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SUMMARY 

 Traditionally design engineers have used the Factor of Safety method for ensuring 

that designs do not fail in the field. Access to advanced computational tools and resources 

have made this process obsolete and new methods to introduce higher levels of reliability 

in an engineering systems are currently being investigated. However, even though high 

computational resources are available the computational resources required by reliability 

analysis procedures leave much to be desired. Furthermore, the regression based 

surrogate modeling techniques fail when there is discontinuity in the design space, caused 

by failure mechanisms, when the design is required to perform under severe externalities. 

Hence, in this research we propose efficient surrogate modeling techniques that will 

enable accurate estimation of a system’s response, even under discontinuity. 

 In Supervised Machine Learning, surrogate models can be trained with a set of 

training points for which the corresponding system responses are known. These labeled 

training points are expensive to get since the responses have to be evaluated for a 

combination of uncertain design variables, either through simulation or through tests. 

These combinations of uncertain design variables, called unlabeled data, are available in 

plenty since the Probability Distribution Function (PDF) information for the uncertain 

design variables are assumed to be known. We propose the combination of a few labeled 

and a large number of unlabeled data in order to construct superior surrogate modeling 

techniques, which come under the category of Semi-Supervised Learning. This superior 

performance is gained by combining the efficiency of Probabilistic Neural Networks 
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(PNN) for classification and Expectation-Maximization (EM) algorithm for treating the 

unlabeled data as labeled data with hidden labels. 

 Representative examples will be demonstrated where the proposed algorithms are 

shown to be effective in cases of linear, non-linear and discontinuous failure domains. 

Furthermore, the applicability of the proposed algorithms during the conceptual design 

stages is validated by reliability-based engineering design examples. 
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CHAPTER 1 

INTRODUCTION 

The advances in computational abilities have resulted in significant changes in the way 

complex engineering systems are designed. Development in computing software has 

made it possible to divide knowledge-based work, distribute it anywhere in the world, 

have it carried out and integrated again [1]. However, the introduction of these 

technologies is rapidly increasing the complexity of most engineered systems. Significant 

difficulties remain in understanding, designing, controlling and anticipating the normal 

and abnormal behaviors of the complex system. Furthermore, uncertainties in material 

properties, geometry, manufacturing processes and operational environments are critical 

at all scales (macro, meso, micro and nano scale). For example, during fabrication 

processes the typical surface finish and tolerances of geometric accuracy are on the order 

of tenths of microns during the fabrication processes [2], and the common 

microfabrication material (such as polycrystalline silicon) has 9~15% variation in its 

Young’s modulus and tensile strength [3]. However, there are some anomalies and 

difficulties, which restrict the ability to accurately evaluate the systems responses for 

variable parameters after incorporating realistic descriptions of uncertainty for those 

parameters in complex engineering systems. 

 Many times the system’s response is smooth and continuous (can  be linear as 

well as highly nonlinear) in which case the system’s response can be approximated using 

a regression based surrogate modeling technique such as Response Surface [4] Method 

(RSM) or Kriging [5, 6] method. In cases where the responses are not continuous and 

smooth, regression based methods cannot be used. Furthermore, given the larger scale of 
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modern complex systems, the traditional surrogate modeling techniques, based on a 

regression or function approximation approach, tend to utilize large computational 

resources in order to achieve the desired accuracy levels. As consumers demand for 

products that are better designed and last longer has increased, designers have to include 

more design variables in the product and have to consider more uncertain parameters that 

the product could be exposed to. Hence, even if computational power will be available at 

relatively cheaper price in the next few years, the increase in demand for complex 

designs by consumers will require designers to invent new and more accurate surrogate 

modeling techniques in order to consider design uncertainties.  

 We start by describing typical complex systems which range from meso-scale 

(Section 1.1) to macro-scale (Section 1.2). In Section 1.3 we describe the Topology 

Optimization method which has been used extensively in the last few decades for the 

design of structures and systems at various scales. We describe the origins of uncertainty 

and typical ways of addressing them in Section 1.4, and in Section 1.5 we describe how 

uncertainty can be considered during the Topology Optimization process by 

incorporating reliability quantification in the design process. We discuss the typical 

problems that are generally encountered in the reliability estimation process in Section 

1.6 which leads us to our research questions and hypotheses in Section 1.7. In Section 1.8 

we relate the current research questions and hypotheses and discuss how the presented 

hypotheses could help answer the research questions. We finish this chapter with a 

discussion of the various chapters in this dissertation, and discuss how they relate to the 

research questions in Section 1.9.  
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1.1 Meso-Scale Structures (Mesostructures) 

One of the most widespread trends in recent product development has been the copying 

of nature since nature has designed some of the most highly efficient systems for 

handling any condition in its environment. These natural systems utilize materials and 

structures capable of sensing the environment, processing data, responding, and adapting 

to the given condition. For instance, animal bones have been evolutionally optimized to 

support various loading conditions with minimum weight. The internal structure of bone 

can be considered a cellular structure, which can be used to strengthen, stiffen, and even 

create light-weight parts. The pursuit of engineering cellular materials is biologically 

inspired as shown in Figure 1. 1. The key advantages offered by cellular materials are 

high strength, energy absorption characteristics, and improved thermal and acoustic 

insulation properties accompanied by a relatively low mass. However, the use of 

advanced novel materials as primary structural elements is still a rarity, particularly in the 

industrial vehicle arena due to the difficulty with comprehensive understanding of 

uncertainties in system behavior. 

 Mesostructure materials are materials that have a characteristic cell length in the 

range of 0.1 to 10 mm. Small truss structures, honeycombs, and foams are examples of 

mesostructures [7]. The concept of mesostructured materials is motivated by the desire to 

put material only where it is needed for a specific application. Additive manufacturing 

processes are capable of fabricating the complex geometries inherent in cellular materials 

[8]. With the advancement of additive manufacturing technologies it is now possible to 

design custom mesostructures which have increased strength and low relative density 

when compared to the already available mesostructure materials [9]. For example 
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become important since it is very difficult to come up with intuitive designs that will give 

the same input and output relationships as shown in Figure 1. 2. 

 

Figure 1. 2 A non-intuitive input and output requirement satisfying compliant mechanism by Yin 

and Ananthasuresh 

 The need for systematic design has led to the development of two approaches in 

the last decade. The first is the pseudo rigid body model [13] wherein a compliant 

mechanism is regarded as an assemblage of rigid links with joint springs.  The second is 

the topology synthesis method, which entails generating an appropriate topology within a 

design region to achieve a single piece continuum with desired deformation and load 

bearing characteristics.  

 Topology optimization provides a systematic design method to design 

mesostructures (structures comprised of trusses) and compliant mechanisms (structures 

comprised of beams) where even non-intuitive input-output relationships can be realized 
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in a fixed design space. These structures can also be made to attain a high level of 

reliability by considering reliability constraints during the topology optimization process.  

1.2 Macro-scale Structures 

From the simple lazy tongs to the complex deployable space structures, foldable linkages 

consisting of only rigid bars and revolute joints (hinges) exhibit intriguing motion that is 

also aesthetically pleasing. Their applications range from consumer products and toys to 

architectural applications and massive deployable space structures. Two such examples 

are shown in Figure 1. 3 [14], Figure 1. 4 [15] and Figure 1. 5. In Figure 1. 3, we see the 

Hoberman’s sphere—a popular toy in recent times (www.hoberman.com).  

 

Figure 1. 3 Hoberman ball-popular toy 

Its planar version is shown in Figure 1. 4, which has been used for a variety of 

applications in aerospace applications such as, in the case of deployable antennae 

mechanisms as shown in Figure 1. 5. These mechanisms have also been used as antennas 

and stadium roofs all over the world. The common underlying phenomenon in all these 
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mechanisms is that there are complex interactions between the links of these mechanisms 

leading to complex coupler curves for the linkages. 

 

Figure 1. 4 Planer Hoberman mechanism [15] 

 These nonlinear coupler curves result from complex interactions and are more 

liable to change as a result of unexpected external influences such as foreign particles, 

changing wind velocities, human interference etc. and internal influences such as material 

properties, dislocation of the hinge points, etc. Hence, designers should account for these 

uncertainties in the design process, which may preempt the failures occurring from all 

these external and internal influences.  

 One of the common ways to design structures, in all different scales and 

configurations, is the topology optimization method. In order to account for these 

uncertainties, one can use a reliability constraint, which ensures the reliability of the 

system and will maintain a certain level during every iteration of the optimization 

process.  
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Figure 1. 5 HALSA satellite launched by Japan in 1997 [16] 

  1.3 Topology Optimization 

Topology optimization is often referred to as layout optimization or generalized shape 

optimization [17]. Topology optimization operates on a fixed mesh of finite elements and 

defines a design variable, which is associated with each element in the mesh. The stiffest 

structure problem [18] has been posed as a compliance minimization problem for the 

design of truss structures. Developments in the computational analysis of structures and 

components, especially by means of the Finite Element Method (FEM), have made the 

process of designing specialized truss structures using the topology optimization method 
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possible. Bendsoe studied optimal shape design as a material distribution problem [19]. 

This method was adapted by various engineering fields for generating topologies for 

compliant mechanisms which have maximum displacement at a desired point [20, 21]. 

Many other applications of topology optimization are considered in the fields of material 

design for designing materials with prescribed macroscopic properties and recently in the 

field of biomechanics. In traditional topology optimization methods, it is assumed that the 

loading is prescribed and that a given amount of structural material is specified within a 

given 2D or 3D design domain with specified boundary conditions [22].  

 Research in the field of topology optimization of continuum structures began with 

the problem of generating optimal topologies in structural design in order to define the 

stiffest structures, which was explored by Bendsoe and Kikuchi [18]. Their strategy was 

to define the problem with a composite material represented by each element having 

material plus a void (hole) inside (Figure 1. 6). 

 

Figure 1. 6 Material structure as an arrangement of material and void 

 

Force 

Boundary conditions 

Enlarged subdomain discretized into 

material (blue) and voids 
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The building blocks can be rectangular in general and also be oriented at a certain angle θ 

to the horizontal as shown in Figure 1. 7. Here each building block is represented by five 

design variables namely, W1, W2, L1, L2 and θ. The material properties of each element 

are then dependent on the size and orientation of the void within the element according to 

a homogenization relationship. A sizing optimization is then performed to optimize the 

size/orientations of the voids of all the elements for a given objective function. Elements 

with large voids (low material density) will represent empty cells and the elements with 

small voids (high material density) indicate that material exists and hence that cell is a 

part of the structure. More details of this method can be found in [23]. 

 

Figure 1. 7 Representation of building block with 5 design variables 

An alternative but conceptually similar approach is to directly use the material density of 

each element (instead of voids) as the design variable. An empirical formula is required 

in this case instead of using the homogenization formulation. The topology optimization 

results from this formulation are reported to be similar to those obtained from the 

homogenization formulation [24].
 
   

 

L1 

W1 

L2 

W2 
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 Strang and Kohn [25] recommended the use of composites in structural 

optimization problems because the existence/ non-existence of building blocks results in 

a ill-posed minimization problem, where the optimal solution might be difficult to obtain. 

To solve this problem they suggest a “relaxation” of the problem where the material in 

the design domain is modelled as a composite with continously varying density which 

transforms the original problem into one that has a solution. Hence by modeling the 

material as a composite and then using material homogenization techniques to determine 

the composite’s structural properties, a minimization problem is created which can be 

solved by common optimization algorithms.  

 Optimality criteria methods are typically used to solve the minimization problem 

created by this “relaxation”. Specifically, an iterative redesign procedure modifies the 

initial design values until the design satisfies a set of optimality criteria. Even though the 

optimality criteria values are satisfied, there is no guarantee that the design solution is a 

global optimum. It has been shown that an optimal component design’s shape depends 

upon both the initial material density values and the material microstructure model when 

using homogenization-based techniques. 

 Primarily there are two distinctions in topology optimization methods—discrete 

methods and continous methods. In this dissertation we will focus on the discrete 

topology optimization method and we explain more details of this method in Chapter 2.  
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1.4 Uncertainty in Structural Design 

Uncertainty is a acknowledged phenomenon in the design processes. During a design 

optimization process the designer looks for a safe design that has the ability to perform 

according to the design specifications while it is exposed to various uncertainties. 

Traditionally safety factors were used to account for the uncertainties. However, use of 

safety factor does not usually lead to minimum cost designs for a given level of safety 

because different structural members or different failure modes require different safety 

factors.  

 In the traditional sense uncertainty has several connotations such as the degree of 

belief, lack of knowledge, inaccuracy, variability, etc. An accurate representation of 

uncertainty is crucial since the different representation of uncertainty may lead to 

different interpretations for the given system. Primarily the undertainty in a system can be 

divided into two categories—Aleatory uncertainty and Epistemic uncertainty. Aleatory 

uncertainty is also known as irreduciable uncertainty or the inherent uncertainty of the 

system whereas Epistemic uncertainty is the uncertainty that stems from lack of 

knowledge and data and as more information is gathered about the present state of the 

system the Epistemic uncertainty can be reduced. Conventionally, the probability density 

or frequency information is used to characterize Aleatory uncertainty and interval 

information is used to characterize Epistemic uncertainty. By definition, the Probability 

Density Function (PDF) represents the relative frequency of certain realizations for 

random variables where the first moment of the PDF indicates the most probably point 

whereas the tail regions indicate the less probable point.  
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 Recently, Aleatory uncertainty has been accounted for by using probabilistic 

approaches which can give a safer design at a certain computational or experimental cost. 

These methods give an alternative to the designers who use the traditional safety factor 

design approach. However, these kind of processes require the statistical parameters for 

the design at hand which could be expensive to obtain because of either the 

computational cost of simulations or the cost of conducting failure tests in order to collect 

labeled data for estimating the parameters of the underlying PDFs. Hence, the 

probabilisic approaches require solving an expensive, complex optimization problem that 

needs robust formulations and efficient computational techniques for stable and 

accelerated convergence.  

 Probabilistic methods are used in reliability analysis by assuming that the amount 

of raw  data available is sufficient to determine the probability density function and 

calculate other statistical inputs. However, in practical applications sufficient raw data 

might not be available due to restrictions in time, human and facility requirements and 

finances. To handle uncertainty with insufficient information, possibility-based (fuzzy 

set) methods have been recently introduced in the field of stochastic structural analysis 

and design optimization [26]. Additionally, Dempster- Shafer theory of evidence [27, 

28], random set [29], probability bounds [30-32], imprecise probabilities [33], and 

convex model [34] are other methods that have been used to describe stochastic 

uncertainty. All of these methods have a variety of mathematical description although all 

of them are based on interval analysis [35]. Although the theory of fuzzy sets was 

introduced by Zadeh [36], the application of interval analysis in structural analysis is very 

recent. An interval analysis approach utilizing the finite element method was introduced 
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by Koyluoglu et al. [37] in order to deal with pattern loading and structural uncertainties. 

Recently, Muhanna and Mullen [38-40] formulated the development of interval based 

methods for fuzziness in continuum mechanics. These methods help to incorporate 

uncertain loads in static structural problems using an interval-based fuzzy finite element 

in the analysis. 

 In cases when sufficient data is available PDF information for the uncertain 

variables can be obtained, because of which, Aleatory uncertainy can be considered 

during the design process. Hence Reliability of a system can be considered at the 

conceptual design stages of the design proceses itself giving a confidence that the system 

will perform its function over a specified period of time and under specified service 

conditions. Note that, even in these conditions where PDF information is available, 

Epistemic uncertainty still exists since models, by definition, are not exact.  

   In this dissertation we limit our scope and discussion to the cases where 

enough data is available to estimate the PDF information for parameters. Hence, only 

aleatory uncertainty will be considered. When aleatory uncertainty is being considered, 

the behaviour of a structure in structural reliability analysis in probabilistic methods is 

measured by the performance function. The performance function is called the limit state 

function which is typically expressed as the difference between the capacity (e.g.,yield 

strength, displacement, allowable vibration level) and the demand on the system (e.g., 

stress, maximum allowable displacement, actual vibration). Note that the capacities and 

demands on the system will also be functions of the uncertain parameters.  
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 The study of structural reliability is concerned with the calculation and prediction 

of the probability of limit-state violations at any stage during the structure’s life. The 

probability of the occurance of an event such as a limit-state violation is a numerical 

measure of the chance of its occurring. Once the probabilty is detemined, the next goal is 

to choose design alternatives that improve structural reliability and minimize the risk of 

failure. 

  Reliability analysis methods can be broadly classified into two categories- 

analytical methods and simulation methods. While analytical methods are easy to use and 

are mostly limited to single failure modes, the simulation methods can acess complex 

limit state functions and can also handle multiple limit states together. Simulation 

approaches such as, Monte Carlo Simulation (MCS), are computationally intensive but 

unlike analytical methods which can only handle only linear limit state functions, they 

can handle any kind of limit state functions.  Most real life applications exhibit multiple 

limit state functions and multiple failure modes and in most cases there is no prior 

information on the nonlinearity of the limit state function. Simulation based methods like 

MCS and LHS are the obvious choices in those scenarios. Since reliability analysis is an 

iterative process and using crude MCS is computationally expensive, researchers develop 

variants of MCS or other methods like response surface and other function approximation 

techniques that can replace a part of the reliability analysis computational process and 

obviate the need to repeatedly access the expensive computer models viz. FEM in case of 

structural optimization. 
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1.5 Reliability-based Design Optimization 

In deterministic design optimization, design solutions at the boundary of the design 

constraints are also considered leaving no latitude for variations in the design parameters. 

The resulting deterministic optimal solution will have an unknown level of safety against 

the uncertainties that are inherently present during the modeling and manufacturing 

phases of the product. Uncertainties in simulation-based design are inherently present and 

need to be accounted for in the design optimization process. Uncertainties may lead to 

high probability of failure, resulting from large variations in the performance 

characteristics of the system. Optimized deterministic designs determined without 

considering uncertainties can be unreliable and might lead to catastrophic failure of the 

product being designed. Robust design optimization and reliability based design 

optimization are methodologies that address these problems. The goal in robust design is 

to minimize the variations in the performance function. The goal in reliability-based 

design is to minimize the probability of failure while abiding to other performance 

constraints that that designer imposes on the design. Hence in order to maintain high 

market share it is extremely important that designers consider variations in the design of 

new products and systems so that products are resistant to failure while abiding to the 

performance requirements.  

 While using RBDO, the designer has to make a tradeoff between making the 

design more reliable or minimizing cost. The first step in RBDO is to characterize the 

important uncertain variables and the failure modes. In most engineering applications, the 

uncertainty is generally characterized using probability theory. Different statistical 

models can be used to describe the probability distribution function of the uncertain 
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variables. In case of  Reliability-based Design Optimization (RBDO) the probability 

density function (PDF) should be known before starting the optimization process. The 

PDF is used to sample points using a Monte Carlo Simulation or a stratified sampling 

method, such as Latin Hypercube Sampling Scheme, to simulate uncertain data on the 

design. The different methods for PDF estimation can be classified as Parametric, Non-

Parametric and Semi-Parametric. In Parametric method the PDF is assumed to be of a 

standard form (Gaussian, Weibull, Beta, etc.). The parameters of the assumed PDF can be 

estimated using Maximum Likelihood estimation (MLE) or Bayesian Estimation. The 

Non-Parametric methods include histogram based methods and the K-nearest neighbor 

methods [41]. In Semi-Parametric methods, the given density can be modeled as a 

combination of known densities. Mixture of Gaussian (MOG) is a well known method 

where a data set is assumed to come from different gaussian distributions and has been 

used for various machine learning applications as well such as clustering. The parameters 

for MOG can then be estimated either by using a gradient descent method or Expectation 

Maximization (EM) algorithm [41]. The EM algorithm will be explained in greater 

details in later chapters when we discuss the core of this dissertation. 

 While designing products with multiple failure modes it is important to justify the 

safety of the product with respect to each failure mode and also with respect to the overall 

system failure. In a RBDO formulation, the critical failure modes in deterministic 

optimization are replaced with constraints on probabilities of failure corresponding to 

each of the failure driven modes or with a single constraint on the system probability of 

failure. The reliability index, or the probability of failure corresponding to either a failure 

mode or the system, can be computed by performing a probabilistic reliability analysis. 
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Some of the techniques used in reliability analysis are the first order reliability method 

(FORM), second order reliability method (SORM), and Monte Carlo simulation (MCS) 

techniques. FORM and SORM are based on the Taylor series expansion and MCS/LHS 

are simulation based methods that can be used alone, or a solver substitution can be made 

using an appropriate surrogate modeling technique to reduce the computation.  

 

Figure 1. 8 Taxonomy of reliability assessment methods 

 Figure 1. 8 represents the taxonomy of the different reliability assessment 

methods that can be used to approximate the reliability constraint. The methods within 

solver substitution can be further classified into function approximation based methods or 

classification based methods. In this thesis the primary focus is on the application of 

classification based methods for reliability constraint approximation, so that 

discontinuous responses and disjoint failure domains can also be approximated. 

Reliability Assessment 

Methods

Taylor Series Expansion 

based Methods
Simulation based Methods

FORM SORM MCS/LHS Solver Substitution

Function 
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1.6 Reliability-based Topology Optimization 

Optimization algorithms traditionally have been solved using a deterministic approach 

where a design solution was obtained for specific force and boundary conditions. 

However, performing probabilistic analysis prior to the early stage of fabrication is 

critical to reduce cost, improve product quality, and provide a better understanding of 

failure mechanisms and sensitivity to process variation. With the high-powered digital 

computers, it has become feasible to find numerical solutions to realistic problems of 

large-scale, complex systems involving uncertainties in their behavior. This feasibility 

has sparked an interest in combining traditional optimization methods with uncertainty 

quantification measures. These new optimization techniques, which can consider 

randomness or uncertainty in the data, are known as stochastic programming, stochastic 

optimization, optimization under uncertainty, or reliability-based design optimization. 

These methods ensure robust designs that are insensitive to given uncertainties and 

provide the designer with a guarantee of satisfaction with respect to the uncertainties in 

the objective function, performance constraints, and design variables [42]. The use of 

integrated reliability analysis and topology optimization procedures, such as reliability-

based topology optimization (RBTO) models as stated by Kharmanda et al. [43], yield 

structures that can possibly be more reliable than those produced by deterministic 

topology optimization methods. However, realistic representations of uncertainty and the 

improvement of the computational efficiency are still challenging in the existing methods 

[44, 45]. 
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1.7 Discontinous Responses and Disjoint Failure Domains 

The reliability analysis of complex structures is hindered by the implicit nature of the 

limit-state function. For their approximation, designers have traditionally used Response 

Surface Method (RSM) and more recently Artificial Neural Networks, which are 

essentially nonlinear approximation methods that can model highly non-linear behavior. 

Both these methods come into the broad category of  Regression Approach. 

 

Figure 1. 9 Continuous failure domain example- suitable for regression approach 

Figure 1. 9 shows design points in red, which belong to a continuous domain. Hence, a 

single function can be used to approximate the failure behavior which makes regression-

based approaches suitable for surrogate modeling techniques. 

 A common problem faced in case of approximation using the regression approach 

is the inability of regression based methods to approximate discontinous functions. Limit 

state functions are continous and smooth as long as they are in the safe region or the 
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unsafe region. However, as a system transforms from the safe region to the unsafe region, 

the limit state function might not be continous anymore. For instance, if a displacement 

limit state function is posed such as in Eq. (1.1), the limit state function will be linear and 

continuous when the displacement is less than 0.009. Here x and y would represent the 

deterministic and uncertain parameters on which the displacement limit state function, 

),( yxg , depends on. 

009.0),( −= xyyxg             (1.1) 

Once the displacement is more than 0.009, the limit state function might not be linear 

anymore because of nonlinearities (geometrical or material) and after a while it could fail 

by different failure mechanisms such as fracture or buckling. At the point of irreversible 

failure, the limit state function and displacement value will take a much larger value and 

will show as an inflexion, which cannot be approximated with any of the regression 

based surrogate modeling technique.  

 Instead of approximating the value of the limit state function for reliability 

estimation, it is easier to estimate the sign of the limit state function. Note that if the sign 

of limit state function is positive, the displacement is greater than 0.009, the system is 

unsafe and if the displacement is less than 0.009 the system is safe. As discussed earlier, 

for reliability estimation, it is enough to find out how many times the limit state function 

has been violated. Hence, just estimating the sign corresponding to a particular set of 

input parametes is enough to estimate the reliability or probability of failure of a system. 

This task can be easily accomplished by a classification based surrogate modeling 
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technique. Even if the structure is completely in the safe or unsafe region or close to the 

failure boundary a classification based surrogate modeling technique can be used. 

 A simple disjoint failure domain is represented in Figure 1. 10. The red lines mark 

the boundary between the safe and unsafe regions in the design space. The red design 

points shown in the figure represent the unsafe designs and the green points represent the 

safe designs.  

 

Figure 1. 10 Example of a disjoint failure domain limit state 

Hence, in cases where the failure domains are disjoint, regression will not be suitable for 

estimating the failure behaviour of the design. A classification approach can be used in 

those cases for approximating the limit states and estimating the probability of failure. 

 In structural realiability analysis the designer would like to minimize the 

probabilty of failure as much as possible. Theoretically the probability value can’t be 

zero. Hence, a low value such as 10
-4

 or 10
-6

 is chosen by a majority of  designers as the 
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required probability of failure during a design optimization procedure. In order to reduce 

the computation cost in evaluating the reliability constraint during the optimization 

procedure a surrogate model is used by designers with the data obtained using a suitable 

experimental design procedure. Choi et. al. explored the application of response surface 

method [46] after Latin Hypercube Sampling (LHS) and Local Regression method [47] 

for the approximation of the limit state function during design optimization. These 

processes will still suffer from inability to approximate the probability of failure in 

disjoint failure domains since they are inherently adaptations and improvements upon the 

regression based surrogate modeling techniques. 

1.8 Research Questions and Hypothesis 

The current dissertation deals with the development of computationally efficient 

reliability estimation procedures for the design of complex systems for different scales 

and applications in the presence of uncertainty. We constrain our analysis of complex 

systems to mesostructures, which are meso-scale assemblies of truss or beam elements, 

assembled together to achieve a certain objective. Since these kinds of complex systems 

can be comprised of a large number of truss/beam elements, evaluating the response of 

these structures for a large number of uncertain input parameters using FEA is 

computationally inefficient. Ideally, we would like to estimate the reliability of these 

systems with a few representative data points. Hence, the primary goal of this dissertation 

is represented in the form of the following Primary Research Question: 

Primary Research Question: How can we design reliable engineering systems efficiently 

while minimizing the computational/experimental cost? 
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Traditional reliability based methods are not computationally efficient since they have to 

evaluate the limit state function during every iteration of the optimization algorithm. A 

surrogate modeling technique can be used in those cases for reducing the computational 

requirement of the RBTO procedure.  

 In cases where the failure domain is discontinuous a regression-based surrogate 

modeling technique will be inadequate for use since regression can only approximate 

continuous domains. Another major concern in reliability-based designs is the need to 

deal with low probability of failures. The surrogate model should be able to estimate low 

values. Due to numerical stability issues, many surrogate modeling techniques can’t be 

used for estimating responses whose values range in different orders. 

 The factors discussed above raise the following Secondary Research Question-

1: 

Secondary Research Question 1: How can we accurately predict the quintessential 

responses obtained from engineering analysis for reliability estimation without requiring 

additional experimental cost? 

An answer to the secondary research question will successfully provide us a method that 

will enable the reliability estimation of all complex systems with less computational 

effort, irrespective of the kind of failure domain that influences it. The resulting surrogate 

modeling tool will enable the designer to quantify the reliability of a system without 

worrying about whether the structure is in the safe region or failure region or is in a 

transition phase between the two.  
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 Finally, in order to answer the Primary Research Question, the above-mentioned 

surrogate modeling technique should be integrated into a framework which will enable 

the design of complex engineering systems. This problem can be posed as the Secondary 

Research Question-2 as given below: 

Secondary Research Question 2: How can the proposed reliability estimation procedure 

be used for the design of an engineering system? 

We hypothesize that the answer to the two secondary research questions will enable us to 

answer the primary research question. In order to answer the Secondary Research 

Question-1, we hypothesize that including unlabeled data in the reliability estimation 

process can result in reduced computational cost of the overall reliability estimation 

process. Note that unlabeled data, in the case of reliability estimation problems, is the set 

of uncertain variables that are sampled from the corresponding PDFs for which the 

corresponding responses of the systems are unknown. More details about including 

unlabeled data in the reliability estimation process will be explained in Chapters 3 and 4. 

In order to answer the Secondary Research Question-2 we hypothesize that 

mesostructures are quintessential representations of complex engineering systems and 

usage of the proposed surrogate modeling technique for the design of mesostructures will 

prove the efficacy of the proposed surrogate modeling technique in engineering design 

problems.  
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  1.9 Current Research 

The intent of the current research is to explore the synthesis of optimized truss-like 

mesostructured materials where the loading, boundary conditions and geometry vary 

according to assumed statistical properties. In this research, a reliability-based synthesis 

framework is proposed to develop risk-minimized cellular structures that satisfy the 

performance criteria while specific loading, displacement and shape conditions are 

imposed. This is achieved by utilizing the stochastic local regression [47] procedure for 

approximating the failure behavior when the reliability constraint is linear in nature. In 

cases where the reliability constraints are nonlinear or discontinuous, an artificial neural 

network based classification technique is proposed which can be used to approximate the 

failure behavior. Classification based reliability analysis divides the failure domain into 

safe and unsafe regions and evaluates and classifies the data into one of the two classes, 

hence, eluding the need to evaluate the response.  

 The proposed algorithms include a simulation based risk estimation model that 

provides feedback to the design process and potentially improves the reliability of the 

meso-scale material structure. Thus, a reliability-based design technique will be 

integrated to mitigate the risk of structural failure via enhancements of conventional 

topology optimization techniques.  

 The following chapters describe important aspects of the algorithm and the 

solution principle for designing structural systems under uncertainty, which will result in 

the design of more reliable mesostructured materials. 
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1.10 Thesis Organization 

This dissertation is organized as shown in Table 1. In Chapter 1 we introduce the concept 

of reliability-based design and how reliability estimation methods are important for the 

design of small scale as well as large scale systems. We also introduce the basic ideas 

behind topology optimization, uncertainty in design optimization and relibility based 

topology optimization. We ended this chapter by introducing the research questions and 

the corresponding hypotheses.  

Table 1. 1 Organization of the dissertation 

Chapter 1 Introduction 

Chapter 2 State of the Art 

Chapter 3 Machine Learning 

Chapter 4 Semi-Supervised Learning for Reliability 

Estimation 

Chapter 5 Validation Examples 

Chapter 6 Conclusion and Future Work 

 In Chapter 2, we describe the state of current research in the fields of reliability 

estimation and design of mesostructures. In particular, we focus on surrogate modeling 

techniques and basics of the ones that are most prevalent now. We explain the basics of 

regression and logistic regression and show how classification is modeled as a regression 

problem where the probabilities are the dependent variables. A brief summary of 

different kinds of classification algorithms are also provided. The basics of Artificial 
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Neural Networks (ANNs) are also introduced in Chapter 2. Although, ANNs can be used 

for both regression or function approximation problems and classification problems, we 

focus on using ANNs for classification in this dissertation.  

 We dig deeper into classification techniques and introduce Probabilistic Neural 

Networks (PNNs) for classification in Chapter 3. We also introduce clustering methods 

for machine learning. Function approximation/regression, classification and clustering 

mark the three major categories of machine learning tasks undertaken by machine 

learning practitioners today. 

 We build on the explanation of machine learning methods in Chapter 3 and 

explain two different algorithms in Chapter 4, which are proposed in this dissertation for 

reducing the computational cost of reliability estimation processes. For this, we introduce 

unlabeled data (sampled points from corresponding PDFs) to the already available 

labeled data (sampled points from PDFs with the corresponding limit state function 

values). Together, labeled and unlabeled data comprise the training dataset for the 

surrogate model. This enables reduced computational cost since the computational cost of 

sampling unlabeled data in reliability-based design problems is almost negligible because 

the PDFs for uncertain variables are already available. The usage of unlabeled data with 

available labeled data in order to create better surrogate models is referred to as Semi-

Supervised Learning (SSL). More details of these methods are discussed in Chapter 4. 

 Illustrative examples, which validate the efficacy of the proposed framework, are 

shown in chapter 5. The proposed methods are shown to work efficiently on continuous 

as well as discontinuous analytical examples. These examples will be used to validate out 
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hypothesis for the Secondary Research Question 1. Lastly, we provide an example where 

the design of a meso-scale compliant gripper is described which could be used for 

biological applications. This example will be used to validate the hypothesis to the 

Secondary Research Question 2. 

 In Chapter 6, we summarize the main points outlined in the thesis along with the 

advantages of the proposed framework. The limitations of the current research is 

discussed along with the suggestions of future work. 
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CHAPTER 2 

STATE OF THE ART IN STRUCTURAL RELIABILITY 

In this chapter, state of the art in research related to the design of customized reliable 

mesostructures is presented. This review is presented in six sections. Section 2.1 outlines 

the methods for design of customized mesostructures through the design of meso-scale 

truss structures. Section 2.2, describes the Michell analytical method for the design of 

light weight truss structures. Section 2.3 describes the deterministic optimization process 

as well as the topology optimization process that is widely used for design of truss 

structures. This lays the groundwork for section 2.4, where Reliability-based Design 

Optimization (RBDO) is described that can be used for the design of reliable 

mesostructures. Important concepts in the RBDO procedure, such as Sampling and 

Surrogate modeling techniques, are explained in sections 2.5 and 2.6 respectively. 

Section 2.7, conducts a gap analysis while section 2.8 restates the research questions and 

the corresponding hypothesis that were introduced in Chapter 1. Section 2.9 summarizes 

the chapter. 

2.1 Methods for Design of Mesostructures 

Currently the design and analysis of mesostructures are limited by the assumptions that 

they are made during the design phase of the mesostructure. Hence, designers use 

different analysis methods for different kinds of mesostructures. For example, extensive 

design and analysis have been performed by Ashby et al. [7, 48] .On similar lines, Wang 

and McDowell have studied the mechanics and behavior of metal honeycombs [49]. The 

present research focuses primarily on a subset of the analysis done by various researchers 
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in this field. The focus in this dissertation will be on mesostructures that have a 

periodically repeating element. These periodic repeating elements are assumed to be 

comprised of struts.  

 In related work, analysis was conducted by assuming that these struts are trusses, 

which implies that the elements of the mesostructure can only take axial loading in the 

form of either tension or compression and the elements are connected with pin joints. 

This analysis has been performed by Wallach and Gibson [50] on lattice structures which 

are subjected to axial loading conditions. Modeling of lattice structures as structures 

constituting of truss elements has resulted in results that have a percentage error ranging 

between 3% and 27%. A logical extension of the practice of modeling lattice structures 

using truss structures is to model these structures using beam or frame elements so that 

bending and shear stresses can also be considered. This extension has been explored by 

Chiras et al. [51]. Specifically, Johnston et al. [52] proposed a unit cell model (Figure 2. 

1) in which structural members are modeled at beams. The model considers half struts, 

which are connected together at vertices to form a structure consisting of discrete “unit-

trusses”. Wang et al. [49, 53, 54] have used this unit cell truss approach successfully for 

the design of mesostructures. 

 

Figure 2. 1 Unit cell approach to mesostructure analysis 
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2.2 The Michell Analytical Approach 

The Michell Truss [44] is a well-known minimum-weight planer truss designed to 

support a single load with anchors placed on a circle in the same plane [55]. This 

optimality criteria for least weight trusses with stress constraints and single load 

condition was derived in 1904 and was an extension of the least weight theorem derived 

by Maxwell in 1872 [56]. Michell gave several examples of least-weight trusses which 

included one example for a single point load between supports, one example for a point 

load and a circular support and a truss along a spherical surface. Figure 2. 2 shows a 

result obtained by Smith et al. where they start out with the design space discretization in 

the left and obtain the structure in Figure 2. 2 (b). The force is along the downward 

direction and is indicated by G in this figure. The optimum structure suggested by 

Michell is shown in Figure 2. 2(b). 

 

(a) Intial design domain (b) Solution obtained by optimization procedure (c) Michell’s truss  

Figure 2. 2 Michell truss design example from Ref.[55] 

Cox [57] applied Michell’s and Maxwell’s criteria to simple layout problems which 

included multiple forces. Cox also proved that for certain stress conditions Michell’s 

trusses also minimize the compliance. This was further extended by Hegemier and Prager 

[58] in 1969 for various design conditions such as plastic collapse load, natural frequency 

(a) (b) (c) 
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and stationary creep. However, the need for automated design procedures for design of 

structures with optimum layout for various objectives still exists. In spite of the analytical 

approaches provided by Michell, the solutions are limited to only two dimensions. 

2.3 Deterministic Optimization Approach 

2.3.1 Description of an Optimization Problem 

An optimization problem seeks the maximum/minimum of a function  and the 

variable vector  that it depends on. Here  is called the objective 

function and ,  are the variables that determine the objective function and are 

typically called design variables. Any vector X in the  dimensional design space 

represents a single design where  represents the number of design variables in the 

optimization problem. It is important to note that the design variables can be either 

continuous or discrete. For example, a structure might have to be made using truss 

elements for a machine component. If the areas of cross-sections are taken as the design 

variables and trusses with certain cross-sections can only be purchased then the design 

variables should be considered as discrete. Since we can purchase any length of these 

truss elements or cut the purchased truss elements to desired lengths, the lengths can be 

considered as continuous variables. 

 In many of the design scenarios, the designer is posed with constraints in terms of 

geometry, performance, safety, cost and manufacturability. Some of these constraints 

might have an equality form. Owing to this, the number of independent dimensions in the 

f (x)

X = (x1,x2,....,xn) ∈ Rn f

xi i ∈ 1,.....,n
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 In the most general form, an optimization problem can be represented as:
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where ,  and  are the number of equality constraints, inequality constraints and 

design variables, respectively. 

variable . The implementation of a simple optimization procedure can be represented as 

shown in Figure 2. 3 below.
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design space is reduced, from n, by the number of equality constraints. Along with 

the strict inequality constraints reduce the design space to a subset of nR .

In the most general form, an optimization problem can be represented as:

      

,          

,          
    

,        

are the number of equality constraints, inequality constraints and 

design variables, respectively.  and  are the lower and upper bounds on the design 

. The implementation of a simple optimization procedure can be represented as 

below. 

Figure 2. 3 The optimization procedure 
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 If the objective function and all the constraints are linear functions of the design 

variables then the problem is termed a linear optimization problem. In a nonlinear 

optimization problem, either the objective function or at least one of the constraints is 

nonlinear function of the design variables. In general, structural optimization problems 

are nonlinear in nature. Further, design optimization can be classified into size 

optimization, shape optimization and topology optimization. A brief description of each 

type of optimization follows.  

2.3.2 Size Optimization 

In size optimization, the domain is fixed and does not change during the optimization 

process. Hence most of the time size optimization is performed in the final stages of the 

product design process. 

 The basic idea behind size optimization is explained with the help of Figure 2. 4. 

The figure shows a structure that can be discretized into six beam elements. For any 

given objective function, the design can be optimized for a better performance by altering 

the thickness of the six beam elements. Hence the thicknesses of the beam elements are 

considered as the design variables in this case. An important thing to note here is that 

although the answer from this procedure might be “optimal”, changes to the beam 

element’s shapes and the overall topology could possibly give a better result. 



 

 

Figure 2. 

2.3.3 Shape Optimization

Shape, or geometrical, optimization is 

shape optimization the topology

The blue points shown in 

the beam. The wider shape will mean more material usage in this case. Based on the 

designer’s preference the eight variables can be changed that will define the location of 

the control points and the shape of the overall structure. Similarly, a collection of B

splines or Bezier curves can be used for the shape optimization of a cross

Shape optimization is generally performed during the initial stages of the design process. 

In general shape optimization can lead to better results than size optimi

changes to a beam’s topology could possibly lead to better results.

                                                
1
 Mathematically, two geometrical figures are said to have the same topology if they can be transformed      

from one to another through continuous transformations. A continuous transformation means pulling, 

stretching, twisting, bending or squashing without tearing or gluing points together. 
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Figure 2. 4 Size optimization of beam with six elements 

2.3.3 Shape Optimization 

Shape, or geometrical, optimization is a somewhat more complex process.

shape optimization the topology
1 

of the design is fixed whereas the shape is not fixed.  

The blue points shown in Figure 2. 5 can be used as control points to define the shape of 

eam. The wider shape will mean more material usage in this case. Based on the 

designer’s preference the eight variables can be changed that will define the location of 

the control points and the shape of the overall structure. Similarly, a collection of B

splines or Bezier curves can be used for the shape optimization of a cross

Shape optimization is generally performed during the initial stages of the design process. 

In general shape optimization can lead to better results than size optimi

changes to a beam’s topology could possibly lead to better results. 

         
Mathematically, two geometrical figures are said to have the same topology if they can be transformed      

one to another through continuous transformations. A continuous transformation means pulling, 

stretching, twisting, bending or squashing without tearing or gluing points together.  
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of the design is fixed whereas the shape is not fixed.  

can be used as control points to define the shape of 

eam. The wider shape will mean more material usage in this case. Based on the 

designer’s preference the eight variables can be changed that will define the location of 

the control points and the shape of the overall structure. Similarly, a collection of B-

splines or Bezier curves can be used for the shape optimization of a cross-sectional shape. 

Shape optimization is generally performed during the initial stages of the design process. 

In general shape optimization can lead to better results than size optimization but again 

Mathematically, two geometrical figures are said to have the same topology if they can be transformed      

one to another through continuous transformations. A continuous transformation means pulling, 



 

 

Figure 2. 5

2.3.4 Topology Optimization

Topology optimization has the complex features o

Topology optimization is often referred to as layout optimization or generalized shape 

optimization [19]. In this case, the design variables control the topology of the design. 

This is also the most general optimization procedure, as the size and shape of the 

structure are affected by the topology. The difficulty in implementing this procedure 

comes from its generality. Representing the topology of the structure is difficult and 

generally requires a large number of design variables. Topology optimization operates on 

a fixed mesh of finite elements and defines a design variable, which is associated with 

each element in the mesh. 

problem is to treat it as a configuration design problem where the design is treated as an 

assembly of a large number of “building blocks”. The procedure begins by discretizing 

the design space into all possible identical building blocks. As the optimization process 

proceeds, various “building blocks” are allowed to disappear or reappear, which in turn 

alters the topology of the structure. 
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5 Shape optimization of beam with eight control points

2.3.4 Topology Optimization 

Topology optimization has the complex features of both size and shape optimization.

Topology optimization is often referred to as layout optimization or generalized shape 

. In this case, the design variables control the topology of the design. 

This is also the most general optimization procedure, as the size and shape of the 

structure are affected by the topology. The difficulty in implementing this procedure 

generality. Representing the topology of the structure is difficult and 

generally requires a large number of design variables. Topology optimization operates on 

a fixed mesh of finite elements and defines a design variable, which is associated with 

lement in the mesh. A common way of representing a topology optimization 

problem is to treat it as a configuration design problem where the design is treated as an 

assembly of a large number of “building blocks”. The procedure begins by discretizing 

sign space into all possible identical building blocks. As the optimization process 

proceeds, various “building blocks” are allowed to disappear or reappear, which in turn 

alters the topology of the structure.  
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f both size and shape optimization. 

Topology optimization is often referred to as layout optimization or generalized shape 

. In this case, the design variables control the topology of the design. 

This is also the most general optimization procedure, as the size and shape of the 

structure are affected by the topology. The difficulty in implementing this procedure 

generality. Representing the topology of the structure is difficult and 
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ommon way of representing a topology optimization 
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assembly of a large number of “building blocks”. The procedure begins by discretizing 

sign space into all possible identical building blocks. As the optimization process 

proceeds, various “building blocks” are allowed to disappear or reappear, which in turn 



 

 

 Figure 2. 6 represents a topology optimization problem with 72 design variables. 

In order to design the stiffest beam for a given amount of material, the whole design 

domain is divided into 72 building blocks. Typically

used in the final design is stated as a fraction of the total volume of the structure if all 

design variables were at their upper bound. As the optimization procedure proceeds

blocks in white are the ones that are removed from the final design. The fin

design only constitutes of the building blocks in blue.

Figure 2. 6 Topology optimization of beam using density design variable

In some classical methods of topology optimization a design variable value of 1 means

the corresponding building block is present whereas a value of 0 means that it is not. One 

commonly used optimization procedure allows the design variables to take intermediate 

values between 0 and 1 and then introduces some form of penalty that steers th

to discrete 0-1 values. The design problem for that design space can then be formulated 

as a standard sizing problem by modifying the stiffness matrix so that it depends 

continuously on a function which is interpreted as the density of material.

function is the new design variable that can only take discrete values of 0 or 1. One 
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represents a topology optimization problem with 72 design variables. 

In order to design the stiffest beam for a given amount of material, the whole design 

domain is divided into 72 building blocks. Typically, the target amount of material to be 

sed in the final design is stated as a fraction of the total volume of the structure if all 

design variables were at their upper bound. As the optimization procedure proceeds

blocks in white are the ones that are removed from the final design. The fin

design only constitutes of the building blocks in blue. 

Topology optimization of beam using density design variable

In some classical methods of topology optimization a design variable value of 1 means

the corresponding building block is present whereas a value of 0 means that it is not. One 

commonly used optimization procedure allows the design variables to take intermediate 

values between 0 and 1 and then introduces some form of penalty that steers th

1 values. The design problem for that design space can then be formulated 

as a standard sizing problem by modifying the stiffness matrix so that it depends 

continuously on a function which is interpreted as the density of material.
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represents a topology optimization problem with 72 design variables. 

In order to design the stiffest beam for a given amount of material, the whole design 
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Topology optimization of beam using density design variable 

In some classical methods of topology optimization a design variable value of 1 means 

the corresponding building block is present whereas a value of 0 means that it is not. One 

commonly used optimization procedure allows the design variables to take intermediate 

values between 0 and 1 and then introduces some form of penalty that steers the solution 

1 values. The design problem for that design space can then be formulated 

as a standard sizing problem by modifying the stiffness matrix so that it depends 

continuously on a function which is interpreted as the density of material. This density 

function is the new design variable that can only take discrete values of 0 or 1. One 
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popular method, which has been used extensively for this 0-1 problem is the Solid 

Isotropic Material with Penalization (SIMP) model: 

����� = �(	)������
� ,																			� > 1                  (2.5) 

    0 ≤ �(	) ≤ 1,										 ∈ Ω              (2.6) 

In Eq. (2.5) ρ(x) represents the “density” design function and for a given isotropic 

material �����
�  represents the material properties. The density interpolates between the 

material properties 0 and �����
�  as: 

�����(� = 0) = 0,								�����(� = 1) = �����
�            (2.7) 

With this definition, if any material design has constituting density values equal to either 

0 or 1 then it has a black-and-white pattern. In SIMP the value of p for Eq. (2.5) is chosen 

to be greater than 1 so that the intermediate values of density are unfavorable since the 

stiffness obtained is small when compared to the volume of the material [19]. In 

problems where the volume constraint is active Bendsøe and Sigmund [19] have 

recommended a value of  � ≥ 3 for a true 0-1 design. In effect, an interpolation scheme 

such as SIMP allows the designer to convert the optimal topology problem into a sizing 

problem on a fixed design domain.  

 Compared to many sizing and shape optimization problems, the topology 

optimization problem is different because the number of design variables for optimization 

is larger than in traditional structural optimization problems. For structural topology 

design problems the Method of Moving Asymptotes (MMA) [59, 60] and its “mother” 

method CONLIN [61] are mathematical programming methods that have been proved to 

ρ(x)dΩ
Ω
∫ ≤ V;
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be effective. These methods are similar to Sequential Quadratic Programming (SQP) as 

well as Sequential Linear Programming (SLP) because they are used for solving non-

linear and smooth optimization problems after the problem is broken down into a 

sequence of simpler approximate subproblems. These subproblems are separable and 

convex for MMA and CONLIN and are constructed based on the sensitivity information 

at the particular iteration point. These subproblems are solved by either a dual method or 

an interior point algorithm (primal-dual algorithm).  

 

Figure 2. 7 Topology optimization using area of cross-section design variable 

Similar to the design of the structure in Figure 2. 6 which consists of 72 building blocks 

(design variables), a truss structure can also be designed through the topology 

optimization method if individual truss elements are considered as design variables. 

Figure 2. 7 illustrates a scenario where a design space is discretized by using 28 truss 

members. The arrow represents external force on the design space. The cross-sectional 

areas are the design variables and the design variables are expected to converge to the 

lower bound or the upper bound of the allowed range. In this particular example, the truss 

elements represented in blue are the ones, which are remaining at the end of the topology 

optimization procedure, and the ones in black are the ones that converge to the lower 

bound. Gradient-based optimization procedures such as SQP, SLP and MMA can also be 

Design Variable: Areas of cross-sections

No. of design variables : 28
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used to solve topology optimization problems that are formulated with trusses as the 

design variables. Furthermore, evolutionary algorithms such as Genetic Algorithms [62] 

as well as  Particle Swarm Optimization (PSO) [63] have also been used in solving truss 

based topology optimization problems by Hajela et al. [64] and Chu et al. [65] 

respectively. A comparison of different optimization algorithms for truss based topology 

optimization problems has been done by Chang [66]. The details of this truss based 

topology optimization method are explained in the following section. 

2.3.5 Topology Optimization of Truss Structures  

Topology optimization of trusses in the form of grid-like continua is a classical subject in 

structural design. Michell [44] pioneered the study of grid like continuum structures. The 

development of computationally efficient topology optimization methods is not only 

important for designing truss structures but also for the design of material structures. The 

optimization of the geometry and topology of trusses can be conveniently formulated 

with the so-called ground structure method [67].  The truss topology optimization 

problem is formulated so that the cross-sectional area  of every possible truss element 

connecting the predefined nodes is a design variable. At the end of the optimization 

routine each of these truss members can either exist or vanish depending on the problem 

at hand. This is possible by defining the cross-sections as continously varying, owing to 

which the problem can be viewed as a standard sizing problem. This sizing reformulation 

is possible because the truss as a continuum geometrically is described as one 

dimensional. Thus for both planer and space trusses there are extra dimensions in 

physical space that can describe the extension of the truss as a true physical element of 

space, simplifying the basic modeling for truss topology design as compared to topology 



 

42 

 

design of three dimensional continuum structures [19]. Since the area of cross-sections 

were formulated as continous design variables, a non-zero (small) lower bound on the 

cross-sectional areas has to be imposed in order to have a positive definite stiffness 

matrix. Two different types of preliminary structures are shown in Figure 2. 8.  

 

 Ground structure in Figure 2. 8(a) consists of three nodes along the length and the 

height of the design space. In this case each node is connected to every other node. 

Practically trusses can cross each other in space since they can be bolted together to lie in 

different planes. This kind of initial structure can be an effictive way to form the superset 

of all possible designs. In a rectangular ground structure with equal number of nodes on 

all sides, if there are  nodes in total then the number of truss elements in the design 

space is m, which is represented by Eq. (2.8) . The number of degrees of freedom equals 

2n for a planer structure. 

              (2.8) 

n

Figure 2. 8  Initial design space discretization (a) Groundtruss (b) Unit cell 
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In the unit cell each node is only connected to the most immediate neighbor making this 

kind of initial structure not as exhaustive as the ground structure. Nevertheless, these kind 

of initial structures are useful when the designer wants to keep the structure simple and 

easy to assemble from individual truss elements. These kind of structures can be 

advantageous while designing mesostructured  materials. A simple formulation for 

topology optimization with areas of cross section Ai as the design variables for truss 

structure design for a stiffest structure [68] objective can be represented as  

Minimize: Mean Compliance                                (2.9) 

Subject to:           (2.10) 

       ul AAA ≤≤                          (2.11) 

        Ku = F           (2.12) 

Eq. (2.9) represents the stiffest structure objective because a stiffest structure will have 

minimum mean compliance. Eq. (2.10) represents the volume constraint where Li 

represents the length of each truss element and V* represents the target volume of the 

final optimized structure. N represents the number of design variables. In most cases, 

many design variables (cross-sectional areas) converge to the lower bound. This enables 

the designer to remove those truss elements from the final design, hence modifying the 

overall topology of the design space. Eq. (2.11) shows the upper and lower bounds on the 

cross-sectional areas, Al and Au, which represent the lower and upper bounds for the 

design variable respectively. Eq. (2.12) represents the finite element method that is used 

to evaluate the objective function and other constraints. 

∑
=

≤−
N

i

ii VLA
1

* 0
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2. 4 Reliability- based Optimization Approach 

In topology optimization of truss structures, the objective functions are minimized and 

the constraints are satisfied in a deterministic sense with reference to nominal values of 

design variables and other structural parameters. Since most of the structures designed 

today are faced with uncertain forces, boundary conditions and material properties, it is 

important to consider these uncertainties in the conceptual design stage of the design 

process. Traditionally safety factors were used to account for the uncertainties. However, 

use of safety factors does not usually lead to optimal designs for a given level of safety 

because different structural members or different failure modes require different safety 

factors. Recently, probabilistic approaches have been coupled with design optimization 

methods in order to design structures that achieve the desired objectives even when 

uncertainties are present. Among all the probabilistic approaches used, robust design 

optimization aims at reducing the variability of structural performance caused by regular 

fluctuations in the design parameters. The practical concept of robust design was first 

proposed by Taguchi and a review of Taguchi methodology is given by Tsui [69]. In 

contrast to robust design optimization methods, reliability based design optimization 

(RBDO) [42] minimizes the objective function of the optimization problem while 

considering probabilistic constraints instead of the conventional deterministic constraints. 

Moreover the applicability of RBDO relies on the availability of precise probabilistic 

distribution of the stochastic parameters. Similar to RBDO, other studies based on 

interval set [38, 40] or fuzzy set [70] focus exclusively on structural safety with the 

motivation of avoiding system catastrophe in the presence of parameter uncertainties. The 

structural robustness is assessed by measure of the performance variability around the 
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mean and the structural reliability is based on the probability of failure occurrence, as 

shown in Figure 2. 9. The probability of failure of a structure is an indication of times the 

structure violates its permissible safety limits. The designer introduces the safety limits, 

which are termed limit states, into the RBDO framework.  

 However, realistic representations of uncertainty and the improvement of the 

computational efficiency are still challenging in the existing methods [44, 45]. In 

reliability-based design optimization problems, the designer can be faced with cases 

where the limit state function is highly nonlinear or discontinuous. Specifically, the use 

of classical approaches to assess the probabilities of failure is further limited in the 

disjoint failure region problems [71].  

 

Figure 2. 9 Difference between reliability and robustness 
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2.4.1 Formulation of RBTO  

In order to avoid catastrophic failure in structures, reliability analysis was integrated with 

topology optimization. The resulting Reliability-Based Topology Optimization (RBTO) 

[43] yields structures which are more reliable than those produced by deterministic 

topology optimization. Maute and Frangopol [72] applied RBTO to synthesize compliant 

mechanisms for MEMS base application. The level-set based topology optimization 

procedure [73] has also been combined with stochastic optimization techniques for 

RBTO [74]. Chen et al. [75] investigated the application of random field uncertainty for 

the robust shape and topology optimization using the level set method. The formation of 

RBTO is similar to that of deterministic topology optimization except for the reliability 

constraint, i.e. Eq. (2.14): 

Min/ Max:    )(bf              (2.13) 

Subject to:  ( )[ ] jRjj PxbgP ≤< 0,                       (2.14) 

             ∑
=

≤−
N

i

ii VLA
1

* 0                     (2.15) 

               ul bbb ≤≤                             (2.16) 

              Ku = F                     (2.17) 

where f (.) represents the objective function, gj(.) represents the limit-state function, b is 

the vector of deterministic design variables, and x  is the random vector, which can be 

random design variables or random parameters of the system. In Eq. (2.14), Pj [76] 
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denotes the probability of the event and the probability of failure, Pf, can be defined as 

. PRj is the specified probability of failure (Pf) level. Ai is the cross-sectional 

area of the elements and Li is the length of that particular element. V* denotes the volume 

of material that can be used in the final design.  bl and bu are the upper and lower bounds 

on the deterministic design variables, respectively. K is the global stiffness matrix, u is 

the global nodal displacement vector and F is the nodal load vector.  

 Typically, the cross-sectional areas are taken as the design variables. In that case, 

V* is given as a fraction of the maximum possible volume of the structure, i.e., in the 

case where all the design variables go to their upper bound, Au. Hence, Eq. (2.15) 

represents the volume constraint. Within every iteration in the optimization processes, the 

finite element analysis, Eq. (2.17), is invoked and the information required by the 

objective function is evaluated. Due to the nature of the reliability constraint, Eq. (2.14), 

in the RBTO problem, it is critical to consider realistic uncertainty representation 

schemes to conduct accurate reliability assessment. The process of evaluation of the 

reliability constraint is explained in Section 2.5.4. Figure 2. 10 represents the Reliability-

based design optimization procedure. Apart from the objective function and the 

constraints that are dealt with in the deterministic optimization procedure, the evaluation 

of the reliability constraint is an important step in RBDO. The reliability estimation is 

represented inside the serrated box in Figure 2. 10. The reliability constraint introduces 

randomness in the optimization procedure which enables the method to consider all the 

variations during the design process. 

Pj g j (.) < 0 
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Figure 2. 10 Reliability-based topology optimization procedure 

Owing to the stochastic nature of the reliability constraint this optimization process can 

also be called stochastic optimization process. Consequently, evaluation of the reliability 

constraint increases the computational requirement of the procedure drastically. This 

computational requirement is caused by the need to evaluate the FEM method multiple 

times in order to estimate the responses that are required to evaluate the reliability 

constraint. Hence a surrogate model, which can approximate the response of the FEM 

procedure, can be used as a way of reducing the computational requirement of the overall 

procedure. The surrogate model can be constructed after conducting a suitable 

experimental design such as Latin Hypercube Sampling method. The state of the art in 
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stochastic optimization and structural reliability assessment is discussed in Sections 2.5.3 

and 2.5.4 respectively. 

2.4.3 Stochastic Optimization 

With the emergence of high power digital computers, it has become feasible to combine 

randomness or uncertainty in the optimization process and hence design large-scale 

complex systems. These methods are known as stochastic programming or stochastic 

optimization methods. These methods help the designer arrive at robust and reliable 

designs that are insensitive to given uncertainties and hence ensure a guarantee of 

satisfaction with respect to the uncertainty in the objective function, performance 

constraints and design variables. In this dissertation, Sequential Quadratic Programming 

(SQP) has been chosen as the optimization algorithm of choice. Although various other 

methods including genetic algorithms can be used for this problem, SQP was chosen 

because of its ability to converge faster and provide equally appropriate solutions for the 

RBTO problem. SQP has also been shown to give good results in case of large scale 

nonlinear problems [77]. However, genetic algorithms and other evolutionary algorithms 

should be used in cases involving discontinuous problems since a gradient-based method 

such as SQP cannot provide globally optimal solutions for these problems.  

 Optimization under uncertainty, by its very nature is more expensive than solving 

deterministic problems. The computational cost of stochastic optimization problems turns 

out to be extremely high in many cases. This limitation has encouraged researchers to 

introduce and adapt efficient schemes to represent uncertainty in the optimization 

procedure. A common approach for treating the computationally expensive objective 
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function and the constraints is to build relatively inexpensive surrogate models using 

approximation techniques. The choice of surrogate-based optimization can be reasonable 

in typical engineering applications. Choi et al. [46] introduced a formulation that 

combines Polynomial Chaos Expansion (PCE) and Analysis of Variances (ANOVA) 

within the framework of LHS which can be effective in estimating the responses of large-

scale uncertain structural problems. Specifically, to represent variability in stochastic 

constraints or objective functions, fluctuating components are introduced and 

approximated in this method. Many other function approximations techniques can be 

used in order to approximate the variability in the model that can help reduce the 

computational requirement of the optimization procedure drastically. 

2.4.4 Structural Reliability Assessment  

Reliability is defined as the probability that a system will perform its function over a 

specified amount of time and under specified service conditions. Primarily, reliability-

based optimal design consists of minimizing an objective function while satisfying 

reliability constraints. The reliability constraints are based on the failure probability 

corresponding to each failure mode or a single failure mode decreasing the system 

failure. In case of structural optimization, the structure is under the influence of loads and 

boundary conditions and the response depends on the stiffness and mass properties. The 

responses that are critical for the reliability of the structure such as critical location of 

stresses, resonant frequencies, displacements etc. are called limit-state.  The probability 

of violation of the limit state is a metric for quantifying the reliability of the structure 

under consideration. Once the limit state has been violated, the structure is believed to 

have undergone failure for the sake of calculations. By determining the number of times 
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the structure failed out of the number of evaluations the probability of failure can be 

determined. Once the probability has been determined, the next step will be to choose 

design alternatives that improve structural reliability and minimize the risk of failure.  

 Generally the limit state indicates the margin of safety between the resistance and 

the load of structures. The limit-state function, , and probability of failure, , can be 

defined as 

)()()( XSXRXg −=            (2.18) 

[ ]0(.) <= gPPf
             (2.19) 

where R is the resistance and S is the loading of the system. Both  and  are 

functions of random variables . Here  represents the failure surface.  and 

 represent the failure region and safe region respectively.  

  The mean of the limit state g(.) can be expressed as in Eq. 2.20, where  and  

represent the means of R and S respectively.  

SRg µµµ −=             (2.20) 

The standard deviation of g(.) is 

SRRSSRg σσρσσσ 222 −+=          (2.21) 

g(.) Pf

R(.) S(.)

X g(.) = 0 g(.) < 0

g(.) > 0

µR µS
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where, RSρ  is the correlation coefficient between R and S, and Rσ  and Sσ  are the 

standard deviations of R and S, respectively.  The safety index or reliability index is then 

defined as [42] 

SRRSSR
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g

g

σσρσσ

µµ

σ

µ
β

2
22 −+

−
==          (2.22) 

The safety index indicates the distance of the mean of the margin of safety from g(.)=0. 

The idea behind the safety index is that the design is more reliable if  is farther from 

the limit state surface. 

 For a special case, if the resistance R and the loading S are assumed to be 

normally distributed and uncorrelated, then the probability density function of the limit-

state function can be represented as 
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The probability of failure can then be represented as 

∫
∞−

=
0

)( dggfP gf            (2.24) 

For a multidimensional case, the generalization of Eq. (2.24) becomes 

[ ] ( )∫∫=≤= nnXf dxdxxxfXgPP ...,...,...0)( 11        (2.25) 
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where g(X) is the n-dimensional limit-state function and  is the joint 

probability density function of all relevant random variables X. 

 Due to the curse of dimensionality in the probability of failure calculation in Eq. 

(2.25) numerical methods can be used to simplify the numerical treatment of the 

integration process. The Taylor series expansion is often taken to make the limit state 

g(X)=0, linear. This is the basis of the First order reliability method (FORM) [78] and  

Second order reliability method (SORM) [79]. Other strategies have also been used in the 

past for probabilistic analysis for designing reliable structures. Stochastic Finite Element 

method [80, 81], sampling methods and stochastic expansions [82] are some of the most 

commonly used methods for conducting reliability analysis.  

2.5 Sampling Methods 

In this research the efficient use of sampling methods for design of reliable material 

structures is explored. The basic advantage of sampling methods is that the probabilistic 

information or mathematical solution of a problem can be obtained by direct use of 

experiments.  

2.5.1 Monte Carlo Simulation 

Monte Carlo methods were originally practiced under more generic names such as 

statistical sampling, and the name is a reference to the famous casino in Monaco. The 

methods use of randomness and iterative procedure is similar to a casino’s activities. In 

Monte Carlo Sampling (MCS) [83] the inverse transform method is used to generate 

random variables with specified probability distributions. This method can be applied to 

fX (x1,..., xn )
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variables for which the cumulative distribution function has been obtained from direct 

observation, or where an analytic expression for the inverse cumulative function, , 

exists [42].  

 Let FX (xi) be the Cumulative Distribution Function (CDF) of random variable xi. 

Since the value of CDF can only lie between 0 and 1, F(.) has a value between 0 and 1. If 

u is the uniformly distributed random variable that is generated using MCS then the 

inverse transfer method is used to equate u to FX (xi) as follows: 

( ) uxF iX =             (2.26) 

or 

( )uFx Xi

1−=             (2.27) 

This method can be applied to variables for which a cumulative distribution function has 

been obtained from experiments or where an expression for the inverse cumulative 

function exists. The process starts with the random number generator producing random 

numbers between 0 and 1 based on randomly selected seed values. The corresponding 

CDF value of the uniform distribution and target distribution can easily be obtained using 

the random numbers that were generated. The final step is to obtain the random number 

for the target PDF using Eq. (2.27).  

 Monte Carlo sampling for reliability estimation can be expensive if low 

probability of failures are being estimated. In order to make MCS less computationally 

expensive sometimes variance reduction techniques are integrated. Latin Hypercube 
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Sampling [84] is an excellent variance reduction technique that reduces the 

computational requirement for the simulation as well as increasing the accuracy with the 

same number of runs.  

2.5.2 Latin Hypercube Sampling  

Latin Hypercube Sampling (LHS), also known as the stratified sampling technique, 

represents a multivariate sampling method that can be used in the reliability estimation 

problems. In LHS, the distribution for each random variable can be subdivided into n 

equal probability intervals or bins. Each bin has one analysis point. There are n analysis 

points, randomly mixed, so each of the n bins has 1/n of the distribution probability. 

Figure 2. 11 shows the basic steps for the general LHS method, which are: 

Step 1: Divide the distribution for each variable into n non-overlapping intervals on the 

basis of equal probability. 

Step 2: Select one value at random from each interval with respect to its probability 

density. 

Step 3: Repeat steps (1) and (2) until you have selected values for all random variables, 

such as x1, x2,…, xk. 

Step 4: Associate the n values obtained for each xi with the n values obtained for the 

other xj≠i at random. 
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                         (a) Step 1                                  (b) Step 2 

 

  (c) Step 3                                                                                 (d) Step 4 

Figure 2. 11 Basic concept of LHS: Two variables and five realizations 

The regularity of probability intervals on the probability distribution function ensures that 

each of the input variables has all portions of its range represented, resulting in relatively 

small variance in the estimates. At the same time, the analysis is much less 

computationally expensive. The LHS method also provides flexible sample sizes while 

ensuring stratified sampling; i.e., each of the input variables is sampled at n levels.  

2.5.3 Probability of Failure Calculation 

The sampling methods can be used to calculate the probability of failure where the limit 

state function involves complex functions, and direct evaluation of the limit state is not 

possible. The following steps are taken to calculate the probability of failure Pf : 
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Step 1: Generate a sampling set of random variables according to the corresponding 

probability density functions. 

Step 2: Set the mathematical model of the limit-state, which can determine failures for 

the drawing samples of the random variables. 

Step 3: The simulation is executed and for each run the limit state is evaluated. 

Step 4: If the limit-state function g(.) is violated, the structure or the structural element 

has “failed”. 

Step 5: The trial is repeated many times to guarantee convergence of the statistical 

results. 

Step 6: If N trials are conducted, the probability of failure is given approximately by 

            (2.28) 

where  is the number of trials for which the limit state function is violated out of the N 

experiments conducted.  

 An example is illustrated in Figure 2. 12. Here 10 data points are generated using 

LHS procedure. For each data point, g(.) is evaluated to check if the corresponding point 

belongs to the safe region or the unsafe region. The safe and the unsafe region are 

depicted in the figure. In this example, 3 points are assumed to be in the unsafe region. 

Hence the probability of failure for this case would be 0.3. 

Pf =
N f

N

N f



 

 

2.6 Surrogate Modeling Techniques

A primary challenge of stochastic analysis is to discover rigorous ways to forecast the 

low probability of failure, which is critical to reliability constraints. Simulation based 

methods evaluate the limit state function 

probability of failure. In case of reliability

be calculated in every iteration

 A common simplification 

inexpensive surrogate modeling techniques. 

design optimization procedure based on sampling schemes. Apart from the objective 

function and the constraints that are dealt w

procedure, the evaluation of the reliability constraint is an important step in RBDO and 

RBTO. The evaluation of the reliability constraint requires the evaluation of responses by 

Figure 2. 12 Example of Probability of Failure Calculation using LHS
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FEM for every sample created using LHS

constraint using sampling methods was explained in Section 2.5. Since random points are 

sampled for evaluating the reliability constraint

entails the evaluation of FEM responses for each sample. Consequently, evaluation of the 

reliability constraint increases the computational requirement of the procedure drastically 

because of the computational requirement of evaluation of FEM. Hence a surrogate 

model can be created with a selected small number of sample points which can be used to 

approximate the limit state function or the reliability constraint. This model can be used 

to reduce the computational requirement of the overall RBTO 

FEM procedure is the major contributor to the computational requirement.

Figure 2. 
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constraint using sampling methods was explained in Section 2.5. Since random points are 

sampled for evaluating the reliability constraint, the evaluation of the reliability constraint 

of FEM responses for each sample. Consequently, evaluation of the 

reliability constraint increases the computational requirement of the procedure drastically 

because of the computational requirement of evaluation of FEM. Hence a surrogate 

ted with a selected small number of sample points which can be used to 

limit state function or the reliability constraint. This model can be used 

to reduce the computational requirement of the overall RBTO procedure, 

dure is the major contributor to the computational requirement.

Figure 2. 13 RBTO procedure using sampling scheme 

. The procedure of evaluation of the reliability 

constraint using sampling methods was explained in Section 2.5. Since random points are 

reliability constraint 

of FEM responses for each sample. Consequently, evaluation of the 

reliability constraint increases the computational requirement of the procedure drastically 

because of the computational requirement of evaluation of FEM. Hence a surrogate 

ted with a selected small number of sample points which can be used to 

limit state function or the reliability constraint. This model can be used 

procedure, assuming that 

dure is the major contributor to the computational requirement. 
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 The modified RBTO procedure is illustrated in Figure 2. 14. The designer 

provides the Probability Distribution Function (PDF) information for modelling the 

variability or uncertainty that the structural system could be exposed to during its 

lifetime. This variability could come from variable external forces on the system as well 

as variable boundary conditions and material properties of the structures in the system. In 

order to calculate the probability of failure (Pf) value, samples are generated from the 

PDF function and the corresponding responses are evaluated by using FEM. Unlike the 

procedure depicted in Figure 2. 13, the procedure shown in Figure 2. 14 uses a few 

representative data points, which are generated using Latin Hypercube Sampling. The 

FEM is then used to calculate the responses for the samples created by LHS. This dataset, 

comprising of the samples and the responses can then be used to formulate the surrogate 

model.  The next sections explain the different surrogate models that have been used for 

the RBDO and RBTO procedures. Specific advantages and disadvantages of using each 

method are also explained in these sections.  



 

 

Figure 2. 14 RBTO procedure using a surrogate model and sampling scheme

2.6.1 Function Approximation

Function approximations play a major role in iterative solutions and optimization of 

large-scale structures. For many structural optimization problems, evaluation of the 

objective function and constraints requires the execution of costly finite element analysis 

for displacements, stresses or other structural responses. The optimization process may 

require the evaluation of the objective function and the constraints hundreds or thousands 

of times. For example in case of the RBDO method, for every iteration of the 

optimization procedure the probability of failure has

which can require the finite element analysis of the structure 
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the limit state function. In order to reduce the computational requirements, an 

experimental design like LHS scheme is used to generate a small number of samples of 

input data and the response is obtained from the finite element analysis. This data is used 

to construct a surrogate model that can then be evaluated using N samples generated 

using any sampling scheme to evaluate the reliability constraint.  

 Some of these techniques can be used as a black box (viz. Neural Network based 

methods), whereas for some of the methods (viz. regression and response surface 

techniques) it is important to have knowledge of the inherent physics of the problem. 

Furthermore, Artificial Neural Networks (ANN) has the added advantage that they can be 

used either for function approximation or for classification.  

 In the case of both function approximation and classification, the goal is to 

establish a relationship between the inputs and the outputs to a system. The inputs are 

called independent variables and the outputs are called dependent variables since they are 

expressed as a function of the independent variables. In case of function approximation, 

the dependent variables are continuous and can take any real value whereas in case of 

classification, the dependent variables are discrete or categorical. A simple scenario 

below will help illustrate the difference between regression and classification: 

Today, stock investor Tom wants to decide whether to buy or sell the stock of company 

A. In order to make this decision he wants to consider three factors: the historical stock 

price, the number of shareholders and the historical Dow Jones Industrial Average value. 

A classification model can be formulated using these three factors as the input variables 

and the decision buy/sell as the output. Buy can be represented as 1 and sell can be 
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represented as -1 in the model. Hence the output or dependent variable is categorical in 

this case. Consider another case where Tom wants to estimate the most likely stock price 

of company A in the next day. In this case the dependent variable will be the stock price 

of A tomorrow and the independent variables will remain the same as in the last case. 

Note that the dependent variable in this case is allowed to be continuous in this case. 

Hence Tom can use a classification technique in the first case and a function 

approximation technique in the later. 

In both function approximation and classification, the independent variable will be 

represented by the symbol X. If X is a vector its components can be accessed by 

subscripts Xj. Continuous outputs, as in case of function approximation, will be 

represented by Y and discrete outputs, as in case of classification, will be represented by 

W. Observed values will be shown in lower case; hence the ith observed value of X will 

be noted as xi. The surrogate modelling task can be summarized as: given the value of an 

input vector X, make a good prediction of the output Y, denoted by Ŷ  (pronounced “y-

hat”). If Y takes values in ℜ , then so should Ŷ ; likewise for categorical outputs, Ŵ  

should take values in the same set ω associated with W [41]. 

 The following sections give a brief description of the regression method, moving 

Least Squares (MLS) local regression method and artificial neural networks (ANN) 

methods for both regression and classification.  
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2.6.2 Regression 

Regression
2
 is a method that maps the relationship between a response variable Y and a 

covariate or independent variables X [85]. The covariate is also called predictor variable 

or feature or independent variable. One way of expressing the relationship between X and 

Y is through the regression function which is expressed as: 

r(x) = E(Y X = x) = yf (y x)dy∫           (2.29) 

The goal in regression is to estimate the regression function r(x) from the data of the form 

(Y1, X1),..., (Yn, Xn ) where the Y’s correspond to the particular X’s. If the function r is 

linear then this process is called linear regression and if the function is non-linear then it 

is called non-linear or parametric. In general, a parametric function is global in nature 

and all the data points are used to evaluate the function. For simple linear regression, the 

regression function can be represented as: 

r(x) = β0 + β1x            (2.30) 

If we make the further assumption that Var(Y X) = σ 2
does not depend on x, the Eq.  

(2.30) can be rewritten as: 

Yi = β0 + β1Xi +εi
                      (2.31) 

where, the expectation of the errors εi
, E(εi Xi ) = 0 and the variance of the errors, 

Var(εi Xi ) = σ 2 . 

                                                 
2
 The term “Regression” is due to Sir Francis Galton (1822-1911) who noticed that tall and short men tend 

to have sons with heights closer to the mean. He called this “regression towards the mean”.  
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For the linear function represented in Eq. (2.30), the intercept β0, the slope β1 and the 

variance σ
2 

are the unknown parameters, which needs to be estimated. The fitted line is 

r̂(x) = β̂0 + β̂1x            (2.32) 

The fitted or predicted values are Ŷi = r̂(Xi ) and the errors (residuals) are defined as 

ε̂i = Yi − Ŷi = Yi − (β̂0 + β̂1Xi )           (2.33) 

The goodness of fit for the regression process can be defined by calculating the residual 

sum of squares,  

RSS = ε̂
i

2

i=1

n

∑             (2.34) 

The estimated values of the intercept β0, the slope β1 can be represented below as: 

β̂1 =
(Xi − Xn )(Yi −Yn )

i=1

n

∑
(Xi − Xn )2

i=1

n

∑
          (2.35) 

β̂0 = Yn − β̂1Xn
            (2.36) 

And the unbiased estimate of the error variance σ
2
 can be represented as 

σ̂ 2 =
1

n − 2









 ε̂i

2

i=1

n

∑            (2.37) 

In general it is advisable to include more covariates or predictor variables so that the 

regression model is able to estimate the values of the dependent variables more 
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efficiently. However, after a certain point, the limits of efficiency are reached. As a rule 

of thumb, if we consider a variety of models with different number of predictor variables, 

the model with least number of predictor variables should be chosen as the final model. 

This heuristic follows from Ockham’s Razor [86-90] principle in statistics where it is 

suggested that when various models are compared, the model with the least number of 

terms should be selected. Various model selection models in statistics such as Akaike 

information criterion (AIC) [41] and Bayesian Inference Criteria (BIC) [41] can be 

connected back to the Ockham’s Razor principle as well. Specifically for regression 

analysis, stepwise fit or forward and backward elimination methods [4], can also be used 

for appropriate model selection. 

2.6.3 Moving Least Squares Method for Function Approximation 

To achieve a high quality surrogate model, the local regression model, namely Moving 

Least-Squares (MLS) method [91] can be used. 

 The main advantage of the MLS method is that the regression coefficients are not 

constant, but rather parameter dependent. This quality allows the data analysis to not be 

constrained to a specific global function in order to fit a model to the data. Instead, the 

fitting segments spawn a local-global approximation allowing the data to acclimate to the 

function over a wide range of parameters. The main idea of local regression is to fit 

curves and surfaces to localized subsets of the data by a multivariate smoothing 

procedure with moving processes. 

The details of MLS process are shown in Figure 2. 15. In the first step we define the local 

domain based on the domain influence factor or the bandwidth, r. In the second step an 
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approximation is estimated at the point . This process can then be repeated at different 

calculation points by moving the local domain. Therefore, the regression coefficients of 

the MLS are not constant but a function of the calculation position or location.  

A linear regression model can be written as  

εβββ ++++= )(...)()( 110 xpxpxy kk         (2.38) 

where , j = 0,1,2,…,k, are the basis polynomials of order k,  are the regression 

coefficients, and , the error of the model equation, is assumed to be normally 

distributed with mean zero and variance .  Eq. (2.38) can be expressed in matrix 

notation for n sample values of x and y as  

          (2.39) 

where 

            and    

Here, the simplest polynomial model is the monomials of x
k
, i.e.,  

 = ],...,,,1[ 2 k
xxx .  
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              (2.40) 

 

Figure 2. 15 Moving least square approximation process[42] 

The estimated target values and the errors are given by 

 and                (2.41) 

The weight matrix W(x) is also present in the equation for the coefficient matrix in the 

case of a Moving Least-Squares (MLS) approximation. The regression coefficient vector, 

b(x), can be calculated as 

YXXX
TT 1)(ˆ −=β

β̂ˆ XY = YYe ˆ−=
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        (2.42) 

where X is a n x m matrix of the levels of the regressor variables, Y is a n x 1 vector of the 

responses, and W(x) is a non-zero diagonal matrix given by 

        (2.43) 

Hence, the estimates for the MLS model can be represented as follows 

)()()()()(
0

xbxpxbxpxu
T

k

j

jj

h ==∑
=          (2.44) 

The weight matrix in Eq. (2.43) is a function of the location or position of x and there are 

several types of weighting functions. The exponential, canonical and spline functions are 

widely used as weight functions and are represented as 

Exponential weight function 

        (2.45) 

Conical weight function  
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       (2.47) 

where  is the distance from the sample point xi to x, and ri is the smoothing 

parameter or the bandwidth. The smoothing parameter is an important factor, depending 

on which the function approximation can widely vary.  

Figure 2. 16 depicts the three types of the weight functions discussed in this section. It is 

important to note that the shape of the fitted curve is not critically sensitive to the precise 

selection of the weight function. However, the careful adjustment of the domain influence 

factor of the weight function is critical so that the interval should contain enough data 

points to obtain the regression coefficients. This is important in order to avoid the 

singularity of the weight matrix.  

 

w(di) =
1− 6(di /ri)

2 + 8(di /ri)
3 − 3(di /ri)

4 ,  if  di /ri ≤ 1

0,                                                     if  di /ri > 1
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di = x − x i
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Figure 2. 16 Weight functions 

2.6.4 Classification 

Classification is a method for estimating a categorical variable given that it depends on a 

set of independent variables. These categorical variables represent a set of “classes” such 

as “small”, “medium” and “large” or “safe region” and “failure region” or “success” 

and “failure”. These are often represented by a single binary digit or bit as 1 or 0, or else 

by -1 and 1. These numerical codes or categorical variables are sometimes referred to as 

targets since a classification model has to target these variables given the set of 

independent variables.  

 For a set of two classes W, the simplest approach to classification is to denote the 

binary coded target as Y and then treat it as a continuous output, as in the case of function 
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approximation. In this case the task will be to estimate the response Ŷ  which will be in 

the range [0,1] and we can assign to Ŵ  the class label according to whether 5.0ˆ >y . 

This approach will also generalize to multi-class cases.  

 Consider a multi-class case where there are Z classes with labels 1,2,…,Z, and the 

estimated linear model for the zth response variable is given by xxy
T

kzz ββ ˆˆ)(ˆ
0 += . For 

classes z and l, the set of points for which )(ˆ)(ˆ xyxy lz =  will represent the decision 

boundary between the two classes. This set of points represents an affine set or 

hyperplane
3
 which can be represented by the set: 

( ) ( ){ }0ˆˆˆˆ: 00 =−+− xx
T

lzlz ββββ
       (2.48) 

 In case where there are multiple classes, the input space is divided into regions of 

constant classification which enables the representation of multiple class boundaries with 

piecewise hyperplane decision boundaries. This method of classification, which is 

derived from function approximation methods, is a member of a group of methods that 

model discriminant functions )(xzδ , for each class, and then classify x to the class with 

the largest value for its discriminant function [41].  Similarly, the posterior probability

)( xXzWP ==  can also be modeled using a discriminant function. Once the posterior 

probability is calculated, the instance x can be assigned to the class corresponding to the 

largest value of posterior probability. This classification rule is the direct statement for 

                                                 
3
 By definition a hyperplane passes through the origin whereas an affine set need not. Common 

terminology ignores this distinction and refers generally to hyperplanes. 
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the Bayes Decision Rule [41] which states that an instance x should be assigned a class 

label corresponding to the class with the highest probability, )( xXzWP ==  value. 

 It is evident that if either )(xzδ  or )( xXzWP ==  are linear in x, then the 

decision boundaries will be linear. In order to perform classification, all we need now is a 

linear monotonic transformation for )(xzδ  or )( xXzWP ==  so that we can form a 

linear classification boundary. A commonly used monotone transformation is the logit 

transformation: )]1/(log[ PP − , which is the basis for Logistic Regression method for 

classification. From the logit transformation it follows for a 2 class situation: 

x
xXWP

xXWP
Tββ +=

==

==
0

)2(

)1(
log

         (2.49) 

Since )1(1)2( xXWPxXWP ==−=== , we can derive that 

)exp(1

)exp(
)1(

0

0

x

x
xXWP

T

T

ββ

ββ

++

+
===

         (2.50) 

and 

)exp(1

1
)2(

0 x
xXWP

Tββ ++
===

        (2.51) 

For logistic regression, the decision boundary is represented by the points for which the 

log-odds represented in Eq. (2.49) are zero, and it is represented by the hyperplane

}0{ 0 =+ xx Tββ . 
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 Logistic regression is one of the simplest linear classifiers which directly model 

the posterior probability )( xXzWP == . Other linear classifiers draw separating 

hyperplanes in mℜ so that the data can be separated into different classes as well as 

possible. Perceptrons [92] achieve this by forming linear combination of input features 

which return the sign. Depending on whether the sign is positive or negative x can be 

classified as an instance belonging to either class 1 or class 2. Perceptrons can be 

considered as a special case of separating hyperplanes classification methods which are 

linear. However, the disadvantages of perceptrons can be summarized in three points: 

When the data is linearly separable there can be many solutions and which one is found 

depends on the initial solution provided. Figure 2. 17(a) shows an example of linearly 

separable data points and a linear hyperplane that classifies the two classes. Note that 

many different hyperplanes can classify the data points. 

Perceptrons converge in a finite number of steps; but this “finite” number of steps can be 

very large. The smaller the gap between the two classes, the longer the time required to 

find the optimum linear combination. 

When data is not linearly separable, the algorithm will not converge and go in cycles. 

Figure 2. 17(b) shows an example of linearly non-separable hyperplane. 



 

75 

 

 

          (a) Linearly Separable         (b) Linearly Non-separable 

Figure 2. 17 Linearly separable and linearly non-separable hyperplanes respectively 

In order to estimate linearly non-separable decision boundaries multilayer perceptrons 

were invented, which can be considered as a starting point for more complex learning 

algorithms such as Artificial Neural Networks (ANN). Multilayer perceptrons are 

feedforward neural networks which require minimum training time but tend to be 

inefficient when the decision boundaries tend to be complex non-linear functions. In 

these scenarios the backpropagation neural networks can be used, which will be explored 

in the next section. 

 The concept of optimal separating hyperplanes is attributed to Vapnik [93], who 

stated that optimal separating hyperplanes separate two classes and maximize the 

distance to the closest point from either class. This forms the basis for many separating 

hyperplane classifiers such as Support Vector Machines (SVMs). SVMs choose a 

hyperplane so that the distance from it to the nearest data points on each side (each class) 

is maximized. If such a hyperplane exists, it is known as the maximum-margin 
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hyperplane. The nearest data points on either side of the hyperplane are in turn called as 

supports [94].     

 Logistic regression, separating hyperplanes methods and other linear 

classification methods fall into the broad category of discriminative classifiers [95] since 

the focus of these models is to estimate the posterior probability )( xXzWP ==  or the 

discriminant function )(xzδ . Clearly, the posterior probability can also be estimated by 

using the Bayes theorem as follows: 

       

       (2.52) 

And for a case with just two classes, the denominator can be written as: 

)()()()()( 2211 zWPzWxXpzWPzWxXpxp ===+====
     (2.53) 

 When the Bayes theorem is used for estimating the posterior probability, 

)( zWP =  can be calculated by finding the ratio of number of training data points in each 

class and the total number of data points. A multivariate Gaussian distribution can be 

used for calculating p(x|w), 
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where µw and Σw represent the mean vector and covariance matrix of the Gaussian 

distribution (Normal Distribution), respectively. Bayes’ formula, expressed in Eq. (2.52) 

can also be expressed informally by saying that: 
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evidence

priorlikelihood
posterior

×
=

          (2.55)    

Baye’s formula shows that by observing the values of x we can convert the prior 

probability p(W=z) to the posterior probability – the probability that the state of nature 

being W=z given that the feature value x has been measured [94]. p(X=x|W=z) will be 

called the likelihood of W=z with respect to x since it is assumed that all things being 

equal, the category W=z for which p(X=x|W=z) is large is more “likely” to be the true 

category. Notice from Eq. (2.55) that the product of the likelihood and the prior 

probability is the most important in determining the posterior probability, and the 

evidence factor p(x) in the denominator is merely a normalization factor that guarantees 

that the sum of the posterior probabilities sum up to 1.  

Note that when the Bayes Theorem is used for classification, the only undetermined 

parameters are the mean and covariance values in Eq. (2.54). The classfier is as good as 

the estimations of means and covariance values are, which affects the quality of the 

likelihood estimate p(X=x|W=z). All the classification methods that use Bayes Theorem 

for computing the posterior probability value after calculating the likelihood value are 

called generative classifiers since they focus on estimating the class conditional 

probability first and then classify the data point based on which class has the largest value 

of class conditional probability. Generative classifiers will be dealt with in more detail in 

Chapter 4 during the discussion of Semi-Supervised Learning (SSL).  
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2.6.5 Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANNs) are processing devices (algorithms or actual 

hardware) that are loosely modeled after the neuronal structure of the mammalian 

cerebral cortex but on much smaller scales. A large ANN might have hundreds or 

thousands of processor units, whereas a mammalian brain has billions of neurons with a 

corresponding increase in magnitude of their overall interaction and emergent behavior. 

Neural networks have been used for a variety of applications in the past. Some of them 

are in Machine Learning [96] and data mining, which include: 

Having a computer program itself so that the programmer doesn’t have to write the code 

by himself. This is achieved by learning from a set of examples. 

Optimization- Given an objective function and constraints, how do we find an optimal 

solution? 

Classification- How to group patterns of data into classes? For example the United States 

Postal Service uses a neural network based scanning system to recognize the zip code on 

addresses. 

Associative memory- Recalling a memory based on a partial match, which is analogous 

to case based reasoning. 

Regression- It has been proved that neural networks have an ability to approximate any 

function given the optimal number of neurons in the network. 
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Because of their robust nature and versatility, ANN’s find application in a variety of 

fields [97]. They have been applied in 

1) Signal processing: suppress line noise, with adaptive echo canceling, blind source 

separation. 

2) Control: e.g. in backing up a truck, cab position, rear position, and match with the 

dock get converted to steering instructions. Manufacturing plans for controlling 

automated machines. 

3) Robotics: navigation, vision control. 

4) Pattern recognition, i.e. recognizing handwritten characters 

5) Medicine: Storing medical records based on case information 

6) Speech recognition and production, which helps reading texts aloud. 

7) Vision based applications like face recognition, edge detection and visual search 

engines. 

8) Business: Rules for mortgage decisions are made based on the old decisions that 

produced good results 

9) Financial applications: time series analysis, stock market prediction 

10) Data Compression: speech signal, image and faces. 

11) Game playing: chess, pacman etc. 
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 The simplest computational element for a neural network is called a neuron. A 

neuron can receive inputs from other neurons or from external source. Each input to a 

neuron has an associated weight w, which can be modified to model synaptic learning. 

The weighted inputs are then summed to form the net input for the activation function f. 

A neuron computed summation function  f of the weighted inputs is given by: 

           (2.56) 

The output from this neuron can be input into another neuron for making a network. 

There can be neurons in parallel or series making different layers of neurons that can 

make a complex network that is able to approximate any function. Most of the times the 

number of layers and the number of neurons in each layer has to be decided based on the 

problem at hand. A simple neuron model can be represented as shown in Figure 2. 18. 

 

In Figure 2. 18 the weighted sum  is called the net input to neuron unit i which is 

referred to as neti or the sum S.  

y = f x iwi∑( )

wixi∑

Neuron 

Figure 2. 18 A simple neuron model with n inputs 
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 The function f in Eq. (2.56) is referred to as the unit’s activation function or 

transfer function. For the simplest case, f is the identity function and the unit’s output is 

just its net input. The neuron in that case would be called a linear neuron. The Hard-Limit 

transfer function and the Sigmoid transfer function are the two other most used transfer 

functions. Each of these transfer functions is shown below with red color. The values of 

all the transfer functions range from -1 to +1. The simplest transfer function is the linear 

transfer function which is shown in Figure 2. 19. The neurons of this type are used in 

linear filters as linear approximators. These transfer functions also have been heavily 

used for function approximations or regression based problems. 

 

Figure 2. 19 Linear transfer function 
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Figure 2. 20 Hard-limit transfer function 

 

Figure 2. 21 Sigmoid transfer function 

The Hard-limit transfer function shown in Figure 2. 20, which limits the output of the 

neuron to either 0, if the net input argument x is less than 0, or 1, if x is greater than or 
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equal to 0. This function is generally used in classification problems pertaining to 

perceptrons.  

 The Sigmoid transfer function is differentiable, which makes it suitable for use in 

backpropagation networks. A plot of the sigmoid transfer function is shown in Figure 2. 

21. In general there are many different types of ANNs and usually there is no single 

architecture that is suitable for all problems. The main types of ANN architectures widely 

used are competitive learning, the Boltzmann machine, the Hopfield network and the back 

propagation network [98]. The back propagation network is the most popular type due to 

its simplicity and ease of use. Its name comes from the way it “back-propagates” the error 

that occurs during the training process.  

 A back propagating neural network consists of multiple interconnected processing 

elements belonging to different layers. In the BP algorithm, learning is carried out using a 

set of input training patterns propagated through a network consisting of an input layer, 

one or more hidden layers and an output layer as shown in [98] Figure 2. 22. The hidden 

layers represent complicated associations between patterns and propagated data in a feed-

forward manner from the input towards the output layer. The number of neurons and the 

number of hidden layers play an important factor in determining the ability of the 

network to model complex relationship between inputs and outputs. In general, 

increasing the number of neurons and number of hidden layers increases the ability of the 

network to model nonlinear relationships, which also increases the training time for the 

network. The number of nodes in the hidden layer(s) is usually selected as the mean value 

of the number of the input and output nodes plus the input nodes [99]. More sophisticated 

networks use “dynamic node pruning” or “node growing” in intermediate layer(s).  
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 Most of the neural networks use the gradient descent algorithms, such as least 

squares, in order to correct the values of the weight connections. This comes as an 

optimization problem where the difference between the computed and desired output 

values is minimized. The correction step of the weights mentioned above is generally 

called as the delta rule. Once the network has “learned”, it produces different outputs for 

every set of different inputs it evaluates. 

 Figure 2. 23 shows the connection between two layers of neurons. Let wp,ij be the 

connection weight between the i neuron in the q(source) layer and the j neuron in the 

p(target) layer. Let the input signal transmitted from the i neuron of the layer q to the 

nodes of the target layer p be called netq, i , and the output produced at the j neuron of the 

layer p be netp, j . The exterior inputs xi corresponds to netq, i for the input layer.  

Input Layer 
 Hidden Layer 

Output layer 

Figure 2. 22 A fully connected ANN configuration 
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Figure 2. 23 Internal connection between two layers of neurons 

 In a typical neuron, the output signal is produced only if the incoming signal is 

strong enough to simulate the neuron. This output is simulated with NN by 

Out p, j = f (net p, j)           (2.57)  

where f is an activation function which produces the output at the j neuron of the p layer. 

The activation function used in this research is the commonly used sigmoid function 
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where bp, j is a bias parameter which acts as a function shifting term that improves the 

overall network accuracy. Bias parameters can be learned during the training in the same 
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manner as the other weights. Any random values can be assigned to the weights and bias 

and during the backpropagation and correction phase the values are improved as the 

procedure continues. One major advantage of the sigmoid function is that it can handle 

small as well as large input values. At the output the error can be calculated as the 

difference between the expected and the actual output value 

ikikjk outtarerr ,,, −=
           (2.59) 

where tar k,i and out k,i  are the target (expected) and the observed outputs for the node i of 

the output layer k respectively. The following relationship is used to evaluate the weight 

changes in the output layer that are related to the input signals. 

jpikjik outw ,,, ηδ=∆
           (2.60) 

where η denotes the learning rate coefficient usually selected between 0.01 and 0.9 and 

out p, j denotes the output of the hidden layer p. Here, η is analogous to the step size 

parameter in gradient-based optimization algorithms.  

 The term ik ,δ  is the result of the multiplication of the derivative of the activation 

function, for the neuron in question, with the error signal that is represented as in Eq. 

(3.61). 

ikikjk errnetdf ,,, )(=δ
           (2.61) 

The derivative of the sigmoid function is given by 

)1()( ,,, ikikik outoutnetdf −=
          (2.62)  
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This method can be repeated until the desired error level is reached for the training set. 

This type of training mentioned above is called supervised learning. Only a brief 

description of backpropagation neural networks was given in the previous section. More 

detailed explanation of back propagation network and other kind of networks can be 

found in Ref. [41] 

 In order for the back propagation algorithm to give satisfactory results the training 

data has to be chosen carefully. A sufficient number of input data properly distributed in 

the design space together with the output data resulting from the finite element analysis is 

required to producing satisfactory results in structural optimization problems. 

 In order to predict accurate structural analysis outputs, the ANN has to be trained 

properly, which encompasses three tasks: 

1) Selecting the proper training set 

2) Finding a suitable network architecture 

3) Determining the appropriate values of the characteristic parameters such as the training 

rate 

An important limitation of ANN is that there are no rules for determining the efficient 

training set, architecture or the training rate. Frequently, the designer has to rely on past 

experience to determine the appropriate characteristics for the data in hand. Most of the 

times a “hit and trail” approach is used which might not lead to good solutions all the 

time. Hence, a method is required which will alleviate this problem. 
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 In this research, in order to reduce the computational requirements of the 

reliability-based design procedures, a special kind of ANN called as Probabilistic Neural 

Networks (PNN) is used. PNN can be used for a classification task only and fits our 

purpose of reliability estimation.  

 To summarize, Function Approximation and Classification are the two different 

ways a designer can estimate the reliability of a system when considering only the 

sampling based approaches. ANNs are capable of doing function approximation as well 

as classification but PNNs can only do classification. The methods of reliability 

estimation using ANNs are given below for both function approximation as well as 

classification. 

Function Approximation Approach- In case randomness is introduced in a design 

variable x and the output from the FEA is y , which, is used to calculate the limit state, x 

is the input to the ANN and y is the expected output. A network is trained that can 

accurately estimate the response y for an input x. The output y can then be used to 

calculate the limit state and check if it satisfies the safety criteria. By counting the 

number of times the limit state has been violated, the probability of failure of the 

structure can be calculated. 

 This method will be useful to approximate the limit state value in cases where the 

limit state is highly nonlinear. The disadvantage of this process lies in the fact that there 

is no set procedure to decide on the characteristics of the ANN such as the learning rate, 

number of neurons etc. Another major disadvantage of this procedure is that function 

approximation/regression gives unsatisfactory (wrong) results if the underlying limit state 
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function is discontinuous. Even in such cases, the regression approach will give us a 

value for y for which the corresponding x value does not exist in the neighborhood of the 

training dataset. The classification approach could be beneficial in this case. 

Classification Approach- Classification is used in case we have to classify the inputs 

into different classes. In order to determine the probability of failure we have to 

determine if, for the inputs x, the structure has failed or not. Then the ratio of the number 

of times the structure failed and the total number of input data gives us the probability of 

failure. Hence, it should be sufficient to determine if the structure has failed for the input 

xi. This implies that it would be sufficient to classify an input xi into either of two classes 

i.e., pass or fail.  

 This procedure starts with evaluating the limit state for each of the training data 

point xi and evaluating the limit state for each of them and checking if the structure has 

failed or not and assigning a corresponding class to it. This data is supplied to ANN and a 

network is created which classifies the test data into either of the two classes. By 

counting the number of elements in the fail class, the probability of failure can be 

calculated. This procedure is illustrated in Figure 2. 24. 
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Both the regression approach and the classification approach can be used for estimating 

the probability of failure for structural reliability assessment. Specifically Artificial 

Neural Networks can be used for both the regression approach and the classification 

approach. The back propagation neural networks can be used for both the classification 

and well as the regression approach. However, if there is a choice between considering 

function approximation based methods or classification based methods, classification 

methods give good results and remain the surrogate modeling method of choice when the 

designer wants to use a surrogate modeling technique as a black-box. In cases where the 

data is not linearly separable Probabilistic Neural Networks (PNN) can be used to 

classify the data. A comparison of function approximation and classification based 

methods for reliability estimation is shown in Figure 2. 25. 

Generate random training 

data (xi) using LHS/MCS 

Is g(xi) <0

wi= -1 (Class 1) wi= +1 (Class 2)

Generate Training data [x w] 

using LHS/MCS

Train Classifier using 

Artificial Neural Network

Use Classifier to find points in 

Class1 and Class2

Generate n random test data 

(new xi) using LHS/MCS

Pf = (No. of points in class 2)/n

Yes No

Figure 2. 24 Classification approach to probability of failure calculation 



 

91 

 

 

Figure 2. 25 Comparison of surrogate modeling techniques for reliability estimation 

It is clear from Figure 2. 25, that a classification based surrogate modeling technique 

applied to an MCS/LHS can be applicable to most cases. This architecture is also 

applicable in situations where the limit state functions are discontinuous[100]. Hence this 

will be the chosen architecture for the present research. 

2.7 Summary 

In this chapter, the state of art in design approaches for mesostructures, reliability-based 

design approaches and surrogate modeling techniques were presented. Various methods 

for the design of mesostructures were examined and the Reliability-based Topology 

Optimization (RBTO) procedure was idenified as the procedure of choice for the 

systematic design of mesostructures. Based on the benefits and limitations of previous 

research, a classification-based approach for surrogate modeling was shown to be 
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appropriate for reliability estimation of a wide variety of engineering systems. Most 

importantly, the responses from these systems need not be continuous. The reliability 

levels of systems with discontinuous responses can also be evaluated using a 

classification framework. Many classification frameworks exist today and all the methods 

have their advantages and disadvantages. A brief description of machine learning 

algorithms and the relevant algorithms that can be used for classification will be 

explained in Chapter 3. The usage of the proposed Semi-Supervised Learning (SSL) 

algorithm for reliability estimation will be introduced in Chapter 4 followed by design 

examples in Chapter 5.  
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CHAPTER 3 

MACHINE LEARNING FOR SURROGATE MODELING 

In this chapter we introduce the general field of machine learning and explore the various 

opportunities it provides for surrogate modeling. In Section 3.1, we introduce the 

different data types and definitions that we will be using for the rest of the discussion in 

this chapter and the following chapters. In Section 3.2 and 3.3, we will introduce 

supervised and unsupervised learning— which represent two major types of machine 

learning tasks. We summarize this chapter in Section 3.4. The foundations introduced in 

this chapter will be used to explain Semi-Supervised Learning (SSL), which forms the 

core of this dissertation. 

3.1 Machine Learning 

“We are drowning in information and starving for knowledge.” 

        –Rutherford D. Roger 

In the age of faster computers and cheap data storage infrastructure, we have more data 

than anyone can possibly interpret alone. With the advent of computers and the 

information age, statistical problems have exploded in both size and complexity. The 

field of “data mining” was born in order to solve these challenges posed by the areas of 

data storage, searching, and organization. These challenges have also created the field of 

“bioinformatics” in order to deal with statistical and computational problems in the field 

of statistics and computational biology. Most of the times the statistician’s job is to 

interpret “what the data says” but when dealing with large amount of data the 
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requirement changes from just “interpretation” to “automatic interpretation”. This has 

created the fields of “machine learning” and “pattern recognition” where the concern is 

automatic discovery of regularities in data through the use of computer algorithms and 

with the use of these regularities to take actions such as classifying the data into different 

categories [101].  

 Machine learning tasks can be challenging and can originate in a variety of fields. 

One of the most popular usages of machine learning is by the USPS for automatic 

recognition of handwritten US zip codes. Typical examples of US zip codes written by 

hand are shown in Figure 3. 1. Here each digit corresponds to a 28 X 28 pixel image 

which can be represented by a vector x comprising 784 real numbers. The task is to make 

a machine that can take each vector x as input and that will post the most likely estimate 

of the original identity of the number. Hence the output of the machine will be in the 

form of the digits 0, 1,…., 9. This is a problem that can be tackled, with some difficulty, 

by using handcrafted rules or heuristics for distinguishing the digits based on the shaped 

of strokes. However, in practice this approach leads to a proliferation of rules and their 

exceptions, which leads to poor results.  

 

Figure 3. 1 Typical examples of US Zip Codes written by hand [101] 
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Another way of tackling this problem will be by adopting a machine learning approach 

where a large set of n digits can be taken to tune the adaptive parameters of a model. 

These n digits will form the training set. The corresponding categories for each of these 

digits in the training set are known in advance. These ten categories ranging from 0—10 

form the target vector, which represents the identity of the corresponding digit. The result 

of running this machine learning algorithm can be expressed as a function y(x) which 

takes a new digit image x as input and that generates an output vector y, encoded in the 

same way as the target vectors. This process of learning the function y(x) is called the 

training process where only the training data is used. Once the function is learnt, it can 

then determine the identity of new digit images. These new digit images which do not 

have an associated digit identity on them comprise the test set. In this particular example 

of pattern recognition, the output vector y was categorical, however as discussed in 

Chapter 2, the output vector y can also be continuous, in which case the machine learning 

algorithms are essentially performing function approximation. Hence, whether a 

machine-learning algorithm is chosen to perform classification or function approximation 

depends on the training data, which is comprised of a training set and a target vector. 

Both of these methods fall under the broad scope of supervised learning.   

3.2 Supervised Learning 

Let ),...,( 1 nxxX = be a set of n instances (or data points), such that χ∈ix for all 

[ ] { }nni ,...,1:=∈ . In case of pattern recognition machine learning problems, X can also be 

called as patterns. In most cases during training of the machine learning algorithm, it is 

assumed that points are drawn i.i.d. (independently and identically distributed) from any 
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distribution of χ . In general, X is an pn ×  matrix, which contains n instances, each 

containing p features. 

 In the case of supervised learning, the goal is to learn a mapping from x to w 

given a training set made of pairs (xi ,wi). Here, ω∈iw can be termed labels or targets of 

the examples xi. Hence such (instance, label) pairs are called labeled data, while 

instances without labels are called unlabeled data [102]. The standard requirement is that 

the pairs, (xi, wi), are sampled i.i.d. from any distribution which ranges over ωχ × . The 

mapping can be evaluated through the prediction of the performance on training 

examples. Hence supervised learning is the process of learning from labeled data alone 

whereas unsupervised learning is the process of learning from unlabeled data alone. The 

most popular methods of the supervised learning are regression and classification. 

Regression is a form of supervised learning when the labels are continuous (wi are 

continuous values in ℜ  and we denote them by y). On the contrary, in classification wi 

can only take finite discrete values in ℜ .  

3.2.1 Function Approximation as Supervised Learning for Reliability Estimation 

Consider the simple scenario where the reliability of a structural system is to be evaluated 

using sampling based methods. Hence the steps in evaluating the reliability will be as 

follows: 

Step 1: Consider all the parameters in the design and decide on the fixed design variables 

and the uncertain design variables.  

Step 2: Sample n1 points using MCS/LHS for training from the distribution of the 

uncertain design variables. These points are the unlabeled points x1. 
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Step 3: Evaluate the responses, y, of the sampled points along with the fixed design 

variables by using Finite Element Analysis (FEA). Together, x1 and y, form the labeled 

point (x1, y). 

Step 4: Use a machine learning technique to model the variation in y as x1 varies (Figure 

3. 2). This model, f(x1), can now be used for finding the response y for any number of 

newly sampled points representing x1. 

Step 5: Sample n2 points using MCS/LHS and evaluate the responses y corresponding to 

these points. 

Step 6: Evaluate the limit state function g(x1) to find whether the structure has failed or 

not. 

Step 7: The probability of failure of the structure is the ratio of number of times the 

structure has failed and n2. 
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Figure 3. 2 Estimation of response function f(x1) 

3.2.2 Classification as Supervised Learning for Reliability Estimation 

In contrast to function approximation technique, the reliability estimation process using 

classification techniques is used for estimating whether the structures has failed or not, 

instead of estimating the response of the structure. In this case the structure is “classified” 

as either safe or failed—hence the model only is required to estimate the discrete labels—

safe or unsafe for each of the input. The steps in estimating the reliability of a structural 

system is as follows: 

Step 1: Consider all the parameters in the design and decide on the fixed design variables 

and the uncertain design variables.  
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Step 2: Sample n1 points using MCS/LHS for training from the distribution of the 

uncertain design variables. These points are the unlabeled points x1. 

Step 3: Evaluate the limit state function g(x1,x2) (Figure 3. 3) after estimating the 

responses of the structure using FEA. If g(x1,x2) is positive for a particular unlabeled 

data point, the point is in the failure region and if g(x1,x2) is negative then the point lies 

in the safe region. If the limit state function is positive, the label of the point can be set as 

1 and if the limit state function is negative, the label can be set as 0. Together,( x1,x2) and 

the labels, 0 or 1, form the labeled point (x1,x2, w). Note that as mentioned earlier in 

Chapter 2, for classification the labels are discreet and are denoted by w. 

Step 4: Use a machine learning technique to model the variation in w as x1 varies (Figure 

3. 3). This model, )2,1(ˆ xxg , can now be used for finding the response w for any number 

of newly sampled points representing x1 by simply determining the sign of the decision 

boundary function )2,1(ˆ xxg . 

Step 5: Sample n2 points using MCS/LHS and evaluate the responses y corresponding to 

these points. 

Step 6: Evaluate the limit state function )2,1(ˆ xxg  to find whether the structure has failed 

or not. 

Step 7: The probability of failure of the structure is the ratio of number of times the 

structure has failed and n2. 
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Figure 3. 3 Estimation of decision boundary g(x1, x2) = 0 

3.2.3 Artificial Neural Network as a Superior Machine Learning Method 

The term neural network has evolved to encompass a large class of models and learning 

methods. Many times researchers have used Neural Networks as a black box in order to 

conduct function approximations or classifications. Because it is easier to control the 

complexity of neural networks by increasing the number of hidden layers—inherently it 

is easier to increase the nonlinearity of the models, which allow ANNs to approximate 

functions seamlessly. A brief comparison of various machine-learning algorithms is 

given in Figure 3. 4. It shows that ANNs have superior predictive power and superior 

ability to extract linear combinations of features. On the flip side ANNs should not be 

used as “off the shelf” machine learning algorithms since they can be highly sensitive to 
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outliers as well. In order to use ANNs the number of hidden layers has to be fixed before 

training the algorithm. If the number of layers is less then ANN’s responses resemble 

simple linear models for regression and classification. If a high number of hidden layers 

are used, ANNs resemble highly non-linear models for regression (such as local 

regression) and classification (such as k-Nearest Neighbors). Until now there is no simple 

rule for choosing the right number of hidden layers. The number of hidden layers 

typically varies between 5-100 for different problems from different domains [41]. 

 

Figure 3. 4 Comparison of various machine learning algorithms[41] 

 One of the ways to surmount this problem is to fix the number of layers and then 

vary other parameters in the network. We propose different methods of doing it for 

reliability estimation problems in Chapter 4. Here we continue to the discussion of ANNs 

and introduce the idea of Probabilistic Neural Networks in Section 3.2.4 which will be 

building block for our proposed methods in Chapter 4.  
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 The details of neural networks, particularly the back propagation neural networks 

were previously explained in Chapter 2. Neural Networks can be made to perform 

functions approximation as well as classification.  Any kind of continuous function can 

be used for performing function approximation; but the sigmoid function has been used 

as an activation function extensively because of its smooth properties as well as its 

appropriateness for back propagation networks. However, a major complaint with back 

propagation training is the high computational time requirement with them. Feed-forward 

neural networks can be used in those scenarios where the computational time required in 

a training process is the critical factor; which is also true in case of reliability based 

design processes. 

 We introduce a simpler ANN, feed-forward neural network, in Figure 3. 5. This 

neural network has z neurons at the top, with the z th unit modeling the probability of 

class z. There are Z target measurements Yz, z = 1,…,Z, each being coded as 0-1 variable 

for the z th class. Derived features in hidden layers, Hp are created from linear 

combinations of the inputs, and then the target Yz is modeled as a function of linear 

combinations of the Hp.  

PpXfH
T

ppp ,...,1),( 0 =+= αα            (3.1) 

ZzHY
T

zzz ,...,1,0 =+= ββ             (3.2)  

In case of radial basis function neural networks, Gaussian radial basis functions are 

chosen for f(.) in Eq.(3.1). 
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)
2

exp()(
2

2

σ

x
xf −=              (3.3) 

A more general form of writing Eq. (3.3) will be in the form of the general Gaussian 

distribution. 

)
2

)(
exp()(

2

2

σ

µ−
−=

x
xf             (3.4) 

 

Figure 3. 5 Architecture of single hidden layer, feed-forward neural network 
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Note that in the above equation, if it is assumed that the Gaussian kernel is centered at a 

labeled training point, we can evaluate the Gaussian basis function for a test point xTe. 

The value )( Texf  is now an indicator of how far the test point lies from a training point 

‘probabilistically’. If we denote the training point as Trx , then Eq.(3.4) takes the form of 

Eq.(3.5) 

)
2

)(
exp()(

2σ
TrTe

Te

xx
xf

−
−=            (3.5) 

 

Figure 3. 6 Illustration of probabilistic classification process 
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If we take the ‘probabilistic’ distance as a measure of classifying a test point into a class, 

we can add the probabilistic distance of a test point from all the training points belonging 

to either class and assign the test point to a class that has the lowest total. This total is an 

indicator of how far the test point is from each class. This is the basic idea behind 

classification by all feed-forward radial basis function neural networks. This process is 

represented in Figure 3. 6. 

 An analogous way of looking at the classification idea explained above is to think 

about it as a two-step process. In the first step, the PDF function of each class is modeled 

as a combination of Gaussian distributions. In other words, the PDF of each class is the 

sum of the spherical Gaussian distributions that are centered at the labeled points 

belonging to that particular class. This process is stated with estimated PDFs of Classes 1 

and 2 in Figure 3. 7.  

 Once the PDFs are estimated, the test point is evaluated for each PDF to find the 

probability that the test point belongs to a particular class. The class that has the higher 

probability is the label for the test point. In the particular case shown in Figure 3. 7 the 

test point is classified to class 1 and given the corresponding label. 
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Figure 3. 7 Magnified shapes of PDFs of both classes 

 As mentioned in Chapter 2, generative classifiers model the PDFs of each class 

and then find the probability of a test point belonging to each class using these PDFs. The 

test point is given a label of the class that has the maximum posterior probability. Hence, 

the radial-basis function ANNs are generative classifiers and are capable of modeling any 

kind of complex decision boundary since the PDF functions can take complex shapes. In 

this research we primarily focus on Probabilistic Neural Networks, which are special 

kinds of radial-basis function feed-forward ANNs. A detailed description of these ANNs 

is provided in the next section. 
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3.2.4 Classification using Probabilistic Neural Networks (PNN) 

The PNN has been successfully used for diverse pattern recognition applications such as 

image recognition, texture recognition, signal processing, finance, and biomedical 

applications [103, 104]. The PNN is a pattern classifier that combines the widely used 

Bayes decision rule with the Parzen nonparametric estimator [105] for the estimation of 

probability density functions of different classes [106]. Unlike other neural network 

architectures, PNN is relatively simple to implement and the network is easily 

interpretable. PNN comes into the category of generative classifiers [95] since it 

estimates the class conditional PDFs before assigning a data point to a class with 

maximum class conditional probability value. The decision rules for generative classifiers 

use Bayes decision rule in order to reduce the “expected risk” in pattern classification 

[107].  

 Consider an instance xi that belongs to either of the two classes A or B. If a 

decision of whether xi belongs to class A or class B has to be made based on the data 

represented in the m-dimensional vector X
T
=[X1 X2… Xj… Xm], the Bayes decision rule is 

represented by 

Ax i ∈  if ( ) ( )iBBBiAAA xflhxflh >               (3.6)              

Bx i ∈  if ( ) ( )iBBBiAAA xflhxflh <              (3.7) 

where fA(X) and fB(X) are class conditional PDFs for categories A and B, respectively. lA 

is the loss function associated with the decision that xi belongs to class B when xi actually 

belongs to class A, and lB is the loss function associated with the decision that xi belongs 

to class A when xi actually belongs to class B. hA is the a priori probability of occurrence 
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of patterns from category A, and hB = 1 - hA is the a priori probability of occurrence of 

patterns from category B. hA is simply the ratio of the number of patterns from Class A in 

training data and the total number of patterns in the training data. 

     In general, a quadratic loss function can be used for many classification algorithms. 

For this scenario the quadratic loss function can be given as 

( ) ( )22
PhPhl BA −+−=                                    (3.8) 

where l = lA or lB correspond to P = PA or PB. Here PA + PB = 1 and PA, PB { }1,0∈ , 

depending on whether the data point belongs to class A or class B. 

 The Bayes Decision boundary is given by 

( ) ( )XQfXf BA =                      (3.9) 

where )(Xf A
and )(XfB

are the class conditional probabilities of class A and B, respectively. 

And the constant,
AA

BB

lh

lh
Q =                    (3.10) 

In theory, the decision boundary represented by Eq. (3.9) can be fairly complex since 

there is no restriction on the densities except for the conditions that all PDFs must adhere 

to. These conditions imply that all PDFs should be non-negative and integrable, and their 

integral over the whole domain should equal one. A similar Bayes Decision rule can be 

established for many category problems as well [106].  

 In cases when the a priori probabilities are equal to each other and the loss 

functions are assumed to be the same, Bayes rule classifies an input pattern to the class 

that has its class conditional PDF greater than the class conditional PDF of the other class 
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for that input pattern. Hence, the effectiveness of this procedure depends on the accuracy 

of the PDF estimation. The first step is the computation of the PDFs, fA(X) and fB(X), in 

order to compute the decision boundary. The procedure of construction of a family of 

estimates of the PDF, f(X), was shown by Parzen and Cacoullos [108]. It extends 

Parzen’s results to the case where a multivariate kernel is a product of univariate kernels. 

The PDFs can be computed using a Parzen window considering a multivariate kernel. 

When a Gaussian kernel is used, the multivariate estimate for class-conditional PDF of 

class A can be expressed as  

( )
( )

( ) ( )
∑

= 









 −−
−

Σ
=

An

i

TAi

T

TAi

A
mA

XXXX

n
Xf

1
22/12/ 2

exp
1

2

1

σπ
                (3.11) 

where X is the vector to be classified, fA(X) is the value of the PDF of category A at point 

X, nA denotes the number of patterns in category A, m is the dimensionality of the training 

patterns, XTAi is the i
th

 training pattern from category A, and K is the covariance matrix or 

smoothing parameter. Note that in case of PNN the covariance matrix is ‘spherical’ or of 

the form I
2σ=Σ . It is important to note that the task assigned to the classifier is to 

classify the dataset X (the test data) after it is trained using the training dataset XT. XT is 

comprised of XTA and XTB corresponding to whether the data point belongs to class A or 

class B. This information is available apriori since XT is the training dataset. The class-

conditional PDF of class A, fA(X) can be determined by summing the multivariate 

Gaussian distributions centered at each training sample. However, the kernel function 

chosen to compute the PDFs is not limited to being Gaussian. Choosing a different kernel 

would not lead to a worse classifier [106]. The PDF functions from Eq. (3.11) can be 
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used to compute the class conditional probabilities in the summation layer of the PNN for 

X. 

 

Figure 3. 8 Architecture of probabilistic neural network 

Figure 3. 8 shows the architecture of a PNN for classifying the vector X into two 

classes—A and B. It consists of four different layers, including the input layer, pattern 

layer, summation layer and the output layer. Assuming that the training dataset XT 

consists of n data points, each containing m dimensions, the PNN network will have m 

neurons in the input layer, n neurons in the pattern layer and 2 neurons in the summation 

layer. The input units are merely distribution units that provide the same input values to 

all the pattern units.  
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 As shown in Figure 3. 8, the second layer of the PNN architecture is the pattern 

layer which can be interpreted as shown in Figure 3. 9. In the pattern layer, the first step 

of training the network is to set the weights in the pattern units equal to the training 

dataset XT.. Each pattern unit then forms a dot product of the input to pattern layer, vector 

X with the weight vector XTi, namely, Zi=X
.
 XTi. Then, the nonlinear operation depicted in 

Eq. (3.11) can be performed on Z, before passing the output of this step to the summation 

unit (Figure 3. 10).  

 

Figure 3. 9 Pattern Layer of PNN 

In contrast to the sigmoid transfer function [41] that is generally used for 

backpropagation neural networks, the transfer function used in this PNN is the 

exponential function, namely, g(Zi) = exp [(Zi-1)/Σ]. If both X and XTi are normalized to 

unit length, the nonlinear transfer function can be expressed as 
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Once the transfer function is calculated, the outputs corresponding to the class 

can be summed together in the summation layer to compute the PDF using the Parzen 

window method according to Eq. (3.11).

 Figure 3. 10 represents the summation layer which is used to calculate the class or 

category PDFs from Eq. (3.11). This step involves connecting the pattern unit’s output to 

the appropriate summation unit. Every training pattern requires a separate neuron (in the 

pattern unit) which has one unique connection to a neuron in the summation layer. Each 

neuron in the summation layer corresponds to a different class and it sums the inp

correspond to that particular class from the neurons in the pattern layer. The same pattern 

units can be grouped by different summation units to provide additional pairs of 

categories and additional bits of information in the output vector. This i

Figure 3. 8 for the case where all the pattern layers are grouped into two categories for 

the classification of X into one of the two classes, 
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Once the transfer function is calculated, the outputs corresponding to the class 

can be summed together in the summation layer to compute the PDF using the Parzen 

window method according to Eq. (3.11). 

Figure 3. 10 Summation layer of PNN 

represents the summation layer which is used to calculate the class or 

category PDFs from Eq. (3.11). This step involves connecting the pattern unit’s output to 

appropriate summation unit. Every training pattern requires a separate neuron (in the 

pattern unit) which has one unique connection to a neuron in the summation layer. Each 

neuron in the summation layer corresponds to a different class and it sums the inp

correspond to that particular class from the neurons in the pattern layer. The same pattern 

units can be grouped by different summation units to provide additional pairs of 

categories and additional bits of information in the output vector. This i

for the case where all the pattern layers are grouped into two categories for 

into one of the two classes, A or B. Furthermore, once the class

Once the transfer function is calculated, the outputs corresponding to the class A and B 

can be summed together in the summation layer to compute the PDF using the Parzen 

 

represents the summation layer which is used to calculate the class or 

category PDFs from Eq. (3.11). This step involves connecting the pattern unit’s output to 

appropriate summation unit. Every training pattern requires a separate neuron (in the 

pattern unit) which has one unique connection to a neuron in the summation layer. Each 

neuron in the summation layer corresponds to a different class and it sums the inputs that 

correspond to that particular class from the neurons in the pattern layer. The same pattern 

units can be grouped by different summation units to provide additional pairs of 

categories and additional bits of information in the output vector. This is illustrated in 

for the case where all the pattern layers are grouped into two categories for 

. Furthermore, once the class-
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conditional PDFs fA(X) and fB(X) are computed, the Bayes decision criteria can be 

evaluated by the following equations 

AclassXd =)(  if 0)()( >+ XQfXf BA
      (3.13) 

BclassXd =)(  if 0)()( <+ XQfXf BA
      (3.14) 

and  
B

A

AA

BB

n

n

lh

lh
Q  .−=                      (3.15) 

where nA k
and nBk

 are the number of training patterns from category A and the number 

of training patterns from category B, respectively.  

 It can be seen from Eq. (3.15) that Q is the ratio of a priori probabilities divided 

by the ratio of samples and multiplied by the ratio of losses. Thus, if the number of 

training samples from categories A and B are in proportion to their a priori probabilities, 

AB llQ −= . The final ratio, Q, cannot be calculated from the statistics of the training 

samples alone, but only by the significance of the decision. If there are no strong reasons 

for biasing the decision, then Q can be simplified to -1. Substituting this value of Q in Eq. 

(3.13) and Eq. (3.14), the decision boundary changes to a comparison of class conditional 

posterior probabilities for a test pattern. 

AclassXd =)(  if 0)()( >− XfXf BA
      (3.16) 

BclassXd =)(  if 0)()( <− XfXf BA
      (3.17) 

Note that as per our discussion in the previous section and in Chapter 2, a PNN is a 

generative classifier because the classification is divided into two steps. In the first step 

the class-conditional PDF is calculated for both the classes and then the probability 
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values for both classes are calculated by using the class-conditional PDFs. The test point 

is then classified to the class, which has the higher probability.  

3.2.5 Limitations of Probabilistic Neural Networks (PNN) 

There are two limitations when using PNN for classification. The first limitation is posed 

by the inability of the user to know the optimum value of smoothing parameter ( 2σ ) 

when using the classical PNN using Eq. (3.11). The width of the Gaussian kernel 

determines how much influence a particular Gaussian kernel, centered at a labeled data 

point, has on a test point. A particular example is given by Specht [106] that 

demonstrates the different shapes that fA(x) (class-conditional PDF of class A) can take 

with different values of σ (Shown in Figure 3. 11). Furthermore, Specht [109] also 

showed that PNN’s results are comparable to what is obtained by the k-nearest neighbor 

(k-NN) algorithm [101] when the value of smoothing parameter tends to zero. Figure 3. 

11 also shows that as the smoothing parameter values are small multimodal Gaussian 

distribution is possible for class-conditional PDF and as the smoothing parameter value is 

large the PDF is Gaussian, irrespective of the underlying true PDF of the labeled dataset. 

In the case of the lower value of smoothing parameter, PNN will have a very local, 

nonlinear nature where the decision boundary is highly influenced by the local 

characteristics of the decision surface whereas as the value is high, PNN is insensitive to 

the local characteristics of the decision surface and tends to approximate the global nature 

of the decision criteria. Either of these could be the right decision boundary—

unfortunately, the level of optimum local/global nature of the classifier cannot be 

estimated when labeled data are difficult to obtain. 
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Figure 3. 11 Effect of different values of smoothing parameter on fA(x) in a one dimensional 

problem[106] 
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Figure 3. 12 Effect of different smoothing parameter values on PNN's performance[109] 

 The second limitation of the classical form of PNN is that the covariance matrix is 

‘spherical’. In other words, the covariance matrix is of the form I
2σ=Σ , where I 

represents an identity matrix of size m. Assuming a spherical covariance matrix is a 

simple way to estimate a PDF function when the real PDF function is unknown. Our tests 

show that the ‘spherical covariance’ assumption is a safe one to make when a large 

number of labeled data is available. But when a limited number of labeled data is 

available, as in case of reliability estimation problems, PNN can give spurious results.  
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 We hypothesize that these two problems can be alleviated by relieving the 

‘spherical’ covariance assumption and allowing ‘full’ covariance matrices when 

computing the class conditional PDFs of classes in PNN. An example for ‘spherical’ 

covariance matrix and ‘full’ covariance matrices are shown in Eqs.(3.18) and (3.19) 

respectively. 


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2σ           (3.18) 
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If we allow a ‘full’ covariance matrix in the computation of the class-conditional PDFs, 

the Gaussian Kernel shown in Eq. (3.11) takes a more general form as shown in Eq. 

(3.20). 
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We hypothesize that in the presence of unlabeled data, more information about the real 

PDF can be gathered from the unlabeled data itself, which may lead to better estimates of 

covariance matrices for each training pattern. Hence, in the presence of unlabeled data, 

we can release this constraint of ‘spherical’ covariance matrix and assume a ‘full’ 

covariance matrix so that each dimension in our dataset is allowed to have different 

variance values and cross-dependencies between different dimensions are allowed. The 

question that arises is how can unlabeled data be used to estimate the parameters of the 

‘full’ covariance matrix when a large amount of unlabeled data is present? The answer is 
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provided by ‘unsupervised learning’, which is a machine learning algorithm which only 

uses unlabeled data. 

3.3 Unsupervised Learning 

The goal of unsupervised learning is to discover an interesting structure in the 

‘unlabeled’ data X. Quantile estimation, clustering, outlier detection and dimensionality 

reduction are some of the methods that are used for unsupervised learning [110]. A 

simple clustering example is shown in Figure 3. 13, where a set of unlabeled data is 

grouped into two Gaussian clusters and the true PDFs from which the data is sampled are 

assumed to be unknown. 

 

Figure 3. 13 Unlabeled data is separated into two constituent Gaussian components after 

unsupervised learning 
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 In order to estimate the parameters of Gaussians, clustering-unsupervised learning 

algorithms can be used where the task is defined as given that the shapes of the 

components are Gaussians, what are the best estimates of the Gaussian parameters? The 

following sections elaborate on this form of machine learning algorithm. 

3.3.1 Clustering as Unsupervised Learning 

In clustering, there is no explicit teacher, and the system forms clusters or “natural 

groupings” of the input patterns [94]. “Natural” is always defined explicitly or implicitly 

in the clustering system itself, and given a particular set of patterns or cost function; 

different clustering algorithms lead to different clusters. In most of the clustering 

algorithms, before running the algorithm, the user has to hypothesize the number of 

different clusters and the shape of the clusters ahead of time. Once the number of clusters 

and the parameters of the shape of the clusters are initialized, the unsupervised learning 

algorithms can learn the optimum values of the shape parameters of the clusters. With 

this, learning the shape of the clusters essentially boils down to finding the parameters of 

a PDF. If an assumption is made that the set of unlabeled patterns come from a mixture of 

Gaussian PDFs, the problem of estimating the PDF essentially boils down to finding the 

mixing parameters, means and covariance of each of the component Gaussian PDFs. 

 In the case of a 2-class problem such as the problem of probability of failure 

estimation, the data can be assumed to be sampled from two different Gaussian PDFs. 

However, the correspondence of data points to particular Gaussian PDFs is unknown. In 

order to define the two Gaussian PDFs, it is essential to estimate the means and variances 

of these individual distributions. In addition to the means and variances, a mixing 
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parameter would be required to properly define the density of the whole dataset so that 

the mixing parameter λ  defines the density of the data according to  

),;()1(),;()( 2211 Σ−+Σ= µλµλ xNxNxf , [ ]1,0∈λ      (3.21) 

Once the parameters ( λ , µ1, Σ1 and µ2, Σ2 ) are determined, the density estimation 

process is complete. Note that λ  is the mixing parameter for the two Gaussian PDFs. In 

case of a mixture of more than two Gaussian PDFs, the mixture parameters for all the 

Gaussian PDFs should add up to 1. This problem of parameter estimation is a classical 

problem in statistics and it can be approached in several ways. Two commonly used 

procedures for this are the maximum likelihood estimation (MLE) and Bayesian 

estimation. Even though the results obtained from both methods have been reported to be 

nearly identical in most cases the approaches are conceptually different [94]. MLE and 

several other methods view the parameters as quantities whose values are fixed but 

unknown. In MLE the best estimate of the parameters is defined as the one that 

maximizes the probability of obtaining the samples actually observed. On the other hand 

Bayesian methods assume that the parameters are random variables having some kind of 

priori distribution. New observations convert this priori distribution to posterior density, 

which helps us revise our opinion of the true values of the parameters. Each additional 

sample sharpens the posteriori density function causing it to peak near the true values of 

the parameters. More details of Bayesian Learning can be found in Ref. [94]. In this 

research we will take the MLE approach to parameter estimation since MLE is 

computationally more efficient than Bayesian methods and the models predicted by MLE 

are easier to interpret [94]. Furthermore, unlike least square minimization based 
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parameter estimation where the errors are ssumed to come from a standard normal 

distribution, MLE doesn’t assume any inherent distribution for the errors. 

3.3.2 Maximum Likelihood Estimates for Mixture Models 

Suppose that we have a collection of samples forming a set },...,{ 1 uXXD = of u 

unlabeled samples drawn independently from the mixture density consisting of two 

components 

∑
=

=
2

1

)(),()|(
i

iii wPwXpXp θθ        (3.22) 

where the full parameter vector ),( 21 θθθ =  is fixed but unknown. A density function 

resembling Eq. (3.22) is called a mixture density and the conditional densities 

),|( iiwXp θ  are called the component densitites, and the prior probabilities )( iwP are 

called the mixing parameters. Recall that Eq. (3.22) resembles Eq. (3.21) when the 

component densities are assumed to be Gaussian PDFs. In that case the unknown 

parameter vector will consist of the mean and covariance of each component. Our 

problem is to use the information provided by the training samples to obtain good 

estimated for the unknown parameter vectors 1θ and 2θ  associated with each known 

component ),|( iiwXp θ . 

 To simplify the solution of this problem, it is generally assumed that the 

parameters for different components are functionally independent. This permits working 

with each component independently. Once independence is assumed the joint probability 

of the data can be expressed as  
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If viewed as a function of θ , )|( θDp  is called the likelihood of θ  with respect to the set 

of samples.  By definition, the maximum likelihood estimate of θ  is the value θ̂  that 

maximizes )|( θDp . This estimate of θ  agrees with or supports the actual observed 

training samples. Since Eq. (3.23) represents a product of many terms, it is easier to work 

the the logarithms for analytical purposes. Since logarithm is monotonically increasing, 

the θ̂  that maximizes the log-likelihood also maximizes the likelihood. An example from 

Duda et. al. [94] is shown in Figure 3. 14, to illustrate the behavior of likelihood and log-

likelihood (represented by )(θl ).  

 The top picture in the figure shows several training points in one dimension, 

where it is assumed that the points are drawn from a Gaussian distribution with unknown 

mean but fixed variance. Only four of the many Gaussian distributions are shown in 

dashed lines. The middle picture shows the likelihood function as it varries with resepect 

to the mean and the value, θ̂  for the mean, that maximizes the log likelihood is shown in 

the bottom picture. 
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Figure 3. 14 Duda et. al. example on convergence characteristics of MLE [94] 
 

 If we assume that )|( θDp  in Eq. (3.23) is differentiable function ofθ  then we 

can derive some necessary conditiona for θ̂ . If we take logarithm on both sides of Eq. 

(3.23) then we have 

∑
=

=
u

j

jXpl
1

)|(ln θ          (3.24) 
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where l represents the logarithm of the likelihood. If we want to find the gradient of l 

with respect to each component of θ , kθ , (where k = 1 or 2 for a 2 component mixture) 

the gradient lkθ∇  can be written as 

∑ ∑
= =


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
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
∇=∇

u

j i

iiijk
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k wPwXp
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)|(

1
θθ

θ
θ      (3.25) 

If we assume that the elements of jθ  and kθ  are functionally independent if kj ≠ , and 

we introduce the posterior probability from Eq. (3.26) we get a different way of writing 

the log-likelihood as shown in Eq. (3.27). 
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jk
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wPwXp
XwP =       (3.26) 
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j

kkjkjkk wXpXwPl
1

),|(ln),|( θθθθ      (3.27) 

Since the gradients of l calculated in Eq. (3.27) must be equal to zero where l is 

maximized, the following condition follows 

0)ˆ,|(ln)ˆ,|(
1

=∇∑
=

u

j

kkjkjk wXpXwP θθθ  for .2,1=k     (3.28) 

since for this case only two clusters are considered. The posterior probability in Eq. 

(3.28) can be stated as 
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Next, if we consider that the prior probabilities are also unknown and they satisfy the two 

conditions, ∑
=

=
2

1

1)(
j

jwP and 0)( ≥jwP , then it can also be shown that for maximum 

likelihood estimate 

∑
=

=
u

j

ijj XwP
u

wP
1

)ˆ,|(ˆ1
)(ˆ θ           (3.30) 

We can interpret Eq. (3.30) by visualizing that the maximum-likelihood estimate of the 

probability of a category is the average over the entire data set of the estimate derived 

from each sample. Hence each sample is weighted equally when calculating the 

maximum likelihood estimate of the prior probability.  

 Eqs (3.28-3.30) can be used to estimate the parameters of a mixture of any kind of 

distributions. For this research we will only need to study the MLE for Gaussian 

mixtures, which is explained in the next section. 

3.3.3 Maximum Likelihood Estimates for Gaussian Mixtures 

In case of mixture of Gaussians Eqs. (3.28-3.30) can be used in order to estimate the 

unknown parameters of the component multivariate normal distributions,

),(~),|( kkkk NwXp Σµθ . The following three cases can arise when we study mixture 

of Gaussians PDF models: 

• Case 1: Mean, kµ  (unknown); Covariance, kΣ  (known); Prior Probabilities, 

)( kwP (known) and No. of clusters, Z (known); 
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• Case 2: Mean, kµ  (unknown); Covariance, kΣ  (unknown); Prior Probabilities, 

)( kwP  (unknown) and No. of clusters, Z (known); 

• Case 3: Mean, kµ  (unknown); Covariance, kΣ  (unknown); Prior Probabilities, 

)( kwP  (unknown) and No. of clusters, Z (unknown); 

Case 1 is the simplest since only one parameter is unknown whereas Case 2 is involved 

but useful in most of the conditions that we will be using in this research. Case 3 is not 

solvable using maximum likelihood methods and not useful for the conditions that are 

considered for unsupervised learning in the present research. Hence, the methods used to 

solve the problems involving Case 3 will not be considered in the present research.  

Case1:  In this case the only unknown values in the parameter vector kθ  are the 

components of kµ . The likelihood of a multivariate normal distribution will be given by 

[ ] )()(
2

1
)2(ln),|(ln 12/12/

kk

T

kk

m

ii XXwXp µµπµ −Σ−−Σ−= −      (3.31) 

and its derivative will be given by 

)(),|(ln
1

kkkkk XwXp µµµ −Σ=∇ −
         (3.32) 

Hence, according to Eq. (3.28), the maximum likelihood estimate kµ̂ must satisfy 

0)ˆ()ˆ,|( 1

1

=−Σ −

=

∑ kjk

u

j

jk
XXwP µµ , where )ˆ,ˆ(ˆ

21 µµµ =       (3.33) 

for a mixture of two Gaussians. 

Rearranging the above equation, we obtain the expression for kµ̂  
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Notice that it is intuitively easy to explain the result obtained in Eq. (3.34). In essence, 

this equation says that the maximum likelihood estimate for kµ is merely a weighted 

average of all the unlabeled samples. The weight for the jth sample is an estimate of how 

probable it is that Xj belongs to the kth cluster. More specifically, if )ˆ,|( µjk XwP is 1.0 

for some of the samples and 0 for others then kµ̂  would be the mean of those samples 

that are estimated to belong to the kth cluster. Unfortunately, Eq. (3.34) does not 

explicitly give the value of kµ but if we happen to get good initial estimates, )0(kµ for 

the unknown means, Eq. (3.34) gives us the following iterative scheme for improving the 

estimate: 
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µ          (3.35) 

This method is just like any other hill-climbing algorithm and doesn’t guarantee 

convergence to global maxima. If the overlap between component densities is small, then 

the coupling between classes will be small and convergence will be fast. However, even 

when convergence occurs, we can only be sure than the gradient is zero [94]. 

Furthermore, if the model is misplaced (the wrong number of clusters is guessed) then the 

log-likelihood might decrease. 
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Case 2:  In this case all the parameters, mixing parameters (prior probabilities), means 

and covariances, are unknown. This is the more general case which is frequently 

encountered in practice. Since all the parameters are unknowns, if no constraints are 

placed on the covariance matrix, the maximum-likelihood principle yields singular 

solutions[94]. Since singular solutions are of no interest, we can conclude that the 

maximum-likelihood principle fails for this class of normal mixtures. However, 

empirically it has been shown that meaningful solutions can still be found if we restrict 

the attention to the largest of the finite local maxima of the likelihood function. Assuming 

that the likelihood function is well behaved at the local maxima of the likelihood 

function, we can use Eqs. (3.28-3.30) to obtain estimates for kµ , kΣ and )( kwP . Note 

that when we include the elements of kΣ , in the elements of the parameter vector kθ , we 

only need to include half of the off-diagonal elements since a covariance matrix is 

symmetrical. Again, it is easier to estimate the parameters of 
1−Σ k  rather than the 

parameters of kΣ . 

 Similar to Eq. (3.31) the log likelihood of the multivariate normal distribution is 

given by  

[ ] )()(
2

1
)2(ln),|(ln 12/12/

kk

T

kk

m

ii XXwXp µµπµ −Σ−−Σ−= −      (3.36) 

In the next step we can differentiate this equation to find the maximum likelihood 

estimates of the mean and the inverse covariance matrix. Let us denote the p th element 

of Xj by xp (j), the pth element of kµ by )(kpµ and the pqth element of kΣ by )(kpqσ . The 
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differentiation of log likelihood with respect to mean and different elements of 

covariance matrix is given below. 

)(),|(ln 1

kjkkkjk XwXp µθµ −Σ=∇ −
        (3.37) 

and 
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where pqδ is the Kronecker delta. Substituting these results in Eq. (3.28), which is 

restated below, we can derive the expressions for maximum likelihood estimates of prior 

probabilities, means and covariances as shown in Eq. (3.39-3.43). 
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where, 
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We can rewrite Eq. (3.42) by substituting the expression for multivariate normal 

distribution, which simplifies Eq. (3.42) to Eq. (3.43) 
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It is simple to interpret Eqs. (3.39-3.43). If we consider the extreme case when 

)ˆ,|(ˆ θjk XwP  is 0.0 when jX  is from Class 1w  and 0.1 otherwise, )(ˆ
1wP is the fraction 

of samples from 1w , 1µ̂ is the mean of those samples and 1Σ̂  is the covariance matrix of 

those samples. When )ˆ,|(ˆ θjk XwP  is between 0.0 and 1.0 all the samples have a 

contribution on these estimates for both the clusters.  

 The problems involved in solving these implicit equations in Case 2 is the same as 

the problems involved in Case 1 with the added complication of having to deal with 

singular solutions. Hence in order to solve these equations the Expectation-Maximization 

Algorithm is used which will be explained in the next section.  

3.3.4 Clustering using Expectation Maximization (EM) Algorithm 

The Expectation-Maximization algorithm [111] is a powerful iterative procedure for 

finding MLE of parameters in statistical models where the model performance depends 

on unobserved latent variables. These latent variables are sometimes called Hidden labels 



 

131 

 

and denoted by H, and are nothing but )ˆ,|(ˆ θjk XwP  values, which are calculated in Eqs. 

(3.42-3.43). As described in the previous section these latent variables act as the weights 

which are used to calculate new values of means and covariances for different clusters. 

As should be expected, the sum of latent variables for both the clusters should equal 1. 

1)ˆ,|(ˆ)ˆ,|(ˆ
21 =+ θθ jj XwPXwP          (3.44) 

Table 3. 1Expectation Maximization Algorithm for Clustering of Unlabeled data 

Step1 Input: Unlabeled data  { }uxxX ,...,1=   

Step2 Initialize t = 0 and input initial model parameter )](,,[
0

kkk wPΣ= µθ . 

Step3 Repeat until the convergence of )|( t
Xp θ : 
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 ii. M-Step: find 1+tθ that maximizes )|( t
Xp θ
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 iii. t = t+1 
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Step 4 Output 
tθ  

 

The EM algorithm alternates between the Expectation step (E-Step) and the 

Maximization step (M-step). In the E-Step, the expectation of the log-likelihood is 

evaluated using the current estimate for the latent variables, and in the M-Step, the 

parameters of the model that maximize the log-likelihood are maximized. Hence, the EM 

algorithm is an iterative algorithm which locally maximizes the likelihood function,

)|( θXp . The steps in EM algorithm along with the modified implicit equations, which 

were derived in the last section, are present in Table 3. 1. Note that as mentioned before 

as will all hill-climbing algorithms the Expectation-Maximization Algorithm doesn’t 

guarantee convergence to a global maxima. The results always depend on the initial 

starting point and the problem of multiple solutions always exists. Furthermore, the 

repeated computation and inversion of the covariance matrix can be quite time 

consuming in many cases.  

 Most of the problems encountered can be circumvented if it is possible to assume 

that the covariance matrix is diagonal which reduces the number of unknown variables 

drastically. If this assumption seems to simplify the underlying problem by a large 

amount, the covariance matrices of all the clusters can be assumed to be the same, in 

which case most of the problems with EM can still be circumvented with relatively less 

computational requirement.  

 Even with all these inherent problems the EM algorithm has become the de-facto 

method for finding the parameters of a model that maximizes the log likelihood since it 
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guarantees that the likelihood value of the converged solution will be greater than the 

initial starting solution. If the initial estimates are good, a rapid convergence can be seen. 

This is generally the case when a large number of unlabeled data is available. The EM 

algorithm also gives a way to maximize the log likelihood function without the need to 

use a brute-force function maximization technique such as Newton Raphson Method. In 

many cases a gradient-based function maximization technique such as Newton Raphson 

Method would not work because the log-likelihood function is non-convex [112]. 

 In the case of reliability estimation, the cost of obtaining unlabeled data is 

minimal. As mentioned in the earlier chapters the major part of the cost comes from the 

need to obtain labels using FEA. Hence using EM for clustering with only unlabeled data 

is not a considerable computational cost increment for problems involving reliability 

estimation.  

3.4 Summary 

In this chapter we introduced the concepts of supervised and unsupervised learning and 

how labeled and unlabeled data can be used to train models in supervised learning and 

unsupervised learning respectively. The Probabilistic Neural Network (PNN) was 

introduced as a superior supervised learning method and we discussed the limitations of 

PNN. Particularly it was mentioned that PNN assumes a ‘spherical’ Gaussian centered at 

each labeled data, which hinders its ability to provide highly accurate results with less 

number of labeled data. Since reliability estimation problems incur high computational 

cost, there is a scarcity of labeled data, but a large number of unlabeled data can be 

accessed. Unsupervised learning was introduced as a class of methods, which can be used 
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to learn surrogate models when only unlabeled data is present. Specifically, the Mixture 

of Gaussians (MOG) model was studied, whose parameter’s maximum likelihood 

estimates can be estimated using an alternate hill-climbing method called as the 

Expectation-Maximization Algorithm. In Chapter 4 we will build on this foundation to 

explain the Semi-Supervised Learning (SSL) algorithms that were developed as a part of 

this research in order to accurately estimate the reliability of a system when few labeled 

data are available.  
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CHAPTER 4 

SEMI-SUPERVISED LEARNING FOR RELIABILITY 

ASSESSMENT 

The procedure for implementing semi-supervised learning for reliability assessment is 

explained in this chapter. This chapter extends the discussion on machine learning from 

the last chapter and describes the procedure of application of some of those techniques 

for the special domain of reliability based design.  Specifically we focus on Semi-

Supervised Learning (SSL), which can be regarded broadly as a combination of 

Supervised and Unsupervised Learning. PNN will be chosen as the supervised learning 

method for SSL and the Expectation-Maximization (EM) algorithm will be chosen for 

unsupervised learning.  

 In Section 4.1 we explain the basics of Semi-Supervised Learning (SSL) and in 

Section 4.2 we recap the important concepts and the limitations of PNN. We provide a 

brief description of Mixture of Gaussians and EM algorithm as it applies to SSL in 

Section 4.3 and in Section 4.4 we explain the integration of PNN with the EM algorithm 

for a preliminary SSL algorithm which enables automatic selection of the smoothing 

parameter for PNN. We call this algorithm SSL-1. We explain a more generalized 

version of an SSL algorithm which allows full freedom to covariance matrices during the 

training of PNN in Section 4.5. We summarize the chapter in Section 4.6. 

4.1 Semi-Supervised Learning (SSL) 

Supervised learning is the machine learning task of inferring a function from supervised 

training data which consists of training examples. In supervised learning, each example is 
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a pair consisting of an input (typically a vector) and a desired output value. A supervised 

learning algorithm analyzes the training data and produces a function which is called a 

classifier (if the output is discrete) or a regression function (if the output is continuous). 

The inferred function should predict the correct output value for any valid input. This 

kind of training data is called labeled data and the desired values are called labels. In 

unsupervised learning, the primary goal is to estimate the parameters of a mixture model 

when the correspondence of individual data points to the mixture components is 

unknown. In order to estimate the parameters of the mixture model, the training dataset 

does not need to include the labels, as in case of supervised learning. Hence, the training 

data for unsupervised learning is called unlabeled data. 

      SSL is a type of machine learning task that utilizes both labeled and unlabeled 

data. SSL can be considered to be halfway between supervised and unsupervised 

learning. Traditional classifiers and other supervised learning algorithms use only labeled 

data for training. However, obtaining training data often requires tremendous effort since 

the process of labeling individual instances is either time consuming or computationally 

intensive. On the contrary, unlabeled data can be readily generated without requiring 

additional experimentation or simulation. SSL achieves this additional improvement in 

accuracy by augmenting a small number of labeled data with a large amount of unlabeled 

data in order to train a better classifier. In SSL, the dataset X can be divided into two 

parts, Xl and Xu. For the first part ),...,(: 1 ll xxX = , the labels ),...,(: 1 ll wwW =  
are provided, 

whereas for the second part ),...,(: 1 ullu xxX ++= , the labels are unknown. For the sake of 

generality, the dataset [Xl, Wl] will be called labeled dataset and the dataset [Xu] will be 

called unlabeled dataset for the rest of the dissertation. Typically, the smoothness 
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assumption [113] should be valid in order to perform SSL. The smootheness assumption 

for supervised learning states that if two points, x1 and x2, are close, then the 

corresponding outputs, w1 and w2, are also close to each other. Hence, if two instances, x1 

and x2 belong to the same cluster, the corresponding labels, w1 and w2, are likely to be 

close too. On the contrary, if both instances are linked by a low density region, then their 

labels are more likely to be different.  

      In general, the addition of unlabeled data can improve the classifier accuracy in 

the case of generative classifiers. Recall that generative classifiers approximate the PDF 

distributions of all classes during the training process and a test point is predicted to 

belong to one class based on it’s higher probability value when compared to probability 

values corresponding to other classes. These probabilities are calculated by evaluating the 

PDFs for the test data point. Unlabeled data contain the PDF information of all data 

collectively. Hence a large number of unlabeled data should help in the estimation of 

PDFs of all classes during the training process of generative classifiers. By learning how 

the data from each class is distributed, we may decompose the mixture into individual 

classes. One way of modeling the data as a mixture of PDFs is by assuming that the data 

comes from a Mixture of Gaussian (MOG) PDFs. The EM algorithm is used to compute 

the parameters of the constituent Gaussian PDFs in this dissertation. The following 

section illustrates the details of MOG and the EM algorithm. 

4.2 Limitations of Probabilistic Neural Network 

Consider a pattern xi that belongs to either class A or class B. If a decision of whether xi 

belongs to class A or class B has to be made based on the data represented in the m-

dimensional vector X
T
=[X1 X2… Xj… Xm], the Bayes decision rule is represented by 
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Ax i ∈  if ( ) ( )iBBiAA xfnxfn >                     (4.1)                    

Bx i ∈  if ( ) ( )iBBiAA xfnxfn <                           (4.2) 

where fA(X) and fB(X) are class conditional PDFs for categories A and B, respectively. 
An

and 
Bn  represent the number of patterns in class A and class B of the training data. Since 

there are only two classes, it follows that the total number of labeled patterns in the 

training data 
BA nnn += . A similar Bayes Decision rule analogous to Eqs. (4.1-4.2) can 

be established for many category problems as well. 

 In Figure 4. 1 we show the architecture of a PNN for classifying the vector X into 

two classes—A and B. It consists of four different layers, input layer, pattern layer, 

summation layer and the output layer. If the training dataset XT consists of n data points 

and 2 classes, each containing m dimensions, the PNN network will have m neurons in 

the input layer, n neurons in the pattern layer and 2 neurons in the summation layer.  
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Figure 4. 1 Architecture of Probabilistic Neural Networks 

  

 From Eqs. (4.1-4.2) it is clear that the effectiveness of this procedure depends on 

the accuracy of the PDF estimation. A procedure for construction of a family of estimates 

of the PDFs, f(X), was shown by Parzen [105] and Cacoullos [114] . PNN utilizes the 

Parzen window method for computing the PDF function while considering a multivariate 

kernel. When a Gaussian kernel is used, the multivariate estimate for PDF of class A can 

be expressed as  
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where X is the vector to be classified, fA(X) is the value of the PDF of category A at point 

X, nA denotes the number of patterns in category A, m is the dimensionality of the training 
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patterns, XTAi is the i
th

 training pattern from category A, and Σ is the covariance matrix or 

smoothing parameter. The task assigned to the classifier is to classify the dataset X after it 

is trained using the training dataset XT. XT is comprised of XTA and XTB corresponding to 

whether the data point belongs to class A or class B. This information is available apriori 

since XT is the training dataset. fA(X) can be determined by summing the multivariate 

Gaussian distributions centered at each training sample corresponding to class A. 

To summarize, a Probabilistic Neural Network is the neural network 

representation of a Parzen window classifier where the kernels density functions for each 

labeled pattern corresponding to a class are summed together to form the PDF of that 

class. Each of these kernels is assumed to be Gaussians with ‘spherical’ covariance 

matrices. The reader should remember from the discussion in Chapter 3 that ‘spherical’ 

covariance for a two dimensional Gaussian is of the form: 
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and a ‘full’ covariance for the two dimensional Gaussian case is of the form: 
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For a generalized ‘spherical’ covariance case the covariance matrix is of the form

I
2σ=Σ , where I represents an identity matrix of size m. 

Evaluating the PDFs for all classes and subsequently using the Bayes decision 

rule enables the classification of a test pattern. In both PNN and Parzen window classifier 

with Gaussian Kernel functions, the smoothness parameter (also called window, width or 
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covariance) can be thought of as a value that quantifies the influence that a particular 

labeled pattern has on a test data point. This smoothing parameter is the value of 2σ in 

Eq. (4.4). If the window has a high value then the influence is lower (exponential term in 

Eq.(4.3)), and if the window has a lesser value PNN behaves similar to a k-nearest 

neighbor (k-NN) classifier [98]. 

  Assuming a spherical covariance matrix is a simple way to estimate a PDF 

function when the real PDF function is unknown. Hence in cases, when it is prior 

knowledge that the classification boundary is not very complex, the spherical assumption 

should give good results too. However, in case of ‘spherical’ covariance assumption also 

an automatic method for estimation of smoothing parameter, 2σ , is required. We achieve 

this feat by our proposed SSL-1 algorithm. 

 In cases when there is no prior knowledge about the simplicity of the 

classification boundary, no such assumption should be made. We hypothesize that in the 

presence of unlabeled data, more information about the real PDF can be gathered from 

the unlabeled data itself which will lead to better estimates of covariance matrices for 

each training pattern. Hence, in the presence of unlabeled data and no prior knowledge 

about simplicity of the classification boundary, we can release the constraint of 

‘spherical’ covariance matrix and assume a ‘full’ covariance matrix so that each 

dimension in our dataset is allowed to have different variance values and cross-

dependencies between different dimensions is also allowed. We achieve this feat by our 

proposed SSL-2 algorithm. 
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 We start out by discussing the basics of Semi-Supervised Learning and Mixture of 

Gaussians in the next section which is foundational for functioning of SSL-1. Following 

this we explain the proposed SSL-1 and SSL-2 algorithms. 

4.3 Mixture of Gaussians and Expectation-Maximization for SSL-1 

Consider the scenario when the objective is to classify a data point xi into one of the two 

classes, w1 and w2. In order to achieve this objective probabilistically, we have to assign a 

label to xi which maximizes the posterior probability, p(w|x). Given a data point, this 

conditional probility value specifies the probability of this data point belonging to either 

class. In order to minimize classification error, the best strategy is to always classify xi 

into the class for which this posterior probability value is greater. In order to conduct 

classification using a generative [95] model, p(w|x) can be estimated using the Bayes rule 

as shown in Eq. (4.6) where the summation in the denominator is over all class labels.  
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A multivariate Gaussian distribution can be used for for calculating p(x|w), 
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where µw and Σw represent the mean vector and covariance matrix, respectively.  

     The class conditional PDF, p(w|x) is dependent on the Gaussian parameters µw and Σw 

in Eq. (4.7). It can be concluded that training a good classifer amounts to estimating good 
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values for µw and Σw. In order to determine these parameters, Maximum Likelihood 

Estimate (MLE) can be used. Given training data X, the MLE is  

( ) ( )θθ
µ

θ
θθ

|logmaxarg|maxarg
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When ( ){ }l

iii wxX
1

,
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= , the log likelihood in Eq.(4.8) can be easily rewritten as 
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Since )|()(),( wxpwpwxp = , ),( wxp represents the joint distribution of instances and 

labels. Eq. (4.9) represents the fact that the probability of a set of i.i.d events is the 

product of individual probabilities. Hence, finding the MLE is the process of solving Eq. 

(4.8) as an optimization problem. In the case of a 2-class problem such as the problem of 

probability of reliability estimation, the data can be assumed to be sampled from two 

different Gaussian PDFs. However, the correspondence of data points to particular PDF 

is unknown. In order to define the two Gaussians, it is essential to estimate the means and 

variances of these individual distributions. In addition to the means and variances, a 

mixing parameter would be required to properly define the density of the whole dataset 

so that the mixing parameter λ  defines the density of the data according to  

),;()1(),;()( 2211 Σ−+Σ= µλµλ xNxNxf , [ ]1,0∈λ      (4.11) 
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Once the parameters ( λ , µ1, Σ1 and µ2, Σ2 ) are determined, the density estimation 

process is complete. For the case when the data is composed of only labeled data points, 

it is possible to obtain analytical expressions for the MLE. A detailed derivation of 

estimating the MLE for the two class Gaussian mixture for the case of only labeled data 

is available in Ref. [41].  

 If the training data X consists of both labeled and unlabeled data such that 

( ) ( ){ }ullll xxwxwxX ++= ,...,,,,...,, 111 , the log likelihood function can then be defined as 
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The apparent difference between Eq. (4.10), which uses only labeled data (supervised 

learning), and Eq. (4.13), which used both labeled and unlabeled data, is the second term 

in Eq. (4.13). In the second term of Eq. (4.13), ( )θ|Xp  is called the marginal 

probability [85], which is given by  
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for the 2-class problem. Hence Eq. (18) can be rewritten as 
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The marginal probabilty is the probability of generating x from any of the classes. The 

marginal probablities in Eq. (4.13) account for the fact that the presence of unlabeled data 

is known apriori but it is impossible to know which class each instance belongs to. 

Hence, for mixture models, SSL is different from supervised learning by the expression 

for the log likelihood function. According to Eq. (4.13), the solution of the optimization 

problem would need to fit both the labeled and unlabeled data. It is possible to model the 

unknown labels , ( )ull ww ++ ,...,1
, for the unlabeled data, as hidden variables. These hidden 

variables can be represented as },...,{ 1 ull wwH ++=  and will be denoted as hidden data from 

here on. The presence of hidden variables makes the log-likelihood in Eq. (4.13) non-

convex and hard to optimize since it is impossible to obtain an analytical solution for the 

MLE,θ̂ . The MLE can be computed using standard root finding techniques such as the 

Newton Raphson Method on Eq. (4.9), or using a specialized algorithm such as the 

Expectation-Maximization Algorithm. However, the EM algorithm is the preferred 

method in most cases since it is guaranteed to achieve a maximum in a finite number of 

iterations [85]. However, it is not guaranteed to be the global maximum. 

     The EM algorithm is a powerful iterative procedure for finding the MLE of 

parameters in statistical models where the model performance depends on unobserved 

latent variables. The EM algorithm alternates between the Expectation step (E-Step) and 

the Maximization step (M-step). In the E-Step, the expectation of the log-likelihood is 

evaluated using the current estimate for the latent variables, and in the M-Step, the 

parameters of the model that maximize the expected log-likelihood (found in the E-Step), 

are maximized. Hence, the EM algorithm is an iterative algorithm which locally 

maximizes )|( θXp . Table 4. 1 presents the basic EM algorithm which is used to 
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optimize the log likelihood for the case when both labeled and unlabeled data are present 

(SSL). 

Table 4. 1 EM algorithmic framework for SSL-1 [116] 

Step1: Input: Labeled and unlabeled data  ( ) ( ){ }ullll xxwxwxX ++= ,...,,,,...,, 111
  

Step2: Initialize t = 0 and input initial model parameter 
0θ . 

Step3: Repeat until the convergence of )|( t
Xp θ : 

 i.  E-Step: compute ),|()( tt
XHpHq θ≡   

 ii. M-Step: find 1+tθ that maximizes ∑ +

H

tt
HXpHq )|,(log)( 1θ  

 iii. t = t+1 

Step4: Output 
tθ  

 

In Table 4. 1, )(Hq
t  is the hidden label distribution which can be visualized as assigning 

‘soft labels’ to the unlabeled data according to the current model parameters, tθ . Soft 

labels are probability values for the data points belonging to each class. Hence, they can 

also be considered as temporary labels on the data point. Typically, generative classifers 

assign a soft label to a data point before classifying it to the class for which the soft label 

is maximum. Therefore, the EM algorithm can be modified to suit any generative 

classifier and incorporate both labeled and unlabeled data in the framework. The 

following section illustrates the development of a modified EM algorithm into a PNN 

classifier to improve its accuracy.  
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4.4 SSL-1 for Automatic Selection of Smoothing Parameter of PNN 

In the proposed method, a SSL algorithm for PNN is developed to facilitate the reliability 

assessment process of the complex systems for the first time. In order to use unlabeled 

data for improving a classifier in the context of the SSL, a general form of clustering can 

be considered. By treating the class labels of the unlabeled data as missing values, the 

EM algorithm can be used to train a better classifier. The EM algorithm consists of two 

steps, namely Expectation (E-step) and Maximization (M-step). The EM algorithm is an 

iterative algorithm where the E-step computes the expected value of ‘unavailable’ data 

using the current estimation procedure. The M-step then updates the current estimation 

procedure based on all the data including both the labeled and unlabeled data. This 

procedure is continued until the satisfaction of the convergence. The following sections 

describe the details of the proposed method. 

4.4.1 EM-like Algorithmic Framework for Training a SSL-1 based PNN 

When the aim is to train a PNN classifier using both labeled and unlabeled data by 

adapting the EM algorithm, the first step is to train a PNN classifier using only the 

labeled data. This step 1 requires the estimation of PNN parameters, namely, θ. The PNN 

parameter, θ, constitutes of the mixing parameter λ, mean µ, and covariance K for the 

individual clusters. This trained PNN with the labeled data is then used to calculate the 

labels of the unlabeled data in the E-step. The expected labels are treated as real labels for 

the unlabeled data in the M-step. In the M-step all the data is used to calculate the 

parameters, θ, for the new PNN classifier. This E-step and M-step are repeated until 

convergence. A proposed algorithm for training the PNN based on the EM process is 

summarized in Table 4. 2. 
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An available dataset, X, will consist of labeled dataset, X l, and unlabeled dataset, 

Xu, such that 
ul XXX ∪= . Specifically, the dataset, X, will have the form 

( ) ( ){ }ullll xxwxwxX ++= ,...,,,,...,, 111
, where wi’s represent the class labels. The task of the 

classification process is to train a PNN classifer using the dataset, X, for predicting the 

class labels of unseen unlabeled data points. 

Table 4. 2 EM-like algorithmic framework for SSL-1 using PNN 

Step1: Input: Labeled and unlabeled data  ( ) ( ){ }ullll xxwxwxX ++= ,...,,,,...,, 111  

Step2: Initialize t = 0 and { }
{ }2,1

0000 ,,
∈

Σ=
jjjj µλθ to the MLE. Here  j = 1, 2 

corresponds to class A and B respectively. 

Step3: Train initial PNN classifier C usinglabeled data. 

Step4: Begin Loop.  

Step5: Iterate until CCM converges while classifying the unlabeled data Xu with the 

current classifier, C 

Step6: Step:Use current classifier C, to evaluate the classification scores and predict 

class labels, wi,  for each unlabeled data point. These class labels constitute the 

Hidden data },...,{ 1 ull wwH ++= . Hence, for all unlabeled instances 

{ }ulli ++∈ ,...,1 ,class { }2,1∈j , compute 

( ) ( )[ ]iBiAi xfxfCCM =   and 

ijγ =p(wj|xi,
tθ )=

ij

t

jj

ij

t

j

CCM

CCM

λ

λ
2

1=Σ
              (4.16) 

 For labeled instances, define ijγ =1 if wi=j, and 0 otherwise 

Step7: M-Step:Compute MLE, 
1+tθ using the current 

ijγ . Perform  following  for

{ }2,1∈j , 
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Step8: Rebuild the PNN classifier C using current values of parameters θ , based on 

both labeled and unlabeled data X and H, while using the class lebels, wi, 

calculated for unlabeled data in the E-Step 

Step9: t=t+1 

Step10: End Loop. 

Step11: Output:{ }
jjj Σ,, µλ and current classifier C 

      As described in Table 4. 2, the process begins with training an initial classifier, C, 

from only the labeled dataset, Xl. Next, the current classifier is used for estimating the 

labels of the unlabeled dataset, X u. The temporarily assigned class labels for the 

unlabeled data are considered to be hidden and can constitute the hidden data 

},...,{ 1 ull wwH ++= . During this estimation process for the hidden data, the scores ( )( iA xf  

and )( iB xf  for xi such that ui Xx ∈ ) of each data point, xi, corresponding to class A and 

class B, will be denoted as the class conditional membership (CCM) values of the data 

point. The scores are calculated in the summation layer of the PNN as shown in Eq. (4.3). 
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Then these scores are stored in a CCM matrix; CCM(u,2) for the case of only two classes, 

A and B. The CCM matrix is normalized according to Eq. (4.16) in order to compute the 

weights, ijγ . The class labels of xi such that [ ]ulli ++∈ ,1  are also estimated using the 

current classifier, C. This step is the E-Step in this proposed method. The weights and the 

class labels are used to calculate the parameters of the new classifier. In the case of PNN, 

the diagonal covariance matrix obtained can be used to update the values of the 

smoothing parameter of the PNN. For the two classes case, the covariance matrix has a 

size of 2. The first diagonal element is used as the smoothing parameter for the patterns 

that are summed at the first neuron of the summation layer of PNN. Similarly, the second 

element of the covariance matrix is used as the smoothing parameter of the patterns that 

are summed at the second neuron of the summation layer. This process trains the SSL 

based PNN. All the data corresponding to both the labeled and unlabeled data is used to 

train a new classifier, C. This step constitutes the M-Step of the procedure. Both the E-

Step and M-Step are iterated until the convergence of the CCM Matrix is achieved. The 

convergence of the CCM also ensures the convergence of the maximum likelihood 

estimator. Once convergence of the CCM is achieved, the current classifier, C, can be 

used to predict the labels of unseen, unlabeled data points. 

4.4.2  Proposed Framework for Reliability Estimation using PNN and EM 

Figure 4. 2 illustrates the proposed framework for the reliability assessment using a 

classification process based the developed learning algorithm for the PNN. First, the user 

defines the limit state function with the corresponding random variables along with the 

PDF information. For the training data, l + u data points are to be sampled, where l is the 

number of labeled data points and u is the number of unlabeled data points. After 
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sampling l points from the given PDFs, the limit states/responses of these points can be 

evaluated using FEM, analytical formulas or other black-box techniques in order to label 

these points as either safe or unsafe. In the next step, u numbers of points are sampled; 

however, the limit states for these points will not be evaluated since they can be used 

later for the SSL process. An initial estimate of smoothing parameter, Σ, is used to train a 

PNN classifier to the labeled data. In the Expectation Step (E-Step) the current classifier 

computes the probabilistically weighted class labels for the unlabeled data. 

 The intermediate CCM matrix computed is stored for checking the convergence 

of the EM iterations. The probabilistically weighted class labels computed in the E-Step 

are then used to compute the MLE estimates of the PNN parameters. These parameters 

are used to train a new classifier with both the labeled and unlabeled data. This 

constitutes the Maximization Step (M-Step) of the framework. The E-Step and M-Step 

are iterated until the convergence of the CCM Matrix. Once the CCM Matrix converges, 

the updated PNN can be used to compute the probability of failure (Pf) by calculating the 

number of points in the failure class (Class 2) and dividing it by the number of points 

generated using MCS/LHS.  

n
Pf

2 classin  points of No.
=                             (4.21) 
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Figure 4. 2 Proposed framework for reliability estimation using PNN and EM 

 4.5 SSL-2 for Considering ‘full’ Covariance with PNN  

The major computational cost of the reliability estimation process is the evaluation of 

responses using the Finite Element Analysis. Hence a surrogate model is used for 

estimating the responses from Finite Element Analysis. A Semi-Supervised Learning 

based method provides an avenue for drastic reduction of computational expense of the 
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procedure by reducing the number of labeled data points required for training a classifier. 

Furthermore, since the PDF functions for uncertain design variables are available, 

practically an unlimited number of unlabeled data points can be generated at relatively no 

computational cost. However, a limited number of labeled data points in many nonlinear 

and disjoint failure domain problems can put an upper limit on classification accuracy. 

With a combination of EM algorithm and Bayes theorem we propose the addition of a 

large number of unlabeled patterns which will enable relaxation of the spherical 

covariance assumption of PNN and increase the classification accuracy when the 

available number of labeled patterns is small. The steps in building such a classifier are 

explained in this section. Simultaneously, we also show a classification example where 

the Y-Axis is the true classification boundary so that the process is easier to visualize. 

Step1:EM for clustering 

The available dataset, X, will consist of labeled dataset, Xl, and unlabeled dataset, Xu, 

such that 
ul XXX ∪= . Specifically, the dataset, X, will have the form 

( ) ( ){ }ullll xxwxwxX ++= ,...,,,,...,, 111 , where wi’s represent the class labels. In the case of 

reliability estimation, w can only take the values of either 0 or 1. 

 In Step 1 we ignore the labels of labeled data and combine the data with unlabeled 

data. Hence, we end up with l+u unlabeled data, which we cluster around l mean values 

with the EM algorithm. The l labeled data points that we have initially can be taken as the 

starting mean values for the EM algorithm. The initial prior probabilities and covariances 

for all clusters can be taken as same. After the convergence of the EM algorithm we end 

up with l clusters according to which the whole dataset can be defined. In the following 
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the labels for clusters will be labeled by the symbol 
jg where lj ≤≤1 . The output from 

the EM algorithm are the prior probabililties and means and covariance values of the l 

clusters. The details of the EM algorithm is provided in Table 4. 3 [115]. 

Table 4. 3 EM algorithm for Gaussian mixture clustering 

Step1: Input: data, { }ulll xxxxX ++= ,...,,,..., 11 ,
jµ and 

jΣ for lj ≤≤1  

Step2: Initialize t = 0  

Step3: Repeat E-Step and M-Step until the convergence of )|(log t
Xp θ : 

E-Step:Compute the posterior probabilities for uli +≤≤1  
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M-Step:Compute MLE, 
1+tθ using the current 
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Step4: Output all 
jλ ,

jµ and 
jΣ . 

 Consider the simple example shown in Figure 4. 3 where the Y-Axis is the true 

classification boundary and four labeled points are available for training a classifier. 

After conclusion of Step-1 of our proposed SSL method we obtain four Gaussians which 

are shown in Figure 4. 4. Gaussian 1 is in one class and Gaussians 2 and 4 are in another 

class whereas Gaussian 3 is present in both classes. Note that since the EM algorithm is 

sensitive to the initial solution, the Gaussians might vary with each run. In the next steps, 

all the Gaussians are pooled together and their weighted contribution is used as the kernel 

at each labeled point.  
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Figure 4. 3 Illustration of classification problem with Y axis as true classifier 
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Figure 4. 4 Illustration of four clusters created using EM 

Step2:Estimate Posterior Probabilities for labeled patterns 

In step 1 we calculated the prior probabilities and the means and covariances of the l 

Gaussians from which our original dataset can be sampled. In this step we compute the 

posterior probabilities for all the labeled data points to belong to each of the l Gaussian 

clusters. All the posterior probabilities are stored in a l X l matrix. The following 

equation can be used to calculate the posterior probabilities using the Bayes Theorem: 
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Conceptually these posterior probabilities give a measure of closeness of the labeled data 

from the cluster centers. Hence the higher the posterior probability of a labeled point for a 
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given cluster, the higher the probability that the labeled data point was generated from 

that particular Gaussian cluster.  

Step3:Estimate Probabilistic Distance of Test Pattern from Labeled 

Patterns 

In this step we consider the test patterns, XTe , which will have the same number of 

dimensions as the training data. We compute the kernel functions for each of the test data 

considering the covariance matrices of the Gaussian clusters and the labeled data points 

as the kernel centers. These distances are then added together after being weighted by the 

posterior probabilities computed from Eq. (4.27). This is shown in Eqs. (4.28-4.29). 

Adding the weighted distances corresponding the the labeled points belonging to class A 

and class B, we can estimate the class conditional PDF for each class. The reader is 

invited to notice the similarity of this process with the original PNN process. 
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Note that nA and nB are the number of labeled patterns that belong to Class A and Class B 

respectively and nA + nB = l. The term ( ) ( )
TrjTejTrjTe XXXX −∑− −1'

 can also be 

recognized as the square of Mahalanobis [101] distance. 

 If we consider the example problem shown in Figure 4. 3 again, Step 3 partitions 

the Gaussian clusters identified by the EM algorithm which are shown in Figure 4. 4. 

After the partition, the resulting decision space is shown in Figure 4. 5. After the partition 



 

 

of the Gaussians only the part that belongs to a certain class is used for calculation of the 

class conditional PDFs. This is eventually what Eqs. (4.28

Figure 4. 

Step4:Bayes Decision Rule Implementation

After the class conditional PDF values are computed, the Bayes decision rule can be used 

to classify a test data in one of the two classes according to the following equations:

AX Te ∈  if ( )TeAA Xfn

BX Te ∈  if ( )TeAA Xfn

 Notice that the method adopted in Step 3 and Step 4 are similar to the PNN 

process but instead of associating a particular ‘spherical’ covarianc

labeled data, we pool all the different ‘full’ covariance matrices and weight them based 

on the posterior probabilities computed from Step 2. This process enables more accurate 
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he Gaussians only the part that belongs to a certain class is used for calculation of the 

class conditional PDFs. This is eventually what Eqs. (4.28-4.29) accomplishes.

Figure 4. 5 Resulting decision space after Step 3 

ayes Decision Rule Implementation 

After the class conditional PDF values are computed, the Bayes decision rule can be used 

to classify a test data in one of the two classes according to the following equations:

) ( )TeBB Xfn>          

) ( )TeBB Xfn<          

Notice that the method adopted in Step 3 and Step 4 are similar to the PNN 

process but instead of associating a particular ‘spherical’ covariance matrix with all 

we pool all the different ‘full’ covariance matrices and weight them based 

on the posterior probabilities computed from Step 2. This process enables more accurate 

he Gaussians only the part that belongs to a certain class is used for calculation of the 

4.29) accomplishes. 

 

After the class conditional PDF values are computed, the Bayes decision rule can be used 

to classify a test data in one of the two classes according to the following equations: 

           (4.30)             

     (4.31) 

Notice that the method adopted in Step 3 and Step 4 are similar to the PNN 

e matrix with all 

we pool all the different ‘full’ covariance matrices and weight them based 

on the posterior probabilities computed from Step 2. This process enables more accurate 
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computation of the covariance matrices and doesn’t restrict the covariance at a particular 

labeled data point to a particular value; instead, the covariance at a labeled point is a 

weighted average of the pooled covariance matrices.   

 

Figure 4. 6 Spherical Gaussian Kernels on labeled points from Figure 4. 3 
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Figure 4. 7 Classification boundary estimated by PNN algorithm 

When the PNN is used for training with the four labeled data points of Figure 4. 3, 

‘spherical’ covariance Gaussians with identity covariance matrices are used as kernels as 

shown in Figure 4. 6 and the estimated classification boundary is shown in Figure 4. 7. 

Clearly, the estimated classification boundary is linear but doesn’t resemble the true 

classification boundary (Figure 4. 5). In contrast to the performance of original PNN the 

decision boundary obtained by the proposed SSL algorithm is illustrated in Figure 4. 8. 

The decision boundary is closer to the Y-Axis than the decision boundary estimated by 

the PNN algorithm. Note that even though the EM algorithm results in different clusters 

in different runs, our experiments show that there is little variation in the final decision 

boundary predicted after the conclusion of all steps of the proposed SSL algorithm. 
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Figure 4. 8 Classification boundary estimated by the SSL-2 algorithm 

4.6 Summary  

In this chapter we established the core formulations which will enable us to validate the 

hypotheses to our research questions in Chapter 5. We introduced two Semi-Supervised 

Learning (SSL) algorithms, SSL-1 and SSL-2, for increasing the accuracy of PNN when 

less number of labeled data is available for training a PNN. SSL-1 algorithm assumes that 

the Gaussian kernels are centered at each labeled point. Furthermore, all the Gaussian 

kernels are ‘spherical’, or have covariance of the form I
2σ=Σ , with the same value of 

2σ . SSL-2 algorithm is more general and assumes that Gaussian kernels can take 
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different elliptical shapes and orientations and need not be centered at the labeled points. 

The Gaussian covariance matrices in SSL-2 are ‘full’ which allows all the parameters in 

the covariance matrices to have different values allowing the Gaussian kernel ellipses to 

have different shapes, sizes and orientations.  

 The SSL-1 algorithm resembles the basic EM algorithm since it also consists of 

Expectation and Maximization steps. Before the Expectation and Maximization steps a 

classifier is trained by assuming a ‘smoothing parameter’ or 2σ value for PNN. The 

current classifier is used to estimate the labels of unlabeled data in the expectation step. 

These labels are denoted ‘soft-labels’ since they will have a value between 0 and 1. These 

soft-labels corresponding to unlabeled data and the ‘hard-labels’, which is either 0 or 1, 

corresponding to the labeled data are combined together and used for estimating the new 

parameters of the smoothing parameter in the Maximization step. The Expectation and 

Maximization steps are iterated until convergence. The final smoothing parameter is the 

only required value for the PNN classifier. 

  In the first step of the SSL-2 algorithm, the labeled and unlabeled data are 

combined together after ignoring the labels of labeled data. The combined data set is then 

used for unsupervised learning with the basic Expectation-Maximization algorithm, while 

allowing for ‘full’ covariance matrices. We initialize the number of clusters in EM as the 

number of labeled data. The outputs from EM algorithm are prior probabilities and means 

and covariance matrices for the component clusters. The second step involves finding the 

posterior probability of each of these clusters at the labeled points. These posterior 

probabilities are a measure of responsibilities of each Gaussian Cluster at each of the 

labeled point. In the third step, we calculate the weighted average of the Gaussian kernels 
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based on Mahalanobis distance of the test point from each of the labeled point. The 

weights used with the Gaussian kernels based on Mahalanobis distances are the 

responsibilities that were calculated in the second step. In the fourth and final step, we 

use the Bayes decision rule to assign a label to the test point based on which class had a 

higher probability for that test point.  

 SSL-2 algorithm was shown to approximate the true classifier, the Y-Axis, more 

accurately than the basic PNN algorithm. In Chapter 5 advanced numerical examples will 

demonstrate the superiority of both SSL-1 and SSL-2 over PNN in quintessential 

classification problems that might occur in reliability estimation problems. We will also 

show how the proposed algorithms can be used during the design of complex engineering 

system.  
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CHAPTER 5 

VALIDATION EXAMPLES 

In the previous chapter we proposed SSL-1 and SSL-2, Semi-Supervised Learning (SSL) 

algorithms, which use labeled and unlabeled data in order to reduce the computational 

cost of the overall reliability estimation process because overall they will require lesser 

number of labeled points in order to achieve the same level of accuracy as a PNN trained 

with only labeled data. In order to validate that the level of accuracy achieved using these 

algorithms is significantly higher than PNN we will test these algorithms with two 

analytical examples. In Section 5.1 we describe an analytical problem which is linear in 

nature and resembles reliability estimation problems where the failure domain is 

continuous.  This example is used to validate the efficacy of the SSL-1 algorithm. The 

second example is described in Section 5.2 where the failure domain is disjoint. This 

example is used to validate the efficacy of the SSL-2 algorithm. Specifically, we 

demonstrate how the performance of SSL-2 changes as the number of unlabeled and 

labeled data is changed. Then, we demonstrate that SSL-2 performs better than Support 

Vector Machines (SVM) as the number of labeled data is increased. In section 5.3 we 

validate both the SSL methods, SSL-1 and SSL-2, with the help of a ten-bar example 

which is a classical problem in reliability estimation and has been used by various authors 

in order to validate their methods [42]. We take up the task of using these methods for the 

design of complex structural systems in Sections 5.4. In Section 5.4 we will show the 

usage of topology optimization methods for the design of a meso-scale compliant gripper 

that can be used for biological applications. A buckling limit state function is used for 

formulating the reliability constraint for the case of Reliability-based Topology 
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Optimization. The resulting mechanism is compared to the mechanism obtained by a 

Deterministic Topology Optimization procedure in order to validate our hypothesis to the 

Secondary Research Question 2. 

5.1 Continuous Problem in Two Dimensions 

In this example, the applicability and usefulness of the proposed SSL architecture using 

PNN with the novel learning algorithm will be demonstrated. Consider a limit state 

function [116] with two random variables, 

                                       (5.1) 

where u1 and u2 are assumed to be Gaussian random variables ~ N ([0, 0], 100) .   

      This example consists of two phases, namely the training phase and test phase. 

The training phase will incorporate learning with the SSL framework where unlabeled 

data will be used to improve the accuracy of the PNN classifier with the aid of the 

proposed EM algorithm. In the training phase of the PNN, both labeled and unlabeled 

data is used. For creating the labeled dataset, 20 samples of u1 and u2 are generated using 

LHS with an assumption of Gaussian distribution ~ N ([0 0], 100).  For these 20 data 

points, the response in Eq. (5.1) is evaluated. Accordingly, the system is considered to be 

safe if ),( 21 uug  < 0, and the system is considered to have failed if  > 0. The 

points in the safe region can be given a class label of wi = 0 (class 1), and the points in the 

unsafe region can be given a class label of wi = +1 (class 2). These 20 data points 

constitute the labeled dataset. This labeled dataset will be augmented with 400 unlabeled 

data points which are sampled with the same Gaussian distribution as the labeled data. 

2121 )7.1exp(8.3),( uuuug −−+−=

),( 21 uug
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The SSL-1 algorithm is then used to train the PNN with the proposed modified EM 

algorithm. The algorithm starts with training an initial classifier with a smoothing 

parameter value of 2. After 10 iterations of the proposed algorithm with both labeled and 

unlabeled data, the CCM matrix (matrix composed of probability values for each class) 

converged and the resultant classifier had a smoothing parameter value of 7.12. This 

concludes the training phase. For the test phase, 10,000 data points were generated with 

the Gaussian distribution ~ N ([0 0], 100) using LHS in order to test the classifier. 

  Figure 5. 1 shows the test data plotted in the decision space where the limit state 

function is illustrated. The space below the limit state function represents the safe region 

and the space above the limit state represents the failure region. The test data points 

classified by the SSL algorithm as safe are represented in circles and those classified as 

unsafe/failures are represented by dots.  
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Figure 5. 1 Data points classified into safe and unsafe regions 

The proposed method, based on SSL-1 classifier, has an accuracy of 88.94%, whereas the 

original PNN Classifier has an accuracy of 64.97%. This shows a 36.89% improvement 

in classification accuracy. These results are summarized in a confusion matrix [110] in 

Table 5. 1. Table 5. 1 shows that out of the 10,000 data points on which the original PNN 

algorithm was tested, 4421 points were in the safe region, whereas 5579 were in the 

failure region. The algorithm predicted that only 3924 points where in the safe region and 

6076 points were in the failure region. Furthermore, out of the 3924 points, 1503 points 

actually belonged to the failure region. Hence there were 1503 misclassifications. 

Similarly, there were 2000 misclassifications in the prediction of failure class. Similar 

analogy also applies to the SSL-1 algorithm section of the confusion matrix where there 
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were 482 and 624 misclassifications in prediction of safe and failure class respectively. 

Table 5. 1 and Figure 5. 1 depict the efficacy of the proposed SSL-1 based classification 

method for limit state approximation, which has been shown here to perform better than 

the original PNN method. 

Table 5. 1Confusion matrix for comparison between the conventional PNN and PNN with SSL 

Confusion Matrix 

Original PNN SSL-1 

Predicted Class 
Total 

Predicted Class 
Total 

Safe Failure Safe Failure 

Actual 

Class 

Safe 2421 2000 4421 5565 624 6189 

Failure 1503 4076 5579 482 3329 3811 

Total 3924 6076 10000 6047 3953 10000 

 In the next example we validate the efficiency of the SSL-2 algorithm on a 

disjoint failure domain problem. 

5.2 Disjoint Problem in Two Dimensions 

 In this example, the applicability and usefulness of the SSL-2  algorithm will be 

demonstrated with an analytical problem which is a representative disjoint failure domain 

problem. Consider a limit state function with two random variables, 

4),( 2121 −= xxxxg                     (5.2)     

where 1x and 2x  represent the random variables. The task assigned to classifiers is to 

estimate the classification boundary accurately. The classification boundary is the points 

where ),( 21 xxg . The function represented in Eq. (5.2) is a rectangular hyperbola when 

represented in the 1x - 2x  dimensions. A graphical representation of the ),( 21 xxg
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function is shown in Figure 5. 2 where the classification boundary is the boundary 

between the region containing the points marked in circles and the region marked with 

points marked in squares.   

 

Figure 5. 2 True classification boundary 

5.2.1 Analysis Process 

This example consists of two phases, namely, training phase and test phase for the 

conventional PNN algorithm as well as the proposed SSL-2 algorithm. During the 

training phase, PNN will be trained using labeled data only whereas the SSL-2 algorithm 

will be trained using both the labeled and unlabeled data. Both the algorithms will be 
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tested on a common dataset. As mentioned earlier, one of the underlying assumptions of 

the proposed SSL based algorithm is that the labeled and unlabeled data points are 

sampled from the same Gaussian distributions. Hence, the same distributions are used for 

sampling both the labeled and unlabeled data points. The training labels for the labeled 

dataset are calculated using Eq. (5.2), where the sign of ),( 21 xxg  gives the 

corresponding label. The points in the region where ),( 21 xxg  < 0 is given a class label 

of wi = 0 (class A) and the points where ),( 21 xxg  > 0 is given a class label of wi = 1 

(class B). In Figure 5. 2 the region with circular points represent the region of class A and 

the region with square points represent the region of class B. 

 In total 10 labeled, 200 unlabeled points, and 10,000 test points are sampled. The 

labels for the 10 labeled and 10,000 test points are calculated using Eq. (5.2). All the 

labeled, unlabeled and test datasets are sampled from the bivariate Gaussian distribution 

~ N ([0, 0], [30, 0; 0, 30]). The labeled data used for training is shown in Table 5. 2. As 

shown in the table, the training dataset contains equal number of points from each class. 

Table 5. 2 Labeled data sampled for training 

g(x1,x2) Labels

    1.7604   -3.9767 -11.001 0

    1.8462   -8.7452 -20.145 0

   -4.5722   -0.5416 -1.5237 0

   -3.6530    1.8321 -10.693 0

   -0.5531   -7.5897 0.1979 1

   -6.2169   -5.6503 31.1274 1

   -0.5569   -8.4132 0.6853 1

   -5.8578   -9.7298 52.9952 1

    6.8602   -2.6037 -21.862 0

    9.6106    5.4285 48.1711 1

x1           x2
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After demonstrating the advantage of the SSL2 algorithm in comparison to PNN in 

Section 5.2.2, we will demonstrate the performance variance in SSL-2 algorithm as the 

number of unlabeled data is changed in Section 5.2.3. We will also compare the SSL-2 

algorithm with Support Vector Machines (SVM) in Section 5.2.4. 

5.2.2 Comparison of SSL-2 with PNN 

A smoothing parameter value of 1.00 was chosen to train the conventional PNN 

algorithm. The decision boundary estimated by PNN in this case is shown in Figure 5. 3. 

In this case, PNN assumes the shape of a linear classifier and it is unable to realize the 

discontinuity in the decision space for the given small number of labeled data points. Out 

of the 10,000 test data points, PNN misclassified in 2293 cases. 

 

Figure 5. 3 Estimated classification boundary by PNN 
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Figure 5. 4 Estimated classification boundary with SSL-2 

In the SSL case, the set of 10 labeled data was used along with the set of 200 

unlabeled data for the EM algorithm in the Step 1 of proposed algorithm. After 

conclusion of the training process where 10 different ‘full’ covariance matrices are 

learned and a fraction of each of these 10 covariance matrices is associated with each 

labeled data point during the classification process, the classifier was tested on the same 

test dataset containing 10,000 points. The average misclassifications were found to be 

1723. Note that because the EM algorithm was used as a starting step for our algorithm, 

the final classifier performance will vary based on the initial starting point and 

convergence of EM. In our experiments, the number of misclassifications varied from 
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1187 in the best case scenario and 2189 in the worst case scenario with an average 

misclassification of 1723 in 10 runs. Note that even the worst case performance of our 

proposed algorithm (2189 misclassifications) is better than the performance of PNN 

algorithm (2293 misclassifications).  The results from this test phase for 1723 

misclassifications in the proposed algorithm are represented in the form of a confusion 

matrix in Table 5. 3. The decision boundary is also presented in Figure 5. 4. 

Table 5. 3 Confusion matrix for comparison of the original PNN and SSL-2 

Confusion Matrix 

Original PNN SSL-2 

Predicted Class 
Total 

Predicted Class 
Total 

Label 0 Label 1 Label 0 Label 1 

Actual 

Class 

Label 0 3792 1104 4886 4012 874 4886 

Label 1 1189 3925 5114 849 4265 5114 

Total 4971 5029 10000 4861 5139 10000 

The confusion matrix has been divided into two sections in order to compare the results 

derived from the conventional PNN algorithm and the proposed SSL based PNN 

algorithm. The matrix is comprised of three columns. The second column represents the 

performance of the conventional PNN algorithm and the third column represents the 

performance of the proposed algorithm. Within the second column the off diagonal 

elements 849 and 874 represent the number of misclassifications. Hence the PNN model 

has a misclassification percentage of 22.93%.  In comparison, the PNN with SSL 

algorithm has a misclassification rate of 17.23%. Hence the SSL based algorithm results 

in a 24.86% reduction in the misclassification rate. We want to restate that we compared 

the average performance of the proposed algorithm with the performance of PNN 
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algorithm. In case the number of labeled dataset is increased, the performance of both the 

algorithms increases at a proportional rate. 

These results (Table 5. 3) confirm that the SSL based classification procedure 

provides sufficient accuracy compared to the results from the conventional PNN 

algorithm for this disjoint failure domain problem.  

5.2.3 Performance of SSL-2 as Number of Unlabeled Data is Changed 

In order to study the change in performance level of the proposed SSL-2 algorithm as the 

number of unlabeled data is varied, the same 10 labeled data shown in Table 5. 2 were 

used along with unlabeled data sampled using the bivariate Gaussian distribution ~ N ([0, 

0], [30, 0; 0, 30]).  

 

Figure 5. 5 Number of misclassifications with SSL-2 as no. of unlabeled data is varied 
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 In order to test the accuracy of the algorithms, the algorithms were tested on 

10,000 test data points, which were also sampled from the same Gaussian distribution. 

The number of resulting misclassifications quantifies the accuracy of the algorithm. 

Hence, the more accurate iteration is the one with the minimum number of 

misclassifications. The variation in the number of misclassifications as more unlabeled 

data is added is shown in Figure 5. 5. The exact values of the misclassifications are 

shown in Table 5. 4.  

Table 5. 4 No. of misclassifications when 10 labeled points are used and the number of unlabeled 

points is increased for SSL-2 

Unlabeled Data Misclassifications 

0 2293 

100 1839 

150 1988 

200 1836 

250 1943 

300 1380 

350 1382 

400 1343 

450 1312 

500 1456 

550 2134 

600 2118 

700 1804 

800 2124 

900 1889 

1000 1862 

1500 1738 

Even when just 100 unlabeled data is added, the number of misclassifications decreases 

from 2293 to 1839 representing a 17.44% increase in accuracy. Maximum increase in 

accuracy occurs when 450 unlabeled data are added to the existing pool of 10 labeled 
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data. In this case there are only 1312 misclassifications representing a 42.78% increase in 

accuracy from the case when unlabeled data are not used at all (case of PNN). In case of 

SSL, the maximum number of misclassifications occur when 800 unlabeled data are used. 

In this case there are 2124 misclassifications, which is a 7.37% improvement over the 

case when only labeled data is used for PNN. Hence it can be concluded that SSL-2 will 

always improve the accuracy of PNN.  

 From the above discussion, an important question that arises is how many 

unlabeled data points should be included when conducting SSL-2 so that we obtain 

maximum accuracy? Note that the first step in SSL-2 is the Expectation Maximization 

algorithm where the number of required clusters is equal to the number of labeled data 

points. A popular rule of thumb for the EM algorithm is to have at least 2n
2
 number of 

unlabeled data points for clustering, where n represents the number of data clusters. 

According to this rule of thumb, when we have 10 labeled data points (10 clusters for EM 

algorithm), we should use at least 200 unlabeled data points. However, based on the 

results obtained from this example, we recommend using 4n
2
 data points for maximum 

accuracy with SSL-2. 

5.2.4 Performance of SSL-2 as Number of Labeled Data is Changed 

It is generally expected that as the number of labeled points is increased, the accuracy of 

the machine learning algorithms will increase. In this section we demonstrate that the 

accuracy of the proposed SSL-2 algorithm also increases as the number of labeled data is 

increased. Based on the inference drawn from the last section, we will sample  4n
2
 

unlabeled data points when n number of labeled points are used for training. The labeled, 

unlabeled and test data points are sampled using the same method that was used in the 
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last section. The number of labeled data, unlabeled data, the number of misclassifications 

and the corresponding accuracy are represented in Table 5. 5.  

Table 5. 5 Change in accuracy of SSL-2 as number of labeled data points is increased 

Labeled Unlabeled Misclassifications % Accuracy 

5 100 2689 0.7311 

6 144 2502 0.7498 

7 196 2005 0.7995 

8 256 1926 0.8074 

9 324 1724 0.8276 

10 400 1540 0.846 

15 900 1464 0.8536 

20 1600 1330 0.867 

25 2500 1220 0.878 

30 3600 1091 0.8909 

40 6400 911 0.9089 

50 10000 869 0.9131 

60 14400 553 0.9447 

70 19600 550 0.945 
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Figure 5. 6 Increase in accuracy as the number of labeled data is increased 

 The accuracy is represented as the number of correct classifications from the 

10,000 test data points that were sampled earlier. The variation of accuracy with the 

number of labeled points is also shown in Figure 5. 6. Hence it can be concluded that for 

this example, the accuracy of the SSL-2 algorithm converges at 95% with respect to the 

test date. For different problems the accuracy will converge to different levels, hence, the 

benefit of adding additional labeled points will decrease drastically after a certain point.  

5.2.5 Comparison of SSL-2 with SVM 

Table 5. 6 shows the number of misclassifications for SSL-2, PNN and Support Vector 

Machines (SVM) when trained with 10, 20, 30, 40 and 50 labeled data points. The same 

set of 10 labeled points that were used in Sections 5.2.1 were used in this comparison 
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also. It is evident from this comparison that SSL-2 gives better results in all cases since 

the number of misclassifications for SSL-2 is the least in all cases. The number of 

misclassifications is plotted against the number of labeled data used in each case in 

Figure 5. 7. These results show that SSL-2 performs better than SVM as well as PNN as 

the number of labeled data points is increased.  

Table 5. 6 Comparison of SSL-2 with PNN and SVM 

Labeled 

Data 

Unlabeled 

Data 
SSL-2 PNN SVM 

50 10000 869 2081 917 

40 6400 911 1560 1329 

30 3600 553 1787 1983 

20 1600 1606 4190 2062 

10 400 1343 2293 2011 
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Figure 5. 7 No. of misclassifications for SSL-2, PNN and SVM 

5.3 Ten Bar Truss Example 

The ten-bar truss structure shown in Figure 5. 8 is used to validate the reliability 

estimation capability of the proposed algorithms. Since the horizontal, vertical, and 

diagonal members are cut from three different aluminum rods, the cross-sectional areas 

A1, A2 and A3 are considered design variables. These three variables can be potential 

sources of uncertainties. Therefore, the cross-sectional areas of the horizontal members, 

A1, vertical members, A2, and diagonal members, A3, are assumed random. The random 

quantities of these three variables are considered as having Gaussian distributions with 

the mean values of 13, 2 and 9 in
2
, respectively. The coefficient of variation (COV) is 0.1 
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for all the three variables. Young’s modulus, material density, length and load are 

assumed deterministic: 

• Force:   

• Length:  

• Young’s modulus:

• Material density: 

• Allowable stress for members 3 and 7:

• Allowable tip displacement at Node (2):

The reliability analysis is 

displacement and stress-

182 

for all the three variables. Young’s modulus, material density, length and load are 

    P = 100,000 lb

    L = 360 in 

us:     E = 10
7
 psi (for Aluminum)

     ρ = 0.1 lb/in

Allowable stress for members 3 and 7:  allows = 20,000 psi

Allowable tip displacement at Node (2):  allowd = 4.0 in

Figure 5. 8 Ten-bar truss structure 

The reliability analysis is conducted to check the statistical characteristics of the 

-constraints at the optimum design. To set up the limit

for all the three variables. Young’s modulus, material density, length and load are 

= 100,000 lb 

psi (for Aluminum) 

= 0.1 lb/in
3
 

= 20,000 psi 

= 4.0 in 

 

to check the statistical characteristics of the 

constraints at the optimum design. To set up the limit-state 
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function, the following closed-form analytical expressions are derived using the finite 

element analysis procedure. The limit state function for the tip displacement at Node (2) 

is given by 
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The limit-state functions for the stress in member 3 and member 7 are given as 
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5.3.1 Comparison of PNN and SSL-1 

Different values were used for allowable constraints ( allows  and allowd ) to find the 

corresponding Pf values using Monte-Carlo Simulation (MCS), PNN and SSL-1. The 

probability of failure values calculated using SSL-1 are compared to the MCS values 

which were found to be the same as reported in Ref. [42]. The Pf values are also 
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calculated using the original PNN algorithm with 100 labeled data points. In order to 

calculate the Pf value using SSL-1, 20 different combinations of cross-sectional areas 

were sampled in each case using LHS. These values were used to compute the limit state 

function using Eqs. (5.3-5.5). The sampled dataset and the responses computed using Eqs 

(5.3-5.5) constitute the labeled dataset. This labeled dataset was augmented using 800 

unlabeled data points that were sampled using the same distribution as the labeled data. 

Table 5. 7 Probability of failure values for tip displacement at node 2 using SSL-1 

Tip displacement at Node 2 

Displacement 

Limit 
MCS(1,000,000) PNN SSL-1 

3.0 0.9996 0.9982 0.9996 

3.5 0.8442 0.8238 0.8177 

3.7 0.5244 0.5000 0.5012 

4.0 0.1764 0.1639 0.1622 

4.5 0.0072 0.0061 0.0058 

Table 5. 8 Probability of failure values for stress on truss member 3 using SSL-1 

Stress in Member 3 

Stress 

Limit 
MCS(1,000,000) PNN SSL-1 

15000 0.7741 0.7739 0.7732 

16124 0.5010 0.5000 0.5000 

20000 0.0259 0.0263 0.0241 

21000 0.0100 0.0103 0.0098 

22000 0.0034 0.0045 0.0041 
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Table 5. 9 Probability of failure values for stress on truss member 4 using SSL-1 

Stress in Member 4 

Stress 

Limit 
MCS(1,000,000) PNN SSL-1 

17223 0.49918 0.5123 0.5023 

20000 0.07932 0.0801 0.0811 

21000 0.03456 0.0341 0.0343 

22000 0.0142 0.0145 0.0138 

The results obtained using SSL are compared with MCS and PNN in Table 5. 7 and 

Table 5. 8 and Table 5. 9 for the displacement limit state at node 2 and stress limit states 

in truss members 3 and 4, respectively. Comparing the values show that SSL-1 gives 

conformal and acceptable results while reducing the computational requirement 

drastically. In order to compare the accuracy of SSL-1 in comparison to PNN, we can 

assume that the values obtained by using MCS are the true probability of failure values. 

With this assumption, the Sum of Square Error (SSE) for SSL-1 is 0.0014 whereas that 

for PNN is 0.0012 in Table 5. 7. Similarly, in Table 5. 8 the SSE for SSL-1 is 5.72 X 10
-6

 

and that for PNN is 2.53 X 10
-6

. In Table 5. 9 the SSE for SSL-1 is 1.313 X 10
-5

 and SSE 

for PNN is 1.7304 X 10
-4

. These results show that SSL shows conformal results with 

PNN. Note that these results have been obtained while using 100 labeled data points 

using PNN and just 20 labeled data points for SSL. Since most of the computational 

requirement in reliability-based design processes lies in the reliability estimation process, 

which in turn depends on the FEM process for determining the responses, it can be 

concluded that SSL-1 results in drastic reduction in computational requirement of the 
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reliability estimation process. The added advantage in using SSL-1 over PNN is that 

SSL-1 results in an 80% reduction in computation cost than the original PNN algorithm. 

5.3.2 Comparison of PNN and SSL-2 

To find the corresponding Pf values Monte-Carlo Simulation (MCS), PNN and SSL-2 

were conducted. The Pf values are calculated using the original PNN algorithm with 20 

labeled data points. These values were used to compute the limit state function using Eqs. 

(5.3-5.5). The sampled dataset and the responses computed using Eqs. (5.3-5.5) 

constitutes the labeled dataset.  

Table 5. 10 Probability of failure values for tip displacement at node 2 using SSL-2 

Tip displacement at Node 2 

Displacement 

Limit 
MCS(100,000) PNN SSL-2 

3.0 0.9996 0.9982 0.9990 

3.5 0.8442 0.8238 0.8441 

3.7 0.5244 0.5000 0.5240 

4.0 0.1764 0.1639 0.1761 

4.5 0.0072 0.0061 0.0074 
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Table 5. 11 Probability of failure values for stress on truss member 3 using SSL-2 

Stress in Member 3 

Stress 

Limit 
MCS(1,000,000) PNN SSL-2 

15000 0.7741 0.7739 0.7739 

16124 0.5010 0.5000 0.5009 

20000 0.0259 0.0263 0.0260 

21000 0.0100 0.0103 0.0100 

22000 0.0034 0.0045 0.0036 

Table 5. 12 Probability of failure values for stress on truss member 4 using SSL-2 

Stress in Member 4 

Stress 

Limit 
MCS(1,000,000) PNN SSL-2 

17223 0.49918 0.5123 0.5001 

20000 0.07932 0.0801 0.07935 

21000 0.03456 0.0341 0.0371 

22000 0.0142 0.0145 0.0147 

 The results obtained using SSL-2 are compared with MCS and PNN in Table 5. 

10, Table 5. 11 and Table 5. 12 for displacement limit state at node 2 and stress limit 

states on members 3 and 4. The same set of labeled and unlabeled data used for the 

results in Table 5. 7, Table 5. 8 and Table 5. 9 were also used for this section. Comparing 

the values show that SSL-2 gives accurate results while requiring less number of labeled 

data points. 
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Figure 5. 9 Classification boundary with displacement limit state function 

 In order to compare the accuracy of SSL-2 in comparison to PNN, we can assume 

that the values obtained by using MCS are the true probability of failure values. With this 

assumption in Table 5. 10, the Sum of Square Error (SSE) for SSL-2 is 6.6 X 10
-7

 

whereas that for PNN is 0.0012. Similarly, in Table 5. 11 the SSE for SSL-2 is 1.0 X 10
-7 

and that for PNN is 2.53 X 10
-6

. In Table 5. 12 the SSE for SSL-2 is 7.5489 X 10
-6

 and 

SSE for PNN is 1.7304 X 10
-4

. These results show that SSL-2 shows superior results than 

PNN. Note that these results have been obtained while using 100 labeled data points 

using PNN and just 20 labeled data points for SSL-2. As in the case of SSL-1, in the case 

of SSL-2 the set of labeled data is augmented with 800 unlabeled data, which are sampled 

from the same distribution. An increased accuracy in both the methods should be 

expected as the number of labeled data is increased. The predicted classification 

boundary by the proposed SSL algorithm on 10,000 test data is shown in Figure 5. 9. As 

expected the classification boundary seems to be a linear hyperplane.  

0),,( 321 <AAAg

0),,( 321 <AAAg
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 The results from this reliability estimation problem are summarized in Table 5. 

13. The SSE values obtained for PNN using 100 labeled data points are compared with 

the values obtained by SSL-1 and SSL-2 when 20 labeled data points are used with 800 

unlabeled data points. The table shows that the results obtained by using PNN and SSL-1 

are similar whereas the results obtained by SSL-2 are more accurate than both PNN and 

SSL-1. 

Table 5. 13 SSE comparison between PNN, SSL-1 and SSL-2 

SSE of PNN, SSL-1 and SSL-2 for Limit State Functions 

Limit State Function PNN SSL-1 SSL-2 

Displacement at Node 2 0.0012 0.0014 6.6 X 10
-7

 

Stress in Member 3 2.53 X 10
-6

 5.72 X 10
-6

 1.0 X 10
-7

 

Stress in Member 4 1.7304 X 10
-4

 1.313 X 10
-5

 7.5489 X 10
-6

 

  These results demonstrate that both SSL-1 and SSL-2 can reduce the 

computational requirement of the reliability estimation process since both these methods 

take 80% less labeled data points for obtaining comparable or better results than PNN. 

5.3.3 Example with Non-Gaussian Random Variables 

In the previous sections, we assumed that all the uncertain parameters are represented by 

Gaussian distributions. However, in many cases uncertainties are represented by non-

Gaussian distributions. Hence, in a complex structural system uncertain variables will be 

represented by a combination of different distributions. 

  In order to validate that the proposed SSL-2 algorithm will be effective when the 

uncertainties are represented by non-Gaussian distributions, we will assume that the 
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uncertain variables are represented by the distributions represented in Table 5. 14. Unlike 

the previous sections of this example, here we are assuming that the force, P, and 

Young’s Modulus, E, are also random variables.  

Table 5. 14 Uncertain variables and corresponding distributions 

Random 

Variable 
Distributions Parameters 

A1 Uniform [10,16] 

A2 Lognormal Mean=10.1757 Std. Dev. = 92.8255 

A3 Uniform [6,12] 

P Weibull Shape=2.6901 Scale=1.1246 X 10
5
 

E Gamma Alpha=6.25 Beta=1.6 X 10
6
 

Using these uncertainty descriptions, 20 labeled data points were sampled for training the 

original PNN algorithm. SSL-2 algorithm was trained using these 20 labeled samples and 

32,000 unlabeled data points. The labels of the samples were estimating the values of 

displacement limit state which is given in Eq. (5.3). The probability of failure estimated 

by using 1,000,000 samples of MCS, PNN while using 20 labeled data points and SSL-2 

while using 20 labeled data points and 32,000 unlabeled data points are represented 

in.Table 5. 15 Probability of failure values for different displacement limit states 

Tip displacement at Node 2 

Displacement 

Limit 
MCS(1,000,000) PNN SSL-2 

3.0 0.6386 0.5933 0.5942 

3.5 0.5410 0.4173 0.4956 

3.7 0.5057 0.3975 0.4636 

4.0 0.4529 0.3846 0.4295 

4.5 0.3758 0.4160 0.4144 
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  Specifically, assuming that the probability of failure values calculated by using 

MCS are the true values, the Sum of Square Errors (SSE) value for PNN is 0.0353 and 

the SSE value for SSL-2 is 0.0078. Hence it can be concluded that SSL-2 predicts more 

accurate values of probability of failure values than PNN in cases where the uncertainties 

are sampled from different distributions. Since it is highly likely that in modern structural 

systems, the uncertain parameters might not be Gaussians and the uncertain parameters of 

the system are sampled from different systems, this example validates that the reliability 

of these complex structural systems can also be predicted by using the SSL-2 algorithm. 

5.4 Compliant Meso-Scale Gripper Mechanism Design for Biological 

Applications 

A mechanism is a mechanical device used to transfer motion, force or energy. A 

traditional rigid-body mechanism consists of rigid links connected at movable joints. 

Since energy is conserved between the input and the output (neglecting friction losses), 

the output force may be much larger than the input force, but the output displacement is 

much smaller than the input displacement. Like mechanisms, structures may also consist 

of rigid links connected at joints, but relative rigid-body motion is not allowed between 

the links. 

 A compliant mechanism also transfers motion, force or energy but unlike rigid 

body mechanisms complaint mechanisms gain at least some of their mobility from the 

deflection of flexible members rather than from movable joints only. 

 Compliant mechanisms can be considered for use in a particular application for a 

variety of reasons. The advantages of compliant mechanisms can be considered in two 
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categories: cost reduction (part-count reduction, reduced assembly time, and simplified 

manufacturing processes) and increased performance (increased precision, increased 

reliability, reduced wear reduced weight, and reduced maintenance). An advantage of 

compliant mechanisms is the potential for the dramatic reduction in the number of parts 

required to accomplish a specified task. Some mechanisms can be manufactured from an 

injection moldable material and be constructed of one piece. Compliant mechanisms also 

have fewer movable joints, such as pin (turning) and sliding joints.  This results in 

reduced wear and need or lubrication. These properties make them easy to use in harsh 

conditions and places which are not easily accessible. Reducing the number of joints can 

also increase the mechanism precision, because backlash can be reduced and eliminated.  

 Because compliant mechanisms rely on the deflection of flexible members, 

energy is stored in the form of strain energy in the flexible members. This stored energy 

is similar to the strain energy in a deflected spring, and the effects of springs may be 

integrated into a complaint mechanism’s design. In this manner, energy can easily be 

stored or transformed, to be released at a later time or in a different manner. It is possible 

to realize a significant reduction in weight by using compliant mechanisms rather than 

their rigid-body counterparts. This may be a significant factor in aerospace and other 

applications. Complaint mechanisms have also benefited companies by reducing the 

weight and shipping costs of consumer products. 

5.4.1 Optimal Design of Compliant Mechanisms 

As explained in the last section, topology optimization is one of the systematic methods 

for synthesizing compliant mechanisms with distributed compliance [117]. This method 

operates on a fixed finite element mesh of either continuum or discrete elements to 
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optimally distribute material in the designable region and thus defining a topology. In 

other words, each element is associated with a design variable that defines the element 

size or its contribution to the entire topology. The converged optimization result is 

supposed to drive the value of all the design variables either close to the lower and upper 

limits thus defining a definite topology. These homogenization-based methods were 

introduced by Bendsoe and Kikuchi [18] for designing topologies with maximum 

stiffness having a finite volume of material. This method was adapted by Ananthasuresh 

[117], Frecker et al. [20], Sigmund [118], Saxena [21] and others for generating 

topologies which have maximum displacement at a desired point. Displacement 

Amplifying Compliant Mechanisms (DaCMs) and compliant grippers have been 

designed using this approach. The objective function that needs to be minimized for 

designing compliant mechanisms from topology optimization is usually based on a trade-

off between flexibility at a particular point to achieve deformation and stiffness to 

support the external load. This can be effectively captured by the following formulation 

Minimize  SEMSE /          (5.17) 

where ∫ Ω= dsMSE d

T ε           (5.18) 

and ∫ Ω= dsSE
T ε

2

1
         (5.19) 

The symbols used above are explained next. Referring to Figure 5. 10, SE is the strain 

energy, Ω  is the elastic continuum under the applied load F in ; MSE is the mutual strain 

energy due to applied and unit dummy loads, F in and Fd ; ε and s are the strain and the 

stress fields due to the load inF , applied at point P1 and εd is the strain field due to the unit 
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dummy load Fd applied at point 2P . It should be noted that MSE is numerically equal to 

the displacement of point P2 in the direction of Fd due to the applied load, Fin . Saxena 

and Ananthasuresh [21] proposed an optimality property that emerges from this objective 

function and any general objective function of the type )()( 21 SEfMSEf +  and 

)(/)( 21 SEfMSEf . The mutual strain energy (MSE) of each element signifies the 

contribution of that element towards the displacement of the desired output point, for a 

force applied at the input point. At the same time the strain energy (SE) of each element 

signifies the contribution of that element towards the stiffness at the input side. These two 

energy measures are conflicting as one demands stiffness and the other flexibility.  

 

Figure 5. 10 Design domain and problem specification for a compliant mechanism with input at P1 

and output at P2 

1P

2P

inin uandF

outd uandF

Ω
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The ground structure on which the optimization is performed can be made of frame 

elements or continuum finite elements. The continuum finite elements in 2D usually 

yields undesirable checker board patterns [19] and hinged regions unless special 

measures are taken. Furthermore, image processing is necessary to get the final topology 

that can be fabricated. The discrete ground structure based topology optimization method 

yields topologies with distributed compliance but has limited design space because of the 

fixed orientation of the beams in the ground structure.  

 In this dissertation, we will focus on the discrete topology optimization method 

for the design of compliant mechanisms. This method operates on a fixed mesh of finite 

elements and defines a design variable, which is associated with each element in the 

mesh. The optimization algorithm determines the value of the design variables. The 

values of the design variables define the optimal topology of the mechanism. The design 

obtained from topology optimization is specific to the design domain, loading, and 

boundary conditions. The design variables are driven towards the optimal topology by the 

objective function and the constraints, which are specific to the problem. 

 For a discretized finite element model of the continuum, the following equations 

can substitute Eqs. (5.18-5.19): 

KUVMSE
T=          (5.20) 

and 

KUUSE
T5.0=          (5.21) 

where 

inFKU =            (5.22) 

and 
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dFKV =           (5.23) 

Here U and V represent the displacements for the actual load inF  applied at the input 

degree of freedom and unit dummy load dF  applied at the output degree of freedom. 

Note that by definition of our dummy unit load dF  at the output point and the 

corresponding displacement V at the output point, Eq. (5.17), which is given below, can 

be rewritten as in Eq. (5.24) after neglecting the constant factor of 0.5 in the expression 

for Strain Energy in Eq. (5.21). 

Minimize  SEMSE /          (5.17) 

Minimize  inout uu /          (5.24) 

where outu  and inu  are the displacements at the output and the input nodes respectively 

for the actual input load inF . This objective function can be used in order to design 

mechanisms which have inputs and outputs along specific directions depending on the 

particular application. In the next section this formulation will be used for designing a 

compliant gripper mechanism that can be used for biological application. 

5.4.2 Design of Complaint Gripper Mechanism for Biological Application 

A biological cell is a complex machine that constitutes the basic building block of all 

organisms. It is self-contained with provisions for input and output between itself and its 

environment. Conventionally, microscopes have been used to study a cells size, shape, 

morphology and bio-chemical expressions [119]. Although much has been learnt about 

cells in this manner, it is not completely understood what the cells actually sense: is it 

stress, strain, strain energy or something else [120]. These mechanical tests increase our 
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general understanding of cells and how they operate when they are under the influence of 

externalities. Therefore there is a need for mechanical testing of cells which requires 

mechanical manipulation at the single cell level as well as the organelle.  

 Of all the techniques available now for grasping and manipulating single cells, 

aspiration using pipettes is the most widely used [121]. It involves using fine hollow 

needles and applying a negative pressure to partially suck the cell into the hollow tube or 

hold it in place if the cell is much bigger than the exit diameter of the pipette and the cell 

membrane is sufficiently stiff. Even though it is simple to hold the cell and apply a 

mechanical load, the implications are not known. Other researchers have used magnetic 

or dielectric particles that get attached to the cells and then magnetic, electric or optical 

fields are varied to hold, move and manipulate cells [122-125]. All these methods 

described are intrusive. Atomic Force Microscope (AFM) and other probes are also used 

to test cells mechanically but only cell membranes can be studied with these techniques 

[126]. Another method that has fewer disadvantages than the above mentioned ones is 

using flow channels of appropriate shapes to squeeze the cells.  

 None of the methods explained thus far have the versatility and manipulation 

capability that mechanical grasping fingers offer [127]. Since micro and meso fabrication 

technologies and micro-actuation are fairly developed today it is worth considering micro 

and meso-grippers in order to manipulate cells and biological entities. Furthermore, with 

grippers it is possible not only to just grasp the cell but also to manipulate it to make it 

undergo gross motions such as rigid-body translation and rotation and deformations, both 

elastic and plastic.  
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 Although it is possible to design miniature grippers with joints and assemble the 

parts together, it is more economical to design a gripper through the compliant 

mechanism route since the absence of joints alleviates the gripper from friction and wear. 

Another advantage of designing miniature grippers using compliant mechanisms is that 

with compliant mechanisms it is possible to measure forces with its visually captured 

deformation data [128].  

 For the design of the miniature gripper mechanism we want to minimize the 

number of actuation points so that controlling the gripper becomes easy. Hence only one 

input is considered in the following example. Each of the elements of the groundtruss is 

assumed to behave as a frame element and we assume only small deformations so that 

linear Finite Element Analysis is valid. The initial design space and the groundtruss 

considered for this design are shown in Figure 5. 11.  
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Figure 5. 11 Full Groundtruss with input and desired output 

 The overall dimension of the design space is a 50 mm X 50 mm square. There are 

139 nodes and 378 elements in the initial groundtruss as shown in Figure 5. 11. The input 

force is applied at Node no. 73 in the direction shown in the figure and it is expected that 

the gripper nodes located at Node nos. 52 and 80 move towards each other so that an 

object can be gripped. Also Nodes 9, 26, 122 and 139 and fixed—suppressing all the 

degrees of freedom at these nodes. For this design example we will assume that the 

groundtruss consists of 2D frame elements, with three degrees of freedom per node. 

These three degrees of freedom are the directions of axial displacement, the off-axis 

perpendicular displacement and the end rotation. All of the elements have the same out-

of-plane thickness of 4.0 mm. The widths of each frame element are allowed to be 
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adjusted by the optimization algorithm. Hence, the widths of the elements are the design 

variables.  We decided on a cut-off length of 0.5 mm for the widths based on our 

manufacturing capabilities available at this time. Hence all the elements that have widths 

lower than 0.5 mm will be assumed to be not present in the final topology determined by 

the optimization algorithm. All elements with widths larger than 0.5 mm will stay in the 

final topological solution. The Young’s Modulus of material used in this analysis is 9.65 

GPa corresponding to Accura Bluestone Plastic which is widely used in 

Stereolithography applications. 

 

Figure 5. 12 Reduced Groundtruss that is considered for Topology Optimization 

It is clear from Figure 5. 11 that there is a plane of symmetry for this design analysis 

problem and after considering the symmetry plane the groundtruss from Figure 5. 11 can 

be reduced to the one shown in Figure 5. 12. 
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 The groundtruss in  Figure 5. 12 consists of 73 nodes and 192 frame elements. 

Because of the symmetry boundary conditions the degrees of freedom corresponding to 

the vertical motion at Nodes 67, 68, 69, 70, 71, 72 and 73 are suppressed.  

5.4.3 Deterministic and Reliability-based Topology Optimization Design Results 

The analysis was conducted in two stages. In the first stage the deterministic topology 

optimization problem was solved and in the second stage the Reliability-based Topology 

Optimization problem was solved. The problem formulations used for both these stages 

and the solutions obtained are given below: 

Deterministic Topology Optimization Problem Formulation: 

Minimize:     
KUU

KUV

SE

MSE
T

T

5.0
=        (5.25) 

Subject to:  ∑
=

≤−
N

i

ii VLwidt
1

*
0                  (5.26) 

   
410

4 ≤≤−
iwid                   (5.27) 

  KU = F                      (5.28) 

          dFKV =         (5.29) 

where t denotes the thickness of all frame elements used in this structure and V* denotes 

the amount of material that can be used to design the final structure. The input force F 

applied at the designated point is equal to 20 Newtons. The solution obtained from the 

deterministic topology optimization is shown in Figure 5. 13, after taking off all elements 

for which the widths were less than 0.5 mm in the final solution. 
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Figure 5. 13 Reduced groundtruss solution for gripper mechanism 

 In this solution the width of the resulting final solutions is shown as the darkest if the 

frame elements have converged to the upper bound, i.e., 4 mm. If the frame elements 

converged to a value between 4 mm and 3 mm, they are represented as thinner and lesser 

dark members. The members that converged to values between 3 mm and 2 mm are 

represented with lighter color in the figure. Finally, all elements whose widths are 

between 2 mm and 0.5 mm are shown with the thinnest thickness and the faintest color in 

Figure 5. 13. All the members with width less than 0.5 mm are removed from the final 

design, thus modifying the topology of the structural system. The wireframe structure 

showing this solution is also shown in Figure 5. 14 which shows the new Node numbers 

and element numbers for the obtained solution. The final solution has 56 nodes and 88 

frame elements after implementing the cut-off length post-processing step. The resulting 

solution was analyzed in ABAQUS with the same input conditions in order to validate 

that the motion of the mechanism is indeed in the specified direction.  

Input



 

203 

 

 

Figure 5. 14 Wireframe representation of the deterministic solution 

The undeformed and deformed plots from ABAQUS are shown in Figure 5. 15. As 

expected, the nodes on the symmetry line are still on that line after deformation and the 

total displacement magnitude of Node 39 is 2.21 X 10
-2

 mm for a 20 N force applied at 

Node 56. In particular, the X-component of displacement at Node 39 is 1.0944 X 10
-2

 

mm and the Y-component of displacement at Node 39 is 1.9301 X 10
-2

 mm. This analysis 

was repeated while considering geometric nonlinearity in ABAQUS and the X-

component of displacement was found to be 1.0985 X 10
-2

 mm and the Y-component of 

displacement was found to be 1.92 X 10
-2

 mm. Since these values are very similar, it can 

be concluded that linear FEM analysis is a good engineering assumption in this case. 
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Figure 5. 15 Undeformed and deformed plot with displacement contours from ABAQUS using linear 

FEM 

Also, the contours for the axial forces along the frame axis are plotted in Figure 5. 16. 

Note that there are five members which have high stress concentrations and are plotted in 

red in the figure. Four of these five members have an axial force value of 19.99 Newtons. 

 

Figure 5. 16 Contours for the axial forces on deformed plot of gripper mechanism 
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 Next, we will study the mechanism that resulted in the Reliability-based Topology 

Optimization procedure where variability in the input force was considered as the only 

source of potential uncertainty.  

Reliability-based Topology Optimization Problem Formulation: 

Minimize:     
KUU

KUV

SE

MSE
T

T

5.0
=        (5.30)  

Subject to:  ∑
=

≤−
NELEM

i

ii VLwidt
1

*
0                    (5.31) 

         01.0]0),([ ≤<xbgP jj          (5.32) 

   
410

4 ≤≤−
iwid                     (5.33) 

   KU = F                        (5.34) 

          dFKV =           (5.35) 

The limit state function in this case is expressed as buckling failure criteria where 

the structure will be marked as failed if the stress due to compression in any truss 

member exceeds the Euler buckling stress. Euler buckling stress for members with cross-

sectional areas A can be expressed as: 

24
i

L

i
AE

icr
s

π
−=

           (5.36) 

The limit state function can then be expressed as  
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i
P

icr
s

i
Pg −=)(

           (5.37) 

where Pi represents the axial force in each truss member. The axial forces are calculated 

using the FEA during every iteration of the optimization algorithm. The limit state 

function is only considered for the members in compression since buckling is a 

compression stress phenomenon. The limit state function in Eq. (5.37) gives a negative 

value in case any of the frame elements in the structure buckles. Note that the idea behind 

including a buckling constraint as a limit state function is just to illustrate the efficacy of 

the method when we include a stress constraint as a limit state function. For the reliability 

estimation case, a force, with a mean value of 3000 Newtons was assumed to act on the 

input point. The coefficient of variation was assumed to be 0.4. Recall that as was 

explained earlier, local stress constraints in Deterministic Topology Optimization (DTO) 

result in disjoint topology optimization problems, which are still a challenge to solve. 

 The gripper mechanism that was obtained as a result of solving the Reliability-

based Topology Optimization is represented in Figure 5. 17. The darkest and thickest 

frame elements in this figure have a width of 4 mm whereas the thinnest and lightest have 

widths between 2 mm and 0.5 mm. The intermediate elements come from the ranges of 4 

mm – 3 mm and 3 mm – 2 mm for intermediate darkness and thickness of the 

constituting elements. 



 

207 

 

 

Figure 5. 17 Reduced groundtruss solution for gripper mechanism for RBTO case 

 The wireframe model of the obtained solution from Figure 5. 17 is shown in 

Figure 5. 18 where it can be seen that this structure consists of 54 nodes and 88 frame 

elements in contrast to the DTO solution which had 56 nodes and 88 frame elements. 

Figure 5. 19 shows the displacement contours on the superimposed un-deformed and 

deformed plots of this mechanism. Note that the 38
th

 Node, which is the output node in 

this case, has a X-displacement of 4.33 X 10
-3

 and a Y-displacement of 2.45 X 10
-2

. Note 

the increase in displacement at the output node in this case from the DTO case where the 

X-displacement and Y-displacement were 1.0944 X 10
-2

 and 1.93 X 10
-2

 respectively. 

Since we are only concerned with the motion along the positive Y-axis, the RBTO 

solution shows better results. We also confirmed that the results obtained using the 

RBTO solution are close to the linear FEM solutions where geometric nonlinearity is 

considered. 

Input
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Figure 5. 18 Wireframe solution obtained from RBTO 

 

 

Figure 5. 19 Undeformed and deformed plot with displacement contours from ABAQUS using linear 

FEM for RBTO 
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Figure 5. 20 Contours for the axial forces on deformed plot of gripper mechanism found using RBTO 

 Figure 5. 20 shows the axial forces on the frame elements. Note that there are 

only four elements indicated by red color and high stress concentration areas in contrast 

to five elements with high stress concentrations in the DTO case. Also, the maximum 

axial force that is present in any element in the RBTO solution is 19.33 Newtons in 

contrast to 19.99 Newtons in the DTO case. Even though the decrease in maximum axial 

force is not significant, it can be concluded that RBTO solution gives a better 

arrangement of material through the topology optimization procedure so that stresses are 

uniformly distributed though-out the structure.  

 The reliability levels of these two structures were estimated using the Euler 

buckling criteria limit state function by finding the response of the structures with 

10,000,000 samples of MCS. The Pf   value for the DTO mechanism was found to be 0.13 

and the Pf  value for the RBTO solution was 0.0089. SSL-2 algorithm was also used with 

10 labeled points and 400 unlabeled points in both cases, which resulted in close results 
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to the ones obtained by using 10,000,000 samples of MCS. Hence, we can draw two 

conclusions from the reliability estimation process. First, RBTO process results in a 

structure, which has a lower probability of failure. Furthermore, for this example we also 

saw that the RBTO mechanism has a higher mechanical advantage. Secondly, the SSL-2 

algorithm gives results that are comparable to that obtained by using MCS. This validates 

our hypothesis to the Secondary Research Question 2 that the proposed algorithm can be 

included in the conceptual design process of complex reliable engineering systems.  

5.5 Summary 

In this Chapter we validated our hypotheses that we proposed for the research questions 

identified in Chapter 1. The numerical examples in this chapter validate that SSL-1 and 

SSL-2 can be used for both linear as well as nonlinear problems. Furthermore, they are 

immune to disjoint failure domain problems, because of their underlying classification 

based architecture. The efficacy of the proposed algorithms for the linear, non-linear and 

the disjoint problems validates our hypothesis that these algorithms can be used with 

reliability estimation problems while ensuring enhanced accuracy when the number of 

available labeled data is constant. Then, we showed two different examples, the ten-bar 

truss problem and the gripper mechanism design problems in order to prove the efficacy 

of the algorithms in reliability estimation component of engineering applications.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

In this chapter we conclude this dissertation while summarizing the main points in this 

dissertation. All the contributions in this dissertation will be summarized in Section 6.1 

and the limitations will be discussed in Section 6.2. In section 6.3, we suggest possible 

future work, which will remove the limitations and open many more doors for research in 

the future. 

6.1 Contributions 

An extended summary of the main points presented in this dissertation is given in Section 

6.1.1 followed by summary of major contributions in Section 6.1.2. 

6.1.1 Extended Summary 

The unifying theme in this dissertation is the goal of improving the accuracy of the 

reliability estimation process while requiring less number of experiments or simulations 

(Experiments/simulations are required to obtain labeled data). In order to investigate the 

reduction in computational requirement of the reliability estimation process we posed the 

following Primary Research Question in Chapter 1.  

 

 

 

Primary Research Question: How can we design reliable engineering systems 

efficiently while minimizing the computational/experimental cost? 



 

212 

 

The reliability estimation process is important because it enables the designer as well as 

the management to estimate the current safety of a system and gives them a parameter 

that justifies the added money and time spent on overdesigning a system. In contrast to 

the traditional Factor of Safety based methods where the designer doesn’t know the 

reliability level of a structure, Reliability-based Design Optimization (RBDO) methods 

over-design a system intelligently by distributing material where it is most required—the 

high stress concentration regions in a design.  

 Furthermore, once the optimized design is obtained from the RBDO procedures, it 

is important to verify that the final design has the required safety level. This is 

traditionally done with a sampling based method such as Monte-Carlo Sampling, where a 

large number of random data (order of 10
5
 or more data samples) is sampled and the 

response of the system is found for those random samples using an analysis tool such as 

FEM. The responses are then evaluated based on certain failure criteria. By counting the 

total number of times the system has failed, the Probability of Failure (Pf) of the structure 

can be estimated. The Probability of Failure (Pf) of a System is typically taken as a 

parameter that quantifies the safety level of a system.  

 Typically, a surrogate model can be used in order to approximate the behavior of 

the analysis tools such as FEM, which will map the uncertain design variables with the 

corresponding responses from FEM models. Once the model is trained the responses 

from any new samples can be found easily with the surrogate model. But as explained in 

Chapter 1, as the values of the uncertain design variables give responses which are closer 

to the failure region, many structures show a snap-through behavior which will lead to 

wrong estimations by almost all surrogate models. This snap through behavior is also 
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common with bistable compliant mechanisms where there is a discontinuity in the 

displacement and stresses of the structure. Furthermore, under particular external 

influences the structure can come under the influence of various material and geometrical 

nonlinearities where the behavior of a typical response such as displacement will have 

different behavior than when it was not influenced by non-linearity.  

 Ideally, we would want a surrogate modeling technique, which can deal with 

linear zones, non-linear zones and discontinuous zones. However, there can be large 

computational costs for training a complex surrogate model which can deal with all these 

requirements. If more training data is required that is close to the failure region, more test 

prototypes have to be tested until they incur failure, which increases the overall cost of 

product development. We described the cost of acquiring additional labeled data as the 

additional experimental/prototype testing cost. Hence, we want a surrogate modeling 

technique that can be trained with less data and still produce accurate estimates close to 

the failure region. This led us to pose the following Secondary Research Question 1: 

 

Given these constraints, a classification based surrogate modeling technique was 

hypothesized to serve our purpose well since classification based methods only estimate 

the class label, and the nonlinearity of the response or the discontinuity of the responses 

doesn’t affect the process of estimating the labels. PNN was chosen as the classification 

process of choice since it assigns labels probabilistically before using the Bayes Decision 

Secondary Research Question 1: How can we accurately predict the quintessential 

responses obtained from engineering analysis for reliability estimation without 

requiring additional experimental cost? 
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rule to assign class labels. Probabilistic assignment of class labels also allows integration 

of PNN with a Semi-Supervised Learning (SSL) based architecture, where unlabeled data 

is added to the already available pool of labeled data so that a more accurate classifier can 

be obtained for a given number of labeled data. Note that SSL is applicable and more 

efficient for reliability estimation process since obtaining labeled data is expensive but a 

large amount of unlabeled data can be obtained relatively inexpensively in reliability 

estimation processes since the PDF functions for the uncertain design variables is 

assumed to be known in most cases. We proposed two SSL algorithms SSL-1 and SSL-2 

where SSL-1 uses both labeled and unlabeled data in order to estimate the parameters of 

Gaussian PDFs that are assumed to have ‘spherical’ covariances. On the other hand SSL-

2 relaxes this assumption of ‘spherical’ covariances and assumes ‘full’ covariances which 

gives the algorithm added flexibility and more accuracy than SSL-1. These two 

algorithms were validated and their efficacy was validated for continuous as well as 

discontinuous failure domain problems in Chapter 5. 

 Once the reliability estimation procedures were validated, we wanted to show that 

these methods could be integrated in the design process so that reliable complex systems 

could be designed. This led us to pose the following Secondary Research Question 2.  

 

We demonstrated that the proposed algorithms can be used for reliability estimation of 

the designed 10-bar truss problem and the design of compliant mechanisms under 

uncertainty in Chapter 5. These methods demonstrated that the proposed methods could 

Secondary Research Question 2: How can the proposed reliability estimation 

procedure used for the design of an engineering system? 
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be used in design of complex systems. For our specific purpose, we chose design of 

structures through topology optimization as an example of complex system.  

6.1.2 List of Contributions and Explanation 

Many important challenges have been addressed in this dissertation. The specific 

contributions and their respective explanations are listed below: 

• Estimation of reliability of a system, which is under the influence of 

discontinuous failure domain, through a classification framework: Typically, 

an experienced designer might know what kind of failure modes a system would 

come under. However, an inexperienced designer might have less knowledge 

about the different failure modes that the design might come under. In either case, 

we would recommend usage of a classification based method for reliability 

estimation process since they are robust methods of reliability estimation in case 

of both continuous as well as discontinuous failure domains.  

• Classification using Probabilistic Neural Networks (PNN) for reliability 

estimation within an optimization framework viz. Reliability-based Design 

Optimization (RBDO): Probabilistic Neural Networks are feed-forward Radial 

Basis Function (RBF) based Artificial Neural Networks (ANN). They do not have 

a feedback loop for training unlike their more popular peers—Backpropagation 

Artificial Neural Networks. Hence, they are fast and are more suited for 

integration inside a RBDO framework where a typical complex systems design 

problem would need to estimate the reliability of the system many times during 
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optimization
4
.  The basic PNN was used during the Reliability-based Topology 

Optimization (RBTO) example problems shown in this dissertation. 

• Classification based Reliability Estimation and integration with a Reliability-

based Topology Optimization framework: Until now few researchers have studied 

the impact of including a reliability constraint to topology optimization problems 

[43, 72].  

• Integration of labeled and unlabeled data via an Expectation-Maximization 

(EM)-like Algorithm for SSL-1 Algorithm: The SSL-1 algorithm was adopted 

from the EM algorithm and inspired by the work done by Nigam et. al.[102] in 

the field of web-based Text Classification. This framework allows for the 

automatic variation of the smoothing parameter or 2σ value in PNN, which 

ensures that the resulting PNN has the best parameter for the given set of labeled 

data. This framework relieves the designer of the tedious work of trying out 

various values for smoothing parameter for the underlying data and the 

uncertainty that it produces hence reducing the overall product development time 

requirement.  

• Liberating the ‘spherical’ covariance assumption for Gaussian kernels used 

in PNN and using ‘full’ covariance kernels in PNN for SSL-2 Algorithm: 

Similar to SSL-1, SSL-2 also uses labeled and unlabeled data in order to train a 

better PNN classifier. However, the inherent training mechanisms for SSL-1 and 

SSL-2 are different. SSL-1 assumes that the Gaussian Kernels that are used for 

                                                 
4
 The current reliability level of the system is evaluated once every iteration of the optimization algorithm. 

In all the design problems illustrated in this document, there were a minimum of 50 iterations during 

optimization.  

   



 

217 

 

training are symmetrical, which constrains the corresponding covariances to be 

‘spherical’. Furthermore, all the kernels used in SSL-1 at all the labeled points are 

assumed the same. These constraints are relieved in SSL-2 where the EM 

algorithm is used on the combination of labeled (after ignoring the labels) and the 

unlabeled data for estimating the best set of Gaussian kernels. We allow these 

kernels to assume any shape, which is the same as allowing for ‘full’ covariances. 

Our tests have shown that SSL-2 outperforms all the major classification 

algorithms when less number of labeled data
5
 is available and plenty of unlabeled 

data is available—which is generally the case. 

• Topology Optimization with Stress Constraints: It is well known by 

researchers in the field of topology optimization that stress constraints on 

individual members during topology optimization can lead to the classic ‘disjoint 

topology optimization problem’. This is caused because, in discrete topology 

optimization, when a groundtruss is used as the starting design space 

discretization, the optimization procedure tries to minimize the value of the design 

variables. In cases when cross-sectional areas are used as design variables, as the 

values of the cross-sectional areas are minimized, the stresses increase. Hence, if 

there is an upper bound on the stresses at each member, the cross-sectional areas 

cannot be minimized, which leads to a failure of the optimization procedure. 

  In this dissertation we demonstrated two RBTO examples where an upper 

bound on stress was used as a failure criteria or the limit state function. Hence, we 

proposed the alternate formulation for topology optimization problem with stress 

constraint or the ‘disjoint topology optimization problem’ as a RBTO problem 

                                                 
5
 For the examples given in this dissertation, we validated this statement for 4-50 labeled points.  
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with stress limit state functions. In our formulations, where we are using a 

classification based reliability estimation procedure, even if there is buckling or a 

snap behavior inside the structure, the PNN based RBTO procedure can alleviate 

the disjoint failure domain problems [100].  

 In the example where the design of a compliant gripper was demonstrated, 

it was also noted that the maximum stresses in the compliant mechanism that was 

designed using the probabilistic framework was lower than the compliant 

mechanism that was designed using a deterministic optimization framework. This 

also validates that a probabilistic or reliability based method of structural design 

will lead to less failure over the system’s lifetime. 

In the next section, we will highlight the limitations of current work and in Section 6.3 

we will suggest steps that can help alleviate these limitations. 

6.2 Limitations 

The limitations of the work presented in this dissertation are pointed out below with 

explanation. 

• Types of uncertainty considered: In this dissertation, we considered only 

aleatory uncertainty, where it is assumed that a designer knows the probability 

density functions (PDFs) of the uncertain parameters beforehand.  

• Levels of uncertainty considered: In all the examples considered in this 

dissertation, it was assumed that the designer wants a Probability of Failure (Pf) 

value in the range of 10
-2

-10
-5

. However, in most of the industries a Pf value in 

this range would be considered inadequate. For example, in the aerospace 
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industry, typical values of Pf are less than 10
-9

. But in order to test the Pf value of 

a system which is close to 10
-9

, 10
11

 Monte-Carlo samples should be used in order 

to validate the results. We did not have the computational resources to conduct 

such a validation exercise, which limited our scope to design examples where the 

Pf value required was relatively large. 

• Limitations of PNN: As with every machine learning algorithms, PNNs have 

their limitations also. PNNs are sensitive to the initial training data and perform 

their best if there are equal numbers of labeled data points from each of the 

classes. Estimations tend to be biased towards the class, which happens to have 

the maximum representation in the labeled data set. SSL-1 also suffers from this 

same effect. However, this problem is less prominent with SSL-2.  

 Our tests suggest that PNNs are most accurate in two dimensions when the 

number of training data points used is more than 30, where for a two-class 

problem there are 15 points from each class. For a problem with less than 30 

points we do not recommend using PNN alone. However, as has been shown in 

this dissertation, SSL-2 will outperform almost all classifiers when the number of 

labeled data is less than 50. 

• Limitations of Semi-Supervised Learning: We had mentioned earlier that SSL 

perform well when the smoothness assumption is valid. The smoothness 

assumption states that a point in the neighborhood of a point has been sampled 

from the same PDF that the original point was sampled from. In other words, the 

only information unlabeled data provides, that leads to the improvement in 

classifier performance, is the PDF information. Hence, if the unlabeled data are 
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sampled from a different distribution than what the labeled data was sampled 

from then the classifier performance may suffer. This condition has been noticed 

by many authors recently [129].  

 Providing unlabeled data, that are sampled from the same distribution as 

the labeled data, is not a problem in case of reliability estimation since it is 

assumed that the PDFs for random variables are known. However, when SSL is 

used on data that is collected from the ‘field’, it might be difficult to guess the 

correct PDF assumptions for the labeled data and the unlabeled data. In those 

cases, the SSL-1 as well as SSL-2 classification algorithms may result in poor 

classifier accuracy. 

• Limitations of Expectation Maximization (EM): The Expectation-

Maximization (EM) algorithm has been used in order to estimate the soft-labels of 

the unlabeled data for SSL-1 and for clustering, during Step-1, in case of SSL-2. 

Although it has been proved that EM increases the likelihood function with each 

iteration, it does not guarantee a global maximum. Furthermore, since the 

likelihood function does not have an upper bound there are possibilities of 

divergence. As the number of clusters is increased in case of EM, the required 

number of unlabeled data increases and the required computational cost of 

conducting EM increases because of more required duration for convergence. 

These problems could be expected to occur during SSL-2 but we found that these 

problems are not seen frequently even when the inbuilt MATLAB EM function is 

used.  
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 Since in reliability estimation problems there is not a limitation on the 

number of unlabeled samples that can be availed, it is recommended that if there 

are n clusters being considered (when there are n labeled points), then at least 2n
2
 

number of unlabeled samples be used. 

In the next section, we offer some ways through which these limitations can be 

ameliorated and the current research presented in this dissertation can be improved. We 

will also suggest some areas which could be investigated in the future. 

6.3 Future Work 

Much research has been done in the field of surrogate modeling for uncertainty 

quantification by using function approximation based methods but the research in the 

field of surrogate modeling using classification based methods is still in its infancy. This 

dissertation bridges that gap so that systems that are under the influence of disjoint failure 

domain influences can still be modeled and their uncertainty can be quantified. We 

suggest the following avenues for future research so that the whole knowledge base for 

classification-based surrogate modeling is advanced which will enable the efficient 

design of complex systems. 

• Modeling of epistemic uncertainty: As mentioned in the previous sections, we 

assumed that the PDF information for all the uncertain variables is available to the 

designer. This may not be the case in many cases. Hence, research should be 

conducted in order to model epistemic uncertainty and the methods should be 

developed so that these uncertainties can be quantified and modeled in the cases 

where the systems are under the influence of disjoint failure domains.  
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• Integration of higher reliability levels in the design process: Aerospace 

systems require probabilities of failure that are less than 10
-9

. Logically we can 

guess that in order to say that the system has a probability of failure in the order 

of 10
-9

 we need to find the responses of the system using a FEM/CFD model 10
11

 

times, at the least. This requires a large computational cost that was not available 

to us; as computing gets cheaper, it will be possible to validate those high 

reliability levels. 

• Experimentation with other classification algorithms: We chose to use PNN 

because of its superior prediction power owing to its Artificial Neural Network 

(ANN) architecture. Furthermore, since it is a feed-forward network it doesn’t 

require high training time unlike the Backpropagation ANNs. Another reason to 

choose PNN was that they classify patterns probabilistically before assigning the 

labels using the Bayes decision rule. This fact enables them to be integrated in 

SSL architecture seamlessly.  

 In the case of reliability estimation problems, we can choose the training 

samples and make sure that there are equal numbers of points in either side of the 

classification boundary, but other fields of research do not allow such luxuries. In 

such cases PNN might not give optimum results. By inventing the novel SSL-2 

algorithm we have alleviated this problem and SSL-2 gives superior results when 

compared to most classification algorithms under the cases when only few labeled 

data are available. Nevertheless, our tests show that SSL-2 would be much more 

accurate when it is combined with other generative classifiers, which do not 

suffer from classification bias, when the number of labeled data in each class is 
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not balanced. One of our recommended classification algorithms that can be used 

for SSL-2 would be the Naïve-Bayes Algorithm which is also a generative 

classifier and classifies the points probabilistically before assigning class labels to 

test data. 

• Semi-Supervised Learning: As mentioned earlier, SSL gives superior results 

when the smoothness assumption is obeyed by the labeled and unlabeled data. For 

the aleatory uncertainty cases that we considered in this research, it is possible to 

sample points from the same distribution, which leads to superior classification 

accuracy. In cases where test data from the field are available, it is difficult to 

satisfy the smoothness assumption, which brings the classification accuracy of all 

SSL based algorithms into question. We do not have an answer for this questions 

right now and it will be useful to investigate the performance of SSL when the 

available data can’t be assumed to be sampled from the same distribution. 

However, it might be possible to strategically sample unlabeled data from each of 

the regions corresponding to specific classes so that there are an equal number of 

unlabeled data from each class. Note that in case of reliability estimation it is 

possible to sample points from a region where the samples will definitely 

correspond to safe or failure regions. For example, if the uncertain variables are 

the cross-sectional areas of truss members and we sample unlabeled data from a 

region where all the cross-sectional areas are large, the structure will be in a safe 

region. Moreover, if the unlabeled data is sampled from a region where the cross-

sectional areas are small, or even close to zero, the structure will invariably fail. 
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Hence, it is possible to sample unlabeled data, in case of reliability estimation 

problems, from both the classes.  

• The Expectation-Maximization (EM) Algorithm: The EM algorithm is not 

immune to divergence, which might lead to non-convergence of the SSL-2 

algorithm. This problem is again exacerbated for SSL-2 because more parameters 

of the individual ‘full’ covariance matrices are being estimated by EM. We have 

seen that this problem can be alleviated by using the ‘2n
2
’ rule for choosing the 

number of unlabeled data when n is the number of required clusters. However, 

this remains a rule of thumb and more efficient methods for EM and estimating 

the right number of unlabeled data are required. This will ensure that the SSL-1 

and SSL-2 algorithms converge, every time they are engaged.  

• Active Learning: Since PDFs are available during the reliability estimation 

process, it is possible to choose training samples that are very close to the 

classification boundary by using Active Learning, which will enable training a 

classifier that has higher classification accuracy than classifiers trained with just 

the original training data. Active learning chooses unlabeled data that would 

increase the accuracy of the classifier the most if the labels for those unlabeled 

data were known. The labels for those unlabeled data can be obtained by using the 

original FEM/CFD model and the classifier can be retrained to obtain the new 

classifier with improved accuracy. 

• Consideration of different failure mechanisms: In this research, only stress 

constraints and displacement constraints were assumed as relevant failure criteria. 

Our idea here was to illustrate the general procedure of evaluating the reliability 
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of a system given any number of types of limit state functions. Future work 

should be focused on incorporating different failure phenomenon into the 

reliability-based design methods such as fatigue, creep, crack propagation etc. 

• Non-Linear Finite Element Analysis Methods: In all the design and analysis 

exercises conducted in this dissertation we have assumed a linear behavior, 

because of which we have only used Linear-FEM. In cases when the individual 

truss or beam members come close to buckling, simple linear FEM modeling of 

the members is not accurate and geometrical nonlinearity should be considered. 

More investigation in this area should be conducted. 
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