
ARCHITECTURE-BASED SELECTION OF MODELING
TYPE FOR SYSTEM OF SYSTEMS ANALYSIS

A Dissertation
Presented to

The Academic Faculty

by

Burak Bağdatlı

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology
December, 2018

Copyright © 2018 by Burak Bağdatlı

ARCHITECTURE-BASED SELECTION OF MODELING
TYPE FOR SYSTEM OF SYSTEMS ANALYSIS

Approved by:

Professor Dimitri N. Mavris, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Benjamin Poole
Space, Missile, and Nuclear Systems
MITRE Corporation

Professor Daniel P. Schrage
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Olivia Fischer
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Kelly Griendling
Center of Innovation for Aerospace
Georgia Department of Economic De-
velopment

Date Approved: August 1, 2018

To the women

who brought me up and made me the man I am today.

iii

ACKNOWLEDGEMENTS

It is said that a thesis research is a very personal journey, but this work would not

have been possible without the support I have received from a good number of people

who were close to me or gotten close to me while giving me directions or walking a

similar path.

First of all, I would like to thank my thesis advisor Prof. Dimitri Mavris. Every

time I was in trouble, stuck, or out of ideas, I ran to him for help. His systematic ways

of thinking and seemingly endless knowledge about every random technical subject

helped me greatly to see the big picture while keeping me honest about the details.

An advisor has a significant impact on a student and that impact lasts a lifetime.

I have never met anyone who works as hard as him and I hope to be worthy of his

coaching. He is like a second father to me and I will never forget his support during

these intellectually and emotionally stressful years.

My thesis committee’s amount of effort on reviewing my work and helping me

with feedback has been incredibly impactful. Dr. Kelly Griendling, who was with

me since I was preparing thesis ideas to pitch them to Prof. Mavris, has been hugely

helpful. I hope I have not tired her out in this long journey. She always believed

me even when I did not see any reason to believe myself. Prof. Daniel Schrage, who

have been on this journey with me since my proposal, who always listened to my

ideas and research attentively, and suggested opportunities along the way that I was

not able to see. His enthusiasm and experience always had me leave his office in

an elated and hopeful mood. Dr. Olivia Fischer, whose work ethic and stamina is

unparalleled has been a great example for me to follow, has spent hours after hours,

days after days, on my document. I enjoyed working with her in other research areas

iv

as well. And Dr. Ben Poole, whom I met during an external advisory board review

and who was always interested and attentive to my research ideas and work. I did not

have the opportunity to work with him in person, but our communications were very

productive and his technical knowledge in the field has made my work significantly

more relevant and grounded in practical realities.

I have always believed that education is a social process. All my friends at

Aerospace Systems Design Laboratory helped me in some way throughout this jour-

ney whether they know it or not. Certainly, my classmates in my first year have

all been examples of what a good student is. Looking back now, our first troubles

and difficulties in that first year seem minor problems, but they helped us forge a

friendship that lasted long years, and those challenges seem easy now because we

have all grown and each developed intellectual superpowers. I will always be thank-

ful for their acceptance of my quirks, cultural background, and all the awkwardness

they had to endure occasionally. I especially would like to mention Dr. Annie Jones

Wyatt who has been such a good friend to me and whose thesis I used in part of

my work. Also a special thanks to my partner in crime Dr. Mike Miller who walked

not just the thesis journey but also the teaching assistantship journey with me. We

spent countless hours toiling over exams, reports, and class preparations together and

I certainly appreciated his help in every step of the way. I hope I was as helpful to

him as he was to me. Metin Özcan, Dr. Nick Molino, Dr. Andy Turner, Dr. Charles

Potter, Dr. Dan Garmendia, Dr. Brad Robertson, Dr. Imon Chakraborty, Dr. Derya

Aksaray, Dr. David Jackson, Dr. Jonathan Sharma and countless others have been in

my support community for a long time. I hope I was as good of a friend and support

to them as they were to me.

I am also hugely thankful for the continued contact and support from my high

school friends. Living in a foreign country has its difficulties and I was always able

to chat, call, game with my old friends even when I was many thousands of miles

v

away from them. I am thankful that whenever I go back, they still like me and treat

me like a close friend. I think the bonds that we forged in middle school and high

school are stronger than Einstein’s spacetime and cannot be broken by miles or years

that are in between us. A special thanks to İlker, Ömer, Onur, Aras, Alican, Arda,

Römer, Gamze, and countless others for never allowing me to feel alone when I was

alone.

And finally, my family, my greatest support throughout. I left you when I decided

to study aerospace engineering for reasons that can only be described teenage whims.

I do not know why you did not try to stop me but instead supported me throughout.

I have missed many happy and sad moments with you while I was away and I am

deeply sorry for not being there to share those moments with you. I hope you do not

regret sending me away. My mother, father, and brother who always greeted me with

seemingly infinite love when I visited home. I love you all and hope to repay all the

sacrifices you have made for me one day. Anne, baba, Barlas, hepinizi öpüyorum.

vi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xvii

LIST OF FIGURES . xxv

LIST OF ACRONYMS AND ABBREVIATIONSxxxiii

GLOSSARY .xxxv

LIST OF SYMBOLS .xxxvi

SUMMARY .xxxix

I INTRODUCTION . 1

1.1 Motivating problem . 5

II ON THE DESIGN OF SYSTEMS 10

2.1 Engineering design . 11

2.2 Systems . 16

2.3 Systems of systems . 19

2.4 Architectures . 25

2.5 Modeling and simulation . 32

III RESEARCH ARGUMENTS AND WORK 36

3.1 Gaining knowledge via synthetic arguments 36

3.2 Motivating characteristics of the problem 38

3.3 Induction: Architectures as conceptual model 45

3.3.1 Experiment 1 . 47

3.4 Hypothesis: A multitude of modeling techniques are needed 50

3.4.1 Experiment 2 . 54

3.5 Using the right models for the right problem 56

vii

IV ON MODELS . 59

4.1 Definitions of a model . 60

4.2 Scientific models . 63

4.3 Engineering models . 72

4.3.1 Non-existence of the real system 73

4.3.2 Replacement of the real system 74

4.3.3 Providing accurate observations 77

4.4 Computer models . 80

4.4.1 Verification and validation of computer models 83

4.5 Working definition of a model . 88

V SYSTEM OF SYSTEMS MODELING 93

5.1 Design description . 95

5.2 Models for system of systems . 98

5.3 Deterministic and static models . 103

5.3.1 Graph theory . 103

5.3.2 Probabilistic calculations . 106

5.4 Deterministic, dynamic, and continuous models 112

5.4.1 Continuous-time Markov chains 112

5.4.2 System dynamics . 118

5.5 Deterministic, dynamic, and discrete models 122

5.5.1 Discrete-time Markov chains 122

5.5.2 Petri nets . 126

5.6 Stochastic and static models . 128

5.6.1 Monte Carlo . 128

5.7 Stochastic, dynamic, and continuous models 129

5.8 Stochastic, dynamic, and discrete models 130

5.8.1 Monte Carlo discrete time Markov chains 130

5.8.2 Petri nets . 131

viii

5.8.3 Queueing theory . 132

5.8.4 Discrete event . 134

5.8.5 Agent-based . 137

5.9 Transition to experiments and technical work 139

VI MODELING POTENTIAL OF OPERATIONAL ARCHITECTURE
VIEWS . 141

6.1 OV-1 High level operational concept graphic 147

6.1.1 Graph model . 149

6.1.2 Probability model . 151

6.1.3 System dynamics model . 152

6.1.4 Markov chain model . 153

6.1.5 Petri net model . 154

6.1.6 Queueing model . 155

6.1.7 Discrete event model . 155

6.1.8 Agent-based model . 157

6.2 OV-2 Operational resource flow description 158

6.2.1 Graph model . 159

6.2.2 Probability model . 161

6.2.3 System dynamics model . 162

6.2.4 Markov chain model . 162

6.2.5 Petri net model . 163

6.2.6 Queueing model . 164

6.2.7 Discrete event model . 164

6.2.8 Agent-based model . 165

6.3 OV-3 Operational resource flow matrix 165

6.3.1 Graph model . 166

6.3.2 Probability model . 167

6.3.3 System dynamics model . 167

6.3.4 Markov chain model . 167

ix

6.3.5 Petri net model . 168

6.3.6 Queueing model . 168

6.3.7 Discrete event model . 169

6.3.8 Agent-based model . 169

6.4 OV-4 Organizational relationships chart 170

6.4.1 Graph model . 171

6.4.2 Probability model . 172

6.4.3 System dynamics model . 172

6.4.4 Markov chain model . 173

6.4.5 Petri net model . 176

6.4.6 Queueing model . 176

6.4.7 Discrete event model . 176

6.4.8 Agent-based model . 177

6.5 OV-5a Operational activity decomposition tree 178

6.5.1 Graph model . 179

6.5.2 Probability model . 179

6.5.3 System dynamics model . 180

6.5.4 Markov chain model . 180

6.5.5 Petri net model . 180

6.5.6 Queueing model . 181

6.5.7 Discrete event model . 181

6.5.8 Agent-based model . 181

6.6 OV-5b Operational activity model 182

6.6.1 Graph model . 184

6.6.2 Probability model . 185

6.6.3 System dynamics model . 186

6.6.4 Markov chain model . 187

6.6.5 Petri net model . 188

6.6.6 Queueing model . 189

x

6.6.7 Discrete event model . 190

6.6.8 Agent-based model . 191

6.7 OV-6a Operational rules model . 191

6.7.1 Graph model . 194

6.7.2 Probability model . 194

6.7.3 System dynamics model . 194

6.7.4 Markov chain model . 195

6.7.5 Petri net model . 195

6.7.6 Queueing model . 197

6.7.7 Discrete event model . 197

6.7.8 Agent-based model . 198

6.8 OV-6b State transition description 199

6.8.1 Graph model . 200

6.8.2 Probability model . 200

6.8.3 System dynamics model . 201

6.8.4 Markov chain model . 202

6.8.5 Petri net model . 203

6.8.6 Queueing model . 204

6.8.7 Discrete event model . 204

6.8.8 Agent-based model . 205

6.9 OV-6c Event-trace description . 205

6.9.1 Graph model . 207

6.9.2 Probability model . 208

6.9.3 System dynamics model . 208

6.9.4 Markov chain model . 209

6.9.5 Petri net model . 209

6.9.6 Queueing model . 211

6.9.7 Discrete event model . 211

6.9.8 Agent-based model . 212

xi

VII MODELING POTENTIAL OF SYSTEM ARCHITECTURE VIEWS213

7.1 SV-1 Systems interface description 213

7.1.1 Graph model . 215

7.1.2 Probability model . 217

7.1.3 System dynamics model . 217

7.1.4 Markov chain model . 219

7.1.5 Petri net model . 219

7.1.6 Queueing model . 220

7.1.7 Discrete event model . 220

7.1.8 Agent-based model . 222

7.2 SV-2 Systems resource flow description 223

7.2.1 Graph model . 225

7.2.2 Probability model . 227

7.2.3 System dynamics model . 227

7.2.4 Markov chain model . 228

7.2.5 Petri net model . 228

7.2.6 Queueing model . 229

7.2.7 Discrete event model . 230

7.2.8 Agent-based model . 231

7.3 SV-3 Systems-to-systems matrix . 232

7.3.1 Graph model . 233

7.3.2 Probability model . 233

7.3.3 System dynamics model . 234

7.3.4 Markov chain model . 234

7.3.5 Petri net model . 235

7.3.6 Queueing model . 236

7.3.7 Discrete event model . 236

7.3.8 Agent-based model . 237

7.4 SV-4 Systems functionality description 238

xii

7.4.1 Graph model . 240

7.4.2 Probability model . 241

7.4.3 System dynamics model . 241

7.4.4 Markov chain model . 242

7.4.5 Petri net model . 243

7.4.6 Queueing model . 245

7.4.7 Discrete event model . 246

7.4.8 Agent-based model . 247

7.5 SV-5a Operational activity to systems function traceability matrix . 248

7.5.1 Graph model . 249

7.5.2 Probability model . 251

7.5.3 System dynamics model . 251

7.5.4 Markov chain model . 251

7.5.5 Petri net model . 252

7.5.6 Queueing model . 252

7.5.7 Discrete event model . 252

7.5.8 Agent-based model . 253

7.6 SV-5b Operational activity to systems traceability matrix 253

7.6.1 Graph model . 256

7.6.2 Probability model . 257

7.6.3 System dynamics model . 257

7.6.4 Markov chain model . 257

7.6.5 Petri net model . 258

7.6.6 Queueing model . 258

7.6.7 Discrete event model . 258

7.6.8 Agent-based model . 259

7.7 SV-6 Systems resource flow matrix 260

7.7.1 Graph model . 261

7.7.2 Probability model . 262

xiii

7.7.3 System dynamics model . 263

7.7.4 Markov chain model . 263

7.7.5 Petri net model . 264

7.7.6 Queueing model . 265

7.7.7 Discrete event model . 266

7.7.8 Agent-based model . 266

7.8 SV-7 Systems measures matrix . 267

7.8.1 Graph model . 270

7.8.2 Probability model . 270

7.8.3 System dynamics model . 271

7.8.4 Markov chain model . 271

7.8.5 Petri net model . 271

7.8.6 Queueing model . 272

7.8.7 Discrete event model . 272

7.8.8 Agent-based model . 272

7.9 SV-8 Systems evolution description 273

7.9.1 Graph model . 274

7.9.2 Probability model . 274

7.9.3 System dynamics model . 274

7.9.4 Markov chain model . 275

7.9.5 Petri net model . 275

7.9.6 Queueing model . 276

7.9.7 Discrete event model . 276

7.9.8 Agent-based model . 276

7.10 SV-9 Systems technology & skills forecast 277

7.10.1 Graph model . 278

7.10.2 Probability model . 279

7.10.3 System dynamics model . 279

7.10.4 Markov chain model . 280

xiv

7.10.5 Petri net model . 280

7.10.6 Queueing model . 280

7.10.7 Discrete event model . 281

7.10.8 Agent-based model . 281

7.11 SV-10a Systems rules model . 282

7.11.1 Graph model . 282

7.11.2 Probability model . 283

7.11.3 System dynamics model . 283

7.11.4 Markov chain model . 284

7.11.5 Petri net model . 284

7.11.6 Queueing model . 285

7.11.7 Discrete event model . 285

7.11.8 Agent-based model . 286

7.12 SV-10b Systems state transition description 287

7.12.1 Graph model . 288

7.12.2 Probability model . 289

7.12.3 System dynamics model . 289

7.12.4 Markov chain model . 290

7.12.5 Petri net model . 291

7.12.6 Queueing model . 291

7.12.7 Discrete event model . 292

7.12.8 Agent-based model . 293

7.13 SV-10c Systems event-trace description 294

7.13.1 Graph model . 295

7.13.2 Probability model . 296

7.13.3 System dynamics model . 297

7.13.4 Markov chain model . 297

7.13.5 Petri net model . 298

7.13.6 Queueing model . 300

xv

7.13.7 Discrete event model . 301

7.13.8 Agent-based model . 301

VIII EXPERIMENTAL TESTING OF THE ELEMENT MAPS . . . 303

8.1 Experimental setup . 303

8.2 2012–2013 Real World Design Challenge State Aviation Problem . . 307

8.2.1 Creating models from RWDC architecture views 311

8.3 2011 National Airspace System Enterprise Architecture Framework . 326

8.3.1 NASEAF As-Is Architecture 328

8.3.2 NASEAF Near Term Architecture 353

8.3.3 NASEAF Far Term Architecture 363

8.4 Discussion on the Research Arguments 368

IX CONCLUSIONS AND THE SOLSTYSS METHODOLOGY . . 369

9.1 Support for the first research argument 369

9.2 Support for the second research argument 371

9.3 Best modeling types for each viewpoint 375

9.4 Best viewpoint to develop for each modeling type 377

9.5 Recommended work flow for modeling systems of systems using their
architectures . 380

9.6 Future work . 391

9.7 Final conclusions . 395

APPENDIX A — ARCHITECTURE ELEMENTS TO MODEL EL-
EMENTS MAPS . 396

APPENDIX B — ALGORITHMS USED IN THE EXPERIMENTS401

REFERENCES . 424

VITA . 440

xvi

LIST OF TABLES

1 Operational view elements . 143

2 System view elements . 144

3 Model elements . 146

4 Mapping between OV-1 and graph model elements 150

5 Mapping between OV-1 and probability model elements 152

6 Mapping between OV-1 and system dynamics model elements 152

7 Mapping between OV-1 and Markov chain model elements 154

8 Mapping between OV-1 and Petri net model elements 155

9 Mapping between OV-1 and queueing model elements 155

10 Mapping between OV-1 and discrete event model elements 157

11 Mapping between OV-1 and agent-based model elements 158

12 Mapping between OV-2 and graph model elements 160

13 Mapping between OV-2 and probability model elements 161

14 Mapping between OV-2 and system dynamics model elements 162

15 Mapping between OV-2 and Markov chain model elements 163

16 Mapping between OV-2 and Petri net model elements 164

17 Mapping between OV-2 and queueing model elements 164

18 Mapping between OV-2 and discrete event model elements 165

19 Mapping between OV-2 and agent-based model elements 165

20 Mapping between OV-3 and graph model elements 167

21 Mapping between OV-3 and probability model elements 167

22 Mapping between OV-3 and system dynamics model elements 167

23 Mapping between OV-3 and Markov chain model elements 168

24 Mapping between OV-3 and Petri net model elements 168

25 Mapping between OV-3 and queueing model elements 168

26 Mapping between OV-3 and discrete event model elements 169

27 Mapping between OV-3 and agent-based model elements 169

xvii

28 Mapping between OV-4 and graph model elements 172

29 Mapping between OV-4 and probability model elements 172

30 Mapping between OV-4 and system dynamics model elements 173

31 Mapping between OV-4 and Markov chain model elements 174

32 Mapping between OV-4 and Petri net model elements 176

33 Mapping between OV-4 and queueing model elements 176

34 Mapping between OV-4 and discrete event model elements 176

35 Mapping between OV-4 and agent-based model elements 177

36 Mapping between OV-5a and graph model elements 179

37 Mapping between OV-5a and probability model elements 180

38 Mapping between OV-5a and system dynamics model elements 180

39 Mapping between OV-5a and Markov chain model elements 180

40 Mapping between OV-5a and Petri net model elements 181

41 Mapping between OV-5a and queueing model elements 181

42 Mapping between OV-5a and discrete event model elements 181

43 Mapping between OV-5a and agent-based model elements 182

44 Mapping between OV-5b and graph model elements 184

45 Mapping between OV-5b and probability model elements 186

46 Mapping between OV-5b and system dynamics model elements 186

47 Mapping between OV-5b and Markov chain model elements 187

48 Mapping between OV-5b and Petri net model elements 189

49 Mapping between OV-5b and queueing model elements 189

50 Mapping between OV-5b and discrete event model elements 190

51 Mapping between OV-5b and agent-based model elements 191

52 Mapping between OV-6a and graph model elements 194

53 Mapping between OV-6a and probability model elements 194

54 Mapping between OV-6a and system dynamics model elements 195

55 Mapping between OV-6a and Markov chain model elements 195

56 Mapping between OV-6a and Petri net model elements 196

xviii

57 Mapping between OV-6a and queueing model elements 197

58 Mapping between OV-6a and discrete event model elements 198

59 Mapping between OV-6a and agent-based model elements 199

60 Mapping between OV-6b and graph model elements 200

61 Mapping between OV-6b and probability model elements 201

62 Mapping between OV-6b and system dynamics model elements 202

63 Mapping between OV-6b and Markov chain model elements 202

64 Mapping between OV-6b and Petri net model elements 203

65 Mapping between OV-6b and queueing model elements 204

66 Mapping between OV-6b and discrete event model elements 205

67 Mapping between OV-6b and agent-based model elements 205

68 Mapping between OV-6c and graph model elements 208

69 Mapping between OV-6c and probability model elements 208

70 Mapping between OV-6c and system dynamics model elements 209

71 Mapping between OV-6c and Markov chain model elements 209

72 Mapping between OV-6c and Petri net model elements 210

73 Mapping between OV-6c and queueing model elements 211

74 Mapping between OV-6c and discrete event model elements 212

75 Mapping between OV-6c and agent-based model elements 212

76 Mapping between SV-1 and graph model elements for both connection-
and membership-oriented analysis. A single graph model can only be
one of the either type, not both. 216

77 Mapping between SV-1 and probability model elements 217

78 Mapping between SV-1 and system dynamics model elements 218

79 Mapping between SV-1 and Markov chain model elements 219

80 Mapping between SV-1 and Petri net model elements 220

81 Mapping between SV-1 and queueing model elements 220

82 Mapping between SV-1 and discrete event model elements 222

83 Mapping between SV-1 and agent-based model elements 222

xix

84 Modified Mapping between SV-1 and agent-based model elements. The
changes were made in light of the attempt at modeling the FAA’s Near
Term Architecture. 223

85 Mapping between SV-2 and graph model elements for the more desir-
able option without phantom elements 227

86 Mapping between SV-2 and probability model elements 227

87 Mapping between SV-2 and system dynamics model elements 228

88 Mapping between SV-2 and Markov chain model elements 228

89 Mapping between SV-2 and Petri net model elements 229

90 Mapping between SV-2 and queueing model elements 230

91 Mapping between SV-2 and discrete event model elements 231

92 Mapping between SV-2 and agent-based model elements 231

93 Modified mapping between SV-2 and agent-based model elements . . 231

94 Example SV-3 constructed from Jones Wyatt’s example problem [111]. 233

95 Mapping between SV-3 and graph model elements 233

96 Mapping between SV-3 and probability model elements 234

97 Mapping between SV-3 and system dynamics model elements 234

98 Mapping between SV-3 and Markov chain model elements 235

99 Mapping between SV-3 and Petri net model elements 235

100 Mapping between SV-3 and queueing model elements 236

101 Mapping between SV-3 and discrete event model elements 237

102 Mapping between SV-3 and agent-based model elements 237

103 Mapping between SV-4 and graph model elements 241

104 Mapping between SV-4 and probability model elements 241

105 Mapping between SV-4 and system dynamics model elements 242

106 Mapping between SV-4 and Markov chain model elements 243

107 Mapping between SV-4 and Petri net model elements 244

108 Mapping between SV-4 and queueing model elements 246

109 Mapping between SV-4 and discrete event model elements 247

110 Mapping between SV-4 and agent-based model elements 248

xx

111 Example SV-5a for a generic reconnaissance UAV operation 249

112 Mapping between SV-5a and graph model elements 250

113 Mapping between SV-5a and probability model elements 251

114 Mapping between SV-5a and system dynamics model elements 251

115 Mapping between SV-5a and Markov chain model elements 251

116 Mapping between SV-5a and Petri net model elements 252

117 Mapping between SV-5a and queueing model elements 252

118 Mapping between SV-5a and discrete event model elements 253

119 Mapping between SV-5a and agent-based model elements 253

120 Example SV-5b constructed from author’s previous work [20] 255

121 Mapping between SV-5b and graph model elements 257

122 Mapping between SV-5b and probability model elements 257

123 Mapping between SV-5b and system dynamics model elements 257

124 Mapping between SV-5b and Markov chain model elements 258

125 Mapping between SV-5b and Petri net model elements 258

126 Mapping between SV-5b and queueing model elements 258

127 Mapping between SV-5b and discrete event model elements 259

128 Mapping between SV-5b and agent-based model elements 259

129 Example SV-6 constructed from Jones Wyatt’s example problem [111]. 261

130 Mapping between SV-6 and graph model elements 262

131 Mapping between SV-6 and probability model elements 262

132 Mapping between SV-6 and system dynamics model elements 263

133 Mapping between SV-6 and Markov chain model elements 264

134 Mapping between SV-6 and Petri net model elements 265

135 Mapping between SV-6 and queueing model elements 266

136 Mapping between SV-6 and discrete event model elements 266

137 Mapping between SV-6 and agent-based model elements 267

138 Modified mapping between SV-6 and agent-based model elements . . 267

xxi

139 Example SV-7 taken partially from the author’s previous work on a
system of systems performing a suppression of enemy air defenses mis-
sion [20]. 270

140 Mapping between SV-7 and graph model elements 270

141 Mapping between SV-7 and probability model elements 271

142 Mapping between SV-7 and system dynamics model elements 271

143 Mapping between SV-7 and Markov chain model elements 271

144 Mapping between SV-7 and Petri net model elements 272

145 Mapping between SV-7 and queueing model elements 272

146 Mapping between SV-7 and discrete event model elements 272

147 Mapping between SV-7 and agent-based model elements 273

148 Mapping between SV-8 and graph model elements 274

149 Mapping between SV-8 and probability model elements 274

150 Mapping between SV-8 and system dynamics model elements 274

151 Mapping between SV-8 and Markov chain model elements 275

152 Mapping between SV-8 and Petri net model elements 275

153 Mapping between SV-8 and queueing model elements 276

154 Mapping between SV-8 and discrete event model elements 276

155 Mapping between SV-8 and agent-based model elements 277

156 Mapping between SV-9 and graph model elements 278

157 Mapping between SV-9 and probability model elements 279

158 Mapping between SV-9 and system dynamics model elements 280

159 Mapping between SV-9 and Markov chain model elements 280

160 Mapping between SV-9 and Petri net model elements 280

161 Mapping between SV-9 and queueing model elements 281

162 Mapping between SV-9 and discrete event model elements 281

163 Mapping between SV-9 and agent-based model elements 281

164 Mapping between SV-10a and graph model elements 283

165 Mapping between SV-10a and probability model elements 283

xxii

166 Mapping between SV-10a and system dynamics model elements . . . 284

167 Mapping between SV-10a and Markov chain model elements 284

168 Mapping between SV-10a and Petri net model elements 285

169 Mapping between SV-10a and queueing model elements 285

170 Mapping between SV-10a and discrete event model elements 286

171 Mapping between SV-10a and agent-based model elements 287

172 Mapping between SV-10b and graph model elements 289

173 Mapping between SV-10b and probability model elements 289

174 Mapping between SV-10b and system dynamics model elements . . . 290

175 Mapping between SV-10b and Markov chain model elements 291

176 Mapping between SV-10b and Petri net model elements 291

177 Mapping between SV-10b and queueing model elements 292

178 Mapping between SV-10b and discrete event model elements 293

179 Mapping between SV-10b and agent-based model elements 293

180 Mapping between SV-10c and graph model elements 296

181 Mapping between SV-10c and probability model elements 297

182 Mapping between SV-10c and system dynamics model elements . . . 297

183 Mapping between SV-10c and Markov chain model elements 298

184 Mapping between SV-10c and Petri net model elements 300

185 Mapping between SV-10c and queueing model elements 300

186 Mapping between SV-10c and discrete event model elements 301

187 Mapping between SV-10c and agent-based model elements 302

188 Jones Wyatt’s partial SV-7 based on her UAV design from the options
provided by the RWDC problem (reproduced from her thesis[111]) . . 309

189 The viewpoints developed for Jones Wyatt’s RWDC architecture. . . 310

190 Observations from the Jones Wyatt’s RWDC architecture 310

191 The viewpoints developed for the three FAA NASEAF architectures. 327

192 Observations from the as-is version of NASEAF 329

xxiii

193 An OV-2 viewpoint from the FAA as-is architecture translated to an
adjacency matrix . 347

194 An OV-2 viewpoint from the FAA as-is architecture translated to an
adjacency matrix . 348

195 Transition matrix made from the OV-5b of FAA’s as-is architecture . 349

196 Observations from the near-term version of NASEAF 354

197 The origin of the information used to build an agent-based simulation 357

198 Observations from the far-term version of NASEAF 364

199 Probabilities used in the model from the FAA Far Term Architecture 365

200 Calculated communications probabilities in the FAA Far Term model.
Disclaimer: the numbers are based on assumed probabilities. 366

201 Missing system of systems aspects in each modeling type 374

202 Best modeling types for each architecture viewpoint 376

203 Best viewpoint for each modeling type 378

204 Element maps for Graph, Probability, and System Dynamics models . 397

205 Element maps for Petri Net and Queueing models 398

206 Element maps for Markov Chain and Agent-based models 399

207 Element maps for Discrete Event models 400

xxiv

LIST OF FIGURES

1 Overall flow of the document with key sections and chapters highlighted. 9

2 Decomposition of system of systems simulations 11

3 Georgia Tech Integrated Product and Process Development Method-
ology [174] (Reproduced) . 12

4 Context is set. The next sections provide the background to the research. 15

5 Associative arrays store values linked to corresponding keys 25

6 Mapping between the set of designs and the set of representational
models . 26

7 Free body diagrams decompose the problem into more focused views . 30

8 Simulations map a system’s description to its predicted performance . 33

9 Ease of engineering changes decreases rapidly during conceptual design
[68] (Reproduced) . 41

10 The effort required to make changes to software grows rapidly through-
out the life-cycle [34] (Reproduced) 42

11 Research goals are set. The following is the formal development of the
research arguments. 44

12 A Venn diagram that represents the idea of architectures capturing all
aspects of systems of systems and a model capturing all aspects of the
architectures . 51

13 A Venn diagram that represents the idea of architectures capturing
most aspects of systems of systems and a model capturing all aspects
of the architectures . 52

14 Method of picking a system of systems simulation type 58

15 Prandtl’s comparison between induced drag and experimental data [184] 76

16 Working definition of a model and types of computer models to be
investigated next. 79

17 Number of interactions between objects grow very fast 81

18 An example of a computer model evolution 91

19 An example of a computer model evolution 92

20 Georgia Tech Integrated Product and Process Development Method-
ology [174] (Reproduced) . 99

xxv

21 Modeling Taxonomy adapted from Burbank et al.[42] 102

22 A mathematical graph . 103

23 Scheduling with graphs . 104

24 Pathfinding with graphs . 104

25 Trees with graphs . 105

26 Attributed connectivity with graphs (Map source: Wikimedia) 105

27 Conditional probability example: aircraft control surface actuation sys-
tem . 107

28 Combination of probabilities in the control surface actuation example 108

29 Series and parallel layout and possible combinations thereof 109

30 Recursive calculation scheme for series and parallel networks 110

31 Example probability network corresponding to the Python code . . . 111

32 An example continuous Markov chain 113

33 Example Markov chain transitions for a single state 115

34 Example Markov chain network . 117

35 Example system dynamics network that represents an epidemic . . . 120

36 The equation for a level with an input and an output flow 121

37 Discrete-time Markov chain transitions 124

38 An example Petri net graph . 127

39 Example Petri net graph in bi-partite arrangement 127

40 A Petri net model representing methane burning 128

41 Monte Carlo simulation for the integral of e−x between 0 and 1 129

42 Monte Carlo simulation step for a discrete time Markov chain 131

43 Example queueing model . 133

44 A block diagram of a simple discrete event simulator 137

45 A simplified schematic of an agent-based model 140

46 This chapter and next are used to go though each architecture view
and determine their modeling potential. 145

47 Example OV-1 . 149

xxvi

48 Example OV-1 to graph model translation 150

49 Example OV-1 to probability model translation 151

50 Example OV-1 to system dynamics model translation 153

51 Example OV-1 to Markov chain model translation 153

52 A part of an example OV-1 to Petri net model translation 154

53 A part of an example OV-1 to discrete event model translation. The
OV-1 was taken from Joint Publication 4-09 Distribution Operations[186].156

54 A part of an example OV-1 to agent-based model translation 158

55 A part of an example OV-2 to graph model translation. The original
OV-2 is on the top left. 160

56 A part of an example OV-2 to probability model translation 161

57 A part of an example OV-2 to Markov chain model translation 163

58 A part of an example OV-3 table to graph model translation. 166

59 Example OV-4. Shaded region will be used in the examples. 171

60 Example OV-4 to graph model translation 172

61 Example OV-4 to Markov chain model translation 175

62 Example OV-4 to agent-based model translation 178

63 An example OV-5b developed from Marine Corps Warfighting Publi-
cation for Suppression of Enemy Air Defenses[60]. 183

64 An example OV-5b to graph model transformation based on the OV-5b
shown in Figure 63. 185

65 An example OV-5b to probability model transformation based on the
OV-5b shown in Figure 63. 185

66 An example OV-5b to system dynamics model transformation based
on the OV-5b shown in Figure 63. 187

67 An example OV-5b to Petri net model transformation based on the
OV-5b shown in Figure 63. 188

68 An example OV-5b to queueing model transformation based on the
OV-5b shown in Figure 63. 189

69 An example OV-5b to discrete event model transformation based on
the OV-5b shown in Figure 63. 190

xxvii

70 A representative text that can be found in a OV-6a. The three sen-
tences above were taken as examples from Standing Rules of Engage-
ment for U.S. Forces[47]. 193

71 A representative pseudocode that can be used as an OV-6a (Repro-
duced from the work of Mittal et al.[141]). Equation 65 shows the
math notation for this pseudocode. 193

72 An if..., then... statement as a Petri net model. 196

73 An example OV-6a to Petri net model transformation based on the
OV-6a Rule 1 given in Figure 70. Colors 1–3 represent hostile intent,
hostile act, and neutral entities. States P, H, and F represent peaceful,
hostility, and force use states. 196

74 An example OV-6a to agent-based model transformation based on the
OV-6a Rule 3 given in Figure 70. The solid lines and dashed lines
represent different scenarios. 198

75 An example OV-6b developed from Marine Corps Warfighting Publi-
cation for Suppression of Enemy Air Defenses[60] for how the enemy
is expected to operate. 200

76 An example system dynamics model translated from the OV-6b shown
in Figure 75. 201

77 An example Markov chain model translated from the OV-6b shown in
Figure 75. 202

78 An example Petri net model translated from the OV-6b shown in Fig-
ure 75. 203

79 An example discrete event model translated from the OV-6b shown in
Figure 75. 204

80 An example OV-6c depicting the operation of a coffee machine in an
office. 207

81 An example OV-6c to Petri net model transformation based on the
OV-6c shown in Figure 80. 210

82 An example OV-6c to discrete event model transformation based on
the OV-6c shown in Figure 80. 212

83 SV-1 reproduced from Jones Wyatt et al.’s example [110] with system
node additions . 214

84 Example SV-1-to-graph model translation options based on Figure 83 216

85 Example high fidelity system dynamics model based on the SV-1 given
in Figure 83. 218

xxviii

86 Example low fidelity system dynamics model based on the SV-1 given
in Figure 83. 218

87 Example SV-1-to-agent-based model translation based on the SV-1
given in Figure 83. 223

88 SV-2 reproduced from Jones Wyatt et al.’s example [110] with system
node additions . 225

89 Example SV-2 to graph model translation based on the SV-2 given
in Figure 88 that introduces phantom edges. The edges shown with
dashed lines do not exist in the architecture but are necessary in the
graph model. Print and optical disk exchanges are depicted as physical
and wired and wireless network data transfers are depicted as network. 226

90 Example SV-2-to-graph model translations based on the SV-2 given in
Figure 88 that is free of phantom edges. The graph on the left can be
rearranged into the one on the right to highlight the bipartite nature
of the resulting graph model. 226

91 Example SV-2 to system dynamics model translation based on the SV-2
given in Figure 88. Here, only the exchanges between the Windows
server and Linux server is shown for clarity. 228

92 Example SV-3-to-discrete event model translation based on the SV-3
given in Table 94. 237

93 Example SV-3-to-agent-based model translation based on the SV-3
given in Table 94. 238

94 Example SV-4 depicting the interoperation of trains and buses for a
public transportation system. Passenger parameters box is a data store
and contains all passengers waiting in all stops and stations. 239

95 Example SV-4 to graph translation based on Figure 94. 241

96 Example SV-4 to Petri net model translation based on Figure 94. . . 244

97 Swapping the places and transitions is possible; however, makes the
mapping much less crisp and results in a larger model that is more
difficult to simulate . 245

98 Example SV-4-to-agent-based model translation based on Figure 94. . 247

99 How the SV-4, -5a, and -5b are interlinked 249

100 Example SV-5a to graph model based on the SV-5a given in Table 111. 250

101 Example SV-5b to graph model based on the SV-5b given in Table 120. 256

xxix

102 Three example of SV-6-to-graph model translation. The source is Ta-
ble 129 constructed from Jones Wyatt’s thesis [111]. 262

103 Example SV-6-to-system dynamics model translation based on the
SV-6 given in Table 129. 263

104 Example SV-6-to-Petri net model translation based on the SV-6 given
in Table 129. 265

105 An example SV-9 depicting technology development for commercial
aircraft based on NASA’s Environmentally Responsible Aircraft program[150].278

106 Example SV-9-to-graph model translation based on the SV-9 given
in Figure 105. Additional information about what each of the sub-
projects deal with are filled in using expert knowledge. This informa-
tion could be easily included in an SV-9. 279

107 A representative text that can be found in an SV-10a. A similar rule
was used in the author’s earlier work on a system of systems designed
for suppression of enemy air defenses mission [20]. 282

108 Example modifications to a discrete event model based on an SV-10a
rule . 286

109 An example SV-10b depicting the operation of a train. It shows more
detail about the train system compared with the SV-4 given in Figure 94.288

110 Example SV-10b-to-discrete event model translation based on the SV-10b
given in Figure 109. 292

111 Example SV-10b-to-agent-based model translation based on the SV-10b
given in Figure 109. Notice that the environment is represented with
dashed lines because it is missing in the SV-10b. 294

112 An example SV-10c depicting the operation of a train. It shows signif-
icantly more detail compared with the SV-4 given in Figure 94. . . . 295

113 Example SV-10c-to-Markov chain model translation based on the SV-10c
given in Figure 112. This model only depicts the control system in iso-
lation from other subsystems, which is not realistic and can only be
used with limited success. If other subsystems are to be included in
the model, the overlapping states must be split into numerous states
as only one Markov state can be active at any given time as discussed
in the text. 298

114 Example SV-10c-to-agent-based model translation based on the SV-10c
given in Figure 112. This model only depicts the internal logic for the
operator agent within the train system. The agent communicates with
the environment and control system only because the SV-10c does not
show any subsystems interacting with the operator. 302

xxx

115 This chapter tests the element maps created in the last two chapters. 306

116 Jones Wyatt’s SV-1[111] for the RWDC problem (Adapted from [51]) 308

117 One of the several infinite loops that arise in the agent-based model. . 315

118 The simulation ends immediately after 100 time units. The data is
based on 250 repetitions. 319

119 Roughly 25–30 future events are kept in the list thanks to the queuing
behavior. The data is based on the maximum number of events in the
list for 250 repetitions. 320

120 The queues grow linearly over time with no limit. The graph shows
minimum, mean, and maximum queue lengths at each simulation step
over 250 repetitions. 321

121 A graphical representation of the Real World Design Competition Sys-
tem Dynamics model . 323

122 Selected results of the Real World Design Competition System Dynam-
ics model. There are more stocks in the model but they are left out
for clarity. 324

123 A part of the NASEAF as-is OV-5b 330

124 A possible translation of the OV-5b to a discrete event model 331

125 A possible translation of the OV-5b to a Markov chain model 332

126 The resulting Markov chain output for the probabilities of each state
being active. 333

127 The resulting discrete event output for the probabilities of each server
being busy. 333

128 The resulting Markov chain output for the probabilities of each state
being active. 334

129 The resulting discrete event output for the probabilities of each server
being busy. 335

130 FAA’s As-Is OV-6c (fourth out of five views) 339

131 FAA’s As-Is OV-5b with added sequence information from the OV-6c
(adapted from the FAA architecture [19]) 340

132 FAA’s As-Is OV-5b with added sequence information from the OV-6c
(adapted from the FAA architecture [19]) 340

133 Agent-based model results using the FAA As-Is OV-6c 345

134 Agent-based model results using the FAA As-Is OV-6c and OV-5b. . 346

xxxi

135 FAA’s As-Is OV-2 (third out of three views) 351

136 The resulting Markov chain output for the probabilities of each of the
five states being active. 352

137 FAA Mid Term Petri net model for weather (partial) 362

138 How parts of the SV-2 and SV-6 are used to create a probability model 365

139 Translating the FAA Far Term SV-6 to a discrete event model 367

140 Translating the FAA Far Term SV-6 to a discrete event model 368

141 How architectures become models . 370

142 Architecture views that are instrumental in creation of multiple mod-
eling . 379

143 SOLSTySS flowchart has 5 different parts. Part A is the starting point
and is always executed. Other parts are executed if they fit the scenario.383

144 Starting point for the methodology. Scenarios are selected here. . . . 388

145 If no previous models exist, this part of the methodology is used. . . 389

146 If some alternative models are sought with no particular requirements,
this part of the methodology is used. 390

147 If a cross-validation model is desired for one of the existing models,
this part of the methodology is used. 391

148 In some cases, especially if views are not enough to do a specific kind
of modeling, this supplementary part of the methodology is used. . . 392

xxxii

LIST OF ACRONYMS AND ABBREVIATIONS

ABM Agent-based Model/Simulation.

AoA Analysis of Alternatives.

ATCSCC Air Traffic Control System Command Center.

DARPA Defense Advanced Research Projects Agency.

DES Discrete Event Simulation/Model.

DOD United States Department of Defense.

DoDAF Department of Defense Architecture Framework.

DOTMLPF Doctrine, Organization, Training, Materiel, Leadership, Personnel, Fa-
cilities.

FAA Federal Aviation Administration.

ICAO International Civil Aviation Organization.

IEC International Electrotechnical Commission.

IEEE Institute of Electrical and Electronics Engineers.

INCOSE International Council on Systems Engineering.

IPPD Integrated Product and Process Development.

ISO International Organization for Standardization.

JCIDS Joint Capabilities Integration and Development System.

MC Markov Chain.

NAS National Airspace System.

NASEAF National Airspace System Enterprise Architecture Framework.

PN Petri Net.

Prob Probability Model.

QT Queueing Theory/Model.

RWDC Real World Design Challenge.

SD System Dynamics.

xxxiii

SOLSTySS Selection Of Logical Simulation Types for Systems of Systems.

SoS System of systems.

SysML Systems Modeling Language.

TMU Traffic Management Unit.

UAV Uninhabited/Unmanned Aerial Vehicle.

UML Unified Modeling Language.

XML Extensible Markup Language.

xxxiv

GLOSSARY

bipartite graph A graph that can be split into two groups of vertices in a way that
the vertices within each group are not adjacent to other vertices in the
same group., p. 215.

conceptual model A modeler’s understanding of how the world works translated
into a formal language (graphical, text-based, or a combination of both).,
p. vii.

system of systems architecture a collection of views that depict an order and a
modus operandi for the constituent systems as well as the interactions
between them, p. 45.

xxxv

LIST OF SYMBOLS

: Such that

#Y (R,C) Count of number of “Yes” entries in the intersection of rows R and columns

of C of the element map

A Aspect ratio of an aerodynamic surface

∩ Set intersection

∪ Set union

T Transition matrix in a Markov chain model

∅ Empty set

∃ There exists

∀ For all

⇐⇒ If and only if

⊥⊥ Statistical independence

λ Rate (of probability flow) in a Markov chain (based on an exponential distri-

bution)

∧ And

| Such that

⇒ Implies

L/D Lift-to-drag ratio

⊇ Super set of, equal to

xxxvi

V (t) Time dependent state vector in a Markov chain model

BM All modeling types that are determined to be the best modeling types for to

the most detailed existing view

C Set of columns of the element map table

CM Columns of the element map specific to the set of models M

cD Coefficient of drag

cL Coefficient of lift

cDi Coefficient of induced drag

E Element map table

E Set of edges in a graph model

fi Flow i in a system dynamics model

G Graph

M Computer model

M? Set of already existing computer models

P (A|B) Probability of event A occurring given that event B has occurred

P (A) Probability of event A

R Set of rows of the element map table

RV Rows of the element map specific to the set of architecture views V

Sx Stock named x in a system dynamics model

V Architecture view

xxxvii

V Set of vertices in a graph model

V ? Set of already existing architecture views

Ac Complement of a set A

xxxviii

SUMMARY

Engineering design is a cycle of decisions and analyses. Analysis of design alterna-

tives provide the performance predictions for decisions to be made; decisions provide

the context for analyses to be built. As decisions are made, the design gains detail

that must be documented for communication purposes between engineering teams.

These documents serve as the rules, logic, assumptions, metrics to build engineering

analysis models. Especially in multi-disciplinary design activities, such documents

form the consistent basis for the disciplinary modeling teams build representations

for the system to perform analyses that support further decisions.

System of systems design takes significant effort in planning, engineering, and

testing because they are formed via the integration of heterogeneous systems built and

operated by multiple entities. Their design description documents are compiled and

distributed among the entities, so that they can engineer effective systems that can

cooperate smoothly inside the integrated system of systems. These design descriptions

are critical in the process of designing, acquiring, training, operating, maintaining,

and evolving activities necessary for systems of systems.

It is customary to use architectures for documentation purposes in the field of

systems of systems. For analysis, subject matter experts or computer simulations are

used. These methods are—or at the very least, becoming—industry standards and

cover the entire life-cycle of the system of systems. However, there are a large number

of possible analysis methods for systems of systems, and the process of building such

analysis models from architectures is left to the modeler. Standards do exists for

architectures and their computer representations but widely accepted ways of building

xxxix

models from architectures do not exist.

Because there is no single, accepted, and widely-used system of systems modeling

technique, for every problem, a decision also needs to be made on what type of model

to use for system of systems analysis. Focusing on early design and planning phases

of systems acquisition, this research deals with the links between the descriptions,

models, and simulations of systems of systems. The main research question answered

is how a design engineer can select the correct modeling technique—not the model,

but its type—from a number of alternatives.

There are two main research arguments in this thesis. The first one is that system

architectures are very closely related to conceptual models (abstracted understand-

ing of systems). This argument is presented in an inductive form and subsequent

experimental work details how this argument holds up to scrutiny. The second re-

search argument is that depending on the architecture views deemed to be essential

to describe a system of systems, there are a number of modeling techniques required

to adequately model it, which is in a hypothesis form. This hypothesis was tested

by assessing overlaps of coverage that architecture views and models exhibit. The

two research arguments are tied together by the fact that conceptual models are an

essential step in creating executable models that are simulated on a computer.

Element maps were created to test the hypotheses in a systematic way. These

element maps link standard data types found on the viewpoints of the Department

of Defense Architecture Framework (DoDAF) to standard modeling elements that

make up computer models. DoDAF was selected due to its applicability to system of

systems problems. The element maps provide a repeatable scaffold in the translation

of architectures into executable models.

Using the element maps, eleven tests were performed on 4 different architectures.

They vary in size and purpose. For each of the architectures a set of viewpoints were

xl

investigated and executable models were produced. The process of going from archi-

tecture views to the code of the computer models is detailed to help system of systems

engineers to make similar decisions. Using the element maps, future projects can de-

termine what modeling type is more appropriate or what architecture definitions are

missing to develop desired computer models. Therefore, the element maps are one of

the main contributions of the work culminated from the testing of the research argu-

ments and is used in the methodology for selecting the right modeling type from the

existing architecture views. They are added to the toolbox of the system of systems

engineer.

The consequences of the research arguments are also used to construct a useful

methodology for system of systems modeling. The methodology is named Selection

Of Logical Simulation Types for Systems of Systems (SOLSTySS). Equipped with the

knowledge of which model(s) can offer adequate modeling for a given problem (func-

tion of SOLSTySS) and a means to translate architecture descriptions into conceptual

or computer models (function of the Element Maps), the design engineers expedite

the analysis process as well as introduce traceability into the process of modeling for

systems of systems. The processes are detailed in the concluding chapter of the docu-

ment. The SOLSTySS methodology helps the system of systems engineers select their

models and provide them with a scaffold for further computer model development.

xli

CHAPTER I

INTRODUCTION

There can be no doubt that a tribe including many

members who were always ready to give aid to each

other, would be victorious over most other tribes; and

this would be natural selection.

Charles R. Darwin [55]

Collaboration is an essential natural process. Animals use collaboration to hunt,

survive, build nests/colonies, and provide safety for their offspring. Human civi-

lizations used collaboration to drive specialization in their economies, enable large

scale planning execution of national policies, and use their natural resources more

efficiently1. Technological limits constrained collaboration to remain a phenomenon

between two organic systems; no human-made tool, system, or machine enjoyed the

benefits of collaboration until the 20th century.

As machines are put together in a collaborative fashion, previously unthinkable

capabilities are beginning to emerge from them (e.g., the Internet of things). Such

changes to the way that systems are used can be thought of as disruptive technologies.

Disruptive technologies create a market shift within the related industries compared

with incremental technologies that improve a process within industries. In order to

create the shift, these disruptive technologies rely on superior performance over their

1In some circles this collaboration is known as interoperability. For example NATO defines in-
teroperability as the ability to act together coherently, effectively, and efficiently to achieve Allied
tactical, operational, and strategic objectives [9]. Interoperability and cooperation have the same
meaning and there is little difference to warrant the use of both nouns separately. Because collabo-
ration is etymologically older, it will be used throughout.

1

traditional ones to convince the industry to abandon traditional, proven, and well-

understood practices. However, making the jump to the new and not well-understood

processes comes with risks for the industry.

The jump to the new methods and processes requires training in those new meth-

ods. It could be argued that designing collaborative systems that will render older

systems obsolete requires a different set of skills and steps compared to classical sys-

tems design. The traditional practices must be augmented with new tools and theories

well beyond its original scope to deal with this new type of industry practice, in this

instance: designing collaborative systems.

Making systems collaborate efficiently is not an easy task to accomplish. The

United States Department of Defense (DOD) as well as other government agencies

throughout the world have been prioritizing cooperation issues in their system acqui-

sitions to fulfill their information technology needs or enhance legacy systems giving

them new capabilities [85]. Integration of heterogeneous systems into an artificial soci-

ety, commonly referred to as a system of systems, takes significant effort in planning,

engineering, and testing. The enhanced connectivity creates various collaborative

dynamics between systems, which are often difficult to predict prior to their opera-

tion. In addition to the integration challenges, the systems themselves became more

complicated and their designs take longer and cost more.

Unsurprisingly, new industries and businesses that were created to capitalize on

this new paradigm are becoming very successful in the way they deal with complexity

and emergence. Information technology giants such as Google and Facebook find very

convincing uses for the increased connections, sharing, and collaboration between

systems2. There are important lessons to be learned from such companies; however,

these are commercial entities and have the freedom to move in or out of a market as

2Google revolutionized the web search by providing the service on a cluster of cheaper computers
compared to a single powerful but expensive server machine [139].

2

they desire. Military organizations cannot make the decision of not protecting certain

areas of the country. Having said that, they do have some doctrinal flexibility of how

to protect the country: e.g., not every military force has to have tanks. If having

tanks is not effective, that army can decide not to acquire or use tanks.

Historically, when a new capability/functionality was needed, this function was

added on the system that worked in that area. For example, bomber aircraft were

equipped with radars, cameras, and other sensors to find the targets and deliver their

payload to a precise area rather than dropping a large amount of free-fall ordnance

around the target. In this process of slowly adding more and more functionality,

systems became larger, more complicated, more expensive, and harder to be mod-

ernized. In order to alleviate the growth of complication, different systems can be

connected together performing different tasks. The rapidly developing communica-

tion technologies are enabling dispersed functionality across systems. This allows for

less complicated individual systems but a more complicated whole, which may or

may not be desirable. Today, the functions of systems are viewed as services to the

group (e.g., Global Positioning System satellites provide a geo-location service). This

approach centralizes the source of the service, but makes the benefits available to

all compatible systems, hence allowing them to be more useful without adding many

components to the system3.

The spread of functions to different systems may make systems cheaper as a

whole as well. Because there is a dedicated server for the function, the server is

expected to be busy most of the time. Comparing that scenario with a function

that exists on all systems, which are part of the system of systems, highlights the

resources a distributed system wastes. Not every cell phone requires its own satellites

3Interestingly, Global Positioning System signal processing requires some difficult calculations
to be performed on the receiver side. To combat the battery drain, it has been proposed that the
devices should upload the signal they receive to a cloud computing platform, and download the
results once they are processed, saving battery charge in the process [125]. This is a perfect example
of locating functions away from the final user.

3

for navigation purposes, but they all require at least one antenna. This drive for

efficiency and cost effectiveness is the main motivation behind system of systems

engineering; in theory it makes better, more efficient, more effective, and more useful

systems possible. However, decentralizing functions does not make the whole system

less complex as the complexity is pushed to the communication network that must

support the distributed functions.

System designers are also facing increasing complexity in their products. Such

products take significantly longer to design, test, produce, and field [154, 33]. The

DOD desires critical systems to be delivered for the warfighter’s use much faster

than today’s acquisition system allows for. This is evidenced by the Secretary of

Defense’s choice of three focus areas: cost, schedule, and performance [11]. In parallel,

Defense Advanced Research Projects Agency (DARPA) has been working on the

META program with a goal for improving the design, integration/manufacturing,

and verification of complex cyber-physical systems (i.e., physical systems that rely on

software as part of their operation) with a special focus on aerospace systems [54]. It

is clear that the reduction in design cycles is a priority for defense systems.

Correcting for the long design cycles, the military leaders look out for many long-

term projects. The next fighters, warships, or tanks are not only designed to combat

today’s or near-term threats, they are designed to effectively combat futuristic pos-

sible threats. Some of these threats fail to materialize, which causes unnecessary

resource drain. Also, the requirements are set to be very aggressive and, without

the infusion of many yet-exotic technologies, a technically feasible design cannot be

obtained. Such technologies take time to mature and their impacts are uncertain

and in flux. All of these reasons cause costs to balloon; however, the programs are

pursued until they cannot be sustained anymore and the increasing costs ultimately

lead to cancellation. For example, the Future Combat System—a recent major mod-

ernization effort by the United States Army—had a 28% estimated chance to meet

4

its budget constraint and it was approved to continue development nevertheless [48].

Unsurprisingly, it was canceled later due to budget cutbacks.

1.1 Motivating problem

Given the issues and recommendations above, early phase design must be improved

for defense systems. However, many modern defense acquisitions deal with systems of

systems and the improvements in systems engineering should be reflected in system

of systems engineering as well. One major difference between systems design and

system of systems design is that the latter is not done from scratch. There usually is

some existing system(s) that the new system will interface with. A system of systems

design is, therefore, more similar to a spiral system development: a substantial but

incremental upgrade to an already operational system of systems. However, the

disruptive feature of systems of systems challenge simple spiral development methods.

More suitable design methodologies exist that guide systems of systems design using

iterative cycles [52, 90]. The evolutionary nature must play a central role in any

analysis or design effort for systems of systems.

The analysis of alternatives (AoA) is the general method used by the DOD to

check the goodness of a multitude of possible solutions. It is used to identify the

most promising potential materiel solution [58]. The method is mainly used to assure

that enough alternatives are considered before risky and costly materiel acquisition

decisions are made. However, the process of AoA is manual and very slow. Defense

Acquisition Guidebook states that evaluating too many alternatives is worse than

evaluating too few, because too many alternatives exceeds the resources of the team

performing the study [58]. Analyzing alternatives and making design decisions based

on the results is a rigorous trial and error process, e.g., optimization or design space

exploration. At each phase of the evolutionary design process, the engineers must

evaluate different options and make a selection as well. This selection process must

5

be done in a fair, rigorous, and transparent way, which leads to a quantitative study.

When design selection is not done properly [16], time [49] and resources are lost during

the re-evaluation of alternatives. Because design AoA is analogous to DOD AoA, the

analysis for design options must also be done in a fair, rigorous, and transparent way.

A necessary difference between the DOD AoA and design alternative evaluations

is that the design counterpart must be done much more rapidly. More design alter-

natives are to be investigated compared with selecting an alternative among finished

design proposals. In fact, the sheer number of architecture alternatives are prohibitive

even for relatively simple architecture design spaces due to the existence of discrete

variables [104]. Every discrete variable multiplies the number of possible designs by

a factor of how many settings it has. Additionally, engineering design is an iterative

process. The design evaluations not only serve as a way to select a final design, but

also guide the next round of the design iteration. Therefore, the methods used within

the AoA step during design, its planning, construction, and use, must be geared

towards evolutionary designs.

The large number of alternatives to be evaluated forces the analysis to be auto-

mated. These automated analyses are usually computer simulations. Simulations use

virtual representations of the system in question and predict how it would behave

in the real world, much like forming hypotheses and performing experiments in the

scientific sense. Since simulations are to be used as a part of the design process, the

questions that deal with systems of systems design apply to simulations of them as

well. Another opportunity for automation lies in the translation of design descriptions

into executable computer models for analysis. Further development on the modeling

and simulation and consistency/logic checks that integrate seamlessly with design

descriptions is desired [59].

Based on the discussion above, a list of computer modeling questions for system of

systems engineering is posed below. This list will serve as a guidance for the research

6

effort.

1. At which step of the design process should systems of system be simulated?

2. What should be the general steps of simulations for system of systems design?

3. What are the different options for each step of system of systems simulations?

4. Which options are more suitable for various kinds of systems of systems?

5. Once picked, how should the steps of simulations be executed?

The work performed here has the form of a methodology. The first three questions

are mostly answered by a literature review of the field as well as similar fields. As

such, the chapters discussing these topics mainly identify and synthesize existing in-

formation to answer the questions. New information is only added when necessary in

the development of the methodology, e.g., author’s interpretations of the observations

and setting expectations for the methodology. The reader can expect mainly deduc-

tive arguments in these chapters. Conversely, the answer to the fourth question will

include synthetic arguments (hypotheses and inductions), which will be verified with

appropriate methods. The fourth question is then the most central to the research

among the five questions; therefore, it is used as the main research question. The

fifth question is used to bring the research to full circle in the sense of infusing the

new knowledge into the design process for systems of systems.

Before answering the questions, however, the scope of the research must be set.

The work performed here does not deal with all aspects of systems of systems engi-

neering such as physical testing, acquisition, and operation after acquisition, which

would make the topic very large in scope. The aspects to be dealt with are design,

development, and iterative refinement through virtual testing. These topics mainly

focus on integration issues and performance metrics such as assets lost/damaged,

time to complete mission, network vulnerability, and operation cost. Nevertheless,

7

a good understanding of the system of systems concept is required for a simulation

study; therefore, such aspects of systems of systems will be included in the study but

not investigated in depth. The author argues that the models—similar to the ones

that are investigated here—can be used to calculate metrics related to acquisition,

testing, and operation. The development of such models, however, will be left as a

related future expansion to the work detailed here. The overall goal of the work is

given below.

Research Objective. Develop a methodical approach for selecting a modeling type

for analysis of systems of systems, that is useful for early design phases as well as for

continuous cycles of system of systems evolution.

The answers to the first two questions can be found in Chapter 2, which will also

serve as a broad description of system of systems engineering. Chapter 3 includes

thesis arguments and the overview of the experimental work. The third question is

answered in Chapter 5, which is preceded with a chapter on models in general. The

Chapters 6 and 7 detail the work that went into experimental setup and are followed

by Chapter 8 where the tests and experiments are performed. Finally, Chapter 9

concludes the work by highlighting research objectives achieved. Figure 1 displays

the overall flow of the document.

8

Detailed

Investigation

Element Maps
Experimental Setup

ArchitecturesModels

HypothesisInduction

Research Objective

Research Questions

Background

Motivation Context

Experiments

Conclusions

1.1 2.1

2.2, 2.3, 2.4, 2.5

3.2

3.2

3.43.3

4.4, 4.5, 5.2 5.1

6, 7

8

9

Realizes

Figure 1: Overall flow of the document with key sections and chapters highlighted.

9

CHAPTER II

ON THE DESIGN OF SYSTEMS

Incremental improvement is guaranteed to be obsolete

over time. Especially in technology, where you know

there’s going to be non-incremental change.

Larry Page [123]

The first research question deals with the role of simulations during system of sys-

tems design. Before this question can be answered, a discussion on systems of systems

and their design is warranted. In this chapter, using the purest systems engineering

approach, the study of system of systems will be broken down into its components.

Some components of system of systems design are borrowed from different fields of

mathematics, science, and engineering. This aggregation of many smaller problems

and techniques must be understood and defined in useful ways to propose improved

solutions to design problems. After the discussion of each component, they will be

integrated into system of systems design. Finally, the warrant to use simulations in

system of systems design will be justified. The difficulties and emerging problems

discussed in this chapter will be used in Chapter 3 to formulate hypotheses and their

tests. From the topic of system of systems simulation, the parts seen in Figure 2

emerge.

This chapter is intended to provide the reader with some basic understanding of

each and every one of the parts shown above in Figure 2, to define them for further

methodology development purposes, and to define central ideas in system of systems

engineering.

10

System of systems modeling

SoS Descriptions SoS Metrics SoS Life Cycle SoS Simulation

Systems

Interfaces

Performance

Attribute

Data Avail.

Design

Models

Execution

Figure 2: Decomposition of system of systems simulations

2.1 Engineering design

The design activity is composed of a chain of decisions [94, 179]. Along the way, the

engineers make decisions that give the design its form and function. In order to make

decisions, engineers rely on knowledge about the machines that they are building. In

fact, the entire scientific body of knowledge is made to make such decisions [96]. Using

knowledge about nature, we can make decisions that lead to better actions. Design

decisions made throughout the design process result in a final design; therefore, the

final design can be thought of as the aggregation of all design decisions.

The mechanics of decision making is best left to psychologists; however, many

systematic, step-by-step processes for making decisions have been constructed and

published in the context of engineering design [21, 174, 171]. These methods follow

a top-down direction, which is a common characteristic of requirements engineering.

Because they are very similar, and for the purposes of this work the differences are

not critical, the author has elected to use the decision process within the Integrated

Product and Process Development (IPPD) Methodology.

IPPD was developed at Georgia Institute of Technology [174] and is depicted in

Figure 3. It includes six logical steps for design decision support as well as product

design steps. IPPD is a generic enough method that one can apply to many engi-

neering problems. The steps are sequenced to ensure that an organized and complete

list of factors are considered before making a design decision. These steps are given

below with descriptions in the context of system of systems engineering.

11

Establish
theqNeed

Define
theqProblem

Establish
Value

Objectives

Generate
Feasible

Alternatives

Evaluate
Alternatives

Make
Decision

Requirements
andqFunctional
Analysis

Physical
Decompositionqand
FunctionqAllocation

SystemqSynthesis
through
Multi-Disciplinary
Optimization

SystemqAnalysisq
andqControl

QualityqFunction
Deployment

RobustqDesign
Assessmentqand

Optimization

On-LineqQuality
Engineering

Quality Engineering Systems Engineering
Top Down

Decision Support

P
ro

ce
ss

qD
es

ig
nq

D
ri

ve
n P

rod
uctqD

esignqD
riven

Figure 3: Georgia Tech Integrated Product and Process Development Methodology
[174] (Reproduced)

1) Establish the need Discovering and enumerating capabilities identified as lack-

ing currently.

2) Define the problem Bounding of the study to a limited number of goals derived

from identified needs.

3) Establish value objectives Finding quantifiable measures of effectiveness that

are to be reached. Reaching these objectives should guarantee achieving the

goals set in the previous step.

4) Generate feasible alternatives Listing or defining a space of possible solutions

that may exceed value objectives.

12

5) Evaluate alternatives Trying, evaluating, and selecting or discarding each al-

ternative based on their quantified performance by the measures of effectiveness.

6) Make decision Selecting the best alternative from a final list of all successful

alternatives, ordered by a preference function.

The first two steps are about defining a reason for the design activity itself. These

steps can be supported by analysis; however, the analysis in question is on the ex-

isting systems and processes to highlight their shortcomings. This type of analysis

is commonly referred to as a gap analysis. The second step bounds the problem by

declaring the final goals of the design effort. While those goals can be compared to

the already existing systems and be validated that they would fill the gaps identified

earlier, the analysis here has few similarities with predicting the performance of a

possible design.

The third step derives the important metrics of the problem. Which properties

of the design are important? Is it the range of a bomber or the payload capacity

that the customer values most? There is a very delicate link between this step and

analysis. Ideally, the metric determination should be independent of the analysis

methods, i.e., the engineering problem should be guided by the needs established

beforehand. However, if the needs established earlier are not calculable, either needs

must be modified or proxies to them must be established (e.g., mean time between

failure instead of reliability, radar cross section instead of detectability). Therefore,

existing analysis methods play a large role in determining the metrics for the design

problem. The practicalities of analysis methods must keep decision makers grounded.

The fourth step, generating feasible alternatives, is intrinsically linked to analysis.

Figuring out whether a design alternative is feasible or not requires analysis. In

some design problems, feasibility is handled at the next step (i.e., evaluation) and

only compatibility is taken into consideration during the fourth step. Generation of

13

alternatives is another step in which the possibilities and practicalities of simulations

must be kept in mind. If a simulation requires a large number of computations, only

a relatively small set of alternatives should be carried over. The analysis as well as

the metrics dictate the way design alternatives are generated.

Generating and evaluating alternatives could be done consecutively, iteratively, or

in phases. The analysis performed during these steps predicts the performance, cost,

collaboration issues, etc. Decisions are made using the scores each alternative receives

based on the value established at an earlier step. However, in order for this process

to be executed properly, several requirements specific to design and simulations must

be addressed.

After a description scheme is set, alternatives are generated. Finally, for analysis,

computer simulations are used as previously alluded to. Various computer simulation

types (such as discrete event, agent based, and Petri nets) are, or are at the very least

becoming, industry standards. However, the means to accomplish design description

and analysis are still vague. For example, one can use diagrams and pictures to

represent architectures; however, there is little agreement on how those diagrams

and pictures are stored or represented (especially on a computer). Both generic

markup languages as well as domain specific languages are used to store architectural

information in a computer readable way, and each approach has its own strengths

and weaknesses [104]. Architectures will be revisited in Chapter 3 and 5 again. The

following sections of this chapter provide the background to the research work as

shown in Figure 4.

14

Detailed

Investigation

Element Maps
Experimental Setup

ArchitecturesModels

HypothesisInduction

Research Objective

Research Questions

Background

Motivation Context

Experiments

Conclusions

1.1 2.1

2.2, 2.3, 2.4, 2.5

3.2

3.2

3.43.3

4.4, 4.5, 5.2 5.1

6, 7

8

9

Realizes

Figure 4: Context is set. The next sections provide the background to the research.

15

2.2 Systems

Systems are defined in various ways. The word originates from two Greek words σύν

and ίστηνι which roughly translate into “something made of many existing entities”.

The word system is usually associated with organization and method. Below are

examples from dictionaries and scientific encyclopedias:

• an assemblage of parts that form a unified whole [144], a coherent unification

[86], a group of related structures [156], a set of units combined by nature or

art to form an integral, organic, or organized whole [86]

• a collection of particles or interacting components considered to form a dis-

tinct physical entity for the purpose of study or identification [144], a method

of organizing entities or terms; in particular, organizing such entities into a

larger aggregate [156], an aggregation or assemblage of objects joined in regular

interaction or interdependence [86], an orderly working totality [86]

• a combination of components, elements, subsystems, and operating procedures,

functioning together to achieve some objective [144], a complex unity formed

of many often diverse parts subject to a common plan or serving a common

purpose [86], a combination of several pieces of equipment integrated to perform

a specific function [156], a group of devices or artificial objects forming a network

or used for a common purpose [86]

Based on the above dictionary definitions, it can be said that a system is defined

generally by two aspects. The first is the distinction of what is internal versus what

is external to it. Internal elements are called parts, subsystems, or components of the

system. External elements are usually called the environment. The second aspect is

the relationship between the elements. In most cases, the relationships of the internal

elements are more important than the interactions between internal and external

16

elements. A system also has a purpose, a function, and/or an observable effect on

the environment. Cell phones, airplanes, coffee makers, dishwashers, microphones,

satellites, star clusters, organisms, ant nests, traffic lights, and control volumes all fit

the description of a system.

The size is not a criterion for the definition of a system. The tiniest or the largest

thing can be described as a system. In fact, the same physical object can be described

as a system or a component depending on the purpose of the definition. For example,

a desktop computer is a collection of many parts: a motherboard, a processor unit,

memory modules, a hard drive, a power supply unit, an optical disk drive, and a

case that holds these parts together. However, the same computer can be thought of

a component when it comes to the use of it: a person needs a screen, a keyboard,

and a mouse to work with a desktop computer. These peripherals and the computer

make up yet another system. The particular definition of systems depends on how

the definition will be used.

With such a broad definition, almost anything in the universe can be called a

system, which may render the definition useless. Therefore, it is necessary to add

further rules/limitations to the definition. The focus of this work will be on human-

made/designed systems. The author defines human-made systems as systems that

were invented, conceptualized, and/or designed by humans. The production can be

automated, or even natural; however, the design and the determination of purpose

must be performed by a human. From an engineering perspective this classifica-

tion is important. A very widely used definition for man-made systems is given by

International Organization for Standardization (ISO), International Electrotechnical

Commission (IEC), Institute of Electrical and Electronics Engineers (IEEE), and In-

ternational Council on Systems Engineering (INCOSE): a system is a combination of

interacting elements organized to achieve one or more stated purposes [7, 93].

Three other notable definitions for a man-made system are as follows.

17

1. “an interdependent group of people, objects, and procedures constituted to

achieve defined objectives or some operational role by performing specified func-

tions” [177]

2. “a collection of interacting components organized to accomplish a specific func-

tion or set of functions within a specific environment” [181]

3. “an arrangement or grouping of objects that operate together with a common

purpose” [78]

In these definitions each component is assigned one or more functions to be performed.

They, therefore, assume that all parts of the system have some kind of a function and

no part is irrelevant.

Designed systems are used in every aspect of our lives. From health monitoring to

processing web search queries, from carpet cleaning to distributing electrical power,

people depend on systems. This document was authored on a computer, made out

of many smaller systems, each of which were produced by some industrial production

system, shipped to assembly centers by transportation systems. Engineered systems

are a ubiquitous part of our lives; therefore, from the progress-oriented perspective

of an engineer, it is important to design systems with improved capabilities and

efficiencies. Similarly, from a business perspective, value is created by either solving

an yet unsolved problem or reducing waste in a solution.

Furthermore, this work deals with collaborative and competitive systems. Sys-

tems operating in isolation are not dealt with. Such systems have very focused and

specialized use cases, and their design is much simpler and easier understood. This

work will not go into designing specific isolated systems. It will focus on determining

the necessary interacting systems for multiple purposes. The reader is reminded that

once the necessary systems are decided upon, more isolated systems design activities

can be used. In other words, if one decides to perform system of systems design on

18

an isolated system, the conclusion of the analysis will be that the system is needed.

Collaborative and competitive systems are systems that are constantly commu-

nicating with, sensing, serving, counteracting, enabling, disabling, each other. The

operation of such systems not only depends on physics, but also the behaviors, per-

formances, and past actions of interacting systems. It is, therefore, impossible to

measure the value of a collaborative/competitive system outside of its ecosystem of

interacting systems. For a fighter airplane, it may be useful to list its rate of climb,

maximum speed, and armaments it can carry; however, it is more useful to define

its actual influence on the many missions its operators are flying, such as mission

completion time, percent targets neutralized, combat losses, and fratricide rate.

These metrics are more difficult to calculate for a systems developer, because they

are not metrics for the system in isolation; they are metrics for the system being used

in one or more scenarios and in the context of a group of other heterogeneous systems.

The determination/measurement/estimation of such metrics require an operationally

focused analysis requiring the consideration of the system’s interaction with the un-

certain external environment, rather than an analysis of the internal workings of the

bounded system. Before such analyses can be discussed, systems of systems must be

introduced.

2.3 Systems of systems

There has been an increase in interest in system of systems in the military acquisition

communities, who are always looking for new capabilities since the capabilities-based

assessment was accepted as a paradigm. In fact the definition that the DOD offers

for a system of systems is very telling of its suitability for capability-based acquisition

considerations: “a system of systems is a set or arrangement of systems that results

when independent and useful systems are integrated into a larger system that delivers

unique capabilities” [153]. Military assets become systems of systems given their force

19

structure, the organizations they belong to, the means by which they are connected

to each other, and the roles they are assigned to fill. Other notable definitions of

systems of systems are given below.

• “A system-of-systems is an assemblage of components which individually may

be regarded as systems which possesses two additional properties: operational

and managerial independence of the components” [130].

• “Groups of systems, each of which individually provides its own mission capa-

bility, that can be operated collectively to achieve an independent, and usually

larger, common mission capability” [155].

• “A set of different systems so connected or related as to produce results un-

achievable by the individual systems alone” [117].

Each of the definitions point to the well-accepted characteristics of systems of sys-

tems: multiple systems integrated into a larger system, each system is independently

useful, and systems collaborate to achieve larger goals. Additionally, some of the

definitions also stress independent management. The author believes that the DOD

definition is precise and concise enough to accept for the purposes of this work.

The word capability requires some explanation. Capabilities are high-level goals

in the context of a military operation. Although the DOD Dictionary of Military

and Associated Terms does not specifically define it, many definitions that use the

word capability point to a high-level goal [62]. The Joint Capabilities Integration and

Development System defines capability simply as the ability to execute a specified

course of action [84]. It could range from rapidly building forward operating bases

to hitting a high-priority time-critical target; from keeping up with the logistics re-

quirements to the ability to employ enough personnel. DOD defines capability as

“the ability to execute a specified course of action” [62]. Some examples may clear

any confusion. The ability to fly at supersonic speeds is a performance criterion for

20

an aircraft system; however, being able to intercept incoming enemy fighters so many

miles ahead of the national airspace is a capability. Withstanding a mine blast is a

performance criterion for an armored vehicle, but safely operating within enemy-held

urban areas is a capability.

One important difference between a system and a system of systems is that the

elements within a system of systems are owned and operated by different entities

who are free to make their own decisions. The cooperation arises from a mutual

benefit, not by placement, automation, or definition. A fighter pilot’s decision to

follow orders is different from an engine piston moving faster with the increased fuel

flow. The former chooses to follow orders (there may be conditions in which he/she

cannot), whereas the latter is physically forced to move faster. It can be said that

the elements within a system of systems are more loosely connected with each other.

There are certain types of systems of systems that are very limiting in the design

decision phase; however, the operational actions do enjoy some freedom.

There are several types of systems of systems. The categories as defined by the

DOD are virtual, collaborative, acknowledged, and directed [58, 130, 53]. These cate-

gories are becoming an accepted way of classifying systems of systems outside of the

DOD as well. The classification is based on operational freedom and goes from the

ultimate freedom of making design or integration decisions to complete lack thereof.

A very well-known example is the Internet. Due to its design goal of connecting

computers worldwide, the Internet is a great example of a successful system of sys-

tems. The Internet is a collection of standards, procedures, and systems that adhere

to those standards and procedures. The owners of these computers are incredibly

mixed: personal computer users, internet service providers, governments, national

and multinational entities, non-government organizations, schools, media companies

that generate and distribute content, etc. Today, companies, small and large alike,

21

depend on this network to conduct their business. The power of this system of sys-

tems comes from its openness, little perceived effort to be part of it (i.e., connecting

to it), and ease of use via graphical user interfaces (e.g., web pages, apps, games).

With the vision of the Internet of Things well underway, the Internet is becoming an

inescapable part of human life: it is in the living rooms (televisions), on the move

(mobile phones), in coffee shops (wireless local area networks), or even within human

bodies (connected heart monitors).

Another example is an air transportation system. These systems exist in every

country, where there is an airport or airplanes fly through the airspace. As airplanes

use the airports and the airspace, the air traffic controllers survey the area and decon-

flict paths. In order for this to work, all systems are in communication with related

parties at all times. Failures are handled with extreme care and pre-determined rules

and procedures. Radars, very high frequency omnidirectional radio range beacons,

global positioning system satellites, aircraft, radio towers, and other connected ele-

ments are all part of air transportation systems just as airplanes, airlines, passengers

and cargo, and fuel infrastructures are. This system is glued together by human op-

erators and compared to the Internet, a smaller degree of automation is employed.

This aspect shows the flexibility of systems of systems in their implementation of

interfacing, decision making, and operation.

One last example considered here is a basketball team. Even if the business side of

the team is ignored, the actual players and their coach form a system of systems. Each

player, even though executing actions within teamwork, makes his/her own decisions,

but is simply part of a grander scheme of tactics. The players are heterogeneous

systems: they each assume the role of pivot, power forward, small forward, point

guard, and shooting guard. Some switch between roles. All players adhere to the rules

of the game and act, move, and perform accordingly (e.g., dribble not travel, handle

the ball with hands not feet). Observing several games of basketball also uncovers

22

some emergent behavior1 such as the last five minutes of the game lasting more than

fifteen-twenty minutes due to clock stoppages and time-outs. Players do get replaced

by other players during the games or between seasons by transferring, but the team

still stands as a system of systems. This type of systems of systems is completely non-

automated and operates gracefully through practice and training. Communication

between systems is done by hand signs, shouting, or simple observation of actions.

The Internet is of the collaborative type: standards and committees exist to man-

age protocols but the cooperation is mostly voluntary. The air traffic control is a

directed system as governments enforce it via laws in their jurisdictions, but is a col-

laborative one in the global scale, as governments work together under organizations

such as International Civil Aviation Organization (ICAO). A basketball team is a

directed system of systems because the coach tells the players to do certain moves

even though there is considerable freedom in the executions of the prescribed actions.

Returning to the DOD’s definition, some arrangements of systems will perform

better, be more robust, and cost less given the spectrum of capabilities they are

expected to deliver in various situations. The system of systems engineer’s goal is

finding the best solution given the set of desired capabilities. This problem is an

inverse design problem, not unfamiliar to the aerospace community, where the per-

formance metrics are known via standards, requirements, and desirements, while its

design parameters are unknown. However, because analysis cannot proceed back-

wards (i.e., consequences do not lead to the causes), the analysis is done by seeding

the problem with some possible designs and observing their performances. Later

the problem is inverted mathematically or via trial-and-error to obtain the required

design parameters from the given requirements.

1Emergent behaviors are patterns that come to exist without any intervention to make them
exist. Such behaviors are usually the result of the arrangement of systems or the rules that apply
to them. Because they are previously unplanned for, they are named emergent. Emergent behavior
will be more thoroughly investigated later.

23

Furthermore, the prospective systems to be included in the system of systems

may already be in operation, development, or consideration. As discussed earlier in

Chapter 1, systems of systems are not usually designed from scratch; a part of them

already exist and is in operation, while another part is in design [52]. The consequence

is that there is considerable mismatch in data availability between the existing and

non-existing components. In addition to this mismatch, the available data for the

non-existing systems is likely to be uncertain in nature. This uncertainty is due to

the lack of knowledge about the system and is, therefore, of the epistemic type [106].

Epistemic uncertainty is sometimes referred to as type B uncertainty or uncertainty

due to lack of knowledge. Epistemic uncertainty can be reduced in time with better

analysis on the systems that make up the system of systems [106]. Reducing epistemic

uncertainty requires time, resources, and effort.

There may be uncertainty in the performance of existing systems as well. For

example, a fighter jet may take two minutes to find a target or it may loiter for hours

to find it. Individual mission performance of aircraft will vary from time to time as

they may be in different phases of their maintenance schedules, different pilots may

be flying them, or different weather conditions may exist in the area of operations.

The amount of uncertainty in the design is disconcerting and this aspect of system of

systems cannot be downplayed or ignored. However, determination of all performance

metrics for every conceivable scenario is an arduous task and should be scoped out of

modeling for practical purposes. The variability of performance should be included

in the analyses as uncertainty, limiting depth and fidelity of models. Therefore, this

uncertainty is of the aleatory type [106]. Aleatory uncertainties are sometimes referred

to as type A uncertainties or uncertainty due to variability. Aleatory uncertainties

are not reduced with more analysis, as they are inherent to the nature of systems

that make up the system of systems [106]. It is important to separate epistemic and

aleatory uncertainty in risk analysis [100].

24

With their characteristics discussed above, systems of systems are documented in

design descriptions called architectures. These descriptions are designed to handle

the varying operational freedom, unending development cycles, multiple sources and

types of uncertainties, and the management of multiple capabilities and programs. A

discussion of what architectures are and how they are used is given next.

2.4 Architectures

As discussed before, design is partially a decision making process [94, 179]. Design

decisions made throughout the design process result in a final design; therefore, the

final design can be thought of the aggregation of all design decisions. These attributes

of the design are encoded in a design description, which is usually in the form of

an associative array. This construct is also known as a map, a symbol table, or a

dictionary [137]. An associative array is made out of key-value pairs. Each value

has an associated key, which is assumed to exist and is unique. In the context of

design, the variables are stored as keys and their settings/values are stored as values.

Figure 5 depicts an example associative array.

Associative0array

ValuesKeys

google.com

amazon.com

facebook.com

74.125.224.72

72.21.194.212

173.252.110.27

Figure 5: Associative arrays store values linked to corresponding keys

Design descriptions must have two fundamental characteristics. Firstly, one al-

ternative shall not have two different but valid descriptions for the same purpose. In

other words, design descriptions are unique for alternatives. This requirement will

ensure that alternatives are unique and that the same alternative is not analyzed

25

twice. Secondly, it distinguishes one alternative from another. In other words, two

alternatives shall not have the same design description, unless they are the same

alternative or equivalent alternatives under the analysis being performed. This re-

quirement ensures that two distinct designs are not considered to be the same design,

and hence to have the same performance during the analysis step. Figure 6 shows

this relationship graphically.

Non-unique mapping
(One alt. to many desc.)

Non-unique mapping
(Many alt. to one desc.)

Unique mapping
(One alt. to one desc.)

Alternatives Descriptions Alternatives Descriptions Alternatives Descriptions

Figure 6: Mapping between the set of designs and the set of representational models

In engineering design, one of the steps is the description of design alternatives.

System of systems design is no different in this aspect. A design engineer needs a

way of describing a prospective system of systems design alternative before it can

be analyzed. Certain design attributes relate to the conceptual properties of the

design, while others relate to specific settings of a given property. For example, a

flying system can be a fixed wing aircraft, an airship, or a rotary wing aircraft; the

implementation is a conceptual property of a design. Conversely, the span of a wing

being 93 feet long is not a conceptual property; it is a setting of a property.

Conceptual properties open and close entire spaces inside design spaces. For

example, the decision to go forward with a rotary wing aircraft eliminates design

variables such as wing span, flap sizes, and engine pylon placements, but the decision

opens a design space spanned by design variables such as disk area, number of rotor

26

blades, or landing skid length. Inside the associative array, these alternatives can be

represented as yet another associative array (nested).

Without a good taxonomy of possible elements, design descriptions are not a good

way of documenting what the design is. Even with a good taxonomy, they may be

very impractical in describing the entirety of a complex system. For example, in a

turbofan engine, the bleed air ratio by itself is not enough to perform many analyses

such as calculating turbine blade temperatures. For such an analysis, the interaction

between the compressor and the turbine must be known. Because system elements

are always interacting with each other, the interactions must be more clearly defined

for an effective description of a system. Such design descriptions are close to what

are widely known as representational models in science and engineering. In systems

engineering, they can also be referred to as system architectures ; a term defined in

many ways by different entities:

• “The organizational structure of a system or component” [1]

• “System, product, or service architectures depict the summation of a system’s

entities and capabilities levels of abstraction that support all phases of deploy-

ment, operations, and support” [193]

• “Fundamental concepts or properties of a system in its environment embodied

in its elements, relationships, and in the principles of its design and evolution”

[7]

Design alternatives must first be described, next they must be analyzed, and

lastly design decisions must be made in any design process. Analysis cannot be

performed prior to description and the description is usually taken for granted for

most engineering design activities. For example, in fixed wing aircraft design, the

description of a candidate is represented as a list of attributes (e.g., TSL/WTO, WTO/S,

A). Some of these description elements may be changing throughout the flight (i.e.,

27

updated via mission simulation), whereas others may be fixed. A similar description

scheme of a system of systems design candidate must be established.

System architectures then hold more information than regular system descrip-

tions because they are standardized and include information other than a physical

taxonomy/decomposition. Until recently, however, system architectures have been

mainly used for documentation purposes. Static, hard- or soft-copy documents have

been used as data containers for system architectures. Such containers include techni-

cal reports, presentation slides, manuals, doctrine documents, graphs and charts, etc.

However, the opinion on how to use architectures is rapidly changing [204, 90, 157, 80].

If such documents were made in a computer readable fashion, models created to ana-

lyze designs can use them as inputs in support of the simulation. This is the main idea

behind the DOD’s push for executable architectures. Department of Defense Architec-

ture Framework (DoDAF) is a good framework for developing system architectures

and is slowly evolving to include features that help with analysis steps [143]. In this

context, executable architectures provide the means to conduct dynamic analysis of

systems, and are emerging as a supporting method [202]. The DoDAF document

also hints further development on the modeling and simulation and consistency/logic

checks that integrate seamlessly with DoDAF[59].

It is safe to assume that systems of systems can be described by architectures

and that some form of simulation will be used to analyze them. In turn, the outputs

of these simulations will be used to assess potential system of systems designs or

upgrades, as part of IPPD’s step 6. These assumptions are justifiable by government

mandates, recommended practices, industry trends, and practical considerations [195,

153, 58]. This research focuses on the descriptions of systems of systems and their

coupled nature to the system of systems analysis using computer models.

Ideally, the description of a system should be independent of its analysis so that

it is only influenced by what is known about the design not dictated by the analysis

28

requirements. The independence is desired because the description should be about

the system, not its analysis. The description must keep all potentially relevant as-

pects of a system and store them in a useful form. However, because the purpose

of description is analysis, the relevant aspects are, more often than not, related to

analysis methods. Several examples will be considered below.

The free body diagram is a well-known system description method in the field

of mechanics. An example is given in Figure 7. The free body diagram is a way of

describing a system so that its dynamics could be analyzed. The systems it describes

fit the description given in Section 2.2.

• It has internal elements (bars, strings, point masses, etc.),

• There are relationships between internal elements (joints),

• It has external elements (accelerations such as gravity, curved paths, forces,

etc.),

• It has relationships with the external elements (Newton’s Laws and boundary

conditions),

• The mechanism itself has a purpose/function,

• The mechanism influences and is influenced by the environment during its op-

eration.

The free body diagram breaks a system into multiple views. Each rigid body

and massless component gets its own view. The free body diagrams have all the

information needed to model the system dynamically using Euler’s First and Second

Laws: the linear and angular momentum of bodies with mass and inertia is increased

proportional to the sum of the forces and moments acting on them [56]. Also, massless

bodies have to be in static equilibrium. However, if one was to use d’Alembert’s

29

i2

O
i1

α
m1,l1 g

β

γ

m2,l2

m3,l3

A

B

i2

i1

γ

B

m3g
FB1

FB2

i2

O

α

A

m1g
RO1

RO2

FA1

FA2

i1

i2

i1

β

A

B

m2g
FA1

FA2

FB1

FB2

Figure 7: Free body diagrams decompose the problem into more focused views

Principle to model the system, there is some extra and some missing information

from the free body diagrams. d’Alembert’s Principle does not require the knowledge

of reaction or internal forces, but requires the knowledge of kinematically admissible

virtual displacements [27]. It is clear that, at least in this case, system description

has some relationship with system analysis.

Another example is from the field of mathematics. A system of equations with

shared variables can be represented in a matrix form. By convention, the variables

are represented by the columns of the matrix and the equations are represented by

the rows of the matrix. An example is given in Equations 1–4. Using linear algebraic

methods such as Gaussian elimination, the system of equations can now be solved.

The matrix representation of a system of equations is an architectural view of it. It

30

takes advantage of the order in the equations and compresses them to a structure

that holds only the information needed for the analysis to be performed. Once the

matrix representation is used, the information on the variables is lost. It has to be

kept separately until the analysis is complete. The matrix representation of a system

of equations is another example of a description being closely tied to the analysis of

system.

3x1+ 4x2+5x3 = 15 (1)

5x2+3x3 = 10 (2)

2x1+10x2− x3 =−9 (3)
3 4 2 15

0 5 3 10

2 10 −1 −9

 (4)

As seen in the presented examples, the description is usually linked to the analy-

sis. In fact, this is done out of necessity: the description of the system is a minimal

representation of the system with some purpose—in this case: analysis—in mind.

Without the knowledge of what will be done with the representation, nothing can

be ignored, scoped out, or simplified, because there is no prior knowledge of what is

needed later for analysis. This contradicts the purpose of design description: captur-

ing every known detail about the design so that any desired analysis can be performed

later. It is not specific to a single analysis method.

Now that the need for and the requirements of system of systems design descrip-

tions have been outlined, a description scheme must be picked. The description that

is sought will describe systems of systems which were defined earlier as a set or ar-

rangement of systems that results from independent systems integrated into a larger

system that delivers unique capabilities [153]. One solution stands out in the DOD’s

dictionary: a technical architecture is defined as a minimal set of rules governing the

31

arrangement, interaction, and interdependence of the parts or elements whose pur-

pose is to ensure that a conformant system satisfies a specified set of requirements

[62]. The similarities between the two definitions are striking enough that it becomes

natural to define technical architectures as descriptions of a systems of systems. In

the rest of the document, technical architectures will be referred to as architectures

for brevity.

The word minimal in the definition of an architecture requires some elaboration.

An architecture is only a minimal description of a system and as such, it does not

contain every detail about the system. Architectures omit certain details for the sake

of brevity, clarity of the big picture, and possibly uncertainty. This simplification

will prove to be useful later; however, the design engineer must make sure that the

description is detailed enough to distinguish between two distinct design alternatives.

2.5 Modeling and simulation

After the description, the next step in design is analysis. Analysis is a way of evaluat-

ing prospective design alternatives to find differences in their performances. It is this

difference in performance that makes one design more or less attractive compared to

another design. The basis of all design decisions is the results of the analysis step.

Analysis can be done in many ways such as quantitative vs. qualitative, exact

vs. approximate, numerical vs. analytic. Because the number of system of systems

design alternatives is usually very large, it is important that their analyses be done

on a computer in an automated fashion. Also, ultimately, many alternatives need to

be compared against each other. Results that are quantitative also help with making

clearer and more definitive comparisons. One obvious option to obtain such results

is the use of computer simulations.

Computer models are the modeler’s knowledge and understanding about the real

32

system expressed in a computer-executable format. A discussion on models and com-

puter models is presented in Chapters 4 and 5. For the design engineer, however,

the analysis can be a black box that will be called whenever a design is to be eval-

uated. This function takes in the design description, or part of it, and returns the

performance of that design. By definition, this is a map from one space to another,

as depicted in Figure 8.

Descriptions Performance

Simulations

Figure 8: Simulations map a system’s description to its predicted performance

However, in all engineering cases, the design engineer has considerable knowledge

in the analysis calculations. Therefore, there are compelling reasons for the analysis to

be a transparent model as opposed to a black box. For example, an aerospace engineer

understands that increasing the aspect ratio of a wing will decrease its induced drag

coefficient. If the engineers can see how the model uses the aspect ratio input, they

can increase their trust and confidence in the model and consequently the outputs it is

generating. Even better, the engineers can come up with higher quality experiments,

modify internals as they see fit, and create a more suitable analysis package for the

design at hand.

So far, a single modeling environment to perform all system of systems analyses has

not emerged. This is likely due to reasons such as the diversity of the modeling types

that can be used to model systems of systems. For example, agent-based modeling—a

suitable modeling type for system of systems simulation—may perform very well in

33

the analysis of some systems of systems; however, there is no guarantee that it will

perform well in the analysis of other systems of systems. In fact, the literature on

system of systems modeling has examples of the following modeling types:

• Graph theory [64, 91, 24, 88, 50, 75, 115, 77]

• Probability theory (Prob) [175, 77]

• System dynamics (SD) [29, 44, 43, 88]

• Markov chains (MC) [50, 88, 17, 131]

• Petri nets (PN) [75, 88, 172, 109, 79, 124]

• Queueing theory (QT) [17, 65]

• Discrete event (DES) [88, 102, 20, 69, 37]

• Agent-based (ABM) [24, 77, 172, 99, 204]

Each of these modeling types will be discussed in Chapter 5. However, it is

an interesting fact that so many modeling types are suitable for system of systems

modeling and that there has been no practical guidance on how to select the modeling

type based on the problem at hand. The focus point of this research targets these

peculiarities. The questions to ponder are presented below.

• Why are so many modeling types used for system of systems problems?

• Is there a modeling type that outperforms others?

• When should one modeling type be used instead of the others?

• Do the descriptions affect what can/cannot be modeled?

34

A crucial step in computer modeling is the formulation of a conceptual model. In

many cases the understanding of the real system/world cannot be directly converted

into machine code. A major part of the modeling actually happens when the scien-

tist/engineer tries to conceptualize in their minds how a system/nature works. This

conceptualization, when transferred to a medium in a syntactically consistent way,

is called a conceptual model. In many cases, conceptual models are graphical expres-

sions of the understanding of the modeler. In other words, they are the mechanical

reasons behind observed phenomena, and as such very closely related to hypotheses

in science. They have the power to explain observations and make predictions.

The next chapter seeks answers to these questions by stating them in the form of

hypotheses. Each hypothesis will also include observations that led to its formulation,

as well as planned experiments to assess its validity.

35

CHAPTER III

RESEARCH ARGUMENTS AND WORK

When a man desires ardently to know the truth, his

first effort will be to imagine what that truth can be.

Charles Sanders Peirce [158]

The research work outlined herein is aimed at guiding an engineer through mod-

eling (i.e., creation of an environment) for the design of systems of systems. It has

been established that modeling—especially computer modeling—is an appropriate

analysis approach for system of systems design. There are significant challenges in

simulating systems of systems. This chapter summarizes some of these difficulties

as observations, tries to explain them using hypotheses, inductions, and the corre-

sponding experiments that will be used test them, and finally outlines a technical

approach to solve some of the system of systems simulation challenges. Before pro-

ceeding with the research topic, expectations and research formulation process are set

for the reader. This work includes a main induction and a main hypothesis. Their

tests involve different mechanism. What follows is a discussion on these two types of

arguments.

3.1 Gaining knowledge via synthetic arguments

Arguments come in various types, both content-wise and form-wise. There have been

many attempts at creating a taxonomy of arguments since the topic was initiated by

Aristotle. Aristotle believed that the only valid argument is an analytic one; a type

of argument which guarantees its result from the given premises. Other names for

analytic arguments are deductive, formal, and explicative. As long as the premises

36

are true, the consequent will also be true. Using analytic argumentation, one can

infer consequences a priori, i.e., without having to execute them. Therefore, analytic

reasoning is closely related with forecasting and prediction. However, if all arguments

were deductive, it would mean that argumentation is merely rearranging information

to make implicit information explicit. The other kind of arguments are called syn-

thetic; a type of argument that produces new information not previously included in

the premises but hinted at its existence. Synthetic (or ampliative) arguments are the

foundation of empirical sciences. They can only be generated a posteriori, meaning

that observations and experiments must be carried out before knowledge is gained.

Synthetic arguments also have sub-types. The more commonly accepted types are

called inductions and abductions. Abductions are more commonly known under the

name of hypotheses. Unfortunately, the word hypothesis has been overextended to

mean other concepts that are not arguments. For example, in the common language,

hypothetically speaking implies an unreal situation. However, hypotheses in science

are guesses that the scientist has a reason to believe and tries very hard to disprove.

Hypotheses that survive this intense scrutiny are taken as scientific facts (they never

cease to be open for disproving, however). Similar to hypotheses, inductions are

falsifiable by empiricism. Inductions are mainly generalizations from individual cases

to trends. If certain cases do not follow the same trend, inductions can be invalidated.

Peirce was the first philosopher to distinguish inductions from hypotheses. His

work led to useful discussion on how to test hypotheses and inductions. The different

nature between the two inferences requires different approaches to validate them.

For hypotheses, a scientist devises a taxing experiment to falsify the claim. Over

time, as such experiments fail to invalidate the hypothesis, it gets accepted as a

trusted fact. Hypotheses cannot be tested directly, they involve careful development

of consequences if true and compared with new observations. Inductions, however,

are only adjusted (if possible) as new cases are tried. Inductions are closely related

37

to natural laws as hypotheses are closely related to natural mechanisms.

3.2 Motivating characteristics of the problem

As discussed in Chapter 2, system of systems modeling and simulation efforts have

been somewhat ad hoc. The lack of guidance for simulation is mainly due to the fact

that system of systems are very flexible in their nature. They can be space systems

thousands of miles apart, small ant colonies fitting within a cubic meter, or virtual

systems that only exist on computer hardware and not in the physical domain. This

is the same reason why the guidance on modeling has been lacking.

There are examples of modeling similar systems of systems using varying modeling

approaches such as discrete event simulations, graphs, or agent-based models with

Petri nets [102, 77, 172]. None of these choices are right or wrong; however, the

reasons behind why one was selected over the other are not always clear. There is no

overall guidance on how to select modeling types for systems of systems problems.

This is the single most important motivation for the research work outlined in this

chapter: help modelers make decisions on which modeling type to employ.

The selection can occur due to the modeler’s expertise in one modeling type or

an aversion against trying new modeling types in a form of neophobia or fear of

the unknown. This is similar to a exploration-vs-exploitation problem commonly

encountered in engineering design or optimization. When a solution space is not

explored during early stages, the exploitation approach tends to settle in a local

optimum. Conversely, if exploitation is not employed soon enough, the alternatives

never converge to an optimum solution. There is a balance between learning about

different modeling types and creating efficient models.

The problem of not knowing which model type may best serve the modeler’s

interest as well as limited knowledge about each model mirrors a class of problems

called bandit problems. The main idea of a bandit problem is that a decision maker

38

has a limited amount of resources to distribute among a multitude of options with

unknown return [31]. As resources are spent on one option, knowledge about it

is gained. The decision making process is turned into a sequential exploration of

alternatives and once an option is believed to be the best, spending the rest of the

resources on that option. The aim of this work is to help the modeler gain some

knowledge about the return of each modeling type, before significant effort is spent

in the actual modeling. It is meant to make the starting point for the bandit problem

less uncertain.

From this point on, it will be assumed that the design activity will require a

computer model and focus will be on how to perform this modeling step of the system

of systems design. Specifically, the reader is presented with a research work on how

to choose a fitting modeling paradigm for various types of system of systems design

problems.

How can there be any guidance on modeling activities on such a spectrum of

engineered systems? If one focuses on every possible product family individually, a

general guidance cannot be obtained. Therefore, system of systems modeling must

be separated from modeling specific systems. Guided by the definitions of systems

of systems, their modeling efforts should rather focus on the arrangement, communi-

cation, and collaboration of the constituent systems. That means focusing on what

each system adds to the whole, not how it internally works or individually achieves

this effect. For example, as part of a combat system of systems, an unmanned aerial

vehicle (UAV) might be flying over enemy territory and providing bird’s-eye view of

enemy activity. In this example, the focus of the modeling should not be on how

the UAV flies, avoids detection, or defends itself against enemy attacks, but on the

quality of the image received, the delay of the information, and dependability of the

information flow.

The focus of the modeling then begs the question: which modeling types are

39

suitable for system of systems modeling? Before this question can be answered, a

discussion on the definition of a model is necessary. The reader is referred to Chapter 4

for the philosophical discussion of models: what they are, why they exist, and where

they fit in the scientific process. Following that discussion Chapter 5 introduces a

handful of modeling paradigms suited to system of systems computer simulation.

Because a number different modeling paradigms exist for system of systems sim-

ulation, a way of picking the most suitable (or a suitable set) for a problem at hand

is useful. Even though computer simulations are recommended for system of systems

analysis, a general guidance on how to select a suitable modeling paradigm has been

lacking in the literature. However, once the model type is picked, the rest of the

modeling work will be much better scoped and defined; therefore, the work will pro-

ceed much faster. One can liken this process of selecting the modeling paradigm to

selecting a concept in system design.

If a less-than-ideal concept is selected in the first step, it is very difficult to fix that

mistake at the later stages of systems engineering. Selecting a modeling paradigm

based on prior knowledge and practicality can cause a non-ideal modeling solution just

as selecting a product concept based on convenience can lead to an inferior result [67].

Figure 9 shows the increase of cost committed, cost incurred, level of knowledge, and

ease of change for a engineering product across various design phases [68]. Because

system design and analysis for design happens early in the acquisition phase, choosing

the correct computer model to develop is expected to be important as well. Selecting

a modeling type without much thought can be very costly as the mismatch in the

information it provides and the information required for design can only be corrected

with changing modeling types. Such a mistake is expected to reset the modeling step

of design almost entirely.

Because a large part of computer modeling is software development, the difficulty

of fixing modeling errors is expected to be similar to that in software development.

40

100%

Conceptual,
preliminary

design

DetailEdesign,
development

Production
and/or

construction

Operation,Esupport,
phaseout,Edisposal

80%

66%

N
E
E
D

LCCEcommitted

CostEincurred

Knowledge

EaseEofEchange

Figure 9: Ease of engineering changes decreases rapidly during conceptual design [68]
(Reproduced)

If one were to discover that mistakes were made in a software project, rectifying the

software development can be costly, as shown in Figure 10 [34]. Boehm argues that

the larger the software project, the greater the multiplier representing the increase in

effort to fix [34].

These two charts hint at the importance of making correct early decisions for

modeling. The type of model selected early in the modeling process has a significant

impact on the committed modeling effort and will be difficult to be swapped out for

another type of model. Therefore, selecting the correct modeling type early in the

design process is critical. Modeling can be seen as a design problem within a design

problem.

The importance of identifying and using the correct modeling type leads to the

general research objective for the work previously given at the end of Chapter 1. The

objective is repeated here to guide the subsequent discussions.

41

SmallerEsoftwareEprojects

—E[BoehmFEg98L]

IBMUSSD

GTE

MedianEvTRWEsurveyy

SAFEGUARD

8LR

qLR

LargerEsoftwareEprojects

Requirements Design Code Development
test

Acceptance
test

Operation

PhaseEinEwhichEerrorEwasEdetectedEandEcorrected

q

P

gL

qL

PL

gLL

qLL

PLL

gLLL

g

R
el

at
iv

eE
co

st
Eto

Efi
xE

er
ro

r

Figure 10: The effort required to make changes to software grows rapidly throughout
the life-cycle [34] (Reproduced)

Research Objective. Develop a methodical approach for selecting a modeling type

for analysis of systems of systems, that is useful for early design phases as well as for

continuous cycles of system of systems evolution.

For the work to be considered complete, the following criteria will be used:

• The method must be extensible to new modeling types

• The execution of the method must be traceable

• The method must clearly identify the strengths as well as the weaknesses of the

selected modeling type(s)

• The method must be problem-agnostic; it must be usable for a wide variety of

42

system of systems problems

The method is expected to be used by a knowledgeable systems engineer who has

some understanding of each modeling type but not necessarily experience in modeling

with them. It is not meant to separate the engineers from the decision making process;

only to help them. As such, the approach is a guiding process flow that does not pick

the right modeling methods and make all the decisions automatically. It offers a step-

by-step process to the system modeler to pick a modeling type based on the type of

architecture information they possess.

What follows is a list of aspects of the system of systems that are expected to be

influential in the modeling step as shown in Figure 11. The work will investigate the

effects of these expected influences and try to use them as a guide to arrive at the

modeling type that fits the problem at hand. The list is organized into sections that

lead to each hypothesis to be tested.

43

Detailed

Investigation

Element Maps
Experimental Setup

ArchitecturesModels

HypothesisInduction

Research Objective

Research Questions

Background

Motivation Context

Experiments

Conclusions

1.1 2.1

2.2, 2.3, 2.4, 2.5

3.2

3.2

3.43.3

4.4, 4.5, 5.2 5.1

6, 7

8

9

Realizes

Figure 11: Research goals are set. The following is the formal development of the
research arguments.

44

3.3 Induction: Architectures as conceptual model

As preluded to in Chapter 2, some form of an architecture framework is likely to be

used during a system of systems design. This thesis will make use of DoDAF; however,

the methods can be applied to any system of system architecture framework. DoDAF

is used fairly widely [153, 58] and is complete enough [59] for the author’s purposes

to demonstrate the method.

System architectures were previously defined as “a minimal set of rules governing

the arrangement, interaction, and interdependence of the parts or elements whose

purpose is to ensure that a conformant system satisfies a specified set of requirements”

[62]. For analysis purposes, requirements do not play a role; i.e., a system that

does not meet the requirements can still be run through the analysis and assigned

a performance metric. Removing the requirement portion from the definition leaves

only the description of how systems are operating in collaboration with each other.

Therefore, the relevant parts of system of systems architectures for this work are

re-defined as follows.

System of systems architectures are a collection of views that depict an order

and a modus operandi for the constituent systems as well as the interactions between

them.

Independently, conceptual modeling was introduced as an early step in modeling.

conceptual models are the modeler’s understanding of how the world works translated

into a formal language (graphical, text-based, or a combination of both). If the world

is limited to a system of systems operating in a cyber-physical environment, then the

relevant parts of it are the systems included in it, how those systems work internally,

and how each system interacts with others.

It has to be noted that architecture viewpoints have also been used in modeling

efforts in the past, which led to the suspicion that architectures and conceptual models

45

can be related to each other. There seems to be a great deal of similarity between

an architecture and a conceptual model. In fact, they both look at the real system

in question and try to describe it in a standard language. Because several of their

properties match, it is induced that they are one and the same thing. The logical

progression of this induction is presented below.

system of systems architectures (A) are a collection of views1 that depict an

order (Y ′) and a modus operandi (Y ′′) for the constituent systems as well as

the interactions (Y ′′′) between them.

conceptual models (B) are the modeler’s understanding of the systems included

(Y ′) in a system of systems, how those systems work (Y ′′) individually, and how

the systems interact (Y ′′′).

∴ (by induction) System of systems architectures (A) are conceptual models

(B).

This is clearly an induction as it proceeds from a case and result to a rule, i.e, a

generalization. If the induction was accepted as truth, a purely deductive syllogism—

it is of type Barbara2—would result as shown below.

Rule System of systems architectures (A) are conceptual models (B).

Case conceptual models (B) are the modeler’s understanding of the systems included

(Y ′) in a system of systems, how those systems work (Y ′′) individually, and how

the systems interact (Y ′′′).

Result ∴ system of systems architectures (A) are a collection of views that depict

an order (Y ′) and a modus operandi (Y ′′) for the constituent systems as well

as the interactions (Y ′′′) between them.

1Because these views are generated by the engineers, they are their understanding of how the
actual system is structured or works.

2MaP & SaM → SaP

46

3.3.1 Experiment 1

The first experiment to be performed for this work is expected to increase confidence

in this induction. The investigation is aimed at bridging the gap between architecture

views and computer modeling. Specifically, the architecture views that are suited

for model development will be identified. Additionally, which architecture views

are conducive to which modeling type will be discovered. In order to find these

connections, the induction must be tested with a few examples.

Inductions can be tested directly by performing more observations or studying

more examples [159, 160]. It is a process of random sampling. From the observations,

one can either continue to accept the induction as is or make necessary adjustments

to it. Therefore, the experiments to confirm this induction will be to offer specific

examples of system of systems architectures that are/can be converted to conceptual

models. The examples that will be worked on will include:

• 2012–2013 Real World Design Challenge (RWDC) State Aviation Problem [51]

• 2011 National Airspace System Enterprise Architecture Framework (NASEAF)

[19]

– As-is architecture

– Near-term architecture

– Far-term architecture

These examples were chosen because the author was not involved in their de-

velopment; therefore, their sampling is fair. The author could not have influenced

the architectures to be more suitable for conceptual modeling. Additionally, the list

chosen includes civilian and policing examples, small scale and large scale system of

systems, cases with a single stakeholder making decisions and multiples. The test

plan is as follows.

47

1. Synthesize architectural information into modeling-related chunks

2. For each modeling type identified earlier, translate architectures into conceptual

models

3. Comment on whether information is missing from the architecture that is im-

portant for conceptual modeling

4. If there is modeling information missing, judge whether that information should

be included in the architecture for design purposes or that modeling type is not

a suitable type for early system of systems design

For this experiment, DoDAF viewpoints will be used. The focus will be on the

standard views as opposed to tailored custom viewpoints that can be shipped with a

DoDAF architecture. Such custom views are called fit for purpose viewpoints. The

study of such views is not fruitful in this research because the applicability of results

will be limited to specific examples and not be generalizable.

DoDAF architectures also usually come with companion documents that set a

context, provide additional detail, or even point to places where extra information

can be gathered. Such documents can be very useful for modeling; however, the

method would again not be generalizable if it included the study of such companion

documents. Due to these reasons, the research work sticks to the standard views.

Additionally, if an architecture can be turned into at least one conceptual model,

the induction will not be modified. Only if the architecture cannot be turned into any

conceptual model will the induction need to be modified. The goal of the experiment

is to find negative results that disprove the induction via a counterexample.

The author expects a majority of the architecture viewpoints to be simulatable by

themselves. Creating some conceptual models may require several viewpoints, which

will not be counted as a failure. Many DoDAF views have similar composition to

the more traditional System Modeling Language (SysML) and consequently Unified

48

Modeling Language (UML). These languages were constructed by borrowing graphical

language elements from several conceptual models. Therefore, the expectation that

some views are by themselves simulatable is not inconceivable.

A discussion on why DoDAF was selected is warranted here. There has been

a large effort in developing simulation models from SysML in the last few years

especially because it is based on UML[182]. However, SysML is not a perfect fit for

system of systems problems. While there are attempts to make them match (e.g.,

capabilities modeled as requirements in SysML), the purposes of the two frameworks

do not match.

DoDAF’s goal is to support the DOD’s acquisition process: Joint Capabilities

Integration and Development System (JCIDS). The system of systems approach is

highly appropriate for the Doctrine, Organization, Training, Materiel, Leadership,

Personnel, Facilities (DOTMLPF [62]) as it tries to find non-materiel solutions to

identified capability gaps where operational and service views are useful.

The system of systems engineer working with DoDAF might be trying to identify

missing systems from the system of systems, and then define those systems using

a more appropriate language such as SysML. There is a large overlap between the

system views and the SysML models and software solutions exist to help architects

use these standards in an interlinked way [152]. Solutions such as these require the

use of DoDAF in a specific UML profile.

Ultimately, DoDAF architectures can be conveniently created in formats that are

conducive for executable architecting. However, access to such architectures is limited

and static schematics are used in this work. As the example base grows and the field

reaches a standard practice, similar studies can be performed using DoDAF with a

UML profile.

There are three separate contributions from this induction test. First, if it holds,

system of systems engineers can use architectures for modeling decisions. These

49

architectures can even be translated into conceptual models in a semi-automated

fashion. Because conceptual models can be turned into computer models very easily,

architecture development for system of systems engineering will prove to be very

useful in the actual analysis of design alternatives.

The second contribution is the discovery of architecture viewpoints that are es-

pecially well-suited for system of systems modeling. Not all viewpoints must be

developed in an architecture; however, if modeling-oriented viewpoints do exist, the

author will make recommendations to develop those viewpoints. Additionally, a table

that has viewpoints as rows and modeling types as columns will be constructed. If

a viewpoint is useful/necessary for a modeling type, the corresponding place in the

table will be filled.

The third contribution will be in the area of improving system of systems architec-

tures. The discoveries of the information that architectures lack to enable modeling

for design will be used to recommend changes or additions to system of systems ar-

chitectures. Such recommendations can further the push for executable architecting.

3.4 Hypothesis: A multitude of modeling techniques are
needed

A number of modeling types have been used for simulating systems of systems in

the past. A representative list was given in the last pages of Chapter 2. None of

these types have been able to dominate the system of systems simulation efforts. In

Chapter 2, it was mentioned that systems of systems are very much diverse and this

diversity is the main reason behind an not-yet-unified modeling in the field. This

claim remains to be tested.

One obvious experiment to demonstrate this using formal logic (i.e., deduction)

is to construct a counterexample to the statement “there is a modeling type that

can capture all aspects of all systems of systems”. If a system of systems can be

found whose aspects cannot be fully captured by any modeling type the statement

50

is invalidated definitively. While the proof is certainly valid (if it works), it is of

little value. Providing one example in which a single model is not enough does not

guarantee that other examples will also require multiple models. From the point of

engineering design, an experiment that yields more practical results must be found.

A
sp

ec
ts

 o
f s

ys
te

ms of systems

Aspects included in architectu

re
s

Aspects included in m
odel

x

Figure 12: A Venn diagram that represents the idea of architectures capturing all
aspects of systems of systems and a model capturing all aspects of the architectures

It also must be said that enumerating all aspects of the systems of systems is not

very practical. However, system of systems architecture standards are designed to be

flexible for a wide variety of systems of systems. Therefore, if a modeling type can

capture all aspects represented in the system of systems architecture, it is able to

model the actual system of systems. This reasoning is depicted in Figure 12. White

areas depict empty areas, black areas have at least one element in them, and areas

denoted with “x” are irrelevant to the problem at hand. One assumption is that

system of systems architectures do not capture any aspects beyond what exists for

systems of systems.

Venn diagrams are very useful reasoning aids, especially when shading is used to

51

depict confidence of elements appearing in certain areas. For example, because system

of systems architecture standards are designed to be flexible, there is a large certainty

that most aspects of systems of systems can be captured by them (Equation 12). Also,

because models are created from the architectures as previously discussed, models do

not include any aspects beyond what is included in architectures (Equation 13). This

is depicted in Figure 13. In this figure, the level of darkness depicts the concentration

of different aspects belonging to the systems of systems (white means an empty set).

A
sp

ec
ts

 o
f s

ys
te

ms of systems

Aspects included in architectu

re
s

Aspects included in m
odel

x

Figure 13: A Venn diagram that represents the idea of architectures capturing most
aspects of systems of systems and a model capturing all aspects of the architectures

Unfortunately, Venn diagrams lose their usefulness when more than a few sets

are in play. Introducing multiple modeling types, different system of systems, and

architecture viewpoints forces equations to be used instead of graphical Venn dia-

grams. Equations 5–10 introduce the nomenclature for the symbolic development of

52

a hypothesis on multiple modeling for systems of systems.

S = {systems of systems} (5)

Si = ith system of systems (6)

D = {DoDAF viewpoints} (7)

Di = ith DoDAF viewpoint (8)

Mi = ith modeling technique (9)

A(·) = {aspects of/captured by ·} (10)

Equations 11–13 show the assumptions made. Equation 11 is a definition of what

the function A does. Equation 13 shows a non-essential assumption, but a simplifying

one. The “c” in the superscript signifies the complement of the set.

A(x1, . . . , xn) =
n⋃
i=1

A(xi) (11)

A(S)C ∩ A(D) = ∅ (12)

A(D)C ∩ A(M) = ∅ (13)

If one single modeling type can capture all aspects of systems of systems, the

statements shown in Equations 14–16 must hold. It is important to note that this

notation enables the ability to perform examinations with specific modeling types

compared to the generic all modeling types formulation. This will prove useful at a

later stage.

A(Mi) ⊇ A(S) (14)

A(S)C ∩ A(D) = ∅ ⇒ A(S) ⊇ A(D) (15)

A(Mi) ⊇ A(S)⇒ A(Mi) ⊇ A(D) (16)

Equation 14 is a hypothetical statement meaning there is a modeling type that can

model all aspects of systems of systems. Equation 15 states that DoDAF viewpoints

53

do not include any aspects other than the aspects of systems of systems. The third

statement follows the first two: if there exists a modeling type that can represent all

aspects captured by DoDAF, then there is strong evidence that this model can be used

to model all aspects of a system of systems (Equation 14). Therefore, this approach

has more value compared to the counterexample, even though the counterexample is

more definitive. Also the information gathered for this experiment can be re-used for

future system of systems design problems.

If links between aspects of systems of systems, viewpoints, and modeling types

can be established, a big step can be taken towards achieving the research objective

of methodically selecting modeling types for different system of systems problems.

If one model cannot cover all the aspects described in the system of systems

architectures, using multiples can increase the coverage as shown in Equation 17.

A(M1, . . . ,Mn) ⊇ A(Mi) ∀1 ≤ i ≤ n (17)

This set relationship leads to a hypothesis: a sufficiently complex system of systems

will require more than one modeling technique for analysis. This hypothesis will

be tested indirectly. If some architecture views are used very frequently and these

architecture views together require more than one modeling technique to be analyzed,

then the argument set forth in the hypothesis will be accepted. Testing this hypothesis

requires multiple steps that are formulated next.

3.4.1 Experiment 2

First it will be assumed that only a limited number of architecture views are generated

for a system of systems in question which is common practice [6]. The architecture

views elected to be used for its description will focus on its aspects that the stake-

holders care about the most. Second, modeling types that are able to cover these

aspects can be listed as possible solutions to the modeling of the particular system

of systems. If a system of systems is adequately represented by a number of DoDAF

54

viewpoints, then this system of systems can be represented by a model or a set of

models that captures the same aspects as the views used to represent the system of

systems. This logic is depicted in Equations 18–20.

Γ = A(D1, . . . , Dn) ⊇ A(Si) (18)

Φ = A(M1, . . . ,Mm) ⊇ A(D1, . . . , Dn) (19)

Γ ∧ Φ⇒ A(M1, . . . ,Mm) ⊇ A(Si) (20)

If the mapping A(Mi) ⊇ A(D1, . . . , Dn) can be established for all i andD1, . . . , Dn,

then subsets of suitable combinations of models can be determined for any system

of systems Sj adequately represented by D1, . . . , Dn. To establish this mapping,

each modeling technique will be investigated and the architecture views that can be

represented fully by that modeling technique’s conceptual model will be identified

(i.e., every modeling technique will be tried with every architecture view). Literature

has useful examples for these linkages. This is the reverse of the mapping discussed

in the earlier induction.

The test can be used on a particular system of systems. However, more informa-

tion can be gained from a more encompassing study in which not a particular system

of systems is studied but a collection of architecture views that are frequently used by

system of systems architects. Therefore, a modification is made to the test described

earlier: instead of focusing on capturing the aspects of single systems of systems,

important aspect of systems of systems in general will be investigated.

The results will be presented in a table with rows as modeling techniques and

columns as DoDAF views. One can select several columns representing the more

frequently used DoDAF views and construct a sub-matrix with them. If one row

in this sub-matrix is fully populated, a single modeling type is enough to model the

important aspects of systems of systems. Such a result would invalidate the hypothesis

set forth. If the hypothesis is true, the sub-matrix will have no such row.

55

Additionally, the author expects to find overlapping behavior in architecture views

as well as modeling techniques. This behavior will be exploited in two ways. Using the

table and a set of system of systems architecture views, alternative sets of modeling

techniques for that specific problem can be obtained. For example, a problem may

call for an agent-based model or a combined Markov chain and Petri net model to be

fully modeled. Also, modeling techniques will exhibit overlap in architecture views,

which can then be exploited for calibration and cross-validation efforts. Multiple

models can be run and tinkered with until mutually measurable metrics match. This

opportunity will be investigated.

3.5 Using the right models for the right problem

The ad hoc practice of system of systems modeling can be observed in examples of

similar system of systems problems that have been modeled by different modeling

techniques [102, 77, 172]. Although this observation is enough by itself to warrant

a deeper study, its reverse is also true: different system of systems problems have

been modeled by similar modeling techniques [165, 37]. The author believes that

engineers and researchers choose their modeling techniques based on their personal

experience and preferences as opposed to what is suitable for the problem at hand.

In other words, engineers tend to use modeling techniques they find practical to use

(familiarity, availability, ease of use, etc.).

Given the large costs associated with developing systems of systems, considera-

tions of familiarity with the modeling types should not play a role, however. The

consequences of choosing an unfit model, extracting the wrong metrics, and basing

design decisions on them far outweigh the advantages of practicality in modeling.

If engineers choose the modeling technique that match their problem, the analysis

through modeling and simulation will be more accurate compared to the engineers

selecting models based on their familiarity and availability. Unfortunately, as stated

56

before, even though system of systems analysis requires diverse modeling techniques,

guidance on how to select adequate modeling techniques has been lacking. How can

a system of systems engineers decide on a modeling technique if there is no such

guidance other than using what has worked for them in the past?

This question aligns exactly with the research goal of developing a method that

assists with selecting a modeling type for system of systems analysis. The method

uses the information gained from the previous two experiments to determine neces-

sary elements to be represented in the models. Some of these elements cannot be

represented with all modeling types, and some modeling types require a large amount

of elements to be defined. The modeling approach must balance the requirements of

analysis as well as the requirements of the analysis type for a harmonious simulation

step for system of systems design.

The method can be inserted into the IPPD flowchart. The engineers start out

by creating architectures for the system of systems they are designing. Next, they

generate feasible alternatives. In this context, feasible means that they are realizable,

not necessarily good. The evaluation step is broken into several sub-steps: selecting

model types, creating conceptual models, creating the computer models, and exe-

cuting the simulations. The results are then fed into a decision-making process in

the top-down decision support process. These steps are contrasted with the systems

engineering column of the IPPD process in Figure 14.

The next two chapters are included in the document to give an idea of what models

and architectures are being considered. Chapter 4 discusses what models are to set

up what will be considered a model for system of systems problems. Before coming

up with alternative modeling types for system of systems modeling, some guidelines

must be set on what a model is. This is so, because there is no accepted modeling

type for systems of systems. Chapter 5 will then investigate elements of suitable

modeling types and make arguments on how different system of systems elements

57

Establish
theqNeed

Define
theqProblem

Establish
Value

Objectives

Generate
Feasible

Alternatives

Evaluate
Alternatives

Make
Decision

Requirements
andqFunctional
Analysis

Physical
Decompositionqand
FunctionqAllocation

SystemqSynthesis
through
Multi-Disciplinary
Optimization

SystemqAnalysisq
andqControl

Systems Engineering
Top Down

Decision Support

P
rod

uctqD
esignqD

riven

Formulationqof
Operational
Viewpoints

Formulationqof
Systems

Viewpoints

Combinatorial
Enumerationqof

ArchitectureqOptions

Systems Modeling

PickqModelqTypewsT

Generate
ConceptualqModels

fromqArchitecture
Viewpoints

CodeqModels
andqSimulations

RunqSimulations

Figure 14: Method of picking a system of systems simulation type

can be modeled by them. Its main purpose is to make analogies based on logical

similarities of modeling elements and architectural elements.

58

CHAPTER IV

ON MODELS

The purpose of models is not to fit the data but to

sharpen the questions.

Samuel Karlin [129]

The research work deals with computer models that are suitable for system of

systems analysis. However, before providing background on system of systems mod-

eling techniques, a discussion about modeling in general is required. In engineering

fields, the word model is used to describe a large variety of methods, tools, codes,

and products. For this reason a philosophical discussion is warranted. A haphazard,

one size fits all use will certainly create difficulties later; therefore, it is important to

establish a good understanding of the concept of a model.

It is important to delineate the sense of the term model used here from the sense

the term is used elsewhere in science and engineering. This chapter is broken down

into three sections: a discussion on what a model is, a discussion of what a model is

not, and finally some guiding principles for further model development for system of

systems analysis. The chapter includes answers to the questions listed below.

• What are models?

• What types of models exist?

• Why do scientists and engineers build models?

• How do scientists and engineers build models?

• What are some common misconceptions about models?

59

4.1 Definitions of a model

A context needs to be established, before going into the definitions, (i.e., the word is

analyzed pragmatically). This work treats the word model to mean something that

helps with understanding, describing, and predicting systems and processes. In this

context, model is not used to mean

• type of design [176], structural type [176], style of structure or form [176], build

[176], make [176], article of apparel of a particular design [176], a motor vehicle

of a particular design [176], a vehicle produced in a specified year [176], a specific

type or design of clothing or car [87], a style or design of an item [4]

• a person or thing that serves as a pattern or source of inspiration for an artist or

writer, one who poses for an artist [87], a person whose profession it is to pose

for artists and art-students [176], one that serves as the subject for an artist [4]

• one who is employed to display clothes or to appear in displays of other mer-

chandise [87], a person, . . . who is employed to display clothes by wearing them,

or to appear in displays of other goods [176], a person employed to display mer-

chandise such as clothing or cosmetics [4]

• a person or thing regarded as worthy of imitation, something perfect of its kind

[87], a person or a work, that is proposed or adopted for imitation [176], an

examplar [176], one serving as an example to be imitated or compared [4]

Although remotely related to the concept of a model, the meanings listed above are

not definitions for a technical model. The following definitions are more aligned with

the technical context of a model.

1. “a set of plans for a building to be erected or of drawings to scale for a structure

already built” [87], “an architect’s set of designs for a projected building” [176]

60

2. “a representation in three dimensions of some projected or existing structure,

or of some material object artificial or natural, showing the proportions and

arrangement of its component parts” [176], “an object or figure made in clay,

wax, or the like, and intended to be reproduced in a mode durable material”

[176], “a small object, usually built to scale, that represents in detail another,

often larger object” [4]

3. “description, representation of structure” [176]

4. “an archetypal image or pattern” [176], “archetype” [87], “blueprint” [87], “pat-

tern” [87]

5. “something that accurately resembles something else”’ [176]

6. “a description, a collection of statistical data, or an analogy used to help vi-

sualize often in a simplified way something that cannot be directly observed”

[87]

7. “a simplified or idealized description or conception of a particular system, sit-

uation, or process (often in mathematical terms: so mathematical model) that

is put forward as a basis for calculations, predictions, or further investigation”

[176], “a schematic description of a system, theory, or phenomenon that ac-

counts for its known or inferred properties and may be used for further study

of its characteristics” [4], “a simplified description or conception of a system,

used to understand the system or as the basis for further study or investigation

of its characteristics” [26], “a pattern, plan, replica, or description designed to

show the structure or workings of an object, system or concept” [145]

8. “a system of postulates, data, and inferences presented as a mathematical de-

scription of an entity or state of affairs” [183, 138], “a simplified representation

of a system or phenomenon, as in the sciences or economics, with any hypotheses

61

required to describe the system or explain the phenomenon, often mathemati-

cally” [61]

9. “such a work or construction used in testing of perfecting a final product” [4]

10. “(in computer programming) a mathematical representation of a process, sys-

tem, or device” [145], “a computer simulation based on a system” [138]

The definitions above point to several central ideas behind the concept of a model.

It can be a mere description of a thing (1–3). In this meaning the model simply

describes what that thing is by informing its user about the properties of the thing

(e.g., this pen is made out of plastic, its color is blue, its ink is black, and it is 4

inches long). Another meaning of a model could be that it is a blueprint of a thing

(1–4). This type of a model can be used to make copies of the thing. A model can

also be a simpler representation of a thing (4, 6–9). In this meaning, the model not

only describes the thing but also replaces it for examination purposes. A person can

examine the model of the thing instead of the real thing because it may be more

practical (e.g., a ball-and-stick model of a molecule). Yet another definition would

be that a model is a system of attributes, organizing relationships, and functional

relationships that describe and explain a thing (3, 7, 10). This meaning puts more

information in the model: how the thing works and functions is included in the model.

Finally, a model can also be a computer simulation (10), which puts all the above

discussed points (i.e., description, representation, and examination) in the virtual

domain. A virtual model is a description of a thing in a computer readable format,

represented on the screen of the computer, and interacted via a user interface. It

is also important to note that computer simulation is widely used as a synonym for

computer model.

62

As previously discussed in Chapter 1, this work assumes that a computer model

will be used to analyze the performance of a possible system of systems design al-

ternative. It is, therefore, necessary to establish the concept of a model correctly. If

this concept is not understood properly, the models that are built on this dubious

foundation will be inferior or simply useless. In the field of engineering many authors

use the verification and validation activities to check the correctness of a model. This

work acknowledges the steps of verification and validation as critical steps in a model

building exercise. However, performing engineering model building based on scien-

tific model building can add to the confidence in the model. Natural sciences have

been using models for a very long time with great success; a success that can be

enjoyed within engineering as well. The goal here is to learn how to model from the

natural sciences. Turner has a summary of several processes for model building for

engineering systems in his first two chapters [185].

The above definitions all touch on different aspects of different types of scientific

or engineering models. What follows is a discussion on models in science.

4.2 Scientific models

The philosophy of science is the field that deals with concepts, terms, elements, and

language that is used in science. Because a model is a scientific concept, philosophy

of science is the place to start the discussion on what a scientific model is and why

it is constructed. Unsurprisingly, varying definitions of a model are given by many

philosophers of science and this section summarizes and organizes them. Carnap’s

definition of calculus interpretation is used here to seed the discussion.

“A calculus K is constructed and analyzed within syntax in a formal way.

As long as we stay in syntax there do not arise questions as to the meaning

of the expressions and sentences occurring in K. But, if a calculus K is

given, we may go over to semantics and assign designata to signs of K

63

and truth-conditions [S] to sentences of K by semantical rules. Hereby

sentences of K become interpreted. . . . We call S an interpretation for

K” [45].

An example can help explaining what is meant here. Consider the Newton’s

Second Law as written in Sentence 7 below.

1. F is a vector of size three.

2. The elements of F are elements of real numbers.

3. p is a vector of size three.

4. The elements of p are elements of real numbers.

5. t is a scalar element of an interval of real numbers.

6. p is once differentiable by t.

7. F is proportional to
dp

dt

The sentences above constitute the calculus for Newton’s Second Law. However,

the law as stated below by Newton is an interpretation of this calculus.

“The alteration of motion

(
dp

dt

)
is ever proportional to the motive force

impress’d (F); and is made in the direction of the right line in which that

force is impress’d” [151].

Newton’s words include meanings, ties to the physical world, and semantics,

whereas the sentences initially presented (calculus) do not. The formulas, without

the meaning of their terms are literally meaningless, yet still logically deducible or

definable. Following this definition, Achinstein offers the following description for a

model.

64

“Let S be a set of statements comprising some theory, and S∗ the calculus

of this set (what this set becomes by treating each nonlogical predicate

constant in S as a predicate variable). Let S ′ be a set of statements ob-

tained from S∗ by substituting an (interpreted) predicate for each predi-

cate variable in S∗. Then S ′ is a model for S∗. Derivatively, we can say

that S ′ is a model for S, and that S ′ is a model of the items described in

S” [13].

These descriptions of models are accurate but not especially useful in building

models for engineering work. The interpretation of formulas is a concise definition

for models but offers no help in creating models. The above discussion is included

in this work for completeness and to serve as a solid foundation for the discussion to

come. Perhaps one of the more useful discussions about models in science is given by

Heinrich Hertz in his introduction to his book Die Prinzipien der Mechanik. What

is presented in next is a discussion on what makes models useful and how to define

them by their use. The original words in German are supplanted with their English

translation by the author.

“Es ist die [. . .] wichtigste Aufgabe unserer bewussten Naturerkenntnis,

dass sie uns befähige, zukünftige Erfahrungen vorauszusehen, um nach

dieser Voraussicht unser gegenwärtiges Handeln einrichten zu können.

[. . .] Wir machen uns innere Scheinbilder oder Symbole der äusseren

Gegenstände, und zwar machen wir sie von solcher Art, dass die den-

knotwendigen Folgen der Bilder stets wieder die Bilder seien von den

naturnotwendigen Folgen der abgebildeten Gegenstände” [96].

“The most important mission of our scientific knowledge is to predict

future experiences in a quantifiable way. Using these predictions, we can

decide on which actions to take in the present. We make ourselves images

65

or symbols of external objects, and we construct them in a fashion that

the necessary consequences of the images are always the images of the

scientifically necessary consequences of the external objects we built the

images of.”

Hertz argues that humans play certain scenarios in their minds to predict the out-

comes of actions. The point that Hertz makes is that knowledge about the universe

obtained in the past can be used to create a facsimile of the universe in our imagina-

tion. Hertz later argues that inside that facsimile, a scientist experiments faster than

real-time and can draw conclusions based on these imaginary experiments. In fact,

he argues that the main purpose of our knowledge on nature is to be able to make

decisions on what to do, before actually performing the action. Holland exemplifies

this with a commute scenario in which an alternate route must be found. The driver

then drives the alternative route in his/her head before actually driving it. According

to Holland, a major value of models is that “we can anticipate consequences without

becoming involved in time consuming, possibly dangerous, overt actions” [101].

This process is widely known as a Gedankenexperiment or a thought experiment.

Hertz argued later in his introduction paragraph that Gedankenexperiments are very

similar to models. For this reason they require a special discussion.

Gedankenexperiment is the name of the method to predict future outcomes of

actions via imaginary scenarios run in one’s head. This method plays a central role

in the scientific process. Gedankenexperiments are especially useful during the initial

formulating and testing of hypotheses. In fact, a hypothesis that does not pass a

Gedankenexperiment test should not be investigated further as a hypothesis must

be a claim that a scientist has a reason to believe. Testing hypotheses that are not

believable will violate the economy of research. Further down the scientific process,

Gedankenexperiments can be used to arrange the experimental setup to test the

hypothesis.

66

One of the major supporters of the Gedankenexperiment was Ernst Mach. In

fact, his book has examples of Galileo using proportions to explain the dynamics of

falling. The author’s favorite example from Galileo’s book [76] is the discussion on the

ratio of fall velocities of items of different densities. Salviati, who argues for Galilean

explanation of dynamics1, sets up a Gedankenexperiment for Simplicio, who argues

for an Aristotelian dynamics2 view. The experiment is as follows: a wooden ball

falls with a velocity of 20 units in air, but in water (here assumed to be 10 times as

dense as air) it rises instead of falling. Salviati introduces another ball, considerably

heavier than the wooden ball, that falls in water with the velocity of 2 units. Now,

this ball must fall with the velocity of 20 units in air; however, it should also fall faster

than the wooden ball as it is heavier if Aristotle’s two theories are correct. Through

this fallacy, Salviati dismantles Simplicio’s Aristotelian model of dynamics. This is a

perfect example of a Gedankenexperiment to invalidate a theory. The logical analysis

of this Gedankenexperiment can be cast in the following way:

H: fall velocity of an object is proportional to its weight

I: objects having different weights do not fall with the same velocity

If H is true, then so is I.

But as the evidence shows I is not true.

Therefore, H is not true.

The “if . . . , then . . . ” structure is used to test hypotheses [95]. It is important to

realize that if the evidence is positive, the hypothesis is not necessarily true (fallacy

of affirming the consequent). As long as the imaginary scenario leads to a positive

evidence, the hypothesis holds. Hypotheses can be falsified rapidly with Gedankenex-

periments compared with physical experiments. Because hypothesis testing is aimed

1Two objects fall with the same velocity regardless of their weights.
2The falling velocity of objects are proportional to their weights. Also, objects fall half as fast in

a twice as dense medium.

67

at trying to falsify hypotheses, Gedankenexperiments are a very useful tool in the cre-

ation of valid hypotheses. However, Mach argued that Gedankenexperiments must

be later supported by real, physical experiments [128]. This is similar to verification

and validation of models and will be discussed in later sections. In hypothesis testing,

real experiments must be performed; however, this should not erode the importance

of Gedankenexperiments. Real experiments are usually only performed for the one

Gedankenexperiment that best tests the hypothesis. Gedankenexperiments can be

used to formulate hypotheses, reduce experimentation effort, and guide experimental

design. In system architectures, these studies are given as use cases: an imaginary

but realistic scenario that is followed until termination and any problems it uncovers

must be solved subsequently.

Similar to Gedankenexperiments guiding hypotheses, scientific models guide the

development of theories [97]. For example, Bohr’s atom theory depicts the hydrogen

atom as a massive positively charged nucleus in the middle, and smaller electrons

circling it [35]. In his paper, Bohr not only uses theoretical constructs such as charge,

mass, frequency, and kinetic energy, but also draws a picture of what an atom would

look like if one was able to readily observe it. Using the Rutherford theory of an

atom, Bohr uses analogies between planetary motion and electron motion, the differ-

ence being the different forces responsible for the attraction (gravity in star systems,

electrostatic force in atoms). Hesse defines the shared properties between the actual

object and the analogous object, positive analogy, the differences in the properties,

negative analogy, and properties unknown whether they are similar or not, neutral

analogies [97]. She argues that without the neutral analogies, the model is not very

predictive or in other words, the incompleteness of a model then should be seen as an

exciting topic for further study rather than raising suspicion. Typically, in science,

the model focuses on the behavior and configuration, whereas the theory elaborates

the reason for the behavior in a mathematical fashion. Models are used to visualize

68

theories, and even make new predictions [97].

In the light of the discussion above, Achinstein offers a criticism [14] of Hertz’s

semantical definition of a model presented on page 64. He first divides the claim into

five components and describes how these sub-claims do not allow certain models to

be classified as models:

1. A model is a set of statements ascribing properties to some object or system.

2. The statements that constitute the model describe some item assumed to be

distinct from that of which it is a model.

3. A model is designed to provide an interpretation for an uninterpreted formalism

or calculus.

4. A model is always proposed with reference to some theory, the model having

the same formal structure (the same calculus) as this theory.

5. A model is an analogy.

The first two arguments are mostly in line with the technical definitions of the word

model from dictionaries. However, one difference must be identified: models with

the sole purpose of representation do not fit the arguments. Most representational

models are not statements. In fact, Achinstein argues that analogies are technically

not statements or do not ascribe properties to a system or object, they compare the

properties of two distinct systems and note similarities [15]. For further study, the

reader is referred to his book. Holland offers a similar perspective: “we discovered

mechanisms (gates, pumps, and wheels) and ways of using them to control parts of

the world, and we began to model the world with mechanisms” [101]. Models are

then parts of the nature represented as mechanisms. Achinstein carefully admits that

there is probably not a single unifying set of conditions which can be used to identify

a model. However, he proposes the following three types of models [15]:

69

1. Representational models [147]:

(a) True: all characteristics of importance (e.g., mass, distance, force) are

scaled according to a set scale

(b) Adequate: only some characteristics of importance are reproduced in the

model

(c) Distorted: characteristics of importance are scaled differently

(d) Dissimilar: a similarity between two unlike objects is drawn for the char-

acteristics of importance

2. Theoretical models: a set of assumptions about a system or an object

3. Imaginary models: a set of axioms or laws about an imaginary universe, which

may or may not be similar to the real universe, but is useful for further study

of an object. The modeler does not substantiate the axioms or laws used to

construct the model, but substantiates their consequences.

Achinstein puts Murphy’s classification of models [147] in his representational

models category and adds two other types: theoretical and imaginary. Representa-

tional models are used to simply represent the real object or process. They could

be scaled replicas that behave similarly (e.g., specimens in mechanical load testing,

airfoils in a wind tunnel) or entirely dissimilar things that have similar governing equa-

tions (e.g., electromagnetic radiation vs. water waves, radioactive decay vs. death

due to horse kicks3). Murphy provides a spectrum of similarity between faithfully

scaled to dissimilar. He argues that even though engineers desire true models, certain

characteristics do not scale linearly in nature and sometimes scaling cannot be accom-

plished due to the non-existence of materials which have the required characteristics.

3Time between events is memoryless, i.e., time between consequent radiation emissions or horse
kick deaths does not depend on the previous radiation emissions or deaths due to horse kicks [189]

70

Dissimilar models can be used to test systems that are very difficult to build but their

model is inexpensive. For example, a large vibrating bridge’s behavior to excitation

can be observed by studying an electrical circuit.

It is important to note that the models Murphy deals with are models of pro-

totypes, and are more relevant in engineering work rather than science. He was

interested in representing a system (existing or in design) with a model, hence his

focus on scaling and similitude. However, in science models are used more generally.

Therefore, Achinstein adds the theoretical and imaginary models to Murphy’s rep-

resentational models [15]. Theoretical models are a set of assumptions in statement

form such as “the electron can orbit around the nucleus of a hydrogen atom only in

discrete orbits, their allowed angular momentum values are discretized4”. Such state-

ments are merely assumptions or laws. Usually, no underlying reason is provided.

Law and Kelton also draw attention to assumptions being very important for models;

however, they argue that such assumptions usually take the form of mathematical

and logical relationships [118].

Imaginary models are used to create an imaginary universe that is different than

the real one. In this modified universe, certain behaviors can be investigated for

consistency. Achinstein provides an example from Maxwell’s consideration of whether

electromagnetism can be explained by Newton’s Laws only. Maxwell does not argue

that his explanation is the real explanation, he is trying to figure out whether such

an explanation is even possible.

Scientific models are of great importance to the topic of this thesis because they

set the underlying principles of how to model and why to model. What follows is a

more engineering focused description of models.

4This statement is used here as an example of a model that can be obtained from Planck’s
quantum hypothesis (widely known as the Planck Postulate). Planck argued that the radiation
from an atom is always in discretely separated frequencies [161].

71

4.3 Engineering models

Engineering models are usually within Achinstein’s representational models category

[15, 147]. The goal of modeling in engineering is to replace the real system with a

prototype, scaled model, or replica for probing, testing, analysis, and experimentation.

Therefore, engineering models share many properties with the scientific models. One

of the most important shared properties is the similarity between the modeled system

and the model of the characteristics that are important for analysis purposes.

Consider a wind tunnel model of an airliner as an example. The model is con-

structed to replicate the mechanics of flight to a degree of accuracy. The aerospace

test engineer can confidently predict the real system’s flight performance from the

data gathered from the model. This scale model does not share all of the properties

with the real airplane (e.g., weight, density, material). However, certain characteris-

tics are carefully scaled (e.g., external geometry, airflow velocity) to match similarity

parameters such as Mach and Reynolds numbers that would be experienced by the

actual design during operation. There are some parameters that are not scaled (e.g.,

angle of attack and sideslip angle). If scaling is done properly, the measurements

of the aerodynamic force and moment coefficients experienced by the model will ac-

curately match the coefficients that will be experienced by the actual airplane in

operation.

Using the model, the aerospace engineer can predict the design’s performance

confidently to make design decisions (e.g., change design parameters, adjust expected

performance, confirm design goals). In aerospace engineering—as well as some other

engineering fields—wrong design decisions can be incredibly costly. The design engi-

neers must guide the design of the system towards a more capable, but simultaneously

cheaper final solution. This can be achieved by accurately predicting the impact of

design decisions on the effectiveness of the final design (i.e., trade studies) [135]. For

example, the advantages and disadvantages of increasing the wing’s aspect ratio (A)

72

must be known to the engineers before they can make decisions on that parameter.

Because most modeling in engineering is related to design, an interesting difference

from scientific models must be discussed. In science, models are based on observa-

tions, they are hypotheses in the form of “if model is true, then the observations are

consistent with the model’s consequences”. However, in engineering design, models

are used in the absence of the real systems, objects, and processes. The engineers do

not have the final product in place. Otherwise, the design activity would be pointless5.

During the design phase, the model must be constructed in a way that predicts the

performance of the yet-non-existent system it is representing to a degree of accuracy.

This is different than scientific models in the following ways discussed next.

4.3.1 Non-existence of the real system

The represented system cannot be observed, not because the observation is not phys-

ically possible but simply because the system does not exist. This issue forces the

engineers to model using many assumptions and characterizations. Because the de-

sign is not fully defined, the engineers do not know many design parameters of the

final design, and as such they cannot model the system fully. Another consequence of

the real system’s non-existence is that there are a large number of decisions the de-

sign engineers must make to define the large number of free design parameters. These

parameters are fixed via trade offs. Practically, this is not possible in the beginning

of the design phase, when there are too many parameters to be dealt with. Therefore,

elimination or consolidation of design parameters is a required step in the early phases

of design. Lastly, the model cannot be truly validated as experimentation with the

real system is not yet possible [119].

Returning to the airliner example from before, the location of windows, control

surfaces, and internal hydraulics piping are usually not known at the beginning stages

5This is only true in the context of design. If the real system exists and the engineer is only
trying to gain a better understanding of it via modeling, the engineering activity is not design.

73

of the design. Therefore, the effects of many components must either be approximated

or completely ignored via simplifying assumptions based on past experience (e.g., the

majority of the lift will be generated by the wing). The engineers then proceed to

model at a reduced level, i.e., a level where they can observe the components of the

system. In the airliner design example, the engineers can model the aircraft lift as

the lift generated by the airflow over the wing. The inaccuracies caused by neglecting

subsystems can be reduced by a calibration factor at a later design phase. This type

of simplification allows the engineers to rapidly prototype scaled replicas wing design

alternatives without getting bogged down on the tiny details.

4.3.2 Replacement of the real system

The models used in engineering design are not explanations of how the system works,

but rather an approximate replica for the system during experimentation. Most engi-

neering models make use of scientific knowledge about well-understood phenomena.

The model is made not to understand the system or process better, but for improving

it. This aspect of an engineering model is entirely different from scientific models.

Scientific models are used to develop new theories, engineering models are used to

develop new systems and processes.

For example, Minsky offers a definition of a model that underlines the replacement

of the system: “To an observer B, an object A* is a model of an object A to the extent

that B can use A* to answer questions that interest him about A” [140]. Minksy’s

definition is less about the explanatory function of a model. He stresses that there is

an underlying understanding of the object A in his argument; however, his definition

is lacking this point.

It must be pointed out that many engineering models are developed in a scientific

way. For example, Prandtl found a component of drag, arising solely due to lift using

Kutta-Joukowski’s theorem. Prandtl showed that the pressure difference between the

74

upper and lower surface of the wing will create a circular flow from bottom to top. He

modeled this as a vortex in the three dimensional vector field (representing velocity).

From this vortex, he calculated the changes in the sectional circulation at different

locations on the wing and finally derived Equation 21 for induced drag coefficient 6.

cDi =
c2
LS

πb2
=

c2
L

πA
(21)

This equation was developed just like any other scientific model: starting with

a previous theory (Kutta-Joukowski), changing an element in it (finite wing instead

of infinite), representing the important elements by other constructs (in this case

velocity as a vector field), predicting what the consequences of the model are (induced

drag being proportional to lift squared), and finally testing it with real experiments

to validate the model. Prandtl compared his theoretical induced drag results with

experimental results for a rectangular wing of aspect ratio 5. The comparison can be

seen in Figure 15 [184]. The disagreements are due to viscous and separation effects,

which are not accounted for by induced drag.

In modeling, it is important to explain a certain phenomenon and resist the urge

for fitting to the experimental data. As can be seen in Figure 15, Prandtl’s induced

drag does not match experimental data very closely. Having observed the discrepancy,

Prandtl explains how his induced drag is only a part of the total drag. This begs the

question: “how can one really measure only the induced drag”? One cannot simply

subtract zero-lift drag from the total drag to find induced drag, because the increase

of drag due to changing angle of attack is not necessarily due to drag due to lift. One

could use the same wing with endplates and subtract the drag of that from the drag

found without endplates (after removing the drag of the endplates themselves), but

still the separation profiles will be different. It must be accepted that some models

cannot be directly validated by real experiments. This supports the argument made

6Equation 21 uses a translated English notation. Prandtl originally published it with German
subscripts [163].

75

Figure 15: Prandtl’s comparison between induced drag and experimental data [184]

earlier that models can be used as hypotheses, which cannot be directly validated.

Prandtl was able to derive his induced drag mathematically from circulation. If

one accepts the generation of lift is due to circulation, induced drag can be demon-

strated via mathematical proof. However, circulation is a model for the generation

of lift and is not necessarily correct. The main underlying assumption with these

theories is that an inviscid flow with no pressure change due to altitude can be rep-

resented as a conservative vector field. That analogy is the actual model, and the

equations that follow are the Potential Flow Theory. Per Hesse’s argument discussed

earlier, models are important in developing theories [97]. Achinstein might go as far

as calling this a theoretical model [15]; however, Prandtl’s work does not stop at

making assumptions and considering consequences. Discussions such as this make it

clear that defining and classifying models is indeed a difficult endeavor. In the field

of system architectures and system simulations, it is no surprise that almost every

product is called a “model”.

76

4.3.3 Providing accurate observations

The main point of an engineering model is to provide accurate observations in absence

of the real system. This is somewhat different than the scientific models. Scientific

models strive not only for accuracy but also understanding and possibly generaliza-

tion. However, engineering models have a smaller scope of replicating behavior of an

engineered system. Nevertheless, such observations can be treated as predictions be-

cause the real system does not exist yet. Therefore, using Hertz’ argument on page 66,

the purpose of engineering models is to predict system performance in a quantifiable

way to make informed design decisions before building the systems themselves. En-

gineering models can be used to cut down on prototyping efforts [118].

Replicating every experiment performed by models with a real-life experiments is

usually pointless in engineering design. For example, if a bridge is being built, not

every analysis simulation must be repeated by building many bridges and trying them

out. However, several carefully selected experiments should be performed in real-life

to gain confidence in the results of the model. This procedure is widely known as

model validation in the literature [23, 46, 119]. The knowledge of model validity is

important in engineering design, because the main point of engineering modeling is

providing accurate observations without experimenting with the real system.

Minsky argues that a model of a thing is good, if the model answers the modeler’s

questions about that thing, and if the answer of the model matches the answer the

modeler would get if the modeler experimented with the actual thing itself [140].

The importance of the agreement between the real world and the model is similar

to Hertz’ discussion on page 66. This author is of the opinion that Hertz defined

the agreement in a more precise way, but Minksy’s introduction of questions to be

answered is important. A model is not meant to replace the system in scrutiny

entirely but only partially, which should be enough to make observations related to

the study at hand. For this reason, using adequate, distorted, and dissimilar models

77

as defined by Murphy on page 70 is acceptable.

Murphy offers a definition for a model as “a device which is so related to a physical

system that observations on the model may be used to predict accurately the perfor-

mance of the physical system in the desired respect” [147]. This author believes that

Murphy’s definition goes too far into the scaled physical model domain to be appli-

cable in many other engineering fields. Can the analogy between an inviscid flow and

a conservative vector field be called a device? A better wording for the definition of

a model is required; however, the idea of “accurate prediction in the desired respect”

is noteworthy.

In science, models are created as part of the learning process. Observations are

classified and hypotheses are generated for possible explanations. However, in engi-

neering (especially in design) models are generated solely to provide accurate perfor-

mance predictions for systems that do not exist yet. Since the creation of the model

is necessitated by making correct design decisions, a required accuracy can be stated

ahead of model development such as “the model will predict aircraft lift within 5%

error”. Such tolerances can be used to determine whether a model is good enough

to be used in design. Following this discussion on models, a working definition and

examples of computer models will be discussed as shown in Figure 16.

78

Detailed

Investigation

Element Maps
Experimental Setup

ArchitecturesModels

HypothesisInduction

Research Objective

Research Questions

Background

Motivation Context

Experiments

Conclusions

1.1 2.1

2.2, 2.3, 2.4, 2.5

3.2

3.2

3.43.3

4.4, 4.5, 5.2 5.1

6, 7

8

9

Realizes

Figure 16: Working definition of a model and types of computer models to be inves-
tigated next.

79

4.4 Computer models

Computer models are one step away from mental models. Whereas most models

discussed so far are used in Gedankenexperiments to guide theory development or

design systems, models that are executed on computers are used on computers to do

exactly the same. The immediate advantages are obvious:

• computers can keep track of a large number of entities,

• computers can provide quantitative results,

• computers are very efficient in performing repetitive operations (e.g., iterations,

repetitions, recursions),

• computer experiments can be automated,

• computational power is cheap, and is becoming cheaper still.

Computers can not only hold a large number of data in a structured fashion, but

also put that data in fast random access memory modules for fast execution rates.

This enables computer to work with a very large information sets, track many objects

in a model, and compute the interactions between the objects. As the number of

objects grow, human minds struggle with the interactions between such objects. This

is mainly due to the number of interactions growing much faster than the number

of objects as given in Equation 22, where n is the number of objects and In is the

number of interactions between n objects. This growth is depicted in Figure 17 as

well. Computers are also very efficient in performing repetitive tasks, and the large

numbers of objects and interactions can be easily processed by computers.

In =
n(n− 1)

2
(22)

Because computers can be automated to execute many experiments, these ex-

periments can be embedded within optimization problems or database generation.

80

Figure 17: Number of interactions between objects grow very fast

Entire design problems can be performed by computers iteratively with little human

intervention. In fact, one reason that nations are racing with each other to build

the fastest supercomputer is to tackle larger problems such as economic policy mak-

ing [74], galaxy formation [112], molecule folding [122], weather patterns [167], and

nuclear reaction simulations [39]. Given the trend of transistors becoming cheaper,

more densely arranged, and less power hungry [173], computer modeling has a very

promising future.

The promises come with some drawbacks however. Computer models share an ex-

tra step during their formation. As discussed before, models are possible explanations

of how systems work. These explanations are formed inside human brains, and need

to be translated into a machine readable language. Apart from translations not being

perfect, there is also always a chance of making mistakes. Computer models must be

checked thoroughly to find such coding mistakes as well as checking for agreement

between simulation outputs and the real world. This process is what is known as

81

verification and validation of computer models. The reason why it has two names is

that verification is inherently separate from validation.

In order to explain the difference between verification and validation, conceptual

models must be introduced. Conceptual models are like models and also the equations

related to them. Just as theories and models cannot be easily separated into exclu-

sive halves, conceptual model models and their machine interpreters are difficult to

separate. This inseparability has several different incarnations. The most important

one is their conceptual model cannot be developed without a machine interpreter in

mind.

Also, because machine interpreters, that are rather generic, are not developed

with or for models, interpretor limitations apply directly to models that are meant

to be simulated by them. These two issues are discussed next.

Figure 18 shows the process of modeling for a finite wing with an aspect ratio equal

to 5, an A value that is not too small. First, the modelers envision a flow around

a section of this wing (airfoil) as a conservative vector field, à la Prandtl. Later,

they expand upon this view by replacing the entire wing by some vector filaments.

Now that the wing is abstracted into mathematics, using nothing but equations,

they can derive the drag due to lift for a finite wing. Then, they correctly enter

their equation using the proper syntax required for a computation engine (R, in this

instance). Finally, by running their code, they can observe some trends, which can

be compared to their real data as shown in Figure 15. The modelers must check

their code (verification), mathematical derivation (verification), and their output’s

accuracy (validation).

Another modeler can now come in and use Prandtl’s mathematical model and

develop equations of motion for an aircraft using Newton’s Second Law, which is

depicted in Figure 19. Here the forces due to aerodynamic effects are modeled as

vectors at quarter chord location and the mass of the wing is reduced to a point

82

mass. From Newton’s Second Law, the forces can be used to derive the kinetics of

the system. Later, this model must be translated into machine language. Because

the modeler chose MATLAB to simulate this system, MATLAB’s syntax must be

used. MATLAB’s ode45 solver deals with first-order ordinary differential equations

[133]; therefore, Newton’s Law (a second order differential equation) must first be

reduced to a first-order equation. This is a classic example of how conceptual models

require some modification before being translated into machine code. Once the code

is prepared, the simulation can be run and the results observed.

If this model was being developed in a more graphical simulation software, the

development of Newton’s Second Law and its translation into a larger system of first

order differential equations would not have been necessary. In such a simulation, the

definitions of attachments (boundary conditions), rigid body properties (mass and

inertia), and forces (application point, direction, and strength) would be sufficient. If

the model was used in conjunction with another model that solves for the aerodynamic

forces and moments, even less of a definition would have been needed.

These cases illustrate the influence of the selected simulation software (or in gen-

eral, simulation engine) on the development of the model. However, nature is clearly

insensitive to such choices. Ideally, the creation and the solution of the equations is

kept separate. In the case of computer simulations, such a separation is unfortunately

impractical. At each step of computer modeling, the modeler must adhere to the rules

of the simulation engine to make an executable model. Such decisions detract from

the actual modeling goal, and may result in mismatches with the reality. Therefore,

verification and validation exercises are more critical for computer modeling efforts.

4.4.1 Verification and validation of computer models

Balci argues that accuracy, execution efficiency, maintainability, portability, reusabil-

ity, and usability (easy-to-use user interface) are good qualities for a modeling and

83

simulation effort [23]. Depending on the modeling and simulation effort each one of

these qualities can capture the limelight; however, in all modeling and simulation

efforts accuracy must play a major role. Without accuracy, modeling is not only use-

less but also potentially misleading. In computer modeling, the accuracy of models is

checked and provided by testing, verification, validation, and accreditation activities

[23, 119, 168]. Unless a computer model is verified and validated, its results cannot

be depended upon as there is no reason for trusting the model [168]. This part dis-

cusses verification and validation of computer simulations and how they compare to

accuracy checking for scientific models.

Verification is determining that a simulation computer program performs as in-

tended [119]. The intent here is not to match reality with the model, but to match the

logic in the modeler’s mind with the computer model. The modeler’s understanding

of what is happening in reality is usually referred to as a conceptual model [119, 169].

A computer model can be perfectly verified, yet still lack accuracy when compared to

the real system. For example, Prandtl’s Lifting Line Theorem is perfectly verified via

mathematical proof, but it still lacks the major effect of viscosity on drag; therefore

the model is not accurate. A similar situation may occur in computer models. The

code may be absolutely correct, but the conceptual understanding of the system may

have been wrong. The resulting computer model and its execution would also be

wrong (not accurate).

Verification then deals with the correctness of the coding activity. Balci refers

to this activity as a translation from conceptual ideas to computer code [23]. In his

words, “model verification deals with building the model right” [23]. These words

are likely to be misinterpreted. If one builds a model right, why would the model

be wrong? This author believes that Balci meant that model verification deals with

coding the computer implementation of the model as intended. The meaning is not

altered by this modification, only sharpened. In fact, Balci argues that verification

84

measures only the accuracy of converting a model representation from a flowchart or

a similar medium into an executable computer program.

The meaning of verification has a similar meaning in software engineering. Ac-

cording to the IEEE standards, in the software engineering context, verification is the

process of attaining proof of correctness [1]. For example, a database record retriever

takes in a key, searches for that key in a database, then returns the data attached

to that key within the database. A formal proof of correctness makes sure that the

returned data is truly attached to the key for all possible key entries. It can also deal

with cases such as what to return if the key is not found in the database. However, it

does not check whether the developer’s ideas are translated into the program. As long

as the program does its job correctly for every situation bounded by the requirements

imposed on it before the development began, the program is correct. An alternative

definition offered by Hetzel and IEEE is evaluation performed at the end of a phase

with the objective of ensuring that the requirements established during the previous

phase have been met [1, 98]. Perhaps a more fitting definition is given by Davis,

“verification is the process of determining that a model implementation accurately

represents the developer’s conceptual description and specifications” [57].

Computer model verification has a scientific model counterpart. Prandtl’s Lifting

Line Theorem models inviscid flow as a conservative vector field. But as Hertz said,

the necessary consequences of the models must match the necessary consequences of

the modeled objects. Therefore, Prandtl had to develop his model mathematically to

reach its consequences. These consequences (such as induced drag) then are compared

to the consequences of flows over finite wings. Checking over the mathematical devel-

opment of Prandtl’s theorem can be compared to the verification of computer models.

The inability to compare models with reality directly necessitates verification. This

means that every model must be developed in a logical, abstracted, mathematical

way in order to be compared with reality.

85

The comparison of the model’s logical consequences with the consequences of the

nature is called validation. This is the most important for a model to be acceptable,

and it is in a similar form as hypothesis testing. In the context of computer mod-

els, there are various definitions in the literature for validation. Carson states that

validation is “the process of ensuring sufficient accuracy for a model” [46]. With a

definition such as this, it may seem that verification is a part of validation or that

validation is enough and verification is not necessary. However, this is not true. Law

and Kelton argue that validation is concerned only with determining whether the

conceptual model is an accurate representation of the system under study [119]. In

practice, however, the separation of conceptual model validation and output matching

is not attainable per Hertz’ discussion presented on page 66.

Take a statistical regression that has good predictive power as an example. It

can be shown readily that it is accurate. However, is it a good model? The author

believes that a statistical regression is a sophisticated calibration of a very flexible

function and not a scientific model. Calibrations, although useful in certain scenarios,

do not guarantee a representative model [168]. In fact, statistical regressions are

not analogies, do not have any explanatory value, and are geared to match results

directly. They do not have an image with a necessary consequence that matches

with the consequences of reality, they directly match with the consequences of reality.

Therefore, in a scientific sense, regressions are not models and validation by itself is

not sufficient in determining accuracy of a model.

Every modeling and simulation effort must have a clear goal from the beginning

[23, 120, 169]. Predetermined modeling goals protect the modeling effort from becom-

ing modeling for modeling’s sake. A set of requirements—a software specification—are

required for a computer model to satisfy [98], and a modeling effort can be ended,

once all the requirements are satisfied. Since good requirements are unambiguous and

verifiable [93], a level of accuracy deemed adequate for the simulation study at hand

86

should be set before modeling starts. During and after the modeling process, each

requirement can be tested. If all tests are passed, validation is practically complete.

In this view, validation has a binary solution: “the model is valid”, or “the model is

not valid” [168]. A fitting definition for validation in this case is offered by Balci, who

defines validation as substantiating that the model, within its domain of applicabil-

ity, behaves with satisfactory accuracy consistent with the modeling and simulation

objectives [23].

Validation in the scientific sense, however, cannot be finished [119, 168]. There are

many scientific reasons for this. First, a thing can only behave exactly like another

thing, if and only if it is that thing. A model can only accurately replace a system in

a limited operational scenario. Second, there are no proofs in science, only theories

that are thoroughly tested. And third, if a model is exactly like a system, then exper-

imenting with the model is as difficult as experimenting with the real system, which

renders the modeling activity superfluous. Therefore, validation must be regarded

as a confidence building exercise [22]. It can only be considered complete for the

purpose of a study, but not for the actual model. This fact has profound effects on

multi-purpose models, re-use of models, and certification of models.

As enough confidence is gained for a model, it can be certified by responsible

entities for specific uses. This step is referred to as certification or accreditation.

DOD defines accreditation as the official certification that a model or simulation is

acceptable for use for a specific purpose [3]. IEEE defines software certification as a

written guarantee that a system or component complies with its specified requirements

and is acceptable for operational use [1]. Accreditation or certification is required for

models to be used officially.

Validation or certification is not always required for a model to be useful. Of-

tentimes model development occurs without the presence of real quantitative data.

For example, Galilei has not measured the gravitational accelerations of objects to

87

create a model for constant accelerated falling. Similarly, Prandtl did not measure

the induced drag effects before working on the Lifting Line Theory. An industrial

engineer does not need to know exact work completion time statistics to model a

work station. Numerical data can be entered into the model afterwards for validation

purposes. Without this data, a verified model can still generate useful general infor-

mation for decision making (e.g., higherA results in smaller cDi); however, it cannot

be used in a context that requires high accuracy. This also means that validation not

only checks the accuracy of the consequences of the model, but also the accuracy of

the model’s inputs. Input validation is usually dealt with separately before model

validation.

In summary, the observations leading to model development are usually very quali-

tative (e.g., objects seem to reach the ground at the same instant when released from

the same height). The models are created using analogies to drive generalization.

Model development can proceed without real accurate input data, but cannot finish

without it. The goal of modeling is to make new observations (predictions) by exper-

imenting with the model, and without accurate predictions, the model would be of

limited use. With the insights gained from this discussion a working definition of a

model for the rest of the work is now given.

4.5 Working definition of a model

After the discussion of what a model is and how they are constructed, a working

definition of a model for the purposes of this work is defined here. The definition is

specific to models that are used to

• do science, that is to test hypotheses and create more observations,

• perform analyses on a computer (sometimes in an automated fashion),

• experiment with non-existent systems,

88

• design new engineering systems, and

• help making engineering decisions.

The definition draws from Hertz’ view of what a model is used for and how it is

checked with Murphy’s and Minsky’s additions of dissimilarity and scoped accuracy.

The definition is given as necessary conditions for a thing to be called a model.

1. A model is based on an analogy (e.g., inviscid flow is just like a conservative

vector field).

2. A model is used to predict the performance of a system (e.g., L/D).

3. The necessary consequences of a model are closely matched with the conse-

quences of the real system (e.g., increasing A decreases cDi).

4. A model is not a replica of the real system; it is dissimilar in irrelevant properties

(e.g., the mathematical construct of a conservative flow field does not contain

molecules)

5. A model is a good model if it can predict relevant performance values the

engineer is interested in; other performance values do not have to match reality

(e.g., yawing motion is irrelevant in a three-degrees-of-freedom study).

6. A model of a system must explain the internal mechanics of that system, not

just match its consequences (e.g., simple statistical regressions are not models).

7. A model must be executable in order to allow experimentation and making of

new observations (e.g., mere descriptions of systems are not models)

When considering the dictionary definition of a model, descriptions and statistical

regressions actually do fit within the concept of a model. In fact, statistical models

can replace systems for experimentation purposes with some limitations. However,

89

statistical models are not thought or conceptualized by someone and they do not

explain anything. They are mere trends—a clever summary of data so to speak—and

there is little value to be gained from them to lead into the generation of more models.

Regressions have hypothesis testing embedded within them; however, these hypothe-

ses are not of the form Hertz discussed. They do not involve testing consequences,

only characterizations.

Using this definition of a model, a large variety of modeling paradigms are intro-

duced in the next chapter and their applicability on system of systems problems are

discussed. The models introduced are presented in an order based on a taxonomy of

type. Each type is validated by the definition of the model presented above.

90

ARd=d5
yd<-dseqD-1.2,d1.2,dlengthd=d1000L
xd<-dy^2/pi/AR
svgDwcdi.svgw,dheight=4,dwidth=2.5Ld
parDps=w10wL
parDoma=cD0,0,0,0LL
plotDx,dy,dtyped=dwlw,d
dddddxlabd=dwcDw,dylabd=dwcLw,
dddddxlim=cD0,0.1L,dylim=cD-1,1LL
gridDL
dev.offDL

Figure 18: An example of a computer model evolution

91

[time,Lsolution]L=Lode45('system',tspan,initialConditions,options);

functionLOutL=Lsystem(time,LIn)
Out(1,1)L=LIn(2)
Out(2,1)L=LL/m
Out(3,1)L=LIn(4)
Out(4,1)L=LD/m

X

Y

U

V

Figure 19: An example of a computer model evolution

92

CHAPTER V

SYSTEM OF SYSTEMS MODELING

Ich ekelte mich oft vor den Menschen, die fließend ihre

Muttersprache sprachen. Sie machten den Eindruck,

daß sie nichts anderes denken und spüren konnten als

das, was ihre Sprache ihnen so schnell und bereitwillig

anbietet1.

Yōko Tawada [180]

System of systems engineering deals with mostly large-scale engineering. At the

very least, the name of system of systems suggests the engineering of multiple systems.

In most cases, system of systems thinking is applied when complicated systems cannot

perform the necessary functions. If one can create a single system2 that can perform

all the necessary functions to create an effect or enable a capability, there may be

little reason to even do system systems engineering. Admittedly, there are exceptions

to this rule, but usually complicated systems are more efficient than their complex

system of systems counterparts just because they can be engineered easier. This is due

to the fact that the interactions between system components are easier to deal with

than interactions between multiple systems with their own decision making abilities.

1Author’s translation: I loathed people who spoke their native language fluently. They made the
impression, that they could not think or feel anything other than what their language offered easily
and quickly.

2Here a single system is not used to mean a single platform. Not all dispersed but connected
systems deserve the name system of systems. For example, the global positioning satellites are hardly
a system of systems. The components of the system do not act on their own, and as single satellites
they are not useful themselves. The reader is reminded that the system of systems definition used
in this work required self-capable and useful systems to be integrated into a larger group of systems
to deliver unique capabilities. Communication, therefore, is not collaboration, and a single system
can be geographically dispersed.

93

Two important aspects of system of systems were identified in the preceding para-

graph: large scale and looser interactions between components. If the interactions

between components were very well defined, systems of systems would have been

called systems. These two aspects require the use of different kinds of modeling com-

pared to models used for physics-based interactions between system components and

between the system and the environment. Physics-based models are usually accom-

panied by mathematical formulations in the form of differential equations. However,

such a mathematical order is found rarely in system of systems formulations. The

interactions seen in system of systems are more condition-based; therefore, algorithms

are better suited to represent them.

The utility of mathematical models are not lost, however. If the modelers can use

mathematics to model a system of systems, they should definitely explore that path

further. Mathematical models are very powerful and tend to have good scalability

characteristics. The sections of this chapter will introduce many modeling techniques

that are useful for system of systems modeling efforts. Some of these techniques are

based purely on mathematical formulations. However, the limitations of such models

will be made clear as well, such as having to make numerous assumptions about the

system.

It is important to realize that simplifying assumptions are required for all types of

modeling. In Chapter 4, it was mentioned that Achinstein actually argued that the

assumptions are the model itself [15]. From that argument, it follows that making

no assumptions means making no models, which demonstrates the importance of

reasonable assumptions. The modeler must be very careful not to make too many

assumptions and must always substantiate why a certain assumptions was made. So,

it is clear that incorrect assumptions lead to incorrect models (incorrect conceptual

models, to be specific). Still, an incorrect model can supply much needed information

on the design. As George Box argued: “all models are wrong; the practical question

94

is how wrong do they have to be to not be useful” [38]. If a decision maker is uneasy

making decisions based on incomplete information, design process will not benefit

from a modeling and simulation step. In fact, the only option in such a scenario is

prototyping many alternative solutions and picking the best performer based on real

operational tests. In system of systems problems, such approaches are impractical.

5.1 Design description

Before reaching the modeling step of system of systems engineering, a common way

of representing a design is needed. Here, a model in the descriptive sense is needed.

The discussion in Chapter 4 led to the conclusion that such descriptions should not be

called models for the rest of the work. Therefore, they will be called design descrip-

tions and they simply describe the system as it is without making any statements

on why the system works the way it works. For example, “the fire extinguisher is

red” is a design description, “the mail is brought to the sorting facility via trucks” is

also a design description. These descriptions do not include the information why red

is the best choice for a fire extinguisher or why it takes 3–5 business days to deliver

mail. They are simply statements that can be used to model the system but are not

themselves models. Such descriptions are not only important in the modeling phase,

but also for documentation and communication purposes as well.

Many design descriptions exist. Any computer-aided design product is a design

description encoded in some electronic format. Such products can have some extra

information that may qualify them to be categorized as models but in most cases they

are simple descriptions of the systems they represent on the computer. Blueprints,

system architectures, circuit diagrams, floor plans, furniture assembly manuals are

all design descriptions.

Such documents are used by various entities such as engineers, designers, techni-

cians, users, certifiers, etc. Because of this, they are usually in a very human accessible

95

format: print. Print documents are by definition static, meaning that they do not

show the changes to a system’s states. Some of these architecture views include

enough information to show the change, but the views themselves do not show it.

In the systems engineering field these documents are known as system architectures.

They are the main document types used for communicating and describing designs

to various stakeholders. Each system architecture includes several views, viewpoints,

models, diagrams, tables, lists, and dictionaries. There is no common convention

of creating such architectures but there are some frameworks on what to include

such as DoDAF [59] (other military frameworks include Ministry of Defence Archi-

tecture Framework [105], NATO Architecture Framework [10]), Automotive Archi-

tecture Framework [41], and Zachman Framework [203]. Apart from the frameworks,

a language is also required to create the system architectures. Using an architecture

description language, a system architecture can be saved in a consistent format. Not

all languages and frameworks are compatible, and usually, a framework is developed

with a language specific to serve its framework. Examples of system architecture de-

scription languages include UML [5], Systems Modeling Language [8], and Integration

Definition for Function Modeling [2].

Until recently, system architectures have mainly been used for documentation

purposes. Static hard or soft copy documents have been used as data containers for

system architectures. Such containers include technical reports, presentation slides,

manuals, doctrine documents, graphs and charts, etc. However, the documentation

view is changing. If such documents were made in a computer readable fashion, mod-

els created to analyze designs can use them as inputs in support for the simulation.

This is the main idea behind the DOD’s push for executable architectures. DoDAF

is a good framework for developing system architectures; however, it is only slowly

evolving to include features that help with analysis steps [143]. In this context, an

executable architecture provides the means to conduct dynamic analysis of a system,

96

and is emerging as a supporting methodology [202].

The shift from documentation to dynamic simulation is a symbiotic development

between the system architect and the system modeler and a significant driver for

developments such as Foundational Subset for Executable UML (fUML) by the Object

Management Group (OMG) [182]. In a system design context, the system architect’s

goal is to describe the system at the level of detail where past decisions are included.

On the other hand, the system modeler’s goal is to generate knowledge and aid future

decision making. These two processes mimic the iterative design process of analysis

and decisions as discussed in Chapter 1 where AoA were discussed.

Similar to proper documentation, dynamic simulation-ready system architectures

require a detailed and complete description of the systems it is representing. Such

an architecture would contain enough information to create unambiguous inputs to

a simulation model. However, it must be remembered that in this thesis the goal

of modeling and simulation is to make design decisions. A significant amount of

information is missing from the system description during this phase. System or

system of systems architectures at this phase have many degrees of freedom, and

they cannot be completed fully. To be useful in design, system architectures must be

flexible in the amount of information required to describe a design.

The two requirements discussed above are somewhat contradictory. One requires

a detailed and complete description, the other requires a workable architecture even

if information is missing. Actually, this domain is where modeling and simulation

shines. Enough description is necessary to create models, but no more. Since models

are simplifications of the reality, they require less information than other efforts such

as acquiring, building, and operating. Because this thesis deals with the modeling and

simulation of systems of systems and entities interested in acquiring and operating

them are mandating the use of system architectures during development, it will be

assumed that an architectural description on the design will be available for or being

97

worked on in parallel to the modeling effort.

It is interesting to compare the definitions of models and architectures. The first

point of Achinstein’s five-point definition [14] for a model states that a model is a

set of statements ascribing properties to some system. Architectural descriptions of

systems are not models, but are close because they describe properties instead of

ascribing them. Also, artifacts of system architectures simplify the system by only

looking at it from a specific perspective and eliminating many other details about

the system in that view. For example, neglecting other properties of the constituent

systems, a system of systems can be shown as a connectivity network. Architectures

descriptions are similar to models, but for the purposes of this work, are not.

5.2 Models for system of systems

Given a system of systems design description, the next step in design is to find

its performance. The analysis step is needed to make further design decisions. For

example, two designs can be analyzed independently and the better one can be picked

for further development. The computer models are relevant during this phase of the

system design.

The analysis step can be summarized as finding a function that links design de-

scription/variables to the design’s abilities/performance. Given design parameters,

the analysis must return design performance. The design phase has an analysis phase

in it, because without an analysis of design alternatives, decisions cannot be based

on quantitative metrics. Unfortunately, there are no closed-form analytic formulas

that perform system integration and report on the capability of a system of systems.

Because no such equation exists, the system of systems engineer must use computer

models to map design variables (inputs) to design performances (outputs).

Figure 20 repeats the generic design decision making process based on the IPPD

98

Establish
theqNeed

Define
theqProblem

Establish
Value

Objectives

Generate
Feasible

Alternatives

Evaluate
Alternatives

Make
Decision

Requirements
andqFunctional
Analysis

Physical
Decompositionqand
FunctionqAllocation

SystemqSynthesis
through
Multi-Disciplinary
Optimization

SystemqAnalysisq
andqControl

QualityqFunction
Deployment

RobustqDesign
Assessmentqand

Optimization

On-LineqQuality
Engineering

Quality Engineering Systems Engineering
Top Down

Decision Support

P
ro

ce
ss

qD
es

ig
nq

D
ri

ve
n P

rod
uctqD

esignqD
riven

Figure 20: Georgia Tech Integrated Product and Process Development Methodology
[174] (Reproduced)

methodology [174] first introduced in Chapter 2. Architecting the system starts dur-

ing the requirements and functional analysis. At this stage, the architecture only in-

cludes functional decomposition (in DoDAF terms mostly the OVs). In the physical

decomposition and functional allocation step, systems and physical considerations are

added. This step serves as combinatorially generating possible architectures, whereas

system synthesis happens through an optimization. The optimization has two goals:

eliminating unfeasible designs and finding good compromises between performance

and cost. In order to reach both goals, the optimization step requires several func-

tions from each discipline to be optimized, and that function is the analysis step in

design. Finally, a more holistic product-level analysis is performed during evaluation

99

of the alternatives. That is yet another analysis step, in which a calculation of some

kind must be performed to find the best possible alternative. In conclusion, modeling

can be applied at almost all stages of design because design is tightly coupled with

analysis.

Because executable architectures are also recommended by the DoDAF, concur-

rent development of architectures and computer models are desirable. Following the

IPPD methodology, as soon as the problem is defined, architecting and modeling

activities can start. Here, architectures and models are separated from each other.

Some authors call architectures—or parts of thereof—models, but in this work they

will not be called models because they are not analogies based on the discussion

in Chapter 4. However, it must be stated that many architecture frameworks were

created with certain modeling formalisms in mind, and the separating line between

description and modeling is usually blurred. Generating executable models from the

architectures automatically using this blur will be detailed in the later chapters.

DoDAF’s executable architectures are system architectures supplanted with mod-

els which can be executed on a computer and provide more than descriptive informa-

tion on the design of the system of systems. In order for this to work, architectural

elements must be likened to modeling elements. This will be discussed in the follow-

ing sections. These modeling elements must then be organized in a machine readable

format for simulation engines to execute them. Computer executed models (i.e., sim-

ulations) are the only practical means of calculating system of systems performance

in a consistent, automated, and rapid manner. The results of the simulation are an-

alyzed and put back into the architecture, thereby providing more than descriptive

information about the system of systems it represents.

Such model execution does not have to be on-line. If the simulation execution takes

a considerable amount of time, the designer may have to wait for the performance

values to appear. There are ways to alleviate this problem. First, a simpler more

100

analytic model can be used if possible. If that is not possible, statistical regressions

based on data generated by more complicated slow-executing simulations can be

created and included in the architecture. Because statistical regressions are accurate

within limited regions based on the data used to create them, the designer must be

careful not to extrapolate from that region [148].

There are a limited number of quantitative modeling paradigms fitting to the

system of systems problem. The modeling paradigms used to analyze system of

systems found in the literature are listed below.

• Graph theory [64, 91, 24, 88, 50, 75, 115, 77]

• Probability theory [175, 77]

• System dynamics [29, 44, 43, 88]

• Markov chains [50, 88, 17, 131]

• Petri nets [75, 88, 172, 109, 79, 124]

• Queueing theory [17, 65]

• Discrete event [88, 102, 20, 69, 37]

• Agent-based [24, 77, 172, 99, 204]

The discussion of each modeling paradigm is organized in a taxonomy of models

based on their execution, type of metrics used, and inclusion of probabilistic effects as

shown in Figure 21. The reader will realize that some modeling types can be under

multiple sections of the taxonomy3 and when this is the case, only the differences

from the previous case will be discussed. For example, there are two types of Markov

chains: continuous-time and discrete step. Therefore, Markov chains appear under at

3the taxonomy is a valid taxonomy, but modeling paradigms are flexible and can be configured
to be under one or the other; a single model is never under multiple categories

101

least two categories in the taxonomy; however, Markov chain models under different

categories differ from each other and are simulated entirely differently.

Because this work deals with quantitative models, qualitative models will not

be investigated. Qualitative models are very important in engineering, especially

during the early stages of design. In fact, all quantitative models start as qualita-

tive characterizations (e.g., objects tend to fall, heavier objects fall roughly with the

same velocity as lighter objects, objects fall slower in water). The transition from

experience-based or subject matter expert qualitative models to quantitative models

is an important topic that is being tackled by other authors [90, 67, 66, 136]. However,

in this work, the focus will be on quantitative models.

Scale Probability Time Type

Models

Quantitative

Qualititative

Dynamic

Deterministic Static

Discrete

Continuous

Dynamic

Stochastic Static

Discrete

Continuous

Figure 21: Modeling Taxonomy adapted from Burbank et al.[42]

102

5.3 Deterministic and static models

5.3.1 Graph theory

In the simplest sense a mathematical graph is a collection of vertices and edges.

These vertices and edges have some meaning assigned to them. This way mathemati-

cal graphs can represent chains of events (function/process decomposition), locations

and distances (pathfinding), or systems and connections (networks), etc. See Fig-

ures 23, 24, 25, and 26 for four distinct examples of scheduling, pathfinding, hierarchy,

and networking with graphs. The flexibility in the graph theory approach makes an

analogy between the multitude of systems in a system of system and networks. A

network is a basic organizing structure that is easily understood. Graph theory uses

the network abstraction to represent almost anything with separate elements and the

connections between those elements.

Graph: A graph is an ordered pair G = (V,E) comprising a set V of vertices

(nodes) and a set E of edges (arcs) which are two-element subsets of V .

C D

A B

Figure 22: A mathematical graph

An example graph is shown in Figure 22. Its corresponding mathematical notation

is given in Equations 23–25.

G = (V,E) (23)

V = {A,B,C,D} (24)

E = {(A,B) , (A,C) , (B,D) , (B,C) , (A,D)} (25)

103

Besides its flexibility, this abstraction can be analyzed using analytic methods.

Graph theory is a field in mathematics and for many of its measures, a closed-form

analytic calculation is possible. As discussed earlier, analytic calculations are desir-

able in models due to their ease in verification and computation. Most graph theory

calculations use linear algebra; however, some analyses still require an algorithmic

approach.

Task 4

Task 1

Task 2

Task 5

Task 6

Task 3

Task 7

Task 8

Task 9

Figure 23: Scheduling with graphs

X

X

Figure 24: Pathfinding with graphs

The rules of graph edges are as follows. The edges are always placed between two

vertices. They are never terminated before reaching a another vertex. An edge in a

mathematical graph can be either bidirectional or unidirectional. Bidirectional edges

can be decomposed into two directional edges. An edge can also have have a value,

104

System

Subsystem2Subsystem1 Subsystem3

Component1 Component2

Figure 25: Trees with graphs

A

B
C

D
F

H

G
E

Figure 26: Attributed connectivity with graphs (Map source: Wikimedia)

or a list of values assigned to it. Vertices are not assigned any values to them; they

can only be labeled.

In terms of analogies, graph vertices can represent systems and edges can represent

connectivities between them. Because the edges can be directed, they can represent

one-way or two-way radio communications. The weight used on the edge, can rep-

resent many different connectivity metrics between the two vertices it touches (e.g.,

bandwidth, travel time, delay, availability rules). This analogy is commonly used in

system of systems analysis [24] to measure centrality, geodesic distance, vulnerabil-

ity, maximum data flow, and similar metrics of the network. There are algorithms

that deal with each of such metrics, such as max-flow min-cut for throughput, A* for

shortest path, among many others.

Alternatively, vertices can represent different tasks that a system of systems must

105

perform, similar to what is shown in Figure 23. If all tasks are not required, the

graph can be used to find the shortest path to the final state. If all tasks are required,

the graph can be used to analyze centrality of subtasks as well as the cyclicity and

complexity of the larger task network [24, 64].

5.3.2 Probabilistic calculations

In mathematical graphs, the edges and vertices are used to construct networks of

connected elements. A similar approach is used in probability calculations; however,

the assignment of meaning to the modeling elements is different. Probability calcu-

lations can be represented with mathematical graphs, but in a probability network

each vertex represents a probability of a certain task, process, action, etc. success-

fully occurring. In the terminology of probability theory these tasks, processes, and

actions are called events. The probability of an entire network of events happening

can be determined by stringing these probabilities together as a chain of events.

This theme will repeat itself in the later modeling discussions. Because mathe-

matical graphs are very flexible, many different ideas can be represented by them.

Probability calculations, Markov chains, Petri nets, and discrete event simulations

can be represented in structures that are very similar to graphs. However, the analo-

gies in each modeling paradigm work differently. This makes them different models

and their analysis is vastly different.

In such probability calculations, the connections only provide information about

the structure/layout of events. The numerical data included in the model is held

entirely within the nodes. This data is supplied in the form of conditional probabil-

ities (i.e., the probability of the event happening given that all previous events have

happened). The aggregate probability is then calculated using Fermat’s Principle of

Conjunctive Probability. The principle is stated below. An example in graphical form

is given in Figure 27 and corresponding equation is shown in Equation 26.

106

Fermat’s Principle of Conjunctive Probability: the probability that two sep-

arate events will both arrive is hk, where h is the probability that the first event will

arrive, and k is the probability that the second will arrive when the first event is

known to have arrived [196].

Stick
Works

Comp.
Works

Hydr.1
Works

Aileron
Works

Hydr.2
Works

Figure 27: Conditional probability example: aircraft control surface actuation system

P (Aircraft Rolls) =P (Stick)P (Computer|Stick)

(1− (1− P (Hyd1|Stick ∩ Computer))

(1− P (Hyd2|Stick ∩ Computer)))

P (Actuator|Stick ∩ Computer ∩ (Hyd1 ∪ Hyd2)) (26)

Single probability calculations of this kind are simple and computationally easy

to perform. The difficulty in aggregating the conditional probabilities lies in the

complexity of the network. The network needs to be converted into an equation

which is a difficult task if the size of the network exceeds a handful of nodes. The

example given in Figure 27 has only 5 nodes yet Equation 26 has grown to 8 terms

due to the redundant nature of hydraulics system represented in the model. In a more

complex network, equations will grow even faster, which renders writing the equation

for the network in its entirety difficult.

Given the large scale nature of system of systems engineering problems, it is

desirable to have scalable modeling techniques. In order to solve the complexity and

107

scalability problem, a recursive algorithm is proposed here. Recursive algorithms call

on themselves with a smaller problem, and the first call is finished once the smaller

problem reaches a base case. A structure is recursive if the shape of the whole recurs

in the shape of the parts and this property allows recursive algorithms to turn highly

complex software products into smaller and much more easily understood functions

[81].

In order for recursion to work, the probability network must be reducible to sim-

pler and fundamental elements, and then re-aggregated for the probabilities to be

evaluated recursively. Step by step aggregation of probabilities is given in Figure 28.

Finally, when the irreducible elements are reached, calculation rules governing

these elemental forms must be found. In probability calculations, there are only two

of such elemental forms: series and parallel. Layouts and combinations of series and

parallel forms are shown in Figure 29.

Stick
Works

Computer
Works

Hydraulic1
Works

Aileron
Works

Hydraulic2
Works

Stick AND
Computer

Work

Hyd1 OR
Hyd2
Works

Aileron
Works

Figure 28: Combination of probabilities in the control surface actuation example

Calculating the aggregate probability of success of events in series form is done

by multiplying the conditional probabilities, which can be derived in a few steps

from set theory fundamentals. In order for the events in a series network to execute

successfully, all events must execute successfully. Equation 27 shows the probability

108

C

C

A

B

Combinations

DA
C

B

A

C

B

FBA
C

E

D

A B

Figure 29: Series and parallel layout and possible combinations thereof

of events A and B happening. A series with n events has the probability shown

in Equation 28. If the events are independent from each other, the equation can

be simplified to Equation 30 using the definition of independence, which is given in

Equation 29.

P (A ∩B) = P (A)P (B|A) (27)

P (E1 ∩ E2 ∩ . . . ∩ Ei ∩ . . . ∩ En) = P (E1)
n∏
i=2

P (Ei|E1 ∩ E2 ∩ . . . ∩ Ei−1) (28)

A ⊥⊥ B ⇐⇒ P (A|B) = P (A) (29)

P (E1 ∩ E2 ∩ . . . ∩ Ei ∩ . . . ∩ En) =
n∏
i=1

P (Ei) ⇐⇒ A ⊥⊥ B (30)

Calculating the aggregate probability of success of events in parallel form is done

by reformulating the question to “the probability of failure of all events”. This refor-

mulation uses the fact that all events in the parallel network structure must fail for

the network event to fail as a whole, which is of course a probability calculation in

series formulated in an equation. Equation 31 shows the idea of using an intersection

instead of a union for the set of events. Equation 32 generalizes the idea to multiple

events in a set. Finally, Equation 33 shows the simplified calculation for a set of

109

events that are independent from each other.

P (A ∪B) = 1− P (Ac ∩Bc) (31)

P (E1∪E2∪. . .∪En) = 1−P (Ec
1)P (Ec

2|Ec
1)P (Ec

3|Ec
1∩Ec

2) . . . P (Ec
n|Ec

1∩Ec
2∩. . .∩Ec

n−1)

(32)

P (E1 ∪ E2 ∪ . . . ∪ Ei ∪ . . . ∪ En) = 1−
n∏
i=1

P (Ec
i) (33)

At this point, every construct is defined that is necessary to perform the calcu-

lations. However, the equations are quite complicated and hard to generalize into

arbitrary sizes. If the series and parallel structures themselves can be simplified into

elemental forms using recursive logic again, any n-long structure can be broken into

n-1 recursive calculations for the aggregate probability. The scheme of recursive cal-

culation can be seen graphically in Figure 30 and in equation form in Equations 34

and 35.

C ED

A C EDB

A B

C EDA B∩ ∩ ∩

∩ ∩ ∩

C

A

B
C

A B
A B C

∩
∩ ∩

Figure 30: Recursive calculation scheme for series and parallel networks

110

P (A ∩ B ∩ C ∩D ∩ E) = P (A)P (B ∩ C ∩D ∩ E)

= P (A)P (B)P (C ∩D ∩ E)

= P (A)P (B)P (C)P (D ∩ E)

= P (A)P (B)P (C)P (D)P (E) (34)

P (A ∪ B ∪ C) = 1− (1− P (A))(1− P (B ∪ C))

= 1− (1− P (A))(1− (1− (1− P (B))(1− P (C))))

= 1− (1− P (A))(1− P (B))(1− P (C)) (35)

Once all the above steps are written in algorithms in a computer executable fash-

ion, the calculations are carried out using mostly recursive structures with little com-

putational power. The structure is separated from equations and the networks to be

modeled can be scaled and generalized. The Code Block 5.1 below shows a Python

implementation. As can be seen from the code, there is only one conditional function

that works entirely recursively. The example inputs A–F belong to the network shown

in Figure 31. If root nodes of the network is not known ahead of time, dictionaries

for the nodes can be instantiated empty and modified post-initialization to alleviate

name not defined errors.

A

B

C

D

E

F

Figure 31: Example probability network corresponding to the Python code

1 F = { ”p” : 0 . 6 , ” In ” : [] }

111

2 E = { ”p” : 0 . 5 , ” In ” : [] }

3 D = { ”p” : 0 . 4 , ” In ” : [E] }

4 C = { ”p” : 0 . 3 , ” In ” : [E, F] }

5 B = { ”p” : 0 . 2 , ” In ” : [D] }

6 A = { ”p” : 0 . 1 , ” In ” : [B, C] }

7 def prob (X) :

8 i f len (X[” In ”]) == 0 :

9 return X[”p”]

10 e l i f len (X[” In ”]) == 1 :

11 return X[”p”] ∗ prob (X[” In ”] [0])

12 else :

13 neg = 1

14 for elem in X[” In ”] :

15 neg = neg ∗ (1 − prob (elem))

16 return X[”p”] ∗ (1 − neg)

Listing 5.1: Example network definition in Python

5.4 Deterministic, dynamic, and continuous models

5.4.1 Continuous-time Markov chains

In continuous Markov Chains, a network of nodes and connections represents the

states that a system can be in and all the transitions into and out of these states. This

representation is somewhat similar to a type of network investigated using graph the-

ory. In fact, all Markov chains are mathematical graphs and the similarity exists even

within the development of mathematical rules for solving/simulating a continuous-

time Markov Chain model. However, the meaning assigned to model elements is

different from the assigned meaning to mathematical graph elements (vertices and

edges). Markov chains model the state of a single system, whereas graph theory is

used to represent a network of systems.

In Markov Chains, the vertices are called states and the edges are called tran-

sitions. The model then starts at a specific state at reference time t = 0, usually

referred to as the initial state, and progressively transitions out of it towards the final

state. A Markov Chain study focuses on the dynamic transition behaviors such as the

112

time it takes to transition to the final state, the determination of the final state (e.g.,

convergence, oscillation, chaos), and determination of states that cause bottlenecks.

The transitions are modeled as exponential distributions. While, this assumption is

a limiting one, it arises from the mathematical formulation and additionally, expo-

nential distributions are the only fitting distributions that can be solved analytically.

An example of a continuous Markov Chain is shown in Figure 32.

A B C D
3λ 2λ λ

μ μ μ

Figure 32: An example continuous Markov chain

In Markov Chains the states include a single piece of information: the probability

of the system being in that state at that given time. Therefore, the probability

information is only a function of time and time alone. The entire state space of the

network can be described in a single list of size n, where n is the number of states

(nodes in the network). Each element in this list corresponds to the probability of

being in a specific state at time t, and is, therefore, constrained to lie ∈ [0, 1]. The

sum of the elements of this list, is constrained to be equal to 1 at all times t ≥ 0,

because the probability of being within the network is always equal to 1 (the network

has no entries, exits, sinks, or sources). In other words the total probability is always

conserved in a Markov chain. Also, all elements of the state list are non-negative

(they can be zero or positive). It can be shown that each element has to be a number

between 0 and 1, which is expected as they represent a probability. The rules of

the state list are given in Equations 36, 37, and 38. Because the state list’s order is

important, the list is a tuple, which is a mathematical construct that represents an

ordered set of elements.

Let fi(t) be the probability of being in state i at time t. Let i be an integer

113

between 1 and n with n denoting the number of states in the system. It follows that,

n∑
i=1

fi(t) = 1 (36)

fi(t) ≥ 0 (37)

Equation 37 can also be written as

0 ≤ fi(t) ≤ 1. (38)

The list as defined here is not a vector as it does not satisfy some of the axioms a

vector has to satisfy. Firstly, a summation of two state lists has no meaning and will

violate the sum of elements being equal to 1 rule: if both state vectors’ elements sum

up to 1, then the sum of the elements of their sum will add up to 2. Additionally,

multiplying the state vector by a scalar is nonsensical as well. Any multiplication

by other than 1 will result in the sum of the elements being not equal to 1. These

violations are shown in Equations 39 and 40.

Let v(t) = {f1(t), f2(t), . . . , fn(t)}. It follows that,

v(t) + v(t) is meaningless ∴ v(t) is not a vector. (39)

Additionally, for v(t) to be a vector its scalar multiple must remain in the same

vector space, i.e., v(t) ∈ Rn ⇒ cv(t) ∈ Rn. However, a state list does not follow this

property. As shown in Equation 40, cv(t) and v(t) are not in the same vector space;

therefore, v(t) is not a vector.

c
∑

fi(t) 6= 1 if c 6= 1 ∴ cv(t) is not a state vector. (40)

Unfortunately, tuples are not easily manipulated, and because the state is repre-

sented in a tuple, computation is not straightforward. This problem can be alleviated

by setting up the problem in an appropriate way where, not by definition but by

setup the elements in the state vector are always between 0 and 1 and their sum is

114

always equal to 1. This way the constraints on the state tuple can be removed and it

can be defined as a vector. This setup imposes some additional rules in the definition

of transitions, but overall the entire mathematical system is easier to deal with.

Transitions between states represent the transfer of probability from current state

to a future state, sometimes referred to as a flux. Because this is a continuous time

Markov Chain, the transitions represent the rate of change of probability of being in

the two states they connect, decreasing in one and increasing by the same amount

in the other. The amount has to be the same, to keep the sum of elements of the

state vector equal to 1. Using this practical trick, the state tuple can be treated as a

vector. A generic example is considered in Figure 33 and the corresponding equations

are given in Equations 41–44.

A

D
C

B

γ δ

ε

α

β

Figure 33: Example Markov chain transitions for a single state

gi(t) =
k∑
j=1

(Fromjfj − Tojfi) (41)

where g is the total transitions of state i, k is the number of states, and f is the

probability of being in a given i at time t.

Transition out of A can be abstracted as:

gA(t) = αfA(t) + βfB(t) + γfA(t). (42)

115

Transition into A can be abstracted as:

hA(t) = δfB(t) + εfD(t) + γfA(t). (43)

The total effect on state A can be found by adding the two fluxes above:

dfA(t)

dt
= hA(t)− gA(t)

= δfB(t) + εfD(t) +����γfA(t)− αfA(t)− βfB(t)−����γfA(t)

= δfB(t) + εfD(t)− αfA(t)− βfB(t). (44)

One can think of the transitioning as a flow of probability. Because there can

be only one transition from one state to another (if there are more, they can be

summed up into a single one), the transitions out of one state can be represented as

a list, similar to the state list. In this case, the list is a vector because there are no

restrictions on the numbers in this list. The list can be freely manipulated by scaling

and addition operations, and in turn satisfies the vector axioms. The vector form of

Equation 41 is given in Equation 45.

gi(t) =

[
From1 From2 · · · Fromk

]

f1

f2

...

fk

−
[
To1 To2 · · · Tok

]

f1

f1

...

f1

(45)

The transition vectors of all states can be put in a list, which can act as a ma-

trix. The transition matrix holds all the information about the transition rates from

any state to every other state. Now, the state vector can be linearly mapped to a

future state vector by the transition matrix. This mathematical formulation, which

is a system of homogeneous first order linear differential equations, can be solved

(simulated) for the dynamic state transition behavior of the system being modeled.

The general form of this equation is given in Equation 47. An example of a Markov

Chain network and its transition matrix is given in Figure 34.

116

A

D
C

B

γ δ

ε

α

β

E ζ

η

θ

ι

Figure 34: Example Markov chain network

T =

−α− β − η δ 0 ε ζ

α −δ 0 0 0

β 0 −ι 0 0

0 0 ι −ε θ

η 0 0 0 −θ − η

(46)

dV (t) = T V (t)dt (47)

In order to calculate the state space at a given time, Equation 47 is integrated

from t = 0 to t = t∗.

V (t∗) =

∫ t=t∗

t=0

T V (t) dt+ V (t = 0) (48)

The simulation then is transformed into a mathematical evaluation of an integral.

In Markov Chains the transitions are a function of only the current state (i.e., the

entries of the matrix are constants), which makes this integral analytically solvable.

This property is called memoryless or Markov. The condition is represented by Equa-

tion 49 [191]. The general solution technique is given in Equations 50 and 51. It can

be seen from the equation that the solutions are indeed exponential distributions. The

equation for a cumulative distribution function of generic exponential distribution is

given in Equation 52 [191]. Exponential distributions are memoryless [191].

P (X ≥ x) = P (X ≥ x0 + t | X ≥ x0) (49)

117

dX(t) = AX(t)dt (50)

X(t) = eAX(t) +X(t = 0) (51)

F (x;λ) =

1− exp−λx, ∀x ≥ 0,

0, ∀x < 0.

(52)

Once this equation is solved, it can be evaluated for all states and t ≥ 0. The

transition dynamics can be plotted for all states, questions can be asked whether the

final state can be achieved in a reasonable amount of time, whether a state sees some

build-up (the system is stuck in a state), whether there are oscillations, whether the

steady-state (t→∞) solution is satisfactory, etc.

Because the answer is in probability form, no repetitions are necessary for prob-

abilistic analysis. The answer is the converged solution of infinite trials. This fact

makes Markov Chains extremely powerful when dealing with stochastic problems,

even though this form of Markov Chains is technically deterministic. As discussed

earlier, most systems of systems show stochastic behavior in one form or another.

Markov analysis of dynamic behaviors should be considered for all system of systems

problems. However, not all problems are reducible to a Markov Chain. Markov/mem-

oryless property is not applicable to all problems practically. Markov Chains are also

limited to single elements traveling within a network. If there are multiple elements

traveling, their transitions and states have to be independent of each other, and have

to be analyzed in separate Markov analyses (this adds to the number of equations

to be solved). Markov Chain networks also cannot include AND statements as they

violate the memoryless property.

5.4.2 System dynamics

System Dynamics is yet another formalism for systems modeling. Originally called

industrial dynamics by Forrester [71] , system dynamics is used for large-scale indus-

trial, management, education, policy, social, ecological, and economic analyses [178].

118

System dynamics borrows elements from Markov chains as well. In system dynamics

nomenclature The states in Markov chains are called levels (or stocks) and the transi-

tions are called flows (or rates). Despite the similarities in elements, system dynamics

and Markov chain formulations are mathematically and semantically very different.

Instead of having all transitions as exponential distributions, system dynamics al-

lows for other types of functions. Also, system dynamics models allow for the tracking

of metrics other than probabilities, such as amounts/counts of things, money, physi-

cal measurements, and abstractions such as desirability of reliability. Finally, system

dynamics allows for unit changes in the transition so that nodes do not represent

states of a system but some properties of it. Each node in the network now repre-

sents only a property of the system so that the state of the system is the entire set

of property-value tuples.

Semantically, levels do not resemble states. They are containers of some quantity

and represent the accumulation of flows [72]. Interestingly, this quantity can be the

probability of being in a state just like Markov chain formulation, but it can be an-

other quantity as well. Stocks usually represent measurable quantities such as money

[72], number of people [198, 72], and amount of goods [18, 72] or abstract quantities

(qualitative elements) such as desirability [126], information [72], and happiness [126].

In system of systems context, they could represent data collected and stored from a

reconnaissance mission, munitions transfered and spent, passengers in a given air-

port, among others. Levels are unknown variables that describe the state the system

is currently in [72].

Flows represent influences of levels on other levels. Flows change the values in

levels and as such they represent activities withing the system [72]. The quantities

in stocks go through flows and arrive at other stocks transformed by the equation

included in the flow. These equations are called decision functions. It is important

to maintain proper unit conversions for physical quantities. Unlike Markov chains,

119

flows can make or destroy properties. The flows now represent influences instead of

Markovian transitions and as such do not have to conserve the quantities they carry

between levels. For example, a flow can multiply the flowing quantity, and return

it back to the same level, increasing its quantity significantly. Flows transport and

modify quantities from the upstream level to the downstream level.

Mathematically, levels are unknown variables in a system of differential equations.

The equations are embedded into the flows and each flow includes two equations:

out of upstream level and into the downstream level. Another element that system

dynamics has is a parameter. Because all parameters inside flow equations need to be

graphically represented, parameter blocks are connected to flows via an information

arrow. System dynamics formalism is a graphical one and as such the inclusion of

every parameter in equations is key to transparency. Unlike Markov chains, the flow

equations in system dynamics are all different; therefore, showing information arrows

and parameter blocks is a good practice. An example of a simple system dynamics

model that includes levels, flows, parameters, and information arrows is shown in

Figure 35 and the related equations are given in Equations 53–55.

Susceptible lnfected Recovered

lnfection Rate Recovery Rate

B BR

Figure 35: Example system dynamics network that represents an epidemic

Let λ and µ represent infection and recovery rates respectively. Also, let S(t), I(t),

and R(t) represent susceptible, infected, and recovered population as a function of

time. The system dynamics model shown in Figure 35 can be written as shown below.

In three fairly simple integral equations that can be solved easily with numerical

120

integrators, a disease model with a fixed population and infection rate can be modeled.

System dynamics is a powerful method in thinking about systems and representing

them in easy to understand constructs.

S(t) = −
∫ t

0

λS(t)I(t)dt+ S(0) (53)

I(t) =

∫ t

0

λS(t)I(t)dt−
∫ t

0

µI(t)dt+ I(0) (54)

R(t) =

∫ t

0

µI(t)dt+R(0) (55)

Other than these elemental constructs, there are source, sink, and delay elements.

Sources and sinks create or destroy quantities that flow out of or into them using

flow connectors, respectively. Inclusion of sources and sinks changes the nature of the

mathematical equations that govern the dynamics of the systems to non-homogeneous

differential equations. The final general equation type that needs to be solved for sim-

ulation is then a system of non-homogeneous first-order nonlinear differential equa-

tions. The main equation of a system dynamics model is the equation for a stock.

This equation is shown in Figure 36. Other equations are added as seen fit by the

modeler. Delay elements are the most complicated elements in system dynamics for-

mulations. In their diagram box, they include many variables regarding the order and

type of delays [73]. Most frequently used delays are of the exponential and discrete

types.

Sl O

Figure 36: The equation for a level with an input and an output flow

The real power of system dynamics simulations is realized when the networks in-

clude a certain number of feedback structures. These feedbacks are called reinforcing

if their effect is to enhance the change of quantities in a level, and balancing if their

effect is to work against the change of quantities in a level. This formulation is similar

121

to static stability/instability. Examples of reinforcing and balancing loops were given

in Figure 35. In the example, the more the number of infected people, the faster the

infections occur; however, the more the number of infected people, the more recoveries

happen. The first one is a reinforcing loop, the second is a balancing loop.

The non-homogeneous nonlinear first-order ordinary differential equations are usu-

ally not analytically solvable. These equations now need to be solved numerically and

depending on the method used, this step may reduce the accuracy and create conver-

gence issues. Today, reliable numerical ordinary differential equations solvers exist

for most software packages, which alleviates the problem for reasonably sized net-

works with fairly short simulation times. As the simulation duration is increased, the

numerically solved equations tend to build up errors.

It is important to mention that when it was invented, system dynamics was not

entirely a new concept. It is a graphical representation of ordinary differential equa-

tions. It emphasized form over semantics and therefore is a formalism. Human mind

can grasp the influences of parameters on other parameters better graphically than

symbolically. Larger models can be constructed easier with graphical building blocks,

rather than inserting symbolic mathematical terms into systems of already compli-

cated equations. A number of software packages with graphical user interfaces for

system dynamics modeling exist commercially and freely [83, 107, 162, 187, 197, 200].

5.5 Deterministic, dynamic, and discrete models

5.5.1 Discrete-time Markov chains

Similar to continuous Markov chains, discrete Markov chains consist of two elements:

states and transitions. These models have limiting assumptions, but they can un-

cover oscillatory or stable behavior as time tends to infinity with fairly low com-

putational expense. Because a discussion of Markov chains fundamentals was given

in Section 5.4.1, the focus of this section will be more on the changes due to the

122

discreteness.

In discrete Markov chains, the transitions are instantaneous and happen during

discrete time steps. Imagine a discrete Markov chain that has a step time of 2 seconds

as an example. At time t = 4, the Markov chain model has some numbers in its states

(vertices), and at the next time t = 6, it will have some numbers (possibly different

numbers) in its states again. However, it does not have any state at time t = 5, as

such an existence is not defined by the model. Discreteness applies only to time, the

numbers in states are not discrete. Just like continuous Markov chains, the numbers

assigned to the states are analogous to the probability of the system to be in that

state at a given time. The numbers in the states can only assume values between 0

and 1, and the sum of all the values in the states still add up to 1. The states can

be gathered into a list, or using the same trick described for continuous-time Markov

chains (on page 115) into a vector. The transitions do have a different meaning

compared to the continuous case. In the discrete Markov chains the number attached

to the transition represents the probability of that transition happening at each time

step. In the continuous case, this number was the rate parameter in the exponential

distribution. An example network is given in Figure 37. On the same figure, the

evolution of the Markov chain model in three time steps is depicted.

Unfortunately, discrete-time Markov chains are not solved as functions that can

simply be plotted. However, the equations for the transition have desirable qualities.

A very brief discussion on discrete-time Markov chain mathematics is given below.

State vectors can be represented by column or row vectors (in this work a column

vector form is used). The definition is given in Equation 56. Given a state vector, the

next state vector can be found by multiplying it by the transition matrix as shown in

Equation 58. The state vector for the example Markov chain depicted in Figure 37

at each time step is given in Equation 57. The transition matrix of the same Markov

chain is given in Equation 59. It is important to note that the transition matrix is a

123

0.01.0

.5

.2

.3
.1

.6

.3
.2

.8

1. 0.0

0.0

0.00.2

.5

.2

.3
.1

.6

.3
.2

.8

1. 0.5

0.3

0.3.09

.5

.2

.3
.1

.6

.3
.2

.8

1. 0.1

.51

0.3
.028

.5

.2

.3
.1

.6

.3
.2

.8

1. .045

.627

Figure 37: Discrete-time Markov chain transitions

constant matrix and it does not change with respect to time.

State vectors can be obtained by repetitive multiplication of the transition matrix.

Equation 60 shows a general formula for obtaining a state vector for a given time step.

There are some decomposition techniques for a square, non-negative matrix that can

help with the calculation of the powers of a transition matrix.

V (ti) =

P (system in state 1 at time step i)

P (system in state 2 at time step i)

...

P (system in state n at time step i)

(56)

124

V (t0) =

1

0

0

0

, V (t1) =

0.2

0.5

0.3

0

, V (t2) =

0.09

0.1

0.51

0.3

, V (t3) =

0.028

0.045

0.3

0.627

(57)

V (ti+1) = T V (ti) (58)

T =

0.2 0.1 0 0

0.5 0 0 0

0.3 0.3 1 0.2

0 0.6 0 0.8

(59)

V (ti) = T V (ti−1) = T (T V (ti−2)) = · · · = T iV (t0) (60)

Perhaps more importantly, a steady-state analysis can be performed using the

Perron-Frobenius Theorem [30]. There is a unique state vector that satisfies the

condition given in Equation 61. Any eigenvalue other than λ = 1 is not a valid

eigenvalue (the sum of all elements in the state vector must equal 1). This unique

state vector is the steady-state solution to the discrete-time Markov chain. Using this

technique, discrete-time Markov chains can be solved for large values of time steps

very efficiently. For the example given in Figure 37, it can be seen that the third

state (bottom left), has no exit. This is a clue that all probabilities will gather in

that state eventually. In fact, the eigenvector corresponding to the eigenvalue that is

equal to unity, represents exactly that. This eigenvector is given in Equation 62.

V (ti+1) = 1V (ti) = TV (ti) (61)

lim
i→∞

V (ti) =

0

0

1

0

(62)

125

In addition to solving Markov chains analytically, given a starting state, a Markov

chain model can be executed stochastically (i.e., every execution results in a different

outcome). Such Markov chains will be discussed under stochastic models. Even

though deterministic Markov chains model stochastic systems, as analytical models

they are deterministic. For example, given a transition matrix such as the one above,

the steady-state solution is always that given in Equation 62.

5.5.2 Petri nets

Petri nets are similar to discrete-time Markov chains with one major difference: Petri

nets describe the states of multiple systems. Petri nets have found many applications

in fields such as reliability [188], communications [32], manufacturing [164], chemistry

[165] and many more. Petri nets are formulated somewhat differently compared to

Markov chains but they are still mathematical graphs. The discussion below describes

a Petri net.

Petri nets are directed, bi-partite graphs. A bipartite graph’s vertices can be

decomposed into two disjoint sets such that no two vertices within the same set are

adjacent [194]. Figure 39 depicts a bipartition. There are two types of vertices: a

place and a transition. Transitions in a Petri net are represented as vertices (contrast

this to Markov chain transitions). A bi-partite graph is a graph, in which vertices can

be organized into two disjoint independent sets and there are no intra-set connections

(i.e., a vertex in one set can only connect to a vertex in the other set via an edge).

Figures 38 and 39 show a Petri net example and its bi-partite separation.

Petri net places hold a number of tokens, depicted as dots within places. These

tokens can be colored differently to represent different kinds of systems (colored Petri

net). If multiple places are leading to a transition, in order for that transition to fire,

all places have to be occupied. If a transition leads to multiple places, all the places

get a number of tokens when it fires. Figure 40 represents a simplified Petri net model

126

T1

P1

P2

P3
T2

P4

Figure 38: An example Petri net graph

P1

P2

P3

P4

T1

T2

p t

Figure 39: Example Petri net graph in bi-partite arrangement

for the combustion of methane. In this model, if there was only one O2 molecule in

the beginning, the react transition would never fire, and methane would not burn in

the simulation.

Almost all Petri net models are stochastic models. However, some special cases

can be simulated as deterministic models. The main source of stochasticity stems

from the fact that sometimes places are connected to multiple transitions and if they

happen to fire simultaneously, the simulation would choose one at random to fire and

cancel the other. Such simultaneous firings, conflicts, and confusions are dealt with

within the simulation engine. Stochastic Petri nets will be dealt with under stochastic

models. However for the purposes of this section, it is important to note that not all

Petri net graphs can be simulated as a deterministic model.

Petri net models create and destroy tokens, unlike Markov chains where the total

127

CH4 O2

CO2 H2O

2

2

CH4 O2

CO2 H2O

2

2

React React

Figure 40: A Petri net model representing methane burning

probability is always equal to unity. Such properties and the ability to model multiple

entities are useful properties of Petri nets for system of systems modeling. Activity

diagrams used in UML and SysML can be translated into Petri net formalism. DoDAF

does not provide a standard in creating its viewpoints and is more flexible than the

other two modeling description languages. DoDAF’s OV-5b and SV-10b are likely

candidates for a Petri net formalism and model based on their descriptions [59].

5.6 Stochastic and static models

5.6.1 Monte Carlo

Monte Carlo is the general name given to random sampling for simulations. When

analytical deterministic solutions are not readily available for stochastic problems,

multiple samples of the stochastic scenario can be executed and the results analyzed

statistically. In order for Monte Carlo analysis to work large numbers of samples are

needed. Due to this reason, Monte Carlo method is only practical for the solution of

stochastic problems with a fast execution time.

Figure 41 shows the integral of e−x between 0 and 1 using a Monte Carlo simu-

lation. Random points are generated inside (0, 0), (0, 1), (1, 1), (1, 0). If the y value

of these points are less than the e−x they are counted, otherwise they are discarded.

The total count is later divided by the number of points used in the simulation and

multiplied by the area that the random points were generated in (in this particular

128

case that area is equal to 1). The example in Figure 41 used a thousand points and

estimated the area under the curve to be 0.635 (the real answer is roughly 0.632).

Figure 41: Monte Carlo simulation for the integral of e−x between 0 and 1

Monte Carlo simulations are usually used on top of other modeling methods. For

example, a stochastic Petri net model can be run repeatedly using a Monte Carlo

simulation. By themselves, they are of limited value, but paired with pseudo-random

number generators and other models, Monte Carlo simulations can be invaluable.

5.7 Stochastic, dynamic, and continuous models

Continuous random numbers are best handled analytically. Any Monte Carlo simu-

lations using continuous random numbers are implemented in a discrete setting. For

example, a Markov chain simulated via a Monte Carlo simulation can have continuous

time, but state changes will end up being discrete steps (only one state will be active

in a given time). There are no practical stochastic, dynamic, and continuous models

relevant to system of systems analysis.

129

5.8 Stochastic, dynamic, and discrete models

5.8.1 Monte Carlo discrete time Markov chains

Markov chains that advance in discrete steps can be simulated case by case using a

Monte Carlo simulation. In this formulation, the elements of the state vector of the

system can be thought to equal to exactly zero, except for one element, which will

be equal to one. Every transition is definite: if there are multiple possible transitions

out of a state, only one will be picked at every time step. In this setting Monte Carlo

Markov chains are very similar to Petri nets but still represent a single system.

Monte Carlo Markov chains do not operate on the state vector with a transition

matrix. At each step, the simulation looks at the possible transitions out of the state

the system is in. Then, it creates a cumulative distribution function based on the

choices and their inherent probabilities. Figure 42 depicts such a simulation step. If

the system is in the top-left state initially, at the next step, it will be in bottom-left

state with a probability of 0.3, in the middle state with a probability of 0.5, and

remain in the top-left state with a probability of 0.2.

Monte Carlo Markov chains, therefore, advance steps algorithmically, not analyt-

ically. In order to get the probabilities of being in certain states, one has to run the

model numerous times. This is not an issue if one is trying to find the steady-state

solution, i.e., t→∞. Simple Markov chains converge fairly quickly. However, in or-

der to get a metric such as the time to reach the end state with a 90% probability, the

modeler has to perform a large number of runs, execute each run for a large number

of steps, save the states of each run and step, and finally average them across the

runs. The data input-output and final statistical analysis can be excessively com-

puter intensive. Therefore, Monte Carlo methods should only be used with Markov

chains if analytical methods fail for some reason. Harnessing the desirable analytical

properties of Markov chains is important in a simulation study.

130

0.01.0

.5

.2

.3
.1

.6

.3
.2

.8

1. 0.0

0.0

0.00.0

.5

.2

.3
.1

.6

.3
.2

.8

1. 0.0

1.0

0.00.0

.5

.2

.3
.1

.6

.3
.2

.8

1. 1.0

0.0

0.0

.5

.2

.3
.1

.6

.3
.2

.8

1.

P=0.2
P=0.5

P=0.3

1.0

0.0

0.0

Figure 42: Monte Carlo simulation step for a discrete time Markov chain

5.8.2 Petri nets

Most Petri nets are stochastic models as discussed on page 127. Here, Petri nets

that are not carefully crafted to be deterministic are discussed. As per the discussion

before there are multiple sources of stochasticity for Petri nets:

1. given a state of the system, multiple transitions are ready to fire simultaneously,

but only one is allowed in a single simulation step, or

2. the transitions are not deterministic, they happen with a certain probability or

they take a random amount of time to fire, or

3. token aging is enabled in the Petri net.

131

At each step of the simulation, only one transition can fire. In situations where

multiple transitions that share some input places are ready to fire, the order of the

firing makes a difference in the simulation output. In such situations, the simulation

algorithm must resolve concurrency, conflict, and confusion instances [146] and decide

on which transition to fire. In order to obtain unbiased simulation results, such

situations are usually randomized and the Monte Carlo method is used to simulate

the model.

The second case of random firing resembles a Markov chain transition. Once a

transition is enabled (i.e., all of its input places have the necessary amount of tokens),

the simulation algorithm either decides whether the transition fires during the next

time step or when the transition will fire. The first case is a time-stepped solution.

The second case resembles a discrete event simulation. Discrete event simulation

algorithm will be discussed later in this section.

Finally, in the third case, some Petri nets include an aging token logic [188].

Token age can affect the firing of transitions in many ways such as changing the

schedule, probability, or inhibiting it by removing an older than allowed token. Such

a logic would not be admissible in a Markov chain (memoryless property would be

violated). The use of aging tokens is also technically not part of the standard Petri

net formulation, but Petri nets are more easily extensible.

5.8.3 Queueing theory

Queueing models borrow from Markov chains as well as Petri nets. They model a pro-

cess multiple entities go through. Examples of such processes include communication

networks (data packets travel through servers), vehicle assembly lines (a vehicle cha-

sis travels along a line and parts are attached to it throughout), airports (passengers

arrive, check-in, go through security, wait at the gate, and board the aircraft), and a

Ph.D. process (students enroll in the program, take the qualifying exams, propose a

132

topic, and defend their thesis someday). Figure 43 shows a simple queueing model.

S1

S2

S3

Q2

Q3

Q1

Figure 43: Example queueing model

Queueing models introduce the aspect of a queue ahead of servers, queueing theory

counterpart of places, and depending on the model formulation queues can have

capacities and rules such as first in first out or priority processing. Queues are one

of the main focuses of queueing models and they are constantly monitored for mean

waiting times, mean queue lengths, and instances when they fill up. Not every server

must have a queue (i.e., server has infinite capacity), but each queue must have

a server. If a queue overfills, the system fails to process the lost customers (they

disappear).

Servers process customers in a process time assigned to them. They also have a

limit on how many customers they can process simultaneously. If a server is busy,

customers arriving at this server’s station must wait in its queue. It can be shown

that if the arrival rate to the server is faster than the server’s processing time, the

queue will fill to infinity. However, in the opposite scenario of the arrival rates being

slower than the process rates, the server is underutilized. One of the important uses

of queueing theory is to optimize a network so that the queues are small but servers

are well-utilized.

Each server-queue pair can be characterized by Kendall’s notation: A/S/c [114].

A stands for arrival, S stands for service time, and c stands for server capacity. A and

S are usually random and drawn from various random populations. However, deter-

ministic arrival and service times with careful scheduling can result in a deterministic

133

simulation.

5.8.4 Discrete event

Discrete event models are much more flexible compared to the ones described before.

Discrete event models are executed to represent the instantaneous changes in system

states [121]. The models can be executed using pen and paper as the logic is fairly

easy to follow; however, modern systems have too many elements and functions to

execute their models without a computer [121]. Discrete event simulation is not

suitable for continuous processes such as dynamics (Newton/Euler’s Laws), flows,

and thermodynamics where first or subsequent derivatives are key analysis assets. For

example, the fall of an object is described in Galileo’s Gedankenexperiment discussed

on page 66. A discrete event model of this system would not be extremely useful.

State 0 The stone is held at some height h above the ground.

State 1 The stone is released and is freely falling.

State 2 The stone is on the ground, resting.

Because the states change instantaneously at a given time, the trajectory of the

stone is impossible to calculate using a discrete event simulation. The information

on velocity and acceleration is completely lost. Similarly, a discrete event model of

an aircraft flying would not be a suitable model for performance calculations such as

range, endurance, and turn radius.

The state changes in a discrete event model are done via events. A common

confusion is to think that discrete event models are discrete in time: they are actually

discrete in events, not in time. In most discrete event simulation programs [121], time

is continuous (i.e., it does not have fixed-steps) and at specific times discrete events

(i.e., instantaneous state changes) happen. These events are comparable to transitions

in time discrete Markov chains and Petri nets.

134

In discrete event models, the network of elements represent a large-scale process.

Again, this network can be represented as a graph. The elements of this graph are

events (sometimes referred to as processes), transitions, and queues. Discrete event

models are very similar to queueing models in this respect. Additional logical elements

can be added to discrete event models such as joiners, splitters, and/or gates, etc.

All queueing theory elements are included in discrete event models such as queues

(including their rules), server capacities, and customers (called entities in discrete

event nomenclature). Additionally, discrete event models can operate on the entities

and modify them. Entities can have effects on servers, capacities can change over

time, etc. Because discrete event paradigm is extremely flexible not every aspect of

discrete event simulations will be discussed here.

A discrete event simulation has a number of components:

Main program: This program runs the simulation from the initial conditions to the

exit conditions.

Simulation clock: The simulated time is tracked by this variable. The simulation

clock is different from the real time and the CPU time.

Events list: This list holds all events for the simulated system. The list is accessed

whenever a calculation is required that is related to a specific event.

Entities list: This list holds all entities currently in the system. When information

about a specific entity is required, that entity is found within this list.

Future event list: This list contains all the upcoming events and their schedule.

The study of various data structures for fast manipulation of this list is an

ongoing effort.

Counters: The simulation code is instrumented in specific locations to gather statis-

tics of important simulation metrics.

135

Event routine: Each event may have a different attribute, logic, sub-calculations.

The routine of each event is contained in a sub-program that is repeatedly called

by the main program.

Timing routine: Determines the next event and performs future event list opera-

tions.

Analyzer routine After the successful execution of the simulation, the analyzer

routine processes counters and returns desired statistics for the modeler to in-

vestigate.

Library routines: These routines are specific to the programming language used to

code the simulation engine. Examples of such libraries include mathematical

objects (e.g., trigonometric functions, constants, conversions), pseudo-random

number generators, input-output modules, plotting tools, and other useful gen-

eral programming libraries.

Every discrete event simulator is coded somewhat differently (e.g., routines can

be split into sub-routines, lists can be instantiated using different data structures);

however, in almost all discrete event simulators, the above list is a minimum set

of required software elements. Figure 44 shows a model of a simple discrete event

simulator. Most of the computation happens within event routines.

If the event routines are simple but are called a large number of times, list ma-

nipulation within the timing routine becomes the driver of the run time. Because

the timing routine modifies the future event list (searching, removing, and adding

elements to lists are expensive computation procedures) it is important to keep the

future event list small. However, if there are a large number of entities in the system,

the future event list’s growth cannot be avoided. In such cases, it is more desirable

to use more efficient data structures such as calendar queues [40].

136

Start

lnitialization routine

Main Simulation

Timing routine

Analyze routine

End

Event routines

Exit

Repeat until exit

Figure 44: A block diagram of a simple discrete event simulator

5.8.5 Agent-based

Agent-based models are even more flexible than discrete event models. However,

this flexibility takes a toll on CPU time as agent-based model simulation algorithms

include a large number of nested loops. Agent-based models are used to study the

dynamic interactions between the elements of a system and the higher level results of

those interaction in the pure bottom-up modeling fashion. Agent-based simulations

are one of the best analysis tools for emergent and chaotic systems.

Agent-based simulations are tailored towards a large number of elements. These

elements (agents in agent-based nomenclature) constantly monitor their immediate

137

environments and perform certain actions based on their goals. The agents (rep-

resenting systems) are coded as autonomous discrete decision-making entities that

communicate with each other but make their own decisions [36, 127]. Agents observe

their environment, interpret sensory input, analyze options, and make decisions based

on their goals. The decisions can be crisp or stochastic (given the same situation,

agents can make different decisions), but more importantly, agents can modify their

beliefs and goals; therefore, faced with the same situation around them, they can

make entirely different decisions to reach their new goal. Agents can be programmed

to follow a small number of fairly simple rules or wired to learn through experience

via a neural network formulation. Complex emergent behaviors can be obtained even

from the simplest rules [36, 127].

Individual runs of an agent-based model can be time consuming (ranging from

minutes per run to hours per run, depending on the size and complexity of the model);

therefore, it quickly becomes prohibitive to study large numbers of variables within

the agent-based model, even when using a well chosen design-of-experiments. Inside

the simulation algorithm, the simulation time is stepped. These time steps are of

equal length and all simulated phenomena happen at these discrete time indices. In

between time steps, the simulation is frozen and nothing is changing. At the time

steps every agent performs certain actions based on their own decisions. This is a

nested loop: actions loop inside the agents, agents loop inside the simulation loop.

Depending on the activity of agents, number of agents, and number of time steps, an

agent-based simulation can run for a very long time. Additionally, some agent-based

simulation algorithms create links between agents, and these elements need to be

tracked and taken into consideration as well.

Even though they are algorithmically not very efficient, they are very useful in

cases when the high-level order is not known, but the behaviors of smaller elements

can be obtained easily. The modeler must be very careful, however, as small deviations

138

can cause large changes in high-level behavior of the system as a whole. Also, some

systems do not have autonomous elements that make their own decisions. In such

cases, agent-based modeling can be thought of as an overkill. Because agent-based

models are less mathematical and more algorithmic, efforts to verify and validate

them are significantly greater. Each agent-to-agent interaction, agent-to-environment

interaction, intra-agent logic, intra-environment logic, and the entire model must be

validated in order gain confidence on the model.

Object oriented programming is suitable for agent-based modeling [166]. Because

agents are self-contained elements, using an object oriented programming approach is

simply easier and requires fewer lines of coding. Also, in the object oriented approach

code snippets are reused as many times as possible using inheritance and polymor-

phism properties of the approach. Also, agents’ attributes are encapsulated within

the object code, which enables natural development of agent-based models.

Agent-based models do not have a common formalism found in other modeling

paradigms. However, they can be developed using regular UML or SysML diagrams

just like any other software or system respectively. Figure 45 shows the interactions

of an agent with other agents and the environment.

5.9 Transition to experiments and technical work

The following chapters focus on the experimental setup and performed, results ob-

tained, and details about the technical work. The experimental setup is given in

the next two chapters and the experimental execution and results are detailed in

Chapter 8.

139

EnvironmentAgent A

Goals

lnterpret

Decision

Agent B

Goals

lnterpret

Decision

Figure 45: A simplified schematic of an agent-based model

140

CHAPTER VI

MODELING POTENTIAL OF OPERATIONAL

ARCHITECTURE VIEWS

What we see of the real world is not the unvarnished

real world but a model of the real world, constructed

so it is useful for dealing with the real world.

Richard Dawkins

One of the main positions taken in this work is that architectures are conceptual

models, i.e., abstractions of reality that include enough information to be numerically

modeled, solved, simulated, or analyzed. This argument predicts that elements that

exist in architecture definitions have computer modeling counterparts. For example

an operational node which is part of an OV-2 Operational Resource Flow Description

of a system of systems can be reinterpreted as a state which is a part in a possible

Markov chain representation of the system of system. A similar process exists for

example for Euler’s Laws and free body diagrams. A number of equations are written

for each moving element in a free body diagram based on the degrees of freedom that

element has. There is a direct connection between a free body diagram element and

an equation within the system of second order ordinary differential equations used to

solve the problem. This chapter and the next investigate such connections between

architectural elements and modeling elements.

Before diving into architecture views, a rough estimate of what that work will

entail is presented here. There are a large number of DoDAF views that need to be

analyzed from a modeler’s perspective. Some simplification is therefore necessary.

Some views, such as the capability view, for example, can be removed from analysis

141

mainly because they are not meant to describe the system of system’s operation.

Additionally, the services view is very similar to the systems views and the analysis

of one can be applied to the other without large modifications. Based on these

arguments, the analysis here will be limited to the operational (OVs) and systems

views (SVs). And even when only OVs and SVs are included, there are still 22

standard views1 to be analyzed.

Considering the hypothesis set forth in Chapter 3 (a sufficiently complex system

of systems will require more than one modeling technique for analysis) these 22 views

need to be grouped in feasible but different combinations for each modeling type

considered. The problem becomes very large for a human to solve. Specifically, for

each model type, every combination of all sizes up to the number of architecture views

analyzed must be considered. The calculation is given in Equation 63, where na is

the number of analyses, nm is the number of model types, and nv is the number of

views.

na = nm

nv∑
k=1

(
nv
k

)
= nm

nm∑
k=1

nv!

k! (nv − k)!
= 8

22∑
k=1

22!

k! (22− k)!
= 33, 554, 424 (63)

Each one of the 34 million experiments will require the creation of an architecture

consisting of only the combination of views specified in the experiment, and every

modeling type must be checked against that combination. The process is meant for

a human and cannot be automated. It is evident that this is not a feasible approach

to the problem.

Interestingly, in order to find a more feasible solution, the problem must be made

larger first. Because it is not obvious what view holds what valuable information for

each modeling type, both views and models need to be broken into more definitive

constituents. These constituents will be named architecture elements and modeling

elements. The problem becomes larger because instead of 22 views and 8 models, there

1OV-1, OV-2, OV-3, OV-4, OV-5a, OV-5b, OV-6a, OV-6b, OV-6c, SV-1, SV-2, SV-3, SV-4,
SV-5a, SV-5b, SV-6, SV-7, SV-8, SV-9, SV-10a, SV-10b, and SV-10c.

142

are 50 architecture elements and 24 modeling elements that need to be analyzed. The

list of the elements are given in Tables 1–3. The architecture elements are specified

in DoDAF specification, and the modeling elements originate from each modeling

method’s definitions.

Table 1: Operational view elements

View # View Name Type Elements

OV-1
High-Level Operational

Concept Graphic
Pictorial

Systems, Actions,
Facilities

OV-2
Operational Resource Flow

Description
Structural

Operational nodes,
Needlines

OV-3
Operational Resource Flow

Matrix
Tabular

Activitya, Info
element

OV-4
Organizational Relationships

Chart
Structural

Organization,
Relationship

OV-5a
Operational Activity
Decomposition Tree

Taxonomy
Activity,

Relationship

OV-5b Operational Activity Model Behavioralb
Activity, Misc.c,
Input/Output

OV-6a Operational Rules Model Behavioral
Activity, Rules,

Relationship

OV-6b State Transition Description Behavioral
State, Activity,

Transition

OV-6c Event-Trace Description Behavioral
Activity, Event,

Timeline
a Source or sink
b Author’s interpretation. DoDAF specification document does not offer a clas-

sification.
c Cost, performer, etc.

The advantage of this approach lies in the reuse of analysis parts. Once an ar-

chitecture element is found to be useful in being represented as a modeling element,

that information can be reused for every view-combination to model mapping. The

combinatorial nature of the problem is reduced to a multiplicative one. Equation 64

shows how many mappings are needed, where na is the number of analyses, nme is

the number of modeling elements, and nae is the number of architecture elements.

na = nmenae = 24× 50 = 1, 200 (64)

143

Table 2: System view elements

View # View Name Type Elements

SV-1 Systems Interface Description Structural
System, Sys. Node,

Interface

SV-2
Systems Resource Flow

Description
Structural

System, Flowline,
Port

SV-3 Systems-Systems Matrix Mapping System, Resource

SV-4
Systems Functionality

Description
Behavioral

System Function,
Function I/O

SV-5a
Operational Activity to

Systems Function
Traceability Matrix

Mapping
System Function,

Activity

SV-5b
Operational Activity to

Systems Traceability Matrix
Mapping System, Activity

SV-6
Systems Resource Flow

Matrix
Tabular Systema, Resource

SV-7 Systems Measures Matrix Tabular Metric

SV-8
Systems Evolution

Description
Timeline Milestone, Time

SV-9
Systems Technology & Skills

Forecast
Tabular System, Forecast

SV-10a Systems Rules Model Behavioral Logic/Rules

SV-10b
Systems State Transition

Description
Behavioral

Function state,
Systemb

SV-10c
Systems Event-Trace

Description
Behavioral

Systemb, Functions,
Interactionsc

a Source or sink
b Could be a performer, interface, or organization
c Information or material exchange

The way the elements are chosen can vary from analyst to analyst; however, the

main points should remain the same, e.g., there is a possibility to merge the server and

size elements in a queueing model, but the implications of doing so are insignificant

as long as the aspect is captured somehow. The analysis in this thesis will be carried

with the above selection and stay consistent throughout. Each of the 1,200 analyses

requires only an example of how an architectural element could be translated into a

modeling element. The following sections will organize the analysis into views and

modeling types and discuss the matches between their elements.

144

Detailed

Investigation

Element Maps
Experimental Setup

ArchitecturesModels

HypothesisInduction

Research Objective

Research Questions

Background

Motivation Context

Experiments

Conclusions

1.1 2.1

2.2, 2.3, 2.4, 2.5

3.2

3.2

3.43.3

4.4, 4.5, 5.2 5.1

6, 7

8

9

Realizes

Figure 46: This chapter and next are used to go though each architecture view and
determine their modeling potential.

145

Table 3: Model elements

Model Type Elements

Graph Vertex, Edge
Probability Conditional Probability

System Dynamics Stock, Flow, Variable
Markov Chain States, Transitions

Petri Net Places, Transitions, Arcs
Queueing Arrival, Size, Server

Discrete Event Event, Queue, Transition, Server, Entity, Resource
Agent-based Agent, Environment, Interaction, Rules

It must be kept in mind that architecture views containing enough information to

structure a computer model will be accepted here. The specific values that go into

the actual simulation as inputs will not be required for acceptance. For example, an

OV-5b includes many activities strung together to create a larger operational activ-

ity. Each of these activities have parameters such as how long it takes to finish each

of them. However, such numeric information is usually not included in architecture

views. In fact there are two specific architecture views that carry metric information:

SV-7 and SvcV-7. Were all views ignored as cannot be modeled due to the lack of

numerical information, there would be no information created in this study. There-

fore, the requirements were relaxed slightly and systematically across the board to

not require numerical values for modeling. However, the reader is to remember that

model structures themselves cannot be simulated, and keep in mind that numerical

values will be needed to perform any computer analysis eventually.

The rest of this chapter and the next will go though each architecture viewpoint

type and determine their modeling potentials. This process is simply going through

a list with no particular order and the logical development of the research is paused

until the end of the lists are reached. Figure 46 shows the stage of the progress so

far. Each map that is created between views and modeling types will have one letter

designation: “Y”, “N”, or “M”. These represent yes, no, and maybe respectively. A

146

yes entry means that this architecture element can be translated into this modeling

element. No means the opposite; maybe is inconclusive.

6.1 OV-1 High level operational concept graphic

The high level operational graphic shows the way the system of system works in

a given scenario [59]. OV-1 usually shows the systems undertaking some actions

in the context of a mission but also includes environment, organizations, facilities

etc. in order to establish the context. For example, an OV-1 for close air support

operations may show a limited area; however, an OV-1 for a deep interdiction mission

will show a large geographical area. The OV-1 is generally ignored in modeling and

simulation purposes because it cannot be used directly to model systems or their

actions. However, it sets a context for the scenario; therefore, it is essential for

modeling activities to start. OV-1 answers the question “what is being modeled”.

An example OV-1 is given in Figure 47.

There are examples in the literature that use the high level operational concept

graphic as the starting point for modeling: AbuSharekh et al. use it to communicate

what the model must simulate [12], Xiong et al. [108] and Wagenhals et al. use it

in the first few steps of architecting and evaluation process [190]. Baumgarten and

Silverman use OV-1 among many other operational views as static documents that

are used to create discrete event simulations that are very detailed [28]. One must

admit that there are also examples that do not use OV-1 explicitly. Kilicay-Ergin

and Dagli do not mention a mission concept or scenario definition [116]. This is not

surprising as their system of systems in question is not a directed (refer to page 21 for

the definition). However, they do define a “high-level meta architecture” that shows

the context of their models, which one can call an OV-1 easily. Another example of

not using OV-1 is Rodrigues’ work [170]. He gives an explanation of the SoS to be

modeled in text and jumps right into the modeling components of it. The highest

147

level of architecture view used in the work is an SV-1 and serves as a general depiction

of SoS operation.

Whether it is useful directly or indirectly for modeling efforts, it is highly likely

that an architecture will include an OV-1. DoDAF Product Development Ques-

tionnaire Analysis Report and New Product Recommendations Report cites a 92%

creation rate for OV-1 among the projects considered [6]. It is the most commonly

created product. According to Hurlburt, OV-1s are required documentation for all

major DOD acquisition programs [103].

The elements that go on an OV-1 are not standardized by design to make the view

flexible. Consequently, this architecture view cannot be decomposed into standard

elements to be analyzed. However, it is safe to assume that it will include some

systems as well as their actions that are part of the mission. It is also likely that

some facilities are shown. An attempt was made to match these elements to elements

found in modeling types. The following investigation is summarized in Table 204.

148

Enemyland

Homeland

Figure 47: Example OV-1

6.1.1 Graph model

Graphs are very flexible models and most views will be modelable by graphs. Ad-

ditionally, the choice between representing elements as vertices or edges in a graph

model is determined by the number of connections the element has. An edge is always

between two vertices by definition but a vertex may be connected to any number of

edges. This rule determines what architecture element can be modeled as a vertex

and what element as an edge. Usually, a connection for communication, resource

exchange, or needline is between two operational nodes; and therefore, they are fit to

be represented as graph edges. The reader must take note that under some conditions

(e.g., a circular graph) architecture elements modeled as vertices can also be modeled

as edges.

Because OV-1 usually depicts systems and their actions, it may be possible to rep-

resent actions as connections between the systems. In that simple case, it is plausible

149

that systems and facilities to be represented as vertices and actions or functions as

edges that connect them to each other. The reader will find similar arrangements for

OV-2, OV-5b, SV-1, SV-2, and SV-4. Additionally, because SV-5b is a more system-

atic way of displaying most of the information included in an OV-1, its graph model

will be more structured than and OV-1’s graph model. An example of how an OV-1

can be represented as a graph is shown in Figure 48. Table 4 sums up the findings.

Stealth
Bomber

Stealth
Fighter

Fwd
Air
Base

Intel
Satellite

Enemy
SAM

Figure 48: Example OV-1 to graph model translation

Table 4: Mapping between OV-1 and graph model elements

Vertex Edge
Systems Y N
Actions N Y

Facilities Y N

150

6.1.2 Probability model

A probability model from an OV-1 is technically possible; however, in many cases

it would be indistinguishable from a graph model. OV-1s do not include numerical

data but communicate a concept of operation; therefore, a probability model can be

constructed but the necessary values would be missing on an OV-1. Also, the proba-

bility model may have missing elements that are included in the graph model because

those nodes may not make sense to be modeled as a conditional probability. The sys-

tem modeler should look into other architecture views to create a probability model.

Figure 49 shows a possible OV-1 to probability network transformation. Similar to

before, Table 5 sums up the findings.

Stealth
Bomber

Stealth
Fighter

Fwd
Air
Base

Intel
Satellite

Enemy
SAM

1.0

0.9

0.950.4

0.7

0.7
0.2

Figure 49: Example OV-1 to probability model translation

151

Table 5: Mapping between OV-1 and probability model elements

Conditional Prob.
Systems N
Actions Y

Facilities N

6.1.3 System dynamics model

System dynamics modeling and the following modeling types with OV-1 will have

the same theme: there is not enough information to construct a model. However, the

OV-1 is still a valuable architecture view for modeling purposes even if it does not

include all the necessary detailed information as discussed before.

If one can imagine the large system of holding amounts of things in various stocks,

and the exchange of things between the stores, a system dynamics model can be a

natural way of representing the system. Based on this, systems and facilities can

act as stocks for things that are exchanged and transported. For example, airports,

en-route aircraft, parking lots, etc. can be modeled as stocks in a system dynamics

formulation. In this example, passengers can be traded between the systems, hence

they are the flows. Finally, the flows and stocks may have several variables affecting

their performance. Figure 50 depicts another example of how airplanes can be treated

as flows between flight information regions. All such elements do exist in an OV-1

but they are not detailed enough to build an entire system dynamics model. There

appears to be no cohesive theme to interpret the graphical icons in an OV-1 as system

dynamics modeling elements. The findings are summarized in Table 6.

Table 6: Mapping between OV-1 and system dynamics model elements

Stock Flow Variable
Systems Y N M
Actions N Y N

Facilities Y N M

152

KZJX

KZDC

KZTL

KZHU

KZTL

KZJXKZHU

KZDC

Figure 50: Example OV-1 to system dynamics model translation

6.1.4 Markov chain model

Markov chains represent possible states of a system and the transitions between the

said states. An OV-1 depicts an operational concept and this includes system in

certain states; however, the OV-1 does not usually include a description of how the

systems transition between the states. In cases where such transitions are described,

an OV-1 can be used to form a Markov chain.

Mai
nt

en
an

ce

Co
m
ba

t r
ea

dy

Ta
ki
ng

 o
ff

Cl
im

b
to

 c
ru

ise

Cr
ui
se

 1

Co
m
ba

t

Cr
ui
se

 2

Des
ce

nd

La
nd

in
g

λ λ λ λ-μ λ λ λ λ

μ

1–ρ

ρ

Figure 51: Example OV-1 to Markov chain model translation

A mission profile, which is a very common aerospace example, is given in Figure 51.

The mission profile can be thought of as an OV-1. The numerical values for transitions

153

may be missing from the diagrams, but for the purposes of this analysis the specific

values had been scoped out nevertheless. A structure for a Markov chain model can be

constructed from OV-1 architecture views. The findings are summarized in Table 7.

Table 7: Mapping between OV-1 and Markov chain model elements

State Transition
Systems N N
Actions N Y

Facilities Y N

6.1.5 Petri net model

Petri nets are very good at modeling systems that change shape, form, mode, state,

and merge with other systems or split into multiple systems. Many OV-1s can be

interpreted using such statements. For example, an attack aircraft carrying an air-

to-ground missile can split into an attack aircraft not carrying a missile and a missile

in flight. Later a missile in flight and its target can merge into a hit target. Because

such sentences are shown in an OV-1 graphically, there is enough information to be

gained from it for the purpose of Petri net modeling. Systems and facilities can

be thought of as places and actions can form transitions as well as arcs. These

points are summarized in Table 8. An example transformation is given in Figure 52.

AbuSharekh et al. uses an OV-1 to shape a Petri net model; however, most model

information actually comes from other views in their work [12].

Missiles
on board

Aircraft

SAM

Missiles
in flight

Hit
SAMFire Hit

Figure 52: A part of an example OV-1 to Petri net model translation

154

Table 8: Mapping between OV-1 and Petri net model elements

Place Transition Arc
Systems Y N N
Actions N Y Y

Facilities Y N N

6.1.6 Queueing model

Queueing theory can be a quick analysis option for systems of systems with very

specific properties that allow analytical solutions. The idea behind queueing models

is that some jobs arrive at a workstation where servers perform actions to finish the

jobs. An OV-1 depicts the concept of an operation; however, it lacks the details of each

action within the operational concept. For example, it does not include much detail

on how many of each job is required or can be generalized, it does not include concepts

such as queueing which is the very focus of queueing models. Because queueing theory

is dependent on specific assumptions to be practical to use compared with Markov

chains or more complex discrete event models, using the OV-1 for queueing theory

does not make much sense. The information included in an OV-1 can still give the

modeler a rough idea as usual. The findings are summarized in Table 9.

Table 9: Mapping between OV-1 and queueing model elements

Arrival Size Server
Systems M M Y
Actions Y M N

Facilities N N Y

6.1.7 Discrete event model

Discrete event models are the pinnacle of operations research methods. They require

a significant amount of knowledge about the system to set up. A depiction of the

systems like the OV-1 will not be nearly enough to create a discrete event model;

however, the OV-1 includes some relevant information for a discrete event model.

Actions depicted in an OV-1 can be easily interpreted as events (also, queues and

155

transitions). The systems can in turn be servers or entities that either perform jobs

or have jobs performed on them. And finally, facilities can also be represented as

servers or resources, whichever is more suitable.

Embarking
Ground

Transporting

Maritime
Transporting

Air
Transporting

Sea Basing

Fwd. Oper.
Base

Depot

Supplier

Industry

Ground
Transporting

Ground
Transporting

Maritime
Transporting

Staging

Figure 53: A part of an example OV-1 to discrete event model translation. The OV-1
was taken from Joint Publication 4-09 Distribution Operations[186].

While it is surprising to find discrete event models well catered to by OV-1s, the

reader must accept that the detail needed to get an executable discrete event model

will be mostly missing from any conceivable OV-1. The literature includes examples

of OV-1s being used to create DES models [25, 28, 108, 141]; however, in all such

cases, this particular view is only used to get the modeling activities started. In no

example is an OV-1 used in isolation to create a discrete event model. Additionally,

there are views (OV-6b and OV-5b) very well suited for discrete event modeling and

156

engineers should look into those solutions for the purpose of discrete event modeling

rather than the OV-1. An example of how an OV-1 can provide context to discrete

event modeling is given in Figure 53 and the findings are summarized in Tables 204–

207 given in Appendix A.

Table 10: Mapping between OV-1 and discrete event model elements

Event Queue Transition Server Entity Resource
Systems N N N M Y N
Actions Y M N N N N

Facilities N N N M N M

6.1.8 Agent-based model

Agent-based models have the highest complexity among the models discussed in this

thesis. As previously stated in Chapter 5, they are most valuable if a significant

amount of detail is known about the way individual agents behave in the system

of systems rather than the behavior of the collective system of systems. Therefore,

OV-1 may be the wrong kind of view for agent-based modeling. On the other hand,

the view depicts the desired behavior for the final system of systems design. Keeping

that and the fact that an OV-1 sets a context for the rest of the engineering effort

in mind, the view can be used in an agent-based modeling effort. For example,

systems depicted on OV-1s can be defined as agents, whose rules will be determined

later. Actions in an OV-1 can form part of agent interactions with other agents or

even the environment. However, they lack the ability to describe interaction rules in

enough detail and cannot be used for rules. Facilities can be interpreted as agents

or environment. An example view-to-model process is depicted in Figure 54 and the

findings are summarized in Table 11.

157

Intel
Satellite

Goals

lnterpret

Decision

Stealth
Bomber

Goals

lnterpret

Decision

Enemy
SAM

Goals

lnterpret

Decision

D
et
ec
t

En
ga
ge

Co
mm
un
ica
te

Figure 54: A part of an example OV-1 to agent-based model translation

Table 11: Mapping between OV-1 and agent-based model elements

Agent Environment Interaction Rules
Systems M N N N
Actions N N M N

Facilities M Y N N

6.2 OV-2 Operational resource flow description

OV-2 is an immensely useful view for planning that shows resource needs of opera-

tional nodes to function properly [59]. For example, a command and control node

would require information resource flows from other operational nodes and those

nodes would need orders communicated back. However, OV-2 is not a view particu-

larly useful for modeling purposes because it skips details on how the resources are

exchanged. DoDAF manual states that “it is to describe who or what, not how” [59].

This view can be considered as a requirement statement, not a detailed achievement

158

of the required communication links. One interesting use of an OV-2 can be the pre-

sentation of results from detailed analyses aggregated to OV-2’s level of abstraction.

It can then be used to check for deficiencies from the requirements. It has been used

by Baumgarten and Silverman as a static description of the operations for modeling

purposes [28]. Domerçant reads the OV-2 to calculate possible ways of rearranging

operations using mathematical graph methods [64].

As defined in the DoDAF manual, the OV-2 has two elements: operational nodes

and needlines. These elements are matched against modeling elements as was done

with the OV-1. The results are summarized in Tables 204–207 given in Appendix A.

DoDAF Product Development Questionnaire Analysis Report and New Product Rec-

ommendations Report cites a very high creation rate (76%) for OV-2 among the

projects analyzed [6]. According to Hurlburt, OV-2s are required documentation for

all major DOD acquisition programs [103].

6.2.1 Graph model

A graph model is the best fitting modeling type for an OV-2. The view is a collection

of nodes and lines and its translation to a graph model is immediate: nodes→vertices

and lines→edges. When looked at graphically, their resemblance is striking (e.g.,

Figure 55 required a caption to distinguish the view from the models). The resulting

graph model will not be representative enough to make engineering decisions such as

improving efficiency or effectiveness of the system of systems, because OV-2 does not

include implementation details as discussed earlier. However, requirement compliance

can be checked using a graph model. The results of the model should not be taken as

entirely positive without considering the lack of implementation details in the OV-2s.

The findings are summarized in Table 12 and Figure 55 shows an example OV-2 to

graph model transformation. The example OV-2 is based on the As-Is version of the

National Airspace System Enterprise Architecture[149]. Because the original OV-2

159

includes two types of needlines, two graph models are created from it.

ATCT

Aircraft

TRACON

ARTCC

ATCSCC

FSS/AFSS

Message
Coordination

ATCT

TRACON

ARTCC

ATCSCC

FSS/AFSS

ATCT

Aircraft

TRACON

ARTCC

FSS/AFSS

Figure 55: A part of an example OV-2 to graph model translation. The original OV-2
is on the top left.

160

Table 12: Mapping between OV-2 and graph model elements

Vertex Edge
Operational node Y N

Needline N Y

6.2.2 Probability model

All models except the graph model should be used very carefully with the OV-2.

Probability of messages, resources etc. reaching their intended operational sink nodes

depends on the way they are transmitted. However, the OV-2 does not carry such

information. OV-2 only shows the nodes in need of transmitted things and the sources

of the transmitted things. How the transmission occurs is abstracted away entirely.

Table 13 summarizes the findings and Figure 56 shows an example. An OV-2 derived

probability model would make a very suitable requirements compliance method. If

the operational nodes are required to have a certain probability to be connected, after

the higher-fidelity analyses are performed, the resulting probabilities can be shown

on the OV-2 allowing direct comparison for the decision maker.

ATCT

Aircraft

TRACON

ARTCC

ATCSCC

FSS/AFSS

Message
Coordination

ATCT

Aircraft

TRACON

ARTCC

FSS/AFSS

0.9
50.

99

0.9

0.85

Figure 56: A part of an example OV-2 to probability model translation

161

Table 13: Mapping between OV-2 and probability model elements

Conditional probability
Operational node M

Needline M

6.2.3 System dynamics model

System dynamics models are another high-level model that bear some resemblance

to OV-2 views. However, much like the probability models, their potential use is

limited in modeling the system of systems because of the lack of crucial details in an

OV-2. The dynamics learned from an OV-2 would be entirely misleading because the

needlines do not actually represent information or material transfer but the need of

them in operational activities. However, it is not impossible to use OV-2s for system

dynamics modeling. In some simpler cases, where the actual flow of information and

material resembles the operational needlines, it might be possible to turn an OV-2

into a meaningful system dynamics model. Table 14 summarizes the findings.

Table 14: Mapping between OV-2 and system dynamics model elements

Stock Flow Variable
Operational node M N N

Needline N M N

6.2.4 Markov chain model

An OV-2 can be translated into a Markov chain form easily due to their graphical

resemblance but a Markov chain model from an OV-2 would also be too simplistic to

represent much for the system of system it describes. Because of the same reasons

discussed earlier, the model would be unable to capture any meaningful dynamical

evolution of the system. Additionally, the OV-2 does not necessarily depict a state

changing system, i.e., all operations depicted on the view are most likely happening

concurrently. The system engineer must be careful about what he/she is modeling

with a Markov chain. For example, a single piece of information may be tracked

162

through the operation to understand when and where it is being used; however, this

would only model a tiny part of the whole system of systems. Table 15 summarizes

the findings.

ATCT

Aircraft

TRACON

ARTCC

ATCSCC

FSS/AFSS

Message
Coordination

ATCT AircraftARTCCATCSCCα β

γ

δ

Figure 57: A part of an example OV-2 to Markov chain model translation

Figure 57 shows an example of how adverse weather information can create a series

of events leading to incoming aircraft diverting to another airport. The destination

airport’s tower coordinates with the air traffic control system command to divert all

incoming aircraft. The command center then works with the regional air route traffic

control centers. The aircraft is notified by the control center via a radio message that

it needs to change its trajectory. The aircraft complies with the instructions.

Table 15: Mapping between OV-2 and Markov chain model elements

State Transition
Operational node M N

Needline N M

6.2.5 Petri net model

The OV-2 does not include any information on how the resources gathered from the

needlines end up being used, whether they are merged and passed on to other nodes

etc. Therefore, a Petri net model of an OV-2 would not be highly useful. Table 16

163

summarizes the findings. If a Petri net is going to be created because other views

that are suitable for Petri nets exist, an OV-2 can provide some information on how

to structure the model. The OV-2 and the Petri net formalism look fairly similar. As

can be seen in Table 16, the arcs and transitions are defined from a single architecture

element, which is not ideal.

Table 16: Mapping between OV-2 and Petri net model elements

Place Transition Arc
Operational node M N N

Needlines N M M

6.2.6 Queueing model

Queueing models can be a good fit to represent the ideas behind what OV-2 views

are depicting; however, the lack of implementation details renders them useless in

the same way the Petri nets or Markov chains are useless. Because a queueing model

requires information on the kinds of jobs performed on arriving work packages, OV-2s

are not practical for Petri net modeling. Table 17 summarizes the findings that are

entirely negative.

Table 17: Mapping between OV-2 and queueing model elements

Arrival Size Server
Operational node N N N

Needlines N N N

6.2.7 Discrete event model

Discrete event models are further complicated compared with queueing models. The

OV-2 abstracts away many interesting nuances of the system that can be investigated

by a discrete event formulation. Therefore, the information included in an OV-2 is

mostly vaguely guiding and not specific enough for discrete event modeling. The

information in an OV-2 that could be useful will be repeated again in a more suitable

164

view such as the OV-5b as well. It is best if OV-2 is not considered for discrete event

modeling purposes. Table 18 summarizes the findings.

Table 18: Mapping between OV-2 and discrete event model elements

Event Queue Transition Server Entity Resource
Operational node M M N M N N

Needlines N N M N M N

6.2.8 Agent-based model

An OV-2 has a very high level perspective of the system of systems. This is a major

mismatch for agent-based modeling, which requires detailed, low-level information on

how its agents must behave and is used to discover emergent larger-scope behavior.

Additionally, the lack of implementation details in an OV-2 renders the view entirely

impractical for an agent-based modeling effort. OV-2’s system view counterpart SV-1

will have some—still limited but some—use but an OV-2 is better left alone for agent-

based modeling purposes. Table 19 summarizes the results.

Table 19: Mapping between OV-2 and agent-based model elements

Agent Environment Interaction Rules
Operational node M N N M

Needline N N N M

6.3 OV-3 Operational resource flow matrix

OV-3 is a matrix representation of the basic information included in an OV-2 with

the addition of more details of why the resource flows are needed. The findings from

an OV-2 apply to the OV-3 for the discussion of its use in modeling almost exactly.

The only difference is that some additional detail on the exchanges is included in

an OV-3 which is its purpose. It is presented in a table form listing each exchange

shown in the OV-2 row-by-row. In each row of an OV-3, there is information on the

origin operational node and destination operational node and details on the resource

165

exchanged. The details could be significantly different based on the system of systems

in question. It is difficult to pass judgment on whether the details would be useful

for various modeling types. It is promptly scoped out of this discussion. Baumgarten

and Silverman follow the OV-1 to OV-3 to OV-5 approach when weaving detail into

their executable architectures [28].

The source and sink operational nodes are the same kinds of things so they are

represented with on simple operational node in the analysis. Additional details about

the resource exchange can be added as appropriate. The details on how the exchange

is implemented are non-existent just like the OV-2. Because the similarities are strik-

ing, most of the discussion that follows is abridged to minimize repetition. The results

are summarized in Tables 204–207 given in Appendix A. DoDAF Product Develop-

ment Questionnaire Analysis Report and New Product Recommendations Report

cites a high creation rate (66%) for OV-3 among the projects analyzed [6]. Accord-

ing to Hurlburt, OV-3s are required documentation for all major DOD acquisition

programs [103].

6.3.1 Graph model

The mapping of OV-3 elements to graph elements is essentially the same process as the

mapping of OV-2 to graphs. The details included in an OV-3 table could potentially

be used to assign numbers to graph edges to create weighted graphs, but the basic

premise is the same. Table 20 shows the results. Figure 58 depicts a conceptual

example.

Table 20: Mapping between OV-3 and graph model elements

Vertex Edge
Activity Y N

Exchange N Y

166

ATCT

Aircraft

ARTCC

ATCSCC

Exchange ID Information Element Name Sending Node Receiving Node

TOWER-ATCSCC-I/O-2

ATCSCC-ARTCC-I/O-1

Wx Status ATCT ATCSCC

Traffic Flow Plan ATCSCC ARTCC

ARTCC-AIRCRAFT-I/O-2 Advisory ARTCC AIRCRAFT

Figure 58: A part of an example OV-3 table to graph model translation.

6.3.2 Probability model

If the details on the resource exchange included are probabilities, the probability

model could be filled in with more information compared with a probability model

made from an OV-2. Otherwise, the results are the same. Table 21 summarizes the

results.

Table 21: Mapping between OV-3 and probability model elements

Conditional probability
Activity M

Exchange M

6.3.3 System dynamics model

Each row in the OV-3 can be modeled as a flow in the system dynamics formalism.

However, as in the case of OV-2, the implementation details are lacking. The details

included in the OV-3 rows are not enough to create a meaningful system dynamics

model. Table 22 shows the results.

Table 22: Mapping between OV-3 and system dynamics model elements

Stock Flow Variable
Activity M N N

Exchange N M N

167

6.3.4 Markov chain model

The extra details included in each row can be used to populate a more complete

transition matrix. Additionally, a single OV-2 or OV-3 can actually create Markov

chain models for each resource type, but at this high level of operations Markov

chains are not well suited to be used as discussed under the OV-2 section. Table 23

summarizes the results.

Table 23: Mapping between OV-3 and Markov chain model elements

State Transition
Activity M N

Exchange N M

6.3.5 Petri net model

As discussed earlier, OV-2s are not highly suited to be used for Petri net modeling.

The extra information found in the OV-3 table rows could offer hints in how resources

are used. This can potentially fix the issues from the OV-2 analysis. However, without

the specific information how the resources are combined, split, and used, OV-3s are

still not well suited for Petri nets. Table 24 summarizes the findings.

Table 24: Mapping between OV-3 and Petri net model elements

Place Transition Arc
Activity M N N

Exchange N M M

6.3.6 Queueing model

The extra information included in an OV-3 can help fill in some values in a queueing

model. Otherwise, the results summarized in Table 25 are identical fo the OV-2

results.

168

Table 25: Mapping between OV-3 and queueing model elements

Arrival Size Server
Activity N N M

Exchange M M N

6.3.7 Discrete event model

Because the OV-3 includes same details on the resources exchanged between oper-

ational nodes and how the resources are used, a hypothetical discrete event model

may in an unlikely case explicitly define event timings and queueing times. Also, the

exchanged information or resource may be used to define resources in the discrete

event formulation. Baumgarten and Silverman use the OV-3 as a part of operational

views package to create discrete event simulations[28]. In their work, it is used as a

stepping stone from OV-1 to OV-5. Most of the information required to build their

model comes from the pair of OV-5 and SV-2. Otherwise the analysis is identical to

the OV-2 analysis for discrete event modeling. Table 26 shows the results.

Table 26: Mapping between OV-3 and discrete event model elements

Event Queue Transition Server Entity Resource
Activity M M N M N N

Exchange M M M N M M

6.3.8 Agent-based model

The same mismatch between agent-based formulation and the high-level OV-2 repeats

itself for the OV-3. Apart from the potential details about the interaction through the

resource exchange no new substantial information is gained and OV-3 is deemed to be

not particularly useful for agent-based modeling purposes still. Table 27 summarizes

the results.

169

Table 27: Mapping between OV-3 and agent-based model elements

Agent Environment Interaction Rules
Activity M N M M

Exchange N N M M

6.4 OV-4 Organizational relationships chart

OV-4 shows an organization and its constituents. It is sometimes known as an orga-

nization chart or org chart. The operation depicted in an OV-1 is usually performed

by heterogeneous systems and services belonging to different organizations, divisions,

arms, etc. (i.e., sub-organizations). Figure 59 shows an example OV-4. The shaded

region will be used for modeling examples below. For example, a distribution com-

pany would be connected to suppliers and clients externally and be organized as sales,

customer support, warehouse, accounting, human resources, management teams inter-

nally. The resulting inevitable tree structure can be used to analyze the organization’s

agility for example. If sub-organizations are deep/vertical and are not connected with

direct relationships, a job will need to go through many offices to get to the office

tasked to perform it. An OV-4 is useful in such structural studies but includes almost

no information about the details of how actions are performed.

There are two types of OV-4s. The first shows actual departments, actual sub-

organizations whereas the second type only shows typical roles and posts. For sys-

tems of systems where actions follow an organizational order, OV-4s are extremely

important. Mathieu and Callaway use an OV-4 diagram to guide their modeling

of power distribution [134]. The results are summarized in Tables 204–207 given in

Appendix A. DoDAF Product Development Questionnaire Analysis Report and New

Product Recommendations Report cites a high creation rate (68%) for OV-4 among

the projects analyzed [6].

170

Academic
Affairs

Internat.
Programs

Director

Program
Initiation

Finance

Front
Office

Operations

Admin.

System
Admin.

Advanced
System Eng.

Defense &
Space

Civil Aviation
Research

Chief
Engineer

Advanced
Concepts

Propulsion &
Energy

Requirements
Exploration

Optimization,
Analytics, and
Decision Science

Modeling &
Simulation

Model-based
Systems
Engineering

System of
Systems
Engineering

Collaborative
Engineering

Airborne
Systems

Space
Systems

Naval
Systems

Ground
Systems

C4ISR

Environmental &
Policy Programs

Air
Transportation
SoS

Air
Transportation
Economics

System
Analysis

Rotary & Fixed
Wing Systems
Design

Manufacturing
Systems &
Process Design

Cyber-physical
Systems

Unmanned
Aircraft Systems
Design

Aircraft
Certification,
Operations, and
Safety

Design-Build-Fly

Autonomy &
Robotics

Aero-thermo-
mechanical
Design

Power
Generation

Subsystem &
Aero-power

Controls &
Operability

Rocket-based
Propulsion

Figure 59: Example OV-4. Shaded region will be used in the examples.

6.4.1 Graph model

A graph model is perfectly suited to perform analyses using an OV-4. It can be used

to measure organizational distances between sub-organizations. This distance should

be minimized for roles that work on the same type of jobs: cooperation can be enabled

through proximity. It can also be used to estimate consequences of reorganization

efforts (creating more relations or breaking them). In general, it can also measure

geodesic distances, eigenvalues, and sizes for the analysis of various dynamical prop-

erties of the organization. It is natural to use vertices for organizations and edges

for relations in the OV-4 context. Domerçant uses OV-4s to differentiate systems of

systems with the same workflow or systems but different hierarchies [64]. The results

are summarized in Table 28. A hypothetical example is given in Figure 60.

171

Director

Front
Office

Program
Initiation

Finance

Operations

Admin.

System
Admin.

Defense
& Space

Airborne
Systems

Space
Systems

Naval
Systems

Ground
Systems

C4ISR

Figure 60: Example OV-4 to graph model translation

Table 28: Mapping between OV-4 and graph model elements

Vertex Edge
Organization Y N
Relationship N Y

6.4.2 Probability model

The relations between organizational nodes are not related to probabilities; there-

fore, constructing a probability model from the information given in an OV-4 is not

possible. Engineers wanting to create probability models should look into other ar-

chitecture views. Table 29 summarizes the results.

Table 29: Mapping between OV-4 and probability model elements

Conditional probability
Organization N
Relationship N

6.4.3 System dynamics model

OV-4 may not be the best way to describe how work transitions from one actor to

another for specific operations; however, it is a good way to measure an organization’s

172

effectiveness as a whole. In order to measure this effectiveness, the jobs performed and

being transitioned to others could be analyzed using an OV-4 diagram and system

dynamics. Loops that are reinforcing within the organization may be discoverable

and eliminated. In the system dynamics context, reinforcing loops create extra jobs

internally as they are cycled through the system, not finish them. Therefore, they

are not desirable in the OV-4 context.

An OV-5 would be a much better fit for specific operations and should be used

before an OV-4 to set up a system dynamics model. The organizational nodes could

be represented as stocks where jobs pile up and the relations between organizational

nodes represent the transition of jobs to other nodes. Table 30 summarizes the results.

Table 30: Mapping between OV-4 and system dynamics model elements

Stock Flow Variable
Organization M N N
Relationship N M M

6.4.4 Markov chain model

Similar to the discussion on OV-4 used for system dynamics. Markov chains can

be used for individual jobs. Each job can be tracked probabilistically through the

organization. Using a Markov analysis the time ranges (e.g., earliest, latest) to finish

a job with a set confidence can be found. However, much like the system dynamics,

an OV-5b would be a better view to use for the purpose of building a Markov chain

model. One exception to this point is systems of systems whose operations follow the

organizational structure very closely. Mathieu and Callaway model a power distri-

bution network using Markov chains with the information included in an OV-4[134].

Based on this discussion, the OV-4 to Markov chain mappings are dotted with maybe

entries. Table 31 summarizes the finding.

Figure 61 shows the example of how a research project is initiated at the author’s

laboratory. An external project sponsor submits a request for proposal through a

173

channel. The director brings the proposal to program initiation for processing. Pro-

gram initiation determines that the defense and space division is best suited for the

project. Within the division, the naval systems branch is tasked to write a proposal.

Based on the work proposed, a budget is prepared in the finance office. Program

initiation puts the finishing touches and with the final approval of the director, the

proposal is sent to the school’s office of sponsored programs, which sends it to the

project sponsor. If the sponsor accepts the proposal, it is sent back to the school’s

office of sponsored programs. They notify the program initiation and finance offices,

and the program initiation notifies the naval systems branch to start the research.

The reader will notice the step-by-step process, which is more suitable for OV-5bs.

The same example will be explored in Section 6.6.4 for OV-5b to Markov chain trans-

lation.

Table 31: Mapping between OV-4 and Markov chain model elements

State Transition
Organization M M
Relationship M M

174

Academic
Affairs

Internat.
Programs

Director

Program
Initiation

Finance

Front
Office

Operations

Admin.

System
Admin.

Advanced
System Eng.

Defense &
Space

Civil Aviation
Research

Chief
Engineer

Advanced
Concepts

Propulsion &
Energy

Requirements
Exploration

Optimization,
Analytics, and
Decision Science

Modeling &
Simulation

Model-based
Systems
Engineering

System of
Systems
Engineering

Collaborative
Engineering

Airborne
Systems

Space
Systems

Naval
Systems

Ground
Systems

C4ISR

Environmental &
Policy Programs

Air
Transportation
SoS

Air
Transportation
Economics

System
Analysis

Rotary & Fixed
Wing Systems
Design

Manufacturing
Systems &
Process Design

Cyber-physical
Systems

Unmanned
Aircraft Systems
Design

Aircraft
Certification,
Operations, and
Safety

Design-Build-Fly

Autonomy &
Robotics

Aero-thermo-
mechanical
Design

Power
Generation

Subsystem &
Aero-power

Controls &
Operability

Rocket-based
Propulsion

Research
Sponsor

Sponsored
Prog. Off.

1

2
3

4

5

6

7

8
9

10

11

Dire
ct
or

Pr
og

ra
m
 In

iti
at

io
n

Div
isi

on

Br
an

ch

Fin
an

ce

Sp
. P

ro
g.
 O

ff.
α β γ δ ε

Re
se

ar
ch

 S
po

ns
or

ζ

η
θ
ι

μ

κ

λ

Figure 61: Example OV-4 to Markov chain model translation

175

6.4.5 Petri net model

A Petri net formulation for an organization chart makes little to no sense. The OV-4

shows separates between organizational entities whereas a Petri net would analyze

the way jobs would merge or split. Table 32 summarizes the purely negative findings.

Table 32: Mapping between OV-4 and Petri net model elements

Place Transition Arc
Organization N N N
Relationship N N N

6.4.6 Queueing model

Both queueing and discrete event models would seek detailing the organization’s re-

sponse to mode work arriving to it. However, the relations between organizational

nodes are commonly hierarchical not sequential. It would be possible to use several

OV-5 and OV-6s to perform queueing and discrete event analyses and display work-

load distributions on an OV-4. In that way, it could be a good visual analytics tool.

Table 33 summarizes the findings.

Table 33: Mapping between OV-4 and queueing model elements

Arrival Size Server
Organization N N N
Relationship N N N

6.4.7 Discrete event model

Discrete event models using OV-4s were discussed in the discussion for the queueing

models in the previous section. Table 34 summarizes the findings.

Table 34: Mapping between OV-4 and discrete event model elements

Event Queue Transition Server Entity Resource
Organization N N N N N N
Relationship N N N N N N

176

6.4.8 Agent-based model

An OV-4 is not a complete picture for an agent-based modeling effort. However, the

hierarchy includes hints on agent types, agent interactions, and even possibly rules

on their interactions. OV-4 would be a good view to consider when modeling a large

organized operation along with views that detail the actual operation. The type of

OV-4 that shows roles and posts can be useful in subtyping in object-oriented pro-

gramming languages that are extremely suitable for agent-based modeling. Table 35

summarizes the results. Figure 62 shows how the elements map between the view

and an agent-based formulation.

Table 35: Mapping between OV-4 and agent-based model elements

Agent Environment Interaction Rules
Organization Y N N N
Relationship N N Y Y

177

Academic
Affairs

Internat.
Programs

Director

Program
Initiation

Finance

Front
Office

Operations

Admin.

System
Admin.

Advanced
System Eng.

Defense &
Space

Civil Aviation
Research

Chief
Engineer

Advanced
Concepts

Propulsion &
Energy

Requirements
Exploration

Optimization,
Analytics, and
Decision Science

Modeling &
Simulation

Model-based
Systems
Engineering

System of
Systems
Engineering

Collaborative
Engineering

Airborne
Systems

Space
Systems

Naval
Systems

Ground
Systems

C4ISR

Naval
Systems

Goals

lnterpret

Decision

Defense
& Space

Goals

lnterpret

Decision

Director

Goals

lnterpret

Decision

Front
Office

Goals

lnterpret

Decision

Figure 62: Example OV-4 to agent-based model translation

6.5 OV-5a Operational activity decomposition tree

OV-5a resembles the OV-4. It decomposes the operation being modeled instead of

the organization performing the operation. An OV-5a is a further decomposition of

the nodes shown on an OV-2 sans needlines. OV-5a is a good list for actions to be

modeled; and therefore, it is a good checklist of preparation for a modeling effort.

However, it does not depict the way these actions are taken; as such it is not very

useful for modeling purposes. The literature is slightly difficult to interpret when it

comes to the OV-5a or OV-5b because some authors simply refer to their architecture

178

views as OV-5. The language or included figures in some papers could be used to infer

the version used but not always. The OV-5a is the rarer of the two and is less useful

in structuring a model, although it can be useful in object oriented coding purposes.

The results are summarized in Tables 204–207 given in Appendix A.

DoDAF Product Development Questionnaire Analysis Report and New Product

Recommendations Report cites a high creation rate (63%) for OV-5a among the

projects analyzed [6]. AbuSharekh et al. use a functional decomposition in their

modeling efforts that is effectively an OV-5a [12], Mittal et al. use the OV-5a to list

functions that together form capabilities and use the OV-6b for sequencing infor-

mation [141], and Domerçant uses an OV-5a to group various operational activities

[64].

6.5.1 Graph model

OV-5a works well with graph models for the same reason OV-4 works well with graph

models. However, the relationship between operational nodes and their hierarchically

lower or higher nodes do not have any practical use within graph models. The results

are summarized in Table 36.

Table 36: Mapping between OV-5a and graph model elements

Vertex Edge
Activity M N

Relationship N M

6.5.2 Probability model

The relations between operational nodes on an OV-5a are not related to probabilities.

Therefore probability models are not relevant after the creation of an OV-5a. The

results are summarized in Table 37.

179

Table 37: Mapping between OV-5a and probability model elements

Conditional probability
Activity N

Relationship N

6.5.3 System dynamics model

The hierarchical relations between operational nodes cannot be represented using a

system dynamics model. The lines are not flows of quantifiable stuff. The analysis

therefore returns entirely negative results and they are summarized in Table 38.

Table 38: Mapping between OV-5a and system dynamics model elements

Stock Flow Variable
Activity N N N

Relationship N N N

6.5.4 Markov chain model

The system of system’s operational state will not jump between operational nodes

based on their hierarchy. Similar to system dynamics models Markov chain modeling

efforts will not find OV-5as practically useful. Table 39 summarizes the results.

Table 39: Mapping between OV-5a and Markov chain model elements

State Transition
Activity N N

Relationship N N

6.5.5 Petri net model

The use of OV-5a for Petri nets is not practical for the same reasons that OV-4 was

not practical. The reader is referred to Section 6.4.5 for details. Table 40 summarizes

the results.

180

Table 40: Mapping between OV-5a and Petri net model elements

Place Transition Arc
Activity N N N

Relationship N N N

6.5.6 Queueing model

The relationship lines between operation nodes present mainly hierarchical relation-

ships. However, queueing models require sequential relations in order to model dy-

namics of system behavior. There is a major mismatch. The negative results are

summarized in Table 41.

Table 41: Mapping between OV-5a and queueing model elements

Arrival Size Server
Activity N N N

Relationship N N N

6.5.7 Discrete event model

Discrete event models are also not a good match for OV-5a views for the same reason

that queueing models are not. Table 42 shows the negative results. Mittal et al.

describe the use of an OV-5a in the process of creating a discrete event model but

also note that the real source of information in the operational modeling comes from

the OV-6 or other fit for purpose views[141].

Table 42: Mapping between OV-5a and discrete event model elements

Event Queue Transition Server Entity Resource
Activity N N N N N N

Relationship N N N N N N

6.5.8 Agent-based model

OV-5a has no details on systems (agents) or the environment or interactions between

them; therefore, it is not a good match for agent-based modeling efforts. One ex-

ception exists that must be discussed. The hierarchical organization of operational

181

nodes/activities can be potentially useful for object-oriented coding for agent-based

rules. Object-oriented approach has very practical advantages for agent-based or

discrete event modeling types. The view can be used for subtyping and inheritance

purposes. Apart from this convenience, OV-5a is mostly useless for agent-based mod-

eling efforts. Table 43 summarizes the results.

Table 43: Mapping between OV-5a and agent-based model elements

Agent Environment Interaction Rules
Activity N N N M

Relationship N N N N

6.6 OV-5b Operational activity model

OV-5b is an immensely useful architectural view for modeling purposes. It displays

actions taken during operations and their order, dependencies, and events that trigger

them. The view itself consists of activity, input and output, and some other miscella-

neous architectural elements. These miscellaneous elements are defined vaguely out

of necessity and can be thought of as notes or relevant details about the standard

activity and input/output elements. OV-5b usually also includes systems that per-

form the activities, which ties it closely with the SV-4. DoDAF does not enforce a

standard presentation but similar standards have been created before DoDAF existed

and there are convenient and vetted methods such as IDEF0 that can be used for this

view. An example OV-5b is given in Figure 63.

The activity elements are depicted as shapes that usually hold some important

detail about what the activity is within the boundaries of the shape. Domerçant

uses an OV-5b to organize a military mission into parallel and serial chunks [64].

Ultimately, the activities are actions that make up a part of the functions of the

system of systems being described. These functions take in the information shown as

arrows on the OV-5b and after processing it output another kind of information. The

subsequent functions perform in the same manner until the end operational goal of

182

Run fire
mission

Choose
strike asset

Battle dmg.
assessment

End

Reactive
SEAD start

Locate for
targeting

Determine
SEAD type

Electronic
attack

FSC/TAC
review

Ask for

permission

Give

permission

No
permission

Could not
find target

Target is in
SEAD zone 1/2

Target in

SEAD
zone 3

Immediate
or deliberate
SEAD

Strike

Plan for
SEAD

Alert
SEAD

Not disabled
or destroyed

Disabled or
destroyed

Decide SDF
or SEAD

Surface
delivered

fire

SEAD

Strike

Psuccess=0.7

Psuccess=0.85

Figure 63: An example OV-5b developed from Marine Corps Warfighting Publication
for Suppression of Enemy Air Defenses[60].

the systems of systems is reached. A natural way to think of the activity elements is

as states the system is in, i.e., “the system is currently performing function X”. This

perspective is almost identical to the OV-6b.

The literature has examples of OV-5b models being simulated as colored Petri nets

[12] and discrete event simulations [20, 108, 141]. The efforts that are published put

a large importance on the dynamic behavior of the system of systems, which makes

perfect sense because OV-5b is a behavioral description and the actions it depicts take

time to be performed. Because the OV-5b models the activities in an operation, it is

highly suitable for modeling efforts representing the dynamics of system of systems

behavior such as discrete event, system dynamics, etc. The author has also published

work that simulate OV-5bs using discrete event models.

Other modeling approaches such as Markov chains that deal with time could also

be used here. It is important to note however, that it is not impossible to think that

OV-5b diagrams can be analyzed without resorting to time-based simulations. For

example, if one desired to calculate the parallel vs. series nature of the processes

in the system of systems a graph representation would suffice or if the probability

of accomplishing a certain mission thread were to be calculated, then a conditional

probability network can suffice.

183

The results are summarized in Tables 204–207 given in Appendix A. DoDAF Prod-

uct Development Questionnaire Analysis Report and New Product Recommendations

Report cites a high creation rate (71%) for OV-5b among the projects analyzed [6].

6.6.1 Graph model

OV-5b is a graphical model and as such it can fairly easily be turned into a graph

model. However, a graph model of an OV-5b has limited use compared with other

models. It can still find cyclic behavior in operations [24], separation of operational

activities can provide insight on the timeliness and quality of information received by

a later node, and source-sink-transport analysis using the max-flow min-cut theorem

algorithms [70]. Given the simplicity of creating graph models, once an OV-5b is

available, it is recommended to analyze it with a graph model as a low-fidelity sanity

check for the proposed architecture. Given the inevitable combinatorially large size of

the architectural design space, rapid models should be used for filtering clearly non-

ideal solution away and passing on the very promising design alternatives to higher-

fidelity but slow-to-execute models [89]. The results are summarized in Table 44. A

hypothetical example of transformation is given in Figure 64.

Table 44: Mapping between OV-5b and graph model elements

Vertex Edge
Activity Y N

Input/Output N Y
Miscellaneousa N N
a Cost, performer, etc.

184

Reactive
SEAD
start

Ask for
permission

FSC/TAC
review

Give
permission

Locate
for

targeting

Target
in SEAD
zone 3

Determ.
SEAD
type

Alert
SEAD

Electronic
attack

No
permission

Target
in SEAD
zone 1/2

Decide
SDF or
SEAD

SEAD

SDF
Run fire
mission

SDF
strike

Plan for
SEAD

Choose
strike
asset

Immed.
or delib.
SEAD

SEAD
strike

Battle
damage
assess.

Disabled
or

destroyed
End

Could
not find
target

Not
disabled or
destroyed

Figure 64: An example OV-5b to graph model transformation based on the OV-5b
shown in Figure 63.

6.6.2 Probability model

If conditional probabilities of success for each activity and/or transfer of information

from one activity to another, a probability model from the OV-5b can be created.

The transformation is fairly straightforward. A hypothetical example is given in

Figure 65 where some of the probability metrics come from miscellaneous boxes.

Table 45 summarizes the results.

Disabled
or

destroyed

Not
disabled or
destroyed

Run fire
mission

SDF
strike

Choose
strike
asset

SEAD
strike

Battle
damage
assess.

Battle
damage
assess.

0.7

0.85 1.0

1.0 1.0

1.0

0.3

0.1
5

Figure 65: An example OV-5b to probability model transformation based on the
OV-5b shown in Figure 63.

185

Table 45: Mapping between OV-5b and probability model elements

Conditional probability
Activity Y

Input/Output Y
Miscellaneousa M
a Cost, performer, etc.

6.6.3 System dynamics model

OV-5b is a fairly good source of information for system dynamics modeling. Each

activity node can be thought of as stocks with flows feeding it with scheduled activi-

ties and removing finished activities. However, it can be misleading based on how the

OV-5b is defined. The reader is reminded that there is no standard way of creating

OV-5bs. If two inputs to an activity node means both is necessary for the activity,

then system dynamics is not suitable. However, if it means that the input to the ac-

tivity can originate from multiple other activities, then system dynamics may work.

As long as this point is kept in mind system dynamics is a good option to model

the system of systems based on its OV-5b. Table 46 summarizes the results. Fig-

ure 66 shows an example transformation and the reader can see the extra information

required to make the flows work properly.

Table 46: Mapping between OV-5b and system dynamics model elements

Stock Flow Variable
Activity Y N N

Input/Output N Y N
Miscellaneousa N N Y
a Cost, performer, etc.

186

Run fire
mission

Choose
strike asset

Reactive
SEAD start

Locate for
targeting

Determine
SEAD type

Electronic
attack

FSC/TAC
review

Plan for
SEAD

Decide SDF
or SEAD

Fail
BDA

Pass
BDA

End

SDF rate
of success

SEAD rate
of success

SDF rate
of failure

SEAD rate
of failure

Approval
rate

Rejection
rate

SEAD
rate

SDF
rate

Zone 3
probability

Zone 1&2
probability

Detection
rate

Missed
detection

rate

Probability of
target requiring
special planning

Probability of
target not requiring

special planning

Figure 66: An example OV-5b to system dynamics model transformation based on
the OV-5b shown in Figure 63.

6.6.4 Markov chain model

Markov chains can employ OV-5b for a single event’s analysis. For example, if the

mission is to find and neutralize enemy’s surface-to-air missile launchers, a single

target can be moved around the Markov chain from states such as: undetected,

detected, identified, targeted, shot, neutralized, etc. In this model, one must be

careful because multiple targets may be dealt with at the same time and the systems

performing the activities may fail the activities or take longer. Markov chains are

traditionally used for single system analysis; therefore, the modeler must use caution

and judgment. Table 47 summarizes the results.

Table 47: Mapping between OV-5b and Markov chain model elements

State Transition
Activity Y N

Input/Output N Y
Miscellaneousa N N
a Cost, performer, etc.

187

6.6.5 Petri net model

Petri nets are extremely effective in interpreting OV-5bs into executable models. They

have the exact opposite characteristic discussed under system dynamics in which the

activity only happens if both inputs to it are true/present. However, the transition

can be split into two for each arc the problem will disappear. Therefore, Petri nets

are perfectly good matches for modeling the system of systems using its OV-5b de-

scription. Additionally, Petri nets do no suffer from the single-system limitation as

the Markov chains. If the systems to be modeled are not similar and need to be

tracked separately through the OV-5b network, colored tokens can be employed.

AbuSharekh et al. use an OV-5b to shape their colored Petri net model and

support it further with OV-6s and a fit for purpose view [12]. Table 48 summarizes

the results and Figure 67 shows a typical OV-5b to Petri net transformation. The

transformation will vary based on the type of Petri net used (i.e., regular, colored,

stochastic, generalized).

Ask for
permission

Reactive
SEAD
start

FSC/TAC
review

Give
permission

Locate
for

targeting

Target
in SEAD
zone 3

Alert SEAD

Electronic
attack

No
permission

Target
in SEAD
zone 1/2

Determ.
SEAD
type

Decide
SDF or
SEAD

SEAD

SDF

Run fire
mission

SDF
strike

Plan for
SEAD

Immediate or
deliberate SEAD

Battle
damage
assess.

End

Not disabled
or destroyed

Choose
strike
asset

Could not
find target

SEAD
strike

Disabled or
destroyed

Figure 67: An example OV-5b to Petri net model transformation based on the OV-5b
shown in Figure 63.

188

Table 48: Mapping between OV-5b and Petri net model elements

Place Transition Arc
Activity Y N N

Input/Output N Y Y
Miscellaneousa N N N
a Cost, performer, etc.

6.6.6 Queueing model

Queueing models are also viable options when OV-5bs available. If the server informa-

tion is supplied on the OV-5b as performers to activities, a queueing model’s skeleton

can be set up. The modeler must keep in mind that for all analytical, well-behaved

solutions, the arrival rates and processing rates must behave in easily representable

random distributions such as Poisson, deterministic, etc. Nevertheless, other than

the specific numbers, a queueing model can be constructed from an OV-5b. Table 49

summarizes the results. Figure 68 shows how a part of the OV-5b can be transformed

into the queueing theory formalism. “M” denotes a Poisson arrival or Markov process

and “D” denotes a deterministic processing time.

MY(λ2)
MX(λ1) D(c)

M(λ4)

M(λ3)p

1‒p
q

1‒q

Ask for
permission

Mission
review

Electronic
attack

Locate for
targeting

Figure 68: An example OV-5b to queueing model transformation based on the OV-5b
shown in Figure 63.

Table 49: Mapping between OV-5b and queueing model elements

Arrival Size Server
Activity N Y N

Input/Output Y N N
Miscellaneousa N N M
a Cost, performer, etc.

189

6.6.7 Discrete event model

Discrete event modeling is another very suitable modeling method by using an OV-5b.

The events are represented as activities and the input/output lines can be turned into

transitions and queues. A hypothetical example is shown in Figure 69. Based on the

world view employed for discrete event modeling, the diagram may vary slightly. Simi-

lar to queueing models, the servers can be included within the performers of activities.

A discrete event model will not suffer from modeling single systems like the Markov

chains either. One possible issue that can arise is that the details on entities may

be lacking. Additionally, in a competitive/destructive system of systems, the roles

of servers or entities may be blurred (e.g., which are entities: SAMs or bombers?).

However, for many cases OV-5b includes a significant portion of information needed

for discrete event modeling. Baumgarten et al. use the OV-5b as the most detailed

piece of operational information in their work and support their models further by

system views [28]. Table 50 summarizes the results.

Electr.
attack

Mission
review

Arrival
Ask
permission

MAGTF
Cdr.

FSC or
TAC

EA-6B

Go
ahead

?

No

Locate
for targeting

Feint or
sensor

Found?

No

Yes

Departure

Yes

Figure 69: An example OV-5b to discrete event model transformation based on the
OV-5b shown in Figure 63.

Table 50: Mapping between OV-5b and discrete event model elements

Event Queue Transition Server Entity Resource
Activity Y N N N N N

Input/Output N Y Y N M N
Miscellaneousa N N N M N M
a Cost, performer, etc.

190

6.6.8 Agent-based model

OV-5b includes information on the actions that would be taken by the agents in

an agent-based model. However, it does not necessarily include agents and in the

instances that it does, OV-5b does not offer much detail on how the agent performs

the activities. It is entirely devoid of environment and agent interaction information.

The activities are likely to include some agent rules. Table 51 summarizes the results

that OV-5bs are useful in a limited way and they are not a single-view solution for

agent-based modeling.

Table 51: Mapping between OV-5b and agent-based model elements

Agent Environment Interaction Rules
Activity N N N Y

Input/Output N N N N
Miscellaneousa M N N N
a Cost, performer, etc.

6.7 OV-6a Operational rules model

OV-6a lists the rules under which the system of system operates. The rules vary

significantly between one system of systems to another; therefore, all the rules that

cannot be represented generally with a graphic fall under the topic of OV-6as. Fig-

ure 70 shows operational rules expressed as text in English. Although the text does

not follow DoDAF standards strictly, it is a very representative specification for mil-

itary operational rules. DoDAF only has guidance on the OV-6a if it is written in

English (the statements are to follow conditional or absolute imperative forms[59]).

But OV-6a rules could be written in pseudocode or logic symbols that can specify

conditions and rules more precisely. Figure 71 and Equation 65 show that approach.

∀τi : (φτi > 0⇒ ατi 6= 0)∧

[(φτi ≤ 0⇒ δτi 6= 0) ∧ (∃ρj, x : x ∈ R ∧ στ (ρj) = στ (τi) ∧ σ (ρj))] (65)

191

Both approaches require the definition of variables or symbols. OV-6a is highly useful

when modeling detailed rules about the system of systems’ behavior and used for mod-

eling purposes surprisingly frequently. There are several examples in the literature

using the OV-6a for modeling [12, 108, 141, 190]. In many cases the authors stress the

importance of operational rules the OV-6a provides in creating an executable model.

However, this view is noticeably more technical than any other operational view that

preceded it. Simply put, almost no architecture that was not created for model-

ing purposes would include an OV-6a. DoDAF Product Development Questionnaire

Analysis Report and New Product Recommendations Report cites a low creation

rate (32%) for OV-6a among the projects analyzed [6]. The results are summarized

in Tables 204–207 given in Appendix A.

Rule 1 When a hostile act occurs or when a force
demonstrates hostile intent, use of self-defense is
authorized while the force continues to commit hos-
tile acts or exhibit hostile intent.

Rule 2 US warships and aircraft have an obligation to
repress piracy on or over international waters di-
rected against any vessel or aircraft, whether US
or foreign flagged. For ship and aircraft comman-
ders repressing an act of piracy, the right and obli-
gation of unit self-defense extend to the persons,
vessels or aircraft assisted. Every effort should be
made to obtain the consent of the coastal state
prior to continuation of the pursuit if a fleeing pi-
rate vessel or aircraft proceeds into the territorial
sea, archipelagic waters or airspace of that country.

Rule 3 US forces should not enter or remain in areas in
which hostilities (not involving the United States)
are imminent or occurring between foreign forces,
unless directed by proper US authority.

Figure 70: A representative text that can be found in a OV-6a. The three sentences
above were taken as examples from Standing Rules of Engagement for U.S. Forces[47].

192

For each MISSILE TRACK entity Instance

If MISSILE TRACK boost phase code > 0,

Then MISSILE TRACK acceleration rate is non-null

Else MISSILE TRACK drag effect rate is non-null

And

There Exists a MISSILE TRACK POINT entity instance Such That

MISSILE TRACK.SOURCE TRACK identifier =

MISSILE TRACK POINT.SOURCE TRACK identifier

And

MISSILE TRACK POINT.SOURCE identifier

End If

End For

Figure 71: A representative pseudocode that can be used as an OV-6a (Reproduced
from the work of Mittal et al.[141]). Equation 65 shows the math notation for this
pseudocode.

6.7.1 Graph model

OV-6a is presented in text form because graphical forms do not make much sense for

rules. Conditional statements can be represented in a graph; however, the contents

of the conditionals end up requiring text nevertheless. Even if one were to be able to

represent the entire rule structure of the system of systems, the graph model based

on that would not simulate the system of systems but its rules, which is not practical.

Graph models are simply not suitable for OV-6a views. Table 52 summarizes the

findings.

Table 52: Mapping between OV-6a and graph model elements

Vertex Edge
Activity N N

Relationship N N
Rules N N

6.7.2 Probability model

Much like the graph models, conditional probabilities do not make much sense when

used with a list of rules that the system of systems need to follow. Table 53 summa-

rizes the results.

193

Table 53: Mapping between OV-6a and probability model elements

Conditional probability
Activity N

Relationship N
Rules N

6.7.3 System dynamics model

The rules stated in absolute or conditional forms cannot be turned into stocks or

flows. Such a representation simply does not make sense. Table 54 shows the totally

negative results.

Table 54: Mapping between OV-6a and system dynamics model elements

Stock Flow Variable
Activity N N N

Relationship N N N
Rules N N N

6.7.4 Markov chain model

States and transitions are conceptually very different than rules and do not represent

the information given on an OV-6a well. Table 55 details the findings.

Table 55: Mapping between OV-6a and Markov chain model elements

State Transition
Activity N N

Relationship N N
Rules N N

6.7.5 Petri net model

Interestingly OV-6as can be represented by Petri net models. Petri net diagrams can

express “if α, then β” sentences as shown in Figure 72. Any system with reasonably

complicated rules will require many Petri net models (i.e., graphs) to represent its

operations. As an example, Rule 1 given in Figure 70 is transformed using a colored

194

Petri net and shown in Figure 73. The reader can see that even a simple rule can

require several states, transitions, and even more arcs. Because a single system will

require many Petri net sub-models, detailed models will grow in size very quickly.

Both AbuSharekh et al. and Wagenhals et al. use the rules provided in the OV-6a to

create colored Petri net models [12, 190]. Petri nets are sometimes used for agent-

based modeling to describe the higher lever operation of multiple agents, i.e., to track

the states each agent is in (see for example [201]). Table 56 details the results.

α β

Figure 72: An if..., then... statement as a Petri net model.

P H F

Accept: any
Set to: 3

Accept: any
Set to: 2

Accept: 1
Set to: 2

Accept: any
Set to: no change

Accept: any
Set to: no change

Accept: any
Set to: 3

Accept: any
Set to: 1

Figure 73: An example OV-6a to Petri net model transformation based on the OV-6a
Rule 1 given in Figure 70. Colors 1–3 represent hostile intent, hostile act, and neutral
entities. States P, H, and F represent peaceful, hostility, and force use states.

Table 56: Mapping between OV-6a and Petri net model elements

Place Transition Arc
Activity M M N

Relationship N N M
Rules Y Y Y

195

6.7.6 Queueing model

Some proposed ways of creating OV-6as may possibly be suitable for queueing models,

e.g., what happens to jobs after some steps of processing. The reader is reminded that

DoDAF does not impose standards on how the views are created and based on the non-

specific recommendation, it is best to rule out any reasonable chance that OV-6as can

be useful for queuing models. The information provided in an OV-6a has a significant

mismatch with the information required to construct queueing models. Most useful

rules eventually lead to pseudo-OV-5b or OV-6b artifacts, which is more useful for

queueing models. Because rules in sentences do not translate well to queueing, the

results are entirely negative as given in Table 57.

Table 57: Mapping between OV-6a and queueing model elements

Arrival Size Server
Activity N N N

Relationship N N N
Rules N N N

6.7.7 Discrete event model

Similar to queueing modeling OV-6a holds little information for discrete event models.

Two plausible exceptions exist. The rules may include queue rules such as first-in-

first-out, last-in-first-out, priority. Also, OV-6a-listed rules may determine server and

entity behavior. Mittal et al. provide an example of how operational rules may be

used to increase discrete event model fidelity [141]. They argue that the utility of

OV-6a can be increased if a pseudocode format is taken. The findings are summarized

in Table 58.

196

Table 58: Mapping between OV-6a and discrete event model elements

Event Queue Transition Server Entity Resource
Activity N N N N N N

Relationship N N N N N N
Rules N Y N M M N

6.7.8 Agent-based model

OV-6a is most useful when modeling the system of systems using an agent-based for-

mulation. Due to the nature of agent-based models algorithmic, rule-based behaviors

are needed to create agents within the model. Although the rules do not include agent

information (such as physical characteristics of agents), they do include information

about how the agents must behave. Each agent should be checked against OV-6a

rules throughout the simulation for verification. Table 59 summarizes the results.

Figure 74 shows where some rules may fit in an agent-based formulation. In the

absence of direction by a proper U.S. authority, a U.S. force agent does not enter an

area of hostilities not involving the United States. If it receives a direction from an

authority, it does enter the area however.

Defense
& Space

Goals

lnterpret

Decision

Director

Goals

lnterpret

Decision

Environment

en
te

r
ar

ea
 o

rd
er

area of hostilities
not involving
the United States

enter area

stay clear

Figure 74: An example OV-6a to agent-based model transformation based on the
OV-6a Rule 3 given in Figure 70. The solid lines and dashed lines represent different
scenarios.

197

Table 59: Mapping between OV-6a and agent-based model elements

Agent Environment Interaction Rules
Activity N N N N

Relationship N N N N
Rules N Y N Y

6.8 OV-6b State transition description

OV-6b is mainly concerned about how the system of systems changes its state. This

perspective is very useful especially considering how external events affect the sys-

tem of systems’ operation. OV-6b is very similar to the OV-5b, which shows the

order of the activities that constitute an operation and the information they each

require, OV-6b goes in detail to show how the system of systems transitions from

one operational state to another. The name suggests Markov chains, Petri nets,

queueing, and discrete event models may be a good fit in simulating the system of

systems described using an OV-6b. In fact the literature has examples of colored

Petri net, discrete event, and hybrid modeling approaches that rely heavily on OV-6b

views[12, 141, 190].

A usual OV-6b has three elements. The first element is the states that represent

the completeness of a job as steps (e.g., student is accepted, passed qualifying exams,

has enough credit, proposed thesis, defended thesis, graduated). The second element

is the activities that cause a change in the states (e.g., sent acceptance letter, taking

qualifying exams, taking classes, submitting proposal document, presenting proposal,

writing thesis, presenting defense). Finally, the transitions dictate from which state

to which state a system transitions when a triggering activity occurs. Figure 75 shows

an example OV-6a. It was adopted from expected enemy behavior from the Marine

Corps Warfighting Publication for Suppression of Enemy Air Defenses[60].

The results are summarized in Tables 204–207 given in Appendix A. DoDAF Prod-

uct Development Questionnaire Analysis Report and New Product Recommendations

198

Report cites a very low creation rate (24%) for OV-6a among the projects analyzed

[6].

Detect Identify Track Assignment Engage

Intruder detected Not friendly Notify nearby SAM Turn on targeting
RADAR and fire

Initial
state SuccessKilled

hostilities
begin

enemy
shoots SAM

No action
needed

Friendly

Figure 75: An example OV-6b developed from Marine Corps Warfighting Publication
for Suppression of Enemy Air Defenses[60] for how the enemy is expected to operate.

6.8.1 Graph model

A graph model can be constructed from an OV-6b; however, one element must be

left out. In a graph model an edge must connect two vertices and only two vertices.

An edge cannot connect to another edge or an edge cannot connect more than two

vertices. Therefore, two states connected by a transition cannot be connected to an

operational activity. A graph model can still be a valuable analysis in finding cyclic

behavior in the system of systems’ state changing behavior. Table 60 summarizes the

results.

Table 60: Mapping between OV-6b and graph model elements

Vertex Edge
State Y N

Activity N N
Transition N Y

6.8.2 Probability model

Activities on an OV-6b can be thought of as existing or having a probability to exist.

With this type of a formulation a state transition does not necessarily happen, but

it has a probability of happening. Similarly, the system of systems only spends a

199

fraction of time in a state, which can be modeled as a frequency of a probability of

being in that state at a given time. Table 61 summarizes the discussion.

Table 61: Mapping between OV-6b and probability model elements

Conditional probability
State Y

Activity M
Transition M

6.8.3 System dynamics model

OV-6b is an architecture view that includes details about how the system of systems

works at a large scale. Each box on an OV-6b can include sub-boxes (i.e., sub-states)

that can be used to create a more granular operational state transition description.

However, the process of the transitioning is not shown on an OV-6b in any detail-

level. The transitions happen instantaneously once the necessary conditions are met.

Such a transitioning description is quite useful for system dynamics modeling. A

system dynamics model can also deal With unit changes, and if the modeler add to

the information included in an OV-6b a system dynamics model can extract very

useful insight on the operation of the system of systems described. Table 62 shows

the results of the investigation and Figure 76 provides an example transition.

Detected
objects

Tracked
objects

Assigned
targets

Identified
objects

Engaged
targets

Friendly/foe
ratio

Assign
time

Fire rate
Detection

rate

Identification
rate

Track success
rate

Being hit
rate

Hit success
rate

Figure 76: An example system dynamics model translated from the OV-6b shown in
Figure 75.

200

Table 62: Mapping between OV-6b and system dynamics model elements

Stock Flow Variable
State Y N N

Activity N N Y
Transition N Y N

6.8.4 Markov chain model

The Markov chain formulation from an OV-6b resembles the probability model dis-

cussion closely. The transitions can either be modeled as probabilities per time step

or the rate of change in probabilities in connected states. Either way, an OV-6b

carries enough information to create a Markov chain model. Figure 77 shows a hypo-

thetical example from the OV-6b example given in Figure 75. Table 63 summarizes

the results.

Det
ec

te
d

Id
en

tif
ie
d

Tr
ac

ki
ng

En
ga

ge
d

Ta
rg

et
 k
ille

d

As
sig

ne
d

As
se

t l
os

t

In
it

st
at

e

Fr
ie
nd

ly
friendly
rate

enemy rate

vulnerability

lethality

Figure 77: An example Markov chain model translated from the OV-6b shown in
Figure 75.

Table 63: Mapping between OV-6b and Markov chain model elements

State Transition
State Y N

Activity N N
Transition N Y

201

6.8.5 Petri net model

OV-6b is a perfect fit for Petri net modeling. The OV-6b states are easily modeled

as Petri net places, the OV-6b transitions as Petri net arc, and OV-6b activities

as Petri net transitions. Because DoDAF does not prescribe how its views should

look like in standard way, one can even draw a Petri net diagram and use it as an

OV-6c. Figure 78 shows this similarity and Table 64 summarizes the mapping between

elements. The reader can appreciate the simplicity of the translation from the view to

the Petri net conceptual model. Xiao-li et al. propose a colored Petri net validation

process using UML diagrams that are the basis of the OV-6 series in DoDAF [199].

Similarly, Wagenhals et al. uses the same UML diagrams to construct a fully detailed

colored Petri net model [190]. Whereas, AbuSharekh et al. use DoDAF OV-6 views

to create and weave more detail into their Petri net models [12].

ID
time

Detected

Identified

Successful
tracking

Assign
time

Fire rate

Possible
threats

Hostilities start

Friendly rate

Friendly

Tracking Assigned

Engaged

Target
hit

Targets
destroyed

Asset
hit

Assets
lost

Figure 78: An example Petri net model translated from the OV-6b shown in Figure 75.

Table 64: Mapping between OV-6b and Petri net model elements

Place Transition Arc
State Y N N

Activity N Y N
Transition N N Y

202

6.8.6 Queueing model

Queueing models can also use OV-6bs to set up a model structure. In the queueing

nomenclature the activities would be represented by servers (i.e., the servers are

performing the activities). The transitions can be modeled as arrivals to processes,

which are states. However, there needs to be some extra information on how difficult

it is to deal with the arriving jobs (i.e., how long does it take to process them).

Table 65 summarizes the discussion.

Table 65: Mapping between OV-6b and queueing model elements

Arrival Size Server
State N N N

Activity N N Y
Transition Y N N

6.8.7 Discrete event model

Discrete event models are similar to Petri net models and the suitability of OV-6b

for discrete event models is not surprising because OV-6b is a perfect match for Petri

nets. Optional information that can be displayed on an OV-6b may provide details on

how entities are defined and how resources are spent. Apart from that, the mapping

is quite similar to the Petri net mapping and is show in Table 66. Mittal et al.

use OV-6s as the main source of discrete event modeling structure information [141].

Additionally, Figure 79 depicts a hypothetical translation.

Arrival

Detect Passive
sensor Identify Radio Tracking RADAR Assign C2 Engaged SAM

Departure
(friendly)

Departure
(asset lost)

Departure
(enemy killed)

Figure 79: An example discrete event model translated from the OV-6b shown in
Figure 75.

203

Table 66: Mapping between OV-6b and discrete event model elements

Event Queue Transition Server Entity Resource
State N Y N N M N

Activity N N N Y N N
Transition Y N Y N N N

6.8.8 Agent-based model

Agent-based models require details on each actor’s (system, user, or generally: per-

former) behavior. OV-6b is not a good container for such information. While the

elements of an OV-6b match some of the needed information type (e.g., activities may

define rules for a system), they lack the detail on how these activities are performed or

transitions occur. Combined with the OV-6a, OV-6b could be useful for agent-based

modeling however. Table 67 summarizes the results.

Table 67: Mapping between OV-6b and agent-based model elements

Agent Environment Interaction Rules
State N M N M

Activity N N N Y
Transition N N Y Y

6.9 OV-6c Event-trace description

OV-6c is another highly useful architecture view for modeling purposes. It tracks

multiple operational activities over time and shows which are active vs. passive, what

event changes their active or passive state, and what resource is passed during the

events. Figure 80 shows an example OV-6c representing the use of a coffee machine.

Sleepy workers take coffee if it is available. If there is not enough coffee remaining,

the next worker brews some more coffee. During the dispensing and brewing, the

machine becomes unavailable to others. An OV-6c is valid for a particular scenario;

multiple scenarios require multiple OV-6cs. Timing is a critical modeling information

that all other discussed operational views lacked so far. OV-6c not only includes

204

timing but also holds information about concurrency and sequence of activities. The

reader can appreciate how this information be useful in dynamic modeling of sys-

tems. AbuSharekh et al. highlight the difficulties in dealing with temporal aspect of

modeling without the use of an OV-6c [12]. Wagenhals et al. use a UML sequence

diagram (roughly equivalent to an OV-6c) to dictate transition timing and definition

of scenarios [190]. Xiao-li et al. use UML equivalents of the OV-6c to deal with cases

of concurrency, synchronization, and collision within the Petri nets [199]. And finally,

as mentioned in the other OV-6 sections, Mittal et al. create parts of the high level

operational model structure using the OV-6c[141].

The OV-6c includes the following elements: activities, timelines, and events. The

results are summarized in Tables 204–207 given in Appendix A. DoDAF Product

Development Questionnaire Analysis Report and New Product Recommendations

Report cites a high creation rate (58%) for OV-6a among the projects analyzed [6].

205

Sleepy
Worker

fill water

insert filter and add grounds

activate

insert cup
create

destroy some

water reservoir full

ready to brew

start beep

end beep

cup full

check for coffee measure coffee level

1 cupenough

insert cup

full remove 1 cup

check for coffee

no coffee

cleaning

clean

Coffee
Coffee

Machine

Coffee

Figure 80: An example OV-6c depicting the operation of a coffee machine in an office.

6.9.1 Graph model

A graph model of a system of systems can be constructed from an OV-6c by simply

using operational activities as vertices and events as edges connecting the vertices.

In fact, an OV-2 and an OV-5b can be reduced from an OV-6c by following the event

between the timelines representing the timing of the operational activities making up

the operational nodes and the resources attached to the events are the needlines. The

reader is reminded that OV-2 is highly likely to exist alongside with an OV-6c and that

using the simpler view instead of the OV-6c is more sensible. Nevertheless, OV-6cs

can be used to create graph models of systems of systems. Table 68 summarizes the

discussion results.

206

Table 68: Mapping between OV-6c and graph model elements

Vertex Edge
Activity Y N

Timeline N N
Event N Y

6.9.2 Probability model

The events that activate activities on operational timelines can be modeled as proba-

bilities, i.e., they have a probability of happening or executing correctly. For example,

an order transmission over radio may fail due to signal interference among other is-

sues with a probability that can be estimated. Based on this discussion, a probability

model can easily use the information held in an OV-6c product. Table 6 summarizes

the results.

Table 69: Mapping between OV-6c and probability model elements

Conditional probability
Activity N

Timeline N
Event Y

6.9.3 System dynamics model

System dynamics models as flow of things between their respective containers. OV-6c

unfortunately does not depict flows or containers but shows how long discrete jobs

take to be processed in operational activities. One may find some constants that can

be used in system dynamics models in OV-6cs, but more suitable, easier to create

architecture views exist that should be used with system dynamics models. The

results are shown on Table 70.

207

Table 70: Mapping between OV-6c and system dynamics model elements

Stock Flow Variable
Activity N N N

Timeline N N N
Event N N N

6.9.4 Markov chain model

For a system of systems that only has a single operational activity going on at any

time, a Markov chain model can be created and used accurately. However, if multiple

activities are happening concurrently, Markov chain representations would be inac-

curate. This is due to the fact that Markov chain represents a single entity’s states

and the state vector shows the probability of the system being in each of these states.

The state vector must sum up to unity and therefore cannot model more than a single

entity’s probability of being in each of the states. It follows that while OV-6c is not

directly very useful for Markov chain modeling, it includes information whether the

system of systems violates an assumption that Markov chain formulation relies on

and is useful in that highly specific way. Table 71 summarizes the results.

Table 71: Mapping between OV-6c and Markov chain model elements

State Transition
Activity M N

Timeline N N
Event N M

6.9.5 Petri net model

Petri net model appear to be a good fit for information presented by OV-6c views

at first. There is however a major mismatch in the two approaches: Petri nets do

not fire transitions based on time but based on state. Some Petri net formulations

can fire based on simulation time (see Wagenhals et al. and AbuSharekh et al. for

examples [12, 190]). Their simulation engines however have more in common with

discrete event simulations than classical Petri nets. Therefore, the prescribed activity

208

lengths and activities triggering other activities cannot be modeled using Petri net

without roundabout methods which are not ideal. While the transitioning events

can be good sources of information for arc, the transition cannot be easily inferred

from OV-6c elements. Table 72 summarizes the results. Figure 81 shows an example

transformation of the OV-6c shown in Figure 80. Notice that some inhibitors are

used; hence, the example is a generalized Petri net. The multiplicity of the bottom

right arcs represent that once the transition fires, multiple tokens are placed in the

“ready coffee” place.

sleepy
workers

remaining
coffee

clean
coffee
maker

water
reservoir

full

filter and
grounds
in place

brewing
coffee

cup
filling

workers
drinking
coffee

awake
workers

someone
is brewing
new batch

Figure 81: An example OV-6c to Petri net model transformation based on the OV-6c
shown in Figure 80.

Table 72: Mapping between OV-6c and Petri net model elements

Place Transition Arc
Activity Y N N

Timeline N N N
Event N Y Y

209

6.9.6 Queueing model

OV-6c includes a significant amount to timing information, which is important for

size of jobs. The events may potentially provide the engineer with arrival intervals;

however, it is not in a directly usable format. Additionally, there is virtually no

queueing information on an OV-6c. It still includes important information that can

be used for modeling a system of systems using a queueing approach. Table 73

summarizes the discussion.

Table 73: Mapping between OV-6c and queueing model elements

Arrival Size Server
Activity N Y Y

Timeline N M M
Event Y M M

6.9.7 Discrete event model

Similar to the queueing models, discrete event models track jobs through events.

OV-6c include almost all the information needed. The exceptions are: initial arrival

rates, variability in different systems performing the activities if any, and similar

minor considerations that need to be determined by the system modeler. These

examples demonstrate why it is difficult to automatically generate discrete event

models from architectural data. Compared with the lack of information in other

view-model pairings, these are mostly insignificant. Mittal et al. propose a modified

OV-6a that can fill in most of the aforementioned gaps [141]. Only a small amount of

engineer correction is needed to create the model. Additionally, an OV-6c could be a

viable option for visualizing simulation runs. The results are summarized in Table 74.

A hypothetical transformation based on the OV-6c shown in Figure 80 is shown in

Figure 82. Because there is only a single coffee machine as server, only one process

can be active at the same time. Coffee is tracked with a variable in addition to the

discrete event simulation logic.

210

Arrival Coffee?

No

YesCheck
for coffee

Coffee
Machine Take

coffee

Coffee
Machine

Departure

Clean
the machine

Coffee
MachineFill

water

Coffee
Machine

Filter
and grounds

Coffee
Machine Clean

the machine

Coffee
Machine Clean

the machine

Coffee
Machine

*Add coffee

*Subtract coffee

Figure 82: An example OV-6c to discrete event model transformation based on the
OV-6c shown in Figure 80.

Table 74: Mapping between OV-6c and discrete event model elements

Event Queue Transition Server Entity Resource
Activity N N N Y N N

Timeline N M N N N N
Event Y M Y N N M

6.9.8 Agent-based model

Agent-based models require detail on how actors behave as dictated by their internal

rules. An OV-6c shows the consequences of these rules. There is valuable information

in on OV-6c for agent-based modeling—especially timings and conditions—but they

are presented in ways that is not always directly usable. For example, these pieces of

information are needed for specific agents but the OV-6c includes only the high-level

operational information. Nevertheless, it is the only operational view with detailed

timing information. Table 75 summarizes the results.

Table 75: Mapping between OV-6c and agent-based model elements

Agent Environment Interaction Rules
Activity N N N M

Timeline N N N N
Event N N Y Y

211

CHAPTER VII

MODELING POTENTIAL OF SYSTEM ARCHITECTURE

VIEWS

Finding the right notation to convey a new concept

sounds insignificant [but] a child can multiply 17 by

19 [whereas] the greatest scholars in Rome would have

struggled with XVII times XIX [63].

Edward Dolnick

This chapter follows the same format as the previous chapter but deals with

DoDAF system views. The discussion at the beginning of the previous chapter also

applies here and is not repeated.

7.1 SV-1 Systems interface description

The systems interface description viewpoint is usually based on the OV-2 and fills in

the systems that are part of specific operational nodes. However, the main purpose of

the SV-1 is to show through what interfaces different resources are transferred between

systems. Generally speaking, the resource transfers are the ways different systems

interact with each other. The resource exchanges here will satisfy the needlines shown

on the OV-2. In other words, they are not part of the needlines but actual technical

implementations of resource exchanges that satisfy the needs of each system/operation

depicted by the needlines. DoDAF documentation describes the SV-1 as linking

“together the operational and systems architecture models by depicting how resources

are structured and interact to realize the logical architecture specified in an OV-2[59]”.

There may be multiple different exchanges between two systems. For example, a

tanker and a fighter aircraft will exchange information through radio antennas but

212

fuel through refueling ports, or a bomber and a surface to air missile site will interact

with each other through radar antennas as well as bombs/missiles. For large systems

of systems, it may be desirable to show only a part of these interfaces and interactions

in a single view; however, the full set is probably stored in a computer-readable file.

Additionally, due to space constraints, the resource exchanges shown on the SV-1 do

not include much detail on what exactly is being exchanged and transfer performance.

That information is provided by the SV-2, SV-6, and SV-7.

air
gap

secure network

workstation network

personal device network

Resource 1
Resource 2

Figure 83: SV-1 reproduced from Jones Wyatt et al.’s example [110] with system
node additions

The SV-1 is a commonly developed product. DoDAF Product Development Ques-

tionnaire Analysis Report and New Product Recommendations Report cites a high

creation rate (71%) for SV-1 among the projects analyzed [6]. An example SV-1 is

given in Figure 83 from Jones Wyatt et al.’s work with added system nodes [110]. Sys-

tem nodes were not needed for their work but added to their SV-1 for the purposes

of demonstration in this work. They investigate a hypothetical computer network

with 2 resource exchanges. The computers within the network are configured to com-

municate through a subset of four communication methods which are used as the

example for the SV-2 later in Section 7.2. Therefore, the view shows systems and

interfaces between them. The results from the discussions below are summarized in

213

Tables 204–207 given in Appendix A.

7.1.1 Graph model

Similar to the OV-2, the graph models fit the SV-1 very well. As discussed above the

main idea the SV-1 is communicating is the physical connections between systems

through some ports. A graph model is one of the best options to use to represent

the SV-1 because mathematical graphs were invented to study the consequences of

connections between things. One important difference of SV-1 from the OV-2 is that

the system view has three architecture elements instead of two. The extra element

is a shell that represents organizations or a parent system and contains systems or

sub-systems based on the context. Figure 83 shows a few examples: the different

networks the computers belong to.

4

1 2

3

1 2 5

6 7

A

networks computers

B

C

1

2

3

4

5

6

7

Option 1

Option 2

Figure 84: Example SV-1-to-graph model translation options based on Figure 83

214

The extra element causes issues during modeling that must be solved. A graph

model is not fit to handle such inclusion/exclusion statements at the same time as

handling connections. The modeler has three options here: completely ignore the shell

and just analyze the connectivity between constituent sub-systems, ignore connections

and model the membership only, or create two graphs aimed at analyzing connectivity

and membership separately. Figure 84 depicts the options. Note that the second

option is a special type of graph called bipartite graph. Table 76 provides a mapping

between architecture elements to modeling elements for both kinds of graph model

created from SV-1s. The systems engineers must remember that they cannot merge

the two-types into a single model.

Table 76: Mapping between SV-1 and graph model elements for both connection- and
membership-oriented analysis. A single graph model can only be one of the either
type, not both.

Connection type Membership type
Vertex Edge Vertex Edge

System N N N Y
System node Y N Y N

Interface N Y N N

7.1.2 Probability model

There is not much more an analyst can obtain from a probability model that cannot

be obtained from a graph model. Simply put, the probability model will be the

connection-type graph model with conditional probabilities assigned to the edges. It

must be noted that the numerical values for the conditional probabilities will not be

found on an SV-1—they may be found on an SV-7—and as such, the SV-1 cannot

be converted to a probability model always. The membership type graphs would not

have a practical meaning as a probability model. Table 77 summarizes the findings.

215

Table 77: Mapping between SV-1 and probability model elements

Conditional probability
System N

System node N
Interface M

7.1.3 System dynamics model

SV-1s can be converted into variable fidelity system dynamics models. When system

descriptions are ignored (i.e., only system node and interfaces used), a higher fidelity

system dynamics can be constructed for resource exchanges. This model will use

the entire detail available on an SV-1. Alternatively, system nodes can be ignored

and resource exchanges can be modeled between systems and organizations, resulting

in a less-detailed and lower fidelity model that may be more manageable for the

entire system of systems. The systems engineer can even choose to include more

detail about some systems and less detail about others. Figures 85 and 86 depict

an example of variable fidelity using the example from Jones Wyatt’s work[110].

While this arrangement is highly flexible, the parameters a system dynamics model

needs such as variables, flows, and information about stocks will not be present in an

SV-1. Such numbers can most likely be found in the SV-7. Table 78 summarizes the

discussion.

Table 78: Mapping between SV-1 and system dynamics model elements

Stock Flow Variable
System Y N N

System node Y N N
Interface N Y N

216

workstation
network
speed

personal device
network speed

inter-network
speed

Figure 85: Example high fidelity system dynamics model based on the SV-1 given in
Figure 83.

inter-network
speed

Figure 86: Example low fidelity system dynamics model based on the SV-1 given in
Figure 83.

217

7.1.4 Markov chain model

The SV-1 does not depict any states the systems may be in, it simply shows the

systems themselves. Some SV-1s do show functions instead of connections and they

can be modeled as transitions in rare cases; however, in general the SV-1 is not a

useful view for Markov chain modeling. Table 79 shows the lack of fit between the

SV-1 and Markov chains.

Table 79: Mapping between SV-1 and Markov chain model elements

State Transition
System N N

System node N N
Interface N M

7.1.5 Petri net model

An SV-1 does not include enough information to create a realistic Petri net model

for the system of systems. Petri nets require state specification, transition rules, and

some timing information. As discussed in the Markov chain section, states do not

exist in SV-1 models. If system nodes can be thought as places and resources as

tokens, some kind of Petri net model can be built but the transition rules will be

missing in any case. Petri nets are not a good fit for SV-1 models. Table 80 shows

the mapping between SV-1 architecture elements to Petri net modeling elements.

Wang and Dagli use two SysML views (the internal block diagram that is similar

to the SV-1 and the sequence diagram that is similar to the SV-10c) to create Petri net

models [192]. The internal block diagram is used to break the complicated operation

of the system into several activities that can be modeled separately in relative isolation

from the other activities. While the view is useful, the main source of their information

comes from the sequence diagrams. Their work can be used to support the argument

here: the SV-1 is not particularly suited for Petri net modeling.

218

Table 80: Mapping between SV-1 and Petri net model elements

Place Transition Arc
System M N N

System node M N N
Interface N N M

7.1.6 Queueing model

The SV-1 is a high-level overview of how the systems are connected to each other

via their interfaces. When used with the SV-2 or SV-6, it adds information to the

exchanges by including the way they are realized. However, having only the interface

information does not necessarily provide enough knowledge about how the system

of systems functions. The exchanged quantities are missing on an SV-1 as it only

describes the way such quantities can be exchanged. For example it would specify

road for the exchange of cars between buildings ; however, the information on how

many cars or what type of cars is missing. Therefore, the information provided here

is limited for modeling purposes. Table 81 reflects the fact that while systems and

interfaces are identifiable, the information on the actual exchanges are limited.

Table 81: Mapping between SV-1 and queueing model elements

Arrival Size Server
System N N Y

System node N N Y
Interface M M N

7.1.7 Discrete event model

The SV-1 has details on how different quantities of things are exchanged between

constituent systems. This description is ultimately important to construct a concep-

tual model for a discrete event simulation. However, the information provided here

is not nearly enough to create an entire discrete event model. The interfaces can be

thought of as ways that entities travel from one process to other processes that are

performed by systems. The consequences of this arrangement is that systems need

219

to be split into entities and servers depending on their role in the system of systems.

This artificial dichotomy is not a trivial decision for a modeler and blurs the way

that the system element within the architecture can be used. Table 82 shows how

the system and system node elements are related to many modeling elements. Given

the already limited, high-level information provided by the SV-1, it can be concluded

that the SV-1 can only play an auxiliary role in discrete event modeling, i.e., an SV-1

alone is not enough to create a model. It can also be argued that the existence of an

SV-1 is not a good indication that a discrete event model is suitable for representing

the system of systems.

Barnhart et al. investigated positive effects of integrating mission and system

simulation using SysML as an intermediating language [25]. They create an OV-1

and an SV-1 and output them via XML using a SysML software solution. They do

report that the majority of the parameters the simulation needs were not included

within the architecture to simplify its creation. They also discuss the positive and

negative consequences of omitting parameters; however, these can easily be stored

within an SV-7 separately. They find that the SV-1 was sufficiently detailed to create

a discrete event model for their problem and their claim can be taken as a support for

the argument included in this thesis with some caveats. Certainly, Barnhart et al.’s

problem was conducive for what the SV-1 focuses on describing: communications (a

kind of resource transfer). Additionally, even though the translation was carried out

algorithmically, a great deal of subject matter expertise and work went into creating

the algorithm, which is not problem specific yet admittedly nowhere near general

to any system of systems and their SV-1 representations. Keeping these caveats in

mind, it can be said that the SV-1 is a useful view for discrete event modeling, and in

specific cases, may be enough to create a model on its own with some subject matter

expert input.

220

Another interesting study is Baumgarten and Silverman’s use of a handful ar-

chitecture views to analyze a communications network with a discrete event model

[28]. Among the architecture views used is an SV-1. While they do not go into much

detail about how the SV-1 was used within their process (they choose to focus on the

SV-2), they do report that the SV-1 was used as a transition from the higher-level

operational definition into the detailed systems modeling. The conclusions reached

here agree with their work as the SV-2 is suitable for discrete event modeling.

Table 82: Mapping between SV-1 and discrete event model elements

Event Queue Transition Server Entity Resource
System M M N M M N

System node M M N M M N
Interface N N Y N M Y

7.1.8 Agent-based model

The SV-1 includes some information about how two systems are interacting with each

other. The interaction itself is not shown but the way it is facilitated is described

on the SV-1. This information can be used within agent-based modeling by creating

observe and act functions within agents. Agents will then be taking in what is

exchanged via an observation, interpret them, and based on their internal goals,

decide to act accordingly. In this formulation the systems are modeled as agents, the

interfaces as interactions between agents and rules about them. Figure 87 shows an

example translation. Table 83 shows the results.

Table 83: Mapping between SV-1 and agent-based model elements

Agent Environment Interaction Rules
System Y N N Y

System node M M N Y
Interface N N Y Y

In Chapter 8, while testing one of the FAA architectures, it was determined that

the rules do not appear on the combination of SV-1, 2, and 6 in much detail to aid

221

Windows
workstation

Goals

Output

Input

Process

Windows server

Goals

Output

Input

Process

Mac server

Goals

Output

Input

Process

Figure 87: Example SV-1-to-agent-based model translation based on the SV-1 given
in Figure 83.

agent-based modeling. Therefore, this map was modified to reflect the fact that rules

do not appear on SV-1s. Similar modifications will be seen in SV-2 and 6 sections as

well. The modified table is given in Table 84.

Table 84: Modified Mapping between SV-1 and agent-based model elements. The
changes were made in light of the attempt at modeling the FAA’s Near Term Archi-
tecture.

Agent Environment Interaction Rules
System Y N N N

System node M M N M
Interface N N Y M

7.2 SV-2 Systems resource flow description

The systems resource flow description adds technical detail to the SV-1 interface

description. SV-2 shows the means through which the interfacing between systems

happen. Historically, this view was used for communications interfacing only; how-

ever, with DoDAF2.0 it can be applied to any kind of resource exchange including

material transfers. The difference from the SV-1 can be demonstrated best with an

example: consider a communication between an F-18 fighter pilot and a commander

on an aircraft carrier. The SV-1 will simply put a line between them; however, an

SV-2 will add middle steps such as: pilot → communications transceiver → electro-

magnetic wave → communications satellite transceiver → electromagnetic wave →

222

carrier transceiver → carrier communications system → network cable → comman-

der. The SV-2 puts the much needed technical detail to the resource exchanges that

a modeler would require to build a higher fidelity model. Figure 88 shows an example

based on Jones Wyatt et al.’s work [110].

Many elements shown on an SV-2 are not likely to be specific for a single mission.

The communications satellite used in the previous example would be used by many

different systems performing other missions as well. Many network routers, satellites,

the Internet, intranets, etc are such multi-use systems. Similarly, the systems that

make up a distribution network for material exchanges are used by multiple users

and missions as well. The systems engineer must keep that in mind during the

design phase. Distribution networks cannot be designed for a single mission in mind

otherwise other missions cannot be completed successfully. As an absurd example,

the systems engineer should not assume the entire Internet is there for an airline to

sell tickets to customers. Therefore, while the SV-2 is useful for adding technical

detail to exchanges between systems, it must include details on how these systems

are used by other users and systems for accurate analysis, which may be too much.

Among the modeling types considered in this work, there are three that are tradi-

tionally used for communications and supply chain modeling: graphs, queueing, and

discrete event. These models will work very well with the SV-2. In some cases the

transfer of resources can be modeled as a continuous process rather than a discrete

transfer in batches. For such cases system dynamics and continuous-time Markov

chains would be useful. The SV-2 is a commonly developed product. DoDAF Prod-

uct Development Questionnaire Analysis Report and New Product Recommendations

Report cites a high creation rate (66%) for SV-2 among the projects analyzed [6]. The

results from the discussions below are summarized in Tables 204–207 given in Ap-

pendix A.

223

air
gap

secure network

workstation network

personal device network

Figure 88: SV-2 reproduced from Jones Wyatt et al.’s example [110] with system
node additions

7.2.1 Graph model

The SV-2 is entirely about resource exchanges unlike the SV-1 and a graph model

is more easily employable in this case. However, just like the SV-1, the SV-2 also

has three architecture elements depicted on it. Consequently, the translation from an

SV-2 to a graph model is not as straightforward as the translation from an OV-2 to

graph model is. At first, it is natural to think about systems and their ports as graph

vertices and connections between ports as graph edges; however, this arrangement

also requires an extra edge between a system and its ports as the rules of graphs do

not allow two vertices to be connected without an edge between them. While this

is not a unsolvable problem, it just adds phantom elements to the model that do

not exist in the conceptual model as depicted in Figure 89. If the systems engineer

wanted to analyze the architecture using weighted edges, these phantom edges require

a numerical value that would not exist within the architecture description and must

be made up, introducing error and robbing the model of fidelity.

If system and connections between system ports are modeled as vertices, the

phantom modeling problem disappears. This arrangement is valid as long as ports

224

Linux

Phys.

MacWin

Ph
ys
.

Phys.

Net.

Figure 89: Example SV-2 to graph model translation based on the SV-2 given in
Figure 88 that introduces phantom edges. The edges shown with dashed lines do not
exist in the architecture but are necessary in the graph model. Print and optical disk
exchanges are depicted as physical and wired and wireless network data transfers are
depicted as network.

represented as graph edges always exist between two vertices, meaning that they have

only a single connection, i.e., there are no multipurpose ports. If there are such ports

in the real architecture, the limitation can be alleviated by splitting multi-purpose

ports into separate smaller ports. The formulation still allows for systems to have

multiple ports and even allow for modeling bottlenecks caused by connections used

by multiple systems at once. Figure 90 shows an example of this translation. The

resulting graph model looks significantly different compared to graph models created

from OV-2s. Table 85 shows this translation map in a table form.

MacWin

Linux

Phys.

Net.

Mac

Win

Linux
Phys.

Net.

Figure 90: Example SV-2-to-graph model translations based on the SV-2 given in
Figure 88 that is free of phantom edges. The graph on the left can be rearranged into
the one on the right to highlight the bipartite nature of the resulting graph model.

225

Table 85: Mapping between SV-2 and graph model elements for the more desirable
option without phantom elements

Vertex Edge
System Y N

Port N Y
Flowline Y N

7.2.2 Probability model

The graph model from the earlier discussion can be modified to create probability

models. If the engineer can assume that the port will not fail (it is a reasonable as-

sumption in most cases), and the failures can only happen within systems or during

communication, the previously described arrangement will work perfectly (i.e., sys-

tems and exchanges are nodes). Probabilities can then be assigned to each node and

the total probability of the operation being a success can be calculated. This can be

a very simple but useful model in the early stages of system of systems engineering.

Table 86: Mapping between SV-2 and probability model elements

Conditional probability
System Y

Port N
Flowline Y

7.2.3 System dynamics model

The SV-2 depicts the exchange of resources and as such system dynamics is a perfect

fit to model it. System dynamics deals with stocks and flows of things. Systems can

be imagined as stocks of resources and the connections between them as flows of these

resources. The ports could be used as variables that adjust flow rates. As the Ta-

ble 87 shows, there is a perfect one-to-one mapping between system dynamics model

elements and SV-2 architecture elements. Figure 91 shows an example transforma-

tion. The reader can easily see the perfect one-to-one mapping between architecture

elements and modeling elements.

226

speed

speed

Figure 91: Example SV-2 to system dynamics model translation based on the SV-2
given in Figure 88. Here, only the exchanges between the Windows server and Linux
server is shown for clarity.

Table 87: Mapping between SV-2 and system dynamics model elements

Stock Flow Variable
System Y N N

Port N N Y
Flowline N Y N

7.2.4 Markov chain model

A Markov chain model of a SV-2 focuses on where the resources are likely to be

found throughout the simulated time and architecture. This formulation is of limited

use because it necessarily tracks a single resource rather than large quantities of a

resource and many different kinds of resources. While limited, they are still feasible.

If different resources need to be tracked, multiple Markov chains can be constructed.

Table 88 shows the mapping between architecture elements and modeling elements.

Table 88: Mapping between SV-2 and Markov chain model elements

State Transition
System Y N

Port N N
Flowline N Y

7.2.5 Petri net model

Petri nets are a fitting modeling method for representing SV-2s similar to the system

dynamics models. Colored Petri nets can track multiple types of resources and track

them distinctly. If the system of systems in question is exchanging large quantities

227

of resources (e.g., vehicle traffic in a city, data transfers on the Internet) a system

dynamics model can effectively deal with such large flows, whereas a Petri net formu-

lation would choke. However, a system dynamics model would struggle to keep track

of distinct pieces of resources as it tends to aggregate transfers into homogeneous

flow of resources. Therefore, the nature of the resource exchanges will dictate which

model is more appropriate to model the SV-2. A resource exchange model will not

use the entire modeling complexity offered by Petri nets because it will not employ

merging and splitting transitions. Table 89 shows the perfect, one-to-one mapping

between SV-2 architecture elements and Petri net modeling elements.

Table 89: Mapping between SV-2 and Petri net model elements

Place Transition Arc
System Y N N

Port N N Y
Flowline N M N

7.2.6 Queueing model

The SV-2 provides information about the resource exchanges between the systems

and that process can be imagined as the resources within a system queueing up to

be transfered out of a port to reach the other end and queueing up to enter the

system (the story is highly analogous to international air travel with security checks

at either airport). Therefore, the port will specify the way the resource is processed

or how much processing it will require. Additionally, the flowline will specify the

way the resource arrives to a port and how process-intensive the resource is. Systems

ultimately perform the processing and are related to the servers. Table 90 shows the

results. It is more complete compared with Table 81.

228

Table 90: Mapping between SV-2 and queueing model elements

Arrival Size Server
System N N Y

Port M M Y
Flowline Y Y N

7.2.7 Discrete event model

The main difference between the SV-1 and SV-2 from the perspective of discrete

event modeling is the inclusion of ports. The port specification allows for peering

into the systems and creating multiple events within the system. It must be noted

that the way systems are integrated into a system of systems only hints at how the

said system of systems operates. The main operation may not require a resource

exchange between two systems even thought their ports make that exchange possible

for another purpose. Therefore, discrete event models should be built from the SV-5s

and SV-10s. The SV-1–4 are mainly there to set the context. Table 91 reflects this

point and is suggesting the use of caution.

As discussed in Section 7.1.7, Baumgarten and Silverman use an SV-2 to create

a discrete event communications model [28]. While the authors go into detail about

their SV-2 views, they also admit that an external source (a narrow-focus SV-7) for

many attributes was used to fill in the gaps. The authors also use their subject

matter expertise to assigne queues, create activities, and choose what element within

the SV-2 are events. As the discussion here suggests, it is possible to create a discrete

event oriented SV-2; however, a pre-made SV-2 is unlikely to serve as a good source

of information for a discrete event model, because the creator of the architecture will

likely not have a strict vision of modeling it later as a discrete event simulation. The

SV-2 in Baumgarten and Silverman’s work was created very specifically for a discrete

event simulation as well as a specific simulation software. The goal of this thesis is

to guide a modeler based on a pre-made architecture not to guide an experienced

229

modeler to create an architecture.

Table 91: Mapping between SV-2 and discrete event model elements

Event Queue Transition Server Entity Resource
System N N N Y M N

Port M M N N N N
Flowline N N Y N M Y

7.2.8 Agent-based model

With the addition of ports for the exchanges, agents in an agent-based model can be

defined better as compared with SV-1. However, in this recipe there is very small

difference between agent-based modeling done from an SV-1. Table 92 reflects the

similarities (the system and flowline rows are entirely identical, cf. Table 83). The

port element from the architecture can map to agent parts as well as the rules about

exchanges between the agents.

Table 92: Mapping between SV-2 and agent-based model elements

Agent Environment Interaction Rules
System Y N N N

Port Y N Y Y
Flowline N N Y Y

In Chapter 8, while testing one of the FAA architectures, it was determined that

the rules do not appear on the combination of SV-1, 2, and 6 in much detail to aid

agent-based modeling. Therefore, this map was modified to reflect the fact that rules

do not appear on SV-2s. The modified table is given in Table 93.

Table 93: Modified mapping between SV-2 and agent-based model elements

Agent Environment Interaction Rules
System Y N N N

Port Y N Y N
Flowline N N Y M

230

7.3 SV-3 Systems-to-systems matrix

The system to system matrix is an alternative representation of the SV-1. In realistic

architectures, squeezing all system and communication on a single graphic can be

virtually impossible. However, when these interfaces are represented as elements of

a matrix (i.e., cells in a table), it may be possible to see a large picture of interfaces

in a rather small footprint. Basically, the OV-3 matrix summarizes the OV-1 in

small-scale architectures and expands it in larger-scale architectures. The matrix can

then be used to ascertain all connected systems to each system. The OV-3 is also a

more machine-readable format than an SV-1; and therefore, a more useful view for

computer modeling. Unsurprisingly, if the modeler does not have an SV-3 to work

with, he or she will create one from the SV-1 for modeling purposes. For example,

in graph theory nomenclature, the SV-3 is the adjacency matrix of the SV-1 graph.

There is virtually no reason not to create an SV-3 if an SV-1 is present.

An architecture may have a layered SV-3 with each layer representing a different

kind of interface. This is necessary if the modeler needs to distinguish between re-

sources transferable using specific interfaces. For example, data cannot be transported

with trucks or ammunition through radio waves. Unless the SV-3 is layered—or a

separate SV-3 is created for each interface type—models will make mistakes by trans-

ferring resources on incompatible interfaces. The SV-3 is not a commonly developed

product. DoDAF Product Development Questionnaire Analysis Report and New

Product Recommendations Report cites a low creation rate (29%) for SV-3 among

the projects analyzed [6]. The results from the discussions below are summarized in

Tables 204–207 given in Appendix A.

231

Table 94: Example SV-3 constructed from Jones Wyatt’s example problem [111].

PW SPW CDGT VDGR CDUT VDUT FCS SP

PW 1
SPW 2

CDGT 1 2 1,2
VDGR v
CDUT 1,2 1,2
VDUT v

FCS 1,2 2
SP v 2

1 Command/feedback 1: waypoints, UAV position
2 Command/feedback 2: pan/tilt/zoom, sensor orientation
v Data: video file

7.3.1 Graph model

The SV-3 can be used as an adjacency matrix in the context of Graph models. This

means systems will be modeled as vertices and connections between the systems will

be represented as edges. This formulation is a simpler model than the one created

from the SV-1 and as such, it is of lower fidelity (e.g., it cannot model multiple

communications over the same frequency). However, its creation is immediate because

the architecture elements do not only map to modeling elements, they are modeling

elements. Table 95 details the conversion process with resources as elements of the

matrix and systems as rows and columns.

Table 95: Mapping between SV-3 and graph model elements

Vertex Edge
System Y N

Resource N Y

7.3.2 Probability model

The probability model from an SV-3 is a specialized graph model with edge weights

as communication/transfer probabilities. The only difference is that the probability

232

model can be reduced by using the conditional probability rules discussed in Chap-

ter 5. Table 96 shows the mapping between SV-3 and probability models.

Table 96: Mapping between SV-3 and probability model elements

Conditional probability
System Y

Resource Y

7.3.3 System dynamics model

The connections modeled within the systems-to-systems matrix can be represented as

flows in a system dynamics model. If there are some values included within the SV-3

matrix, they can be thought of as flow rates (i.e., the rate that resources are being

passed between systems). However, the SV-3 is a very simplistic architecture view

more focused on summarizing the architecture in a small footprint, and a system

dynamics model will be pushing the SV-3s limitations. A system dynamics model

would be useful if there are feedback loops, many dependencies between flows and

systems. Table 97 shows how the architectural elements of an SV-3 relate to modeling

elements of a system dynamics model. It is important to notice that the variable

information is likely to be missing from the SV-3.

Table 97: Mapping between SV-3 and system dynamics model elements

Stock Flow Variable
System Y N N

Resource N Y M

7.3.4 Markov chain model

A Markov chain representation from a SV-3 matrix is similar to a graph model.

Instead of interpreting the SV-3 as an adjacency matrix, one can interpret it as

a transition matrix and the resulting Markov chain can be used to simulate the

system of systems. However, the transition matrix must obey some rules discussed

233

in Chapter 5 but the SV-3 does not. The systems engineer must be very careful in

taking the SV-3 as-is and using it immediately in a Markov chain model. Table 98

highlights the similarities between an SV-3 and Markov chain modeling.

Mathieu and Callaway use an OV-4 in problem definition [134]. Their OV-4 can

be easily interpreted as an SV-3 or SV-6 with some more specific system definitions.

Their work can be used as an example of how an SV-3 can be turned into a Markov

chain with some subject matter expert input. The reader is also reminded that

the translation was not immediate or obvious; significant modeling knowledge and

experience were used to create the model.

Table 98: Mapping between SV-3 and Markov chain model elements

State Transition
System Y N

Resource N Y

7.3.5 Petri net model

A Petri net representation of a SV-3 is essentially a Markov chain but more difficult

to simulate. It is recommended that a Markov chain is made from an SV-3 as the

architecture view does not offer enough information or elements to match the modeling

freedom offered by Petri nets (three modeling elements vs. two architecture elements).

Table 99 summarizes the discussion in tabular form. The reader can see that the

resource element is used for both arcs and transitions, making the feasible model

essentially the same as a Markov chain.

Table 99: Mapping between SV-3 and Petri net model elements

Place Transition Arc
System Y N N

Resource N Y Y

234

7.3.6 Queueing model

The SV-3 shows how systems are connected with each other. These connections are

implemented to facilitate resource exchanges such as data, fuel, passengers, munitions,

etc. A queueing model can be constructed to simulate such exchanges as jobs that get

processed by the systems and if the system of systems is being developed as a network

for resource transfer and processing, e.g., the Internet. However, one must remember

that just because there is a connection between two systems, does not mean that

there is a procedural hand-off between them in the context of the real operations of

the system of systems. Therefore, the results shown in Table 100 are very similar to

ones shown in Table 81.

Table 100: Mapping between SV-3 and queueing model elements

Arrival Size Server
System N N Y

Resource M M N

7.3.7 Discrete event model

The discrete event models has many similarities compared with the queueing models;

therefore, the discussion is similar. An SV-3 can provide a significant amount of dis-

crete event modeling information if the system of systems is geared towards resource

transfer and processing. And just like the queueing model, the systems engineer must

remember that a connection between two system nodes does not necessarily mean that

they are consecutive steps within a sequential process. Therefore, it is usually not

possible to infer the way the system of systems operates from the SV-3. Figure 92

shows an example. Table 101 shows that there is some possibility to create parts of

a discrete event model from an SV-3.

235

Event 1

SP

Event 3

VDUT

Event 2

FCS

Event 4

VDGR

Event 5

SPN

Figure 92: Example SV-3-to-discrete event model translation based on the SV-3 given
in Table 94.

Table 101: Mapping between SV-3 and discrete event model elements

Event Queue Transition Server Entity Resource
System M N N Y Y N

Resource N N Y N M Y

7.3.8 Agent-based model

The SV-3 is a more compact representation of the SV-1 and as such the results are

comparable to the ones of the SV-1. It is natural to think of systems as agents within

the model, while the resource flows bear the burden of defining interactions and their

possible rules. Figure 93 shows an example transformation. Table 102 shows the

argument of the SV-3 matrix being too simplistic for agent-based modeling.

Table 102: Mapping between SV-3 and agent-based model elements

Agent Environment Interaction Rules
System Y N N N

Resource N N Y M

236

Command datalink
UAV transceiver

Goals

Act

Interpret

Decide

Flight control
system

Goals

Act

Interpret

Decide

Sensor payload

Goals

Act

Interpret

Decide

Video datalink
UAV transmitter

Goals

Act

Interpret

Decide

Sensor payload
workstation

Goals

Act

Interpret

Decide

Video datalink
ground receiver

Goals

Act

Interpret

Decide

Command datalink
ground transceiver

Goals

Act

Interpret

Decide

Pilot workstation

Goals

Act

Interpret

Decide

Figure 93: Example SV-3-to-agent-based model translation based on the SV-3 given
in Table 94.

7.4 SV-4 Systems functionality description

The Systems Functionality Description is to system views what the OV-5b Opera-

tional Activity Model is to the operational views. It includes details on the behavioral

aspects of the system of systems depicted on the SV-1. In other words, an SV-4 de-

picts an intention not the mere existence of an interface. The SV-4 has one difference

from the OV-5: stores. It not only shows the functions but also the stores the re-

sources required by the functions. The functions retrieve resources, process them, and

237

pass them to other functions or resource stores. The SV-4 may not show any systems;

its main purpose is to show interactions between system functions. An example SV-4

is given in Figure 94.

Drive

Arrive at
station

PAX pa-
rameters

PAX dis-/
embark

Wait until
departure

At
station

? Y

N

Arrive at
station

PAX dis-/
embark

Drive

End
of line

?

Y

N Depart
station

Depart
station

#disembark#embark

#disembark#embark

stop

station

Figure 94: Example SV-4 depicting the interoperation of trains and buses for a public
transportation system. Passenger parameters box is a data store and contains all
passengers waiting in all stops and stations.

Just like the operational views, the SV-4 has some similarities with the SV-10b

and SV-10c. Whereas the OV-10 and SV-10 have specific focus on timing, the modeler

must remember that the OV-5b and the SV-4 are more focused on the organization:

they do not include order of activities or functions necessarily, but requirements of

them. In a sense, the view shows what had to have happened before each function—

so it has temporal elements—but lacks concurrency, duration, immediacy, etc. A

system of systems engineer can use the SV-4 just like he/she used the OV-5b and

the modeling types that support the SV-4 are unsurprisingly similar to that of the

OV-5b. The SV-4 is a commonly developed product. DoDAF Product Development

Questionnaire Analysis Report and New Product Recommendations Report cites a

238

high creation rate (55%) for SV-41 among the projects analyzed [6]. The results from

the discussions below are summarized in Tables 204–207 given in Appendix A.

There is a second version of an SV-4; however, this version does not have a separate

name (e.g., SV-4a, it is simply named an SV-4. This second version shows systems

functions in a decomposition tree[59]. On a hierarchical SV-4, systems functions

can be identified and organized; therefore, this view is practical during architecture

development. Unfortunately, a hierarchy of functions is not useful for process simula-

tion and because this work focuses on the modeling and simulation from architecture

views, the hierarchical SV-4 is not considered here.

7.4.1 Graph model

A graph model from an SV-4 can analyze a number of architecture characteristics. In

the most simplistic analysis, a graph model can be used to determine whether a system

function is connected (directly or indirectly) to all the resource stores it needs to work.

Additionally, a network distance (number of hops as well as bandwidth considerations)

to these resources can be calculated so estimate the lag between a function request and

the actual execution fo the function. Another kind of analysis that can be performed

with a graph model is the vulnerability of the function via the disruption of resource

exchanges. Figure 95 shows an example translation. Finally, Table 103 shows the

map between the architecture and modeling elements. Because system functions and

data stores cannot be connected in any other way but a function input/output, both

can be modeled as vertices in a graph model context without violating mathematical

rules. Domerçant uses graphs and algebra to calculate complexities of systems, and

the system of systems they belong to [64]. While he does not specifically use an SV-4,

his formulation is perfectly applicable to SV-4s.

1The SV-4a in DoDAF version 1.5 is equivalent to the SV-4 in DoDAF version 2.

239

Drive

Arrive
Dis-/Embark

Turn around

Depart Drive

Arrive
Dis-/Embark

Wait

Figure 95: Example SV-4 to graph translation based on Figure 94.

Table 103: Mapping between SV-4 and graph model elements

Vertex Edge
System functions Y N

Function I/O N Y
Data store M N

7.4.2 Probability model

A probability model from an SV-4 can be used to calculate overall probabilities for

different functions to occur from simpler probabilities that quantify each function’s

probability if all the previous steps were successful (i.e., conditional probabilities). If

the functions are being executed on multiple systems in parallel, the systems engineer

can calculate the increased overall probability of functions executing successfully.

Table 104 shows how architecture elements can be translated into modeling elements.

Only functions are assigned conditional probabilities because the inputs and outputs

the functions require are simply the results of previous functions.

Table 104: Mapping between SV-4 and probability model elements

Conditional probability
System functions Y

Function I/O N
Data store N

7.4.3 System dynamics model

The way the resources travel through the different systems by being processed and

changed by their functions can be modeled by a system dynamics model. This model

240

will represent the functions’ inputs and outputs as a flow of information or resources.

The flow rate will depend on how fast functions are executed as well as whether

previous functions are outputting anything to a function. For example, a very fast

function may not be outputting things in large quantities because it may be waiting

for an upstream slow function to finish first. This as well as feedbacks that cause

bottlenecks can be easily modeled using system dynamics. One issue the systems

engineer may run into is that the variables that are ultimately needed to dictate how

fast flows work may be missing from the graphical description of the SV-4 and may

be included in the SV-7 only. Table 105 summarizes the findings.

Table 105: Mapping between SV-4 and system dynamics model elements

Stock Flow Variable
System functions Y N N

Function I/O N Y N
Data store Y N N

7.4.4 Markov chain model

The SV-4 can be converted into a Markov chain to track the movement of a single

resource with a big caveat: Markov chains do not allow splitting a resource to convert

it to separate, distinct resources. This is because the Markov model is a probability-

mass conserving model, that means the sum of the probabilities of the resource being

in all the states must always equal to one. When a split happens in a function (e.g.,

a computer making a backup copy of the data), this rule will be violated as the total

probability will rise to two. Therefore, not all SV-4s can be converted to Markov

chains and it would be advisable to use either system dynamics or Petri net models

instead. Table 106 summarizes the findings.

241

Table 106: Mapping between SV-4 and Markov chain model elements

State Transition
System functions M N

Function I/O N M
Data store M N

7.4.5 Petri net model

As mentioned in the previous section, a Petri net model is highly suitable for modeling

the process the SV-4 represents. A Petri net model can track multiple resource items

as well as split, merge, destroy, and create them. This can only happen within Petri

net transitions; and therefore, functions on a SV-4 must be represented as transitions.

Petri net places only hold tokens, they cannot change them or change their quantities.

This means that the function inputs and outputs must be modeled as arcs and states.

Such an arrangement seems odd at first because the graphical syntax used in the

SV-4 for functions is usually a box. That shape can be more easily associated to

circles used for places. Whereas the arrows in the SV-4 graphically are more similar

to transitions and arcs. The systems engineer must overcome the urge graphical

association and associate elements using their meanings. Figure 96 shows an example

translation. Data stores are modeled as places because the resources are stationary

in these stores.

It must be noted that system functions can be feasibly represented as Petri net

places. However, it comes with added disadvantages. Non-simple transitions such as

splits (transition takes in one token but outputs two or more) with mergers (transition

takes two or more tokens and outputs one) require phantom and non-unique places

and transitions to make the model equivalent to the previous arrangement. The

phantom elements cause a problem from the perspective of this thesis: they add

maybe entries into the architecture element to modeling element map. It makes the

analysis less crisp and results less definitive. Additionally, one modeling element ends

242

D
ep

ar
te

d

D
riv

e

D
is
-/

Em
ba

rk
D
oo

rs
 c

lo
se

d

D
oo

rs
 o

pe
n

Ar
riv

e

Ar
riv

in
g

W
ai

tin
g

Ar
riv

in
g

PAX @ Station

Train

Bus

D
is
-/

Em
ba

rk

Figure 96: Example SV-4 to Petri net model translation based on Figure 94.

up being mapped to multiple architecture element, which is not desirable as they may

include mismatching metrics. Figure 97 shows four options that exist. The generic

SV-4 includes a split as well as a merge. The top row shows the author’s recommended

translation, i.e., a function I/O is represented as a place. The bottom row shows the

opposite, i.e., a function is represented as a place. The reader can readily observe in

the bottom left cell that with splits that mean a function outputs multiple things at

once, and mergers that mean that both inputs are necessary for a function to execute,

the modeling elements are mapped to multiple architecture elements. Whereas, the

top row has a cleaner mapping.

Table 107: Mapping between SV-4 and Petri net model elements

Place Transition Arc
System functions N Y N

Function I/O Y N Y
Data store Y N N

243

a b c d

hgf

e

1 2 3

4 5

Splits and merges are "AND" Splits and merges are "OR"

a b c d

f g h

e

1 1 1 2 2 2

2 2 2

3 3 3

4 4 4 5 5 5

5 5 5

a b c d

f g h

e

1 1 1 2 2 2

2

3 3 3

4 4 4 5 5 55

a a a b b b c c c d d d

f f f g g g hhh

e e e

1 2 3

4 5

a a a b b b c c c

c,e

d d d

f f f g hhh
e,g

1 2 3

4 5e,g

Figure 97: Swapping the places and transitions is possible; however, makes the map-
ping much less crisp and results in a larger model that is more difficult to simulate

7.4.6 Queueing model

The SV-4 describes what the SV-1–3 lacked: functions in a sequence. Therefore,

coupled with any of the previous systems views, it can be used to create a model of

the operations in a step-by-step way. Queueing models are used to simulate a network

of processes on which different jobs arrive and move until they exit the network as

finished; therefore, it is a good fit for modeling out of an SV-4. The data stores can

be used as inputs to that network and act as arrivals. The system modeler must use

some sequence data from a view such as SV-10b or infer from operational views in

which actual order the functions execute. The SV-4 only shows required inputs and

outputs of functions. However, the sequences can be changed slightly as long as the

requirements for each function are met. Table 108 shows the results of the discussion

in a tabular form.

244

Table 108: Mapping between SV-4 and queueing model elements

Arrival Size Server
System functions N N Y

Function I/O M Y N
Data store Y M N

7.4.7 Discrete event model

A discrete event model will add details and further fidelity to a queueing model.

They are very similar; therefore, it is not surprising that both can use the SV-4

very efficiently. The view depicts a step-by-step process that the system of systems

operates by and each of these steps can be represented within a discrete event model

as events and a server that is employed to perform it. The transitions between these

events can be logically mapped to function input and outputs depicted in the SV-4.

However, a system modeler must remember that the functions depicted on an SV-4

are organized based on how functions are related to each other not in which order they

are executed. While the required discrete event elements are depicted in the SV-4,

they are not connected to each other in an executable way. Table 109 summarizes

the points in a tabular form.

Mittal et al. propose the use of SV-4 and 5s as one step of 16 to analyze an

architecture [141]. Their analysis suggests a discrete event simulation; however, they

do not go into much detail other than stating that the SV-4 is used to identify new

proposed systems instead of defining already fielded systems. In a different analysis,

Mittal argues that the SV-4 does not have activities defined and the design phase in

which the SV-4 is created is too early to define components in a discrete event model

[142].

245

Table 109: Mapping between SV-4 and discrete event model elements

Event Queue Transition Server Entity Resource
System functions M N N Y M N

Function I/O N M M N Y Y
Data store M N N Y Y Y

7.4.8 Agent-based model

The SV-4 is an important source of information for agent-based modeling. It depicts

the requirements of the functions that are performed by various systems and users.

When defining behaviors of agents, a system modeler can use the information on

the SV-4 and lay out the inputs and outputs of an agent behavior. These behaviors

may be coded as functions inside a computer model that require precise definition

of inputs. Figure 98 shows an example. Based on this formulation, operationally

important agent behaviors can be coded in as shells that do not include much logic.

That logic will be acquired mainly from the SV-10a as well as the SV-7, SV-10b, and

SV-10c. Therefore, while the SV-4 is not enough on its own to create an agent-based

model, it establishes a significant portion of the conceptual model that can be coded

as a placeholder for further information to finalize later. Table 110 shows the results.

Station

PAX at
station

Final
station?

Train

Arrive

PAX
exchange

Turn
around?

Turn
around

Drive

N

Y

Y

N

#exit

#enter

y/n

Figure 98: Example SV-4-to-agent-based model translation based on Figure 94.

246

Table 110: Mapping between SV-4 and agent-based model elements

Agent Environment Interaction Rules
System functions N N N Y

Function I/O N N Y N
Data store M M N N

7.5 SV-5a Operational activity to systems function trace-
ability matrix

The operational activity to systems function traceability matrix connects the opera-

tional aspects of the architecture to the physical systems’ functions. With this matrix

a systems engineer can see what system functions support what operations. This is

a very critical architecture product that connect two other critical views: the OV-5b

and the SV-4. It is also a perfect example for how a view alone may not be enough

for modeling but invaluable if used with other views as a combination. The only

way an SV-5a can be useful for modeling the system of systems is by being used in

conjunction with the OV-5b and SV-4. One important note about the mapping is

that it does not have to be one-to-one, as multiple functions may support activities

and multiple activities may be supported by one function.

An example SV-5a is given in Table 111. Note that the operational activities

are linked to the systems via the SV-5b and the system functions are linked to the

systems via the SV-4. These links create a useful verification triangle as depicted in

Figure 99. The SV-5a is a commonly developed product. DoDAF Product Devel-

opment Questionnaire Analysis Report and New Product Recommendations Report

cites a high creation rate (63%) for SV-5a. The results from the discussions below

are summarized in Tables 204–207 given in Appendix A.

247

Table 111: Example SV-5a for a generic reconnaissance UAV operation

Activity Function

Sense

Move/fly platform
Orient sensors
Activate sensors
Communicate sensor data

Flight control

Provide trajectory
Communicate with platform
Communicate with commander
Communicate with payload controller
Monitor platform status

Payload control

Interpret data
Communicate with flight controller
Communicate with commander
Communicate with platform
Provide orientation to sensors
Provide points of interest to flight controller

System
functions

Operational
activities

Systems SV-4

SV-5aSV
-5
b

Figure 99: How the SV-4, -5a, and -5b are interlinked

7.5.1 Graph model

The SV-5a is not a particularly useful view for modeling when used alone as discussed

above. Therefore, modeling discussions for all the models will be very brief and the

results are littered with maybe and no entries as expected. The systems engineer

must always remember to use the SV-5a with the OV-5b as part of a larger modeling

effort.

Table 112 shows the most positive result among all the modeling types. Repre-

senting both system functions and operational activities as vertices of a graph one can

discover central functions that support many activities and in turn identify critical

248

assets that perform the functions. Additionally, one can discover activities that re-

quire an excessive number of functions and argue that they are complicated or tricky

to execute. However, these analyses will not be simulations of how the system of

systems operates. Nevertheless, they do provide potentially important information.

Figure 100 depicts a notional example. The graph model from an SV-5a is a bipartite

graph in which one type of node (operational activity) is connected to only the other

kind of nodes (system functions) and not to nodes of its own kind.

System
functions

Operational
activities

Sense

 Move/fly platform

 Orient sensors

 Activate sensors

 Communicated sensor data

 Provide trajectory

 Communicate with platform

 Communicate with commander

 Communicate with payload controller

 Interpret data

 Communicate with flight controller

 Communicate with commander

 Communicate with platform

 Monitor platform status

 Provide orientation to sensors

 Provide points of interest to flight controller

Flight control

Payload control

Figure 100: Example SV-5a to graph model based on the SV-5a given in Table 111.

Table 112: Mapping between SV-5a and graph model elements

Vertex Edge
System function Y N

Operational activity Y N

249

7.5.2 Probability model

The graph model described in the previous section can be modified to include prob-

abilities of functions working properly. When these probabilities are multiplied, an

approximation of the operational activity executing successfully can be found. How-

ever, the way functions are put together (see SV-4) is also important and a probability

model from an SV-5a will ignore the execution structure. Therefore, it is not recom-

mended that the SV-5a be used for probability calculations. Table 113 summarizes

the results.

Table 113: Mapping between SV-5a and probability model elements

Conditional probability
System function N

Operational activity N

7.5.3 System dynamics model

The SV-5a holds no resource stock or resource exchange information and is not mod-

elable via a system dynamics model. Table 114 shows this fact in the tabular form.

Table 114: Mapping between SV-5a and system dynamics model elements

Stock Flow Variable
System function N N N

Operational activity N N N

7.5.4 Markov chain model

The SV-5a does not have any elements that can be thought as states and transitions.

Table 115 shows the negative arguments in tabular form.

Table 115: Mapping between SV-5a and Markov chain model elements

State Transition
System function N N

Operational activity N N

250

7.5.5 Petri net model

Petri nets simulate the transformation of things as they change their states. Such

information is not offered by the SV-5a. Table 116 summarizes this point in a ta-

ble. Wang and Dagli use two SysML diagrams (internal block diagram and sequence

diagram) to create colored Petri net models [192]. They rely heavily on the infor-

mation given on the sequence diagrams while using the internal block diagram to

split the operation of the system of systems into smaller, more manageable chunks.

SV-5as have similarities with the internal block diagrams; consequently, it can be

argued that SV-5as are capable of segmenting and layering various other modeling

techniques and their inclusion within an architecture does not hint at any particular

modeling method being more suitable than others, including Petri nets.

Table 116: Mapping between SV-5a and Petri net model elements

Place Transition Arc
System function N N N

Operational activity N N N

7.5.6 Queueing model

The SV-5a does not provide any information on things that queue up to receive a

service from some kind of job server. Table 117 highlights the non-existence of any

relation between SV-5a architecture elements and queueing model elements.

Table 117: Mapping between SV-5a and queueing model elements

Arrival Size Server
System function N N N

Operational activity N N N

7.5.7 Discrete event model

Similar to the queueing model, discrete event models also require entities moving

through a network of stations where they get some job performed on themselves. The

251

SV-5a does not hold any such information. Table 118 shows the negative conclusions.

Baumgarten and Silverman report that they use an SV-5 along with other architecture

views to create a communications model [28]. They do not show or go into detail

what was included within this SV-5, while they discuss the SV-1 and 2 in detail. As

discussed above in Section 7.5, the SV-5a is not particularly useful on its own, and

Baumgarten and Silverman’s use fall into this pattern.

Table 118: Mapping between SV-5a and discrete event model elements

Event Queue Transition Server Entity Resource
System function N N N N N N

Operational activity N N N N N N

7.5.8 Agent-based model

Agent-based models require extensive information about how various systems behave

in the system of systems. The SV-5a has no such information. However, the links

between the system functions and operational activities can supply the modeler with

information on what systems act within what operations. Table 119 shows the results

by including maybe entries under the rules column. However, the information included

within the SV-5a will not be enough for any agent-based modeling.

Table 119: Mapping between SV-5a and agent-based model elements

Agent Environment Interaction Rules
System function N N N M

Operational activity N N N M

7.6 SV-5b Operational activity to systems traceability ma-
trix

The operational activity to systems traceability matrix is similar to the SV-5a but

instead of operational activities mapping to systems functions, they map to systems

themselves. So, SV-5b connects SV-1 to OV-5a,b. This view’s main purpose is to

252

establish what system participates in what operational activity. Similar to the SV-5a,

it is not useful to modeling on its own but virtually every practical architecture would

use the information an SV-5b is carrying for modeling purposes. The systems engineer

must make sure that each system mapped to operational activities is actually capable

of performing that activity. Using the SV-5a, SV-4, and SV-7, these simple checks can

be done. Also important to remember is that the mappings do not have to be one-to-

one in a similar fashion to the SV-5a. Traditionally, an SV-5b is presented as a table

or a matrix. The SV-5b is an product developed not commonly. DoDAF Product

Development Questionnaire Analysis Report and New Product Recommendations

Report cites a low creation rate (29%) for SV-5b. The results from the discussions

below are summarized in Tables 204–207 given in Appendix A.

253

Table 120: Example SV-5b constructed from author’s previous work [20]

Operational
activity

Alternatives

Reconcile
target priorities

Commander
Auto. target
mgmt. sys.

Notify carrier
of target
priorities

Commander

Remove from
target list

Commander
Auto. target
mgmt. sys.

Determine
sensor

availability
C2 oper.

Auto. asset
mgmt. sys.

Task sensors C2 oper.

Confirm target
identity

Analyst Intel sat. F/A-18 AH-64
EA-6B X-47B RQ-4A SOF

Manage target
movement data

Analyst
Auto. target
tracking sys.

Pass warn-
ing/location

data
C2 oper.

Fuse sensor
data

Analyst
Data fusion

software
Update target

list
C2 oper.

Auto. target
mgmt. sys.

Determine
engager

availability
C2 oper.

Auto. asset
mgmt. sys.

Assess
engagement

capability
C2 oper.

Task engagers C2 oper.
.
.
.

254

7.6.1 Graph model

The SV-5b is equally not effective when modeling the system of systems in isolation.

Using the OV-2, OV-5a, OV-5b, SV-5a, and SV-5b the systems engineer can link

systems to functions to operational activities to operational nodes to entire operations

and this information can be used to support modeling efforts but by itself the SV-5b

is not capable of modeling the operation of the system of systems.

One exception is that a graph model can represent the SV-5b in a bipartite graph

form as exemplified in Figure 101. The points that can be made are essentially the

same as the SV-5a. Systems that are responsible for most operations are expected

to be very busy during the operations as they will support the capabilities in many

different ways and points during their application. Table 121 summarizes the conclu-

sions.

Systems
Operational
activities

 Commander

 Auto. target mgmt. sys.

 C2 oper.

 Auto. asset mgmt. sys.

 Intel sat.

 F/A-18

 AH-64

 EA-6B

 SOF

 Auto. target tracking sys.

 Data fusion software

 X-47B

 RQ-4A

 Analyst

Reconcile target priorities

Remove from target list

Task sensors

Manage target movement data

Fuse sensor data

Update target list

Pass warning/location data

Confirm target identity

Determine sensor availability

Notify carrier of target priorities

Determine engager availability

Task engagers

Assess engagement capability

Figure 101: Example SV-5b to graph model based on the SV-5b given in Table 120.

255

Table 121: Mapping between SV-5b and graph model elements

Vertex Edge
System Y N

Operational activity Y N

7.6.2 Probability model

Similar to the SV-5a, a probability model is not possible to be created from an SV-5b.

Refer to the Section 7.5.2 for details. Table 122 shows the negative results.

Table 122: Mapping between SV-5b and probability model elements

Conditional probability
System N

Operational activity N

7.6.3 System dynamics model

The SV-5b holds no information about any kind of resource flow. System dynamics

models are not suitable to be used with SV-5bs. Table 123 shows the negative results.

Table 123: Mapping between SV-5b and system dynamics model elements

Stock Flow Variable
System N N N

Operational activity N N N

7.6.4 Markov chain model

Markov chains track the probability of the system being in various states. The SV-5b

holds no such information. Table 124 shows the conclusion in tabular form.

256

Table 124: Mapping between SV-5b and Markov chain model elements

State Transition
System N N

Operational activity N N

7.6.5 Petri net model

Petri nets track things within a network of places and the SV-5b does not have any

matching pieces of information to support a Petri net model. Table 125 shows the

conclusion.

Table 125: Mapping between SV-5b and Petri net model elements

Place Transition Arc
System N N N

Operational activity N N N

7.6.6 Queueing model

Queueing models examine things that queue up to use a service. The types of infor-

mation needed to perform that analysis are not included in as SV-5b. A system shown

on an SV-5b is performing an activity, which can be seen as a job-server perspective;

however, the network is near impossible to be created from the matrix. Table 126

shows the conclusions.

Table 126: Mapping between SV-5b and queueing model elements

Arrival Size Server
System N N M

Operational activity N N N

7.6.7 Discrete event model

The reason that discrete event models are not suitable for SV-5bs is identical to

the reason queueing models are not suitable. Table 127 shows the negative results.

Baumgarten and Silverman report that they use an SV-5 along with other architecture

257

views to create a communications model [28]. They do not show or go into detail

what was included within this SV-5, while they discuss the SV-1 and 2 in detail. As

discussed above in Section 7.6, the SV-5b is not particularly useful on its own, and

Baumgarten and Silverman’s use fall into this pattern.

Xiong et al. describe a method of evaluating system of systems architectures using

a discrete event model [108]. In their work a number of operational views are used.

However, their OV-5b includes some extra information that maps system to the op-

erational activities they perform, which is technically an SV-5b in a non-traditional

form. Their use is considered as an SV-5b in this thesis. Squeezing extra information

into views is a common practice that minimizes the number of architecture views

needed to describe a system of systems. Given the extra OV-5b information on top

of the SV-5b, it is not surprising that they found their architecture view very useful

for discrete event modeling (see Section 6.6.7). However, without the OV-5b informa-

tion, the SV-5b would not have supplied much information to create a discrete event

model.

Table 127: Mapping between SV-5b and discrete event model elements

Event Queue Transition Server Entity Resource
System N N N M N N

Operational activity N N N N N N

7.6.8 Agent-based model

The SV-5b can be used to determine what operational activity is part of the behavior

of what system. Apart from that, it has little value. Table 128 shows maybe entries

under the rules and negative maps everywhere else.

Table 128: Mapping between SV-5b and agent-based model elements

Agent Environment Interaction Rules
System N N N M

Operational activity N N N M

258

7.7 SV-6 Systems resource flow matrix

The systems resource flow matrix is closely related to the SV-2 and the systems or

physical equivalent of the OV-3. In each row of the SV-6 a description of a resource

exchange is given: what is exchanged, what systems exchange the resource, what

interface is used, the conditions for the resource exchange, etc. The SV-6 must be

carefully developed to cover all operational resource flows. Otherwise, the operation

will not be sufficiently supported by physical systems. It is customary to prepare SV-6

tables for exchanges between systems. Exchanges between components/functions

within systems are usually scoped out; however, this is not a general rule. Jones Wyatt

offers an example [111] in her thesis that is used here to create an SV-6 table shown

below in Table 129. The SV-1 is not a commonly developed product. DoDAF Product

Development Questionnaire Analysis Report and New Product Recommendations

Report cites a low creation rate (47%) for SV-1 among the projects analyzed [6].

The results from the discussions below are summarized in Tables 204–207 given in

Appendix A.

259

Table 129: Example SV-6 constructed from Jones Wyatt’s example problem [111].

Source Sink Resource
Pilot Workstation Cmd. datalink ground trans. Waypoints

Cmd. datalink ground trans. Pilot Workstation UAV position
Cmd. datalink ground trans. Cmd. datalink UAV trans. Waypoints
Cmd. datalink UAV trans. Cmd. datalink ground trans. UAV position

Cmd. datalink ground trans. Cmd. datalink UAV trans. Pan/tilt/zoom
Cmd. datalink UAV trans. Cmd. datalink ground trans. Sensor orientation

Cmd. datalink ground trans. Sensor payload workstation Sensor orientation
Sensor payload workstation Cmd. datalink ground trans. Pan/tilt/zoom
Cmd. datalink UAV trans. Flight control system Waypoints

Flight control system Cmd. datalink UAV trans. UAV position
Cmd. datalink UAV trans. Flight control system Pan/tilt/zoom

Flight control system Cmd. datalink UAV trans. Sensor orientation
Flight control system Sensor payload Pan/tilt/zoom

Sensor payload Flight control system Sensor orientation
Sensor payload Video datalink UAV trans. Video file

Video datalink UAV trans. Video datalink ground trans. Video file
Video datalink ground trans. Sensor payload workstation Video file

7.7.1 Graph model

The SV-6 offers more than enough detail to create a graph model. The systems re-

source flow matrix is a more detailed version the the SV-3 systems-to-systems matrix.

The SV-3 only shows the existence of connections between systems, whereas the SV-6

offers details about the connections such as ports, resource types, etc. It is therefore

not surprising that a graph model can be created from an SV-6. Table 130 shows the

results in tabular form. One difference between graphs created from the SV-3 and

SV-6 is that SV-6 includes information about multiple different resources that can

be exchanged between systems through various connections; therefore, the resulting

graph model may include edges with higher multiplicities. Figure 102 shows three

examples, one for each type of resource transfer from Jones Wyatt’s work [111]. The

source of the model is given in Table 129. The commands and their corresponding

feedbacks were grouped together, making three separate graph models out of a single

SV-6 table.

260

SPVDUTVDGRSPW

FCSCDUTCDGTPW

FCSCDUTCDGTPW SP

Figure 102: Three example of SV-6-to-graph model translation. The source is Ta-
ble 129 constructed from Jones Wyatt’s thesis [111].

Table 130: Mapping between SV-6 and graph model elements

Vertex Edge
System Y N

Resource N Y

7.7.2 Probability model

A probability model constructed from an SV-6 is essentially the same as one made

out of an SV-3. Therefore, the reader is referred back to Section 7.3.2 for details. The

only difference is that probabilities for different resource exchanges can be modeled

separately without being lumped into a single generic transfer between a pair of

systems. Table 131 shows the results.

Table 131: Mapping between SV-6 and probability model elements

Conditional probability
System Y

Resource Y

261

7.7.3 System dynamics model

The SV-6 provides details about the resource exchanges. In bulk quantities these

exchanges can be represented as flows that are the topic of system dynamics modeling

as system dynamics ties to model large-scale movements through a system. For

example, transferring a video file from a reconnaissance aircraft to a base as a whole

cannot be modeled as a “flow”; however, transmitting data at the bits level can be

thought of as one. Also, as mentioned earlier, the SV-6 is very similar to the SV-3 and

the SV-3 was fairly useful for system dynamics modeling (see Section 7.3.3). For the

same reasons, the SV-6 is also useful for system dynamics modeling with the added

bonus on details about each exchange. Therefore, the missing information about the

variables from the SV-3 is more likely to be included in an SV-6. Table 132 shows

the results (cf. Table 97). Figure 103 provides an example.

Sensor
payload

Sensor
Payload WS

Video datalink
ground receiver

Sensor video
bit rate

Video
bit rate

Video datalink
UAV transmitter

Figure 103: Example SV-6-to-system dynamics model translation based on the SV-6
given in Table 129.

Table 132: Mapping between SV-6 and system dynamics model elements

Stock Flow Variable
System Y N M

Resource N Y Y

7.7.4 Markov chain model

An SV-6 is capable of creating many Markov chain models as resource exchanges

are identified as distinct exchanges. Every type of exchange can be represented in a

separate Markov chain. The SV-6 also does not have the limitation of the SV-3 for

262

not following the Markov chain rules. Here the Markov chain will represent the state

the resource is in. Therefore, system can be thought as states the resource can be in

and the exchanges are how the resources transition from system to system. Table 133

shows the positive results (cf. Table 98). In Section 7.3.4 Mathieu and Callaway’s

Markov chain model was discussed [134]. The SV-6 is very similar to the SV-3 and

the same argument can be used here. Their work can be used as an example of how

an SV-6 can be turned into a Markov chain with some subject matter expert input.

Table 133: Mapping between SV-6 and Markov chain model elements

State Transition
System Y N

Resource N Y

7.7.5 Petri net model

The SV-6 can be used as information to build a Petri net model identically as the

SV-3 is used to make a Petri net. The SV-6 has mode details and is it possible to

create multiple or mode detailed Petri net models. See Figure 104 for an example.

Table 134 shows the positive results (cf. Table 99). Bai et al. describe a method for

modeling a system of systems using UML as a source for creating Petri net models

[199]. In their process, the SV-62 and the SV-10c are used as information sources for

the Petri net elements. The SV-6 is used as a support to the SV-10b/c and helps with

defining the communications aspect of the system of systems. Their work shows what

is possible when using multiple views together for modeling and partially supports

the position taken here.

2The authors refer to an SV-3 in the text but this appears to be a typographical error. Actually,
an SV-6 is used, which is evident by the name of the matrix in the text as well as the figure they
include for UML-to-DoDAF translation.

263

PW

CDGT

CDUT

FCS

SP

VDUT

VDGRSPW

Figure 104: Example SV-6-to-Petri net model translation based on the SV-6 given in
Table 129.

Table 134: Mapping between SV-6 and Petri net model elements

Place Transition Arc
System Y N N

Resource N Y Y

7.7.6 Queueing model

The resource exchanges between systems that were defined on the SV-4 provided a

sense of how systems could transfer jobs from one to the other. The SV-6 goes further

and specifies types of resources exchanged and distinctly list various multiple resource

exchanges between systems. The combination of the two provides a clearer view of

what is possible with the system of systems. Adding the SV-5a and SV-5b to the mix

will certainly be enough to create a queueing model as the real operations are added

to the modeler’s knowledge about the system of systems. In a way, the SV-4 and SV-6

provide a number of possibilities for a system of systems to perform an operation and

264

the SV-5a,b paired with some operational views provide the actual way the operation

is executed in practice. Table 135 shows promising results.

Table 135: Mapping between SV-6 and queueing model elements

Arrival Size Server
System N N Y

Resource Y Y N

7.7.7 Discrete event model

Similar to the discussion about the queueing models, the SV-6 is highly useful for

discrete event modeling. The distinct definition of various resource exchanges between

systems allows the system modeler to track different kinds of entities in the discrete

event simulation. Different entities can be diverted to different processes that are

performed by different servers. The ambiguity of the order of execution remains just

as it did in the SV-3; however, with the addition of SV-5s it can be resolved in the

same way as described in the queueing model discussion. While the main source of

information for a discrete event model comes from the SV-10s (sequence, simultaneity,

concurrency, etc.) the SV-4–6 offer a viable alternative for a lower fidelity discrete

event model that is certainly feasible. Table 136 shows the results.

Table 136: Mapping between SV-6 and discrete event model elements

Event Queue Transition Server Entity Resource
System Y N N Y M N

Resource Y Y Y N Y Y

7.7.8 Agent-based model

Agents in an agent-based simulation connect with each other using sensors, commu-

nication links, physical transfers, etc. and many of these connections are specified

within an SV-6. The matrix is very detailed allowing the system modeler code in

necessary inputs and outputs to functions within agent objects which is a significant

265

part of computer simulation of agent-based models. Therefore, the SV-6 is a highly

useful architecture view from an agent-based simulation point of view. The results

shown in Table 137 mirror the findings from the SV-2 discussion (cf. Section 7.2.8)

as the SV-6 is very similar but more detailed. If the SV-6 is lacking from an archi-

tecture, system modeler can default back to an SV-2 to create a skeleton code for an

agent-based model. The SV-6 will carry more details and more context in the way

the resource exchanges are used and is preferred over an SV-2; however, the SV-2s

graphical representation can be convenient to get a grasp on how the agents are put

together within the model.

Table 137: Mapping between SV-6 and agent-based model elements

Agent Environment Interaction Rules
System Y N N N

Resource N N Y Y

In Chapter 8, while testing one of the FAA architectures, it was determined that

the rules do not appear on the combination of SV-1, 2, and 6 in much detail to aid

agent-based modeling. Therefore, this map was modified to reflect the fact that rules

do not appear on SV-6s. The modified table is given in Table 138.

Table 138: Modified mapping between SV-6 and agent-based model elements

Agent Environment Interaction Rules
System Y N N N

Resource N N Y N

7.8 SV-7 Systems measures matrix

The Systems Measures Matrix details the measurable characteristics of systems and

the resources the exchange with each other. For an air platform the SV-7 may list its

range, payload capacity, endurance, resolution of its sensors, amount of information

it can downlink, etc. DoDAF manual recommends an SV-7 to be developed simulta-

neously with the SV-6 to check whether the flows on the SV-6 are realizable. This is

266

the first of the two uses of the SV-7 for modeling purposes.

The second use is in support of almost all modeling approaches. So far, no ar-

chitecture view actually listed system capabilities, only the way they are employed.

The reader can notice with ease that just because a system is assigned an operational

activity to perform, it is not guaranteed that the system will successfully achieve the

intended effects. The SV-7 is critical in testing the actual abilities of systems inside

simulated scenarios.

For example, using a handful of operational and systems views a suppression of

enemy air defenses mission can be modeled. The systems belonging to the system

of system can be modeled as modeling elements as discussed before. However, all

numerical simulations will ultimately require some metrics, numbers, and measures

that are attributed to those modeling elements. In other words, while other architec-

ture views define the structure and operation of the system of systems, the SV-7 is

concerned about the performances of the constituent systems (The services equivalent

deals with the performance of services). Therefore, in all practical simulation exer-

cises, the values from an SV-7 will be used as inputs to the simulation. And because

all models require numerical inputs to function, the SV-7 is a critical architecture

view for all modeling types. Some examples are given below.

• An SV-7 may include a throughput for a communication link

– Inside graph models this value could be used as an edge weight

– Inside system dynamics models this value could be used as flow rate

– Inside Markov chain models this value could be used as transition rates

• An SV-7 may include a operation duration

– Inside a discrete event model this value could be used as a service time

267

– Inside a Markov chain model this value could be used as the reciprocal of

transition rate

• An SV-7 may include a range for a communication link

– Inside an agent based model this value could be used as a condition to kill

an interaction

– Inside an discrete event model this value could be used as a failure condition

for an event

Because the SV-7 is very useful for many types of models, it is not possible to

use the existence of SV-7 in an architecture to make a decision on which model type

to use for the analysis of the system of systems in question. The SV-7 may include

information more suitable to some modeling types over others however. Therefore, it

requires closer inspection in order to select one model type over the other. Addition-

ally, because the SV-7 does not include any information that explains the structure or

order of the system of systems, it is not particularly useful in the conceptual modeling

of the system of systems. The SV-7 is not a commonly developed product. DoDAF

Product Development Questionnaire Analysis Report and New Product Recommen-

dations Report cites a almost non-existent creation rate (5%) for SV-7 among the

projects analyzed [6]. The results from the discussions below are summarized in

Tables 204–207 given in Appendix A.

268

Table 139: Example SV-7 taken partially from the author’s previous work on a system
of systems performing a suppression of enemy air defenses mission [20].

System Action Metric Value

Intel Satellite
Discriminate from decoys Probability of success 0.70

Assess battle damage Probability of success 0.70

F/A-18
Discriminate from decoys Probability of success 0.85

Assess battle damage Probability of success 0.85

EA-6B
Discriminate from decoys Probability of success 0.95

Assess battle damage Probability of success 0.95

X-47B
Discriminate from decoys Probability of success 0.70

Assess battle damage Probability of success 0.70
RQ-4A Assess battle damage Probability of success 0.80

.

.

.

7.8.1 Graph model

As discussed before the SV-7 does not include any information on how the system of

systems is put together. While it is ultimately needed to fill in graph-related metrics

such as edge weights, it is deemed that it has no architecture elements that can map

to modeling elements. Table 140 shows the results in tabular form.

Table 140: Mapping between SV-7 and graph model elements

Vertex Edge
Metric N M

7.8.2 Probability model

In contrast to other modeling methods it can be said that the SV-7 provides useful

information for a probability model. Because they are built from conditional probabil-

ities that are numbers, the measure definition within the SV-7 could be a conditional

probability measure. Table 141 shows the single entry, that is a maybe.

269

Table 141: Mapping between SV-7 and probability model elements

Conditional probability
Metric M

7.8.3 System dynamics model

The elements in a system dynamics model require definitions such as what they are

connected to and what resource flows between what stocks. Such definitions are not

included within the SV-7 measures matrix. Table 142 shows mostly negative results.

The SV-7 may include the numeric value for a variable in some cases.

Table 142: Mapping between SV-7 and system dynamics model elements

Stock Flow Variable
Metric N N M

7.8.4 Markov chain model

The measures included in an SV-7 may include some transition probabilities or tran-

sition rates for systems to move between their states. The view still lacks information

on how these transition metrics are arranged. Therefore, while useful in supporting

other views for modeling, an SV-7 is not useful for modeling the system of systems

in isolation. Table 143 shows the mainly negative results.

Table 143: Mapping between SV-7 and Markov chain model elements

State Transition
Metric N M

7.8.5 Petri net model

Similar to the discussion under the Markov chain section, the SV-7 is only possibly

useful for defining transition rules and only the numerical part of the rules. Therefore,

the SV-7 is deemed of limited use for Petri net modeling as shown on Table 144.

270

Table 144: Mapping between SV-7 and Petri net model elements

Place Transition Arc
Metric N M N

7.8.6 Queueing model

Queueing model uses many metrics such as allowable queue length, job length, number

of jobs arriving with set rates, all of which may be found under the SV-7. However, as

discussed several times before, these pieces of information lacks any way of defining

the structure of a model but rather sets inputs to the model. As Table 145 shows the

SV-7 is determined to be not very useful.

Table 145: Mapping between SV-7 and queueing model elements

Arrival Size Server
Metric M M N

7.8.7 Discrete event model

Discrete event model discussion mirrors the one under queueing model. Some mea-

sures listed in SV-7 are ultimately useful for discrete event modeling elements such

as server rates, job size, number of entities, and resources spent; however, just like

all the previous models, the measures do not prescribe an order to the system of

systems. As they can only be counted as inputs to the model, the SV-7 measures are

not deemed highly useful for discrete event modeling as shown in Table 146

Table 146: Mapping between SV-7 and discrete event model elements

Event Queue Transition Server Entity Resource
Metric M M N M M M

7.8.8 Agent-based model

An agent-based model uses large number of measures in order to be executable. Many

rules and definitions of interactions do need numerical inputs some of which can be

271

attributed to geometric logic (such as angles for turning) but some are specific to the

systems (a radar system being able to detect targets up to a distance). The latter

type may be found in an SV-7. Additionally, in rarer cases3, number of each system

type being employed in a scenario may be included in an SV-7. Table 147 shows the

results in tabular form.

Table 147: Mapping between SV-7 and agent-based model elements

Agent Environment Interaction Rules
Metric N N M M

7.9 SV-8 Systems evolution description

The Systems Evolution Description shows how the constituent systems and other

systems they interact with are changing over time (i.e., evolving). For example, a

new system may be added to the system of systems and all the other systems the

new one is planned to cooperate with must be evolved to work with the new system.

This may involve a communications standard change—this would be documented

in the StdV-2—or a new antenna or other possible evolutions. The SV-8 keeps a

timeline of such changes to the system of systems which is meant to support the

evolution in capabilities given in the CV-3. While the evolution over time is useful

for modeling the future performance of a system of systems, this information is better

represented using as-is and future versions of all the views discussed so far, i.e., the

work would be replicated for the system of systems as it is envisioned to work in

the future and working today. The SV-8 is therefore not a particularly useful view

for modeling the operations of a system of systems. The SV-8 is not a commonly

developed product. DoDAF Product Development Questionnaire Analysis Report

and New Product Recommendations Report cites a very low creation rate (24%) for

SV-8 among the projects analyzed [6]. The results from the discussions below are

3Rarer, because they are not technically system measures

272

summarized in Tables 204–207 given in Appendix A.

7.9.1 Graph model

While the evolution of a system can be represented as a graph, it is not possible to

use that graph to simulate the way that the system of systems works. The SV-8 is a

very limited view for modeling a system of systems, a theme that is repeated in the

remainder of the modeling types below. Table 148 shows the negative results.

Table 148: Mapping between SV-8 and graph model elements

Vertex Edge
Time N N

Milestone N N

7.9.2 Probability model

The SV-8 has no information regarding probabilities. The probability model is not

realizable with an SV-8. Table 149 shows the negative results.

Table 149: Mapping between SV-8 and probability model elements

Conditional probability
Time N

Milestone N

7.9.3 System dynamics model

The SV-8 does not contain information about flows of quantities and their transfor-

mation. Therefore, a systems engineer cannot build a system dynamics model from

the information included in an SV-8. Table 150 shows the negative results.

Table 150: Mapping between SV-8 and system dynamics model elements

Stock Flow Variable
Time N N N

Milestone N N N

273

7.9.4 Markov chain model

Markov chains can be effectively used to represent and simulate the evolution of

systems in time via upgrades/modernization, spiral development, or replacement.

However, this representation and simulation has no relation to the way the system of

systems operates. In a sense, the Markov chain network shows the states the current

system can be in at different times in the life cycle of the system. For example, when

a system is upgraded to a newer version, that system may change its state from Mk1

to Mk2. While interesting and useful in planning purposes, this Markov chain model

is not useful in capturing the operations of the system of systems. Therefore, the

SV-8 is deemed not fit for modeling the system of systems. Table 151 shows the

negative results.

Table 151: Mapping between SV-8 and Markov chain model elements

State Transition
Time N N

Milestone N N

7.9.5 Petri net model

Petri nets are capable of modeling the same concepts from an SV-8 as Markov chains.

The points are identical except that Markov chains and Petri nets use different domain

specific names (e.g., states vs. places). Therefore, due to the same reason as Markov

chains, Petri nets are also determined to be not suitable for modeling the system of

systems using an SV-8. Table 152 shows the negative results.

Table 152: Mapping between SV-8 and Petri net model elements

Place Transition Arc
Time N N N

Milestone N N N

274

7.9.6 Queueing model

A queueing model cannot be constructed from an SV-8 because the SV-8 has no

information about queues and performing work on job packets. Table 153 shows the

negative results.

Table 153: Mapping between SV-8 and queueing model elements

Arrival Size Server
Time N N N

Milestone N N N

7.9.7 Discrete event model

For the same reason as with the queueing model above, the SV-8 cannot be used to

create a discrete event model. It only includes information on how new technolo-

gies and new concepts are introduced into the system of systems over time. It may

include expected performance or process improvements but such details are usually

documented within current, near-term, and far-term future architecture views for all

other views. Therefore, the use of an SV-8 is very limited for modeling. Table 154

shows the negative results.

Table 154: Mapping between SV-8 and discrete event model elements

Event Queue Transition Server Entity Resource
Time N N N N N N

Milestone N N N N N N

7.9.8 Agent-based model

The SV-8 has no information on how the systems behave, how they communicated,

how they are operated, or what kind of environment they are operating within. There-

fore, the SV-8 is not a particularly useful view for agent-based modeling. Table 155

shows the negative results.

275

Table 155: Mapping between SV-8 and agent-based model elements

Agent Environment Interaction Rules
Time N N N N

Milestone N N N N

7.10 SV-9 Systems technology & skills forecast

The SV-9 provides an overview of technological impacts on the operation of the system

of systems. These technological advances could be in the form of benign changes such

as fuel efficiency increase allowing longer operations or disruptive changes such as

added guidance to free-fall bombs. Disruptive changes will ultimately have further

impacts on how the system of systems operates whereas the progressive improvement

will just improve efficiency of the system of systems. The SV-9 deals with both types

as well as impacts due to the change in the skill level of operators (e.g., training

impacts). An example SV-9 is given in Figure 105.

The SV-9 is closely connected with the SV-8. The SV-8 is the implementation

counterpart to the advances predicted in the SV-9. Both of these views certainly

would benefit from modeling but their existence is not useful in selecting a modeling

type. In other words, the SV-9 would serve all kinds of modeling types equally well

and is not useful in making the decision to pick one modeling type over another.

The SV-9 is not a commonly developed product. DoDAF Product Development

Questionnaire Analysis Report and New Product Recommendations Report cites a

very low creation rate (11%) for SV-9 among the projects analyzed [6]. The results

from the discussions below are summarized in Tables 204–207 given in Appendix A.

276

Environmentally
Responsible
Aviation

Lightweight structures

Flight dynamics and control

Drag reduction

Noise reduction

Airframe Propulsion

Combustor

Propulsor

Core

Vehicle Systems Integration

Systems analysis

Propulsion airframe integration

Propulsion airframe aeroacoustics

Advanced configurations

Figure 105: An example SV-9 depicting technology development for commercial air-
craft based on NASA’s Environmentally Responsible Aircraft program[150].

7.10.1 Graph model

A bipartite graph can be used to represent what improvements are applied to what

systems (e.g., higher temperature turbines to fighter aircraft and early warning and

control aircraft). While important from a planning point of view, similar to the SV-8,

the SV-9 is not a particularly useful source of information for system of systems oper-

ations modeling. Table 156 is shows the cautiously optimistic conclusions. Figure 106

shows a plausible case.

Table 156: Mapping between SV-9 and graph model elements

Vertex Edge
System Y N

Forecast Y N

277

Operations

Nacelle

Combustor

Compressor

Turbine

Combustor

Power systems

Landing gear

Lightweight structures

Flight dynamics and control

Drag reduction

Noise reduction

Combustor

Propulsor

Core

Systems analysis

Propulsion airframe integration

Propulsion airframe aeroacoustics

Advanced configurations

Wing

Fuselage

Injector

Rotor

Fan

Figure 106: Example SV-9-to-graph model translation based on the SV-9 given in
Figure 105. Additional information about what each of the sub-projects deal with
are filled in using expert knowledge. This information could be easily included in an
SV-9.

7.10.2 Probability model

The SV-9 may include uncertainties in technology forecasts because it is a document

about future results; however, these probabilities are not related to the way the system

of systems works. Therefore, the SV-9 is deemed to be not suitable for probability

modeling. Table 157 shows the results.

Table 157: Mapping between SV-9 and probability model elements

Conditional probability
System N

Forecast N

7.10.3 System dynamics model

The SV-9 does not contain information that can be represented as a quantity that

is flowing, transformed, or stored. There is a significant mismatch between what

278

the SV-9 provides and what a system dynamics model needs. Table 158 shows the

negative results.

Table 158: Mapping between SV-9 and system dynamics model elements

Stock Flow Variable
System N N N

Forecast N N N

7.10.4 Markov chain model

The SV-9 does not hold information about a system changing states. Markov chains

are not fit to model a system of systems using the information found on an SV-9.

Table 159 depicts the negative results.

Table 159: Mapping between SV-9 and Markov chain model elements

State Transition
System N N

Forecast N N

7.10.5 Petri net model

Similar to the discussion above, the SV-9 does not include systems transitioning

between states, getting created/removed or merged/split. Therefore, the view is

essentially useless for Petri net modeling. Table 160 summarizes the negative results.

Table 160: Mapping between SV-9 and Petri net model elements

Place Transition Arc
System N N N

Forecast N N N

7.10.6 Queueing model

The SV-9 does not have information about job packages queueing up to be processed

by a server. The information it provides is not in line with what a queueing model

requires. Table 161 shows the negative results.

279

Table 161: Mapping between SV-9 and queueing model elements

Arrival Size Server
System N N N

Forecast N N N

7.10.7 Discrete event model

Discrete event models are very similar to queueing models in terms of information

requirements. Therefore, they too are not suitable modeling methods given an SV-9.

Table 162 shows the negative results.

Table 162: Mapping between SV-9 and discrete event model elements

Event Queue Transition Server Entity Resource
System N N N N N N

Forecast N N N N N N

7.10.8 Agent-based model

The SV-9 includes information about technologies related to the systems themselves

or training operators using the systems. Both technologies and operator skills may

influence the way systems behave during operations; therefore, it is conceivable that

the information given in an SV-9 can be used within an agent-based simulation.

However, an SV-9 still lacks significant amount of information that is needed to

create an agent-based model. Table 163 reflects the reasoning given here.

Table 163: Mapping between SV-9 and agent-based model elements

Agent Environment Interaction Rules
System M N N N

Forecast N N M M

280

7.11 SV-10a Systems rules model

The Systems Rule Model sets the rules for system-to-system interaction from a

physical perspective. It is similar to the OV-6a, but instead of dealing with op-

erational/business rules, the SV-10a specifies the physical ports, flows, data, and

functions. The DoDAF manual states that the SV-10a serves as a definition of im-

plementation logic and identification of resource constraints, both of which are very

important in modeling systems and operations. The view goes in detail on under what

circumstances the resource and information transfers happen, how system react to

external stimuli, the conditions that are required for successful execution of a function

(such as proximity during communications), etc. The SV-10a is an invaluable view for

all more-granular, higher fidelity modeling types, the kind that goes into detail on how

systems and exchanges work rather than them just working with some performance.

The SV-10a is not a commonly developed product. DoDAF Product Development

Questionnaire Analysis Report and New Product Recommendations Report cites a

very low creation rate (11%) for SV-10a among the projects analyzed [6]. The results

from the discussions below are summarized in Tables 204–207 given in Appendix A.

Example Rule: If a potential target is not processed or
acted upon for more than 15 minutes, assume that
it is lost and start the entire process again, i.e., it
needs to be searched and found again.

Figure 107: A representative text that can be found in an SV-10a. A similar rule was
used in the author’s earlier work on a system of systems designed for suppression of
enemy air defenses mission [20].

7.11.1 Graph model

The rules as laid out in an SV-10a are not representable using mathematical graphs.

This is not unexpected because the same conclusion was reached in the discussion of

OV-6a in Section 6.7.1. The rules in an SV-10a are usually stated as sentences but

other forms may be possible (such as conditional trees), and the alternative forms may

281

be represented by graphs. However, the simulation of these graphs will be significantly

removed from what the system of systems actually does. Based on this discussion, it

can be said that the graph models will not depend on SV-10as and their existence in

an architecture will hint that a more detailed, higher fidelity model is more suitable.

Table 164 shows the results.

Table 164: Mapping between SV-10a and graph model elements

Vertex Edge
Logic & Rules N N

7.11.2 Probability model

Similar to the graph discussion, probabilities are not suitable for representing rules

that dictate how systems connect to each other and exchange resources. Rules are

generally stated in “given A, do B” statements, whereas conditional probabilities are

stated as “if A is true, then B will happen with probability X”. These statements

cannot be translated from one to the other without loss of meaning. Table 165 shows

the negative results.

Table 165: Mapping between SV-10a and probability model elements

Conditional probability
Logic & Rules N

7.11.3 System dynamics model

The SV-10a does not contain information about quantities flowing between storages,

growing or shrinking in numbers by feedback loops. The logic and rule statements of

an SV-10a are absolutely incompatible with a system dynamics model formulation.

Table 166 shows the negative results.

282

Table 166: Mapping between SV-10a and system dynamics model elements

Stock Flow Variable
Logic & Rules N N N

7.11.4 Markov chain model

Markov chains model state switches of systems. The SV-10a rules can be thought of

as conditions that make systems change the way they are operating (e.g., before con-

dition: idle, after condition: active). While possible for a single system of reasonable

complexity, for a system of systems the Markov formulation falls apart. The SV-10a

rules are specific to each system or specific to an exchange between two systems. For

n systems each with m states the number of total states is mn, which clearly grows ex-

ponentially with n and polynomially with m. Each of these states may be connected

with each other and themselves. The number of possible connections grow quadrati-

cally, which makes the final Markov chain transition matrix of size (mn)2 = m2n. It

is reasonable to assume that more than 10 rules will be required in the most simple

systems and a system of systems will have more than 10 systems, which is hundred

billion billion. This is clearly an impractical size for a matrix to work with. Markov

chains are deemed to be not suitable for modeling from an SV-10a. Table 167 shows

the results.

Table 167: Mapping between SV-10a and Markov chain model elements

State Transition
Logic & Rules N N

7.11.5 Petri net model

Based on the discussion in Section 6.7.5 Petri nets are well-suited to model rules and

state switches associated with them. The discussion is not repeated here for brevity.

However, the SV-10a deals with rules that are specific to systems. The main difference

is between a Petri net created from an OV-6a and a Petri net created from an SV-10a

283

is that the SV-10a describes rules about a system or an exchange between systems.

The states it describes within the rules is multiplied by the number of systems or

exchanges between them. This is not as severe as the Markov chain exponential

explosion however. A system modeler will be required to either duplicate places,

arcs, and transitions for different systems or add more tokens to the same Petri net

and modifying the transition rules where needed. Table 168 shows the results of the

discussion for a reasonably simple system of systems. For a highly complex system of

systems with many rules and heterogeneous systems the Petri net formulation may

turn out to be impractical.

Table 168: Mapping between SV-10a and Petri net model elements

Place Transition Arc
Logic & Rules Y Y Y

7.11.6 Queueing model

Rules states as sentences or even in algorithmic ways are not suitable for queueing

models. The reader can see how the contents of an SV-10a are conceptually different

than the definition of a queueing model. A statements such as “if System A receives

Order B, it performs Function C” simply cannot be turned into a job that is queueing

up to be performed by a server. The information types provided by the SV-10a and

required by queueing models are mismatched absolutely. Therefore, Table 169 shows

completely negative results.

Table 169: Mapping between SV-10a and queueing model elements

Arrival Size Server
Logic & Rules N N N

7.11.7 Discrete event model

Discrete event models are conceptually very similar to queueing models; and therefore,

the mismatch between the architecture view and modeling remains largely unchanged.

284

There are a few differences however. Discrete event models do allow for some logic

to be included within the network of job stations. Some rules specified in an SV-10a

may dictate how the job queues behave, e.g., first in first out, last in first out, or

priority. They may also dictate how to deal with jobs that fail, e.g., discard, retry,

or try something else. Figure 108 depicts a decay logic. Based on this discussion, it

is decided that an SV-10a may be containing information to fill in the details of a

discrete event model but is not suitable to build its structure. Table 170 summarizes

the results.

"If an entity has been waiting in the queue
 for more than 15 minutes, discard that
 entity back to the first event."

Event

ServerFrom
Prev.
Event

To
Next
Event

Event

Server
t≥15min

Instant

From
Prev.
Event

To
Next
Event

To First Event

Y

N

Figure 108: Example modifications to a discrete event model based on an SV-10a
rule

Table 170: Mapping between SV-10a and discrete event model elements

Event Queue Transition Server Entity Resource
Logic & Rules N M N N N N

7.11.8 Agent-based model

The SV-10a includes a significant amount of information about how systems work

internally as well as interact with each other. The view states rules that dictate how

systems behave and that is the main piece of information a system modeler needs to

285

build an agent-based model. The rule statements will provide a system modeler a list

of agents expected to be in the model, the way they interact with the environment

(e.g., can float, can fly, can move, can climb), as well as detailed information on how

the systems interact with each other using resource ports and the rules associated with

each of the resource exchanges. The inclusion of an SV-10a is a good indication that

the system of systems requires the kind of simulation that includes direct and detailed

analysis of the consequences of the rules listed in the SV-10a. Only an agent-based

model has such a high fidelity. Table 171 lists the results of the discussion.

Table 171: Mapping between SV-10a and agent-based model elements

Agent Environment Interaction Rules
Logic & Rules M M Y Y

7.12 SV-10b Systems state transition description

The Systems State Transition Diagram depicts the order behind the systems changing

their states due to external or internal reasons such as functions, receipt of informa-

tion, or interaction with another system. A practical example could be a sensor

platform transitioning from detection mode to tracking mode once a target is found.

This arrangement is of course the same as the OV-6b Operational State Transition

Diagram. Because the SV-10b is dealing with discrete states and events, a discrete

event model is probably the best-suited modeling type to represent it in a dynamic

simulation. Most elements needed for a discrete event model are present in the SV-10b

(queue logic and resource use may be missing).

The SV-10b is also similar to the SV-4 but with more detail. The SV-10b shows the

state transitions that enable the workflow depicted on the SV-4. An example SV-10b

is given in Figure 109. In many cases an SV-4 can be reduced from the SV-10b;

however, during an early phase of architecture design, the opposite direction is taken.

The designer then needs to check for inconsistencies after the fact. Architecture design

286

software packages will warn users for inconsistencies or even partially auto-populate

the SV-10b based on the SV-4 the user has created earlier [CITE IBM]. Even when

not creating discrete event models, the SV-10b is an essential view for modeling. It

is the view that shows how the system really work on the inside and can be used

to specify the internal processes for agent-based models just as well. The SV-10b

is surprisingly not a commonly developed product. DoDAF Product Development

Questionnaire Analysis Report and New Product Recommendations Report cites a

very low creation rate (8%) for SV-10b among the projects analyzed [6]. The results

from the discussions below are summarized in Tables 204–207 given in Appendix A.

Doors
closed

Decel-
erating StoppedBraking Doors

openDriving

Motors
generator mode

Brakes
engage

Control console
stopped,

disengage motors
Control console

open doors
Control console

close doors

Brakes
release

Motors
motor mode

Figure 109: An example SV-10b depicting the operation of a train. It shows more
detail about the train system compared with the SV-4 given in Figure 94.

7.12.1 Graph model

A graph model of manageable complexity can be constructed from an SV-10b for a

single system transitioning between its operation states. However, scaling this model

to the entire system of systems is highly unlikely to succeed. The states of the entire

system of systems grow in number geometrically with respect to number of systems

(i.e., exponentially, see Section 7.11.4 for discussion). Even smaller-scale systems of

systems easily over-extend the capabilities of human modelers. Algorithmically, a

graph model can be constructed from a combination of SV-10bs for different systems

and a number of systems but the resulting model will be neither human-readable

nor highly useful. At this level of detail, the modelers should think about higher

287

fidelity modeling techniques that use less abstraction and require the type of detailed

information the SV-10b is already supplying. Table 172 shows positive results that

should be interpreted with the caveats discussed here.

Table 172: Mapping between SV-10b and graph model elements

Vertex Edge
System state Y N

Function N Y

7.12.2 Probability model

For each of the transitions the SV-10b a probability of success can be assigned to

them. This probability is in the form of a conditional probability, because it does

not take into account whether other functions have failed or not. The probability

value may be included on the SV-10b but it is not a standard practice. Instead,

the probability value could be included within the SV-7 matrix and be linked to the

function that makes systems to switch their states. Table 173 shows the results. The

probability model suffers from the same state space explosion as the graph model

discussed above.

Table 173: Mapping between SV-10b and probability model elements

Conditional probability
System state N

Function Y

7.12.3 System dynamics model

The SV-10b shows systems switching between their states, which is a discrete step.

Such discrete state transitions are extremely difficult to model in the system dynamics

paradigm which solves a system of differential equations. These equations must be

differentiable everywhere and discrete switches are neither differentiable nor contin-

uous. Some system dynamics simulation software use smoothing or other advanced

288

methods to allow discrete switches in the models; however, these either approximate

the discrete nature of the systems or run into convergence problems. The description

the SV-10b provides has a mismatch with the types of systems a system dynamics

model is trying to represent. The argument in the OV-6b—the operational view

counterpart of the SV-10b, see Section 6.8.3—discussion seems to be in conflict with

the argument provided here initially. However, the reader must remember that the

SV-10b is highly specific for a single (or a single type of) system, whereas the OV-6b

takes a bigger picture perspective. Therefore, if there are a large number of systems

transitioning between operational states, the many discrete changes can be validly

modeled as a smooth transition (i.e., a stair looks like a slope if seen from afar).

Table 174 summarizes the results. While conceptually unfit, some SV-10bs can be

modeled using the system dynamics paradigm.

Table 174: Mapping between SV-10b and system dynamics model elements

Stock Flow Variable
System state M N N

Function N M M

7.12.4 Markov chain model

Markov chains are well suited for representing state changes on a system and are

frequently used to study engineering designs [92] and even biological systems [82]. As

such, a Markov chain is suitable to simulate an SV-10b; the mapping is immediate:

system states map to Markovian states, function map to Markovian transitions. How-

ever, the reader is reminded that with the number of systems growing and their states

becoming more complicated, the number of states for the entire system of systems

becomes impractical. Because the ultimate goal is to create models that simulate the

behavior of the system of systems not its individual architecture views, it is concluded

that the inclusion of an SV-10b gives no indication whether a Markov chain is a good

fit for representing the system of systems. Table 175 shows the results.

289

Table 175: Mapping between SV-10b and Markov chain model elements

State Transition
System state M N

Function N M

7.12.5 Petri net model

Petri nets are much more suitable for state switching in situations where multiple but

similar systems are operating in unison. Heterogeneous systems can be added by using

colored Petri nets and minimal addition of new states. Being able to track multiple

tokens (i.e., systems) in the same state network gives Petri nets an edge over Markov

chains by avoiding the majority of the geometric explosion of states/places. However,

their execution is significantly slower than Markov chains. The system states can

naturally map to Petri net places while the functions that transition systems between

states can be represented as arcs and transitions. Table 176 shows the results.

Table 176: Mapping between SV-10b and Petri net model elements

Place Transition Arc
System state Y N N

Function N Y Y

7.12.6 Queueing model

The queueing model has some overlap with the SV-10b. The view is depicting systems

changing their states based on some internal or external influence. This can be easily

recast into a concept that takes systems and moves them from state to state based

on a work done by a server. Such a view is also compatible with a large number of

systems. However, the state transitions in the SV-10b are based on conditions not

job durations. Unfortunately, this is not a reconcilable difference; the two approaches

differ at a fundamental level. Based on this significant difference, queueing models are

deemed unfit for modeling systems of systems that require specific SV-10b definitions.

Table 177 shows the results in tabular form.

290

Table 177: Mapping between SV-10b and queueing model elements

Arrival Size Server
System state N N N

Function N N N

7.12.7 Discrete event model

The SV-10b and SV-10c are both very useful views for discrete event modeling. The

same argument as above can be made about timing information being missing from

the SV-10b for properly set up a discrete event model; however, that information can

be read on an SV-10c the two views can complement each other very well. Discrete

event models can represent routing based on reasonably complex logic (e.g., check

for expendable resources and rerouting based on conditions and history) and track

properties of entities tracing a path through states. These two additional modeling

freedoms discrete event models enjoy over queueing models make the content of an

SV-10b attractive for modeling. The functions can be modeled as events that transi-

tion systems modeled as entities from state to other states. Some systems will serve

as servers that perform the functions as well. Table 178 shows the results of the

discussion and Figure 110 shows an example.

Motor mode

Motors

Gener. mode

Motors

Engage

Brakes
Disen-
gage motors

Ctrl. Cons.

Release

Brakes

Close doors

Ctrl. Cons.

Open doors

Ctrl. Cons.
Turn
on stop light

Ctrl. Cons.

These systems are
"driving"

These systems are
"decelerating"

These systems are
"braking"

These systems are
"stopped"

These systems are
"exchanging passengers"

These systems are
"ready to leave the station"

Figure 110: Example SV-10b-to-discrete event model translation based on the SV-10b
given in Figure 109.

291

Table 178: Mapping between SV-10b and discrete event model elements

Event Queue Transition Server Entity Resource
System state N M N N Y N

Function Y N Y M N M

7.12.8 Agent-based model

The behaviors of agents representing systems can be modeled using SV-10b. The

SV-10b shows how the systems react to internal and external functions by changing

their states of operation. These discrete state changes ultimately dictate what the

system will be doing next. An SV-10b is a perfect fit for modeling the internal logic

of an agent in an agent-based model. Figure 111 shows an example. Since the states

map to the internal logic of an agent, the systems are represented as agents. There

is a lack of environment definition in an SV-10b, which will most likely be supplied

by operational views. Additionally, the mapping is not one-to-one, i.e., the functions

on the view provide information about interactions between agents but also include

information about agents and their rules. The translation from the architecture view

to the model requires interpretation. As with all views, the SV-10b is meant to be

read by humans, not by computers that can automatically transform it into executable

simulation models. Table 179 summarizes the discussion in tabular form.

Table 179: Mapping between SV-10b and agent-based model elements

Agent Environment Interaction Rules
System state Y N M Y

Function Y N Y Y

292

Train

Observe

Driving

Decel-
erating

Engage
brakes

Open
doors

Close
doors

near station?

at station?

stopped?

Y

N

N

N

Y

Y

Environment

Location

Passengers

Figure 111: Example SV-10b-to-agent-based model translation based on the SV-10b
given in Figure 109. Notice that the environment is represented with dashed lines
because it is missing in the SV-10b.

7.13 SV-10c Systems event-trace description

The Systems Event-Trace Description is the OV-6c counterpart for the systems views.

Instead of operation taking time on lifelines, it depicts systems/performers being busy

and the resource flows they create and consume. The view must be limited in scope

because including every system and performer as a lifeline would not be practical.

The SV-10b is therefore, always created with a scenario in mind and the DoDAF

manual explicitly states that a scenario description must accompany an SV-10c[59].

An example is provided in Figure 112.

The main idea the SV-10c shows is the dependence of systems on other systems’

293

products or effects, i.e., the cases when a system needs to wait for another system

to perform a task before the original system can perform its task. Additionally,

it introduces the timing element to the system views: duration, simultaneity, and

concurrency. Just like the SV-6c, timing information is crucial for discrete event

and agent-based modeling efforts. The SV-10c is also surprisingly not a commonly

developed product. DoDAF Product Development Questionnaire Analysis Report

and New Product Recommendations Report cites a very low creation rate (24%) for

SV-10c among the projects analyzed [6]. The results from the discussions below are

summarized in Tables 204–207 given in Appendix A.

Control
systemOperator Brakes MotorsDoors

Engage generator mode

Disengage motors

Engage brakes
Push brake button

Brake light on

Stopped, generator light off

Push open doors button

Doors open light on

Push decelerate button

Generator light on,
drive light off

Open doors

Push close doors button
Doors blocked?

No Close doors

Doors closedDoors closed light

Push accelerate button

Brakes light off
Release brakes

Drive light on
Engage motor mode

Figure 112: An example SV-10c depicting the operation of a train. It shows signifi-
cantly more detail compared with the SV-4 given in Figure 94.

7.13.1 Graph model

The SV-10c can be recast as a mathematical model because each activity is connected

to other activities by interactions and condition interactions only connect to activities;

294

these are the exact rules that govern graph models: vertices are connected to other

vertices by edges and each edge connects exactly two vertices. Therefore, the SV-10c

can be represented and simulated using a graph model. The problem that arises

is that the timing information is completely lost. The most important information

on an SV-10c is the timing information and the reader is reminded that the goal of

modeling is not the mere translation of what is on a view to a working model; it is

to model the system of systems the views are describing. As such, creating a graph

model from an SV-10c will not provide the system modeler any useful information

about the system of systems. The connectivity of activities and the shortest paths

and maximum flows between them are essentially meaningless metrics. Table 180 is

cautious in specifying entries as “maybe”s instead of “no”s. It is conceivable that a

graph model out of an SV-10c could be useful for a specific purpose not considered

here.

Table 180: Mapping between SV-10c and graph model elements

Vertex Edge
System M N

Functions M N
Interactions N M

7.13.2 Probability model

Conditional probabilities may be used to model success rates for functions or “inter-

actions”; however the focus of an SV-10c is timing of functions not their likelihoods

of success. The information needed to create a probability model is missing from

the SV-10c and the goals of the model and the view do not match. Therefore, it is

unlikely that a probability model representing a system of systems to be constructed

out of that systems of systems’ SV-10c. Table 181 shows the results.

295

Table 181: Mapping between SV-10c and probability model elements

Conditional probability
System N

Functions N
Interactions N

7.13.3 System dynamics model

The SV-10c depicts systems performing a number of functions that create a desirable

effect. The functions can be immediate or have finite durations and after they are

finished, their products are passed along to other systems so they can perform their

part. In a sense, there is a flow products between system functions; however, the

transfers are unit transfers, and there is no continuous kind of flow that can be

modeled using a system dynamics model. A Markov chain or Petri net would be

better suited for such discrete transitions between functions. Table 182 summarizes

the negative results.

Table 182: Mapping between SV-10c and system dynamics model elements

Stock Flow Variable
System N N N

Functions N N N
Interactions N M N

7.13.4 Markov chain model

Markov chains are somewhat suitable to model the process depicted in an SV-10c.

The transitions between Markov states can be used to represent the hand-offs between

functions. If the hand-off is instantaneous, the architecture to model mapping is

trivial but if the hand-off is not instantaneous, an artificial state can be added to the

Markov chain model to simulate the duration of the transfer. The modeler can also

opt to use systems (lower fidelity) or the functions they perform (higher fidelity) as

states. However, the definition of states is not straightforward. At each instant in

time, more than one function can be ongoing (concurrency can be represented easily

296

in an SV-10c); however, this is not possible with Markov states. For each possibly

overlapping functions, multiple states must be created (see Figure 113). The same

process must be performed whether the system modeler chooses to model systems as

states or functions. Overall, it is possible to use Markov chains for modeling specific

operations of a system of systems but the model creation is not straightforward.

Table 183 summarizes the results.

Idle Busy
Push decelerate button

Switch to generator mode

Stop

Opening doors

Report doors closed

Switch to motor mode

Push brake button

Push open doors button

Push close doors button

Push accelerate button

Release brakes

Engage brakes

Check doors

Close doors

Figure 113: Example SV-10c-to-Markov chain model translation based on the SV-10c
given in Figure 112. This model only depicts the control system in isolation from other
subsystems, which is not realistic and can only be used with limited success. If other
subsystems are to be included in the model, the overlapping states must be split into
numerous states as only one Markov state can be active at any given time as discussed
in the text.

Table 183: Mapping between SV-10c and Markov chain model elements

State Transition
System Y1 N

Functions Y1 N
Interactions N Y
1 Systems and functions do not

map to states simply due to the
possible concurrency of func-
tions depicted in SV-10cs.

7.13.5 Petri net model

A Petri net is highly suitable for translating an SV-10c to a simulation model. Each

function can be represented as a place within a Petri net and multiple places can be

active by using multiple tokens. These tokens will travel from place to place (i.e., from

297

function to function) via the arcs and transitions that represent the interactions. In

the Petri net formulation a transition can merge or split a token, which is also allowed

in an SV-10c. A Petri net can also capture the multiple requirements of a function

before it can execute. In conclusion, a Petri net can handle the many flexibilities

offered by an SV-10c. Table 184 shows the positive results.

Supporting the argument above, the literature has many examples that deal with

translating SV-10cs to Petri nets. Wagenhals et al. use a number of SV-10c-like dia-

grams to construct colored Petri nets and even perform the translation algorithmically

[190]. They do not use DoDAF but their UML diagrams are similar to SV-10b/cs.

Their findings agree with the arguments set forth in this thesis: Petri nets are a viable

option for modeling from SV-10cs and the existence of an SV-10c can be used as a

hint that the system of systems in question can be successfully modeled with Petri

nets. The details about what elements gets translated into what modeling element

are different in their work due to the different architecture languages used (UML vs.

DoDAF).

Wang and Dagli use two SysML diagrams to create colored Petri nets using a

schema [192]. The diagrams used are internal block diagrams and sequence dia-

grams. The internal block diagram which can be compared to a detailed SV-1, SV-2,

and SV-5a combination is used to layer the modeling effort; start with smaller mod-

els within relatively independent activities and gradually moving towards the entire

operation. The sequence diagrams, which are very similar to SV-10cs, are then trans-

lated into colored Petri nets to model the these smaller unit models. They are then

put together to create the model for the entire operations. Therefore, it can be ar-

gued that Wang and Dagli’s work agrees with he arguments set forth in this thesis:

SV-10cs are highly suitable for Petri net modeling.

Bai et al. use Petri nets to validate architectures specified using UML through

simulation [199]. In their process a number DoDAF views are prepared including

298

an SV-10c as well as an SV-64.They then model the systems using UML sequence

diagrams that are translated into Petri nets automatically. Their success highlights

how natural it is to model systems of systems with Petri nets given their SV-10c

views. with some accompanying information such as resource transfers and metrics.

Bai et al.’s results are in support of the position taken in this thesis.

Table 184: Mapping between SV-10c and Petri net model elements

Place Transition Arc
System N N N

Functions Y N N
Interactions N Y Y

7.13.6 Queueing model

Queueing model is also a viable option for building a model from an SV-10c. The

functions can be represented as stations within a queueing model (i.e., size of a job

because they include information on how long the function actually takes to complete).

The systems that perform the functions can be represented as the servers doing the

job, and finally the hand-offs between the functions can me modeled as departures

from job stations and arrivals to other job stations. A queueing network can then be

constructed with minimal loss of fidelity (some logic operations may not be possible).

Table 185 summarizes the results.

Table 185: Mapping between SV-10c and queueing model elements

Arrival Size Server
System N N Y

Functions N Y N
Interactions Y N N

4The authors refer to an SV-3 in their process but this appears to be a typographical error. They
actually usE an SV-6. This is evident by the name fo the matrix in the text and their UML-to-
DoDAF translation figure.

299

7.13.7 Discrete event model

Discrete event is arguably the best choice to model from the information included in

an SV-10c. It enables representation of functions taking finite time, conditions they

may require to be met before executing, systems acting like servers that perform the

functions and able to be set as idle or busy, various failure and success scenarios, as

well as the ability to add queues, and spending of resource that may be implicit but

rarely explicit in an SV-10c. The mapping from architecture elements to modeling

elements follows the same form as the queueing model. Here, functions are modeled

as events that occur after some set time of a process. The queues are defined for

each function. The entities are transported between processes by transition (i.e.,

interactions), and systems perform the processes that fire the events. While queueing

model seems to be a simpler model to build from an SV-10c, it must be said that

many of the requirements for analytic solutions are likely to be not met with practical

examples of an SV-10c; therefore, it will revert to be simulated just like a discrete

event model anyway. Table 186 shows the results in a tabular form.

Table 186: Mapping between SV-10c and discrete event model elements

Event Queue Transition Server Entity Resource
System N N N Y Y N

Functions Y M N N N M
Interactions N N Y N M N

7.13.8 Agent-based model

The SV-10c is also a valuable architecture view for agent-based modeling. Within it,

agents can be identified along with their internal processes. Each of these processes,

are coupled with triggers and effects. A trigger such as a receipt of a message can

make an agent to perform that specific process which can create another message for

another agent to receive and trigger one of its own internal processes. Figure 114

shows an example transformation. The timings and requirements of each of the

300

functions will provide a modeler with many of the rules—other rules will be found

in the SV-10a—needed to create a realistic agent-based model. An SV-10c can also

include the operating environment as another timeline, mimicking a system. Table 187

summarizes the positive results.

Operator

Do
nothing

Push the
close door

button

Do
nothing

Near
station?

N

Y

Push the
decelerate

button
At station?

N Y

Decel-
erating?
N

Y

Do
nothing

Do
nothing

Braking?

Y

N
Stopped?

Push the
brake
button

N

Push the
open door

button

Y

Passengers
exchanged?

Y
Doors

closed?
YPush the

accelerate
button

N

N
Doors

closed?

N

Y

Start here

Monitor:
-Instruments
 -door state,
 -speed,
 -acceleration
-Location
 -near,
 -at,
 -leaving station
-Passenger exchange

Communicate:
-Button pushes
 -decelerate,
 -brake,
 -open/close doors,
 -accelerate

from
environment
and control
system

to
environment
and control
system

Figure 114: Example SV-10c-to-agent-based model translation based on the SV-10c
given in Figure 112. This model only depicts the internal logic for the operator agent
within the train system. The agent communicates with the environment and control
system only because the SV-10c does not show any subsystems interacting with the
operator.

Table 187: Mapping between SV-10c and agent-based model elements

Agent Environment Interaction Rules
System Y M N N

Functions N N N Y
Interactions N N Y Y

301

CHAPTER VIII

EXPERIMENTAL TESTING OF THE ELEMENT MAPS

Matematik esas olarak sabır olayıdır. Belleyerek değil

keşfederek anlamak gerekir1.

Cahit Arf

This chapter details the testing of the tables compiled in Chapters 6 and 7. As

discussed in Section 3.3.1 the tests are carried out using the four examples.

8.1 Experimental setup

Each of these cases will now be modeled using conceptual models that can be readily

simulated with a simulation engine. These conceptual models will then be checked

against the architectural models and matches and mismatches will be highlighted.

With these experiments the equivalence of architecture models and conceptual models

will be tested.

Before the experiments are discussed it will be worthwhile to remember the dis-

tinction used in this work between a conceptual model and simpler descriptive models.

A conceptual model is a specific kind of descriptive model whose translation to a sim-

ulation is readily known, i.e., it conforms to a description standard that is known to

have an algorithmic solution. With this definition, the reader can see that not every

physical or operational description will fit the accepted norms of various modeling

techniques or be complete enough so that the simulation can run without getting

stuck. Both fitting the norm and completeness is important for a descriptive model

to be a conceptual model.

1Author’s translation: Mathematics is essentially a matter of patience. We must gain under-
standing by discovery, not by committing to memory.

302

With these experiments the groundwork is done for the straightforward transla-

tion of architectural models to conceptual models. Therefore, while the architectural

models may not fit within the traditionally accepted norms for various modeling tech-

niques, examples will be given to show that they can be converted into such forms

and are, therefore, equivalent to them. The process is depicted in Figure 115. The

chapter contains experiments of three types:

Type A Experiment Used for cases when a modeling type is predicted to be im-

possible by the tables given in Chapters 6 and 7. After listing hypothetically

impossible modeling types, for each do:

• Attempt building a model starting from the most useful architecture view

• Comment on what is missing

• Try filling in the information by adding other provided views until infor-

mation runs out or model is complete

• Comment on whether the build was a success or not based on whether a

part of model structure is still missing

Type B Experiment Used for cases when a modeling type is predicted to be possi-

ble but not necessarily so by the tables given in Chapters 6 and 7. After listing

hypothetically possible but not necessarily so modeling types,

• Attempt building a model starting from the most useful architecture view

(call this Model X)

• Attempt building a similar2 model that is predicted to be definitely possible

from the same architecture view (call this Model Y)

• Compare the two models

2Similar in the information it uses and optionally the way it works

303

– How is Model X less structured than Model Y?

– What causes the Model X to require more information than Model Y?

– Can these assessments be generalized?

• Comment on what is missing from Model X

• Try filling in the information by adding other provided views until infor-

mation runs out or model is complete

• Comment on whether the build was a success or not based on whether a

part of model structure is still missing

Type C Experiment Used for cases when a modeling type is predicted to be defi-

nitely possible by the tables given in Chapters 6 and 7. After listing hypothet-

ically definitely possible modeling types,

• Attempt building a model starting from the most useful architecture view

• Comment on what is missing

• Try filling in the information by adding other provided views until infor-

mation runs out or model is complete

• Comment on whether the build was a success or not based on whether a

part of model structure is still missing

304

Detailed

Investigation

Element Maps
Experimental Setup

ArchitecturesModels

HypothesisInduction

Research Objective

Research Questions

Background

Motivation Context

Experiments

Conclusions

1.1 2.1

2.2, 2.3, 2.4, 2.5

3.2

3.2

3.43.3

4.4, 4.5, 5.2 5.1

6, 7

8

9

Realizes

Figure 115: This chapter tests the element maps created in the last two chapters.

305

8.2 2012–2013 Real World Design Challenge State Avia-
tion Problem

The cases are organized from the smallest to the largest in system of systems size to

ramp up the difficulty smoothly. The first case to be investigated is the 2012–2013

RWDC State Aviation Problem [51]. The challenge scenario is as follows.

“Search for a missing, injured and immobilized child with a blue jacket

during the day at the Philmont Ranch in a designated 2-mile radius circu-

lar search area. This area is sized to allow line-of-sight contact between the

operator and aircraft to be maintained, per FAA guidelines. Teams should

refine the vehicle design, sensor payload selection, search pattern, best al-

titudes for the selected sensor payload, and associated ground equipment

to find the child in the minimum time while also minimizing cost.”

This problem interfaces several systems together but its scope and complexity are

severely limited to a small range of use cases. Some of the architecture models created

and used for this problem have been introduced in the earlier chapters as simple

examples to various system views and they will be used here again to explain how

architecture elements can be procedurally turned into executable modeling elements.

Jones Wyatt uses an SV-1 (Figure 116), an SV-6 (Table 129), and an SV-7 (Ta-

ble 188) as shown in Table 189. Some the views she uses come from the problem

definition (such as the SV-1 and SV-7) but the SV-6 was specifically constructed to

perform the interoperability analysis. Using the connections and the resources they

carry between systems, Jones Wyatt performs reliability calculations on the entire

connected graph model she derives from the architecture models [111].

To analyze interoperability between systems, Jones Wyatt naturally uses system

viewpoints. Also, she strategically uses views that do not describe order of execution,

a scenario, a timeline, or further functional details. Her choice simplifies modeling ap-

propriately for interoperability studies. Interestingly, based on the previous chapters,

306

Unmanned aerial vehicle

Video datalink
UAV transmitterSensor

payload

Operational
pilot

Safety
pilot Sensor

payload
operator

Command
datalink UAV
transceiver

Pilot workstation
computer

Safety pilot
flight box

Command
datalink ground

transceiver

Sensor payload
workstation
computer

Video datalink
ground receiver

C V

Figure 116: Jones Wyatt’s SV-1[111] for the RWDC problem (Adapted from [51])

her choice of architecture views appears to contain enough information to support

higher fidelity modeling such as discrete event or agent-based modeling. The major

observation extracted from her work is that the architectural model elements map to

conceptual model elements fairly well for all modeling types other than agent-based

modeling, as can be seen in Table 190.

307

Table 188: Jones Wyatt’s partial SV-7 based on her UAV design from the options
provided by the RWDC problem (reproduced from her thesis[111])

Component Description Power
usage
(Watts)

Required
quantity

Per
item
cost
(USD)

Video
datalink
UAV trans-
mitter

The device which transmits the
video captured by the payload
to the ground control system.

0.4 1 for each
sensor
payload

200

Command
datalink
UAV
transceiver

The device which sends and
receives communication signals
between the FCS and the Pilot
Workstation.

0.3 1 for each
UAV

300

Flight con-
trol system

The system which actually con-
trols the aircraft and commu-
nicates with the pilot in the
ground station. Functionality
includes GPS navigation and
telemetry, ability to relay sen-
sor payload commands, ability
to implement repetitive sensor
payload routines (e.g. sweeping
pan back and forth), and semi-
autonomous waypoint following
capabilities.

0.1 1 for each
UAV

2,000

Battery Light-weight batteries with
enough energy to supply vari-
ous UAV components. COTS
solution.

n/a 1 for each
UAV

Market
price

Sensor pay-
load

One of the provided Day-
light Electro-Optical Camera
options; the mid-level sensor
was chosen.

10 1 (for this
scenario)

38,000

308

Table 189: The viewpoints developed for Jones Wyatt’s RWDC architecture.

Viewpoint
Jones Wyatt

RWDC
OV-1
OV-2
OV-3
OV-4
OV-5a
OV-5b
OV-6a
OV-6b
OV-6c
SV-1 X
SV-2
SV-3
SV-4
SV-5a
SV-5b
SV-6 X
SV-7 X
SV-8
SV-9

SV-10a
SV-10b
SV-10c

Table 190: Observations from the Jones Wyatt’s RWDC architecture

Model Feasible Views ordered by utility
Graph X SV-1=SV-6

Probability X SV-6
System dyn. X SV-6, SV-1
Markov chain X SV-6

Petri net X SV-6
Queueing X SV-6

Disc. event X1 SV-6, SV-1
Agent-based × SV-1=SV-6
1 Many Discrete Event elements share the same architecture elements.

Depending on how detailed the architecture models are, this conver-
sion may be impossible. It will be tested.

309

8.2.1 Creating models from RWDC architecture views

The first experiment to be attempted is the agent-based model. It appears to be

impossible as the information about the environment seems to be completely missing.

This guess will be tested in the first experiment below. Second experiment will be

a discrete event modeling attempt. There are architecture elements that map to

multiple modeling elements. If these architecture elements do not include significant

amounts of information, it may be impossible to define modeling elements from them

in an executable way. This will be investigated in the second model. The third

experiment to be tried is a system dynamics model. The system is mostly based on

a communications model and it is interesting to see if generation and dissemination

of data can be modeled using a system dynamics approach. The architecture views

appear to be very useful in the creation of this type of model. Finally, Jones Wyatt’s

own probability model will be discussed. Her own work will not be used as an example

for this thesis, because she created the views and models herself, which can introduce

bias to result. It is however a good demonstration of how architectural elements can

be mapped to various modeling elements.

8.2.1.1 Building an agent-based model (Type A experiment)

Investigating the architecture views included in Jones Wyatt’s work, Table 190 sug-

gests that the an agent-based model is not viable. Type A experiments were defined

to attack the hypothesis and prove it to be wrong by attempting to build a model

predicted to be impossible. An agent-based model construction is attempted here.

Table 190 suggests that the SV-1 and SV-6 views are equally viable as a starting

place. The views are given in Figures 116 and Table 129 respectively.

The first step in the modeling effort is to define what will be modeled as agents

and to determine their functions. In this example, a Python script is used because the

object-oriented coding is especially practical for agent-based modeling. Based on the

310

two views used, the two agents defined in the model are “Systems” and “Interfaces”.

Resources (data items) could have been modeled as agents as well; however, there is

no description about them and defining a class based on no information was deemed

to be counter-productive. Attributes and methods for the two agent classes are given

below.

System Attributes model The model this system is part of (this is needed for

mechanistic reasons)

name A name for the agent, which must be unique

interfaces An associative array that determines which data type gets

pushed on which interface

data generated If the agent is continuously generating data, it must be

declared here

data manipulations Agents receive data, act on them, and send results

back. This associative array holds recipes for what happens to each

type of received data.

incoming data A set that will change at each step

outgoing data A set that will change at each step

Methods add interface to Interfaces are added to the system using this

method. The sink system and data type must be specified.

add data manipulation Recipes are added to the data manipulations

attribute

send data When the system is ready, it will load data to appropriate

interfaces

receive data When the system receives data, it adds the data to the

incoming data set

act on data Data in manipulated and added to the outgoing data set

311

generate data If the system generates data on its own, it will happen

using this method

step Every agent must have a step method. This special method will call

on other methods so that the agent behaves correctly.

Interface Attributes model The model this interface is part of (this is needed for

mechanistic reasons)

data description The type of data the interface carries

source The source of the data

sink The recipient of the data

loaded data Currently loaded data on the interface

Methods load data Using this method, the source system loads data to the

interface

carry data When its ready, the interface will carry the loaded data to

the sink system

step Every agent must have a step method. This special method will call

on other methods so that the agent behaves correctly.

The model includes the systems and the interfaces in its own attributes (as lists

or associative arrays). It also deals with the execution of the whole simulation. It

is not interesting to report on the mechanics on how the model class works. Finally,

systems and interfaces are instantiated as objects and the simulation can be run. The

instantiation follows the SV-1 and SV-6 very closely: each system has a line, each

resource exchange has a line in the code. The reader can find the full code in Code

Block B.2 in Appendix B.

While it is clear that the SV-1 and the SV-6 can provide a significant amount

of structure to an agent-based model, there are gaps of knowledge that they cannot

fill. For example, neither view provides the information about data generation, how

312

or when the systems act on data, and the goals and desires of each agent. Some of

these can be inferred by the modeler but not all. For example, it is impossible to

infer how the Pilot Workstation Computer would react after receiving UAV Position

information. Does the Pilot Workstation Computer change the Waypoint when UAV

Position is close to the previous Waypoint, or does it confirm? What other Waypoints

does the Pilot Workstation Computer output and when or under what condition?

Without such details a meaningful agent-based model cannot be constructed.

There are other behavioral knowledge gaps. One such gap is how long each com-

munication takes compared to the actions. When a Waypoint is sent to the UAV,

how long does the transmission take (from sent to received) compared to the amount

of time it takes for the UAV to reach that position? Such values are significant factors

when the designs of the systems are considered: if the UAV speed is much slower than

the communications speed, system designers will focus on the UAV speed. For such

reasons, the supplied information within these two views is not enough. Some of such

values may be found in an SV-7; however, it is important to note that many of the

missing parameters may not be related to the systems but the environment they are

operating.

The lack of knowledge creates mechanistic problems as well. For example, ev-

ery time the Sensor Payload Workstation receives a video file, should it generate

a Pan/Tilt/Zoom command? If so, the communication network will be saturated

with these commands because the Sensor Payload is creating a video file continu-

ously. When the code runs, the Command Datalink Ground Receiver receives these

messages continuously and has to send them out continuously. Making the situation

worse is the apparent infinite loop the simulation goes into. Figure 117 depicts this

loop in graphical form.

313

SP

VDUT

VDGR

SPWC

CDGT

0 1 2 3 4 5 6 7 8

Infinite
Loop

Figure 117: One of the several infinite loops that arise in the agent-based model.

After receiving the pan-tilt-zoom message, the Command Datalink Ground Re-

ceiver can produce a Sensor Orientation message back. This message triggers an-

other Pan/Tilt/Zoom from the Sensor Payload Workstation and the cycle repeats ad

infinitum. Additionally, the cycle does not remain local; it spreads to other cyclic sub-

graphs. Again, after receiving the Pan/Tilt/Zoom message, the Command Datalink

Ground Receiver sends a UAV Position message to the Pilot Workstation Computer,

which returns a Waypoint message and another infinite cycle starts. The reader can

study the SV-1 and notice other cycles that will be trigger by this process.

The growing infinite cycles will ultimately drive the simulation to a code execution

crash. One solution to this is to use sets instead of lists for the messages that need to

be sent from any system. This ensures that each system submits one of each type of

messages it can submit. Using sets will stop the message numbers from growing and

eliminate the issue of the code crash; however, it also means that the new messages

arriving at a system will overwrite the previously arrived messages. This behavior

may not be valid and without more information on the system of systems in the form

of other architecture views, there is no way of knowing.

Having failed to implement an agent-based model and after reviewing the reasons

why the failure happened, it is concluded that the agent-based modeling is indeed

314

not possible with a pair of SV-1 and SV-6. These two views simply lack the neces-

sary information a sound agent-based model must be built upon. They include no

actions, no reasons for the systems to exist, why they were designed: there is not

template for behaviors. These two views also do not include any information about

the environment the systems are expected to operate in. In Section 8.3.2.1, a similar

setup will be discussed. The conclusions are similar.

8.2.1.2 Building a discrete event model (Type B experiment)

The second experiment is to take the same two views (SV-1 and SV-6) and attempt

to build a discrete event simulation. Table 190 predicts that this modeling effort is

possible. The SV-1 will be used to develop the overall event network structure, the

SV-6 will be used to define the evolution of the entities through the network. Because

only messages are defined in these views, the discrete event simulation will be built

to analyze the transmission and interpretation of the messages. The model structure

will heavily resemble the agent-based implementation presented above.

Table 190 also suggests in the note section that the translation might not be

possible even though the SV-6 appears to be very useful for creating discrete event

simulations. The lack of confidence originates from the lack of timing information. If

modeling indeed does fail, the real reason for this failure will be found and reported.

This discovery can help correct the faulty parts of the hypothesis.

The discrete event simulation engine used here was developed earlier for system of

systems problems where failures and timeouts are kept track of. The event timeout

functionality was not important for this problem but the event failure feature was

used. The timeout is useful when tracking an uncooperative target such as an enemy.

When the target evades tracking for some amount of time, the timeout function

drops the target from “being tracked” to “not found”. While the timeout is somewhat

difficult to implement in a discrete event formulation, the failure function is extremely

315

easy to be included and used. The simulation engine is coded in Python language

and relies on libraries included in the Python’s core packages to make installation on

any machine easy.

The sources and sinks in the SV-6—the systems in SV-1—are modeled as servers.

For this setup to work, each server had to be assigned to a number of events (minimum

1 event is required). For each server performing an event the simulation engine

requires two metrics: the probability of the server performing the event successfully

and the amount of time it takes for the event to be completed. The first metric is

simply supplied but the second metric takes in a beta probability distribution using

its 4 parameters: α, β, and lower and upper limits. These numbers are defined in the

definition of events in the mechanics of the code.

The rows of the SV-6 are modeled as the events in the simulation. This means

that the servers process and send messages in some finite amount of time and when

the messages are sent, the events fire. The time probability distribution is not defined

in either SV-1 or SV-6 and is filled in by the modeler. Such metrics would be defined

in architecture views such as the SV-7. Additionally, in the DES formulation used

here, the servers have the option to fail the events, e.g., a processing error occurs.

The probability of this failure is also filled in by the modeler without any real data

provided by the architecture. Similar to the processing time, such metrics would be

given in an SV-7 but their absence do not cause the structure of the model to be

undefinable. The existence of enough structure to construct models is being tested

in these experiments.

Finally, a map for event execution is required by the simulation engine, i.e., what

events cause what events to be executed. This is the final link in making the simula-

tion executable. Unfortunately, in Jones Wyatt’s views, there is no clear starting or

ending event, i.e., arrival and departure events. Here, it is assumed that the sending

of the video file is a viable candidate for a start/finish event because it is fairly isolated

316

and its server only performs a single event. Ultimately, in a looped network, this de-

cision is not significant as the main study would focus on a steady state performance

of the network, not the initial transition period. With this assumption, the simula-

tion then computes the steps that is necessary for the video file to be created and

transmitted to necessary systems, those systems making decisions based on the video

and communicating such decisions to the UAV system so that the UAV’s camera can

point to different places and produce the desired video files.

This setup does execute without errors and the code works as expected. Most im-

portantly, because there are no arrival and departure events the events loop executes

forever. The execution ends after a set time to catch for infinite loops. The statistics

show that the simulation end time is close to this set time and always greater. This

means that the simulation ends once the next event has an execution time greater

than the set time, which is expected. Because event times are random, the end times

of simulations are not exactly the same but a short period after the maximum simu-

lation time. Figure 118 shows the cumulative distribution function of the time unit

when simulation ends. As the reader can see, before 100 units, there is zero proba-

bility of ending and immediately after 100 units, all 250 repetitions of the simulation

end very quickly.

The simulation keeps approximately 25–30 events in the future event list during

execution, as can be seen in Figure 119. Some of these future events are enqueue

and dequeue events that are within the mechanics of the simulation engine being

used. The list does not grow because one event must be completed before the others

can be queued up. However, with the end of most events more than one event is

queued up; therefore, the queues for each server (system) grow linearly in time as

shown in Figure 120. This is correct from a coding perspective, i.e., the code passes

verification; however, this is definitely not the intended behavior, i.e., the code is not

a valid representation of reality.

317

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

to
 F

in
is

h

99.9 100.0 100.1 100.2 100.3 100.4 100.5
Time

Figure 118: The simulation ends immediately after 100 time units. The data is based
on 250 repetitions.

A discussion on the differences in the ABM and DES implementations is war-

ranted. ABM experiment was made executable via a data structure workaround,

whereas the DES experiment was executable on its own. Using sets instead of simple

lists enabled the ABM to not get clogged up with a large number of similar incoming

messages. Sets can only contain a single copy of a type of item whereas lists can

contain any number of them. Therefore, if multiple messages of the same type, e.g.,

waypoints, the recipient will only pay attention to the last message it receives. In the

DES formulation, this trick is not needed because it already includes a mechanism to

manage incoming messages: queues. It is also important to note that the availabil-

ity of such data structures is important in the implementation language as well as

the modeler’s knowledge. The implementation step is always problem and engineer

318

50

100

150

200

C
ou
nt

27 28 29 30 31 32 33

Figure 119: Roughly 25–30 future events are kept in the list thanks to the queuing
behavior. The data is based on the maximum number of events in the list for 250
repetitions.

dependent.

While DES formulation works better than the ABM for this problem, neither

works as intended and both require extra logic to be defined. The missing logical link

is the details on what systems must do after receiving a specific signal. In the ABM

formulation, this logic would be defined as internal behavior functions; whereas in the

DES formulation the logic would be defined in the entity transition network and/or

non-deterministic functions.

8.2.1.3 Building a system dynamics model (Type C experiment)

System dynamics models are predicted to be a straightforward implementation for

the RWDC problem in Table 190. A model is attempted here after the mixed results

from the ABM and DES experiments. This will be treated as a Type C experiment,

and the minimum amount of architectural information is sought. Therefore, only a

single view is used to start the process, and others are only added when needed.

Each row in the SV-6 was used as a flow. The flows go from source to sink as

319

Q
ue

ue
 L

en
g

th

0

250

500

750

1000

1250
Min
Mean
Max

0
10

00
20

00
30

00
40

00
50

00

Step

Figure 120: The queues grow linearly over time with no limit. The graph shows
minimum, mean, and maximum queue lengths at each simulation step over 250 rep-
etitions.

described by the SV-6. The sources and sinks are modeled as stocks in the system

dynamics nomenclature. Each system node in the SV-1 could have been used as a

stock but in the experiment, only the SV-6 was used to test the hypothesis more

effectively. The resulting model can be expressed graphically, as shown in Figure 121.

The entire model is then represented as a system of first order linear differential

equations. Not all system dynamics models are necessarily linear, but this one turned

out to be linear based on the description of the system of systems.

The final equations are given in Equations 66–73. Implementing the equations

in code is fairly trivial and Code Block 8.1 shows the implementation used in this

320

work. The function shown in the code block is integrated using a numerical ordinary

differential equation solver and plotted in Figure 122.

dSSP
dt

= f0 − f15SSP + f13SFCS − f14SSP (66)

dSV DUT
dt

= f15SSP − f16SV DUT (67)

dSV DGR
dt

= f16SV DUT − f17SV DGR (68)

dSSPWC

dt
= f17SV DGR − f18SSPWC + f7SCDGT − f8SSPWC (69)

dSCDGT
dt

= f8SSPWC − f7SCDGT + f1SPWC − f2SCDGT + f4,6SCDUT − f3,5SCDGT

(70)

dSPWC

dt
= f2SCDGT − f1SPWC (71)

dSCDUT
dt

= f3,5SCDGT − f4,6SCDUT + f10,12SFCS − f9,11SCDUT (72)

dSFCS
dt

= f9,11SCDUT − f10,12SFCS + f14SSP − f13SFCS (73)

1 def rwdc model (s t a t e s , time) :

2 ””” RWDC system dynamics model ”””

3 sp , vdut , vdgr , spwc , cdgt , pwc , cdut , f c s = s t a t e s

4 #

5 s o u r c e t o s p = 10

6 sp to vdut = 0 .5

7 vdut to vdgr = 0 .5

8 vdgr to spwc = 0 .5

9 spwc to s ink = 0 .5

10 spwc to cdgt = 0 .1

11 cdgt to spwc = 0 .1

12 cdgt to pwc = 0 .1

13 pwc to cdgt = 0 .1

14 cdg t to cdut = 0 .1

15 cdut to cdg t = 0 .1

16 c d u t t o f c s = 0 .1

17 f c s t o c d u t = 0 .1

18 f c s t o s p = 0 .1

19 s p t o f c s = 0 .1

321

CDGT SPWCCDUT

FCS

SP VDUT

VDGRPWC

*

*r7
r1

r2r10,12
r4,6

r9,11

r13 r14 r16

r17

r8r3,5

r15

Figure 121: A graphical representation of the Real World Design Competition System
Dynamics model

20 #

21 d sp = (s o u r c e t o s p − s p t o f c s ∗ sp)

22 d vdut = (sp to vdut ∗ sp − vdut to vdgr ∗ vdut)

23 d vdgr = (vdut to vdgr ∗ vdut − vdgr to spwc ∗ vdgr)

24 d spwc = (vdgr to spwc ∗ vdgr − spwc to s ink ∗ spwc

25 + cdgt to spwc ∗ cdgt − spwc to cdgt ∗ spwc)

26 d cdgt = (spwc to cdgt ∗ spwc − cdgt to spwc ∗ cdgt

27 + pwc to cdgt ∗ pwc − cdgt to pwc ∗ cdgt

28 + cdut to cdg t ∗ cdut − cdg t to cdut ∗ cdgt)

29 d pwc = (cdgt to pwc ∗ cdgt − pwc to cdgt ∗ pwc)

30 d cdut = (cdg t to cdut ∗ cdgt − cdut to cdg t ∗ cdut

31 + f c s t o c d u t ∗ f c s − c d u t t o f c s ∗ cdut)

32 d f c s = (c d u t t o f c s ∗ cdut − f c s t o c d u t ∗ f c s

33 + s p t o f c s ∗ sp − f c s t o s p ∗ f c s)

34 #

35 return [d sp , d vdut , d vdgr , d spwc , d cdgt , d pwc , d cdut , d f c s]

Listing 8.1: Derivative equations for the RWDC system dynamics model

In this example it can be seen that the SV-6 provides the necessary structure to

build a system dynamics model. The model is defined with stocks and flows and the

missing pieces are the values of coefficients that would modify the strength of the

flows. The hypothesis holds here without modification. System dynamics models out

of an SV-6 are possible.

One piece that was also missing is the flow of information into each of the stocks

322

0 10 20 30 40 50
Time

0

20

40

60

80

100

Da
ta

SP
VDUT
SPWC
CDGT
PWC

Figure 122: Selected results of the Real World Design Competition System Dynamics
model. There are more stocks in the model but they are left out for clarity.

from outside the system. However, arguments can be made against failing the hypoth-

esis for the lack of external flows in this case. It is entirely possible that the creation

and consumption of “video data” was left out in the original SV-6 as architecture

views are not necessarily fully complete. Jones Wyatt’s SV-6 does not include the

flow of data into the sensor payload. Her reasons for not including it was due to the

fact her architectures are focused on communication systems. Therefore, a system

dynamics modeler must fill in the gaps of creating a source for data without having

to read it from the given SV-6. This simple modification is not deemed to break the

hypothesis.

8.2.1.4 Review of Jones Wyatt’s graph model and summary

Jones Wyatt has used architecture views to construct probability models. Her models

are more detailed and specialized than the fundamental probability models described

323

in Chapter 5; however, the steps in their translations are similar. She takes the

interoperabilities of pairs of systems and assigns a data transfer probability between

them. This approach results in a fairly sparse adjacency matrix with probability

values used instead of a simple 0 or 1 indicator value. Additionally, her communication

probabilities are modified by message translations.

Finally, she splits the network into smaller networks specific to each resource which

increases the number of matrices to be analyzed but reduces the complexity of each.

A similar approach could be applied to the system dynamics model shown in the

previous section (Section 8.2.1.3). Instead of having a large system dynamics model,

multiple models can be constructed for each resource. Jones Wyatt details the split

in her Table 10 in Chapter 6. Her work demonstrates how a probability model can be

constructed from an SV-6 table. The reader is encouraged to review her dissertation

for detailed descriptions of her models [111].

It is important to note that, while Jones Wyatt’s architecture views are extremely

useful in creating the models she needed for her studies, her models do not capture

every aspect of the system she is describing. For example, the graph model she

builds performs well for the study of interoperability and her graph models can be

repurposed to calculate throughput calculations. While this single modeling type can

be used for multiple purposes, different metrics must be used on the edges and this

means the systems engineer must build multiple models of the same type.

Additionally, a graph model will not be suitable to study data storage issues,

queueing of messages in a network, timeliness of information received, or compare

physical designs of multiple designs of the UAVs (one may be faster than the other).

A discrete event or agent-based model would be more suitable in such studies. And

the same problem applies here: such higher fidelity models lack the abstraction ca-

pabilities to measure high level metrics such as throughput or interoperability. This

impossibility is a strong support for Research Argument 2 (a sufficiently complex

324

system of systems will require more than one modeling technique for analysis).

8.3 2011 National Airspace System Enterprise Architec-
ture Framework

The FAA NASEAF [19] is comprised of three separate architectures: as-is, near-term,

and far-term. The multitude of models presents an interesting opportunity to com-

pare them against each other. All three architectures were developed by the same

organization3; however, the data available and the purpose for each version is not

equal. The “as-is” architecture is mainly for documentation, standardization, and

certification purposes, while the others are used for planning and development pur-

poses. Because the purposes are different, the set of viewpoints developed also differ

(significantly between as-is and others). Table 191 shows the various architectures

developed for each of the three architectures.

3There are some significant format differences within and between the architectures and it is not
possible to claim that they were indeed prepared by the same people within the FAA.

325

Table 191: The viewpoints developed for the three FAA NASEAF architectures.

Viewpoint As-is Near-term Far-term
OV-1 X X X
OV-2 X X X
OV-3 X X
OV-4
OV-5a X X
OV-5b Xb X
OV-6a
OV-6b
OV-6c X
SV-1 X X
SV-2 X X
SV-3
SV-4 ∼b ∼b

SV-5a X X
SV-5b X
SV-6 X X
SV-7
SV-8
SV-9

SV-10a
SV-10b
SV-10c
BDDc X
TV-1d X

a IDEF0 type format
b Hierarchical type; therefore, not useful for modeling
c SysML Block Definition Diagram
d This viewpoint is the StdV-1 but is named TV-1 in

the FAA architecture

326

8.3.1 NASEAF As-Is Architecture

The as-is architecture consists of only operational viewpoints and a very large stan-

dards viewpoint. The standards viewpoint itself holds significantly more information

than all the other viewpoints combined. It is clear that this architecture was devel-

oped for standardization and certification purposes and represents the status quo for

the FAA. The StdV-1 provides significant detail on how systems within the NAS work

and system views are not needed for this architecture.

Observations from the selection of the viewpoints available are as follows. The

viewpoints that are not operational or systems are ignored in the analysis due to the

scope of the work. Table 192 offers details on the observations listed below.

1. Even with this limited set of architecture viewpoints, all modeling types appear

to be possible. With the exception of discrete event and agent-based models,

all modeling types appear to be modelable using only a single viewpoint.

2. OV-5b appears to be the most valuable source of information. It has the po-

tential to be used in any of the modeling types and in four of them, it is the

most useful viewpoint.

3. The higher numbered viewpoints are critical for discrete event and agent-based

models as they cannot use much of the information included in the earlier

viewpoints.

Observation 2 is not surprising. At this high level of abstraction the requirements

of each operational activity is extremely useful for modeling. Especially, when used

with the sequence information to be included in the OV-6c it has the potential to

support even the most detailed modeling types. Alternatively, when used with the

higher-level organization views OV-1 and OV-2 it can determine whether the required

connections are there for the system of systems to work or how likely the functions are

327

Table 192: Observations from the as-is version of NASEAF

Model Feasible Views ordered by utility
Relevant

Obs.
Graph X OV-2, OV-5b, OV-1 1

Probability X OV-5b, OV-1 = OV-2, OV-6c 1 and 2
System dyn. X OV-5b, OV-1 1–3
Markov chain X OV-1 = OV-5b, OV-2, OV-6c 1 and 2

Petri net X OV-1 = OV-5b = OV-6c 1–3
Queueing X OV-6c, OV-5b = OV-1 1 and 3

Disc. event ∼ OV-5b = OV-6c, OV-1 1–3
Agent-based ∼ OV-6c, OV-1 = OV-5b 1 and 3

to work (or alternatively how many times they need to be executed before successfully

finishing them). Similar discussions were documented in Chapter 6.

Observation 3 was also predicted in Section 6.2. The OV-5b is a much more useful

source of information with increased granularity and detail. The OV-2 is really only

useful for graph models and even when used, its outputs do not generate significant

insight. However, it is a frequently-developed view for non-modeling purposes.

Observation 1 is an interesting observation that deserves a discussion. Taken at

face value, it seems to be against the hypothesis stated in Section 3.4, which will

be tested separately. At this stage the only conclusion that can be drawn is that

most models are possible from a restricted set of viewpoints; there is no guarantee

claimed that the models will work or even produce any useful information. The reader

is reminded that just because every OV-2 can be translated into a graph, does not

mean that the resulting graph is useful. It is also important to remember that just

because a combination of views is possible to support the creation of a model type,

it also is not guaranteed that every such combination will be enough to create that

model. At this stage, the results focus on possibilities, not certainties (and given

DoDAF’s flexible nature, certainties may be too much to ask).

328

8.3.1.1 Building a discrete event model (Type B experiment)

A good place to start the experimentation on this architecture is the OV-5b and

discrete event modeling because it has the highest uncertainty whether it is possible

or not. Agent-based modeling for example has a higher chance of not being possible.

Because there is no certainty about modeling possibility, this is a Type B experiment,

as laid out in Section 8.1. Figure 123 shows a snippet from the as-is architecture’s

OV-5b. This view was chosen as an example because it seems to be the most useful

view in the architecture. The view is prepared in the IDEF0 format and the arrows

have different meanings depending on their orientation:

Down from above Rules, control, and logic

Into left Input to the process

Up into bottom Performer, mechanism through which the process is done

Down from bottom Calling another function as part of the process

From right Output object of the process

Evaluate
Traffic Flow

A.01.01.02.01.04

Customer input

Traffic flow situation

Position assignment

Std. operating procedures

FAA orders & directives

Letters of agreement

Traffic management specialist
surveillance, communication, automation, weather

Traffic flow adjustment

Figure 123: A part of the NASEAF as-is OV-5b

The translation of the view into an executable model is not an automatic pro-

cess because the modeled can include technical knowledge and differentiate similar

329

architecture elements into dissimilar modeling elements by their name. For example,

in the translation shown in Figure 124, there are three input arrows. However, an

expert can tell that a customer input is not necessary to start the process while the

traffic flow situation is always needed for the process to successfully execute.

Evaluate
Traffic Flow

A.01.01.02.01.04

Customer input

Traffic flow situation

Position assignment

Std. operating procedures

FAA orders & directives

Letters of agreement

Traffic management specialist
surveillance, communication, automation, weather

Evaluate
Traffic Flow

Traffic mgmt.
specialist

Traffic flow adjustment

Traffic flow adjustment

1

2

3

4

Traffic flow situation

Customer input

Position assignment

5

Figure 124: A possible translation of the OV-5b to a discrete event model

The example translation is detailed as follows:

1. The rules, control, and logic become part of the event. It may be used to judge

how much time it takes to execute the event or what kind of output is created.

2. The output becomes the output entity of the event. This entity may carry

information that makes it unique or not to make it a simple entity that can

only be counted.

3. The performer is the server of the event. The mechanism could be moved into

the logic for the event but could also be a performer itself, e.g., a machine that

processes the entities and executes the event.

330

4. The function becomes the event. This is self-explanatory.

5. The inputs become the incoming queues. The entities are flowing into these

queues in the larger model. The example shows a fairly complicated queue

model but simple queues are also possible.

Based on Table 192 a Markov chain model could also be constructed from this

view. The translation is completely different in that case as Markov chains are more

simplistic models and do not have as many modeling elements as discrete event mod-

els. Figure 125 shows the translation process for this example.

Execute
Traffic Flow

A.01.01.02.01.03

Evaluate
Traffic Flow

A.01.01.02.01.04

Allocate
Traffic Flow
Resource
A.01.01.02.01.05

α

a
b
c
d
e
f

f

f

b

h

g

β

β

γ

γ

γ

α
β γ
γ0

0

0 0 0

Transition
Matrix =

Figure 125: A possible translation of the OV-5b to a Markov chain model

Figure 125 depicts how the system will evolve to maintain traffic flow. This

interpretation of the architecture view is significantly different from the discrete event

interpretation. Here, the entire system transitions from one state to another meaning

that there are times when the system is in the evaluation state and by definition not

in any of the other states. Therefore, this model tracks the system as a whole not

individual flight routes and requests. If the system can perform these functions in

parallel, the Markov chain model will return erroneous results unless a single route

entity is used in the discrete event simulation.

331

P(Exec.T.F.)=P(Eval.T.F.)
P(Alloc.T.F.Res.)

Pr
ob
ab
ili
ty

Time

0.2

0

0.4

0.6

0.8

1.0

Figure 126: The resulting Markov chain output for the probabilities of each state
being active.

0.2

0

0.4

0.6

0.8

1.0

Time

Pr
ob
ab
ili
ty

P(Exec.T.F.)

P(Alloc.T.F.Res.)
P(Eval.T.F.)

Figure 127: The resulting discrete event output for the probabilities of each server
being busy.

Figures 126 and 127 show similar results for when there is a single entity in

the discrete event simulation. This is done to initially cross-validate the simulation

engines and models. The horizontal axis scales do not matter here because the run

is only for validation of simulation types. The discrete event output is noisier as

expected, because the Markov chain output is a highly accurate numerical solution

to an analytical system of equations. Because the accuracy is high, the probabilities

of the first two states are exactly on top of each other and only one can be shown

in the figure. Both figures show that the state/event Allocate Traffic Flow Resource

very quickly processes the work and passes it along to the other states/events. At the

332

steady state, the other states/events are active 50% of the time. The main source of

the discrete event simulation can be found in Code B.1 in Appendix B, which does

not include the various inputs to it for brevity.

Adding more entities to the discrete event model breaks result similarities between

the models. In this example, the Execute Traffic Flow state/event is made to work

slower than the Evaluate Traffic Flow state/event. Therefore, one remains always

busy while the other stays sometimes busy in the discrete event model. Because

the Markov chain can only be in a single state at any time, the probabilities must

add up to one at any time as well. Therefore, as one state increases its steady-

state probability the other must decrease. Also notice that the Allocate Traffic Flow

Resources state/event takes much longer to decay in the discrete event model but the

decay is more abrupt. Figures 128 and 129 show the differences and similarities in

trends between the different simulation models.

Pr
ob
ab
ili
ty

1.0

0.6

0.4

0.2

0.8

0 Time

Exec.T.F.
Eval.T.F.
Alloc.T.F.Res.

Figure 128: The resulting Markov chain output for the probabilities of each state
being active.

Table 192 showed that a discrete event model is not necessarily possible from the

set of views provided by this architecture. The example above is an attempt to falsify

that claim and was constructed with a significant list of assumptions:

1. Operational nodes are given but information on the systems providing the func-

tions are missing completely. Therefore, their performances or how they actually

333

1.0

0.8

0.6

0.4

0.2

0

Pr
ob
ab
ili
ty

Time

Exec.T.F.
Eval.T.F.
Alloc.T.F.Res.

Figure 129: The resulting discrete event output for the probabilities of each server
being busy.

perform the actions could not be modeled. Only a rough approximation was

used: a single system that performs each event.

2. Operational nodes are nowhere near enough to describe this complex system

without functions that systems provide. A list of systems was provided in the

OV-1 even though OV-1 is not the correct place to publish this information.

However, most of this list is paragraph descriptions of systems and not presented

in a systematic way. The information is simply difficult to use.

3. Performance values are missing completely. This is not a show-stopper because

the numbers are not necessary to build a conceptual model; however, the results

of the simulation will not match reality unless realistic values are used.

4. The OV-5b that was used does not include information about the entities apart

from their names. There is no indication whether the entities are merged inside

events, whether a number of them are required to execute the event, or what

happens at the splitting lines—it is not known whether entities split into two

or “choose” one path or the other.

5. It is also not clear whether some incoming lines are entities at all. They may

334

represent some information, a conditional variable, or a simple switch to the

event, meaning that they modify the event but not actually cause it.

Based on the list above, it must be said that the discrete event model example did not

have enough structure to be determined as a successful model. Following the proce-

dure for the Type B Experiment, the remaining supplied views are now investigated

whether they can provide the missing information. The first view to be investigated

and added is the OV-6c as suggested by Table 192. Indeed, this architecture’s OV-6c

includes some of the missing information, specifically, the systems4 providing the

functions (1) and how inputs and outputs5 need to be treated (5).

The OV-6c includes a few operational examples that are described in much greater

detail than the OV-5’s block diagram. On the OV-6c a modeler can see every message

being exchanged between systems as well as their order, meaning that a single box

or a line in the OV-5 is decomposed further into sub-actions to make up that specific

function. The fourth of the five examples describes the collaboration of many traffic

management units (TMU) for air traffic flow planning, execution, and evaluation.

These actions match to the OV-5 used above.

Figure 130 shows the OV-6c from the as-is NAS enterprise architecture. It can

be seen that the consideration for weather is the first activity in the process and Air

Traffic Control System Command Center (ATCSCC) is the only system that deals

with it. Next ATCSCC receives user input/feedback. The third step is planning the

traffic flow for the day. These can also be seen in the OV-5 of the same architecture;

however, there is no order to them, nor is there any distinction between these and

the possible later adjustments due to unforeseen events. The OV-5 simply shows

where information comes from and where it goes; whereas, the OV-6c provides a

step-by-step execution of the operations.

4Systems in this case would translate to servers in the discrete event model
5Inputs and outputs correspond to entities and queues in the discrete event model

335

The extraction of information from the OV-6c is not a straightforward process.

The OV-5b was enhanced by highlighting the order of events using one of the scenarios

given in the OV-6c. It is given in Figure 131. It can be seen that even a partial view

with a single scenario is appreciably complicated. A discrete event model is then

constructed to cover the allocation of traffic resources (it is a good starting point for

the process at hand) and planning, executing, and evaluating traffic flow. The results

are given in Figure 132.

The results show that after the initial setup the supervisors are not utilized and

because major traffic flow patterns change rarely (disruptive weather events in a

specific area are rare), the ATCSCC is also under-utilized. While interpreting the

results the reader must remember that the numbers that were used may not be highly

representative. The point of the experiment is to test the structure of the model, not

the similitude of outputs to reality. Additionally, the ATCSCC is tasked with many

other functions that are not covered here. The plot also shows how each center yields

to the other for guidance/execution (i.e., when one is busy, the other is free). The

horizontal axis scale is not important as the simulation does not end but goes into a

steady state.

Returning to the question to be answered by this experiment: does this mean that

the OV-5b and OV-6c are a definitively capable combination to create discrete event

models? The answer must still be a “no” because even when the OV-5b and the

OV-6c are this detailed, the information about the systems performing the functions

is still missing. The OV-6c shows operational nodes but inside each operational node

there are numerous systems in this scenario. A TMU for example is part of many

different centers in the NAS. There are TMUs in ARTCCs, towers, TRACONs etc.

Also, the TMU is not a single entity. It can employ a number of coordinators and

therefore its capability of handling many tasks at once is a variable. The OV-6c does

not include any of such information. The combination of the OV-5b and the OV-6c is

336

still not a guaranteed solution for a discrete event model. However, in simple scenarios

where the complexity is much smaller compared to the NAS the combination can be

very powerful to answer all questions a discrete event modeler may have.

The next view that may be useful in this case is the OV-1. Upon close investigation

it was decided that the view does not include the missing information needed for

discrete event modeling. The only figure that was provided showed a conceptual

flight of an aircraft from the origin to the destination airport. The lines that connect

the various nodes on it are not defined well enough to convey how the collaboration

works, or how resources are shared which can be modeled by a discrete event model.

Therefore, the result of the experiment is not to falsify (i.e., to confirm) the prediction

that the combination offered is not necessarily enough for discrete event modeling.

The current experiment is concluded here.

337

ATCSCC
System

user
community

ARTCC
TMU

TRACON
TMU

Tower
TMU

ATC
Supervisor

Event 01

telcon

Event 02

Event 03

Event 04

manual coordination

computer message
sent

Event 05

continuous
coordinationEvent 06

monitor flow
monitor flow

monitor flowEvent 07

Event 08

increase spacing
message sent

Event 09

supervisor
coordinates
with sectors

Event 10

ask for ground stop
Event 11

initiate delay prog.
disseminate info

initiate delay prog.
disseminate info

initiate delay prog.
disseminate info

initiate delay prog.
disseminate info

Event 12

Figure 130: FAA’s As-Is OV-6c (fourth out of five views)

338

1

1

2

3

3
3

3

4

5

6

6

6

7,9

10

10

Figure 131: FAA’s As-Is OV-5b with added sequence information from the OV-6c
(adapted from the FAA architecture [19])

1.0

0.8

0.6

0.4

0.2

0
Time

TMU

ATCSCC

Supervisors

Pr
ob

ab
ili

ty
 o

f
b
ei

n
g
 b

u
sy

Figure 132: FAA’s As-Is OV-5b with added sequence information from the OV-6c
(adapted from the FAA architecture [19])

339

8.3.1.2 Building an agent-based model (Type B experiment)

Another Type B experiment suggested by Table 192 is building an agent-based model,

which may be possible but not necessarily so. The same approach will be taken as

the previous Type B experiment with a special exception. Among the modeling types

investigated here there are none that are similar to agent-based models. While it was

possible to compare a Markov chain to a discrete event in the previous experiment,

a similar comparison is not possible here. Therefore, the cross-calibration step of

the Type B experiment will be skipped. Table 192 shows that the OV-6c is the

most important view to be used for an agent-based model in this case. For sake of

continuity, the same subset of OV-6c used in the previous experiment will be used.

The model was created using Mesa, a Python package for agent-based modeling

[132, 113]. It offers a convenient compartmentalization of modeling, analysis, and

visualization. In this particular case, only the modeling part was used because the

aim of the experiment is to show a model can be built not that its outputs match

reality. The numerical inputs to the model had to be fabricated because the specific

OV-6c given inside the FAA As-Is architecture did not include them. While the

statistical analysis step was not needed, the simulation was nevertheless visualized

in an OV-6c-like graphic that shows how the simulation was executed from start to

finish. The reader is encouraged to compare these results given in Figure 133 with

the OV-6c given in Figure 130. The model’s source can be investigated in Code B.3

in Appendix B.

It appears that the model building was a success apart from the lengths of ac-

tivities or whether they can run in parallel or not. These types of information could

have been easily depicted on the OV-6c using the bars such as the ones shown in

Figure 133. Because the original OV-6c lacked them, the model was created with

made-up numbers just to prove the concept and the model executed successfully.

The main barrier however was not the lack of numbers but the lack of messages

340

or triggers to activities. What causes Event 4 vs. 6 was not clear on the OV-6c. The

messages that were depicted were almost universally top-down with little feedback.

Events that required coordination or agreement before moving forward must generate

some feedback and possible back-and-forth communication. Instead of using these

triggers, the model unimaginatively executes events based on a schedule and therein

lies the reason why agent-based modeling from an OV-6c is not a guaranteed endeavor.

The OV-6c view depicts a specific scenario. In the view used here, the scenario

was a normal start to the day for air traffic control that soon gets disrupted with

inclement weather. While it is theoretically possible for all possible interactions be-

tween operational nodes as shown on a sequence of OV-6c diagrams, it is not practical

and would be very difficult to synthesize all of them into a single model. OV-6c’s

descriptions are not as general as the other operational views.

Ideally, an agent should act on the stimuli from the environment or from agents

and perform a set of reactions based on its understanding of what is going on. The

simplest example to this is an if-this-then-that automaton. However, the model put

together could not implement many of the interactions this way. Certain actions

were simply started by the end of another or scheduled ahead of time. There is

no emergence of order from the agent interactions, behavioral patterns due to agent

rules, etc. The model simply schedules events to match the OV-6c and that is not

useful as no new information can be gleaned from the model outputs.

The discussion cannot rule out the possibility of creating an agent-based model

of a simple system with a few possible scenarios that can be exhaustively depicted

with a number of OV-6cs. Therefore, the “possible but not guaranteed” label remains

unchanged. Next, the knowledge from the OV-5b will be added to the mix and it will

be ascertained whether it will fill the information gap or not. Table 192 suggests the

OV-1 as well as the OV-5b could be useful in this scenario. However, the OV-5b is

preferred over the OV-1, because it shows the inputs to functions, which are modeled

341

directly in the agent-based model. These inputs can be used as triggers by assuming

when all inputs to a function is present, the function is triggered. This formulation

may just work to fix the pre-determined schedule problem.

The OV-5b adds a significant structure to the model. Even actions that have been

left out in the OV-6c can be found in the OV-5b represented by several functions and

input output relations that correspond to a single process on the OV-6c. Additionally,

the OV-5b includes strict rules of what functions are needed to produce a specific

information and what each function does after the receipt of a specific information

type. The agent-based model was then altered to not schedule actions ahead of time

but have agents take in information, based on which perform an action, and finally

output an information. The results are given in Figure 134 and are slightly different.

However, the main point here is that the model executes agents in a more generic way

acting to stimuli themselves rather than the simulation engine prescribing actions to

them. Therefore, the resulting agent-based model is more structured and closer to a

complete solution that the model created with just the OV-6c was.

It can be seen that the agents take some time to act on the information that they

receive. This is due to the implementation of pure randomness in what agent acts first

during a given time step. Additionally, some events have moved up or down based

on the functions they require given by the OV-5b. Additional functions that were

not explicitly shown on the OV-6c have been added to various agents because their

output is required by consequent functions. For example, Event 5 now requires an

ATC Supervisor to perform a final step because based on the OV-5b it is not a simple

message that gets sent to the supervisors, but the supervisors act on it. This problem

could have been avoided if the OV-6cs were more detailed; however, the inputs and

outputs of each activity would still be represented in the OV-5b. Therefore, it can be

said conclusively that either view is enough on its own to construct an agent-based

model. This conclusion supports the arguments in Sections 6.6.8 and 6.9.8.

342

There are still two pieces of the agent-based modeling puzzle missing from the

OV-5b and OV-6c pair: the environment and the specifics of the actions. Simple

environments may be represented as other agents to solve the first problem but this

approach is not guaranteed to work with environments that are highly variable based

on location. Representing seas, mountains, or clouds as systems can also be more

confusing than helpful. The specifics of actions on the other hand can be included

in an OV-6a easily. The specifics outline what the action really does apart from the

information it generates or how long it takes (e.g., how does an airplane fly a route,

how does a missile avoid detection). These missing information are fundamentally

different from the missing numerical information such as how many of each agent, or

how much resource is being used. The numerical information is required at run time

but is not required to construct a model.

For a fully featured agent-based simulation, this information should be included.

Based on these arguments, it must be conceded that the OV-5b and OV-6c pair is

still not enough for an agent-based model’s construction. The result agrees with the

hypothesis.

343

ATCSCC
System

user
community

ARTCC
TMU

TRACON
TMU

Tower
TMU

ATC
Supervisor

E
ve

n
t

0
1

E
ve

n
t

0
3

E
ve

n
t

0
4

E
.5

E
ve

n
t

0
6

E
ve

n
t

0
2

E
ve

n
t

0
2

E
ve

n
t

0
4

E
ve

n
t

0
4

E
ve

n
t

0
4

E
.5

E
.7

E
.6E
.6

E
.6

E
ve

n
t

0
7

E
.8

E
.9

E
.1

1

E
ve

n
t

1
2

E
.1

0E
.5

E
ve

n
t

0
7

E
ve

n
t

0
7

E
ve

n
t

0
6

Figure 133: Agent-based model results using the FAA As-Is OV-6c

344

ATCSCC
System

user
community

ARTCC
TMU

TRACON
TMU

Tower
TMU

ATC
Supervisor

E
ve

n
t

0
1

E
ve

n
t

0
3

E
ve

n
t

0
2

E
ve

n
t

0
2

E
ve

n
t

0
4

E
.5

E
ve

n
t

0
6

E
ve

n
t

0
4

E
ve

n
t

0
4

E
.7

E
.6

E
.6

E
ve

n
t

0
7

E
.9

E
.1

1

E
ve

n
t

1
2

E
.5

E
ve

n
t

0
4

E
.5

E
.6

E
ve

n
t

1
0

E
ve

n
t

0
7

E
ve

n
t

0
7

E
ve

n
t

0
6

E
.5

Figure 134: Agent-based model results using the FAA As-Is OV-6c and OV-5b.

345

8.3.1.3 Building a graph model (Type C experiment)

The possibility of creating a graph model is tested. The claim is that a graph model

is easily obtainable from an OV-2, OV-5b, and OV-1; therefore, the experiment will

fail if graph models are not obtainable from the trio of views. The first view to be

used is the OV-2 based on the preference the table provides.

Unsurprisingly, the view is very suited for graph modeling, as discussed in Sec-

tion 6.2.1. In this experiment a different diagram is used from the Section 6.2.1

example to minimize overlap. The third diagram that was provided in the FAA as-

is OV-2 is given in a simplified form in Figure 135 and the adjacency matrix that

encapsulates the graph model is given in Table 193. Here the number of message

types exchanged between the nodes are interpreted as the weight of the edges but

other interpretations are also possible. With the selected interpretation, the resulting

graph is not symmetric.

Table 193: An OV-2 viewpoint from the FAA as-is architecture translated to an
adjacency matrix

R
M

E
S

A
T

C
T

T
R

A
C

O
N

A
R

T
C

C

O
C

C

N
O

C
C

F
S
S
/A

F
S
S

F
IC

O

N
N

C
C

RMES 5 5 5 8 5
ATCT 6 5 4 6 5

TRACON 5 6 6 5 5
ARTCC 5 5 6 3 6

OCC 5 2 4 4 6 4 2
NOCC 4 1 2

FSS/AFSS 5 6 5 6 4
FICO 2 2

NNCC 2

Zeroes are left empty for easier readability.

Alternatively, one might make one graph for each information type exchanged

between the nodes. Table 194 below shows the resulting adjacency matrix for the

“NAS maintenance schedule” information. Notice that the edge weights here are

346

exclusively 0 or 1, meaning that they simply symbolize the existence or non-existence

of the edges. As before, the construction of this matrix is fairly straightforward from

the OV-2.

One problem a systems engineer will note when looking at this adjacency matrix

is that this particular message never gets sent to the node TRACON but is sent

to others from it. That will raise a flag for viability of the system to work. Turns

out that other pieces of information such as infrastructure maintenance schedule or

adjustments to the schedule are sent to TRACON and they are transformed into the

maintenance schedules inside the node. This is a simple example of how a graph

model may be used in the system of systems context.

Table 194: An OV-2 viewpoint from the FAA as-is architecture translated to an
adjacency matrix

R
M

E
S

A
T

C
T

T
R

A
C

O
N

A
R

T
C

C

O
C

C

N
O

C
C

F
S
S
/A

F
S
S

F
IC

O

N
N

C
C

RMES 1
ATCT 1 1

TRACON 1 1
ARTCC

OCC 1 1 1
NOCC 1 1 1

FSS/AFSS 1 1
FICO

NNCC 1

Zeroes are left empty for easier readability.

From the two examples above, it is clear that just the OV-2s are sufficient to

create graph models. The reader can look at the OV-1 and OV-5b, then use the

similarities to imagine how they can be used to create graphs, but for the purposes

of this experiment, the results above obviates the need to construct them. The claim

is shown to be unconditionally correct.

347

8.3.1.4 Building a Markov chain model (Type C experiment)

As a final experiment for the FAA as-is architecture a Markov chain model is at-

tempted. Table 192 suggests OV-1 and OV-5b as starting points. The OV-1 depicts

a typical flight of an airliner from one airport to another and being in contact with

various systems along the route. Unfortunately, while the states are shown, the tran-

sitions between them are hardly defined. Additionally, the connections do not include

what kind of information is being transferred. Therefore, the focus of this experiment

will be on the OV-5b. This does not mean the OV-1 is universally useless for Markov

chain modeling, only that it is for this very specific case.

The OV-5b to Markov chain translation was briefly discussed in Section 8.3.1.1 as

a comparison to the discrete event model. The experiment here carries on from that

discussion. The missing two states and their transitions are added to that continuous

time Markov chain model. The transition matrix is given in Table 195 and the

resulting state transitions are shown on Figure 136.

Table 195: Transition matrix made from the OV-5b of FAA’s as-is architecture

D
ev

el
op

P
la

n

E
x
ec

u
te

E
va

lu
at

e

A
ll
o
ca

te

Develop −6 0 2 0 5
Plan 6 −4 3 0 5

Execute 0 4 −7 9 5
Evaluate 0 0 2 −9 5
Allocate 0 0 0 0 −20

The values here are arbitrarily as-
signed, but the numerical informa-
tion is not required for model struc-
ture as discussed before.

While the resulting Markov chain is not a realistic model, the experiment still

validates that that conversion is possible. The inclusion of the other OV-5b viewpoints

and the OV-1 context undoubtedly improve the realism of the model. However, for the

348

purposes of this experiment, the conversion is shown to be viable and the argument

within Table 192 is supported. FAA’s near-term architecture is used for the next few

experiments.

349

Remote
Maint.
Equip.
Site

TRACON ATCT

ARTCC

Ops
Control
Center

FSS/
AFSS

Nat'l
Ops
Control
Center

NNCC

Flight
Inspect.
Central
Ops

5 6

5 5

5

56

5

4
6

6

5

5

8

2

6

4

5

4

3

5

6

5

6

4

4

6

5

5

5

4

6

2

2

2
1

2

2

Figure 135: FAA’s As-Is OV-2 (third out of three views)

350

Execute Traffic Flow

Evaluate Traffic Flow

Allocate Traffic
Flow Resource

Time

Pr
ob

ab
ili

ty
 o

f
b
ei

n
g
 i
n
 t

h
e

st
at

e

Develop Traffic Management Plan

Plan Traffic Flow

1.0

0.8

0.6

0.4

0.2

0

Figure 136: The resulting Markov chain output for the probabilities of each of the
five states being active.

351

8.3.2 NASEAF Near Term Architecture

The near-term architecture adds OV-3, OV-5a, SV-1, SV-2, SV-4, SV-5a, SV-5b, and

SV-6 on top of what was available in the as-is architecture, but omits the OV-6c and

StdV-1. It also adds a fit-for-purpose view that is a large collection of SysML Block

Definition Diagrams that thoroughly define the operational activities in great detail.

The new views set a vision for the evolution of the NAS in the near-term. They are

less strict than the StdV-1 supplied with the as-is architecture.

The near-term architecture’s SV-4 is a hierarchy view. This type of the SV-4 is

not particularly useful for modeling purposes, as discussed in Section 7.4. Because of

this, the SV-4 is ignored in the analysis and observations that follow.

The jump from the as-is to near-term architecture is quite substantial. The addi-

tional viewpoints make it possible to increase modeling complexity as well as quantity,

i.e., many more low-complexity models can be created from the supplied views, each

of which may provide different insights in how the system of systems will function.

The observations are listed below. The data the observations were derived from is

given in Table 196.

1. Agent-based models cannot be created from a single viewpoint. All other mod-

els appear to be feasible from a single viewpoint (different viewpoint for each

modeling type).

2. The OV-5b, SV-2, and SV-6 appear to be the most useful for almost all modeling

types. These viewpoints show a process, physical network enabling the process,

and what exchanges the network is used for. Many modeling types can be

supported by this group of viewpoints.

3. None of the higher detail viewpoints (OV-6a–c and SV-10a–c) are used.

4. The SV-5a,b are essentially ignored because they are not useful individually.

352

Table 196: Observations from the near-term version of NASEAF

Model Feasible Views ordered by utility
Relevant

Obs.

Graph X
OV-2 = OV-3 = OV-5b = SV-1 = SV-6,

OV-1 = SV-2
3 and 4

Probability X
OV-5b = SV-2 = SV-6, OV-1, OV-2 =

OV-3
2–4

System dyn. X OV-5b = SV-2, SV-6, OV-1 = SV-1 2–4
Markov chain X OV-1 = OV-5b = SV-2 = SV-6 2–4

Petri net X SV-2, OV-1 = SV-4, SV-3 = SV-6 3 and 4
Queueing X OV-2, SV-6, OV-1 2–4

Disc. event X SV-6, OV-5b, SV-2 2–4
Agent-based ∼ SV-1 = SV-2, SV-6 all

Observation 1 is expected as no view outside of the high-detail views can support

a modeling type as complex as agent-based modeling. Nevertheless, with the help of

the SV-2 and SV-6 together, it may be feasible to put together a simplistic agent-

based model for this architecture. Subsection 8.3.2.1 details the attempts at building

an agent-based model.

Observation 2 is not surprising because the details on how systems work internally

or collaborate/compete with each other is not specified on any of the viewpoints

developed. Much of the information that can be derived from the combination of the

OV-5b, SV-2, and SV-6 can be included in an SV-10c; however, that view was not

developed for the near-term architecture, as stated in Observation 3. Therefore, in

order to gather the same information, multiple views are used.

Observation 4 is important because, as discussed in Chapters 6 and 7, the results

focus on the utility of individual views to discover links between the architecture

views generated, and models that will fit the problem best. The SV-4, SV-5a, and

SV-5b need to be considered as a unit. When one is lacking from the architecture, the

others cannot be effectively used in the modeling efforts. In the case of the near-term

architecture, the SV-4 is effectively missing. It must be noted that there is an SV-4

in the architecture; however, it is a hierarchy type SV-4. As discussed several times

353

before, the hierarchy type is not very useful for modeling. Effectively, this means

that the SV-5a,b are neglected for modeling in the FAA near-term architecture. The

combined use of SV-4, SV-5a, and SV-5b is not investigated.

8.3.2.1 Building an agent-based model (Type B experiment)

Table 196 suggests that an agent-based model may or may not be possible with

the given viewpoints included in the near-term architecture. Therefore, an agent-

based model construction is attempted as a Type-B experiment. The near-term

architecture is significantly more detailed than the as-is architecture and only parts

of the viewpoints will be used to create models. The inclusion of all the other layers

not considered here will not fundamentally alter the model; it will only make it more

generally applicable. Table 196 suggests the SV-1 and SV-2 as good starting points.

Additionally, the SV-6 was used as a check between the other two views as well as to

provide some extra information such as the nature of the exchanged messages.

The SV-1 shows the resources being exchanged between system nodes, whereas

the SV-2 shows the interfaces that facilitate the exchanges. In the FAA architecture,

the resources shared are exclusively information messages. This experiment will fo-

cus on the management of weather information that includes collecting, distributing,

space/surface/aloft weather information from ground, space, and airborne sensors.

“Maintenance of this information includes validating the information and the sources

when generated by external stakeholders, maintaining the currency of the information

(including purging expired information), producing products that result from filtering

and combining different pieces of information, providing persistence of the informa-

tion at various points of use, and distributing the information either on demand or

according to business rules” according to NASEAF AV-2.

The model created uses 4 agent types and 1 class for data. Below is a description

of what the agents do for each simulation loop.

354

• Systems do

– Receive data

– Generate data

– Act on the data they generate or receive

– Send data

• Interfaces do (depending on their type)

– Transfer data directly between two systems

– Transfer data between a system and a communication service

• Communication services do

– Transfer data between two interfaces

• System nodes do not perform an action in this model. They are only included

for structure purposes. Their role can be expanded by subsequent use of other

views

Table 197 shows where the various information for the model definition originate

from. There is significant information overlap that makes cross-validation useful. In

fact, there were a few cases in which the overlap was used to correct mistakes in

the architecture viewpoints such as interfaces having the wrong codes and systems

not appearing in system nodes. Trying to construct models from the architecture

viewpoints can in turn increase the quality and consistency of information included

in the architectures as well. Of the three viewpoints, the SV-2 was the least detailed

and sometimes the information on it did not match the SV-1 and SV-6. Additionally,

the SV-2 did not show which communication service was used by each of the interfaces;

it showed only whether each system node has a connection to various communication

355

services. The lack of detail causes ambiguity and the model constructed ended up

being less specific than the potential offered by the viewpoints.

Table 197: The origin of the information used to build an agent-based simulation

Information SV-1 SV-2 SV-6

System nodes X X ∼
System node codes X × X

Systems X X ∼
System codes X × X

Interface X × X
Interface codes X × X

Comm. services × X ×
Data × × X

X The information was taken from this view
∼ Some of the information was taken from this

view but other views had to fill in the gaps
× The information was not found in this view

The information gathered from the views was only partially enough to construct

an agent-based model. All systems and system nodes as well as interfaces and com-

munication services were modeled as agents; however, only systems reacted to input

and provided some agent behavior. Even the systems simply passed on information

they received to the other systems that they were in contact with. There was no

internal process to do something with the information gathered. The reason for the

lack of interesting behavior was the lack of details of what each system, or system

nodes, or interfaces do. For example, as can be seen in Code 8.2, the system nodes

really do not do anything during the execution of the simulation (their step function

is entirely empty) other than being a container to systems.

1 class SystemNode (Agent) :

2 ”””Shaded boxes on SV−1 or SV−2”””

3 def i n i t (s e l f , name , model , i n t e r f a c e i d e n t i f i e r) :

4 super () . i n i t (model . c r e a t e a g e n t (s e l f) , model)

5 s e l f . name = name # system node names must be unique

6 model . add system node (s e l f)

7 s e l f . i n t e r f a c e i d e n t i f i e r = i n t e r f a c e i d e n t i f i e r

8 def add system (s e l f , system) :

356

9 setattr (s e l f , system . name , system)

10 def s tep (s e l f) :

11 pass

Listing 8.2: Definition of a system node

As mentioned above, weather information generated at the weather facility is used

as a case study. In each simulation step, the systems with some received information

check whether the information is new to them. If the information is old news, they

discard it. If the information is new, they add it to their knowledge, process it, and

send it to other systems that they are connected with. In the next simulation step,

those systems perform the same actions with the information they receive. Therefore,

the systems have a more defined simulation step function as can be seen in Code 8.3.

The code listing shows only the simulation step actions not the definition of the entire

agent for brevity.

1 def r e c e i v e d a t a (s e l f , data) :

2 l o g s t r i n g = [” ” . j o i n ([s e l f . name , ” r e c e i v e d data from” ,

3 data . sending system node . name ,

4 data . sending system . name]) + ” . ”]

5 i f data not in s e l f . knowledge :

6 l o g s t r i n g . append (” I t was new i n f o and added to the knowledge . ”)

7 s e l f . knowledge . append (data)

8 s e l f . p ro c e s s da ta (data)

9 else :

10 l o g s t r i n g . append (” I t was o ld i n f o and was d i s ca rded . ”)

11 s e l f . model . l og . append (” ” . j o i n (l o g s t r i n g))

12 def proce s s da ta (s e l f , data) :

13 s e l f . model . l og . append (” ” . j o i n ([s e l f . name , ” proce s s ed the data ”]) + ” . ”)

14 #do something with the data (ou t s i d e o f the scope f o r the experiment)

15 s e l f . send data (data)

16 def send data (s e l f , data) :

17 data . sending system node = s e l f . system node

18 data . sending system = s e l f

19 for key , i n t e r f a c e in s e l f . o u t p u t i n t e r f a c e s . i tems () :

20 names = key . s p l i t (”−”)

21 r e c e i v ing sy s t em node = s e l f . model . system nodes [names [0]]

22 r e c e i v i n g s y s t e m = getattr (r e ce iv ing sys t em node , names [1])

357

23 data . r e c e i v ing sy s t em node = rece i v ing sy s t em node

24 data . r e c e i v i n g s y s t e m = r e c e i v i n g s y s t e m

25 r e c e i v i n g s y s t e m . incoming data . append (data)

26 s e l f . model . l og . append (” ” . j o i n ([s e l f . name , ” sent the data to ” ,

27 r e c e i v ing sy s t em node . name ,

28 r e c e i v i n g s y s t e m . name]) + ” . ”)

29 def s tep (s e l f) :

30 for data in s e l f . incoming data :

31 s e l f . r e c e i v e d a t a (data)

Listing 8.3: Definition of a system’s simulation step

The receive data function (lines 1–11) simply takes the data that is sent to

the system by other connected systems. The information for the connections mainly

comes from the SV-2. Some missing connections and multiplicities are deconflicted

using the SV-1 and sometimes the SV-6. The data carried on the connections are

defined by the SV-6 alone. The checks for whether the information is known already

are the choice of the modeler’s and are not defined by the architecture. An SV-10a

would be the view of choice to define such logic.

The process data function (lines 12–15) is mostly empty. This is due to the

architecture not providing details on what the systems actually do. System functions

are listed in the SV-5b; however, the view was not considered to be very useful

by Table 128. The reason for this is that it only provides names of the system

functions and leaves out the details about what the functions really are. If the OV-5b

were included in building the model, the agents would have a large number of empty

functions in their code. Therefore, it was left out. Without a large number of SV-10as

to define what the functions are, their names themselves are not useful.

The send data function (lines 16–28) holds most of the behavior of the agents.

Each new data received is routed to all the other systems that are connected to the

system (the direction of the connection matters as well). These connections were

gathered mainly from the SV-2 with a few additions and fixed by using the SV-1 and

358

the SV-6. It is entirely possible that the system sends the information back to the

system that sent it in the first place. This is not a problem because that system will

realize that the information is not new and will discard it accordingly.

The SV-1 Interfaces and Nodes, SV-2 Ports and Flowlines, and SV-6 Resources

describe only interaction rules in this architecture. The roles that the systems play

are left entirely undefined. Their internal processes are also not described in any

detail. An expert in the systems making up the system of systems can easily figure

out the missing logic needed to complete the model however. The FAA mid-term

architecture’s SV-1, 2, and 6 are also based entirely on communications. It is possible

to include sensor data so that the environment can “communicate” with the agents.

In conclusion, while it is possible to remove the environment-agent interaction de-

ficiency from this specific example, it seems very unlikely that the internal processes of

the agents be included in the SV-1, 2, and 6 combo. Unless the agents are extremely

basic automatons, this combination appears to be unable to cater for agent-based

modeling. The entries for rules for SV-1, 2, and 6 are modified in the final table to

reflect that fact. The modified table remains to be a valid tool to test the research

argument however. The failure discussed in this section does not imply the failure of

the research argument. The final tables can be found in Appendix A.

8.3.2.2 Building a Petri net model (Type C experiment)

The second experiment will be of Type C, out of necessity. Table 196 does not predict

any impossible modeling types; therefore, no Type A experiment can be performed.

In this experiment, a Petri net model is attempted. It is predicted by Table 89 that

an SV-2 is a perfect fit for a Petri net communications model. Petri net models

describe the transformation of things between their possible states such as a carbon

cycle as atoms of carbon are bound to various other atoms forming different molecules

in different places on Earth (hydrocarbons, to carbon dioxide, to carbon, etc.). The

359

main focus of this Petri net model is the transformation of information as it travels

through the communications network described by the SV-2.

Studying the same weather SV-2 model as the previous agent-based model, a

problem was noticed: the view depicts how communications are realized (IP Services,

NAS Enterprise Messaging System, Dedicated Telecommunications Services, ADS-B

network, etc.). However, the actual messages that are transfered are not detailed. The

SV-2 does not have to include the information about the resource being exchanged,

only the methods of exchanges. Näıvely assuming any nodes connected by the same

exchange method exchange any message results in a very unrealistic model. For

example, the weather facility communicates with the NEMC not with other nodes

that are connected to the IP Services resource exchange. Therefore, any weather

information generated in the weather facility must travel through the IP Services,

reach the NEMC, and then be distributed from the NEMC through IP Services or

NAS Enterprise Messaging Service to ATCT, TRACON, ARTCC, etc., and in turn

be relayed to the Aircraft. This is due to the fact that raw weather information may

not be useful to each of these system nodes, as they need the information to be in

a specific format to act on it. An aircraft, for example, is given an alternate route

to navigate around a storm, or an airport to divert to. Using just the SV-2 hides

such nuances and makes it look like the Weather Facility can communicate with the

Aircraft directly so the Aircraft can act accordingly. This is not realistic.

In order to add realism to the model, the SV-6 was used. The model is then

created using the messages that go from one node to another possibly changing their

states. The model starts with every node operating under the assumption of clear

weather. As the weather turns with some probability, the weather facility realizes the

problem with the use of its radar node (if a new more advanced radar is installed,

the transition probability can be tweaked). For demonstration simplicity only the

switches from clear to inclement weather are implemented except for the weather

360

states which can go back and forth. The other tokens are stuck in inclement weather

places in this example. It is of course a trivial task to include further transitions that

can put them back into the clear weather places; however, it makes for a complicated

and confusing diagram to communicate the idea of the model.

The result is shown in Figure 137. It is one of the many alternative ways to

implement a Petri net model for this scenario. The reader can also imagine a sin-

gle “operates under the assumption of clear weather” another single “operates under

the assumption of inclement weather” place but with multiple colored tokens with

transitions checking and only allowing certain colors. Simplifying the places usually

results in complicating the tokens and transitions in Petri net models. Yet another

alternative representation can create “weather information tokens” that are dissem-

inated through the network reaching different nodes and multiplying along the way

(they can then be destroyed by updated information that is disseminated later).

Clear
weather

Wx Facility thinks
weather is clear

NEMC thinks
weather is clear

NextGen Facility thinks
weather is clear

Inclement
weather

Wx Facility thinks
weather is inclement

NEMC thinks
weather is inclement

NextGen Facility thinks
weather is inclement

Aircraft thinks
weather is inclement

Aircraft thinks
weather is clear

Radar IP Svcs NAS EMS ADS-B

Figure 137: FAA Mid Term Petri net model for weather (partial)

All of the solutions mentioned do use the SV-6 on top of the SV-2. It is concluded

that while the hypothesis stands (the architecture’s views are sufficient to create

effective Petri net models), the expectation of the SV-2 being enough alone is not

361

observed. SV-2 is still the basis of the Petri net model created, and cases in which

it can be enough to create a model; however, as this example demonstrates, it is not

guaranteed. The table for the SV-2 to Petri nets is updated with this knowledge

gained from the experiment. The reader can find the final results in Appendix A.

8.3.3 NASEAF Far Term Architecture

The far-term architecture removes OV-5b, SV-5b, and the collection of SysML Block

Definition Diagrams. The decision of removing the OV-5b must be discussed as the

OV-5b has been the most important view for modeling purposes so far. This removal

mainly affects the process models such as system dynamics, Markov chains, and

discrete event models. Also, the OV-5b, SV-2, and SV-6 combination that existed

in the near-term architecture is broken in this version. Nevertheless, the inclusion of

SV-2 and SV-6 at least can help with defining the connectivity between systems in

the models.

The removal of the BDDs also shows that the FAA is not perfectly clear about how

to manage the National Airspace System this far into the future. The way the future

systems communicate with each other is defined by the FAA regardless of how they

may be internally put together. For these reasons, any models that are created from

this architecture will be inferior to the ones created for the near-term architecture in

detail. Given that these models are aiming to describe something that does not exist

in the present, the lack of detail is perfectly reasonable.

Given the products created and the tables in Chapters 6 and 7, the following

observations were derived. Table 198 shows the ordering of viewpoints in utility for

each modeling type.

• Agent-based models cannot be created from a single viewpoint.

• The SV-4 is still the hierarchical type and is again ignored in this analysis.

• SV-2 and SV-6 are elevated to critical viewpoints for modeling.

362

Table 198: Observations from the far-term version of NASEAF

Model Feasible Views ordered by utility
Relevant

Obs.

Graph X
OV-2 = OV-3 = SV-1 = SV-6, OV-1 =

SV-2
2 and 3

Probability X SV-2 = SV-6, OV-1, OV-2 = OV-3 2 and 3
System dyn. X SV-2, SV-6, OV-1 = SV-1 3
Markov chain X OV-1 = SV-2 = SV-6 3

Petri net X SV-2, OV-1 = SV-4, SV-6 2 and 3
Queueing X OV-2, SV-6, OV-1 2 and 3

Disc. event X SV-6, SV-2, OV-1 2 and 3
Agent-based ∼ SV-1 = SV-2, SV-6, OV-1 all

Observations 1 and 2 have been discussed before for as-is and near-term archi-

tectures so these discussions will not be repeated here. Observation 3 means that

processes will be difficult to model for the far-term architecture. While the process

models rely on the SV-2 and SV-6, without the OV-5b, OV-6b,c, SV-10b,c they lack

the main subject of what they are to model. The tables show that these models can

still be possible to build. The tests that follow will yield a more definite answer.

It has been discussed that Type B experiments yield the most information earlier.

However, in this case the only possible Type B experiment is the one with the agent-

based model with SV-1, SV-2, and SV-6. The same combination was investigated in

the near-term architecture and it would be a redundant repetition. Therefore, only

Type C experiments are performed in this section: a probability model and a discrete

event model.

8.3.3.1 Building a probability (Type C experiment)

The approach used here to construct a probability model assumes communications

failure probabilities are known or estimated ahead of time. While simplistic, the

approach is appropriate because the architecture is for a future design of the NAS;

therefore, any probabilistic study would not operate on historical data to figure out

the probabilities. Table 198 suggests the usage of the SV-2 and SV-6 for creating the

363

probability model. The SV-2’s flowlines are assumed to be probabilistic as well as one

of the systems (NAS Boundary Protection). The rest of the graphic is assumed to

have perfect success rate (i.e., probability of one). Table 199 summarizes the assumed

probabilities for various networks depicted on the SV-2.

Table 199: Probabilities used in the model from the FAA Far Term Architecture

Connection Symbol Assumed prob.
External DTS/Network Connection α 0.99

Secure NAS Enterprise IT Infrastructure β 0.999
DTS/Access Network γ 0.99

Between Remote Facility and Aircraft δ 0.95
Between Remote Facility and Satellite ε 0.9
Between Satellite and External Nodes ζ 0.92

NAS Boundary Protection (Node) η 0.9

In addition to the SV-2 information, the rows from the SV-6 were used to obtain

a more realistic modeling of the data communications. The SV-6 includes the data

elements that are shared between systems and using the connections from the SV-2 the

probability of each data element being communicated successfully can be calculated

with a few lookup tables. Figure 138 shows how the information from the two distinct

views are integrated together.

External
Network

Connection

NWS

NWS
Stakeholder

System

EWO (nat'l)

Weather
Info Mgmt
(national)

NAS
Boundary
Protection

Secure
NAS IT

Infrastruct.

send route

accept

route

from SV-2

SI_508_019
SDX_680: Authoritative Weather Data
SDX_681: Weather Products (Graphical)
SDX_682: Weather Advisories

from SV-6

send

Figure 138: How parts of the SV-2 and SV-6 are used to create a probability model

Considering the connection between two systems depicted in the SV-2 and SV-6,

we can calculate the probability of the message getting through by successive multi-

plications of the probabilities. For the example shown in Figure 138, this equation

364

becomes P (S) = P (α)P (α)P (η)P (β)P (β) = 0.88. Based on the same assump-

tions, Table 200 shows the probabilities for some of the other connections given in

the SV-6.

Table 200: Calculated communications probabilities in the FAA Far Term model.
Disclaimer: the numbers are based on assumed probabilities.

System Interface Identifier Data Element Identifier Prob.
SI 001 004 SDX 001 99.80%
SI 003 004 SDX 128 99.80%
SI 004 507 SDX 231 88.03%

SI 005A 504 SDX 251 88.03%
SI 005B 505 SDX 269 88.03%
SI 008 016 SDX 322 99.80%
SI 009 004 SDX 338 99.80%
SI 011 007 SDX 418 99.80%
SI 017 003 SDX 490 99.80%
SI 302 003 SDX 611 92.92%
SI 511 019 SDX 691 88.03%

8.3.3.2 Building an discrete event model (Type C experiment)

Based on Table 198, the SV-6 was the first architecture model that was used. It

provides many of the required bits of information such as the events as well as the

servers that are required for the events to execute; however, it lacks the information

on the order of events, i.e., which events lead to which events. It also lacks details

on what happens when events fail. Figure 139 shows how the information from the

SV-6 flows into the discrete event model’s input file. The reader can see that most

of the basic structure of a model is included in the SV-6. The meaning of the arrows

are explained below.

Arrow 1 The data element identifier is conveniently used as a unique name for events

Arrows 2 and 3 The events appear inside the process sequence

Arrows 4, 5, 6, and 7 The systems responsible for creating and sending the data

are used as servers

365

Arrows 8 and 9 Recipient systems are checked for what events they perform in

turn. These events become the subsequent events.

1
2 3 4 5 6 7 8 9

Figure 139: Translating the FAA Far Term SV-6 to a discrete event model

While the majority of the basic structure is there, the details on where the whole

process starts and ends or which events actually cause which events are not included

in the SV-6. With the above method, once a data element reaches a node, it sends

out all possible data elements it can. This may be not realistic for some problems.

For problems that need a better sequencing, an SV-10c or OV-6c may be required.

Nevertheless, the model can be built and can be executed practically. Figure 140

shows a selected output.

The Far Term architecture also includes an SV-2 that includes information on

the middle steps for the communication links between two systems. These routing

and switching between networks can also be modeled as events with different servers.

However the events from the communications will be happening at a much higher rate

than the others and it may make more sense to create an entirely separate discrete

event model from the information obtained from the SV-2. In any case, it appears

to be entirely plausible. In fact, Table 198 suggests the SV-2 as the next best view

after the SV-6.

366

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

Time

B
u
sy

Nat'l Weather Service
 –Weather Vendor Stakeholder Sys

Enterprise Wide Ops
 –Weather Info Mgmt (Nat'l)

Figure 140: Translating the FAA Far Term SV-6 to a discrete event model

8.4 Discussion on the Research Arguments

The purpose of this chapter was to test the element maps to use them in support for

the two research arguments. The tests were done through the architecture elements

to modeling element maps constructed in Chapters 6 and 7. The element maps allow

for the testing of multiple arguments in a merged fashion. If the maps are valid,

Argument 1 holds: architectures are conceptual models in the context of simulation

modeling. Additionally, the maps can be used to find all alternative simulation models

for a given system of systems. This is then used to test Argument 2. This discussion

continues in the next chapter.

The maps hold well against the tests performed in this chapter, which allows for

the use of the maps for the support of the arguments. Apart from a single hiccup,

the tables appear to work as intended. These tables that are scattered throughout

Chapters 6 and 7 are combined into four larger tables and given in Appendix A. In

the next chapter, the maps will be used to argue for both of the research arguments.

367

CHAPTER IX

CONCLUSIONS AND THE SOLSTYSS METHODOLOGY

In Chapters 6–8 the architecture and modeling element maps were created and tested.

Having justified the element maps, it is put to use to support the research arguments

presented in Chapter 3. Additionally, the map will be used to identify best modeling

fit for each viewpoint and vice versa. A few examples for combinations will also be

provided. Finally, the methodology of using this map will be presented so that the

work can be useful in future technical work.

The tables developed in Chapters 6 and 7 are compiled into a set of tables where

studying each modeling type’s ability to represent an architectural element is signifi-

cantly more convenient. These tables are one of the major contributions of this work

and can be used for future system of systems design and analysis problems outside of

this work. The compiled tables are quite large and are presented in Appendix A.

9.1 Support for the first research argument

As can be seen from the element maps in Tables 204–207 the architecture views,

when broken down into elemental parts, can be translated into modeling elements.

When these modeling elements are compiled into a computer code, the model becomes

executable. In all of the examples discussed in previous chapters, architectures could

be turned into executable models. Figure 141 shows this process of translating an

architecture to executable models.

The argument (architectures can be translated into conceptual models) is then

supported through the process outlined in Figure 141. Architectures are a collection

of architecture viewpoints that are made out of architecture elements that can be

translated into modeling elements that make up a conceptual model. The conceptual

368

Executable
Model

Architecture

Viewpoint

Conceptual
Model

Architecture
Element

Architecture
Element

Architecture
Element

Modeling
Element

Modeling
Element

Modeling
Element

Viewpoint

Conceptual
Model

d
ec
om
p
os
it
io
n

decomposition translation integration

im
p
lem
en
tation

Figure 141: How architectures become models

model can be implemented in a code that can be executed on a computer. This process

showcases how architectures are equivalent to conceptual models for the purposes of

computer modeling. If a modeler has an architecture instead of a conceptual model,

a computer model of the system of systems can still be built.

While architectures are shown to be convertible to conceptual models, there is

no guarantee that any architecture can be translated into any conceptual model or

executable computer simulation. For example, in Section 8.2.1.1 the agent-based

modeling had failed. Not every system of systems architecture can be expected to

have enough structure to support all possible kinds of modeling. Architectures may be

missing details, may not be consistent, or may not be complete descriptions of what a

system of systems is composed of or how it operates. In fact, if an architecture cannot

be turned into a desired executable model, it is a possibility that the architecture is

not a complete description of the system of systems and must be expanded.

Additionally, an architecture complete enough to create a type of model must

not be expected to be necessarily complete enough to create another type. This

is especially apparent when comparing one conceptual model for a computer model

to another conceptual model for another computer model. For example, a Markov

chain transition matrix must not be eliminated as a conceptual model just because

it cannot be used to make discrete event models. We cannot apply such a rule on

369

architectures either. Therefore, the fact that not all system of systems architectures

can be translated into every modeling type does disprove the research argument that

system of systems architectures are conceptual models. As long as architectures

can be translated into one conceptual model, the argument holds. Every element of

every modeling type investigated before was obtainable from one or more architecture

elements.

It is also important to note that just like conceptual models, architectures are not

by themselves executable. Execution ability requires a very specific implementation

of the model in a scripting or programming language. While the selection of language

is not the most important decision in the process of creating the executable model, it

is a necessary step. Therefore, an architecture’s computer model may look completely

different based on mechanical decisions made by the computer programmer. There

is no one-to-one map, whereas for a specific conceptual model and the architecture it

comes from, there is a strictly one-to-one map. Once the modeling type and context

are set, the conceptual model is unique, while the computer model is not.

In conclusion, the first research argument is supported through the element maps

reading from rows to columns. The first(decomposition), second(decomposition), and

fourth(integration) steps depicted in Figure 141 are trivial given Tables 1–3 and the

fifth step is not critical for arguing for possibility, it is only a practical necessity and

implementation decision. However, the third step was not obvious at the start of this

work. The element map constructed in Chapters 6 and 7 and subsequently tested in

Chapter 8 provides a template to achieve the translation necessary for a given system

of systems problem. With the existence of this map, research argument is deemed to

be valid.

370

9.2 Support for the second research argument

The second research argument can also be supported by the element map table. Here

the investigation is on the claim that multiple modeling types are required to model

practical systems of systems, i.e., there is no single modeling type that can cover all

aspects of system of systems. To test this, the examples in Chapter 8 are investigated

first.

The RWDC example is studied first. Jones Wyatt developed three views for

it: SV-1, SV-6, and SV-7. These three views combined provided her with enough

information to build probability models to study the effects of the interoperability

between systems. However, none of these views depicts the operations done by each

of the systems. The viewpoints developed are entirely structural and limited to data

communications.

While her model as well as the models tried in Sections 8.2.1.1, 8.2.1.2, and 8.2.1.3

were aimed at simulating the system of systems in a single model, it can be easily

seen that the description of the system of systems is not complete. In fact, UAVs

flying around and searching for lost hikers—the original description of the system of

systems’ operation—would almost certainly benefit from system behavior descriptions

such as what the UAVs do when they get too close to each other or when manned

aircraft are introduced into the airspace, e.g., rescue helicopters. Appropriately, such a

model would be inadequate in measuring the metrics that Jones Wyatt was interested

in. This example does not appear to be the counterexample this hypothesis testing

required. The research argument stands.

The second example is the FAA NASEAF’s as-is version. This architecture relies

only on operational viewpoints: OV-1, 2, 5b, and 6c. A similar problem to the pre-

vious problem surfaces here. These viewpoints do not describe the system of systems

fully. Without full descriptions of the systems and their behaviors, it is difficult to

assess the performance of this system of systems completely. Section 8.3.1.1 describes

371

how two modeling types can be used together to cross-check results. Additionally, the

OV-5b used in the modeling activity does not depict the overall network structure

and this structure is not studied in the discrete event model. The resource network

is given in OV-2. This example is not the counterexample needed to invalidate the

hypothesis either. The argument stands.

The third example is the FAA NASEAF’s near-term version. This architecture

is one of the most complete architectures studied here. The most complete model

that was built was the agent-based model. This model used a significant amount of

information from multiple views, as detailed in Table 197. It can be readily observed

that operational requirements in data are not studied with this model. The agent-

based formulation that is based on systems does not provide a good understanding

of needs of each operational nodes. To study such a network of needs, a graph or

system dynamics model would be more appropriate.

Additionally, there was not enough detail to describe systems in the model so that

their behavior would match the real systems. Rules were mostly missing, how to deal

with each data piece was also missing. All-in-all the agent-based formulation was a

good attempt at modeling this system of systems even though it did not provide the

necessary metrics to study all aspects of this system of systems. The hypothesis still

stands.

The same trend repeats in the far-term version. Discrete event is a mixed success.

The structure appears to be there; however, the rules of what to do with each data

item were missing. Additionally, an alternative network for these data connections

would have been difficult to investigate with the discrete event model. The probability

model that was constructed from other views included in the architecture deals with

such a study in a much easier, more succinct, and more dependable way. It can also

perform similar studies on alternative networks quickly. The hypothesis therefore still

stands.

372

Another approach to falsify the hypothesis is taken in the construction of Ta-

ble 201. Using the element maps and reading from columns to rows, each model’s

inability to model various architecture elements are identified. If a row under a spe-

cific modeling type has entirely No marks, that element cannot be modeled well using

this specific modeling type. As expected and observed in the table, no modeling type

has full coverage when it comes to modeling all aspects of systems of systems.

Table 201: Missing system of systems aspects in each modeling type

Model What is missing?

Graph
Rules that apply to operations and systems (e.g.,
OV-6a), timeline information related to operations and
system functions (e.g., OV-6b,c and SV-6a,c)

Probability

A large number of system of systems aspects cannot be
modeled using probability models. Examples include
organizational structures, timelines, rules, and
taxonomies.

System
dynamics

Taxonomy, rule based activities, timeline-based discrete
transfers, function and activity allocations, and future
planning

Markov chain
Taxonomy, rule-based activities, time-based activities,
implementations of resource transfers, function and
activity allocations, and forecasts

Petri net
Organization, taxonomy, interaction-based operations
and functions, allocations, and forecasts

Queueing
Operational resource flow, organizational structure,
taxonomy, rule-based activities, allocations, system
rules, and condition-based activities

Discrete event
Organizational structure, taxonomy, operational rules,
some allocations, and planning forecasts

Agent-based
Operational needs, taxonomy, operational rules, and
technology forecasts

In light of the support given above, the second research argument is deemed to be

valid. It is recommended that system of systems engineers, designers, and operators

build multiple types of models to:

• increase the coverage of system of systems aspects that are being modeled,

• cross-validate models against each other as different types necessitate different

373

ways of thinking about the problem, and

• some metrics are easier to measure using different modeling types which reduces

time to model.

9.3 Best modeling types for each viewpoint

Using the element maps, a best modeling type for each viewpoint map can be con-

structed. To do this, architecture elements associated with a single viewpoint are

isolated and checked against all possible modeling elements. If each architecture ele-

ment maps to a unique modeling element and all modeling elements are obtainable, it

indicates that this viewpoint is very appropriate to create models of this type. If such

a map does not exist, then the most complete map is sought, i.e., all modeling ele-

ments are covered but the map is not one-to-one. Table 202 shows the results of this

investigation. Additionally, the reader can investigate tables created in Chapters 6

and 7.

Some notable patterns emerge from the Table 202. Graph models appear to be

the best modeling types for the earlier, less strict, less detailed viewpoints. The result

is not unexpected, graph models can be built with very small amounts of information

and can provide rudimentary analysis capabilities easily. More detailed and technical

viewpoints appear to favor process-based modeling types such as Petri net and discrete

event models. System dynamics models appear to be a convenient middle-ground for

a transition between lower-fidelity models to the higher-fidelity models. The ability

to model processes at the highest level gives system dynamics a significant advantage

over other models for this role. The author recommends system dynamics models for

the development of virtually all systems of systems.

Studying Table 202 also uncovers that probability models, Markov chains, and

agent-based models are never the best modeling types for any of the viewpoints.

There are several reasons for this observation. Probability models suffers from the

374

Table 202: Best modeling types for each architecture viewpoint

View Graph Prob SD MC PN QT DES ABM

OV-1 X
OV-2 X
OV-3 X
OV-4 X

OV-5a
OV-5b X
OV-6a ∼
OV-6b X X X
OV-6c X

SV-1 X
SV-2 X X
SV-3 X
SV-4 X

SV-5a ∼
SV-5b ∼
SV-6 X
SV-7
SV-8
SV-9

SV-10a ∼
SV-10b X
SV-10c X X

fact that graph models are very similar to them but more general. In some cases

probability models will be more appropriate to use rather than graph models; however,

this is difficult to predict ahead of time just by knowing a specific viewpoint exists

in the architecture. If the viewpoint describes a stochastic process, then probability

models would be more appropriate, but if the process is very mechanical and fairly

deterministic, they would have significantly less utility. It is impossible to know ahead

of time. Therefore, graph models are deemed to be a safer and more generally useful

option when modeling with these earlier viewpoints.

Markov chains suffer from the fact that they are very appropriate for modeling the

state of a single system can be in. The number of states grow combinatorially and is in

most cases impractical. There are possibilities in translating viewpoints into Markov

375

chains using other views for scoping states but that is not the topic investigated here.

This discussion is based on a single viewpoint. Appropriately, agent-based modeling

suffers from the lack of a single view that can explain each system’s behaviors and

interactions with the rest of the systems as well as the environment. For both of these

modeling types the impossibility is due to one viewpoint not being enough while the

details of the problem being entirely different.

9.4 Best viewpoint to develop for each modeling type

Similar to the previous section the element maps are used to find the best viewpoint to

develop for each modeling type. This analysis requires the reading of the map starting

from columns and going towards rows. Naturally, some of the models identified

to be best alternative for modeling for each viewpoint have a return relationship:

the viewpoint is the best viewpoint to develop for this modeling type. In order to

construct this table, a group of columns associated with a modeling type are mapped

to the group of columns for each viewpoint.

If there are one-to-one relationships, the viewpoint is taken as the best viewpoint

for that modeling type. There may be more than one such viewpoint. Alternatively,

if there is no such one-to-one map, then a complete coverage is sought: all modeling

elements are catered for. If no such map exists either, the most complete map wins.

The results are given in Table 203. The reader can also investigate the tables in

Chapters 6 and 7 for further details.

As expected, many viewpoints provide significant amounts of information for

building graph models. Probability models struggle again because they require the

viewpoints to depict stochastic processes. SV-10b appears to be a good choice for

probability models if it depicts non-deterministic processes. For system dynamics,

process and flow viewpoints appear to win as expected. System view flow models

work better with system dynamics because the flows can be measured and actually

376

Table 203: Best viewpoint for each modeling type

View Graph Prob SD MC PN QT DES ABM

OV-1
OV-2 X
OV-3 X
OV-4 X

OV-5a
OV-5b X
OV-6a
OV-6b X ∼ X X
OV-6c

SV-1
SV-2 X ∼ X
SV-3 X X
SV-4 X

SV-5a
SV-5b
SV-6 X X
SV-7
SV-8
SV-9

SV-10a
SV-10b X ∼
SV-10c X X X

physically implemented. Markov chains and Petri nets prefer similar viewpoints as

well although the best viewpoints do not match exactly. Queueing and discrete event

models prefer process as well as timeline viewpoints because queueing and discrete

event models rely on timing information greatly. Finally, agent-based does not have

a view that can provide all the information necessary; however, the SV-10c appears

to have the most complete information among all other viewpoints.

Table 203 has a few interesting patterns worthwhile of discussion. One such pat-

tern is the use of SV-10c for the very detailed modeling methods such as discrete event

and agent-based. It is apparent that the SV-10c is the main view for higher fidelity

modeling and must be developed if such models are required during the system of

systems design. SV-10c provides the much needed information on timing, interaction

377

si

m
u
la

ti
on

 r
es

ul
ts

 a

re
 ch

eck
ed against

Agent-based
Model

Architecture
Viewpoint

Discrete
Event Model

 simulation results are checked again
st

us

ef
ul

 in
 c

re
at

ion
 of

 useful in creation of

simulation results cross-checked

va
lid
at
io
n validation

cross-validation

Figure 142: Architecture views that are instrumental in creation of multiple modeling

between systems, internal processes of systems.

The SV-3 and SV-6 fit well together from the point of modeling. Models that can

benefit from SV-3 heavily, can do the same from the SV-6. A similar pattern emerges

between the OV-10b and SV-2; however, these viewpoints have no similarities as

architectural descriptions. OV-10b depicts how operations transition from one state

to another while the SV-2 details the way resources are shared between systems.

Putting them together can enhance the fidelity of flow and transition models by

mapping which resource flow is needed at which state of the operation.

Finally, the utility overlap of one viewpoint with two or more modeling types

hits towards cross-validation and hybrid-modeling opportunities. For example, the

development of an SV-10c helps with building discrete event as well as agent-based

models and enables the cross-validation between them. Regardless of the model’s

logic and mechanics, both models must agree with the SV-10c’s timeline depiction.

Once both models agree with the SV-10c, i.e., they are validated with the view, other

outputs of the models that are not described in the SV-10c can be cross-validated

with each other and fixed until they converge. Figure 142 depicts this process.

Another pattern emerges from Table 203: some views, while useful for modeling,

378

are never the best views for creating models. OV-1, OV-6c, and SV-1 are all useful

in modeling systems of systems but they never appear as the best view to produce

for modeling systems of systems in any type of modeling. It is recommended that

these views are generated as secondary views supporting other views in the effort for

modeling.

9.5 Recommended work flow for modeling systems of sys-
tems using their architectures

The main recommendation from this work is to explore opportunities for building

multiple models of various types when analyzing systems of systems. It has been

shown in several studies that singular modeling approaches to system of systems

engineering problems will leave some aspects unmodeled. These studies were all based

on the element maps conveniently summarized in Appendix A. System of systems

engineers are recommended to look into these maps and look for opportunities in

creating alternative models with the given set of architecture views they currently

possess. Roughly the idea is to find alternative models that can be supported by the

existing architecture views.

• the rows in which the existing views are listed are isolated and other rows

removed

• with the remaining rows, each modeling type is investigated individually

• if enough coverage of modeling elements exists within the isolated rows, that

modeling type can be tried

The second recommendation is to always look for cross-validation opportunities.

Using the same element maps, overlaps in modeling element to architecture elements

can be identified and multiple models can be trained against each other until both

converge on the same results in shared metrics. Using such cross-validated modeling

379

approaches the list of metrics analyzed and investigated can be expanded with in-

creased confidence in their correctness. Roughly, the steps to identify cross-validation

opportunities are as follows.

1. identify columns belonging to the planned modeling type

2. identify rows belonging to the architecture views that exist for this system of

systems as well as used for this modeling type

3. look into other columns and identify other modeling types that can be built by

these rows

4. find rows that have Yes entries under a modeling element in these new modeling

types that also have a Yes entry under the original modeling type

5. determine whether that new modeling type can be built by the views that exist

for system of systems in general

The third process is to identify missing information necessary to perform higher-

fidelity modeling. At any point in the system of systems development process with a

given set of architecture views, it may not be possible to create some higher-fidelity

models. Using the element maps, the reader can identify which architecture views are

missing to create the next executable model that can analyze the system of systems in

a more detailed way compared to the previously tried modeling types. The procedure

is outlined below.

1. pick a higher-fidelity modeling type such as discrete event or agent-based, re-

move all other columns

2. highlight architecture views readily available

3. looking in the columns identify modeling elements not covered by the available

architecture views

380

4. identify other architecture views that can add the missing information

5. make a decision on which one to add:

• select the minimum number of new views

• select the views that are easier to develop based on prior knowledge about

the system of systems

• select the views that are also useful in performing other analysis activities

in the system of systems engineering effort

6. develop the view(s) and develop the executable model for analysis

System of systems engineers can benefit from applying these processes using the

element maps on their problems. In order to systematize these processes and include

other modeling decisions that can be made outside of the context of this work a

methodology named Selection Of Logical Simulation Types for Systems of Systems

(SOLSTySS) is presented here. The methodology has two main elements: a flowchart

and the element maps it heavily uses. The flowcharts are constructed to describe the

process of making model type selection decisions and are given in Figures 144–148.

The chart references the element maps (Tables 204–207) as well as the best modeling

type for a given view table (Table 202). Due to the size of the flowchart (Figure 143),

it is broken into 5 main parts. System of systems engineers can start with Part A

(Figure 144) and follow the exit and entry points to the other parts (Figures 145–148).

In the flowcharts, enter and exit nodes are drawn as circles, decision nodes as

diamonds, and actions as rectangles. Some rectangles require the construction of lists

or numbers as a function of architecture views and modeling types in consideration

and will be discussed. When “Develop model” nodes are reached, a model-building

exercise is necessary. Examples of model building exercises were given in Chapter 8.

Usage of element maps are recommended during the model development as well as

during the selection.

381

Part A

Part B

Part C

Part D

Part E

Figure 143: SOLSTySS flowchart has 5 different parts. Part A is the starting point
and is always executed. Other parts are executed if they fit the scenario.

382

The flowcharts are constructed to help specifically with the selection of model

which is the topic of this work. Once the system of systems engineers select a model

and develop it, it does not mean that they must stop. At any point the system of

systems engineer can restart the process to pick alternative models for reasons such

as seeking cross-validation opportunities, or developing higher-fidelity models. Some

scenarios will be discussed next.

There are 4 main different scenarios for developing modeling within the SOLSTySS

methodology. The first one is when there are no previous models built for this system

of systems. This case corresponds to a very early design scenario. In order to get to

this case Figure 144 is used. In the conditional nodes, A1 is selected to be false and

A3 is also selected to be false. This scenario leads to Part B given in Figure 145.

The first rectangle (B1) references a set denoted by the symbol V ?. This is the

set of all existing architecture views for the system of systems. Throughout the

development V will be used as a list of all architecture views and any set modified

with the ? sign will denote the subset of the set with already existing members.

The second rectangle constructs a list denoted by Λ1. This list includes all model-

ing types that are determined to be the best modeling types for to the most detailed

existing view. The determination is based on Table 202 which is denoted as BM . The

set is the set of all models that have a checkmark on the row specific for the most

detailed view in the existing views. Λ1 is defined in Equation 74.

Λ1 = {m ∈M | BM (v,m) = 1} (74)

If the row is empty (B3 is false), then the system of systems engineer can pick the

next most detailed view and continue the process. There is a danger of running out

of views here although it is extremely unlikely. If this problem occurs, models must

be selected by different criteria (A1 is true).

If there are more than one such “best” modeling types (B5 is true), the modeler is

given a freedom to choose using some other criteria. If there is only a single modeling

383

type (B5 is false), then that type is selected. Once a modeling type is selected,

the process moves to Part E which is shared by multiple scenarios and is shown in

Figure 148. The next box is E1.

The process in E1 requires the construction of another list denoted as Λ2. This

list includes all modeling elements specific to the selected modeling type, i.e., columns

of the element maps, that do not get supported by the already existing architecture

views. To construct this list, each column corresponding to a modeling element for

the chosen modeling type is checked against all the rows that correspond to existing

views. If there are no “Yes” entries in the column for these rows, then that modeling

element unsupported and is added to the list.

Equation 75 details the operation succinctly. Cm denotes the columns of the

element map specific to the selected model, RV ?
denotes the rows of the element

maps specific to the existing views combined. Finally, #Y is a function that counts

the number of “Yes” entries in a given list of things.

Λ2 =
{
c ∈ Cm | #Y

[
E
(
RV ?

, c
)]

= 0
}

(75)

If all modeling elements are supported, i.e., Λ2 = ∅, then E2 is true and the next

step is to develop this selected model and the model selection process is terminated. If

however, Λ2 is not empty, then new architecture views must be developed to support

model-building. The rectangle E3 requires the calculation of a number for each view

that does not exist in the architecture.

For each view the number of “Yes” entries in the element map for each modeling

element lacking support is counted. If the count is larger than 0, this view’s support

for that modeling element is adequate. Then the adequacy is summed across all

modeling elements needing support. Equation 76 shows the calculation. This number,

Sv, provides the utility of the architecture view in filling the gap for the modeling

that was selected. The view with a maximum Sv is then selected to be developed

and the process returns to E1 for the determination of whether the modeling type

384

selected can be supported now.

Sv =
∑
m∈Λ2

∑
i∈Rv

{#Y [E (i, Cm)] > 0} (76)

These steps conclude this scenario. The next scenario to be investigated is when

a model already exists but a cross-validation model is needed to improve confidence

in the existing model. In this scenario, starting in Part A (Figure 144), A1 is false,

A3 is true, and A4 is also true. These conditions lead to Part D given in Figure 147.

The first step is a trivial definition step. The model that needs to be cross-

validated is defined as mc. From this a list named Λ3 is constructed. This list

contains all the alternative models that can be constructed from the same views used

to construct mc and is defined in Equation 77. The mechanics of this selection find

rows in the element maps (architecture elements) that map to columns (modeling

elements) corresponding to both models.

Λ3 =
{
m ∈ (M \mc) | #Y

[
E
(
RVmc

, i
)
> 0
]
∀i ∈ Cm

}
(77)

Next a number named Sm for each of the models in Λ3 is calculated using Equa-

tion 78. This number measures the number of rows where hits to columns under both

models are found. The idea is to find as much overlap as possible; however, maximiza-

tion is not necessary. A model with a large Sm should be selected for cross-validation

exercises and developed.

Sv =
∑

r∈Rvmc

{[#Y (E (r, Cmc)) > 0] ∧ [#Y (E (r, Cm)) > 0]} , where m ∈ Λ3 (78)

The final scenario to be investigated is when a model already exists but other

models are desired to simulate other aspects of the system of systems or simply an

alternative formulation is desired. In this scenario, starting in Part A (Figure 144), A1

is false, A3 is true, and A4 is false. This scenario leads to Part C given in Figure 146.

The first step is to construct a list of alternative models that can be constructed

from the existing architecture views. This list is defined as Λ4 and is given in Equa-

tion 79. The list is compiled from a subset of modeling types that have not been

385

made. The columns of the element map that correspond to each such model are

checked against the rows of the element maps that correspond to existing architec-

ture views. If there is at least a single “Yes” entry for every column associated with

a model, that model remains in the list.

Λ4 =
{
m ∈ (M \m?) | #Y

[
E
(
RV ?

, i
)
> 0
]
∀i ∈ Cm

}
(79)

There are 3 possible outcomes of this analysis: there are no possible alternative

model types, there is exactly one possible alternative model type, and there are more

than one possible alternative modeling type. If the answer is one, then that model

is simply developed. If the answer is more than one, then other external criteria

are used to select one among them and that model is developed. Finally, if there

are no possible alternative model types, the process moves to E3 where one or more

architecture views are identified to be developed before modeling can proceed.

These three scenarios conclude the main cases to select modeling types based on

architectures. However, it must be noted that there are other reasons to develop

one modeling type over others. One such reason is the types of metrics a model

can calculate during simulation. As discussed in the early stages of the document,

selecting model types based on metrics is necessitated by the desire to make decisions

supported by such metrics.

While not the main focus or contribution of this work, this case is semi-supported.

Starting with the Table 201 and including other considerations not covered by this

work, a model may be selected for development. While this selection is not based

entirely on the architectures, the SOLSTySS methodology can support a part of the

process in Figures 144 and 148.

Starting with Part A, the first condition (A1) becomes true, and based on external

criteria in A2 a specific modeling type is selected. The SOLSTySS methodology

then helps with the determination of whether there are enough architecture views to

support this type of modeling which is the main focus of Part E. If enough architecture

386

definition is available, the model can be simply developed. If there is not enough

definition, then views that are most useful are identified in Part E and developed

accordingly until the architecture definition is enough for the specific model type

building to proceed.

Apart from the case discussed above, the first model may have been selected with-

out considering architecture view coverage. Adding to this model, a cross-validation

model can still be selected using architectures and following the Part A to Part D.

This demonstrates that even if architectures are not to be used in the initial model

selection process, the SOLSTySSmethodology presented still has a reduced but sig-

nificant utility to the system of systems engineer.

Part A

Start
Ext. req.

to develop
a specific

model

Models
exist?

Is the
goal cross-
validation?

Yes

No

Yes

No

Yes

To E1

To D1

To B1

No

To C1

Pick a model

other criteria
in M based on

A1
A2

A3 A4

Figure 144: Starting point for the methodology. Scenarios are selected here.

The flowchart’s purpose was to find which modeling elements to focus on but not

do the modeling translation. Once a develop model node is reached, the next step is

this translation of architecture elements to the modeling elements. The translation

387

Part B

From A3

|Λ1|>0
Yes

No

Yes

To E1

No

Pick the most

in V⋆
detailed view

B1

B3 B5

Construct: Λ1

B2

Pick the next

view in V⋆
most detailed

B4

B6

To E1

|Λ1|>1
Pick a model

other criteria
in Λ1 based on

Figure 145: If no previous models exist, this part of the methodology is used.

is still a largely manual task. The element maps given in the Appendix A help with

this actual translation step as shown in Figure 141. The reader is referred to the

examples provided in Chapter 8 for the implementation of the translation for their

problems. The element maps provide a convenient starting point of how information

from the system of systems architecture is transfered to the conceptual model of the

computer model. For specific language implementations, the conceptual models can

be translated into code using discipline-specific processes. That final step should be

straightforward for a practitioner.

A note about the evolving nature of systems of systems is necessary here. Most

systems of systems change as new systems are introduced to the mix. When new

systems are introduced as extra viewpoints but as existing types, there will be no

388

Part C

From A4

|Λ4|>0
Yes

No

Yes

No

C1

C2 C3

C5

C4

To E3

|Λ4|>1
Pick a model

other criteria
in Λ4based on

Pick a model

other criteria
in Λ4 based on

Develop
model

Develop
model

Construct: Λ4

Figure 146: If some alternative models are sought with no particular requirements,
this part of the methodology is used.

need to adjust the modeling type. Naturally, the new systems must be coded into

the old models to see the effects of the new systems; however, the modeling type will

not need changing. It is a similar problem with an extra system.

If a system or service’s introduction causes new viewpoints types to be developed,

then there is no guarantee that existing models will be adequate. In such scenarios,

the methodology’s Part C must be exercised with an extra attention to this new view

by requiring it to be part of the solution.

389

Part D

From A4

D1

D3

Pick m such

large or max
that Sm is

Model to

validated: mc

be cross-

Develop
model

D2

Construct: Λ3
For each

calculate: Sm
m∈M\mc

D4

Figure 147: If a cross-validation model is desired for one of the existing models, this
part of the methodology is used.

9.6 Future work

During the course of this work, several ideas for future work were generated without

being aligned tightly with the goal of selecting modeling methods from system of sys-

tems architectures. This section is a compilation of such ideas that did not fit within

the scope but will be investigated in the future as opportunities present themselves.

The first idea was to select models based on the metrics required to make certain

decisions. As discussed in the early chapters, the metric-based selection is a perfectly

reasonable approach to selecting simulation models. For example, in Section 4.3.2 one

definition of a model was given by Minsky. In that definition, the questions a model

needs to answer can include very specific metrics and numbers and other quantitative

measurements. The goal and approach are slightly different to what has been detailed

in this work which focuses on the replication of system behavior as described in the

architectures. If the modeling approach is metric-based, then the work requires a

pre-determined decision making problem. Based on that problem, required metrics

can be determined, and finally models that can compute such metrics created. This

390

Part E

From
A2, B5,
or B6

Yes

No

E1
E2

Construct: Λ2 Λ2=Ø Develop
model

E3
For each

calculate: Sv
v∈V\V⋆

Pick v such

max
that Sv is

E4

E5

Develop: v

From C5

Figure 148: In some cases, especially if views are not enough to do a specific kind of
modeling, this supplementary part of the methodology is used.

study would aim to help decision makers to get to the numbers to make decisions

which is highly valuable while categorically different from the aim of this work.

Table 201 is a good starting point for studying metrics and their influence on

model selection. However, as mentioned in Section 3.4, enumerating all aspects of

systems of systems is not practical. In this work, architectures were used as a proxy,

and in future works similar proxies will be needed. Perhaps common design studies

can be grouped by their characteristics and those design study groups can be the

proxies for the metrics to be calculated. To perform such a research work, previous

examples must be accessible and available for study, which can be difficult as many

system of systems studies involving DoDAF have a military context.

A second idea is to take a similar approach to the cross-validation but apply it

in a reverse fashion. Instead of finding maximal overlap in modeling elements and

391

architecture elements, the goal can be set to minimal overlap and create hybrid-

simulations, where two types of models are working together in a single simulation.

Hybrid-simulations enable studying phenomena at varying scales bringing detail to

high-level models and speed to high-detail models. Alternatively, hybrid models can

model discrete and continuous phenomena in a consistent simulation. Either way,

the lack of overlap of architecture elements used for one type of model compared

to another type of model could be useful in identifying the opportunities for hybrid

modeling. Difficulties may arise from the fact that in many cases the architecture

views do not distinguish such discrete versus continuous phenomena in explicit ways.

Therefore an architecture view can be useful for both continuous or discrete time

modeling. This idea require refinement and further investigation.

Another idea is the expansion of DoDAF with views that are not standard.

DoDAF already has a mechanism to include non-standard views under the category:

fit for purpose. These fit for purpose views were ignored for the selection of modeling

types because one program’s fit for purpose views are different from another pro-

gram’s and therefore they cannot be used in a general method for selecting models.

However, some fit for purpose views can be standardized by preserving generality.

For example, most systems of systems operate in a geographically diverse regions

and can have pieces spread over large areas. A geographical map that shows the

distribution of systems can help modeling and determining context greatly. Some

architectures include OV-1s that serve this purpose; however, maps have many op-

portunities to be standardized and annotated with legends, projections, and colors.

Using geographic information systems frameworks interactive and digital maps can

be generated for systems of systems with various system and operational area infor-

mations layered on top of the maps. Dynamic simulations can be saved on top of such

maps so that decision makers can “play back scenarios” and observe the effectiveness

of designs.

392

A related thought about the usage of architecture views not as simple inputs to

modeling selection and building but also as outputs of the models or as the visualiza-

tions of the outputs. One such example was developed and given in Section 8.3.1.2

in Figures 133 and 134. There is an exciting opportunity with this approach: the

creation of more detailed views such as an OV-6c or SV-10c from less detailed views

through modeling. The architects can focus on the higher level definitions and include

only such low detail views in their work, and modelers can take that information and

create higher-detail scenarios, event histories, etc. for architects to validate. In a

way, computer modeling becomes a part of the architecting work and both phases are

performed in a more tightly coupled iterative manner. This will most likely increase

the quality of both architecture as well as the modeling products.

Once models are created, the architects can look at their outputs in a familiar

format and validate computer models by inspecting them in a convenient way. These

inspections can be performed within the modeling team as well for debugging pur-

poses. Finally, the architects can keep some of the high-detail views from the modeling

team and use them for a test for the modeling quality. Because the modeling team

did not have access to the views, the similitude of their models to the architected sys-

tem of systems can be tested fairly. Once the models are verified and validated, they

can be used to create more architecture views (observations) and decision makers can

confidently base their decisions on their outcomes.

Each of these future research ideas will be pursued as opportunities present them-

selves. Some were briefly introduced and examples generated but none were developed

to the level of detail necessary in this work because they did not align perfectly well

with the goals of the study.

393

9.7 Final conclusions

In conclusion, architectures are shown to be one step away from being turned into

conceptual models and this step is simplified via the element maps. It is also shown

that no single model can model a practical system of systems alone. To support these

claims the element maps were created. While the research arguments gave form and

rigor to the work, this work’s main contribution is the creation of the element maps

and discussion of their uses. Using the element maps, engineers can simplify their

architecture to model translation efforts.

The main goal of the work as discussed in Section 3.2 was to help the modeler

make decisions on the modeling type to pursue based on existing architecture views.

This goal was achieved via the recommended workflow given in Section 9.5. Once

a modeling type is selected, the modeler can then also follow the process shown in

Figure 141 in Section 9.1 to construct a model. In that process, element maps play a

large role. Appendix A includes these element maps that were constructed and tested.

Unfortunately, specific recommendations cannot be given to modelers based on each

possible architecture view combinations and each possible modeling type. Therefore,

a general flow of work steps are given along with a few examples that were discussed

in Chapter 8 to serve as guidance.

394

APPENDIX A

ARCHITECTURE ELEMENTS TO MODEL ELEMENTS

MAPS

The tables here are compiled from the tables developed in Chapters 6 and 7 to be used

in further analyses. It is significantly more convenient to have the tables compiled

together instead of referencing many smaller tables. Using these tables, the reader

can decide which modeling types to use for a given set a architecture views or decide

on which architecture view to develop for specific types of modeling.

395

Table 204: Element maps for Graph, Probability, and System Dynamics models

Arch. element Graph Prob. System dynamics
View Element Vertex Edge Cond. Stock Flow Var.

OV-1
System Y N N Y N M
Action N Y Y N Y N
Facility Y N N Y N M

OV-2
Op. node Y N M M N N
Needline N Y M N M N

OV-3
Activity Y N M M N N

Info N Y M N M N

OV-4
Org. Y N N M N N

Relation N Y N N M M

OV-5a
Activity M N N N N N
Relation N M N N N N

OV-5b
Activity Y N Y Y N N

I/O N Y Y N Y N
Misc. N N M N N Y

OV-6a
Activity N N N N N N
Relation N N N N N N

Rules N M N N N N

OV-6b
State Y N Y Y N N

Activity N N M N N Y
Trans. N Y M N Y N

OV-6c
Activity Y N N N N N
Timeline N N N N N N

Event N Y Y N N N

SV-1
System N N N Y N N
Node Y N N Y N N

Int.face N Y M N Y N

SV-2
System Y N Y Y N N

Port N Y N N N Y
Flowline Y N Y N Y N

SV-3
System Y N Y Y N N

Resource N Y Y N Y M

SV-4
Function Y N Y Y N N
Func.I/O N Y N N Y N

Store M N N Y N N

SV-5a
Function Y N N N N N
Activity Y N N N N N

SV-5b
System Y N N N N N
Activity Y N N N N N

SV-6
System Y N Y Y N M

Resource N Y Y N Y Y

SV-7 Metric N M M N N M

SV-8
M.stone N N N N N N

Time N N N N N N

SV-9
System Y N N N N N
Forecast Y N N N N N

SV-10a Logic N N N N N N

SV-10b
State Y N N M N N

Function N Y Y N M M

SV-10c
System M N N N N N

Function M N N N N N
Interact N M N N M N

396

Table 205: Element maps for Petri Net and Queueing models

Arch. element Petri net Queueing
View Element Place Trans. Arc Arrival Size Server

OV-1
System Y N N M M Y
Action N Y Y Y M N
Facility Y N N N N Y

OV-2
Op. node M N N N N N
Needline N M M N N N

OV-3
Activity M N N N N M

Info N M M M M N

OV-4
Org. N N N N N N

Relation N N N N N N

OV-5a
Activity N N N N N N
Relation N N N N N N

OV-5b
Activity Y N N N Y N

I/O N Y Y Y N N
Misc. N N N N N M

OV-6a
Activity M M N N N N
Relation N N M N N N

Rules Y Y Y N N N

OV-6b
State Y N N N N N

Activity N Y N N N Y
Trans. N N Y Y N N

OV-6c
Activity Y N N N Y Y
Timeline N N N N M M

Event N Y Y Y M M

SV-1
System M N N N N Y
Node M N N N N Y

Int.face N N M M M N

SV-2
System Y N N N N Y

Port N N Y M M Y
Flowline N M N Y Y N

SV-3
System Y N N N N Y

Resource N Y Y M M N

SV-4
Function N Y N N N Y
Func.I/O Y N Y M Y N

Store Y N N Y M N

SV-5a
Function N N N N N N
Activity N N N N N N

SV-5b
System N N N N N M
Activity N N N N N N

SV-6
System Y N N N N Y

Resource N Y Y Y Y N
SV-7 Metric N M N M M N

SV-8
Mi.stone N N N N N N

Time N N N N N N

SV-9
System N N N N N N
Forecast N N N N N N

SV-10a Logic Y Y Y N N N

SV-10b
State Y N N N N N

Function N Y Y N N N

SV-10c
System N N N N N Y

Function Y N N N Y N
Interact N Y Y Y N N

397

Table 206: Element maps for Markov Chain and Agent-based models

Arch. element Markov chain Agent-based
View Element State Trans. Agent Enviro. Int.act. Rule

OV-1
System N N M N N N
Action N Y N N M N
Facility Y N M Y N N

OV-2
Op. node M N M N N M
Needline N M N N N M

OV-3
Activity M N M N M M

Info N M N N M M

OV-4
Org. M M Y N N N

Relation M M N N Y Y

OV-5a
Activity N N N N N M
Relation N N N N N N

OV-5b
Activity Y N N N N Y

I/O N Y N N N N
Misc. N N M N N N

OV-6a
Activity N N N N N N
Relation N N N N N N

Rules N N N Y N Y

OV-6b
State Y N N M N M

Activity N N N N N Y
Trans. N Y N N Y Y

OV-6c
Activity M N N N N M
Timeline N N N N N N

Event N M N N Y Y

SV-1
System N N Y N N N
Node N N M M N M

Int.face N M N N Y M

SV-2
System Y N Y N N N

Port N N Y N Y N
Flowline N Y N N Y M

SV-3
System Y N Y N N N

Resource N Y N N Y M

SV-4
Function M N N N N Y
Func.I/O N M N N Y N

Store M N M M N N

SV-5a
Function N N N N N M
Activity N N N N N M

SV-5b
System N N N N N M
Activity N N N N N M

SV-6
System Y N Y N N N

Resource N Y N N Y N
SV-7 Metric N M N N M M

SV-8
M.stone N N N N N N

Time N N N N N N

SV-9
System N N M N N N
Forecast N N N N M M

SV-10a Logic N N M M Y Y

SV-10b
State M N Y N M Y

Function N M Y N Y Y

SV-10c
System Y N Y M N N

Function Y N N N N Y
Interact N Y N N Y Y

398

Table 207: Element maps for Discrete Event models

Arch. element Discrete Event
View Element Event Queue Trans. Server Entity Res.

OV-1
System N N N M Y N
Action Y M N N N N
Facility N N N M N M

OV-2
Op. node M M N M N N
Needline N N M N M N

OV-3
Activity M M N M N N

Info M M M N M M

OV-4
Org. N N N N N N

Relation N N N N N N

OV-5a
Activity N N N N N N
Relation N N N N N N

OV-5b
Activity Y N N N N N

I/O N Y Y N M N
Misc. N N N M N M

OV-6a
Activity N N N N N N
Relation N N N N N N

Rules N Y N M M N

OV-6b
State N Y N N M N

Activity N N N Y N N
Trans. Y N Y N N N

OV-6c
Activity N N N Y N N
Timeline N M N N N N

Event Y M Y N N M

SV-1
System M M N M M N
Node M M N M M N

Int.face N N Y N M Y

SV-2
System N N N Y M N

Port M M N N N N
Flowline N N Y N M Y

SV-3
System M N N Y Y N

Resource N N Y N M Y

SV-4
Function M N N Y M N
Func.I/O N M M N Y Y

Store M N N Y Y Y

SV-5a
Function N N N N N N
Activity N N N N N N

SV-5b
System N N N M N N
Activity N N N N N N

SV-6
System Y N N Y M N

Resource Y Y Y N Y Y
SV-7 Metric M M N M M M

SV-8
M.stone N N N N N N

Time N N N N N N

SV-9
System N N N N N N
Forecast N N N N N N

SV-10a Logic N M N N N N

SV-10b
State N M N N Y N

Function Y N Y M N M

SV-10c
System N N N Y Y N

Function Y M N N N M
Interact N N Y N M M

399

APPENDIX B

ALGORITHMS USED IN THE EXPERIMENTS

B.1 Discrete event simulations

1 from random import betavar ia t e , random , seed

2 from operator import i t emge t t e r

3 from time import c l o ck

4 from copy import deepcopy

5

6 exe cu t e s t a r t t ime = c lock ()

7 def m y i n t e g r a t o r a n d p l o t i f i e r (pa i r s , d i v i s o r) :

8 va l = 0

9 for i in range (len (p a i r s)) :

10 time = p a i r s [i] [0]

11 i f i == 0 :

12 i n t e g r a l = [(time , va l)]

13 va l += p a i r s [i] [1]

14 i n t e g r a l . append ((time , va l))

15 else :

16 i f time == i n t e g r a l [− 1] [0] :

17 va l += p a i r s [i] [1]

18 i n t e g r a l [−1] = (time , va l)

19 else :

20 i n t e g r a l . append ((time , va l))

21 va l += p a i r s [i] [1]

22 i n t e g r a l . append ((time , va l))

23 l = reversed (range (len (i n t e g r a l)−2))

24 for i in l :

25 checkone = i n t e g r a l [i + 1] [1] == i n t e g r a l [i + 2] [1]

26 checktwo = i n t e g r a l [i + 1] [1] == i n t e g r a l [i] [1]

27 i f checkone and checktwo : i n t e g r a l . pop (i +1)

28 r e s u l t = [(t , f loat (v) / d i v i s o r) for (t , v) in i n t e g r a l]

29 return r e s u l t

30 def l o g g e r (∗∗ args) :

31 o b j l i s t = []

32 #time , ent id , ent type , funcname , serv id , serv type , success , comment

400

33 e n t r y l i s t = [world . c lock ,−1 , ’ none ’ , ’ ’ ,−1 , ’ none ’ , False , ’ ’]

34 i f ’ e n t i t y ’ in args :

35 o b j l i s t . append (args [’ e n t i t y ’])

36 e n t r y l i s t [1]= args [’ e n t i t y ’] . id

37 e n t r y l i s t [2]= args [’ e n t i t y ’] . type

38 i f ’ f unc t i on ’ in args :

39 o b j l i s t . append (args [’ f unc t i on ’])

40 e n t r y l i s t [3]= args [’ f unc t i on ’] . name

41 i f ’ s e r v e r ’ in args :

42 o b j l i s t . append (args [’ s e r v e r ’])

43 e n t r y l i s t [4]= args [’ s e r v e r ’] . id

44 e n t r y l i s t [5]= args [’ s e r v e r ’] . type

45 e n t r y l i s t [6]= args [’ s u c c e s s ’]

46 i f ’ comment ’ in args : e n t r y l i s t [7]= args [’ comment ’]

47 i f ’ s p e c i a l ’ in args : e n t r y l i s t [3]= e n t r y l i s t [3]+ args [’ s p e c i a l ’]

48 for obj in o b j l i s t : obj . l og . append (tuple (e n t r y l i s t))

49 def h i s t o r i a n (obj , ∗∗ args) :

50 i f ’ queue ’ in args : obj . queue . append ((args [’ time ’] , a rgs [’ queue ’]))

51 i f ’ a c t i v e ’ in args : obj . a c t i v e . append ((args [’ time ’] , a rgs [’ a c t i v e ’]))

52 class Entity () :

53 def i n i t (s e l f , ent i tytype , p r i o r i t y =0) :

54 s e l f . id = len (world . e n t i t y c e n s u s)

55 i f s e l f not in world . e n t i t y c e n s u s : world . e n t i t y c e n s u s . append (s e l f)

56 s e l f . type = ent i ty type

57 s e l f . p r i o r i t y = p r i o r i t y

58 s e l f . a l i v e = True

59 s e l f . f l a g = {}

60 for proce s s in world . p roce s s c en su s : s e l f . f l a g [p roce s s . name] = 0

61 s e l f . l og = []

62 l o g g e r (e n t i t y=s e l f , s u c c e s s=True , s p e c i a l=’ a r r i v a l ’)

63 class Server () :

64 def i n i t (s e l f , s e rve r type) :

65 s e l f . id = len (world . s e r v e r c e n s u s)

66 i f s e l f not in world . s e r v e r c e n s u s : world . s e r v e r c e n s u s . append (s e l f)

67 s e l f . type = serve r type

68 s e l f . busyunt i l = 0

69 s e l f . a c t i v e = []

70 s e l f . l og = []

71 class Event () :

72 def i n i t (s e l f , name , s e r v e r d i c t) :

73 s e l f . name=name

401

74 i f s e l f not in world . p roce s s c en su s : world . p roce s s c en su s . append (s e l f)

75 s e l f . s e r v e r d i c t=s e r v e r d i c t

76 s e l f . queue = []

77 s e l f . a c t i v e = []

78 s e l f . l og =[]

79 s e l f . numarr = 0

80 def proce s s (s e l f , ent i ty , s e r v e r) :

81 [a , b , l , u]= s e l f . s e r v e r d i c t [s e r v e r . type] [1]

82 durat ion = l + (u−l) ∗ b e t a v a r i a t e (a , b)

83 s e r v e r . busyunt i l = world . c l o ck + durat ion

84 h i s t o r i a n (s e l f , queue=−1, a c t i v e =+1, time=world . c l o ck)

85 h i s t o r i a n (se rver , a c t i v e =+1, time=world . c l o ck)

86 s u c c e s s = random () < s e l f . s e r v e r d i c t [s e r v e r . type] [0]

87 l o g g e r (e n t i t y=ent i ty , f unc t i on=s e l f , s e r v e r=server , s u c c e s s=s u c c e s s)

88 i f s u c c e s s :

89 for elem in world . p r o c e s s f l ow [s e l f . name] :

90 world . s chedu le (time=world . c l o ck+duration , f unc t i on=world . enqueue ,

91 e n t i t y=ent i ty , enq funct ion=elem)

92 else :

93 e n t i t y . f l a g [s e l f . name] −= 1

94 world . s chedu le (time=world . c l o ck+duration , func t i on=world . enqueue ,

95 e n t i t y=ent i ty , enq funct ion=s e l f)

96 h i s t o r i a n (s e l f , a c t i v e =−1, time=world . c l o ck+durat ion)

97 h i s t o r i a n (se rver , a c t i v e =−1, time=world . c l o ck+durat ion)

98 world . s chedu le (time=world . c l o ck+duration , f unc t i on=world . dec ide)

99 class EventC (Event) :

100 def proce s s (s e l f , ent i ty , s e r v e r) :

101 [a , b , l , u]= s e l f . s e r v e r d i c t [s e r v e r . type] [1]

102 durat ion = l + (u−l) ∗ b e t a v a r i a t e (a , b)

103 s e r v e r . busyunt i l = world . c l o ck + durat ion

104 h i s t o r i a n (s e l f , queue=−1, a c t i v e =+1, time=world . c l o ck)

105 h i s t o r i a n (se rve r , a c t i v e =+1, time=world . c l o ck)

106 s u c c e s s = random () < s e l f . s e r v e r d i c t [s e r v e r . type] [0]

107 l o g g e r (e n t i t y=ent i ty , f unc t i on=s e l f , s e r v e r=server , s u c c e s s=s u c c e s s)

108 i f s u c c e s s :

109 i f random () < 0 . 5 :

110 world . s chedu le (time=world . c l o ck+duration ,

111 func t i on=world . enqueue ,

112 e n t i t y=ent i ty ,

113 enq funct ion=world . p r o c e s s f l o w [s e l f . name] [0])

114 else :

402

115 world . s chedu le (time=world . c l o ck+duration ,

116 func t i on=world . enqueue ,

117 e n t i t y=ent i ty ,

118 enq funct ion=world . p r o c e s s f l o w [s e l f . name] [1])

119 else :

120 e n t i t y . f l a g [s e l f . name] −= 1

121 world . s chedu le (time=world . c l o ck+duration , f unc t i on=world . enqueue ,

122 e n t i t y=ent i ty , enq funct ion=s e l f)

123 h i s t o r i a n (s e l f , a c t i v e =−1, time=world . c l o ck+durat ion)

124 h i s t o r i a n (se rve r , a c t i v e =−1, time=world . c l o ck+durat ion)

125 world . s chedu le (time=world . c l o ck+duration , f unc t i on=world . dec ide)

126 class Engage (Event) :

127 def proce s s (s e l f , ent i ty , s e r v e r) :

128 [a , b , l , u]= s e l f . s e r v e r d i c t [s e r v e r . type] [1]

129 durat ion = l + (u−l) ∗ b e t a v a r i a t e (a , b)

130 s e r v e r . busyunt i l = world . c l o ck + durat ion

131 h i s t o r i a n (s e l f , queue=−1, a c t i v e =+1, time=world . c l o ck)

132 h i s t o r i a n (se rve r , a c t i v e =+1, time=world . c l o ck)

133 s u c c e s s = random () < s e l f . s e r v e r d i c t [s e r v e r . type] [0]

134 l o g g e r (e n t i t y=ent i ty , f unc t i on=s e l f , s e r v e r=server , s u c c e s s=s u c c e s s)

135 i f s u c c e s s : e n t i t y . a l i v e = False

136 for elem in world . p r o c e s s f l o w [s e l f . name] :

137 world . s chedu le (time=world . c l o ck+duration , f unc t i on=world . enqueue ,

138 e n t i t y=ent i ty , enq funct ion=elem)

139 h i s t o r i a n (s e l f , a c t i v e =−1, time=world . c l o ck+durat ion)

140 h i s t o r i a n (se rve r , a c t i v e =−1, time=world . c l o ck+durat ion)

141 world . s chedu le (time=world . c l o ck+duration , f unc t i on=world . dec ide)

142 class Assess (Event) :

143 def proce s s (s e l f , ent i ty , s e r v e r) :

144 [a , b , l , u]= s e l f . s e r v e r d i c t [s e r v e r . type] [1]

145 durat ion = l + (u−l) ∗ b e t a v a r i a t e (a , b)

146 s e r v e r . busyunt i l = world . c l o ck + durat ion

147 h i s t o r i a n (s e l f , queue=−1, a c t i v e =+1, time=world . c l o ck)

148 h i s t o r i a n (se rve r , a c t i v e =+1, time=world . c l o ck)

149 s u c c e s s = random () < s e l f . s e r v e r d i c t [s e r v e r . type] [0]

150 l o g g e r (e n t i t y=ent i ty , f unc t i on=s e l f , s e r v e r=server , s u c c e s s=s u c c e s s)

151 i f s u c c e s s :

152 i f e n t i t y . a l i v e : entrypointprocessname = ’ a r r i v a l ’

153 else : entrypointprocessname = s e l f . name

154 for elem in world . p r o c e s s f l ow [entrypointprocessname] :

155 world . s chedu le (time=world . c l o ck+duration , e n t i t y=ent i ty ,

403

156 func t i on=world . enqueue , enq funct ion=elem)

157 else :

158 e n t i t y . f l a g [s e l f . name] −= 1

159 world . s chedu le (time=world . c l o ck+duration , f unc t i on=world . enqueue ,

160 e n t i t y=ent i ty , enq funct ion=s e l f)

161 h i s t o r i a n (s e l f , a c t i v e =−1, time=world . c l o ck+durat ion)

162 h i s t o r i a n (se rve r , a c t i v e =−1, time=world . c l o ck+durat ion)

163 world . s chedu le (time=world . c l o ck+duration , f unc t i on=world . dec ide)

164 class Simulat ion () :

165 def i n i t (s e l f , h i s t o r y = []) :

166 s e l f . f e l = []

167 s e l f . c l o ck = 0

168 s e l f . queue = []

169 s e l f . p r o c e s s f l o w ={}

170 s e l f . p roc e s s c en su s =[]

171 s e l f . s e r v e r c e n s u s =[]

172 s e l f . e n t i t y c e n s u s =[]

173 s e l f . d e p a r t e d l i s t =[]

174 s e l f . h i s t o r y=h i s t o r y

175 s e l f . r e s u l t ={}

176 def advancec lock (s e l f) :

177 minval = min(s e l f . f e l , key=i t emge t t e r (0))

178 mins = [(i , v) for i , v in enumerate(s e l f . f e l) i f v [0] == minval [0]]

179 for elem in mins :

180 i f elem [1] [1] [’ f unc t i on ’] == world . enqueue :

181 world . c lock , output = s e l f . f e l . pop (elem [0])

182 return output

183 world . c lock , output = s e l f . f e l . pop (mins [0] [0])

184 return output

185 def dec ide (s e l f , ∗∗ p o s s i b l e u s e l e s s d i c t i o n a r y) :

186 i = 0

187 while i < len (s e l f . queue) :

188 i f s e l f . queue [i] [1] . l og [−1] [0] < s e l f . c l o ck − 1000 :

189 p r i o r i t y , ent i ty , f unc t i on = s e l f . queue . pop (i)

190 for proce s s in s e l f . p ro c e s s c en su s : e n t i t y . f l a g [p roce s s . name] = 0

191 for a r r p r o c e s s in s e l f . p r o c e s s f l ow [’ a r r i v a l ’] :

192 s e l f . enqueue (e n t i t y=ent i ty , enq funct ion=func t i on)

193 else :

194 i += 1

195 wai t ing=s e l f . queue [:] # t h i s i s a sha l low−copy !

196 i d l e s = [i for i in s e l f . s e r v e r c e n s u s i f i . busyunt i l <= s e l f . c l o ck]

404

197 id lesnames = [i . type for i in i d l e s]

198 while i d l e s != [] and wait ing != [] :

199 p o s s i b l e s e r v e r d i c t = wait ing [− 1] [2] . s e r v e r d i c t . copy ()

200 match = False

201 idlenum = ’ ’

202 OEC={}

203 for elem in p o s s i b l e s e r v e r d i c t :

204 PoS=p o s s i b l e s e r v e r d i c t [elem] [0]

205 a , b , l , u=p o s s i b l e s e r v e r d i c t [elem] [1]

206 meantime=l +(a /(a+b)) ∗(u−l)

207 OEC[elem] = 0.5∗PoS + 0.5/ meantime

208 while not match and p o s s i b l e s e r v e r d i c t !={} :

209 k , v = max(OEC. items () , key=lambda x : x [1])

210 i f k in id l e snames :

211 idlenum = idlesnames . index (k)

212 id lesnames . pop (idlenum)

213 s e r v e r=i d l e s . pop (idlenum)

214 nomatch = False

215 else :

216 del p o s s i b l e s e r v e r d i c t [k]

217 del OEC[k]

218 i f idlenum != ’ ’ :

219 [x , ent i ty , event]= s e l f . queue . pop (s e l f . queue . index (wai t ing [−1]))

220 event . p roc e s s (e n t i t y=ent i ty , s e r v e r=s e r v e r)

221 wai t ing . pop ()

222 def enqueue (s e l f , ent i ty , enqfunct ion , ∗∗ u s e l e s s o t h e r i n p u t s) :

223 i f enq funct ion == ’ depart ’ :

224 s e l f . d e p a r t e d l i s t . append (e n t i t y)

225 return

226 e n t i t y . f l a g [enq funct ion . name] = e n t i t y . f l a g [enq funct ion . name]+1

227 s e l f . queue . append ((e n t i t y . p r i o r i t y , ent i ty , enq funct ion))

228 s e l f . queue . s o r t (key=i t emge t t e r (0) , r e v e r s e=True)

229 s e l f . s chedu le (func t i on=s e l f . dec ide)

230 l o g g e r (e n t i t y=ent i ty , f unc t i on=enqfunct ion , s u c c e s s=True ,

231 s p e c i a l=’ Queue ’ , comment=’ entered queue ’)

232 h i s t o r i a n (enqfunct ion , time=s e l f . c lock , queue=+1)

233 def schedu le (s e l f , ∗∗ args) :

234 i f ’ time ’ in args : time=args [’ time ’]

235 else : time=s e l f . c l o ck

236 s e l f . f e l . append ((time , args))

237 def s imulate (s e l f , r e p e t i t i o n s , altname) :

405

238 rep=1

239 while rep <= r e p e t i t i o n s :

240 r ep s t a r t t i me = c lock ()

241 s e l f . s t a r t (altname)

242 seed (rep−1)

243 while s e l f . f e l != [] and s e l f . c l o ck < 50 :

244 try :

245 print (s e l f . s e r v e r c e n s u s [0] . busyunt i l > s e l f . c l o ck)

246 print (s e l f . p ro c e s s c en su s [0] . queue [−1])

247 print (s e l f . s e r v e r c e n s u s [1] . busyunt i l > s e l f . c l o ck)

248 print (s e l f . p ro c e s s c en su s [1] . queue [−1])

249 print (s e l f . s e r v e r c e n s u s [2] . busyunt i l > s e l f . c l o ck)

250 print (s e l f . p ro c e s s c en su s [2] . queue [−1])

251 except :

252 pass

253 print (s e l f . c l o ck)

254 command = s e l f . advancec lock ()

255 command . pop (’ f unc t i on ’) (∗∗command)

256 s e l f . c a s e l o g (s e l f . c l o ck)

257 s e l f . i n i t (h i s t o r y=s e l f . h i s t o r y)

258 rep += 1

259 print (’ This run f i n i s h e d in ’+str (c l o ck ()−r e p s t a r t t im e)+’ seconds . ’)

260 s e l f . t imeh i s t o ry ()

261 s e l f . output (altname)

262 def output (s e l f , altname) :

263 t imes = [i [0] for i in s e l f . h i s t o r y]

264 mintime = min(t imes)

265 avgtime = f loat (sum(t imes)) / len (t imes)

266 maxtime = max(t imes)

267 vart ime = (sum ([(t−avgtime) ∗∗2 for t in t imes]) /(len (t imes)−1))

268 sdtime = vartime ∗∗0 .5

269 set ime = (vartime / len (t imes)) ∗∗0 .5

270 l c l = ’ ’

271 uc l = ’ ’

272 s t a t s = open(altname+’ s t a t s . csv ’ , ’w ’)

273 s t a t s . wr i t e (’ , ’ . j o i n ([’Number o f r e p e t i t i o n s ’ , ’Minimum f i n i s h time ’ ,

274 ’ Average f i n i s h time ’ , ’Maximum f i n i s h time ’ ,

275 ’ F in i sh time var iance ’ ,

276 ’ F in i sh time standard dev i a t i on ’ ,

277 ’ F in i sh time standard e r r o r ’ ,

278 ’UCL of f i n i s h time ’ ,

406

279 ’LCL o f f i n i s h time ’])+’ \n ’)

280 s t a t s . wr i t e (’ , ’ . j o i n ([str (len (t imes)) , str (mintime) , str (avgtime) ,

281 str (maxtime) , str (vart ime) , str (sdtime) , str (set ime) ,

282 str (l c l) , str (uc l)])+’ \n ’)

283 s t a t s . wr i t e (’ \n ’)

284 s t a t s . wr i t e (’Time , P r ob a b i l i t y to f i n i s h \n ’)

285 s t a t s . wr i t e (’ 0 ,0\n ’)

286 s t a t s . wr i t e (’ \n ’ . j o i n ([’ , ’ . j o i n ([str (sorted (t imes) [i]) ,

287 str (f loat (i +1)/ len (s e l f . h i s t o r y))])

288 for i in range (len (t imes))]))

289 s t a t s . c l o s e ()

290 h i s t = open(altname+’ h i s t o r y . csv ’ , ’w ’)

291 m=max([len (i) for i in s e l f . r e s u l t [’ s e r v e r a c t i v e h i s t o r y ’] . va lue s ()])

292 l i n e s = [’ ’ for i in range (m+1)]

293 l i n e s [0] = ’ , ’ . j o i n ([i+ ’ time , ’+i+’ busy ’ for i in

294 s e l f . r e s u l t [’ s e r v e r a c t i v e h i s t o r y ’] . keys ()])

295 h i s t . wr i t e (l i n e s [0]+ ’ \n ’)

296 for l in range (m) :

297 for v in s e l f . r e s u l t [’ s e r v e r a c t i v e h i s t o r y ’] . va lue s () :

298 try :

299 i f l i n e s [l +1] == ’ ’ :

300 l i n e s [l +1]=str (v [l] [0])+’ , ’+str (v [l] [1])

301 else :

302 l i n e s [l +1]= l i n e s [l +1]+ ’ , ’+str (v [l] [0])+’ , ’+str (v [l] [1])

303 except :

304 i f l i n e s [l +1] == ’ ’ :

305 l i n e s [l +1] = ’ , ’

306 else :

307 l i n e s [l +1] = l i n e s [l +1]+ ’ , , ’

308 h i s t . wr i t e (l i n e s [l +1]+ ’ \n ’)

309 h i s t . c l o s e ()

310 def c a s e l o g (s e l f , f i n t i m e) :

311 l o g s t a r t t i m e=c lock ()

312 s e r v h i s t = []

313 for s e r v e r in s e l f . s e r v e r c e n s u s :

314 s e r v e r . a c t i v e . s o r t (key=i t emge t t e r (0))

315 s e r v h i s t . append ((s e r v e r . id , s e r v e r . type , deepcopy (s e r v e r . a c t i v e)))

316 e v n t h i s t = []

317 for event in s e l f . p ro c e s s c en su s :

318 event . queue . s o r t (key=i t emge t t e r (0))

319 event . a c t i v e . s o r t (key=i t emge t t e r (0))

407

320 e v n t h i s t . append ((event . name , deepcopy (event . queue) ,

321 deepcopy (event . a c t i v e)))

322 s e l f . h i s t o r y . append ((f in t ime , s e r v h i s t , e v n t h i s t))

323 print (’ Logging took ’+str (c l o ck ()− l o g s t a r t t i m e)+’ seconds . ’)

324 def pos tp roc e s s (s e l f) :

325 ’ ’ ’ This func t i on makes sure the s imu la t i on a t t a i n s d e s i r e d

326 l e v e l o f accuracy . ’ ’ ’

327 pass

328 def t imeh i s t o ry (s e l f) :

329 t i m e h i s t o r y s t a r t t i m e = c lock ()

330 s e r v a c t h i s t , evntquehis t , evntac th i s t , count = {} , {} , {} , {}

331 for run in s e l f . h i s t o r y :

332 for elem in run [1] :

333 i f elem [1] not in s e r v a c t h i s t . keys () : s e r v a c t h i s t [elem [1]] = []

334 i f elem [1] not in count . keys () : count [elem [1]] = 0

335 count [elem [1]] += 1

336 s e r v a c t h i s t [elem [1]] . extend (deepcopy (elem [2]))

337 for elem in run [2] :

338 i f elem [0] not in evntqueh i s t . keys () : evntqueh i s t [elem [0]] = []

339 i f elem [0] not in e v n t a c t h i s t . keys () : e v n t a c t h i s t [elem [0]] = []

340 i f elem [0] not in count . keys () : count [elem [0]] = 0

341 count [elem [0]] += 1

342 evntqueh i s t [elem [0]] . extend (deepcopy (elem [1]))

343 e v n t a c t h i s t [elem [0]] . extend (deepcopy (elem [2]))

344 for key , va lue in s e r v a c t h i s t . i tems () :

345 value . s o r t (key=i t emge t t e r (0))

346 s e r v a c t h i s t [key]= m y i n t e g r a t o r a n d p l o t i f i e r (value , count [key])

347 for key , va lue in evntqueh i s t . i tems () :

348 value . s o r t (key=i t emge t t e r (0))

349 evntqueh i s t [key]= m y i n t e g r a t o r a n d p l o t i f i e r (value , len (s e l f . h i s t o r y))

350 for key , va lue in e v n t a c t h i s t . i tems () :

351 value . s o r t (key=i t emge t t e r (0))

352 e v n t a c t h i s t [key]= m y i n t e g r a t o r a n d p l o t i f i e r (value , count [key])

353 s e l f . r e s u l t [’ s e r v e r a c t i v e h i s t o r y ’] = s e r v a c t h i s t

354 s e l f . r e s u l t [’ p roc e s s queue h i s t o r y ’] = evntqueh i s t

355 s e l f . r e s u l t [’ p roc e s s a c t i v e h i s t o r y ’] = e v n t a c t h i s t

356 print (e v n t a c t h i s t)

357 s e l f . r e s u l t [’ counts ’] = count

358 print (’ Hi s tory took ’+str (c l o ck ()−t i m e h i s t o r y s t a r t t i m e)+’ seconds . ’)

359 def s t a r t (s e l f , altname) :

360 exec (open(altname+’ . txt ’) . read ())

408

361 for n in range (50) : exec (’ Target ’+str (n)+’=Entity (” Target ’+str (n)+’ ”) ’)

362 for proc in s e l f . p ro c e s s c en su s :

363 proc . numarr=len ([1 for i in s e l f . p r o c e s s f l o w . va lue s () i f proc in i])

364 for e n t i t y in s e l f . e n t i t y c e n s u s :

365 for a r r p r o c e s s in s e l f . p r o c e s s f l o w [’ a r r i v a l ’] :

366 s e l f . enqueue (e n t i t y=ent i ty , enq funct ion=a r r p r o c e s s)

367 ’ ’ ’ Test Code ’ ’ ’

368 world = Simulat ion ()

369 world . s imulate (2 , ’ ComparisonRunTrial ’)

370 print (’ Total execut ion time was ’+str (c l o ck ()−exe cu t e s t a r t t ime)+’ seconds . ’)

Listing B.1: Discrete event simulation using the modified HADES code in Python

B.2 Agent-based simulations

1 ””” This i s an attempt at bu i l d i ng an agent−based model f o r the RWDC

2 problem us ing Dr . Jones Wyatt ’ s DoDAF viewpo ints . ”””

3 # import random

4 # from copy import copy

5 from mesa import Agent , Model

6 from mesa . time import RandomActivation

7 #

8 class System (Agent) :

9 ””” Systems that communicate with each other and change data are

10 modeled as agents . ”””

11 def i n i t (s e l f , name , model , gen data=None) :

12 super () . i n i t (model . c r e a t e a g e n t (s e l f) , model)

13 s e l f . model = model

14 s e l f . name = name # these must be unique !

15 s e l f . model . add system (s e l f)

16 s e l f . i n t e r f a c e s = {}

17 s e l f . data generated = gen data

18 s e l f . data manipu lat ions = {}

19 s e l f . incoming data = set ()

20 s e l f . outgo ing data = set ()

21 def a d d i n t e r f a c e t o (s e l f , i n t e r f a c e , data desc) :

22 i f data desc in s e l f . i n t e r f a c e s :

23 s e l f . i n t e r f a c e s [data desc] . append (i n t e r f a c e)

24 else :

25 s e l f . i n t e r f a c e s [data desc] = [i n t e r f a c e]

26 def add data manipulat ion (s e l f , i nput data desc , output data desc) :

27 i f i nput da ta de s c in s e l f . data manipu lat ions :

409

28 s e l f . data manipu lat ions [i nput da ta de s c] . add (output data desc)

29 else :

30 s e l f . data manipu lat ions [i nput da ta de s c] = { output data desc } # t h i s i s a

s e t

31 def send data (s e l f , data desc) :

32 for i n t e r f a c e in s e l f . i n t e r f a c e s [data desc] :

33 i n t e r f a c e . l oad data (data desc)

34 def r e c e i v e d a t a (s e l f , data desc) : # do something with the source ?

35 s e l f . incoming data . add (data desc)

36 def act on data (s e l f , data desc) :

37 for new data desc in s e l f . data manipu lat ions [data desc] :

38 s e l f . outgo ing data . add (new data desc)

39 def gene ra te data (s e l f) :

40 i f s e l f . data generated :

41 s e l f . outgo ing data . add (s e l f . data generated)

42 def s tep (s e l f) :

43 for data desc in s e l f . incoming data :

44 s e l f . a c t on data (data desc)

45 s e l f . g ene ra te data ()

46 for data desc in s e l f . outgo ing data :

47 s e l f . send data (data desc)

48 s e l f . incoming data = set ()

49 s e l f . outgo ing data = set ()

50 #

51 #

52 class I n t e r f a c e (Agent) :

53 ”””Data communications between agents ”””

54 def i n i t (s e l f , data desc , source , s ink , model) :

55 super () . i n i t (model . c r e a t e a g e n t (s e l f) , model)

56 s e l f . model = model

57 s e l f . data desc = data desc

58 s e l f . source = model . systems [source]

59 s e l f . s ink = model . systems [s ink]

60 s e l f . l oaded data = None

61 s e l f . source . a d d i n t e r f a c e t o (s e l f , s e l f . data desc)

62 def l oad data (s e l f , data) :

63 s e l f . l oaded data = data

64 def ca r ry data (s e l f) :

65 i f s e l f . l oaded data :

66 s e l f . s ink . r e c e i v e d a t a (s e l f . l oaded data)

67 s e l f . l oaded data = None

410

68 def s tep (s e l f) :

69 s e l f . ca r ry data ()

70 #

71 #

72 class RWDCModel(Model) :

73 ””” Execution l o g i c f o r the model ”””

74 def i n i t (s e l f) :

75 super () . i n i t ()

76 s e l f . s chedu le = RandomActivation (s e l f)

77 s e l f . systems = {}

78 s e l f . i n t e r f a c e s = []

79 s e l f . data types = []

80 s e l f . un ique id count = −1 # the f i r s t agent w i l l g e t id=0

81 s e l f . running = False

82 def c r e a t e a g e n t (s e l f , agent) :

83 s e l f . s chedu le . add (agent)

84 s e l f . un ique id count += 1

85 return s e l f . un ique id count

86 def add system (s e l f , system) :

87 i f system not in s e l f . systems :

88 s e l f . systems [system . name] = system

89 def a d d i n t e r f a c e (s e l f , i n t e r f a c e) :

90 i f i n t e r f a c e not in s e l f . i n t e r f a c e s :

91 s e l f . i n t e r f a c e s . append (i n t e r f a c e)

92 def execute (s e l f , s t ep s =5) :

93 s e l f . running = True

94 for stepno in range (s t ep s) :

95 print (”model s tep ” + str (stepno) + ” . ”)

96 s e l f . s chedu le . s tep ()

97 #

98 #

99 #

100 # 1) Create the model f i r s t

101 MODEL = RWDCModel()

102 # 2) Create the systems

103 System (” P i l o t Workstation Computer” , MODEL,

104 ”Waypoints”) # data gen not inc luded in Jones Wyatt ’ s v iews

105 System (”Command Datal ink Ground Transce ive r ” , MODEL)

106 # System (” Sa fe ty P i l o t F l i g h t Box” , MODEL) Not in Jones Wyatt ’ s SV−6

107 System (”Video Datal ink Ground Rece iver ” , MODEL)

108 System (” Sensor Payload Workstation Computer” , MODEL)

411

109 System (”Command Datal ink UAV Transce ive r ” , MODEL)

110 System (” Sensor Payload” , MODEL)

111 System (”Video Datal ink UAV Transmitter ” , MODEL, ”Video F i l e ”)

112 System (” F l i gh t Control System” , MODEL, ”UAV Pos i t i on ”) # wasn ’ t in SV−1

113 # 3) Create the i n t e r f a c e s

114 I n t e r f a c e (”Waypoints” , ” P i l o t Workstation Computer” ,

115 ”Command Datal ink Ground Transce iver ” , MODEL)

116 I n t e r f a c e (”UAV Pos i t i on ” , ”Command Datal ink Ground Transce ive r ” ,

117 ” P i l o t Workstation Computer” , MODEL)

118 I n t e r f a c e (”Waypoints” , ”Command Datal ink Ground Transce ive r ” ,

119 ”Command Datal ink UAV Transce ive r ” , MODEL)

120 I n t e r f a c e (”UAV Pos i t i on ” , ”Command Datal ink UAV Transce iver ” ,

121 ”Command Datal ink Ground Transce iver ” , MODEL)

122 I n t e r f a c e (”Pan/ T i l t /Zoom” , ”Command Datal ink Ground Transce ive r ” ,

123 ”Command Datal ink UAV Transce ive r ” , MODEL)

124 I n t e r f a c e (” Sensor Or i enta t i on ” , ”Command Datal ink UAV Transce ive r ” ,

125 ”Command Datal ink Ground Transce iver ” , MODEL)

126 I n t e r f a c e (” Sensor Or i enta t i on ” , ”Command Datal ink Ground Transce iver ” ,

127 ” Sensor Payload Workstation Computer” , MODEL)

128 I n t e r f a c e (”Pan/ T i l t /Zoom” , ” Sensor Payload Workstation Computer” ,

129 ”Command Datal ink Ground Transce iver ” , MODEL)

130 I n t e r f a c e (”Waypoints” , ”Command Datal ink UAV Transce ive r ” ,

131 ” F l i gh t Control System” , MODEL)

132 I n t e r f a c e (”UAV Pos i t i on ” , ” F l i gh t Control System” ,

133 ”Command Datal ink UAV Transce ive r ” , MODEL)

134 I n t e r f a c e (”Pan/ T i l t /Zoom” , ”Command Datal ink UAV Transce iver ” ,

135 ” F l i gh t Control System” , MODEL)

136 I n t e r f a c e (” Sensor Or i enta t i on ” , ” F l i gh t Control System” ,

137 ”Command Datal ink UAV Transce ive r ” , MODEL)

138 I n t e r f a c e (”Pan/ T i l t /Zoom” , ” F l i gh t Control System” ,

139 ” Sensor Payload” , MODEL)

140 I n t e r f a c e (” Sensor Or i enta t i on ” , ” Sensor Payload” ,

141 ” F l i gh t Control System” , MODEL)

142 I n t e r f a c e (”Video F i l e ” , ” Sensor Payload” ,

143 ”Video Datal ink UAV Transmitter ” , MODEL)

144 I n t e r f a c e (”Video F i l e ” , ”Video Datal ink UAV Transmitter ” ,

145 ”Video Datal ink Ground Rece iver ” , MODEL)

146 I n t e r f a c e (”Video F i l e ” , ”Video Datal ink Ground Rece iver ” ,

147 ” Sensor Payload Workstation Computer” , MODEL)

148 # 4) Define data manipulat ions (t h i s wasn in Jones Wyatt ’ s v iews)

149 MODEL. systems [” P i l o t Workstation Computer”] . add data manipulat ion (

412

150 ”UAV Pos i t i on ” , ”Waypoints”)

151 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

152 ”Waypoints” , ”Waypoints”)

153 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

154 ”Waypoints” , ”Pan/ T i l t /Zoom”)

155 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

156 ”Waypoints” , ” Sensor Or i entat i on ”)

157 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

158 ”Waypoints” , ”UAV Pos i t i on ”)

159 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

160 ”Pan/ T i l t /Zoom” , ”Waypoints”)

161 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

162 ”Pan/ T i l t /Zoom” , ”Pan/ T i l t /Zoom”)

163 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

164 ”Pan/ T i l t /Zoom” , ” Sensor Or i enta t ion ”)

165 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

166 ”Pan/ T i l t /Zoom” , ”UAV Pos i t i on ”)

167 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

168 ” Sensor Or i enta t i on ” , ”Waypoints”)

169 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

170 ” Sensor Or i enta t i on ” , ”Pan/ T i l t /Zoom”)

171 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

172 ” Sensor Or i enta t i on ” , ” Sensor Or i enta t i on ”)

173 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

174 ” Sensor Or i enta t i on ” , ”UAV Pos i t i on ”)

175 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

176 ”UAV Pos i t i on ” , ”Waypoints”)

177 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

178 ”UAV Pos i t i on ” , ”Pan/ T i l t /Zoom”)

179 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

180 ”UAV Pos i t i on ” , ” Sensor Or i enta t ion ”)

181 MODEL. systems [”Command Datal ink Ground Transce ive r ”] . add data manipulat ion (

182 ”UAV Pos i t i on ” , ”UAV Pos i t i on ”)

183 MODEL. systems [” Sensor Payload Workstation Computer”] . add data manipulat ion (

184 ”Video F i l e ” , ”Pan/ T i l t /Zoom”)

185 MODEL. systems [” Sensor Payload Workstation Computer”] . add data manipulat ion (

186 ” Sensor Or i enta t i on ” , ”Pan/ T i l t /Zoom”)

187 MODEL. systems [”Video Datal ink Ground Rece iver ”] . add data manipulat ion (

188 ”Video F i l e ” , ”Video F i l e ”)

189 MODEL. systems [”Video Datal ink UAV Transmitter ”] . add data manipulat ion (

190 ”Video F i l e ” , ”Video F i l e ”)

413

191 MODEL. systems [” Sensor Payload”] . add data manipulat ion (

192 ”Pan/ T i l t /Zoom” , ”Video F i l e ”)

193 MODEL. systems [” Sensor Payload”] . add data manipulat ion (

194 ”Pan/ T i l t /Zoom” , ” Sensor Or i enta t ion ”)

195 MODEL. systems [” F l i gh t Control System”] . add data manipulat ion (

196 ”Pan/ T i l t /Zoom” , ”Pan/ T i l t /Zoom”)

197 MODEL. systems [” F l i gh t Control System”] . add data manipulat ion (

198 ”Pan/ T i l t /Zoom” , ”UAV Pos i t i on ”)

199 MODEL. systems [” F l i gh t Control System”] . add data manipulat ion (

200 ”Pan/ T i l t /Zoom” , ” Sensor Or i enta t ion ”)

201 MODEL. systems [” F l i gh t Control System”] . add data manipulat ion (

202 ”Waypoints” , ”Pan/ T i l t /Zoom”)

203 MODEL. systems [” F l i gh t Control System”] . add data manipulat ion (

204 ”Waypoints” , ”UAV Pos i t i on ”)

205 MODEL. systems [” F l i gh t Control System”] . add data manipulat ion (

206 ”Waypoints” , ” Sensor Or i entat i on ”)

207 MODEL. systems [” F l i gh t Control System”] . add data manipulat ion (

208 ” Sensor Or i enta t i on ” , ”Pan/ T i l t /Zoom”)

209 MODEL. systems [” F l i gh t Control System”] . add data manipulat ion (

210 ” Sensor Or i enta t i on ” , ”UAV Pos i t i on ”)

211 MODEL. systems [” F l i gh t Control System”] . add data manipulat ion (

212 ” Sensor Or i enta t i on ” , ” Sensor Or i enta t i on ”)

213 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

214 ” Sensor Or i enta t i on ” , ” Sensor Or i enta t i on ”)

215 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

216 ” Sensor Or i enta t i on ” , ”UAV Pos i t i on ”)

217 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

218 ” Sensor Or i enta t i on ” , ”Pan/ T i l t /Zoom”)

219 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

220 ” Sensor Or i enta t i on ” , ”Waypoints”)

221 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

222 ”UAV Pos i t i on ” , ” Sensor Or i enta t ion ”)

223 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

224 ”UAV Pos i t i on ” , ”UAV Pos i t i on ”)

225 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

226 ”UAV Pos i t i on ” , ”Pan/ T i l t /Zoom”)

227 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

228 ”UAV Pos i t i on ” , ”Waypoints”)

229 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

230 ”Pan/ T i l t /Zoom” , ” Sensor Or i enta t ion ”)

231 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

414

232 ”Pan/ T i l t /Zoom” , ”UAV Pos i t i on ”)

233 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

234 ”Pan/ T i l t /Zoom” , ”Pan/ T i l t /Zoom”)

235 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

236 ”Pan/ T i l t /Zoom” , ”Waypoints”)

237 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

238 ”Waypoints” , ” Sensor Or i entat i on ”)

239 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

240 ”Waypoints” , ”UAV Pos i t i on ”)

241 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

242 ”Waypoints” , ”Pan/ T i l t /Zoom”)

243 MODEL. systems [”Command Datal ink UAV Transce ive r ”] . add data manipulat ion (

244 ”Waypoints” , ”Waypoints”)

245 # 5) Execute the model

246 MODEL. execute ()

247 print (” run completed ”)

Listing B.2: Agent-based simulation for the RWDC example using the Mesa

Framework in Python

1 from mesa import Agent , Model

2 from mesa . time import RandomActivation

3 from copy import copy

4 import random

5

6 class ATCSCC(Agent) :

7 ”””ATCSCC”””

8 def i n i t (s e l f , model , un ique id) :

9 s e l f . model = model

10 s e l f . un ique id = un ique id

11 s e l f . doing = dict ()

12 s e l f . r eque s t (s e l f . coordinate with NWS) #i n i t i a l ac t ion

13 def s tep (s e l f) :

14 i t e r a t e o v e r t h i s = copy (s e l f . doing)

15 for act ion , t ime remain ing in i t e r a t e o v e r t h i s . i tems () :

16 i f t ime remain ing :

17 ac t i on (durat ion=s e l f . doing [a c t i on])

18 s e l f . doing [a c t i on] −= 1

19 else :

20 ac t i on (durat ion=s e l f . doing [a c t i on] , next=True)

21 s e l f . doing . pop (ac t i on)

415

22 def r eque s t (s e l f , f unc t i on) :

23 s e l f . doing [func t i on]= func t i on . d e f a u l t s [0]−1

24 def coordinate with NWS (s e l f , durat ion =15, next=False) :

25 ””” Event 1”””

26 print (”ATCSCC − Event 1”)

27 i f next :

28 s e l f . r eque s t (s e l f . t e l c o n f o r d e t e r m i n i n g w o r k l o a d)

29 def t e l c o n f o r d e t e r m i n i n g w o r k l o a d (s e l f , durat ion =15, next=False) :

30 ””” Event 2”””

31 i f durat ion == 14 :

32 for agent in s e l f . model . s chedu le . agents :

33 i f isinstance (agent , SystemUserCommunity) :

34 agent . r eque s t (agent . p r o v i d e u s e r i n p u t)

35 print (”ATCSCC − Event 2”)

36 i f next :

37 s e l f . r eque s t (s e l f . d e v e l o p f l o w c o n t r o l p l a n)

38 def d e v e l o p f l o w c o n t r o l p l a n (s e l f , durat ion =30, next=False) :

39 ””” Event 3”””

40 print (”ATCSCC − Event 3”)

41 i f next :

42 s e l f . r eque s t (s e l f . t e l c o n f o r p l a n n i n g)

43 def t e l c o n f o r p l a n n i n g (s e l f , durat ion =15, next=False) :

44 ””” Event 4”””

45 i f durat ion == 14 :

46 for agent in s e l f . model . s chedu le . agents :

47 i f isinstance (agent , ARTCCTMU) :

48 agent . r eque s t (agent . t e l c o n f o r p l a n n i n g)

49 e l i f isinstance (agent , TRACONTMU) :

50 agent . r eque s t (agent . t e l c o n f o r p l a n n i n g)

51 e l i f isinstance (agent , TowerTMU) :

52 agent . r eque s t (agent . t e l c o n f o r p l a n n i n g)

53 print (”ATCSCC − Event 4”)

54 i f next :

55 s e l f . r eque s t (s e l f . m o n i t o r t r a f f i c f l o w)

56 def m o n i t o r t r a f f i c f l o w (s e l f , durat ion=−1) :

57 ””” Event 6”””

58 i f durat ion == −2:

59 s e l f . r eque s t (s e l f . m o n i t o r t r a f f i c f l o w)

60 for agent in s e l f . model . s chedu le . agents :

61 i f isinstance (agent , SystemUserCommunity) :

62 agent . r eque s t (agent . m o n i t o r t r a f f i c f l o w)

416

63 e l i f isinstance (agent ,ARTCCTMU) :

64 agent . r eque s t (agent . mon i to r and ad jus t f l ow)

65 agent . r eque s t (agent . m o n i t o r t r a f f i c f l o w)

66 e l i f isinstance (agent ,TRACONTMU) :

67 agent . r eque s t (agent . m o n i t o r t r a f f i c f l o w)

68 e l i f isinstance (agent ,TowerTMU) :

69 agent . r eque s t (agent . m o n i t o r t r a f f i c f l o w)

70 print (”ATCSCC − Event 6 cont inuous ”)

71 def i n i t i a t e d e l a y p r o g r a m (s e l f , durat ion =15, next=False) :

72 ””” Event 12 ”””

73 print (”ATCSCC − Event 12”)

74 i f next :

75 print (”END OF SIMULATION”)

76 class SystemUserCommunity (Agent) :

77 ””” System User Community”””

78 def i n i t (s e l f , model , un ique id) :

79 s e l f . model = model

80 s e l f . un ique id = un ique id

81 s e l f . doing = dict ()

82 def s tep (s e l f) :

83 i t e r a t e o v e r t h i s = copy (s e l f . doing)

84 for act ion , t ime remain ing in i t e r a t e o v e r t h i s . i tems () :

85 i f t ime remain ing :

86 ac t i on (durat ion=s e l f . doing [a c t i on])

87 s e l f . doing [a c t i on] −= 1

88 else :

89 ac t i on (durat ion=s e l f . doing [a c t i on] , next=True)

90 s e l f . doing . pop (ac t i on)

91 def r eque s t (s e l f , f unc t i on) :

92 s e l f . doing [func t i on]= func t i on . d e f a u l t s [0]−1

93 def p r o v i d e u s e r i n p u t (s e l f , durat ion =15, next=False) :

94 ””” Event 2”””

95 print (”System User Community − Event 2”)

96 def m o n i t o r t r a f f i c f l o w (s e l f , durat ion=−1) :

97 ””” Event 6”””

98 print (”System User Community − Event 6 cont inuous ”)

99 class ARTCCTMU(Agent) :

100 ”””ARTCC TMU”””

101 def i n i t (s e l f , model , un ique id) :

102 s e l f . model = model

103 s e l f . un ique id = un ique id

417

104 s e l f . doing = dict ()

105 def s tep (s e l f) :

106 i t e r a t e o v e r t h i s = copy (s e l f . doing)

107 for act ion , t ime remain ing in i t e r a t e o v e r t h i s . i tems () :

108 i f t ime remain ing :

109 ac t i on (durat ion=s e l f . doing [a c t i on])

110 s e l f . doing [a c t i on] −= 1

111 else :

112 ac t i on (durat ion=s e l f . doing [a c t i on] , next=True)

113 s e l f . doing . pop (ac t i on)

114 def r eque s t (s e l f , f unc t i on) :

115 s e l f . doing [func t i on]= func t i on . d e f a u l t s [0]−1

116 def t e l c o n f o r p l a n n i n g (s e l f , durat ion =15, next=False) :

117 ””” Event 4”””

118 print (”ARTCC TMU − Event 4”)

119 i f next :

120 s e l f . r eque s t (s e l f . adv i s e f a c i l i t y management)

121 def adv i s e f a c i l i t y management (s e l f , durat ion =10, next=False) :

122 ””” Event 5”””

123 print (”ARTCC TMU − Event 5”)

124 def m o n i t o r t r a f f i c f l o w (s e l f , durat ion=−1) :

125 ””” Event 6”””

126 print (”ARTCC TMU − Event 6 cont inuous ”)

127 def moni to r and ad jus t f l ow (s e l f , durat ion=−1) :

128 ””” Event 7”””

129 i f durat ion == −2:

130 s e l f . r eque s t (s e l f . mon i to r and ad jus t f l ow)

131 s e l f . r eque s t (s e l f . r e c e i v e inc l ement weathe r warn ing)

132 for agent in s e l f . model . s chedu le . agents :

133 i f isinstance (agent ,TRACONTMU) :

134 agent . r eque s t (agent . mon i to r and ad jus t f l ow)

135 e l i f isinstance (agent ,TowerTMU) :

136 agent . r eque s t (agent . mon i to r and ad jus t f l ow)

137 e l i f isinstance (agent , ATCSupervisor) :

138 agent . r eque s t (agent . mon i to r and ad jus t f l ow)

139 print (”ARTCC TMU − Event 7 cont inuous ”)

140 def r e c e i v e inc l ement weathe r warn ing (s e l f , durat ion =1, next=False) :

141 ””” Event 8”””

142 print (”ARTCC TMU − Event 8”)

143 i f next :

144 s e l f . r eque s t (s e l f . s e n d i n c r e a s e s p a c i n g m e s s a g e)

418

145 def s e n d i n c r e a s e s p a c i n g m e s s a g e (s e l f , durat ion =1, next=False) :

146 ””” Event 9”””

147 for agent in s e l f . model . s chedu le . agents :

148 i f isinstance (agent , ATCSupervisor) :

149 agent . r eque s t (agent . c o o r d i n a t e w i t h s e c t o r s)

150 #

151 print (”ARTCC TMU − Event 9”)

152 def coo rd ina t e g round s top and depar tu r e de l ay (s e l f , durat ion =1, next=False) :

153 ””” Event 11 ”””

154 for agent in s e l f . model . s chedu le . agents :

155 i f isinstance (agent ,ATCSCC) :

156 agent . r eque s t (agent . i n i t i a t e d e l a y p r o g r a m)

157 print (”ARTCC TMU − Event 11”)

158 class TRACONTMU(Agent) :

159 ”””TRACON TMU”””

160 def i n i t (s e l f , model , un ique id) :

161 s e l f . model = model

162 s e l f . un ique id = un ique id

163 s e l f . doing = dict ()

164 def s tep (s e l f) :

165 i t e r a t e o v e r t h i s = copy (s e l f . doing)

166 for act ion , t ime remain ing in i t e r a t e o v e r t h i s . i tems () :

167 i f t ime remain ing :

168 ac t i on (durat ion=s e l f . doing [a c t i on])

169 s e l f . doing [a c t i on] −= 1

170 else :

171 ac t i on (durat ion=s e l f . doing [a c t i on] , next=True)

172 s e l f . doing . pop (ac t i on)

173 def r eque s t (s e l f , f unc t i on) :

174 s e l f . doing [func t i on]= func t i on . d e f a u l t s [0]−1

175 def t e l c o n f o r p l a n n i n g (s e l f , durat ion =15, next=False) :

176 ””” Event 4”””

177 print (”TRACON TMU − Event 4”)

178 i f next :

179 s e l f . r eque s t (s e l f . adv i s e f a c i l i t y management)

180 def adv i s e f a c i l i t y management (s e l f , durat ion =10, next=False) :

181 ””” Event 5”””

182 print (”TRACON TMU − Event 5”)

183 def m o n i t o r t r a f f i c f l o w (s e l f , durat ion=−1) :

184 ””” Event 6”””

185 print (”TRACON TMU − Event 6 cont inuous ”)

419

186 def moni to r and ad jus t f l ow (s e l f , durat ion=−1) :

187 ””” Event 7”””

188 print (”TRACON TMU − Event 7 cont inuous ”)

189 class TowerTMU(Agent) :

190 ”””Tower TMU”””

191 def i n i t (s e l f , model , un ique id) :

192 s e l f . model = model

193 s e l f . un ique id = un ique id

194 s e l f . doing = dict ()

195 def s tep (s e l f) :

196 i t e r a t e o v e r t h i s = copy (s e l f . doing)

197 for act ion , t ime remain ing in i t e r a t e o v e r t h i s . i tems () :

198 i f t ime remain ing :

199 ac t i on (durat ion=s e l f . doing [a c t i on])

200 s e l f . doing [a c t i on] −= 1

201 else :

202 ac t i on (durat ion=s e l f . doing [a c t i on] , next=True)

203 s e l f . doing . pop (ac t i on)

204 def r eque s t (s e l f , f unc t i on) :

205 s e l f . doing [func t i on]= func t i on . d e f a u l t s [0]−1

206 def t e l c o n f o r p l a n n i n g (s e l f , durat ion =15, next=False) :

207 ””” Event 4”””

208 print (”Tower TMU − Event 4”)

209 i f next :

210 s e l f . r eque s t (s e l f . adv i s e f a c i l i t y management)

211 def adv i s e f a c i l i t y management (s e l f , durat ion =10, next=False) :

212 ””” Event 5”””

213 print (”Tower TMU − Event 5”)

214 def m o n i t o r t r a f f i c f l o w (s e l f , durat ion=−1) :

215 ””” Event 6”””

216 print (”Tower TMU − Event 6 cont inuous ”)

217 def moni to r and ad jus t f l ow (s e l f , durat ion=−1) :

218 ””” Event 7”””

219 print (”Tower TMU − Event 7 cont inuous ”)

220 class ATCSupervisor (Agent) :

221 ”””ATC Superv i so r ”””

222 def i n i t (s e l f , model , un ique id) :

223 s e l f . model = model

224 s e l f . un ique id = un ique id

225 s e l f . doing = dict ()

226 def s tep (s e l f) :

420

227 i t e r a t e o v e r t h i s = copy (s e l f . doing)

228 for act ion , t ime remain ing in i t e r a t e o v e r t h i s . i tems () :

229 i f t ime remain ing :

230 ac t i on (durat ion=s e l f . doing [a c t i on])

231 s e l f . doing [a c t i on] −= 1

232 else :

233 ac t i on (durat ion=s e l f . doing [a c t i on] , next=True)

234 s e l f . doing . pop (ac t i on)

235 def r eque s t (s e l f , f unc t i on) :

236 s e l f . doing [func t i on]= func t i on . d e f a u l t s [0]−1

237 def moni to r and ad jus t f l ow (s e l f , durat ion=−1) :

238 ””” Event 7”””

239 print (”ATC Superv i so r − Event 7 cont inuous ”)

240 def c o o r d i n a t e w i t h s e c t o r s (s e l f , durat ion =10, next=False) :

241 ””” Event 10 ”””

242 i f durat ion == 9 :

243 for agent in s e l f . model . s chedu le . agents :

244 i f isinstance (agent , ARTCCTMU) :

245 agent . r eque s t (agent . coo rd ina t e g round s top and depar tu r e de l ay)

246 print (”ATC Superv i so r − Event 10”)

247 class FAAAsIsModel (Model) :

248 ”””The model ”””

249 def i n i t (s e l f) :

250 s e l f . s chedu le = RandomActivation (s e l f)

251 s e l f . c r e a t e a g e n t s ()

252 def c r e a t e a g e n t s (s e l f) :

253 ””” Creat ing the r equ i r ed agents ”””

254 s e l f . s chedu le . add (ATCSCC(s e l f , 0))

255 s e l f . s chedu le . add (SystemUserCommunity (s e l f , 1))

256 s e l f . s chedu le . add (ARTCCTMU(s e l f , 2))

257 s e l f . s chedu le . add (TRACONTMU(s e l f , 3))

258 s e l f . s chedu le . add (TowerTMU(s e l f , 4))

259 s e l f . s chedu le . add (ATCSupervisor (s e l f , 5))

260 def s tep (s e l f , stepno) :

261 print (”model s tep ” + str (stepno) + ” . ”)

262 s e l f . s chedu le . s tep ()

263 def run model (s e l f , s t ep s = 95) :

264 for stepno in range (s t ep s) :

265 s e l f . s t ep (stepno)

266 i f name == ’ ma in ’ :

267 model = FAAAsIsModel ()

421

268 model . run model ()

Listing B.3: Agent-based simulation for the FAA example using the Mesa Framework

in Python

422

REFERENCES

[1] “IEEE Standard Glossary of Software Engineering Terminology,” Dec 1990.

[2] “Integration Definition for Function Modeling (IDEF0),” December 1993.

[3] “DoD modeling and simulation (M&S) glossary,” January 1998.

[4] The American Heritage dictionary of the English language. Boston: Houghton
Mifflin, 2000.

[5] “Unified modeling language specification,” January 2005.

[6] “DoDAF product development questionnaire analysis report and new product
recommendations report,” tech. rep., U.S. Department of Defense, Arlington,
VA, May 2008.

[7] “Systems and software engineering system life cycle processes,” ISO/IEC
15288:2008(E) IEEE Std 15288-2008 (Revision of IEEE Std 15288-2004),
pp. 1–84, 2008.

[8] “OMG Systems Modeling Language,” June 2012.

[9] “NATO glossary of terms and definitions,” April 2013.

[10] “NATO Architecture Framework v4.0 Documentation,” 2018.

[11] 111th Congress, “Public law 111 - 23 - weapon systems acquisition reform,”
May 2009. Bill Number S. 454, H. Rept. 111-124, H. Rept. 111-101.

[12] AbuSharekh, A., Kansal, S., Zaidi, A. K., and Levis, A. H., “Modeling
time in DoDAF compliant executable architectures,” in Conference on Systems
Engineering Research, 2007.

[13] Achinstein, P., Concepts of Science: A Philosophical Analysis, ch. 8: On a
semantical theory of models, p. 228. Baltimore: Johns Hopkins Press, 1968.

[14] Achinstein, P., Concepts of Science: A Philosophical Analysis, ch. 8: On a
semantical theory of models, pp. 230–258. Baltimore: Johns Hopkins Press,
1968.

[15] Achinstein, P., Concepts of Science: A Philosophical Analysis, ch. 7: Analo-
gies and Models, pp. 209–221. Baltimore: Johns Hopkins Press, 1968.

423

[16] Air and Land Forces Subcommittee, Committee on Armed Ser-
vices, House of Representatives, “Air Force procurement: Aerial refu-
eling tanker protest,” No. GAO-08-991T, United States Government Account-
ability Office, July 2008.

[17] Al-Shukri, S., Lenin, R. B., Ramaswamy, S., Imperiale, A., and Itmi,
M., “A system of systems approach to modeling and analysis of P2P over-
lays for WSNs,” in System of Systems Engineering, 2009. SoSE 2009. IEEE
International Conference on, pp. 1–6, 2009.

[18] Angerhofer, B. and Angelides, M., “System dynamics modelling in supply
chain management: research review,” in Simulation Conference, 2000. Proceed-
ings. Winter, vol. 1, pp. 342–351 vol.1, 2000.

[19] ATO Architecture Framework Working Group, “National airspace
system enterprise architecture framework,” September 2007.

[20] Bagdatli, B. and Mavris, D., “Use of high-level architecture discrete event
simulation in a system of systems design,” in Aerospace Conference, 2012 IEEE,
pp. 1–13, March 2012.

[21] Bahill, A. T. and Gissing, B., “Re-evaluating systems engineering concepts
using systems thinking,” Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, vol. 28, pp. 516–527, Nov 1998.

[22] Balci, O., “Quality assessment, verification, and validation of modeling and
simulation applications,” in Simulation Conference, 2004. Proceedings of the
2004 Winter, vol. 1, pp. 122–129, 2004.

[23] Balci, O., “Verification, validation and accreditation of simulation models,”
in Simulation Conference, 1997., Proceedings of the 1997 Winter, pp. 135 –141,
dec 1997.

[24] Balestrini Robinson, S., A modeling process to understand complex system
architectures. Dissertation, Georgia Institute of Technology, August 2009.

[25] Barnhart, E., Lei, T., and Ventura, R., “Integrated mission models and
simulation through the entire program lifecycle,” in MILITARY COMMUNI-
CATIONS CONFERENCE, 2010 - MILCOM 2010, pp. 668–673, Oct 2010.

[26] Barnhart, R., The American Heritage dictionary of science. Boston:
Houghton Mifflin, 1986.

[27] Bauchau, O. A., Flexible Multibody Dynamics, vol. 176 of Solid Mechanics
and Its Applications, ch. 8: Variational and energy principles, pp. 295–299. New
York: Springer, 2011. ISBN 978-94-007-0334-6.

424

[28] Baumgarten, E. and Silverman, S., “Dynamic dodaf power tools,” in Mil-
itary Communications Conference, 2008. MILCOM 2008. IEEE, pp. 1–6, Nov
2008.

[29] Belay, A., Helo, P., and Welo, T., “System of systems thinking in product
development: A system dynamic approach,” in System of Systems Engineering
(SoSE), 2012 7th International Conference on, pp. 549–554, 2012.

[30] Berman, A., Nonnegative matrices in the mathematical sciences, ch. 2: non-
negative matrices, pp. 26–62. Philadelphia: Society for Industrial and Applied
Mathematics, 1994.

[31] Berry, D. A., Bandit problems : sequential allocation of experiments. Mono-
graphs on statistics and applied probability (Series), London ; New York: Chap-
man and Hall, 1984.

[32] Billington, J., Application of Petri nets to communication networks : ad-
vances in Petri nets. Berlin New York: Springer, 1999.

[33] Birkler, J., Arena, M. V., Blickstein, I., Drezner, J. A., Gates,
S. M., Huang, M., Murphy, R., Nemfakos, C., and Woodward, S. K.,
From Marginal Adjustments to Meaningful Change: Rethinking Weapon System
Acquisition, vol. MG-1020-OSD of Monographs. Santa Monica, CA: RAND
Corporation, 2010.

[34] Boehm, B. W., Software engineering economics, ch. 4: The software life-
cycle phases and activities, pp. 35–56. Advances in Computing Science and
Technology Series, Englewood Cliffs, N.J: Prentice-Hall, 1981.

[35] Bohr, N., “I. On the constitution of atoms and molecules,” Philosophical
Magazine Series 6, vol. 26, no. 151, pp. 1–25, 1913.

[36] Bonabeau, E., “Agent-based modeling: Methods and techniques for simulat-
ing human systems,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 99, no. Suppl 3, pp. 7280–7287, 2002.

[37] Bowen, R. and Sahin, F., “A system of systems approach to model an arti-
ficial immune system using discrete event specification,” in System of Systems
Engineering, 2009. SoSE 2009. IEEE International Conference on, pp. 1–6,
2009.

[38] Box, G., Empirical model-building and response surfaces, ch. 3: Least squares
for response surface work, p. 74. Probability and mathematical statistics, New
York: Wiley, 1987.

[39] Brown, E., Calder, A., Plewa, T., Ricker, P., Robinson, K., and
Gallagher, J., “Type Ia supernovae: Simulations and nucleosynthesis,” Nu-
clear Physics A, vol. 758, pp. 451–454, July 2005. Nuclei in the Cosmos VIII—
Proceedings of the Eighth International Symposium on Nuclei in the Cosmos.

425

[40] Brown, R., “Calendar queues: a fast 0(1) priority queue implementation for
the simulation event set problem,” Commun. ACM, vol. 31, pp. 1220–1227,
Oct. 1988.

[41] Broy, M., Gleirscher, M., Kluge, P., Krenzer, W., Merenda, S.,
and Wild, D., “Automotive Architecture Framework: Towards a Holistic and
Standardised System Architecture Description,” Tech. Rep. TUM-I0915, July
2009.

[42] Burbank, J., Kasch, W., and Ward, J., An Introduction to Network Mod-
eling and Simulation for the Practicing Engineer, ch. Introduction, pp. 1–19.
Hoboken, New Jersey: John Wiley & Sons, Inc., 1st ed., 2011.

[43] Bush, B., Duffy, M., Sandor, D., and Peterson, S., “Using system
dynamics to model the transition to biofuels in the united states,” in System
of Systems Engineering, 2008. SoSE ’08. IEEE International Conference on,
pp. 1–6, 2008.

[44] Caballini, C., Sacone, S., and Siri, S., “The port as a system of systems:
A system dynamics simulation approach,” in System of Systems Engineering
(SoSE), 2012 7th International Conference on, pp. 191–196, 2012.

[45] Carnap, R., Introduction to semantics and formalization of logic, vol. 1,
ch. Relations between semantics and syntax, p. 203. Cambridge, Massachusetts:
Harvard University Press, 1943.

[46] Carson, J. S., “Convincing users of model’s validity is challenging aspect of
modeler’s job,” Industrial Engineering, vol. 18, pp. 74–85, June 1986.

[47] Chairman of the Joint Chiefs of Staff, “CJCSI 3121.01B standing rules
of engagement/standing rules for the use of force for U.S. forces,” June 2005.

[48] Charette, R., “What’s wrong with weapons acquisitions?,” Spectrum, IEEE,
vol. 45, no. 11, pp. 33–39, November.

[49] Congressional Committees, “KC-46 tanker aircraft: Acquisition plans
have good features but contain schedule risk,” No. GAO-12-366, United States
Government Accountability Office, March 2012.

[50] Cook, J., “System of systems reliability for multi-state systems,” in Reliability
and Maintainability Symposium, 2009. RAMS 2009. Annual, pp. 13–18, 2009.

[51] Coppola, A., “FY13 RWDC state aviation challenge.” Electronic, 2012.

[52] Dahmann, J., Rebovich, G., Lowry, R., Lane, J., and Baldwin, K.,
“An implementers’ view of systems engineering for systems of systems,” in
Systems Conference (SysCon), 2011 IEEE International, pp. 212–217, April
2011.

426

[53] Dahmann, J. and Baldwin, K., “Understanding the current state of us de-
fense systems of systems and the implications for systems engineering,” in Sys-
tems Conference, 2008 2nd Annual IEEE, pp. 1–7, 2008.

[54] DARPA Tactical Technology Office, “Meta.” Broad Agency An-
nouncement, December 2009. DARPA-BAA-10-21.

[55] Darwin, C. R., The descent of man, and selection in relation to sex, vol. 1,
ch. 5. On the Development of the Intellectual and Moral Faculties During
Primeval and Civilised Times., pp. 158–184. London: John Murray, 1st ed.,
1871.

[56] David J. McGill, W. W. K., Engineering Mechanics: An Introduction to
Dynamics, 4th Edition, ch. 2: Kinetics of Particles and of Mass Centers of
Bodies, pp. 56–60. Bloomington, IN: Tichenor Publishing, 2003.

[57] Davis, P., Generalizing concepts and methods of verification, validation, and
accreditation (VV&A) for military simulations. No. R-4249-ACQ, Santa Mon-
ica, CA: RAND Corporation, 1992.

[58] Defense Acquisition University, Defense Acquisition Guidebook, ch. 4.1.4.
System of Systems (SoS) Engineering, p. 178. Defense Acquisition University,
July 2011.

[59] Department of Defense Chief Information Officer, “The DoDAF
Architecture Framework Version 2.02,” 08 2010.

[60] Department of the Navy, “Marine corps warfighting publication 3-22.2
suppression of enemy air defenses,” May 2001.

[61] Dictionary.com, “model,” May 2013.

[62] Director for Joint Force Development (J-7), The Joint Publication
1-02, Department of Defense Dictionary of Military and Associated Terms. De-
partment of Defense, August 2011.

[63] Dolnick, E., The clockwork universe : Isaac Newton, the Royal Society, and
the birth of the modern world. New York, NY: HarperCollins, 2011.

[64] Domerçant, J. C., ARC-VM: an architecture real options complexity-based
valuation methodology for military systems-of-systems acquisitions. Disserta-
tion, Georgia Institute of Technology, November 2011.

[65] Donnelly, R., “Transporting data over radio networks handling rf loss and
distinct application needs in a system of systems,” in Systems Conference, 2010
4th Annual IEEE, pp. 249–254, 2010.

[66] Engler, William O., I., A methodology for creating expert-based quantitative
models for early phase design. Dissertation, Georgia Institute of Technology,
April 2013.

427

[67] Engler, W., Biltgen, P., and Mavris, D., “Concept selection using
an interactive reconfigurable matrix of alternatives (IRMA),” in 45th AIAA
Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Ameri-
can Institute of Aeronautics and Astronautics, January 2007.

[68] Fabrycky, W. J. and Blanchard, B. S., Life-cycle cost and economic anal-
ysis, ch. 1: System life-cycle concepts, pp. 1–14. International series in industrial
and systems engineering, Englewood Cliffs, N.J: Prentice Hall, 1991.

[69] Fernandes, R., Li, B., Benjamin, P., and Mayer, R., “Collaboration
support for executable enterprise architectures,” in Collaborative Technologies
and Systems, 2009. CTS ’09. International Symposium on, pp. 520–527, 2009.

[70] Ford, L. R. and Fulkerson, D. R., Flows in networks. Santa Monica, CA:
RAND, 1962. http://www.rand.org/pubs/reports/R375.html.

[71] Forrester, J. W., “Industrial dynamics.,” Harvard Business Review, vol. 36,
no. 4, pp. 37–66, 1958.

[72] Forrester, J. W., Industrial dynamics, ch. 6: Structure of a Dynamic System
Model, pp. 67–72. Cambridge: M. I. T. Press, 1961.

[73] Forrester, J. W., Industrial dynamics, ch. 8: Symbols for Flow Diagrams,
pp. 81–85. Cambridge: M. I. T. Press, 1961.

[74] Frohberg, K., Progress in modelling and simulation, ch. 5: The international
linkage of open exchange models, pp. 77–84. London New York: Academic
Press, 1982.

[75] Fry, D. and DeLaurentis, D., “Measuring net-centricity,” in System of
Systems Engineering (SoSE), 2011 6th International Conference on, pp. 264–
269, 2011.

[76] Galilei, G., Dialogues concerning two new sciences, ch. 1: First new science,
treating of the resistance which solid bodies offer to fracture. First Day, pp. 66–
67. New York: The McMillan Company, 1914. Translated from the Italian and
Latin into English by Henry Crew and Alfonso de Salvio. Orig. 1638.

[77] Garrett, R. K., Anderson, S., Baron, N. T., and Moreland, J. D.,
“Managing the interstitials, a system of systems framework suited for the bal-
listic missile defense system,” Systems Engineering, vol. 14, no. 1, pp. 87–109,
2011.

[78] Gass, S., Decision making, models and algorithms : a first course, ch. 2: Sys-
tems, Models, and Algorithms, pp. 9–22. Malabar, Fla: Krieger Pub. Co, 1991.

[79] Ge, B., Hipel, K., Yang, K., and Chen, Y., “A novel executable modeling
approach for system-of-systems architecture,” Systems Journal, IEEE, vol. PP,
no. 99, pp. 1–10, 2013.

428

[80] Ge, B., Hipel, K. W., Yang, K., and Chen, Y., “A data-centric capability-
focused approach for system-of-systems architecture modeling and analysis,”
Systems Engineering, vol. 16, no. 3, pp. 363–377, 2013.

[81] Gelernter, D., This Will Make You Smarter: New Scientific Concepts to Im-
prove Your Thinking, ch. Recursive structure, pp. 246–249. New York: Harper-
Collins, 2012.

[82] Gibson, M. C., Patel, A. B., Nagpal, R., and Perrimon, N., “The emer-
gence of geometric order in proliferating metazoan epithelia,” Nature, vol. 442,
pp. 1038–1041, Aug 2006.

[83] Give Team, “Insight maker.” http://insightmaker.com/, 2012.

[84] Gortney, W. E., “Joint capabilities integration and development system.”
Instruction, January 2012.

[85] Gortney, W. E., “Net ready key performance parameter,” March 2012.
CJCSI 6212.01F.

[86] Gove, P., Webster’s third new international dictionary of the English language
unabridged. Springfield, Mass., U.S.A: Merriam-Webster, 1993.

[87] Gove, P., Webster’s third new international dictionary of the English language
unabridged. Springfield, Mass., U.S.A: Merriam-Webster, 1993.

[88] Griendling, K. and Mavris, D., “Development of a DoDAF-based exe-
cutable architecting approach to analyze system-of-systems alternatives,” in
Aerospace Conference, 2011 IEEE, pp. 1–15, 2011.

[89] Griendling, K. and Mavris, D., “A process for systems of systems archi-
tecting,” in 48th AIAA Aerospace Sciences Meeting Including the New Horizons
Forum and Aerospace Exposition, Aerospace Sciences Meetings, (Orlando, FL),
American Institute of Aeronautics and Astronautics, January 2010.

[90] Griendling, K. A., ARCHITECT: the architecture-based technology evalua-
tion and capability tradeoff method. Dissertation, Georgia Institute of Technol-
ogy, November 2011.

[91] Grogan, P. and de Weck, O., “An integrated modeling framework for in-
frastructure system-of-systems simulation,” in Systems Conference (SysCon),
2013 IEEE International, pp. 483–490, 2013.

[92] Harchol-Balter, M., Performance Modeling and Design of Computer Sys-
tems. West Nyack, NY, USA: Cambridge University Press, 2013.

[93] Haskins, C., ed., Systems Engineering Handbook: A Guide For System Life
Cycle Processes And Activities. International Council on Systems Engineering,
June 2006.

429

[94] Hazelrigg, G., Systems engineering : an approach to information-based de-
sign. Upper Saddle River, NJ: Prentice Hall, 1996.

[95] Hempel, C., Philosophy of natural science, ch. 2: Scientific inquiry: invention
and test, pp. 6–18. Englewood Cliffs, N.J: Prentice-Hall, 1966.

[96] Hertz, H., Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt,
ch. Einleitung, p. 1. Gesammelte werke, J. A. Barth, 1894.

[97] Hesse, M. B., Models and analogies in science, ch. 1: The function of models:
a dialogue, pp. 8–21. Sheed and Ward, 1966.

[98] Hetzel, W., The complete guide to software testing. Wellesley, Massachusetts:
QED Information Sciences, Inc., 1984.

[99] Hill, R. R., Carl, R. G., and Champagne, L. E., “Using agent-based
simulation to empirically examine search theory using a historical case study,”
Journal of Simulation, vol. 1, pp. 29–38, 12 2006.

[100] Hoffman, F. O. and Hammonds, J. S., “Propagation of uncertainty in
risk assessments: The need to distinguish between uncertainty due to lack of
knowledge and uncertainty due to variability,” Risk Analysis, vol. 14, no. 5,
pp. 707–712, 1994.

[101] Holland, J., Emergence: from chaos to order, ch. 1: Before we proceed,
pp. 1–15. Reading, Mass: Addison-Wesley, 1998.

[102] Hosking, M. and Sahin, F., “An XML based system of systems agent-in-
the-loop simulation framework using discrete event simulation,” in Systems,
Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on,
pp. 3293–3298, 2009.

[103] Hurlburt, G., “Development of the warfighting architecture requirements
(war) tool,” in Object-Oriented Real-Time Dependable Systems, 2005. WORDS
2005. 10th IEEE International Workshop on, pp. 97–104, Feb 2005.

[104] Iacobucci, J. V., Rapid Architecture Alternative Modeling (RAAM): a frame-
work for capability-based analysis of system of systems architectures. Disserta-
tion, Georgia Institute of Technology, June 2012.

[105] Information Coherence Authority for Defence, “Ministry of Defense
Architecture Framework,” December 2012.

[106] International Atomic Energy Agency, Evaluating the reliability of pre-
dictions made using environmental transfer models, ch. 2: General aspects of
model reliability evaluation, pp. 10–12. Vienna: International Atomic Energy
Agency, 1989.

430

[107] ISEE Systems, Inc., “STELLA, Systems Thinking for Education and Re-
search.” http://www.iseesystems.com/, 2012.

[108] Jian, X., Bing-feng, G., Xiao-ke, Z., Ke-wei, Y., and Ying-Wu, C.,
“Evaluation method of system-of-systems architecture using knowledge-based
executable model,” in Management Science and Engineering (ICMSE), 2010
International Conference on, pp. 141–147, Nov 2010.

[109] Jiang, S.-W., Lv, W.-M., and Feng, J.-C., “Research on process modeling
and analyzing methods of distributed equipment system-of-systems,” in Qual-
ity, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE), 2012
International Conference on, pp. 161–164, 2012.

[110] Jones-Wyatt, E., Domercant, J., and Mavris, D., “A reliability-based
measurement of interoperability for systems of systems,” in Systems Conference
(SysCon), 2013 IEEE International, pp. 408–413, April 2013.

[111] Jones Wyatt, E. A., A reliability-based measurement of interoperability for
conceptual-level systems of systems. Dissertation, Georgia Institute of Technol-
ogy, August 2014.

[112] Jonsson, P., Cox, T. J., Primack, J. R., and Somerville, R. S., “Sim-
ulations of dust in interacting galaxies. I. dust attenuation,” The Astrophysical
Journal, vol. 637, no. 1, p. 255, 2006.

[113] Kazil, J. and Masad, D., “Mesa: Agent-based modeling in Python 3+.”
https://github.com/projectmesa/mesa, Sep 2014. Accessed: Sep 2016.

[114] Kendall, D. G., “Stochastic processes occurring in the theory of queues and
their analysis by the method of the imbedded Markov chain,” The Annals of
Mathematical Statistics, vol. 24, no. 3, pp. 338–354, 1953.

[115] Khalil, W., Merzouki, R., Ould-Bouamama, B., and Haffaf, H., “Hy-
pergraph models for system of systems supervision design,” Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol. 42,
no. 4, pp. 1005–1012, 2012.

[116] Kilicay-Ergin, N. and Dagli, C., “Executable modeling for system of sys-
tems architecting: An artificial life framework,” in Systems Conference, 2008
2nd Annual IEEE, pp. 1–5, April 2008.

[117] Krygiel, A., Behind the Wizard’s curtain an integration environment for a
system of systems, ch. 2: Systems of systems and federations of systems, pp. 31–
47. Washington, D.C: National Defense University, 1999.

[118] Law, A. M. and Kelton, W. D., Simulation modeling and analysis, ch. 1:
Basic simulation modeling, pp. 1–7. Industrial engineering and management
science, New York: McGraw-Hill, 1991.

431

[119] Law, A. M. and Kelton, W. D., Simulation modeling and analysis, ch. 5:
Building valid and credible simulation models, pp. 298–324. Industrial engi-
neering and management science, New York: McGraw-Hill, 1991.

[120] Law, A. M. and Kelton, W. D., Simulation modeling and analysis, ch. 1:
Basic simulation modeling, pp. 106–109. Industrial engineering and manage-
ment science, New York: McGraw-Hill, 1991.

[121] Law, A. M. and Kelton, W. D., Simulation modeling and analysis, ch. 1:
Basic simulation modeling, pp. 7–13. Industrial engineering and management
science, New York: McGraw-Hill, 1991.

[122] Levitt, M. and Warshel, A., “Computer simulation of protein folding,”
Nature, vol. 253, pp. 694–698, February 1975.

[123] Levy, S., “Google’s Larry Page on why moon shots matter,” Wired Magazine,
vol. 21, February 2013.

[124] Li, L., Dou, Y., Ge, B., Yang, K., and Chen, Y., “Executable system-
of-systems architecting based on DoDAF meta-model,” in System of Systems
Engineering (SoSE), 2012 7th International Conference on, pp. 362–367, 2012.

[125] Liu, J., Priyantha, B., Hart, T., Ramos, H. S., Loureiro, A. A. F.,
and Wang, Q., “Energy efficient GPS sensing with cloud offloading,” in Pro-
ceedings of the 10th ACM Conference on Embedded Network Sensor Systems,
SenSys ’12, (New York, NY, USA), pp. 85–98, ACM, 2012.

[126] Luna-Reyes, L. F. and Andersen, D. L., “Collecting and analyzing qual-
itative data for system dynamics: methods and models,” System Dynamics
Review, vol. 19, no. 4, pp. 271–296, 2003.

[127] Macal, C. M. and North, M. J., “Tutorial on agent-based modelling and
simulation,” Journal of Simulation, vol. 4, pp. 151–162, September 2010.

[128] Mach, E., The Science of Mechanics: A Critical and Historical Account of Its
Development, ch. 1: The development of the principles of statics, pp. 40–48.
Open court publishing Company, 1919.

[129] Mackay, A. L., A Dictionary of scientific quotations. Bristol Philadelphia:
A. Hilger, 1991.

[130] Maier, M. W., “Architecting principles for systems-of-systems,” Systems En-
gineering, vol. 1, no. 4, pp. 267–284, 1998.

[131] Mane, M., DeLaurentis, D., and Frazho, A., “A Markov perspective on
system-of-systems complexity,” in Systems, Man, and Cybernetics (SMC), 2011
IEEE International Conference on, pp. 1238–1243, 2011.

432

[132] Masad, D. and Kazil, J., “Mesa: An Agent-Based Modeling Framework,”
in Proceedings of the 14th Python in Science Conference (Kathryn Huff and
James Bergstra, eds.), pp. 53–60, 2015.

[133] Math Works, “Ordinary differential equations.”

[134] Mathieu, J. and Callaway, D., “State estimation and control of heteroge-
neous thermostatically controlled loads for load following,” in System Science
(HICSS), 2012 45th Hawaii International Conference on, pp. 2002–2011, Jan
2012.

[135] Mavris, D., DeLaurentis, D., Bandte, O., and Hale, M., “A stochas-
tic approach to multi-disciplinary aircraft analysis and design,” in 36th AIAA
Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Ameri-
can Institute of Aeronautics and Astronautics, January 1998.

[136] Mavris, D. and Griendling, K., “Relational oriented systems engineering
and technology tradeoff analysis (ROSETTA) environment,” in System of Sys-
tems Engineering (SoSE), 2011 6th International Conference on, pp. 49–54,
2011.

[137] Mehlhorn, K. and Sanders, P., Algorithms and data structures : the basic
toolbox, ch. 4: Hash tables and associative arrays, pp. 81–98. Berlin : Springer,
c2008., 2008.

[138] Merriam-webster.com, “model,” May 2013.

[139] Metz, C., “If Xerox PARC invented the PC, Google invented the internet,”
August 2012.

[140] Minsky, M. L., Semantic information processing, ch. 9: Matter, mind, and
models, pp. 425–426. Cambridge, Massachusetts: MIT Press, 1968.

[141] Mittal, S., Mitra, A., Gupta, A., and Zeigler, B., “Strengthening OV-
6a semantics with rule-based meta-models in DEVS/DoDAF based life-cycle
architectures development,” in Information Reuse and Integration, 2006 IEEE
International Conference on, pp. 80–85, Sept 2006.

[142] Mittal, S., “Extending dodaf to allow integrated devs-based modeling and
simulation,” The Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology, vol. 3, no. 2, pp. 95–123, 2006.

[143] Mittal, S., Zeigler, B. P., Martin, J. L. R., Sahin, F., and Jamshidi,
M., System of systems engineering : innovations for the 21st century, ch. 5:
Modeling and simulation for systems of systems engineering, pp. 101–149. Sys-
tems engineering and management, Hoboken, N.J: Wiley, 2009.

[144] Morris, C., Academic Press dictionary of science and technology. San Diego:
Academic Press, 1992.

433

[145] Morris, C., Academic Press dictionary of science and technology. San Diego:
Academic Press, 1992.

[146] Murata, T., “Petri nets: Properties, analysis and applications,” Proceedings
of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[147] Murphy, G., Similitude in engineering, ch. 4: Theory of models, pp. 57–72.
Ronald Press Co., 1950.

[148] Myers, R. H. and Montgomery, D. C., Response surface methodology :
process and product optimization using designed experiments, ch. 2: Building
Empirical Models, pp. 41–43. Probability and statistics, New York: J. Wiley,
2nd ed., 2002.

[149] NAS Enterprise Architecture Team, AJP-15, “NAS As Is (2011) Op-
erational Node Connectivity Diagram (OV-2),” September 2011.

[150] National Aeronautics and Space Administra-
tion, “Environmentally responsible aviation project.”
http://www.aeronautics.nasa.gov/iasp/era/index.htm, Aug 2015.

[151] Newton, I., Motte, A., and Machin, J., The Mathematical Principles
of Natural Philosophy. No. v. 1 in The Mathematical Principles of Natural
Philosophy, B. Motte, 1729.

[152] No Magic, “UPDM Plugin,” August 2018.

[153] Office of the Deputy Under Secretary of Defense for Acquisi-
tion and Technology, Systems and Software Engineering, Systems
Engineering Guide for Systems of Systems, Version 1.0, ch. 1.4: Definition of
Terms, p. 4. Washington, DC: ODUSD(A&T)SSE: Department of Defense,
2008.

[154] on Pre-Milestone A Systems Engineering: A Retrospective Re-
view, C. and Benefits for Future Air Force Systems Acquisition,
N. R. C., Pre-Milestone A and Early-Phase Systems Engineering: A Retro-
spective Review and Benefits for Future Air Force Acquisition, ch. 1, pp. 14–25.
The National Academies Press, 2008.

[155] on Pre-Milestone A Systems Engineering: A Retrospective Re-
view, C. and Benefits for Future Air Force Systems Acquisition,
N. R. C., Pre-Milestone A and Early-Phase Systems Engineering: A Retro-
spective Review and Benefits for Future Air Force Acquisition. The National
Academies Press, 2008.

[156] Parker, S., McGraw-Hill dictionary of scientific and technical terms. New
York: McGraw-Hill, 1994.

434

[157] Pawlowski, T., Barr, P. C., and Ring, S. J., “Applying executable archi-
tectures to support dynamic analysis of C2 systems,” tech. rep., The MITRE
Corporation, 245 Sedgwick Avenue, Fort Leavenworth, KS, 66027, June 2004.

[158] Peirce, C. S., Collected Papers of Charles Sanders Peirce, vol. 1, book I,
ch. 2: Lessons from the history of science, p. 20. Cambridge, Massachusetts:
Harvard University Press, 1931. paragraph 46.

[159] Peirce, C. S., Collected Papers of Charles Sanders Peirce, vol. 2, book III,
ch. 5: Ampliative reasoning, p. 385. Cambridge, Massachusetts: Harvard Uni-
versity Press, 1931. paragraph 640.

[160] Peirce, C. S., Collected Papers of Charles Sanders Peirce, vol. 2, book III,
ch. 8: A theory of probable inference, pp. 441–443. Cambridge, Massachusetts:
Harvard University Press, 1931. paragraphs 702–703.

[161] Planck, M., “Ueber das gesetz der energieverteilung im normalspectrum,”
Annalen der Physik, vol. 309, no. 3, pp. 553–563, 1901.

[162] Powersim Software AS, “Powersim.” http://www.powersim.com/, 2012.

[163] Prandtl, L., “Tragflügeltheorie. erste mitteilung,” Nachrichten von der
Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische
Klasse, pp. 451–477, 1918.

[164] Proth, Petri nets : a tool for design and management of manufacturing sys-
tems. Chichester New York: Wiley, 1996.

[165] Reddy, V. N., “Modeling biological pathways: a discrete event systems ap-
proach,” Master’s thesis, University of Maryland, 1994. Series ISR, MS 1994-4.

[166] Regli, W., Mayk, I., Dugan, C., Kopena, J., Lass, R., Modi, P., Mon-
gan, W., Salvage, J., and Sultanik, E., “Development and specification
of a reference model for agent-based systems,” Systems, Man, and Cybernet-
ics, Part C: Applications and Reviews, IEEE Transactions on, vol. 39, no. 5,
pp. 572–596, 2009.

[167] Robinson, S., Simulation: the practice of model development and use, ch. 1:
www.simulation: what, why, and when?, pp. 1–12. Chichester, England: John
Wiley & Sons, Ltd., 2004.

[168] Robinson, S., Simulation: the practice of model development and use, ch. 12:
Verification, validation, and confidence, pp. 209–225. Chichester, England:
John Wiley & Sons, Ltd., 2004.

[169] Robinson, S., Simulation: the practice of model development and use, ch. 6:
Conceptual modelling, pp. 63–94. Chichester, England: John Wiley & Sons,
Ltd., 2004.

435

[170] Rodrigues, R., “Modeling a real case metasystem architecture using finite
state process formalism,” in System of Systems Engineering (SoSE), 2013 8th
International Conference on, pp. 279–284, June 2013.

[171] Sage, A., Software systems engineering, ch. 5: Design and Evaluation of De-
cision Support Systems, pp. 161–204. New York: Wiley, 1990.

[172] Sanchez-Acevedo, M., Lopez-Mellado, E., and Ramos-Corchado, F.,
“Mobile agents formation control in 3D environments based on self organiza-
tion strategies,” in System of Systems Engineering, 2009. SoSE 2009. IEEE
International Conference on, pp. 1–6, 2009.

[173] Schlett, M., “Trends in embedded-microprocessor design,” Computer,
vol. 31, no. 8, pp. 44–49, 1998.

[174] Schrage, D. P. and Mavris, D. N., “Integrated design and manufacturing
for the high speed civil transport,” in Aircraft Design, Systems and Operations
Meeting, AIAA-1993-3994, (Monterey, CA), Aug 11-13 1993.

[175] Shafer, A., Benjamin, M., Leonard, J., and Curcio, J., “Autonomous
cooperation of heterogeneous platforms for sea-based search tasks,” in OCEANS
2008, pp. 1–10, Sept 2008.

[176] Simpson, J., The Oxford English dictionary. Oxford: Clarendon Press, 1989.

[177] Software Engineering Committee of the IEEE Computer Soci-
ety, “IEEE guide for developing system requirements specifications,” IEEE
Std 1233, 1998 Edition, pp. 1–36, 1998.

[178] Sterman, J. D., “System dynamics modeling: Tools for learning in a complex
world.,” California Management Review, vol. 43, no. 4, pp. 8–25, 2001.

[179] Suh, N., The principles of design. New York: Oxford University Press, 1990.

[180] Tawada, Y., Das Fremde aus der Dose. Graz: Literaturverlag Droschl, 1992.

[181] Thayer, R. H., Fairley, R. E., and Bjorke, P., “IEEE guide for informa-
tion technology - system definition - concept of operations (conops) document,”
IEEE Std 1362-1998, pp. 1–24, 1998.

[182] The Object Management Group, “Semantics of a foundational subset for
executable uml models,” October 2017.

[183] TheFreeDictionary.com, “model,” May 2013.

[184] Tietjens, O. G., Applied Hydro- and Aerodynamics, ch. 4: Airfoil theory,
p. 207. Engineering Societies Monographs, New York: McGraw-Hill Book Com-
pany, Inc., 1st ed., 1934. Based on lectures of L. Prandtl and translated by J.
P. Den Hartog.

436

[185] Turner, A. J., A methodology for the development of models for the simulation
of non-observable systems. Dissertation, Georgia Institute of Technology, 2014.

[186] US Joint Forces Command, The Joint Publication 4-09, Distribution Op-
erations. Department of Defense, December 2013.

[187] Ventana Systems, Inc., “Vensim.” http://vensim.com/, 2012.

[188] Volovoi, V., “Modeling of system reliability petri nets with aging tokens,”
Reliability Engineering & System Safety, vol. 84, no. 2, pp. 149–161, 2004.

[189] von Bortkiewicz, L., Das Gesetz der kleinen Zahlen, ch. 2: Anwendung
der Formeln des 1. Kapitels auf einige Daten der Selbstmord- und der Unfall-
Statistik, pp. 17–25. B.G. Teubner, 1898.

[190] Wagenhals, L. W., Haider, S., and Levis, A. H., “Synthesizing executable
models of object oriented architectures,” in Proceedings of the Conference on
Application and Theory of Petri Nets: Formal Methods in Software Engineer-
ing and Defence Systems - Volume 12, CRPIT ’02, (Darlinghurst, Australia,
Australia), pp. 85–93, Australian Computer Society, Inc., 2002.

[191] Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K., Probability &
statistics for engineers & scientists, ch. 6: Some continuous probability distri-
butions, pp. 171–209. Upper Saddle River, NJ: Pearson Prentice Hall, 2007.

[192] Wang, R. and Dagli, C., “An executable system architecture approach to
discrete events system modeling using sysml in conjunction with colored petri
net,” in Systems Conference, 2008 2nd Annual IEEE, pp. 1 –8, april 2008.

[193] Wasson, C., System analysis, design, and development concepts, principles,
and practices. Hoboken, N.J: Wiley-Interscience, 2006.

[194] Weisstein, E. W., “Bipartite graph.”

[195] Wennergren, D. M., “The Department of Defense Architecture Framework
Version 2.0.” Memorandum, May 2009.

[196] Whittaker, E. T. Sir and Robinson, G., The calculus of observations : a
treatise on numerical mathematics, ch. 12: Correlation, pp. 317–342. London:
Blackie and Son, Limited, 1924.

[197] Wilensky, U., “NetLogo.” http://ccl.northwestern.edu/netlogo/, 1999.

[198] Wolstenholme, E. F. and Coyle, R. G., “The development of system
dynamics as a methodology for system description and qualitative analysis,”
The Journal of the Operational Research Society, vol. 34, no. 7, pp. pp. 569–
581, 1983.

437

[199] Xiao-li, B., Xue-shan, L., Xiao-hui, B., Xian-qing, Y., Hong-hui, C.,
and De-ke, G., “Study of dod architecture simulation validation based on uml
and extended colored petri nets,” in Networking, Sensing and Control, 2008.
ICNSC 2008. IEEE International Conference on, pp. 61–66, April 2008.

[200] XJ Technologies Company, “Anylogic,” 2012.

[201] Xu, D. and Deng, Y., “Modeling mobile agent systems with high level petri
nets,” in Systems, Man, and Cybernetics, 2000 IEEE International Conference
on, vol. 5, pp. 3177–3182 vol.5, 2000.

[202] Youssef, R., Kim, B., Pagotto, J., Vallerand, A., Lam, S., Pace, P.,
Pogue, C., and Greenley, A., “Toward an integrated executable architec-
ture and M&S based analysis for counter terrorism and homeland security,” in
Transforming Training and Experimentation through Modelling and Simulation,
no. RTO-MP-MSG-045, (Neuilly-sur-Seine, France), pp. 7–1–7–24, 2006.

[203] Zachman, J. A., “A framework for information systems architecture,” IBM
Systems Journal, vol. 38, no. 2, pp. 454–470, 1999.

[204] Zinn, A. W., “The use of integrated architecture to support agent based simu-
lation: an initial investigation,” Master’s thesis, Air Force Institute of Technol-
ogy, Wright-Patterson Air Force Base, Ohio, March 2004. AFIT/GSE/ENY/04-
M01.

438

VITA

Burak Bagdatli received his B.S., M.S., and Ph.D. degrees in Aerospace Engineering

from Georgia Institute of Technology. His primary research area is system of systems

architectures and simulations. He worked as a design engineer on a medium altitude

high endurance UAV at Turkish Aerospace Industries. Burak also worked on several

research projects including modeling and analysis of new technologies, concepts, and

operations for the Next Generation Air Transportation System, coding simulations

for architecture-based technology evaluation and capability tradeoffs, developing an

interactive web-based course on electromechanical systems, analyzing, visualizing,

and working with large-scale manufacturing data, creation of digital twin for manu-

facturing machines, and exploring design spaces for model-based commercial airline

designs. His research interests include discrete event, agent-based, and mathematical

simulations, digital twin for various phases of a program, and statistical modeling

and visualizations.

439

	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	LIST OF ACRONYMS AND ABBREVIATIONS
	Glossary
	LIST OF SYMBOLS
	Summary
	Chapter 1 — Introduction
	Motivating problem

	Chapter 2 — On the Design of Systems
	Engineering design
	Systems
	Systems of systems
	Architectures
	Modeling and simulation

	Chapter 3 — Research Arguments and Work
	Gaining knowledge via synthetic arguments
	Motivating characteristics of the problem
	Induction: Architectures as ` =9 concmod
	Experiment 1

	Hypothesis: A multitude of modeling techniques are needed
	Experiment 2

	Using the right models for the right problem

	Chapter 4 — On Models
	Definitions of a model
	Scientific models
	Engineering models
	Non-existence of the real system
	Replacement of the real system
	Providing accurate observations

	Computer models
	Verification and validation of computer models

	Working definition of a model

	Chapter 5 — System of Systems Modeling
	Design description
	Models for system of systems
	Deterministic and static models
	Graph theory
	Probabilistic calculations

	Deterministic, dynamic, and continuous models
	Continuous-time Markov chains
	System dynamics

	Deterministic, dynamic, and discrete models
	Discrete-time Markov chains
	Petri nets

	Stochastic and static models
	Monte Carlo

	Stochastic, dynamic, and continuous models
	Stochastic, dynamic, and discrete models
	Monte Carlo discrete time Markov chains
	Petri nets
	Queueing theory
	Discrete event
	Agent-based

	Transition to experiments and technical work

	Chapter 6 — Modeling Potential of Operational Architecture Views
	OV-1 High level operational concept graphic
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	OV-2 Operational resource flow description
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	OV-3 Operational resource flow matrix
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	OV-4 Organizational relationships chart
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	OV-5a Operational activity decomposition tree
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	OV-5b Operational activity model
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	OV-6a Operational rules model
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	OV-6b State transition description
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	OV-6c Event-trace description
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	Chapter 7 — Modeling Potential of System Architecture Views
	SV-1 Systems interface description
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	SV-2 Systems resource flow description
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	SV-3 Systems-to-systems matrix
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	SV-4 Systems functionality description
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	SV-5a Operational activity to systems function traceability matrix
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	SV-5b Operational activity to systems traceability matrix
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	SV-6 Systems resource flow matrix
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	SV-7 Systems measures matrix
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	SV-8 Systems evolution description
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	SV-9 Systems technology & skills forecast
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	SV-10a Systems rules model
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	SV-10b Systems state transition description
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	SV-10c Systems event-trace description
	Graph model
	Probability model
	System dynamics model
	Markov chain model
	Petri net model
	Queueing model
	Discrete event model
	Agent-based model

	Chapter 8 — Experimental Testing of the Element Maps
	Experimental setup
	2012–2013 Real World Design Challenge State Aviation Problem
	Creating models from RWDC architecture views
	Building an agent-based model (Type A experiment)
	Building a discrete event model (Type B experiment)
	Building a system dynamics model (Type C experiment)
	Review of Jones Wyatt's graph model and summary

	2011 National Airspace System Enterprise Architecture Framework
	NASEAF As-Is Architecture
	Building a discrete event model (Type B experiment)
	Building an agent-based model (Type B experiment)
	Building a graph model (Type C experiment)
	Building a Markov chain model (Type C experiment)

	NASEAF Near Term Architecture
	Building an agent-based model (Type B experiment)
	Building a Petri net model (Type C experiment)

	NASEAF Far Term Architecture
	Building a probability (Type C experiment)
	Building an discrete event model (Type C experiment)

	Discussion on the Research Arguments

	Chapter 9 — Conclusions and the SOLSTySS Methodology
	Support for the first research argument
	Support for the second research argument
	Best modeling types for each viewpoint
	Best viewpoint to develop for each modeling type
	Recommended work flow for modeling systems of systems using their architectures
	Future work
	Final conclusions

	Appendix A — Architecture Elements to Model Elements Maps
	Appendix B — Algorithms Used in the Experiments
	Discrete event simulations
	Agent-based simulations

	References
	Vita

