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SUMMARY  

The ability to reduce flexural vibrations of lightweight structures has been a goal 

for many researchers. A type of transducer-controller system that accomplishes this is a 

piezoelectric patch connected to an electrical impedance, or shunt. The piezoelectric 

patch converts the vibrational strain energy of the structure to which it is bonded into 

electrical energy. This converted electrical energy is then modified by the shunt to 

influence to mechanical response. There are many types of shunt circuits which have 

demonstrated effective control of flexural systems. Of interest in this work is the negative 

capacitance shunt, which has been shown to produce significant reduction in vibration 

over a broad frequency range. A negative capacitance circuit produces a current that is 

180  out of phase from a traditional, passive capacitor. In other words, the voltage of the 

capacitor decreases as charge is added. The negative capacitance shunt consists of a 

resistor and an active negative capacitance element. By adding a resistor and negative 

capacitor to the electrical domain, the shunt acts as a damper and negative spring in the 

mechanical domain.  

The performance of the negative capacitance shunt can be increased through 

proper selection of the shunt’s electrical components. Three aspects of component 

selection are investigated: shunt efficiency, maximum suppression, and stability. First, 

through electrical modeling of the shunt-patch system, the components can be chosen to 

increase the efficiency of the shunt for a given impedance. Second, a method is 

developed that could be utilized to adaptively tune the magnitude of resistance and 

negative capacitance for maximum control at a given frequency. Third, with regard to 
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stability, as the control gain of the circuit is increased, by adjusting the circuit parameters, 

there is a point when the shunt will become unstable.  A method to predict the stability of 

the shunt is developed to aid in suppression prediction.  

The negative capacitance shunt is also combined with a periodic piezoelectric 

patch array to modify the propagating wave behavior of a vibrating structure. A finite 

element method is utilized to create models to predict both the propagation constant, 

which characterizes the reduction in propagating waves, and the velocity frequency 

response of a full system. Analytical predictions are verified with experimental results for 

both a 1- and 2-D periodic array. Results show significant attenuation can be achieved 

with a negative capacitance shunt applied to a piezoelectric patch array. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Motivation 

The ability to reduce vibrations of flexural systems through application of various 

control methods has been a widely studied field. The control of vibration is desirable for 

many reasons including fatigue reduction, acoustic noise mitigation and reduction in 

unwanted structural responses. The focus of this work will be the investigation of 

reduction of broadband low- to mid-frequency flexural vibration of thin plates and beams 

through application of a negative capacitance circuits, or shunts, connected to 

piezoelectric actuators. A shunt is considered to be any electrical circuit that connects the 

two electrodes, or leads, of a piezoelectric element. 

Current types of shunts consist of either passive circuit elements, limited to 

narrow-band control, or active control methods which may be complex. One alternative 

shunt configuration, a negative capacitance shunt, is a particularly simple, adaptive 

solution for vibration attenuation. This shunt bridges the gap between the simplicity of a 

passive circuit solution and the broadband control ability of active methods. The negative 

capacitance shunt is a self-sensing controller, in that a connected piezoelectric patch 

simultaneously acts as both a sensor and actuator. Through the piezoelectric coupling, a 

negative capacitance shunt can be approximated in the mechanical domain as a negative 

stiffness, which shifts the resonance frequencies of a vibrating system to lower 

frequencies. When a resistor is added to the shunt, the damping of the system is also 

increased. While the amount of vibration control is generally proportional to the 
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magnitude of the negative capacitance, the range achievable negative capacitance is 

limited by electrical stability of the operational amplifier (op-amp) utilized for 

implementation of the circuit. The useable magnitudes of negative capacitance are 

therefore limited, reducing the available control gain. Also, depending on the magnitude 

of the resistor added to the shunt, the bandwidth of control can be shifted or reduced. 

1.2 Research Objectives and Approach 

There is a need to increase the control ability of the negative capacitance shunt, in 

terms of control effort and effective frequency range. Two primary investigations are 

performed in an effort to reach this goal. First, the electromechanical behavior of the 

circuit is investigated to determine the correlation between the power dissipated in the 

circuit and the causes of circuit instability. The results of the investigation aid in 

determining the circuit parameters that increase vibration suppression and improve 

efficiency. The analysis is performed on a simple test structures to allow for 

straightforward comparison of vibration suppression and shunt behavior. Specifically, a 

thin aluminum cantilever beam with one set of control patches is used for analysis of 

circuit parameters to mitigate the voltage and current limitations of the op-amp. This 

structure is also used for comparison of negative capacitance selection methods presented 

in the literature. A second cantilever beam with ten high impedance patches with 

nominally identical properties will be used to investigate the effect of patch impedance 

on the stability of the shunt. 

Secondly, negative capacitance shunts are applied to piezoelectric patches 

installed in a periodic array, which consists of a series of equally spaced piezoelectric 

patches. The wave motion, energy localization and frequency response of various test 
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structures are analyzed, both numerically and experimentally, to assess the physical 

effects of the negative capacitance shunt. Two test structures will be utilized to assess the 

performance of the control system. The first consists of a long cantilever beam with a 12 

element periodic array bonded in the center. This is designed to allow for measurement of 

both up- and down-stream response. A thin aluminum panel with 16 piezoelectric patches 

is also used to determine the vibration suppression of a 2D array. 

1.3 Overview of Dissertation 

Chapter 2 presents a literature review of the state of the art of piezoelectric shunt 

control. The chapter also presents four methods to determine the optimal negative 

capacitance shunt parameters, also known as shunt tuning methods. Chapter 3 presents 

the numerical modeling derivation for the vibrating structures that are analyzed in the 

following chapters. The implementation of negative capacitance shunts is outlined in 

Chapter 4 with a presentation of frequency trends of control. In Chapter 5, the electro-

mechanical behavior of the shunt is investigated and a new shunt tuning method is 

presented. Chapter 6 presents the control advantage of applying the negative capacitance 

shunt in conjunction with periodic arrays. Finally, the conclusions and future work are 

discussed in Chapter 7.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

This chapter outlines the fundamentals and background of the research presented 

in this dissertation. The first section presents the basics of piezoelectric materials and 

their properties. This is followed by an overview of piezoelectric control methods. The 

specifics and background of the use of negative capacitance shunts is presented. Four 

methodologies that utilize negative capacitance shunts to determine shunt parameters 

which correspond to maximum suppression of vibration are outlined.   Finally, an 

overview of periodic systems and their effect on wave propagation is then discussed.  

2.2 Piezoelectric Materials 

The basics of piezoelectric theory are presented here as an introduction to the use 

of piezoelectric elements as transducers in control systems. A more thorough introduction 

to piezoelectricity can by be found in [1-3]. When certain materials are subjected to a 

stress field an electric charge is generated on the surfaces: these materials are called 

piezoelectric. The inherent coupling of the mechanical and electrical domains lends 

piezoelectric materials to be commonly used as sensors and actuators. For flexural 

systems, the piezoelectric elements typically are thin plates with electrodes covering the 

top and bottom surfaces. The plates (or patches, in literature) are bonded to the surface of 

a vibrating structure. This configuration allows for large sensing voltages from flexural 

strain or actuation forces from an induced charge from a single set of electrical 

connections without adding significant mass to a system.  
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A representative piezoelectric element is shown in Figure 2.1, which consists of a 

piezoelectric material with electrodes covering two sides. Mechanical and various 

electrical parameters will change the response of the piezoelectric element, in addition to 

the size, shape and direction of the applied force. Similarly, the direction of poling and 

electric field will alter the mechanical response. In Figure 2.1, the poling direction is 

shown as the vector p which, by convention, sets the negative z direction of the 

rectangular coordinates. The electric field is generated between the electrodes in the z 

direction. The constitutive equations of an unbounded piezoelectric element relating 

stress and strain to the displacement and intensity of the electric field are 

 ij ijkl kl kij kc e      (2.1) 

 i ikl kl ik kD e      (2.2) 

where c is the elastic constant, e is the piezoelectric constant and ξ is the dielectric 

constant [2]. These constitutive relations are used to find the electrical or mechanical 

response to induced forces or voltages. Simplification of these relationships can be made 

by the boundary conditions of the configuration of interest. For a typical piezoelectric 

transducer bonded and to the surface of a thin flexural system, the piezoelectric element 

will only be strained in the x and y directions and the electrical field will only vary in the 

z direction.  
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Figure 2.1 - Schematic of a piezoelectric element 

2.3 Control Methods 

The use of piezoelectric transducers for control purposes has been studied for 

quite some time by many research groups [1, 4-7]. A summary article by Mohiemani [3] 

and the dissertation of Niederberger [8] present an overview of the past developments (up 

to 2005) and an excellent summary of the main types of control methods used in 

conjunction with piezoelectric transducers. More thorough discussion of control using 

piezoelectric transducers may be found in the textbook “Piezoelectric Transducers for 

Vibration Control and Damping” [9]. The types of piezoelectric control methods are 

usually separated into passive or active methods. The following two sections highlight 

key works within passive and active methods for reducing vibrations of flexural systems. 

2.3.1 Passive Shunts 

A model of a thin, shunted piezoelectric patch which has been bonded to a 

substrate is shown in Figure 2.2. The system can be driven by an arbitrary force or by 

acoustic loading. An electrical domain model of this configuration can be seen in Figure 

2.3, which includes a strain-induced voltage source Vo, the capacitance of the 

piezoelectric element Cp, and the shunt impedance ZS. By making assumptions for a thin 
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element and uniform voltage over the electrodes, the constitutive equations, Equations 

(2.1) and (2.2), can be simplified into one equation to express the stiffness of the patch as 

a function of shunt impedance [10].  

 

Figure 2.2 - Bonded piezoelectric patch shunted with an arbitrary impedance 

 

Figure 2.3 - Electrical model of a shunted piezoelectric element 



8 

 

The stiffness may be represented through the Young’s modulus, where an approximation 

of the Young’s modulus for the piezoelectric element is expressed as  

 
2
31

( )
(1 )

T
p SSU E

p p T
p S

i C Y
E E

i C k Y









 
 (2.3) 

where 1/ZS = YS is the admittance of the shunt, E
pE  is the short-circuit Young’s modulus 

of the piezoelectric material, and k31 is the piezoelectric coupling constant [10, 11]. The 

capacitance of the patch for constant stress T
pC is related to the capacitance at constant 

strain by 

  2
311S T

p pC C k  . (2.4) 

A significant result from Equation (2.3) is that the shunt has the ability to modify both the 

real and imaginary components of stiffness, and thus may be used to control the dynamic 

behavior of the piezoelectric material. Similarly, it can be seen that the relationship 

between the open circuit (ZS = ∞) stiffness and short circuit (ZS = 0) stiffness is 

  2
311E D

p pE E k  . (2.5) 

Forward [12] was the first to investigate adding a resonant, or resistive-inductive 

(RL), shunt to a piezoelectric control actuator to damp a specific mode of vibration of a 

system. A resonant shunt works as a means of vibration control by nulling the reactive 

impedance of the electrical domain at a specific frequency to increase the damping of the 

system. Hagood and von Flotow [10] extended Forward’s research with the development 

of Equation (2.3) and noting that a resonant shunt introduces another degree of freedom 

to the system. Therefore, the resonant shunt acts as a narrow-band vibration absorber, 
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analogous to a tuned mass absorber in the mechanical domain. Many others have 

investigated the use of an RL shunt to damp a single resonance [13-18] or multiple modes 

of a densely modal system [19, 20]. Most researchers use a synthetic inductor [21] to 

allow for tuning to low frequency modes as physical inductors would be impractically 

large. The synthetic inductors are created using a circuit requiring two operational 

amplifiers which can be tuned to the magnitude of inductance needed. Therefore, even 

the passive shunt techniques are not truly passive because of the active inductors. The 

amount of reduction for a single mode of vibration from a passive shunt can be on the 

order of 10-20 dB.  

The resonant RL shunt only allows for narrowband damping of vibrations, 

therefore other passive shunts were developed to allow for broadband control. Hollkamp 

initially developed a multi-branched resonant shunt that could control multiple modes of 

a cantilever beam [22]. Yet, this configuration is cumbersome to implement because the 

value of each circuit element has to be computed through numerical optimization. 

Therefore, to control many resonances the optimization becomes complicated. Other 

researchers overcame this problem by introducing either current blocking [23] or current 

flowing [24, 25] circuit elements into the resonant branches. These solutions allowed for 

each branch to be tuned individually to a specific mode. Multi-mode passive shunts retain 

the same control effectiveness of a single resonant shunt. There are a few drawbacks to 

multi-mode passive shunts. The complexity of implementation is substantial because of 

the number of synthetic inductors necessary for the current-flowing and current-blocking 

circuits. Yet, the most significant disadvantage of the multi-mode passive shunts is the 

non-adaptive nature of these control mechanisms. If the resonant frequencies of the host 
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structure were to change, the narrow-band control of the tuned shunts would be greatly 

diminished. 

2.3.2 Active/Semi-Active Control Strategies 

To allow for adaptive broad-band control, active control schemes utilizing 

piezoelectric transducers have been developed concurrently with the passive techniques. 

The active control of vibrating structures is an extensive research field and cannot be 

fully reviewed in this dissertation. Therefore, a short overview of active control methods 

using piezoelectric transducers will be presented while focusing on self-sensing 

techniques, although many active control techniques include separate sensors and 

actuators. Commonly, the actuator is a piezo-element and the sensor is an accelerometer 

[26-30] or another piezoelectric element [31-36]. These sort of single-input/single-output 

control pairs have shown good control over a broad frequency range. 

The use of a self-sensing piezoelectric transducer, or sensoriactuator, was 

developed by Dosch [37] by replacing the sensor element of a feedback control loop with 

a capacitor identical to the patch capacitance. This solution estimates the voltage induced 

on the patch to obtain an approximate mechanical strain value of the vibrating structure. 

The strain is used by a digital controller to drive the patch. There are many drawbacks to 

this method, however, because of the assumptions that are necessary and the filters that 

are needed [3]. Another active control implementation of a sensoriactuator is the use of a 

synthetic impedance [38-40]. By tailoring the shunt impedance to an arbitrary impedance  

that cannot be obtained by analog circuits over the frequency range of interest, the control 

can be maximized. A specific yet simple implementation of a synthetic impedance for 

vibration control is the negative impedance converter [21]. Specifically, negative 
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capacitance has been studied widely and has shown both large amplitudes of suppression 

and wide bandwidth of control is a negative capacitance. 

2.3.3 Negative Capacitance Shunt Control 

Many researchers have demonstrated the suppression of resonant frequencies of 

many types of structures using a negative capacitance shunt. Forward was also the first to 

suggest the use of negative capacitance shunts [41]. Most of the past research focuses on 

the negative capacitance as “cancelling”, “compensating” or “neutralizing” the 

capacitance of the piezoelectric material [35, 42-45]. The argument was made that, 

through “cancellation” of the patch capacitance, the resistance in the negative capacitance 

shunt could then dissipate energy over a greater frequency range. Therefore, in most 

experimental work to maximize energy dissipation the negative capacitance magnitude is 

set to be as close as possible to the capacitance of the piezoelectric actuator to which it is 

attached. Because of the stability of the circuit, the negative capacitance cannot exactly 

equal the patch capacitance. In contrast to resonant shunt tuning, the marked advantages 

of a negative capacitance shunt include an increased bandwidth of control and robustness 

to changes in perturbation in the resonances of a structure [46, 47]. 

The limiting factor during implementation of the negative capacitance shunt is the 

stability. There are studies within the literature that have discussed the stability of the 

system in regards to capacitance values of the shunt that will yield stable responses. 

Neubauer [48] and Bisegna [49] represented the stability through the Routh-Hurwitz 

criterion. Bisegna also added a RC branch in parallel with the negative capacitance of the 

shunt to increase the system stability and to theoretically improve damping. Tang and 

Wang presented the stability in terms of positive definiteness of the generalized stiffness 
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matrix [35]. A similar system stiffness stability analysis as Tang and Wang was 

performed by Premont [50]. Collet discussed the stability of a negative capacitance 

control system in terms of the wave propagation on a 1D waveguide, and noted the 

difference between the system stability and circuit stability [51]. Date et al. present a 

thorough electrical analysis of the stability of the realization circuit of a negative 

capacitance [52]. In practice, the stability of the circuit does not correspond to the 

predicted stable magnitude of negative capacitance. The reasons given for the 

discrepancy are varied with many researchers commenting on the practical “difficulties” 

near the system instability [47, 48, 53, 54]. Sluka et al. notes that the circuit analysis of 

Date et al. does not fully predict the stability of the circuit [55]. Bruneau et. al 

hypothesize that the difficulties arise from the thermal changes of the capacitance of the 

patch [56]. Behrens et. al state the capacitance is unattainable due to the vague “physical 

nature” of the piezoelectric patch [47]. Tang and Wang state that the limitation in 

attainable negative capacitance values is the current output of the operation amplifier 

[35].  

In light of the difficulties presented above and the fact the suppression capability 

of the negative capacitance shunt increases exponentially as the negative capacitance 

magnitude becomes closer to the patch capacitance [55, 57], it is necessary to properly 

model the stability limitations of the circuit to accurately predict the attenuation 

capability of the negative capacitance shunt. If physical parameters are the limiting case, 

then measurements will need to be performed and included in the system or circuit 

stability model. Similarly, if the circuit is the limiting factor, then a thorough circuit 
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design presents itself as the best way to increase the suppression using a negative 

capacitance shunt.  

In contrast to the energy dissipation hypothesis, Behrens showed that the negative 

capacitance shunt is inherently a broadband, active feedback control means [58]. 

Similarly, Date, Fukado, Imoto and Kodama recognized the feedback nature of the 

negative capacitance shunt [59-62]. Thus, the amount of control may not correlate to the 

amount of energy dissipated in the shunt circuit. To determine this correlation, the power 

dissipated in the circuit will be compared to the suppression of vibration by the shunt.  

The discussion of the negative capacitance shunt above discussed selection of the 

negative capacitance magnitude, but the choice in the resistance of the shunt can have 

equal effect on the magnitude and bandwidth of suppression. Some studies have omitted 

the use of a resistor in the shunt for dissipation, and relied solely on the structural 

damping [50, 56, 63, 64]. Some studies do not discuss the choice of resistor, or state the 

use of trial and error to find circuit component values for  maximum suppression [42, 45, 

65]. Bisegna optimized the shunt parameters to maximize the decay rate of a cantilever 

beam using an ad-hoc method [43]. Neubauer et al. developed a method to select a 

resistor based on the derivative of an FRF of a SDOF oscillator with respect to frequency 

[48]. Generally stated, the method minimizes the sum of the velocity frequency response 

over a narrow bandwidth surrounding the natural frequency. More complex methods that 

are of interest here are presented in the following section. 

2.4 Negative Capacitance Tuning Theories 

Four shunt selection methodologies, or tuning theories, using negative 

capacitance circuits that are of interest here have been presented in literature. Each shunt 
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tuning theory seeks to optimize a certain performance function to obtain circuit 

impedance values that will obtain maximum control of a structure to which piezoelectric 

patches are bonded. 

2.4.1 Control Optimization 

The ability to select shunt parameters based on feedback control schemes was 

developed by Behrens [58]. The process begins by representing the voltage-current 

relationship in the Fourier domain as 

      Z ZV I Z    (2.6) 

where Z is the shunt impedance and VZ and IZ are the voltage and current across the 

shunt. The voltage across the shunt is related to the variable voltage induced on the patch, 

VP, by 
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where CP is the patch capacitance. Manipulation of Equation (2.6) and (2.7) yields  
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If a structure with a control patch is driven with another piezoelectric patch collocated 

with the control patch then the control patch voltage is 

          P vv in vv ZV G V G V       (2.9) 

where Vin is the driving voltage on the structure and Gvv is the undamped response of the 

structure. The transfer function relating VP to Vin is found by substituting Equation (2.9) 

into (2.8), yeilding 

  
 

 

 

   
ˆ

1

P vv
vv

in vv

V G
G

V G K

 


  
 


 (2.10) 



15 

 

where  
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Using a similar process, it can be shown that the transfer function relating the transverse 

displacement of the structure, W(x,ω), to the input voltage is 
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It can be seen from Equations (2.10)-(2.12) that the use of a shunted piezoelectric 

transducer is a feedback control application. Therefore, selection of the shunt parameters 

can be found through the use of control optimization techniques. 

The process to find the shunt impedance begins with substituting Equation (2.11) 

into (2.10) and rearranging to find the damped response of the structure, 
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The damped response of the structure can be set to its minimum by setting the numerator 

of Equation (2.13) to zero. This is possible by selecting the impedance of the shunt to be 

purely capacitive,  

  
1

Z
i C




   (2.14) 

and setting C to equal CP. Unfortunately, this electrical circuit cannot be created because 

it produces an undamped electrical resonance. To overcome this, a resistor can be place 

in series with the capacitance. The full shunt impedance is expanded to become 
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Substituting Equation (2.15) into the expression for the controller K, Equation 

(2.11) becomes 

  
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1 1
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The capacitance of the shunt circuit must be greater than the patch capacitance in order 

for the controller K to be stable. For selection of shunt parameters, the negative 

capacitance is set to a value slightly higher than the capacitance of the shunt to allow for 

frequency variations in the piezoelectric material capacitance. For the resistance value, 

Behrens employs a minimization approach: a line search algorithm is used to minimize 

the ℋ2 norm of the first five structural modes of vibration [58]. 

2.4.2 Maximum Dissipated Power 

Kim and Jung developed a method based on the maximum dissipated energy 

similar to methods used for resonant shunts [66]. For this method, the electrical 

impedance of the patch and shunt, and structural impedance are represented as an 

equivalent electrical circuit at each resonant frequency. This equivalent circuit model, the 

Van Dyke model, is shown in Figure 2.4, where C0 is the inherent piezoelectric 

capacitance of the patch, and L1, R1, and C1 are the mass, damping, and compliance of the 

structure. To determine these electrical parameters, an impedance analyzer is used to 

measure the conductance and susceptance for the structure at each of the resonant 

frequencies of interest. Thus, a different Van Dyke model must be created for each 

resonance. The total impedance of the system can be then written as 

 2 3
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2 3

Z Z
Z Z

Z Z
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
. (2.17) 
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The impedance Z1 represents the structure with the form 

 1 1 1
1

1
Z i L R

i C



    (2.18) 

and Z2 is equal to the impedance of the patch 

 2
0

1
Z

i C
 . (2.19) 

Lastly, Z3 equals the shunt impedance, Zsh.  

 

Figure 2.4 - Van Dyke's electrical impedance model for a vibrating structure with attached 

piezoelectric patch [66] 

From the measured impedance values, the shunt parameters can be optimized by 

computing the maximum dissipated energy. For the full system, the power dissipated is 

normalized by the input power, 
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This power ratio can be computed for each resonance. The optimal shunt parameters 

would be found for an average of J over a specified frequency bandwidth. For a negative 

capacitance shunt, the capacitance is set to be equal to the negative of the capacitance 

measured by the impedance analyzer. The resistor of the shunt is determined by 

maximizing the power ratio 
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over the frequency range, or number of resonances, from n = 1 to k. 

2.4.3 Wave Tuning 

The focus of the wave tuning method developed by Park and Palumbo is on the 

minimization of the reflected wave at the edge of a piezoelectric patch to suppress the 

vibration field on a beam [11]. The vibration field is separated into a traveling component 

and an evanescent component. The goal is to minimize the reflected wave component 

using a shunt impedance. This minimization leads to an optimal design for the shunt 

impedance. This process is done by analyzing a beam, shown in Figure 2.5, with a 

complex shunt network connected to patches bonded to the beam at the root. Following 

the developments of Park and Palumbo [11] and Cunefare [67] the transverse 

displacement of the beam is expressed as 

 1 2ˆ ˆ ˆ( ) ( )(1 ( )) ( )w x w x H x w H x    (2.22) 

where 
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and H(x) is the Heaviside function. The vibration field is split into two regions; the region 

under the patch, Region 1, and the beam excluding the patches, Region 2. These regions 

are displayed in Figure 2.6, with the complex reflected and incident wave amplitudes, ˆijC

, for the traveling and evanescent waves in each region. The index i is used to indicate in 

which region the wave is located, and the index j indicates the specific wave component 

in the regions. There are four wave components on the beam under the patch, and only 

three adjacent to the patch; the incident and reflected traveling waves and a single 

reflected evanescent wave. There is no incident evanescent wave next to the patch 

because it is assumed that the patches are far enough from the free end of the beam that 

its amplitude is negligible. The wave numbers ik  are given in each region by  
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where Mi and Di are the mass per unit length and bending stiffness of the beam.  

 

Figure 2.5 - Cantilever beam with shunted piezoelectric patches bonded to the beam at the 

root. 
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Figure 2.6 - Vibration field decomposition at patch and adjacent to patch. 

Park and Palumbo [11] defined the dissipation as 
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which may be physically interpreted as the fraction of incident energy that does not 

reflect off the impedance boundary between Region 1 and 2. The term dissipation does 

not encompass the complete effect of the shunt because the shunt does not merely add 

damping. Instead, using a shunt to minimize Eq.(2.26) will reduce the amplitude of the 

reflected wave, thereby minimizing the amplitude of the vibration on the beam outside 

the patch. 

The optimal shunt impedance is found by minimization of the function 
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The maximization of Equation (2.26), the dissipation function, is equivalent to the 

minimization of Equation (2.27). Park and Palumbo found that the greatest dissipation 

required a negative capacitance element for a single shunt configuration in the frequency 

range of interest [11]. Although Park and Palumbo used an RLC shunt architecture, there 
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is no requirement that a shunt needs to contain an inductive element but it was included 

for impedance matching over a wider frequency range. In Park and Palumbo’s 

simulation, the tuned frequency was completely suppressed, but as the shunt impedance 

diverged from optimal the vibration suppression decreased [11]. This frequency 

dependence can be eliminated by the use of a strictly RC circuit. 

2.4.4 Minimum Reactive Input Power 

Physically, Cunefare [67] linked the reduction of reflected wave energy to the 

reduction of reactive input power. A standing wave field on a beam created by a point 

force is reduced when the reflected wave component is suppressed. The standing wave is 

reactive in nature because there is no net average energy flow on the beam in the absence 

of damping when the wave field on the beam is purely standing. This occurs when the 

reflected component is equal to the incident component. Therefore, a reduction of the 

reflected wave, and thus the standing wave, will reduce the reactive power input of the 

point force. In other words, the impedance of the input is controlled through the 

application of a wave tuned shunt. 

This concept can also be investigated by using the wave decomposition notation 

of Park and Palumbo [11] on the beam system of the previous section, Figure 2.6. 

Considering only Region 2, the transverse displacement is 

   2 2 2
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This expression can be reduced to two terms by only considering the travelling wave 

components,  
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The wave field on the beam can also be expressed in terms of a standing wave and a 

propagating wave. The standing and propagating waves can be separated from each other 

through manipulation of Eq. (2.29) which is expressed as 

     2
2 22 21 21 2

ˆ ˆ ˆˆ 2 cos
ik xi iw x C C e e C e k x     (2.30) 

where the first term is the propagating wave component and the second is the standing 

wave. The phase between the 21Ĉ and 22Ĉ wave terms is  . Depending on the phase 

angle between wave terms, the propagating wave can be totally suppressed leaving the 

only the standing wave component. In contrast, if the reflected wave 21Ĉ  is reduced to 

zero then the standing wave component of vibration is eliminated. The total response of 

the beam would only contain the incident travelling wave component. 

Extending the concept of how the standing wave is linked to the reactive input 

power, the total instantaneous power delivered to the beam by a point force is 

     2
22 21 21 2
ˆ ˆ ˆˆ 2 cosFik xi i j t

FW t F C C e e FC e k x e     
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. (2.31) 

This expression does omit the power that generates evanescent waves, which are assumed 

to be small. The first term in the brackets is proportional to the real input power and the 

second term is proportional to the reactive input power. Taking into account the 

discussion of the wave tuning method, specifically the suppression of the standing wave 

component and the minimization of Eq. (2.27), the minimization of 21 22
ˆ ˆC C will achieve 

the equivalent vibration suppression as by suppressing the reactive input power. In 

general, it is evident that the wave tuning method proposed by Park and Palumbo is a 

type of input impedance control. 
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The application of the above does not fully address the vibration throughout the 

entire length of the beam. The derivation only applies to the section of the beam between 

the driving force and the patch location. Therefore, this approach suits the case when the 

input force is located at the tip of the beam, but does not verify that the same result will 

occur when the driving force is at an intermediate point. There may or may not be a 

suppression of vibration on the area of the beam opposite the shunted patch, yet if a 

minimization of the standing wave field causes a global reduction in the vibration 

amplitude the theory would apply to all areas of the beam. Specifically, if the beam is 

highly resonant then the vibration field will be dominated by the standing wave field; 

therefore a suppression of the reactive power would decrease the vibration amplitude 

globally. 

Since both the wave-tuning and power minimization tuning can be shown to 

suppress the reactive standing wave field, then their resulting tunings should be identical. 

2.5 Periodic Structures 

As discussed in Chapter 1, periodic structures are to be utilized to alter the wave 

propagation on a structure, and in turn increase the control performance of the negative 

capacitance shunt. Periodic structures are structures that consist of repeated identical 

mechanical elements.  Some of the periodic structures studied for their wave modification 

include periodic stiffened beams and plates [68, 69],  shape memory allow inserts [70] 

and periodic piezoelectric structures [20, 51, 71]. The work of Brillouin is the basis for 

most of the resent research in periodic structures [72]. Wave propagation studies in this 

work considered the propagation constant μ defined as 

 i     (2.32) 
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where the attenuation constant δ and a phase constant ε characterize the effect as a wave 

travelled through a periodic structure. Periodic structures demonstrate “stop-bands” and 

“pass-bands” which either reduce or allow wave propagation. The “stop-band” 

frequencies correspond to positive attenuation propagation constant. The frequency 

behavior of the propagation constant can be seen in Figure 2.7 where S labels the stop 

bands and P labels the pass bands. To obtain the values for the propagation constants, a 

Bloch theorem analysis is performed on a unit cell of the period structure. From the 

continuity of the unit cell’s boundary condition, the propagation constants can be solved 

for by a wave-number integration of the equations of motion of the unit cell.   

 

Figure 2.7 - Stop “s” and pass “p” bands [73] 

The elements within periodic structures therefore can be modified to increase the 

“stop-band” frequency bandwidth [73] which enhances vibration control over a greater 

frequency range. If the periodic structure is a piezoelectric patch array, typical 

piezoelectric patch control methods can be used. The change in effective material 

properties of the piezoelectric elements can be controlled to tailor the “stop-band” 

bandwidth and magnitude through shunt design. The use of shunts to control periodic 
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arrays can either be designed where a single circuit controls a single patch which mimics 

a SISO control system or where the shunt circuitry couples the piezoelectric patches to 

form a single control system. 

For transverse motion, bladed disks have been a common test structure [74-76] to 

analyze the use of shunts to control periodic structures.  Anges [74] presented a method 

to control vibrations of a bladed-disk assembly by coupling the blades through 

piezoelectric patches to reduce mode localization. His work was extended to increase 

control through more complex circuitry [75-78]. Baz and Thorp et al. introduced the 

concept of active piezoelectric arrays on a linear waveguide [14, 73]. Their work 

demonstrated that by applying a resonant shunt to a vibrating rod with a piezoelectric 

array the stop-bands of the system could be made significantly more broadband and while 

also increasing the magnitude of the attenuation constant within the stop-band. Figure 2.8 

illustrates an example of a resonant shunt altering the attenuation constant of a system. A 

resonant shunt tuned to 1575 Hz creates a high magnitude stop band at 1575 Hz. Most of 

the later work on shunted periodic arrays has focused on resonant shunts to frequency 

tune the bandwidths of attenuation [19, 20, 79-84]. Yet, due to the narrowband nature of 

a resonant shunt, there are stop-band bandwidth limitations. To increase the bandwidth, it 

is possible to apply negative capacitance shunts to periodic arrays. 
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Figure 2.8 - Attenuation constant for a resonant shunt to tuned to 1600 Hz [84] 

There has been limited work performed with negative capacitance shunts attached 

to periodic arrays for suppression of vibration. Bisegna et al. performed a numerical 

analysis of periodic piezoelectric array with negative capacitance shunts that were 

coupled using resistors [85]. They presented an optimization of single mode and multiple 

modes of a finite beam with five patches. The metric of their results was in terms of 

exponential time decay rates, but did not discuss reduction in peak response of resonant 

modes. Similarly, there was no mention of wave propagation effects and the changes in 

stop- and pass-band behavior. Collet et al. performed a wavenumber and power flow 

analysis of a beam with a periodic array shunted with negative capacitance shunts [51]. 

The authors investigated the negative capacitance shunt parameters with respect to wave 

reflection and transmission. Yet, no experimental validation was performed. The work of 

Sheng-Bing et al. investigated the changes to the frequency location of the stop-bands of 

a periodic piezoelectric array versus negative capacitance magnitude [63]. Their results 

show the ability of a negative capacitance shunt to alter the stop-bands to any frequency 

of interest and significantly increase or decrease the stop-bandwidth. The negative 

capacitance shunt they simulated did not include a resistor, which limited the design 



27 

 

space. Just as with the other two investigations of negative capacitance shunts on periodic 

arrays, no experimental assessments of vibration reduction was performed. 

2.6 Summary 

This literature review has presented where the negative capacitance shunt method 

fits within other piezoelectric control methods for flexural systems. Passive shunts utilize 

the piezoelectric coupling to modify stiffness and damping of the piezoelectric material, 

in turn reducing the vibration of the bonded substrate. Active methods use powered 

devices to actively control the motion of the vibrating structure. Negative capacitors have 

been shown to be a simple active control architecture. Four current negative capacitance 

shunt techniques were presented. Finally, a short overview of periodic structures relevant 

to use of negative capacitance as elements of the structure was given. 
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CHAPTER 3 

MODELING 

3.1 Introduction 

Numerical models are utilized to investigate the effects of shunt control on the 

structures of interest in this work. A one- or two-dimensional vibrating system may be 

modeled numerically many ways; two methods of interest here are the method of 

assumed modes and the finite element method. A limitation of the method of assumed 

modes is that it uses the basic variable stiffness approximation of Equation (2.3) to 

compute the stiffness of the piezoelectric element in one dimension, which limits the 

accuracy of the electrical degrees of freedom of the system. Therefore, the method of 

assumed modes is used to analyzer a thin cantilever beam to explore basic shunt behavior 

and the effect of a shunt on the response of a simple system. The finite element method 

allows for a more complete model of the electrical properties of the piezoelectric patches. 

More complex geometries and shunt impedances can also be modeled using the finite 

element method, which would otherwise be cumbersome to implement using an assumed 

mode method. The method of assumed modes for a beam is presented first. The finite 

element method derivation follows, and includes the method to solve for the response of 

a complete structural system and to solve for the wave propagation effects of a periodic 

system. 

3.2 Method of Assumed Modes 

The flexural dynamics of a system such as the system depicted in Figure 2.2 

consisting of a substructure with any number of piezoelectric patches bonded to its 
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surface can be solved by developing a matrix representation of the equations of motion in 

the form  

        M q K q f   (3.1) 

where the mass and stiffness matrices, M and K respectively, are considered a 

combination of the components from the beam and patch individually and q is the vector 

of generalized coordinates and f is a vector of generalized forces. As stated in the 

introduction, the method of assumed modes will be used to analyze a cantilever beam 

which reduces the geometric complexity to a general single dimensional system as shown 

in Figure 3.1. To solve for the transverse displacement, the method of assumed modes 

relates the displacement w(x) to a set of basis functions φ 

          
1

,
N

T
i i

i

w x t x q t q 


   (3.2) 

where the N is the total number of basis functions chosen. Using a Lagrange formulation 

[11], the stiffness matrix is found to be 

    p bK K K     (3.3) 

where 

      , , ,

p

ij p p xx i xx j

L

k D x x x dx    (3.4) 

and 

      , , ,0

bL

ij b b xx i xx jk D x x x dx    (3.5) 

are the individual elements of the stiffness matrices. For all constants, the subscripts “p” 

and “b” denote patch and beam, respectively. The integrals are performed over the length 

of the patch Lp and beam Lb. The bending stiffness of the beam is 
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b b
b

E bh
D   (3.6) 

and of the patches 

 
 

3 32

12

p p b b

p

E b h h h

D

 
 

    (3.7) 

if the patches are placed symmetrically on opposite sides of the beam with the same 

thickness, hp, where E is the elastic modulus and b is the width of both the beam and 

patch. Similarly, the mass matrix is the sum 

    p bM M M     (3.8) 

where the individual components are 

      ,
p

ij p p i jL
m m x x x dx    (3.9) 

and 

      , 0

bL

ij b b i jm m x x x dx    (3.10) 

where the mass density is mb and mp. The advantage of constructing the stiffness and 

mass matrices in this way is the ease in which the stiffness of a patch with an arbitrary 

shunt admittance may be calculated. The patch stiffness for shunt admittance YS is 

    
 

 
S

p S p o
o

E Y
K Y K Y

E Y
      

.

 (3.11) 
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Figure 3.1 - Arbitrary beam with shunted patch pair 

Using the above formulation, the response coefficients of the assumed modes of 

the beam can be solved from 

      
1

q D f


  (3.12) 

where the dynamic stiffness is 

      2D M K   . (3.13) 

The basis functions φi(x) used to compute the individual components of the matrices for 

the cantilever beam are 

   1i
i x x 

.
 (3.14) 

The transverse displacement can therefore be calculated using Equation (3.2). Because of 

the response is harmonic, the velocity or acceleration can be calculated easily.  

To assess the effect of a shunt on the motion of the beam, the velocity response is 

computed for the case when there is infinite shunt impedance representing the open 

circuit case. The open case is considered the uncontrolled response. The uncontrolled 



32 

 

response can therefore be compared to the calculated response when a shunt with 

arbitrary impedance is applied.  

3.3 Finite Element Method 

The following finite element derivation is a generic formulation that will be 

applied to a variety of structures. Likewise, the formulation is robust to geometry or 

forcing. The boundary conditions for specific geometries will be presented with the 

results in later sections or chapters. The finite element derivation of the equations of 

motion for a thin vibrating system with an applied patch and shunt is based on the work 

done by Casadei et al. [19] and Spadoni et al. [20]. The principle of virtual work 

 0tot ext defL L L      (3.15) 

is first applied to an arbitrary piezoelectric structure shown in Figure 3.2. The total work, 

totL , is the difference of the work by external and internal forces and the work done by 

virtual deformation. Rewriting Equation (3.15) in terms of virtual displacement iu  and 

potential   functions and arbitrary space-variables yields 

      , ,
s f q

ij ij j i i i i iV S S
u u D dV u fdS qdS            . (3.16) 

The forcing terms of Equation (3.16) include the mechanical dynamic forces, if , 

and the imposed electric charges, q , which are both defined along the system 

boundaries, fS and qS . The term iu  is the mechanical displacement which is defined 

over the structural domain SV . The piezoelectric constitutive Equations (2.1) and (2.2) 

are needed to obtain the electrical displacement iD  and the stress tensor ij  in terms of 

linear strain kl  and electric potential  . The constitutive relations are substituted into 
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Equation (3.16) to yield the governing equations which are obtained through integration 

by parts,  

  
S S f

ij ijkl kl kij k i i i iV V S
c e dV u u dV u f dS           (3.17) 

and 

  , ,
S q

i ikl kl ik kV S
e dV qdS        . (3.18) 

Also, the strain field can be expressed in terms of the displacement variables with the use 

of the gradient equation 

  , ,
1

2
ij i j j iu u   . (3.19) 

The Kirchhoff kinematic assumptions for thin plate behavior are then applied which state 

  1 ,
x

u zw x y  ,  2 ,
y

u zw x y  , and  3 ,u w x y  (3.20) 

where w is the transverse displacement of the mid-surface of the beam. These conditions 

result in a plane strain state where the only non-zero components of strain are 

11 22 12,   and    . 

 

Figure 3.2 - 2D structure with bonded piezoelectric patches 
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3.3.1 Full System Response 

The solution to the governing equations of a full system can be found by applying 

a Kirchhoff plate finite element discretization. The use of shape functions and nodal 

degrees of freedom gives the vertical displacement and surface potential, 

   ww N d  (3.21) 

and 

  N      (3.22) 

where wN and N are the shape functions. A pair of matrix equations of motion is 

obtained by substituting Equations (3.21) and (3.22) into Equations (3.17) and (3.18) 

yielding 

          uu uu uM d K d K f       (3.23) 

and 

      uK d K q          . (3.24) 

The system mass and stiffness matrices are found using the shape functions and material 

properties; refer to the work of Cook for exact equations [86]. 

To obtain one equation of motion combining both electrical and mechanical 

degrees of freedom, Equations (3.23) and (3.24) are coupled by application of 

piezoelectric assumptions and a shunting matrix. To start, the electric field at any point 

on the surface of a piezoelectric patch is considered constant. Also, the electric field 

potential is assumed to vary linearly through the thickness of a patch. These two 

assumptions simplify the electrical equation of motion to a scalar equation, for each 

patch, 
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  
T

u p eK d K q      . (3.25) 

The shunting matrix is found by recognizing that the electric potential can be 

expressed in terms of the charge when an arbitrary impedance is connected across the 

patch electrodes. Assuming a harmonic response, the electric potential is 

  
0 0P e ei Z q    (3.26) 

where eZ is the shunt impedance. Therefore, combining Equations (3.23) and (3.25) 

produces 

          2
0 0euu uu ZK M S d f     

  
 (3.27) 

which is the single harmonic motion equation where the shunting matrix is 

  
 

1
1

eZ u u
e

S i K i K K
Z

    



 

             
 

. (3.28) 

Through the introduction of capacitance, resistance, and inductance, an electrical shunt 

allows for modification of the stiffness, mass, and damping of the system depending on 

the selection of shunt and patch parameters. This formulation will be used to compute the 

velocity frequency response of a complete vibrating system at each node of the finite 

element model. The driving disturbance can be modeled as a transverse point, line or area 

source, or a moment which approximates the disturbance caused by an electrically driven 

patch actuator. 

3.3.2 Dispersion Analysis 

As stated earlier, the implementation of a periodic array will modify which wave 

frequencies will propagate through a structure. To study this physical behavior, the use of 

a Bloch Theorem analysis is applied to a single repeated periodic cell [72]. The cell’s 
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motion can be found using the above finite element formulas by solving the equation of 

motion 

              2

euu uu Z DK M S d K d f           
 (3.29) 

where  DK is the dynamic stiffness of the element with an applied electrical shunt. 

Because the cell is periodic, the displacement and forcing at the boundaries of the cell 

must be continuous from one cell to the next with respect to the wave number. To 

determine the attenuation of the propagating wave, the wave number must be solved for 

where the real part of the wave number represents attenuation. To begin, the equations of 

motion are rewritten in terms of the wave number, 

  
 

  
, , 0

r r
D x yK d    

 
 (3.30) 

where x  and y are the x and y components of propagation constant. The solution to this 

equation is found by holding the frequency and one wave number component constant 

while solving for the second term, which is equivalent to varying the wave number vector 

along the contour of the first irreducible Brioullin zone [20]. Because of the symmetry of 

the unit cell, the frequency wave number period is square as shown in Figure 3.3. The 

real positive term that enumerates attenuation is called the propagation constant, δ. 

 

Figure 3.3 - Sketch of the first irreducible Brioullin zone 
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3.4 Summary 

Two methods of modeling a vibrating flexural system with shunted piezoelectric 

elements were presented. The method of assumed modes is used only for initial 

investigation of the dynamics of a cantilever beam because of the assumptions made for 

the modulus of the piezoelectric material when a shunt is connected. The finite element 

method is used to create a system of equations for both a full dynamic system and a unit 

cell of a periodic structure. The unit cell is employed to solve for the wave propagation 

effects of a negative capacitance shunt using a Bloch Theorem analysis.  
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CHAPTER 4 

NEGATIVE CAPACITANCE EFFECT, IMPLEMENTATION, AND 

TUNING THEORY COMPARISON 

4.1 Introduction 

 The negative capacitance circuit within both the electrical and mechanical 

domains is difficult to conceptualize.  Therefore the effects of shunts on the piezoelectric 

material properties, with an eye toward negative capacitance, are presented to illustrate 

the frequency behavior. The following section presents the method of experimental 

implementation of a negative capacitance, both how to build a circuit and how to apply it 

in practice. Next, a comparison between two shunt tuning methods is presented along 

with an experimental assessment of experimentally obtainable shunt values. 

4.2 Effect on Piezoelectric Material Properties 

The various passive shunting techniques presented in Section 2.3.1 take advantage 

of the modification of the piezoelectric material properties given by Equation (2.3), 

repeated here 

 
2
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( )
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T
p SSU E

p p T
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i C Y
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i C k Y









 
. (4.1) 

This section outlines the how resistive and negative capacitive circuits modify the 

stiffness and damping. Even though the negative capacitance shunt is an active controller, 

the analysis on the material properties can be performed similar to passive shunts. Given 

typical piezoelectric control patch geometry and material properties, shown in Table 4.1, 

the modulus of the shunted piezoelectric element can be normalized to express the 
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stiffness and loss moduli as non-dimensional quantities. The normalized stiffness ratio is 

defined as 

 E
d pE E   (4.2) 

and the normalized loss factor ratio as 

 l dE E   (4.3) 

where the stiffness modulus Ed and loss modulus El are the real and imaginary parts of 

shunted modulus, SU
pE . The use of the absolute value of Ed in the denominator is 

required so as to retain the sign of the loss modulus if the stiffness becomes negative. 

These definitions are consistent with the works of Hagood and von Flotow [10] and Park 

and Park [65]. These ratios are introduced for ease of plotting, along with their 

correlation to the control-ability of a shunted piezoelectric sensoriactuator. Just as shown 

in Equation (2.5), the relationship between the open circuit and short circuit modulus is 

  2
311E D k    (4.4) 

where superscript E and D denote short and open circuit respectively. Since the coupling 

coefficient is less than one, the open circuit stiffness is larger than short circuit stiffness.  

Table 4.1 - Physical parameters of piezoelectric PZT-5A  

Young’s modulus, shorted E p =63 GPa

Coupling coefficient k 31 =0.31

Capacitance 116 nFT
pC

 

Figure 4.1 presents the modulus ratios as a function of frequency for three values 

of a purely resistive shunt impedance. Inherently, the impedance of a resistor as a shunt is 
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not frequency dependent but the modulus ratios are expressed versus frequency because 

of the nature of the stiffness and damping, Equation (4.1).  

 

Figure 4.1 - Stiffness modulus ratio κ (solid line), and loss modulus ratio η (dashed line) 

versus frequency for three pure resistor shunt values 

To begin the analysis of the effects of the shunt on the material, consider the 5000 Ω 

resistor: the stiffness is equal to the short circuit value for low frequencies, equals the 

open circuit stiffness at high frequencies, and transitions from short circuit to open circuit 

stiffness in the bandwidth between. This frequency-dependent behavior is consistent with 

the behavior of the stiffness modulus ratios for the two other resistor values shown in 

Figure 4.1, but the difference in the effect is at which frequency the transition occurs and 

the bandwidth of the transition which are proportional to frequency. For larger values of 

resistance, the shift from short circuit stiffness to open circuit stiffness occurs at lower 

frequencies and has a smaller bandwidth. Similar behavior is seen in the loss modulus 

ratio for the three values of resistance with increasing frequency and bandwidth. For all 

resistances, the loss modulus ratio peaks within the transition frequencies from short to 

open circuit stiffness. The maximum value of the loss modulus ratio is the same for each 
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resistance, therefore, there is no advantage in increasing or decreasing the shunt resistor 

for more control apart from targeting a specific frequency and bandwidth: the maximum 

loss modulus ratio is 0.05. This value of loss factor 5 times larger than the inherent 

material loss factor of PZT-5A, but is still quite low. 

It can be found that when a capacitor is attached to the piezoelectric element, the 

stiffness modulus ratio is independent of frequency, 

 

 2
311

T
p S

T
p S

C C

C k C





 
. (4.5) 

Similarly, there is a zero loss modulus ratio for all frequencies because there is no 

imaginary term of the shunted stiffness associated with a capacitance shunt. Through 

inspection, the stiffness modulus can vary between the open circuit and short circuit 

conditions, depending on the magnitude of capacitance. Yet, if one allows the 

capacitance to have a negative value, the stiffness modulus ratio can achieve any desired 

value. Figure 4.2 shows how the stiffness modulus ratio changes versus the negative 

capacitance ratio 

 S
T
p

C
NCR

C
  . (4.6) 

The stiffness modulus ratio is equal to the short circuit stiffness for large values of NCR 

and equal to the open circuit stiffness for small values of NCR. Yet, for NCR near unity 

the stiffness modulus ratio exhibits an asymptotic behavior. Approaching the NCR value 

of 1/(1-k31) from small values causes the stiffness to approach positive infinity. Similarly 

approaching from larger values causes the stiffness to reduce, become zero, and then 

approaches negative infinity. The stiffness modulus ratio is equal to zero when the NCR 
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is exactly 1. The piezoelectric element can be approximated as a negative spring when 

the NCR is within the region between short circuit and open circuit capacitance. 

Similarly, the stiffness is greatly reduced for values slightly greater than NCR = 1. 

 

Figure 4.2 - Stiffness modulus ratio κ versus negative capacitance ratio (NCR) 

To allow for introduction of significant loss factor, a resistor can be added to the 

negative capacitance. Two configurations are possible for the shunt configuration: 

parallel or series. The shunt impedance for a parallel circuit is  

  
 

1

1
S

S S

Z
R i C








 (4.7) 

and the series case is 

  
1

S S
S

Z R
i C




  . (4.8) 

 To achieve the largest loss modulus ratio, the capacitance of the patch should be equal to 

the shunt capacitance, or NCR = 1, which minimizes the denominator of Equation (4.3). 

The stiffness and loss modulus ratios for both the parallel and series shunt cases are 

shown in Figure 4.3. For a resistance of 5 kΩ, the parallel shunt shows decreasing loss 

modulus ratio for increasing frequency while the series shunt exhibits increasing loss 

Negative stiffness 
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modulus ratio. The stiffness modulus ratio has the opposite behavior of the loss modulus. 

Therefore if looking at the loss modulus ratio, the parallel shunt would have more control 

effect with increasing frequency and the series shunt would have more control at low 

frequency, with the loss modulus ratio modulus orders of magnitude greater than that 

attainable with a resistor alone.  

 

Figure 4.3 - Stiffness modulus ratio κ (solid line), and loss modulus ratio η (dashed line) 

versus frequency for parallel and series negative capacitance shunts, RS = 5 kΩ, NCR = 1.00 

The analysis above is in agreement with the results of Park and Park [65], but the 

ability to implement a negative capacitance shunt with a capacitance magnitude with the 

magnitude exactly equal to that of the patch capacitance for all frequencies is quite low 

due to the slight variability of patch capacitance versus frequency and exact experimental 

implementation and stability (which will be discussed in a later chapter). To explore this, 

Figure 4.4 and Figure 4.5 show the stiffness and loss modulus ratios for three values of 

shunt resistance when the magnitude of the negative capacitance is only 1% greater than 

the patch capacitance. For each of the resistors, the behavior of the stiffness modulus 

ratio is similar to that observed in Figure 4.3, the difference being the minimum value of 
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stiffness modulus ratio obtainable is 0.1 instead of 0 when the NCR = 1. But, the trends 

of the loss modulus ratio for an NCR = 1.01 are completely different than observed trends 

when the NCR = 1. For three resistor values in series or parallel, the loss modulus 

frequency-dependent behavior mimics a resistor alone (see Figure 4.1). But, the 

magnitude of the peak value of the loss modulus for a shunt with a negative capacitance 

is 30 times that of a just a resistor. It should be noted it is also possible to obtain the same 

frequency behavior of the loss modulus using either the series or parallel configuration, 

only with significantly different resistor values, such as RS = 50 Ω for the series 

configuration and RS = 50 kΩ for the parallel configuration. Therefore, there may be no 

advantage of the parallel or series shunt configuration, assuming that the loss modulus is 

the dominant factor in control. But, if the stiffness modulus contribution is greater, then 

the frequency differences of the shunt configurations will be apparent. 

 

Figure 4.4 - Stiffness modulus ratio κ (solid line), and loss modulus ratio η (dashed line) 

versus frequency for a series negative capacitance shunt, NCR = 1.01 
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Figure 4.5 - Stiffness modulus ratio κ (solid line), and loss modulus ratio η (dashed line) 

versus frequency for a parallel negative capacitance shunt, NCR = 1.01 

The effect of the negative capacitance ratio on the stiffness and loss modulus 

ratios for a given series shunt resistor is shown in Figure 4.6. For high frequencies, the 

stiffness for all negative capacitance ratios equals that of the open circuit stiffness. The 

differences are seen at frequencies lower than 1000 Hz. In light of Figure 4.2, the 

stiffness modulus ratio at low frequencies can be less than one, zero, negative, and 

greater than one depending on the NCR. These cases are shown for NCR = 1.03, 1, 0.97 

and 0.87 respectively. The loss modulus associated with NCR of 1.03 and 0.87 are quite 

similar and exhibit the behavior as shown in the figures above. Because the shunted 

stiffness goes to zero at 0 Hz for NCR = 1, the loss modulus ratio approaches zero as the 

frequency decreases. Yet when the NCR = 0.97, the shunted stiffness transitions from 

negative values to positive, which causes the loss modulus ratio to go to infinity at the 

zero crossing frequency, 120 Hz. Therefore, it is possible to select a resistor/negative 

capacitance combination that will obtain infinite loss factor at any frequency. Also, the 

combination of resistor and negative capacitance for infinite loss factor modulus at a 
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given frequency is non-unique which occurs due to the fact that there is an infinite set of 

impedances that will cause the stiffness modulus Ed to be zero at a given frequency. 

 

Figure 4.6 – a) Stiffness modulus ratio κ (solid line), and b) loss modulus ratio η (dashed 

line) versus frequency for parallel and series negative capacitance shunts, RS = 500 Ω 

The above analysis only investigates the changes of the piezoelectric material. 

The overall system stiffness and loss moduli will include the shunted piezoelectric 

material properties and the substrate properties. This combination of bending stiffness 

and loss moduli will dictate the amount of control possible when implementing a shunt. It 

should also be stressed that to implement a negative impedance, the circuit must be 

inherently active. The implementation of the negative capacitance is discussed in the next 

section. 

Zero crossing point 
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4.3 Experimental Implementation of Negative Capacitance Circuits 

Throughout literature the negative capacitance shunt includes an active negative 

capacitance element and a resistor [45, 58, 65, 67, 87, 88]. The placement of the resistor 

in either series or parallel affects the frequency behavior of the shunt, as discussed in the 

section above. Park discussed the frequency behavior in terms of the stiffness ratio and 

loss factor [87]. When a resistor is placed in parallel with the negative capacitor, Figure 

4.7a, the stiffness ratio decreases with increasing frequency. Inversely, a resistor in series, 

Figure 4.7b, has a low stiffness modulus ratio for low frequencies and increases for 

higher frequencies.  

 

a)        b)  

Figure 4.7 - Negative capacitance shunt schematic; a) Parallel b) Series 

 

The implementation of the negative capacitance element is achieved by creating a 

negative impedance using a negative impedance circuit, Figure 4.8 [21]. The impedance 

of this circuit is  

 3 2

4
in

Z Z
Z

Z
  . (4.9) 

Since a negative capacitance is desired, Z2 or Z3 must contain a capacitor and the ratio of 

the other two impedances dictates the magnitude of negative impedance. Figure 4.9 

shows a “Type 1” circuit where Z2 is chosen to be the only capacitance element. Figure 
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4.10 shows a “Type 2” circuit where Z3 is chosen as the capacitance element. Both 

instances have been shown to obtain desired negative capacitance magnitudes [47, 52, 

59]. By applying the parallel and series configuration to both types of the negative 

capacitance circuit, four different negative capacitance shunt configurations are possible. 

All instances have been used in the literature. Park used the Type 1 circuit, Figure 4.9, 

with both series and parallel resistances [45, 87]. Behrens used the Type 2 circuit, Figure 

4.10, with a series resistance [58]. Wu used a modified Type 2 circuit with a parallel 

resistance [89]. Thus either type of negative impedance circuit can be used successfully 

for control. The series implementation and the “Type 1” circuit will be the focus of this 

work. 

 

 

Figure 4.8 - Schematic of a negative impedance circuit 
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Figure 4.9 - Type 1 negative capacitance circuit 

 

Figure 4.10 - Type 2 negative capacitance circuit 

Necessary additions must be made to the final circuits for implementation to 

achieve the desired shunt impedance because of the dynamics of the op-amp. Both circuit 

types must contain a resistor in parallel with the reference capacitor to allow for feedback 

at DC. Without this resistor, the circuit would be unstable at low frequency. The parallel 

resistor for the “Type 2” circuit prevents the capacitor from acquiring a DC charge by 
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allowing bias current from the op-amp to flow to ground [47]. The full shunt impedance 

may be explored by investigating the “Type 1” circuit, Figure 4.11. This circuit produces 

an input impedance of 

 
 

1
1

2 2 3

4
in

i C R R
Z

R




 
    . (4.10) 

The resistor R2, as stated, is necessary for op-amp stability at DC, but is sufficiently large 

to be considered negligible because for most patch and reference capacitances the real 

component of Zin only appears below 10 Hz which is below the frequencies of interest for 

control. Therefore, Equation (4.10) can be simplified to express the impedance in terms 

of a negative capacitor 
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1 1
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Equation (4.11) can be rearranged to solve for the negative capacitance magnitude 

 4
2

3
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R
C C

R
  . (4.12) 

Also, the resistive element RS of the shunt is placed in series between the patch and the 

negative capacitance creating the full shunt impedance 
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. (4.13) 

A similar analysis can be performed for the Type 2 circuit, shown in Figure 4.12 which 

creates exactly the same impedance as the “Type 1” circuit. 
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Figure 4.11 - Final Type 1 negative capacitance shunt 

 

Figure 4.12 - Final Type 2 negative capacitance shunt 

4.3.1 Physical Realization 

For experimental testing the negative capacitance shunts were created using TI 

OPA445 operational amplifiers and basic circuit components. Preliminary and 
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exploratory circuit tests were performed on a breadboard circuit. As the parameter space 

for the circuit was narrowed a prototype circuit was designed. A prototype schematic for 

a “Type 1” circuit is shown in Figure 4.13 and Figure 4.14 depicts the physically realized 

circuit on a milled copper circuit board. The circuits used for experimentation include the 

necessary components for op-amp protection including supply-side capacitors and diodes. 

The op-amp is powered by a custom built dual DC power supply up to +/­ 40 volts. 

Potentiometers were used for most of the resistors in the shunt implementation to assist in 

tuning of both the negative capacitance and series resistance. Specifically, a 

potentiometer is used for the series resistor, RS, to allow for straightforward selection of 

the real component of impedance when the target negative capacitance is obtained. 

Section 4.3.2 describes how the target magnitude for negative capacitance is reached. A 

potentiometer is used for the resistance divide in Equation (4.12).  The use of a 

potentiometer simplifies Equation (4.12) which becomes a function of only one variable, 

α, and independent to the magnitude of the potentiometer 

   2
(1 )

inC C






   (4.14) 

where α is defined as R3/Rpot and Rpot is the resistance of the potentiometer. To protect 

against infinite op-amp gain, which occurs when α = 1, a small resistor is added in the R4 

branch in the prototype circuit. A simple terminal screw block is employed to allow for 

manageable altering of the magnitude of the reference capacitor. Similarly, the two patch 

leads are attached to the circuit through a terminal block where one must be grounded 

within the circuit. Test pins were added to facilitate probing of the circuit during 

operation.  
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Figure 4.13 - Schematic of a negative capacitance prototype circuit 

 

Figure 4.14 - Photograph of a prototype negative capacitance shunt 
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4.3.2 Experimental Procedure 

Achieving a specific magnitude for the negative capacitance required a specific 

procedure. Due to the nature of the circuit, the negative capacitance circuit is stable for 

negative capacitance magnitudes larger than the patch capacitance. In practice, the 

control gain for the shunt is increased by decreasing the magnitude of the negative 

capacitance impedance from a value greater than the patch capacitance. Yet, as the 

magnitude approaches the patch capacitance the circuit will become unstable. The 

unstable response of the circuit is undesirable. Therefore, to achieve maximum control 

experimentally, the shunt is tuned to as close to the instability point as possible. The 

experimental tuning process begins by selecting a reference capacitor with a magnitude 

on the same order as the patch capacitance. By selecting this magnitude of reference 

capacitor, the tuning potentiometer has the greatest range of tuning possible and the least 

sensitivity to changes in α.  

In practice, the forcing which drives the vibrating system of interest should be on 

to allow the shunt to create a voltage response for which to monitor the stability. The 

output voltage of the op-amp (pin 6 in Figure 4.13) is measured and monitored using a 

Tektronix P2220 voltage probe connected a Tektronix TPS2012B oscilloscope. Initially, 

the potentiometer should be set to large values of α before the op-amp is powered, 

corresponding to very large magnitude negative capacitance, or very small imaginary 

impedance. The circuit is then powered. The potentiometer is then turned to reduce α, 

which increases the voltage output being monitored. If the output of the op-amp jumps 

“rail-to-rail”, that is when the output of the op-amp jumps from positive voltage rail to 

negative voltage rail, then the circuit has gone unstable. The value of α at this condition 
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marks the “instability point” of the circuit. The potentiometer is turned down past the 

instability point until the response returns to the linear range of the circuit. It should be 

noted that there may be a significant change to the potentiometer to return to the stable 

region. Therefore, the potentiometer can be turned again to decrease α to a point just 

above the instability point. Then, by recording the resistance values of R3 and R4 the 

impedance of the circuit can be computed. 

4.4 Comparison of Tuning Methods 

A numerical comparison between two of the shunt tuning theories presented in 

Section 2.4 is made below to both demonstrate the control ability of the negative 

capacitance shunt on a simple system and to describe the effects of altering the shunt 

parameters on the vibration response. Because the analysis presented in Sections 2.4.3 

and 2.4.4 showed that the parameter solution to the wave tuning method and 

minimization of reactive input power should be the same, these two methods are 

compared for a simple cantilever beam. The numerical responses of the parameters 

chosen with these methods are compared to the shunt parameters that can be obtained 

experimentally. Similarly, the global effects of the shunt will be presented. 

4.4.1 Experimental Setup 

To verify the results of the wave tuning and minimization of reactive input power 

tuning theories, a setup consisting of a cantilever beam, a driving mechanism, a tunable 

electrical shunt, and a data collecting system is used. For ease of comparison with the 

Park and Palumbo study, an identical cantilever beam was analyzed, which is based on 

the beam used by Hagood and von Flotow, and used by Cunefare [10, 11, 67, 90]. Figure 

4.15 depicts the beam with two pairs of attached piezoelectric patches. The physical 
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properties of beam and patches are shown in Table 4.2. The patches are bonded to the 

aluminum beam and cover the full width of the beam, 2.55 cm. The location of the 

driving pair is L/3 along the length of the beam. 

 

 

Figure 4.15 - Cantilever beam with shunted patch pair and driving patch pair 

Table 4.2 - Cantilever beam and patch physical properties 

Beam Young's modulus E b = 73 Gpa

Density ρb = 2700 kg/m
3

Width w = 2.55 cm

Piezoelectric Young's modulus, shorted E p = 63 Gpa

Density ρp = 7800 kg/m3

Coupling coefficient k 31= 0.35 

Thickness t = 0.25 mm

Capacitance, total C p = 116 nF  

Two methods of driving the cantilever beam are used. The first involves a 

mechanical shaker that driven by a swept sine over the frequency range of interest. The 

point force location of the mechanical shaker is 14.8 cm from the base of the beam. A 

swept sine voltage applied across the driving patches is the second driving mechanism. 

The data acquisition system recorded tip vibration, average spatial vibration, electrical 

power input, as well as mechanical impedance. Tip vibration was acquired using an 

accelerometer placed at the end of the beam. A Laser Doppler Vibrometer (LDV) was 

used to obtain spatial average vibration measurements. The piezoelectric disturbance 

voltage was obtained by placing a voltage probe across the driving patch terminals, to 

Accelerometer 

Driving patch pair Control patch pair 
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study the phase between the tip response and driving voltage. The driving impedance 

from the shaker was measured using an impedance head and analyzed through post 

processing. 

4.4.2 Results and Analysis 

The wave-tuning and minimum reactive power input methods for shunt selection 

are compared by analyzing the vibration response of the beam and the input power to the 

system. Both the tip vibration velocity as well as the spatial average velocity response are 

compared for the open circuit case, which is considered uncontrolled, to the optimal 

value for shunting parameters. The input power of the system is analyzed by 

consideration of the phase response of the voltage driving the driving patches on the 

beam and the reactive input power from the shaker. The theoretical shunt tuning values 

obtained by the modeling approach given in Section 3.2 are compared to the 

experimentally optimized values. 

The shunt parameter values found through optimization exhibit a dependence on 

frequency. Figure 4.16a and Figure 4.16b show the optimal theoretical resistor and 

negative capacitance values for both tuning theories. In general as the driving frequency 

increases, the optimal resistor value decreases and then levels off at a value close to zero. 

Similarly, the magnitude of the optimal negative capacitance value decrease as the 

frequency increases slightly. There are some deviations between the two theories. These 

inconsistencies are present at frequency ranges that are not at controllable modes, and 

occur because of optimization function instabilities and the non-unique nature of the 

solution. Specifically, Table 4.3 compares the optimal shunt values at the first 5 modes. 
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These values are all similar to each other, except for the capacitance value at the 4
th

 

mode.  

a)   b)  

Figure 4.16 - Optimal shunt values a) Resistance value b) Capacitance value 

 

 

Table 4.3 - Comparison of shunt parameters, Theoretical 

1 2 3 4 5

Frequency (Hz) 34.7 222.8 610.3 1177 1941

Capcitance (nF) -115.5 -113.5 -118 -117.1 -115.6

Resistance (Ω) 405 99 19.6 25.5 24.4

Capcitance (nF) -113.4 -111.9 -117.4 -196 -109.8

Resistance (Ω) 413 100.6 19.5 15.3 25.7
Reactive Power

Mode Number

Wave Tuning

 

The optimal shunt values determined experimentally were limited by the stability 

of the shunt circuit. The negative capacitance can only reach a certain level before a 

circuit instability point is reached, which was determined to be -119.6 nF for this system. 

Therefore, the negative capacitance values solved for by the shunt selection theories were 

unattainable. Yet, significant performance was achieved through the use of the NIC 

circuit. Figure 4.17 shows the tip vibration velocity response of the beam with the shunt 

shorted and the response when the shunt is tuned to the first mode. The first resonance of 

the beam has been reduced by 30 dB for the wave tuning method and 20 dB for the 

minimum reactive input power method. The optimal experimental values for the shunt 

are shown in Table 4.4. These shunt values show similar trends as the theoretical values. 
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The resistance value decreases with increasing frequency, with the negative capacitance 

held at the maximum, as stated earlier. 

 

Table 4.4 - Optimal shunt parameters, Experimental 

1 2 3 4 5

Frequency (Hz) 34.4 197.3 556 1027 1754

Capcitance (nF) -119.6 -119.6 -121.4 -120.1 -119.6

Resistance (Ω) 787 314 155 113 6

Mode Number

Experimental
 

The theoretical responses of the beam for the wave tuning and minimum reactive 

power input theories are compared to verify the correlation between the two. The tip 

velocity response is compared in Figure 4.17, tuned to the first mode. Even with the 

tuning focused on one mode, there is still broadband attenuation at the other modes. The 

experimental tip velocity, Figure 4.18, achieves similar suppression as the theoretical 

implementation, but could not achieve as great a control because of the shunt limitations. 

The first mode is reduced by 22 dB. 

 

Figure 4.17 - Theoretical tip velocity response, shunt tuned to the first mode 
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Figure 4.18 - Experimental tip velocity response, shunt tuned to the first mode 

The spatial average response of the beam is also of interest as this relates to the 

global suppression of vibration. Theoretically, both tuning methods achieve overall 

vibration suppression by reducing the standing wave, when tuned to the second mode, 

across the whole of the beam, which is shown in Figure 4.19. There are some increased 

levels of vibration at the frequencies with minimum vibration, which occurs because the 

beam begins to act as if it is infinite, due to the suppression of the reflected wave. This 

decreases the destructive interference of the incident and reflected wave, which 

inherently increases the vibration response. The spatial average response experimental 

results, Figure 4.20, confirm the reduction of vibration on the beam with the most 

reduction at the first mode. This response coincides with the results of the response of the 

tip, which will allow the tip response to be an adequate measure of the global reduction 

for a cantilever beam. 
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Figure 4.19 - Theoretical spatial average velocity, shunt tuned to the second mode 

 
Figure 4.20 - Experimental spatial average velocity, shunt tuned to the second mode 

A reduction of reactive input power at the point of the shaker input force is 

observed as the shunt is tuned to each mode. This is best illustrated by inspecting the 

sixth mode of the beam because the small amount of system damping present before the 

introduction of the shunt when driven by the shaker. Figure 4.21 illustrates how the 

reactive power input to the beam is reduced as the tuning approaches optimal for the 

specific resonance. 
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Figure 4.21 - Reactive power of the sixth mode for the tunings associated with the Third and 

Sixth mode 

The phase difference between the tip response and the voltage supplied to the 

driving patch are investigated to attain another picture of reactive power input the system. 

The power can be defined as 

  cos sinP F v i    (4.15) 

where the phase angle between the force and velocity is θ. If the beam is assumed to be 

lightly damped, the phase difference between the force and velocity at any point on the 

beam will be the same. Therefore, a decrease in the reactive power correlates to a 

decrease in the phase difference. Figure 4.22 and Figure 4.23 show a reduction in phase 

differenced when tuned to the first mode. Therefore, as the phase difference approaches 

zero, the input power becomes less reactive, which confirms the minimization reactive 

power tuning theory. This reduction in reactive power decreases the standing wave, in 

turn decreasing the vibration magnitude across the whole beam. 
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Figure 4.22 - Theoretical phase difference between tip response and voltage 

 

 

Figure 4.23 - Experimental phase difference between tip response and voltage 

4.5 Summary 

This chapter has presented a basic overview of the behavior of a negative 

capacitance shunt. The negative capacitance shunt is an active, broadband shunt but is 

simple enough for analysis to be performed similar to a passive shunt. When combined 

with a resistor, the negative capacitance shunt allows for large changes in both the 

stiffness and loss modulus ratios versus frequency. Using its frequency dependent 

characteristics, the shunt can be designed to achieve certain control frequency profiles. 
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The physical implementation of a negative capacitance circuit was presented. This 

presentation included a prototype circuit and the method for implementation. 

The wave tuning theory developed by Park and Palumbo [11] has been shown to 

be experimentally and theoretically equivalent to the minimum reactive input power 

theory of Cunefare [67]. The wave tuning theory minimizes the reflected wave which has 

been shown to be equivalent to the minimization of reactive input power. The control 

shunt yields a decrease in tip vibration, spatial average vibration amplitude (a measure of 

global reduction), and minimization of reactive input power. The negative capacitance 

shunt shows broadband control of vibration centered on the tuning frequency. 
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CHAPTER 5 

ELECTRO-MECHANICAL EFFECTS 

5.1 Introduction 

The electro-mechanical effects of a shunt control system are analyzed to 

understand and quantify the link between the electrical domain of the shunt and its effect 

on vibration suppression. First, the power output of a negative capacitance shunt circuit is 

measured to analyze the correlation between vibration suppression and control effect, 

which will be considered the suppression in the velocity reduction of a vibration 

structure, with an interest in increasing the efficiency of the negative capacitance shunt. 

Next, a circuit analysis formulation for an adaptive tuning method is presented. An 

investigation of the circuit limitations and stability is performed. Finally, a summary of 

the electro-mechanical domain results is given.  

5.2 Power Output and Efficiency 

For the negative capacitance circuit to be considered a feasible control 

mechanism, the op-amp power versus some measure of control effort is required so that 

the requirements for the circuit can be designed. Apart from a measurement of circuit 

power, the goal of this section is to describe increases to the efficiency of the shunt, 

which will be defined as the power output of the op-amp with respect to the impedance of 

the shunt. The electrical limitations of the shunt will also be quantified.  

An efficiency discussion of a negative capacitance shunt was made by Václavík 

and Mokrý for a piezoelectric stack actuator to decrease the force transmitted by a single 

degree of freedom piezoelectric oscillator at a single resonance [64]. Yet, they did not 
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investigate how the power flow of the system was altered by changing the shunt 

parameters. This work will discuss the change in efficiency over a large frequency range 

when utilizing the negative capacitance shunt for flexural control. The efficiency of the 

shunt will be defined as the power output of the shunt divided by the power supplied by 

the op-amp, 

 shunt

op amp

S

S




 . (5.1) 

To aid in this task, a piezoelectric patch connected to a negative capacitance shunt 

is electrically modeled using National Instruments Multisim circuit simulation software. 

The results of the numerical model will be compared to experimental measurements. 

Circuit modeling is presented first, followed by the method used to obtain experimental 

data and finally the results and analysis. 

5.2.1 Circuit Modeling 

National Instruments Multisim software was utilized to create a numerical model 

of a piezoelectric patch connected to a negative capacitance shunt, shown in Figure 5.1. 

With respect to the elements labeled in Figure 5.1, the Multisim model includes the 

electrical equivalent model of a piezoelectric patch which consists of a strain-induced 

voltage V1 and a capacitor Cp. The model of the negative capacitance shunt includes all 

necessary components for experimental implementation, as outlined in Section 4.3.1. 

Multisim includes a manufacturer-provided electrical model of the op-amp. In addition to 

the shunt and patch, the impedances of two voltage sensors are included, which are 

necessary to experimentally measure the circuit response. A current probe is implemented 

by means of a voltage probe measuring the voltage across a small resistor RI to determine 

the current flowing through the output terminal of the op-amp. The voltage probe is a 10x 
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voltage attenuation probe used to measure the op-amp voltage, which is the same as used 

in experiments. A virtual oscilloscope is included in the model to measure the temporal 

response of the model. The software also performs AC circuit analyses to obtain 

frequency responses.   

 

Figure 5.1 - Multisim shunt and patch model 

The impedance of the shunt Zs can be characterized by  

 
1

S S
in

Z R
i C
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

 (5.2) 

where Rs is the series resistance and Cin is the magnitude of negative capacitance. 

Generally, the imaginary component of impedance of the shunt is described as a single 

capacitance value for all frequencies. The value of negative capacitance can be found by   

 4

3
ratio r

R
C C

R
   (5.3) 

Current probe 

Voltage probe 

Potentiometer 

Patch model 

Oscilloscope 
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where Cr is the reference capacitor in the inverting branch of the op-amp and Cratio is 

considered the ratio approximation of negative capacitance. To verify that the negative 

impedance converter within the shunt creates a purely negative impedance and constant 

versus frequency to be characterized by a single value, the impedance of the Multisim 

model can be found by dividing the voltage of “node 2” V2 by the current through the 

series resistor Rs, 

 2

s

sim
R

V
Z

I
 , (5.4) 

where Zsim is the simulated impedance. The effective capacitance of the negative 

capacitance  model can be calculated by 

 

1Im sim

sim

Z
C



 
   (5.5) 

where ω is the angular frequency. Figure 5.2 shows three frequency response plots of 

Csim and the value of capacitance using the ratio representation Cratio. The simulated 

response of the circuit closely matches the ratio representation of the negative 

capacitance shunt for all frequencies. The maximum error in capacitance between the two 

is 0.25%, therefore for frequencies from 10 to 5000 Hz the shunt can be accurately 

characterized by a single value of negative capacitance. 



69 

 

 

Figure 5.2 - Negative capacitance versus frequency for model and ratio representation 

5.2.2 Experimental Setup and Procedure 

This section presents the method used to measure the electrical behavior of the 

shunt circuit during control of a cantilever beam. The key electrical measure of interest is 

the power output of the operational amplifier. Figure 5.3 shows a schematic of the 

experimental circuit. To find the output of the op-amp, the voltage at the output, V2, is 

measured using a 10x attenuating voltage probe, and the current is measured by 

determining the voltage drop over a small resistor RI placed at the output pin of the op-

amp, shown in Figure 5.3. The complex power output of the op-amp is computed by 

 2S V I     (5.6) 

where the current is  

 I

I

V
I

R
  (5.7) 

and VI  is the voltage drop across resistor RI 

 1 2IV V V  . (5.8) 

The complex power can be expressed in terms of its real and imaginary components, 
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 S P iQ   (5.9) 

where P is the real power and Q is the reactive power. The apparent power is magnitude 

of the complex power, |S|. 

 

Figure 5.3 - Full shunt circuit schematic with experimental measurement probe locations V1 

and V2 

The experiments were performed on the same cantilever beam used in section 

4.4.1, Figure 4.15, with two pairs of piezoelectric patches bonded to the surface. One pair 

of patches is used to drive the beam with a 5-5000 Hz band-limited random signal. The 

pair of patches bonded near the root of the beam is used as the control pair. It was 

previously shown in Section 4.4.2 that a negative capacitance shunt allows for global 

reduction of vibration, therefore, for simplicity, a single accelerometer placed at the tip is 

used to measure the response of the beam for various shunt conditions. 

5.2.3 Results and Analysis 

The results and analysis are presented in three sections. First, the circuit model is 

verified with experimentally obtained measurements of a negative capacitance shunt. 
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Second, the efficiency of the shunt is explored. Finally, an investigation of the limitations 

of the op-amp utilized for the negative capacitance is presented. 

5.2.3.1 Model Verification 

To verify the Multisim model, the power output of the op-amp was numerically 

simulated for four values of series resistance, Rs in Figure 5.3, and three values of 

negative capacitance, and compared to the measured power output. The circuit 

parameters used for verification in the Multisim model and for the experiments are shown 

in Table 5.1. The simulated power output for four values of series resistance is shown in 

Figure 5.4. The negative capacitance value of the shunt for all four resistors is -114.4 nF. 

At low frequencies, the power for all four cases is similar. But, the power output 

increases significantly for higher frequencies as the series resistance is reduced. An 

interesting result is that the phase of the power does not change for different resistance 

values, which indicates the series resistor only affects the gain of the circuit but not the 

impedance. Before comparing the experimental power to the model results, the tip 

response of the beam is presented first in Figure 5.5. The tip response for the four 

resistance values of the negative capacitance shunt are shown along with the uncontrolled 

response. The series resistor alters how much suppression occurs at the resonances of the 

beam. At low frequency, about 30 Hz, the 1200 Ω resistor results in more suppression, 

while small resistors improve the suppression at high frequency resonances.  

Due to the resonances of the cantilever beam and the fact that the response of the 

beam is reduced at different frequencies for the four series resistors, the magnitude of the 

power output for the experimental system, as shown in Figure 5.6, does not match the 

simulated power output (the simulation does not include beam resonance behavior). The 
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phase of the power matches the numerical output exactly, and does not vary with change 

in resistor. Yet the model can be verified by normalizing the square of the strain-induced 

voltage which dictates the response of the circuit, shown in Figure 5.7. The power output 

computed by the model, shown in Figure 5.4, exactly matches the experimental 

normalized power output. Yet for the non-normalized measured power output, it should 

be noted that a certain level of power output does not correspond to the same level of 

reduction in tip response. The power output at 32 Hz is the exact same for all resistance 

values, but the response of the beam is drastically different. The total apparent power 

output of the op-amp for all frequencies is shown in Table 5.2. Changing the resistor 

from 4800 Ω to 75 Ω increases the total power by two orders of magnitude. But, due to 

the power increase the response of the beam for the 75 Ω resistor is greatly reduced 

compared to the 4800 Ω resistor. 

Table 5.1 - Verification circuit parameters 

V o 0.04 V

C p 113.6 nF

C 2 110 nF

R 2 10.68 MΩ

R 3 + R 4 10.21 kΩ
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Figure 5.4 - Simulated power output of the op-amp, amplitude and phase, for four values of 

series resistance 

 

Figure 5.5 - Tip response of the beam for four values of series resistance 
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Figure 5.6 - Experimental power output of the op-amp, amplitude and phase, for four 

values of series resistance 
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Figure 5.7 - Normalized experimental power output of the op-amp, amplitude and phase, 

for four values of series resistance 

Table 5.2 - Total apparent power output of the op-amp for four resistor values, from 10-

5000 Hz 

R s = 4800 Ω R s = 1200 Ω R s = 300 Ω R s = 75 Ω

0.008 0.045 0.242 1.008

Total Apparent Power [VA]

 

Figure 5.4 shows the simulated power output of the op-amp for three values of 

negative capacitance and a series resistor of 300 Ω. In contrast to changing the resistor, 

the change in negative capacitance has more effect on the power magnitude at low 

frequencies and no effect at high frequency. Again, the phase of the power is not affected 

by negative capacitance. The tip response of the cantilever beam, seen in Figure 5.9, 

follows the trend of the simulated power output; where by decreasing the negative 
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capacitance magnitude increases the suppression especially at low frequencies. At high 

frequencies, there is no change in response for decreasing the negative capacitance 

magnitude. Figure 5.10 shows the measured power output of the op-amp. The power 

output does not change at high frequencies for different values of negative capacitance. 

The power output at low frequencies is reduced for some frequencies and increased for 

some frequencies. At the resonance, due to the reduction of the response the power output 

is reduced but the power for frequencies off resonance is increased. The phase of the 

power is consistent with the phase of the model and the normalized experimental power 

was again found to be consistent to the model. Table 5.3 shows the total measured power 

of the op-amp. The difference between the total output for the three negative values is 

much smaller than for the resistors. Specifically, it requires only 30.8% more power for 

the circuit to reduce the first resonance by 23 dB. Therefore, it takes substantially less 

power decrease low frequency resonances by decreasing negative capacitance than 

decreasing high frequency resonances by reducing the resistor. 
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Figure 5.8 - Simulated power output and phase of the op-amp for three values of negative 

capacitance 

 

Figure 5.9 - Tip response of the beam for three values of negative capacitance 
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Figure 5.10 - Experimental power output and phase of the op-amp for three values of 

negative capacitance 

Table 5.3 - Total apparent power output of the op-amp for three negative capacitance 

values, from 10-5000 Hz 

C n  = -124 nF C n  = -120.1 nF C n  = -114.4 nF

0.185 0.203 0.242

Total Apparent Power [VA]

 

5.2.3.2 Efficiency Improvements 

As shown above, the Multisim model accurately predicts the power output 

behavior of a negative capacitance shunt, apart from resonance behavior. Therefore, it 

can be used to investigate how the choice in circuit parameters can increase the efficiency 

of the shunt by reducing the power output of the op-amp. Because the impedance desired 

is a negative capacitor, the phase of the power should be close to π 2  rad, which is the 
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phase of power for an ideal negative capacitor. Because of the fact that the phase of the 

power is not affected by the negative capacitance value or series resistor, the passive 

components used to create the negative capacitance will be analyzed to increase the 

efficiency of the shunt. The passive components of the shunt can be altered without 

changing the power of the shunt, therefore the efficiency can only be increased by 

reducing the power output of the op-amp. 

To achieve a desired impedance with the negative capacitance shunt using 

Equation (5.3), the design space for choice of circuit elements is quite large. Yet, the 

choice of circuit elements affects the power output of the shunt. This is illustrated in 

Figure 5.11 which shows the power output of the op-amp versus the total potentiometer 

resistance  

 3 4potR R R   (5.10) 

for a single negative capacitance value and series resistance. The power output of the op-

amp changes significantly with the value of Rpot. The 100 kΩ potentiometer has the 

smallest op-amp power output for this system. The phase of the power for that 

potentiometer is also the closest to that of the ideal negative capacitor. Similarly, power 

output for four values of reference capacitance C2 is shown in Figure 5.12. The reference 

capacitor does not change the power output of the op-amp as much as the potentiometer. 

Yet, for this system a 110 nF capacitor results in power output of the op-amp with a 

phase that is closest to π 2  rad for all frequencies. The 220 nF capacitor has slightly 

less power output for most frequencies.  
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Figure 5.11 - Simulated power output versus frequency for four potentiometer values 
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Figure 5.12 - Simulated power output versus frequency for four reference capacitor values 

5.2.3.3 Circuit Limitations 

Because the Multisim model includes an accurate model for op-amp behavior, the 

limitations of the shunt can be determined. During operation, the op-amp voltage and 

current are limited by the op-amp power supply and specifications. An analysis of the 

voltage output is presented here, but a similar investigation can be performed for the 

current limitations. For a constant amplitude disturbance voltage, the frequency at which 

the op-amp voltage is at a maximum is when the series resistance equals the real part of 

the negative impedance, where the negative impedance is 
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3
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4 2
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R R



 
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 

. (5.11) 



82 

 

Due to the fact that a large resistor is chosen for R2 and Rs is small, the maximum voltage 

occurs at low frequency. Figure 5.13 shows the low-frequency voltage output of the op-

amp for four values of series resistance. The frequency at which the maximum occurs 

moves to higher frequencies for smaller values of resistance. The amplitude of the 

maximum is the same for all values of series resistance. The magnitude of the peak 

voltage value is determined by the negative capacitance value, as shown by Figure 5.14. 

The maximum voltage increases as negative capacitance decreases. Yet, the increase is 

non-linear. The voltage peak increase exponentially as the negative capacitance 

magnitude approaches the simulated patch capacitance Cp. Therefore, the voltage 

response of the op-amp is sensitive to changes in negative capacitance near the patch 

capacitance.  

 

Figure 5.13 - Low frequency simulated voltage output versus frequency for four 

potentiometer values 
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Figure 5.14 - Low frequency simulated voltage output versus frequency for four 

potentiometer values 

The AC analysis of Multisim makes linear, harmonic assumptions to determine 

the circuit response. But, the circuit response becomes non-linear as the voltage output 

approaches the op-amp power supply voltage because of the voltage output limit of the 

op-amp. The non-linearity of the voltage output can be seen in Figure 5.15. The voltage 

response versus time for a single frequency is shown for three values of power supply 

voltage Vss. For a 40 V power supply, the circuit behaves normally, but as the power 

supply voltage is reduced, the amplitude of the response is decreased due to clipping. For 

the 12 V supply, the response mimics that of an unstable circuit, even though circuit 

parameters allow for a stable response for the 40 V supply. Therefore, when a negative 

capacitance shunt is to be applied on a system, a circuit model should be used to 

determine the parameters and supply voltage that can be implemented for a given shunt to 

achieve a linear response for a given disturbance.  
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Figure 5.15 - Op-amp voltage output for three values of power supply voltage 

5.3 Adaptive Tuning Theory 

The inherent goal of vibration reduction using a shunted piezoelectric patch is to 

minimize the vibration response of a system to which the piezoelectric patch is bonded. 

When the response is reduced, the strain-induced voltage Vo created by the mechanical 

motion of the substrate is thereby reduced. Therefore, the components of the negative 

capacitance shunt should be tuned for maximum reduction of Vo which should correspond 

to maximum suppression of vibration of the substrate. Based on the results from 

modeling and measurement of the power output of the op-amp presented in the previous 

section, the following section outlines a process by which a negative capacitance shunt 

can be tuned to maximize vibration suppression. By determining the shunt parameters 

from the circuit response, the parameters can be adaptively tuned without needing an 

additional sensor to measure the response of the substrate. 

The analysis used to determine the shunt parameters can also determine the 

voltage and current response at any point within the shunt. Through determination of the 

electrical response of the circuit, specifically the dissipated power in the series resistance, 

the concept of “cancellation” of the patch capacitance can be validated. If the negative 
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capacitance truly cancels the inherent capacitance of the piezoelectric patch to maximize 

the power dissipated in the series resistor, the amount of power dissipated in the shunt 

will correlate to the magnitude of vibration suppression. Similarly, this correlation will 

corroborate the negative capacitance shunt tuning theory developed by Kim and Jung 

[66]. Their method calculated the optimal shunt parameters which corresponded to the 

maximum power dissipated in the resistor. This section will discuss the circuit analysis 

used to calculate the strain-induced voltage and will experimentally confirm the 

correlation between voltage reduction during negative capacitance shunt control and the 

suppression of a vibrating system. 

5.3.1 Circuit Analysis 

This section outlines an indirect measurement technique to compute Vo due to the 

fact that the strain-induced voltage Vo created by the vibrating substrate cannot be 

directly measured. As a reference, the uncontrolled Vo will be calculated first, which will 

act as a baseline for reduction. Figure 5.16 depicts a circuit schematic that will be used to 

describe the circuit values to calculate Vo. This circuit includes an electrical model of the 

piezoelectric patch connected to a resistor. The method to determine the impedance of the 

piezoelectric patch is detailed in the following section. A small resistor, with respect to 

the patch impedance, is chosen for R so as not to impart significant damping on the 

system. 
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Figure 5.16 - Circuit schematic to determine uncontrolled strain-induced voltage 

By measuring the voltage at point V with respect to ground, the current within the 

circuit can be calculated by 

 
V

i
R

 . (5.12) 

With the current in the circuit and the voltage across the patch known, the uncontrolled 

strain-induced voltage can be found by  

 o pV V Z i  . (5.13) 

Figure 5.17 shows the circuit schematic that describes the necessary circuit 

parameters to determine the strain-induced voltage Vo when a piezoelectric patch is 

attached to a negative capacitance shunt. For the analysis, the op-amp is assumed to be 

ideal. Therefore, the two golden rules of op-amp apply [21]:  

I. The voltage difference between the two input terminals is negligible 

II. The inputs draw no current. 

Using the ideal op-amp assumptions, Vo can be computed from a single voltage 

measurement within shunt circuit. The circuit voltage response is measured with respect 

to ground at location Va, as shown in Figure 5.17. From this measurement and Rule II, the 

current down the non-inverting branch i+ is  

Patch model 
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The voltage at the non-inverting terminal can then be found by 

 4aV V i R   . (5.15) 

Utilizing Rule I, V- is equal V+. Therefore, the current down the inverting branch is 

computed as  

 
2

aV V
i

Z





  (5.16) 

where Z2 is the reference capacitor in parallel with the large DC-stability resistor. Using 

Rule II again, the current in the inverting branch is equal to the current through the series 

resistor Rs and the patch impedance Zp. Therefore, the strain-induced voltage is 

 o s pV V R Z i      . (5.17) 

 

Figure 5.17 - Circuit schematic to determine controlled strain-induced voltage 

Apart from the strain-induced voltage, the power dissipated in the series resistor is 

of interest. The shunt selection method introduced by Kim and Jung [66] outlined in 

Section 2.4.2 is based on the maximum dissipated power in the series resistor. The circuit 

Patch model 
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analysis presented above can also be utilized to determine the power dissipated in the 

resistor, Rs 

 R sS i i R     . (5.18) 

where the over-bar denotes the complex conjugate. Computing the power dissipated in 

the series resistor will permit a comparison between the tuning method proposed here and 

the method of maximum dissipated power, proposed by Kim and Jung [66]. 

5.3.2 Piezoelectric Patch Impedance Model 

Many previous applications of piezoelectric shunt control utilize the electrical 

model shown in Figure 5.18a for a piezoelectric patch, which includes a strain-induced 

voltage, Vo, and the piezoelectric element modeled as a capacitor [10, 24, 38, 75, 91]. 

Yet, this model does not sufficiently represent the patch impedance when the real part of 

the patch impedance is on the same order of magnitude as the imaginary part of the patch 

impedance; a modified electrical model for the patch must be then used to accurately 

describe the frequency response of the patch. This situation can occur for frequencies 

near DC, typically below 50 Hz, or when capacitance of the patch is small, less than 10 

nF. The modified model is shown in Figure 5.18b and includes a resistor in parallel with 

the capacitance of the patch. To determine the patch impedance, consider the frequency 

response function of a simple high pass filter, Figure 5.19, where the frequency response 

transfer function is equal to  

 out

in p

V R

V R Z



. (5.19) 

Equation (5.19) can be rearranged to solve for the impedance of the patch 

 1in
p

out

V
Z R

V

 
  

 
. (5.20) 
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a)          b)  

Figure 5.18 - Piezoelectric model a) traditional b) modified 

             

 

Figure 5.19 - High pass filter 

When using this method to determine the impedance of the patch, it is best to 

measure the patch impedance before bonding it to the vibrating system. For in-situ 

measurement of the impedance, the effects of the structure must be removed through a 

frequency-dependent model of the patch impedance that does not include the structural 

resonances. To approximate the impedance of the patch versus frequency, due to the non-

ideal nature of the piezoelectric impedance, the resistor and capacitor are modeled as 
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frequency-dependent components. The frequency-dependent resistor must be added in 

parallel with the capacitor in the traditional piezoelectric model, 

  

 
 

1

1p

p
p

Z

i C
R



 






, (5.21) 

where Rp and Cp are the frequency-dependent resistor and capacitor. This resistance can 

arise from the quality of the bond between the patch and substrate because the leads of 

the piezoelectric patches must be electrically isolated. When full electrical isolation is not 

present, some amount of inherent resistance may develop. Also, the piezoelectric 

material, PZT, can exhibit slight impedance nonlinearities [2]. The exact resistance and 

capacitance for each patch is measured and modeled ad-hoc. The model is then included 

in the calculation of the strain-induced disturbance voltage presented above. 

5.3.3 Circuit Analysis Verification  

A test circuit, shown in Figure 5.20, was constructed to verify the circuit analysis 

developed to compute the strain-induced voltage of a negative capacitance control patch. 

This circuit includes a negative capacitance shunt built using the method shown in 

Section 4.3. Attached to the negative capacitance shunt is circuitry that simulates a 

piezoelectric element: a capacitor Cp in series with a voltage source VD in parallel with a 

resistor Rp. The circuit components are outlined in Table 5.4. Using this circuit, the 

calculated value of Vo can be compared to a known supplied voltage VD which is driven 

from an external source.  
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Figure 5.20 - Circuit schematic to verify circuit analysis 

Table 5.4 - Verification circuit parameters 

V D 0.04 V

C p 96.5 nF

R p 10.62 MΩ

C 2 110 nF

R 2
10.68 MΩ

R 3 + R 4
10.21 kΩ  

Due to the active and unstable nature of the shunt, precautions were taken to 

insure that the measurement of the response did not affect the performance of the shunt. 

The measurement of the voltage at point Va was measured using a 10x attenuating voltage 

probe with respect to ground. Due to the fact that the probe is in parallel electrically with 

both the positive and negative branches of the op-amp, the impedance does not need to be 

included in the analysis. A Siglab system was used for both a data recording device as 

well as the voltage generator which supplies VD. The magnitude and phase of the 

frequency response of the computed voltage output Vo are normalized by the known 

driving output voltage VD for four values of shunt resistance RS, plotted in Figure 5.21. 
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The computed Vo closely matches the driving voltage, where the maximum error of the 

magnitude is 4%. Similarly, there is little error associated with the phase. The errors are 

more than likely due to a small equivalent resistance in the capacitor, which was modeled 

as ideal. Therefore, the circuit analysis presented above has been shown to be an accurate 

method to predict the strain-induced voltage of a vibrating piezoelectric patch connected 

to a negative capacitance shunt. 

 

Figure 5.21 - Frequency response of the computed voltage output verification 

5.3.4 Control implementation and results 

The control analysis presented above was applied to the same aluminum 

cantilever beam described in Section 4.4.1. The velocity of the tip of the beam was 

measured to obtain a metric to describe the reduction in vibration to verify the tuning 
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method. Data on the electrical and mechanical responses of the cantilever beam and the 

shunt circuit was acquired using a system consisting of function generator, the 

piezoelectric drive patch pair, and a recording device to measure the electrical response 

of the circuit and the velocity of the tip of the beam. The beam was driven using a chirp 

signal from 10 to 5000 Hz. 

The tip response of the beam and the computed strain-induced voltage is 

presented for various shunt configurations. Due to the fact that most of the vibrational 

energy of the system occurs at the resonance frequencies, the analysis will focus on bands 

of frequencies near resonances. Figure 5.22 shows the tip velocity frequency response 

and computed strain-induced voltage for three values of negative capacitance. The series 

resistance is 300 Ω for all cases where the shunt is utilized. The uncontrolled tip response 

is the open circuit response. The uncontrolled Vo was acquired using a 1100 Ω resistor as 

described in Section 5.3.1.  
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Figure 5.22 - Tip response and strain-induced voltage for three negative capacitance values 

As the negative capacitance magnitude decreases, the normalized velocity is 

decreased for all frequencies, with greater effect at the low frequency resonances. The 

same behavior is seen in the calculated Vo. There is a proportional decrease in velocity 

and tip velocity. Most importantly, the negative capacitance value that corresponds to the 

largest reduction in Vo is the same value that corresponds to largest reduction in tip 

velocity.  

Figure 5.23 shows the tip velocity response and the strain-induced voltage for 

four values of series resistance. The negative capacitance value for the four controlled 

responses is -114 nF. Whereas the negative capacitance increased the suppression for all 

frequencies, the resistor value alters the frequency where more suppression is achieved. 
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Large resistors exhibit more reduction at low frequencies and the small resistors increase 

suppression at high frequencies with a slight decrease in performance at low frequency. 

Again, the computed Vo is consistent with this frequency behavior. Both the resistor and 

negative capacitance value that minimizes the computed strain-induced voltage Vo 

minimizes the response of the beam. Therefore, the shunt parameters can be chosen by 

minimizing Vo and can be adaptively chosen based on the minimization of Vo.  

 

Figure 5.23 - Tip response and strain-induced voltage for four resistance values 

To compare the tuning method presented in this section and the maximum power 

dissipated method of Kim and Jung, the power dissipated in the series resistor is plotted 

in Figure 5.24 for the same four series resistors presented above. The resistor that exhibits 

the greatest power dissipated for the resonance at 30 Hz is the 4800 Ω resistor. For the 
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higher frequency resonances, the 1200, 300, and 75 Ω resistors dissipate similar amounts 

of power. This behavior is in contrast to the change in tip response shown above, where 

the smallest resistor value causes the circuit to suppress the response significantly more. 

Therefore, the power dissipated in the series resistor does not correlate to the amount of 

suppression of the beam, which contradicts Kim and Jung. Yet, in light of the fact that the 

strain-induced voltage is reduced because of the control of the shunt circuit, the power 

can be normalized by the computed voltage Vo 

 
2
R

N

o

S
S

V
  (5.22) 

where SR is the power dissipated in the resistor. Figure 5.25 shows the normalized power 

dissipated in the series resistor. The normalized power shows a correlation between the 

amount of suppression for frequencies above 100 Hz. For instance, the negative 

capacitance shunt circuit with the 300 Ω resistor yields the largest reduction in vibration 

and the largest value of normalized power at the resonance at 190 Hz. Yet, below 100 Hz 

the resistors that cause the greatest suppression do not yield the greatest normalized 

power. This is most likely due to the fact that the change in stiffness caused by the shunt 

has more effect on reducing vibration than the added damping of the resistor. Therefore, 

the normalized power cannot be used to predict the resistor value that maximizes the 

vibration suppression of a negative capacitance shunt. Ultimately, the results refute the 

maximum power dissipation method developed by Kim and Jung [66] 
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Figure 5.24 - Power dissipated in the series resistor 

 

Figure 5.25 - Normalized power in the series resistor 

5.4 Circuit Stability 

As stated in Chapter 2, the reasons behind shunt parameters which yield unstable 

a negative capacitance circuit need to be identified and modeled to aid in the prediction 

of vibration suppression. A process is developed here that predicts the magnitude of 

negative capacitance that is attainable experimentally given the measured electrical 

impedance of a patch and uncontrolled voltage response. Two problems that limit the 

effectiveness of the overall control system are explored: the issues surrounding the 



98 

 

variation in patch impedance and the voltage limitations of the op-amp.  This section first 

defines the stability of the shunt, then discusses the impact of the voltage output of the 

op-amp. An experimental test structure is introduced and the variation in patch 

impedance is quantified. Finally, the results and analysis are given. 

5.4.1 Stability Condition 

To obtain maximum performance, appropriate circuit component values must be 

chosen to reach the necessary negative capacitance. The values of these components are 

limited by concerns regarding the stability of the circuit; where a stable circuit is 

considered a circuit configuration that has a non-saturated output. To determine stability 

of the circuit, one must consider the two following requirements [21]: 

i. There must be feedback current to the inverting terminal at DC 

ii. The voltage gain down the negative feedback path must be larger than the 

voltage gain down the positive feedback path 

The first condition prevents a bias voltage occurring that would cause the circuit output to 

drift until the output equaled the supply voltage. The second condition ensures that the 

harmonic feedback is stable and can be addressed with by the processes outline by Date 

et al. [52]. 

Date et al. analyzed the negative impedance converter circuit in Figure 5.26, 

where the input to both the inverting and non-inverting terminals of the op-amp are 

considered as ideal voltage dividers from the output voltage to ground. The voltage gain 

down the inverting path is  

 1

1 2
out

Z
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Z Z

 


. (5.23) 

Likewise, the gain for the non-inverting path is 
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The third voltage relationship considers the voltage difference across the inputs which is 
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Returning to the second stability requirement, the voltage gain down the inverting 

path must be greater than the gain down the non-inverting path; thus, the sign of the 

coefficient of Vout in Equation (5.25) must be negative. Therefore, Equation (5.25) can be 

simplified to  

 31
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ZZ

Z Z Z Z


 
. (5.26) 

which can be reduced to 

 2 4

1 3

Z Z

Z Z
 . (5.27) 

A stable circuit will have the expression above be true all frequencies. If it is assumed for 

a Type 1 negative capacitance circuit that both Z1 and Z2 are ideal capacitors only, the 

stability condition becomes 

 4

2 3

pC R

C R
  (5.28) 

where Cp is the capacitance of the piezoelectric patch and C2 is the reference capacitor, 

which is the definition of stability that is specified by Date et al. The determination of a 

stable circuit is straightforward because Equation (5.28) is independent of frequency and 

purely real. This will be considered the traditional estimation of instability. Yet, if all the 

components of the circuit are included in Equation (5.27), the stability condition becomes 
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where Zp is the frequency-dependent patch impedance, Rs is the series resistance, and R2 

is the reference resistor in parallel with the reference capacitor C2. The left-hand side of 

the expression is both frequency-dependent and complex while the right-hand side is 

purely real. The stability, therefore, needs to be defined in terms of a complex quantity. 

The stability condition is  
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    

 (5.30) 

which is analogous to the requirement in control theory that requires the poles be located 

in the left-half of the complex plane.  

 

Figure 5.26 - Basic negative impedance converter with input impedance 

Equation (5.30) can be used to predict the values of negative capacitance and 

series resistance for which the circuit will be stable for a given patch.  Based on the patch 

location, impedance, and size, control can be predicted from stable circuit impedances. 

Vout 

Vo 
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5.4.2 Voltage Gain Limitation 

As was shown in Section 5.2.3.3, the output voltage of the op-amp in the negative 

capacitance circuit is limited by the power supply voltage. Therefore, a prediction of the 

output voltage of the op-amp for a given value of negative capacitance needs to be made 

to estimate experimentally-attainable shunt configurations. To that end, the strain-

induced voltage disturbance on the shunt must be related to the output voltage of the op-

amp. The gain G of the circuit can be calculated by [52] 
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. (5.31) 

The goal of the op-amp is the drive the output voltage to a state where there is equal 

voltage drop down both the inverting and non-inverting branches of the circuit. 

Considering Figure 5.26, if there is equal voltage drop from Vo to Vout and Vout to ground,  

then the predicted voltage output can be estimated by 

 
2

o
out

V
V G  (5.32) 

where Vo is the uncontrolled strain-induced voltage. The strain-induced voltage can be 

measured using the process outlined in Section 5.3.1. With the addition of an output 

voltage limitation in the stability prediction model, the experimentally-attainable circuit 

parameters can be more accurately estimated. The voltage limit of an OPA445 op-amp 

used for implementation with a ±35 V supply voltage is 30 V. 

5.4.3 Periodic Beam  

To investigate the effects of stability and test the prediction method on patch 

impedance, an experimental test beam was created. The experimental setup consists of a 

cantilevered aluminum beam with a periodic array of 10 evenly-spaced piezoelectric 
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patches, with nominally consistent patch properties. The physical parameters of the beam 

and patches are shown in Table 5.5. The patch capacitance listed in the table was 

obtained with a multimeter measurement, and all patches were measured to have the 

same capacitance with the given precision. The multimeter measurement obtains the 

imaginary component of the impedance for a single frequency, where a frequency 

dependent measurement of impedance may be necessary to fully characterize the 

electrical properties of the patches. The beam is cantilevered at the root with the array of 

patches extending at equal intervals of 20 mm. Each patch is considered to have been 

produced and bonded with identical procedures. The experimental procedure outlined in 

Section 5.3.3 was used here to measure and record the tip response of the beam and 

voltage response of the negative capacitance shunt. Patch number 10 was used to drive 

the beam. 

 

Figure 5.27 - a) Top view and b) side view of a 410 mm long cantilever beam with 10-

element periodic array of piezoelectric patches at 20 mm spacing. 

b) 

a) 
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Table 5.5 - Beam and patch physical parameters 

Beam Young's modulus E b = 73 Gpa

Density ρb = 2700 kg/m
3

Thickness t b  = 2 mm

Width w = 30 mm

Length L  = 410 mm

Piezoelectric Young's modulus, shorted E p = 63 Gpa

Patch Density ρp = 7800 kg/m3

Coupling coefficient k 31= 0.35 

Thickness t = 1.3 mm

Capacitance C p = 2.4 nF  

5.4.3.1 Patch Impedance Variation 

The method presented in 5.3.2 was used to determine the frequency-dependent 

patch impedance of all the patches in the array in-situ. Figure 5.28 shows the parallel 

capacitance Cp and resistance Rp of four representative patches. The solid lines 

correspond to the experimentally-measured impedance, and the dashed lines are the 

smoothed-impedance model. For an ideal capacitor, the capacitance is constant with 

frequency and the resistance is infinite. Yet, all the patches in the array deviate from an 

ideal capacitor in both resistance and capacitance. Similarly, the variation in patch 

impedance both versus frequency and across patch number is significant.  
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Figure 5.28 - Patch a) capacitance and b) resistance versus frequency 

For comparison of shunt parameters between patches and against frequency, the 

negative capacitance ratio, or NCR, defined in Equation (4.6), will be used. Also, NCR 

will be a frequency-dependent quantity because the patches are not ideal capacitors. 

5.4.4 Results and Analysis 

To apply the prediction method to these patches, as well as the stability analysis 

versus achievable suppression, Patch 2 and patch 6 were chosen to analyze the results of 

the shunt parameter prediction method and comparison of tip response for stable values 

of negative capacitance and resistance. These two patches were chosen because their 

capacitance magnitudes are equal at high frequency.  

a) 

b) 
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5.4.4.1 Model verification parameters 

To test method developed above to predict what components will yield a stable 

response, a resistance ratio, α, is maximized for a chosen reference capacitor and resistor 

to satisfy the restrictions of stability and on the magnitude of op-amp output voltage, 

where 

 3

3 4

R

R R
 


. (5.33) 

By maximizing α subject to the stability and output constraints, the NCR will be 

minimized which corresponds to maximum achievable suppression. The resistance ratio α 

will also be determined using the traditional method for shunt stability, Equation (5.28), 

and will be compared to the predicted and experimentally-obtained values. The 

comparison will be made in terms of the percent error of the experimental value 

 100ex cal

ex

 





   (5.34) 

where αex denotes the experimental value and αcal is the calculated value, either using the 

traditional or prediction method. A positive ε corresponds to an over-prediction of NCR, 

and a negative ε is an under-prediction. Similarly, the sign of the error denotes if the 

calculated α will cause an unstable response in the circuit. Positive values of α indicate an 

unstable circuit configuration. In addition to α, the predicted output voltage, computed by 

Equation (5.32), will be compared to the experimental output voltage of the op-amp Vout 

to validate the electrical behavior of the model. 

The attainable circuit parameters of the model can be used to determine the shunt 

impedance versus frequency which allows for a qualitative comparison of control 

between patches. Qualitatively, an NCR closest to one will obtain more control. The 
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optimal total resistance for the shunt decreases as frequency increases, where total 

resistance is computed by 

   2 3
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Re Retotal
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 
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 (5.35) 

 Also, at a given frequency, a larger resistance is necessary to obtain more suppression 

for larger values of NCR [92]. Also, the sign of the error, computed by Equation (5.34), 

will indicate an under- and over-prediction of suppression respectively. 

5.4.4.2 Effect of α on stability 

Figure 5.29 shows the argument of the stability condition, Equation (5.30), versus 

for four values of α which illustrates the effect of α on the stability.  As stated above, to 

retain a stable response, the argument cannot equal zero at any frequency. For small 

values of α, the argument does not zero which corresponds to a stable configuration. Yet, 

as α increases to a value greater than 0.616, the circuit will become unstable, as shown by 

α equal to 0.619. The NCR for the same four values of α are shown in Figure 5.30. There 

is a difference of 0.015 between each of the curves. In terms of suppression, this 

difference can cause significant reduction. Also, for the current circuit realization, the 

resistance difference between the highest and lowest α is less than one quarter turn of the 

potentiometer. Therefore, it may be difficult to experimentally obtain a desired 

impedance. 
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Figure 5.29 - Argument of the stability condition for four values of α, for a shunt connected 

to patch 6 

 

Figure 5.30 - NCR for four values of α, for a shunt connected to patch 6 

5.4.4.3 Stability prediction of α and the effect on shunt impedance 

The predicted voltage output of the op-amp from the stability model and 

experimental measurements is shown in Figure 5.31 for patch 6. The voltages are shown 

for four values of reference capacitance at the limit of stability; all other circuit 

components are held constant. The predicted, traditional, and experimentally obtained α 

are shown in Table 5.6, along with their associated percent error. The predicted voltage 

output of the op-amp matches closely with the measured output voltage, which confirms 

the ability of the model to predict voltage response of the op-amp. For the three largest 

reference capacitors, the predicted α from the stability prediction method has an error 
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below 0.34% of the experimental value, which confirms the ability of the model to 

predict stability. The error is also within the precision of the multimeter used to measure 

the resistance of the potentiometer. The stability prediction method yields an estimate of 

the maximum attainable α that is 2-10 times more accurate than the traditional method.   

 

Figure 5.31 - Comparison of a) predicted op-amp output voltage and b) measured output 

voltage for patch 6 

Table 5.6 - Predicted, traditional, and experimental  resistance ratio α  at the stability limit 

and their associated percent error for patch 6 

C 2 = 5.5 nF C 2 = 4.0 nF C 2 = 2.5 nF C 2 = 1.5 nF

Predicted 0.682 0.616 0.510 0.302

Traditional 0.694 0.623 0.508 0.292

Experimental 0.681 0.615 0.508 0.299

ε, Pred. (%) 0.21 0.24 0.34 1.07

ε, Trad. (%) 2.03 1.33 0.00 -2.16  

a) 

b) 
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Table 5.7 - Predicted, traditional, and experimental resistance ratio α at the stability limit 

and their associated percent error for patch 2 

C 2 = 5.5 nF C 2 = 4.0 nF C 2 = 2.5 nF C 2 = 1.5 nF

Predicted 0.697 0.628 0.516 0.302

Traditional 0.694 0.623 0.508 0.292

Experimental 0.695 0.627 0.514 0.301

ε, Pred. (%) 0.31 0.26 0.42 0.39

ε, Trad. (%) -0.09 -0.58 -1.11 -2.75  

As shown in Table 5.6, the predicted α values exhibit a bias toward larger values 

than the experimentally obtained values for patch 6. Therefore, the predicted value 

corresponds to an unstable circuit. The bias is most likely because of the imprecision of 

the potentiometer during tuning to achieve a maximum value of α while retaining 

stability. If a more accurate method of tuning α was utilized, it is expected that the error 

between predicted and experimental values would be reduced. In contrast, the traditional 

method estimates both larger and smaller values of α. This leads to the fact that the 

parameters calculated from the tradition method for will either significantly under- or 

over-predict the point of instability compared to the proposed prediction method. For 

example, when C2 = 5.5 nF, the traditional calculates instability at a point much greater 

than attainable. In contrast, when C2 = 1.5 nF the traditional method yields a significantly 

under-predicted stability point. When the same circuits are connected to patch 2, which is 

a seemingly identical patch, the traditional method under-predicts stability for all cases as 

shown in Table 5.7. In contrast, the proposed prediction method obtains values for an 

unstable circuit, but much closer to the experimental value. The trend is also more 

consistent between circuit configurations than the traditional method. 

The predicted α for the 1.0 nF reference capacitor exhibits an error of 1.07% 

which can be accounted for by the increased experimental voltage response of the 

resonance at 700 Hz which limits the op-amp gain at that frequency. The increased 



110 

 

experimental voltage is due to the positive feedback of the shunt. The reason for positive 

feedback can be explained by the fact that the NCR and total resistance for the four shunt 

configurations obtained above, which can be seen in Figure 5.32. At 700 Hz, the shunt 

has an NCR slightly less than one and a negative resistance value. The ability of this 

configuration of a negative capacitance circuit to obtain an NCR less than one was 

previously thought to be impossible. Yet, this combination leads to positive feedback, 

which increases the response of the beam, thereby increasing the voltage output greater 

than predicted. Figure 5.32 also shows the significant difference in attainable NCR and 

total resistance at the stability point by only changing the reference capacitance. 

Similarly, the total resistance only matches the desired value of 200 Ω for a small 

frequency bandwidth. Lastly, it is shown that the circuit can achieve NCR values less 

than one, which was previously thought to be unattainable given the traditional definition 

for stability prediction. 
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Figure 5.32 - a) NCR and b) total resistance for four shunt configurations attached to patch 

6 

To assess the effect of patch impedance on stability, α was found for the four 

values of reference capacitance when the shunt was connected to patch 2. The predicted 

output voltage again matches the experimental output voltage, as shown in Figure 5.33. 

Similarly, the predicted α matches the experimental values closely, where the maximum 

error is 0.41%. Again, there is significant improvement over the traditional estimate. For 

each reference capacitor, the circuit connected to patch two can achieve a greater α, but 

the difference reduces for smaller values of C2. This is due to the frequency-dependent 

behavior of the patch impedance. Because the reference capacitor and resistor act as a 

high pass filter, as the reference resistor is reduced the circuit connected to each can reach 

similar values of NCR above 1000 Hz without going unstable at low frequency, which 

can be seen in Figure 5.34. 

a) 

b) 
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Figure 5.33 - Comparison of a) predicted op-amp output voltage and b) measured output 

voltage for patch 2 

 

a) 

b) 
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Figure 5.34 - a) NCR and b) total resistance four for shunt configurations attached to patch 

2 

The impedance of the shunt connected to patch 2 is shown in Figure 5.34 and is 

more consistent between reference capacitors than the shunt attached to patch 6. This can 

be attributed to the difference in patch capacitances at low frequency. The more constant 

frequency behavior of patch 2 allows the patch to reach similar values of NCR across a 

wider bandwidth. Figure 5.35 shows the ratio of NCR and total resistance of the shunt 

attached to patch 2 to shunt attached to patch 6. Similarly, Table 5.8 shows a direct 

comparison of the experimentally obtainable α for patch 6 divided by the obtainable α for 

patch 2. For seemingly identical patches, only for the 1.0 nF reference capacitor are the 

attainable α and NCR within 1% between the two cases for most frequencies, with patch 

6 being slightly larger than patch 2. For larger capacitor values, the difference in NCR 

increases where the patch 6 NCR becomes larger than patch 2. The total resistance ratio 

b) 

a) 
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is significantly different between the two cases. The total resistance is more consistent 

between C2 and matches the desired value of 200 Ω over a wider frequency band than for 

the patch 6 case. 

 

Figure 5.35  - Ratio of a) NCR and b) total resistance between patch 2 and patch 6 

Table 5.8 - Ratio of experimental α, patch 6 case divided by patch 2 case 

C 2 = 5.5 nF C 2 = 4.0 nF C 2 = 2.5 nF C 2 = 1.5 nF

α Ratio 0.981 0.981 0.987 0.999  

From an inspection of Figure 5.34 and Figure 5.35, it is expected that patch 2 will 

exhibit more control than patch 6. Patch 2 has a much lower NCR for most frequencies 

for all reference capacitors. Also, the frequencies where patch 6 has a lower NCR than 

patch 2, the total resistance has more negative resistance, which will increases the 

response. This is confirmed in the tip response measurements of the beam when the shunt 

is attached to patch 2, Figure 5.36, and patch 6, Figure 5.37. Figure 5.36 shows a 

b) 

a) 
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maximum suppression of 10 dB at the 2800 Hz resonance, which corresponds to the 

shunt configuration for the 4.0 nF reference capacitor. This configuration also had the 

lowest NCR across frequency for patch 2. In contrast, there is a maximum reduction of 3 

dB at the 2800 Hz resonance when the shunt is connected to patch 6 for the 1.0 nF 

reference capacitor, as shown in Figure 5.37. 

 

Figure 5.36 - Tip velocity response when shunt is attached to patch 2 

 

Figure 5.37 - Tip velocity response when the shunt is attached to patch 6 

From this analysis, two general implementation guidelines can be made regarding 

proper selection in shunt components and patch impedance. First, frequencies where the 

shunt has negative resistance should be kept away from resonant frequencies of the 

vibration structure under control, generally below the first resonance. By doing this, the 
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response of a vibrating structure will not be significantly increased due to positive 

feedback which further limits the attainable NCR. Secondly, a patch with a flat 

capacitance versus frequency and high resistance will impose more suppression. A low 

NCR will be consistent across frequency, which will increase the bandwidth of 

suppression. Also, the total resistance will obtain a desired value for a wider frequency 

range. In addition, by having a flat capacitance, the reference capacitance can be larger to 

reduce the frequency for which negative resistance occurs. This aids in implementation of 

the first guideline. 

 

5.5 Summary 

This chapter has discussed three aspects of the eletro-mechanical behavior of a 

structure-patch-shunt system. A modeling approach to determine the power output and 

efficiency of a negative capacitance shunt was presented. It was shown that a Multisim 

model of a piezoelectric patch connected to a negative capacitance shunt accurately 

predicts the power output of the op-amp. Model investigation showed that through 

selection of the passive elements of a negative capacitance inverter, the efficiency of the 

shunt can be increased. Also, the model predicts voltage output limits of the op-amp for 

the ratio of disturbance voltage to op-amp supply voltage. 

The second section of the chapter outlined a tuning theory based on a single 

voltage measurement within the shunt to accurately predict vibration suppression of a 

vibrating system. The circuit analysis presented also allowed for comparison of 

maximum suppression to the power dissipated in the shunt. It was shown that maximum 

dissipated power does not correspond to maximum suppression for all frequencies.  
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Finally, a prediction method for determining the operating range of a negative 

capacitance shunt was developed. By measuring the impedance of the patch, the 

requirements of circuit stability and the op-amp voltage output limitations were 

accurately modeled and predicted. The prediction method was confirmed on two 

piezoelectric patches with different impedance frequency behavior. From the analysis of 

stable circuit values, the prediction of the differences in suppression was made and 

confirmed experimentally. Lastly, general recommendations were given, based on the 

conclusions from the stability analysis, on how shunt component values should be 

determined to increase control.  

  



118 

 

CHAPTER 6 

WAVE PROPAGATION EFFECTS 

6.1 Introduction 

This chapter numerically and experimentally illustrates the attenuation effect of 

negative capacitance shunts combined with periodic piezoelectric patch arrays. The first 

section discusses the wave propagation attenuation for a 1D waveguide. A numerical 

investigation is performed and compared to experimental results. The next section 

presents a similar analysis but for a 2D array when negative capacitance shunts are 

combined with resonant shunts. Lastly, a summary of the conclusions of the chapter is 

presented. 

6.2 One Dimensional Wave Propagation 

The physical effects that a negative capacitance shunted periodic array of 

piezoelectric patches has on a vibrating beam will be explored by analyzing numerical 

predictions of wave attenuation through the use of finite element analysis, an array length 

study, and the velocity response of different sections of the beam. These investigations 

will explore how the periodic array enhances the control ability of the negative 

capacitance shunt. Through the modification of the “stop-bands” of the periodic array, the 

negative capacitance shunt is expected to have more control over a wider frequency range 

as compared to control in the absence of the negative capacitance shunt. The wave 

attenuation calculations will give perspective to the frequency dependence of the shunt 

parameters and these parameters will be used as a starting point for the experimental 

investigations. The array length study will give insight into how much control effort is 



119 

 

achieved with increasing the number of patches. It was remarked earlier that the action of 

the negative capacitance shunt applied to the boundary of a cantilever beam causes the 

beam to act as if it is infinite. Therefore, by comparing the velocity response of beam 

over the region of the beam between the forcing and the array, the array area, and 

between the array and clamp this effect can be further investigated. The results of these 

studies on a periodic beam will give greater insight into the physical effects of the 

negative capacitance shunted piezoelectric periodic array and how a modal system may 

be controlled by periodic arrays. 

6.2.1 Finite element analysis 

A numerical model of a coupled mechanical-piezoelectric system is developed 

here to obtain predictions of vibration response and to be validated with experimental 

results. The system of interest is a thin cantilever beam shown in Figure 6.1. There are 12 

equally spaced piezoelectric patch pairs located at the center on the beam, with each 

patch pair connected to its own individual shunt circuit. These 12 patches constitute the 

periodic array. The upstream and downstream labels in Figure 6.1 are such because a 

point force is located at the “upstream” tip. The patch array section of beam can be 

studied by employing a dispersion analysis of single unit cell of the periodic array, Figure 

6.2. The dispersion analysis computes which frequencies are attenuated when a wave is 

passed through the array. A finite element model for both the full system and the unit cell 

is developed utilizing the method in Section 3.3. The result of interest for the finite 

element calculations for the beam is the spatial average transverse velocity. The unit cell 

finite element model obtains the complex wave number that represents the attenuation of 

propagating waves. 
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Figure 6.1 - Cantilever beam with a bonded piezoelectric array, centered on beam face 

 

Figure 6.2 - Single unit cell of periodic array 

6.2.2 Experimental Setup 

A long cantilever beam with a patch array and necessary data acquisition 

equipment was assembled to investigate the effect of the negative capacitance shunts. 

The long thin aluminum beam which is clamped on one end has 12 piezoelectric patch 

pairs bonded symmetrically on both sides, for a total of 24 patches. The construction of 

the beam consisted of gluing a thin kapton film to both faces of the beam to electrically 

isolate the bottom surfaces of the piezoelectric patches which are bonded to the kapton. 

The bottom face of the surface of the piezoelectric was electroded by a thin copper tape 

that was attached to the piezoelectric by conductive epoxy. The material properties and 

physical dimensions of the beam and patches are shown in Table 6.1. Each pair of 

patches is electrically connected in parallel. The individual pairs are connected to 

individual shunt circuits which creates 12 single input, single output (SISO) control 

systems. The beam is also separated into three sections, just as Figure 6.1, labeled as: 

upstream, array, and downstream. These sections will be analyzed separately to 

investigate energy localization. 
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Table 6.1 - Beam and patch physical parameters 

Beam Young's modulus E b = 73 GPa

Density ρb = 2700 kg/m
3

Length L = 1.47 m

Width w = 18.2 mm

Thickness t = 3.3 mm

Piezoelectric Young's modulus, shorted E p = 63 GPa

Density ρp = 7800 kg/m
3

Coupling coefficient k 31= 0.35 

Thickness t = 0.8 mm

Capacitance C p = 58.5 nF  

The response of the cantilever beam is measured by the use of a laser Doppler 

vibrometer. The vibrometer consists of a computer module, function generator, and 

scanning laser head. The computer controls the necessary settings for data acquisition and 

links with the function generator to create a signal output. The output is sent to an 

electromechanical shaker that forces the beam at the tip. The velocity of beam is 

measured by the scanning laser head at 125 equally spaced locations along the length of 

the beam. The data from these points are used to compute the spatial average velocity in 

the regions of interest, either the full length or the three sections of the beam. 

The spatial average velocity frequency response function (FRF) comparison 

between a base line (open circuit) case and the control shunt connected expresses an 

overall reduction in vibration of the beam. The squared spatial average velocity is defined 

as 

  
 
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2
2

0

,1
xL

x

u f x
u f dx

L F f






 (6.1) 



122 

 

where f is the frequency and u is the velocity at a point x along the length of the beam. 

The spatial average velocity response of the finite element model will be validated by the 

experimentally obtained measurements. 

6.2.3 Results and analysis 

To begin, the results of the dispersion theorem analysis will be presented to 

express the frequency impact of the control shunt on a unit cell. For maximum control, 

the negative capacitance of the shunt is set to a stable value as close to the magnitude of 

the patch capacitance. The negative capacitance value is 66.7 nF, which is used for both 

numerical calculations and experiments. This value is the minimum negative capacitance 

magnitude that can be obtained experimentally. The frequency dependence of the shunt 

will be explored by changing the resistance in series with the negative capacitance, Rs in 

Figure 4.11. Figure 6.3 shows the propagation constant, calculated using the method 

outlined in Section 3.3.2, for three values of resistance and the open circuit configuration, 

which is considered the uncontrolled case. The response of the unit cell for the open 

circuit case displays a stop band at 2600 Hz which is inherent from the impedance 

mismatch introduced by the bonded patches. For low resistance values, the inherent stop 

band of the patch geometry at 2600 Hz is amplified when the circuit is applied. Yet, with 

larger resistance the increased damping in the shunt minimizes the periodic effect but 

does increase the control effectiveness at lower frequencies. For the 100 Ω resistor, the 

propagation constant reaches the same increased stop band level of lower resistance and 

is greater for both higher and lower frequencies. From this figure, the propagation 

constant predicts for small resistances the control shunt will have a frequency localized 
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impact. The shunt should have the most effect at lower frequencies with higher 

resistance. 

Beginning with a finite element simulation, Figure 6.4, the negative capacitance 

shunt significantly reduces the velocity of the beam from 600 to 5000 Hz. The maximum 

numerically predicted reduction is 11 dB at the 2300 Hz resonance. The resonance at 

2500 Hz cannot be controlled by the shunts, but both resonances above and below this 

uncontrolled frequency exhibit the maximum attenuation. This behavior agrees with the 

dispersion analysis results where the effectiveness dips at 2500 Hz but has a maximum at 

the frequencies immediately lower. As was also predicted by the interpretation of Figure 

6.3, the frequency dependent behavior of the different series resistors is exhibited in the 

spatial average velocity frequency response of the finite element model. The 100 Ω 

resistor creates the largest attenuation for frequencies above the uncontrolled mode 

located at 2600 Hz. In addition, the large resistance configuration produces the largest 

control at low frequencies. The numerical spatial average velocity response is verified 

experimentally as shown in Figure 6.5. Both the propagation constant predictions and the 

numerical results are confirmed by the experimental velocity response of the beam. 

Figure 6.5 shows the spatial average velocity of the beam for the same three values of 

resistance. The maximum suppression is found to be 12 dB at 2100 Hz for the 100 Ω 

resistor. The resonance at 2600 Hz is also not controlled. The frequency nature of the 

three shunt configurations can be seen as well, with the 55 Ω resistor having a strong 

localized effect around 2400 Hz. A minimum of 5 dB velocity reduction is obtained at all 

modal peaks from 600 to 5000 Hz with the 100  resistor. It should also be noted that 
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these attenuation values represent a global measure for the reduction in vibration 

amplitude because u is a spatial average over the entire length. 
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The three sections of the beam behave differently when the control shunt is 

applied. Figure 6.6 and Figure 6.7 show the spatial average velocity response of the 

upstream and downstream sections of the beam. The negative capacitance control causes 

the velocity minima to increase in the upstream section of the beam as seen in Figure 6.6. 

In contrast, Figure 6.7 shows the average velocity decreases at the anti-resonances of the 

downstream section. These changes are caused by the vibration localization of the shunt 

array. This can be quantified by summing the spatial average kinetic energy of each 

section over all frequencies. The frequency integrated kinetic energy difference between 

the open and control cases is defined as 

 
max

1010log

f
c

ucf

T
T df

T

 
   

  





 (6.2) 

 

where Tc is the controlled kinetic energy and Tuc is the uncontrolled kinetic energy. The 

kinetic energy change between the open circuit and control cases for the upstream and 

downstream sections of the beam are shown in Table 6.2. This table displays the 

difference between uncontrolled and controlled kinetic energy for three lower integration 

limits. As the integration is confined to higher frequencies, there is a greater difference 

between the controlled and uncontrolled cases. This shows that the shunt reduces the 

energy of the vibration as the waves pass through the array. Therefore for higher 

frequencies, the circuit has a greater vibration localization effect. This trend is expressed 

in Figure 6.8, also. The localization is also expected from the analysis of the frequency 

dependence of the propagation constant, as shown in Figure 6.3, which expresses the 

attenuation of the propagating wave through the array. The two curves show the kinetic 

energy difference for the upstream and downstream sections of the beam. The separation 
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between the two curves increases as the frequency of the lower integration limit 

increases. In summary, the spatial average velocity of the whole beam decreased when 

the control is added, but the array has a greater effect in reducing the energy in the area 

downstream of the array. The effect of the array can also be considered an anechoic 

boundary, because the vibration energy is dissipated and not reflected back upstream. 

Table 6.2 - Frequency integrated total kinetic energy difference 

Range Upstream Downstrem

0.1 - 5 kHz -4.2 dB -5.7 dB

0.5 - 5 kHz -6.6 dB -10.4 dB

1.5 - 5 kHz -6.2 dB -13.7 dB  
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The number of patches with the control connected impacts the reduction in 

velocity of the resonant peaks. Figure 6.9 shows the numerical prediction of attenuation 

for the 15
th

 and 16
th

 resonant peaks of the beam relative to the open circuit case as more 

patches are added to the array length. The 15
th

 and 16
th

 resonances are located at 1400 

and 1550 Hz. A pair of sequential resonances was needed to analyze the behavior of the 

control when increasing the array length, and these two were chosen arbitrarily because 

they exhibit average modal attenuation. The attenuation is expressed in a dB value with 

the uncontrolled amplitude the reference. The overall trend is increasing reduction with 

increasing array length, yet the addition of certain patches has more impact on control 

than others. Also, the modes are impacted differently when more patches are applied. The 

attenuation increases by increasing the number of patches in the array; but not smoothly 

increasing, rather, exhibiting ramps and plateaus. The behavior is attributed to the modal 

response of the beam, which affects the locations where a patch can exert control. The 

ramps are present when the addition of a single patch causes significantly more control to 

the overall vibration. In contrast, a plateau occurs when adding another patch to the array 

length does not cause any appreciable increase in attenuation. The reduction in modal 

amplitude therefore depends on the location of the additional patch in the array with 

respect to the mode shape. Therefore, the propagation constant cannot be considered an 

exact prediction between reduction in vibration of a modal system at every frequency. 
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Figure 6.9 - Numerical vibration reduction versus array length, # of patches 

The experimental data shows similar ramps and plateaus in attenuation with 

increased array length, Figure 6.10. The corresponding resonances show after 8 patches 

there is only incremental increases in attenuation. Therefore, by adding more patches to 

create a longer array will only yield diminishing returns in suppression of vibration.  

 

Figure 6.10 - Experimental velocity reduction versus array length, # of patches 

6.3 Two Dimensional Wave Propagation 

Apart from using just negative capacitance shunts for vibration suppression, 

control of a 2-D plate structure can be achieved by a hybrid shunt configuration. The term 
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hybrid refers to the simultaneous use, on the same host structure, of both resonant RL and 

negative capacitance electrical shunts. The use of hybrid shunts has been investigated by 

Tang and Wang [35], Tsai and Wang [32], and by Zhao [93] where the use of hybrid 

active-passive mechanisms were applied to the same patch. The present approach is 

different in the sense that an individual patch is shunted with either an RL or a negative 

capacitance circuit. This significantly simplifies the design of the two networks that can 

now be considered separately. The present implementation also exploits the unique 

properties of periodic systems to generate broadband frequency regions of wave 

attenuation. The simultaneous use of resonant and negative capacitance shunts is studied 

here to combine the advantages of the two concepts and thus to provide a control 

mechanism specifically designed to suppress vibrations in the low-mid frequency range, 

which typically characterize the critical spectrum of structure-borne noise in rotorcraft 

cabins [94]. Numerical analyses are conducted employing a finite element model 

specifically developed to investigate the dynamic behavior of thin plates with surface-

bonded shunted piezoelectric patches. Specifically the FE model is used to calculate the 

frequency response of finite assemblies and to predict the dispersion properties of 

periodic systems through the unit cell analysis approach typically employed to 

characterize the wave propagation properties of periodic media. Experimental tests are 

also performed on a periodic thin plate both to validate the predictions of the unit cell 

analysis and to verify the effectiveness of the proposed control strategy. 

6.3.1 Numerical Configuration and Results 

Finite element simulations are exploited to predict the capability of periodic 

hybrid shunts to reduce the vibration field of a cantilever plate. The host structure is a 
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rectangular aluminum plate (E = 71.0 GPa, ν = 0.33) with sides length of 406×203 mm 

and thickness of 1.0 mm. The plate dimensions are chosen to realize a periodic layout of 

4×4 piezoelectric patches, as shown in Figure 6.11, which constitutes a reasonably simple 

configuration that can be further studied experimentally. The technical specifications of 

ACX QP25N patches, which are used in the experimental validation, are summarized in 

Table 6.3. These piezoelectric properties are used in the numerical analysis. The vibration 

attenuation properties of the proposed configuration are studied both in terms of the 

attenuation constants, evaluated on the unit cell of the periodic plate, and through 

analysis of the frequency response of the finite assembly. The attenuation constant is 

calculated along the main plate direction (x direction as defined in Figure 6.11) which is 

of interest due to the geometry and forcing of this test case. For the frequency response, 

the plate is excited with a point force, and the response is evaluated in terms of out-of-

plane displacement at one node of the model as shown in Figure 6.11. The hybrid 

configuration is implemented by an equal number of RL and negative capacitance 

circuits, each connected to a single piezoelectric patch. To verify the robustness of this 

control strategy, two different shunt distribution arrangements, labeled “A” and “B”, are 

tested as illustrated in Figure 6.12 along with the corresponding unit cell configurations. 

In Figure 6.12, the dark solid patches indicate patches connected to negative capacitance 

circuits, while the shaded (blue) patches are connected to resonant (RL) networks. For 

convenience, the negative capacitance shunts are labeled NIC in all the figure captions.  
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Table 6.3 - Mide ACX QP25N specifications 

Device Size 50.8 x 25.4 x 0.508 mm 

Weight 3.68 g

Number of Active Elements 2

Capacitance 200 nF

PZT Wafer Size 45.97 x 20.57 x 0.127 mm

Operating Range ± 100 V
 

 

Figure 6.11 - Cantilever aluminum plate with 4×4 array of surface-bonded piezo 



138 

 

 

Figure 6.12 - Configurations A (a) and B (b) chosen to realize a finite periodic assembly, 

and corresponding unit cells (c) and (d) 

The computed attenuation constants are shown in Figure 6.13a and Figure 6.14a 

for different configurations of the shunted network. The open circuit case represents a 

baseline reference in which the piezoelectric patches are not connected to the 

corresponding shunt circuits and thus no control authority is exercised on the system. A 

first attenuation range is shown to be centered at about 220 Hz, and remains 

approximately the same for all circuit configurations. This can be attributed to the 

impedance mismatch generated by the added mass and stiffness of the piezoelectric 

patches and cannot be controlled through the shunting parameters. 

Figure 6.13a and Figure 6.14a show that when only the negative capacitance 

circuits are connected to the electrodes of the piezoelectric patches does the attenuation 

constant assumes positive values almost everywhere in the considered frequency range. 

From a different perspective, frequency response functions (FRFs), shown in Figure 
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6.13b and Figure 6.14b, illustrate that significant vibration reduction is achieved in the 

corresponding frequency range. These figures also show that between 400 and 600 Hz the 

significant vibration level of the structure is only partially attenuated by negative 

capacitance shunts. Due to their resonant behavior, RL shunts are tuned to this region of 

opportunity to improve the control effect of the negative capacitance networks. Figure 

6.13 and Figure 6.14 in fact show that when tuned to 500 Hz, the RL shunts alone 

generate a significant region of wave attenuation centered at the tuning frequency that is 

responsible for a strong reduction of vibration amplitudes as shown in the corresponding 

FRF plots. When the two shunting strategies are simultaneously used it is possible to 

observe a summing interaction that retains the broadband vibration reduction effect 

typical of the negative capacitance circuits and also the resonant behavior at 500 Hz due 

to the tuning of the RL networks as illustrated in Figure 6.13b and Figure 6.14b 

respectively. The similarity of behaviors observed for both configurations A and B 

testifies to the robustness of this control strategy. 
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Figure 6.13 - Attenuation constant (a) and frequency response (b) of the system in 

configuration A 

 

Figure 6.14 - Attenuation constant (a) and frequency response (b) of the system in 

configuration B 
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6.3.2 Experimental Setup 

Experiments were conducted to verify the effectiveness of the hybrid 

configuration in reducing both low- and mid-frequency modes in the range between 0 and 

1400 Hz. Dynamic tests were performed on an aluminum cantilever plate with surface 

bonded PZT patches. The host structure and the piezoelectric patches were the same used 

for numerical simulations and the experimental setup is shown in Figure 6.15. The 

applied force was provided through an electrodynamic shaker LDS V201/3, and the 

response was measured through a Polytec PSV-400 scanning laser vibrometer. All the 

actuators were connected to an independent circuit using cables CB-011 provided by the 

patch manufacturer. In order to limit the effects of these thick and stiff cables on the 

dynamics of the tested structure, they were suspended with soft rubber bands. 

Both the resonant and negative capacitance shunts were created using active 

circuit elements. The negative capacitance shunt was implemented using the “Type 1” 

configuration and a series resistor, as outlined in Section 4.3. Using a trial and error 

approach, a series resistor of 100 Ω was determined to yield the greatest suppression of 

vibration over the frequency range of interest.  For resonant shunts which target low- to 

mid-frequency vibrations, the required inductor is typically on the order of tens of 

Henries which would be impractical to implement by passive means on lightweight 

structures due to the sheer size and weight of such large inductors. Therefore, there is a 

need for a synthetic inductor, which employs two op-amps and passive circuit elements to 

create tunable inductance. Refer to the work of Casadei et al. for a presentation and 

analysis of the synthetic inductors used for these experiments [95]. The value of 
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inductance is selected in order to tune the RL circuit at a specific frequency ftun according 

to 

 
2

1

tun p

L
C

  (6.3) 

where ωtun = 2πftun and Cp is the capacitance of the piezoelectric patch. A 33 Ω resistor 

was chosen for the resonant shunt, which corresponded to the compromise between 

attenuation magnitude and bandwidth. 

 

Figure 6.15 - Finite periodic assembly used to experimentally validate the effectiveness of 

hybrid shunting 
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6.3.3 Results and Analysis 

Frequency response functions corresponding to different shunting strategies are 

presented and compared to experimentally verify the effectiveness of hybrid shunts. Four 

different shunting configurations are considered to verify the vibration control 

performance of configurations A and B. The change in attenuation behavior at different 

frequencies is tested by measuring the systems’ response when the RL circuit is tuned at 

700 Hz (Figure 6.16 and Figure 6.17) and 1150 Hz (Figure 6.18 and Figure 6.19). Four 

different circuit configurations are illustrated. A first run is made considering only the 

effect of the negative capacitance circuits while the other piezoelectric patches are 

shorted (i.e. ZS = 0). Then, the complementary configuration is measured where only the 

RL circuits are connected and tuned at the desired frequency. The third measurement is 

made to consider the simultaneous effect of the two shunting strategies. Finally, the open 

circuit response (i.e ZS → ∞) is also illustrated as a common reference baseline to 

evaluate the performances of the different shunting strategies. Frequency response 

functions are illustrated in Figure 6.16 to Figure 6.19 along with plots of the unit cell 

attenuation constant to verify the accuracy of this approach to predict the actual response 

of the system. These measurements are repeated for the two periodic configurations of 

Figure 6.12 in order to experimentally demonstrate the robustness of the proposed control 

approach. Two different tuning frequencies are selected for the RL circuit tunings. Of 

particular interest is the 0-1400 Hz range, which is relevant for the reduction of structure-

borne noise in rotorcraft cabins [94]. The first tuning frequency is arbitrary selected at 

700 Hz, while the second tuning frequency is chosen at 1150 Hz to compensate for the 

lack of effectiveness of the negative capacitance shunts around this higher frequency.  
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Figure 6.16a through Figure 6.19a show the effects of different shunting 

configurations on the attenuation constant of the system. These results demonstrate the 

broadband damping effect introduced by the negative capacitance shunts and the 

possibility to introduce additional attenuation bands through proper tuning of the resonant 

RL shunts. The same figures show that when the two control strategies are 

simultaneously combined on the same structure, the hybrid solution allows for the 

benefits of both the negative capacitance and RL effects. These trends are corroborated 

by the measured averaged spatial response of the plate, defined as the spatial average 

value of the velocity responses measured by the laser vibrometer over the plate surface. 

In particular, Figure 6.16b through Figure 6.19b show, for both configurations A and B, 

that amplitude attenuation up to 8 dB is achieved on the tuning frequency of 700 Hz and 

4 dB at the second tuning frequency of 1150 Hz by RL shunts, but also that their 

effectiveness vanishes at frequencies away from the tuning, where instead negative 

capacitance shunts perform better. When the two shunting strategies are used 

simultaneously the frequency response of the plate follow the trend imposed by the 

negative capacitance networks in the lower frequency range, while at higher frequencies 

the dynamics is dominated by the resonant behavior of RL shunts. It is particularly 

interesting to observe that RL circuits can be tuned to frequencies where the negative 

capacitance shunt does not have desired performance, allowing for increased attenuation 

as demonstrated by Figure 6.18 and Figure 6.19. 
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Figure 6.16 - Attenuation constant (a) and measured frequency response (b) of the system in 

configuration A, RL tuned to 700 Hz 

 

Figure 6.17 - Attenuation constant (a) and measured frequency response (b) of the system in 

configuration B, RL tuned to 700 Hz 
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Figure 6.18 - Attenuation constant (a) and measured frequency response (b) of the system in 

configuration A, RL tuned to 1150 Hz 

 

Figure 6.19 - Attenuation constant (a) and measured frequency response (b) of the system in 

configuration B, RL tuned to 1150 Hz 
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6.4 Summary 

For a one dimensional waveguide, the effect of the negative capacitance shunted 

piezoelectric patch on a cantilever beam is a reduction in overall vibratory response. A 

dispersion analysis approximates the frequency dependence effect of the shunt, but the 

propagation constant does not give a precise measure for each resonance of a modal 

system. Increasing array length causes an increase in vibration control, with a maximum 

spatial average velocity suppression of 12 dB on an experimental beam. The control array 

also results in the beam to begin to act as if it there is an anechoic termination where 

more of the vibration energy is localized between the forcing location and the patch 

array. 

A 2-D periodic structure with hybrid arrays of RL and negative capacitance 

shunts is used to attenuate the vibration level of an aluminum plate at both low- and mid-

frequencies. Numerical investigations demonstrated that the simultaneous combination of 

different shunting strategies allows for both broadband and specific frequency damping. 

Experimental measurements showed that when the RL and negative capacitance shunting 

networks are combined, the resulting effect is given by the combination of the beneficial 

effects of the single circuits. This behavior is even more evident when the RL circuits are 

tuned to a frequency region of poor performance of the negative capacitance networks. 

Similar results were obtained for different tuning frequencies and periodic configurations 

to demonstrate the effectiveness and robustness of the proposed control strategy. 
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CHAPTER 7 

CONCLUSIONS 

The two major areas of contribution in this work with regard to negative 

capacitance piezoelectric shunts are the determination of the correlation between 

electromechanical behavior and suppression of a vibrating system and a study of the 

effect of the shunt-patch system in periodic arrays on beams and panels. The research 

documented in this dissertation has determined both electromechanical and structural 

improvements to negative capacitance shunted piezoelectric transducers.  

Two investigations were made into the performance of a negative capacitance 

shunt connected to a piezoelectric patch. First, a numerical parameter study of the 

negative capacitance shunt was performed to determine the effect of the shunt on the 

stiffness and damping of a piezoelectric patch. This study concluded that for ideal circuit 

components it is possible to obtain infinite damping ratio for any frequency. Yet, the 

stiffness and damping ratios are not attainable in practice. Secondly, a comparison study 

of the two established negative capacitance shunt tuning methods was made. The wave-

tuning tuning theory was found to be numerically equivalent to the reactive input power 

theory. Therefore, inherently, the negative capacitance shunt can be considered an 

impedance control method. 

Three aspects of electromechanical modeling and implementation improvements 

were developed: an adaptive shunt tuning theory, improved prediction of stability, and 

improved shunt efficiency. While previous shunt tuning methods necessitated accurate 

electrical and structural models, a novel tuning theory was developed that utilizes the 

minimization of a single voltage measurement to determine the shunt parameters that 
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correspond to maximum vibration suppression. Also from this tuning theory, it was found 

that the more power dissipated within the series resistor or the power output of the op-

amp does not always correspond to more suppression. Secondly, a method was developed 

to accurately predict the values of negative capacitance that are physically attainable 

within a stable shunt circuit. Previous stability criterion did not accurately predict 

unstable circuit values due to simplified electrical assumptions of the shunt and patch. By 

accounting for both stability and output requirements the accuracy of prediction can be 

improved by 2-10 times.  Lastly, a numerical model was developed to accurately predict 

the electromechanical response of the system. Through the use of the model, it was 

possible to improve the power output efficiency of the op-amp through selection of the 

shunt’s passive circuit components and to quantify the limitations of a negative 

capacitance shunt. 

The second area of contribution of this dissertation is in the study of the effect of 

the negative capacitance shunt applied in 1- or 2-D periodic arrays. Since negative 

capacitance shunts connected to a periodic array had not previously been shown 

experimentally, the wave propagation advantages of a periodic array in conjunction with 

the shunt were investigated. When applied to a periodic array, the negative capacitance 

created broadband suppression of the propagating wave. Similarly, through proper 

component selection, the spectrum of the suppression could be tailored. The frequency 

behavior of the shunt was predicted by the propagation constant solved for using a finite 

element model. A numerical model of a long cantilever beam exhibited the same 

frequency behavior as the propagation constant for various shunt conditions. It was also 
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found that the negative capacitance shunt can also obtain broadband control when applied 

to a 2-D periodic array.   

7.1 Further Work 

The results of this work lead to several opportunities for future research. First, a 

closed-loop controller could be developed to adaptively tune the circuit parameters to 

impose maximum suppression of vibration using the experimental tuning theory 

developed in this work. By using digital potentiometers and a field-programmable gate 

array or analog methods, the tuning theory could be implemented experimentally. 

Similarly, the stability prediction method would lead to gain limits on the minimization 

function to guard against circuit configurations which would cause instability of the 

circuit. 

With regard to structural or mechanical research, the construction of a 

piezoelectric patch array could be optimized for a given system. A negative capacitance 

shunt was shown to significantly decrease the vibration response of a cantilever beam, 

but the beam had a single resonance that could not be controlled. To combat this, the 

array could be constructed in a non-periodic fashion or consist of a multi-patch unit cell 

with separate circuit configurations per patch. Other modifications to location, size, and 

geometry of the patch array could be made to increase the suppression for a given goal. 

Similarly, the negative capacitance shunt control system should be applied to more 

complex test structures such as a stiffened aircraft panel.  

Lastly, the combination of stability prediction method and a periodic array could 

be made to tailor the shunt impedance for a given design goal. Currently, a periodic array 

is utilized to reduce the transmitted wave through the array but could just as easily be 
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utilized to minimize the reflected wave. Also, the current frequency behavior of the shunt 

is not optimal for all frequencies. Therefore, given an optimized frequency-dependent 

impedance, the stability prediction method could be utilized to determine shunt 

parameters to best fit that impedance.  
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