-Receiver (3 to 2),
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Figure C.1: Ray Method proposed to model the multipath propagation between
Source, Target, and Receiver.

and Source-bottom-Target-Bottom-Receiver (3 to 4). The response can then be cal-

culated by the linear summation of each individual target-receiver path combination.

As the method does not account for the amplitude loss due to bottom penetration,

only single bounce paths which arrive at the same time (1-4 and 3-2) will be input

into the model (double bottom bounce multipath receiver is assumed to be low in

amplitude).
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APPENDIX D

MATLAB CODE

D.1 Numerical Shell Model

% spherical Functions of Bessel + derived first + derived seconds.

%

%

% Definition:

% the spherical functions of Bessel of 1st and 2nd species of order m,

% noted respectively j m and y m, are the particular solutions of

% the diffentielle equation of Bessel written in spherical co-ordinates:

%

% f' ' + (2/z)*f' (z) + (1 m(m+1)/zˆ2)*f = 0; F = f(z), Z = alpha*r.

%

% syntax of the function: [ J, y, jp, YP, js, ys ] = bes prim sec hs(M, x)

%

% M: a vector (column preferably) containing the orders

% whole sussecssifs ' m i' of the spherical functions of Bessel.

% X: a scalar % J: vector column containing the functions of Bessel of here

% species of orders ' m i' as in point X, j m i(x).

% y: vector column containing the values of the functions of

% Bessel spherical of 2nd species of orders ' m i' at the point

% X, y m i(x). % jp: vector column containing the values of derived from

% spherical functions of Bessel of 1ere species of orders ' m i' to

% not X, I m i(x).

% YP: vector column containing the values of derived from

% spherical functions of Bessel of 2nd species of orders ' m i' to

% not X, y' m i(x). % js: vector column containing the values of derived
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% seconds from the functions of Bessel of 1ere species of orders

% ' m i' as in point X, I ' m i(x).

% ys: vector column containing the values of derived

% seconds from the functions of Bessel of 2nd species of orders

% ' m i' as in point X, y' ' m i(x).

function [j,y,jp,yp,js,ys]= bes prim sec hs(M,x)

[m,n]=size(M);

if n > 1 & m > 1

disp('Error, M must be a vector column');

end

if n > 1 | m == 1,

M=M';

end

ord=[M ; max(M)+1];

long=length(ord);

% Formulas binding the spherical functions of Bessel to the functions of

% Bessel normals (valid for the functions of 1st species like

% for the functions of 2nd species): % j m(z) = sqrt(pi/(2z))*J (m+1/2)(z)

% j(small): spherical function of Bessel

% J(capital letter): normal function of Bessel

j temporaire=sqrt(pi/(2*x))*besselj((ord+0.5), x);

y temporaire=sqrt(pi/(2*x))*bessely((ord+0.5), x);

j=j temporaire(1:long-1);

y=y temporaire(1:long-1);

% Relation of recurrence for the derivative 1st:

% z*j' m(z) = m*j m(z)-z*j (m+1)(z)
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% This formula is valid also for y m(z).

aux1=ord(1:long-1)./x;

jp=aux1.*j-j temporaire(2:long);

yp=aux1.*y-y temporaire(2:long);

% Relation of recurrence for the derivative second:

% zˆ2*j' ' m(z) = (m(m+1)-zˆ2)*j m(z)-2*z*j' m(z)

% This formula is valid also for y m(z).

aux=((M.*(M+1))./x.ˆ2)-1;

js=-(2*jp./x)+aux.*j;

ys=-(2*yp./x)+aux.*y;

% Acoustic Scattering by a Spherical Shell

% for rap1=[0.8,0.85,.9,.925,.95,.96,.975,.98,.99];

global file

% file =['marston shell.txt'];

file =['nswc1.txt'];

%file =['exp1.txt'];

% file =['thinnest shell.txt'];

%file =['plastic filled shell.txt'];%animation paramter

clc;

disp(['Experiment File: ',file]);

readfile; %Read Parameters file.

% rap=rap1;

% b=rap*a;

sweep theta=[90:270];

sweep dist=10;

% sweep theta=[180:1:360];%animation paramters

% sweep dist=[0.515:.025:2];

%%

%----------- First and Second Lame Coefficient ----------------%
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% Observation medium ("OUTSIDE")

cl1=cl1-0.05*cl1/40/pi/log10(exp(1))*i;

% cl2=cl2-0.2*cl2/40/pi/log10(exp(1))*i;

% cl3=cl3-0.35*cl3/40/pi/log10(exp(1))*i;

mu1 = rho1*ct1ˆ2;

lamda1 = rho1*cl1ˆ2-2*mu1;

% SHELL

mu2 = rho2*ct2ˆ2;

lamda2 = rho2*cl2ˆ2-2*mu2;

%-----------------------------------------------------------------------%

jkr=[];ykr=[];

%phi1=[];

reduced freq=[];

ent=0;

cnt freq=0;

for f=fmin:df:fmax

%clc;disp(['Estimated % Completed: ',num2str(f/fmax*100,3),' %']);

cnt freq=cnt freq+1;

omega = 2*pi*f; % pulsation

K = omega/cl1; %WAVENUMBER in SURROUNDING medium

Kl = omega/cl2; %Longitudinal WAVENUMBER in the shell

Kt = omega/ct2; %Transverse WAVENUMBER in the shell

X = K*a; %Reduced frequency. Surrounding medium,

Xl = Kl*a; %Longitudinal Reduced frequency. Shell.

Xt = Kt*a; %Transverse Reduced frequency. Shell.

Y = omega/cl3*b; % WAVENUMBER MEDIUM (III) INSIDE the shell

Yl = Kl*b;

Yt = Kt*b;

reduced freq=[reduced freq X];

ord = (0:1:nb mode)';
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% Bessel Function. Also First and Second derivative :

[jX,yX,jpX,ypX,jsX,ysX ] = bes prim sec hs(ord,X) ;

[jXl,yXl,jpXl,ypXl,jsXl,ysXl ]= bes prim sec hs(ord,Xl);

[jXt,yXt,jpXt,ypXt,jsXt,ysXt ]= bes prim sec hs(ord,Xt);

[jY,yY,jpY,ypY,jsY,ysY ] = bes prim sec hs(ord,Y) ;

[jYl,yYl,jpYl,ypYl,jsYl,ysYl ]= bes prim sec hs(ord,Yl);

[jYt,yYt,jpYt,ypYt,jsYt,ysYt ]= bes prim sec hs(ord,Yt);

cnt r=0;

for dist r=sweep dist

cnt r=cnt r+1;

[jkr(:,cnt freq,cnt r),ykr(:,cnt freq,cnt r),...

jpkr,ypkr,jskr,yskr ]= bes prim sec hs(ord,(K*dist r)) ;

end

% Hankel Functions.

h1X = jX + i*yX ;

h1pX = jpX + i*ypX ;

h1sx = jsX + i*ysX ;

%----------------DETERMINANT PARAMETES------------------------------------------------

a11 = rho1/rho2*h1X;

a12 = (lamda2*jXl-2*mu2*jsXl)/(lamda2+2*mu2) ;

a13 = -2*ord.*(ord+1).*(Xt*jpXt-jXt)/Xtˆ2;

a14 = (lamda2*yXl-2*mu2*ysXl)/(lamda2+2*mu2);

a15 = -2*ord.*(ord+1).*(Xt*ypXt-yXt)/Xtˆ2;

%a16 =0;

a21 = X*h1pX;
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a22 = Xl*jpXl;

a23 = ord.*(ord+1).*jXt;

a24 = Xl*ypXl;

a25 = ord.*(ord+1).*yXt;

%a26 = 0;

%a31 = 0;

a32 = 2*(Xl*jpXl-jXl);

a33 = (ord+2).*(ord-1).*jXt+Xtˆ2*jsXt;

a34 = 2*(Xl*ypXl-yXl);

a35 =(ord+2).*(ord-1).*yXt+Xtˆ2*ysXt;

a36 =zeros(nb mode,1);

%a41 = 0;

a42 = (lamda2*jYl-2*mu2*jsYl)/(lamda2+2*mu2);

a43 = -2*ord.*(ord+1).*(Yt*jpYt-jYt)/Ytˆ2;

a44 = (lamda2*yYl-2*mu2*ysYl)/(lamda2+2*mu2);

a45 = -2*ord.*(ord+1).*(Yt*ypYt-yYt)/Ytˆ2;

a46 = jY*rho3/rho2;

%a51 =0;

a52 = Yl*jpYl;

a53 = ord.*(ord+1).*jYt;

a54 = Yl*ypYl;

a55 = ord.*(ord+1).*yYt;

a56 = Y*jpY;

%a61 =0;

a62 = 2*(Yl*jpYl-jYl);

a63 = (ord+2).*(ord-1).*jYt+Ytˆ2*jsYt;

a64 = 2*(Yl*ypYl-yYl);

a65 = (ord+2).*(ord-1).*yYt+Ytˆ2*ysYt;
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%a66 = 0;

a1 =jX*rho1/rho2;

a2 =X*jpX;

%%Expression of the scalar potential (phi1) associated with the scattered

%%pressure field by the spherical shell.

Al1=[];

%Pl theta=genpol(nb mode,cos(theta rd))';%%Create Legendre Polynomial

for l=1:nb mode+1

if l==1

dl=[ a11(l) a12(l) a14(l) 0 ; ...

a21(l) a22(l) a24(l) 0 ; ...

0 a42(l) a44(l) a46(l) ; ...

0 a52(l) a54(l) a56(l)];

else

dl= [ a11(l) a12(l) a13(l) a14(l) a15(l) 0 ; ...

a21(l) a22(l) a23(l) a24(l) a25(l) 0 ; ...

0 a32(l) a33(l) a34(l) a35(l) 0 ; ...

0 a42(l) a43(l) a44(l) a45(l) a46(l); ...

0 a52(l) a53(l) a54(l) a55(l) a56(l); ...

0 a62(l) a63(l) a64(l) a65(l) 0 ];

end

aux=dl;

aux(1,1)=a1(l);

aux(2,1)=a2(l);

dl1=aux;

Al1=[Al1;(- iˆl*(2*l+1)*det(dl1)/det(dl))];

end

Al2(:,cnt freq)=Al1;

end
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Pole=sum(Al1);

%

clear Al1 dl1 aux dl a2 a1 a65 a64 a63 a62 a56 a55 a54 a53 a52 a46 a45 a44 a43 a42 a36 a35 a34...

a33 a32 a25 a25 a24 a23 a22 a21 a15 a14 a13 a12 a11 h1sx h1X jX yX jpX ypX jsX ysX jXl yXl jpXl ypXl jsXl...

ysXl jXt yXt jpXt ypXt jsXt ysXt jY yY jpY ypY jsY ysY jYl yYl jpYl ypYl jsYl ysYl jYt yYt jpYt ypYt jsYt...

ysYt jpkr ypkr jskr yskr frequency dist theta K Kl Kt X Xl Xt Y Yl Yt...

alpha0 rd b cl1 cl2 cl3 ct1 ct2 ct3 ent f h1pX l lamda1 lamda2 mu1 mu2 omega ord percentage...

reduced freq rho1 rho2 rho3 s z;

phi all=zeros(length(sweep theta),(fmax/df),length(sweep dist));

cnt theta=0;

%phi1=zeros(1,cnt freq);

for theta=sweep theta

clc;theta

cnt theta=cnt theta + 1;

theta rd=theta*pi/180;

Pl theta=genpol(nb mode,cos(theta rd))';%%Create Legendre Polynomial

for dist=1:cnt r

for frequency=1:cnt freq

phi1l=nansum(Pl theta.*Al2(:,frequency).*(jkr(:,frequency,dist)+i*ykr(:,frequency,dist))); % Modal Summation

% phi1 modes=(Pl theta.*Al2(:,frequency).*(jkr(:,frequency,dist)+i*ykr(:,frequency,dist)));

%phi1(1,frequency)=phi1l;

phi all(cnt theta,frequency,dist)=phi1l;

% phi all modes(:,cnt theta,frequency,dist)=phi1 modes;

end

end

end

clear jkr ykr Al2

phi all(:,1)=0;

clc;disp(['!!!Done!!!']);

155



% Legendre Polynomial for zero order.

%

%

% P[n+1](z)=1/(n+1)*((2n+1)*z*P[n](z)-n*P[n-1](z)

function [p] = genpol(deg,x)

%on initialize

p(1) = 1;

if deg > 0,

p(2) = x;

if deg ≥ 2,

for l = 3:deg+1

p(l) = ((2*l-3)*x*p(l-1)-(l-2)*p(l-2))/(l-1);

end

end

end

%%%

% f1=1;

% f2=800000;

% df=200;

f1=1;
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f2=100000;

df=20;

Fs=df;

Fe=round(f2*10.5/Fs)*Fs;

Ts=1/Fe;N=1/Fs/Ts;T=N*Ts;

freq=[0:N-1]/N/Ts;

Ifreq=find(freq≥f1 & freq≤f2+df/10);

%%%%For Filtering

Fmin=0;

Fmax=f2/2;

%Fmin=1e3;

%Fmax=800e3;

Ifilter=find(freq(Ifreq)≥Fmin & freq(Ifreq)≤Fmax);

time=[0:N-1]*Ts;

c0=1500;zTARG=100;L=200;

for i=1:length(phi all(:,1))

phi1=phi all(i,:);

phi1(1)=0;

Kij=zeros(size(freq));

Kij(Ifreq(Ifilter))=conj(phi1(Ifilter)).*hanning(length(Ifreq(Ifilter))).';

%FP(:,jj).*Prod.*hanning(length(Ifreq));

P=real(ifft(Kij));

%freq int1=[Fmin Fmax]; [BB1,AA1]=butter(4,[freq int1]/Fe*2);

%Pfil=filtfilt(BB1,AA1,P);

%%%%%%%%%%%

%find(isnan(phi1)==1)

% figure(2);clf;%hold on
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% %subplot(2,1,1)

% plot(time,P)

% title(['Receiver Angle ',int2str(sweep theta(i)),' '])

% axis tight

% drawnow

% pause(.05)

Irec=find(time>0.019&time≤0.029);

% Irec=find(time≥5e-3&time≤3e-2);

Pall(:,i)=P(Irec);%.*hanning(length(P(Irec))).';

% subplot(2,1,1);plot(time,P);

% subplot(2,1,2);plot(time(Irec),Pall(:,i));

% drawnow

% pause(.25)

IDX=find(abs(Pall(:,i))==max(abs(Pall(:,i))));

%P spec(:,i)=Pall(:,i)*0;

%P spec([IDX-50:IDX+50],i)=Pall([IDX-50:IDX+50],i);

end

clear IDX

% for i=1:length(P spec(1,:))

% [res,lags]=xcorr(P spec(:,find(sweep theta==180)),P spec(:,i),'coeff');

% IDX=lags(find(res==max(res)));

% Pall sft(:,i)=circshift(Pall(:,i),IDX);

% end

% Pall old=Pall;

% Pall=Pall sft;

% clear Pall sft IDX res lags

% noise=wgn(length(Pall(:,1)),1,-90);

% for i=1:length(Pall(1,:))

% Pall(:,i)=awgn(Pall(:,i),-5,'measured');

% end

%%2D plot

%MM=max(max(Pall));
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%figure(1);clf;hold on

%imagesc(time(Irec),sweep theta,20*log10(abs(Pall)'/MM))

%caxis([-60 0]);colorbar;

if 1==0

%% WV ANALYSIS

%%%%ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

%%%%ˆˆˆˆˆˆˆˆˆ

%%%%%%%TIME-FREQUENCY ANALYSIS

%%%%%%%%%%%%%%%%%Time Frequency analysis;

addpath('C:\Program Files\MATLAB\R2007a\toolbox\tftb-0.1\mfiles')

%%%%%%%%%%%%For Time Frequ Analysis

%%Select one angle

for Iang=1:length(sweep theta)

%pause

%Iang=find(sweep theta==0);

%%Downsample to reduce the number of time samples to minimum necessary;

RATE=3;%round(Fe/Fmax/4);

FeNEW=Fe/RATE;

TsNEW=1/FeNEW;

DATA=decimate(Pall(:,Iang),RATE);%.*hanning(length(Pall(:,Iang))/RATE+1);

Nnew=length(DATA);

timeNEW=[0:Nnew-1]*TsNEW; % redefine time axis

Istart=min(find(DATA≥(max(DATA))))-50; %[500:830]; %%Select a time-window

timeNEW=timeNEW-timeNEW(Istart);

% Istart=min(find(timeNEW≥0)); %[500:830]; %%Select a time -window

Npts=2ˆ10;

IcentTF=[1:Npts]+Istart;

if max(IcentTF)>length(timeNEW);IcentTF=1:length(timeNEW);end

%IcentTF=[500:1000];

freq int1=[Fmin,Fmax];

%%Make it even number-> remove last point;
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if (mod(length(IcentTF),2)>0);IcentTF(end)=[];end;

TcentTF=timeNEW(IcentTF);

LENGTH1=length(TcentTF)/2;

Nc TF=length(TcentTF);

freqC TF=[0:Nc TF-1]/Nc TF/TsNEW;

CC=DATA(IcentTF);%.*hanning(length(IcentTF));

%WV Analysis Function

g=tftb window(odd(LENGTH1/50),'hamming');%Time smoothing window

h=tftb window(odd(LENGTH1/1),'hamming');%Frequency smoothing window

[Wig,Tc1,F1] =tfrspwv(CC+sqrt(-1)*hilbert(CC),[1:length(TcentTF)],...

LENGTH1,g,h);

Wig=((Wig.'));%%each column is a frequency

Fc1=[0:LENGTH1-1]/length(TcentTF)/TsNEW;

If1=find(Fc1≥freq int1(1) & Fc1≤freq int1(2) );

Fc2=Fc1;If2=If1;

MMamp(Iang)=max(max(abs(Wig)));

%WIG all(:,:,Iang)=Wig(:,If1);

%Plot Time Response

% figure(Iang);clf

% plot(timeNEW,DATA);axis([1.5e-4 TcentTF(end) min(DATA) max(DATA)]);

% Scale=50; %%in DB

if 1==1 %Plot WV

figure(3);clf;%hold on

%subplot(2,2,2);

axes('Position',[0.2908 0.5838 0.6757 0.3405]);

pcolor(TcentTF,Fc1(If1),20*log10(abs(Wig(:,If1).')/MMamp(Iang)));

xlabel('Time','FontSize',20);ylabel('Frequency','FontSize',20);

shading interp

caxis([00 60]+10*log10(MMamp(Iang)));

colorbar([0.1535 0.105 0.0357 0.3425])

% xlim(0.1/2*[-1 1])
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ylim(freq int1)

hold off

axis tight

title(['Smooth-Pseudo Wigner Ville : ',num2str(sweep theta(Iang)),'deg'])

% track(Iang,:)=ginput(1);

%Temporal Response

%subplot(2,2,4);

axes('Position',[0.2919 0.11 0.6746 0.3399]);

plot(timeNEW,DATA);

axis([TcentTF(1) TcentTF(end) min(DATA)/2 max(DATA)/2]);

%Frequency Response

%subplot(2,2,1);

axes('Position',[0.1047 0.584 0.09198 0.338]);

plot(abs(fft(CC)),freqC TF);

set(gca,'XDir','reverse');

xlim([0 max(abs(fft(CC)))]);ylim(freq int1);

ANI(Iang)=getframe(gcf);

% %Save Plots

% direct = cd;

% cd ..;cd iterations;

% saveas(figure(3),[num2str(sweep theta(Iang)),'deg sphr','.fig'])

% cd(direct)

end

end

end

% %% Plot Combination of all Angles

% for idx=1:length(WIG all(1,1,:))

% WIG all(:,:,idx)=WIG all(:,:,idx)/max(max(WIG all(:,:,idx)));

% end

% wig sum=sum(WIG all(:,:,[30:180]),3);

% figure

% wig log=20*log10((wig sum.')/max(max(wig sum)));
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% pcolor(TcentTF,Fc1(If1),real(wig log));

% shading interp

% caxis([-70 0]);colorbar

% ylim(freq int1)

% axis tight

%% Plot Angle vs Time (Sinogram)

% figure

% pcolor(sweep theta',time(Irec),20*log10(abs(Pall./max(max(Pall)))));

% shading interp

% caxis([-70 0])

%% Animation

% figure

% axes('Position',[0 0 1 1])

% movie(ANI,2,8)%playback 2 times at 8 frames/sec

%movie2avi(ANI,'test3.avi','fps',20,'compression', 'Cinepak')

D.2 Acoustic Imaging

% load SAS2.mat

load('C:\Users\user\Desktop\air atten 360.mat')

AA=tic;

X=8.9:.01:10.9;

Y=0:.01:.75;

ang=[90:270];

n=find(time≥10/c0,1,'first');

% s(n:n+length(Pall(:,1))-1,:)=Pall(:,ang);

s(:,:)=Pall(:,ang);

% time=time(1:idx1);

time=0:time(2):length(s)*time(2)-time(2);

% for kk=1:length(ang)

% [tmp,idxx]=max(abs(hilbert(s(1:1.144e4,kk))));
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% s([1:idxx+750],kk)=0;%remove specular

% s([1:idxx-100,idxx+100:end],kk)=0;%remove guided waves

% end

% s(time≤1.85e-3,:)=0;%remove specular

% s=Pall(:,ang);

% for ii=1:size(s,2)

% [tmp,id]=max(abs(s(:,ii)));

% s(:,ii)=0;

% s(id-20:id+20,ii)=hanning(41);%remove guided waves

% % s(:,ii)=s(:,ii)+flipud(s(:,ii));

% end

theta=sweep theta(ang);%

t0=10/c0;%Time for plane wave to get to sphere center

G=abs(s)';

xg=max(max(G)); ng=min(min(G)); cg=255/(xg-ng);

if 1==0

figure;%colormap(gray(256))

imagesc(time,theta,20*log10((abs(G./xg))));

%axis('square');axis('xy')

xlabel('Fast-time t, sec')

ylabel('Synthetic Aperture (Slow-time) U, meters')

title('Measured Spotlight SAR Signal')

%%%Setup Image Grid.

end

y=sweep dist.*sind(180-sweep theta);

x=10-sweep dist.*cosd(180-sweep theta);

N=length(s);

SAS im=zeros(length(X),length(Y));

SAS time=SAS im;
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beam=zeros(N,length(ang));

SAS data=zeros(length(1:6500),length(X),length(Y));

tmp dt=zeros(length(ang),length(X));

tmp circ=zeros(N,1);

% time=time+5e-3+.53/c0;

tt=60;

for ii=1:length(X)

BB=tic;

clc; ii

TimeLeft min=(length(X)-ii)*tt/60

for jj=1:length(Y)

tmp t=0;%((X(ii)ˆ2+Y(jj)ˆ2)ˆ0.5)./c0;

tmp dt(:,ii)=(((X(ii)-x(ang)).ˆ2+(Y(jj)-y(ang)).ˆ2).ˆ0.5...

-(10-((X(ii)).ˆ2+(Y(jj)).ˆ2).ˆ0.5))./c0;

if tmp t≥0

[tmp,idx]=find(time≥tmp t,1);

else

[tmp,idx]=find(time≥abs(tmp t),1);

idx=length(time)-idx;

end

idxx(ii)=idx;

for kk=1:length(ang)

if tmp dt(kk,ii)≤0

[tmp,idx]=find(time≥abs(tmp dt(kk,ii)),1);

idx=-idx;

else

[tmp,idx]=find(time≥tmp dt(kk,ii),1);

end

if idx<0;idx=N+idx;end

tmp circ(1:N-idx)=s(idx+1:N,kk);

tmp circ((N+1-idx):N)=s(1:idx,kk);

beam(:,kk)=tmp circ./ 4.2706e-004;%normalize for air filled
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% beam(:,kk)=tmp circ./2.0357e-004;%normalize for oil filled

% check(:,ii,kk)=(beam(1:5:end,kk)./max(beam(:,kk))+kk);

end

tmp2=abs(hilbert(sum(beam,2)));

% figure

% for ii=1:180

% plot(beam(:,ii)./max(beam(:,ii))+ii)

% hold on

% end

% plot(sum(beam,2),'r')

% plot(abs(hilbert(sum(beam,2))),'g')

% try;

tmp=decimate(sum(beam,2),2);

SAS data(:,ii,jj)=tmp(1:6500);

[SAS im(ii,jj),iii(ii,jj)]...

=max(tmp2(idxx(ii):idxx(ii)+20,:));%focus at pixel

% %

% catch;[SAS im(ii,jj),iii(ii,jj)]=max(tmp2(idxx:idxx,:));

% end

[SAS im(ii,jj),iii(ii,jj)]=max(tmp2);

end

tt=toc(BB);

end

toc(AA)

save backup

Y=[-fliplr(Y),Y(2:end)];

SAS im=[fliplr(SAS im),SAS im(:,2:end)];

figure

% plot(x(ang),y(ang),'.')

% hold on

axes('YDir','normal','FontSize',20);hold on
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imagesc(X.',Y,20*log10(abs(SAS im.')./15));

axis image

colorbar

plot(10+0.53*cosd([0:360]),0.53*sind([0:360]),'w')

caxis([-30 0])

xlabel('Down Range (m)','FontSize',20)

ylabel('Cross Range (m)','FontSize',20)

max(max(abs(SAS im)))

D.3 Noise Reduction

D.3.1 Single Frequency

%%% Create nn element array

%%% Record 1 TF-Atom

%clear all;close all;

tic

cntr=0;

for jjj=20;%:-10:0;%0:10:130;

clc

cntr=cntr+1

dpcnt=0;

for dplr=4

dpcnt=dpcnt+1;

for itr=1

%% Inputs

%% Create target position

c0=343;%m/s sound speed

X=8;%m

Y=-1;%m

Vs=(dplr-1)*200;%Source Velocity (m/s)doppler shift +YDirection

fc=500; %center frequency of pulse

tau=0.01;%%Set bandwidth via envelop decay
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o=0.5;%Noise Std Dev %Noise Level

d=(c0/fc)/2;%(m) sensor spacing ¬1/2 wavelength @0.5kHz

Fe=5e3;%%Sampling frequency

Fmin=100;

Fmax=1000;

N=512;%Number of samples

rr=17;%number of realizations/snapshots (to increase rank)

nn=8; %Number of elements

y=[-nn/2+.5:(nn)/2-0.5]*d;%receiver postion

x=zeros(1,nn);%receiver postion

ang=90+180./pi.*atan2((Y-y),(X-x));

%%Create Gaussian Windowed Sine-Pulse

Ts=1/Fe;

time=[0:N-1]*Ts;

freq=[0:N-1]/N/Ts;

Tshift=(time(round(end/3))); %Center the pulse in window

%%Gaussian-Windowed sine pulse 1

for ii=1:nn

% fshift(dpcnt,ii)=jjj*(ii-1);

fshift(dpcnt,ii)=fc-(1-Vs*cosd(ang(ii))./c0)*fc;%Doppler Shift Calc

Sig(ii,:)=(sin(2*pi*(fc+fshift(dpcnt,ii))*(time-Tshift)).*...

exp(-((time-Tshift)/tau).ˆ2))';

end

% %%Gaussian-Windowed sine pulse 2

% fc=fc+200;

% Tshift=Tshift+.02;

% Sig=Sig+(sin(2*pi*fc*(time-Tshift)).*exp(-((time-Tshift)/tau).ˆ2))';

% S=Sig(1,:)./max(max(abs(Sig)));

% FSig=fft(Sig(1,:),[],2);
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% figure(10);clf;hold on

% subplot(2,1,1)

% plot(time*1000,S);

% subplot(2,1,2)

% plot(freq(1:end/2),abs((FSig(1:end/2))))

%%Plot pulses

Sig=Sig./max(max(abs(Sig)));

FSig=fft(Sig,[],2);

% figure(10);clf;hold on

% subplot(2,1,1)

% plot(time,Sig);

% subplot(2,1,2)

% plot(freq(1:end/2),abs((FSig(1:end/2))))

t=time;%0:1/50e3:.001;

% s=chirp(t,f0,t(end),f1);

% s=xcorr(s);

% % s=s+chirp(t,f0+3000,t(end),f1+3000,'q');

% s=[zeros(1,150),s,zeros(1,(2ˆ10-length(s)-150))]; %pad chirp

% ss=length(s);

% t=0:1/50e3:2ˆ10/50e3-1/50e3; %set time axis (sec)

% S f=fft(s);

% freq=0:fs/length(s):fs-fs/ss;

%spectrogram(y,256,200,256,50e3); % Display the spectrogram.

S=Sig;

S f=FSig;

k=2*pi*freq./c0;

ss=length(S(1,:));

for ii=1:nn

temp=(S f(ii,:).*exp(-sqrt(-1).*k.*((x(ii)-X).ˆ2+...
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(y(ii)-Y).ˆ2).ˆ0.5));

%temp=(S f(ii,:).*exp(-sqrt(-1).*k.*(0.5*ii-1)));

S(ii,:)=real(ifft(temp));

S(ii,:)=S(ii,:)./max(abs(S(ii,:)));

end

%% Add noise

for jj=1:rr+1

% for ii=1:nn

tmp=o*randn(nn,ss);

% if dplr==1 && itr==1 && jj==rr+1

% save add noise.mat tmp

% end

if jj==rr+1

load noise 50.mat;

end

S n(:,:,jj)=S+tmp;%add noise

% end

end

%% Denoise process

S n f=fft(S n,[],2);%% FT

S dn a=sum(S n,3)./(rr+1);

S n=S n(:,:,rr+1);

% if itr==1

% save S n persistant.mat S n

% end

% load('S n persistant.mat')

S n f1=fft(S n,[],2);

n=1; %number of coeff to keep

for ii=1:ss

DD=0;
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for jj=1:rr

DD=DD+(S n f(:,ii,jj)*S n f(:,ii,jj)');

end

[U,s,V]=svds(DD./jj,8);

sv(:,ii)=diag(s);

% si=inv(s);

% si(1:end-n,1:end-n)=0;

% DDn=U*s*V.';

S dn f(:,ii)=U(:,1)*(U(:,1)'*S n f1(:,ii));

end

S dn=real(ifft(S dn f,[],2));

S dn=S dn./max(max(S dn));

%% Plot Sinogram and Signal

if 0

for ii=1:nn

tmp(ii,:)=abs(hilbert(S n(ii,:,1)));

end

figure

subplot(2,2,1)

imagesc(t,y,20*log10(tmp));

xlabel('Time (s)')

ylabel('Sensor Position (m)')

caxis([-20 0])

title('Noisey')

for ii=1:nn

tmp(ii,:)=abs(hilbert(S dn(ii,:)));

end

subplot(2,2,2)

imagesc(t,y,20*log10(abs(hilbert(tmp))));

xlabel('Time (s)')
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ylabel('Sensor Position (m)')

caxis([-20 0])

title('Denoised')

subplot(2,1,2)

plot(t,S n(1,:)./max(abs(S n(1,:))),':b',t,S dn(1,:).'./...

max(abs(S dn(1,:))),'r')

title('Time Series Sensor 1')

xlabel('Time (sec)')

legend('Noisy Signal','Denoised Signal')

end

%% Time Frequency

if 1

for sr=1:nn;%sensor number

CC=S(sr,:).';%orginal

CC n=S n(sr,:).';%noisey signal

CC dn=S dn(sr,:).';%denoised signal

CC dn a=S dn a(sr,:).';%Average realizations

IcentTF=[1:length(time)];

freq int1=[Fmin,Fmax];

if (mod(length(IcentTF),2)>0);IcentTF(end)=[];end;

TcentTF=time(IcentTF);

LENGTH1=length(TcentTF)/2;

Nc TF=length(TcentTF);

freqC TF=[0:Nc TF-1]/Nc TF/Ts;

Fc1=[0:LENGTH1-1]/length(TcentTF)/Ts;

If1=find(Fc1≥freq int1(1) & Fc1≤freq int1(2) );

%WV Analysis Function

g=tftb window(odd(21),'hanning');%Time smoothing window

h=tftb window(odd(251),'hanning');%Frequency smoothing window

[Wig,Tc1,F1] =tfrspwv(CC+sqrt(-1)*2*hilbert(CC),...

[1:length(TcentTF)],LENGTH1,g,h);
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[Wig n,Tc1,F1] =tfrspwv(CC n+sqrt(-1)*2*hilbert(CC n)...

,[1:length(TcentTF)],LENGTH1,g,h);

[Wig dn,Tc1,F1] =tfrspwv(CC dn+sqrt(-1)*2*hilbert(CC dn)...

,[1:length(TcentTF)],LENGTH1,g,h);

[Wig dn a,Tc1,F1] =tfrspwv(CC dn a+sqrt(-1)*2*hilbert(CC dn a)...

,[1:length(TcentTF)],LENGTH1,g,h);

tmp n(:,sr,:)=abs(Wig n(If1,:).');

tmp dn(:,sr,:)=abs(Wig dn(If1,:).');

tmp dn a(:,sr,:)=abs(Wig dn a(If1,:).');

% Fc1=[0:(N/2)-1]/(N/2)/Ts;

% If1=find(Fc1≥Fe/2,1);

% Fc1=Fc1(1:If1)/2;

data=20*log10(abs(Wig(If1,:))/max(max(abs(Wig))));

data n=20*log10(abs(Wig n(If1,:))/max(max(abs(Wig n))));

data dn=20*log10(abs(Wig dn(If1,:))/max(max(abs(Wig dn))));

%% Plotting

if 0

figure(5)

% cm=colormap(hot);

% cm1=flipud(cm);

kk=1;

% subplot(1,3,1)

% pcolor(time(1:2:end),Fc1(If1(1:2:end)),data(1:2:end,1:2:end));

% axis square

% % colormap(cm1);

% shading interp

% caxis([-35 0]);%colorbar
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% % xlim([0.0256 .1792])

% xlabel('Time (Seconds)'); ylabel('Hz');

% title('Original Signal');

subplot(1,2,1)

pcolor(time(1:2:end),Fc1(If1(1:2:end)),data n(1:2:end,1:2:end));

% colormap(cm1);

axis square

shading interp

caxis([-50 0]);%colorbar

% xlim([0.0256 .1792])

xlabel('Time (Seconds)'); ylabel('Hz');

title('Noisy Signal');

subplot(1,2,2)

pcolor(time(1:2:end),Fc1(If1(1:2:end)),data dn(1:2:end,1:2:end));

% colormap(cm1);

axis square

shading interp

caxis([-35 0]);%colorbar

% xlim([0.0256 .1792])

xlabel('Time (Seconds)'); ylabel('Hz');

title('De-Noised Signal');

end

[tmp,yy]=max(max(abs(Wig)));

[tmp,xx]=max(max(abs(Wig.')));

% SNR TF n=10*log10(max(max(Wig n))./...

% mean(std(Wig n(yy(1)-50:yy(1)+50,xx(1)-50:xx(1)+50))))

SNR TF(itr,sr)=10*log10(mean(mean(abs(Wig n(xx-2:xx+2,...

yy-30:yy+30))))./mean(mean(abs(Wig n(:,1:yy-100)))));

SNR TF dn(itr,sr)=10*log10(mean(mean(abs(Wig dn(xx-2:xx+2,...

yy-30:yy+30))))./mean(mean(abs(Wig dn(:,yy-100)))));

SNR TF dn a(itr,sr)=10*log10(mean(mean(abs(Wig dn a(xx-2:xx+2,...
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yy-30:yy+30))))./mean(mean(abs(Wig dn a(:,yy-100)))));

end

%% Plot Array Setup

if 0

figure

plot(x,y,'x');hold on

plot(X,Y,'.r');

xlim([-2,X+2]);

ylim([min(y)-1,max(y)+1])

xlabel('Down Range (m)');

ylabel('Cross Range (m)');

text(x(end)-1.5,y(end),'Array')

text(X+.2,Y+.5,'Source')

end

end

% doppler1(dplr)=mean(mean(SNR TF dn))

SNR dif(dplr)=mean(mean((SNR TF dn-SNR TF)))

SNR dif a(dplr)=mean(mean((SNR TF dn a-SNR TF)))

end

end

end

toc

if 1==0

axes('Position',[0.2908 0.5838 0.6757 0.3405]);

pcolor(time.*1000,Fc1(If1),data);hold on

cm=colormap(hot);

cm1=flipud(cm);

colormap(cm1);

shading interp
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% caxis([00 55]+10*log10(MMamp(Iang)));

caxis([-30 0])

colorbar([0.1535 0.105 0.0357 0.3425])

xlabel('Time (ms)','FontSize',12);

ylabel('Frequency (kHz)','FontSize',12);

% title(['Smooth-Pseudo Wigner Ville : ',num2str(sweep theta(Iang)),'deg'])

%Temporal Response

%subplot(2,2,4);

axes('Position',[0.2919 0.11 0.6746 0.3399]);

plot(time*1000,S(1,:)./max(S(1,:)));

xlim([TcentTF(1) TcentTF(end)]*10ˆ3)

% axis([TcentTF(1) TcentTF(end) min(DATA)/2 max(DATA)/2]);

%Frequency Response

%subplot(2,2,1);

axes('Position',[0.115 0.584 0.09198 0.338]);

plot(abs(S f(1,If1)),freq(If1));

set(gca,'XDir','reverse');

ylim([Fc1(1) Fc1(end)])

end

D.3.2 Cross Frequency

%%% Create nn element array

%%% Record 1 TF-Atom

%clear all;close all;

cnt=0;

cntr=0;

for jjj=20;%:-10:0;%0:10:130;

clc

cntr=cntr+1

dpcnt=0;

for dplr=4
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dpcnt=dpcnt+1;

for itr=1

%% Inputs

%% Create target position

c0=343;%m/s sound speed

X=8;%m

Y=-1;%m

Vs=(dplr-1)*200;%Source Velocity (m/s) doppler shift +Y Direction

fc=500; %center frequency of pulse

tau=0.01;%%Set bandwidth via envelop decay

o=0.5;%Noise Std Dev %Noise Level

d=(c0/fc)/2;%(m) sensor spacing ¬1/2 wavelength @0.5kHz

Fe=5e3;%%Sampling frequency

Fmin=100;

Fmax=2000;

N=512;%Number of samples

rr=17;%number of realizations (to increase rank)

nn=8; %Number of elements

y=[-nn/2+.5:(nn)/2-0.5]*d;%receiver postion

x=zeros(1,nn);%receiver postion

ang=90+180./pi.*atan2((Y-y),(X-x));

%%Create Gaussian Windowed Sine-Pulse

Ts=1/Fe;

time=[0:N-1]*Ts;

freq=[0:N-1]/N/Ts;

Tshift=(time(round(end/3))); %Center the pulse in the analysis window

%%Gaussian-Windowed sine pulse 1

for ii=1:nn

% fshift(dpcnt,ii)=jjj*(ii-1);

fshift(dpcnt,ii)=fc-(1-Vs*cosd(ang(ii))./c0)*fc;%Doppler Calc
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Sig(ii,:)=(sin(2*pi*(fc+fshift(dpcnt,ii))*(time-Tshift)).*...

exp(-((time-Tshift)/tau).ˆ2))';

end

% %%Gaussian-Windowed sine pulse 2

% fc=fc+200;

% Tshift=Tshift+.02;

% Sig=Sig+(sin(2*pi*fc*(time-Tshift)).*exp(-((time-Tshift)/tau).ˆ2))';

%%Plot pulses

Sig=Sig./max(max(abs(Sig)));

FSig=fft(Sig,[],2);

% figure(10);clf;hold on

% subplot(2,1,1)

% plot(time,Sig);

% subplot(2,1,2)

% plot(freq(1:end/2),abs((FSig(1:end/2))))

t=time;%0:1/50e3:.001;

% s=chirp(t,f0,t(end),f1);

% s=xcorr(s);

% % s=s+chirp(t,f0+3000,t(end),f1+3000,'q');

% s=[zeros(1,150),s,zeros(1,(2ˆ10-length(s)-150))]; %pad chirp

% ss=length(s);

% t=0:1/50e3:2ˆ10/50e3-1/50e3; %set time axis (sec)

% S f=fft(s);

% freq=0:fs/length(s):fs-fs/ss;

%spectrogram(y,256,200,256,50e3); % Display the spectrogram.

S=Sig;

S f=FSig;

k=2*pi*freq./c0;

ss=length(S(1,:));
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for ii=1:nn

temp=(S f(ii,:).*exp(-sqrt(-1).*k.*((x(ii)-X).ˆ2+(y(ii)-Y).ˆ2).ˆ0.5));

% temp=(S f(ii,:).*exp(-sqrt(-1).*k.*(0.5*ii-1)));

S(ii,:)=real(ifft(temp));

S(ii,:)=S(ii,:)./max(abs(S(ii,:)));

end

%% Add noise

for jj=1:rr+1

% for ii=1:nn

tmp=o*randn(nn,ss);

% if dplr==1 && itr==1 && jj==rr+1

% save add noise.mat tmp

% end

if jj==rr+1

load noise 50.mat;

end

S n(:,:,jj)=S+tmp;%add noise

% end

end

%% Denoise process

S n f=fft(S n,[],2);%% FT

% S n f(:,257:end,:)=[];

n=1; %number of coeff to keep

temp=[];

DD=0;

for jj=1:rr

% temp=S n f(:,:,rr),nn*(128),jj)

temp=reshape(S n f(:,:,jj),nn*(N),1);

% temp=reshape(S n f(:,:,rr),nn*(ss),1);
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DD=DD+temp*temp';

end

S n=S n(:,:,rr+1);

S n f=fft(S n,[],2);

clear temp

[U,s,V]=svd(DD./jj);

temp2=0;

% for ii=1:ss/2

% for jj=1:1 %%%Number of Singular Values to use

% temp2=temp2+(U([1:nn]+nn*(ii-1),jj)*U([1:nn]+nn*(ii-1),jj)');

% end

temp=reshape(S n f,ss*nn,1);

temp=U(:,1)*U(:,1)'*temp;

S dn f=reshape(temp,nn,ss);

clear temp

% end

S dn=real(ifft(S dn f,N,2));

S dn=S dn./max(max(S dn));

if 0

for ii=1:nn

tmp(ii,:)=abs(hilbert(S n(ii,:,1)));

end

figure

subplot(2,2,1)

imagesc(t,y,20*log10(tmp));

xlabel('Time (s)')

ylabel('Sensor Position (m)')

caxis([-20 0])

title('Noisey')

for ii=1:nn
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tmp(ii,:)=abs(hilbert(S dn(ii,:)));

end

subplot(2,2,2)

imagesc(t,y,20*log10(abs(hilbert(tmp))));

xlabel('Time (s)')

ylabel('Sensor Position (m)')

caxis([-20 0])

title('Denoised')

subplot(2,1,2)

plot(t,S n(1,:)./max(abs(S n(1,:))),':b',t,S dn(1,:).'./...

max(abs(S dn(1,:))),'r')

title('Time Series Sensor 1')

xlabel('Time (sec)')

legend('Noisy Signal','Denoised Signal')

end

% %% Time Frequency

if 1

for sr=1;%:nn;%sensor number

CC=S(sr,:).';%orginal

CC n=S n(sr,:).';%noisey signal

CC dn=S dn(sr,:).';%denoised signal

IcentTF=[1:length(time)];

freq int1=[Fmin,Fmax];

if (mod(length(IcentTF),2)>0);IcentTF(end)=[];end;

TcentTF=time(IcentTF);

LENGTH1=length(TcentTF)/2;

Nc TF=length(TcentTF);

freqC TF=[0:Nc TF-1]/Nc TF/Ts;

Fc1=[0:LENGTH1-1]/length(TcentTF)/Ts;

If1=find(Fc1≥freq int1(1) & Fc1≤freq int1(2) );
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%WV Analysis Function

g=tftb window(odd(21),'hanning');%Time smoothing window

h=tftb window(odd(251),'hanning');%Frequency smoothing window

[Wig,Tc1,F1] =tfrspwv(CC+sqrt(-1)*2*hilbert(CC),[1:length(TcentTF)],...

LENGTH1,g,h);

[Wig n,Tc1,F1] =tfrspwv(CC n+sqrt(-1)*2*hilbert(CC n),...

[1:length(TcentTF)],LENGTH1,g,h);

[Wig dn,Tc1,F1] =tfrspwv(CC dn+sqrt(-1)*2*hilbert(CC dn),...

[1:length(TcentTF)],LENGTH1,g,h);

tmp n(:,sr,:)=abs(Wig n(If1,:).');

tmp dn(:,sr,:)=abs(Wig dn(If1,:).');

% Fc1=[0:(N/2)-1]/(N/2)/Ts;

% If1=find(Fc1≥Fe/2,1);

% Fc1=Fc1(1:If1)/2;

data=20*log10(abs(Wig(If1,:))/max(max(abs(Wig))));

data n=20*log10(abs(Wig n(If1,:))/max(max(abs(Wig n))));

data dn=20*log10(abs(Wig dn(If1,:))/max(max(abs(Wig dn))));

%% Plotting

if 0

figure(5)

% cm=colormap(hot);

% cm1=flipud(cm);

kk=1;

% subplot(1,3,1)

% pcolor(time(1:2:end),Fc1(If1(1:2:end)),data(1:2:end,1:2:end));

% axis square

% % colormap(cm1);

% shading interp
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% caxis([-35 0]);%colorbar

% % xlim([0.0256 .1792])

% xlabel('Time (Seconds)'); ylabel('Hz');

% title('Original Signal');

subplot(1,2,1)

pcolor(time(1:2:end),Fc1(If1(1:2:end)),data n(1:2:end,1:2:end));

% colormap(cm1);

axis square

shading interp

caxis([-35 0]);%colorbar

% xlim([0.0256 .1792])

xlabel('Time (Seconds)'); ylabel('Hz');

title('Noisy Signal');

subplot(1,2,2)

pcolor(time(1:2:end),Fc1(If1(1:2:end)),data dn(1:2:end,1:2:end));

% colormap(cm1);

axis square

shading interp

caxis([-50 0]);%colorbar

% xlim([0.0256 .1792])

xlabel('Time (Seconds)'); ylabel('Hz');

title('De-Noised Signal');

end

[tmp,yy]=max(max(abs(Wig)));

[tmp,xx]=max(max(abs(Wig.')));

% SNR TF n=10*log10(max(max(Wig n))./...

% mean(std(Wig n(yy(1)-50:yy(1)+50,xx(1)-50:xx(1)+50))))

SNR TF(itr,sr)=10*log10(mean(mean(abs(Wig n(xx-2:xx+2,yy-30:yy+30))))./...

mean(mean(abs(Wig n(:,1:yy-100)))));

SNR TF dn(itr,sr)=10*log10(mean(mean(abs(Wig dn(xx-2:xx+2,yy-30:yy+30))))./...

mean(mean(abs(Wig dn(:,yy-100)))));
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end

%% Plot Array Setup

if 0

figure

plot(x,y,'x');hold on

plot(X,Y,'.r');

xlim([-2,X+2]);

ylim([min(y)-1,max(y)+1])

xlabel('Down Range (m)');

ylabel('Cross Range (m)');

text(x(end)-1.5,y(end),'Array')

text(X+.2,Y+.5,'Source')

end

end

% doppler1(dplr)=mean(mean(SNR TF dn))

SNR dif(dplr)=mean(mean((SNR TF dn-SNR TF)))

end

end

end

toc

D.3.3 STFD-SVD

%%Compute Cross Wigner Ville between Gaussian Windowed Sine pulses

%%% Create nn element array

%%% Record 1 TF-Atom

%clear all;close all;

cntr=0;

for jjj=20;%:-10:0;%0:10:130;
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clc

cntr=cntr+1;

dpcnt=0;

for dplr=1:11

AA=tic;

dpcnt=dpcnt+1;

%% Inputs

%% Create target position

c0=343;%m/s sound speed

X=8;%m

Y=-1;%m

Vs=(dplr-1)*200;%Source Velocity (m/s) for doppler +Y Direction

fc=500; %center frequency of pulse

tau=0.01;%%Set bandwidth via envelop decay

o=0.95;%Noise Std Dev %Noise Level

d=(c0/fc)/2;%(m) sensor spacing ¬1/2 wavelength @0.5kHz

Fe=5e3;%%Sampling frequency

Fmin=100;

Fmax=2000;

N=512;%Number of samples

rr=17;%number of realizations (to increase rank)

nn=8; %Number of elements

y=[-nn/2+.5:(nn)/2-0.5]*d;%receiver postion

x=zeros(1,nn);%receiver postion

ang=90+180./pi.*atan2((Y-y),(X-x));

Y=min(y);

%%Create Gaussian Windowed Sine-Pulse

Ts=1/Fe;

time=[0:N-1]*Ts;

freq=[0:N-1]/N/Ts;

Tshift=(time(round(end/3))); %Center the pulse in the analysis window
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%%Gaussian-Windowed sine pulse 1

for ii=1:nn

%fshift(dpcnt,ii)=jjj*(ii-1);%fc-(1-Vs*cosd(ang(ii))./c0)*fc;%Doppler Shift Calc1

fshift(dpcnt,ii)=fc-(1-Vs*cosd(ang(ii))./c0)*fc;%Doppler Shift Calc1

Sig(ii,:)=(sin(2*pi*(fc+fshift(dpcnt,ii))*(time-Tshift)).*...

exp(-((time-Tshift)/tau).ˆ2))';

end

%%Plot pulses

Sig=Sig./max(max(abs(Sig)));

FSig=fft(Sig,[],2);

t=time;%0:1/50e3:.001;

S=Sig;

S f=FSig;

k=2*pi*freq./c0;

ss=length(S(1,:));

for ii=1:nn

temp=(S f(ii,:).*exp(-sqrt(-1).*k.*(((x(ii)-X).ˆ2+...

(y(ii)-Y).ˆ2).ˆ0.5)));

% temp=(S f(ii,:).*exp(-sqrt(-1).*k.*(0.5*ii-1)));

S(ii,:)=real(ifft(temp));

S(ii,:)=S(ii,:)./max(abs(S(ii,:)));

end

%% Add noise

for jj=1:rr+1

% for ii=1:nn

tmp=o*randn(nn,ss);

% if dplr==1 && itr==1 && jj==rr+1

% save add noise.mat tmp

185



% end

if jj==rr+1

load noise 95.mat;

end

S n(:,:,jj)=S+tmp;%add noise

% end

end

%%%%%%%%%%%%Cross Wigner Ville. Time Freq Analysis

INIT=0;

count1=0;

WigALL partial sum=0;

Rcat sum=0;

for nnn=1:rr+1

for zz=1:nn;

count1=count1+1;

DATA=S n(zz,:,nnn) ;

IcentTF=[1:length(time)]; %[-Npts/2+1:Npts/2]+Istart;

freq int1=[Fmin,Fmax];

TcentTF=time(IcentTF);

LENGTH1=length(TcentTF)/2;

Nc TF=length(TcentTF);

freqC TF=[0:Nc TF-1]/Nc TF/Ts;

CCref=DATA(IcentTF).';%.*hanning(length(IcentTF));

CCref1=CCref+sqrt(-1)*2*hilbert(CCref);

count2=0;

for zz2=1:zz %length(ThetS);

count2=count2+1;
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DATA=S n(zz2,:,nnn) ;

CC=DATA(IcentTF).';%.*hanning(length(IcentTF));

CC1=CC+sqrt(-1)*2*hilbert(CC);

if INIT==0;

INIT=1;

Fc1=[0:LENGTH1-1]/length(TcentTF)/Ts;

If1=find(Fc1≥freq int1(1) & Fc1≤freq int1(2) );

Twig=time; %TcentTF+time(Irec(1));%%

WigALL=zeros(length(Fc1(If1)),length(Twig),nn,nn);

Nf=size(WigALL,1);

Nt=size(WigALL,2);

end

%WV Analysis Function

g=tftb window(21,'hanning');%Time smoothing window

h=tftb window(251,'hanning');%Frequency smoothing window in the time domain

[Wig,Tc1,F1] =tfrspwv([CC1,CCref1],[1:length(TcentTF)],LENGTH1,g,h);

WigALL(:,:,count1,count2)=Wig(If1,:);

end;

end

%%%Complete cross-conjugate manually to speed-things up

for zz=1:nn;

for zz2=zz+1:nn;

WigALL(:,:,zz,zz2)=conj(WigALL(:,:,zz2,zz));

end

end
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count1=0;

display('FINISHED Computing Wigner Ville !!!')

INDff=find(Fc1(If1)≥Fmin & Fc1(If1)≤Fmax); %Select frequency window

INDtt=find(Twig>0 & Twig<0.145); %%Select time window

NgapTT=1; %%Smoothing of wigner ville also limit this resolution..

NgapFF=1;

INDff=INDff(1:NgapFF:end);

INDtt=INDtt(1:NgapTT:end);

%%%Compute Reference Wigner Ville Matrix- for No noise input....

Rcat=zeros(nn*length(INDff),length(INDtt)*nn);

Npos=nn;

%%Compute SVD

% %%%Broadband SVD....

% Rcat=zeros(Npos*length(INDff),length(INDtt)*Npos);

for zz1=1:Npos

for zz2=1:Npos

Rcat( 1+(zz1-1)*length(INDff):zz1*length(INDff),1+...

(zz2-1)*length(INDtt):zz2*length(INDtt) )...

=WigALL(INDff,INDtt,zz1,zz2);

end

end

Rcat sum=Rcat sum+Rcat;

end
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Rcat=Rcat sum;

% WigALL partial2=WigALL partial sum./(rr+1);

% clear WigALL partial sum

[Ub,Sb,Vb]=svds(Rcat,100);%Compute SVD

pp=1;

cnte=1;

while pp==1

energy=sum(diag(Sb(1:cnte,1:cnte)))/sum(diag(Sb));

if energy ≥0.1

pp=0;

else

cnte=cnte+1;

end

end

cnte=1;

%%%PLOT THE Denoised Wigner Ville after SVD processing and compare to noise

count=0;

clear ax

% for ss=cnte; %Nsvd;

ss=cnte;

count=count+1;

Sbtemp=zeros(size(Sb));

for qq=1:ss

Sbtemp(qq,qq)=Sb(qq,qq);

end

Rcat=Ub*Sbtemp*Vb'; %%Reconstruct XWV Matrix
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WigALL partial=zeros(length(INDff),length(INDtt),Npos,Npos);

for zz1=1:Npos

for zz2=1:Npos

WigALL partial(:,:,zz1,zz2)=Rcat( 1+(zz1-1)*...

length(INDff):zz1*length(INDff),1+(zz2-1)*...

length(INDtt):zz2*length(INDtt) );

end

end

% WigALL partial sum=WigALL partial sum+WigALL partial;

% end

% WigALL partial2=WigALL partial sum./(rr+1);

% clear WigALL partial sum

for jj=1:Npos;

[Wig,Tc1,F1] =tfrspwv(S(jj,:).'+sqrt(-1)*2*hilbert(S(jj,:).'),...

[1:length(TcentTF)],LENGTH1,g,h);

Cref=abs(real(Wig));

C1=abs(real(WigALL(INDff,INDtt,jj,jj)));

C2=abs(real(WigALL partial(:,:,jj,jj)));

% C3=abs(real(WigALL partial2(:,:,jj,jj)));

[tmp,yy]=max(max(abs(Cref)));

[tmp,xx]=max(max(abs(Cref.')));

SNR TF(jj)=10*log10(mean(mean(abs(C1(xx-2:xx+2,yy-30:yy+30))))./...

mean(mean(abs(C1(:,1:yy-100)))));

SNR TF dn(jj)=10*log10(mean(mean(abs(C2(xx-2:xx+2,yy-30:yy+30))))./...

mean(mean(abs(C2(:,1:yy-100)))));

% SNR TF dn a(jj)=10*log10(mean(mean(abs(C3(xx-2:xx+2,yy-30:yy+30))))./...

% mean(mean(abs(C3(:,1:yy-100)))));

end

SNR dif(dpcnt)=(mean(SNR TF dn-SNR TF));
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SNR diff(dpcnt)=(max(SNR TF dn-SNR TF));

% SNR dif a(dpcnt)=(mean(SNR TF dn a-SNR TF));

% SNR diff a(dpcnt)=(max(SNR TF dn a-SNR TF));

t est=toc(AA);

clc

display(['Est. Time Left = ', num2str(t est/60*(11-dpcnt)),' min'])

end

end

% end

%ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
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